
A Guide to the iPlanet
UDS Workshops

iPlanet™ Unified Development Server

Version 5.0

August 2001

Copyright (c) 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed
at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other
countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Forte, iPlanet, Unified Development Server, and the iPlanet logo are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

__

Copyright (c) 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans
ce document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets
américains énumérés à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en
attente dans les Etats - Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque
moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Forte, iPlanet, Unified Development Server, et le logo iPlanet sont des marques de fabrique ou
des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

LA DOCUMENTATION EST FOURNIE “EN L'ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y
COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE
UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFAÇON.

3

Contents

List of Figures . 27

List of Procedures . 33

List of Code Examples . 43

Preface . 45
Product Name Change . 45
Audience for This Guide . 46
Organization of This Guide . 46
Text Conventions . 48
Other Documentation Resources . 48

iPlanet UDS Documentation . 49
Express Documentation . 49
WebEnterprise and WebEnterprise Designer Documentation . 49
Online Help . 50

iPlanet UDS Example Programs . 50
Viewing and Searching PDF Files . 50

Chapter 1 Overview . 53
About iPlanet UDS . 53

Modular Construction . 55
Construction Crew . 55
Connecting to Services . 56

Object-Oriented Programming . 56
How Objects Interact . 59

Methods . 59
Events . 61

Using Classes . 63
Prefabricated Classes . 63
Custom Classes . 64
Inheritance . 64
Abstract Classes . 66

4 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Object-Oriented Programming (continued)
Planning Your Class Hierarchy . 66

Overriding Methods . 67
Using Private Methods . 67

Working with Objects . 67
About Distributed Applications . 69

About Partitions . 69
About Service Objects . 71

DBMS Resource Manager Service Objects . 72
Load Balancing and Failover . 72
Using Load Balancing For Performance . 72
Using Failover for Reliability . 73

About Environments . 74
Partitioning an Application . 75

The Development and Deployment Process . 75
Repository Workshop . 76
Project Workshop . 77

Creating Projects . 77
Testing Projects . 78

Class Workshop . 78
Interface Workshop . 78
Window Workshop . 79

Tool Palette . 79
Menu Workshop . 80
Method Workshop . 80
Event Handler Workshop . 81
Cursor Workshop . 81
Debugger . 81
Partition Workshop . 82

Examining Partitions . 83
Creating Configurations . 83

Environment Console . 83
Examining Environments . 84
Creating Environments . 84
Managing the iPlanet UDS Runtime Environment . 84

Express . 85
Application Model Workshop . 85
Business Model Workshop . 85
iPlanet Integration Server . 86
XML/XSL Workshop . 87
Process Development Workshops . 88

5

Chapter 2 Using the iPlanet UDS Workshops . 91
Before Using the iPlanet UDS Workshops . 91
Using the iPlanet UDS Control Panel . 92

Opening the Control Panel . 92
The Control Panel Window . 92
Closing the Control Panel . 94

General Tab Page . 94
Repository Name . 94
Workspace Name . 95
Root Directory . 96
Time Zone and Daylight Savings . 96

Network Tab Page . 96
Model Node . 97
Node Name . 97
Name Server Address . 97
Communication Provider . 98

Log Flags Tab Page . 98
Inserting and Deleting Log Settings . 99
Changing Default Filter Settings . 100
Modifying Log Specifications at Runtime . 100

Setting Environment Variables Without the Control Panel . 100
Setting Environment Variables on NT . 101

Using the Registry . 101
Using the NT Control Panel . 101
Using the DOS Command Line . 102
Using the iPlanet UDS Control Panel . 102

Setting Environment Variables on Windows 95 . 102
Using the Registry . 102
Using autoexec.bat . 102
Using the iPlanet UDS Control Panel . 103

Setting Environment Variables on UNIX . 103
Using fortedef . 103
Using the Command Line . 103

Setting Logical Names on OpenVMS . 104
Using the FORTE_LOGIN.COM File . 104
Using Your Personal login.com File . 104
Using the Command Line . 104

Common Environment Variables . 105
Modifying Logging At Runtime . 106

Starting the iPlanet UDS Workshops . 110
Standalone Mode . 110

6 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Starting the iPlanet UDS Workshops (continued)
Distributed Mode . 110

iPlanet UDS Launch Server . 111
iPlanet UDS Launcher Application . 111

Starting the Workshops on Windows 95, Windows NT, Alpha NT . 112
Using Shortcuts . 113

Starting the Workshops on UNIX . 114
Starting the Workshops on OpenVMS . 115
Ftcmd Command . 115

Specifying Arguments . 117
Ftexec Command . 118
Ftclntws Command . 118
Flags for ftcmd, forte, ftexec, and ftclntws Commands . 118

Choosing a Repository . 120
Choosing a Workspace . 121

Running the iPlanet UDS Launch Server . 121
Using the iPlanet UDS Launcher Application . 122

Using Distributed Mode . 122
Using iPlanet UDS Windows . 123

Using the Mouse . 123
Using the Keyboard . 124
Using Specialized iPlanet UDS Widgets . 124

Array Fields . 125
Outline Fields . 125
Browser Buttons . 126
Using Popup Menus . 127

Importing and Exporting Data . 129
Using the Clipboard . 129
Using Multiple Windows . 130
Printing Windows . 130

Using iPlanet UDS Names . 131
Rules for Naming Components . 131

Using iPlanet UDS Data Types . 132
Simple Data Types . 132
Data Type Classes . 133
NULL Class Types . 134

Using iPlanet UDS Online Help . 134
Jumps and Pop-ups . 135
Searching . 135
Other Features . 135

7

Setting Workshop Preferences . 136
Workshop Size and Position . 136
Filters . 137
Viewing Preferences . 137
Font Preference . 138

Leaving iPlanet UDS . 138
About International Support . 138

Chapter 3 Using the Repository Workshop . 139
About Repositories . 139

Type of Repository . 141
Workspaces . 142

About Central Repositories . 143
Shadow Repositories . 143

Attached Shadow Repository . 144
Detached Shadow Repository . 144

Using the Central Repository . 145
Checkout and Branching . 146
Updating and Integrating . 147
About Repository Security . 147
Security for Standard Repositories . 148
Security for Secure Repositories . 149

About Private Repositories . 150
Creating a Private Repository . 150
Using a Private Repository . 151

About Workspaces . 151
Using Workspaces for Collaboration . 151
Source Code Control . 152

Creating a Workspace . 152
Using a Workspace . 153

Using the Repository Workshop . 155
The Repository Workshop Window . 155
View Menu . 157
Access to Other Workshops . 157
Leaving the Repository Workshop . 159

Using a Repository . 159
Examining the Repository . 159

Viewing Workspace Status . 160
Viewing Repository Information . 160

Creating and Deleting Plans . 160
Setting Extended Properties for Projects . 161
Deleting Plans from the Repository Baseline . 163

8 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Using a Repository (continued)
Creating and Using Shadow Repositories . 163

Creating a Shadow Repository . 163
Using an Attached Shadow Repository . 164
Detaching a Shadow Repository . 166
Attaching a Shadow . 168

Backing Up a Repository . 168
Using Workspaces . 168

Opening a Workspace . 169
Examining a Workspace . 170
Saving a Workspace . 174
Showing Plan Changes . 174
Updating and Integrating a Workspace . 175

Updating a Workspace . 176
Integrating a Workspace . 179

Creating a Workspace . 181
Including Plans in a Workspace . 182
Deleting Plans from a Workspace . 182
Deleting a Workspace . 183

Importing and Exporting Plans and Libraries . 183
Importing a Plan . 184
Importing a Library . 185
Exporting a Plan . 186

Finding and Replacing Text . 188
Finding Text . 188
Replacing Text . 188

Testing a Plan . 190
Compiling Plans . 191

Using the Error Window for Project Errors . 192
Setting Repository Passwords . 193

Setting Passwords in a Standard Repository . 193
Changing Passwords in a Secure Repository . 194

Utilities . 194
Collecting Memory . 194
Modifying Log Flags . 195

Inserting and Deleting Log Settings . 196
Setting Workshop Preferences . 196

Sorting Preference . 198
Importing Project Preference . 198
Saving Preferences . 199

Saving Commits to Central . 199
Saving Before Running . 199

9

Chapter 4 Using the Project Workshop . 201
About Projects . 201
Classes . 202
Interfaces . 203
Service Objects . 204
Constants . 207
Cursors . 208
Start Class and Method . 208
Supplier Plans . 209
Project Properties . 210

Project Type . 211
Compatibility Level . 211
Restricted Availability . 212

Writeable and Read Only Components . 213
Using the Project Workshop . 214

The Project Workshop Window . 214
View Menu . 216
Access to Other Workshops . 216
Leaving the Project Workshop . 217
Examining a Project or Library . 217
Examining the Components . 218
Examining a Class . 221
Examining a Window Class . 221

Examining a Domain Class . 222
Examining an Interface . 222
Examining a Cursor . 223

Examining a Service Object . 223
Examining a Constant . 224
Examining Start Class and Method . 225
Examining Supplier Plans . 225
Examining Extended Properties . 226
Creating a TOOL Project . 227
Using the New Project Command . 228
Defining Classes . 229

Creating a Standard (Nonwindow) Class . 230
Creating a Window Class . 230
Creating a Domain Class . 231

Defining Interfaces . 231
Defining Project Constants . 232
Defining Service Objects . 234

New Service Object Dialog . 236
Service Object Properties Dialog . 236

Defining Cursors . 242

10 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Specifying Supplier Plans . 244
Using a Library as a Supplier Plan . 245

Specifying Start Class and Method . 246
Setting Project Properties . 247
Setting Extended Properties on Project Components . 248
Modifying a TOOL Project . 249
Modifying a Class . 250
Modifying an Interface . 250
Modifying a Constant . 251
Modifying a Service Object . 251
Modifying a Cursor . 251
Modifying Project Properties . 252
Deleting Components . 252

Copying and Moving Components . 252
Finding and Replacing Text . 253

Finding Text . 253
Replacing Text . 254

Reverting a Project . 256
Write Access to Project Components . 257
Checking Out a Component . 258
Branching a Component . 259
Undoing Changes . 259
Checking out All Project Components . 260
Branching All Project Components . 261
Testing a TOOL Project . 262
Compiling the Project . 263
Running the Project Locally . 263
Running with Profiling . 264
Running a Code Fragment . 267
Running the Project in a Distributed Environment . 268
Using the Error Window . 269
Debugging the Project . 270
Importing and Exporting Classes and Interfaces . 270
Importing a Class or Interface . 270

Overwriting an Existing class or Interface . 271
Exporting a Class . 271
Setting Workshop Preferences . 272
Sorting Preference . 273

11

Chapter 5 Using the Class Workshop . 275
About Classes . 275

Attributes . 276
Virtual Attributes . 278

Methods . 278
Overloading Methods . 278

Events . 279
Event Handlers . 280
Constants . 281
Visibility of Class Elements . 282
Extended Properties of Class Elements . 282
Restricted Property . 282
Implementing Interfaces . 283
Object Runtime Properties . 284

Shared Property . 285
Distributed Property . 286
Transactional Property . 287
Monitored Property . 288

Class Versions . 289
Default Init Method . 290
Window Classes . 290
Domain Classes . 292

Using the Class Workshop . 294
The Class Workshop Window . 294
View Menu . 295
Leaving the Class Workshop . 296

Examining a Class . 296
Examining the Class Elements . 297

Examining Methods . 298
Examining Attributes . 300
Examining Events . 300
Examining Event Handlers . 301
Examining Constants . 301

Examining Class Properties . 301
Examining Extended Properties for Class Elements . 302
Examining Window Classes . 302

Creating a Class . 302
Creating a Nonwindow Class . 303
Creating a Window Class . 304
Creating a Domain Class . 305

12 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Creating a Class (continued)
Using the Class Properties Dialog . 306

General Page . 306
Runtime Page . 307
Interfaces Implemented Page . 308

Defining Class Elements . 309
Defining Attributes . 310
Defining Virtual Attributes . 311
Defining Events . 314
Defining Methods . 316

Overloading Methods . 317
Creating a Converter Method . 318

Defining Event Handlers . 318
Defining Class Constants . 319
Setting Extended Properties for Class Elements . 321

Modifying a Class . 322
Updating Class Elements . 322
Deleting Class Elements . 322
Updating Class Properties . 323
Updating Extended Properties for Class Elements . 323
Using the Clipboard . 323
Finding and Replacing Text . 324

Finding Text . 324
Replacing Text . 325

Testing a Class . 327
Using the Error Window . 328

Setting Workshop Preferences . 329
Sorting Preference . 330

Chapter 6 Using the Interface Workshop . 331
About Interfaces . 331

Implementing an Interface . 332
Using an Interface as a Data Type . 332

Creating an Interface . 333
Implementing an Interface . 333
Interface Elements . 334

Virtual Attributes . 334
Methods . 335
Events . 336
Event Handlers . 336
Constants . 337

Extended Properties of Interface Elements . 338

13

Using the Interface Workshop . 338
The Interface Workshop Window . 339
View Menu . 340
Access to Other Workshops . 340
Leaving the Interface Workshop . 340

Examining an Interface . 341
Examining the Interface Elements . 342

Examining Methods . 343
Examining Virtual Attributes . 344
Examining Events . 345
Examining Event Handlers . 345
Examining Constants . 345

Examining Interface Properties . 346
Examining Extended Properties . 346

Creating an Interface . 347
Defining Interface Elements . 348

Defining Methods . 348
Defining Virtual Attributes . 350
Defining Events . 352
Defining Event Handlers . 353
Defining Interface Constants . 354

Setting Extended Properties for Interface Elements . 356
Modifying an Interface . 358

Updating Interface Elements . 358
Deleting Interface Elements . 358
Updating Interface Properties . 358
Updating Extended Properties for Interface Elements . 359
Using the Clipboard . 359

Setting Workshop Preferences . 360

Chapter 7 Using the Window Workshop . 361
About Windows . 362

About Window Components . 362
About Forms . 363
About Widgets . 364
About Simple Widgets . 364

About Window Style and Other Properties . 365
Window Style . 365
Initial Position Property . 367
Iconize Enabled Property . 368
Initial Display State . 368
Maximize Enabled . 369
Autosize Enabled . 369

14 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

About Windows (continued)
About Window Style and Other Properties (continued)

Stay On Top Property . 369
Tool Window Property . 369
System Close Policy . 370
Usage Property . 370
Visual Style Property . 372

About Creating New Windows . 372
About Inherited Windows . 373
About Nested Windows . 375
Inherited Windows or Nested Windows? . 378
About Windows as Page Templates . 378
About Windows as Web Pages . 381

About Internationalizing Windows . 382
About Help for Windows . 383

Using the Window Workshop . 384
Entering the Window Workshop . 384
The Window Workshop Window . 386

Viewing Window Workshop Tools . 387
Using the Toolbar . 388

The Undo and Redo Tools . 388
The Widget Editing Tools . 389
The Widget Grouping Tools . 389

Using the Widget Palette . 390
The Widget Selection Tool . 390
The Text Graphic Tools . 391
The Widget Creation Tools . 391
Using the Cell Gravity Tool . 392

Using the Color Bar . 392
Using the Widget Status Line . 394
Access to Other Workshops . 395
Leaving the Window Workshop . 395

Designing a Window . 396
Setting Window Properties . 396
Setting Window Usages and Widget States . 398
Creating a Form . 400

Using a Placement Grid . 400
Creating Widgets . 401

Creating Simple Widgets . 402
Using Repeat Mode . 405

Creating Compound Widgets . 405
Creating Domain Widgets . 407

15

Creating Widgets (continued)
Setting Widget Properties . 408

Setting the Properties for a Window . 409
Creating Attributes . 409

Selecting Widgets . 410
Selecting Single Widgets . 410
Selecting a Group of Widgets . 410

Using a Ghost Box . 410
Using Shift-Click . 411
Using the Select Commands . 411

Modifying Widgets . 411
Removing Widgets . 412
Copying Widgets . 412
Moving Widgets . 412
Resizing Widgets . 413
Converting Widgets . 413
Setting a Widget State . 414

Formatting Widgets . 414
Transparency for Graphic Fields . 414
Creating Fill Patterns . 415
Controlling Line Style and Weight . 416
Setting Widget Fonts . 417

Arranging Widgets . 419
Sizing and Aligning Widgets . 419
Widget Partnership Commands . 419
Aligning Cells in a Grid Field . 421
Cell Margins . 422
Stacking Widgets in Layers . 423

Working with Inherited Windows . 423
Working with a Subclass Window . 424

Adding New Widgets . 424
Moving Inherited Widgets . 425
Changing Widget Properties . 425
Deleting Inherited Widgets . 426

Creating a Superclass Window . 426
Testing a Window . 427

Testing Window Usages . 427
Importing and Exporting a Window . 428

Importing a Window . 428
Exporting a Window . 428

Setting Window Workshop Preferences . 429
Repeat New Preference . 430

16 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Chapter 8 Working with Widgets . 431
About iPlanet UDS Widgets . 431

Naming Widgets . 433
About Widgets and Data Types . 434
About Widget States . 435

Using Widget States with Window Usages . 437
About Tabbing . 437
About Input Focus . 438
About Sizing . 438

Size Policies . 439
Size Partnerships . 442

About Help for Widgets . 443
About Context-Sensitive Help . 443
About Float-Over Help . 444
About Status-Line Help . 445

About Internationalizing Widgets . 446
Specifying Message and Set Numbers for Widgets . 446
Multilingual Help for Widgets . 448

Working with Simple Widgets . 449
Creating a Data Field . 450

Specifying Data for a Data Field . 450
Setting Data Field Properties . 451

Creating a Text Field . 452
Setting Text Field Properties . 453

Creating a Text Edit Field . 454
Setting Text Edit Field Properties . 455

Creating a Picture Field . 456
Setting Picture Field Properties . 457

Creating a Toggle Field . 458
Setting Toggle Field Properties . 458

Creating a Push Button . 459
Setting Push Button Properties . 459

Creating a Picture Button . 461
Setting Picture Button Properties . 462

Creating a Scrollbar . 463
Setting Scrollbar Properties . 464

Creating a List View Field . 465
Setting List View Field Properties . 468

Creating a Tree View Field . 470
Setting Tree View Field Properties . 471

Creating an Outline Field . 472
Setting Outline Field Properties . 473

17

Working with Simple Widgets (continued)
Creating an OLE Field . 475

Setting OLE Field Properties . 475
Creating an ActiveX Field . 477

Setting ActiveX Field Properties . 479
Working with List Widgets . 480

Creating a Radio List . 481
Setting Radio List Properties . 481

Creating a Scroll List . 483
Setting Scroll List Properties . 484

Creating a Drop List . 485
Setting Drop List Properties . 486

Creating a Fillin Field . 487
Setting Fillin Field Properties . 488

Creating a Palette List . 489
Help for Palette Regions . 490
Setting Palette List Properties . 491

Working with Graphic Widgets . 493
Creating a Text Graphic . 493

Setting Text Graphic Properties . 494
Creating a Picture Graphic . 495

Setting Picture Graphic Properties . 497
Creating a Line . 497

Setting Line Properties . 497
Creating a Rectangle . 498

Setting Rectangle Properties . 498
Creating an Ellipse . 499

Setting Ellipse Properties . 499
Creating a Polyline . 500

Setting Polyline Properties . 500
Creating a Point . 500

Setting Point Properties . 501
Working with Compound Widgets . 501

Creating a Panel . 502
Setting Panel Properties . 503
Creating a Tab Folder . 504

Using the New > TabFolder Command . 507
Using the Group Into > TabFolder Command . 508
Editing the Tab Folder . 510
Setting Tab Folder Properties . 513

18 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Working with Compound Widgets (continued)
Creating an Array Field . 514

Modifying an Array Field . 515
Setting Array Field Properties . 516

Creating a Grid Field . 517
Modifying a Grid Field . 518
Setting Grid Field Properties . 519
About Grid Field Sizing and Alignment . 520

Creating a Compound Graphic . 522
Setting Compound Graphic Properties . 523

Creating a Viewport . 524
Setting Viewport Properties . 525

Chapter 9 Using the Menu Workshop . 527
About Menus . 527

Attribute Names . 529
Menu Widget Events . 530
Status Text for Menu Widgets . 530
Using States for Menu Widgets . 531
About Internationalizing Menus . 532
About Submenus . 533
About Menu Commands . 535
About Menu Toggles . 538
About Menu Lists . 539
About Menu Separators . 540
About Popup Menus . 540
About OLE Menu Groups . 543

Using the Menu Workshop . 545
The Menu Workshop Window . 546
Access to Other Workshops . 547
Leaving the Menu Workshop . 547

Examining a Menu Bar . 548
Viewing the Widget Properties . 549

Creating a Menu Bar . 550
Adding Menu Widgets . 552
Setting Widget Properties . 553
Setting Menu Widget States . 553
Setting Status Line Help Text . 554
Compiling the Menu Bar . 554

19

Editing a Menu Bar . 555
Moving Menu Items . 555
Changing Submenu Levels . 555
Cut, Copy, Paste, and Delete . 556
Modifying Properties . 556

Importing and Exporting a Menu Bar . 557
Importing a Menu Bar . 557
Exporting a Menu Bar . 557

Testing a Menu . 558
Creating Popup Menus . 558
Using the Prefabricated Help Commands . 561

Implementing the About Command . 562
Creating OLE Menu Groups . 563
Setting Workshop Preferences . 564

Insert Preference . 565

Chapter 10 Using the Method Workshop . 567
About Methods . 567

Method Components . 568
Method Name . 568
Parameters . 569
Return Type . 570
Return Event . 570
Exception Event . 570
Method Source . 570

Overriding Methods . 571
Overloading Methods . 573
Converter Methods . 573
Method Visibility . 574

Using the Method Workshop . 574
The Method Workshop Window . 575
Access to Other Workshops . 575
Leaving the Method Workshop . 576

Examining a Method . 576
Examining Parameters and TOOL Source . 576
Examining Method Properties . 577

Creating a Method . 577
Specifying Method Properties . 579
Writing the Method Source Code . 580

Typing TOOL Code . 581
Setting Breakpoints . 582

20 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Editing a Method . 582
Editing the TOOL Source Code . 583

Text Editing . 584
Searching and Replacing . 584
Indenting . 586
Cancelling Your Changes . 586

Editing the Method’s Properties . 587
Editing the Parameters . 587

Importing and Exporting a Method . 588
Importing TOOL Code . 588
Exporting TOOL Code . 588

Compiling the Method . 589
Setting Code Preferences . 590

Replace Mode . 591
Automatic Indenting . 591

Chapter 11 Using the Event Handler Workshop . 593
About Event Handlers . 593

Event Handler Name . 597
Event Handler Parameters . 597
Event Handler Source . 598

Using the Event Handler Workshop . 599
The Event Handler Workshop Window . 599
Access to Other Workshops . 600
Leaving the Event Handler Workshop . 600

Examining an Event Handler . 601
Examining Parameters and TOOL Source Code . 601
Examining Event Handler Properties . 602

Creating an Event Handler . 602
Specifying Event Handler Properties . 603
Event Handler Source Code . 604
Typing TOOL Code . 604

Editing an Event Handler . 605
Editing the TOOL Source Code . 605

Text Editing . 606
Searching and Replacing . 607
Indenting . 609
Cancelling Your Changes . 609

Editing the Event Handler’s Properties . 609
Editing the Parameters . 609

Importing and Exporting an Event Handler . 610
Importing TOOL Code . 610
Exporting TOOL Code . 610

21

Compiling the Event Handler . 611
Setting Code Preferences . 612

Chapter 12 Using the Cursor Workshop . 613
About Cursors . 613

Placeholders . 616
Cursor Source . 616

For Clause . 617
Using the Cursor Workshop . 618

The Cursor Workshop Window . 618
Access to Other Workshops . 619
Leaving the Cursor Workshop . 619

Examining a Cursor . 619
Examining Placeholders and TOOL Source . 620
Examining Cursor Properties . 620

Creating a Cursor . 621
Writing the Cursor Source . 621

Typing the Cursor Source . 622
Editing a Cursor . 622

Editing the Cursor Source Code . 623
Text Editing . 624
Searching and Replacing . 624
Indenting . 626
Cancelling Your Changes . 626

Editing the Cursor’s Properties . 627
Editing the Cursor’s Placeholders . 627

Importing and Exporting a Cursor . 628
Importing Cursor Code . 628
Exporting Cursor Code . 628

Testing the Cursor . 629
Setting Preferences . 630

Chapter 13 Using the Debugger . 631
About the Debugger . 631

Breakpoints . 631
Multitasking . 632
Debugging Distributed Applications . 632

Using the Debugger . 633
Starting the Debugger . 634

The Debugger Windows . 634
Access to Other Workshops . 635
Leaving the Debugger . 635

22 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Controlling Program Execution . 636
Run Menu Commands on Task Window . 636
Starting Execution . 637
Suspending Execution . 638
Stepping by Statements . 638
Stepping In and Out of Methods . 639

Step In Command . 639
Step Out Command . 639

Application Completion . 640
Setting Breakpoints . 640

Setting Statement Breakpoints . 640
Setting Method Breakpoints . 641
Setting Event Breakpoints . 641
Setting Exception Raised Breakpoints . 642

Examining the Program State . 642
Inspecting Variables . 643
Inspecting Standard Objects and Arrays . 644
Inspecting DataValue Objects . 646

Using the Inspections Menu . 646
Viewing the Method Call Stack . 647
Viewing the Error Stack . 648
Viewing the Event Queue . 648

Working with Multiple Tasks . 649
Communication Between Tasks . 650
Setting Task Breakpoints . 650

Chapter 14 Using the Partition Workshop . 651
About Distributed Applications . 651
About Libraries . 654
About Environments . 655

About Nodes . 657
Node Name . 657
Node Architecture . 658
Testing Node . 658
Client Node . 658
Use as Model . 658
Use for Testing . 659
Resource Managers . 659
Installed Protocols . 659
Installed Libraries . 659

About Connected Environments . 659

23

About Application Configurations . 661
About Partitions . 664

Logical Partitions . 664
Assigned Partitions . 668

Default Configuration . 672
Configuration Properties . 673

About Library Configurations . 673
Using the Partition Workshop . 675

The Partition Workshop Window . 675
Access to Other Workshops . 676
Leaving the Partition Workshop . 676

Creating a Configuration . 677
Using the Configure as Command . 678

Examining a Configuration . 679
Examining an Application Configuration . 679

Examining the Logical Partitions . 680
Examining Nodes in an Application Configuration . 681
Examining the Assigned Partitions . 682

Examining Library Configurations . 683
Examining the Projects . 683
Examining Nodes in a Library Configuration . 684
Examining Assigned Libraries . 685

Viewing the Configuration Properties . 686
Modifying a Client or Server Configuration . 686

Modifying Logical Partitions . 687
Moving Service Objects . 688
Creating a New Logical Partition . 688
Making a Reference Partition . 689
Making an Applet . 694
Modifying a Service Object Definition . 695

Modifying Node Assignments . 699
Assigning Partitions . 699
Moving Partitions . 700
Deleting Partitions . 700
Setting Assigned Partition Properties . 700

Setting Configuration Properties . 704
Repartition Command . 704

Combining Service Objects and Partitions . 705
Combining User-Visible Service Objects On Partitions . 705
Combining Environment-Visible Service Objects On Partitions . 706
Combining Environment-Visible with User-Visible Service Objects . 707
Combining Load-Balanced Service Objects . 707

24 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Modifying a Library Configuration . 708
Adding Projects to the Configuration . 710
Modifying the Default Configuration . 711
Standard or Compiled Libraries . 711

Testing a Client Configuration . 712
Running the Application . 714
Debugging the Configuration . 715

Making an Application Distribution . 716
Understanding Application Distributions . 716

Standard Partitions . 716
Compiled Partitions . 717
Launching Applets and Other Applications . 718
Adding an Icon File for Windows to the Distribution . 718

Application Distribution Directory . 718
File Naming Conventions . 721

Using the Make Distribution Command . 722
Local/Remote Option . 723
Auto-Compile Option . 723
Full or Partial Make . 725
Install in Current Environment Option . 726

Compiling Partitions . 727
Environment Variables and Path . 727
Using the fcompile Command for Partitions . 729
Compiling a Partition for Use on Several Computing Platforms . 731

Making a Library Distribution . 732
About Library Distributions . 732
Using the Make Distribution Command . 735
Compiling Libraries . 735

Using the fcompile Command for Libraries . 737

Appendix A iPlanet UDS Example Applications . 739
How to Install iPlanet UDS Example Applications . 739
Overview of iPlanet UDS Example Applications . 740

General-Purpose Examples . 740
Display Library Examples . 741
Framework Library Examples . 741
AppletSupport Library Examples . 742
GenericDBMS Library Examples . 743
International Examples . 743
SystemMonitor Examples . 743

25

Overview of iPlanet UDS Example Applications (continued)
External Systems Examples—C . 744
External Systems Examples—C++ . 744
External Systems Examples—DDE . 744
External Systems Examples—ExternalConnections . 745
External Systems Examples—OLE and ActiveX . 745

Application Descriptions . 746
ActiveXDemo . 747

FourDir ActiveX Control . 750
AdaptableAuction . 751
AgentAccess . 752
AgentBanking . 754
AllCType . 756
AppletBanking . 757
Auction . 758
AutoTester . 759
Banking . 759
Banking1-2 . 760
ClipboardSample . 761
CPPBanking . 761
DDEClient . 762
DDEServer . 763
DMathTm . 763
DVSubClass . 765
DynamicDataAccess . 766
DynamicList . 766
DynamicSQL . 767
FileBrowser . 769
FileUtil . 769
ImageTester . 770
InboundExternalConnection . 770
InheritedWindow . 773
InternatBank . 773
LauncherGUI . 775
MathTime . 775
MultiList . 777
NestedWindow . 777
NomadicOrderClient . 778
OLEBankEV . 779
OLEBankUV . 780
OLESample . 781
OLMBanking . 782
OutboundExternalConnection . 783

26 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Application Descriptions (continued)
PencilPlay . 785
PrintSample . 786
SimpleOutline . 787
TabFolders . 787
TimeIt . 788
TimeItV1-4 . 789
TreeList . 791
WinDB . 792
XRefTime . 793

Appendix B Memory and Logger Flags . 795
-Fl Flag (iPlanet UDS Logger) . 795

File Name . 795
File Filter . 796

Message Type Option . 796
Service Type Option . 797
Group Number Option . 797
Level Number Option . 798

-Fm Flag (Memory Manager) . 799
Setting Maximum and Minimum Size of the Memory Heap . 801

Index . 803

27

List of Figures

Figure 1-1 Painting Object . 56

Figure 1-2 Object for Sybase Installation . 57

Figure 1-3 Object for Auction Manager . 58

Figure 1-4 Invoking a Method . 60

Figure 1-5 Relationship between Events and Objects . 62

Figure 1-6 Inheritance Hierarchy . 65

Figure 1-7 Relationship between Variable and Object . 68

Figure 1-8 A Distributed Application . 70

Figure 1-9 Load Balancing . 73

Figure 1-10 Failover . 74

Figure 1-11 iPlanet Integration Server System and Subsystems . 87

Figure 2-1 Control Panel . 93

Figure 2-2 Workshops Standalone and Distributed Shortcut Commands 112

Figure 2-3 iPlanet UDS Launch Server Icons . 121

Figure 2-4 Browser Button on Class Properties Dialog . 126

Figure 2-5 Browser Button Display . 127

Figure 2-6 Popup Menu in Window Workshop . 128

Figure 3-1 Workspaces . 142

Figure 3-2 Repository Workshop . 156

Figure 3-3 Repository Workshop Toolbar . 156

Figure 3-4 Plan Browser . 170

Figure 3-5 Integrate Workspace Dialog . 180

Figure 3-6 Error Window . 192

Figure 3-7 Log Flags Dialog . 195

Figure 3-8 Repository Workshop Preferences Dialog . 197

Figure 4-1 The Project Workshop . 215

Figure 4-2 The Project Workshop Toolbar . 215

28 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 4-3 Service Object Properties Dialog . 224

Figure 4-4 Project Constant Properties Dialog . 225

Figure 4-5 Start Class and Method Dialog . 225

Figure 4-6 Supplier Plans Dialog . 226

Figure 4-7 Extended Properties Dialog . 226

Figure 4-8 New Project Dialog . 228

Figure 4-9 New Service Object Dialog . 236

Figure 4-10 General Tab Page . 237

Figure 4-11 Search Path Tab Page . 239

Figure 4-12 Database Tab Page . 240

Figure 4-13 Connection Tab Page . 241

Figure 4-14 Initial Values Tab Page . 242

Figure 4-15 Supplier Plans Dialog . 244

Figure 4-16 Start Class and Method Dialog . 246

Figure 4-17 Project Properties Dialog . 247

Figure 4-18 Run Code Fragment Window . 267

Figure 4-19 Error Window . 269

Figure 4-20 Project Workshop Preferences Dialog . 272

Figure 5-1 Simple and Object Attributes . 277

Figure 5-2 Class Workshop Window . 295

Figure 5-3 Class Workshop Toolbar . 295

Figure 5-4 General Tab Page on Class Properties Dialog . 306

Figure 5-5 Runtime Page of Class Properties Dialog . 307

Figure 5-6 Interfaces Implemented Page . 308

Figure 5-7 Error Window . 328

Figure 5-8 Class Workshop Preferences Dialog . 329

Figure 6-1 Interface Workshop Window . 339

Figure 6-2 Interface Workshop Toolbar . 339

Figure 6-3 Method Signatures for CalculateTax Method . 344

Figure 6-4 Interface Properties Dialog . 346

Figure 7-1 Components of a Window . 363

Figure 7-2 Resizeable Window . 365

Figure 7-3 Non-Resizeable Window . 366

Figure 7-4 Frameless WIndow . 366

Figure 7-5 Example Window Superclass . 373

Figure 7-6 Example Subclass Windows . 374

Figure 7-7 Example Subwindow . 375

List of Figures 29

Figure 7-8 Main Windows Displaying Nested Windows . 376

Figure 7-9 Page Template Window . 378

Figure 7-10 Printed Version of Page Template . 380

Figure 7-11 The Window Workshop . 387

Figure 7-12 Window Workshop Toolbar . 388

Figure 7-13 Color Bar . 393

Figure 7-14 The Widget Status Line . 394

Figure 7-15 Window Properties Dialog . 398

Figure 7-16 Fill Patterns . 415

Figure 7-17 Window Workshop Preferences Dialog . 429

Figure 8-1 Size Properties Dialog . 439

Figure 8-2 Help Properties Dialog . 448

Figure 8-3 Data Field Properties Dialog . 452

Figure 8-4 Text Field Properties Dialog . 454

Figure 8-5 Text Edit Field Properties Dialog . 456

Figure 8-6 Picture Field Properties Dialog . 457

Figure 8-7 Toggle Field Properties Dialog . 459

Figure 8-8 Push Button Properties Dialog . 460

Figure 8-9 Picture Button Properties Dialog . 462

Figure 8-10 Scrollbar Properties Dialog . 464

Figure 8-11 List View Field Styles . 465

Figure 8-12 List View Properties Dialog . 469

Figure 8-13 Tree View Field Properties Dialog . 472

Figure 8-14 Outline Field Properties Dialog . 475

Figure 8-15 OLE Field Properties Dialog . 476

Figure 8-16 ActiveX Field Properties Dialog . 479

Figure 8-17 Radio List Properties Dialog . 483

Figure 8-18 Scroll List Properties Dialog . 485

Figure 8-19 Drop List Properties Dialog . 487

Figure 8-20 Fillin Field Properties Dialog . 489

Figure 8-21 Palette List Properties Dialog . 492

Figure 8-22 Text Graphic Properties Dialog . 494

Figure 8-23 Picture Graphic Properties Dialog . 497

Figure 8-24 Line Properties Dialog . 498

Figure 8-25 Rectangle Properties Dialog . 498

Figure 8-26 Ellipse Properties Dialog . 499

Figure 8-27 Polyline Properties Dialog . 500

30 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 8-28 Point Properties Dialog . 501

Figure 8-29 Panel Properties Dialog . 504

Figure 8-30 Tab Folder . 505

Figure 8-31 Tab Folder Components . 505

Figure 8-32 Header Style Property . 506

Figure 8-33 Layout Policy . 506

Figure 8-34 Tab Folder Properties Dialog . 513

Figure 8-35 Array Field Components . 514

Figure 8-36 Array Field Properties Dialog . 517

Figure 8-37 Grid Field Properties Dialog . 520

Figure 8-38 Grid Field Size Properties Dialog . 520

Figure 8-39 Compound Graphic Properties Dialog . 523

Figure 8-40 Viewport Properties Dialog . 525

Figure 9-1 Menu Widgets . 528

Figure 9-2 Popup Menu . 540

Figure 9-3 Menu Workshop . 546

Figure 9-4 Menu Workshop Toolbar . 546

Figure 9-5 Menu Bar in the Menu Workshop . 548

Figure 9-6 Menus Created by Create Default Command . 551

Figure 9-7 Menu Workshop Preferences Dialog . 564

Figure 10-1 Method Workshop . 575

Figure 10-2 Find Dialog . 585

Figure 10-3 Replace Dialog . 585

Figure 10-4 Error Window . 589

Figure 10-5 Code Workshops Preferences Dialog . 590

Figure 11-1 Example Event Handler . 594

Figure 11-2 Event Handler Workshop . 600

Figure 11-3 Find Dialog . 607

Figure 11-4 Replace Dialog . 608

Figure 12-1 Cursor Definition in Cursor Workshop . 614

Figure 12-2 The Cursor Workshop . 618

Figure 12-3 Cursor Properties Dialog . 620

Figure 12-4 Find Dialog . 625

Figure 12-5 Replace Dialog . 625

Figure 12-6 Cursor Properties Dialog . 627

Figure 13-1 Debugger Window . 634

Figure 13-2 Task Window . 635

List of Figures 31

Figure 13-3 Variables Window . 643

Figure 13-4 Object Inspector . 645

Figure 13-5 DataValue Object Inspector . 646

Figure 13-6 Method Call Stack . 647

Figure 13-7 Event Queue . 648

Figure 14-1 Partitions in a Distributed Application . 652

Figure 14-2 Connected Environments . 660

Figure 14-3 Relationship between Partitions and Projects . 662

Figure 14-4 Reference Partition for Current Environment . 666

Figure 14-5 Reference Partition for Connected Environment . 667

Figure 14-6 Assigned Partition Properties Dialog (Client Partition) . 668

Figure 14-7 Assigned Partition Properties Dialog (Server Partition) . 670

Figure 14-8 Partition Workshop . 676

Figure 14-9 Partition Workshop Toolbar . 676

Figure 14-10 Logical Partition Browser . 680

Figure 14-11 Logical Partitions Dialog . 680

Figure 14-12 Node Properties Dialog . 682

Figure 14-13 Project Browser . 683

Figure 14-14 Logical Partition Dialog for a Project . 684

Figure 14-15 Node Properties Dialog . 685

Figure 14-16 Compilation Properties for Node Dialog . 685

Figure 14-17 Configuration Properties Dialog . 686

Figure 14-18 Service Object Properties Dialog . 696

Figure 14-19 Assigned Partition Properties Dialog (Client Partition) . 701

Figure 14-20 Assigned Partition Properties Dialog (Server Partition) . 702

Figure 14-21 Configuration Properties Dialog . 704

Figure 14-22 Default Library Configuration . 709

Figure 14-23 Application Distribution Directory Structure . 719

Figure 14-24 Library Distribution Directory Structure . 733

Figure A-1 ActiveXDemo Window . 749

Figure A-2 The FourDir ActiveX Control . 750

32 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

33

List of Procedures

To copy the documentation to a client or server . 51

To view and search the documentation . 51

To develop and deploy an application . 75

To start the iPlanet UDS Workshops on Windows . 113

To start the iPlanet UDS Workshops on UNIX . 114

To start the iPlanet UDS Workshops on OpenVMS . 115

To start the Launch Server . 121

To set the font for the workshop . 138

To use a workspace for collaboration . 153

To set extended properties for a project . 161

To delete extended properties for a project . 162

To delete a plan from the repository . 163

To create a new shadow . 164

To detach your shadow and move it to another machine . 166

To attach a detached shadow . 168

To backup the repository . 168

To open a workspace . 169

To display the integration history for a workspace . 173

To browse through the breakpoints . 173

To delete a breakpoint . 173

To view plan changes . 175

To update your workspace . 177

To integrate your workspace . 179

To create a new workspace . 181

To create a new workspace in a secure repository . 181

To include a plan in the workspace . 182

To remove a plan from the workspace . 182

34 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

To delete a workspace . 183

To import a plan . 185

To import a library . 186

To export a plan . 186

To find a string . 188

To make a global replacement . 189

To compile all plans . 191

To open an existing project or library . 214

To create a new project . 214

To open a project or library . 217

To display the component history . 220

To search for a class . 221

To search for a interface . 222

To create a new TOOL project . 227

To define project components . 227

To create an interface . 232

To create a constant . 233

To create a service object . 235

To specify a new connection option . 241

To create a cursor . 243

To add a new project or library to the list of suppliers . 244

To delete a supplier from the list . 245

To use a library as a supplier plan . 245

To create a new property . 248

To modify a project . 249

To delete a project component . 252

To copy a project component . 253

To find a string . 254

To make a global replacement . 255

To revert your changes . 257

To checkout a project component . 258

To branch a project component . 259

To undo your changes . 259

To restore a component . 260

To checkout all project components . 260

To branch all project components . 261

To test run an application with profiling . 266

List of Procedures 35

To run a code fragment . 267

To import a class or interface . 271

To export a class or interface . 271

To examine a class from the Project Workshop . 296

To examine a class with the Open Superclass command . 296

To examine a class with the Find Class/Interface… command . 297

To view converter methods . 299

To create a nonwindow class . 303

To create a window class . 304

To create a domain class . 305

To drag and drop an class element . 309

To create an attribute . 310

To create a virtual attribute . 311

To create an event . 315

To create a new method . 316

To overload an existing method . 317

To create a method converter . 318

To create a new event handler . 319

To create a constant . 319

To set extended properties for a class element . 321

To delete a class element . 323

To find a string . 324

To make a global replacement . 325

To examine an interface from the Project Workshop . 341

To use the Open Super-Interface command in the Interface Workshop . 341

To create an interface . 347

To drag and drop an interface element . 348

To create a new method . 349

To overload an existing method . 350

To create a virtual attribute . 351

To create an event . 352

To create a new event handler . 353

To create a constant . 355

To set extended properties for a interface element . 357

To delete an interface element . 358

To set the HTML options for a widget . 382

To create a new window class . 385

36 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

To modify the window for an existing class . 385

To cut, copy, or delete a widget . 389

To paste a widget . 389

To select a single widget . 390

To select multiple widgets . 390

To select a compound widget . 390

To create a text graphic . 391

To edit a text graphic . 391

To align a field . 392

To drop a color onto a widget . 393

To define a window usage . 399

To use the Starting State status field . 399

To test a window usage . 399

To turn on the placement grid . 401

To create a fixed-size widget . 402

To create a sizeable widget . 402

To create a compound widget . 405

To create a domain widget with drag and drop . 407

To create a domain widget with the palette . 407

To open the properties dialog for a simple field or graphic . 408

To open the properties dialog for a compound widget . 408

To select a parent widget . 410

To use a ghost box . 410

To use Shift-Click . 411

To remove widgets . 412

To use the Duplicate command . 412

To use the Copy and Paste commands . 412

To move a simple widget . 413

To move a compound widget . 413

To resize a widget . 413

To convert a widget . 414

To set a widget state . 414

To select a fill pattern . 416

To select a contrast color . 416

To select a background color . 416

To modify the frame weight of a widget . 416

To set the visual style of a widget . 416

List of Procedures 37

To modify the weight of a line widget . 417

To modify the style of a line widget . 417

To set the font for a widget to a portable font . 418

To set the font for a widget to a system font . 418

To set the font for a widget to an extended font . 418

To make a group of widgets uniform size . 419

To align a group of widgets . 419

To set margins . 422

To send a widget behind another widget . 423

To send a widget to the front . 423

To change the widget type . 426

To test a window in a specific usage . 427

To import a window . 428

To export a window . 429

To provide float-over help for a field . 444

To specify message and set numbers in the Window Workshop . 447

To create a picture button . 461

To replace an existing image . 461

To create a list view field . 467

To create a tree view field . 471

To create an outline field . 473

To define an ActiveX field . 477

To define the mapped type . 477

To insert the ActiveX control into the ActiveX field . 478

To set the initial property values for the ActiveX control . 478

To create a palette . 490

To create a picture graphic . 496

To drag and drop an image file . 496

To replace an existing image . 496

To create a new tab folder . 507

To create a tab folder . 509

To copy an existing tab page with the Edit > Copy command . 511

To create a new tab page . 511

To delete a tab page . 512

To move a tab page . 512

To edit a tab label . 512

To add a new column to the array field . 515

38 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

To add a new widget to the grid field . 518

To provide status-line help . 531

To add a new menu widget to the menu bar . 552

To set a menu item’s state . 553

To enter status line text . 554

To move a menu item . 555

To change the level of a submenu . 556

To use the Cut, Copy, and Delete commands . 556

To use the Paste command . 556

To modify a menu item’s properties . 556

To import a menu bar . 557

To export a menu bar . 558

To create a popup menu in the Menu Workshop . 560

To include a Help menu on a window . 561

To use the About command . 562

To use the OLE Menu Group command . 563

To override a method . 572

To create a new method . 578

To set a breakpoint for a statement . 582

To edit a method . 583

To add a new parameter . 587

To delete a parameter . 587

To import method text . 588

To export method text . 588

To examine an event handler . 601

To create a new event handler . 602

To edit an event handler . 605

To insert a parameter . 610

To delete a parameter . 610

To import event handler text . 610

To export event handler text . 611

To examine a cursor . 619

To create a new cursor . 621

To edit a cursor . 622

To insert a placeholder . 627

To delete a placeholder . 627

To import a cursor . 628

List of Procedures 39

To export a cursor . 628

To set a breakpoint in the method currently displayed in the Task window 640

To change the value of a simple variable . 643

To change the value of a DataValue object . 646

To view a previously displayed Object Inspector . 647

To set a task breakpoint in the Task window . 650

To develop and test a distributed application . 653

To deploy a distributed application . 653

To create a library distribution . 655

To create a configuration or open an existing one . 678

To move a service object . 688

To create a logical partition . 688

To include the service object . 690

To make a reference partition . 691

To make the distribution . 693

To create the reference partition with an environment search path . 694

To create an applet . 695

To assign a logical partition . 700

To delete a disabled, assigned partition . 700

To partition a library configuration . 709

To add a project to the configuration . 710

To remove a restricted external library . 711

To turn on compilation for a library . 712

To test the client application from the Repository Workshop or Project Workshop 712

To compile partitions in Windows NT and use them in Windows 95 distributions 724

To install the Windows 95 distributions . 724

To change the configuration of an installed application without changing the contents of any logical
partitions . 727

To make a distribution for a configuration containing compiled partitions . 727

To run fcompile for a compiled partition . 731

To make a library distribution . 735

To compile multiple libraries . 736

To run fcompile for a compiled library . 737

To use ActiveXDemo . 748

To use Adaptable Auction . 752

To use AgentAccess . 753

To use AgentBanking . 755

40 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

To use AllCType . 756

To use AppletBanking . 757

To use Auction . 758

To use AutoTester . 759

To use Banking . 759

To use Banking1-2 . 760

To use ClipboardSample . 761

To use CPPBanking . 762

To use DDEClient . 762

To use DDEServer . 763

To use DMathTm . 764

To use DVSubClass . 765

To use DynamicDataAccess . 766

To use DynamicList . 767

To use DynamicSQL . 767

To use FileBrowser . 769

To use FileUtil . 769

To use ImageTester . 770

To use InboundExternalConnection . 771

To use InheritedWindow . 773

To use InternatBank . 774

To use LauncherGUI . 775

To use MathTime . 776

To use MultiList . 777

To use NestedWindow . 777

To use NomadicOrderClient . 778

To use OLEBankEV . 779

To use OLEBankUV . 780

To use OLESample . 781

To use OLMBanking . 783

To use OutboundExternalConnection . 783

To use PencilPlay . 785

To use PrintSample . 786

To use SimpleOutline . 787

To use TabFolders . 788

To use TimeIt . 788

To use TimeItV1-4 . 789

List of Procedures 41

To use TimeItV1 . 789

To use TimeItV2 . 789

To use TimeItV3 . 790

To use TimeItV4 . 791

To use TreeListExample . 791

To use WinDB . 792

To use XRefTime . 793

42 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

43

List of Code Examples

Default Display Method . 291

Virtual Attribute Definition Example . 313

Nesting a Window Example . 377

Exception Handler Example . 581

Event Handler example . 594

Display Method Using Inherited Event Handler . 595

Using a Cursor Example . 614

44 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

45

Preface

A Guide to the iPlanet UDS Workshops provides complete information on the iPlanet
UDS interactive development environment, the iPlanet UDS Workshops. The
manual also provides background information on object-oriented programming
and basic iPlanet UDS concepts.

This preface contains the following sections:

• “Product Name Change” on page 45

• “Audience for This Guide” on page 46

• “Organization of This Guide” on page 46

• “Text Conventions” on page 48

• “Other Documentation Resources” on page 48

• “iPlanet UDS Example Programs” on page 50

• “Viewing and Searching PDF Files” on page 50

Product Name Change
Forte 4GL has been renamed the iPlanet Unified Development Server. You will see
full references to this name, as well as the abbreviations iPlanet UDS and UDS.

Audience for This Guide

46 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Audience for This Guide
A Guide to the iPlanet UDS Workshops is intended for application developers. We
assume that you:

• have programming experience

• are familiar with your particular window system

• are familiar with SQL and your particular database management system

Organization of This Guide
The following table briefly describes the contents of each chapter:

Chapter Description

Chapter 1, “Overview” Describes the application development
process and introduces the workshops you
use for each phase of development.

Chapter 2, “Using the iPlanet UDS
Workshops”

Provides general information about how to
use the iPlanet UDS Workshops including
how to use the Control Panel to set common
environment variables and set workshop
preferences.

Chapter 3, “Using the Repository
Workshop”

Provides conceptual information about
iPlanet UDS repositories and workspaces, and
describes how to use the Repository
Workshop.

Chapter 4, “Using the Project
Workshop”

Provides conceptual information about TOOL
projects and their components, and describes
how to use the Project Workshop.

Chapter 5, “Using the Class Workshop” Provides conceptual information about
classes and their elements, and describes how
to use the Class Workshop.

Chapter 6, “Using the Interface
Workshop”

Provides conceptual information about
interfaces and their elements, and describes
how to use the Interface Workshop.

Organization of This Guide

Preface 47

Chapter 7, “Using the Window
Workshop”

Provides conceptual information about
windows and their components, and
describes how to use the Window Workshop

Chapter 8, “Working with Widgets” Provides general information about working
with widgets in the Window Workshop.

Chapter 9, “Using the Menu Workshop” Provides background information about
menu bars and popup menus, and describes
how to use the Menu Workshop.

Chapter 10, “Using the Method
Workshop”

Provides background information about
methods and describes how to use the
Method Workshop.

Chapter 11, “Using the Event Handler
Workshop”

Provides background information about
named event handlers and describes how to
use the Event Handler Workshop.

Chapter 12, “Using the Cursor
Workshop”

Provides background information about
cursors and describes how to use the Cursor
Workshop.

Chapter 13, “Using the Debugger” Describes how to use the Debugger to debug
your application.

Chapter 14, “Using the Partition
Workshop”

Provides conceptual information about
distributed applications, libraries,
environments, and configurations, and
describes how to use the Partition Workshop.

Appendix A, “iPlanet UDS Example
Applications”

Provides instructions on how to install the
examples, a brief overview of the applications
to help you locate relevant examples, and a
section describing each example in detail.

Appendix B, “Memory and Logger
Flags”

Contains a detailed description of how to use
the memory (-fm) and logger (-fl) flags.

Chapter Description

Text Conventions

48 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Text Conventions
This section provides information about the conventions used in this document.

Other Documentation Resources
In addition to this guide, there are additional documentation resources, which are
listed in the following sections. The documentation for all iPlanet UDS products
(including Express, WebEnterprise, and WebEnterprise Designer) can be found on
the iPlanet UDS Documentation CD. Be sure to read “Viewing and Searching PDF
Files” on page 50 to learn how to view and search the documentation on the iPlanet
UDS Documentation CD.

iPlanet UDS documentation can also be found online at
http://docs.iplanet.com/docs/manuals/uds.html.

The titles of the iPlanet UDS documentation are listed in the following sections.

Format Description

italics Italicized text is used to designate a document title, for
emphasis, or for a word or phrase being introduced.

monospace Monospace text represents example code, commands that you
enter on the command line, directory, file, or path names,
error message text, class names, method names (including all
elements in the signature), package names, reserved words,
and URLs.

ALL CAPS Text in all capitals represents environment variables
(FORTE_ROOT) or acronyms (UDS, JSP, iMQ).

Uppercase text can also represent a constant. Type uppercase
text exactly as shown.

Key+Key Simultaneous keystrokes are joined with a plus sign: Ctrl+A
means press both keys simultaneously.

Key-Key Consecutive keystrokes are joined with a hyphen: Esc-S
means press the Esc key, release it, then press the S key.

http://docs.iplanet.com/docs/manuals/uds.html

Other Documentation Resources

Preface 49

iPlanet UDS Documentation
• A Guide to the iPlanet UDS Workshops

• Accessing Databases

• Building International Applications

• Escript and System Agent Reference Guide

• Fscript Reference Guide

• Getting Started With iPlanet UDS

• Integrating with External Systems

• iPlanet UDS Java Interoperability Guide

• iPlanet UDS Programming Guide

• iPlanet UDS System Installation Guide

• iPlanet UDS System Management Guide

• Programming with System Agents

• TOOL Reference Guide

• Using iPlanet UDS for OS/390

Express Documentation
• A Guide to Express

• Customizing Express Applications

• Express Installation Guide

WebEnterprise and WebEnterprise Designer
Documentation
• A Guide to WebEnterprise

• Customizing WebEnterprise Designer Applications

• Getting Started with WebEnterprise Designer

• WebEnterprise Installation Guide

iPlanet UDS Example Programs

50 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Online Help
When you are using an iPlanet UDS development application, press the F1 key or
use the Help menu to display online help. The help files are also available at the
following location in your iPlanet UDS distribution:
FORTE_ROOT/userapp/forte/cln/*.hlp.

When you are using a script utility, such as Fscript or Escript, type help from the
script shell for a description of all commands, or help <command> for help on a
specific command.

iPlanet UDS Example Programs
A set of example programs is shipped with the iPlanet UDS product. The examples
are located in subdirectories under $FORTE_ROOT/install/examples. The files
containing the examples have a .pex suffix. You can search for TOOL commands
or anything of special interest with operating system commands. The .pex files are
text files, so it is safe to edit them, though you should only change private copies of
the files.

Viewing and Searching PDF Files
You can view and search iPlanet UDS documentation PDF files directly from the
documentation CD-ROM, store them locally on your computer, or store them on a
server for multiuser network access.

NOTE You need Acrobat Reader 4.0+ to view and print the files. Acrobat
Reader with Search is recommended and is available as a free
download from http://www.adobe.com. If you do not use Acrobat
Reader with Search, you can only view and print files; you cannot
search across the collection of files.

http://www.adobe.com

Viewing and Searching PDF Files

Preface 51

➤ To copy the documentation to a client or server

1. Copy the doc directory and its contents from the CD-ROM to the client or
server hard disk.

You can specify any convenient location for the doc directory; the location is
not dependent on the iPlanet UDS distribution.

2. Set up a directory structure that keeps the udsdoc.pdf and the uds directory in
the same relative location.

The directory structure must be preserved to use the Acrobat search feature.

➤ To view and search the documentation

1. Open the file udsdoc.pdf, located in the doc directory.

2. Click the Search button at the bottom of the page or select Edit > Search >
Query.

3. Enter the word or text string you are looking for in the Find Results Containing
Text field of the Adobe Acrobat Search dialog box, and click Search.

A Search Results window displays the documents that contain the desired text.
If more than one document from the collection contains the desired text, they
are ranked for relevancy.

4. Click the document title with the highest relevance (usually the first one in the
list or with a solid-filled icon) to display the document.

All occurrences of the word or phrase on a page are highlighted.

NOTE To uninstall the documentation, delete the doc directory.

NOTE For details on how to expand or limit a search query using
wild-card characters and operators, see the Adobe Acrobat
Help.

Viewing and Searching PDF Files

52 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

5. Click the buttons on the Acrobat Reader toolbar or use shortcut keys to
navigate through the search results, as shown in the following table:

To return to the udsdoc.pdf file, click the Homepage bookmark at the top of
the bookmarks list.

6. To revisit the query results, click the Results button at the bottom of the
udsdoc.pdf home page or select Edit > Search > Results.

Toolbar Button Keyboard Command

Next Highlight Ctrl+]

Previous Highlight Ctrl+[

Next Document Ctrl+Shift+]

53

Chapter 1

Overview

This chapter briefly describes the application development process and introduces
the workshops you use for each phase of development. This product overview is
intended to provide you with the background information necessary for designing
and building iPlanet UDS applications.

First, this chapter presents general information about object-oriented programming
and distributed application development. This general information is followed by
a quick overview of the iPlanet UDS Workshops.

To illustrate some of the concepts introduced in this chapter, we use the iPlanet
UDS example program application called Auction. The Auction application is a
distributed application that allows multiple users to view information about
paintings and to make bids on them. As each user makes a bid, all other users are
immediately notified. Thus, the application functions like a real art auction, where
a room full of people are all interacting with each other.

About iPlanet UDS
iPlanet UDS provides development tools for building advanced, distributed
applications. These tools enable developers to build integrated applications that
are optimized for a distributed environment. iPlanet UDS supports quick
prototyping, collaboration by multiple developers, and graphical user interface
development.

About iPlanet UDS

54 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

iPlanet UDS has the following basic components:

Component Definition

Repository A central storage facility that supports every aspect of developer
collaboration, including code sharing and versioning.

Workshops Visual tools for structuring the application and building a
graphical user interface, and for partitioning the application
definition and mapping it to physical resources and machines.

Express The iPlanet UDS application generation tool. Using Express
workshops—the Business Model Workshop and the Application
Model Workshop—you develop graphical models of objects in
your business system and the window flow of your application.
Express automatically generates an application based on these
models. Subsequently, you can use the standard iPlanet UDS
workshops to further refine and customize your final application.

iPlanet Integration
Server

A suite of business integration tools for integrating and
coordinating heterogeneous applications. iPlanet Integration
Server has two subsystems: the iPlanet Integration Server Process
Management System and the iPlanet Integration Server Backbone
System. The iPlanet Integration Server Process Management
System provides workshops for developing business processes
and a process engine to manage and execute those processes. You
can optionally develop process clients to directly interact with the
iPlanet Integration Server process engine; standard APIs are
provided for this purpose. The iPlanet Integration Server
Backbone System lets you integrate any application, either using a
native XML interface or an iPlanet UDS XML adapter. An iPlanet
Integration Server backbone enables interapplication message
brokering and data transformation using XSLT. The applications
can optionally participate in a business process managed by the
iPlanet Integration Server process engine.

Environment
Console

Visual tool for defining the deployment environments in which
your iPlanet UDS applications will run, and for monitoring and
maximizing the performance of installed applications.

TOOL and TOOL
Debugger

An object-oriented, fourth generation programming language for
writing the program logic and a debugger designed especially for
the language.

iPlanet UDS
libraries

Prefabricated classes that provide the framework for building
applications. iPlanet UDS classes define basic application
components, such as windows, menus, and fields, as well as
external services, such as database management systems and
transaction management.

About iPlanet UDS

Chapter 1 Overview 55

Modular Construction
The metaphor of designing and constructing a building is an accurate way to
describe the process of designing and building an application. This metaphor is
useful because it gives us a concrete and familiar way to explain abstract
programming concepts. But most of all, it helps to clarify the importance of iPlanet
UDS’s object-oriented design. With iPlanet UDS, you can use this same simple,
effective approach in constructing applications.

Modular construction in iPlanet UDS means building an object-oriented application.
In iPlanet UDS, objects are the basic modular building blocks. When you build an
application, you specify which objects are created and how they interact with each
other.

Classes are the “templates” you use for creating the objects. Prefabricated classes
provide standard, off-the-shelf objects that you can use in a wide range of
applications. Custom classes provide objects designed especially for your
application or your organization. (Those of you who are not familiar with
object-oriented programming concepts should read “Object-Oriented
Programming” on page 56 for a detailed explanation of these terms.)

Everything that you build using iPlanet UDS is stored in the repository. This
application “warehouse” is a special storage facility that allows multiple
developers to collaborate on a single application and to share and reuse code.
Special browsers enable you to “shop” for the components you need to build your
application.

Construction Crew
The development team for an application works together like a construction crew.
Like subcontractors at a building site, multiple developers can collaborate on
application development by taking separate responsibility for individual modules.
Because classes are modular by nature, a single developer can take responsibility
for an individual class or a set of classes.

The repository coordinates this team work by tracking who is working on which
module and by ensuring that only one person can modify a particular module at a
time.

Object-Oriented Programming

56 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Connecting to Services
In iPlanet UDS, an application is not an independent program, but a collaborative
system that interacts with external services and other applications. Connecting
your application to these outside services is as natural as connecting a building to
telephone, electricity, and water utilities. Standardized, built-in modules let you
plug into external services the same way you add any new modules to your
application.

Object-Oriented Programming
For those of you who are not familiar with object-oriented programming, an object
is a self-contained module that consists of data (called attributes) and operations
(called methods) that act on the data. For example, one of the most important
objects in the Auction application is the Painting object. This object contains
information about the painting in the form of attributes, including the title, artist,
and year of completion of a specific painting, and defines an operation to update
the data. Figure 1-1 is an abstract representation of a Painting object:

Figure 1-1 Painting Object

Drip
Painting

Jason Bly, 1968

Object-Oriented Programming

Chapter 1 Overview 57

Much of the time, an iPlanet UDS object corresponds directly to an object or person
in the “real world.” For example, in the Auction application, there are objects for
paintings, artists, and bids.

However, at other times an iPlanet UDS object represents a more abstract system
component, such as an external service with which you want your application to
interact. These objects include database management systems and other existing
applications. For example, if you want to start a session with Sybase, you would
use a DBResourceMgr object that represents the Sybase installation.

Figure 1-2 Object for Sybase Installation

Finally, an iPlanet UDS object may also represent a processing facility within your
system used to control other objects. For example, the Auction application has an
AuctionMgr object, which manages the current list of bids that are being offered for
the paintings. The Auction application also has an ImageMgr object that manages
the images of the art work that is being stored on a server.

Database
Resource
Manager

Object-Oriented Programming

58 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 1-3 Object for Auction Manager

Objects provide the basis for your entire application. When you construct an
iPlanet UDS application, you specify which objects are included and how they
interact with each other.

The structure of an object is determined by its class. The class defines the data and
operations for all the objects of the same class. A class is similar to a user-defined
data type. All objects of the same class have the same types of data, but they do not
contain the same “information.” For example, objects of the Artist class all have a
Country attribute, but an object for Rembrandt has “Holland” for the value of the
Country attribute, while an object for Degas has “France” for the value of the
Country attribute.

When you build your application, you use classes to specify the kinds of objects
you want the application to contain. The actual objects are created when the
application is executing and they contain data provided by the run-time system. In
fact, every object is really just an “instance” of a class. See “Using Classes” on
page 63 for more information about classes.

Using objects provides two important advantages. First, once you have defined a
particular class, you can use it any number of times within your application or
store it in a library for use within other applications. Classes provide a simple
mechanism for reusing and sharing your code. Second, because classes provide a
modular application design, there is a natural basis for partitioning the application
across a set of machines. In iPlanet UDS, individual objects can have different
physical locations. When you request an operation on an object, iPlanet UDS

Auction
Manager
Service

Object-Oriented Programming

Chapter 1 Overview 59

automatically performs the operation on the machine where the object resides. For
example, in the Auction application, the AuctionMgr object is located on a server.
When an end user makes a bid on a painting from a client, iPlanet UDS performs
the necessary operations directly on the AuctionMgr server.

Every object consists of three different components: its attributes, its methods, and
its events.

• An attribute is simply a data item. All the data for the object is stored in its
attributes. For example, the Bid object in the Auction application has
PaintingforBid, BidValue, LastBidTime, and LastBidder attributes, all of
which contain information about the bid being made on a particular painting.

• A method is a function that you can use to manipulate an object. Each method is
written specifically for a class, and you can use the method only to operate on
objects of that class. For example, the Bid class in the Auction application has a
CompleteBid method, which updates the Bid object (and notifies the rest of the
application) whenever a bid is completed. When only the class methods can
operate on the object, it is much easier to maintain your code. Only the
methods need to know how the object is structured. If you change the structure
of the object, you need to update only the methods, not the rest of the program.
The requirement that a method must modify an object by using one of the
object’s methods is called encapsulation.

• An event is a notification that something significant has happened An object
can post an event to notify the rest of the application of a change in status. For
example, in the Auction application, a BidCompleted event is used to notify all
clients that a bid was made on a particular painting. The ability to define an
event associated with an object is a special feature of iPlanet UDS. Events are
described in further detail under “Events” on page 61.

How Objects Interact
In iPlanet UDS, objects interact in two different ways: through methods and
through events.

Methods
One object can cause another object to “react” by invoking one of its methods. For
example, in the Auction application, when the ViewWindow object (the end user’s
window on the client) invokes the GetImage method on the ImageMgr object (the
image server), the ImageMgr object reacts by displaying the requested painting on
the end user’s workstation.

Object-Oriented Programming

60 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Many methods have parameters. Parameters allow the object invoking the method
to pass information to the object that it is manipulating. The GetImage method for
ImageMgr has one parameter that specifies the name of the painting to be
displayed. The parameters for methods can be for input, output, or both input and
output.

Input parameters provide information to the object on which the method is being
invoked. For example, the GetImage method has an input parameter that specifies
the name of the painting that is being requested. Output parameters allow the
object invoking the method to receive information from the object it is
manipulating. For example, the GetBidForPainting method has output
parameters that provide the invoking method with the bid value, the bidder name,
and so on.

A method can also have a return value, which allows the object being manipulated
to pass information back to the object that invoked the method. A return value
provides a two-way form of communication between the two objects. For example,
the GetImage method for ImageMgr returns an ImageData object, which is the
bitmap image of the requested painting.

The following figure illustrates invoking the GetImage method:

Figure 1-4 Invoking a Method

Get Image
Drip Painting

Image
Mgr

Return
Value

Parameter

Object-Oriented Programming

Chapter 1 Overview 61

Invoking a method is a direct instruction from one object to another to perform a
specific action. Invoking a method in your code is like calling a procedure. iPlanet
UDS executes the method and then returns to the point where the method was
invoked.

Methods provide the programming logic of your application. Every iPlanet UDS
application begins execution by invoking a startup method on a startup object. The
startup method in the application begins execution by operating on the startup
object. From the startup method, you also invoke other methods. Each time you
invoke a method, control passes to the invoked method. When each method
completes, control returns to the invoking method. The flow of control is the
standard processing model that you are already familiar with.

Events
One object can also cause other objects to “react” by triggering an event. In iPlanet
UDS, an event is simply a notification that something significant has happened. For
example, the Auction application uses the BidCompleted event to notify all clients
displaying a particular painting that a bid was made on that painting. When one
object triggers an event, other parts of the application that are watching for that
event can react to it. In the Auction application, the clients that are currently
displaying the painting respond to the event by notifying the end user that the bid
was made.

iPlanet UDS is an event-based system. End user actions, such as button clicks,
menu item selection, and data entry, trigger events to which the objects can
respond. However, a method that is operating on an object can also trigger an
event.

Object-Oriented Programming

62 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The following figure illustrates the relationship between objects and events:

Figure 1-5 Relationship between Events and Objects

Triggering an event is like “broadcasting” a signal to the rest of the system that a
certain condition or action has occurred. Any number of objects may be “tuned in,”
waiting for that particular signal. If so, when the objects receive the event, they will
respond to it. If no object is “tuned in,” there will be no response. The object that
triggers the event has no way of knowing which object will respond to it or even if
there will be a response. Therefore, when you post an event, you cannot rely on
that event causing a result. On the other hand, invoking a method on an object
ensures that the method will take effect.

Like methods, events can have parameters that allow the object that is triggering the
event to provide information to any objects that may respond to the event. For
example, the BidCompleted event has parameters that specify the value of the bid,
the time the bid was made, and the name of the bidder.

Using events is a one-way form of interaction. One object produces an event and
another responds to it. No communication takes place after the event is triggered.

$$$Auction
Manager

$$$

$$$

“I want
to make a

 higher bid”

“A bid
was made on

 Drip Painting”

$$$

Object-Oriented Programming

Chapter 1 Overview 63

iPlanet UDS provides you with the ability to write event handlers as part of a class.
An event handler is a named block of code that provides programming to be
executed in response to one or more events. The event handler provides reusable,
modular event handling code.

Using Classes
You use classes to specify the kinds of objects you want your application to contain.
To develop an iPlanet UDS application, you must create a project. A project is a
named collection of classes. The classes in the project define the objects that make
up the application. For example, each window in the user interface is defined by a
class. The classes also provide the methods that control the flow of the application.

Every class in the project is a template that defines the attributes, methods, events,
and event handlers for all the objects of that class. For example, the Artist class in
the Auction application defines the attributes and methods for artists. All Artist
objects have Name, Country, Born, Died, and School attributes. The following
example code illustrates using the Artist class to create a variable and assign to
that variable a new Artist object:

The first statement declares a variable whose type is the Artist class. The second
statement creates a new object of the Artist class, with the specified values for its
attributes.

There are two types of classes in iPlanet UDS: prefabricated classes and custom
classes.

Prefabricated Classes
Prefabricated classes include classes that are provided in the iPlanet UDS libraries,
classes stored in your organization’s libraries, and classes in supplier projects.

iPlanet UDS system libraries The iPlanet UDS system libraries provide the basic
classes you need to create an application. The classes in the iPlanet UDS system
libraries define such things as windows, menus, fields, arrays, files, and text, as
well as external services, such as database management systems.

a: Artist;
a = new(name=’Pollock’, born = 1912, died = 1956);

Object-Oriented Programming

64 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Class libraries Your organization may also have one or more shared libraries of
prefabricated classes that define objects appropriate for your particular
environment. Using classes from libraries not only saves you the work of having to
write basic methods over and over again, but also creates consistency throughout
your organization.

Supplier projects and libraries Different developers working in the same
repository can also share the same classes by using supplier projects and libraries
(called supplier plans). Supplier plans are projects or libraries that contain classes
that you want to include in the current project. To use supplier classes in your
project, you designate the projects or libraries they belong to as “suppliers” for
your project. Any classes in your supplier plans are available to you for use in
writing your methods.

Custom Classes
Custom classes are classes that you create to meet the special needs of your
particular application. When you create a class, you specify its attributes, define its
events, write the methods that provide the basic operations, and write event
handlers, if desired. Besides the classes mentioned earlier, another important
custom class in the Auction application is the ViewWindow class, which defines
the window displayed on the end user’s workstation and determines its behavior.

The most important part of building your project is creating its custom classes. The
methods for your custom classes determine the logical structure of your
application. You use these methods to open and close windows, to respond to end
user actions, to interact with your databases, and so on. In the Auction application,
the Display method for the ViewWindow class provides the event-handling code
that determines how the end user interacts with the Auction Manager.

Inheritance
When you create a class, you must declare it as a subclass of an existing class. This
means that the new class will “inherit” all the attributes, methods, events, and
event handlers defined for the existing class. You can then add new attributes,
methods, and events to your new class, or replace any of its inherited methods.

This ability to define one class as an extension of another is called inheritance. By
starting with one class, defining a second class as a subclass of the first, defining a
third class as a subclass of the second, and so on, you can create an inheritance
“hierarchy.”

Object-Oriented Programming

Chapter 1 Overview 65

The iPlanet UDS Display library makes good use of inheritance (see Display
Library online Help for complete information on the Display library classes). For
example, all the widgets (or controls) that you can place on a window are
subclasses of the FieldWidget class. The FieldWidget class defines all the sizing and
coloring attributes needed by all the specific widgets, such as push buttons and
data fields. The individual widgets then inherit these basic attributes from
FieldWidget, but add their own specialized attributes.

Figure 1-6 illustrates an inheritance hierarchy from the Display library:

Figure 1-6 Inheritance Hierarchy

A class that is above another in the hierarchy is called the superclass. A class that is
below another in the hierarchy is called the subclass. A subclass always inherits the
attributes, methods, and events defined for all its superclasses.

Inheritance is a very useful mechanism for sharing common attributes, events,
methods, and event handlers among several different classes. Using inheritance
saves you the work of writing multiple versions of the same definitions, and
provides a consistent way for you to interact with different objects in your system.

MenuWidget

StaticMenu VariableMenu

MenuSeparator MenuCommand

SubMenu

CompoundMenuSimpleMenu

MenuBarMenuGroupMenuToggle MenuList

Object-Oriented Programming

66 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

For example, the FieldWidget class defines a generic MoveAbove method, which is
inherited by all its widget subclasses. Then, each time you invoke the MoveAbove
method for any of the subclasses, you will always use the same method name, the
same parameters, and so on. In addition, you can easily modify an inherited
method so that it performs special processing for the subclass.

Abstract Classes
When creating an inheritance hierarchy, it is very useful to centralize the
definitions you want to share by creating abstract classes. An abstract class is not
used for creating objects that you want to manipulate in your system. Instead, an
abstract class simply defines the common attributes, methods, events, and event
handlers for a set of subclasses. For example, the FieldWidget class in the Display
library is an abstract class that defines the attributes, methods, and events needed
for all the individual widgets. Because they provide definitions for a set of
subclasses, abstract classes are near the top of the inheritance hierarchy. Concrete
classes, the classes you actually use for creating objects, are generally the end
points of the hierarchy.

Planning Your Class Hierarchy
The methods, attributes, events, and event handlers for each class come from two
sources:

• the class inherits them from its superclasses

• you define them especially for the class

As described above, every custom class is a subclass of another class (the iPlanet
UDS Object class is always at the top of the hierarchy). Therefore, any new class
that you create automatically inherits the attributes, events, methods, and event
handlers defined for its superclasses. The first thing you do when you create a
custom class is to identify its immediate superclass. The superclass determines its
place in the inheritance hierarchy for the project.

When you plan the new classes for your projects, you need to consider how they
will fit into the inheritance hierarchy. When planning your class hierarchy you
should know that you can override methods as well as control their visibility.

Object-Oriented Programming

Chapter 1 Overview 67

Overriding Methods
Overriding means creating a new method to replace an inherited method. If you
use the name of an inherited method name and specify the same parameters used
in that method, iPlanet UDS “overrides” the inherited method for the current class.
This allows you to create a different “version” of the method that will be invoked
with the same method name. When you invoke a method on the object, iPlanet
UDS uses the method you defined specifically for the class rather than the inherited
method.

Using Private Methods
Another thing to consider is your ability to control the visibility of methods,
attributes, events, and event handlers for the subclasses, You can define any
method, attribute, or event as “private.” A private method, attribute, event, or
event handler can be accessed only by the class that defines it, not by any other
classes using the object, including any of its subclasses. This enables you to
essentially prevent an attribute, event, method, or event handler from being
inherited. By default, attributes, events, methods, and event handlers are public,
which means that any other classes in the project can access them.

Working with Objects
In iPlanet UDS you never work with objects directly. Every object is associated
with at least one data item, either a variable, an attribute, or a parameter. This data
item serves as a reference to the object. The data item itself does not have a value,
but is simply a name that you can use to reference an object of a particular class.

When you declare a variable or define an attribute or parameter, you specify the
class of the object that it points to. After that, you create the actual object. You
cannot construct an object without assigning it to a variable, attribute, or
parameter.

Object-Oriented Programming

68 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The following figure illustrates the relationship between a variable and an object:

Figure 1-7 Relationship between Variable and Object

When you want to work with the object, for example, to invoke a method on it or
set one of its attributes, you must reference it by giving the name of the variable,
attribute, or parameter that points to it.

See the TOOL Reference Guide for details about creating and referencing objects.

Drip
Painting

Jason Bly, 1968

CurrentPainting
variable

Drip
Painting

About Distributed Applications

Chapter 1 Overview 69

About Distributed Applications
A distributed application provides access to distributed machines and services
through a single, integrated system. The typical client-server application runs on
only two machines, a desktop computer and a database server. However, an
iPlanet UDS application can run on any number of different machines. A single
application can access any number of distributed services, including:

• any number of databases

• 3GL services, such as an API to the NY stock exchange, a statistical analysis
package, or a 3GL application developed by your own organization

• services written with iPlanet UDS, such as an image server or coordination
facility

An iPlanet UDS application can also provide fault tolerance and parallel processing
by automatically accessing backup servers and load balancing across servers and
machines.

About Partitions
To distribute an application, iPlanet UDS divides it into several logical sections,
called partitions. Each partition is an independent component, which can run on its
own machine. For example, almost every end user application has a client partition
on the desktop that provides the graphical user interface. Other partitions could
include a DBMS server that runs on a server machine, an image server that runs on
a specialized machine, a 3GL service, and so on. iPlanet UDS automatically
coordinates all communication between the partitions.

About Distributed Applications

70 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The following figure illustrates the use of partitions in a distributed application.

Figure 1-8 A Distributed Application

A partition is made up of one or more service objects. To create a distributed
application, you must define service objects as part of your project.

Auction
Service

Image
Service

Client
Partition

Client
Partition

Client
Partition

Client
Partition

About Distributed Applications

Chapter 1 Overview 71

About Service Objects
As described earlier, an iPlanet UDS application is made up of objects. All of the
distributed services with which your application interacts are objects. For example,
a database that you wish to access from your application is an object. Likewise, an
existing 3GL application that you wish to use is an object. To interact with these
objects, you invoke methods on them, just as you would on any other object in your
application.

In a distributed application, every object has a single, fixed location. When
methods are invoked on an object, they are executed on the machine on which the
object is located. Normally, the object is located on the machine on which it was
created.

Although your application may consist of thousands of objects, only a few of these
need to be in particular locations. Objects that need to be in a particular location
include:

• an object that represents an existing external resource, such as a database
management system or a 3GL service, that is already present on a particular
machine

• an object that defines a shared business service, such as the iPlanet UDS image
server and auction manager in the Auction application

• an object that defines a service that you wish to replicate to provide failover or
load balancing

When you are ready to divide your application into partitions, these central
services are the only objects that you need to work with.

When you create your project, you must specify which objects in the application
need to be located on specific partitions. To do this, you simply create and name
service objects. For example, in the Auction application, we have defined a service
object named AuctionService with a type of AuctionMgr class. We need this service
object because the auction manager service is a shared service that must run on a
central server. You do not need to worry about the locations of the rest of the
objects in your application. If a service object creates other objects, these will be
located on the same partition as their creator. And iPlanet UDS provides you with
completely transparent access to all the objects. For example, the AuctionMgr
service object (called AuctionService) creates and maintains the Bid objects that
contain all the information about the end user’s bids. These Bid objects always stay
with the service object that creates them, which provides the most efficient
communication.

About Distributed Applications

72 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

A service object is simply a named object that you can reference from any method
in your application. You can think of a service object as being like a global variable,
except that you specify its value at compile time. When you create a service object,
you give it a name, a class, and values for its attributes.

After creating a service object, you can work with it like any other object. If you
want to invoke a method on a service object that is located on a remote partition,
you can invoke the method as you would on any other object. The method executes
on the machine where the object is located, and iPlanet UDS returns the return
value and output parameters to the partition where you invoked the method.
Although you cannot reassign the value of the service object itself, you can change
the values of its individual attributes just as you would set the value of any object’s
attributes.

DBMS Resource Manager Service Objects
A special kind of service object is a DBMS resource manager. A DBMS resource
manager service object provides you with access to your database management
system. By defining a DBMS resource manager service object, you can interact with
your database like any other object. You simply invoke methods on the service
object to start a database session, retrieve data, update data, and so on.

You create the service object as part of your project. Later, you can assign the
service objects to specific partitions. Assigning service objects to partitions is
described under “Partitioning an Application” on page 75.

Load Balancing and Failover
One of the most important advantages of using service objects is the ability to make
multiple copies of them (called replicating) for load balancing and/or failover. The
following two sections briefly describe the iPlanet UDS load balancing and failover
features.

Using Load Balancing For Performance
You can replicate a service object any number of times for load balancing. Load
balancing means using multiple copies of shared service to provide simultaneous
access for several clients at once. iPlanet UDS automatically coordinates the
connections to all the copies.

To provide load balancing, you replicate your service object and install the
replicates on different nodes in the environment or on the same node in the
environment. When a service object is defined with load balancing, iPlanet UDS
automatically provides a router that coordinates the parallel processing.

About Distributed Applications

Chapter 1 Overview 73

The following figure illustrates load balancing:

Figure 1-9 Load Balancing

Using Failover for Reliability
You can also replicate a service object any number of times for failover. Failover
means providing backup service objects to be used if the primary service fails.
Having backup service objects provides built-in fault tolerance for the application.

To provide failover, you replicate your service object and install the replicates on
different nodes in the environment (for hardware failover). It is also possible to
install failover replicates on the same node in the environment (for software
failover). When a service object is defined with failover, iPlanet UDS automatically
switches over to the secondary replicate when the primary service object fails. If the
secondary replicate fails, iPlanet UDS uses the next replicate if there is one. You can
provide any number of replicates that you wish.

Note that this is not the same thing as load balancing. When a service object is
replicated for failover, iPlanet UDS maintains a connection to only one of the
replicates of the service object. The others are merely in place in case of failure.

IBM

IBM

IBM

IBM IBM

IBM

IBM

IBM

IBM

IBM

IO

SPARCstation 2

POWER

IO

SPARCstation 2

C

B

A

C B A

Router

C

B

A

IBM

IBM

IBM

IBM IBM

IBM

IBM

IBM

IBM

IBM

About Distributed Applications

74 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The following figure illustrates failover:

Figure 1-10 Failover

About Environments
To create a distributed application, your system manager must describe the
environments in which the application will be deployed.

An environment is a named description of the hardware and software at a
particular site, such as the hardware and software installed in your London office
or your personnel department. In iPlanet UDS, you can create any number of
environments.

A single iPlanet UDS application can run in any number of different environments.
Likewise, a single environment can run any number of iPlanet UDS applications.
However, before you can install any application in an environment, you must
partition the application specifically for the environment. This means assigning
each of the application’s service objects to specific partitions and specifying which
partitions run on which nodes.

The Development and Deployment Process

Chapter 1 Overview 75

Partitioning an Application
An application is a project that has been distributed within a specific environment.
Partitioning your application for a specific environment customizes your
application for the particular hardware and software on which the application will
be deployed.

iPlanet UDS automatically partitions your application for each of your
environments. Most of your service objects can run only on a certain node. For
example, your database is probably already installed on a particular machine.
Therefore, iPlanet UDS automatically assigns the service objects to specific
partitions and assigns the partitions to the nodes in the environment that have the
appropriate resources and capabilities.

After iPlanet UDS partitions the application, you can examine it and make
adjustments. If necessary, you can assign service objects to different partitions or
assign partitions to different nodes. After you have finished partitioning your
project, you have a configuration. From each configuration, you can generate an
application distribution. An application distribution contains all the files necessary
for installing an application into a particular deployment environment.

The Development and Deployment Process
With iPlanet UDS, there are four phases to developing and deploying a distributed
application.

➤ To develop and deploy an application

1. Specify the various environments in which the application will run. An
environment describes the hardware and software on which you plan to
deploy your iPlanet UDS applications, such as the hardware and software
installed in your London office or your personnel department. Your system
manager specifies environments using the Environment Console.

2. Define the application by constructing a project. The project determines the
basic structure of your application, including the design of the user interface
and the functionality of the application. This phase is where you do the
majority of your development work, creating classes, defining service objects,
designing windows, writing methods, and testing and debugging the
application. You construct projects using the iPlanet UDS Workshops.

The Development and Deployment Process

76 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

3. Create the configurations for the project by mapping the project to each
environment in which it will run. Creating configurations optimizes the
application for each particular environment. You can customize a single project
for any number of different environments. After you have created the
configurations, you can generate the application distribution for each
environment. You create configurations and make application distributions
using the Partition Workshop.

4. Install each application distribution in the appropriate environment. Then, after
the application is installed and is being used by your end users, your system
manager can monitor the performance of the applications within each
environment and make any necessary adjustments. Your system manager
deployed applications using the Environment Console.

You can think of the project as a blueprint for the system. The project specifies
everything that is included in the application, but it cannot actually run on physical
machines. A configuration applies the blueprint to a particular set of machines and
resources. The result is an application distribution that is customized for a specific
environment. A single project can have any number of configurations, providing
customized versions of the application for each different environment.

The ability to have multiple configurations is extremely useful when you need to
run the same application in different departments or in different physical locations.
For example, imagine the firm using the Auction application has a London office
that uses VAX computers while the New York office uses Sun workstations. Using
the same project, we can create a London configuration and a New York
configuration, each one tailored for the specific hardware and resources used by
the particular office.

Repository Workshop

The Repository Workshop provides the support you need to collaborate with other
developers on developing an application. By allowing you to create your own
“workspaces,” the Repository Workshop ensures that you can work independently
of other developers who are collaborating with you on the same projects. Any
changes you make in your workspace are not visible to other developers until you
integrate them into the repository. And changes made by other developers are not
visible to you until you update your workspace to synchronize the changes in your
workspace with the system baseline.

The Development and Deployment Process

Chapter 1 Overview 77

Source code control commands allow you to “check out” any project component,
which gives you exclusive write access to the component until you integrate your
changes into the repository.

The Repository Workshop also functions as the control center of the iPlanet UDS
Workshops. From the Repository Workshop, you can access any of the other
workshops you need to examine or modify project components or configurations.

Project Workshop

A project is either an application definition, a service definition, or a library of
reusable components. When a project is an application definition, it defines the
application’s user interface and specifies the application’s programming logic.
When a project is a service definition, it specifies the programming logic that
creates a service that can be shared by any number of applications. When a project
is a library, it simply provides definitions for use by other projects.

The Project Workshop lets you examine and modify existing projects, and create
new ones. The Project Workshop provides tools for creating all the components of a
project, including:

• classes

• interfaces

• service objects

• database cursors

• project constants

Creating Projects
Creating a new project consists mainly of defining its classes (see “Class
Workshop” on page 78). However, you also need to identify the libraries that
contain definitions you wish to include in your project and to set other project
properties. In addition, the project’s service objects provide iPlanet UDS with
information about the external resources and existing 3GL applications with which
your application will be interacting.

The Development and Deployment Process

78 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Testing Projects
A simple command lets you test the application by running the project in the
development environment. As the application runs, you can interact with it exactly
as the end user will. To examine the code while the application is executing, you
can use the Debugger (described under “Debugger” on page 81).

Class Workshop

The Class Workshop allows you to create custom classes specifically for your
project. The Class Workshop provides tools for creating all the elements of a class,
including:

• attributes

• methods

• events

• event handlers

• class constants

Although iPlanet UDS provides automatic compilation, you can compile your class
at any point while you are writing it to check for errors.

Interface Workshop

The Interface Workshop allows you to create interfaces for your project. An
interface defines a set of class elements, without providing the code that
implements them. The interface provides the method and event handler signatures
that define a standard “interface” to an object. The code for the methods and event
handlers in the interface is provided by the classes that implement the interface.

The Development and Deployment Process

Chapter 1 Overview 79

The Interface Workshop provides tools for creating all the elements of an interface,
including:

• virtual attributes

• methods

• events

• event handlers

• interface constants

Window Workshop

The Window Workshop provides a visual editor for creating the windows for your
user interface. In the workshop, you can build and test windows, although you
need to use a separate workshop, the Menu Workshop described below, to create
the menu bar for your window. The workshop itself consists of two separate
windows: the tool palette window and the user window.

Tool Palette
The tool palette in the Window Workshop provides a wide range of fields that you
can use to design your form. The fields on the tool palette include standard
controls, such as buttons, lists, radio buttons, text fields, and images, as well as
special compound fields, such as array fields (which display tabular information)
and grid fields (which let you create portable windows).

To create a window, you simply select an item from the palette and place it directly
on the window’s form. Just like a drawing program, the workshop lets you arrange
the fields on the form by moving them and resizing them as desired. Special
commands let you align, format, and color the items on the form.

The Development and Deployment Process

80 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Menu Workshop

The Menu Workshop provides a visual editor for creating the menu bar for a
window. To create or modify a menu bar, you build a hierarchy that represents the
pull-down menus on the menu bar. Each menu can include any of the following:

• menu buttons—simple controls that display commands

• menu toggles —simple controls that displays a toggle which the end user can
switch on or off

• menu lists—simple controls that display a set of options from which the end
user can make one selection

• slide-off menus

Method Workshop

The Method Workshop provides tools for writing and editing the methods
associated with a class. Methods are procedures defined specifically for operating
on objects of a given class.

In the Method Workshop, you specify the name, return value, and parameters for
the method, and then write the method itself using TOOL, the iPlanet UDS
object-oriented programming language. With TOOL, you can write code that
responds to the end user’s interactions with the user interface, manipulates the
display, accesses and updates databases, interacts with existing 3GL applications,
uses transactions, and invokes other methods. See the TOOL Reference Guide for an
overview of TOOL.

Although iPlanet UDS provides automatic compilation, you can compile your
method at any point while you are writing it to check for errors. When the method
is complete, you can use the Debugger (described below) to monitor the code while
the method is executing.

The Development and Deployment Process

Chapter 1 Overview 81

Event Handler Workshop

The Event Handler Workshop provides tools for writing and editing the event
handlers associated with a class. An event handler is a named block of TOOL code
that provides programming to be executed in response to one or more events. The
event handler provides reusable, modular event handling code that you can
include in any number of event statements.

In the Event Handler Workshop, you specify the name and parameters for the
event handler, and then write the event handler itself using TOOL. See TOOL
Reference Guide for an overview of TOOL.

Cursor Workshop

The Cursor Workshop provides tools for writing and editing the cursor associated
with a project. A cursor is a row marker that you can use for selecting and working
with a set of rows from a database. The cursor definition consists of a name and a
select statement that selects a set of rows from the database.

In the Cursor Workshop, you specify the name and place holders for the cursor,
and then write the cursor source code itself using TOOL. See TOOL Reference Guide
for an overview of TOOL.

Debugger

The iPlanet UDS Debugger was designed specifically for debugging TOOL code.
Special features include the ability to set breakpoints for events and exceptions,
and to debug multiple tasks in parallel.

The Development and Deployment Process

82 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The Debugger consists of the following windows:

To help you monitor the flow of the application’s execution, iPlanet UDS lets you
set breakpoints on the following: statements, method entry and exit, event posting
and handling, and exception raising.

As the application runs, the Debugger displays the code for each task in separate
task windows. In each task window, you can set breakpoints, step through the
code, and view the values of local variables. Because an application can execute
any number of tasks concurrently, you may not wish to view them all
simultaneously. Therefore, iPlanet UDS lets you decide which tasks to display and
which tasks to hide.

Partition Workshop

The Partition Workshop lets you examine and modify configurations and generate
the code to be installed in the environment. A configuration is a project that has
been partitioned for a particular environment. When a project is divided into
partitions, individual partitions can be assigned to run on particular nodes in the
environment. This creates a distributed application. You create a separate
configuration for each environment in which the application will run.

The Partition Workshop provides a visual editor that displays the configuration on
the environment map created when the environment was originally defined.

Window Purpose

Application Lists the tasks currently executing for the application

Task Displays code for the method in the task that is currently being
executed, and allows you to set breakpoints on the code.

Variable Displays the current values for the local variables in the method in the
Task Window.

The Development and Deployment Process

Chapter 1 Overview 83

Examining Partitions
To examine a configuration, you display the environment map. The environment
map shows the installed partitions on each of the nodes in the environment. To
view detail information on a particular partition, simply double-click on the
partition to open its property sheet.

Creating Configurations
When you are ready to create a new configuration, you select an environment and
iPlanet UDS automatically creates a default configuration for your project. Because
many partitions can run only on a certain node (for example, your database is
probably already installed on a particular node), iPlanet UDS automatically
partitions your project and places the partitions on appropriate nodes. The
Partition Workshop displays the default configuration, which you can then modify
as necessary. You can make adjustments by dragging partitions into place on the
environment map. You can also change settings for individual partitions by editing
their properties.

Once you create a configurations, you can make an application distribution for
configuration. The application distribution is a representation of the application
outside of the repository that is used to install the application in an environment.

After the application distributions have been created, your system manager can
install them in the appropriate deployment environments.

Environment Console

The Environment Console lets your system manager examine, modify, and create
environments. An environment is a description of a particular arrangement of
hardware and software. The Environment Console provides a visual editor that
displays an environment as a network map. In the Partition Workshop, you use
this same map to partition the application

The Development and Deployment Process

84 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Examining Environments
To examine an environment, the system manager displays the network map, which
shows all the individual nodes included in the environment. For detailed
information on a particular node, the system manager can simply double-click on
that node to view its property sheet. For complex environments, the system
manager also has the option of viewing the environment information in a
condensed, textual format.

Creating Environments
To define an environment, the system manager adds nodes to a network map by
dragging individual nodes into place. The system manager can then provide
detailed information about the software, external resources, and existing 3GL
applications on a particular node by filling in its property sheet.

The Environment Console also provides tools for managing the runtime
environment. These tools enable your system manager to manage the entire
environment from a single node.

Managing the iPlanet UDS Runtime Environment
To let the system manager monitor the runtime environment, the Environment
Console displays the environment map, showing all the partitions running on each
node. The system manager can monitor partition performance, monitor alerts from
applications, and start and stop services. Summary information about the
environment as a whole is provided automatically. For detail information on
individual partitions, the system manager can simply double-click on the partition.

This manual does not describe the Environment Console. For information about
examining, creating, and managing environments, see iPlanet UDS System
Management Guide.

The Development and Deployment Process

Chapter 1 Overview 85

Express

Express, an add-on product for iPlanet UDS, is an application generation tool,
which allows you to develop graphical models of objects in your business system
and the window flow of your application. Express automatically generates an
application based on these models. Subsequently, you can use the standard iPlanet
UDS workshops to further refine and customize your final application. In iPlanet
UDS installations that do not include Express, the Application Model and Business
Model Workshops, described next, are not available.

Application Model Workshop

You use the Application Model Workshop to develop the windows that form the
client side of your application. You can create one or more windows for each
business object in your data model. You can retrieve data from multiple business
objects into one window, or display data from each business object in separate
windows. The Application Model Workshop provides a set of property dialogs in
which you define window types, data interfaces, and links between windows.

Business Model Workshop

The Business Model Workshop provides tools for drawing and defining a business
model. A business model represents all the objects in your business system and the
relationships between them.

The Development and Deployment Process

86 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

iPlanet Integration Server

iPlanet Integration Server is an add-on product for iPlanet UDS that consists of a
suite of business integration tools for integrating and coordinating heterogeneous
applications. The tools and software components provided with iPlanet Integration
Server let you integrate newly developed applications, legacy applications, and
off-the-shelf packages into business processes that are automated and controlled
by a process engine.

An iPlanet Integration Server system is composed of two subsystems, a process
management system and an XML-based backbone system.

iPlanet Integration Server Process Management System The iPlanet Integration
Server process management system (formerly known as Conductor) provides a set
of tools and software modules that support the development, execution, and
management of business processes. The heart of this system is the iPlanet
Integration Server process engine, which controls and manages business processes
from beginning to end, coordinating the work of the different resources or
applications that participate in the processes.

iPlanet Integration Server customers use the process management system to:

• develop process logic with the graphical process development workshops

• manage sessions and processes, and the engine itself, using the iIS Console and
other tools

• build applications, called process clients, that make direct API calls to the
process engine, using the process client APIs (iPlanet UDS, CORBA/IIOP,
JavaBeans, ActiveX, or C++)

Backbone system The iPlanet Integration Server Backbone provides a set of tools
and software modules that use XML messaging over HTTP or JMS to simplify
communication and coordination between applications. An iPlanet Integration
Server backbone can support different styles of integration, but the backbone is
always installed on top of the iPlanet Integration Server process engine runtime.
The heart of a backbone system is a set of application proxies that perform message
brokering and data transformation on behalf of applications. For business process
support, proxies interact with the iPlanet Integration Server process engine on
behalf of any applications that participate in a common business process. The main
purpose of these interactions is to communicate the initiation and completion of
work activities.

The Development and Deployment Process

Chapter 1 Overview 87

Figure 1-11 iPlanet Integration Server System and Subsystems

iPlanet UDS provides adapters as well as an adapter toolkit to integrate packages
or custom applications that lack a native XML/HTTP interface into an iPlanet
Integration Server backbone.

iPlanet Integration Server customers use the iPlanet Integration Server Backbone
primarily to:

• provide an XML/HTTP interface between proxies and applications

• configure application proxies to participate in a managed business process

• develop, test, debug, store, and manage XML documents and the XSL
stylesheets used for message transformation between applications

XML/XSL Workshop
The Fusion XML/XSL Workshop is an interactive tool for creating, editing, testing,
and debugging the XSL stylesheets that you register with a Fusion backbone. You
can create XML and XSL documents in the Workshop, or import Fusion proxy
documents from files. The XML documents you use to test your XSL stylesheets
can be actual proxy documents or sample documents that you create just for testing
purposes.

Process
Management

Backbone

iPlanet Integration Server System

Backbone
Manager

Applications

Process
Engine

Management

Client
Applications

Process Engine

Application
Proxies

The Development and Deployment Process

88 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Process Development Workshops

User Profile Workshop

The User Profile Workshop allows you to customize a default user profile supplied
by the Fusion process engine. The workshop is used to specify the important
user-information needed by assignment rules to determine who should be
permitted to perform process activities.

Assignment Rule Workshop

The Assignment Rule Workshop allows you to create assignment rules and group
them into dictionaries. The workshop is used to specify simple role-based rules as
well as more sophisticated rules. More sophisticated rules—that depend on user
profile attributes, process attribute values, or any condition that might determine
user access to one or more activities—are implemented in the workshop by writing
an Evaluate method. The assignment rule dictionaries are needed by process
developers to specify activity properties.

Application Dictionary Workshop

The Application Dictionary Workshop allows you to create application
dictionaries. The workshop is used to create items that define the work associated
with activities, including the process attributes needed to perform the work.
Application dictionaries are needed by process developers to specify activity
properties.

The Development and Deployment Process

Chapter 1 Overview 89

Process Definition Workshop

The Process Definition Workshop allows you to create process definitions. It is a
tool in which the developer creates a visual model of a process and specifies the
properties of each of the components of the model: activities, routers, timers, and
so on. The workshop is also used to write methods that specify process logic, such
as trigger methods and router methods. This is also where process attributes, an
important design element, are specified.

Validation Workshop

The Validation Workshop allows you to write a ValidateUser method that
authenticates users when they open a session with the Fusion process engine, and
which may also populate users’ profiles by extracting data from an organization
database.

The Development and Deployment Process

90 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

91

Chapter 2

Using the iPlanet UDS Workshops

This chapter provides general information about how to use the iPlanet UDS
Workshops.

In this chapter, you will learn how to:

• use the UDS Control Panel to set common environment variables

• start the UDS Workshops

• use UDS windows

• use UDS names

• use UDS data types

• use UDS Help

• set workshop preferences

• leave the iPlanet UDS Workshops

The chapter also provides information about international support.

Before Using the iPlanet UDS Workshops
Before you can use the iPlanet UDS Workshops, you must have access to a
repository. A repository is a database that stores the iPlanet UDS libraries as well as
all the projects that you create with iPlanet UDS. When your system manager sets
up the distributed iPlanet UDS development environment, she creates at least one
central repository. See your system manager for guidance about which repository
you should use. See Chapter 3, “Using the Repository Workshop,” for further
information about repositories and how to create and use them.

Using the iPlanet UDS Control Panel

92 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The following two sections, “Using the iPlanet UDS Control Panel” and “Setting
Environment Variables Without the Control Panel” on page 100 describe how to
specify your default repository as well as several other settings you may need to
specify before starting the iPlanet UDS Workshops.

Using the iPlanet UDS Control Panel
The iPlanet UDS Control Panel provides a simple user interface that allows you to
view and/or set the most commonly used iPlanet UDS environment variables. For
Windows, the Control Panel allows you to view and change the current settings.
For other platforms, the Control Panel only provides read access to the settings. For
these platforms, you must set the environment variables as described under
“Setting Environment Variables Without the Control Panel” on page 100.

Opening the Control Panel
To start the Control Panel from Windows, double-click the iPlanet UDS Control
Panel icon, or choose the Start > Programs > iPlanet UDS > iPlanet UDS Control
Panel command.

To start the Control Panel from UNIX or VMS, use the fcontrol command. The
portable syntax is:

fcontrol

The OpenVMS syntax is:

VFORTE FCONTROL

The Control Panel Window
The Control Panel window is a dialog box, shown below, where you can view or
change the iPlanet UDS environment variable settings.

Using the iPlanet UDS Control Panel

Chapter 2 Using the iPlanet UDS Workshops 93

Figure 2-1 Control Panel

If you use the utility on Windows, the window displays OK and Cancel buttons.
Any changes you make to settings take effect when you click the OK button.
Clicking the OK button also closes the dialog.

If you use the utility on any platform other than the Windows, you cannot change
any of the settings, so the Control Panel simply displays a Close button. Click the
Close button to close the dialog when you have finished viewing the settings.

When you open the Control Panel, the Control Panel window displays a tab folder
with the following tab pages:

The General tab page is displayed first. To display or set the network settings, click
the Network tab. To display or set the log flags setting, click the Log Flags tab. Do
not click the OK on the Control Panel until you are ready to close the Control Panel.

The following sections provide detailed information about the settings you can
view or change on each of the tab pages.

Tab Page Available Settings

General Repository name, workspace name, root directory, and time zone.

Network Model node, node name, name server address, and communication provider.

Log flags Default logger settings for the iPlanet UDS session.

Using the iPlanet UDS Control Panel

94 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Closing the Control Panel
On Windows, you can use either the OK or Cancel button to close the Control
Panel. The OK button changes the settings as specified and then closes the Control
Panel. The Cancel button discards the new settings and then closes the Control
Panel.

On all other platforms, simply click the Close button to close the Control Panel.

General Tab Page
The following table lists general settings you can control with the Control Panel
and shows the environment variable that corresponds to each setting:

The following sections provide information on the individual settings.

Repository Name
The repository name setting specifies the name of the repository to be used as the
default repository for all iPlanet UDS commands that use a repository.

To specify the repository name, enter one of the following options:

• “Central Repository” for the default central repository.

• A repository service name.

• The name of a private B-tree or shadow repository using the following format:
bt: private_repository_name.

Specify the private repository name as the root file name of the B-tree
repository (that is, the full path name of the file without the trailer).

General Setting Environment Variable

Repository Name FORTE_REPOSNAME

Workspace Name FORTE_WORKSPACE

Root Directory FORTE_ROOT

Time Zone FORTE_TIMEZONE

Daylight Savings FORTE_TIMEZONEDST

Using the iPlanet UDS Control Panel

Chapter 2 Using the iPlanet UDS Workshops 95

By default, the repository name has the value “CentralRepository,” which
represents the default central repository in the distributed environment.

The following examples illustrate how to specify a B-tree repository name:

On Windows platforms, if you choose the New Shadow command in the Repository
Workshop, iPlanet UDS automatically resets the value of the Repository Name
setting (and the FORTE_REPOSNAME environment variable) to the shadow name.
As a result, if you leave and then reenter iPlanet UDS, the same shadow repository
will automatically be open.

The -fr flag on the commands that run iPlanet UDS, such as ftcmd, ftexec, forte
and fscript, overrides the value the Repository Name setting. For information
about the -fr flag, see “Flags for ftcmd, forte, ftexec, and ftclntws Commands” on
page 118.

Workspace Name
The Workspace Name setting specifies the name of the workspace to use for the
default workspace when you start the iPlanet UDS Workshops or when the you
give an Open command in Fscript.

The -fw flag on the commands that run iPlanet UDS, such as ftcmd, ftexec, forte
and fscript, overrides the value the Workspace Name setting. For information
about the -fw flag, see “Flags for ftcmd, forte, ftexec, and ftclntws Commands” on
page 118.

If you do not specify a value for Workspace Name and do not specify a value with
the -fw flag on the command line, iPlanet UDS opens the Repository Workshop
without a workspace and starts Fscript with the prefabricated workspace called
“FirstWorkspace.”

On Windows, the value of the Workspace Name setting (and the corresponding
FORTE_WORKSPACE environment variable) is automatically set by the iPlanet
UDS workshops to the last workspace that was opened. As a result, if you leave
and then reenter iPlanet UDS, the same workspace you left will automatically be
open.

Platform Command Syntax

UNIX bt:$FORTE_ROOT/repos/myShadow

OpenVMS BT:FORTE_ROOT:[REPOS]MYSHADOW

Windows bt:\forte\repos\myshadow

Using the iPlanet UDS Control Panel

96 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

You can override the Workspace Name setting by using the -fw flag on the
commands that start the iPlanet UDS Workshops. In the Repository Workshop,
you can open any workspace in the repository by choosing the File > Open
Workspace command (see “Using Workspaces” on page 168).

Root Directory
The Root Directory setting specifies the root directory path for iPlanet UDS. All the
files that make up the iPlanet UDS system as well as the default locations for files
that iPlanet UDS writes to and reads are stored in the root directory. The value of
this setting is usually specified during the installation process using the
FORTE_ROOT environment variable. The Control Panel displays the current
setting mainly for your information only. You should not specify a new root
directory unless you are moving your entire iPlanet UDS installation.

Time Zone and Daylight Savings
The Time Zone setting specifies the time zone for the machine as the number of
hours west of GMT. On some systems (on UNIX and on PCs running PC/NFS),
this is not needed, as the system provides an accurate value for the time zone
setting. However, if you do specify a value for this setting, note that the setting will
override any other value it gets from the operating system.

You must set the Time Zone setting to an integer value between +11 and -13. For
Pacific time, set the value to 8, and for Eastern time, set the value to 5. For time
zones east of GMT, set the Time Zone setting to a negative number. If daylight
savings time is in effect, set the Daylight Savings toggle to on.

The Daylight Savings toggle specifies whether or not daylight savings is in effect. If
the toggle is set to on, one hour is added to the current time setting.

Network Tab Page
The following table lists the network settings you can control with the Control
Panel and shows the environment variable that corresponds to each setting:

Network Setting Environment Variable

Model Node FORTE_MODELNODE

Node Name FORTE_NODENAME

Name Server Address FORTE_NS_ADDRESS

Communication Provider FORTE_PROVIDERS

Using the iPlanet UDS Control Panel

Chapter 2 Using the iPlanet UDS Workshops 97

The following sections provide information on the individual settings.

Model Node
The Model Node setting specifies the name of the model node, in the active
environment, which this node uses for its definition. The Model Node is usually set
during installation. If you do not specify a model node name, the node is not
treated as a model node.

The -fmn flag on the commands that run iPlanet UDS, such as ftcmd, ftexec,
forte and fscript, overrides the value the Model Node setting. For information
about the -fmn flag, see “Flags for ftcmd, forte, ftexec, and ftclntws Commands” on
page 118.

Node Name
The Node Name setting specifies the name of the node on which you are running.
The Node Name setting in the Control Panel is used only on Windows 3.1; on
UNIX, OpenVMS, and NT servers, the host name is taken from the hosts file. The
Node Name is usually set during installation, but you can change the value from
the Control Panel if necessary.

The -fn flag on the commands that run iPlanet UDS, such as ftcmd, ftexec, forte
and fscript, overrides the value the Node Name setting. For information about
the -fn flag, see “Flags for ftcmd, forte, ftexec, and ftclntws Commands” on
page 118.

Name Server Address
The Name Server Address setting specifies the address of the iPlanet UDS name
server process. The Name Server Address is usually set during installation, but you
can change the value from the Control Panel if necessary.

The syntax for the Name Server Address setting is:

address [::protocol_name]

The syntax of address is protocol dependent, as shown in the following table.

Protocol Address Syntax

TCP/IP machine_name:port_number

DECnet machine_name:object_name

UNIX Domain path_name

Using the iPlanet UDS Control Panel

98 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The optional protocol_name allows you to use a different protocol than the default
for the platform. The default protocol for OpenVMS is DECnet and for all other
platforms TCP/IP.

The protocol_name is one of the following values:

TCP/IP
DECnet
UNIX Domain

For further information about the name server, see the iPlanet UDS System
Management Guide.

Communication Provider
The Communication Provider setting specifies the communication transport
providers to use for the node. A transport provider is a program that enables
iPlanet UDS to access a particular communication package.

In the Control Panel, the only platform for which you can change the
communication provider is PC Windows. The default communication provider for
PC Windows is Winsock. You can choose PC-NFS if appropriate.

Log Flags Tab Page
As you develop and test applications in the iPlanet UDS Workshops, iPlanet UDS
logs messages in the trace window or log file as specified by
FORTE_LOGGER_SETUP environment variable (see “Common Environment
Variables” on page 105). If you did not specify a log file name with
FORTE_LOGGER_SETUP, iPlanet UDS logs the messages in the trace window.

CAUTION If you change your name server address, the next iPlanet UDS
application that you start, including the iPlanet UDS Workshops,
will use the new value. This effectively changes you to a different
iPlanet UDS environment. You should discuss this with your system
manager.

Using the iPlanet UDS Control Panel

Chapter 2 Using the iPlanet UDS Workshops 99

The Log Flags setting in the Control Panel allows you to specify the filter settings
used for logging the messages. This is equivalent to the log settings you can specify
the FORTE_LOGGER_SETUP environment variable. However, the Log Files
setting does not allow you to specify the log file names. Instead, all messages are
logged in the default log file, “stdout.”

To change the filter settings for an individual message, edit the fields in the array
row as follows:

See “-Fl Flag (iPlanet UDS Logger)” on page 795 for specific information about
each of these settings.

Inserting and Deleting Log Settings
You can request an additional log setting by inserting a new row in the array field
or eliminate a log setting by deleting the row from the array field. The Insert button
adds a new row above the selected row, using default values for each of the fields.
The Delete button removes the currently selected row.

The LogMgr object (described in the Framework Library online Help) examines the
Log Flags setting (or the FORTE_LOGGER_SETUP environment variable) and
based on the information it finds, opens one or more text files or display windows.
If you do not specify the log flags with the LogFlags setting or
FORTE_LOGGER_SETUP (and you have not specified in the -fl flag in your
command line), no specially filtered messages are logged.

CAUTION If you change any of the filter settings using the Control Panel, the
new settings override any file specifications set by the
FORTE_LOGGER_SETUP environment variable. All messages will
be logged in the default log file, “stdout.”

Field How to Fill It in

Message Choose the message type from the drop list.

Service Choose the service type from the drop list.

Group Enter integers in the two data fields to specify a range. The integers can be
from 1 to 63.

Level Enter an enter from 1 to 255.

Setting Environment Variables Without the Control Panel

100 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The -fl flag on the commands that run iPlanet UDS, such as ftcmd, ftexec, forte
and fscript, overrides the value the Log Flags setting. For information about the
-fl flag, see “Flags for ftcmd, forte, ftexec, and ftclntws Commands” on page 118.

Changing Default Filter Settings
If you wish to change the default filter settings at any point during your
development session, you can use the Modify Log Flags command in the
Repository Workshop (see “Modifying Log Flags” on page 195). The Modify Log
Flags command opens a window, where you view and/or change the filter settings
in an array field.

Modifying Log Specifications at Runtime
You can also modify the types and detail level of messages being logged while the
program is running. The ModifyFlags method defined on the LogMgr class
provides a runtime interface to the same settings the Log Flags setting (and the -fl
flag on iPlanet UDS command lines) provides at application start-up. The
Environment Console provides an interface to a running server's LogMgr object
and can be used to modify the LogMgr settings of the server being monitored.

Setting Environment Variables Without the
Control Panel

You may find you need to set environment variables for Windows that are not
included in the iPlanet UDS Control Panel. To do so, you must use the operating
system’s standard format. For platforms other than Windows, you must set all
your environment variables using the operating system’s standard format.

The following sections provide information about setting environment variables in
the operating systems supported by iPlanet UDS.

“Common Environment Variables” on page 105 provides a list of the most
commonly used environment variables. For a complete list of the environment
variables, see the iPlanet UDS System Management Guide.

Setting Environment Variables Without the Control Panel

Chapter 2 Using the iPlanet UDS Workshops 101

Setting Environment Variables on NT
On Windows and Alpha NT, the default settings for the iPlanet UDS environment
variables are set in the Registry. NT allows you to set environment variables in
several different places, all of which are described below. We recommend that you
set your environment variables using the Control Panel or the Registry Editor
(regedit). In general, you should avoid using the NT Control Panel.

The order of precedence is as follows:

1. individual process window (set at the DOS command prompt)

2. NT Control Panel’s User variables

3. NT Control Panel’s System variables

4. Registry’s Current User Tree (HKEY_CURRENT_USER)

5. Registry’s Global Tree (HKEY_LOCAL_MACHINE)

Using the Registry
The environment variables in the Registry are set in two different directories.

Registry’s Global Tree iPlanet UDS machine-wide information and default
iPlanet UDS environment variables are kept in the iPlanet UDS Global Tree branch:

HKEY_LOCAL_MACHINE\Software\ForteSoftwareInc\Forte\version number

Registry’s User Tree All user-specific iPlanet UDS environment variables are
kept in the iPlanet UDS User Tree branch:

HKEY_CURRENT_USER\Software\ForteSoftwareInc\Forte

Environment variable settings in the iPlanet UDS User Tree override those in the
iPlanet UDS Global Tree. Unless you are a system administrator who is setting up a
machine for use by several users, we recommend that you set your environment
variables in the User Tree.

To change the value of an environment variable or add a new one, use regedit.exe
to open the Registry Editor and modify the iPlanet UDS User Tree.

Using the NT Control Panel
The NT Control Panel allows you to set any of the iPlanet UDS environment
variables. Like the Registry, the NT Control Panel contains System and User
sections. The settings in the User section override the settings in the System
variables.

Setting Environment Variables Without the Control Panel

102 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Settings in the NT Control Panel override the settings in the Registry (and therefore
settings in the iPlanet UDS Control Panel). Therefore, we recommend that you do
not use the NT Control Panel to set your environment variables. Setting
environment variables in too many places can make your setup confusing and
inconsistent.

Using the DOS Command Line
For an individual process window, you can set environment variables using the
set command in DOS. Using the set command for an individual window
overrides the environment variable settings for that individual process.

Using the iPlanet UDS Control Panel
You can set the most commonly used environment variables using the iPlanet UDS
Control Panel as described under “Using the iPlanet UDS Control Panel” on
page 92. Setting environment variables in the iPlanet UDS Control Panel changes
the value of the equivalent environment variable in the User Tree of the Registry
(not in the NT Control Panel).

Note that iPlanet UDS command-line flags that specify the same settings as
environment variables, such as those that set the repository or workspace, always
override the environment variable settings.

Setting Environment Variables on Windows 95
On Windows 95, the default settings for the iPlanet UDS environment variables are
stored in the User Registry.

Using the Registry
The following file in the Registry contains the iPlanet UDS environment variables:

HKEY_CURRENT_USER/Software/ForteSoftwareInc/Forte

To change the value of an environment variable or add a new one, use
regedit.exe to open the Registry Editor and modify this file.

Using autoexec.bat
You can also set iPlanet UDS environment variables in the autoexec.bat file.
Setting environment variables in the autoexec.bat file overrides the settings in
the User Registry. For consistency, we recommend that you set your environment
variables in the Registry as described above, and not in the autoexec.bat file.

Setting Environment Variables Without the Control Panel

Chapter 2 Using the iPlanet UDS Workshops 103

Using the iPlanet UDS Control Panel
You can set the most commonly used environment variables using the iPlanet UDS
Control Panel as described under “Using the iPlanet UDS Control Panel” on
page 92. Setting an environment variable in the iPlanet UDS Control Panel changes
the value of the corresponding environment variable in the Registry. Therefore,
environment variables set in autoexec.bat file will override those set by the iPlanet
UDS Control Panel.

In summary, the following environment variable settings take precedence:

1. autoexec.bat file

2. User Registry

Note that iPlanet UDS command-line flags that specify the same settings as
environment variables, such as those that set the repository or workspace, always
override the environment variable settings.

Setting Environment Variables on UNIX
On UNIX, the default settings for the iPlanet UDS environment variables are stored
in the following files:

FORTE_ROOT/fortedef.csh

FORTE_ROOT/fortedef.sh

These two files are created by the iPlanet UDS Installer, and save your input for the
iPlanet UDS system information.

Using fortedef
To change the default settings or add new environment variable settings, simply
edit the appropriate fortedef file.

Using the Command Line
You can also enter settings for iPlanet UDS environment variables on the command
line. Following the UNIX standard, environment variable settings specified at the
command line override those in the fortedef file.

Note that iPlanet UDS command-line flags that specify the same settings as
environment variables, such as those that set the repository or workspace, always
override the environment variable settings.

Setting Environment Variables Without the Control Panel

104 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Setting Logical Names on OpenVMS
On OpenVMS, the default settings for the iPlanet UDS logical names and DCL
foreign symbols are stored in the following file:

FORTE_ROOT:[INSTALL.SCRIPTS]FORTE_LOGIN.COM

Using the FORTE_LOGIN.COM File
To change the default settings or add new logical names or symbols, simply edit
the FORTE_LOGIN.COM file or create a new file:

FORTE_ROOT:[INSTALL.SCRIPTS]SITE_LOGIN.COM

In order to define the FORTE_ROOT logical name you can simply execute:

@SYS$LIBRARY:FORTE_LOGIN_Vversion_number

Using Your Personal login.com File
If you use iPlanet UDS frequently, you may wish to include the following
command within your personal LOGIN.COM file:

$ @SYS$LIBRARY:FORTE_LOGIN_Vversion_number

Using the Command Line
You can also define settings for iPlanet UDS logical names on the command line.
Logical name settings specified at the command line override those in the
FORTE_LOGIN.COM file. The logicals defined in FORTE_LOGIN.COM are stored in two
logical name tables:

FORTE_PRCTABLE_Vversion_number

FORTE_GBLTABLE_Vversion_number

Therefore, if you use the DEFINE command to set your own logicals in either the
LNM$PROCESS table (with the default /PROCESS qualifier to DEFINE) or the
LNM$JOB table (with the /JOB qualifier to DEFINE) you can leave the
FORTE_PRCTABLE_Vversion_number and FORTE_GBLTABLE_Vversion_number
tables undisturbed for other users.

Note that iPlanet UDS command-line flags that specify the same settings as
environment variables, such as those that set the repository or workspace, always
override the environment variable settings.

Setting Environment Variables Without the Control Panel

Chapter 2 Using the iPlanet UDS Workshops 105

Common Environment Variables

FORTE_FTLAUNCH_PORT
Specifies the port number for the launch server.

FORTE_FTLAUNCH_PORT tcp_port_number

If this variable is set, then ftcmd uses the specified port, instead of the default (port
3783), to contact the launch server.The port number must be a numeric value which
is a legal and unused TCP port for the underlying platform and operating system.

Because this variable should be set individually for each iPlanet UDS user, it
should not be set in a centralized fortedef file which is accessed by multiple iPlanet
UDS users.

FORTE_GC_SPECIAL
Sets the memory allocated for iPlanet UDS partitions. The syntax for this variable is
identical to the syntax for the -fm startup flag (also used to set memory).

FORTE_GC_SPECIAL (memory_option {:|=} number [, memory_option {:|=} number])

The syntax and default values for the memory flags are described in “-Fm Flag
(Memory Manager)” on page 799. An example follows:

FORTE_GC_SPECIAL (n:5000, x:10000)

Memory flags are set according to the following rules:

• If the -fm startup flag is set, then FORTE_GC_SPECIAL is ignored.

• If the -fm startup flag is not set, then the setting for FORTE_GC_SPECIAL is
used.

• Any memory flags that are not explicitly set use the default values.

FORTE_LOGGER_SETUP
Specifies the default logger settings for the iPlanet UDS session.

FORTE_LOGGER_SETUP file_name(file_filter)[file_name(file_filter)...]

You can override the settings for FORTE_LOGGER_SETUP by using the -fl flag
on any of the iPlanet UDS command lines. In fact, we recommend that you use the
-fl flag rather than resetting FORTE_LOGGER_SETUP when you want to change
message filtering.

Setting Environment Variables Without the Control Panel

106 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The file_name argument is any valid file name where you want to log certain
messages. The special file names “%stdout” and “%stderr” log the messages to
standard output or standard error, respectively.

On Windows only, you can use the name “%stdwin” to create a simple, scrollable
output window for textual output. “%stdwin” is particularly useful when using the
FORTE_LOGGER_SETUP variable to specify an alternative file for the output from
Fscript or the development environment.

Each file name is associated with a file_filter. The file_filter argument may
include one or more filter options separated by a space. The syntax for the
file_filter parameter is the following:

message_type[:service_type[:group_number[:level_number]]]

For information on the file filters, see the description of the LogMgr class in the
Framework Library online Help. The LogMgr object examines the
FORTE_LOGGER_SETUP environment variable and opens one or more text files
or display windows based on the settings it finds there. If
FORTE_LOGGER_SETUP is not set (and you have not specified in the -fl flag in
your command line), no specially filtered messages are logged.

Modifying Logging At Runtime
You can also modify the types and detail level of messages being logged while a
program is running. The ModifyFlags methods defined on LogMgr provides a
runtime interface to the same settings that FORTE_LOGGER_SETUP (and the -fl
flag on iPlanet UDS command lines) provides at application start-up. The
Environment Console provides an interface to a running server's LogMgr object
and can be used to modify the LogMgr settings of the server being monitored.
Finally, the Repository Workshop allows you to change LogMgr setting while
developing iPlanet UDS applications.

FORTE_MODELNODE
Specifies the name of a model node in the active environment, which the current
node uses for definition.

FORTE_MODELNODE model_node_name

This variable is normally set during the installation process. If the environment
variable is not set, the node is not treated as a model node. See also
FORTE_NODENAME.

Setting Environment Variables Without the Control Panel

Chapter 2 Using the iPlanet UDS Workshops 107

FORTE_NODENAME
(For PCs only) Specifies the name of the current node. (On UNIX and OpenVMS,
the host is taken from the hosts file.)

FORTE_NODENAME node_name

This variable is normally set during the installation process.

FORTE_NS_ADDRESS
The FORTE_NS_ADDRESS environment variable is used one way for the
Environment Manager process and another way for all other processes.

• For the Environment Manager, FORTE_NS_ADDRESS specifies one or more
network addresses at which the Environment Manager listens for incoming
requests.

• For all other processes, FORTE_NS_ADDRESS specifies one or more addresses
to use when contacting the Environment Manager. Addresses are tried in the
order they are specified. If a connection fails while in use, the next address is
automatically tried.

In both cases, however, the syntax is the same:

FORTE_NS_ADDRESS address [::protocol_name][;address [::protocol_name]...]

For further information, see the iPlanet UDS System Management Guide.

FORTE_PROVIDERS
Specifies the transport provider for a given platform. Normally you need not set
this variable as the installation does so for you.

FORTE_PROVIDERS protocol_name

However, you can use this variable to specify a different transport provider for
your platform. For example, for Windows the default communication protocol is
Winsock, but you can specify the use of the native interface to the PC-NFS product.
For Windows the valid values for this environment variable are:

Communication Provider Communication Protocol

W3TPSUN PC-NFS

W3TPWSS Winsock

Setting Environment Variables Without the Control Panel

108 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

FORTE_REPOSNAME
Specifies the name of the repository that will be used as the default repository for
all iPlanet UDS commands that use a repository.

FORTE_REPOSNAME repository_name

To specify the repository name, enter:

• “Central Repository” for the default central repository

• A repository service name.

• The name of a private C-tree or shadow repository using the following format:
ct: private_repository_name.

Specify the private repository name as the root file name of the C-tree
repository (that is, the full path name of the .dat or .idx file without the trailer).

By default, this has the value “CentralRepository” which represents the default
central repository in the distributed environment.

On Windows, if you give a New Shadow command in the Repository Workshop,
this automatically resets the value of FORTE_REPOSNAME to the shadow name.
This way, if you leave and then reenter iPlanet UDS, the same shadow repository
will automatically be open.

Note that the -fr flag on several iPlanet UDS commands, such as forte and
fscript, overrides the value of FORTE_REPOSNAME.

FORTE_ROOT
Specifies the root directory path for iPlanet UDS.

FORTE_ROOT file_specification

All the files that make up the iPlanet UDS system as well as the default locations
for files that iPlanet UDS writes and reads are stored in FORTE_ROOT. The value
of this environment variable is set during the installation process; you should not
reset it.

FORTE_STACK_SIZE
Sets the thread stack size in bytes iPlanet UDS and Posix threads.

FORTE_STACK_SIZE integer

On NT, the system default is 1MB and is not adjustable. On other servers the
default is 28K to 40K. Motif clients have a minimum of 100K. You cannot set a size
below the system default.

Setting Environment Variables Without the Control Panel

Chapter 2 Using the iPlanet UDS Workshops 109

Generally, you should not increase this value. Instead, avoid programming
practices that require an increased stack; for example, avoid using deeply nested or
recursive method invocations.

You can increase the stack size if necessary. Because the new stack size you specify
is used for every thread, it will increase memory usage by the stack size times the
number of concurrent active threads. iPlanet UDS rounds the value up to the
nearest system MMU (Memory Management Unit) pagesize (8K on many
machines, but sometimes more or less). iPlanet UDS adds an MMU pagesize
guardword to the size; this page is memory protected to try and catch stack
overflow cases.

FORTE_TIMEZONE
Specifies the time zone for the machine as the number of hours east or west of
GMT.

FORTE_TIMEZONE integer

This variable is only needed on OpenVMS and in the southern hemisphere on
Win3.1. On UNIX systems and PCs running PC/NFS), the system provides the
time zone setting. However, if you set this environment variable, its value
overrides the operating system timezone.

Acceptable values are integers between -23 and 23. For example, use 8 for Pacific
time and 5 for Eastern time. For time zones east of GMT, set this to a negative
number. If daylight savings time is in effect, use the FORTE_TIMEZONEDST
environment variable in addition.

FORTE_TIMEZONEDST
Specifies whether or not daylight savings is in effect. If it is set to TRUE, one hour is
added to the current time setting.

FORTE_TIMEZONESDT {TRUE | FALSE}

This variable is only needed on OpenVMS.

FORTE_WORKSPACE
Specifies the name of the iPlanet UDS workspace to use for the default workspace
for the forte command or when the user gives an Open command in Fscript.

FORTE_WORKSPACE workspace_name

If you do not set this environment variable and do not specify a value with the -fw
flag on the forte or fscript command, iPlanet UDS opens the Repository
Workshop without a workspace and starts Fscript with the prefabricated
workspace called “FirstWorkspace.”

Starting the iPlanet UDS Workshops

110 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

On Windows, the value of this environment variable is automatically set by the
iPlanet UDS workshops to the last workspace that was opened. This way, if you
leave and then reenter iPlanet UDS, the same workspace you left will automatically
be open.

You can override the setting of FORTE_WORKSPACE by using the -fw flag on the
forte and fscript commands. In the Repository Workshop, you can open any
workspace in the repository with the Open Workspace command on the File menu.

Starting the iPlanet UDS Workshops
You can use the iPlanet UDS Workshops in one of two modes: standalone mode or
distributed mode.

Standalone Mode
In standalone mode, the iPlanet UDS Workshops run only on your client
workstation and you do not have access to the server nodes within your
development environment. You can access all the workshops except the Partition
Workshop (the Partition Workshop needs access to your development
environment). In addition, in standalone mode, you cannot test your application by
running it as a distributed application within the development environment.

In standalone mode, the repository you use must be a local repository; you cannot
use a distributed repository. If you try to run in standalone using a central
repository, you will get an error.

Distributed Mode
In distributed mode, the iPlanet UDS Workshops run on your client workstation
and on the server nodes in your development environment. You have access to all
the workshops, including the Partition Workshop, and you can test your
application by running it as a distributed application within the development
environment.

In distributed mode, the repository you use can either be local or distributed.

Starting the iPlanet UDS Workshops

Chapter 2 Using the iPlanet UDS Workshops 111

The following sections provide detailed information about starting the workshops
in both standalone and distributed mode on the following operating systems:

• Windows 95, Windows NT, Alpha NT

• UNIX

• OpensVMS

iPlanet UDS Launch Server
On all platforms except OpenVMS, iPlanet UDS provides commands and icons for
starting the iPlanet UDS Workshops that use the iPlanet UDS Launch Server. The
Launch Server is an iPlanet UDS service that runs on client nodes and starts iPlanet
UDS applets and applications. The Launch Server can run several iPlanet UDS
applications under the same operating system process, which enables the
applications to start faster and use less memory. It can also ensure that the most
recent copy of an application is installed on the client; if it is not, the Launch Server
automatically downloads the newer copy.

The Launch Server is started automatically when you invoke the command to start
the Workshops. However, on UNIX you must set your
FORTE_FTLAUNCH_PORT environment variable to a user port before the Launch
Server starts. See “Starting the Workshops on UNIX” on page 114 for information
about the FORTE_FT_LAUCH_PORT environment variable.

iPlanet UDS Launcher Application
For iPlanet UDS developers, we generally recommend starting the iPlanet UDS
Workshops using the icons and commands set by up the iPlanet UDS installer.
However, you can also start the Workshops using the iPlanet UDS Launcher
Application. The iPlanet UDS Launcher Application is an iPlanet UDS application
that allows end users to start and shutdown applications; the iPlanet UDS
Workshops are included in the list of applications that can be started with the
Launcher Application. See “Using the iPlanet UDS Launcher Application” on
page 122 for information on using the iPlanet UDS Launcher Application to start
the iPlanet UDS Workshops.

Starting the iPlanet UDS Workshops

112 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Starting the Workshops on Windows 95,
Windows NT, Alpha NT
For Windows 95, Windows NT, and Alpha NT, the iPlanet UDS Installer installs a
group of iPlanet UDS shortcuts in your Start menu, under Programs > iPlanet UDS.
These shortcuts include the following shortcuts for starting the iPlanet UDS
Workshops in standalone and distributed mode In addition, the iPlanet UDS
Installer creates a parallel set of icons.

Figure 2-2 Workshops Standalone and Distributed Shortcut Commands

Workshops
Distributed
Command

Workshops
Standalone
Command

Starting the iPlanet UDS Workshops

Chapter 2 Using the iPlanet UDS Workshops 113

Using Shortcuts
The iPlanet UDS Standalone shortcut invokes the following ftexec command,
starting the iPlanet UDS Workshops in standalone mode and using the default
repository:

FTEXEC.EXE -fs -fss -fi bt:%FORTE_ROOT%\userapp\forte\c10\forte

The iPlanet UDS Distributed shortcut invokes the following ftcmd command,
starting the iPlanet UDS Workshops in distributed mode and using the default
repository:

FTCMD.EXE run forte

If you wish to use these shortcuts as they are, you can start the iPlanet UDS
Workshops as follows.

➤ To start the iPlanet UDS Workshops on Windows

1. Using the iPlanet UDS Control Panel, make sure the Repository setting
specifies the name of the repository you wish to use. If not, enter the correct
repository name. For standalone mode, the repository must be a local
repository. For distributed mode, the repository can be a local or a distributed
repository.

At this time, you can set any other environment variables you wish.

2. Select the Workshops Standalone or Workshops Distributed menu command
(or the corresponding icon).

3. The Repository Workshop opens.

If you wish to use flags on the ftcmd command that are other than the default, you
must edit the shortcuts.

Editing Shortcuts
To change the ftexec or ftcmd command in a shortcut, you must edit the shortcut
using the File > Properties command. The Properties command opens the
properties dialog for the shortcut; the Target field contains the ftcmd command
line. See “Ftexec Command” on page 118 for complete information about the flags
you can set for the ftexec command. See “Ftcmd Command” on page 115 for
complete information about the flags you can set for the ftcmd command.

Starting the iPlanet UDS Workshops

114 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Starting the Workshops on UNIX
On UNIX, you start the iPlanet UDS Workshops by using the forte command. By
default, the forte command starts the workshops in distributed mode. To start the
workshops in standalone mode, you can use the -fs flag.

The syntax for the forte command is:

forte [-fs] [-fr repository] [-fw workspace] [-fnd node_name] [-fmn
model_node_name] [-fm memory_flags] [-fst integer] [-fl logger_flags] [-fcons]

For information about these options, see “Flags for ftcmd, forte, ftexec, and ftclntws
Commands” on page 118.

Before using the forte command, you must be sure that your
FORTE_FTLAUNCH_PORT environment variable is set to a user port (your own
individual port) rather than a system port. Please check with your system
administrator for a port number that you should use. You should set the
FORTE_FTLAUNCH_PORT environment variable on the command line or in your
personal environment variable definition file because it is specific for an individual
user.

➤ To start the iPlanet UDS Workshops on UNIX

1. Use the source command to set the environment variables stored in your
fortedef.csh or fortedef.sh file.

2. Set your FORTE_FTLAUNCH_PORT environment variable to a user port
number.

3. Enter the forte command.

4. The Repository Workshop opens.

Here are some examples of the forte command:

forte -fs
forte -fr bt:$FORTE_ROOT/repos/demo30
forte -fl "%stdout(trc:os:1:1 trc:err)" -fm "(n:4000,x:8000)"

Starting the iPlanet UDS Workshops

Chapter 2 Using the iPlanet UDS Workshops 115

Starting the Workshops on OpenVMS
On OpenVMS, you start the iPlanet UDS Workshops by using the FORTE command.
By default, the FORTE command starts the workshops in distributed mode. To start
the workshops in standalone mode, you can use the /STANDALONE qualifier.

The syntax for the FORTE command is:

VFORTE FORTE
[/STANDALONE]

[/REPOSITORY=repository_name]
[/WORKSPACE=workspace_name]
[/NODE=node_name]
[/MODEL_NODE=model_node_name]
[/MEMORY=memory_flags]
[/STACK=integer]
[/LOGGER=logger_flags]
[/FCONS]

For information about these qualifiers, see “Flags for ftcmd, forte, ftexec, and
ftclntws Commands” on page 118.

➤ To start the iPlanet UDS Workshops on OpenVMS

1. Set the iPlanet UDS logical names by entering the following command at the
system command prompt:

$ @SYS$LIBRARY:FORTE_LOGIN_Vversion_number.COM

2. Enter the FORTE command with the appropriate flags.

3. The Repository Workshop opens.

Ftcmd Command
The iPlanet UDS ftcmd command starts the specified application using the Launch
Server. The syntax is:

ftcmd [-v] [-nolog] [-port port_number] [-fnd node_name] [-nonode] [-fs]
[-fm memory_flags] [-fst integer] [-fl logger_flags]
run application_name [release] [arguments] [update]

Starting the iPlanet UDS Workshops

116 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The following table describes flags that apply only to ftcmd. For information about
the flags that apply to all commands used to start iPlanet UDS, see “Flags for
ftcmd, forte, ftexec, and ftclntws Commands” on page 118.

The run flag of the ftcmd command specifies the application you wish to run using
the following format:

Flag Description

-v Displays detailed information about the steps performed by the
Ftcmd command. This flag works only on the current Ftcmd
command. This flag is useful for diagnosing command syntax
errors.

-port
port_number

Identifies the port number that this ftcmd command will use to
locate a Launch Server. If a Launch Server is not already running at
this port number, a Launch Server is started at this port number.

-i input_file. Run a single ftcmd command in the specified file.

-nonode Tells the Launch Server not to check for a running Node Manager
on the client node and not to act as a Node Manager. Normally, the
Launch Server checks whether a Node Manager is running on the
client node, and if there is none, then the Launch Server behaves like
a Node Manager.

run Specifies the application you wish to run.

Argument Description

application_name Specifies the name of the application that is being launched by the
Launch Server.

release Specifies the compatibility level to be started. By default, the Launch
Server starts the release with the highest compatibility level.

arguments Specifies command line arguments for the application being started.

Starting the iPlanet UDS Workshops

Chapter 2 Using the iPlanet UDS Workshops 117

If you specify just ftcmd run application_name without the release or update
arguments, the Launch Server runs the application with the highest compatibility
level and updates the application distribution if an application distribution that is
more current than the installed one is available in the environment.

If you specify ftcmd run application_name release arguments FALSE, the application
is started without checking whether the installed image repositories are as current
as the image repositories in the environment.

Specifying Arguments
The command line arguments need to be interpreted by Fa string in quotation
marks, for example "-fr CentralRepository -fw tempworkspace".

On some platforms, such as UNIX and Windows, you need to use escape
characters, such as \, to have the quotation marks interpreted correctly. Therefore,
to specify arguments, you might need to specify them using something like
\"-country canada\", so that the quotation marks are not removed before the
Ftcmd utility receives them. To see the actual command string that is being sent to
the Ftcmd utility, specify the -v flag, as discussed in “Ftcmd Command” on
page 115.

The following example demonstrates how to start an application on a Windows NT
node called OLMBanking and specify an argument for that application:

ftcmd run olmbanking cl0 \"-country canada\"

For further information about the ftcmd command, see the iPlanet UDS System
Management Guide.

update For installed client partitions only. Indicates whether the Launch
Server automatically downloads and installs the most current
application distribution, if the application has not yet been installed,
or if the installed application is not as current as the distribution
available in the environment.

By default, the value is TRUE, which means that the more current
application distribution is automatically downloaded and installed,
if necessary. To prevent this automatic update, set this value to
FALSE.

This argument is ignored for publicly-available applications.

Note that only the client partition of an application is downloaded,
not any libraries that the client partition might depend upon.

Argument Description

Starting the iPlanet UDS Workshops

118 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Ftexec Command
The ftexec command starts the standard iPlanet UDS partition in the specified
image repository. The syntax is:

ftexec -fi image_repository_name [-fs] [-fns name_server_address]
[-fl logger_flags] [-fm memory_flags] [-fst integer]
[-fcons] [-fnw] [-fterm] [-fss] [-fnomad]

For information about these flags, see “Flags for ftcmd, forte, ftexec, and ftclntws
Commands” below.

For further information about the ftexec command, see the iPlanet UDS System
Management Guide.

Ftclntws Command
The ftclntws command starts the standard iPlanet UDS partition in the specified
image repository. The syntax is:

ftclntws -fi image_repository_name [-fs] [-fns name_server_address]
[-fl logger_flags] [-fm memory_flags] [-fcons] [-fnw] [-fterm]
[-fss] [-fnomad]

For information about these flags, see “Flags for ftcmd, forte, ftexec, and ftclntws
Commands.”

For further information about the ftclntws command, see the iPlanet UDS System
Management Guide.

Flags for ftcmd, forte, ftexec, and ftclntws
Commands
The following table briefly defines the command line flags that can appear on the
various commands used to start iPlanet UDS:

This Flag Specifies

-fr repository
/REPOSITORY=repository_name

The repository to be used for the development session.
See below for information on specifying a repository.

Starting the iPlanet UDS Workshops

Chapter 2 Using the iPlanet UDS Workshops 119

-fw workspace
/WORKSPACE=workspace_name

The workspace to be used for the development
session. See below for information on specifying a
workspace.

-fi image_repository_name
/IMAGE_REPOSITORY=
image_repository_name

Specifies the image repository which contains the
partition to start executing. There is no default, and
this must be specified. The full specification of the
image repository name is:

bt:FORTE_ROOT/userapp/distribution_ID/cl#/par
tition_ID

distribution _ID: first 8 characters of the application
distribution name

#: compatibility level number

partition_ID: first 6 characters in partition name plus
partition’s number

-fs
/STANDALONE

(Clients only) Starts a client application as a
standalone application.

-fns name_server_address
/NAMESERVER=
name_server_address

Specifies the name service address for the
environment in which this application will run. This
value overrides the value, if any, specified by the
FORTE_NS_ADDRESS environment variable.
Generally, you should not use this flag when you are
starting the iPlanet UDS Workshops.

-fnd node_name
/NODE=node_name

Specifies the node name to use for this session. If you
do not specify the node name in the command, the
default node name depends on the operating system.
On Windows, the default node name is set by the
FORTE_NODENAME environment variable. On all
other platforms, the actual node name is used.
Generally, you should not use this flag when you are
starting the iPlanet UDS Workshops.

-fm memory_flags
/MEMORY=memory_flags

Specifies the space to use for the memory manager.
See “-Fm Flag (Memory Manager)” on page 799 for
details.

-fst integer
/STACK=integer

Specifies the thread stack size in bytes for iPlanet UDS
and POSIX threads. This specification overrides
default stack size allocation. For more information,
refer to the iPlanet UDS System Management Guide.

This Flag Specifies

Starting the iPlanet UDS Workshops

120 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Choosing a Repository
To specify the repository in a command:

Central repository Specify a repository service name. See your system manager
for information about your central repository.

Private B-tree repository Specify the repository name using the following
format: bt: private_repository_name.

Shadow repository Specify the repository name using the following format: bt:
shadow_repository_name.

-fl logger_flags Specifies the logger flags to use for the session. See
“-Fl Flag (iPlanet UDS Logger)” on page 795 for
details. If you do not set the logger flags in the
command, iPlanet UDS uses the value of the
FORTE_LOGGER_SETUP environment variable. Note
that you can change the logger settings from the
Repository Workshop.

-fcons
/FCONS

(Clients only) On Windows platforms, this flag
specifies that the background trace window also
displays. By default, on these platforms, this trace
window is not shown for iPlanet UDS client
applications that do not use a command-line interface.

On UNIX and OpenVMS platforms, this flag specifies
that the client partition tries to run even if it cannot
make a required connection to an X windowing
system. Without this flag, such a partition would fail
without the X windowing system connection.

-fnw
/FNW

(UNIX and OpenVMS clients only) Specifies that the
client session begins as a multithreaded partition
without opening an X windowing system connection.

-fss (Clients only) Displays the iPlanet UDS splash screen.

-fterm
/FTERM

(UNIX clients only) Specifies that the client session
run as always attached to the terminal, so that it
always responds to terminal commands, such as
Control-c.

-fnomad (Clients only) Starts a client application without
initially connecting to a name service or environment
(a nomadic application).

This Flag Specifies

Starting the iPlanet UDS Workshops

Chapter 2 Using the iPlanet UDS Workshops 121

See “About Repositories” on page 139 for information about the different kinds of
repositories.

If you do not specify a repository in the command, the default repository depends
on the operating system. For all platforms, iPlanet UDS uses the setting of the
FORTE_REPOSNAME environment variable, and if the environment variable is
not set, iPlanet UDS uses the distributed repository called “CentralRepository.”

Choosing a Workspace
If you do not specify a workspace in the command, the default workspace depends
on the operating system. For all platforms, iPlanet UDS uses the setting of the
FORTE_WORKSPACE environment variable, and if the environment variable is
not set, iPlanet UDS opens the Repository Workshop without a workspace. For
Windows, iPlanet UDS uses the last workspace you opened in the Repository
Workshop. If the value of FORTE_WORKSPACE is not set, the default workspace
is FirstWorkspace.

Running the iPlanet UDS Launch Server
The iPlanet UDS Installer installs the following icons for starting and stopping the
Launch Server.

Figure 2-3 iPlanet UDS Launch Server Icons

If you are starting iPlanet UDS in standalone mode, you can start the Launch
Server in either standalone or distributed mode. If you are starting iPlanet UDS in
distributed mode, you must start the Launch Server in distributed mode.

➤ To start the Launch Server

1. Double-click the Launch Server Standalone or Launch Server Distributed icon.

2. Leave the Launch Server running as long as you are using iPlanet UDS.

3. After ending your iPlanet UDS session, double-click the Launch Server
Shutdown icon.

Starting the iPlanet UDS Workshops

122 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Using the iPlanet UDS Launcher Application
On all platforms except OpenVMS, you can start any of the iPlanet UDS utilities,
including the iPlanet UDS Workshops, by using the iPlanet UDS Launcher
application.

The following table describes how to start the Launcher application on each
platform:

Using Distributed Mode
If you wish to run the iPlanet UDS Workshops (or any other applications) in
distributed mode, you must start the Launcher Application in distributed mode.
Otherwise, you can run the Launcher Application in standalone mode.

The Launcher Application displays the following tab pages, which let you start and
shutdown applications using the Launch Server:

User Applications available to the end user. You can start applications from this
window.

iPlanet UDS iPlanet UDS product applications, such as the Environment
Console, the iPlanet UDS Workshops, and so forth, which can be started by the
Launch Server. You can start some of the iPlanet UDS product applications from
this window.

Running Applications that have been started by the Launch Server. You can
shutdown applications from this window.

Options Shows the options that the user can set when running the Launcher
application.

The online help for the Launcher application (available through the Help button)
provides specific information about using the application to start and stop
applications.

Platform How to Start the Launcher Application

Windows 95 or Windows NT Double-click the Launcher Distributed or Launcher
Standalone icon.

UNIX Run the launcher script in
FORTE_ROOT/install/bin/LAUNCHER.

Using iPlanet UDS Windows

Chapter 2 Using the iPlanet UDS Workshops 123

Using iPlanet UDS Windows
An iPlanet UDS workshop is a graphically-oriented application, itself developed in
iPlanet UDS.

A workshop appears in a window with a menu bar. The window may include a
variety of buttons and icons on a toolbar for performing specific workshop tasks. In
any workshop, you can perform tasks either by using the controls on the toolbar or
by choosing commands from the workshop’s menu bar. This way, you can reduce
the size of a workshop window by closing the toolbar, but still have access to the
same functions through the menu bar.

The windows in the iPlanet UDS workshops behave as any application windows in
your host window system, but provide a few iPlanet UDS-specific enhancements.

Using the Mouse
The iPlanet UDS workshops behave like any standard applications in your
window system—mouse clicks select objects, double-clicks open objects, and
click-and-drag operations move or copy objects.

To work in iPlanet UDS you need only one mouse button. If your mouse has more
than one button, you use the leftmost button, or, if your mouse is configured
specifically for left-handed use, the rightmost button.

To activate some workshop commands, you use mouse clicks in conjunction with
qualifier keys. For example, in the Window Workshop, to select multiple widgets,
your first click on one widget, then, while depressing the Shift key, click on
successive widgets to add to or delete from the selection.

Using iPlanet UDS Windows

124 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Using the Keyboard
The iPlanet UDS workshops are consistent with their host window systems in the
flexibility of keyboard control they provide.

In the Windows and Motif window systems, you can use the keyboard exclusively
to complete any iPlanet UDS workshop task (even those designed for mouse
interaction) because these window systems have been designed to allow
mouse-independent operation.

The iPlanet UDS workshops offer keyboard equivalents for many menu commands
on every window system. When available, the keyboard equivalent is displayed on
the menu next to the command.

Using Specialized iPlanet UDS Widgets
The iPlanet UDS workshops use many of the specialized widgets provided by the
iPlanet UDS Display library. These widgets include the following compound
fields:

When you are working with some of these compound fields (panel, grid field, and
array field), you may need to edit the data they contain. To move from one field to
the next within the compound field, you can either use the mouse or the
Control-Tab key combination.

The following sections provide further information about two specialized widgets,
array fields and outline fields.

Compound Widget Definition

Panel A subform that contains any number of widgets.

Compound Graphic A group of graphic widgets only.

Viewport A scrollable field displaying a larger widget, such as a picture
graphic.

Grid Field A table to organize child widgets into rows and columns for
uniform display.

Array Field An array of widgets in a tabular format, like a spread dialog,
where component widgets are the same from row to row, but their
data varies.

Using iPlanet UDS Windows

Chapter 2 Using the iPlanet UDS Workshops 125

Array Fields

iPlanet UDS workshops use array fields to display rows and columns of data in a
scrollable field display that looks something like a spread sheet. Each row in an
array field represents a row of data from an underlying array. When you click the
scroll bar to scroll through the data, you bring new rows from the data array into
view. Frequently, you can edit the data in an array field, add new rows to it, or
delete rows from it.

The figure at left shows an array field from an iPlanet UDS window. Here, as in
other cases where the workshops use array fields, you use buttons to insert or
delete rows from the array field. When you click the Insert button, the workshop
adds a row to the array field at your cursor’s position. When you click the Delete
button, the workshop deletes the active row.

For instructions on how to use array fields in your own applications, see “Creating
an Array Field” on page 514 and the Display Library online Help.

Outline Fields

Outline fields are the browsers that the iPlanet UDS workshops use to display
hierarchical data. One example of a browser is in the Menu Workshop, shown at
left, which provides a hierarchical display of menu components.

You may be familiar with browsers as the file directory display mechanisms in
your host window system. iPlanet UDS outline fields behave most like the file
directory application in Microsoft Windows, representing containers and the
components they contain with icons. These browsers display hierarchical
information, successively indented from left to right. To select an item from a
browser, you click on it. To open a line in an outline field, you double-click it, press
Return while it is selected, or click its expansion arrow.

Using iPlanet UDS Windows

126 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The expansion arrow lets you open or close the list of items “below” the current
item in the hierarchy. If the expansion arrow is pointing to the right, click the arrow
to open up the list. If the expansion arrow is pointing down, click the arrow to close
up the list.

For instructions on how to use outline fields in your own applications, see
“Creating an Outline Field” on page 472 and the Display Library online Help.

Browser Buttons

Many iPlanet UDS dialogs contain a browser button (shown at left), which allows
you to open a class browser or class elements browser. To use the browser, click on
the browser button, which opens an outline field. You can then browse through the
information until you find the item you wish to select. The value you select from
the browser is then used to specify the value for a field on the dialog. Figure 2-4
illustrates a dialog with a browser button:

Figure 2-4 Browser Button on Class Properties Dialog

Browser Button

Using iPlanet UDS Windows

Chapter 2 Using the iPlanet UDS Workshops 127

Figure 2-5 Browser Button Display

Using Popup Menus
A popup menu is an independent menu associated with a specific widget on the
window. The popup menu is displayed next to the widget when you use the
appropriate key combination. Figure 2-6 illustrates a popup menu:

Using iPlanet UDS Windows

128 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 2-6 Popup Menu in Window Workshop

Activating a Popup Menu
The key combination needed to activate a popup menu depends on the particular
window system. To activate a popup menu:

Window System Key Combination to Activate Popup Menu

Windows Use mouse outer button, or select the field and use Shift F10. The outer
mouse button is the right-most button on a right-handed mouse and
the left-most button on a left-handed mouse.

Motif Use mouse outer button, or select the field and use Shift F10. The outer
mouse button is the right-most button on a right-handed mouse and
the left-most button on a left-handed mouse.

Popup
Menu

Using iPlanet UDS Windows

Chapter 2 Using the iPlanet UDS Workshops 129

iPlanet UDS uses the position of the cursor at the time the popup key combination
is entered to determine which popup menu to display. If the widget over which the
cursor is positioned has a popup menu assigned to it, iPlanet UDS displays the
current widget’s popup menu. If the current widget does not have a popup menu
assigned to, iPlanet UDS displays its parent’s popup menu. If the parent widget
does not have a popup menu assigned to it, iPlanet UDS displays the popup menu
for the parent’s parent, and so on. If the top-level container for the widget, the
Window object, does not have a popup menu, nothing happens.

Choosing a Menu Item from a Popup
Once the popup menu is displayed, you can choose a menu item from it the same
way you chooses a menu item from a menu on the menu bar.

You can close the popup menu any time with the appropriate action. To dismiss
the popup menu:

Importing and Exporting Data
You can import and export data in iPlanet UDS through the window system
clipboard, and through file saving and file loading mechanisms that the workshops
provide.

Using the Clipboard
You can use your host window system clipboard to cut, copy, and paste textual
and image information within the iPlanet UDS workshops, and to exchange such
information between the iPlanet UDS workshops and other applications in your
host window system.

Using the Motif Clipboard
Under the Motif window system, the iPlanet UDS workshops offer limited support
for the Motif clipboard. iPlanet UDS workshops use the clipboard only to exchange
iPlanet UDS-specific data among themselves (under certain conditions).

Window System Key Combination to Dismiss Popup Menu

Windows Click outside the menu or press Esc key.

Motif Click outside the menu or press Esc key.

Using iPlanet UDS Windows

130 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

In Motif, iPlanet UDS workshops use a clipboard and can exchange data one to
another, only when they are running under the same instance of an iPlanet UDS
executable. You can, for example, copy and paste data from one instance of the
Method Workshop to another, so long as both instances run under the same iPlanet
UDS executable. If, however, you copy data to the clipboard from an instance of the
Method Workshop and then quit the workshop, the clipboard does not retain the
data. iPlanet UDS data pasted or cut to the Motif clipboard is not visible to other,
non-iPlanet UDS applications.

Under any circumstance, you can paste text from any Motif application into iPlanet
UDS by using the technique you use to select and paste text from one xterm to
another: select the text, and press the middle mouse button in the target window.
This technique works because it does not employ the Motif clipboard.

Using Multiple Windows
After opening the Repository Workshop, you can open any number of Project
Workshops for each project you wish to view or change. iPlanet UDS lets you work
with any number of concurrent windows. If your screen ever gets too cluttered or
the window you wish to use is not completely visible, you can use the File >
Workshops Open… command in any workshop. This command displays a list of
all the open workshops, and lets you choose a window to bring from underneath to
the front.

Printing Windows
The File menu in every iPlanet UDS workshop has a Print command, which allows
you to print the information in the workshop. The Print command prints all
information in the browser, source code field, or form (in the case of the Window
Workshop). All information contained by the field is included, not just the
information currently being displayed. For example, the Print command prints the
entire method currently being displayed in the Method Workshop. Multiple pages
are used if necessary, with titles and page numbers. For the Window Workshop,
the Print command tiles the form onto multiple pages if necessary.

The File > Print Setup or Page Setup command opens the Window System’s Print
Setup dialog, where you can specify your setup options.

Using iPlanet UDS Names

Chapter 2 Using the iPlanet UDS Workshops 131

Using iPlanet UDS Names
All of the components stored in the development repository have names,
including:

• projects

• libraries

• named constants

• classes

• interfaces

• service objects

• methods

• attributes

• events

• event handlers

• cursors

• application models

• business models

• process definitions

• application dictionaries

• user profiles

• user validations

• assignment rules

Rules for Naming Components
An iPlanet UDS name can be any series of alphanumeric characters and
underscores, with the first character an alphabetic character or an underscore. Case
is not significant. No spaces and symbols (except the underscore) are allowed. The
name can be any length.

Using iPlanet UDS Data Types

132 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

When you are naming a new component, the name must be unique for the current
project, class, or method, and must not be a reserved word (see the TOOL Reference
Guide for information on name resolution and reserved words).

In addition, due to the iPlanet UDS own naming scheme, there are two restrictions
on words that you can include in names:

• You cannot start any name with the word “FORTE”.

• You cannot end any name with the word “Proxy.”

Using iPlanet UDS Data Types
In the iPlanet UDS Workshops, you often set the data type of components you
create. You sometimes have a choice of several simple and class data types.

Simple Data Types
The simple data types store boolean, numeric, or character data. All the simple data
types have counterparts defined as iPlanet UDS classes, which store data in objects.
Although the simple data types are more efficient than their corresponding classes,
the classes provide a wide range of methods for manipulating the data. The simple
data types are shown in the following table:

Simple Data Type Definition

boolean Stores two logical values, TRUE and FALSE.

integer Stores a positive or negative whole number of two to four bytes.

long Stores a positive or negative number of at least four bytes.

float Stores a smaller floating point number (exact size is machine
dependent).

double Stores a larger floating point number (exact size is machine
dependent)

string Stores character data.

Using iPlanet UDS Data Types

Chapter 2 Using the iPlanet UDS Workshops 133

Data Type Classes
The iPlanet UDS data type classes define objects for storing boolean, numeric, or
character data. Using objects to store this kind of data lets you take advantage of
the methods provided for manipulating the data. In addition, the DateTimeData,
DecimalData, IntervalData, and ImageData classes provide the only way to store
date, time, interval, and image data.

The following table lists the data type classes, and shows how they correspond to
simple data types:

For more information about using simple data types, see the TOOL Reference Guide.
For more information about using the class data types, see the Framework Library
online Help.

Class Data Type Simple Data Types Class Data Type Definition

BooleanData boolean Stores logical values of TRUE and FALSE.

DateTimeData none iPlanet UDS offers no simple type for date data;
DateTimeData and IntervalData store this data.

DecimalData float, double DecimalData represents floating point data to a
specific precision of as many as thirty decimal
places.

DoubleData double DoubleData stores floating point data.

ImageData none ImageData stores images in a standard, portable
format. It also reads several popular formats.

IntegerData integer, long IntegerData accepts whole numbers of any size.

IntervalData none IntervalData defines intervals of time.

TextData string TextData stores character data.

BinaryData pointer BinaryData provides access to database BLOB
types.

Using iPlanet UDS Online Help

134 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

NULL Class Types
For each of the class data types, there is also a corresponding NULL class data type
variation. The NULL data type classes are provided to give iPlanet UDS
applications seamless access to relational databases, which often contain NULL
data. To use database tables containing NULL data, you must use the following
NULL class data types:

For more information about using the NULL class data types for database access,
see Accessing Databases.

Using iPlanet UDS Online Help
Online help for iPlanet UDS is available from any iPlanet UDS window. iPlanet
UDS Help follows Windows Help standards, so you can refer to the Windows
documentation for background on using Help.

“Help on Help”—that is, online Help on how to use the Help system—is available
by pressing the F1 key when a Help window is active.

There are two kinds of Help:

• a general Help function, available through the Help menu

• context-sensitive Help, available through pressing the F1 key

Class Data Type NULL Class Data Type

BooleanData BooleanNullable

DateTimeData DateTimeNullable

DecimalData DecimalNullable

DoubleData DoubleNullable

ImageData ImageNullable

IntegerData IntegerNullable

IntervalData IntervalNullable

TextData TextNullable

BinaryData BinaryNullable

Using iPlanet UDS Online Help

Chapter 2 Using the iPlanet UDS Workshops 135

Context-sensitive Help is not available for all windows and dialogs. When
context-sensitive help is not available, pressing the F1 key displays the main Help
contents page.

You close Help windows in the same way you close other windows—using the
mechanism provided by your particular window system.

Jumps and Pop-ups
The main feature of hypertext help is the ability to jump to a topic or get an instant
pop-up definition of a term.

• On Windows, jumps are highlighted and underlined in green (other window
systems may use different indicators for jumps). If you click on a jump, you
will open a help window on that topic.

• On Windows, pop-ups are highlighted in green but with a dotted underline
(other window systems may use different indicators for pop-ups). If you click
on a pop-up, you will get an instant definition of the highlighted term.

Searching
A useful feature of the Help system is the ability to search for key words. You begin
searches by choosing the Help > Search command. Once you find the key words or
phrases you seek, choose Show Topics to see a list of topics associated with the
search term. Open a topic window by selecting the topic and choosing Go To.

Other Features
Other features of iPlanet UDS Help include the following:

• choose Contents to return to the main Help contents page

• choose History to review and, if desired, go to a recently selected Help topic

• choose Back to return to the previous Help topic

• when available, use the Browse buttons (double-angle brackets) to browse
through the topics

Other Help features allow you to copy selected text to the clipboard or to print a
Help topic or file. See your Windows manual or “Help-on-Help” for more
information.

Setting Workshop Preferences

136 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Setting Workshop Preferences
All the iPlanet UDS workshops, except the Debugger and the Partition Workshop,
have a Workshop Preferences... command, which you can use to set preferences
that are saved as part of your current workspace. The Workshop Preferences...
command opens the Workshop Preferences dialog for the current workshop,
where you can set preferences that are saved as part of your current workspace.

This section describes the preferences common to all or most workshops. For
information on preferences that apply only to a specific workshop, see the chapter
on that workshop.

The general preferences that apply to all or most workshops are:

• workshop window size and positions

• filter

• viewing preferences

• font preference

Workshop Size and Position
There are three different ways you can set the initial size and position of a
workshop window.

Visual positioning before opening The simplest way to set the size and position
of the window is to do so visually prior to opening the Workshop. Set the window
size by using the window’s resize handles. Then set the window position by
dragging the window into position. When the window has the size and position
you want, click the Reset to This Workshop button in the Repository Workshop
Preferences dialog. This button sets the value of the Position preference to Screen
Relative, and the values of the X, Y coordinates and the Columns and Lines settings
to the current values of workshop on the screen.

Note that the Reset to This Workshop button also changes your Viewing
preferences to the current settings on the View menu and the font preferences to
the current setting in the workshop.

Setting Workshop Preferences

Chapter 2 Using the iPlanet UDS Workshops 137

Columns and lines The second way you can control the size of the workshop is
to set the size of the browser section in terms of lines and columns as follows:

Position and X, Y values Finally, you can set the initial position of the workshop
window by setting its position properties the same way you set the initial position
of a window you create using the Window Workshop. The Preferences dialog
provides the same options as the Window Properties dialog for setting the
window’s initial position. On the Preferences dialog, the Position and X,Y options
are the same as the Initial Position Policy and Initial X and Initial Y on the Window
Properties dialog. See “Initial Position Property” on page 367 for a complete
description of setting the initial position for a window.

Filters
Workshops that have browsers provide a filter drop list that allows you to choose
the item or combination of items you wish to display. You can use the same drop
list in the Workshop Preferences dialog to choose the default filter used by the
workshop.

Viewing Preferences
The viewing preferences let you specify the default settings for the menu items on
the workshop’s View menu of the workshop. The viewing preferences correspond
one-to-one with the commands on the View menu.

Preference How to specify its value

Columns Enter an integer that specifies the width of the browser by the number of
characters displayed (for proportional fonts, iPlanet UDS uses the size of a
digit as the equivalent to one character).

Lines Enter an integer that specifies the length of the browser by the number of
lines displayed (the size of a line is determined by the font size).

Leaving iPlanet UDS

138 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Font Preference
In the Workshop Preferences dialog, you can set the font used by the workshop.

➤ To set the font for the workshop

1. On the Workshop Preferences dialog, click the Font button.

2. In the Font dialog, choose the typeface, size, and style. The sample illustrates
how your font selection will look.

3. Click the OK button to choose the new font.

Leaving iPlanet UDS
You can leave the iPlanet UDS development environment by choosing the File >
Exit command in the Repository Workshop. If you have not saved your workspace
before giving the command, you will be prompted to do so.

About International Support
iPlanet UDS uses the language conventions that were set on the current platform.
For Windows platforms, you use the appropriate Control Panels to specify your
territory conventions. For UNIX, use the LANG environment variable. For
OpenVMS, use the FORTE_LOCALE logical name (see the iPlanet UDS System
Management Guide for a complete list of the iPlanet UDS environment variables).

For information about using internationalization features in your iPlanet UDS
applications, see the iPlanet UDS Programming Guide.

139

Chapter 3

Using the Repository Workshop

This chapter provides conceptual information about iPlanet UDS repositories and
workspaces, and describes how to use the Repository Workshop.

In this chapter, you will learn how to:

• enter and leave the Repository Workshop

• use iPlanet UDS repositories

• create and use iPlanet UDS workspaces

• test TOOL projects

• set repository passwords

• use Repository Workshop utilities

• set Repository Workshop preferences

About Repositories
An iPlanet UDS repository is a database that stores the plans that you create with
iPlanet UDS, along with the iPlanet UDS libraries and user libraries.

About Repositories

140 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

In iPlanet UDS, a plan is one of the following:

The plans in your repository include projects that you create with iPlanet UDS to
define your applications, servers, and libraries. Your repository may also contain
plans created with iPlanet UDS Express and iPlanet Integration Server. In this
chapter, the term plan is used to cover both the plans created with iPlanet UDS as
well as with the add-on products. For example, when we discuss how to import a

Icon Plan

Project A definition of an iPlanet UDS service, library, or client
application.

Library A named collection of classes and other component
definitions that can be shared by any number of iPlanet UDS
applications.

Business model A graphical representation of the data in an iPlanet UDS
Express application. Created by iPlanet UDS Express.

Application
model

A graphical representation of the windows in an iPlanet
UDS Express application. Created by iPlanet UDS Express.

Process
definition

An iPlanet Integration Server (iIS) workflow representation
of a business process, consisting of a set of graphical objects
(activities and timers) that are linked together and have
properties defined for them.

Application
dictionary

A group of application dictionary items, each of which
indicates to an iIS client application the work to be done for
an activity in an iIS process definition, and optionally
provides access to data needed for that work. Created by
iPlanet Integration Server.

User profile A template specifying all potential characteristics of a user
in an organization, such as the user’s role in the
organization. Created by iPlanet Integration Server.

User validation A class containing a ValidateUser method that is used by the
iIS process engine to verify each user’s profile against
information stored in a site’s organizational database.
Created by iPlanet Integration Server.

Assignment rule A rule that specifies who can perform various activities in
iIS process definitions. Created by iPlanet Integration
Server.

About Repositories

Chapter 3 Using the Repository Workshop 141

plan, we are referring to the plans created with iPlanet UDS Express and iPlanet
Integration Server as well as those created with iPlanet UDS. However, for specific
details on working with iPlanet UDS Express and iIS plans, please refer to the
documentation on those products.

Note that if your repository contains plans created by iPlanet UDS Express or
iPlanet Integration Server, even if you have not installed the products that were used
to create the plans, you will be able to see the plans in your repository. However, if
you do not have the appropriate product installed, you will not be able to open the
plans.

You will always have iPlanet UDS libraries in your repository. You may also have
user libraries that you have imported into your repository.

The iPlanet UDS libraries contain the prefabricated classes that provide the
foundation for building applications. These include basic application components,
such as windows, menus, and fields, framework classes for structuring your
application, database classes for accessing your DBMS, and classes for integrating
with external systems.

User libraries contain specialized classes that you can use in developing your
applications. These libraries may be developed within your own organization, or
may be purchased from third-party vendors.

Type of Repository
There are two kinds of repositories in iPlanet UDS: central repositories and private
repositories.

A central repository is a shared repository that can be used concurrently by multiple
developers. The central repository contains all the iPlanet UDS libraries and all the
plans integrated into it by a group of developers in your organization. Most of the
time, you will be doing your work with a central repository. See “About Central
Repositories” on page 143 for details about central repositories.

A private repository is an independent repository that can be used by a single user. A
private repository runs stand-alone and does not have to be connected to the
iPlanet UDS distributed development environment. Because iPlanet UDS allows
you to create a local shadow of the central repository, private repositories are not
needed for performance reasons. However, private repositories allow you to work
completely independently of other developers. See “About Private Repositories”
on page 150 for details about private repositories.

About Repositories

142 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Workspaces
When you work with a repository, you always use a workspace.The workspace
contains a subset of the plans in the repository, and only those plans included in
the workspace are visible to the developers using that workspace. Figure 3-1
illustrates the relationship between a workspace and a central repository:

Figure 3-1 Workspaces

The workspace ensures that you can work independently of other developers who
are collaborating with you on the same projects. Any changes you make in a
workspace are not visible to other developers until you integrate them into the
repository by using the Integrate Workspace command. And integrated changes
made by other developers are not visible to you until you give an Update
Workspace command to bring the workspace up to date. See “About Workspaces”
on page 151 for information about creating and using workspaces.

Before you run the iPlanet UDS Workshops, you must decide which repository to
use. After you enter the Repository Workshop, you can select the workspace you
wish to use. If necessary, you can create a new workspace or modify existing
workspaces by adding plans to or removing plans from them.

Central Repository

Plan C
Plan B

Plan A

Plan B
Workspace 1

Plan C

Plan C
Workspace 2

Plan A

developer 1

Plan B
Workspace 1

Plan C

developer 2

Plan C
Workspace 2

Plan A

About Central Repositories

Chapter 3 Using the Repository Workshop 143

About Central Repositories
A central repository is a shared repository that can be used concurrently by
multiple developers. The central repository contains all the iPlanet UDS libraries
and all the plans integrated into it by the developers in your organization. You can
have any number of central repositories per environment.

A central repository provides centralized access to plans in order to allow
collaboration between multiple developers. Normally, all plans being shared by a
department or development team are stored in a single repository.

All the plans needed by an application, that is, the main project and all its supplier
plans, must be in the same central repository. (See “Supplier Plans” on page 209 for
information about supplier projects.) Therefore, although you can develop a single
project in a separate repository, if your project defines part of a larger application,
when your project is ready, you must import it into the shared central repository
where the main application is being defined. When the final application
distribution is created, all the projects needed by the application must be in the
repository from which the distribution is being made.

Central repositories are always on server nodes in the environment. See the iPlanet
UDS System Management Guide for information about creating and maintaining
central repositories.

Every central repository has a prefabricated workspace called FirstWorkspace.
Normally you access a central repository through your own workspace, which
contains a subset of the plans in the central repository. (See “About Workspaces”
on page 151 for information on workspaces.)

Shadow Repositories
Because a central repository is located on a central server in the development
environment, iPlanet UDS provides a special feature called a shadow repository that
allows you to increase performance by creating a local copy of part of the
repository on your workstation, while still maintaining the connection to the
central repository.

When you use a shadow repository, only the data you need is cached locally. When
you first create a shadow, it is essentially empty. Because your shadow is
connected to the central repository (unless you detach it as described under
“Detached Shadow Repository” on page 144), repository components are copied to

About Central Repositories

144 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

the shadow on an as-needed basis. As you begin to work in the attached shadow,
creating new plans or new components within a project, modifying existing plans,
or even just browsing through the components in a project, the components you
need are copied to the shadow.

Note that you do not need to use a shadow. You can work directly with the central
repository. The main reason for using a shadow is for increased performance.
Another reason is if you wish to temporarily do your work outside the distributed
development environment by detaching the shadow (described under “Detached
Shadow Repository” below).

A shadow repository is either attached to a central repository or detached from it.

Attached Shadow Repository
An attached shadow repository is connected directly to the central repository, and
every change that you make to the local shadow is made to the central repository
every time you save your workspace (unless your preferences are set otherwise).
Because this is the most efficient way to work, most of the time you will do your
development work in an attached shadow.

When working with an attached shadow, you have the option of saving changes in
the local shadow without immediately saving to the central repository. When you
set your preferences so that changes are not automatically committed to the central
repository, changes you save to your workspace are not written to the central
repository until you give an explicit Commit to Central command or exit from the
iPlanet UDS Workshops. Although this is not the most reliable way to work, it
provides improved performance for the repository.

At any time, you can give a Detach Shadow command to detach the shadow from
the repository.

Detached Shadow Repository
A detached shadow repository is disconnected from the central repository. Changes
that you make in the detached shadow are not made to the central repository until
you give an Attach Shadow command to connect it back to the central repository.
Because the detached shadow is disconnected from the central repository, you
cannot update or integrate your workspace, and you cannot include a public plan
in your workspace or remove a public plan from the central repository. Most
importantly, you cannot checkout project components for modification in a
detached shadow. You can modify a component in a detached shadow only if:

• You checked out the component before you detached the shadow.

• You branched the component either before or after you detached the shadow.

About Central Repositories

Chapter 3 Using the Repository Workshop 145

See “Checkout and Branching” on page 146 for information about checking out
and branching project components.

A detached shadow is useful for taking your work home with you or for working
outside the distributed development environment. When you have finished
working outside the distributed environment, you can bring the detached shadow
back into work, and give the Attach Shadow command to attach it back to the
central repository. This command copies all your changes from the shadow to the
central repository.

A detached shadow has only one workspace, the workspace that was open when
you gave the Detach Shadow command. The workspace in a detached shadow is
considered “reserved,” and no other developers will be able to open it as long as
you are detached.

Using the Central Repository
Central repositories are created by your system manager as part of the process of
setting up your development environment. For information, see iPlanet UDS
System Management Guide.

To use a central repository, you create a private workspace that lets you work
independently of other developers. A private workspace ensures that you can
make changes without conflicting with developers who are working on the same
projects. Any changes you make in your workspace are not visible to other
developers until you integrate them by using the Integrate Workspace command.
And integrated changes made by other developers are not visible to you until you
give an Update Workspace command to bring your workspace up to date. For
information about creating and using workspaces, see “About Workspaces” on
page 151.

In the iPlanet UDS documentation, we use the term system baseline to refer to the
latest version of each project component that was integrated into the repository.
When you give an Update Workspace command, you are synchronizing your
workspace with the system baseline. And when you give an Integrate Workspace
command, you are integrating the changes in your workspace into the system
baseline.

About Central Repositories

146 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Checkout and Branching
To prevent conflicts that would be caused when different workspaces modified the
same project or project components, iPlanet UDS does not allow more than one
workspace to modify a project component at the same time. To modify an existing
project component, the workspace must either check it out of the repository or
branch it.

Checkout
When you wish to make permanent changes to a project component, you check it
out into the workspace. Checking out a component means that your workspace has
a write lock on the component. As long as you have the component checked out, no
one else can check it out. You have the “official” copy of the component, and only
you can integrate the changes back into the system baseline.

The changes are not visible to other developers until you check the component
back in by using the Integrate Workspace command to integrate the changes in
your workspace into the system baseline. While you have the component checked
out, other developers can read it, but no one else can modify it (unless they branch
it).

Branching
If you need to modify a component that has already been checked out by another
workspace, or if you simply wish to try out some changes without locking the
component, you can branch the component in the workspace.

Branching a project component gives you an alternate path to it so you can test out
a change. You can also branch a component while you are working in a detached
shadow if you need to make changes to a component that you did not checkout
before you detached the shadow. Any number of workspaces can branch the same
component.

NOTE For iPlanet UDS Express and iPlanet Integration Server plans, iPlanet
UDS does not allow you to check out or branch individual
components within the plan. Instead, you must check out or branch
the entire plan. For information on how to check out or branch an
Express or iIS plan, see the documentation on that product.

About Central Repositories

Chapter 3 Using the Repository Workshop 147

The changes you make to a branched component are always temporary because
they cannot be integrated into the system baseline. To integrate the changes into
the baseline, you must either:

• Convert the branch to a check out (if possible), and then integrate the modified
component into the system baseline.

• Export the changes to a file before integrating, and then recover the changes
after integration.

Updating and Integrating
After you have made changes to a project or have created a new project, you can
use the Update Workspace and Integrate Workspace commands to add your
changes to the repository and free your project components to be checked out
again.

Before you integrate, you update your workspace and test the project in the
updated workspace to make sure it is compatible with the current state of the
system baseline. Updating merges the changes integrated into the system baseline
with the changes in your workspace, so you can test your own work against the
system baseline. See “Using Workspaces” on page 168 for information about this
process.

After you have tested the project in the updated workspace, you can use the
Integrate Workspace command to integrate your changes into the system baseline.
Integrating makes your changes available to other workspaces. After you integrate,
any other developers that use the Update Workspace command will have your
changes added to their workspaces. If you have created a new project (or any other
plan), using the Integrate Workspace command will make the new project
available to other developers to include in their workspaces.

About Repository Security
In terms of security, iPlanet UDS supports two kinds of repositories: standard
repositories and secure repositories.

Standard Repository
A standard repository, by default, requires no passwords. However, to prevent
unauthorized users from changing information in the repository, you can set a
master password, passwords for each workspace, and a baseline password.
Without a password, a user can still examine the information in the repository,
however, he or she is prevented from making unauthorized changes to the
repository.

About Central Repositories

148 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Secure Repository
A secure repository requires passwords for reading information from the
repository, changing information in the repository, using workspaces, creating
new workspaces, and copying the repository. A secure repository prevents
unauthorized users from viewing information in the repository as well as from
changing it. Your system manager must create the secure repository.

File Permissions
On some platforms, your system manager can also change the file permissions to
restrict access to the repository by various users. By making the file permissions
more restrictive, your system manager can prevent unauthorized users from
accessing the repository files directly to read the source code using various utilities.

Security for Standard Repositories
By default, standard iPlanet UDS development repositories do not require
passwords. However, you can set the following passwords to provide a level of
security for the repository:

master password provides global access to all password-protected functions.
You can set the master password using the rpstart -p flag or the Fscript
SetPassword command.

baseline password prevents unauthorized users from integrating a workspace
into the system baseline in the repository. You can set the baseline password in the
Repository Workshop using the File > Set Baseline Password command or in
Fscript using the SetPassword command.

workspace passwords restricts access to an existing workspace. You can set
workspace passwords when you first create new workspaces. You can also set
workspace passwords in the Repository Workshop using the File > Set Workspace
Password command or in Fscript using the SetPassword command.

See “Setting Repository Passwords” on page 193 for information on setting these
passwords.

About Central Repositories

Chapter 3 Using the Repository Workshop 149

Security Limitations of Standard Repositories
Even if you set the master, workspace, and baseline passwords, you cannot prevent
unauthorized users from reading and copying source code from the repositories in
one of the following ways:

• copying the repository using rpcopy

Users can create their own copies of repository files by using rpcopy on a
running repository server, even if file permissions prevent them from
accessing the original repository files.

• creating a new workspace

Users can then read any public plans in the repository

• directly parsing the contents of the repository files

If you are concerned about this level of security, consider using secure repositories,
as described next.

Security for Secure Repositories
A secure repository requires passwords for reading information from the
repository, changing information in the repository, using workspaces, creating
new workspaces, and copying the repository.

Creating a Secure Repository
To create a secure repository, your system manager must use the rpcreate
command with the -secure flag. After invoking the rpcreate command with the
-secure flag, your system manager must set all of the following passwords:

administrator password Prevents unauthorized users from copying the
repository using rpcopy or creating new workspaces.

master password Provides global access to all password-protected functions.

baseline password Prevents unauthorized users from integrating the workspace
into the system baseline in the repository.

workspace password Restricts access to the FirstWorkspace workspace.

See iPlanet UDS System Management Guide for details about creating secure
repositories.

About Private Repositories

150 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Changing Repository Passwords
You can change passwords in a secure repository using the Repository Workshop
or Fscript. See “Setting Repository Passwords” on page 193 for information about
using the Repository Workshop to change repository passwords. See Fscript
Reference Guide for information about using Fscript to change repository
passwords.

About Private Repositories
A private repository is an independent repository that can be used by a single user.
A private repository runs stand-alone and does not have to be connected to the
iPlanet UDS development environment, although it can be.

Private repositories are designed for independent, high-performance development
inside or outside an iPlanet UDS distributed environment. A private repository
provides somewhat better performance than an attached shadow; however, it does
not provide the collaboration facilities and centralized access provided by a central
repository.

You can use a private repository to build an entire distributed application on your
own. You can also use it to build part of an application, and then export component
and plan definitions into a central repository.

Creating a Private Repository
The iPlanet UDS System Management Guide provides detailed information about
how to create a private repository. You can do so by:

• using the rpcopy or rpcreate utilities

• on a client, copying the btseed.btd and btseed.btx files in your iPlanet UDS
installation

After you have created the private repository, you can create any number of new
plans in it.

About Workspaces

Chapter 3 Using the Repository Workshop 151

Using a Private Repository
If you are using a private repository, you normally use the prefabricated
workspace called FirstWorkspace. Because no one is sharing the repository with
you, it is not necessary to create personal workspaces for private repositories. It is
also unnecessary to checkout components in order to modify them.

If you are creating the entire application from your private repository, you can
make the application distribution files directly from the private repository.
However, if you are working on part of an application that you need to integrate
with other developers’ work, you must import the work you did in the private
repository into a central repository.

Use the Export command in the Repository Workshop to export the plan to a file,
or use the Export command in the Project Workshop to export an individual class
to a file. Then, working from your central repository, use the Import command in
the Repository Workshop to import the entire plan or use the Import command in
the Project Workshop to import an individual class into your central repository.
The Export and Import commands for plans are described under “Importing and
Exporting Plans and Libraries” on page 183. The Export and Import commands for
individual classes are described under “Importing and Exporting Classes and
Interfaces” on page 270.

About Workspaces
You always use a workspace when you are working in iPlanet UDS. A workspace
contains your view of the repository, along with any changes that you make to it. It
normally contains a subset of the plans in the repository, which makes it more
efficient for updating, integrating, and other operations such as detaching
shadows.

Using Workspaces for Collaboration
A workspace allows you to work independently of other developers. For example,
when developers collaborate together on a project, each developer has her own
workspace, where she can develop and test her part of the project. The same project
can be included in any number of workspaces, so that any number of developers
can collaborate on it. Quite often, developers use their own name for the workspace
name, which enables their coworkers to identify who is using which workspace.

About Workspaces

152 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Source Code Control
Only one developer can open a workspace for modifying at a given time. However,
more than one developer can open a workspace for reading. When you open a
workspace, you have the option of opening it for reading only, allowing other
developers to gain read access to the workspace as well.

When you open a workspace for modifying, the plans in the workspace are
available for modification. For projects, the individual project components are in
one of two states:

Writeable When a component is writeable, you can examine it and modify it. A
component is writeable when any of the following is true:

• you created the component after the last time you integrated

• you used a Checkout command to check out the component

• you used a Branch command to branch the component

Read Only When a component is read only, you can examine it, but you cannot
modify it. A component is read-only when any of the following is true:

• The component exists in the system baseline, but you have not yet checked it
out. In this case, you can check out or branch the component to get write access
to it.

• The component was previously in the system baseline, and another workspace
has checked it out and integrated it. To get write access to the component, you
can either branch the component, or you must first update your workspace and
then check out the component.

• Another developer has checked out the component. In this case, the only way
to get write access to the component is to branch it.

• iPlanet UDS Express or iPlanet Integration Server generated the component. You
cannot modify components generated by Express or iIS.

Creating a Workspace
You create workspaces in the Repository Workshop. To create a new workspace,
use the File > New Workspace command to initialize a new workspace that
contains the iPlanet UDS libraries. You then use the Plan > Include Public Plan
command to add plans to the workspace.

About Workspaces

Chapter 3 Using the Repository Workshop 153

You should only include the plans that you need, because the more plans you have
in your workspace, the less efficient it is for updating, integrating, and other
operations such as detaching a shadow. Normally, you include all plans that will
be suppliers for the plan on which you are working (see “Supplier Plans” on
page 209 for information about supplier plans for projects).

Using a Workspace
Using a workspace most often means collaborating with others on the
development of an application. When you collaborate with others, you must make
sure to update and integrate your workspace appropriately.

➤ To use a workspace for collaboration

1. When you enter the Repository Workshop, open the workspace you wish to
use (if it is not already open). If necessary, you can create a new workspace and
include in it all the plans you need to work on and their supplier plans.

If you wish to create a new plan or modify an existing plan, you must open the
workspace for modifying. You will only be able to do so if no other developers
have opened the workspace (see below for further information).

2. If you wish to modify existing project components, you must either check them
out or branch them in your workspace.

3. As you edit your plans, use the Save All command to save your changes in the
workspace.

4. To keep your workspace synchronized with the changes other developers are
making in the repository, choose the File > Update Workspace command.

5. When your workspace is up to date and your plans are fully tested, use the
Integrate Workspace command to integrate your work into the baseline.

Other developers can use the Update Workspace command to see your
changes in their workspaces.

Choosing a Workspace
You can open any workspace from the Repository Workshop. If you are using a
central repository, you should use a workspace that contains only the plans you
need for your work. If you are using a private repository, you can simply use the
prefabricated workspace called FirstWorkspace.

About Workspaces

154 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

To create a new plan or modify an existing plan, you must open the workspace for
modifying. Only one person can use the workspace for modifying at a given time.
If another developer has already opened the workspace for modifying, no one else
will be able to open the workspace. In addition, if any other developers have
opened the workspace for reading only, no one will be able to open it for
modifying. A single workspace can be opened by multiple users only if all users
have it open for reading only.

Checking Out Project Components
To modify an existing project component, you must either check it out or branch it
in your workspace. In the Project Workshop, you can check out or branch all
project components with a single command, or you can checkout or branch
individual project components, that is, specific classes, interfaces, cursors,
constants, or service objects. Obviously, if you are collaborating with other
developers on a single project, you should only check out the individual
components that you need to modify. See “Write Access to Project Components”
on page 257 for information about checking out individual project components.

For iPlanet UDS Express and iPlanet Integration Server plans, you must either check
out or branch the entire plan in your workspace before you can modify it. The
Repository Workshop provides Checkout and Branch commands for this purpose.
For information on getting write access to Express plans, see the Express
documentation. For information on getting write access to iIS plans, see the iPlanet
Integration Server documentation.

Saving a Workspace
When you are creating a new plan or modifying an existing one, you need to save
the changes you make to your workspace. Every iPlanet UDS Workshop has a File
> Save All command. This command commits all changes made since the previous
Save All command.

Updating a Workspace
As you proceed with your development work, you need to keep your workspace
synchronized with the changes other developers are integrating into the
repository. To do this, use the Update Workspace command in the Repository
Workshop. For projects, this command merges the changes in the system baseline
with the changes in your workspace, so you can test your own work against the
latest version of the system baseline.

You can use the Update Workspace command as often as necessary to keep
concurrent with other developers. Typically, developers cycle several times
through the process of editing a project, updating the workspace, and testing the
project, before final integration.

Using the Repository Workshop

Chapter 3 Using the Repository Workshop 155

Integrating a Workspace
When your workspace is updated and the project (or plan) is completely tested in
the updated workspace, you can give the Integrate Workspace command to
incorporate your changes into the system baseline. After you integrate, any other
developers that use the Update Workspace command will have your changes
added to their workspaces. If you have created a new plan, using the Integrate
Workspace command will make the new plan available to other developers.

Using the Repository Workshop
The Repository Workshop is automatically opened when you start iPlanet UDS.
This workshop functions as the control center of the iPlanet UDS Workshops. From
the Repository Workshop, you can access any of the other workshops you need to
examine or modify plans.

The Repository Workshop Window
The Repository Workshop window consists of a Plan browser and a toolbar. The
Plan browser displays a list of the plans in the current workspace. The toolbar
provides quick access to the Debugger and the Partition Workshop, as well as Save
All, Run Project, and Compile All Plans buttons. It also provides a button for
creation of a project.

If you have installed add-on products, such as iPlanet UDS Express or iPlanet
Integration Server, the toolbar may include additional buttons.

Figure 3-2 illustrates the Repository Workshop and Figure 3-3 illustrates the
Repository Workshop toolbar.

Using the Repository Workshop

156 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 3-2 Repository Workshop

Figure 3-3 Repository Workshop Toolbar

New
Project

New
Business
Model

New
Application
Model New

Compile

Save
All

Run
Project

Debug
Project

Partition

Process
Definition

New
User
Profile New

User
Validation

New
Assignment
Rule New

Application
Dictionary

Using the Repository Workshop

Chapter 3 Using the Repository Workshop 157

View Menu
The View menu in the Repository Workshop provides the following toggles that let
you control which parts of the workshop are displayed:

Note that you can set your viewing preferences for the workshop by using the
Workshop Preferences command. These preferences are saved as part of your
current workspace. See “Setting Workshop Preferences” on page 196 for
information.

Access to Other Workshops
From the Repository Workshop, you can access the following workshops:

Command Function

Toolbar Makes the toolbar visible or invisible.

Writeable Icon Makes the writeable icons for plans visible or invisible.

Kind Icon Makes the kind icon for plans visible or invisible.

Status Line Makes the status line visible or invisible.

Workshop How to access it

Project Choose the Plan > New Project… command to create a new project.
Double-click a project name, or select a project name and choose
the Plan > Open command to open an existing project.

Partition Choose the Plan > Run > Partition… command to partition the
application defined by the selected project, or single-click the
Partition Workshop button. (This is not available when you are
running standalone.)

Debugger Choose the Plan > Run > T est Debug Project command to debug
the application defined by selected project, or single-click the
Debugger button.

Using the Repository Workshop

158 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Business Model Choose the Plan > New Business Model… command to create a
new business model. Double-click a business model name, or select
a business model name and choose the Plan > Open command, to
open an existing business model.

The Business Model Workshop is only available if you have iPlanet
UDS Express installed.

Application Model Choose the Plan > New Application Model… command to create a
new application model. Double-click a application model name, or
select a application model name and choose the Plan > Open
command, to open an existing application model.

The Application Model Workshop is only available if you have
iPlanet UDS Express installed.

Process Definition Choose the Plan > New Process Development Plans > Process
Definition… command to create a new process definition.
Double-click a process definition name, or select a process
definition name and choose the Plan > Open command, to open an
existing process definition.

The Process Definition Workshop is only available if you have
iPlanet Integration Server installed.

Application
Dictionary

Choose the Plan > New Process Development Plans > Application
Dictionary… command to create a new application dictionary.
Double-click an application dictionary name, or select an
application dictionary name and choose the Plan > Open
command, to open an existing application dictionary.

The Process Definition Workshop is only available if you have
iPlanet Integration Server installed.

User Profile Choose the Plan > New Process Development Plans > User
Profile… command to create a new user profile. Double-click a
user profile name, or select a user profile name and choose the Plan
> Open command, to open an existing user profile.

The User Profile Workshop is only available if you have iPlanet
Integration Server installed.

User Validation Choose the Plan > New Process Development Plans > User
Validation… command to create a new user validation.
Double-click a user validation name, or select a user validation
name and choose the Plan > Open command, to open an existing
user validation.

The User Validation Workshop is only available if you haveiPlanet
Integration Server installed.

Workshop How to access it

Using a Repository

Chapter 3 Using the Repository Workshop 159

Leaving the Repository Workshop
To leave the Repository Workshop, choose the File > Exit command to end your
development session and exit from the iPlanet UDS Workshops. If you have not
saved your workspace before giving the command, you will be prompted to do so.

Using a Repository
The Repository Workshop lets you perform the following tasks on your repository:

• view repository information

• create and delete plans

• create and use shadow repositories

• backup a repository

Examining the Repository
The Repository Workshop provides the following information about the current
repository:

• workspace status information

• repository information

Assignment Rule Choose the Plan > New Process Development Plans > Assignment
Rule… command to create a new assignment rule. Double-click an
assignment rule name, or select an assignment rule name and
choose the Plan > Open command, to open an existing assignment
rule.

The Assignment Rule Workshop is only available if you have
iPlanet Integration Server installed.

Workshop How to access it

Using a Repository

160 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Viewing Workspace Status
To view the workspace status information, use the Utility > Show Locked
Workspaces command. This opens the Locked Workspaces window, where you
can see a list of all the workspaces that are currently open and a list of the
workspaces that have locks on the repository. When you have finished viewing the
workspace status information, simply close the window.

Viewing Repository Information
To view the repository information, use the Utility > Show Repository Info
command. This command opens the Repository Info window, where you can see
the name of the repository, its creation date, and whether the current repository is a
shadow or not. If the repository is a shadow, this window shows a list of the
workspaces that are currently cached in your shadow.

The Repository Info window also provides information that may be useful when
you are troubleshooting. When you have finished viewing the repository
information, simply close the window.

Creating and Deleting Plans
The Repository Workshop provides the following commands for creating new
plans:

Command Description

New Project… Creates a new project and opens the Project Workshop.

New Business Model… Creates a new business model and opens the Business
Model Workshop. Available only if iPlanet UDS Express is
installed.

New Application Model… Creates a new application model and opens the Application
Model Workshop. Available only if iPlanet UDS Express is
installed.

New Process Development
Plans

This slide-off menu allows you to create any of the process
development plans, opening the appropriate iIS Workshop.
Available only if iPlanet Integration Server is installed.

Using a Repository

Chapter 3 Using the Repository Workshop 161

When you choose a command on the Plan menu that creates a new plan, iPlanet
UDS registers the new plan name in the repository so that no other developers can
use the name. However, the plan itself is not visible to other developers until you
use the Integrate Workspace command to integrate the new plan into the system
baseline.

See “Using the New Project Command” on page 228 for information about the
New Project command. See the Express documentation for information on the
Express commands and the iPlanet Integration Server documentation for information
on the iIS plans.

“Deleting Plans from the Repository Baseline” on page 163 provides information
about deleting plans from the repository.

Setting Extended Properties for Projects
The projects you create in your repository have special properties called extended
properties. This feature allows you to assign names and values to a project.
Extended properties are used primarily for integrating with external systems (see
Integrating with External Systems for more information). However, you can use an
extended property for anything you wish, for example, for a comment.

➤ To set extended properties for a project

1. Select the project for which you wish to set the extended properties.

2. Choose the Plan > Extended Properties... command.

The Extended Properties dialog opens.

Using a Repository

162 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

3. Click the New... button.

The New Extended Property dialog opens.

4. Enter the name of the property you wish to create and click OK.

5. In the Value field, enter the value of the extended property.

6. To enter additional extended properties, repeat steps 3 though 5.

7. Click OK.

➤ To delete extended properties for a project

1. Select the project whose extended property you wish to delete.

2. Choose the Plan > Extended Properties... command.

The Extended Properties dialog opens.

3. Select the name of the extended property you wish to delete.

4. Click the Delete button.

5. Click the OK button.

Using a Repository

Chapter 3 Using the Repository Workshop 163

Deleting Plans from the Repository Baseline
Before you can delete a plan from the repository baseline, the plan must already be
deleted from all workspaces in the repository (see “Deleting Plans from a
Workspace” on page 182 for information). Once the plan is no longer included in
any workspaces, you can use the Utility > Delete Public Plan… command to
remove it permanently from the repository.

➤ To delete a plan from the repository

1. Choose the Utility > Delete Public Plan… command.

2. In the Delete Public Plan dialog, select the plan you wish to delete.

3. Click the Delete button to delete the plan.

4. Confirm that you wish to delete the plan.

Creating and Using Shadow Repositories
The Repository Workshop allows you to create a shadow of the current central
repository. The new shadow that you create is attached to the central repository.

Normally you do most of your work using an attached shadow. However, if you
wish to work outside of the distributed development, you can detach your shadow
and move the shadow files to another system.

The following sections describe how to create new shadows, how to work with
attached shadows, and how to detach and attach shadows.

Creating a Shadow Repository
The New Shadow command creates a shadow of the current central repository.

When you create the shadow, you specify a name for it. The shadow name must be
eight or fewer characters.

After the shadow is created, it automatically becomes your current repository.

CAUTION If your repository contains plans created by iPlanet UDS Express or
iPlanet Integration Server, even if you have not installed the products
that were used to create the plans, you can delete these plans using
the Utility > Delete Public Plan… command. Obviously, you should
consult with your coworkers before deleting any unknown plans
from the repository.

Using a Repository

164 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To create a new shadow

1. Choose the Utility > New Shadow command.

2. In the New Shadow dialog, specify the shadow name.

3. Click the OK button to create the new shadow.

The shadow repository is stored in the following two files:

Using an Attached Shadow Repository
Normally when you give a Save All command in an attached shadow, your
changes are automatically committed to the central repository. However, if you
wish to improve repository performance when you are working with attached
shadows, you can set your preferences so that automatic committing to the central
repository is turned off. When automatic committing is turned off, changes you
make in the workspace are not made in the central repository until you give a
Commit to Central command or until you leave the iPlanet UDS Workshops.

The advantage to turning off automatic committing is that the central repository
can handle a larger number of users or performance for the current number of
users is improved. The disadvantage to turning off automatic committing is that
you can lose the changes you make in your workspace. Therefore, we recommend
you only turn off automatic committing when increasing repository performance is
critical.

To turn off automatic committing, use the File > Workshop Preferences…
command. In the Repository Workshop Preferences dialog, set the Commits to
Central toggle to off. (See “Setting Workshop Preferences” on page 196 for
information about using the Workshop Preferences command.)

Once you turn off automatic committing, you can proceed with your work as
usual. The only restriction is that you cannot use the Undo Deleted Checkouts
command.

System File Names

UNIX $FORTE_ROOT/repos/shadow_name.btd
$FORTE_ROOT/repos/shadow_name.btx

OpenVMS $FORTE_ROOT:[REPOS]shadow_name.btd
$FORTE_ROOT:[REPOS]shadow_name.btx

Windows FORTE_ROOT\repos\shadow_name.btd
FORTE_ROOT\repos\shadow_name.btx

Using a Repository

Chapter 3 Using the Repository Workshop 165

Note that even though you turn off automatic committing, the following
commands will automatically write the changes in the current workspace to the
central repository:

• Integrate Workspace

• Update Workspace

• Include Public

• Delete

• Delete Public Plan

• Import (if it creates a plan)

• commands that create new plans

When automatic committing is turned off, use the Commit to Central command to
write the changes in the current workspace to the central repository. Using the
Commit to Central command ensures that your worked is backed up.

Multiple Workspaces in a Shadow
While the shadow is attached, you can switch to another workspace using the
Open Workspace command. You can access up to 15 different workspaces using
one shadow repository.

You can find out what workspaces have been cached in the shadow repository by
using the Utility > Show Repository Info command. However, you cannot delete a
workspace from a shadow repository after you have accessed it. If you want to
access a sixteenth workspace using a shadow repository, you need to create a new
shadow repository.

NOTE A cached workspace synchronizes itself with the central repository
by applying to itself the changes made in the central repository. This
synchronization occurs when you open a workspace in an attached
shadow. If you have not synchronized a workspace in the shadow
with the central repository in a long time, the workspace might not
open in the shadow repository, because it cannot completely
synchronize itself with the central repository. If this occurs, you
need to create a new shadow for accessing this workspace.

Using a Repository

166 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Detaching a Shadow Repository
The Utility > Detach Shadow command disconnects the shadow repository from
the central repository. The first time you use the Detach Shadow command, iPlanet
UDS copies everything in the workspace into the local shadow, so the command
may take a long time to execute. However, the next time you use the Detach
Shadow command for the same shadow (after having re-attached the shadow), the
command copies only the changed components so it will not take as long.

The detached shadow contains one accessible workspace, the workspace that was
open when you gave the Detach Shadow command. Once the shadow is detached
from the central repository, you can copy the shadow files to another machine,
using standard operating system copy commands.

Before you give the Detach Shadow command, be sure to checkout all project
components you wish to modify while the shadow is detached. Also, the
workspace that you wish to use in the detached shadow should be open, because
once you detach the shadow, you will not be able to open a different workspace.

After you give the Detach Shadow command, the current workspace becomes
“reserved” and no other developers can open it until you give an Attach Shadow
command to make it available again. Note that if you need to free the lock on the
workspace without attaching the shadow, you can use the
ForceWorkspaceUnreserved command in Fscript. However, the
ForceWorkspaceUnreserved command makes it impossible for you to reconnect
the shadow, and is therefore only for use when there is problem with the detached
shadow. For information, see the ForceWorkspaceUnreserved command in the
Fscript Reference Guide.

➤ To detach your shadow and move it to another machine

1. In the Repository Workshop, choose the Utility > Detach Shadow command.

2. Use the Exit command to end your iPlanet UDS development session.

3. Copy the .btd and .btx shadow files to the workstation where you want to use
the detached shadow. These files are portable across all installations supported
by iPlanet UDS.

Note that if you use FTP, you should use a binary mode copy to copy the
shadow files.

Using a Repository

Chapter 3 Using the Repository Workshop 167

4. Start iPlanet UDS on the workstation where you want to use the detached
shadow.

When you start the iPlanet UDS Workshops, use the -fr flag to specify the full
path name for the shadow repository and the -fw flag to specify the name of
the workspace that was open when you gave the Detach Shadow command. If
you are working outside the distributed development environment, use the
-fs flag to indicate that you are running in standalone mode. For example:

forte -fr bt:myshadow -fw MyWorkspace -fs

When you are ready to add your changes to the central repository, you must move
your shadow back to a node in the distributed development environment, copy it
into the appropriate directory (as described under “Creating a Shadow
Repository” on page 163), and use the Attach Shadow command to connect the
shadow back to the central repository.

Backing Up a Detached Shadow
When you work in an attached shadow, your work is automatically backed up
because every change your make locally is automatically made in the central
repository. However, when you work in a detached shadow, the work you do
locally is not backed up in the central repository. If you run out of disk space or
have a problem with your local disk, your work in the detached shadow could
become corrupted. Therefore, you should backup your changes in the detached
shadow by:

• using the Utility > Backup Repository... command (see “Backing Up a
Repository” on page 168)

• making copies of the shadow files (see “Creating a Shadow Repository” on
page 163)

• using the Export command to export the project or projects to a file

Of course, if you are working within the distributed development environment,
you can use the Attach Shadow command to connect to the central repository,
which automatically copies your changes from the shadow to the central
repository, and then use the Detach Shadow command to detach again.

NOTE You should never make changes to multiple copies of a detached
shadow. Once you attach a detached shadow back to the central
repository, you cannot attach another copy of the detached shadow
to it. Therefore, any changes you made in a separate copy of the
detached shadow would be lost.

Using Workspaces

168 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Attaching a Shadow
The Utility > Attach Shadow command lets you attach a shadow repository back to
the central repository. This command copies all the changes you made in the
detached shadow to the central repository.

➤ To attach a detached shadow

1. Start iPlanet UDS, using the -fr flag to specify the full path name for the
shadow repository and the -fw flag to specify the name of the workspace that
was open when you gave the Detach Shadow command.

Do not use the -fs flag, because you are going to attach to a distributed central
repository.

2. In the Repository Workshop, choose the Utility > Attach Shadow command.

Backing Up a Repository
For private repositories and detached shadows of central repositories, you can
backup the repository by using the Utility > Backup Repository command to write
the repository to a file.

➤ To backup the repository

1. Choose the Utility > Backup Repository command.

2. On the file selection dialog, select the directory where you wish to store the
backup file. The file name for the backup file is the same name as the
repository.

After you use the Backup Repository command once, each time you exit from the
iPlanet UDS Workshops and are saving your changes, you will be prompted to
backup the repository again.

Using Workspaces
The Repository Workshop lets you perform the following tasks for workspaces:

• open a workspace

• examine a workspace

• save a workspace

• update and integrate a workspace

Using Workspaces

Chapter 3 Using the Repository Workshop 169

• create a workspace and include plans in it

• create and delete workspaces

• import and export plans

• find and replace text in any method source code in the workspace

Opening a Workspace
If you are not already in the workspace you wish to use, you can use the Open
Workspace command to open any workspace in the repository. When you open a
workspace, you have the option of opening it for reading only. If you are only
planning to examine the plans in the workspace and not to modify them, you
should open the workspace for reading only so other developers can also open the
workspace.

If another developer has opened the workspace for modifying, you will not be able
to open it. In addition, if the workspace is reserved (that is, if it is currently in use
by a detached shadow), you will not be able to open it.

➤ To open a workspace

1. Choose the File > Open Workspace command.

2. In the Open Workspace dialog, select the workspace you wish to open.

The workspace list indicates which workspaces are reserved and cannot be
opened for modification.

3. If you do not plan to modify any of the plans in the workspace, click the
Read-only toggle to on.

Using Workspaces

170 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

If you try to open a workspace that is already open for modifying by another
developer, you will get an error message.

Examining a Workspace
To view the complete list of all the plans in the workspace, select “All Plans” from
the drop list in the Plan browser, shown in the figure below.

Figure 3-4 Plan Browser

By default, the Plan browser lists all the plans in your workspace. Icons indicate the
type of plan.

Icon Plan

Project

Library

Business model (created by iPlanet UDS Express)

Plan Browser
Drop List

Plan Browser

Using Workspaces

Chapter 3 Using the Repository Workshop 171

To view a list of only one kind of plan (or a subset of the plans), use the filter drop
list for the Repository Workshop. The filter drop list allows you to select a single
plan kind, such as “Project “or “Process Development Plans,” or various
combinations, such as “Projects & Libraries.”

Note that you can set your filter preferences for the workshop by using the
Workshop Preferences command. These preferences are saved as part of your
current workspace. See “Setting Workshop Preferences” on page 196 for
information.

Application model (created by iPlanet UDS Express)

Process definition (created by iPlanet Integration Server)

Application dictionary (created by iPlanet Integration Server)

User profile (created by iPlanet Integration Server)

User validation (created by iPlanet Integration Server)

Assignment rule (created by iPlanet Integration Server)

Icon Plan

Using Workspaces

172 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

iPlanet UDS also displays a writeable icon by iPlanet UDS Express and iPlanet
Integration Server plan names. The writeable icons indicate whether the current
workspace has write access to the plan, and shows whether it is new, checked out,
or branched. A blank indicates that the plan is read only.

To turn off the writeable icons, set the View > Writeable Icon toggle to off. See the
iPlanet UDS Express and iPlanet Integration Server documentation for information
on getting write access to Express and iIS plans respectively.

Sorting by name or kind By default, the list of plans is in alphabetical order, by
name. If you wish to view the same list sorted by plan type, choose the View > Sort
by Kind command. The Sort by Name command specifies the default, sorting all
plans by name.

Viewing the plan definition To display the complete definition of a plan,
double-click on the plan name, or select the plan name and choose the Plan > Open
command. This command opens the appropriate workshop, which displays the
full definition of the plan. For information about using the Project Workshop, see
Chapter 4, “Using the Project Workshop.” For information about using the
workshops for add-on products, see the documentation for the individual product.

You can view the integration history for any workspace in the repository. The File
> Show Integration History… command shows the integration history for the
workspace name you specify or for all workspaces in the repository that match the
specified search string. To specify a search string, you can use an asterisk as a wild
card at the end of a character string.

Icon Plan

New

Checked Out

Branched

Using Workspaces

Chapter 3 Using the Repository Workshop 173

➤ To display the integration history for a workspace

1. Choose the File > Show Integration History… command.

2. In the Show Integration History dialog, specify the workspace name or a
search string. The default is an asterisk to specify all workspaces.

You can also specify the number of integrations, counting back from the most
recent, you wish to display.

3. Click the OK button to open the Integration History window.

This window displays the integration number, date of integration, and
comment for each integration.

4. When you have finished viewing the integration information, close the
Integration History window.

The Repository Workshop allows you to view all the persistent breakpoints that
have been set in the code in the selected project. The Utility > Show Breakpoints
command opens the Debugger’s Global Breakpoint Manager window to display all
the persistent breakpoints in the project.

You can use the Global Breakpoints Manager window to browse through the
breakpoints or to delete them. You cannot add new breakpoints with the Global
Breakpoints Manager.

➤ To browse through the breakpoints

1. Scroll through the list of breakpoints using the window’s scroll bar.

2. To see a single breakpoint in context, double-click the breakpoint.

The Method, Event Handler, or Cursor Workshop opens to the code where the
breakpoint was set. Once in the workshop, you can change breakpoints or
modify the code as usual.

➤ To delete a breakpoint

1. Click the stop sign icon for the breakpoint.

You can remove all breakpoints with a single command by choosing the File >
Clear All command on the Global Breakpoint Manager’s File window.

When you are finished using the Global Breakpoints Manager, close the Global
Breakpoint Manager window by using the File > Close command.

See “Setting Breakpoints” on page 582 for information on persistent breakpoints
and the Global Breakpoint Manager window.

Using Workspaces

174 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

To display the extended properties for the project, choose the Plan > Extended
Properties... command. The Extended Properties dialog opens, displaying the
current settings for the extended properties. Select the name of the extended
property to view its value.

Saving a Workspace
The Save All command writes all changes made to anything in the current
workspace since the last Save All command permanently to disk. You should use
the Save All command frequently to ensure that you do not lose work. The Save All
command is available on the File menu of every iPlanet UDS workshop. It is also
available through the Save All button on the toolbar.

Showing Plan Changes
When working in a central repository or an attached shadow of a central
repository, you need to notify other developers what changes you will integrate
into the system baseline. The Repository Workshop File > Show Plan Changes
command gives you a tree-view list of all projects and components that have been
checked out or branched since the last integration. Use this dialog before
integrating to make note of all changes you will make to the system baseline.

Using Workspaces

Chapter 3 Using the Repository Workshop 175

➤ To view plan changes

1. Choose File > Show Plan Changes command.

The Show Plan Changes dialog opens:

Use the information in this dialog to alert other developers about the changes
you will integrate into the system baseline.

2. Click OK or close the window when you have made note of workspace plan
changes.

Updating and Integrating a Workspace
If you are working with a central repository or an attached shadow of a central
repository, you need to keep your workspace synchronized with the changes other
developers are integrating into the repository. To do this, use the Update
Workspace command. This command merges the changes that have been
integrated into the system baseline with the changes in your workspace, so you can
test your own work against the system baseline.

You can use the Update Workspace command as often as necessary to keep current
with other developers. Normally, developers cycle several times through the
process of editing a project, updating the workspace, and testing the project, before
final integration.

Using Workspaces

176 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

If you have made changes in your workspace since your last Update Workspace
command that you wish to erase, you can use the File > Revert command in the
Project Workshop. The Revert command reverts all changes you have made to the
project and its components since your last Update Workspace command, including
creations, deletions, and modifications. See “Reverting a Project” on page 256 for
information on the Revert command.

When your project is fully tested in the updated workspace, you can give the
Integrate Workspace command to incorporate your changes into the system
baseline. After you integrate, any other developers that use the Update Workspace
command will have your changes added to their workspaces. If you have created a
new plan, using the Integrate Workspace command will make the new plan
available to other developers. Integrating also automatically “checks in” any
components you had checked out in the workspace, and frees them for checkout by
other workspaces.

Updating a Workspace
The File > Update Workspace command updates the contents of the current
workspace with any changes integrated into the repository since the last time you
gave an Update Workspace command for this workspace. Use this command from
time to time to synchronize with concurrent changes made to any supplier plans.

Compiling all plans The Update Workspace command provides the option of
compiling all plans after updating the workspace. Turning on this option in the
Update Workspace dialog is equivalent to giving the Compile All Plans command
as described under “Compiling Plans” on page 191.

Conflicting branches If you have branched items in your workspace and you
then give an Update Workspace command, there is potential conflict between your
component and the system baseline, because another workspace may have
integrated one or more of the components you have branched. We call these
“conflicting branches,” because the changes made in the system baseline conflict
with the changes you have made in your workspace.

When you use the Update Workspace command and there are conflicting
branches, iPlanet UDS gives you the option of cloning the conflicting component so
that you do not lose your changes. The original components will be overwritten
with the changes from the system baseline, and the cloned components will have
the characters “_Branch” appended to their names. After a component is cloned,
you can compare the cloned component side by side with the updated component,
make any appropriate modifications, and then delete the extra component.

Using Workspaces

Chapter 3 Using the Repository Workshop 177

The Update Workspace command notifies you when there are conflicting branches,
and you have the option of requesting that individual components not be cloned.
However, when you do not clone the components, all changes you have made to
them while they were branched are permanently lost.

➤ To update your workspace

1. Choose the File > Update Workspace command.

The Update Workspace dialog opens.

If you wish to compile all plans after updating the workspace, click the
Compile All Plans After Update toggle.

2. Click the OK button to update the workspace.

3. If there are any branched components, iPlanet UDS opens the Branch Conflicts
dialog, which lists all components that were integrated by another workspace
since you branched the components.

Using Workspaces

178 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

By default, all conflicting components are cloned. If you do not wish to clone a
branched component, click off the toggle next to that component’s name. Then,
click the OK button to close the dialog.

4. If you made changes since the last time you saved your workspace, you will be
prompted to save it.

Only changes to projects that have been integrated by other workspaces into the
repository will be updated into your workspace. You will not see changes made in
other workspaces that have not yet been integrated.

If the Update Workspace command fails, any changes the command made to the
repository are backed out and the repository is returned to the same state it was in
before you gave the command.

The Update Workspace command can fail in the following circumstances:

• the client crashes

Use the Fscript UnlockWorkspace command or RepositoryServer agent
UnlockWorkspace command to notify the repository server that the client is no
longer active. The UnlockWorkspace command unlocks the workspace and
any global repository locks held by that workspace. See Fscript Reference Guide
for information on the Fscript UnlockWorkspace command. See Escript and
System Agent Reference Guide for information on the RepositoryServer agent
UnlockWorkspace command.

• the repository server crashes

When the repository server is restarted, you can simply give the Update
Workspace command again.

• an error occurs while the command is processing

The workspace is rolled back to the state it was in before you gave the Update
Workspace command. You should examine the command’s error messages to
determine how to resolve the error.

Using Workspaces

Chapter 3 Using the Repository Workshop 179

Integrating a Workspace
The File > Integrate Workspace command adds any changes you made in the
current workspace since the last Integrate Workspace command to the system
baseline. After your Integrate Workspace command has completed, any other
workspaces can use the Update Workspace command to see the changes from your
workspace.

You cannot give the Integrate Workspace command if any components in your
workspace are branched. You must either convert the branches to checkouts (by
using the Checkout command), or undo the branch (by using the
Component/Undo command). See “Write Access to Project Components” on
page 257 for information about the Component/Checkout and Component/Undo
commands for project components.

Before giving the Integrate Workspace command, you must first use an Update
Workspace command to get up to date with the system baseline. After checking to
see that your changes are compatible with any changes made to projects and
components, you can then use the Integrate Workspace command to make your
changes public.

If you do not use the Update Workspace command before giving the Integrate
Workspace command and your workspace is out of sync with the system baseline,
you will get an error message telling you that must update your workspace. In
addition, if, between the time you give the Update Workspace command and the
Integrate Workspace command, some other workspace has given an Integrate
Workspace command, your Integrate Workspace will be rejected. If this occurs,
give the Update Workspace command again, validate that the recent changes have
not caused problems, and then give the Integrate Workspace command again.

➤ To integrate your workspace

1. Choose the File > Integrate Workspace command.

2. In the Integrate Workspace dialog, enter the integration comment. This
comment is stored in the repository, and is displayed as part of the integration
history by the Show Integration History and Show Component History
commands.

If your workspace contains iPlanet UDS Express or iPlanet Integration Server plans
that need to be regenerated, the Integrate Workspace command displays a warning
dialog. This warning displays a list of the out-of-date plans.

Using Workspaces

180 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 3-5 Integrate Workspace Dialog

If you see this warning dialog, we recommend that you cancel the Integrate
Workspace command and regenerate the plans. After the plans are regenerated,
you can give the Integrate Workspace command again. See the Express and iPlanet
Integration Server documentation for information about regenerating Express and
iIS plans.

If the Integrate Workspace command fails, any changes the command made to the
repository are backed out and the repository is returned to the same state it was in
before you gave the command.

The Integrate Workspace command can fail in the following circumstances:

• the client crashes

Use the Fscript UnlockWorkspace command to notify the repository server
that the client is no longer active. The UnlockWorkspace command unlocks the
workspace and any global repository locks held by that workspace. See Fscript
Reference Guide for information.

• the repository server crashes

When the repository server is restarted, you can simply give the Integrate
Workspace command again.

• an error occurs while the command is processing

The workspace is rolled back to the state it was in before you gave the Integrate
Workspace command. You should examine the command’s error messages to
determine how to resolve the error.

Using Workspaces

Chapter 3 Using the Repository Workshop 181

Creating a Workspace
To create a workspace, you use the New Workspace… command to create a named
workspace that includes the iPlanet UDS libraries. You can then add any plans in
the repository to the workspace with the Include Public… command. To remove a
plan from the workspace, use the Edit > Delete command.

For performance reasons, you should use the New Workspace command on the
central repository before creating the shadow where you intend to use the
workspace.

➤ To create a new workspace

1. Choose the File > New Workspace command.

2. In the New Workspace dialog, specify the workspace name.

3. Click the OK button to create the workspace.

After you give the New Workspace command, the new workspace is your current
workspace.

To create a new workspace for a secure repository, you need to specify the
administrator password.

➤ To create a new workspace in a secure repository

1. Choose the File > New Workspace command.

The Enter Administrator Password dialog opens.

2. Enter the administrator password.

The New Workspace dialog opens.

3. In the New Workspace dialog, enter the workspace name, the new password
for the workspace, and the verification password (retype the workspace
password.)

4. Click the OK button to create the workspace.

Using Workspaces

182 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Including Plans in a Workspace
The Include Public… command includes a plan in the current workspace. If a
newly included public plan has supplier plans that are not yet included in the
current workspace, those will automatically be included in your workspace as well.

➤ To include a plan in the workspace

1. Choose the Plan> Include Public… command.

2. On the Include Public Plan dialog, select the plan you wish to include.

3. Click the OK button to include the project.

The Include Public… command brings the system baseline version of the plan into
your workspace. Therefore, after you give an Include Public… command, we
recommend that you give the Update Workspace command to synchronize newly
included plans with the other plans in the workspace.

Deleting Plans from a Workspace
To remove a plan from a workspace, use the Edit > Delete command. Before you
can delete the plan, you must make sure that neither the plan nor any of its
components are checked out.

➤ To remove a plan from the workspace

1. Select the plan name.

2. Choose the Edit > Delete command.

3. Confirm that you wish to delete the plan from the workspace.

Using Workspaces

Chapter 3 Using the Repository Workshop 183

Removing a plan from your workspace has no effect on the system baseline. It
merely means that you cannot view or update the plan from your workspace.
However, if you have created the plan in the workspace but never integrated it, the
Delete command will permanently delete the plan, because it exists only in the
current workspace, not in the system baseline.

For information on using the Delete Public Plan command to remove a plan from
the system baseline, see “Deleting Plans from the Repository Baseline” on
page 163.

Deleting a Workspace
The File > Delete Workspace command deletes the current workspace from the
repository. If there are any plans in the workspace that have never been integrated,
these will be also be deleted, so be careful using this command.

To delete the workspace, the workspace must be open for modifying. In addition,
nothing can be checked out to the workspace.

➤ To delete a workspace

1. If necessary, choose the File > Open Workspace command to open the
workspace you wish to delete. You must open it for modifying.

2. If plans or project components are checked out in the workspace, use the
appropriate Undo command to release the checkouts.

3. Choose the File > Delete Workspace command.

4. Confirm that you wish to delete the workspace.

Importing and Exporting Plans and Libraries
The Repository Workshop lets you import an entire plan into your workspace.
Using the Plan > Import command, you can take a plan that was exported from
another repository and move it into your repository. The plan that you import
must have been created either by the Plan > Export command in the Repository
Workshop or by the ExportPlan command in Fscript. You can also import a library
that is installed in the environment into your repository.

The Export command in the Repository Workshop allows you to export the entire
plan to a standard text file, which you can then import into another iPlanet UDS
repository.

Using Workspaces

184 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Importing a Plan
The Plan > Import command takes an iPlanet UDS plan definition stored in a text
file and adds it to your workspace. The plan definition that you import must have
been created by the Export command in the Repository Workshop or by an export
command in Fscript, or it must be a .pex file for a library.

You can import a new plan or an existing plan. If the plan you are importing
already exists in the current workspace, iPlanet UDS overwrites the plan, unless it
is a project.

Merging or Overwriting Projects
If the project you are importing already exists in the current workspace, the Import
command prompts you with an Import Plan dialog, which allows you to choose
whether to overwrite or merge with the existing project.

The Overwrite button on the Import Plan dialog instructs iPlanet UDS to delete the
existing project components and use the imported project definition to define the
entire project.

The Merge button instructs iPlanet UDS to merge the imported project with the
existing project. iPlanet UDS merges the project you are importing with the
existing project as follows:

• new components are added to the existing project

• components in the existing project that are not in the imported project are left
intact

• components in the existing project that are also in the project being imported
are overwritten

Note that if any of the components defined in the plan being imported already
exist, you must be sure the existing components are new, checked out, or branched.
The existing components must be in a writeable state so that the Import command
can overwrite them.

Importing Project preference The Repository Workshop Preferences dialog
allows you to set an Importing Project preference that affects the behavior of the
Import command. By default, the Importing Project preference is set to Prompts,
which prompts you with the Import Plan dialog described above. The Merges
option turns off prompting for the Import command and automatically merges the
imported project with the existing project. The Overwrites option turns off
prompting for the Import command and automatically overwrites the existing
project with the imported project. See “Importing Project Preference” on page 198
for information.

Using Workspaces

Chapter 3 Using the Repository Workshop 185

If a project you are importing has any supplier plans, these must be in your
workspace before you import the project. If the supplier plans are not already in
your workspace, you must import the supplier plans before importing the main
project.

➤ To import a plan

1. Choose the Plan > Import command.

2. In the file selection dialog, specify the name of the file that contains the plan
definition.

3. If you are importing a project and the project already exists in the workspace,
the Import Plan dialog opens. Click the Merge button to merge with the
existing project, the Overwrite button to overwrite the existing project, or the
Cancel button to cancel the Import command.

After the plan has been successfully imported, iPlanet UDS displays a message
indicating that it was added to the repository. If there is an error, such as a bad file
or an attempt to change a read-only component, iPlanet UDS displays an error
message.

After you import the plan, you can use the Integrate Workspace command to add
the new plan definition to the system baseline.

Importing a Library
After a library distribution is installed in your development environment, you
must import the individual libraries that it contains into each development
repository where you wish to use them

Using Workspaces

186 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Note that you can import a library into any development repository except the
repository where the library was initially created. The repository that defined the
library cannot access the shared library. Instead, the repository that defined the
library must use the original project that provided the library definition—it can use
the original project as a supplier project.

To import a library into your repository, use the Plan > Import command just as
you would for any plan. The .pex file for the library contains the library definition;
this is the file you must import.

➤ To import a library

1. In the Repository Workshop, choose the Plan > Import command.

2. In the file selection dialog, specify the name of the .pex file that contains the
library definition.

After the library has been added to your workspace, you will see the library in the
Repository Workshop’s browser. A library icon indicates that it is a library.

Updating Library Versions
You must import the library into the repository every time a new version of it is
installed in the environment. When a new version is installed in the environment,
give the Import command again for the new .pex file and overwrite the existing
library with the new version you are importing.

Exporting a Plan
The Plan > Export command writes the definition of the selected plan into a
standard text file.

➤ To export a plan

1. In the Plan browser, select the plan name you wish to export.

Using Workspaces

Chapter 3 Using the Repository Workshop 187

2. Choose the Plan > Export command.

3. In the file selection dialog, specify the name of the file to contain the plan
definition. If you give the name of an existing file, the Export command
overwrites the file.

While the plan is being exported, iPlanet UDS displays a message indicating that
the plan is being written to the specified file and prevents all input until the export
is complete.

The plan is exported as it is in the current workspace. If you have made changes
since the last integration, these will be included in the exported plan.

Note that if you want to save some of the plan code you wrote while you had the
plan (or project components) checked out, but do not want to integrate the changes,
you can use the Export command to write your plan to a text file. This preserves
the modified plan in a textual form, so you can copy or edit the TOOL code that
you want to save. You can also use the Export command to document a plan. The
file produced by the Export command can be editing with standard text editing
tools to create a definition for use with Fscript. See the TOOL Reference Guide for
information about the definition statements in TOOL.

Using Workspaces

188 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Finding and Replacing Text
The Edit > Find Text… and Replace Text… commands in the Repository Workshop
let you search for all occurrences of a specified string within the method and event
handler source code for all projects in the workspace.

Finding Text
The Find Text… command finds all occurrences of the specified string in the
method and event handler source code in all classes in all projects in the
workspace.

➤ To find a string

1. Choose the Edit > Find Text… command.

2. In the Find Text in Workspace dialog, specify the string you wish to search for.
The default is a case-insensitive search. If you want a case-sensitive search, set
the Case Sensitive toggle to on. Click the OK button to start the search.

When the search is complete, the Find Text in Workspace dialog displays the
class name, method name or event handler name, and the line itself for each
source code line that contains the string.

3. Double-click any line in the Find Text in Workspace dialog to open the Method
or Event Handler Workshop to display the original source code.

Replacing Text
The Replace Text… command finds all occurrences of the specified string in the
method or event handler source code in all classes in all projects in the workspace.

Using Workspaces

Chapter 3 Using the Repository Workshop 189

➤ To make a global replacement

1. Choose the Edit > Replace Text… command.

2. The Replace Text in Workspace dialog opens.

3. In the Replace Text in Workspace dialog, specify the string you wish to search
for and the replacement string. Click the OK button to start the search.

The default is a case-insensitive search. If you want a case-sensitive search, set
the Case Sensitive toggle to on.

4. When the search is complete, another Replace Text in Workspace dialog opens,
displaying the project name, class name, method name or event handler name,
and the line itself for each source code line that contains the string.

5. Click the toggles next to the lines where you wish to make the replacement.

6. In the Replace Text in Workspace dialog, click the Replace button to make the
replacements.

Testing a Plan

190 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Read-only classes By default, if a class is read-only, the Replace Text… command
automatically checks it out before making the replacement in its source code. If it
cannot be checked out, you will be prompted to indicate whether you wish to
branch or ignore the read-only class. If you do not want read-only classes to be
checked out, you can select one of the following options from the Read-only
Classes drop list on the Replace Text in Workspace dialog:

The Replace Text in Workspace dialog provides several features to make it easier to
select the lines where you want to make the replacement. Use the Set All button to
set the toggles for all the source code lines to on. Use the Clear All button to set the
toggles for all the source code lines to off. If you set the toggle for a method or
event handler name to on, this turns the toggles on for all relevant lines in the
method or event handler. If you set the toggle for a class name to on, this turns the
toggles on for all relevant lines in all methods and event handlers in the class. If
you set the toggle for a project name to on, this turns the toggles on for all relevant
lines in all methods and event handlers in all classes in the project.

Testing a Plan
The Repository Workshop provides the following testing commands:

Replacement Option Description

Ignore Will not make the replacement in the class.

Branch Will branch the class.

Checkout The default. Will attempt to check out the class.

Command Description

File > Compile All Plans Compiles all plans in your workspace, and reports
compilation errors.

Plan > Run > Test Run Project Runs the application locally from the start method and
reports errors.

Plan > Run > Test Run with
Profiling

Runs the application locally, like the Test Run Project
command, but also provides profiling. Provides
profiling for the client partition.

Testing a Plan

Chapter 3 Using the Repository Workshop 191

The following section describes how to compile the plans in your workspace. See
“Testing a TOOL Project” on page 262 for information on the commands for testing
a project.

Compiling Plans

The File > Compile All Plans command compiles all the plans in your workspace,
and reports the compilation errors. While it is not necessary to compile your plans
before running the application, this command allows you to check for syntax errors
without actually executing the code. Any compilation errors are reported in the
Error window.

➤ To compile all plans

1. Choose the File > Compile All Plans command, or single-click the Compile All
button on the toolbar.

Because compiling all the plans in the workspace will take some time, you
must confirm that you wish to do it. Once the Compile All Plans command
starts executing, you cannot cancel it.

The profiler counts instructions executed in the TOOL
interpreter, which is useful for finding problems in the
interpreted code and for viewing the dynamic call flow
of an application.

Plan > Run > Run Distributed Runs the application from the start method, using the
default configuration.

Plan > Run > Test Code
Fragment

Executes the TOOL start-up code that you specify,
which lets you run a segment of your application, or
runs any TOOL code fragment.

Plan > Run > Test Debug
Project

Starts the Debugger for the project, which allows you to
monitor the code as it is being executed. This runs the
application locally.

Command Description

Testing a Plan

192 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The Compile All Plans command automatically saves your workspace before
beginning the compilation, and saves incrementally during the compilation
process.

The Compile All Plans command compiles only those components that have
changed since your last compilation. If you wish to compile all your components,
regardless of whether or not they have changed, you can use the Utility > Force
Compile command. The submenu for the Force Compile command lets you choose
either All Plans, to force compilation of all plans in the workspace, or Selected Plan,
to force compilation of the currently selected plan.

The following section provides information about using the Error window for
project errors. For information about compiling Express models and generated
projects, see the Express documentation. For information about compiling iIS
plans, see the iPlanet Integration Server documentation.

Using the Error Window for Project Errors
The Error window displays the errors messages for the project in an outline field.

Figure 3-6 Error Window

Setting Repository Passwords

Chapter 3 Using the Repository Workshop 193

You can jump directly from one of these messages to the code that caused the error,
by double-clicking on the error you wish to find. The Method, Event Handler, or
Cursor Workshop will then open, moving the cursor to the beginning of the line
that contains the code that caused the error.

You can keep the Error window open as long as you need it. When you are finished
using the window, simply close it.

Setting Repository Passwords
For standard repositories, you can set workspace and baseline passwords using the
Repository Workshop. After setting the passwords, you can, of course, change
them at any time.

For secure repositories, the system manager must set the passwords when the
repository is initially created. However, after the secure repository has been
created, you can change the administrator, baseline, and workspace passwords
using the Repository Workshop.

Setting Passwords in a Standard Repository
For a standard repository, you can set workspace and baseline passwords. When
you set a workspace password, iPlanet UDS prompts for the password when the
user opens a workspace. When you set a baseline password, iPlanet UDS prompts
for a password when the user integrates the workspace.

A legal repository password is a string of 7-bit ASCII characters, of any length,
with no spaces. To turn password protection off, simply specify an empty
password.

Workspace password To set the workspace password on the current repository,
choose the File > Set Workspace Password command. On the Enter Password
dialog, you must specify the existing password (if one was previously set), the new
password, and the verification password (retype the new password).

Baseline password To set the baseline password on the current repository,
choose the File > Set Baseline Password command. On the Enter Password dialog,
you must specify the existing password (if one was previously set), the new
password, and the verification password (retype the new password).

Utilities

194 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Changing Passwords in a Secure Repository
For a secure repository, you can change the administrator, baseline, workspace,
and master passwords that were set when the secure repository was originally
created. In the Repository Workshop, you can change the administrator, baseline,
and workspace passwords. However, you must use Fscript to change the master
password (see Fscript Reference Guide).

A legal repository password is a string of 7-bit ASCII characters, of any length,
with no spaces. For secure repositories, a password is required and you cannot
specify an empty password.

Administrator password To change the administrator password on the current
repository, choose the File > Set Administrator Password command. On the Enter
Password dialog, you must specify the existing password, the new password, and
the verification password (retype the new password).

Baseline password To change the baseline password on the current repository,
choose the File > Set Baseline Password command. On the Enter Password dialog,
you must specify the existing password, the new password, and the verification
password (retype the new password).

Workspace password To change the password for the current workspace, choose
the File > Set Workspace Password command. On the Enter Password dialog, you
must specify the existing password, the new password, and the verification
password (retype the new password).

Utilities
The Repository Workshop provides the following two utilities:

• memory collection utility

• iPlanet UDS log utility

Collecting Memory
The Utility > Collect Memory command performs memory reclamation on the
memory of the development system. Normally you do not have to use this
command. However, it can be useful when you are testing timings to ensure that
no extra memory reclamations will cause the timings to be invalid from run to run.

Utilities

Chapter 3 Using the Repository Workshop 195

Modifying Log Flags
As you develop and test applications in the iPlanet UDS workshops, iPlanet UDS
logs messages in the trace window or log file as specified by the -fl flag on the
commands used to start the iPlanet UDS Workshops (see “Starting the iPlanet UDS
Workshops” on page 110) or the FORTE_LOGGER_SETUP environment variable
(described in the iPlanet UDS System Management Guide). If you did not specify a
log file name, iPlanet UDS logs the messages in the trace window.

The Repository Workshop allows you to change the filter settings used for logging
the messages. By default, iPlanet UDS uses the filter settings you specified with the
-fl flag or, if you did not use the -fl flag, the filter settings specified by the
FORTE_LOGGER_SETUP environment variable.

If you want to change the default filter settings at any point during your
development session, you can use the Utility > Modify Log Flags command. The
Modify Log Flags command opens a window, where you view and/or change the
filter settings in an array field. Figure 3-7 illustrates the Log Flags dialog:

Figure 3-7 Log Flags Dialog

Setting Workshop Preferences

196 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

To change the filter settings for an individual message, edit the fields in the array
row as follows:

See “-Fl Flag (iPlanet UDS Logger)” on page 795 for information about these
settings.

Inserting and Deleting Log Settings
You can request an additional log setting by inserting a new row in the array field
or eliminate a log setting by deleting the row from the array field. The Insert button
adds a new row above the selected row, using default values for each of the fields.
The Delete button removes the currently selected row.

Setting Workshop Preferences
The Repository Workshop allows you to set preferences that are saved as part of
your current workspace.

To set the workshop preferences, choose the File > Workshop Preferences…
command. This opens the Repository Workshop Preferences dialog, where you can
set any number of preferences.

Field How to fill it in

Message Select the message type from the drop list.

Service Select the service type from the drop list.

Group Enter integers in the two data fields to specify a range. The integers can be
from 1 to 63.

Level Enter an integer from 1 to 255. In general, lower numbers provide less detail
and higher numbers provide more detail.

Setting Workshop Preferences

Chapter 3 Using the Repository Workshop 197

Figure 3-8 Repository Workshop Preferences Dialog

The preferences you can set for the Repository Workshop fall into the following
general categories:

• workshop window size and position

• filter

• viewing preferences

• sorting preference

• saving preferences

• importing project preference

• font preference

Setting Workshop Preferences

198 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The workshop window size and position, filter, viewing, and font preferences are
general iPlanet UDS preferences and are described under “Setting Workshop
Preferences” on page 136. This section provides information about the preferences
specific to the Repository Workshop.

Sorting Preference
The sorting preference let you specify the default sorting used for the Plan browser.
The following table describes the sorting options:

Importing Project Preference
The Importing Project preference allows you to set the default behavior for the Plan
> Import command when the project being imported already exists in the
workspace. By default, the Importing Project preference is set to Prompts, which
prompts you with the Import Plan dialog described under “Importing a Plan” on
page 184.

The Merges option turns off prompting for the Import command and automatically
merges the imported project with the existing project. The Overwrites option turns
off prompting for the Import command and automatically overwrites the existing
project with the imported project. See “Importing a Plan” on page 184 for
information about overwriting and merging.

NOTE If you have iPlanet UDS add-on products installed, such as iPlanet
UDS Express or iPlanet Integration Server, you may have additional
preferences available in the Repository Workshop Preferences
dialog. For information about these preferences, see the
documentation on the particular add-on product.

Preference Description

Name Sorts the plans by name.

Kind Sorts the plans by kind.

Setting Workshop Preferences

Chapter 3 Using the Repository Workshop 199

Saving Preferences
There are two saving preferences in the Repository Workshop Preferences dialog:
Save Commits to Central and Save Before Running. Both these saving preferences
take effect for all the iPlanet UDS workshops, not just the Repository Workshop.

Saving Commits to Central
By default, when you give a Save All command in an attached shadow, your
changes are automatically committed to the central repository. However, if you
wish to improve repository performance when you are working with attached
shadows, you can set the Save Commits to Central toggle to off so that automatic
committing to the central repository is turned off. When automatic committing is
turned off, changes you make in the workspace are not made in the central
repository until you give a Commit to Central command or until you leave the
iPlanet UDS Workshops.

The advantage to turning off automatic committing is that the central repository
can handle a larger number of users or performance improves for the current
number of users. The disadvantage to turning off automatic committing is that you
can lose the changes you make in your workspace. Therefore, we recommend you
only turn off automatic committing when increasing repository performance is
critical.

Saving Before Running
Normally, changes to your workspace are saved when you give the Save All
command. The Save All command writes all changes made to anything in the
current workspace since the last Save All command permanently to disk. By setting
the Save Before Running toggle to on, you can request that your workspace be
automatically saved when you give a Run command. This ensures that you will not
lose your work if a problem occurs while you are running the application.

Setting Workshop Preferences

200 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

201

Chapter 4

Using the Project Workshop

This chapter provides conceptual information about TOOL projects and their
components, and describes how to use the Project Workshop.

In this chapter, you will learn how to:

• examine TOOL projects and external projects

• create a TOOL project

• modify a TOOL project

• checkout and branch project components

• test a TOOL project

• export and import classes

• set Project Workshop preferences

About Projects
A project is an application definition independent of the environments in which it
will run. A project can also be a library, providing definitions for use by other
projects.

There are three kinds of projects in iPlanet UDS:

Client project A client project defines a client application. The client project
defines a client partition, which usually provides the user interface, and one or
more server partitions. A client project also defines a start class and method. You
can run a client project using any of the commands on the Run menu.

Classes

202 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Server project A server project defines a shared service that you wish to deploy
for use by one or more client applications. The server project does not include a
client partition or start class and method. Because a server project does not run as
an independent application, you can run the project only with the Test Code
Fragment command.

Library project A library project provides a set of definitions that you wish to
deploy as a shared library. There are no partitions in a library, and you cannot run
it.

When you create a project, you do not need to specify its type. It is only when you
are ready to partition the project that you need to specify its type by using the
Configure As command. See “Using the Configure as Command” on page 678 for
information about the Configure As command.

Projects consist of:

• classes

• interfaces

• service objects

• project constants

• cursors

• start class and method (client projects only)

• supplier plans

• project properties

Each of these components is described in detail below.

Classes

The most important components of a project are its classes. The classes in the
project define the objects that make up the application. For example, each window
in the user interface is defined by a class. The classes also provide the methods that
control the flow of the application. For example, the Display method for a user
window class displays the window to the end user and provides the code that is
executed when the user interacts with the window.

Interfaces

Chapter 4 Using the Project Workshop 203

The classes in a project come from three sources:

iPlanet UDS library classes These classes are automatically accessible to every
project. The iPlanet UDS library classes provide the services for building the user
interface, manipulating data, and interacting with external services.

Custom supplier classes These are classes that were created by developers in
your organization specifically for use in building other projects. To use supplier
classes in your project, you designate the projects or libraries to which they belong
as “suppliers” for your project. Any classes in your supplier projects and libraries
are available to you for use in writing your methods.

Custom classes These are classes that you create specifically for your project.
Custom classes are always subclasses of selected iPlanet UDS classes or other
custom classes. For example, to design a new window for your application, you
create a subclass of the iPlanet UDS UserWindow class.

Structuring your application means deciding which classes to include in your
project. Some classes represent data that the application manipulates, such as a
“painting” in the Art Auction application. Other classes represent services that the
application uses, such as an image service.

Interfaces

An interface defines a set of class elements, without providing the code that
implements them. The interface provides the method and event handler signatures
that define a standard “interface” to an object. The code for the methods and event
handlers in the interface is provided by the classes that implement the interface.

Implementing an interface in a class means providing the code for all methods and
event handlers defined in the interface. Any number of classes can implement a
single interface, which provides multiple implementations for a single interface. In
addition, a single class can implement multiple interfaces.

You can use an interface as data type for any data item. The interface is the data
item’s declared type. However, when you create the actual object associated with the
data item, the object’s runtime type must be one of the classes that implement the
interface. In other words, the implementing class is the data item’s runtime type.

Service Objects

204 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

iPlanet UDS interfaces allow you to take advantage of two features: dynamic class
loading and multiple inheritance. See Chapter 6, “Using the Interface Workshop,”
for complete information about interfaces.

Service Objects

As described under “About Service Objects” on page 71, service objects provide the
basis for creating a distributed application. All of the distributed services with
which your application interacts are represented by service objects. For example, to
access a database from your application, you must create a service object to
represent that database. Likewise, to access an existing external application from
your iPlanet UDS application, you can create a service object to represent the
external application.

A service object is a named object that represents an existing external resource, an
iPlanet UDS shared business service that is going to be shared by multiple users, or
a service that you wish to replicate to provide failover or load balancing. The
service object contains information needed by the service as well as operations that
the service can perform.

When you create a service object, you name it so that it is accessible throughout the
distributed application. Any other services in the application can interact with the
service object in the same way that any two objects can interact, by invoking
methods and posting events.

In the Project Workshop, you need to declare all the service objects to be included
in the project. Later on, when you partition the application in the Partition
Workshop, iPlanet UDS assigns the service objects in the main project and all its
supplier projects to particular nodes in the environment.

Service Objects

Chapter 4 Using the Project Workshop 205

There are three kinds of service objects. The class you specify for the service object
determines which kind it is:

The individual properties for a service object depend on which kind of service
object it is. The iPlanet UDS Programming Guide provides conceptual information
about service objects and details about the service object properties. Accessing
Databases provides complete information on DBResourceMgr and DBSession
service objects.

Briefly, the service object properties are:

Visibility By default, a service object is shared between all the users and services
in the environment. There is only one copy of the service object in the application,
and any changes made to that service object are visible to any user or service in the
application that accesses the service object. However, you have the option of
limiting this sharing by setting the visibility to “User,” which creates a private copy
of the service object for each user of the service object.

Dialog Duration The dialog duration for a service object specifies the interval
over which the service object retains its connection with a particular caller after the
first reference to the partition starts the connection.

Specifying a particular dialog duration ensures that any caller that makes requests
from the service is bound to that particular service object for the specified interval.
Dialog duration also reflects the period of time that state information is stored in
the service object and affects the error handling techniques you use for the service
object.

Failover Failover means providing backup service objects to be used if the
primary service object fails. Failover provides built-in fault tolerance for the
application.

Service Object Class Description

DBResourceMgr DBResourceMgr Represents a DBMS installation.

DBSession DBSession Represents a database session for a
particular database resource manager.

TOOL Class Any custom class
(including C classes)
or any applicable
iPlanet UDS class

Represents a user-defined service.

Service Objects

206 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Load Balancing Load balancing means using multiple replicates of the service
object to provide simultaneous access for several clients at once. iPlanet UDS
automatically coordinates the connections to all the replicates by using a special
router partition. When you turn on load balancing, iPlanet UDS creates the router
automatically.

Environment Search List When the current environment is connected to other
environments, you can use service objects from other environments within the
current configuration. You can share an existing service in a connected
environment rather than starting that same service in the current environment. Or,
you can provide a list of service objects in connected environments to be used for
failover for a service object in the current environment.

The environment search path for a service object simply specifies a list of connected
environments. iPlanet UDS uses all service objects it finds in the path, in the order
in which they were specified.

Database Manager Name For DBResourceMgr and DBSession service objects,
you must specify the database manager name by choosing the appropriate external
manager name from the list of those that were previously defined in your
environment.

Database For a DBSession service object, you have the option of specifying the
name of the database for which you wish to start a session. If you do not specify the
name at this time, you can do so when you partition the project in the Partition
Workshop.

User Name and User Password For a DBSession service object, you have the
option of specifying the user name and password for the session. If you do not
specify them at this time, you can do so when you partition the project in the
Partition Workshop.

Attribute Values For a TOOL service object, you have the option of specifying
initial values for the simple public attributes.

Constants

Chapter 4 Using the Project Workshop 207

Constants

A constant is a literal string or numeric value that has a name. When you declare
the named constant, you specify a constant name and a value. You can then use the
name in place of the value in your TOOL code.

Project constant In the Project Workshop, you can define a constant as part of a
project. This means that any code in any of project’s classes can reference the
constant.

Class constant iPlanet UDS also allows you to define a constant as part of a class
using the Class Workshop. When a constant is defined as part of a class (rather
than a project), only the class that defines the constant can reference it directly by
name. To reference a class-level constant from any other class than the one that
defines it, you must qualify the constant name by including the class name.

Local constant In addition to the project and class constants, iPlanet UDS allows
you to declare local constants within your TOOL code. Like a local variable, a local
constant is available only within the statement block that declares it (see the TOOL
Reference Guide).

CAUTION Note that although you can use constants to specify values in your
TOOL code, you cannot use them to specify values in dialogs in the
iPlanet UDS Workshops. For example, you cannot use a constant to
specify the default value for a parameter in the Method Workshop.

Cursors

208 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Cursors

If you are planning to interact with a database, you may wish to define one or more
cursors for your project. A cursor is a row marker that you use to work with a set of
rows from a database. For example, working with a cursor, you can use the for
statement to loop through each of the rows in the result set of a select statement.
Because cursors are associated with the project as a whole, any code in any of the
project’s classes can reference them.

See “About Cursors” on page 613 for further background information about
cursors.

Start Class and Method
For end users to start the application, there must be an entry point. For an iPlanet
UDS application, you create an entry point by specifying a start class and a start
method. iPlanet UDS begins execution of the application by creating an object of
the start class and then invoking the start method on it.

Start class The start class specifies the object on which the start method will
operate. iPlanet UDS constructs a new object of the start class by creating an empty
object and invoking the Init method on it.

Init method Every class has an Init method that it inherits from the iPlanet UDS
Object class. The Init method is provided so that you can override it in your own
class and use it to initialize the object. Every time you construct an object of a given
class, iPlanet UDS automatically invokes the Init method on it.

Frequently the start class for a project is a UserWindow subclass. Creating a
UserWindow subclass provides the window that will be displayed to the user by
the start method.

Start method The start method is the method that will be invoked on the start
object. You can specify any method defined for the class as the start method.

When the start class for the project is a UserWindow subclass, the start method is
usually the Display method, which initializes the data for the window, opens the
window, and handles the window’s events.

Supplier Plans

Chapter 4 Using the Project Workshop 209

Supplier Plans
A supplier plan is an existing project or library that you can include as part of your
main project. Everything in the supplier project, including classes, interfaces,
service objects, constants, and cursors, becomes accessible to your current project.
Supplier plans can be TOOL projects, external projects (for example, C projects), or
libraries. If your project needs to access definitions or services defined in another
project or library, you must add that project to your list of suppliers. One project or
library can be a supplier to any number of other projects.

The main project is the project that you create to define the overall logic of an
application or service. The suppliers contain components that you need to use in
the main project. Together, the main project and its suppliers create the application
that you partition using the Partition Workshop. See “About Distributed
Applications” on page 651 for information about the relationship between
applications, projects, and partitions.

Restricted availability You can include any project in your workspace as a
supplier. However, if any of the projects you include are defined as having
“Restricted Availability,” you may need to define your own project as being
restricted. See “Project Properties” on page 210 for information.

Libraries as suppliers You can include any library in your workspace as a
supplier. However, before you can use a library as a supplier, it must be installed in
the development environment, and you must import it into the repository where
you wish to use it. Then, you must include the library in your workspace. See the
iPlanet UDS Programming Guide for information about installing and importing
libraries.

iPlanet UDS libraries Three iPlanet UDS libraries are automatically included in
every project. These libraries provide the iPlanet UDS classes that are the basis for
building your applications.These three iPlanet UDS libraries are:

iPlanet UDS
Library

Description

DisplayProject Classes for creating windows and the widgets on them.Usually called
“the Display library.”

Framework Foundation classes for building applications.

GenericDBMS Classes for accessing a DBMS.

Project Properties

210 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

To use iPlanet UDS, you must include the Framework library. The Display and
GenericDBMS libraries are optional, and if it is appropriate, you can exclude them
to increase efficiency. However, if your project has a user interface, you need to
include the Display library. And if your project interacts with any database
management system, you need to include the GenericDBMS library.

Optional iPlanet UDS libraries iPlanet UDS also provides several optional
libraries that you should include when you need them. For example, if you are
going to use Microsoft’s OLE 2 in your project, you must include the OLE library as
a supplier for the main project. You can see a list of the optional iPlanet UDS
libraries in the browser in the Repository Workshop.

Supplier plans for libraries Because libraries are static, classes within a library
cannot inherit from a TOOL class in a project that could be modified. Therefore, all
supplier plans for libraries must be libraries. You should not use a project as a
supplier plan for a library.

Project Properties
Projects have the following properties:

The following sections provide a general discussion of these properties.

Property Description

Project type A read-only property that indicates whether the project was
configured as a client, server, or library.

Restricted
availability

If this property is turned on, the TOOL project is restricted. You
may need to turn this property on only when the main project
includes a supplier project that is defined as “restricted.”

Compatibility level An integer that indicates the current compatibility level of the
application, server, or library.

Library Name A name that is used when the project is configured as a library or
included within a library distribution. When there is more than one
library within a library configuration, all the library names must be
unique.

The library name can be any length, however, on platforms where
there is an eight-character limit for file names, the library name will
be truncated to eight characters.

Project Properties

Chapter 4 Using the Project Workshop 211

Project Type
As described under “About Projects” on page 201, there are three kinds of projects.
The project type property for the project is a read-only property that shows the
project kind: Client, Server, or Library.

The default project type is Client. If you have not yet given a Configure As or
Partition command for your project, the project’s type will be Client.

Setting the Project Type
When you are ready to create the configuration for your project, you must choose
whether to deploy it as a client, server, or library. If you give the Configure As
Server command to create a server configuration, this sets the project type to
Server. Likewise, if you give the Configure As Library command to create a library
configuration, this sets the project type to Library. You can change the project type
at any time by giving a different Configure As command for it.

You can also change the project type using the Run > Partition command. The
Partition command lets you run a client project using its distributed configuration,
and is intended for client projects only. However, if you give the Partition
command for a server or library project, iPlanet UDS prompts you to change the
project type to Client.

See Chapter 14, “Using the Partition Workshop,” for information about the
Configure As and Partition commands.

Compatibility Level
The first time you create a new project, you do not need to be concerned about its
compatibility level. This feature is relevant only after you have already released the
application, server, or library and now want to create a new release. For detailed
information about upgrading applications, see the iPlanet UDS Programming Guide.

Normally if you plan to create a new release of your application, you should raise
its compatibility level. Incrementing the compatibility level enables you to install
and run the new release of the application in the same environments where older
releases of the application are installed.

However, it is not always necessary to increase the compatibility level of your
project. If you want to update an individual partition so that it is still compatible
with currently installed partitions, you can keep the same compatibility level. In
this case, the existing clients will be able to use the new server, or vice versa. For
example, you could update the AuctionMgr service for the Art Auction without
affecting the project’s client partition. See the iPlanet UDS Programming Guide for
information.

Project Properties

212 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Compatibility level for libraries A library distribution has a compatibility level
based on the compatibility level of the project for which you give the Configure As
Library command. Like an application’s compatibility level, the library
distribution’s compatibility level allows you to deploy different releases of the
same library within a single environment. The rules for when you need to raise the
compatibility level of a library distribution are the same as those for an application.
See the iPlanet UDS Programming Guide for information.

Restricted Availability
The Restricted Availability property is intended for use when you are integrating
your iPlanet UDS application with certain C routines, as described in Integrating
with External Systems. If your TOOL project does not include a restricted supplier
project—either a C project or another TOOL project— you can simply ignore this
property.

A C project is defined as having restricted availability when it can run only on
particular hardware or software. For example, if a C project encapsulates a C
electronic mail routine that calls out to an API, the C project may be restricted
because the API is available only on certain nodes in the environment. If an
unrestricted TOOL project includes any restricted projects (either C or TOOL), you
can use the service objects provided by those projects but you cannot create objects
using their classes. This is because the necessary hardware or software required by
the restricted project may not be available.

If you declare your TOOL project as restricted, all of its classes become restricted
and can thus create instances of restricted classes. However, such a declaration has
serious repercussions on how you can partition the project—the restricted TOOL
project will be limited to those nodes in the environment that can support its
restricted supplier projects.

NOTE In many cases, it is sufficient to restrict an individual class, rather
than the entire project (see “Restricted Property” on page 282 for
information). When you restrict an individual class, the method
code for the restricted class can create objects from classes in the
restricted project, while the “unrestricted” classes cannot.
Restricting an individual class rather than a project provides more
flexibility when you are partitioning the project.

Project Properties

Chapter 4 Using the Project Workshop 213

Writeable and Read Only Components
If you have opened your workspace for modifying, the project components are in
one of two states:

Writeable When a component is writeable, you can examine it or modify it. A
component is writeable when:

• The component is new. A component is new if you created the component after
the last time you integrated.

• The component is checked out. A component is checked out if you used a
Checkout command to check out the component.

• The component is branched. A component is branched if you have used a
Branch command to branch the component.

Read Only When a component is read only, you can examine it but not modify
it. A component is read only when:

• The component exists in the system baseline, but you have not yet checked it
out. In this case, you can check out the component to get write access to it.

• Another developer has checked out the component. In this case, the only way
to get write access to the component is to branch it.

• The component was generated by iPlanet UDS Express or iPlanet UDS iPlanet
Integration Server. You cannot modify project components that were created
by Express or iPlanet Integration Server from the Project Workshop.

Writeable icons Note that the writeable icons in the Project Component browser
indicate whether the component is new, checked out, branched, or generated. See
“Examining the Components” on page 218 for information.

See “Write Access to Project Components” on page 257 for information about
checking out and branching components.

If you have opened your workspace for reading only, then all the project
components are read only, and you cannot get write access to them.

Using the Project Workshop

214 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Using the Project Workshop
You enter the Project Workshop from the Repository Workshop either by opening
an existing project or library, or by creating a new project.

➤ To open an existing project or library

1. Double-click the project or library name, or select the project name or library
and choose the Plan > Open command.

iPlanet UDS opens the selected plan in the Project Workshop.

➤ To create a new project

1. Choose the Plan > New Project command.

The New Project dialog opens.

2. In the New Project dialog, enter the project name and click OK.

The Project Workshop opens.

The Project Workshop Window
The Project Workshop window, shown in Figure 4-1, consists of three parts: the
Project Components browser, the status line, and the toolbar, shown in Figure 4-2.

Using the Project Workshop

Chapter 4 Using the Project Workshop 215

Figure 4-1 The Project Workshop

Figure 4-2 The Project Workshop Toolbar

Toolbar

Project

Status line

Component
browser

New

New

New

New

New
Class

Window

Domain

Interface

New
Constant

Save

Run

Debug

PartitionNew
Service

Class

Class
Cursor

Object

Compile

View Menu

216 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

View Menu
The View menu in the Project Workshop provides the following toggles that let
you control which parts of the workshop are displayed:

Note that you can set your viewing preferences for the workshop by using the
Workshop Preferences command. These preferences are saved as part of your
current workspace. See “Setting Workshop Preferences” on page 272 for
information.

Access to Other Workshops
From the Project Workshop, you can access the following workshops:

Command Function

Toolbar Makes the toolbar visible or invisible.

Writeable Icon Makes the writeable icons visible or invisible.

Kind Icon Makes the component type icons visible or invisible.

Status Line Makes the status line visible or invisible.

Button Workshop How to access it

Class Workshop To create a new class, click the toolbar New Class button, or
choose the Component > New > Nonwindow Class
command. To open an existing class, double-click the class
name or select the class name and choose the Component >
Open… command.

Window
Workshop

To create a new window class, click the toolbar New
Window Class button, or choose the Component > New >
Window Class command.

Domain
Workshop

To create a new domain class, click the toolbar New
Domain Class button, or choose the Component > New >
Domain Class command.

Interface
Workshop

To create a new interface, click the toolbar New Interface
button, or choose the Component > New > Interface
command.

Leaving the Project Workshop

Chapter 4 Using the Project Workshop 217

Leaving the Project Workshop
To leave the Project Workshop, use the File > Close command to close the Project
Workshop. You can also use the system close box to close the window. Only the
current Project Workshop will be closed.

Examining a Project or Library
The Project Workshop allows you to examine any project or library in your
workspace. To examine a project or library, you must start from the Repository
Workshop.

➤ To open a project or library

1. In the Repository Workshop, double-click the project or library name.

or

1. In the Repository Workshop, select the project or library name.

2. Choose the Plan > Open… command.

The Project Workshop displays information about classes, interfaces, cursors,
service objects and constants directly on the main workshop window. The supplier
plans, start class and method, and project properties are not displayed on the main
workshop window. To view them, you must use the appropriate commands. The
following sections provide detailed information about how to examine each of the
project or library components.

Cursor
Workshop

To create a new cursor, click the Cursor Workshop button
in the toolbar, or choose the Component > New > Cursor
command. To open an existing cursor, double-click the
cursor name in the component list, or select the class name
and choose the Component > Open… command.

Partition
Workshop

Click the Partition Workshop button in the toolbar, or
choose the Run > Partition… command.

Debugger Click the Debugger button in the toolbar, or choose the Run
> Test Debug command.

Button Workshop How to access it

Examining the Components

218 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The Project Workshop also provides you with a history of any component. This
history shows you the checkout status of the component and provides a history of
the integrations performed on the component.

You can examine a library in the Project Workshop the same way you examine a
project. If the library was created with source code included, you will be able to
view the source code for the library’s methods, event handlers, and cursors.
Otherwise, you will be able to view only the definitions of the methods, event
handlers, and cursors, without the source code.

Note that all libraries are read only. You cannot modify the source code for a
library from the iPlanet UDS Workshops.

Examining the Components
By default, the Project Workshop displays all project or library components. A kind
icon by each component name indicates the kind of component.

To turn off the kind icons, switch off the View > Kind Icon toggle.

Icon Project Component

Nonwindow class

Window class

Domain class

Interface

Service object

Cursor

Constant

Examining the Components

Chapter 4 Using the Project Workshop 219

Filter drop list To view a list of only one kind of component, use the filter drop
list for the Project Workshop. The filter drop list allows you to choose a single
component kind, such as “Window Class” or “Service Object,” or various
combinations, such as “All Project Components” or “Nonconstant Components.”

Note that you can set your filter preferences for the workshop by using the
Workshop Preferences command. These preferences are saved as part of your
current workspace. See “Filters” on page 137 for information.

Writeable icons iPlanet UDS also displays a writeable icon by each component
name. The writeable icons indicate whether the current workspace has write access
to the component, and shows whether it is new, checked out, or branched. A blank
indicates that the component is unavailable. The icons are:

To turn off the writeable icons, switch off the View > Writeable Icon toggle.

Sorting by name or kind By default, the list of components is in alphabetical
order, sorting all components by name. If you wish to view the same list sorted by
component type, choose the View > Sort by Kind command. The Sort by Name
command specifies the default, sorting all components by name.

Component history The Project Workshop lets you display the following history
information about any project component:

• integration history

• version in the current workspace

• name of the workspace that has it checked out (if it is checked out)

Icon Plan

New

Checked out

Branched

Generated by iPlanet UDS Express or iPlanet Integration Server

Examining the Components

220 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

To display the component history, you use the Component > Show History...
command and specify how many previous integrations you wish to view.

➤ To display the component history

1. Select the component name from the Project Components browser.

2. Choose the Component > Show History… command.

3. In the Show Component History dialog, specify how many previous
integrations you wish to view and whether you wish to view the full or
abbreviated history.

4. Click the OK button to view the component history.

The Component History window opens.

5. When you are finished viewing the component history, simply close the
Component History window.

For further details about the information provided by the Show History…
command, see the Fscript ShowCompHistory command in Fscript Reference Guide.

The following sections describe how to examine the individual components.

Examining a Class

Chapter 4 Using the Project Workshop 221

Examining a Class

To view a list of the standard classes in the current project or library, excluding the
other components, choose “Nonwindow Classes” from the drop list in the Project
Components browser. The browser displays the names of all the standard classes.

To display the complete class definition, double-click the class name, or select the
class name and choose the Component > Open… command. This command opens
the Class Workshop, where you can examine the original class definition. See
“Examining a Class” on page 296 for information about using the Class Workshop
to examine a class.

If the class you wish to examine is not displayed in the Project Components
browser, you can use the Find Class/Interface… command to search for the
specified class in the current project and all its supplier plans.

➤ To search for a class

1. Choose the Edit > Find Class/Interface… command.

2. In the Find Class/Interface dialog, specify the class name and click the OK
button.

Examining a Window Class

To view a list of window classes in the current project or library, excluding the
other components, choose “Window Classes” from the drop list in the Project
Components browser. The browser displays the names of all the window classes.

To display the complete class definition, double-click the class name, or select the
class name and choose the Component > Open... command. This command opens
the Class Workshop, where you can examine the original class definition. See
“Examining a Class” on page 296 for information about using the Class Workshop
to examine a class.

Examining an Interface

222 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Examining a Domain Class

To view a list of the domain classes in the current project or library, excluding the
other components, choose “Domain Classes” from the drop list in the Project
Components browser. The browser displays the names of all the domain classes.

To display the complete domain class definition, double-click the domain name, or
select the domain name and choose the Component > Open… command. This
command opens the Class Workshop, where you can examine the original domain
class definition. See “Examining a Class” on page 296 for information about using
the Class Workshop to examine a class.

Examining an Interface

To view a list of the interfaces in the current project or library, excluding the other
components, choose “Interfaces” from the drop list in the Project Components
browser The browser displays the names of all the interfaces.

To display the complete interface definition, double-click the interface name, or
select the interface name and choose the Component > Open... command. This
command opens the Interface Workshop, where you can examine the original
interface definition. See “Examining an Interface” on page 341 for information
about using the Interface Workshop to examine an interface.

If the interface you wish to examine is not displayed in the Project Components
browser, you can use the Find Class/Interface… command to search for the
specified interface in the current project and all its supplier plans.

➤ To search for a interface

1. Choose the Edit > Find Class/Interface… command.

2. In the Find Class/Interface dialog, specify the interface name and click the OK
button.

Examining a Cursor

Chapter 4 Using the Project Workshop 223

Examining a Cursor

To view a list of cursors in the current project or library, excluding the other
components, choose “Cursors” from the drop list in the Project Components
browser. The browser displays the names of all the cursors.

To display the complete definition of an individual cursor, double-click on the
cursor name, or select the cursor name and choose the Component > Open...
command. This command opens the Cursor Workshop, where you can view the
original cursor definition. See Chapter 12, “Using the Cursor Workshop,” for
information on the Cursor Workshop.

Examining a Service Object

To view a list of service objects in the project or library, excluding the other
components, choose “Service Objects” from the drop list in the Project Components
browser. The browser displays the names of all the service objects.

To display the complete definition of an individual service object, double-click on
the service object name, or select the service object name and choose the
Component > Open... command. This command opens the Service Object
Properties dialog, shown below, where you can view the original definition.

Examining a Constant

224 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 4-3 Service Object Properties Dialog

See “Defining Service Objects” on page 234 for information about the Service
Object Properties dialog.

Examining a Constant

To view a list of constants in the project, excluding the other project components,
choose “Constants” from the drop list in the Project Components browser. The
browser displays the names and values of all the constants.

To display the complete definition of an individual constant, double-click the
constant name, or select the constant and choose the Component > Open...
command. This command opens the Project Constant Properties dialog, shown in
Figure 4-4, where you can view the original definition.

Examining Start Class and Method

Chapter 4 Using the Project Workshop 225

Figure 4-4 Project Constant Properties Dialog

Examining Start Class and Method
To view the start class and method for the project, choose the File > Start Class
Method command. This command opens the Start Class Method dialog, shown in
Figure 4-5, where you can view the current settings.

Figure 4-5 Start Class and Method Dialog

Examining Supplier Plans
To view the supplier plans for the project, choose the File > Supplier Plans…
command. This command opens the Supplier Plans dialog, shown in Figure 4-6,
which displays the list of projects and libraries included in the current project.

Browser button

Examining Extended Properties

226 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 4-6 Supplier Plans Dialog

Examining Extended Properties
To view the extended properties for a project component, select the component
name and choose the Component > Extended Properties... command.This
command opens the Extended Properties dialog, where you can view a list of the
extended properties set for the component. To view the value for an individual
property, select the property name in the Name field; the corresponding value is
displayed in the Value field.

Figure 4-7 Extended Properties Dialog

Creating a TOOL Project

Chapter 4 Using the Project Workshop 227

Creating a TOOL Project
The Project Workshop allows you to create only TOOL projects. To create any kind
of external project, such as a C project or a DCE project, you must write the project
definition in a file and use Fscript to load the definition. See Integrating with
External Systems for information.

To create a new TOOL project, you must start from the Repository Workshop.

➤ To create a new TOOL project

1. In the Repository Workshop, open your workspace for modifying.

2. In the Repository Workshop, choose the Plan > New Project command.

The New Project dialog (described under “Using the New Project Command”
on page 228) opens.

3. In the New Project dialog, enter the project name. If your project will not
contain windows or access a database, click off corresponding Include Display
or Include Database toggle.

4. In the Project Workshop, define the project components (as described in this
chapter).

5. Use the Save All command as necessary to save the changes to your
workspace.

To make the project available to other developers with whom you are sharing the
same repository, you must give the Update Workspace command and then test
your changes against the system baseline. After the project is tested, use the
Integrate Workspace command to add your new project to the system baseline. See
“Updating and Integrating a Workspace” on page 175 for information.

➤ To define project components

1. Define the classes, interfaces service objects, cursors, and constants for the
project.

2. Specify the supplier plans for the new project.

Using the New Project Command

228 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

3. Set the start class and method if appropriate.

4. Set the project properties if necessary.

The following sections describe these steps in complete detail.

Note that you can test your project at any time during development. See “Testing a
TOOL Project” on page 262 for information.

Using the New Project Command
The New Project command in the Repository Workshop creates a new project. At
this point, you specify the project name and indicate if your project will not include
windows or will not access a database.

A project name must be unique for all plans in the repository and for all
environments in which the application will run. (You cannot have more than one
application with the same name running in the same environment.) Also, iPlanet
UDS uses the first six characters of the project name for the application file names.
So keep this in mind when you choose the project name.

Excluding Display and GenericDBMS Libraries
Normally, when you create a new project, iPlanet UDS automatically includes the
iPlanet UDS Display and GenericDBMS libraries as suppliers for your project.
However, if you specify that the new project will not contain windows or will not
access a database, iPlanet UDS excludes the appropriate project, providing
increased efficiency. If you change your mind later and want to include an
excluded project, you can use the File > Supplier Plans… command to do so.

Note that you can explicitly control which projects and libraries are included in
your project with the Supplier Plans command. See “Specifying Supplier Plans” on
page 244 for information.

Figure 4-8 illustrates the New Project dialog:

Figure 4-8 New Project Dialog

Defining Classes

Chapter 4 Using the Project Workshop 229

When you create a new project, other workspaces will not be able to see the
contents of that project until after you give an Integrate Workspace command for
your workspace. See “Updating and Integrating a Workspace” on page 175 for
information.

Defining Classes
There are four ways to add a new class to your project:

The following sections describe how to use the Project Workshop to define a new
standard class, new window class, and new domain class. See “Importing and
Exporting Classes and Interfaces” on page 270 for information on the Import
Class/Interface… command.

How to add a class Description

Create a new class Use the Component > New > Nonwindow Class,
Window Class, or Domain class commands. See
below for descriptions.

Import a class Use the Component > Import Class/Interface…
command to import the class from a standard text
file.

Copy a class from another project
using drag and drop

You can copy an entire class definition from another
Project Workshop by dragging its name from the
other Project Component browser and dropping it
into the current project.

Copy a class from another project
using Copy or Cut command
with the Paste command

You can copy an entire class definition from another
Project Workshop by using the Edit > Copy or Cut
command menu to copy the class the clipboard and
then use the Edit > Paste command to paste the class
into the current project.

Defining Classes

230 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Creating a Standard (Nonwindow) Class

The Component > New > Nonwindow Class command creates a new class with the
name and superclass you specify. When you give the New Nonwindow Class
command, iPlanet UDS opens a Class Properties dialog, where you specify the
name and superclass for the class. See “Creating a Nonwindow Class” on page 303
for information about setting the class properties.

After you create the class, iPlanet UDS opens the Class Workshop. See Chapter 5,
“Using the Class Workshop,” for information about using the Class Workshop.

Creating a Window Class

The Component > New > Window Class command creates a new window class
with the name you specify. When you give the New Window Class command,
iPlanet UDS opens a Class Properties dialog, where you specify the window class
name. The superclass “UserWindow” is filled in automatically. You can change
this to a UserWindow subclass to create an inherited window. See “Creating a
Window Class” on page 304 for information about setting the class properties.

Opening the Window Workshop
After you create the window class, iPlanet UDS opens the Class Workshop. At this
point, you can either define the class elements for the window class or open the
Window Workshop to create the form for the window. To open the Window
Workshop, click the Window Workshop button or choose the File > Window…
command in the Class Workshop.

See “Creating a Class” on page 302 for information about defining the class
elements. See Chapter 7, “Using the Window Workshop,” and Chapter 9, “Using
the Menu Workshop,” for information about creating the window and menu bar
for the window class.

Defining Interfaces

Chapter 4 Using the Project Workshop 231

Creating a Domain Class

The Component > New > Domain Class command creates a new class with the
name and superclass you specify. When you give the Component > New > Domain
Class command, iPlanet UDS opens a Domain Class Properties dialog, where you
specify the name, superclass, form widget, and array widget for the class. See
“Creating a Domain Class” on page 305 for information about setting the class
properties.

After you create the domain class, iPlanet UDS opens the Class Workshop. See
Chapter 5, “Using the Class Workshop,” for information about using the Class
Workshop.

Defining Interfaces

There are four ways to add a new interface to your project:

How to add a interface Description

Create a new interface Use the Component > New > Interface... command. See
below for a description.

Import an interface Use the Component > Import Class/Interface… command to
import the interface from a standard text file.

Copy an interface from
another project using
drag and drop

You can copy an entire interface definition from another
Project Workshop by dragging its name from the other
Project Component browser and dropping it into the current
project.

Copy an interface from
another project using
Copy or Cut command
with the Paste command

You can copy an entire interface definition from another
Project Workshop by using the Edit > Copy or Cut command
menu to copy the interface the clipboard and then use the
Edit > Paste command to paste the interface into the current
project.

Defining Project Constants

232 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The Component > New > Interface command creates a new interface with the
name you specify.

➤ To create an interface

1. Click the New Interface button on the toolbar or choose the Component > New
> Interface command.

2. In the New Interface dialog, enter the interface name and click OK.

After the Interface Workshop opens, you can define the individual elements in the
interface. See “Creating an Interface” on page 347 for information.

Defining Project Constants

There are three ways to add a new constant to your project:

The Component > New > Constant command creates a new constant with the
name, type, and value you specify.

How to add a constant Description

Create a new constant Use the Component > New > Constant command. See below
for a complete description.

Copy a constant from
another project using
drag and drop

You can copy an entire constant definition from another
Project Workshop by dragging its name from the other Project
Component browser and dropping it into the current project.

Copy a constant from
another project using
the Copy or Cut
command with the
Paste command

You can copy an entire constant definition from another
Project Workshop by using the Edit > Copy or Cut command
to copy the constant to the clipboard and then using the Edit >
Paste command to paste the constant into the current project.

Defining Project Constants

Chapter 4 Using the Project Workshop 233

➤ To create a constant

1. Click the New Constant button, or choose the Component > New > Constant
command.

2. In the New Constant dialog, specify the name, type, and value for the constant.
The constant types are described below.

3. Click the OK button to add the constant to the project or the New button to
create another constant.

Constant types The constant types are the following:

Automatic type For an automatic type, the value you specify determines the type
of the constant. The types are the following:

Single quotes for strings Normally you do not need to enclose a string value in
single quotation marks. However, if you wish to create a string constant with a
value of an integer or a floating point, you must use single quotes. In addition,
because iPlanet UDS automatically truncates trailing spaces, you need to use single
quotes to specify a string value with trailing spaces.

Constant Type Description

Automatic iPlanet UDS determines the type based on the constant value (see
below). Use the Automatic type for strings.

Boolean Allows a value of TRUE or FALSE.

Double Allows a floating point number.

Integer Allows a positive or negative whole number.

String Allows an alphanumeric string.

Value Type

TRUE, FALSE boolean

Positive or negative whole number integer

Floating point number float

Character data (without quotes) string

Defining Service Objects

234 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Defining Service Objects

There are three ways to add a new service object to your project:

The Component > New > Service Object command creates a new service object.
This command opens the New Service Object dialog, where you must specify the
name of the service object and its base class.

After you fill in the New Service Object dialog, the Service Object Definition dialog
opens, where you enter the full service object definition.

How to add a service object Description

Create a new service object Use the Component > New > Service Object
command. See below for a complete description.

Copy a service object from
another project using drag and
drop

You can copy an entire service object definition from
another Project Workshop by dragging its name from
the other Project Component browser and dropping it
into the current project.

Copy a service object from
another project using Copy or
Cut command with the Paste
command

You can copy an entire service object definition from
another Project Workshop by using the Edit > Copy
or Cut command to copy the service object the
clipboard and then using the Edit > Paste command
to paste the service object into the current project.

Defining Service Objects

Chapter 4 Using the Project Workshop 235

➤ To create a service object

1. Click the New Service Object button, or choose the Component > New >
Service Object command.

The New Service Object dialog (described below) opens.

2. In the New Service Object dialog, enter the service object name and choose the
base class of the service object: TOOL class, DBResourceMgr, or DBSession.
Click the OK button when finished.

The Service Object Properties dialog (described below) opens.

3. In the Service Object Properties dialog, specify the class for the service and set
other properties.

4. Click the OK button to add the service object to the project.

Defining Service Objects

236 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

New Service Object Dialog
The New Service Object dialog, shown below, allows you to name the service
object and to choose the base class. The base class determines the properties that
will be available on the Service Object Properties dialog.

Figure 4-9 New Service Object Dialog

Service object name The service object name must be unique for the project. You
can use any legal iPlanet UDS name as described under “Using iPlanet UDS
Names” on page 131.

Base class for service object The base class for the service object is its general
type. The default base class for a service object is TOOL class, which provides a
user service object. If you wish to create a DBResourceMgr or DBSession service
object, click the appropriate radio button.

Service Object Properties Dialog
The Service Object Properties dialog contains a tab folder; the individual tab pages
that appear in the folder depend on the base class of the service object.

The following sections describe the options available on each of these tab pages.

Base Class for Service Object Tab Pages in Service Object Properties Dialog

TOOL Class General, Initial Values, Search Path.

DBResourceMgr General, Database, Search Path.

DBSession General, Database, Search Path, Connection.

Defining Service Objects

Chapter 4 Using the Project Workshop 237

General Page The General tab page contains the options that apply to all service
objects.

Figure 4-10 General Tab Page

Class property For a TOOL class service object, you must specify the class for the
service object. The service class can be any custom class, or it can be any iPlanet
UDS class that is allowed for service objects. (The iPlanet UDS documentation on
individual classes indicates whether a class can be used for a service object.) The
drop list for this field displays the classes in the current project. To enter a class that
is not on the list, type its name into the fillin field.

The class for a service object must be defined with the Distributed object runtime
property set to “Allowed.” At runtime, when iPlanet UDS creates the service
object, it automatically sets the IsAnchored attribute to TRUE. See “Distributed
Property” on page 286 for information about the Distributed object runtime
property.

For a DBResourceMgr service object, the service class is DBResourceMgr, and you
cannot change it. For a DBSession service object, the service class is DBSession, and
you cannot change it.

Visibility property For TOOL class and DBSession objects, the default visibility
is Environment. For DBResourceMgr service objects, the default is User. Choose
whichever is appropriate for your particular service. See iPlanet UDS Programming
Guide for information on visibility.

Defining Service Objects

238 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Dialog Duration property You must choose the dialog duration that the creator
of the class has implemented for the service. For DBResourceMgr service objects,
the dialog duration must be Session. For DBSession service objects, the default
dialog duration is Transaction, and the value can only be Session or Transaction.
See iPlanet UDS Programming Guide for information on dialog duration.

Failover property To provide failover services for your service object, click the
Failover toggle to on. This property allows you to replicate the partition that
contains the service object. See iPlanet UDS Programming Guide for information on
failover.

Load Balancing property To provide load balancing for your service object, set
the Load Balancing toggle to on. This property allows you to replicate the partition
that contains the service object. See iPlanet UDS Programming Guide for information
on load balancing.

Search Path property The Search Path tab page allows you to specify a default
environment search path for your service object.

NOTE iPlanet UDS does not automatically replicate your service objects for
load balancing or failover. Instead, in the Partition Workshop, you
must replicate the partitions to which the service objects are
assigned. You can replicate a partition either by assigning it to an
additional node (as described under “Assigning Partitions” on
page 699) or by setting the replication count for an individual
assigned partition on a single node (described under “Setting
Assigned Partition Properties” on page 700).

Defining Service Objects

Chapter 4 Using the Project Workshop 239

Figure 4-11 Search Path Tab Page

In the search path field, enter a string that lists, in the correct order, the
environments to be searched. The syntax for the search path string is:

path [(a)] [: path [(a)]...

path is:

(@ | @environment_name)

A special (a) option allows you to specify that the service object identified by a
specific path should automatically be started if necessary.

Environment variables You can use an environment variable to specify an
environment name. The value for the environment variable is set on first access to
the service object, using the value of the environment variable as set on the service
object’s partition. The syntax is:

${environment_variable_name}

Be sure to include the braces!

The following example illustrates a search path that looks first in the current
environment, second in the “la” environment, and last in the “sf” environment:

@:@la:@sf

Defining Service Objects

240 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

See iPlanet UDS Programming Guide for complete information about the service
object’s environment search path. See “Modifying a Service Object Definition” on
page 695 for information about setting the service object’s environment search path
in the Partition Workshop.

Database Page The Database tab page contains options for the DBResourceMgr
and DBSession service objects.

Figure 4-12 Database Tab Page

Database Manager property For DBResourceMgr and DBSession service objects,
the drop list for the Database Manager field displays all the external manager
names that were previously defined in your environment. You must choose a
manager name at this time, however, you can override this setting in the Partition
Workshop.

Database Name property For a DBSession service object, you have the option of
specifying the name of the database for which you wish to start a session. If you do
not specify it at this time, you can do so when you partition the project in the
Partition Workshop. The syntax for the database name is database management
system dependent (see Accessing Databases for information).

User Name and user Password properties For a DBSession service object, you
have the option of specifying the user name and password for the session. If you do
not specify them at this time, you can do so when you partition the project in the
Partition Workshop. The syntax for the user name and user password is database
management system dependent (see Accessing Databases for information).

Defining Service Objects

Chapter 4 Using the Project Workshop 241

Connection Page The Connection tab page allows you to specify options that
take affect when the connection is made to a database. For example, a common
option is DB_MAX_STATEMENTS, which controls how many TOOL SQL statements to
keep in the cache. See Accessing Databases for information about the Connection
options.

Figure 4-13 Connection Tab Page

➤ To specify a new connection option

1. On the Connection tab page, click the New... button.

The New Connection dialog opens.

2. Enter the name of the new connection option and click OK.

3. On the Connection tab page, enter the value for the new connection option and
click OK.

Initial Values Page The Initial Values tab page allows you to specify initial
values for the simple public attributes of TOOL class service objects.

Defining Cursors

242 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 4-14 Initial Values Tab Page

The array field on this page displays a list of all the simple public attributes in the
service object’s class. To specify the initial value for an attribute, simply enter its
value into the Value column opposite the attribute’s name. The value for an
attribute can be any constant that is compatible with the data type of the attribute.
Any simple attribute for which you do not specify a value will be set to its default
value. All attributes with class types will have an initial value of NIL.

Defining Cursors

There are three ways to add a new cursor to your project:

How to add a cursor Description

Create a new cursor Use the Component > New > Cursor command. See below for a
complete description.

Copy a cursor from
another project using
drag and drop

You can copy an entire cursor definition from another Project
Workshop by dragging its name from the other Project
Component browser and dropping it into the current project.

Defining Cursors

Chapter 4 Using the Project Workshop 243

The Component > New > Cursor command creates a new cursor. This command
opens the Cursor Properties dialog, where you specify the cursor name and
placeholders.

➤ To create a cursor

1. Choose the Component > New > Cursor command.

The Cursor Properties dialog opens.

2. In the Cursor Properties dialog, specify the cursor name and placeholders (see
“Creating a Cursor” on page 621 for information).

The Cursor Workshop opens.

3. In the Cursor Workshop, write the source code for the cursor.

See Chapter 12, “Using the Cursor Workshop,” for information on using the
Cursor Workshop.

Copy a cursor from
another project using
Copy or Cut command
with the Paste
command

You can copy an entire cursor definition from another Project
Workshop by using the Edit > Copy or Cut command to copy
the cursor to the clipboard and then using the Edit > Paste
command to paste the cursor into the current project.

How to add a cursor Description

Specifying Supplier Plans

244 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Specifying Supplier Plans
To specify the supplier plans, choose the File > Supplier Plans… command. This
command opens the Supplier Plans dialog, shown below, which displays the
projects and libraries that are already included in your project along with a list of
the available projects and libraries. In this dialog, you can either add or remove
items from the list of suppliers.

Figure 4-15 Supplier Plans Dialog

➤ To add a new project or library to the list of suppliers

1. Select the project or library name you wish to add.

2. Click the left-pointing arrow.

There are two other ways to add a new project or library to the list of suppliers:

• drag the name from the list of available plans and drop it onto the list of
suppliers

• double-click the name you wish to add; iPlanet UDS automatically moves it
onto the list of suppliers

If the project or library you wish to add to the list of suppliers is not in your
workspace, it will not be displayed on the list of available plans. In this case, you
must first use the Include Public Plan command in the Repository Workshop to
include the project or library in your workspace. Once the plan has been included
in your workspace, you can then add it to your list of suppliers.

Specifying Supplier Plans

Chapter 4 Using the Project Workshop 245

➤ To delete a supplier from the list

1. Select the project or library you wish to remove from the list.

2. Click the right-pointing arrow.

There are two other ways to remove a project or library from the list of suppliers:

• drag the name from the list of suppliers and drop it onto the list of available
projects

• double-click the name you wish to remove; iPlanet UDS automatically moves
the project or library off the list of suppliers and back to the list of available
items

Using a Library as a Supplier Plan
The iPlanet UDS Programming Guide provides complete information on creating,
deploying, and installing libraries. Once a library has been installed in your
development environment, you can use it as a resource for developing iPlanet UDS
applications. To use a library for development purposes, you must include the
library as a supplier plan:

➤ To use a library as a supplier plan

1. Import the library into the development repository where you wish to use it.

The repository into which you import the library must be a different one than
the one that contains the project originally used to define the library.

2. In the Repository Workshop, use the Include Public Plan command to include
the library in your workspace.

3. If desired, browse through the library using the Project Workshop.

4. In the Project Workshop, use the Supplier Plans... command to include the
library as a supplier for your project.

You include a library as a supplier for your project the same way you include a
project. Once the library is a supplier for your project, you can use its definitions
the same way you use the definitions in a supplier project.

Specifying Start Class and Method

246 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Specifying Start Class and Method
For a client application, you must specify a start class and method in the main
project. Although you do not need to set the start class and method when you first
create the project, you must set them before you can test the project with the Test
Run, Run Distributed, or Test Debug commands.

To specify the start class and method for the project, choose the File > Start Class
Method command. This opens the Start Class and Method dialog, shown below.
The start class can be any class in the project. The start method can be any method
defined for that class. Neither the start class nor method have to exist at the time
you fill in the properties. However, they do need to exist by the time you first test
the application.

Figure 4-16 Start Class and Method Dialog

To make it easier for you to specify the start method, the dialog provides a class
browser. When you click the browser button, iPlanet UDS opens a class browser
dialog, which displays the project classes and their methods. If you select a method
from this browser and click the OK button on the dialog, this will automatically fill
in the Start Class and Start Method field on the Start Class and Method dialog.

Browser button

Setting Project Properties

Chapter 4 Using the Project Workshop 247

Setting Project Properties
To set the properties for the project, choose the File > Properties… command. This
command opens the Project Properties dialog, shown below, where you can set one
or more properties. Simply ignore the properties that are not relevant for your
project.

Figure 4-17 Project Properties Dialog

Library Name property The Library Name property allows you to assign a name
to the project that is used when the project is configured as a library or included
within a library configuration. When there is more than one library within a library
configuration, all the library names must be unique. The library name can be any
length, however, on platforms where there is an eight-character limit for file
names, the library name will be truncated to eight characters.

Restricted Availability property The Restricted Availability property is intended
for use when you are integrating your iPlanet UDS application with C routines. If
your TOOL project does not include a supplier project, either a C project or another
TOOL project, that is defined as being restricted, you can simply ignore this
property.

Turn on the Restricted Availability property only if you know that you want your
TOOL project to have restricted availability. Turning this on means that iPlanet
UDS will then allow you to use the classes in your restricted supplier projects.
However, this has serious repercussions on the way you can partition the project.
See Integrating with External Systems for information on when to use the Restricted
Availability property.

Compatibility Level property If you wish to raise the release number for the
project, click the Increment button once. The compatibility level will increase by
one.

Setting Extended Properties on Project Components

248 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Setting Extended Properties on
Project Components

To set the extended properties on an individual project component, select the
component name and choose the Component > Extended Properties... command.
This command opens the Extended Properties dialog, where you can set any
number of properties for the component.

➤ To create a new property

1. Select the component name and choose the Component > Extended
Properties... command.

The Extended Properties dialog opens.

2. On the Extended Properties dialog, click the New button.

3. On the New Extended Property dialog, enter the property name and click OK.

4. On the Extended Properties dialog, enter the value for the property in the
Value field.

You can delete an extended property on the Extended Properties dialog by
selecting the property name and clicking the Delete button.

Modifying a TOOL Project

Chapter 4 Using the Project Workshop 249

Modifying a TOOL Project
The Project Workshop allows you to modify only TOOL projects. To modify an
external project, you must edit the project definition in the text file where it was
originally defined. See Integrating with External Systems for information.

Before modifying a TOOL project, you must have write access to the components
you wish to change. See “Write Access to Project Components” on page 257 for
information.

When you open your workspace in the Repository Workshop, you must open it for
modifying.

➤ To modify a project

1. In the Repository Workshop, choose the Plan > Open command, or
double-click the project name.

2. In the Project Workshop, choose the Component > Checkout (or Branch)
command to get write access to the components you wish to change (if they are
read only).

3. In the Project Workshop, make the desired changes.

4. Use the File > Save All command as necessary to save the changes to your
workspace.

If you are sharing a repository with other developers, you need to update your
workspace to test how your changes interact with the other developer’s changes.
You then need to integrate your workspace to make the modifications available to
your collaborators. See “Updating and Integrating a Workspace” on page 175 for
information.

The Project Workshop allows you to modify the project by:

• modifying the definitions of classes, interfaces, constants, service objects, and
cursors

• deleting classes, interfaces, constants, service objects, and cursors

• copying project components from other projects by dragging and dropping
component names

• modifying the supplier plans, the start class and method, the project
properties, and the extended properties for project components

Modifying a Class

250 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The Edit menu in the Project Workshop provides commands that let you use the
clipboard to copy or move project components from one project to another. The
Edit > Find Text… and Replace Text… commands let you find all occurrences of a
specified string within the source code for the project and to make global
replacements.

The following sections provide detailed information about how to modify a TOOL
project. “Reverting a Project” on page 256 provides information about how to
remove the modifications you have made to a project.

Modifying a Class

To modify a class, double-click the class name in the Project Components browser,
or select the class name and choose the Component > Open… command. This
command opens the Class Workshop, which displays the original definition of the
class. See “Modifying a Class” on page 322 for information about modifying a
class.

Modifying an Interface

To modify an interface, double-click the interface name in the Project Components
browser, or select the interface name and choose the Component > Open...
command. This command opens the Interface Workshop, which displays the
original definition of the interface. See “Modifying an Interface” on page 358 for
information about modifying an interface.

Modifying a Constant

Chapter 4 Using the Project Workshop 251

Modifying a Constant

To modify a constant, double-click the constant name in the Project Components
browser, or select the constant name and choose the Component > Open…
command. This command opens the Constant Properties dialog, where you can
make any desired changes.

Modifying a Service Object

To modify a service object, double-click the service object name in the Project
Components browser, or select the service object name and choose the Component
> Open… command. This command opens the Service Object Properties dialog,
where you can make your changes.

Modifying a Cursor

To modify a cursor, double-click the cursor name in the Project Components
browser, or select the cursor name and choose the Component > Open…
command. This command opens the Cursor Workshop, where you can modify the
selected cursor. See “Editing a Cursor” on page 622 for information on modifying
a cursor.

Modifying Project Properties

252 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Modifying Project Properties
The following commands allow you to modify the project properties:

Deleting Components
The Edit > Delete command lets you delete project components from the Project
Components browser. To delete a project component, it must be either new or
checked out (it cannot be branched or read only).

➤ To delete a project component

1. Select the component you wish to delete by clicking on the name.

2. Choose the Edit > Delete command.

3. Confirm that you wish to delete the component.

Copying and Moving Components
The Edit menu in the Project Workshop allows you to cut or copy a project
component onto the clipboard the same way you cut or copy text in a text editor.
Once the project component is in the clipboard, you can paste it into another
project definition.

Command Description

File > Start Class Method… Lets you change the start class and method for the project.

File > Supplier Plans… Lets you change the supplier plans for the project.

File > Properties… Lets you change the other project properties, including the
compatibility level and whether the project has restricted
availability.

Component > Extended
Properties...

Lets you change the extended properties set on individual
project components.

Finding and Replacing Text

Chapter 4 Using the Project Workshop 253

The commands on the Edit menu for using the clipboard are:

You can also copy a component from one Project Workshop to another using “drag
and drop.”

➤ To copy a project component

1. Drag the component name to the Project Component browser where you wish
to add the copy.

2. Drop the component name in the Project Component browser.

When you drag and drop a project component from one Project Workshop to
another, iPlanet UDS copies the entire component definition. For example, if you
drag and drop a class name, iPlanet UDS copies all the attributes, methods, events,
and event handlers associated with the class.

Order dependencies Note that if the component you are copying from an
existing project references other components that are not defined in the new
project, you will get an error. For example, if you try to copy a service object whose
class is not in the current project (or its suppliers), iPlanet UDS will not allow you
to copy the service object. Therefore, you must be sure to copy the components in
the correct order.

Finding and Replacing Text
The Edit > Find Text… and Replace Text… commands in the Project Workshop let
you search for all occurrences of a specified string within the method and event
handler source code for the project.

Finding Text
The Find Text… command finds all occurrences of the specified string in the
method and event handler source code in all classes in the project.

Menu item Function

Cut Removes the selected project component from the current project and copies
to the clipboard.

Copy Copies the selected project component onto the clipboard.

Paste Pastes the project component in the clipboard into the current project.

Finding and Replacing Text

254 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To find a string

1. Choose the Edit > Find Text… command.

The Find Text dialog opens.

2. In the Find Text dialog, specify the string you wish to search for and click the
OK button to start the search.

The default is a case-insensitive search. If you want a case-sensitive search,
click the Case Sensitive toggle to on.

3. When the search is complete, the Find Text in Project dialog opens, displaying
the class name, method or event handler name, and the line itself for each
source code line that contains the string.

4. Double-click any line in the Find Text in Project dialog to open the Method or
Event Handler Workshop to display the original source code.

Replacing Text
The Replace Text… command finds all occurrences of the specified string in the
method and event handler source code in all classes in the project.

Finding and Replacing Text

Chapter 4 Using the Project Workshop 255

➤ To make a global replacement

1. Choose the Edit > Replace Text… command.

The Replace Text dialog opens.

2. In the Replace Text dialog, specify the string you wish to search for and the
replacement string. Click the OK button to start the search.

The default is a case-insensitive search. If you want a case-sensitive search,
click the Case Sensitive toggle to on.

3. When the search is complete, another Replace Text in Project dialog opens,
displaying the class name, method or event handler name, and the line itself
for each source code line that contains the string.

4. In the Replace Text in Project dialog, click the toggle next to the line where you
wish to make the replacement. See below for further information about using
the Replace Text in Project dialog.

Finding and Replacing Text

256 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

5. In the Replace Text in Project dialog, click the Replace button to make the
replacements.

Read-only classes By default, if a class is read only, the Replace Text… command
automatically checks it out before making the replacement in its method source
code. If it cannot be checked out, you will be prompted to indicate whether you
wish to branch or ignore the read-only class.

If you do not want read-only classes to be checked out, you can choose one of the
following options from the Read-only Classes drop list on the Replace Text in
Project dialog.

Selecting Lines
The Replace Text in Project results dialog provides several features to make it
easier to choose the lines where you want to make the replacement. Use the Set All
button to click the toggles for all the source code lines to on. Use the Clear All
button to click the toggles for all the source code lines to off. If you click the toggle
for a method or event handler name to on, this turns the toggles on for all relevant
lines in the method or event handler. If you click the toggle for a class name to on,
this turns the toggles on for all relevant lines in all methods and event handlers in
the class.

Reverting a Project
The File > Revert command lets you erase all changes you have made to the project
and its components since your last Integrate Workspace command. The changes
that are reverted include the following:

• new components are removed

• deleted components are restored

• project properties are reverted

• modifications to existing components are removed

Replacement Option Description

Ignore Will not make the replacement in the class.

Branch Will branch the class.

Checkout Will attempt to check out the class (the default).

Write Access to Project Components

Chapter 4 Using the Project Workshop 257

After the project is reverted, the entire project will be in the same state it was in the
system baseline (not your workspace) the last time you used the Update
Workspace command.

For any project components that were checked out, the Revert command frees the
component for checkout by another workspace. For any project components that
were branched, the Revert command removes the branch.

➤ To revert your changes

1. Choose the File > Revert command.

2. Confirm that you wish to revert the project.

Write Access to Project Components
Until you give your first Integrate Workspace command for a new project, you
have write access to all its components. However, after you have integrated, the
project components are read only until you do one of the following:

• checkout the component

• branch the component

Typically, you make permanent changes to a component. Therefore, you should
checkout the component. The changes that you make to a component that you have
checked out are added to the system baseline when you give an Integrate
Workspace command. This makes your changes available to other developers
when they use the Update Workspace command on their own workspaces.

However, if you wish to make temporary changes or if the component is already
checked out by another user and you wish to test some changes, you can branch
the component. Branching a component gives you temporary write access to the
component without permanently affecting the repository. You cannot integrate a
branched component, so changes you make to a component that you have
branched are lost when you integrate your workspace. It is possible to convert a
branched component to be checked out and therefore make the changes
permanently, but this will work only if no other workspace has checked out the
component since you gave your last Update Workspace command.

Checking Out a Component

258 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

When you want to modify an existing project, you have the choice of checking out
individual components of the project that you want to modify, that is, specific
classes, interfaces, cursors, constants, or service objects, or you can check out all the
project components. Obviously, if you are collaborating with other developers, you
should only check out those components that you need. The following sections
describe first how to checkout and branch individual project components and then
how to check out and branch all the project components.

Checking Out a Component
The Checkout command gives you an exclusive write lock on the component.
Before you can checkout a component, the workspace must be open for modifying.
Only one workspace can checkout a component at a time.

After you have finished your modifications, you do not have to check the
component back in. It is automatically checked in when you integrate your
workspace as described under “Integrating a Workspace” on page 179.

➤ To checkout a project component

1. In the Project Component browser, select the component you wish to checkout.

2. Choose the Component > Checkout command.

3. When the component is checked out, the Project Components browser displays
a checkout icon by the component name.

If the component you checkout is branched, the branch will be converted to a
checkout, as long as no other workspace has checked out the component since you
gave your last Update Workspace command.

The Checkout command will fail if the component is already checked out by
another workspace. The error message will give the name of the workspace that
has checked out the component. The Checkout command will also fail if the
workspace does not have the latest version of the component. In this case, use the
Update Workspace command to bring the latest version of the component into
your workspace (see “Updating a Workspace” on page 176 for information).

If you wish to undo the changes you have made since the Checkout command, and
revert the component to the state it was in after your last Update Workspace
command, you can use the Undo Checkout/Branch command as described under
“Undoing Changes.”

Branching a Component

Chapter 4 Using the Project Workshop 259

Branching a Component
The Component > Branch command gives you temporary write access to a
component in order to test a change while someone else has checked out the
component. You cannot integrate changes in a branched component into the
system baseline.

Before you can branch a component, the workspace must be open for modifying.
Any number of workspaces can branch a component at the same time.

➤ To branch a project component

1. In the Project Component browser, select the component you wish to branch.

2. Choose the Component > Branch command.

3. When the component is branched, the browser displays a branch icon by the
component name.

If the component you branch is checked out, the checkout will be converted to a
branch. When a checkout is converted to a branch, your changes to the component
are retained in the workspace, but the component is free to be checked out by
another workspace after the next Save All command.

If you wish to undo the changes you have made since the Branch command, and
revert the component to the state it was in before your last Branch command, you
can use the Undo Checkout/Branch command as described next.

Undoing Changes
The Component > Undo command lets you erase all changes you have made to a
component since you gave the Checkout or Branch command. The component
reverts to the state it was in before the Checkout or Branch command, and the
component is freed for checkout by another workspace.

➤ To undo your changes

1. In the Project Component browser, select the component you wish to revert.

2. Choose the Component > Undo > Checkout/Branch command.

Checking out All Project Components

260 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

If you have deleted a component after having checked it out, you can restore the
component with the Undo command.

➤ To restore a component

1. Choose the Component > Undo > Deleted Checkouts... command.

2. In the Deleted Checkouts dialog, select the component you wish to restore.

3. Click the OK button to undelete the component.

The component you have restored will revert to the state it was in before you
originally checked it out. The restored component will appear in the Project
Components browser, and it will no longer be checked out.

Of course, if you have deleted a component that was never integrated, you cannot
use the Undo Deleted Checkouts… command to restore it.

Checking out All Project Components
The File > Checkout All Components command gives you an exclusive write lock
on all the existing project components. It does not, however, prevent other
workspaces from creating new project components or from changing the project
properties.

After you have finished your modifications to the project components, you do not
have to check the components back in. They are automatically checked in when
you integrate your workspace.

Before you can checkout all the project components, the workspace must be open
for modification.

➤ To checkout all project components

1. Choose the File > Checkout All Components command.

2. If some of the components are unavailable, you will be prompted to indicate
whether or not you wish to checkout only the available project components.

Click Yes if you wish to checkout the components that are available.

Click No if you want to cancel the operation, that is, you do not wish to
checkout any components.

Branching All Project Components

Chapter 4 Using the Project Workshop 261

There are two situations in which you will not be able to check out a project
component:

• another workspace has already checked out the component

• your workspace does not contain the latest version of the component because
another workspace integrated a new version of the component into the system
baseline since the last time you gave an Update Workspace command

If any of the project components are unavailable for checkout for the above reasons
and you indicated that you wish to checkout the available components, the
Checkout All Components command will checkout only the available components
and will display a warning message telling you that not all the components were
checked out. If you click the More button on the error dialog, you can see specific
information on the individual components. If any of the project components are
unavailable for checkout for the above reasons and you indicated that you only
wanted to checkout all the project components, none of the project components
will be checked out.

If any of the components in the project are branched, the Checkout All
Components command will convert the branches to checkouts. This will work only
if no other workspace has checked out the component since you gave the Branch
command.

If you wish to undo the changes you have made since the Checkout All
Components command, and revert the components to the state they were in after
your last Update Workspace command, you can use the Revert command as
described under “Reverting a Project” on page 256. You can also revert individual
project components with the Undo commands described under “Undoing
Changes” on page 259.

Branching All Project Components
The Branch All Components command gives you temporary write access to the
project components to test out changes while someone else has checked out the
components (or to patch a baseline). The changes you make to a branched
component cannot be integrated into the system baseline unless you convert the
branch to a checkout.

➤ To branch all project components

1. Choose the File > Branch All Components command.

If any of the components in the project are checked out, the checkouts will be left
intact. They will not be converted to branches.

Testing a TOOL Project

262 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

If you wish to undo the changes you have made since the Branch All Components
command, and revert the components to the state they were in after your last
Update Workspace command, you can use the Revert command as described
under “Reverting a Project” on page 256. You can also revert individual project
components with the Undo commands described under “Undoing Changes” on
page 259.

Testing a TOOL Project
The Project Workshop provides several different ways to test a project:

Testing a server project Because a server project does not have a start class and
method, you cannot run or debug the project. (Of course, if you run an application
that includes the server project, you can run or debug the server as part of that
application.) However, you can test a server project by compiling the classes or by
using the Test Code Fragment command to specify start-up code for the project.

Command Description

File > Compile Compiles all the classes in the project and reports the
compilation errors.

Run > Test Run Executes the project locally from the project’s start class and
method, and reports errors.

Run > Test Code
Fragment…

Executes the TOOL start-up code that you specify, which lets
you run a branch of your application, or runs any TOOL code
fragment.

Run > Test Debug Starts the Debugger for the project, which allows you to
monitor the code as it is being executed.

Run > Test Run With
Profiling

Executes the project locally from the project’s start class and
method, using the profiling options that you select. Provides
profiling for the client partition.

Run > Run Distributed Executes the project from the project’s start class and method,
using the default configuration.

Compiling the Project

Chapter 4 Using the Project Workshop 263

Compiling the Project

The File > Compile command compiles all the classes and interfaces in the project
and reports the compilation errors. While it is not necessary to compile your project
before you run it, this command allows you to check for syntax errors without
actually executing the code. Any compilation errors are reported in the Error
window (see “Using the Error Window” on page 269 for information).

Running the Project Locally

To run the project from the start class and method, choose the Run > Test Run
command or click the Run Project button. iPlanet UDS starts executing the project
by invoking the start method on an object of the start class, and it runs until the
application exits. Any errors are reported in the Error window (see “Using the
Error Window” on page 269 for information).

If you are unable to exit the application, you can use the Run > Cancel Run
command at any time to cancel execution.

Partitioning for testing purposes When you run a project locally, iPlanet UDS
automatically partitions your project so that as much of it as possible will run on
your client machine. This allows you to test the project independently of its
deployment environment. When you are using the Debugger, it also allows you to
step through code that would normally be executing remotely.

To partition your project for testing, iPlanet UDS changes the visibility for all your
Environment visible service objects to User visible. The user interface for the
application, the application start code, and all service objects that the client node
can support are assigned to the client partition. iPlanet UDS runs the client
partition directly on your workstation. (For information about client partitions, see
“About Partitions” on page 664.)

Running with Profiling

264 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Any service objects that the client node cannot support (because the external
manager or a restricted project is not available on the client node) are assigned to a
special private partition, which iPlanet UDS automatically installs on a suitable
node in your development environment. This ensures that two people testing the
same project will not accidentally share the same service object. For further
information about partitioning, see “About Application Configurations” on
page 661.

Running with Profiling
When you test run your application, you can request profiling for the client
partition. When you turn on profiling, the profiler counts instructions executed in
the TOOL interpreter, which is useful for finding problems in the interpreted code
and for viewing the dynamic call flow of an application.

Note that profiling takes affect for the client partition only. No profiling is
provided for the server partitions or for any method calls into the server partitions.

The following table describes the profiling options that you can request.

Setting Description

Log File Path Enter the name of the directory in which you want the log file
stored. When you open the Profiling Options dialog, the initial
log file path is $FORTE_ROOT/log. If you erase the initial log
file path from the properties dialog, and leave the Log File Path
setting blank, the log file path will default to the path from
which you started iPlanet UDS.

Log File Name Enter the name of the file in which to store the profile
information. The default is profile.txt.

Logger Flags Enter any additional trace flags, including user-defined flags
(see iPlanet UDS Programming Guide for information about
setting log flags).

Call Frequency By
Application

This setting, which is on by default, records all the methods
that are called during the execution of an application. The
output displays how many times each method was called, and
the total number of instructions executed during the execution
of the method. The methods are sorted in descending order of
instructions executed.

Running with Profiling

Chapter 4 Using the Project Workshop 265

As your application runs, trace information will appear in the log window. After
the application completes, you can open the log file for a complete record of all the
information that you requested in the Profiling Options dialog.

To test run with profiling, you use the Run > Test Run with Profiling command.
The Test Run with Profiling command opens the Profiling Options dialog, where
you must set the profiling options. At least one setting must be turned on (the Call
Frequency By Application options is on by default), otherwise, no profiling will be
provided.

Call Frequency By Task Turn on this toggle to record all the methods that are called
during the execution of a task. The output displays how many
times each method was called, and the total number of
instructions executed during the execution of the method. The
methods are sorted in descending order of instructions
executed.

Calltree for Application Turn on this toggle to record the call tree of an application. The
call tree shows a method and all of the methods that it calls.
For each of the called methods, all called methods are shown,
and so on. The methods are sorted in descending order of
instructions executed within each level of the call tree.

Calltree for Task Turn on this toggle to record the call tree of a task. The call tree
shows a method and all the methods that it calls. For each of
the called methods, all called methods are shown, and so on.
The methods are sorted in descending order of instructions
executed within each level of the call tree.

Method Entry and Exit Turn on this toggle to record each time a method is entered
and exited.

Memory Recovery Turn on this toggle to record each time a memory reclamation
occurs.

List Objects Collected Turn on this toggle to record the set of reclaimed objects.

List Objects Retained Turn on this toggle to record the set of retained objects.

Setting Description

Running with Profiling

266 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To test run an application with profiling

1. Choose the Run > Test Run With Profiling command.

The Profiling Options dialog opens.

2. Select the desired profiling options. By default, there is no profiling, so you
must choose at least one option.

3. Click OK.

As your application runs, trace information will appear in the log window. After
the application completes, you can open the log file for a complete record of all the
information that you requested in the Profiling Options dialog.

Running a Code Fragment

Chapter 4 Using the Project Workshop 267

Running a Code Fragment
You can use the Test Code Fragment… command to run any TOOL code fragment
or to specify temporary start-up code for your project.

Start-up code To specify start-up code for your project, create an object of a given
class and invoke a method on it (see the TOOL Reference Guide for information on
how to do this). For example, to run a single window, you could create a
UserWindow object and invoke the Display method on it.

The Test Code Fragment command opens the Run Code Fragment dialog, shown
below, where you can enter the TOOL code to be executed.

Figure 4-18 Run Code Fragment Window

➤ To run a code fragment

1. Choose the Run > Test Code Fragment command.

2. In the Run Code Fragment dialog, enter the TOOL code.

3. Click the Run button to execute the code.

Like the Test Run command, the Test Code Fragment command executes the code
until it exits or until you use the Cancel Run command to stop it. Any errors are
reported in the Error window (see “Using the Error Window” on page 269 for
information on this).

Partitioning used for project When you use the Test Code Fragment command
to start up a project, iPlanet UDS partitions your project the same way it does when
you run a project locally (described above).

Running the Project in a Distributed Environment

268 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Running the Project in a Distributed Environment
The Run > Run Distributed command runs the project using the current
configuration. The current configuration is the configuration that was open the last
time you used the Partition workshop. The Run Distributed command provides a
simple way to test the project in the development environment. See “Testing a
Client Configuration” on page 712 for information about testing a configuration.

To run the project using the current configuration, choose the Run > Run
Distributed command. iPlanet UDS starts executing the project by invoking the
start method on an object of the start class, and it runs until the application exits.
Any errors are reported in the Error window (see “Using the Error Window” on
page 269 for information).

The first time you run the project using the Run Distributed command, iPlanet
UDS starts up the remote partitions for the application and leaves them running,
even when you exit from the application. This is for efficiency reasons, so that the
next time you run the application, it is not necessary to restart the remote
partitions.

iPlanet UDS stops and restarts remote partitions as you make changes to the
project code that affects partitioning. iPlanet UDS also stops all remote partitions
when you exit from the iPlanet UDS workshops. However, if necessary, you can
stop remote partitions explicitly at any time by using the Run > Stop Remote
Partitions command. See “Running the Application” on page 714 for more
information about stopping remote partitions.

If you are unable to exit the application, you can use the Run > Cancel Run
command at any time to cancel execution. The Cancel Run command cancels the
client partition for the application. The remote partitions will still continue to run;
use the Stop Remote Partitions command to stop these.

Using the Error Window

Chapter 4 Using the Project Workshop 269

Using the Error Window
The Error window displays the error messages for the project or code fragment in
an outline field.

Figure 4-19 Error Window

You can jump directly from one of these messages to the code that caused the error.
In the Error window, double-click the error you wish to find. The appropriate
workshop will then open to highlight the code that caused the error.

You can keep the Error window open as long as you need it. When you are finished
using the window, simply close it.

Debugging the Project

270 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Debugging the Project

To debug the project, choose the Run > Test Debug command or click the
Debugger tool. The Debugger uses the start class and method as the starting point
for running the application. iPlanet UDS begins executing the application by
constructing a new object of the start class. The Debugger displays the code for the
start method in the Task Window, and suspends execution immediately before the
first statement in the start method.

Partitioning for debugging purposes When you debug a project from the Project
Workshop, iPlanet UDS partitions your project the same way it does when you run
a project locally (described under “Running the Project Locally” on page 263).
Running as much of the project as possible on the client partition allows you to step
through code that would normally be executing remotely. The Debugger only
allows you to step through code that is executing locally. If a method is invoked on
a remote object, iPlanet UDS executes the complete method. See Chapter 13,
“Using the Debugger,” for information about using the Debugger.

Importing and Exporting Classes and Interfaces
From the Project Workshop, you can import a single class or interface into your
project. The Import Class/Interface... command allows you to take a class or
interface that was exported from another project and add it to your project. The
class or interface export file must have been created either by the Export
Class/Interface… command or by the iPlanet UDS Fscript utility (see Fscript
Reference Guide for information on Fscript).

The Export Class/Interface… command in the Project Workshop allows you to
export a class or interface definition to a standard text file, which you can then
import into another iPlanet UDS project.

Importing a Class or Interface
The Component > Import Class/Interface… command takes an iPlanet UDS class
or interface definition stored in a text file and adds it to your project. The class or
interface definition that you import must have been created either by the Export
Class/Interface… command or by the iPlanet UDS Fscript utility.

Exporting a Class

Chapter 4 Using the Project Workshop 271

Overwriting an Existing class or Interface
You can import a new class or interface, or an existing class or interface. If the class
or interface you are importing already exists, the Import Class/Interface…
command will overwrite it. Therefore, you must be sure the existing class or
interface is in a writeable state, either new, checked out, or branched.

➤ To import a class or interface

1. Choose the Component > Import Class/Interface… command.

2. In the file selection dialog, specify the name of the file that contains the class or
interface definition.

After the class or interface has been successfully imported, iPlanet UDS displays a
message indicating that it was added to the project. The new class or interface
name is then displayed in the Project Components browser. If there is an error,
such as a bad file, iPlanet UDS displays an error message.

Importing multiple components The file that you import with the Import
Class/Interface... command can define any number of project component
definitions, including class, interface, service object, cursor, and constant
definitions. If the file that you import contains more than one component
definition, all component definitions in the file will be imported into the current
project.

Exporting a Class
The Component > Export Class/Interface… command writes the definition of the
current class or interface into a standard text file.

➤ To export a class or interface

1. In the Project Components browser, select the class or interface you wish to
export.

2. Choose the Component > Export Class/Interface… command.

3. In the file selection dialog, specify the name of the file to contain the definition.
If you give the name of an existing file, the Export Class/Interface… command
overwrites the file.

While the class or interface is being exported, iPlanet UDS displays a message
indicating that the component is being written to the specified file and prevents all
input until the export is complete.

Setting Workshop Preferences

272 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Setting Workshop Preferences
The Project Workshop allows you to set preferences that are saved as part of your
current workspace.

To set the workshop preferences, give the File > Workshop Preferences…
command. This command opens the Project Workshop Preferences dialog, where
you can set any number of preferences.

Figure 4-20 Project Workshop Preferences Dialog

The preferences you can set for the Project Workshop fall into the following general
categories:

• workshop window size and position

• default filter

• viewing preferences

• sorting preference

• font preference

The workshop window size and position, filter, viewing, and font preferences are
general iPlanet UDS preferences and are described under “Setting Workshop
Preferences” on page 136. This section provides information about the preferences
specific to the Project Workshop.

Sorting Preference

Chapter 4 Using the Project Workshop 273

Sorting Preference
The sorting preference lets you specify the default sorting used for the Project
Components browser. The following table describes the sorting options:

Preference Description

Name Sorts the project components by name.

Kind Sorts the project components by kind.

Datatype Sorts the project components by data type.

Sorting Preference

274 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

275

Chapter 5

Using the Class Workshop

This chapter provides conceptual information about classes and their elements,
and describes how to use the Class Workshop.

In this chapter, you will learn how to:

• examine a class

• create a class

• modify a class

• test a class

• set Class Workshop preferences

About Classes
The Class Workshop allows you to create custom classes specifically for your
project or library. Custom classes are always subclasses of iPlanet UDS classes or
supplier classes.

There are three kinds of classes in iPlanet UDS: standard classes, window classes,
and domain classes.

Nonwindow class A standard class (also called a “nonwindow class”) is a
template that defines an object. A standard class can be a subclass of any iPlanet
UDS class that allows subclassing or any custom class.

Window class A window class is always a subclass of the iPlanet UDS
UserWindow class, or one of its subclasses. When you create a window class,
iPlanet UDS automatically creates a window that is associated with the class. You
design the window using the Window Workshop.

About Classes

276 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Domain class A domain is a special kind of class that combines a DataValue
subclass with an iPlanet UDS widget. A domain class is always a subclass of one of
the iPlanet UDS nullable DataValue subclasses. The domain’s superclass
determines the type of data stored in the object and provides a SetValue method
for performing automatic data validation on it. A domain is also always associated
with a widget class. The widget class specifies the kind of widget, such as a data
field or a radio list, that is used to display the data when the domain is added to a
form.

Domain classes are intended mainly for use with the optional Business Model
Workshop (see A Guide to Express for information). However, you can also create
domains as customized widget types for use with the Window Workshop.

This section begins by providing conceptual information about the elements
common to all classes:

• attributes

• methods

• events

• event handlers

• constants

After the descriptions of the individual class elements, this section explains the
various class properties. The section concludes with background information about
window classes and domain classes.

Attributes

An attribute is a data item. You can think of it as a variable that is associated with a
single object (in fact, some object-oriented languages call attributes “instance
variables”).

Every attribute has a data type. The data type can be any simple data type or any
class.

About Classes

Chapter 5 Using the Class Workshop 277

Simple types The simple data types are boolean, numeric (with a choice of
integer, long, float, or double), string, and pointer. If an attribute has one of these
simple types, the attribute itself contains the data. For example, in the Art
Auction’s Painter class, the Born attribute is an integer type. This attribute stores a
numeric value, such as 1856, 1742, or 1910. When you create an attribute with a
simple type, its initial value is the default value for the data type (see the TOOL
Reference Guide).

Class types If the attribute has a class type, the attribute points to an object of that
class. The attribute contains a reference to the object and the object contains the
data. For example, the Bid class has an attribute called PaintingForBid of type
Painting. This attribute points to an object of the Painting class, which has its own
set of attributes.

Figure 5-1 Simple and Object Attributes

When you create the attribute with a class type, it has an initial value of NIL, which
means “no object.” You create the object for the attribute when you assign a value
to it in TOOL by using an object constructor. An object constructor creates a new
object and specifies values for one or more of its attributes. For information on
object constructors, see the TOOL Reference Guide.

Born Attribute

1952

PaintingForBid Attribute

About Classes

278 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Virtual Attributes

A virtual attribute is a special kind of attribute that does not store a value or point
to an object. Instead, a virtual attribute consists of two expressions, one that is
evaluated when the program sets the value of the attribute and another that is
evaluated when the program gets the value of the attribute. A virtual attribute is
useful when you want to provide an attribute that is based on a calculation. For an
example of a virtual attribute definition, see “Defining Virtual Attributes” on
page 311.

The Get expression for the virtual attribute is required, but the Set expression is
optional. A virtual attribute without a Set expression is a read-only attribute.

Methods

A method is a procedure that is specially written to operate on an object. Every
method has a statement block that contains the TOOL code that performs the
operations on the object. A method may also have a return type and one or more
parameters.

As an example, the Auction Manager’s Bid class has a CompleteBid method that
updates the bid on a painting. The bid parameter of this method specifies the latest
amount for the bid. The TOOL code for the method performs the work of updating
the Bid object and notifying interested clients that a new bid was made.

Chapter 10, “Using the Method Workshop,” contains detailed information about
methods and the Method Workshop.

Overloading Methods
In object-oriented programming, there can be more than one method with the same
name. This is called overloading the method. Overloaded methods have the same
name, but different parameters. See “Overloading Methods” on page 573 for
further information about overloaded methods.

About Classes

Chapter 5 Using the Class Workshop 279

Method signatures When there are two or more methods with the same name,
each method has its own method signature. A method signature is the method name
and the parameter list. For example, here are two method signatures for the
RequestFocus method:

RequestFocus()
RequestFocus(row:TemplateField, scrollPolicy:integer)

When you are working with an overloaded method in the Class Workshop, you
work with the individual method signatures associated with the overloaded
method as separate methods. For example, to update an overloaded method, you
open each method signature separately.

Converter methods A converter method is a special kind of method that you
create to adjust for the differences in a class element between two (or more)
versions of a class. When you are performing a class version upgrade of an iPlanet
UDS application (described under “Class Versions” on page 289), you must write
converter methods. The purpose of converters is to enable code that calls or expects
one version of a class (by invoking a method or posting an event, for example) to
actually use a different version of the class. A converter allows older and newer
code to communicate by “bridging” the differences between two versions of a
method or an event. The iPlanet UDS Programming Guide provides complete
information on converter methods.

Events
fAn event is a signal that something has changed. You use custom events with the
post statement to notify the rest of the application that something significant has
occurred. For example, the Art Auction uses the BidCompleted event to notify all
clients displaying a particular painting that a bid was made on that painting.

Every event has a name. You use this name when you want to trigger the event
(with the post statement) and respond to the event (with the event statement).

CAUTION You should not use converters without a thorough understanding of
iPlanet UDS upgrading features. Upgrading an iPlanet UDS
production environment requires very careful planning. See the
iPlanet UDS Programming Guide for complete information.

About Classes

280 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Event parameters An event may also have one or more parameters. The event
parameters allow you to pass data along with the notification that the event has
occurred. For example, the BidCompleted event has parameters that specify the
value of the bid, the time the bid was made, and the name of the bidder. Any
method responding to the event can then use those values for processing.

Like attributes, event parameters can be simple types or class types. A parameter
with a simple type contains the data. A parameter of a class type contains a
reference to an object of that class.

iPlanet UDS allows you to assign a default value for an event parameter. iPlanet
UDS uses this value for the parameter when the event is posted without specifying
a value for the parameter. The default value for the parameter must be compatible
with the parameter’s data type. For parameters with a class data type, the default
value can only be NIL, which means “no object.”

For further information on using events in TOOL, see the TOOL Reference Guide.

Event Handlers

An event handler is a named block of TOOL code that provides programming to be
executed in response to one or more events. The event handler provides reusable,
modular event handling code that you can include in any number of event
statements.

Storing named event handlers as part of a class definition allows you to provide
event handling code that is inherited by subclasses. This is especially useful when
you are creating window classes that inherit part of their physical layout from a
superclass. When window classes inherit event handlers along with widgets from
their superclass, they are inheriting the appropriate event handling code for the
inherited widgets. To use the inherited event handlers, a window subclass uses the
register statement within its event loop.

Event handlers can also be useful for storing event handling code in a modular,
reusable form. For example, when you are creating a window that is going to be
nested within other windows, you can define named event handlers for the nested
window. This provides event handling code that can be used by any other window
that runs the nested window.

About Classes

Chapter 5 Using the Class Workshop 281

Parameters for event handler All event handlers consist of a name and TOOL
event handling code to be included in one or more event statements. Some
handlers also include parameters, which allow the programmer to pass
information to the event handler, such as the object for which the events are being
handled.

Chapter 11, “Using the Event Handler Workshop,” contains detailed information
about event handlers and the Event Handler Workshop. For information on using
event handlers in TOOL, see the TOOL Reference Guide.

Constants

A constant is a literal string or numeric value that has a name. When you declare
the named constant, you specify a constant name and a value. You can then use the
name in place of the value in your TOOL code.

In the Class Workshop, you can define a constant as part of a class. This means that
any methods in the class can reference the constant. Other classes must reference
the constant with the syntax class_name.constant_name.

Note that using TOOL you can declare a local constant within a statement block
(only the current statement block can reference it). See the TOOL Reference Guide for
information on referencing constants and on declaring local constants.

CAUTION Remember, although you can use constants to specify values in your
TOOL code, you cannot use them to specify values in dialogs in the
iPlanet UDS Workshops. For example, you cannot use a constant to
specify the default value for a parameter in the Method Workshop.

About Classes

282 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Visibility of Class Elements
Class elements can be public or private.

Public class elements By default, the methods, attributes, events, event handlers,
and constants in a class are public, which means that any other classes in the
project can access them. When a method is public, a method in any class can invoke
it. When an attribute is public, a method in any class can set its value. When an
event is public, a method in any class can use the post statement to post it. When
an event handler is public, any method in any class can register the event handler.
And when a constant is public, any method in any class can reference it.

Private class elements When you define any method, attribute, event, event
handler or constant, the properties dialog where you define the class element
provides the option of specifying the class element as “private.” A private method,
attribute, event, event handler, or constant can be accessed only by the class that
defines it, not by any other classes (even its own subclasses). Only methods in the
current class can set the value of the private attribute, invoke a private method,
post a private event, register a private event handler, or reference a private
constant.

Extended Properties of Class Elements
The extended properties feature allows you to assign arbitrary name-value pairs to
the individual class element. You can use the extended properties on a class
element for whatever purpose you choose. For example, you might wish to use
them for comments.

Restricted Property
The Restricted property for a class is intended for use when you are integrating
your iPlanet UDS application with certain C routines, as described in Integrating
with External Systems. You only use the property if your TOOL class needs to create
instances of a restricted class—otherwise, ignore this property.

A C project is defined as having restricted availability because it can run only on
particular hardware or software. For example if a C project encapsulates a C
electronic mail routine that calls an API, the C project may be restricted because the
API is available only on certain nodes in the environment. If a restricted C project is
a supplier plan of a TOOL project, it is likely that one of the TOOL classes will need
to create an instance of the restricted C class.

About Classes

Chapter 5 Using the Class Workshop 283

If all the classes in a project will have the restricted property, you can choose the
Restricted project property in the Project Workshop. See “Restricted Availability”
on page 212 for information.

Implementing Interfaces
An interface defines a set of class elements, without providing the code that
implements them. The interface provides the method and event handler signatures
that define a standard “interface” to an object. The code for the methods and event
handlers in the interface is provided by the classes that implement the interface.

For example, the AdaptableAuction sample application defines a
TaxCalculationIFace interface, which provides a method signature and an event
signature related to calculating taxes on a sale. The method is called CalculateTax
and the event is called TaxCalculated. The code for CalculateTax is provided by the
TaxCalculationImp class, which implements the TaxCalculationIFace interface.

See Chapter 6, “Using the Interface Workshop,” for background information on
interfaces and instructions about using the Interface Workshop to create them.

Implementing an interface in a class means providing the code for all methods and
event handlers defined in the interface. The implementing class must also define
every event in the interface. You cannot exclude any of the methods, event
handlers, or events, or you will get a compile error. Constants and virtual attributes
do not need to be implemented in the implementing class.

A single class can implement multiple interfaces. In addition, the class may also
define functionality of its own. The multiple inheritance example described in the
iPlanet UDS Programming Guide shows classes that implement the Sortable interface
to complement their basic functionality.

To implement an interface in a class, you use the Class Workshop. The Class
Properties dialog for an individual class allows you to list one or more interfaces
which the given class will be implementing. Any number of interfaces can be
implemented by a given class. And any number of classes can implement the same
interface.

About Classes

284 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Object Runtime Properties
The object runtime properties of a class affect basic behavior of the objects you
create from the class. Briefly, the properties are:

The reason the object runtime properties are optional is that turning on any of the
object runtime properties affects performance. Therefore, you should only turn on
a property when you need the functionality for your particular application. For
example, in the Art Auction application, the Painting and Artist classes do not turn
on the Distributed property because they do not need to be distributed. However,
the AuctionMgr class is a distributed service that is designed to be service object;
therefore the Distributed property is turned on for this class.

For best performance, you should set the object runtime properties as follows:

The following sections provide information about the individual object runtime
properties.

Property Description

Shared Lets you create shared objects, which allow multiple tasks to access and
change the data.

Distributed Provides access to objects on remote partitions.

Transactional Lets you create transactional objects, which can participate in iPlanet
UDS transactions.

Monitored For classes mapped to window widgets, automatically refreshes the
display when data is updated.

Property Allowed? Subclass Override?

Shared no no

Distributed no no

Transactional no no

Monitored no no

About Classes

Chapter 5 Using the Class Workshop 285

Shared Property
The Shared property determines whether or not an object of the given class can be
shared.

Shared objects A shared object allows multiple tasks to access and change its
data. iPlanet UDS provides the locking necessary to prevent conflicts. If one task
invokes a method on a shared object in order to modify its state, iPlanet UDS does
not allow any other methods to be invoked on the object until the first method
completes. If one task sets the value of an attribute, iPlanet UDS locks the object
until the change is complete. It is illegal for multiple tasks to operate on non-shared
objects. See the iPlanet UDS Programming Guide for more information on shared
objects.

IsShared attribute for object Turning on the Shared property for a class means
that you can set the IsShared attribute for an object of the class to TRUE. The lock
required for shared objects incurs some overhead, so you should set the IsShared
attribute of the object on only when necessary. For information about the IsShared
attribute of the Object class, see the Framework Library online Help.

The following settings are available for the Shared property:

Setting Description

Disallowed Objects of the current class cannot set the IsShared attribute to TRUE.

Allowed Objects of the current class can set the IsShared attribute to TRUE.

Is Default Specifies an initial setting of the IsShared attribute to TRUE. Normally, the
initial setting for the IsShared attribute is FALSE.

The Is Default setting does not take effect for the start class of a project. To
set the IsShared attribute to TRUE for the start class, you must do so in the
Init method of the start class.

About Classes

286 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Distributed Property
When you define a service for which all partitions must access the same object,
iPlanet UDS allows you to turn on the Distributed property for the class. When the
Distributed property is on, any changes you make to the object will be visible to all
partitions in the application because all partitions are referencing the same object.
In fact, if you are planning to create a service object from the class, you must turn
on the Distributed property. All service objects must be distributed. In the Art
Auction, the AuctionMgr class that defines the Auction Manager service is
distributed because it provides an environment-wide shared service and it is
therefore necessary for all partitions to access the same object.

See the iPlanet UDS Programming Guide for further information about distributed
objects.

The following settings are available for the Distributed property:

Subclass
Override

Determines if subclasses inherit the Allowed and Is Default settings from
the current class, and specifies whether the subclasses can change the
setting.

Turning on Subclass Override specifies that subclasses do not inherit the
settings and can change their values. The subclass is initially set to the
default values for the Shared property, but can then set the Shared
property as appropriate.

Turning off Subclass Override specifies that subclasses inherit their
superclass’ values and the subclass cannot change them. If you change a
superclass with existing subclasses from Subclass Override on to off, all its
subclasses will be changed to use the same values as the superclass Is
Default setting.

Setting Description

Disallowed Distributed references are not allowed for objects of the current class.

Allowed If an object of the current class is anchored (that is, its isAnchored
attribute is set to TRUE), a distributed reference is allowed for an object.

Is Default When Is Default is on, all objects of this class will be anchored (that is, the
IsAnchored attribute set to TRUE) and will allow distributed references.

The Is Default setting does not take effect for the start class of a project. To
set the IsAnchored attribute to TRUE for the start class, you must do so in
the Init method of the start class.

Setting Description

About Classes

Chapter 5 Using the Class Workshop 287

Transactional Property
The Transactional property determines whether or not an object of the given class
can participate in transactions. If an object is transactional, operations that you
perform on the object during a transaction will be part of the transaction. If you
change the object’s attributes during the transaction, the changes will be rolled
back if the transaction aborts. If the object is not transactional, operations that you
perform on the object will not be part of the transaction. If you change an object’s
attributes during the transaction, the changes will not be rolled back if the
transaction aborts. See the iPlanet UDS Programming Guide for more information
about transactional objects.

IsTransactional attribute for object Turning the Transactional property on for a
class means that you can set the IsTransactional attribute for an object of the class
to TRUE. For information about the IsTransactional attribute of the Object class, see
the Framework Library online Help.

The following settings are available for the Transactional property:

Subclass
Override

Determines if subclasses inherit the Allowed and Is Default settings from
the current class, and specifies whether the subclasses can change the
setting.

Turning on Subclass Override specifies that subclasses do not inherit the
settings and can change their values. The subclass is initially set to the
default values for the Distributed property, but can then set the
Distributed property as appropriate.

Turning off Subclass Override specifies that subclasses inherit their
superclass’ values and the subclass cannot change them. If you change a
superclass with existing subclasses from Subclass Override on to off, all its
subclasses will be changed to use the same values as the superclass Is
Default setting.

Setting Description

Disallowed Objects of the current class cannot set the IsTransactional attribute to
TRUE.

Allowed Objects of the current class can set the IsTransactional attribute to TRUE.

Is Default Specifies an initial setting of the IsTransactional attribute to TRUE.
Normally, the initial setting for the IsTransactional attribute is FALSE.

Setting Description

About Classes

288 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Monitored Property
The Monitored property determines whether or not the display is refreshed when
objects of the class are updated. Normally, when you make changes to the value of
an object and the object is being displayed on a window, iPlanet UDS automatically
refreshes the display to reflect the changes. (See “Window Classes” on page 290 for
information about classes that are displayed on windows.) However, if you know
that a certain class of objects will never be displayed, you can set this property off
for the class to increase efficiency. See the IsMonitored attribute of the Object class
in the Framework Library online Help for more information about monitored
objects.

The following settings are available for the Monitored property:

The Is Default setting does not take effect for the start class of a project.
To set the IsTransactional attribute to TRUE for the start class, you must
do so in the Init method of the start class.

Subclass
Override

Determines if subclasses inherit the Allowed and Is Default settings from
the current class, and specifies whether the subclasses can change the
setting.

Turning on Subclass Override specifies that subclasses do not inherit the
settings and can change their values. The subclass is initially set to the
default values for the Transactional property, but can then set the
Transactional property as appropriate.

Turning off Subclass Override specifies that subclasses inherit their
superclass’ values and the subclass cannot change them. If you change a
superclass with existing subclasses from Subclass Override on to off, all
its subclasses will be changed to use the same values as the superclass Is
Default setting.

Setting Description

Disallowed Objects of the current class will never be displayed.

Allowed Objects of the current class may be displayed.

Setting Description

About Classes

Chapter 5 Using the Class Workshop 289

Class Versions
A class version is a property of a class that uniquely identifies one definition of that
class. Class versions are for performing class version upgrades (rolling upgrades)
of iPlanet UDS user applications that are currently deployed. This upgrade
approach is recommended primarily for applications that must always be running
(“high-availability” or 7 x 24 applications) or applications for which the time to
distribute software to all parties may be very long (weeks).

Class versions and project compatibility level The class version uniquely
identifies one definition of that class (all its attributes, methods, events, and so on).
Within a project’s compatibility level, a class can have multiple versions. While
only one version of a class can be loaded in a single partition, a deployed
application can have multiple versions of one or more classes (on different
partitions) that work together. For more information about using class versions, see
the iPlanet UDS Programming Guide. You can specify the version of a class by using
the Version property on the Class Properties dialog (see “Using the Class
Properties Dialog” on page 306 for information).

Class versions require hand-coded converters (a special type of method) so that
partitions based on different class versions can communicate during the upgrade
process. Converters contain code that makes up for differences between the class
versions. For more information about converters, see the iPlanet UDS Programming
Guide.

Subclass
Override

Determines if subclasses inherit the Allowed setting from the current class,
and specifies whether the subclasses can change the setting.

Turning on Subclass Override specifies that subclasses do not inherit the
setting, but can change their values. Turning off Subclass Override
specifies that subclasses inherit their superclass’ values and the subclass
cannot change them.

CAUTION You should not use class versions without a thorough understanding
of iPlanet UDS upgrading features. Upgrading an iPlanet UDS
production environment requires very careful planning. See the
iPlanet UDS Programming Guide for complete information.

Setting Description

About Classes

290 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Default Init Method
When you create any class, iPlanet UDS provides a default Init method. After the
Init method is created, you can modify it as desired using the Method Workshop.

The Init method is automatically invoked on an object immediately after you
construct it. The default Init method simply invokes the Init method that the class
inherits from its superclass.

super.init;

You can edit the default Init method to initialize attributes with values, and to
create objects that you plan to reference.

Window Classes

A window class provides a window that you can display to the end user, along
with methods for manipulating the window. You will use window classes in any
project that has a user interface.

To create a window for your user interface, you can either create a subclass of the
iPlanet UDS UserWindow class or a subclass of another window class.

UserWindow class Creating a subclass of the UserWindow class automatically
provides you with an empty window, which you can then format using the
Window Workshop. The UserWindow class also provides the methods you need
for manipulating your window (for example, to open it or close it). For details, see
the Display Library online Help.

Inherited windows Creating a subclass of another custom window class (rather
than the UserWindow class) creates an inherited window. An inherited window
inherits its initial appearance from its superclass window. You can extend the
inherited form and menu bar by adding new widgets to the subclass window in the
Window Workshop.

Note that you can also use either kind of window class as a page template for
printing. See “About Windows as Page Templates” on page 378 for information
about page templates.

About Classes

Chapter 5 Using the Class Workshop 291

Window attributes When you format the window in the Window Workshop,
you add one or more widgets to the window’s form and menu bar (a widget is a
window control, such as a radio box or a push button). Adding a widget to the
window is equivalent to creating a new attribute for the class. The name that you
assign to the widget in the widget’s properties dialog becomes the attribute name
that you can use to reference the widget. For example, if you add a push button to a
form called “OKButton,” this adds an OKButton attribute to your window class
that has the type PushButton. When you examine a window class in the Class
Elements browser, iPlanet UDS displays both the window attributes and the other
attributes.

Window attributes and data attributes The window attributes in a user window
class have a special relationship to the attributes that contain the data that is
displayed in the window. To display data in a widget, iPlanet UDS maps the
attribute that contains the data and the window attribute that displays the data
together by name. For example, if you want your text field to display the artist’s
name for a painting, you name your text field widget “Artist” because you already
have a TextData attribute called “Artist” that stores the artist’s name. iPlanet UDS
then displays the current value of the Artist attribute in the Artist text field widget.
When you examine a window class in the Class Elements browser, you can use the
workshop filter to display the window attributes for the class in a separate list. See
“Examining a Class” on page 296 below for further information on this.

Display method To display a window, you normally write a Display method. As
a convenience, iPlanet UDS provides a default Display method, which you can
modify to suit your needs. Typically, the Display method for a window initializes
the data for the window and displays it on the end user’s screen. In addition, the
Display method includes the event loop statement for the window, which
handles all the events on the window. The default Display method contains the
following code:

See the iPlanet UDS Programming Guide for information about writing the Display
method.

Code Example 5-1 Default Display Method

self.Open();
event loop
when task.Shutdown do
exit;

end event;
self.Close();

About Classes

292 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Domain Classes

A domain class combines a DataValue subclass with an iPlanet UDS widget. A
domain class is always the subclass of an iPlanet UDS nullable DataValue subclass,
which determines the type of data stored in the domain object, and it is always
associated with a widget class, which specifies the widget used to display the
domain object’s data. Domain classes are intended mainly for use with the optional
Business Model Workshop, where you use them to assign the type of an attribute
(see A Guide to Express for information). However, you can also use domains as
customized widget types in the Window Workshop.

DataValue subclass When you create a domain class, you must specify one of the
iPlanet UDS nullable DataValue subclasses as its superclass. The domain’s
superclass determines the type of data stored in the object and provides methods
for manipulating it.

The following table describes the classes that you can use to create a domain:

DataValue Subclass Description

IntegerNullable Stores and manipulates whole numbers of any size, and the NULL
value.

TextNullable Stores and manipulates character data, and the NULL value.

DoubleNullable Stores and manipulates floating point data, and the NULL value.

BooleanNullable Stores and manipulates logical values of TRUE and FALSE, and the
NULL value.

BinaryNullable Provides access to database BLOB types, and the NULL value.

DateTimeNullable Stores and manipulates date-time data, and the NULL value.

DecimalNullable Stores and manipulates floating point data to a specific precision of
up to thirty decimal places, and the NULL value.

ImageNullable Stores and manipulates image data in a standard, portable format,
and the NULL value.

IntervalNullable Stores and manipulates intervals of time, and the NULL value.

About Classes

Chapter 5 Using the Class Workshop 293

See the Framework Library online Help for detailed information on the nullable
DataValue subclasses.

A domain class could define a numeric value that needs special validation and
formatting, such as a credit card number, salary, or phone number. It could also
define a predefined list of text values, such as a list of three marital states (Married,
Single, and Divorced), that you want to use throughout your application. iPlanet
UDS Express provides several predefined domains, including IntegerDomain,
DateDomain, and MoneyDomain.

Default SetValue method When you create a domain class, you can request that
iPlanet UDS provide a default SetValue method, which provides automatic data
validation and specialized input conversion. After the domain is created, you can
open its SetValue method in the Method Workshop to examine it or modify it as
desired. See the Framework Library online Help for information about the
SetValue method.

Default FillString method You can also request that iPlanet UDS provide a
default FillString method, which converts the data in the domain into string form.
After the domain is created, you can open its FillString method in the Method
Workshop to examine it or modify it as desired. See the Framework Library online
Help for information about the FillString method.

Form widget Every domain class is associated with a widget class, called its form
widget. The form widget class specifies the class of widget, such as DataField or
RadioList, that is used to display the data when the domain is added to a form.
When you create the domain class, you must choose one of the widget classes that
is appropriate for the data type. For example, imagine you have MaritalStatus
domain, which is a subclass of IntegerNullable. When the MaritalStatus domain is
displayed on the form, you can request that it be displayed as a radio list.

When you specify the form widget for the domain, you can set many of the
individual properties for the widget, including its size properties and help topic.
For example, for a radio list, you could specify the text values for each of the radio
buttons in the list. For MaritalStatus domain, you can specify the text values of
Married, Single, and Divorced as part of the form widget properties.

Array widget Optionally, the domain class can also be associated with an array
widget. The array widget specifies the widget that is used when the domain is
displayed within an array field. By default, the array widget is the same as the form
widget. However, because arrays need to display information in a condensed form,
you may wish to specify a different widget type for this case. For example, if the
form widget for MaritalStatus is a radio list, you may wish to specify a drop list as
the array widget, because a drop list would look much more appropriate in the
array field.

Using the Class Workshop

294 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

When you specify the array widget for the domain, you can set many of the
individual properties for the widget, including its size properties and help topic.
For example, for the drop list, you could specify the text for each item in the list.

Using the Class Workshop
You enter the Class Workshop from the Project Workshop either by opening an
existing class or by creating a new class.

Opening an existing class If you wish to examine or edit an existing class,
double-click the class name, or click the class name and choose the Component >
Open command.

Creating a new class If you wish to create a new class, click the New Class, New
Window Class, or New Domain Class button, or choose the Component > New
Nonwindow, New Window Class, or New Domain Class command.

The Class Workshop Window
The Class Workshop window, shown in Figure 5-2, consists of three parts: the
Class Elements browser, the status line, and the toolbar, as shown in Figure 5-3.

Using the Class Workshop

Chapter 5 Using the Class Workshop 295

Figure 5-2 Class Workshop Window

Figure 5-3 Class Workshop Toolbar

View Menu
The View menu in the Class Workshop provides the following toggles to control
which parts of the workshop are displayed:

Command Function

Toolbar Makes the toolbar visible or invisible.

Kind Icon When this toggle is turned on, the kind icons are displayed in the Class
Elements browser. When turned off, the kind icons are not displayed.

Status Line Makes the status line visible or invisible.

Toolbar

Class Elements browser

Status line

New Compile

Save

New

New Virtual
All

New

New
Event

Handler New
Constant

Method

EventAttribute

Attribute

Examining a Class

296 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Leaving the Class Workshop
To leave the Class Workshop, use the Close command to close the workshop or use
the system close box to close the window. This closes only the current workshop.

Examining a Class
If the class you wish to examine is not already displayed, you have the following
options. You can:

• use the Project Workshop to open a class in the current project

• use the Open Superclass command in the Class Workshop to open one of the
superclasses for the current class

• use the Find Class/Interface… command in the Class Workshop to search for
the specified class in the current project and all its supplier plans

➤ To examine a class from the Project Workshop

1. In the Project Components browser, double-click the class name.

You can also select the class name, and choose the Component > Open
command.

➤ To examine a class with the Open Superclass command

1. Choose the File > Open Superclass command.

2. On the Open Superclass submenu, select the superclass you wish to open.

Inherited When this toggle is turned on, the Class Elements browser displays the
inherited class elements. When turned off, the inherited class elements are
not displayed.

Converter When this toggle is turned on, the Class Elements browser displays the
converter methods defined for the class. When turned off, the converter
methods are not displayed.

Command Function

Examining a Class

Chapter 5 Using the Class Workshop 297

➤ To examine a class with the Find Class/Interface… command

1. Choose the Edit > Find Class/Interface… command.

2. In the Find Class/Interface dialog, specify the class name and click the OK
button.

The Class Workshop displays information about attributes, methods, events, event
handlers, and constants directly on the main workshop window.

The class properties are not displayed on the main workshop window. To view
them, you must use the appropriate command. The next sections provide detailed
information about how to examine each of the class elements. This is followed by
information about viewing the class properties, and information about viewing the
window and menu for a window class.

A special feature of the Class Workshop is the ability to use the Find Text…
command to search for any source code in the class that contains a specified string.
See “Modifying a Class” on page 322 for information.

Examining the Class Elements
By default, the Class Workshop displays all class elements. A kind icon by each
component name indicates the kind of element.

Icon Class Element

Attribute

Virtual attribute

Method

Event

Event handler

Constant

Examining a Class

298 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

To turn off the kind icons, switch off the View > Kind Icon toggle.

Filter drop list To view a list of only one kind of class element, use the filter drop
list for the Class Workshop. The filter drop list allows you to choose a single class
element, such as “Attributes” or “Events,” or “All Class Elements.”

Note that you can set your filter preferences for the workshop by using the
Workshop Preferences command. These preferences are saved as part of your
current workspace. See “Setting Workshop Preferences” on page 329 for
information.

Sorting By default the list of elements is in alphabetical order, sorting all class
elements by name. The View menu provides the following commands for sorting
the class elements:

Inherited command By default the Class Elements browser shows only the
elements defined specifically for the selected class. To view the elements inherited
by the class from its superclasses, choose the View > Inherited command.

Examining Methods

To display only the methods for the class, choose “Methods” from the filter drop
list in the Class Elements browser. For methods, the browser displays the name
and return type for each method.

To display the complete definition of the method, double-click on the method
name, or select the method name and choose the Element > Open command. This
command opens the Method Workshop, which displays the original method
definition, including the method source code. See Chapter 10, “Using the Method
Workshop,” for information about using the Method Workshop.

Command Description

Sort By Name The default. Sorts the elements by name.

Sort by Kind Sorts the elements by kind, attribute, event, method, and event
handler.

Sort by Datatype Sorts the elements by their data types.

Sort by Superclass For inherited elements, sorts the elements by their superclass.

Examining a Class

Chapter 5 Using the Class Workshop 299

Overloaded methods If the method is overloaded, the Class Workshop displays
the method name as a folder, and opens the folder to display the individual
method signatures for all the methods that share the same name. To display the
complete definition of an individual method, double-click the signature for the
particular method you wish to examine.

Converters By default, converter methods are not displayed in the Class
Workshop. To display the converters in the current class, use the View >
Converters command. You can also use the View Converters option in the Class
Workshop Preferences dialog to specify that converters be displayed in the Class
Workshop browser. See “Viewing Preferences” on page 137 for information.

To display the complete definition of an individual converter, double-click on the
converter name or use the Element > Converter command as follows.

➤ To view converter methods

1. Select the method or event for which you wish to see converters.

2. Select Element > Converter.

3. If you have converters defined for the current method or event, you will see the
Open for New Method and Open for Obsolete Method commands on the
slide-off menu.

Examining a Class

300 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

4. Choose either the Open for New Method or Open for Obsolete Method
commands, depending on which converter you want to see. If you have no
converters defined, the slide-off menu shows “Create” instead of “Open.”

Examining Attributes

To display only the attributes for the class, choose “Attributes” from the filter drop
list in the Class Elements browser. This displays both nonwindow and window
attributes. For attributes, the browser displays the name and data type for each
attribute.

To display the complete definition of an individual attribute, double-click on the
attribute name, or select the attribute name and choose the Element > Open
command. For nonwindow attributes, this command opens the Attribute
Properties dialog, which displays the original definition of the attribute. For
window attributes, this command opens the Window or Menu Workshop, and
highlights the selected attribute.

Window attributes To display only the window attributes for the class, choose
“Window Attributes” from the filter drop list in the Class Elements browser.

Nonwindow attributes To display only the nonwindow attributes for the class,
choose “Nonwindow Attributes” from the filter drop list in the Class Elements
browser.

Examining Events

To display only the events for the class, choose “Events” from the filter drop list in
the Class Elements browser. For events, the browser displays the name of each
event.

To display the complete definition of an individual event, double-click on the event
name, or select the event name and choose the Element > Open command. This
command opens the Event Properties dialog, which displays the original definition
of the event.

Examining a Class

Chapter 5 Using the Class Workshop 301

Examining Event Handlers

To display only the event handlers for the class, choose “Event Handlers” from the
filter drop list in the Class Elements browser. For event handlers, the browser
displays the name for each event handler.

To display the complete definition of the event handler, double-click on the event
handler name, or select the event handler name and choose the Element > Open
command. This command opens the Event Handler Workshop, which displays the
original event handler definition, including the handler source code. See
Chapter 11, “Using the Event Handler Workshop,” for information about using the
Event Handler Workshop.

Examining Constants

To display only the constants for the class, choose “Constants” from the filter drop
list in the Class Elements browser. For constants, the browser displays the name
and value for each constant.

To display the complete definition of an individual constant, double-click on the
constant name, or choose the constant name and give the Element > Open
command. This command opens the Constant Properties dialog, which displays
the original definition of the constant.

Examining Class Properties
To display the class properties, choose the File > Properties… command. This
command opens the Class Properties dialog, which displays the current settings for
the class properties.

The Class Properties dialog contains three tab pages: General, Runtime, and
Interfaces Implemented. For information on the individual properties on these
pages, see “Using the Class Properties Dialog” on page 306.

Creating a Class

302 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Examining Extended Properties for
Class Elements
To display the extended properties for an individual class element, select the class
element and choose the Element > Extended Properties... command. The Extended
Properties dialog opens, displaying the current settings for the extended
properties.

Examining Window Classes
For window classes, the Class Workshop allows you to view only the methods,
attributes, events, event handlers and constants for the class. To view the window
or menu for a window class, you must open the Window or Menu Workshops,
respectively.

Opening the Window Workshop To open the Window Workshop for the class,
choose the File > Window… command or click the Window Workshop button on
the toolbar. See Chapter 7, “Using the Window Workshop,” for information about
using the Window Workshop.

Opening the Menu Workshop To open the Menu Workshop for the class, choose
the File > Menu… command, or click the Menu Workshop button on the toolbar.
See Chapter 9, “Using the Menu Workshop,” for information about using the Menu
Workshop.

Creating a Class
To create a class, you must start from the Project Workshop. The Project Workshop
allows you to create three kinds of classes: nonwindow classes, window classes,
and domain classes. The following sections provide detailed instructions for
creating each kind of class.

Creating a Class

Chapter 5 Using the Class Workshop 303

Creating a Nonwindow Class

The New > Nonwindow Class command creates a new standard class with the
name and superclass you specify.

➤ To create a nonwindow class

1. In the Project Workshop, choose the Component > New > Nonwindow Class
command, or click the New Nonwindow Class button on the toolbar.

The Class Properties dialog opens.

2. On the General tab page, specify the name and superclass for the class.

3. Set any other properties for the class as described under “Using the Class
Properties Dialog” on page 306.

4. Click the OK button to create the class.

After you create the class, iPlanet UDS opens the Class Workshop, where you can
define the class elements.

Creating a Class

304 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Creating a Window Class

The New > Window Class command creates a new window class, using the name
you specify.

➤ To create a window class

1. In the Project Workshop, choose the Component > New > Window Class
command, or click the New Window Class button on the toolbar.

The Window Class Properties dialog opens.

2. On the General tab page, enter the class name.

The superclass “UserWindow” is filled in automatically. If you wish to create
an inherited window, replace the value “UserWindow” with the name of the
appropriate window superclass.

3. Set any other properties for the class as described under “Using the Class
Properties Dialog” on page 306.

4. Click the OK button to create the class.

After you create the window class, iPlanet UDS opens the Class Workshop, where
you can define the class elements.

Creating a Class

Chapter 5 Using the Class Workshop 305

Creating the window To create the window for the class, choose the File >
Window… command or click the Window Workshop button on the toolbar. See
Chapter 7, “Using the Window Workshop,” for information about using the
Window Workshop.

Creating the menu bar To create the menu bar for the class, choose the File >
Menu… command or click the Menu Workshop button on the toolbar. See
Chapter 9, “Using the Menu Workshop,” for information about using the Menu
Workshop.

Creating a Domain Class

The New > Domain Class command creates a new domain with the name,
superclass, and widget you specify.

➤ To create a domain class

1. In the Project Workshop, choose the Component > New > Domain Class
command, or click the New Domain Class button on the toolbar.

The Domain Class Properties dialog opens.

2. On the General tab page, specify the name and superclass for the domain. The
superclass can be any nullable DataValue subclass.

3. Choose the form widget for the domain and, if desired, set its properties by
clicking the Properties button.

Creating a Class

306 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

4. If you want the array widget to be different than the form widget, choose the
array widget type and, if desired, set its properties by clicking the Properties
button.

5. Set any other properties for the class as described under “Using the Class
Properties Dialog” on page 306.

6. Click the OK to button create the class.

After you create the domain class, iPlanet UDS opens the Class Workshop, where
you can define the class elements.

Using the Class Properties Dialog
The Class Properties dialog contains a tab folder with the three tab pages: General,
Runtime, and Interfaces Implemented.

General Page
The General tab page contains the basic properties you must set in order to define
the class. For domain classes, the General tab page allows you to set the form and
array widgets associated with the domain.

Figure 5-4 General Tab Page on Class Properties Dialog

Class Name Type the class name into this field. The class name can be any legal
iPlanet UDS name that is unique for the project.

Superclass Type the name of an existing superclass, or use the browser button to
display a list of classes from which you can make a selection.

Creating a Class

Chapter 5 Using the Class Workshop 307

Restricted To make the class restricted, set this toggle to on.

Create Default Methods For domain classes, you can request that default
SetValue and FillString methods be created for the class by setting this toggle to on.

Form Widget For domain classes, choose the form widget type from the drop list.
To set the form widget’s properties, click the Properties button.

Array Widget For domain classes, choose the array widget type from the drop
list. To set the array widget’s properties, click the Properties button.

Runtime Page
The Runtime page contains the object runtime properties and the Version property.
Because the defaults for the object runtime properties are suitable for most
situations, most users do not need to set these properties at this point. See “Object
Runtime Properties” on page 284 for details about using the object runtime
properties most efficiently.

Figure 5-5 Runtime Page of Class Properties Dialog

Shared To change the setting, use the drop list to select: Disallowed, Allowed, Is
Default, or Subclass Override.

Distributed To change the setting, use the drop list to select: Disallowed,
Allowed, Is Default, or Subclass Override.

Transactional To change the setting, use the drop list to select: Disallowed,
Allowed, Is Default, or Subclass Override.

Creating a Class

308 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Monitored To change the setting, use the drop list to select: Disallowed, Allowed,
or Subclass Override.

Version A version is zero (0) by default. You can set the version of a class to a
higher number by clicking the up arrow to increment the version number. Note
that you should use class version numbers only when you are performing a class
version upgrade of a deployed iPlanet UDS application. Please see the iPlanet UDS
Programming Guide for information about upgrading applications and using class
versions.

Interfaces Implemented Page
The Interfaces Implemented page allows you to specify which interfaces the
current class is implementing

Figure 5-6 Interfaces Implemented Page

Enter the name of the interface you wish to implement in the Interface Name field,
or click the Browser button and choose the interface.

If you enter the name of the interface manually, use the following syntax:

project.interface

Once you implement an interface in a class, you must implement in your class all
methods, event handlers, and events defined in the interface. See the iPlanet UDS
Programming Guide for complete information on implementing an interface.

Creating a Class

Chapter 5 Using the Class Workshop 309

Defining Class Elements
To define the elements in the class, you can either create new elements or copy
existing elements from another class or from an interface. You can copy these
elements using the Edit > Copy, Cut, and Paste commands (described under
“Using the Clipboard” on page 323), or you can copy them using drag and drop.
This is especially useful for methods and event handlers; when you copy a method
or event handler from one class to another, all the source code is copied along with
the basic method or event handler definition.

Copying Interface Elements
Note that copying interface elements from an interface to a class is particular useful
when the class is implementing the interface. By copying the methods, event
handlers, and events defined in the interface to the class, you are automatically
“implementing” all the necessary class elements in the interface. After that, all you
have to do is write the method and event handler code.

Using drag and drop You can copy an existing interface or class element by
dragging it from the class or interface that defined it and dropping it on the current
class. Of course, if you drag a method or event handler from an interface and drop
it onto an class, there will be no code associated with the method or event handler.
You must write the method or event handler code within your class definition.

➤ To drag and drop an class element

1. In the Workshop where the existing element was originally defined, select the
element you wish to copy.

2. Drag the element to the Class Elements browser for the new class you are
creating.

3. Drop the element onto the Class Elements browser.

The following sections describe how to create new class elements using the Class
Workshop. “Setting Extended Properties for Class Elements” on page 321 describes
how to set the extended properties for an interface element.

Creating a Class

310 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Defining Attributes

To define an attribute, use the New Attribute command, or click the New Attribute
button on the toolbar.

➤ To create an attribute

1. Choose the Element > New Attribute command, or click the New Attribute
button on the toolbar.

The Attribute Properties dialog opens.

2. In the Attribute Properties dialog, specify the name and type for the attribute.

3. Click the OK button to add the attribute to the class and close the dialog, or
click the New button to create the attribute and leave the dialog open so you
can create another attribute.

Fill in the fields on the dialog as follows:

Property How to specify

Name Type the attribute name.

Type Choose the data type from the drop list, or use the browser button to select a
class name for the type.

Private Click this toggle on to make the attribute private.

Creating a Class

Chapter 5 Using the Class Workshop 311

Defining Virtual Attributes

To define a virtual attribute, use the New Virtual Attribute command, or click the
New Virtual Attribute button on the toolbar.

➤ To create a virtual attribute

1. Choose the Element > New Virtual Attribute command, or click the New
Virtual Attribute button.

The Virtual Attribute Properties dialog opens.

2. In the Virtual Attribute Properties dialog, specify the name and type for the
virtual attribute, as well as the Get and Set expressions (described below).

3. Click the OK button to add the attribute to the class and close the dialog, or
click the New button to create the attribute and leave the dialog open so you
can create another virtual attribute.

Creating a Class

312 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Fill in the fields on the dialog as follows:

To illustrate virtual attributes, we use the following example Weather class, which
provides the estimated low temperature in both Fahrenheit and centigrade. Note
that this example shows the class definition as you would write it using Fscript,
rather than using the Class Workshop.

Property How to specify

Name Type the attribute name.

Type Choose the data type from the drop list, or use the browser button to select a
class name for the type.

Private Turn on this toggle to make the attribute private.

Get Enter a TOOL expression to be executed when the program accesses the value
of the attribute (see below for further information). The Get expression is
required.

Set Enter a TOOL expression to be evaluated when the program assigns a value to
the attribute (see below for further information). The Set expression is optional.
A virtual attribute without a Set expression is a read-only attribute.

NOTE If the value of the virtual attribute is being displayed on a window,
the value is calculated when the window is first opened and, unlike
a spread sheet, is not automatically refreshed if the value of the Set
expression changes. Instead, you must update the data on the
window from your TOOL code using the UpdateDataFromField
method (see the Display Library online Help).

Creating a Class

Chapter 5 Using the Class Workshop 313

Set Expression property In the Set Expression field, enter the TOOL expression
to be evaluated when the program assigns a value to the attribute. (The Set
expression is optional. A virtual attribute without a Set expression is a read-only
attribute.)

The Set expression for a virtual attribute usually invokes a method to update some
data. However, this can be any expression, as long as the expression data type is
compatible with the virtual attribute’s data type.

The expression can reference any elements defined in the current class and any of
its superclasses, or any project components. iPlanet UDS assumes that all
references to attributes, methods, and so on, are for the current object. Because this
is just an expression and not a statement, do not use a semicolon at the end.

In the Set expression, you can use the virtual attribute name to represent the value
that the user assigned to the attribute. Typically, the expression contains a method
that uses the virtual attribute name as one of its parameters. For example, the
following set expression uses the LowC virtual attribute as a parameter in the
SetCTemp method.

SetCTemp(lowc)

(Note that you cannot update the value of an attribute by setting its value directly
to the value of the virtual attribute; instead, you must invoke a method to update
it.)

If the Set expression produces a value, such as a return value from a method,
iPlanet UDS ignores it.

Code Example 5-2 Virtual Attribute Definition Example

class weather inherits from object
has public
method setctemp(temp : integer) :void;
lowf: integer;
virtual lowc : integer =
(get = (5.0/9.0) * (lowf -32),
(set = SetCTemp(lowc));

end class;

method weather.setctemp(temp : integer) : void
begin
self.lowf = (9.0/5.0)* temp + 32;

end;

Creating a Class

314 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Get Expression property In the Get Expression field, enter a TOOL expression to
be executed when the program accesses the value of the attribute. The value of the
expression is the value of the virtual attribute. This can be any expression with a
data type that is compatible with the attribute’s data type.

For a private virtual attribute, the expression can reference any elements defined in
the current class and its superclasses, or any globally defined components, such as
service objects and project constants. For a public virtual attribute, the expression
can reference only public attributes, methods, events, and event handlers. iPlanet
UDS assumes that all references to attributes, methods, and so on are for the
current object. Because this is just an expression and not a statement, do not use a
semicolon at the end.

The following example illustrates the get expression from the Lowc virtual
attribute:

(5.0/9.0) * (lowf - 32)

In the Get expression, you can use the virtual attribute name as an input-output or
output parameter for a method (see TOOL Reference Guide for information about
input-output and output parameters). iPlanet UDS uses this “return” value as the
value for the virtual attribute. Any other use of the virtual attribute name is illegal.

See the TOOL Reference Guide for information about how to write TOOL
expressions.

Defining Events

To define a new event, use the New Event command, or click the New Event
button on the toolbar.

Creating a Class

Chapter 5 Using the Class Workshop 315

➤ To create an event

1. Choose the Element > New Event command, or click the New Event Button.

The Event Properties dialog opens.

2. On the Event Properties dialog, enter the event name.

The event parameters are optional. See below for information on specifying the
event parameters.

3. Click the OK button to add the event to the class.

Event parameters The Event Properties dialog displays the event parameters in
an array field. To add a parameter to the list, add a new row to the array field. Fill
in the columns as follows:

Delete and Insert buttons You can add as many parameters to the event as you
wish. If you wish to add a parameter in the middle of the list, use the Insert button
to insert a new row above the row you select. If you wish to delete a parameter
from the list, use the Delete button to remove the currently selected row from the
array field.

Column How to fill it in

Name Type the parameter name.

Type Choose a data type from the drop list or type in a class name.

Default
Value

If desired, enter a value that is compatible with the parameter’s data type. For
parameters with a class data type, the default value must be NIL.

Creating a Class

316 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Defining Methods

To define a method, use the New Method command, or click the New Method
button on the toolbar.

➤ To create a new method

1. Choose the Element > New Method command, or click the New Method
button.

The Method Properties dialog opens.

2. In the Method Properties dialog, enter the method’s name in the Method field.
The return type, return event, exception event, and parameters are optional.

3. Click the OK button to add the method to the class and open the Method
Workshop.

See Chapter 10, “Using the Method Workshop,” for information on the Method
Properties dialog and the Method Workshop.

The following sections provide information about overloading methods and
creating converter methods.

Creating a Class

Chapter 5 Using the Class Workshop 317

Overloading Methods
To overload a method, you simply create a new method with the same name as the
method you wish to overload, but with a different parameter list.

When more than one method with the same name exists—with different parameter
lists—iPlanet UDS automatically overloads the method.

➤ To overload an existing method

1. Create a new method with the New Method button, or choose the Element >
New Method command.

The Method Properties dialog opens.

2. On the Method Properties dialog, enter the same method name as the original
method, but specify a different parameter list (the return type and return
events can also be different).

The Class Workshop displays all the method signatures for the overloaded
method.

Deleting a single method signature To delete a single method signature for an
overloaded method, simply highlight the individual signature and choose the Edit
> Delete command.

Creating a Class

318 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Creating a Converter Method
You can create a converter method for any class whose Distributed property is set
to Allowed. If the Distributed property is not set to Allowed, you will not be able to
create a converter.

➤ To create a method converter

1. In the Class Workshop, select the method requiring a converter.

2. Choose the Element > Converter command. If the current method has no
converters defined, you will see two options: Create for New Method and
Create for Obsolete Method.

3. After you choose the appropriate type of converter, the Method Workshop
opens. The name and parameters of the converter are automatically derived;
you cannot change them.

4. Write the converter code using TOOL.

See the iPlanet UDS Programming Guide for details about writing converter code.

Defining Event Handlers

To define a handler, use the New Event Handler command, or click the New Event
Handler button on the toolbar.

Creating a Class

Chapter 5 Using the Class Workshop 319

➤ To create a new event handler

1. Choose the Element > New Event Handler command, or click the New Event
Handler button.

The Event Handler Properties dialog opens.

2. In the Event Handler Properties dialog, enter the event handler’s name in the
Handler field. The parameters are optional.

3. Click the OK button to add the handler to the class and open the Event Handler
Workshop.

See Chapter 11, “Using the Event Handler Workshop,” for information on the
Event Handler Properties dialog and the Event Handler Workshop.

Defining Class Constants

To define a constant, use the Element > New Constant command, or click the New
Constant button on the toolbar.

➤ To create a constant

1. Choose the Element > New Constant command.

Creating a Class

320 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

2. The Constant Properties dialog opens.

3. In the Constant Properties dialog, specify the name, type, and value for the
constant. The constant types are described below.

4. Click the OK button to add the constant to the class or the New button to create
another constant.

Constant types The constant types are:

Automatic type For an automatic type, the value you specify determines the type
of the constant. The types are:

Constant Type Description

Automatic iPlanet UDS determines the type based on the constant value (see
below). Use the Automatic type for strings.

Boolean Allows a value of TRUE or FALSE.

Double Allows a floating point number.

Integer Allows a positive or negative whole number.

String Allows an alphanumeric string.

Value Type

TRUE, FALSE boolean

Positive or negative whole number integer

Floating point number float

Character data (without quotes) string

Creating a Class

Chapter 5 Using the Class Workshop 321

Single quotes for strings Normally, you do not need to enclose a string value in
single quotation marks. However, if you wish to create a string constant with a
value of an integer or a floating point, you must use single quotes. In addition,
because iPlanet UDS automatically truncates trailing spaces, you need to use single
quotes to specify a string value with trailing spaces.

Setting Extended Properties for Class Elements
To set the extended properties on an individual class element, use the Element >
Extended Properties... command.

➤ To set extended properties for a class element

1. Select the element for which you wish to set extended properties.

2. Choose the Element > Extended Properties... command.

The Extended Properties dialog opens.

3. Click the New... button.

The New Extended Property dialog opens.

4. Enter the name of the property you wish to create and click OK.

5. In the Value field, enter the value of the extended property.

Modifying a Class

322 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

6. To enter additional extended properties, repeat Step 3 through Step 5.

7. Click OK.

Modifying a Class
Before modifying a class, you must have write access to it. You have write access to
a class if you have just created it (and have not yet integrated your workspace), or if
you have checked out or branched the class. In the Project Workshop, you can use
the View > Writeable Icon command to see if you have write access to a class. If
you do not have write access to the class, you must either check it out or branch it
before you can modify it. See “Write Access to Project Components” on page 257
for information.

In the Class Workshop, you can modify a class by modifying the definition of an
element, by adding an element, by deleting an element, or by changing the class
properties. The Edit menu in the Class Workshop provides commands that let you
use the clipboard to copy or move class elements from one class to another. The
Find Text… and Replace Text… commands on the Edit menu let you find all
occurrences of a specified string within the method source code for the class and to
make global replacements.

Updating Class Elements
To update a class element, double-click the element name in the Class Elements
browser, or select the element name and choose the Element > Open… command.
In the case of attributes, events, and constants, this command opens the dialog in
the Class Workshop where the item was originally defined. In the case of methods
and event handlers, this command opens the appropriate workshop, which
displays the original definition of the method or event handler.

Deleting Class Elements
The Edit > Delete command lets you delete class elements from the Class Elements
browser.

Modifying a Class

Chapter 5 Using the Class Workshop 323

➤ To delete a class element

1. Select the element you wish to delete by clicking on the name.

2. Choose the Edit > Delete command.

3. Confirm that you wish to delete the class element.

Updating Class Properties
To modify the class properties, choose the File > Properties… command. This
command opens the Class Properties dialog, where you can make your updates.
See “Using the Class Properties Dialog” on page 306 for information about how use
the Class Properties dialog.

Updating Extended Properties for Class
Elements
To modify the extended properties for an individual class element, select the class
element and choose the Element > Extended Properties... command. This
command opens the Extended properties dialog, where you can add, delete, or
change the extended properties.

Using the Clipboard
The Edit menu in the Class Workshop allows you to cut or copy a class element
onto the clipboard the same way you cut or copy text in a text editor. Once the class
element is in the clipboard, you can paste it into another class definition or an
interface definition.

The commands on the Edit menu for using the clipboard are:

Command Description

Cut Removes the class element from the current class and copies to the clipboard.

Copy Copies the selected element onto the clipboard.

Paste Pastes the element in the clipboard into the current class.

Modifying a Class

324 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Finding and Replacing Text
The Edit > Find Text… and Replace Text… commands in the Class Workshop let
you search for all occurrences of a specified string within the method and event
handler source code for the class.

Finding Text
The Find Text… command finds all occurrences of the specified string in the
method and event handler source code in the class.

➤ To find a string

1. Choose the Edit > Find Text… command.

The Find Text in Class dialog opens.

2. In the Find Text in Class dialog, specify the string you wish to search for.

The default is a case-insensitive search. If you want a case-sensitive search, set
the Case Sensitive toggle to on.

Click the OK button to start the search.

Modifying a Class

Chapter 5 Using the Class Workshop 325

3. When the search is complete, the Find Text in Class dialog displays the method
or event handler name, and the line itself for each source code line that
contains the string.

4. Double-click any line in the Find Text in Class dialog to open the Method or
Event Handler Workshop to display the original source code.

Replacing Text
The Replace Text… command finds all occurrences of the specified string in the
method and event handler source code in the class.

➤ To make a global replacement

1. Choose the Edit > Replace Text… command.

The Replace Text in Class dialog opens.

2. In the Replace Text in Class dialog, specify the string you wish to search for
and the replacement string. Click the OK button to start the search.

The default is a case-insensitive search. If you want a case-sensitive search,
switch the Case Sensitive toggle to on.

Modifying a Class

326 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

3. When the search is complete, another Replace Text in Class dialog opens,
displaying the method name or event handler name, and the line itself for each
source code line that contains the string.

4. Click the toggle next to the line where you wish to make the replacement.

See below for further information about using the Replace Text in Class dialog.

5. In the Replace Text in Class dialog, click the Replace button to make the
replacements.

Read-only classes By default, if a class is read only, the Replace Text… command
automatically checks it out before making the replacement in any method or event
handler source code. If it cannot be checked out, you will be prompted to indicate
whether you wish to branch or ignore the read-only class. If you do not want a
read-only class to be checked out, you can select one of the following options from
the Read-Only Classes drop list on the Replace Text in Class dialog.

Replacement Option Description

Ignore Will not make the replacement in the class.

Branch Will branch the class.

Checkout The default. Will attempt to check out the class.

Testing a Class

Chapter 5 Using the Class Workshop 327

Selecting lines The Replace Text in Class dialog provides several features to
make it easier to select the lines where you want to make the replacement. Use the
Set All button to set the toggles for all the source code lines to on. Use the Clear All
button to set the toggles for all the source code lines to off. If you set the toggle for a
method or event handler name to on, this turns the toggles on for all relevant lines
in the method or event handler.

Testing a Class
The File > Compile command (or the Compile button on the toolbar) compiles the
class elements in your current class and reports the compilation errors. While it is
not necessary to compile your class before you run the project, this command
allows you to check for syntax errors without actually executing the code. Any
compilation errors are reported in the Error window.

The Compile command compiles only those class elements that have changed since
your last compilation. If you wish to compile all your class elements, regardless of
whether or not they have changed, you can use the Utility > Force Compile
command in the Repository Workshop. See “Compiling Plans” on page 191 for
information about the Force Compile command.

Testing a Class

328 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Using the Error Window
The Error window displays the errors messages for the class in an outline field.

Figure 5-7 Error Window

You can jump directly from one of these messages to the code that caused the error.
In the Error window, double-click the error you wish to find. The appropriate
workshop will then open, with the cursor positioned at the beginning of the line
that contains the code that caused the error.

You can keep the Error window open as long as you need it. When you are finished
using the window, click the Done button to close the window.

Setting Workshop Preferences

Chapter 5 Using the Class Workshop 329

Setting Workshop Preferences
The Class Workshop allows you to set preferences that are saved as part of your
current workspace.

To set the workshop preferences, choose the File > Workshop Preferences…
command. This command opens the Class/Interface Workshop Preferences dialog,
where you can set any number of preferences.

Figure 5-8 Class Workshop Preferences Dialog

The preferences you can set for the Class Workshop fall into the following general
categories:

• workshop window size and position

• default filter

• viewing preferences

• sorting preference

• font preference

The workshop window size and position, filter, viewing, and font preferences are
general iPlanet UDS preferences and are described under “Setting Workshop
Preferences” on page 136. This section provides information about the preferences
specific to the Class Workshop.

Setting Workshop Preferences

330 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Sorting Preference
The sorting preference lets you specify the default sorting used for the Class
Elements browser. The following table describes the sorting options:

Preference Description

Name Sorts the class elements by name.

Kind Sorts the class elements by kind.

Datatype Sorts the class elements by data type.

Superclass When you are viewing inherited class elements, sorts the class elements by
superclass.

331

Chapter 6

Using the Interface Workshop

This chapter provides conceptual information about interfaces and their elements,
and describes how to use the Interface Workshop.

In this chapter, you will learn how to:

• examine an interface

• create an interface

• modify an interface

• set Interface Workshop preferences

About Interfaces
An interface defines a set of class elements, without providing the code that
implements them. The interface provides the method and event handler signatures
that define a standard “interface” to an object. The code for the methods and event
handlers in the interface is provided by the classes that implement the interface.

For example, the AdaptableAuction sample application defines a
TaxCalculationIFace interface, which provides a method signature and an event
signature related to calculating taxes on a sale. The method is called CalculateTax
and the event is called TaxCalculated. The code for CalculateTax is provided by the
TaxCalculationImp class, which implements the TaxCalculationIFace interface.

For information about the benefits and uses of interfaces, see iPlanet UDS
Programming Guide.

About Interfaces

332 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Interface elements An interface has the same elements as a class, except for
attributes. These elements include: virtual attributes, methods (method signatures),
events, event handlers (event handler signatures), and constants. A method
signature is the method name, parameter list, and return value. Likewise, an event
handler signature is the event handler name and parameter list. See “Interface
Elements” on page 334 for complete information on these elements.

Implementing an Interface
Implementing an interface in a class means providing the code for all methods and
event handlers defined in the interface. Any number of classes can implement a
single interface, which provides multiple implementations for a single interface. In
addition, a single class can implement multiple interfaces.

Using an Interface as a Data Type
You can use an interface as data type for any data item. The interface is the data
item’s declared type. The AdapatableAuction example uses the
TaxCalculationIFace interface as the declared type of a local variable.

However, when you create the actual object associated with the data item, the
object’s runtime type must be one of the classes that implement the interface. In
other words, the implementing class is the data item’s runtime type. The
AdaptableAuction example has a method that finds the library and class for the
implementation, and creates an instance of that class. This instance is used to create
the object. See iPlanet UDS Programming Guide for information and example of
using interface as a type.

The classes that implement an interface can be included within your application
code or you can load them at runtime. See iPlanet UDS Programming Guide for
information about using interfaces for dynamic class loading or multiple
inheritance, complete with examples.

Interface hierarchies Unlike a class, which always has a superclass, an interface
does not need a super-interface. When you create an interface, you choose whether
or not the interface has a super-interface. If the interface does have a
super-interface, it inherits all the interface elements defined for its super-interface,
just as a class inherits from its superclass. If the interface does not have a
super-interface, you must define the entire interface from scratch—it does not
inherit any interface elements.

About Interfaces

Chapter 6 Using the Interface Workshop 333

Setting up an interface hierarchy is similar to setting up a class hierarchy. Each
sub-interface inherits all the interface elements defined for its super-interface. The
sub-interface can overload methods by defining different parameter types for the
same method name. However, overriding is not allowed. Because methods and
event handlers in interfaces have no code associated with them, there is no way to
override them. See “Interface Elements” on page 334 for information about
defining methods and event handlers in interfaces.

The following sections provide background information about creating an interface
and providing implementations of the interface. “Interface Elements” on page 334
provides detailed information about the individual elements in an interface.

Creating an Interface
You define interfaces using the Interface Workshop. Creating an interface is similar
to creating a class. You specify a name for the interface and, optionally, a
super-interface. You then use the Interface Workshop to define each of the interface
elements.

To create a new interface, you must start from the Project Workshop. The New
Interface button or the Component > New > Interface command creates a new
interface with the name you specify.

After the Interface Workshop opens, you can define the individual elements in the
interface. See “Creating an Interface” on page 347 for information.

Implementing an Interface
To implement an interface, you declare one or more classes as “implementing” the
interface. Then, in each class that implements the interface, you write the
“implementation” code for all the methods and event handlers in the interface.

The implementing class must also define every event in the interface. You cannot
exclude any of the methods, event handlers, or events, or you will get a compile
error. Constants and virtual attributes do not need to be implemented in the
implementing class.

When a class implements an interface, all of its subclasses also implement the
interface. When you assign an object to the data item whose type is an interface, the
object’s type can be a class that implements the interface or a subclass of a class that
implements the interface.

About Interfaces

334 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Remember, a single class can implement multiple interfaces. In addition, the class
may also define functionality of its own. The multiple inheritance example
described in the iPlanet UDS Programming Guide shows classes that implement the
Sortable interface to complement their basic functionality.

To implement an interface in a class, you use the Class Workshop. The Class
Properties dialog for an individual class allows you to list one or more interfaces
which the given class will be implementing. Any number of interfaces can be
implemented by a given class. And any number of classes can implement a given
interface. See “Implementing Interfaces” on page 283 for information about
implementing interfaces in the Class Workshop.

The classes that implement the interface can be included within your application
code or you can load them at runtime. See iPlanet UDS Programming Guide for
information about how to load the implementing classes at runtime.

Interface Elements
The following sections provide conceptual information about the elements
common to all interfaces:

• virtual attributes

• methods

• events

• event handlers

• constants

Virtual Attributes

As described under “Virtual Attributes” on page 278, a virtual attribute does not
store a value or point to an object—instead, a virtual attribute consists of two
expressions, one that is evaluated when the program sets the value of the attribute
and another that is evaluated when the program gets the value of the attribute. The
Get expression for the virtual attribute is required, but the Set expression is
optional. A virtual attribute without a Set expression is a read-only attribute.

About Interfaces

Chapter 6 Using the Interface Workshop 335

Defining a virtual attribute in an interface allows you to make a method invocation
look like an attribute. Typically, a virtual attribute provides a convenient way for
getting and setting a complex value.

All methods used in the Get and Set expressions for the virtual attribute must be
defined in the interface.

You do not need to “implement” the virtual attribute in the classes that implement
the interface. When a data item’s declared type is an interface, iPlanet UDS always
uses the virtual attribute definition provided by the interface. However, you can
“re-define” the virtual attribute in the implementing classes. In this case, when the
declared type of the data item is an interface, iPlanet UDS uses the definition
provided by the interface, and when the declared type of the data item is the
implementing class, iPlanet UDS uses the definition provided by the class.

Methods

A method is a procedure that is specially written to operate on an object. Every
method consists of a method signature (which specifies the method name,
parameters, return type) and a statement block that contains the TOOL code that
performs the operations on the object. In an interface, you define only the method
signature; a method defined in an interface does not include source code. The class
(or classes) that implements the interface provides the source code for the method.

The AdaptableAuction example provides two implementations of the
TaxCalculationIFace interface. The interface defines the following method
signature:

CalculateTax(theSale:Sale):double

The two implementations of this method signature are in separate projects, in
classes with different names. One implementation of CalculateTax takes into
consideration whether the buyer was a non-profit organization; the other doesn’t.

For examples of the use of methods within interfaces, see the following methods in
the AdaptableAuction example:

• CalculateTax (TaxCalculationImp class in AAImplementations project)

• CalculateTax (NewTaxCalculationImp class in AAImp2) project

About Interfaces

336 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Overloading You can overload a method in an interface. To overload a method,
you simply add a new method signature using the same name with a different
parameter list. The class (or classes) that implement the interface must provide
source code for every method signature in the interface.

Events

An event is a signal that something has changed. Every event has a name and,
optionally, one or more parameters. An event defined for an interface is exactly the
same as an event defined for a class. You can use the post statement to post the
event on any object whose class implements the interface.

All classes that implement the interface must implement all events defined in the
interface. Implementing an event in a class consists of re-defining the event name
and parameter list.

The TaxCalculationIFace interface in the AdaptableAuction example defines an
event called TaxCalculated. Both implementations of this interface define the
TaxCalculated event.

For further information on using events in TOOL, see the TOOL Reference Guide.

Event Handlers

An event handler is a named block of TOOL code that provides programming to be
executed in response to one or more events. The event handler provides reusable,
modular event handling code that you can include in any number of event
statements.

NOTE Because the interface defines only a method signature, overriding an
inherited method has no effect. The inherited method and the
overriding method have the exact same signature.

About Interfaces

Chapter 6 Using the Interface Workshop 337

In a class, an event handler consists of an event handler signature, which consists
of the event handler name and parameters, and the event handler source code. In
an interface, you define only the event handler signature; an event handler defined
in any interface does not include source code. The class (or classes) that implements
the interface provides the source code for the event handler.

No overloading Unlike methods, there is no overloading for event handlers.
There can only be one event handler with a given name in the interface.

No overriding Because the interface defines only an event handler signature,
overriding an inherited event handler has no effect. The inherited event handler
and the overriding event handler have the exact same signature.

Chapter 11, “Using the Event Handler Workshop,” contains detailed information
about event handlers. For information on using event handlers in TOOL, see the
TOOL Reference Guide.

Constants

A constant is a literal string or numeric value that has a name. When you declare
the named constant, you specify a constant name and a value. You can then use the
constant name in place of the value in the TOOL code that implements the
interface’s methods and event handlers.

The most common use for a constant within an interface is for specifying the values
of a parameter.

When a constant is defined within an interface, the implementing code within
classes that implement the interface can reference the constant directly. Other
classes must reference the constant with the following syntax:

interface_name.constant_name.

Remember, although you can use constants to specify values in your TOOL code,
you cannot use them to specify values in dialogs in the iPlanet UDS Workshops.

You do not need to “implement” the constant in the classes that implement the
interface. When a data item’s declared type is an interface, iPlanet UDS always uses
the constant definition provided by the interface. However, you can “re-define” the
constant in the implementing classes. In this case, when the declared type of the data
item is an interface, iPlanet UDS uses the definition provided by the interface, and
when the declared type of the data item is the implementing class, iPlanet UDS uses
the definition provided by the class.

Using the Interface Workshop

338 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Extended Properties of Interface Elements
The extended properties feature allows you to assign arbitrary name-value pairs to
the individual interface element. You can use the extended properties on a
interface element for whatever purpose you choose. For example, you might wish
to use them for comments.

Using the Interface Workshop
You enter the Interface Workshop from the Project Workshop either by opening an
existing interface or by creating a new interface.

Opening an existing interface If you wish to examine or edit an existing
interface, double-click the interface name, or click the interface name and choose
the Component > Open command.

Creating a new interface If you wish to create a new interface, click the New
Interface button or choose the Component > New > Interface command.

Using the Interface Workshop

Chapter 6 Using the Interface Workshop 339

The Interface Workshop Window
The Interface Workshop window, shown in Figure 6-1, consists of three parts: the
Interface Elements browser, the status line, and the toolbar, as shown in Figure 6-2.

Figure 6-1 Interface Workshop Window

Figure 6-2 Interface Workshop Toolbar

Toolbar

Interface Elements browser

Status line

New

New

Save All

New

New Method

New
Virtual

Attribute
ConstantEvent

Event
Handler

Using the Interface Workshop

340 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

View Menu
The View menu in the Interface Workshop provides the following toggles to
control which parts of the workshop are displayed:

Note that you can set your viewing preferences for the workshop by using the
Workshop Preferences... command. These preferences are saved as part of your
current workspace. See “Setting Workshop Preferences” on page 360 for
information on the Workshop Preferences... command.

Access to Other Workshops
From the Interface Workshop, you can access one other workshop:

Leaving the Interface Workshop
To leave the Interface Workshop, use the File > Close command to close the
workshop or use the system close box to close the window. This closes only the
current workshop.

Command Function

Toolbar Makes the toolbar visible or invisible.

Kind Icon When this toggle is turned on, the kind icons are displayed in the Interface
Elements browser. When turned off, the kind icons are not displayed.

Status Line Makes the status line visible or invisible.

Inherited When this toggle is turned on, the Interface Elements browser displays the
inherited interface elements. When turned off, the inherited interface
elements are not displayed.

Workshop How to access it

Project Workshop The File > Open Project… command opens the Project Workshop to
display the definition of the project to which the current interface
belongs. If the project is already being displayed, the Open
Project… command moves the input focus to the appropriate
Project Workshop window.

Examining an Interface

Chapter 6 Using the Interface Workshop 341

Examining an Interface
If the interface you wish to examine is not already displayed, you have two
options. You can:

• use the Project Workshop to open an interface in the current project

• if the interface has a super-interface, use the Open Super-Interface command in
the Interface Workshop to open one of the super-interfaces for the current
interface

➤ To examine an interface from the Project Workshop

1. In the Project Components browser, double-click the interface name.

You can also select the interface name, and choose the Component > Open
command.

➤ To use the Open Super-Interface command in the Interface Workshop

1. In the Interface Workshop, choose the File > Open Super-Interface command.

2. On the Open Super-Interface submenu, select the super-interface you wish to
open.

The Interface Workshop displays information about virtual attributes, methods,
events, event handlers, and constants directly on the main workshop window.

The interface properties are not displayed on the main workshop window. To view
them, you must use the File > Properties... command. The next sections provide
detailed information about how to examine each of the interface elements and how
to examine the interface properties.

Examining an Interface

342 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Examining the Interface Elements
By default, the Interface Workshop displays all interface elements. A kind icon by
each component name indicates the kind of element.

To turn off the kind icons, switch off the View > Kind Icon toggle.

Filter drop list To view a list of only one kind of interface element, use the filter
drop list for the Interface Workshop. The filter drop list allows you to select a single
interface element kind, such as “Methods” or “Virtual Attributes,” or “All
Elements.”

Note that you can set your filter preferences for the workshop by using the
Workshop Preferences... command. These preferences are saved as part of your
current workspace. See “Setting Workshop Preferences” on page 360 for
information.

Icon Interface Element

Virtual attribute

Method

Event

Event handler

Constant

Examining an Interface

Chapter 6 Using the Interface Workshop 343

Sorting By default the list of elements is in alphabetical order, sorting all interface
elements by name. The View menu provides the following commands for sorting
the interface elements:

By default the Interface Elements browser shows only the elements defined
specifically for the selected interface. To view the elements inherited by the
interface from its super-interfaces, choose the View > Inherited command.

Examining Methods

To display only the methods for the interface, choose “Methods” from the filter
drop list in the Interface Elements browser. For methods, the browser displays the
name and return type for each method.

To display the complete signature of the method, double-click on the method
name, or select the method name and choose the Element > Open command.
Opening the method opens the Method Properties dialog, which displays the
complete method signature.

Overloaded methods If the method is overloaded, the Interface Workshop
displays the method name as a folder, and opens the folder to display the
individual method signatures for all the methods that share the same name. To
display the complete definition of an individual method, double-click the signature
for the particular method you wish to examine.

For example, Figure 6-3 shows the method signatures for all the CalculateTax
methods:

Command Description

Sort By Name The default. Sorts the elements by name.

Sort by Kind Sorts the elements by kind, virtual attribute, event, method, event
handler, and constant.

Sort by Datatype Sorts the elements by their data types.

Sort by
Super-Interface

For inherited elements, sorts the elements by their super-interface.

Examining an Interface

344 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 6-3 Method Signatures for CalculateTax Method

Examining Virtual Attributes

To display only the virtual attributes for the interface, choose “Virtual Attributes”
from the filter drop list in the Interface Elements browser. For virtual attributes, the
browser displays the name and data type for each attribute.

To display the complete definition of an individual virtual attribute, double-click
on the attribute name, or select the attribute name and choose the Element > Open
command. Opening the virtual attribute opens the Virtual Attribute Properties
dialog, which displays the original definition of the attribute.

Examining an Interface

Chapter 6 Using the Interface Workshop 345

Examining Events

To display only the events for the interface, choose “Events” from the filter drop
list in the Interface Elements browser. For events, the browser displays the name of
each event.

To display the complete definition of an individual event, double-click on the event
name, or select the event name and choose the Element > Open command.
Opening the event opens the Event Properties dialog, which displays the original
definition of the event.

Examining Event Handlers

To display only the event handlers for the interface, choose “Event Handlers” from
the filter drop list in the Interface Elements browser. For event handlers, the
browser displays the name for each event handler.

To display the complete signature of the event handler, double-click on the event
handler name, or select the event handler name and choose the Element > Open
command. Opening the event handler displays the Event Handler Properties
dialog, which displays the complete event handler signature.

Examining Constants

To display only the constants for the interface, choose “Constants” from the filter
drop list in the Interface Elements browser. For constants, the browser displays the
name and value for each constant.

To display the complete definition of an individual constant, double-click on the
constant name, or select the constant name and choose the Element > Open
command. Opening the constant opens the Constant Properties dialog, which
displays the original definition of the constant.

Examining an Interface

346 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Examining Interface Properties
To display the interface properties, choose the File > Properties… command. This
command opens the Interface Properties dialog, which displays the interface name
and super-interface, if there is one.

Figure 6-4 Interface Properties Dialog

Examining Extended Properties
To display the extended properties for an individual interface element, select the
interface element and choose the Element > Extended Properties... command. The
Extended Properties dialog opens, displaying the current settings for the extended
properties.

Creating an Interface

Chapter 6 Using the Interface Workshop 347

Creating an Interface
To create an interface, you must start from the Project Workshop.

The New Interface button or the Component > New > Interface command creates a
new interface with the name you specify.

➤ To create an interface

1. In the Project Workshop, click the New Interface button or choose the
Component > New > Interface command.

The Interface Properties dialog opens.

2. In the Interface Properties dialog, specify the name and, if desired, the
super-interface for the interface. Click the OK button to create the interface.

Fill in the fields on the dialog as follows:

After the Interface Workshop opens, you can define the individual elements in the
interface.

Interface Property How to Specify It

Interface Name Type in the interface name.

Super-Interface Type in the super-interface name or use the browser button to display
a list of interfaces from which you can make a selection.

Creating an Interface

348 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Defining Interface Elements
To define the elements in the interface, you can either create new elements or copy
existing elements from another interface or from a class. You can copy these
elements using the Edit > Copy, Cut, and Paste commands (described under
“Using the Clipboard” on page 359), or you can copy them using drag and drop.

Using drag and drop You can copy an existing interface or class element by
dragging it from the class or interface that defined it and dropping it on the current
interface. If you drag a method or event handler from a class and drop it onto an
interface, the code for the method or event handler is ignored. Only the method or
event handler signature is added to the interface.

➤ To drag and drop an interface element

1. In the Workshop where the existing element was originally defined, select the
element you wish to copy.

2. Drag the element to the Interface Elements browser for the new interface you
are creating.

3. Drop the element onto the Interface Elements browser.

The following sections describe how to create new interface elements using the
Interface Workshop. “Setting Extended Properties for Interface Elements” on
page 356 describes how to set the extended properties for an interface element.

Defining Methods

To define a method, use the Element > New Method command, or click the New
Method button on the toolbar.

Creating an Interface

Chapter 6 Using the Interface Workshop 349

➤ To create a new method

1. Choose the Element > New Method command, or click the New Method
button.

The Method Properties dialog opens.

2. In the Method Properties dialog, enter the method’s name in the Method field.
The return type, return event, exception event, and parameters are optional.

3. Click the OK button to add the method to the interface.

When the Method Properties dialog closes, you will return to the Interface
Workshop. Unlike when you create a method from the Class Workshop, when
you create a method in the Interface Workshop, the Method Workshop does
not open. You do not need to use the Method Workshop because there is no
source code associated with a method in an interface.

See “Specifying Method Properties” on page 579 for information on the Method
Properties dialog.

The following section provides information about overloading methods.

Overloading Methods
To overload a method, you simply create a new method with the same method as
the method you wish to overload, but with a different parameter list.

When more than one method with the same name exists—with different parameter
lists—iPlanet UDS automatically overloads the method.

Creating an Interface

350 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To overload an existing method

1. Create a new method with the New Method button, or choose the Component
> New Method command.

The Method Properties dialog opens.

2. On the Method Properties dialog, enter the same method name, return type,
and return events as the original method, but specify a different parameter list.

The Interface Workshop displays all the method signatures for the overloaded
method.

Deleting a single method signature To delete a single method signature for an
overloaded method, simply highlight the individual signature and choose the Edit
> Delete command.

Defining Virtual Attributes

To define a virtual attribute, use the Element > New Virtual Attribute command, or
click the New Virtual Attribute button on the toolbar.

Creating an Interface

Chapter 6 Using the Interface Workshop 351

➤ To create a virtual attribute

1. Choose the Element > New Virtual Attribute command, or click the New
Virtual Attribute button.

The Virtual Attribute Properties dialog opens.

2. In the Virtual Attribute Properties dialog, specify the name and type for the
virtual attribute, as well as the Get and Set expressions.

3. Click the OK button to add the attribute to the interface and close the dialog, or
click the New button to create the attribute and leave the dialog open so you
can create another virtual attribute.

Fill in the fields on the dialog as follows:

Property How to specify

Name Type the attribute name.

Type Choose the data type from the drop list, or use the browser button to select a
class or interface name for the type.

Private Turn on this toggle to make the attribute private.

Get Enter a TOOL expression to be executed when the program accesses the value
of the attribute (see “Defining Virtual Attributes” on page 311 for further
information). The Get expression is required.

Set Enter a TOOL expression to be evaluated when the program assigns a value to
the attribute (see “Defining Virtual Attributes” on page 311 for further
information). The Set expression is optional. A virtual attribute without a Set
expression is a read only attribute.

Creating an Interface

352 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Note that in order to write a virtual attribute definition for an interface, you must
define the methods invoked by the virtual attribute before writing the virtual
attribute definition.

For complete information about defining virtual attributes along with an example
definition, see “Defining Virtual Attributes” on page 311.

Defining Events

To define a new event, use the Element > New Event command, or click the New
Event button on the toolbar.

➤ To create an event

1. Choose the Element > New Event command, or click the New Event Button.

The Event Properties dialog opens.

2. On the Event Properties dialog, enter the event name.

The event parameters are optional. See below for information on specifying the
event parameters.

3. Click the OK button to add the event to the interface.

Event parameters The Event Properties dialog displays the event parameters in
an array field. To add a parameter to the list, add a new row to the array field. Fill
in the columns as follows:

Column How to fill it in

Name Type the parameter name.

Creating an Interface

Chapter 6 Using the Interface Workshop 353

Delete and Insert buttons You can add as many parameters to the event as you
wish. If you wish to add a parameter in the middle of the list, use the Insert button
to insert a new row above the row you select. If you wish to delete a parameter
from the list, use the Delete button to remove the currently selected row from the
array field.

Defining Event Handlers

To define a handler, use the Element > New Event Handler command, or click the
New Event Handler button on the toolbar.

➤ To create a new event handler

1. Choose the Element > New Event Handler command, or click the New Event
Handler button.

The Event Handler Properties dialog opens.

2. In the Event Handler Properties dialog, enter the event handler’s name in the
Handler field. The parameters are optional.

Type Choose a data type from the drop list or type in a class name.

Default
Value

If desired, enter a value that is compatible with the parameter’s data type. For
parameters with a class data type, the default value must be NIL.

Column How to fill it in

Creating an Interface

354 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

3. Click the OK button to add the handler to the interface.

When the Event Handler Properties dialog closes, you will return to the
Interface Workshop. Unlike when you create an event handler from the Class
Workshop, when you create an event handler in the Interface Workshop, the
Method Workshop does not open. You do not need to use the Event Handler
Workshop because there is no source code associated with an event handler in
an interface.

See “Specifying Event Handler Properties” on page 603 for information on the
Event Handler Properties dialog.

Defining Interface Constants

To define a constant, use the Element > New Constant command, or click the New
Constant button on the toolbar.

Creating an Interface

Chapter 6 Using the Interface Workshop 355

➤ To create a constant

1. Choose the Element > New Constant command.

2. The Constant Properties dialog opens.

3. In the Constant Properties dialog, specify the name, type, and value for the
constant. The constant types are described below.

4. Click the OK button to add the constant to the interface or the New button to
create another constant.

Constant types The constant types are:

Constant Type Description

Automatic iPlanet UDS determines the type based on the constant value (see below).
Use the Automatic type for strings.

Boolean Allows a value of TRUE or FALSE.

Double Allows a floating point number.

Integer Allows a positive or negative whole number.

String Allows an alphanumeric string.

Creating an Interface

356 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Automatic type For an automatic type, the value you specify determines the type
of the constant. The types are:

Single quotes for strings Normally, you do not need to enclose a string value in
single quotation marks. However, if you wish to create a string constant with a
value of an integer or a floating point, you must use single quotes. In addition,
because iPlanet UDS automatically truncates trailing spaces, you need to use single
quotes to specify a string value with trailing spaces.

Setting Extended Properties for
Interface Elements
To set the extended properties on an individual interface element, use the Element
> Extended Properties... command.

Value Type

TRUE, FALSE boolean

Positive or negative whole number integer

Floating point number float

Character data (without quotes) string

Creating an Interface

Chapter 6 Using the Interface Workshop 357

➤ To set extended properties for a interface element

1. Select the element for which you wish to set extended properties.

2. Choose the Element > Extended Properties... command.

The Extended Properties dialog opens.

3. Click the New... button.

The New Extended Property dialog opens.

4. Enter the name of the property you wish to create and click OK.

5. In the Value field, enter the value of the extended property.

6. To enter additional extended properties, repeat steps 3 through 5.

7. Click OK.

Modifying an Interface

358 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Modifying an Interface
Before modifying an interface, you must have write access to it. You have write
access to an interface if you have just created it (and have not yet integrated your
workspace), or if you have checked out or branched the interface. In the Project
Workshop, you can use the View > Writeable Icon command to see if you have
write access to an interface. If you do not have write access to the interface, you
must either check it out or branch it before you can modify it.

In the Interface Workshop, you can modify an interface by modifying the
definition of an element, by deleting an element, or by changing the interface
properties. The Edit menu in the Interface Workshop provides commands that let
you use the clipboard to copy or move interface elements from one interface (or
class) to another.

Updating Interface Elements
To update an interface element, double-click the element name in the Interface
Elements browser, or select the element name and choose the Element > Open…
command. Opening the interface element opens the dialog in the Interface
Workshop where the item was originally defined.

Deleting Interface Elements
The Edit > Delete command lets you delete interface elements from the Interface
Elements browser.

➤ To delete an interface element

1. Select the element you wish to delete by clicking on the name.

2. Choose the Edit > Delete command.

3. Confirm that you wish to delete the interface element.

Updating Interface Properties
To modify the interface properties, choose the File > Properties… command. This
command opens the Interface Properties dialog, where you can make your
updates.

Modifying an Interface

Chapter 6 Using the Interface Workshop 359

Updating Extended Properties for
Interface Elements
To modify the extended properties for an individual interface element, select the
interface element and choose the Element > Extended Properties... command. This
command opens the Extended properties dialog, where you can add, delete, or
change the extended properties.

Using the Clipboard
The Edit menu in the Interface Workshop allows you to cut or copy an interface
element onto the clipboard the same way you cut or copy text in a text editor. Once
the interface element is in the clipboard, you can paste it into another interface or
into a class.

The commands on the Edit menu for using the clipboard are:

Copying class elements You can also copy an element from class to an interface
using the Copy and Paste commands or using drag and drop. When you copy a
method or event handler from a class and add it to an interface, the code associated
with the method or event handler is ignored. Only the method or event handler
signature is copied.

Command Description

Cut Removes the selected element from the current interface and copies to the
clipboard.

Copy Copies the selected element onto the clipboard.

Paste Pastes the class or interface element in the clipboard into the current
interface.

Setting Workshop Preferences

360 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Setting Workshop Preferences
The Interface Workshop shares workshop preferences with the Class Workshop.
Preferences that you set using the Class Workshop take effect for the Interface
Workshop; likewise, preferences you set using the Interface Workshop take effect
for the Class Workshop.

To set the workshop preferences in the Interface Workshop, give the File >
Workshop Preferences… command. This command opens the Class/Interface
Workshop Preferences dialog, where you can set any number of preferences. See
“Setting Workshop Preferences” on page 329 for information about using the
Workshop Preferences... command for the Class and Interface Workshops.

361

Chapter 7

Using the Window Workshop

This chapter provides conceptual information about windows and their
components, and describes how to use the Window Workshop.

In this chapter, you will learn how to do the following:

• enter and leave the Window Workshop

• use the toolbar, widget palette, color palette, and status line

• create a window and set its properties

• create simple and compound widgets

• select and group widgets

• open a widget properties dialog

• work with inherited windows

• test a window

• import and export a window

• set Window Workshop preferences

Chapter 8, “Working with Widgets,” provides detailed information on creating
and editing the individual widgets that you use in a window.

Chapter 9, “Using the Menu Workshop,” provides detailed information on
building the menu bar for a window.

About Windows

362 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

About Windows
This section provides background information about windows. The following
topics are covered:

• “About Window Components” on page 362

This section provides information about the components that make up a
window: the window frame, the form, the menu bar, and the iPlanet UDS
widgets.

• “About Window Style and Other Properties” on page 365

This section provides information about the basic window styles and other
properties that affect window appearance and behavior.

• “About Creating New Windows” on page 372

This section provides information about the kinds of windows you can create
using the Window Workshop.

• “About Internationalizing Windows” on page 382

This section describes how you can create multilingual windows using the
Window Workshop.

• “About Help for Windows” on page 383

This section briefly describes the Help features available for windows.

About Window Components
A window consists of three basic components:

Window Frame A window’s border, containing controls—menus and
buttons—for manipulating the window, such as closing or minimizing the
window. The window style determines whether or not the window has a frame.

Form The display area within the window frame where the user can interact with
the application by examining and entering data, and by making selections and
giving commands. All windows have forms.

Menu Bar A window’s menu bar, which contains pull-down menus for giving
application commands or changing application settings. Menu bars are optional.

Figure 7-1 illustrates a window’s components.

About Windows

Chapter 7 Using the Window Workshop 363

Figure 7-1 Components of a Window

The windows that you build in the Window Workshop are completely portable. To
provide a native look and feel, iPlanet UDS uses the current window system’s
window format. In this way, the iPlanet UDS window takes on both the familiar
appearance and the window controls normally provided by the window system.

Note that if you are creating a user interface that will run on multiple window
systems, there are some design issues you need to be take into consideration when
planning your windows. See the iPlanet UDS Programming Guide for information.

About Forms
The form is a display area within the window frame where the user can interact
with the application by examining and entering data, and by making selections and
giving commands.

To create a window’s form, you use widgets. Widgets are controls, such as buttons,
list fields, picture fields, and array fields. These let the user select choices, give
commands, enter data, and read information. When you first create a window, the
form is completely blank. To format the form, you can place any number of
widgets on it and arrange them as you wish. The widget palette in the Window
Workshop provides a selection of widgets, which you can position directly on the
form. The following section provides general information about working with
widgets.

Widgets

Window

Form

Frame

About Windows

364 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Form layers A window’s form consists of two layers: the graphic layer and the
field layer. The graphic layer contains all the form’s graphic fields. The field layer
contains all the form’s field widgets. The graphic layer is always below the field
layer. If you place a field on top of a graphic, it will cover the graphic. If you place a
graphic on top of a field, it will move below the field. The following section
provides background information on field and graphic widgets.

About Widgets
A widget is a graphical representation of a command or choice the user can select
using the conventions of the host window system—either by clicking with a mouse
or using the keyboard.

The widgets for formatting forms are divided into two groups: simple widgets and
compound widgets.

Simple widgets Simple widgets are widgets that generally serve a single
function, such as push buttons, text fields, and rectangles. Simple widgets are
described in more detail below.

Compound widgets Compound widgets contain simple widgets, either to
organize them or provide more complex functions for widgets as a group. For
example, a grid field aligns a group of widgets in rows and columns, while a panel
lets you provide preliminary data validation for a group of widgets.

There are also menu widgets, both simple and compound, for building menus for
windows. For details on menu widgets and building menus, see Chapter 9, “Using
the Menu Workshop.”

About Simple Widgets
Simple widgets are divided into two groups: field widgets and graphic widgets.

Field widgets Field widgets are for displaying data, and accepting data and
commands from the end user. For example, a radio list displays a list of choices,
from which the end user can make one selection. With the exception of push
buttons and picture buttons, all field widgets have data associated with them. For
example, the value of a radio list is whatever value from the list is currently
selected. End users set the values of these fields by selecting a value or entering
data.

Graphic widgets Graphic widgets serve only as form decoration and visual
organization cues. They do not accept commands or display or represent data. You
use most graphic widgets, such as lines and rectangles, to organize a form visually.
You use some graphic widgets, such as picture graphics, to decorate a form.

About Windows

Chapter 7 Using the Window Workshop 365

About Window Style and Other Properties
A window has a number of properties that affect the appearance of the window as
well as its behavior. The following sections provide background information on
these properties.

Window Style
The style of a window determines basic display characteristics for a
window—whether the window is movable, resizeable, or has a title bar.

The following table briefly describes the values allowed for the Window Style
property. These styles are described in further detail below.

iPlanet UDS window styles correspond to the window styles provided by the host
window systems. The appearance of a window in any iPlanet UDS window style is
dependent on the host window system. For example, the resize box and its function
vary from one window system to another.

Resizeable Window Style From an end user’s perspective, a resizeable window
is a fully functional window. A user may move the window, resize it, or close it
without restriction. Figure 7-2 shows an example of a window in the resizeable
style.

Figure 7-2 Resizeable Window

Window Style Definition

Resizeable A resizeable, movable window with a title bar. Generally, a resizeable
window also has a close box and a resize box.

Non-Resizeable A fixed-sized, movable window with a title bar.

Frameless A fixed-sized, immobile window without a title bar.

About Windows

366 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

You normally use resizeable windows to represent an application at its base level.
It is in an application’s base window—a resizeable window—that end users
conduct most of their work, branching to other windows in other window styles to
perform specific application-dependent tasks.

Non-Resizeable Window Style A non-resizeable window behaves like a
resizeable window in all respects but one: it is not resizeable. Figure 7-3 shows an
example of a window in the non-resizeable style.

Figure 7-3 Non-Resizeable Window

You might use a non-resizeable window to enable a user to perform a specific task,
such as spell-checking, while providing free access to the application’s other
windows.

Frameless Window Style A frameless window is neither resizeable nor
moveable, and has no title bar. Figure 7-4 shows an example of a window in the
frameless style.

Figure 7-4 Frameless WIndow

About Windows

Chapter 7 Using the Window Workshop 367

You use frameless windows to represent functions you want the user to complete
without access to other application windows—functions whose timing is critical to
an application’s runtime operation. For example, you might use a frameless
window for specifying environment settings.

Initial Position Property
By setting a window’s Initial Position Policy property, you determine the initial
placement of the window when the window first runs.

You set a window’s initial position either in relation to the screen or an
application’s primary window, or absolutely.

Relative initial window position To set a window’s position relative to either
the screen or to the primary window, you use the Initial Position Policy in
conjunction with the Initial X and Initial Y specifications. The Initial X setting
determines (in mils—thousandths of an inch) how far to horizontally offset the
window relative to the screen or a primary window. The primary window is
normally the window that opened the current window.

Absolute window position To set a window’s position absolutely, you choose an
initial position policy of Screen Centered or Primary Centered. These absolute
policy settings ignore the Initial X and Initial Y settings, if any.

The following table summarizes the window position settings.

NOTE To create a standard dialog window, complete with appropriate
buttons, you can use one of the dialog methods defined by the
Window class. See the Display Library online Help for details on
these methods.

Initial Position Setting Definition

System Default The default position used by the particular window system on
which the window is being displayed.

Screen Centered Centers the window relative to the screen.

Primary Centered Centers the window relative to the window specified as the
primary window.

Screen Relative Positions the window relative to the screen, using the Initial X and
Initial Y setting to offset the window from the screen.

About Windows

368 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Iconize Enabled Property
The Iconize Enabled property allows you to control whether a main window has an
iconize symbol or iconize menu item in the window system menu.

When Iconize Enabled property is set to on (the default setting), the window has a
close box or a close item in the window system menu.

This attribute has no effect on nested windows.

Initial Display State
The Initial Display State property allows you to specify the display state of a main
window when it is first opened: whether it is maximized, hidden, iconized, or
standard.

The following are the values for the Initial Display State property:

The window ignores Initial Display State settings that may conflict with Window
Style settings.

This property has no effect on nested windows.

Primary Relative Positions the window relative to an application’s primary
window, using the Initial X and Initial Y settings to offset the
window from the primary window.

Value Definition Notes

Alternate The window is
maximized.

The window is resized to fit the entire screen. This
is the same as the user clicking the Zoom box or
Maximize button.

Hidden The window runs, but
is invisible.

Window can still receive and process events.

Iconized The window is
collapsed into an icon.

Window can still receive and process events.
Window’s IsIconizeEnabled attribute must be set
to TRUE.

Normal The window appears
on the screen at its
normal size.

Initial Position Setting Definition

About Windows

Chapter 7 Using the Window Workshop 369

Maximize Enabled
The Maximize Enabled property lets you control whether or not a main window
has an alternate (or maximize) symbol or a maximize menu item in the window
system menu.

This property has no effect on nested windows.

Autosize Enabled
The Autosize Enabled property specifies whether or not a window is automatically
resized when the widgets that the window contains are resized while the window
is running. Initially, when the window is first displayed, iPlanet UDS always sizes
the window to display all the widgets. After initially displaying the window,
iPlanet UDS uses the Autosize Enabled property to determine whether or not to
resize the window the next time the end user or the program resizes the widgets
within the window. This ensures that the window is always large enough to
display the entire contents of the form.

Window style and auto-sizing If the Window Style property is set to
Non-Resizeable or Frameless, it is a good idea to set the Autosize Enabled property
to on. Because the end user cannot resize the window, setting it to “autosize”
ensures that the window’s contents will always be displayed

If the Window Style property is set to Resizeable, the end user can resize the
window himself. Therefore, it is not necessary for you to set Autosize Enabled to
on.

Stay On Top Property
The Stay On Top property allows you to specify that the current window remain
on top of the other windows on the screen, even when the end user activates
another window. This feature is useful for toolbars and status windows that should
always be displayed. The Stay On Top toggle is turned off by default.

Tool Window Property
The Tool Window property allows you to specify that the current window not be
displayed in the window system’s task bar when the window is iconized. This
feature allows you to create a secondary window for the application that is not
displayed in the task bar when the main window for the application is iconized.
The Tool Window toggle is turned off by default.

NOTE The Stay On Top property is available only for Windows platforms.
On other platforms, the property is ignored.

About Windows

370 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

We strongly recommend that when you turn on the Tool Window toggle, you also
turn off the Iconized Enabled property. Otherwise, once the end user iconizes the
window, there will be no way for him to get it back.

Note that the “Tool Window” part of this property’s name refers to the Windows
95 concept of a “tool window” and does not have any relationship to the iPlanet
UDS TOOL language.

System Close Policy
The System Close Policy property determines how the window responds to user
action to close the window at the window system level. The settings are:

This property has no effect on nested windows.

Usage Property
A window’s usage provides a convenient way to control the states of all the widgets
on the window. By defining window usages, you can reset all the widget states at
once by simply switching to another window usage.

NOTE This feature is available on Windows 95/NT only. On other
platforms, the attribute is ignored.

System Close Policy Description

Disabled Prevents end users from closing the window through the window
system icon.

Post Shutdown Invokes the PostShutdown method on the window and any child
windows when the user closes the window.

Post Finalize Invokes the RequestFinalize method on the window when the user
attempts to close the window.

Post Shutdown
Task Only

When the end user closes the window, iPlanet UDS invokes the
PostShutdown method on the window being closed, but not on any
of its child windows. The child windows continue to run.

About Windows

Chapter 7 Using the Window Workshop 371

For each window usage, you can set every widget in the window to a particular
state. The widget’s state allows you to control how the end user interacts with the
widget. For example, for an application that lets end users enter data into a form,
you would want most widget states to be Update. However, for a read–only
window, you would want the widget states to be View. For more information
about widget states, see “About Widget States” on page 435 and the Display
Library online Help.

Default window usage When you create a window in the Window Workshop,
iPlanet UDS automatically sets the window usage to Update. The Update window
usage sets the states for all the widgets in the window to let the end user “update”
the form (that is, to set values or enter data). This default usage is appropriate for
most applications.

However, if you are creating an application that runs in different modes or that lets
the end user draw on the form or edit it (rather than letting the end user update it),
you may want to change the window usage.

Setting the Usage property in the Window Workshop determines which usage is in
effect when the window first opens. For example, imagine you want to provide a
read-only form, where the user can view information but not update it. In the
Window Workshop, you can change the window usage from Update to View.

The following table describes the six window usages:

Under This Usage A Window Behaves This Way

View The default states for widgets refuse keyboard and mouse input. In
this usage, a user could only view a text field and would be unable to
select the text field itself or its text. The default widget state for this
usage is View Only.

Update The default states for widgets accept mouse actions and keyboard
input; the widgets themselves are changeable. In this usage, for
example, a user could edit the text in a text field, move the text field
itself, and change the font of the text field. The default widget state
for this usage is Update.

Query The default states for widgets are the same as Update.

User1 A user-defined usage. The default states for widgets are the same as
Update.

User2 A user-defined usage. The default states for widgets are the same as
Update.

User3 A user-defined usage. The default states for widgets are the same as
Update.

About Windows

372 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

iPlanet UDS provides default settings for all six usages, as shown in the table
above. The View, Update, and Query usages are all prefabricated usages, defined
for your convenience to set widgets to the corresponding states. You can override
these settings to define these usages in any way you wish.

Defining a usage The User1, User2, and User3 usages are meant for you to define
for your own use. They initially set all widgets the same as the Update usage.

Visual Style Property
For Motif and Windows, you can set the visual style for individual fields on the
window. The visual style of a field is either three dimensional or two dimensional.
For Windows 95 and Windows NT, you should always use the three-dimensional
style (the default).

By default, the visual style for the window is determined by the current setting of
the FORTE_VISUAL_STYLE environment variable. The default value of the
FORTE_VISUAL_STYLE environment variable is “3D”.

About Creating New Windows
You use windows to create a graphical user interface for an iPlanet UDS
application or as page templates for printing. When you are creating a window in
the Window Workshop, you need to consider how the window is going to be used
by your application. The way the window is used by the application influences
how you design the window, for example, whether you include a menu bar on the
window, whether you create a generic window that can be reused, and so on.

The window you create in the Window Workshop can be any of the following:

Standard window A standard window is a new, independent window that you
create for your user interface. To create a standard window, simply create a
window class that is a subclass of the iPlanet UDS UserWindow class. This window
class provides a empty window for which you create the form and menu bar from
scratch.

Inherited window An inherited window is a window that inherits part of its
appearance and behavior from an existing window. If you want your new window
to inherit from an existing window, you can create a new window class that is a
subclass of another custom window class (rather than the UserWindow class).
When you define a subclass of a custom window class, your new window class
inherits the form and menu bar from its superclass in addition to its methods,
attributes, event handlers, and events. You can then extend the inherited form and
menu bar by adding new widgets to the subclass window.

About Windows

Chapter 7 Using the Window Workshop 373

Nested window A nested window is a window that is designed to be displayed
as part of one or more other windows. When you nest one window in another
window, iPlanet UDS displays the nested window inside the main window so that
it appears to be part of the main window. Creating a nested window is a good way
to reuse a standard form or “subwindow” that is needed by several other
windows.

Page templates A page template is a window that is designed specifically for
printing. In the Window Workshop, creating a page template is the same as
creating a window for a user interface—the fact that you are going to print the
window instead of display it affects only the way you design the windows. The
difference between printing a window and displaying a window is the way you
handle the window in your code; you use the iPlanet UDS printing classes to print
the window rather than opening it for display.

You can also set up an iPlanet UDS window so that it can be converted into a Web
page.

This following sections provide information about inherited windows, nested
windows, page templates, and windows as Web pages.

About Inherited Windows
When you build a new window, you can create a subclass window that inherits its
initial appearance and behavior from another window. The ability to create a
subclass window enables you to define one window superclass that provides
application or company-wide window formatting. You can then create subclasses
of the generic window as many times as you wish, and customize each subclass
window as appropriate for the application. The following example shows a simple
data entry window skeleton with a logo and buttons.

Figure 7-5 Example Window Superclass

About Windows

374 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The following example shows two subclass windows that have inherited the
superclass window’s widgets, and that also have additional data fields:

Figure 7-6 Example Subclass Windows

To see these windows in context, see the iPlanet UDS example program
InheritedWindow.

To create an inherited window, you declare your window class as a subclass of any
existing window class. The new subclass window automatically inherits the form
and menu bar defined for the existing window class (as well as the methods,
attributes, events, and event handlers in the superclass). When you open the
Window Workshop, the inherited window will be displayed. You can use the
Window Workshop to add widgets to the inherited window or even to modify the
inherited widgets.

iPlanet UDS also allows you to modify the superclass window at any time, even
after creating the subclass windows. Any changes you make to the superclass are
automatically inherited by its subclasses—you will see the inherited changes the
next time you open the subclass window. If any of the subclasses have modified
the inherited widgets, iPlanet UDS automatically merges the superclass changes
with the subclass changes. Of course, you need to carefully coordinate changes
made to the superclass window to ensure that the subclass windows still work
properly. See “Working with a Subclass Window” on page 424 for information
about creating and modifying inherited windows.

About Windows

Chapter 7 Using the Window Workshop 375

Named event handlers and inherited windows iPlanet UDS named event
handlers provide a very convenient way for you to provide event handling code in
the superclass window that is inherited by the subclass windows. This works very
effectively to allow both the widget and the widget’s behavior to be defined in the
superclass and then inherited by the subclasses. See Chapter 11, “Using the Event
Handler Workshop,” for information about named event handlers and the Event
Handler Workshop. See the iPlanet UDS Programming Guide for an example of an
event handler used for an inherited window.

About Nested Windows
A nested window is a window that is designed to be displayed inside another
window. When the application is running, the nested window appears to be a
compound field on the main window. You can nest the same window on any
number of other windows throughout your application (or in multiple
applications). Nesting windows provides a way to reuse a standard “subwindow”
(and the event handling code associated with it) in more than one window.

Figure 7-7 shows the original window as it was designed in the Window
Workshop.

Figure 7-7 Example Subwindow

Figure 7-8 shows how the nested window looks when the application is running
and the nested window is displayed on top of two different main windows.

About Windows

376 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 7-8 Main Windows Displaying Nested Windows

To see these windows in context, see the iPlanet UDS example program
NestedWindow.

You can make any window into a nested window. The only restriction is that the
nested window cannot have a menu bar. Typically, you display the nested window
within a compound field in the outer window, for example, within an empty cell of
a grid field. When you are designing the nested window, you should consider
exactly where it will be displayed on the outer window. You should take this into
account when planning the size and content of the outer window.

Set Parent attribute of nested window After creating the nested window in the
Window Workshop, you can display it on any number of other windows at
runtime. To nest a window in another window, you set the value of the nested
window’s Parent attribute to the compound field in the outer window where you
wish to display the nested window. For example:

About Windows

Chapter 7 Using the Window Workshop 377

Whenever you specify a parent for a window, iPlanet UDS displays the nested
window without its frame (the title bar, close box, and so on) so that it does not
look like a separate window. For information on how to write the Display method
for a nested window, see iPlanet UDS Programming Guide.

Named event handlers and nested windows iPlanet UDS named event handlers
provide a very convenient way for you to define event handling code for the nested
window that can be used by the window that displays the nested window. When
the nested window definition includes named event handlers, the outer window
can easily include the event handlers defined for the nested window as part of its
own event handing code, making the two windows work together as one seamless
window. See Chapter 11, “Using the Event Handler Workshop,” for information
about named event handlers and the Event Handler Workshop.

Note that a dialog box is not the same thing as a nested window. A dialog box is
simply a standard window without a menu bar. The way your program opens the
dialog box, the format of the dialog box (usually containing OK and Cancel
buttons), and the behavior of the dialog box (it usually blocks the window that
opens it) is what differentiates a dialog from other windows in your user interface.

Code Example 7-1 Nesting a Window Example

-- This fragment shows how to nest a window.
artobjectWindow : ArtObjectWindow = new;

-- Nest the Art Object Window. First assign a row
-- and column position. Give it a compound field as
-- a parent. Remove its frame so it will look like a
-- seamless part of the parent window.

artObjectWindow.Window.Row = 3;
artObjectWindow.Window.Column = 1;
artObjectWindow.Window.Parent = <main_grid>;
artObjectWindow.Window.FrameWeight = W_NONE;

self.Open();
...

Project: NestedWindow • Class: PurchaseWindow • Method: Display

About Windows

378 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Inherited Windows or Nested Windows?
Obviously, inherited windows duplicate some of the functionality of nested
windows, that is, the ability to reuse window formatting and event handling code
for more than one window. When should you use inherited windows? Inherited
windows are most useful when you want to modify the form and menu inherited
from the superclass. When should you use nested windows? Nested windows are
most useful when you have a self-contained, modular form that you wish to reuse
without modifications.

One advantage of inherited windows is the ability to view and customize the
subclass windows in the Window Workshop. You cannot display a nested window
on top of another window in the Window Workshop. Nested windows are
displayed on their parent windows only when the application is running. To
customize a single instance of a nested window, you must do so dynamically from
your TOOL code.

About Windows as Page Templates
You can design a window to be used as a standard page in a report. The window
functions as a form, which will be filled in with data at runtime. In your
application, you can write TOOL code to fill in the data and print the report page.
You can also prompt the end user to select printing options that control how the
page is printed.

Figure 7-10 illustrates a window in the Window Workshop that is intended for
printing a report with header and footer information.

Figure 7-9 Page Template Window

About Windows

Chapter 7 Using the Window Workshop 379

To see this window in context, see the ReportTemplateWindow class in the iPlanet
UDS example program PrintSample.

A page template window can be any window class, either a standard subclass of
UserWindow or any inherited window. There is nothing special you need to do
when you create the page template window in the Window Workshop, except
consider how the window layout will look when it is printed.

Page formatting The window you design for printing can be any size. The
PrintPage class allows you to “tile” a large window onto multiple pieces of paper.
The PrintPage class provides attributes that control the page format, as well as a set
of methods that allow you to draw text and graphics on the working page (see
PrintPage class in the Display Library online Help for information.) Also, you can
include any widgets on a page template, even widgets, such as array fields, that do
not display all their data at once. The printing classes provide the option of
expanding these fields at print time.

When printing a window with a menu bar, iPlanet UDS ignores the menu bar and
prints the window without it. Therefore, if you are designing a window specifically
for printing, you should not include a menu bar on it.

After you have created your page template in the Window Workshop, you can
print it by using the printing classes in the Display library. See PrintDocument
class in the Display Library online Help for information about printing. Figure 7-10
illustrates how the window shown above will look when it is printed. (Note that
data repeats in the sample page because the sample data set is so small.)

While this section provided information about creating windows especially for
printing, remember that you can allow your end user to print any iPlanet UDS
window by providing a print command that uses the Display library printing
classes to print the current window.

About Windows

380 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 7-10 Printed Version of Page Template

Artist Report

P 1

Leonardo da Vin Italy His notebooks, unknown to his
contemporaries, have revealed to the
modern world his astonishing
observations.

Henri Rousseau France He was naive, distressingly gullible,
pompous and absurd.

Edgar Degas France His scultpure of the little 14-year
old dancer was considered by Renoir to
 be the greatest sculpture of the
century.

Jaspar Johns United His flags and targets were simple, but
 profound.

Pablo Picasso Spain His long and prolific life has left
and indelible impression on the world
of art.

Leonardo da Vin Italy His notebooks, unknown to his
contemporaries, have revealed to the
modern world his astonishing
observations.

Henri Rousseau France He was naive, distressingly gullible,
pompous and absurd.

Edgar Degas France His scultpure of the little 14-year
old dancer was considered by Renoir to
 be the greatest sculpture of the
century.

Jaspar Johns United His flags and targets were simple, but
 profound.

Pablo Picasso Spain His long and prolific life has left
and indelible impression on the world
of art.

Leonardo da Vin Italy His notebooks, unknown to his
contemporaries, have revealed to the
modern world his astonishing
observations.

Henri Rousseau France He was naive, distressingly gullible,
pompous and absurd.

Edgar Degas France His scultpure of the little 14-year
old dancer was considered by Renoir to

About Windows

Chapter 7 Using the Window Workshop 381

About Windows as Web Pages
iPlanet UDS allows you to convert any specially prepared window into a Web
page. To prepare the window, you simply assign anchors and image URLs to the
appropriate widgets on the window using the Widget > HTML Options...
command.

The HTML Options… command enables you to set properties on the currently
selected widget for use with the iPlanet UDS WindowConverter class. The
WindowConverter class, in the iPlanet UDS Web Software Development Kit,
allows you to convert an iPlanet UDS window into an HTML document (Web
page).

Anchor URL property The Anchor URL property allows you to assign a
hypertext link to the widget, so that when the window is converted into a Web
page, the corresponding HTML element will be an anchor. The hypertext link must
be in the form of a URL (Universal Resource Locator).

Push buttons that have anchors assigned to them are converted into HTML text
strings with borders. The text string with a border simulates the appearance of a
push button, with the HTML text string providing the button’s label and the border
providing the button’s shape. The anchor for the push button provides the
processing that takes effect when the button is “clicked.”

Image Source URL property The Image Source URL property, available for
picture fields, picture graphics, and picture buttons only, specifies the location of
the image to be displayed on the Web page. The image file that you assign to a field
must be located on the Web server. The format of the image file can be any format
supported by the Web server. The Image Source URL must provide the address of
the actual image file relative to the Web server.

If you do not assign an image file to provide the image for the picture on your
window, or if the URL is incorrect, the Web browser displays a broken picture
image in place of the field.

About Windows

382 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To set the HTML options for a widget

1. Select the widget.

2. Select the Widget > HTML Options… command from the Widget menu.

3. In the HTML Options dialog, enter the Anchor URL and/or Image Source
URL.

About Internationalizing Windows
You can set all text within windows and widgets displayed in a user interface
through attributes and methods described in the Display Library online Help.
Using iPlanet UDS international features, you can write code to set these attributes
from messages read from a message catalog before the window is first displayed. If
you design the windows using grid fields and other techniques for letting the
interface adapt to the displayed contents, you can achieve excellent portability of
interfaces across languages. See the iPlanet UDS Programming Guide for information
about building a portable user interface. Note that you cannot change the base
layout of a window using this technique.

Widget text and help All widgets that display static text, including menu items,
have message numbers as properties in the Window Workshop so you can control
the text for each widget individually. (Message number properties are not available
on widgets that display text only at runtime, such as a data field.) In addition, the
help topics for all fields and menu items also have message numbers, so you can
create multilingual help for the window.

By default, all messages for a window are loaded from the same message set,
which you specify using the Default Set Number property on the Window
Properties dialog. If you do not specify a value for an individual widget’s set
number, iPlanet UDS will use the default set number specified for the window. If
you do specify a set number for the individual widget, that set will be used. See
“Setting Window Properties” on page 396 for information about specifying the
default set number for the window properties dialog. See “About
Internationalizing Widgets” on page 446 for information about specifying the
message set and message number for an individual widget on a window.

About Windows

Chapter 7 Using the Window Workshop 383

Window title On the Window Properties dialog, the window’s title has a
message number and optional set number, so you can create a multilingual
window title. If you not specify a set number for the tile, iPlanet UDS will use the
default set number specified for the window. If you do specify a set number for the
title, that set will be used.

See the iPlanet UDS Programming Guide for complete information on creating
multilingual applications.

About Help for Windows
To provide help in your iPlanet UDS application, you can use iPlanet UDS’s
automatic help facilities, you can implement your own help facilities using the
iPlanet UDS WinHelp method, or you can use any combination of the two.

iPlanet UDS automatic help facilities include the following:

Context-Sensitive Help for Individual Fields The Help Text command on the
Widget menu allows you to assign a topic in the default help file to a field. iPlanet
UDS displays this help topic when the input focus is on the field and the end user
presses the Help key.

Float-Over and Status-Line Help for Individual Fields The HelpText command
on the Widget menu allows you to specify both float-over and status-line help for
the field. Float-over help is displayed alongside the field when the mouse pauses
over the field. Status-line help is displayed in the window’s status line when the
mouse pauses over the field.

Help Menu The Menu Workshop provides three prefabricated commands for
inclusion on the Help menu: Help Contents, Help Search, and Help on Help. The
Help Contents and Help Search commands open the appropriate Help dialog,
using the default help file you have specified for the window, or if none exists for
the window, for the partition. The Help on Help command displays Windows
standard Help on Help window.

iPlanet UDS also provides an About command, for which you can provide the
appropriate processing. See “Using the Prefabricated Help Commands” on
page 561 for information about implementing a Help menu for your window.

Using the Window Workshop

384 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

To implement your own help facilities, you can use the following iPlanet UDS
features:

WinHelp Method The WinHelp method defined on the WindowSystem class
provides an interface to the Windows Help API. You can use this method to access
any Windows Help documents. See WinHelp method on Window class in the
Display Library online Help for further information.

HelpRequest Event The HelpRequest event defined on the Window class is
posted when the end user presses the Help key. You can provide any processing
you wish in response to this event. See HelpRequest event on Window class in the
Display Library online Help for further information.

Help Menu You can override the automatic behavior of the three iPlanet UDS
Help commands by providing your own TOOL code to handle the Activate events
on these commands. See “Using the Prefabricated Help Commands” on page 561
for information about implementing a Help menu for your window.

For complete details on implementing help for your window, see the iPlanet UDS
Programming Guide.

Using the Window Workshop
This section discusses the following aspects of using the Window Workshop:

• entering the Window Workshop

• using the toolbar

• using the widget palette

• using the color palette

• using the widget status line

• leaving the Window Workshop

Entering the Window Workshop
You can enter the Window Workshop from the Class Workshop after creating a
new window class or selecting an existing window class to modify.

Using the Window Workshop

Chapter 7 Using the Window Workshop 385

➤ To create a new window class

1. In the Project Workshop, click the New Window Class tool or choose the
Component > New Window Class command.

The Window Class Properties dialog opens.

2. On the General tab page, enter the name of a new class.

3. Select the superclass for the new window, either the iPlanet UDS UserWindow
class or a custom window class of your own, and click the OK button. (See
“Using the Class Properties Dialog” on page 306 for information on setting the
other class properties.)

iPlanet UDS creates the new window class and opens the Class Workshop.

4. In the Class Workshop, click the Window Workshop tool or choose the File >
Window… command.

You can now create a new form for your window class, or, if the window class
has inherited a form, modify the existing form.

➤ To modify the window for an existing class

1. In the Project Workshop, double-click the window class you wish to modify.

The Class Workshop opens.

2. In the Class Workshop, click the Window Workshop tool or choose the File >
Window… command.

You can now modify your existing window class.

Using the Window Workshop

386 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The Window Workshop Window
The Window Workshop provides all the tools you need to create the form for your
window. The workshop consists of:

Toolbar The toolbar provides a set of tools for creating compound widgets and
editing your form.

Widget Palette The widget palette allows you to add simple widgets to your
window by dragging them onto position on the form.

Color Palette The color palette lets you choose colors for your widgets by
displaying the colors themselves (rather than selecting a color name).

Widget Status line The widget status line provides information about the
currently selected widget and provides shortcuts for changing certain widget
properties.

Form The form is an empty canvas where you layout the widgets you want to
display on your window.

Menus The menus in the Window Workshop provide commands that duplicate
the functions provided by the toolbar and palettes as well as special commands for
formatting and arranging the widgets.

Popup Menu The Window Workshop provides a popup menu containing
commonly used commands for building your window. To access the popup menu,
use your window system’s popup activation mouse button, key, or key
combination. The following commands are available:

• Cut

• Copy

• Paste

• Properties...

• Size Policy...

• Help Text...

• Cell Margins...

Figure 7-11 illustrates the Window Workshop.

Using the Window Workshop

Chapter 7 Using the Window Workshop 387

Figure 7-11 The Window Workshop

Viewing Window Workshop Tools
Because the menus in the Window Workshop provide equivalents to the toolbar,
the status lines, and the two palettes, you do not need to display the entire
workshop while you are working on your form. The View menu also allows you to
add visual guidelines while you develop your window.

Popup

Color

Widget
statusWorkshop

status line

Toolbar

Form

Menu

line

Palette

Using the Window Workshop

388 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

View menu The View menu in the Window Workshop provides the following
set of toggles for displaying or hiding different parts of the workshop:

Using the Toolbar
The Window Workshop toolbar, shown in Figure 7-12, provides a selection of tools
for editing your form and for creating compound widgets.

Figure 7-12 Window Workshop Toolbar

The Undo and Redo Tools

You use the Undo and Redo tools to undo or redo your most recent action in the
Window Workshop.

Command Description

Grid Displays or hides grid lines in the window form. When the grid
is turned on, widgets placed on the form will snap to the
nearest grid point.

Compound Field Lines Displays or hides border lines around fields in a compound
widget.

Toolbar Displays or hides the toolbar.

Widget Palette Displays or hides the widget palette.

Color Palette Displays or hides the color palette.

Widget Status Displays or hides the widget status line.

Status Line Displays or hide the status line.

Undo/Redo Tools Widget Ungrouping Tool

Widget Editing Tools Widget Grouping Tools

Using the Window Workshop

Chapter 7 Using the Window Workshop 389

The Undo tool undoes the last action you performed. You can repeat this as many
times as you wish, as far back as your first action in the workshop, even removing
information you recorded in properties dialogs.

The Redo tool re-does the last action you reversed by using the Undo tool.

The menu-based equivalents of the Undo and Redo tools are the Edit> Undo and
Redo commands.

The Widget Editing Tools

The four editing tools, Cut, Copy, Paste, and Delete, allow you to manipulate the
widgets on the form the same way you can cut, copy, paste, and delete text in a text
editor.

➤ To cut, copy, or delete a widget

1. Select the widget.

2. Click the Cut, Copy, or Delete tool.

➤ To paste a widget

1. Click the Paste tool.

2. Select the position on the form where you want to paste the widget.

The menu-based equivalents of the widget editing tools are on the Edit menu.

The Widget Grouping Tools

You use the widget grouping tools to create a compound widget out of groups of
widgets. To create a compound widget, you select a group of widgets on the form,
and then click one of the widget grouping tools. Each tool represents a different
compound widget. For information on creating compound widgets, see “Creating
Compound Widgets” on page 405. The menu-based equivalent of the widget
grouping tools is the Widget > Group Into command.

Using the Window Workshop

390 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Using the Widget Palette
The widget palette provides tools for selecting widgets, entering and editing text,
and creating simple widgets.

The Widget Selection Tool

The widget selection tool is for selecting widgets on the form. You can use it to
select a single widget, multiple widgets, or compound widgets:

➤ To select a single widget

1. Activate the selection tool.

2. Click on the widget.

➤ To select multiple widgets

1. Activate the selection tool.

2. Enclose the widgets in a ghost box.

After you have selected one widget, you can use the Shift key to select or deselect
multiple widgets. To select another widget, hold down the Shift key and click on
the unselected widget. To deselect a selected widget, hold down the Shift key and
click on the selected widget.

➤ To select a compound widget

1. Select one of the compound field’s child widgets.

2. Hold down the Ctrl key and click on the child widget again.

The parent widget will become selected.

3. To select the parent of the parent widget, hold down the Ctrl key and click the
already selected parent.

The parent’s parent is now selected. You can repeat this process as many times
as necessary to select each successive parent widget.

NOTE There is no menu-based equivalent for the selection tool. When the
toolbar is hidden, the selection tool is always active.

Using the Window Workshop

Chapter 7 Using the Window Workshop 391

See “Selecting Widgets” on page 410 for further information about selecting
simple, compound, and multiple widgets.

The Text Graphic Tools

There are two text graphic tools: the Text Graphic Creation tool and the Text
Graphic Edit tool. You use the Text Graphic Creation tool to place the text graphic
on the form. You use the Text Graphic Edit tool to enter or edit the content of the
text graphic.

➤ To create a text graphic

1. Click the Text Graphic Creation tool.

The cursor turns into an upward pointing arrow.

2. Click the point on the form where you wish place the text graphic.

iPlanet UDS adds the text graphic to the form using the phrase “Text Graphic.”

iPlanet UDS automatically switches into edit mode so you can edit the content
of the text graphic.

➤ To edit a text graphic

1. Activate the Text Edit tool.

The arrow cursor appears.

2. Position the cursor over an existing text graphic on the form.

The cursor turns into an I-beam.

3. You can enter, delete, or select text as you would in a word processing system.

For further information on text graphics, see “Creating a Text Graphic” on
page 493.

The Widget Creation Tools
You use the widget creation tools to create simple widgets. The widget creation
tools represent all the simple widgets you can create in the Window Workshop.

To create a simple widget, you simply click the tool whose widget you wish to
create.

Using the Window Workshop

392 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

If the widget is fixed size, the cursor turns into a upward pointing arrow. In this
case, move the cursor to the appropriate point on the form and click to indicate the
widget’s position.

If the widget is resizeable, the cursor turns into a cross hair. In this case, draw a
ghost box on the form to indicate the widget size and position.

For further information about placing simple widgets on the form, see “Creating
Widgets” on page 401.

Once you create a widget, the widget itself remains selected, its tool is deselected,
and the widget selection tool is selected.

Sticky palette If you wish to create several widgets without having to reselect the
appropriate widget tool, you can hold down the Control key when you select the
new widget tool. The key sequence Ctrl-New Widget Tool keeps the tool selected
until you select another tool.

The menu-based equivalent for the widget creation tools is the Widget > New
submenu.

Using the Cell Gravity Tool

Each field within a grid field is enclosed in a cell (see “Creating a Grid Field” on
page 517). The gravity of a cell determines how a child field in a compound field is
aligned within its cell. You can use the Cell Gravity tool to realign a selected field
within its cell.

➤ To align a field

1. Select the field to be aligned.

2. Click the appropriate arrow in the Cell Gravity tool.

Using the Color Bar
The Window Workshop provides two color tools: the color feature list and the
color palette. The color feature list, as shown in Figure 7-13, allows you to select a
color feature for a widget: fill, pen, frame, or contrast pattern. The color palette
offers an array of colors to use for color features.

Using the Window Workshop

Chapter 7 Using the Window Workshop 393

Figure 7-13 Color Bar

You use the color palette to color the fill, pen frame, or contrast of a widget. For
example, if you want to set the color of a rectangle’s fill, you select the rectangle,
select the color feature (Fill), and select a color for that feature. The table below
describes the color features:

Dropping Colors
You can use the color selection tools to drop colors onto widgets.

➤ To drop a color onto a widget

1. Click on a color in the color palette.

2. Drag the package icon to the widget you want to color.

3. Release the mouse.

The selected color feature for the widget changes color.

Setting color for a window You can set the background color for the window
itself by dragging and dropping a color selection onto the window.

Color Feature Description

Fill Determines the background color. Used in conjunction with the contrast
color on widgets with a fill pattern.

Pen Determines the perimeter color for shapes and the text color for widgets
with text.

Frame Determines the frame color.

Contrast Determines the pattern color of widgets with a fill pattern; used in
conjunction with the fill color.

Color palette
Color inheritance toolColor feature list

Using the Window Workshop

394 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Making a widget inherit color from its parent You can make a child widget
inherit the color scheme of its parent widget by using the Color Inheritance tool,
shown in Figure 7-13. To change the color scheme of a child field to be the same as
that for its immediate parent, drag the Color Inheritance tool and drop it on top of
the child widget.

The menu-based equivalents of the color setting tools are the Style > Color Feature
and Color commands.

Using the Widget Status Line
The widget status line includes four status fields that show the state of the window
and of the widget you are creating. Figure 7-14 illustrates the status fields.

Figure 7-14 The Widget Status Line

Widget Status Field Description

Window Usage Determines the states for all the window‘s widgets. The menu
equivalent is the Widget > For Usage command. There are six
usages:

Update—Mouse actions and keyboard input accepted; widgets
themselves are changeable.

View—View usage only; no keyboard input is accepted.

Query—Query usage only; widget data is editable, but not widgets
themselves.

User1, User2, User3—User-defined usages.

See “Setting Window Usages and Widget States” on page 398 for
more information about window usages.

WIndow Usage Starting State Attribute Name Widget Type

Using the Window Workshop

Chapter 7 Using the Window Workshop 395

Access to Other Workshops
From the Window Workshop, you can access one other workshop:

Leaving the Window Workshop
To leave the Window Workshop, choose the File > Close command. When you
leave the Window Workshop, iPlanet UDS creates the widget attributes for all
widgets you have added to the form.

If you wish to remove all changes you have made to the form since you opened the
Window Workshop, you can use the File > Cancel command. The Cancel
command closes the workshop and ignores all work done since the workshop was
opened, or since your last Save All command.

Starting State Controls how a widget reacts to user actions and how it displays
itself. The menu equivalent is the Widget > Starting State command.

See “About Widget States” on page 435 for more information about
widget states.

Attribute Name Displays the name for the currently selected widget. You can
change the attribute directly in this field, as an alternative to setting
it in the widget’s properties dialog.

Widget Type Identifies the type of the currently selected widget.

Workshop How to access it

Class Workshop The File > Open Class… command opens the Class Workshop to
display the definition of the class to which the current window
belongs. If the class is already being displayed, the Open Class…
command moves the input focus to the appropriate Class Workshop
window.

Widget Status Field Description

Designing a Window

396 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Designing a Window
To design a window, you set the window properties and use Window Workshop
commands to define overall window appearance and behavior. You then use the
Window Workshop to create the form for your window.

This section provides detailed information about the following topics:

• setting window properties

• setting window usages and widget states

• creating a form

To create a menu bar for a window, you use the Menu Workshop, described in
Chapter 9, “Using the Menu Workshop.” To open the Menu Workshop, choose the
File > Menu… command.

Setting Window Properties
To set the window properties, choose the File > Window Properties… command.

The Window Properties dialog, shown in Figure 7-15, allows you to set the
properties defined in the following table.

Property Description

Window Title Sets the window’s title, to be displayed in its title bar.

Message Number Specifies the message number for the window’s title, used for
creating a multilingual window.

Set Number Specifies the set number for the window title’s message number. If
unspecified, iPlanet UDS uses the default message set for the
window.

Initial Position
Policy

Sets the initial position a window should take in relation to other
windows or to the screen. Window position policies are: System
Default, Screen Centered, Primary Centered, Screen Relative, and
Primary Relative.

Designing a Window

Chapter 7 Using the Window Workshop 397

X,Y Sets the precise positioning for a window, according to the initial
position policy.

For example, a window using a position policy of Screen Relative
and X,Y Position specifications of 10,10 would place itself at an
offset of 10 mils horizontally and vertically from the upper left
screen boundary.

(Only the Screen Relative and Primary Relative position policies use
X and Y Position information.)

Window Style Sets the window’s style. A window can assume one of three styles:
Resizeable, Non-Resizeable, or Frameless. See “Window Style” on
page 365 for information on the window styles.

Iconize Enabled Specifies whether or not to use a minimize box and corresponding
window system menu item.

Initial Display
State

Sets the window's initial display state—how it displays itself when
it first runs. A window can assume one of the following states:
Iconized, Hidden, Normal, Alternate.

Maximize Enabled Specifies whether or not to use a maximize box and/or
corresponding window system menu item.

Autosize Enabled Specifies whether or not the Window and its form will
automatically snap to a size which appropriately “frames” the
form's children

Stay On Top Specify that the current window remain on top of the other
windows on the screen, even when the end user activates another
window. This feature is useful for toolbars and status windows that
should always be displayed. The Stay On Top toggle is turned off
by default.

The Stay On Top property is available only for Windows platforms.
On other platforms, the property is ignored.

Tool Window Specifies that the current window not be displayed in the window
system’s task bar when the window is iconized. This feature allows
you to create a secondary window for the application that is not
displayed in the task bar when the main window for the application
is iconized. The Tool Window toggle is turned off by default. This
feature is available on Windows 95/NT only. On other platforms,
the attribute is ignored.

System Close
Policy

Sets the window’s close policy, which determines how the window
responds to user action to close the window at the window system
level. Choices are: Disabled, Post Shutdown, Post Finalize, and Post
Shutdown Task Only.

Property Description

Designing a Window

398 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 7-15 Window Properties Dialog

Setting Window Usages and Widget States
As described under “Usage Property” on page 370, window usages allow you to
control how the end user interacts with the window. For example, imagine you
want to provide a read-only form, where the user can view information but not
update it. In the Window Workshop, you can change the window usage from
Update to View.

The following instructions tell you how to define a window usage, set the starting
state for a widget within the particular usage, and test a given usage for a window.

Usage Sets the initial window usage. A window can assume one of the
following usages: View, Update, Query, User1, User2, User3.

Visual Style Specifies the default field style for the window, either two
dimensional or three dimensional. This takes effect for Windows
and Motif only.

Property Description

Designing a Window

Chapter 7 Using the Window Workshop 399

➤ To define a window usage

1. Choose the Widget > For Usage… command, and choose the usage you want
to define from the submenu.

A check appears beside the selected usage menu item.

2. Select the widgets whose states you want set for the usage.

3. Set the states for the widgets in the usage by choosing the states from the
Widget > Starting State… submenu.

You can use the Starting State widget status field as a shortcut for setting the
widget state:

➤ To use the Starting State status field

1. Select a widget.

2. In the Starting State status field, choose a starting state.

Testing a usage When you are finished setting the widget states for the usage,
you can test the usage.

➤ To test a window usage

1. On the File > Test Usage submenu, select the usage you want to test.

A check appears beside the selected usage menu item.

2. Choose the File > Test Window command.

This opens the test window, where the window and its widgets behave as they
would if the window were running in an actual application.

Changing window usages dynamically In the Window Workshop, you set only
a window’s initial usage. If you want to reset the usage based on its use in an
application, you can write methods in TOOL to set the window’s usage
dynamically.

For example, imagine you have a data retrieval application, Data Fetcher. Data
Fetcher offers its users a window to view or update database information shown in
a variety of fields. The window must determine whether to allow a user to update
the information in the fields, or only view it, depending on the identity of the user.

From user to user, Data Fetcher changes the accessibility of the widgets in the
window by alternating between two usage settings for the window.

When a user qualified for data updating opens the window, Data Fetcher sets the
window usage to Update. This sets the state for all the widgets in the window to
update, meaning that all the fields are updateable.

Designing a Window

400 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

When a user restricted to data viewing opens the window, Data Fetcher sets the
window’s usage to View Only. This sets the state for all the widgets in the window
to View Only, meaning that all the widgets are visible, but not changeable.

For full information about changing a window’s usage, or individual widget states
dynamically, see the Display Library online Help.

Creating a Form
To design your window, you can place any number of simple fields or graphics on
the window’s form. Once the simple widgets are on the form, you can combine
them into compound widgets.

After you place a widget on the form, you can open its properties dialog to
customize it for your particular window. For example, you can place a push button
on the form and then open its properties dialog to specify the label you want on the
button.

When the basic form is laid out, you can refine it. You can resize and move the
widgets, and align them with each other. You can also change widgets’ format by
setting their line width and style, and specifying color for individual widgets and
sections of the form.

Automatic window sizing When your application opens the window, iPlanet
UDS automatically sizes the window to accommodate the form. The top and left
margins of the widget in the top-left-most position are also used as the bottom and
right margins, providing equal spacing around the entire form.

See “Creating Widgets” on page 401 for detailed instructions on creating the
individual widgets on the form.

Using a Placement Grid
The Window Workshop provides an optional placement grid to help you align the
widgets that you place on the form. When the grid is on, any widget that you place
on the form automatically aligns to a matrix of displayed grid points.

You can use the grid to draw straight lines and to align groups of widgets quickly
and easily.

Creating Widgets

Chapter 7 Using the Window Workshop 401

➤ To turn on the placement grid

1. Choose the View > Grid command.

iPlanet UDS displays the placement grid on the form.

Creating Widgets
All iPlanet UDS widgets are either fixed-sized or sizeable. The basic way you create
and modify the widget depends on whether it is fixed-size or sizeable.

Fixed-size widgets A fixed-size widget is created in one standard size. When you
add a fixed-size widget to the form, iPlanet UDS uses the widget’s default contents
and size. You then “resize” the widget by changing its contents on its properties
dialog. For example, a radio list will automatically resize after you specify the exact
number of buttons along with their labels.

Sizeable widgets A sizeable widget is created according to the size that you
indicate on the form. When you add a sizeable widget to the form, you draw a
rectangle to indicate the widget’s basic size. You can then resize the widget as you
wish by using resize handles.

Creating Widgets

402 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The following sections describe how to add the following widgets to your form:

• simple widgets

• compound fields

• domain widgets

These sections are followed by general information about setting the properties of
an individual widget and creating the attributes associated with widgets.

Creating Simple Widgets
For create a simple widget, the procedure you use depends on whether the widget
is fixed-size or sizeable.

➤ To create a fixed-size widget

1. Select a widget, either from the widget palette or from the Widget > New
menu.

2. Move the mouse onto the form.

The cursor becomes an upward-pointing arrow.

3. Click the point for the upper-left corner of the widget to position the widget on
the form.

The widget appears on the form in its default dimensions at the point you
clicked.

➤ To create a sizeable widget

1. Select a widget, either from the widget palette or from the Widget > New
menu.

2. Move the mouse onto the form.

The cursor becomes a cross hair.

3. Click on the form, and drag a ghost box to the desired dimensions.

When you release the mouse button, the widget appears on the form.

The widget palette provides tools for creating the following simple widgets.

Creating Widgets

Chapter 7 Using the Window Workshop 403

Tool Widget Sizeable? Description

Text
Graphic

Yes A text graphic is an image of text—a
decorative graphic not associated with data.

Data Field Yes A data field is a one-line text field that can
impose a formatting template upon the
text—date, time, number, or text data—it
contains.

Text Field Yes A text field displays multiple lines of text in a
scrollable field. A text field may use either
word-wrapping or a horizontal scroll bar.

Text Edit
Field

Yes A text edit field is a simple text editor, which
can provide line numbers and/or icons along
with the text as well as undo and redo utilities.
A text edit field does not provide word
wrapping.

Radio List No A radio list displays a group of options as
radio buttons, from which a user can choose
one option.

Scroll List No A scroll list presents a fixed group of choices
in a scrolling vertical display, from which a
user makes one selection.

Drop List No A drop list presents a fixed group of choices in
a menu-like display, from which a user makes
one selection.

Fillin Field No A fillin field provides a fixed element list for
selection, but also permits text entry as an
addition to the list. In a fillin field, a user can
choose a value, or type his own.

Picture Field Yes A picture field displays image data; if you
change the image data associated with the
field, the picture field displays a different
image.

Toggle Field No A toggle field is a widget that toggles a choice
on and off. It consists of some text indicating
the item or function to toggle, and a small
button to toggle the choice.

Creating Widgets

404 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Push Button No A push button is a button designed to accept a
mouse click and perform functions in response
to the click. Every push button has a label,
consisting of a single line of text, such as
“Save” or “Cancel.”

Picture
Button

No A picture button is a button that uses a bitmap
image as a label. The button’s size is
determined by the size of the image.

Scroll Bar Yes A scroll bar is a widget you can program to
work as a scroll bar or as a slider that lets the
end user specify a numeric value within a
range by dragging or clicking on the bar.

Outline
Field

Yes Displays multi-column information, either as a
flat list or as hierarchical information in an
indented outline.

List View
Field

Yes Displays a set of items, each consisting of an
icon with a label, from which the end user can
make selections.

Tree View
Field

Yes Displays two-column hierarchical information
in an indented outline, providing controls that
let the end user expand and collapse the
outline.

Picture
Graphic

Yes A picture graphic displays an image directly
and statically. Unlike a picture field, it does
not map to image data.

Line Yes A line is a decorative graphic not associated
with data.

Rectangle Yes A rectangle is a decorative graphic not
associated with data.

Ellipse Yes An ellipse is a decorative graphic not
associated with data.

Polyline Yes A polyline is a decorative graphic not
associated with data. It is a multi-segment line,
consisting of points and segments.

Point No A point is a decorative graphic not associated
with data. Points define lines and polylines.
Points are fixed-size widgets.

Tool Widget Sizeable? Description

Creating Widgets

Chapter 7 Using the Window Workshop 405

For details on creating any of these widgets, see the sections on creating specific
widgets in Chapter 8, “Working with Widgets.”

Using Repeat Mode
When you are creating simple widgets, you can use Repeat Mode to add any
number of the same widgets to the form by simply clicking repeatedly on the form.
In Repeat Mode, the last widget you added to the form continues to be selected on
the palette. To add another widget of that type to the form, simply click on the form
(or, for resizeable widgets, drag the ghost box). To change the type of widget you
wish to add to the form, select a new item from the palette.

To turn on Repeat Mode, you can use the Widget > Repeat New command or the
Repeat New preference for the Window Workshop. The Repeat New command
overrides the Repeat New preference set for the workshop with the Workshop
Preferences… command. See “Repeat New Preference” on page 430 for
information on how to set Repeat Mode as the default for the Window Workshop.

Creating Compound Widgets
You create compound widgets by grouping together other widgets, both simple
and compound.

➤ To create a compound widget

1. Select one or more widgets on the form.

You can select several widgets either by dragging a ghost box around the
desired widgets, or by clicking on single widgets successively while pressing
the Shift key.

2. Click a compound widget tool, or choose a compound widget from the Widget
> Group Into submenu.

Domain n/a A domain widget is the form widget
associated with the specified domain. If you
place the domain widget inside an array field,
its array widget is used. Otherwise, its form
widget is used.

OLE Field Yes An OLE field displays OLE linked or
embedded objects.

Tool Widget Sizeable? Description

Creating Widgets

406 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The Window Workshop combines the widgets into the compound widget you
selected.

NOTE Some compound widgets contain only certain widgets as
components, or child widgets. A compound graphic, for example,
contains only graphic widgets as child widgets. An array field can
contain any widget except another array field. For details on
compound widget components, see “Working with Compound
Widgets” on page 501. The toolbar provides buttons for creating the
following compound widgets.

Tool Compound
Widget

Description

Grid Field A grid field organizes widgets into rows and columns for
consistent alignment across window systems.

Array Field An array field displays an array of widgets in uniform rows,
where each row displays the same collection of widgets, but
the widgets’ data differ.

Panel A panel groups widgets together into a defined space on the
form.

Tab Folder A tab folder displays a set of tab pages, which the end user
can view one at a time. The end user selects a particular page
to view by clicking on its tab.

Palette List A palette list acts as a collection of graphic buttons.

A palette list is technically a simple widget, because it does
not consist of other widgets. In the Window Workshop,
however, you create a palette list as you would a compound
widget.

Compound
Graphic

A compound graphic groups graphic widgets for easy
manipulation as a single graphic.

Viewport A viewport offers a scrolling view of a single larger widget,
such as a picture or a panel, which may be too large to
display in its entirety on a form.

Creating Widgets

Chapter 7 Using the Window Workshop 407

Two compound widgets, tab folder and panel, also appear on the widget palette in
the Window Workshop. The tab folder palette item creates a default tab folder with
three empty tab pages. The panel palette item creates an empty panel, into which
add or move the widgets you want the panel to contain. See “Creating a Tab
Folder” on page 504 for information about creating a tab folder. See “Creating a
Panel” on page 502 for information about creating a panel.

Creating Domain Widgets
As described under “Domain Classes” on page 292, a domain is a special kind of
class that combines a DataValue subclass with an iPlanet UDS widget. The
domain’s form widget specifies the class of widget, such as DataField or RadioList,
that is used to display the data when the domain is added to a form. The domain
can also have an array widget, which specifies the widget that is used when the
domain is displayed within an array field.

To add a domain widget to a window, you can either drag the domain from the
Project Workshop’s browser and drop it onto the form in the Window Workshop,
or you can use the domain tool on the widget palette.

➤ To create a domain widget with drag and drop

1. In the Project Workshop, select the domain you want to add to the form from
the Project Component browser.

2. Drag the domain from the Project Component browser to the Window
Workshop.

3. Drop the domain onto the form in the position where you want the widget.

If you drop the domain onto an array field, the array widget is used.
Otherwise, the form widget is used.

➤ To create a domain widget with the palette

1. In the Window Workshop, click the New Domain tool on the widget palette.

2. Click the starting point for the domain widget.

The Choose a Domain dialog appears.

Creating Widgets

408 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

3. On the Choose a Domain dialog, choose the appropriate domain name.

If you selected a starting point within an array field, the array widget for the
domain will appear within the array. Otherwise, the form widget will appear
on the form.

Note that you can use a domain as the mapped type for any appropriate widget
that is already on the form. In this case, iPlanet UDS uses the widget that is already
on the form, rather than the domain’s form or array widget.

Setting Widget Properties
Every widget has a properties dialog, which allows you to define the appearance
and behavior of a widget. For information on the individual properties available
for specific widgets, see Chapter 8, “Working with Widgets.”

➤ To open the properties dialog for a simple field or graphic

1. Double-click the widget.

or

1. Select the widget.

2. Choose the Widget > Properties…command.

➤ To open the properties dialog for a compound widget

1. Double-click the widget’s frame or background

A compound widget’s background is any point within its frame that does not
belong to its child widgets.

or

1. Select the compound widget.

Creating Widgets

Chapter 7 Using the Window Workshop 409

2. Choose the Widget > Properties… command.

The figure below shows a properties dialog for a text field.

When you want to resume working in the Window Workshop, you must close the
properties dialog.

Setting the Properties for a Window
To set the properties for your window, choose the File > Window Properties…
command. For more information on setting a window’s properties, see “Setting
Window Properties” on page 396.

Note that every widget also has a Help Properties dialog (described under
“Multilingual Help for Widgets” on page 448), which allows you to specify help for
the individual widget and a Size Properties dialog (described under “Size Policies”
on page 439), which allows you to specify size policy properties for the widget.

Creating Attributes
Generally, iPlanet UDS does not create the attributes for the widgets you add to the
form until you close the Window Workshop. However, if you wish to create them
while you are still working on the form, you can use the File > Compile command.

Note that you never need to use the Compile command. The Compile command is
provided for your convenience, so you can keep the list of attributes in the Class
Workshop synchronized with the attributes you are adding to the window class
when you add widgets to the form.

Selecting Widgets

410 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Selecting Widgets
To modify, copy, or delete a widget, you must first select it—a selected widget is
highlighted. You can select a simple widget, a compound widget, or a group of
unrelated widgets as described below.

Selecting Single Widgets
To select a single widget, you click the widget.

Selecting compound widgets To select a compound widget, you click the
widget’s frame or background. You can also select a compound field by selecting
the “parent” of the current field.

➤ To select a parent widget

1. Select a child field of the compound widget.

2. Press Ctrl-Click or choose the Edit > Select Parent command.

If the compound widget belongs to another compound widget, you can select the
compound widget’s parent in the same way.

Selecting a Group of Widgets
There are three ways to select a group of widgets. You can:

• use a ghost box to enclose a group of adjacent widgets

• use Shift-Click to select the widgets one at a time—you can pick and choose
from any widgets on the form

• use Edit > Select Siblings or Select Children commands—these commands let
you select all the widgets within a compound field

Using a Ghost Box
You can select a group of widgets all at once by using the mouse to drag a ghost
box around the group of widgets.

➤ To use a ghost box

1. Move the cursor outside the group of widgets that you wish to select.

2. Hold down the mouse button. A ghost box is anchored at that position.

Selecting Widgets

Chapter 7 Using the Window Workshop 411

3. Drag the ghost box to completely enclose the widgets you wish to select.

The selection group includes only the widgets that are completely enclosed by the
ghost box. If a portion of a widget is outside of the box, that widget will not be
selected.

Using Shift-Click
To select a group of widgets one at a time, select the first widget as usual and then
use Shift-Click to add widgets to the group.

➤ To use Shift-Click

1. Select the first widget.

2. Position the cursor over the second widget and press the Shift key and click the
widget.

3. Repeat Step 2 as many times as desired to add widgets to the selection group.

You can also use Shift-Click to deselect a selected widget. Simply position the
cursor over the selected widget and press the Shift key and click the widget.

Using the Select Commands
The Select Siblings and Select Children commands let you select all the widgets
within a compound field with one simple command. The Select Siblings command
selects all the widgets that are contained within the same compound field as the
selected child widget. The Select Children command selects all widgets contained
within the selected compound widget.

Modifying Widgets
After you place a widget on the form, you can make any of the following changes
to it:

• remove it from the form (cut it or delete it)

• make a copy of it (duplicate it or copy it onto the clipboard)

• move it from one position to another

• resize it

• convert it to another widget type

• sets its state

Selecting Widgets

412 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Removing Widgets
You can remove a simple widget, a compound widget, or a group of widgets.

➤ To remove widgets

1. Select the widget or group of widgets to be removed.

2. Choose the Edit > Delete or Cut command, or click the Delete tool.

The Delete command removes the widget from the form. The Cut command
moves the widget to the clipboard.

Copying Widgets
You can copy a simple widget, a compound widget, or a group of widgets. To copy
widgets, you can either use the Duplicate command (which makes a copy of the
widget on the form) or the Copy and Paste command sequence which copies the
widget onto the form through the clipboard.

➤ To use the Duplicate command

1. Select a widget or group of widgets to duplicate.

2. Choose the Edit > Duplicate command.

iPlanet UDS creates a duplicate of the selected widget or group on the form,
slightly offsetting the duplicate from the original.

➤ To use the Copy and Paste commands

1. Select the widget or group of widgets to be copied.

2. Choose the Edit > Copy command.

3. Choose the Edit > Paste command.

4. Click the starting point for the new widget or group of widgets.

Moving Widgets
You can move a simple or compound widget from one part of the form to another.
You can also move an independent widget into or out of a compound widget or
rearrange the positions of widgets within a compound widget.

Moving simple widgets To move a simple widget, you simply drag the widget
to its new location.

Selecting Widgets

Chapter 7 Using the Window Workshop 413

➤ To move a simple widget

1. Position the cursor on the widget you want to move.

2. Click on the widget, and, holding down the mouse button, drag the widget to
its new position.

3. Release the mouse button.

Moving compound widgets To move a compound widget, you must be sure to
select the compound widget’s frame or background for dragging.

➤ To move a compound widget

1. Position the cursor on the compound widget’s frame or background.

2. Hold down the mouse button and drag the widget to its new position.

3. Release the mouse button.

Moving components of compound widgets Compound widgets offer differing
options for moving their child widgets. For details, see the specific compound
widget description in Chapter 8, “Working with Widgets.”

Resizing Widgets
You can resize any simple or compound widget that displays resize handles when
you select it. When selected, resizeable widgets display resize handles, while
fixed-size widgets simply reverse their display.

➤ To resize a widget

1. Select the widget so the resize handles are displayed.

2. Position the cursor on the handle that is on the side or corner that you wish to
expand or shrink.

3. Drag the widget’s boundary to its new position.

4. Release the mouse button.

Converting Widgets
You can convert a widget you created to different kind of widget by using the
Widget > Convert To command. Only a subset of widgets can be converted; if this
command is not available for a particular widget, there will be no submenu for the
Convert To command. If the submenu is available, it will list the types of widgets
to which you can convert the selected widget.

Selecting Widgets

414 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To convert a widget

1. Select the widget so the resize handles are displayed.

2. Choose the Widget > Convert To command.

3. Select the appropriate widget type to which to convert the selected widget.

Setting a Widget State
As described under “Usage Property” on page 370, the state of an individual
widget determines how the end user interacts with the widget.

The Starting State status field in the Window Workshop contains a drop list of
available states for the current window usage. Remember, a widget state is always
associated with a window usage, which you can set in the Window Usage status
field. For example, a widget can have a different state for each window usage
setting—if the window usage is set to Update, you can specify that a certain widget
is active, but cannot be modified.

The Widget > Starting State and For Usage commands are menu equivalents of the
Starting State and Window Usage status fields.

➤ To set a widget state

1. Select a widget.

2. In the Window Usage status field, choose the window usage for which you
wish to set the widget’s state.

3. In the Starting State status field, choose a starting state for the selected widget.

See “About Widget States” on page 435 for further information about widget
states. See “Setting Window Usages and Widget States” on page 398 for
information about window usages.

Formatting Widgets
The Style menu contains commands that enable you to set the style of a widget,
including its frame and fill colors, its fill pattern, and, if appropriate, its font.

Transparency for Graphic Fields
The Style > Transparent command determines whether objects beneath a graphic
field are visible through the graphic field. When the Transparent command toggled
on for a graphic field (simple or compound), a graphic field allows objects in the
layers underneath it to show through its background.

Selecting Widgets

Chapter 7 Using the Window Workshop 415

Creating Fill Patterns
The Style > Fill Pattern command determines a widget’s contrast pattern. A
contrast pattern is a pattern of lines overlaid upon a shape’s fill color, serving as a
contrast to the fill color.

Figure 7-16 Fill Patterns

Fill patterns have their own colors, known as contrast colors, which are defined by
the Contrast color feature.

The Fill Pattern command has the following options:

Value Definition

None No contrast pattern.

Vertical Lines A pattern of vertical lines.

Horizontal Lines A pattern of horizontal lines.

Box A pattern of lines crossing one another to form a box lattice.

Diamond A pattern of lines slashing across one another to form a diamond
lattice.

Slash Up A pattern of lines slashing at a 45 degree angle from the lower left to
the upper right.

Slash Down A pattern of lines slashing at a 45 degree angle from the upper left to
the lower right.

Contrast 12.5% 12% grey (shown above).

Contrast 25% 25% grey (shown above).

Contrast 50% 50% grey (shown above).

Contrast 75% 75% grey (shown above).

Contrast 87.5% 87.5 grey (shown above).

Selecting Widgets

416 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To select a fill pattern

1. Select the widget.

2. Choose the Style > Fill Pattern command, and then choose the appropriate
pattern from its submenu.

➤ To select a contrast color

1. Select the widget that is filled with a pattern.

2. Choose the Style > Color Feature > Contrast command.

3. Choose the Style > Color command and choose a color from the submenu.

➤ To select a background color

1. Select the widget that is filled with a pattern.

2. Choose the Style > Color Feature > Fill command.

3. Choose the Style > Color command and choose a color from the submenu.

Controlling Line Style and Weight
You can control the weight of the frame surrounding a widget. For Windows and
Motif, you can also specify the visual style of the widget, either two dimensional or
three dimensional. This overrides the visual style setting for the window (see
“Visual Style Property” on page 372 for information).

You can also set different styles and line weights for line widgets.

➤ To modify the frame weight of a widget

1. Select the frame.

2. Choose the Style > Frame Weight command.

3. Choose the appropriate weight.

➤ To set the visual style of a widget

1. Select the widget.

2. Choose the Style > Visual Style command.

3. Choose the visual style.

Selecting Widgets

Chapter 7 Using the Window Workshop 417

➤ To modify the weight of a line widget

1. Select the line widget.

2. Choose the Style > Line Weight command.

3. Choose the appropriate line weight.

You can use the Line Weight command in conjunction with the Line Style
command.

➤ To modify the style of a line widget

1. Select the line widget.

2. Choose the Style > Line Style command.

3. Choose the appropriate line style.

You can use the Line Style command in conjunction with the Line Weight
command.

Setting Widget Fonts
Unless you explicitly set a widget to use a particular font, it will use the host
window system’s default display font. If you do want to specify the font to use for
a widget, you have a choice between using a portable font, system font, or
extended font.

Portable fonts A portable font is consistent across window systems and has
specific characteristics that you can control. Use a portable font when you want to
specify the size and style of the font, rather than just its face. A portable font
consists of three elements:

• face—the actual typeface, such as Helvetica or Courier

• size—the point size of the font

• style—determines whether the font is bold or italic

Selecting Widgets

418 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To set the font for a widget to a portable font

1. Select the widget or widgets whose font you wish to change.

2. Choose the Style > Portable Font command.

3. On the Portable Font command’s submenus, choose the typeface, type size,
and style for the font.

System fonts A system font is the particular window system’s version of the font.
The window system uses the system font to display window titles, dialogs, menus,
button labels, and other widgets for which it makes standard representations.
System fonts differ from one window system to another.

➤ To set the font for a widget to a system font

1. Select the widget or widgets whose font you wish to change.

2. Choose the Style > System Font command.

3. On the System Font command’s submenu, choose the typeface for the system
font.

Extended fonts An extended font is a font that might vary across codesets and
display systems. Unlike the portable or system fonts, an extended font is set up as
part of the installation to represent fonts that are used only in applications that do
not require portability of user interfaces across codesets. See the iPlanet UDS
Programming Guide for further information about extended fonts.

➤ To set the font for a widget to an extended font

1. Select the widget or widgets whose font you wish to change.

2. Choose the Style > Extended Font command.

3. On the Extended Font command’s submenus, choose the typeface, type size,
and style for the font.

Selecting Widgets

Chapter 7 Using the Window Workshop 419

Arranging Widgets
The Arrange menu contains commands that enable you to align widgets with each
other, automatically resize widgets to uniform sizes, and control how widgets are
stacked in layers on top of one another.

Sizing and Aligning Widgets
You can choose two or more widgets and automatically make them a uniform size
using the Arrange > Size To command. The Size To submenu gives you the options
of making each widget the same size as the tallest, shortest, widest, or narrowest
widget. In addition, you can align a group of widgets using the Align To
command. The Align To submenu lets you choose to align two or more widgets
along the top, bottom, left, or right.

➤ To make a group of widgets uniform size

1. Select the widgets you wish to resize.

2. Choose the Arrange > Size To command.

3. Pick the appropriate sizing option from the submenu.

➤ To align a group of widgets

1. Select the widgets you wish to align.

2. Choose the Arrange > Align To command.

3. Pick the appropriate alignment option for the widgets.

Widget Partnership Commands
iPlanet UDS allows you to link any number of resizeable fields together in a height
or width partnership. When two or more fields are in a height partnership, iPlanet
UDS uses the height of the field with the largest minimum height in the
partnership to determine the height for all the fields in the partnership. When two
or more fields are in a width partnership, iPlanet UDS uses the width of the field
with the largest minimum width in the partnership to determine the width for all
the fields in the partnership.

Selecting Widgets

420 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

You can also link any number of grid fields in a row or column partnership.
Column and row partnerships are very useful when your form contains two grid
fields that are separated by other widgets. When one grid field is above another,
you can make their corresponding columns exactly the same width by joining the
two grid fields into a column partnership. When the grid fields are side by side,
you can make their corresponding rows the same height by joining the two grid
fields into a row partnership.

The table below briefly describes the partnership commands. For details about
using these commands, see the iPlanet UDS Programming Guide.

Command Description

Fields Into Height Partnership Links selected fields into a height partnership.

Fields Into Width Partnership Links selected fields into a width partnership.

GridFields Into Row Partnership Links selected grid fields into a row partnership.

GridFields Into Column Partnership Links selected grid fields into a column
partnership.

Remove Field From Height
Partnership

Removes selected fields from height partnership.

Remove Field From Width
Partnership

Removes selected fields from width partnership.

Remove GridField From Row
Partnership

Removes selected grid field from a row
partnership with other grid fields.

Remove GridField From Column
Partnership

Removes selected grid field from a column
partnership with other grid fields.

Selecting Widgets

Chapter 7 Using the Window Workshop 421

Aligning Cells in a Grid Field

Each field within a grid field is enclosed in a cell (see “Creating a Grid Field” on
page 517). The gravity of a cell determines how the field is aligned within the cell.
You can use the Arrange > Cell Gravity command to specify how to align a field.
You can also use the Cell Gravity tool, shown at left, to perform the same functions.

The Cell Gravity command has the following options:

You can also use the Cell Gravity tool on the Window Workshop widget palette to
align fields within a cell. See “Using the Cell Gravity Tool” on page 392 for
information.

Value Definition

Bottom Center Bottom of the cell, centered horizontally.

Bottom Left Bottom, left corner of the cell.

Bottom Right Bottom, right corner of the cell.

Center Center of the cell.

Default Center of the cell.

Middle Left Left side of the cell, centered vertically.

Middle Right Right side of the cell, centered vertically.

Top Center Top of the cell, centered horizontally.

Top Left Top, left corner of the cell.

Top Right Top, right corner of the cell.

Selecting Widgets

422 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Cell Margins
You can add margins around widgets within the cells of a grid field. You can also
control the margins between the widget borders and the cell borders.

➤ To set margins

1. Select the cell.

2. Choose the Arrange > Cell Margins command.

The Cell Margins dialog opens.

3. Type in values or use the arrow to increment or decrement each setting. Set the
increment amount with the radio buttons to 1, 10, or 100 mils.

4. Click the OK button.

The table below describes the area to which each setting applies.

Margin Setting Description

Left Margin The left setting determines in mils the margin between the widget’s left
edge and the border of the left cell.

The actual margin is the greater of two settings: the left margin for the
grid field, and left margin for the widget in the cell.

Right Margin The right setting determines in mils the margin between the grid field’s
right cell dividers and the widgets the cells contain.

The actual margin is the greater of two settings: the right margin for the
grid field, and right margin for the widget in the cell.

Top Margin The top setting determines in mils the margin between the grid field’s
top cell dividers and the widgets the cells contain.

The actual margin is the greater of two settings: the top margin for the
grid field, and top margin for the widget in the cell.

Working with Inherited Windows

Chapter 7 Using the Window Workshop 423

Stacking Widgets in Layers
The Arrange > Send To Back and Bring to Front commands enable you to move
fields on top of or underneath other fields, and to move graphics on top of or
underneath other graphics. Remember the form consists of two layers, the graphic
layer and the field layer. The graphic layer is always below the field layer.
Therefore, if you place a field on top of a graphic, it will cover the graphic. And if
you place a graphic on top of a field, it will move below the field.

➤ To send a widget behind another widget

1. Select the widget to send to the back.

2. Choose the Arrange > Send to Back command.

➤ To send a widget to the front

1. Select the widget to send to the front.

2. Choose the Arrange > Bring to Front command.

Working with Inherited Windows
iPlanet UDS allows you to create a window subclass that inherits its form and
menu, as well as the methods, attributes, events, and event handlers, from a
window superclass.The window superclass can define standard company-wide or
application-wide features, such as menus and basic window formatting. The
window subclass can extend the inherited window by adding new widgets to the
form and menu, and by modifying the inherited widgets. There can be any number
of window subclasses for a single window superclass.

Like any subclasses, the window subclasses inherit the attributes, methods, events,
and event handlers defined for their window superclass. However, this section
provides information only about how to work with the inherited form and menu
using the Window Workshop. For information about writing the TOOL code for
inherited windows, see the iPlanet UDS Programming Guide.

Bottom Margin The bottom setting determines in mils the margin between the grid
field’s bottom cell dividers and the widgets the cells contain.

The actual margin is the greater of two settings: the bottom margin for
the grid field, and bottom margin for the widget in the cell.

Margin Setting Description

Working with Inherited Windows

424 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

iPlanet UDS allows you to modify the window superclass at any time, even after
the window subclasses have been created. Any changes you make to the superclass
are automatically inherited by its subclasses. These changes take effect when the
subclass is compiled.

If any of the subclasses have modified the inherited widgets, iPlanet UDS
automatically merges the superclass changes with the subclass changes. However,
if there are conflicts that cannot be resolved, the subclass windows will not
compile. Modifying a subclass window is described in further detail below.

If a window subclass is open and being modified at the same time the superclass
window is being modified, the changes in the superclass window will not show up
until you compile your project, compile both the window classes, or close both
instances of the Window Workshops.

Working with a Subclass Window
If your window class is the subclass of another custom window class (not the
UserWindow class), your new window inherits the form and menu bar from the
superclass.

You can make the following changes to the subclass window:

• add new widgets

• move inherited widgets

• change any widget properties, except the name and mapped type (if mapped)

• delete inherited widgets

The following sections provide information about making these changes.

Adding New Widgets
You can add new widgets anywhere on the inherited form or menu. The new
widgets you add become new attributes for the subclass.

What if the subclass adds new widgets and later on its superclass adds new
widgets? When this happens, iPlanet UDS merges all the changes so that the
widgets added both by the superclass and the subclass will appear in the subclass
window. However, you should always check the subclass window after changes
have been made to its superclass to ensure that the subclass window is properly
formatted.

Working with Inherited Windows

Chapter 7 Using the Window Workshop 425

Of course, not all modifications can be merged. For example, if the superclass adds
a widget with the same name as a newly added widget in one of the subclasses and
the two widgets do not have compatible types, there is no way to merge the
changes. In this case, the change to the superclass takes precedent—the subclass
will get a compile error.

Moving Inherited Widgets
You can move inherited widgets anywhere you wish. You can even move an
inherited widget from one compound field (or menu) to another. This move
changes the widget’s parent, but has no effect on its relationship to the superclass
that defined it.

Note that if you change the position of an inherited widget in the subclass and the
superclass later changes the position of the same widget, the subclass will not
inherit the position change from the superclass. The only way to synchronize the
positioning of the two widgets is to change the position of the widget in the
subclass by hand to the same position it has in the superclass. When the positions
of the two widgets are synchronized, the subclass widget will inherit future
position changes from the superclass.

Changing Widget Properties
You can change any of the widget properties for an inherited widget, except the
widget’s name and mapped type.

Note that if you change the property of an inherited widget in the subclass and the
superclass later changes the same property of the same widget, the subclass will
not inherit the property change from the superclass. The only way to synchronize
the properties of the two widgets is to change the property of the widget in the
subclass by hand to the same value it has in the superclass. When the properties of
the two widgets are synchronized, the subclass widget will inherit future property
changes from the superclass.

If the superclass originally defined the widget with an abstract widget type (see
“Creating a Superclass Window” on page 426), the subclass can convert the widget
type to any of the subclasses of the abstract type. For example, if the superclass
defined a radio field as having the abstract widget type of ListField, the subclass
can convert the radio field to any of the other ListField subclasses: DropList,
PaletteList, or ScrollList.

Working with Inherited Windows

426 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To change the widget type

1. Select the widget whose type you wish to change.

2. Choose the Widget > Convert To command.

3. Select the new type for the widget.

Deleting Inherited Widgets
You can remove any inherited widget. Deleting an inherited widget from the form
or menu removes the widget from the window, but does not remove the associated
attribute from the class. Therefore, you can add the same widget back to the
window by placing it again on the form or menu and giving it the same name.

Creating a Superclass Window
In the Window Workshop, there is no difference between creating a window that
will be used as a superclass and creating an ordinary window, with one small
exception. If a window is going to be used as a superclass window, you must name
all the widgets in the superclass.

iPlanet UDS provides one special feature that you may wish to use when creating a
superclass window: the ability to include “abstract” widgets on the superclass
window so that subclass windows can convert the widgets to any appropriate
concrete widget.

Normally, the widgets on a window are one of the concrete widget class from the
Display library, such as RadioList or TextField. The type of each widget
corresponds to widget palette item you used to create that widget.

However, for some fields, iPlanet UDS provides the option of changing the
widget’s type to an abstract class, such as CharacterField or ListField. The window
subclass can then convert the generic widget to any of its subclasses. For example,
if you add a radio list to the superclass window, you could change its type to the
generic ListField class. The subclass window could then convert the generic
ListField class to any of its subclasses: DropList, RadioList, ScrollList, or
PaletteList.

To change the type of a widget on the superclass window, use the Widget Type
property on the widget’s properties dialog. To change the type of the widget on the
subclass window, select the appropriate type from the Widget Type drop list. Note
that changing the widget’s type to an abstract type does not change the appearance
of the widget; it simply makes it possible for the subclass windows to convert that
widget to another type.

Testing a Window

Chapter 7 Using the Window Workshop 427

Testing a Window
You can test a window in the Window Workshop by putting the workshop into
Test mode. In Test mode, the workshop opens the user window that you have
created. This window looks exactly as it will to end user and behaves as it would in
actual use. If you have defined a menu bar for the window, this will be displayed
as part of the window.

While the Window Workshop is in Test Mode, you can only test the function of the
window; you cannot conduct window-building activities such as adding,
removing, or altering widgets.

Entering test mode To enter test mode, choose the File > Test Window
command, switching the toggle on.

Leaving test mode To leave test mode, and return to editing your window,
choose the File > Test Window toggle again, switching the toggle off.

Testing Window Usages
When you test a window, you are always testing the window in a certain usage. A
window usage determines the states of its widgets on a collective basis. The default
window usage is Update. For more information about creating and implementing
window usages, see Chapter 7, “Using the Window Workshop.” You can test a
window in any of six usages, as shown in the File > Test Usage… submenu.

➤ To test a window in a specific usage

1. Choose the usage you want to test in the File > Test Usage… submenu.

2. Choose the File > Test Window command, switching the toggle on.

Importing and Exporting a Window

428 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Importing and Exporting a Window
To copy a window from one window class to another, you use the Window
Workshop Import… and Export… commands. These commands let you export a
window from one class into a file and then import the window stored in that file
into another class.

The Export… command in the Window Workshop allows you to export a window
definition to a standard file (portable across operating systems), which you can
then import into another iPlanet UDS window class using the Import… command.
The Import… command in the Window Workshop replaces the current window in
the window class with the window in the specified text file.

Importing a Window
The Import… command replaces the current window with the window in the file
you specify. If there is a menu bar, this will also be imported.

The window that you import must have been created either by the Export…
command in the Window Workshop or by the iPlanet UDS Fscript utility.

➤ To import a window

1. Choose the File > Import… command.

2. Choose a window file (a file with an .fsw suffix) to load.

After the window has been successfully imported, iPlanet UDS displays the
window in the Window Workshop. If there is an error, such as a bad file, iPlanet
UDS displays an error message.

Exporting a Window
The Export… command writes the definition of the current window into a
standard file (portable across operating systems). iPlanet UDS stores the window
in a file with the name you specify and an .fsw suffix.

Setting Window Workshop Preferences

Chapter 7 Using the Window Workshop 429

➤ To export a window

1. Choose the File > Export… command.

If the window has an associated menu, you are prompted for whether you
want the export to include or exclude the menu bar.

2. In the file selection dialog, specify the name of the file to contain the window
definition. If you give the name of an existing file, the Export… command
overwrites the file.

While the window is being exported, iPlanet UDS displays a message indicating
that the class is being written to the specified file and prevents all input until the
export is complete.

Setting Window Workshop Preferences
The Window Workshop allows you to set preferences that are saved as part of your
current workspace. The preferences you set take effect for the current Window
Workshop and any future Window Workshops you open in the current workspace.
However, if any other Window Workshops are already open, these will not be
changed.

To set the workshop preferences, choose the File > Workshop Preferences…
command. This command opens the Window Workshop Preferences dialog, where
you can set any number of preferences.

Figure 7-17 Window Workshop Preferences Dialog

Setting Window Workshop Preferences

430 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The preferences you can set for the Window Workshop fall into the following
general categories:

• workshop window size and position

• viewing preferences

• Repeat New preference

The workshop window size and position and viewing preferences are general
iPlanet UDS preferences and are described under “Setting Workshop Preferences”
on page 136. This section provides information about the preferences specific to the
Window Workshop.

Repeat New Preference
The Repeat New preference specifies whether or not Repeat Mode is used for the
Window Workshop.

When Repeat Mode is on, you can add any number of the same widget type to the
form by simply clicking repeatedly on the form. In Repeat Mode, the last widget
you added to the form continues to be selected on the palette. To add another
widget of that type to the form, simply click on the form (or, for resizeable widgets,
drag the ghost box). To change the type of widget you wish to add to the form,
select a new item on the palette.

When Repeat Mode is off, you must always follow two steps to add a widget to the
menu:

1. Select the widget type from the palette.

2. Place the widget on the form.

You can override the Repeat New preference at any time with the Widget > Repeat
New command.

431

Chapter 8

Working with Widgets

This chapter provides general information about working with widgets in the
iPlanet UDS Window Workshop.

In this chapter, you will learn how to:

• set widget properties

• control widget sizing

• use widget states

• provide help for widgets

• create multilingual widgets

The chapter also provides detailed information about the individual widgets and
their properties. The information on widgets is organized under the following
general topics:

• simple widgets

• list widgets

• compound widgets

About iPlanet UDS Widgets
iPlanet UDS widgets are divided into three groups:

• simple widgets
(including field widgets, list widgets, and graphic widgets)

• compound widgets

• menu widgets

About iPlanet UDS Widgets

432 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

This chapter describes the simple and compound widgets you use to create the
form for your window. For information on the menu widgets you use to create the
menu bar for your window, see Chapter 9, “Using the Menu Workshop.”

Classes for widgets Widgets are objects that are displayed on windows. Every
widget provided by the Window Workshop corresponds to an iPlanet UDS class in
the Display library. This is true for all the widgets in a window, including simple,
compound, and menu widgets.

When you add a widget to a form or menu, you are creating an attribute in the
associated UserWindow subclass. For example, when you add a radio list to your
form, you are creating an attribute of the RadioList class. All the widgets on a
window’s form and menu are attributes of the window’s class.

Widgets that display data For widgets that display data, such as data fields,
toggles, and menu lists, iPlanet UDS creates a second attribute when you add the
widget to the user window. This attribute contains or points to the data that the
widget displays. The data type of the data attribute is appropriate for data to be
displayed, such as string for a data field and boolean for a toggle field. For widgets
that display data, you specify the data type of the data attribute in the widget’s
properties dialog. You can then access and set its value from your TOOL code by
referencing the data attribute.

Mapping attributes to widgets Rather than having iPlanet UDS create a second
attribute to contain the data for a widget, you can map a widget to an existing
attribute in the class. Simply use the existing attribute’s name when you specify the
widget name; sharing the same name maps the two attributes to each other. For
example, if you want your text field to display the artist’s name for a painting, you
name your text field widget “Artist” because you already have a TextData attribute
called “Artist” that stores the artist’s name. iPlanet UDS then displays the current
value of the Artist attribute in the Artist text field widget.

Referencing widgets When you reference widget attributes in your TOOL code,
you distinguish between the visual representation of a widget and the data it
displays. You do this by enclosing the widget name in brackets to refer to the visual
widget alone.

For example, suppose your form uses a data field widget named “Data1,” and that
you need to write a method to change the alignment of the characters in the field,
and to update the value in the field. In this case, when you change the character
alignment, you refer to the visual representation of the data field using the bracket
syntax, and when you update the value in the field, you refer to its data attribute
without the bracket syntax.

About iPlanet UDS Widgets

Chapter 8 Working with Widgets 433

The following TOOL code fragment demonstrates this principle. The fragment
defines an event loop to react to clicks on two buttons. The first button,
<alignleft_button>, sets the alignment of the data field, and the other button,
<update_button>, updates the data itself.

Visual widgets Some widgets, such as graphic widgets and push buttons, do not
represent data. They are visual widgets only. When you refer to visual widgets in
your TOOL code, you always use the widget name with brackets.

After creating the widgets, you can manipulate them in your code by setting their
attributes or invoking methods on them. For example, you might want to change
the background color of a panel when a user clicks on it. You do this by setting the
panel’s FillColor attribute.

For information on how to set attributes and invoke methods on widgets
dynamically, see the TOOL Reference Guide. For information on the attributes and
methods of individual widget classes, see the Display Library online Help.

The remainder of this section provides general information about working with
widgets. This is followed by detailed information on each of the widgets, including
descriptions of the properties you can set on each widget’s properties dialog.

Naming Widgets
Every widget has an optional name. If you plan to manipulate a widget from your
TOOL code, or reference the data it displays, you should name the widget. To
name the widget, enter the name into the Attribute Name field on the widget’s
properties dialog.

Distinguishing a widget from its data The widget name serves two functions.
First, the name identifies the attribute that points to the widget. To manipulate the
widget from your TOOL code, you must use the widget name enclosed in brackets.

event loop
when <alignleft_button>.click do
--Refer to the DataField widget
<data1>.alignment=fa_left

when <update_button>.click do
--Refer to the data (the current value of the field)
data1 = data1 +1;

end event;

About iPlanet UDS Widgets

434 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Second, for widgets that display data, such as data fields, the name identifies the
attribute that contains the data. For example, if there is a radio list widget called
<biglist>, the attribute called “biglist” contains the current value of the radio list.
To manipulate the data from your TOOL code, you must use the widget name
without brackets.

For more information on referring to widgets and their data in TOOL code, see the
TOOL Reference Guide.

About Widgets and Data Types
Each widget that displays data has a default data type. This is the data type of the
attribute that contains the data that is displayed by the widget. For example, the
default data type for a text field is TextData, which stores character data.

Mapped type For most widgets, you have the option of choosing a different data
type for a widget. This determines the type of data that the widget can display
and/or accept as input from the end user. To change the data type of the data
attribute associated with a widget, you use the Mapped Type field on the widget’s
properties dialog. If the attribute already exists in the user window class, changing
the data type for the attribute on the widget’s properties dialog will change the
existing attribute’s data type.

The following list shows the mapped data types available for each of the widgets.
The data types in lowercase are simple data types and the types in initial caps are
iPlanet UDS classes.

For This Widget You Can Use These Data Types

Text field string, TextData, TextNullable

Data field string, TextData, integer, double, float, IntegerData, long,
DateTimeData, IntervalData, DecimalData, DecimalNullable,
DoubleData, DoubleNullable, IntegerNullable, DateTimeNullable,
IntervalNullable

Toggle field boolean, BooleanData

Radio list string, TextData, TextNullable, integer, IntegerData, IntegerNullable

Scroll list string, TextData, TextNullable, integer, IntegerData, IntegerNullable

Drop list integer, string, IntegerData, TextData

Fillin field string, TextData

List view field DisplayNode class or subclass

About iPlanet UDS Widgets

Chapter 8 Working with Widgets 435

About Widget States
A widget is always in a particular state. The state of the widget determines how the
user can interact with it. For example, when a data field is set to the Update state,
the end user can type data into the field. When it is set to the Moveable state, the
user can drag it from one part of the window to another. When it is set to the
Invisible state, the field is not visible and the user cannot interact with it at all.

States and events The state of the widget also determines which events it posts in
response to user actions. For example, when a data field is set to the Update state, it
can post an AfterValueChange event. When it is set to Moveable state, it can post
the AfterMove event but cannot post the AfterValueChange event. When it is set to
the Invisible state, it cannot post any events.

The widget states allow you to control how the end user interacts with the
window. For example, for a data entry application, you would want the widget
states to allow updating. However, for a drawing application, you would want the
widget states to allow moving and resizing.

The following table lists and defines widget states:

Picture field ImageData, ImageNullable

Palette list string, TextData, TextNullable, integer, IntegerData, IntegerNullable

Outline field DisplayNode subclass

Scrollbar integer, IntegerData

Tree view field DisplayNode class

Menu toggle boolean, BooleanData, integer, IntegerData

Array field Array, LargeArray

In This State A Widget…

Operational States Update Is visible and operational. For widgets that display
data, the data is updateable.

View Is visible and operational, but not updateable.

For This Widget You Can Use These Data Types

About iPlanet UDS Widgets

436 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Passive States Disable Is visible, but dimmed, ignoring mouse clicks and
selections.

Invisible Is invisible, ignoring mouse clicks and selections.

Inactive Is fully visible, but ignores mouse clicks and
selections.

Selectable States Select Only Is visible and selectable.

Stretch Is selectable, and stretchable in any direction from an
anchored point.

Horz
Stretch

Is selectable, and stretchable along a horizontal path
only.

Vert Stretch Is selectable, and stretchable along a vertical path
only.

Move Is selectable, and moveable in any direction.

Horz Move Is selectable, and moveable along a horizontal path
only.

Vert Move Is selectable, and moveable along a vertical path only.

Expand Is selectable, moveable in any direction, stretchable in
any direction.

Route Is itself selectable, its points selectable and moveable.
(Applies to lines and polylines only).

Move and
Route

Is itself selectable and moveable, its points selectable
and moveable. (Applies to lines and polylines only).

Drag Is selectable, moveable, droppable.

Mark
Rectangle

Shows a ghost box on click and drag.

Mark Line Shows a ghost line on click and drag.

Mark
Polyline

Shows a ghost line from point to point in a polyline
during a click/drag/click sequence. Sequence ends on
a double-click.

Mark Point Shows a ghost point on click and drag.

In This State A Widget…

About iPlanet UDS Widgets

Chapter 8 Working with Widgets 437

Using Widget States with Window Usages
As described under “Usage Property” on page 370, a window’s usage determines
which state is in effect for a widget. When you create a widget in the Window
Workshop, iPlanet UDS uses a default state for the widget for each window usage.
For example, in the Update usage, the default state for a data field is the Update
state. In most cases, these default widget states are the best settings and you should
not change them. However, if you are writing an application that runs in different
modes or if you want one of the widgets to be in an unusual state (for example,
setting a widget to View state while the rest of the widgets are in the Update state),
you can change the widget state for a particular usage.

Changing a Widget’s State Dynamically
You can also change a widget’s state dynamically from your TOOL code. The State
attribute of the FieldWidget class lets you specify the current state of the widget,
regardless of what usage is in effect for the window. See the Display Library online
Help for information on this technique.

About Tabbing
The end user of your application can move between fields on the form in two ways:

• move the cursor to the field and click on the mouse to activate the field

• press the Tab key to move from the current field to the next field in the tabbing
sequence

The tabbing sequence moves from left to right, from the top of the form to the
bottom. Your window system determines which types of widgets are included in
the tabbing sequence and which are not. For example, a data field is included in the
tabbing sequence on Windows. See your window system documentation for
information on which widgets are included in the tabbing sequence. If an
individual field on your form is included in the tabbing sequence and you wish to
exclude it, you can choose the Widget > Skip on Tab command. The Skip on Tab
menu toggle excludes the currently selected field from the tabbing sequence so that
the Tab key will skip over the field.

About iPlanet UDS Widgets

438 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

About Input Focus
Some window systems provide mouseless support. Mouseless support means that
the end user can use the keyboard (that is, the tab key or arrow keys) to move
between the fields on the form.

Using the keyboard to move between fields means moving the input focus from
one field to another. The field that has the input focus is the one field on the form
that will currently accept the input from the keyboard. Your window system
indicates which field has the input focus by displaying the text insertion cursor or
by using another indicator. In addition, iPlanet UDS posts BeforeFocusLoss and
AfterFocusGain events when the end user moves the input focus from one field to
another.

Only certain fields can have the input focus—this differs among window systems.
For example, all window systems give the input focus to text fields. However, only
some window systems give the input focus to push buttons. If you are creating a
portable application that uses input focus events, you need to be aware of the
differences between the window systems. See the Display Library online Help for
more information on input focus.

About Sizing
When you add a sizeable field to a form, you determine its initial size when you
drop it on the form. After this, there are several options for adjusting its size
relative to the other fields on the form.

If you are planning to deploy your application on more than one window system,
you should use the iPlanet UDS geometry management features to ensure that the
fields on your form will be correctly aligned on all the window systems. For
detailed information about using geometry management features for aligning
fields, see the iPlanet UDS Programming Guide.

However, even if you do not plan to deploy your application on multiple window
systems, you may still wish to use the iPlanet UDS basic sizing features to arrange
the fields on your form.

Size policies for widgets All iPlanet UDS fields have two properties that specify
how the field size is determined: the height policy and width policy. The size
policies for fields allow you to control whether the field size is static, whether
iPlanet UDS adjusts the field size to accommodate its content, or whether the field
size is determined by the grid that contains it. See “Size Policies” below for further
information about height and width policies.

About iPlanet UDS Widgets

Chapter 8 Working with Widgets 439

Size partnerships for widgets iPlanet UDS allows you to link any number of
resizeable fields together in a height or width partnership. When fields are in a size
partnership, their height or width is determined by the largest minimum height or
width of the fields in the partnership. See “Size Partnerships” on page 442 for
further information about height and width partnerships.

Size Policies
The Widget > Size Policy command lets you set the height and width policy for any
widget. The size policies for a field allow you to control whether the field size is
static, whether iPlanet UDS adjusts the field size to accommodate its content, or
whether the field size is determined by the grid that contains it. For resizeable
widgets, you can also specify the minimum height and width for the field. For grid
fields, you can set column and row justify weights. Figure 8-1 shows the Size
Properties dialog for a text field:

Figure 8-1 Size Properties Dialog

(Note that the Size Properties dialog for the widget is also available through the
Size Property button on the widget’s properties dialog.)

Height and Width Policy properties The Height Policy property specifies the
policy iPlanet UDS uses for setting the field widget’s height. The Width Policy
property specifies the policy iPlanet UDS uses for setting the field widget’s width.
The policy you choose depends on whether the field is included within a grid field
or a size partnership. The default height and width policies for a field depend on
the type of field.

About iPlanet UDS Widgets

440 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The values for Height and Width Policy properties are:

Size Policy Setting Definition

Natural iPlanet UDS automatically adjusts the height or width of the field to
accommodate the field’s content. When the height of a field is
Natural, you cannot resize it on the screen (resize handles will not be
displayed).

Explicit You can specify an explicit height and width for the field by resizing
it in the Window Workshop.

Matrix Partner For a column in a grid field, the width of the column is determined by
the width of the column with the largest minimum width in the set of
column partners. For a row in a grid field, the height of the row is
determined by the height of the row with the largest minimum
height in the set of row partners.

Row and column partnerships are determined by the Arrange >
GridFields into Column Partnership and GridFields into Row
Partnership commands. See the iPlanet UDS Programming Guide for
further information.

Parent The height or width of the field is determined by the height or width
of its parent.

If the field is in a grid field, this setting uses the grid field cell size to
determine the field’s height or width. When the grid field changes
size, the height or width of the child field will automatically be
resized to fit the cell. When the height or width of a field is Parent,
you cannot resize the field on the screen. Note that you should be
careful not to set the height or width policy of all fields in a grid to
Parent if all of the fields have a very small minimum size. See the
iPlanet UDS Programming Guide for further information.

Size Partner The height or width of the field is determined by the height or width
of the field with the largest minimum height or width in the set of
partners for the current field. When you include a field in a size
partnership, iPlanet UDS automatically sets the size policy to Size
Partner.

About iPlanet UDS Widgets

Chapter 8 Working with Widgets 441

Minimum height and width If a field has a height or width policy of Parent and
the field is resizeable, you can set a minimum height and width for the field.
iPlanet UDS uses these minimum dimensions when calculating the size of the field.
Setting a minimum height and width of a field ensures that iPlanet UDS will never
resize the field below these dimensions when the grid field is resized. In addition,
the grid field size will always be large enough to display the entire field at its
specified minimum size.

For text fields, text edit fields, and data fields, you specify the minimum
dimensions in rows and columns. For all other resizeable fields, you specify the
minimum dimensions in mils.

Grid field justify weights The Size Policies dialog for grid fields lets you set the
justify weights for the columns and rows in the grid fields. See “Setting Grid Field
Properties” on page 519 for information on justify weights.

Image size policies The Size Policies dialog for picture fields and picture
graphics allows you to ensure that the entire image is always displayed by scaling
the image to fit the field. Or, you can ensure that the field does not change size by
clipping the image to fit into the field.

The image size policy properties are the following:

Image gravity The Size Properties dialog for picture fields and picture graphics
also contains the Image Gravity property, which allows you to determine the
alignment of the image within the field. The options are: top left, top center, top
right, middle left, center, middle right, and bottom left, bottom center, and bottom
right.

Value Definition

Natural The image size never changes (the true image size is retained). If the field
is too small for the image, the image is cropped. If the field is larger than
the image, the setting of the Image Gravity property is used to position
the image within the field.

Field The image is scaled to fit into the field, possibly distorting the image.

Field Height The image height is scaled to fit the field height. The width will be
adjusted to preserve the aspect ratio.

Field Width The image width is scaled to fit the field width. The height will be
adjusted to preserve the aspect ratio.

About iPlanet UDS Widgets

442 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Size Partnerships
In the Window Workshop, the Arrange > Fields Into Height Partnership and Fields
Into Width Partnership commands let you select a group of fields to include in a
height or width partnership.

The fields in the partnership can be simple or compound, resizeable or fixed size. If
you include fixed-size widgets in a size partnership, the fixed-size field itself is not
resized, but its minimum size affects the resizeable widgets. For example, if a radio
list, which has a fixed size, is in a width partnership with a push button, which is
resizeable, the radio list will never be resized but the push button will be sized in
relation to the radio field. If all are fixed, the partnership is legal, but meaningless.
All compound fields are sizeable, and can be included in size partnerships. See
“Creating Widgets” on page 401 for a list of the sizeable and fixed-sized simple
fields.

Height partnership When two or more fields are in a height partnership, iPlanet
UDS uses the height of the field with the largest minimum height in the
partnership to determine the height for all the fields in the partnership. You specify
the minimum height by using the Widget > Size Policy command.

When you add a field to a height partnership, its Height Policy property is
automatically set to Size Partner. The height partnership is completely
independent of the width partnership.

Width partnership When two or more fields are in a width partnership, iPlanet
UDS uses the width of the field with the largest minimum width in the partnership
to determine the width for all the fields in the partnership. You specify the
minimum width for a field by using the Widget > Size Policy command.

When you add a field to a width partnership, its Width Policy property is
automatically set to Size Partner. The width partnership is completely independent
of the height partnership.

The Window Workshop provides the following commands on the Arrange menu
for setting size partnerships:

Command Description

Fields Into Height Partnership All selected fields are grouped into a height
partnership.

Fields Into Width Partnership All selected fields are grouped into a width partnership.

Remove Field From Height
Partnership

All selected fields are removed from the height
partnership.

About iPlanet UDS Widgets

Chapter 8 Working with Widgets 443

About Help for Widgets
There three kinds of help you can provide for an individual widget on a window:

• context-sensitive help

• float-over help

• status-line help

The following sections provide background information about these kinds of help.
See the iPlanet UDS Programming Guide for complete information on implementing
help.

About Context-Sensitive Help
Context-sensitive help is a help topic that is displayed in response to the Help key.
When the end user presses the Help key, iPlanet UDS checks the field that has the
input focus to see if a value was provided for its help topic (stored in its HelpTopic
attribute). If there is a help topic associated with the field that has the input focus,
iPlanet UDS displays the field’s help topic. If there is no help topic associated the
field that has the input focus, iPlanet UDS checks the field’s parent, the parent’s
parent, and so on, all the way up the containment hierarchy to the window, to find
a help topic. If there is no help topic associated with the window, iPlanet UDS
displays the Contents page for the Help document.

Only certain fields can have the input focus—this differs among window systems.
For example, all window systems give the input focus to text fields. However, only
some window systems give the input focus to push buttons. If you are creating
context-sensitive help that uses input focus events, you need to be aware of the
differences between the window systems. See “About Input Focus” on page 438
and the Display Library online Help for more information on input focus.

You provide the context-sensitive help for an individual field by using the Widget
> Help Text command. On the Help Text dialog for the widget, set the widget’s
Help Topic property to the topic ID or key word for its help topic in the default
help file. (Note that the Help Text dialog for the widget is also available through
the Help Text button on the widget’s properties dialog.)

Remove Field From Width
Partnership

All selected fields are removed from the width
partnership.

Command Description

About iPlanet UDS Widgets

444 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

See the iPlanet UDS Programming Guide for complete information about creating the
help file that contains the help messages, linking the help file to the window, and
associating specific topics in the help file with individual widgets.

About Float-Over Help
Float-over help is a help message that is displayed next to the field whenever the
mouse pauses over the field. To provide float-over help for the fields on your
window, you must ensure that float-over help is turned on for the window system,
and you must provide the float-over help text for the individual fields on the
window.

IsFloatOverEnabled attribute The IsFloatOverEnabled attribute of the
WindowSystem class specifies whether or not the float-over help for the window
system is displayed. The default value of the IsFloatOverEnabled attribute is
determined by the FORTE_ISFLOATOVERENABLED environment variable,
whose default value is TRUE. You should use the IsFloatOverEnabled attribute in
your TOOL code to ensure that float-over help is turned on when appropriate, and
to give the end user the option of turning it off and on. See the Display Library
online Help for information on the IsFloatOverEnabled attribute.

➤ To provide float-over help for a field

1. Select the field and choose the Widget > Help Text command.

2. In the Float-over Text field on the Help Text dialog, enter the float-over help
message.

3. In your TOOL code, use the WindowSystem.IsFloatOverEnabled attribute to
ensure that float-over help is enabled for the application and to provide the
end user with the ability to turn the float-over help on and off.

Note that the float-over text for an individual widget is stored in the FloatOverText
attribute defined on the FieldWidget class. See the Display Library online Help for
information.

For complete information on implementing help for your window, see the iPlanet
UDS Programming Guide.

Float-over help for palette lists To provide float-over help for individual regions
(or icons) in a palette, you must use the Float-Over Help property on the palette’s
properties dialog for each list item in the palette.

About iPlanet UDS Widgets

Chapter 8 Working with Widgets 445

The ShowRegionFloatOver attribute of the PaletteList class determines whether the
float-over help for the individual regions (or list items) in the palette list are
actually displayed. By default, this attribute is set to TRUE. When you set the
ShowRegionFloatOver attribute to FALSE, the float-over messages for individual
regions in the palette are not displayed.

See the iPlanet UDS Programming Guide for further information about providing
float-over help for palette lists.

See “Creating a Palette List” on page 489 for information about setting these
properties for palettes.

About Status-Line Help
Status-line help is a help message that is displayed in the window’s status line
when the mouse pauses over the field.

Creating a status line To provide status-line help for a window, you must add a
status line field to the window and map this field to a TextData attribute. Then, you
must map the TextData attribute associated with the status line field to the
StatusText attribute of the Window object. Finally, you must provide the status-line
help text for individual fields by using the Widget > Help Text command. See the
iPlanet UDS Programming Guide for complete information on implementing
status-line help for your window.

WindowSystem.StatusText attribute If you have set up the status line field
correctly, each time the mouse moves onto a new field, iPlanet UDS automatically
sets the value of the WindowSystem.StatusText attribute to the status-line help text
value that was specified for the current field. The window is automatically
refreshed, and the new value of the StatusText attribute is displayed in your
window’s status line field. If the Window.StatusText is NIL, there will be no
status-line help for the window. See the Display Library online Help for
information about the StatusText attribute on the WindowSystem class.

Status-line help for palette lists To provide status-line help for individual
regions (or icons) in the palette, you must use the Status Line property on the
Palette List’s properties dialog for each picture graphic or picture button in the
palette. See “Creating a Palette List” on page 489 for information about setting the
Status Line property for the palette regions.

About iPlanet UDS Widgets

446 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

About Internationalizing Widgets
The section “About Internationalizing Windows” on page 382 described how you
can use the Window Workshop to create a multilingual window. All widgets that
display static text have Message Number and Set Number properties in the
Window Workshop that you can use to specify a message number and optional set
number for the individual widget. (These properties are not available on widgets
that display text only at runtime, such as a data field.)

Message set used for widgets By default, all messages for a window are loaded
from the same message set, which you specify using the Default Set Number
property on the Window Properties dialog (see “Setting Window Properties” on
page 396). If you do not specify a value for an individual widget’s set number,
iPlanet UDS will use the default set number for the window. If you do specify a set
number for the individual widget, that set will be used.

IME mode For widgets that allow data entry, including data field, text field, text
edit field, and fillin field, you can turn on the double-byte manager (IME mode) for
the field to allow entry of multi-byte characters, such as Kanji. By default, this
property is off. To request IME Mode for an individual widget, simple turn on its
IME Mode property.

Multilingual Help You can also create multilingual help for individual widgets
by using the Message Number and Set Number properties on the widget’s Help
Properties dialog. Multilingual help. The message number for an individual
widget’s help text should point to a message that contains both the float-over and
status-line messages in the following format:

float_over_help\n status_line_help

The following sections provide information about using the Window Workshop to
specify the message and set numbers for the text displayed by the widget as well as
for its help text. See the iPlanet UDS Programming Guide for complete information
on creating multilingual windows.

Specifying Message and Set Numbers for Widgets
For each widget that has a single text value that you can internationalize, there is a
Message Number and Set Number property. For lists (radio list, drop list, scroll list,
fillin field, menu list), there is a Text Value Set Number property that specifies the
set number for all the list elements, as well as Message Number properties for
individual list elements.

For outline fields and list view fields, there is a Column Title Set Number that
specifies the set number for all the column titles.

About iPlanet UDS Widgets

Chapter 8 Working with Widgets 447

➤ To specify message and set numbers in the Window Workshop

1. Double-click the widget to display its properties dialog.

2. Enter a message number in the Message Number field and a set number, if
necessary, in the Set Number field.

Note that you can use the set number for the window as the default set number
for every widget on the window. In this case, you do not need to enter a set
number in the widget’s properties dialog, but you must enter a set number in
the Window Properties dialog. However, if you do enter a set number in the
widget’s properties dialog, it will override the set number in the Window
Properties dialog.

The Window Properties dialog is shown in the following figure:

Will be used for all
widgets on the window
if no set number is specified
in their property dialogs

About iPlanet UDS Widgets

448 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

3. In the message catalog, enter the message number and the appropriate text
according to the syntax described in the iPlanet UDS Programming Guide.

Multilingual Help for Widgets
All widgets have a Help Properties dialog in the Window Workshop, shown in
Figure 8-2, where you can enter float-over text and status-line help text. Each
dialog has a Message Number and Set Number property in which you specify the
message number and, optionally, the set number. If you do not specify a set
number, the help text will use the set number specified for the widget’s window.

Figure 8-2 Help Properties Dialog

float_over_help \n status_line_help

This syntax places both help strings on one line in the catalog, and thus only one
message number is required.

NOTE There is only one message and (optional) set number for the two
types of help—float-over and status line. When you enter the help
text in the message catalog, you must use the syntax described in the
Display Library online Help, which is the following:

Working with Simple Widgets

Chapter 8 Working with Widgets 449

Working with Simple Widgets
Simple widgets are basic controls that allow the end user to invoke commands,
make selections, and enter and display information. iPlanet UDS provides the
following simple widgets:

Simple Widget Definition

Data Field Displays a single line of data—text or numbers. A data field can enforce
a specified format on data entry, or display existing data according to a
specified format.

Text Field Displays text in a scrollable field, with optional word wrap.

Text Edit Field Provides a simple text editor for text, without word wrap.

Push Button A button that a user clicks to enact a command. The button features a
text label describing its function.

Picture Button A button that displays an image that the end user can click to enact a
command.

Toggle Field A labeled check box. The check box has two possible values—on and
off (checked and unchecked).

Picture Field A frame where you can display image data that changes at runtime.

Scrollbar An independent scrollbar that you can program to work as a scrollbar
or as a slider that lets the end user specify a numeric value within a
range by dragging or clicking on the bar.

List View Field Displays a set of items, each consisting of an icon with a label, from
which the end user can make selections.

Tree View Field Displays two-column hierarchical information in an indented outline,
providing controls that let the end user expand and collapse the
outline.

Outline Field Provides a browser for a hierarchy of data, such as a file directory
structure, or a simple list with icons.

OLE Field Displays OLE linked or embedded objects. When your iPlanet UDS
application is running, the user can work directly with the linked or
embedded object. The OLE field is only available for Windows
platforms.

ActiveX Field Displays an ActiveX control in your iPlanet UDS window. The ActiveX
field is only available for Windows platforms.

Working with Simple Widgets

450 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Creating a Data Field

A data field displays a single line of data of a specific data type, such as a date,
money value, or ID number. Use the data field to display information to the end
user or to provide a data entry field where the end user can type in or modify
information.

Specifying Data for a Data Field
To restrict the content of a data field, you specify a data type. This allows you to
create, for example, an ID entry field where only integers are allowed. You can also
specify a format to control the appearance of the data.

The data types you can choose from include both simple data types and class data
types. The simple data types store the data, but do not provide the functions
available in the class data types. The classes store the data as objects, and provide a
wide range of methods for manipulating the data. To create a data field for date or
time data, you can use only class data types (DateTimeData and IntervalData).

Data formatting templates Depending on the type of data you choose for the
field, you can apply a specific formatting template to restrict data entry into the
field to a certain format. The Data Field Properties dialog offers a wide variety of
sample formats for each data type. You can use these formatting templates for the
field, alter them to suit your needs, or design your own templates from scratch. For
more information on the codes used in data field formatting templates, see the
DataField class in the Display Library online Help.

List Widgets List widgets are a special form of simple widget that allow you to
provide the end user with a set of choices from which she can make
one, and sometimes more than one, selection. For information on list
widgets, see “Working with List Widgets” on page 480.

Graphic
Widgets

Graphic widgets are a special form of simple widget. You use graphic
widgets as form decorations and organizers. Graphic widgets include
lines, rectangles, and picture graphics. For information on graphic
widgets, see “Working with Graphic Widgets” on page 493.

Simple Widget Definition

Working with Simple Widgets

Chapter 8 Working with Widgets 451

Setting Data Field Properties
The Data Field Properties dialog, shown in Figure 8-3, allows you to set the
following properties for a data field:

Use This Property For This Purpose

Attribute Name To set an attribute name for the data field.

Mapped Type To set the data type for the text in the data field. Choices are:
DateTimeData, TextData, IntegerData, DoubleData, DecimalData,
boolean, integer, string, double, IntegerNullable, TextNullable,
DoubleNullable, DateTimeNullable, and DecimalNullable.

Widget Type If the current window is a superclass window, you can set the widget
type to an abstract class. If the current window is a subclass window
and the widget type is abstract, you can use the Widget > Convert To
command to convert this widget to a different type.

Max Characters To set the maximum number of characters the data field allows. Set to
zero to allow maximum number for the particular host window
system.

Input Mask To specify the masking type that restricts the data the end user can
type into the field. You can use this instead of a complex template to
provide for simple data input.

Template A predefined or custom formatting template for the data field. The
list of templates varies according to the mapped type set for the data
field. A data field with a mapped type setting of DateTimeData, for
example, would show a set of sample date templates. For more
information on formatting templates, see the DataField class in
Display Library online Help.

IME Mode To specify whether the double-byte input manager is on or off when
entering the field. The default, IGNORE, leaves the current setting,
whether on or off, unaltered. The double-byte input manager allows
entry of multi-byte characters, such as Kanji.

Alignment To set the alignment of the data in the data field, Left or Right.

Validate on
Keystroke

To specify whether or not the data stored in the variable associated
with the widget is updated after every keystroke by the end user. If
this toggle is off, the data stored in the variable associated with the
widget is updated after the user exits the field.

Password Entry
Field

To enable/disable echoing of typed characters in the data field.

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Working with Simple Widgets

452 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 8-3 Data Field Properties Dialog

Creating a Text Field

A text field displays multiple lines of text, which the end user can scroll. Use text
fields to display text data to the end user, or to provide a data entry field where the
end user can type in or modify text.

A text field always has a vertical scrollbar. Text fields support the text-editing
conventions of host window systems, and also offer options for word-wrapping or
horizontal scrolling.

A text field defines text in lines and columns. A line of text is a string of characters
from left to right. A column is a character in a line. A text field using a monospaced
font considers each character a column. A text field using a proportionally spaced
font calculates an average character width for the font, and considers that
measurement a column.

Working with Simple Widgets

Chapter 8 Working with Widgets 453

Normally you set the dimensions of text fields in terms of visible lines and
columns, rather than in discrete units such as mils. This way, a text field’s display
remains consistent across window systems despite font variations, which might
otherwise change the number of its visible lines or columns.

Setting Text Field Properties
The Text Field properties dialog, shown in Figure 8-4, allows you to set the
following properties for a text field:

Use This Property For This Purpose

Attribute Name To set an attribute name for the text field.

Mapped Type To set the data type for the text in the text field. Choices are:
TextData, string, and TextNullable.

Widget Type If the current window is a superclass window, you can set the widget
type to an abstract class. If the current window is a subclass window
and the widget type is abstract, you can use the Widget > Convert To
command to convert this widget to a different type.

Max Characters To set the maximum number of characters the text field allows. Set to
zero to allow maximum number for the particular host window
system.

IME Mode To specify whether the double-byte input manager is on or off when
entering the field. The default, IGNORE, leaves the current setting,
whether on or off, unaltered. The double-byte input manager allows
entry of multi-byte characters, such as Kanji.

Validate on
Keystroke

To specify whether or not the data stored in the variable associated
with the widget is updated after every keystroke by the end user. If
this toggle is off, the data stored in the variable associated with the
widget is updated after the user exits the field.

Exit on Tab To specify whether or not the tab character is treated as the field exit
character. If this toggle is off, the tab character is treated as data.

Horizontal
Scrollbar

To specify whether or not to provide a horizontal scrollbar for the text
field. If a text field uses a horizontal scrollbar, it cannot use
word-wrapping.

Vertical Scrollbar To specify whether or not to provide a vertical scrollbar for the text
field.

Word Wrap To specify whether or not to provide word-wrapping for the text
field. If a text field uses word-wrapping, it cannot use a horizontal
scrollbar.

Working with Simple Widgets

454 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 8-4 Text Field Properties Dialog

Creating a Text Edit Field

A text edit field provides a simple text editor. The field displays multiple lines of
text, which the end user can scroll horizontally or vertically. It can also provide line
numbers and or icons for the lines of text.

The main difference between a text edit field and a text field is that a text edit field:

• has no word wrap

• can display line numbers and icons

• has automatic cut/copy/paste and undo/redo functions

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Use This Property For This Purpose

Working with Simple Widgets

Chapter 8 Working with Widgets 455

Setting Text Edit Field Properties
The Text Edit Field properties dialog, shown in Figure 8-5, allows you to set the
following properties for a text edit field:

Use This Property For This Purpose

Attribute Name To set an attribute name for the text field.

Mapped Type To set the data type for the text in the text field. Choices are: TextData,
string, and TextNullable.

Widget Type If the current window is a superclass window, you can set the widget
type to an abstract class. If the current window is a subclass window
and the widget type is abstract, you can use the Widget > Convert To
command to convert this widget to a different type.

Scroll Policy To set the scroll behavior for the field when the cursor position is
moved. Automatic scrolling (the default) puts the selection in view,
Top scrolls the selection to the top, Bottom scrolls the section to the
bottom, Middle scrolls the selection to the middle.

Max Characters To set the maximum number of characters the text field allows. Set to
zero to allow maximum number for the particular host window
system.

IME Mode To specify whether the double-byte input manager is on or off when
entering the field. The default, IGNORE, leaves the current setting,
whether on or off, unaltered. The double-byte input manager allows
entry of multi-byte characters, such as Kanji.

Validate on
Keystroke

To specify whether or not the data stored in the variable associated
with the widget is updated after every keystroke by the end user. If
this toggle is off, the data stored in the variable associated with the
widget is updated after the user exits the field.

Exit on Tab To specify whether or not the tab character is treated as the field exit
character. If this toggle is off, the tab character is treated as data.

Horizontal
Scrollbar

To specify whether or not to provide a horizontal scrollbar for the text
field. If a text field uses a horizontal scrollbar, it cannot use
word-wrapping.

Vertical Scrollbar To specify whether or not to provide a vertical scrollbar for the text
field.

Show Line
Numbers

To specify whether or not the field displays a number for each line of
text in the field (like line numbers for code). If this toggle is off, the
field does not display line numbers.

Working with Simple Widgets

456 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 8-5 Text Edit Field Properties Dialog

Creating a Picture Field

A picture field provides a picture frame where you can display image data. At
runtime, the data attribute associated with the field provides the image that is
displayed within the picture field’s boundaries.

Auto Indent To specify whether or not each new line the user enters in the text edit
field is automatically indented. Every new line starts at the same
position of the first character in the line it follows.

Show Text
Cursor

To specify whether or not the field displays the input cursor. If this
toggle is off, the field does not display the input cursor.

Help Text To open the Help Text dialog.

Size Policy To open the Size Policy dialog.

Use This Property For This Purpose

Working with Simple Widgets

Chapter 8 Working with Widgets 457

Image Size policy For picture fields, iPlanet UDS allows you to ensure that the
entire image is always displayed by scaling the image to fit the field. Or, you can
ensure that the field does not change size by clipping the image to fit into the field.
You specify the image size policy on the Size Policy dialog for the picture field. See
“Size Policies” on page 439 for information.

Image Gravity property When a picture field is larger the image it contains, you
can set a picture field’s Image Gravity property to determine how the picture field
aligns the image within the field. A picture graphic can, for example, center an
image using an image gravity setting. You specify the image gravity on the Size
Policy dialog for the picture field. See “Size Policies” on page 439 for information.

Setting Picture Field Properties
The Picture Field Properties dialog, shown in Figure 8-6, allows you to set the
following properties for a picture field:

Figure 8-6 Picture Field Properties Dialog

Use This Property For This Purpose

Attribute Name To set an attribute name for the picture field.

Mapped Type To set the data type for the picture field elements. Choices are:
ImageData and ImageNullable.

Help Text To open the Help Text dialog for the field.

Size Policy To open the SIze Policy dialog for the field.

Working with Simple Widgets

458 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Creating a Toggle Field

A toggle field displays a labeled check box. The check box has two possible values:
on (checked) and off (unchecked). Each time the end user clicks the toggle, the
field’s value toggles from the selected value to the other. To change a toggle field’s
label, use the Toggle Field Properties dialog.

Setting Toggle Field Properties
The Toggle field properties dialog, shown in Figure 8-7, allows you to set the
following properties for a toggle field:

Use This Property For This Purpose

Attribute Name To set an attribute name for the toggle field.

Mapped Type To set the data type for the toggle field. Choices are: Boolean and
BooleanData.

Label Text To set the toggle field label text.

Message
Number

To specify a message number for the label text. This property is for
creating a multilingual window.

Message Set To specify the message set for the toggle field’s message number. If no
message set is specified, the default message set for the window is
used. This property is for creating a multilingual window.

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Working with Simple Widgets

Chapter 8 Working with Widgets 459

Figure 8-7 Toggle Field Properties Dialog

Creating a Push Button

A push button is a labeled button that the end user can click to give a command or
instruction. When you place a push button on the form, iPlanet UDS provides a
default label. You can change the label in the Push Button Properties dialog.

Setting Push Button Properties
The Push Button Properties dialog, shown in Figure 8-8, allows you to set the
following properties for a push button:

Use This Property For This Purpose

Attribute Name To set an attribute name for the push button.

Label Text To set the text for the button label.

Message Number To specify a message number for the label text. This property is for
creating a multilingual window.

Set Number To specify the message set for the push button’s message number. If
no message set is specified, the default message set for the window is
used. This property is for creating a multilingual window.

Default Button To set the push button to be the default button for its form.

Finalize Input To specify whether or not a button click initiates input finalization
for the character field that has the input focus at the time of the click.
For more information about input finalization and form validation,
see the Display Library online Help.

Working with Simple Widgets

460 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 8-8 Push Button Properties Dialog

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Use This Property For This Purpose

Working with Simple Widgets

Chapter 8 Working with Widgets 461

Creating a Picture Button

A picture button is a button that displays an image that the end user can click to
give a command.

➤ To create a picture button

1. Click the picture button icon.

2. Click on the form where you wish to place the button.

The Window Workshop opens the Load an Image from a File dialog, where
you can choose an image file to use for the button.

3. In the file selection dialog, choose the image file and click the OK button to
create the picture button.

Drag and drop for Windows In Microsoft Windows, you can replace the image
on a picture button by dragging an image file from your File Manager onto the
form.

➤ To replace an existing image

1. Select an image file from the file manager.

2. Drag the file on top of the picture button whose image you want to replace.
The picture button now contains the image file you dropped.

Working with Simple Widgets

462 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The picture button assumes a size just large enough to accommodate the image;
you resize a picture button by choosing a larger or smaller image in the Picture
Button Properties dialog.

Setting Picture Button Properties
The Picture Button Properties dialog, shown in Figure 8-9, allows you to set the
following properties for a picture button:

Figure 8-9 Picture Button Properties Dialog

Use This Property For This Purpose

Attribute Name To set an attribute name for the picture button.

Default Button To set the picture button to be the default button for its form.

Finalize Input To specify whether or not a button click initiates input finalization for
the character field that has the input focus at the time of the click. For
more information about input finalization and form validation, see
the Display Library online Help.

Image… To change the picture button image. The Image button opens a file
directory dialog from which you can select a new image.

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Working with Simple Widgets

Chapter 8 Working with Widgets 463

Creating a Scrollbar

An independent scrollbar looks just like the scrollbars used in other iPlanet UDS
fields, such as text fields and array fields. It generally includes the bar itself, arrows
at either end of the bar, and a scroll box within the bar. Clicks in the bar itself cause
incremental scrolling, clicks in the arrows cause line-by-line scrolling, and a
click/drag sequence of the scroll box causes proportional scrolling. In proportional
scrolling, the scroll box assumes a new position, and the scroll itself occurs when
the mouse button is released.

Unlike scrollbars integrated into other widgets, an independent scrollbar does not
automatically scroll anything else. You must write TOOL code that reacts to user
manipulation of the scrollbar by waiting for the AfterValueChange event on the
scrollbar and responding appropriately when the event is posted.

You can use scrollbars as widgets for representing and setting ranges, as in volume
controls for playing sound, or sliding scales for setting color display intensity
ranges.

In a volume control, for example, a scrollbar might represent volume at levels
extending from one to eleven, in increments of one. To change the volume, a user
would click and drag the scroll box from one value to another. The scroll box takes
a new position, and the value changes only when the user releases the mouse
button.

Using a viewport If you simply wish to add scrolling to a single field, we
recommend placing the field in a viewport, which provides horizontal and vertical
scrolling for the field it contains. For example, to display an image that exceeds the
size you wish to use to display it, you can enclose it in a viewport. This way, you
maintain complete access to the image for users, but can use a smaller space to
display it. For more information about viewports, see “Creating a Viewport” on
page 524.

Working with Simple Widgets

464 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Setting Scrollbar Properties
The Scrollbar Properties dialog, shown in Figure 8-10, allows you to set the
following properties for a scrollbar:

Figure 8-10 Scrollbar Properties Dialog

Use This Property For This Purpose

Attribute Name To set an attribute name for the scrollbar.

Mapped Type To set the data type for the scrollbar. Choices are: integer,
IntegerData

Minimum Value To set the scrollbar’s minimum value.

Maximum Value To set the scrollbar’s maximum value.

View Size To set the increment by which the scroll bar scrolls in response to
clicks in the bar.

Orientation To set the scrollbar’s orientation: vertical or horizontal.

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Working with Simple Widgets

Chapter 8 Working with Widgets 465

Creating a List View Field

A list view field displays a set of items, each consisting of an icon with a label, from
which the end user can make selections. There are four styles for list view fields:
image (large icon), small icon, list, and detail. On Windows 95/NT, iPlanet UDS
uses the native list view control. On all other window systems, iPlanet UDS creates
a custom widget.

The following figure illustrates the list view styles:

Figure 8-11 List View Field Styles

Note that the small icon, image (large icon), and list styles are available only on
Windows 95/NT.

Very often, user interface designers use list view and tree view fields together. A
tree view field on the left allows the user to search through a hierarchy for the item
he wants, and a list view field on the right provides the detail information for the
selected item in the tree view field.

Detail

List

Image (Large Icon)

Small Icon

Working with Simple Widgets

466 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The ListView class, which defines the list view widget, is a subclass of the
OutlineField class, and it provides a simplified version of the outline field. The
advantages of using a list view field over an outline field are:

• iPlanet UDS provides the look and feel of a list view control

• it is easier to define the data

The DisplayNode class provides attributes that define the first two columns of
the list view field, DVSmallIcon, DVLargeIcon, and DVNodeText. For the
small icon, image (large icon), and list styles, and for some detail list view
fields, these attributes are all you need.

• it is easier to assign the data

You do not need to create a node hierarchy for a list view field as you do with
an outline field.

• on Windows 95/NT, the native list view control provides automatic column
sorting and resizeable columns

List view styles When you create a list view field, you can choose one of four
styles. For the small icon, image (large icon), and list styles, there are always two
standard columns, one icon and one text column. (Figure 8-11 shows how each of
these styles displays the two “columns.”) For the detail style, you can create any
number of resizeable columns.

Portability The small icon, image (large icon), and list styles are available on
Windows 95/NT only. Therefore, if you plan to deploy your application on more
than one window system, we recommend that you use only the detail style. Using
the detail style ensures visual consistency between the various platforms.

Sorting On Windows 95/NT, the detail list view field provides automatic
sorting, in ascending order, when the end user clicks on the list view field’s header.
If you wish to provide a descending sort, you can handle the list view field’s
RequestSort event. See Display Library online Help for information.

For information on providing the data to be displayed in the list view field, see
iPlanet UDS Programming Guide.

Mapped type for list view fields By default, the mapped type for a list view field
is DisplayNode. You can use the DisplayNode class as the mapped type for the
following list view styles:

• small icon style list view field

• image style (large icon) list view field

Working with Simple Widgets

Chapter 8 Working with Widgets 467

• list style list view field

• detail style list view field with only one text column

For a detail list view field with multiple columns, you must use a subclass of
DisplayNode for the mapped type. The DisplayNode subclass must define the
attributes that provide the data for each column you wish to include. The
user-defined DisplayNode subclass must be defined before you can completely
define the list view field using the Window Workshop. See iPlanet UDS
Programming Guide for information on defining the DisplayNode subclass.

Column names and other column properties The ListView Properties dialog
provides an array field that allows you to define each of the columns in the list
view field. The Column Name property in the array field specifies the name of the
attribute that defines the particular column. The column name must be an existing
attribute in the DisplayNode class (DVNodeText) or subclass (a user-defined
attribute). For each Column Name that you enter, iPlanet UDS creates a
corresponding column in the list view field. The other properties in the array field
allow you to control the appearance and behavior settings for the individual
columns.

➤ To create a list view field

1. In the Window Workshop, choose the Widget > New > ListView command or
click the New List View tool.

2. On the form, draw a rectangle to indicate the size of the list view field you wish
to create.

3. Double-click the list view field to open its properties dialog.

4. On the ListView Properties dialog, use the List Style property to set the style of
the list view field. (Small Icon, Image (large icon), and List styles take effect
only on Windows 95/NT.)

5. For the Mapped Type property, specify either DisplayNode or a user-defined
subclass of DisplayNode. Set other list view field properties as desired (see
summary below).

6. Define the individual columns. You must enter the Column Name property for
each column you wish to display. The other properties are optional.

If you are using DisplayNode, use DVNodeText for the first column in the list
view field. If you are using a user-defined subclass of DisplayNode, you can
use DVNodeText for any column in the list view field and use your
user-defined attributes for the remaining columns.

Working with Simple Widgets

468 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Setting List View Field Properties
The List View Properties dialog, shown in Figure 8-12, allows you to set the
following properties for a list view field:

Use This Property For This Purpose

Attribute Name To set an attribute name for the list view field.

Mapped Type To set the data type for the list view field contents. The type must be
the DisplayNode class or a user-defined subclass of DisplayNode.

Scroll Policy To determine where list view field scrolls a node when it becomes the
current node. Values are: Automatic, Top, Bottom, Middle, and No
Scroll.

List Style To set the style of the list view field: Detail, Image (large icon), Small
Icon, and List. Image (large icon), Small Icon, and List styles are
available only on Windows 95/NT.

Column Title Set
Number

The set number for the column titles’ message numbers. If the set
number is unspecified, the default set number for the window is used.
This property is used for creating a multilingual window.

Has Column
Titles

To turn the list view field’s column titles on or off.

Has Row
Highlights

To set row highlighting for the current node in the list view field.
Highlighting is reverse video.

Has Horizontal
Scrollbar

To turn the horizontal scrollbar on or off.

Has Vertical
Scrollbar

To turn the vertical scrollbar on or off.

Column Title To set the title for an individual column in the list view field.

Column Name To specify the name of the attribute in the DisplayNode class (or
subclass) that defines the data to be displayed in the current column.
The attribute is either the DVNodeText attribute or a user-defined
attribute in the DisplayNode subclass (the mapped type).

Msg Number To set the message number for the individual column title. A value of
0 means the current value for the Column Title property. This
property is used for creating a multilingual window.

Working with Simple Widgets

Chapter 8 Working with Widgets 469

Figure 8-12 List View Properties Dialog

Width To set the maximum number of characters that can be displayed in
the current column.

Size Policy To set the size policy for the current column. Values are: Default,
Fixed, and Size to Text.

Alignment To set the alignment of the data displayed in the field. Values are:
Default (appropriate for the type), Left, Right, and Center.

State To set the state of a column in the list view field: draggable, visible, or
invisible.

Insert/Delete To insert or delete a column in the list view field.

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Use This Property For This Purpose

Working with Simple Widgets

470 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Creating a Tree View Field

A tree view field displays hierarchical information in an indented outline,
providing controls that let the end user expand and collapse the outline. Unlike an
iPlanet UDS outline field, a tree view field has a standardized two-column format,
with one small icon column and one text column. On Windows 95/NT, iPlanet
UDS uses the native list view control. On all other window systems, iPlanet UDS
creates a custom widget.

Very often, user interface designers use list view and tree view fields together. A
tree view field on the left allows the user to search through a hierarchy for the item
he wants, and a list view field on the right provides the detail information for the
selected item in the tree view field.

The TreeView class, which defines the tree view widget, is a subclass of the
OutlineField class, and it provides a simplified version of the outline field. The
advantages of using a tree view field over an outline field are:

• iPlanet UDS provides the look and feel of a tree view control

• it is easier to define the data

The DisplayNode class provides attributes that define both columns of the tree
view field. These attributes are all you need.

DisplayNode class The data for a tree view field consists of a hierarchy of
DisplayNode objects. The DisplayNode class defines a single data node in the tree
view field. Each “row” in the tree view field corresponds one to one with a
DisplayNode object.

A tree view field displays hierarchical information in a standard format, with two
standard columns, a small icon column and a text data column. Therefore, the
DisplayNode class provides the attributes you need for these two columns:
DVSmallIcon, DVSelectedIcon, and DVNodeText. You do not need to create a
subclass of DisplayNode.

For information on providing the data to be displayed in the tree view field, see the
iPlanet UDS Programming Guide.

Working with Simple Widgets

Chapter 8 Working with Widgets 471

➤ To create a tree view field

1. In the Window Workshop, choose the Widget > New > TreeView command or
click the New Tree View tool.

2. On the form, draw a rectangle to indicate the size of the tree view field you
wish to create.

3. Double-click the tree view field to open its properties dialog.

On the TreeView Properties dialog, set the tree view field properties as desired
(see summary below).

Setting Tree View Field Properties
The Tree View Field Properties dialog, shown in Figure 8-13, allows you to set the
following properties for a tree view field:

Use This Property For This Purpose

Attribute Name To set an attribute name for the tree view field.

Mapped Type To set the data type for the tree view field contents. The mapped type
must be the DisplayNode class or a subclass of DisplayNode.

Scroll Policy To determine where tree view field scrolls a node when it becomes
the current node. Values are: Automatic, Top, Bottom, Middle, and
No Scrolling.

Has Controls To turn the controls for opening and closing folder nodes on or off.

Has Row
Highlights

To turn row highlighting for the current node on or off. Highlighting
is reverse video.

Root Displayed To specify whether or not the root node is displayed.

Has Horizontal
Scrollbar

To turn the horizontal scrollbar on or off.

Has Vertical
Scrollbar

To turn the vertical scrollbar on or off.

Draggable To allow the end user to drag the individual nodes in the tree view
field.

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Working with Simple Widgets

472 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 8-13 Tree View Field Properties Dialog

Creating an Outline Field
An outline field provides a browser for multi-column data. It can display a
hierarchy of data as an indented outline, or it can display one level of multi-column
information. If the data structure is larger than the outline field, the outline field
provides a scrollbar that lets the end user scroll through the data.

Unlike list view fields and tree view fields, which use the window systems’ native
list view and tree view controls, an outline field is a widget created by iPlanet UDS.
You can therefore use it to create a customized widget that displays information in
any format you choose.

A tree view field displays information in a hierarchical format, however, you are
limited to two standard columns, one icon and one label. A list view field displays
any number of columns, however, the list view field provides a flat list, without
showing hierarchical relationships. An outline field has none of the restrictions of
either the tree view or list view fields, and is therefore useful when you wish to
display multiple columns of hierarchical information. Generally, if a list view field
or tree view field provides the functionality that you need, you should use those
fields. When you need more flexibility, use an outline field.

DisplayNode class The data displayed by an outline field is a hierarchy of data
nodes, each node corresponding to a row of information. These data nodes are
subclasses of the DisplayNode class, described in the Display Library online Help.
Each column in the outline field corresponds to an attribute from the DisplayNode
subclass to which the outline field maps. To assign the data to the outline field, you
must link the DisplayNode subclass objects into a hierarchy and assign the root

Working with Simple Widgets

Chapter 8 Working with Widgets 473

node of the hierarchy to the mapped attribute of the outline field. The iPlanet UDS
Programming Guide provides complete information about providing the data for an
outline field. See the iPlanet UDS example programs SimpleOutline and
FileBrowser for complete code examples using outline field.

➤ To create an outline field

1. In the Window Workshop, choose the Widget > New > OutlineField command
or click the New Outline Field tool.

2. On the form, draw a rectangle to indicate the size of the field you wish to
create.

3. Double-click the field to open its properties dialog.

On the OutlineField Properties dialog, set the outline field properties as
desired (see summary below).

Setting Outline Field Properties
The Outline Field Properties dialog, shown in Figure 8-14, allows you to set the
following properties for an outline field:

Use This Property For This Purpose

Attribute Name To set an attribute name for the outline field.

Mapped Type To set the data type for the outline field contents. The mapped type
must be the DisplayNode class or a subclass of DisplayNode.

Scroll Policy To determine where outline field scrolls a node when it becomes the
current node. Values are: Automatic, Top, Bottom, Middle, and No
Scrolling.

Has Controls To turn the controls for opening and closing folder nodes on or off.

Has Column
Titles

To turn the outline field’s column titles on or off.

Has Row
Highlights

To turn row highlighting for the current node on or off. Highlighting
is reverse video.

Root Displayed To specify whether or not the root node is displayed.

Has Horizontal
Scrollbar

To turn the horizontal scrollbar on or off.

Has Vertical
Scrollbar

To turn the vertical scrollbar on or off.

Working with Simple Widgets

474 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Column Title Set
Number

The set number for the column titles’ message numbers. This is for
use when creating a multilingual window.

Column Title To set the title for an individual column in the outline field.

Column Name To specify the name of the attribute in the DisplayNode subclass that
defines the data to be displayed in the current column.

Msg Number To set the message number for the individual column title. A value of
0 means the current value for the Column Title property. This is for
use when creating a multilingual window.

Width To set the maximum number of characters that can be displayed in
the current column.

Size Policy To set the size policy for the current column. Values are Default,
Fixed, and Size to Text.

Alignment To set the alignment of the data displayed in the field. Values are:
Left, Right, and Center.

First/Last To set the column as the first or last indent level in the outline field.

State To set the state of a column in the outline field: Default, Draggable,
Visible, or Invisible.

Insert/Delete To insert or delete a column in the outline field.

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Use This Property For This Purpose

Working with Simple Widgets

Chapter 8 Working with Widgets 475

Figure 8-14 Outline Field Properties Dialog

Creating an OLE Field
An OLE field (Windows platform only) displays OLE linked or embedded objects.
When your iPlanet UDS application is running, the user can work directly with the
linked or embedded object. The OLE field is only available for Windows platforms.

For general information about integrating with OLE and using the OLE field in
your iPlanet UDS windows, see Integrating with External Systems.

Setting OLE Field Properties
The iPlanet UDS properties dialog for the OLE field allows you to set only a subset
of the properties for the OLE field. To set the cache file name, and the default
linked or embedded object for the OLE field, you must use the Insert Cached
Object button on the OLEField Properties dialog to open the Windows’ Cache File
and Insert Object dialogs. Because these dialogs are provided by Windows, you
need to be using Windows in order to access them. See Integrating with External
Systems for further information.

Working with Simple Widgets

476 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The iPlanet UDS OLE Field Properties dialog, shown in Figure 8-15, allows you to
set the following properties for an OLE field:

Figure 8-15 OLE Field Properties Dialog

Use This Property For This Purpose

Attribute Name Sets an attribute name for the picture field.

Mapped Type Specifies the mapped data type for the OLE field. This value must
be CDispatch or a subclass of CDispatch.

Allow Activate in
Place

Sets whether to start the application for the current object as part of
the current window.

Allow In Place
Toolbar

Sets whether to display the tool bar for the application activated
in-place as part of the current window.

Insert Cached
Object button

Allows you to add a linked or embedded object that can be saved.
The dialog that this button displays is provided by Windows, so
you must be running on a Windows machine to access it. See your
Windows documentation for information about the Insert Cached
Object dialog.

Insert Object button Lets you add a linked or embedded object. This button displays a
dialog, in which you can define the linked or embedded OLE
object. See Integrating with External Systems for information.

Load Cache File
button

Lets you link to an OLE object stored in a cache file. This button
displays a file selection dialog to select the cache file.

Help Text Opens the Help Text dialog for the field.

Size Policy Opens the SIze Policy dialog for the field.

Working with Simple Widgets

Chapter 8 Working with Widgets 477

Creating an ActiveX Field
You can use ActiveX controls in the windows of your iPlanet UDS client
application. (This only applies to the Windows platform.) Using predefined
controls can save you the work of developing complex controls yourself.

When you use an ActiveX control in your iPlanet UDS window, you need to use an
ActiveX field to contain the ActiveX control. The ActiveX control is actually a
mapped attribute of the ActiveX field. To create the ActiveX field, you use the
Widget > New > ActiveXField command.

➤ To define an ActiveX field

1. Choose the Widget > New > ActiveXField command.

2. Draw an ActiveX field of the size you want in the window.

➤ To define the mapped type

1. Open the ActiveX Field Properties dialog by double-clicking on the ActiveX
field.

2. In the Mapped Type field, enter the name of the ActiveX interface class, or use
the browser button to display a list of available classes, and select the ActiveX
interface class.

For example, if you want to set the mapped type to the class for the FourDir
control, set the Mapped Type field to the FDIRLib.fdir class.

NOTE If the mapped type is not CDispatch, the specified type must
match whatever control is inserted; otherwise, you will get a
runtime error.

Working with Simple Widgets

478 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To insert the ActiveX control into the ActiveX field

1. In the ActiveX Field Properties dialog, click the Insert Control button.

2. In the Insert Control dialog, select the ActiveX control that you want to insert
into the ActiveX field.

➤ To set the initial property values for the ActiveX control

1. In the ActiveX Field Properties dialog, click the ActiveX Properties button.

2. In the tab folder, set the values that are appropriate for the ActiveX control. For
specific information about these properties, see the documentation for the
ActiveX control.

NOTE You can only insert ActiveX controls into ActiveX fields on
Windows platforms where the ActiveX controls have been
installed and registered.

NOTE When you change values in this dialog and click either OK or
Apply, the values are changed for the ActiveX control, even if
you later cancel out of the ActiveX Field Properties dialog. If
you click the Cancel button on this dialog, any changed values
are not changed for the ActiveX control.

Working with Simple Widgets

Chapter 8 Working with Widgets 479

Setting ActiveX Field Properties
The iPlanet UDS properties dialog for the ActiveX field allows you to set only a
subset of the properties for the ActiveX field. To select the control you wish to
include on your window, you must use the Insert Control button to open the Insert
ActiveX Control dialog provided by Windows. To set individual properties on the
chosen control, you must use the ActiveX Properties... button, described in the
previous section, to open the Control Properties dialog provided by Windows.

The iPlanet UDS ActiveX Field Properties dialog, shown in Figure 8-16, allows you
to set the following properties for an ActiveX field:

Figure 8-16 ActiveX Field Properties Dialog

Use This Property For This Purpose

Attribute Name Sets an attribute name for the picture field.

Mapped Type Specifies the mapped data type for the OLE field. This value must be
CDispatch or a subclass of CDispatch.

ActiveX
Properties button

Lets you view and set properties of the ActiveX control. This button
displays a dialog containing the properties defined by the ActiveX
control.

Insert Control
button

Lets you add an ActiveX control. This button displays a dialog, in
which you can define the type of ActiveX control.

Help Text Opens the Help Text dialog for the field.

Size Policy Opens the SIze Policy dialog for the field.

Working with List Widgets

480 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Working with List Widgets
A list widget displays a fixed set of choices to the end user. iPlanet UDS provides
five list widgets:

This section provides general information about how to create list widgets. For
details about specific list widgets, see the individual widget descriptions in this
chapter.

List elements For every list widget, you must provide the list of values that the
list displays to the end user. These lists of values are called list elements. For a radio
list, drop list, scroll list, and fillin field, you specify list elements as a set of text
values. For a palette list, you specify list elements as a set of image values. You
specify the list element values by listing them on the widget’s properties dialog.

Using integer values to refer to list elements Although you can reference the
string or image values for a list widget directly in your TOOL code, you may wish
to provide a list of integer values to represent list element text or image values. You
can then use the integer value in your code to refer to the corresponding text or
image. The integers can be arbitrary numbers, and need not follow a sequence.

Attribute data type The type of the list’s data attribute determines how you can
refer to the list elements from your code. If you use the string or TextData type, you
must refer to the list element by referencing the string or TextData object. If you use
the ImageData class for a palette, you must refer to the list elements by referencing
the ImageData object. If you use the integer or IntegerData type, you must use the
integer value.

List Widget Definition

Radio list Displays a set of radio buttons, from which the end user makes one
selection.

Drop list Displays a list of choices that drop down from the current value. The end
user can make one selection.

Scroll list Displays a scrollable list of choices, from which the end user can make one
selection.

Palette list Displays a set of images, from which the end user can make one selection.

Fillin field A combination of a data field and a drop list. The end user can either type in
a value or select a value from the list.

Working with List Widgets

Chapter 8 Working with Widgets 481

See the ListField class in Display Library online Help for information on working
with lists in your TOOL code.

Multiple selection for scroll list For a scroll list, you have the choice of
specifying that the end user can select any number of items from the list. In this
case, the data attribute associated with the scroll list is an integer that represents
the number of items currently selected, not the values of the items. For multiple
selection scroll lists, you must use the GetElementList, SetElementList, and
IsElementSelected methods of the ScrollList class to access and manipulate the
values for the list elements. See “Creating a Scroll List” on page 483 for information
about creating multiple selection scroll lists and the Display Library online Help
for information about working with multiple scroll lists from TOOL.

Creating a Radio List

A radio list displays a set of radio buttons from which the end user can make one
selection. Radio lists are useful for presenting the end user a short list of mutually
exclusive choices.

In the Radio List Properties dialog, you specify the number of list elements—radio
buttons—in the list and the label to use for each button.

Setting Radio List Properties
The Radio List Properties dialog, shown in Figure 8-17, allows you to set the
following properties for a radio list:

Use This Property For This Purpose

Attribute Name To set an attribute name for the radio list.

Mapped Type To set the data type for the radio list. Choices are: TextData, string,
TextNullable, integer, IntegerData, and IntegerNullable.

Widget Type If the current window is a superclass window, you can set the widget
type to an abstract class. If the current window is a subclass window
and the widget type is abstract, you can use the Widget > Convert To
command to convert this widget to a different type.

Working with List Widgets

482 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Caption To specify the caption for the radio list. The caption is displayed as
part of the radio list’s upper border.The Caption property is available
only on Windows platforms. On all other platforms, the property is
ignored.

Note that the caption size can affect the size of the radio list. If the
caption is longer than the current width of the radio list, the radio list
will be resized to accommodate the caption.

Message
Number

To set the message number for the field’s caption. This property is for
creating a multilingual window.

Set Number To specify the set number for the caption’s message number. If the set
number is unspecified, the default set number for the window is used.
This property is for creating a multilingual window.

Wrap Size To set the point at which the radio list wraps into new columns or
rows.

Orientation To set the orientation of the radio list: vertical or horizontal.

Layout Policy To set the spacing of a horizontal radio list. Values are: Evenly
Spaced—all list elements are set to the width of the longest element,
or Packed—the width of each list element is determined by the length
of its own text.

Text Value Set
Number

To specify the set number for the list elements’ message numbers. If
the set number is unspecified, the default set number for the window
is used. This property is for creating a multilingual window.

Text Value To set the text for the elements in the radio list.

Integer Value To set the integer value reference for the elements in the radio list.

Msg Number To set the message number for the list element’s text value. This
property is used for creating a multilingual window.

Insert/Delete To insert or delete a list element from the radio list.

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Use This Property For This Purpose

Working with List Widgets

Chapter 8 Working with Widgets 483

Figure 8-17 Radio List Properties Dialog

Creating a Scroll List

A scroll list displays a list of choices, from which the end user can make one
selection, or, if you turn on the Multiple Selection toggle, any number of selections.
You specify the number of choices that are currently visible. The user can scroll to
view the rest. Use a scroll list to present the end user a list of many choices, while
displaying only a selected number of choices at any time.

Working with List Widgets

484 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Single selection or multiple selection For a scroll list, you have the choice of
specifying whether the user can select only one item from the list or whether she
can select any number of items. By default, a scroll list allows single selection only.
In this case, like the other iPlanet UDS list widgets, the data attribute associated
with the scroll list stores the value of the list item that is currently selected.

However, when you create a multiple selection scroll list, the data attribute
associated with the scroll list is an integer that represents the number of items
currently selected, not the values of the items. For multiple selection scroll lists,
you must use the GetElementList, SetElementList, and IsElementSelected methods
of the ScrollList class to access and manipulate the values for the list elements. See
the Display Library online Help for information about working with multiple
selection scroll lists.

Setting Scroll List Properties
The Scroll List Properties dialog, shown in Figure 8-18, allows you to set the
following properties for a scroll list:

Use This Property For This Purpose

Attribute Name To set an attribute name for the scroll list.

Mapped Type To set the data type for the scroll list. Choices are: TextData,
TextNullable, string, integer, IntegerData, and IntegerNullable. If the
Multiple Selection toggle is set to on, the Mapped Type will
automatically be set to integer.

Widget Type If the current window is a superclass window, you can set the widget
type to an abstract class. If the current window is a subclass window
and the widget type is abstract, you can use the Widget > Convert To
command to convert this widget to a different type.

Multiple
Selection

To specify whether or not to allow the end user to select more than
one item from the list.

Text Value Set
Number

To specify the set number for the list elements’ message numbers. If
the set number is unspecified, the default set number for the window
is used. This property is for creating a multilingual window.

Text Value To set the text for the elements in the scroll list.

Integer Value To set the integer value reference for the elements in the scroll list.

Msg Number To set the message number for the list element’s text value. This
property is used for creating a multilingual window.

Working with List Widgets

Chapter 8 Working with Widgets 485

Figure 8-18 Scroll List Properties Dialog

Creating a Drop List

A drop list displays a drop-down list of choices, from which the end user can make
one selection. When unselected, a drop list displays only its current value. When
selected by the end user, the drop list reveals either its complete list of elements, or,
if you so specify, a scrolling list.

Use a drop list when you want to present a list of choices that are displayed only at
user request.

Insert/Delete To insert or delete a list element from the scroll list.

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Use This Property For This Purpose

Working with List Widgets

486 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Setting Drop List Properties
The Drop List Properties dialog, shown in Figure 8-19, allows you to set the
following properties for a drop list:

Use This Property For This Purpose

Attribute Name To set an attribute name for the drop list.

Mapped Type To set the data type for the drop list. Choices are: TextData, string,
integer, and IntegerData.

Widget Type If the current window is a superclass window, you can set the widget
type to an abstract class. If the current window is a subclass window
and the widget type is abstract, you can use the Widget > Convert To
command to convert this widget to a different type.

Text Value Set
Number

To specify the set number for the list elements’ message numbers. If
the set number is unspecified, the default set number for the window
is used. This property is for creating a multilingual window.

Text Value To set the text for the elements in the drop list.

Integer Value To set the integer value reference for the elements in the drop list.

Msg Number To set the message number for the list element’s text value. This
property is used for creating a multilingual window.

Insert/Delete To insert or delete a list element from the drop list.

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Working with List Widgets

Chapter 8 Working with Widgets 487

Figure 8-19 Drop List Properties Dialog

Creating a Fillin Field

A fillin field combines a single-line text field with a list of values from which the
user can make a selection. This provides the capabilities of a drop list with some of
the capabilities of a text field. In a fillin field, the end user can choose a value or
type her own data.

Because there is no guarantee the user will select an element from a fillin field’s
defined list, fillin fields must use text data types.

Working with List Widgets

488 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Setting Fillin Field Properties
The Fillin Field Properties dialog, shown in Figure 8-20, allows you to set the
following properties for a fillin field:

Use This Property For This Purpose

Attribute Name To set an attribute name for the fillin field.

Mapped Type To set the data type for the fillin field. Choices are: TextData, string,
and TextNullable.

Widget Type If the current window is a superclass window, you can set the widget
type to an abstract class. If the current window is a subclass window
and the widget type is abstract, you can use the Widget > Convert To
command to convert this widget to a different type.

Max Characters To set the maximum number of characters a user can type into the
fillin field. Set this to zero for an unlimited number of characters.

IME Mode To specify whether the double-byte input manager is on or off when
entering the field. The default, IGNORE, leaves the current setting,
whether on or off, unaltered. The double-byte input manager allows
entry of multi-byte characters, such as Kanji.

Validate on
Keystroke

To specify whether or not the data stored in the variable associated
with the widget is updated after every keystroke by the end user. If
this toggle is off, the data stored in the variable associated with the
widget is updated after the user exits the field.

Text Value Set
Number

To specify the set number for the list elements’ message numbers. If
the set number is unspecified, the default set number for the window
is used. This property is for creating a multilingual window.

Text Value To set the text for the elements in the fillin field.

Msg Number To set the message number for the list element’s text value. This
property is used for creating a multilingual window.

Insert/Delete To insert or delete a list element for the fillin field.

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Working with List Widgets

Chapter 8 Working with Widgets 489

Figure 8-20 Fillin Field Properties Dialog

Creating a Palette List

A palette displays a set of images as buttons, from which the end user can make
one selection. The widget palette of the Window Workshop, a portion of which is
shown at left, is an example of a palette list.

To create a palette list, you must first create the individual picture graphics or
picture buttons that you want included on the palette. Although the palette list is
not technically a compound field, you use the same technique for creating a palette
list as you do for creating a compound field.

Working with List Widgets

490 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To create a palette

1. Create the individual picture graphics and picture buttons you want to include
on the palette. Arrange them in rows and columns, in the same order as you
want them to appear on the palette.

2. Select all the palette pictures.

3. Click the palette icon or choose the Widget > Group Into > PaletteList
command.

Because you can use only picture graphics and picture buttons in a palette list, if
you try to include other widgets in the palette, iPlanet UDS ignores them.

Order of palette items The order of the images on the palette is determined by
the order in which you lay them out on the form. If necessary, you can change the
order of the widgets in the palette after creating it by using the Insert and Delete
buttons on the palette’s properties dialog. This allows you to move the “rows” in
the palette into the appropriate order, by deleting them first and reinserting them
in the correct order. However, it is easiest for you to place the picture widgets on
the form in the correct order before you give the Group Into > PaletteList
command.

Palette orientation and wrap size By default, iPlanet UDS creates a vertical
palette, with a wrap size equal to the number of widgets in the longest horizontal
line of your palette layout. For example, if you lay out two vertical columns of
picture buttons, the palette has a wrap size of two. However, if you lay out two
horizontal rows with eight picture buttons in each row, iPlanet UDS creates a
vertical palette with a wrap size of eight. This is because the default orientation for
the palette is vertical. If you need a horizontal palette, you can change its
orientation to horizontal by using the Orientation property on the Palette List
Properties dialog.

Help for Palette Regions
For a palette list, you can specify float-over and status-line help for individual list
items (also referred to as “regions”) in the palette.

The ShowRegionFloatOver attribute of the PaletteList class determines whether the
float-over help for the individual regions (or list items) in the palette list are
actually displayed. By default, this attribute is set to TRUE. When you set the
ShowRegionFloatOver attribute to FALSE, the float-over messages for individual
regions in the palette are not displayed.

See iPlanet UDS Programming Guide for further information about providing
float-over help for palette lists.

Working with List Widgets

Chapter 8 Working with Widgets 491

Multilingual help When you are providing multilingual help for the window,
you can use message numbers for the individual float-over and status-line help
strings for the individual regions in the palette. The message number for an
individual region should point to message that contains both the float-over and
status-line messages in the following format:

float_over_help\n status_line_help

The Text Set Number property for the palette list provides the set number that is
used for all regions’ message numbers. If no value is specified for the Text Set
Number property, iPlanet UDS uses the default message set for the window.

Setting Palette List Properties
The Palette List Properties dialog, shown in Figure 8-21, allows you to set the
following properties for a palette list.

Use This Property For This Purpose

Attribute Name To set an attribute name for the palette list.

Mapped Type To set the data type for the palette list. Choices are: TextData, string,
TextNullable, integer, IntegerData, and IntegerNullable.

Widget Type If the current window is a superclass window, you can set the widget
type to an abstract class. If the current window is a subclass window
and the widget type is abstract, you can use the Widget > Convert To
command to convert this widget to a different type.

Wrap Size To set the number of widgets after which the palette starts a new
column or row.

Orientation To set the orientation of the palette list: vertical or horizontal.

Value To set the integer value for the elements in the palette list.

Image To view the images associated with each element in the palette.

Text Set Number To set the message set number to be used for the region float-over and
status-line message numbers. This is for creating multilingual help for
the palette list regions.

Float-Over Text To specify the float-over help associated with the particular palette
region.

Status Line Text To specify the status-line help associated with the particular palette
region.

Msg Number To specify the message number for the message that contains the
float-over and status-line help text for the individual region. This is
for creating multilingual help for the palette list regions.

Working with List Widgets

492 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 8-21 Palette List Properties Dialog

Insert/Delete To insert or delete a list element from the palette list.

Image button To open a file selection dialog for changing the image of the selected
row.

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Use This Property For This Purpose

Working with Graphic Widgets

Chapter 8 Working with Widgets 493

Working with Graphic Widgets
Graphic widgets are decorative widgets, such as rectangles and lines, that you can
use as visual organizers for forms or simply as decorations.

Graphic widgets are a variety of simple widget, with two special characteristics
that distinguish them from other simple widgets.

First, graphic widgets do not display data.

Second, graphic widgets occupy their own layer in an iPlanet UDS display called
the graphic layer. On the graphic layer, widgets can overlap one another. You can
use overlapping to create special display effects for graphic widgets that are not
possible on the widget field layer, where widgets cannot overlap one another.

One of these special display effects is widget transparency. You can set a picture
graphic or other graphic widget to be transparent, so that any graphics below it
will show through.

For more information about widget layering, see Display Library online Help.

Creating a Text Graphic

A text graphic is a static series of characters that you enter directly onto the form.
Use a text graphic to provide the user with information or instructions. Text
graphics are also useful for providing titles or labels for other widgets or groups of
widgets.

Because it is a graphic widget, you can manipulate a text graphic as you would any
graphic widget—stacking it behind or above other graphic widgets or coloring it
for decorative effect.

You create a text graphic by clicking in the user window when the Text Graphic
tool or menu item is selected. When you click in the window, the Window
Workshop places a text graphic in the window with the default label of “Text
Graphic,” and switches into text editing mode so that you can immediately type a
new label for the text graphic.

NOTE Points are always transparent.

Working with Graphic Widgets

494 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Because it consists of text, you can also edit a text graphic by changing its
properties dialog.

Setting Text Graphic Properties
The Text Graphic Properties dialog, shown in Figure 8-22, allows you to set the
following properties for a text graphic:

Figure 8-22 Text Graphic Properties Dialog

Use This
Property

For This Purpose

Attribute Name To set an attribute name for the text graphic.

Label Text To set the text for the text graphic.

Alignment To set the alignment of the text in the text graphic: left or right.

Message
Number

To specify a message number for the text. This property is for creating
a multilingual window.

Set Number To specify the message set for the text’s message number. If no
message set is specified, the default message set for the window is
used. This property is for creating a multilingual window.

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Working with Graphic Widgets

Chapter 8 Working with Widgets 495

Creating a Picture Graphic

A picture graphic is a static image, which is stored as a permanent part of the form.
Use a picture graphic to provide visual information, for example, by displaying a
map, or for enhancing the look of a form, for example, by adding a company logo
or decorative background.

Image Size policy For picture graphics, iPlanet UDS allows you to ensure that
the entire image is always displayed by scaling the image to fit the field. Or, you
can ensure that the field does not change size by clipping the image to fit into the
field. You specify the image size policy on the Size Policy dialog for the picture
field. See “Size Policies” on page 439 for information.

Image Gravity property When a picture graphic field is larger then the image it
contains, you can set a picture graphic’s Image Gravity property to determine how
the picture graphic aligns the image within the field. A picture graphic can, for
example, center an image using an image gravity setting. You specify the image
gravity on the Size Policy dialog for the picture field. See “Size Policies” on
page 439 for information.

Working with Graphic Widgets

496 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To create a picture graphic

1. Click the picture graphic icon.

2. Click on the form where you wish to place the picture.

The Window Workshop opens the Load an Image from a File dialog, where
you can choose an image file to use for the picture.

3. In the file selection dialog, choose the image file and click the OK button.

Drag and drop for Windows In Microsoft Windows, you can create a picture
graphic by selecting an image file from your file manager and dragging it onto
your form.

➤ To drag and drop an image file

1. Select an image file from the file manager.

2. Drag the file onto the form and drop in the appropriate position.

The Window Workshop creates the picture graphic, using the image file you
dropped onto the form.

➤ To replace an existing image

1. Select an image file from the file manager.

2. Drag the file on top of the picture graphic whose image you want to replace.
The picture graphic now contains the image file you dropped.

Working with Graphic Widgets

Chapter 8 Working with Widgets 497

Setting Picture Graphic Properties
The Picture Graphic Properties dialog, shown in Figure 8-23, allows you to set the
following properties for a picture graphic:

Figure 8-23 Picture Graphic Properties Dialog

Creating a Line

A line is a straight line between two points. You draw a line by clicking at a starting
point, dragging the mouse to an ending point, and releasing the mouse button.

Setting Line Properties
The Line Properties dialog, shown in Figure 8-24, allows you to set the following
properties for a picture graphic:

Use This Property For This Purpose

Attribute Name To set an attribute name for the picture graphic.

Image… To change the picture graphic image. The Change Image button
opens a file directory dialog where you can select a new image.

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Use This Property For This Purpose

Attribute Name To set an attribute name for the line.

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Working with Graphic Widgets

498 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 8-24 Line Properties Dialog

Creating a Rectangle

A rectangle is a four-sided shape with right angles. You use rectangles as
decorative graphics in your forms.

 You draw a rectangle by clicking to mark the rectangle’s starting point, and then
dragging the mouse to the rectangle’s ending point and releasing the mouse
button.

Setting Rectangle Properties
The Rectangle Properties dialog, shown in Figure 8-25, allows you to set the
following properties for a rectangle:

Figure 8-25 Rectangle Properties Dialog

Use This Property For This Purpose

Attribute Name To set an attribute name for the rectangle.

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Working with Graphic Widgets

Chapter 8 Working with Widgets 499

Creating an Ellipse

An ellipse is an oval shape. You use ellipses as decorative graphics in your forms.

You draw an ellipse by clicking to mark the ellipse’s starting point, and then
dragging the mouse to the ellipse’s ending point and releasing the mouse button.

Setting Ellipse Properties
The Ellipse Properties dialog, shown in Figure 8-26, allows you to set the following
properties for an ellipse:

Figure 8-26 Ellipse Properties Dialog

Use This Property For This Purpose

Attribute Name To set an attribute name for the ellipse.

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Working with Graphic Widgets

500 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Creating a Polyline

A polyline is a multi-segment line. You draw a polyline from a starting point,
through any number of interim points to define segments, to a final end point. You
click to mark the beginning polyline point, click to mark interim points for
segments, and double-click to mark the final point of the polyline.

Setting Polyline Properties
The Polyline Properties dialog, shown in Figure 8-27, allows you to set the
following properties for a polyline:

Figure 8-27 Polyline Properties Dialog

Creating a Point

A point is a graphic symbol. You draw a point by clicking to mark the point’s
location.

Use This Property For This Purpose

Attribute Name To set an attribute name for the polyline.

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Working with Compound Widgets

Chapter 8 Working with Widgets 501

Setting Point Properties
The Point Properties dialog, shown in Figure 8-28, allows you to set the following
properties for a point:

Figure 8-28 Point Properties Dialog

Working with Compound Widgets
A compound widget is a group of widgets that you can manipulate as a unit. You
can move, resize, copy, and delete compound widgets. You set properties for
compound widgets the same way you set them for simple widgets. You can set
colors, line weights, and other style attributes for compound widgets, while
maintaining the style attributes of their child widgets.

You create compound widgets by grouping existing widgets, both simple and
compound, into a single compound field.

Use This Property For This Purpose

Attribute Name To set an attribute name for the point.

Symbol for Point To set a graphic symbol to represent the point. Choices include
triangles at 90 degree angles, circle, square, cross, pixel, diamond,
and star (shown above).

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Working with Compound Widgets

502 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

iPlanet UDS provides the following compound widgets:

Creating a Panel

A panel is a compound widget that allows you to display or manipulate a group of
widgets as a unit. Depending on its size policies, a panel has either a fixed
boundary or a flexible boundary that changes to accommodate all its child widgets.

You create a panel by selecting one or more widgets, and combining the widgets
into a panel, through the Panel tool on the toolbar or the Widget > Group Into
command. You can combine any combination of widgets into a panel, including
panels and other compound widgets.

Icon Compound Widget Definition

Panel A subform that organizes fields for collective program
action, such as data validation.

Tab Folder A set of tabbed pages, which the end user can examine one
at a time.

Grid Field A table to organize fields into rows and columns for
uniform display and portability.

Compound
Graphic

A group of graphic widgets only; contains no fields.

Viewport A scrollable field displaying a larger child field.

Array Field An array of widgets in a tabular format, like a spread
sheet, where the fields are the same from row to row, but
their data varies.

Working with Compound Widgets

Chapter 8 Working with Widgets 503

You can also create a panel by using the Panel icon on the widget palette. The Panel
icon on the widget palette creates an empty panel into which you can drag any
combination of widgets, including panels and other compound widgets.

You use panels to organize widgets into subforms, on which you can perform
functions apart from the rest of the form. In a data entry application, for example,
you might divide a form into several panels so that you could perform data
validation for the fields in each panel separately.

Setting Panel Properties
The Panel Properties dialog, shown in Figure 8-29, allows you to set the following
properties for a panel:

Use This Property For This Purpose

Attribute Name To set an attribute name for the panel.

Mapped Type To set the panel to map to a class. This is an optional setting; you
need not map a panel to a class. However, if you do map the panel to
a class, the named attributes of the widgets contained by the panel
must match the attribute names and types of the panel’s class.

Caption To specify the caption for the panel. The caption is displayed as part
of the panel’s upper border. When the panel is a tab page in a tab
folder, the Caption property for the panel sets the label used for the
tab. See “Creating a Tab Folder” on page 504 for information about
tab folders.

Note that the caption size can affect the size of the panel. If the
caption is longer than the current width of the panel and the panel’s
size policy is Natural, the panel will be resized to accommodate the
caption.

Message Number To set the message number for the panel’s caption. This property is
used for creating a multilingual window.

Set Number To specify the set number for the caption’s message number. If the
set number is unspecified, the default set number for the window is
used. This property is used for creating a multilingual window.

Margin If the height and width policy are Natural, use this to set the margin
between the panel boundaries and the panel’s child widgets.

Ignore Invisible
Children

If the height and width policy are Natural, this specifies whether or
not invisible fields in the panel are used to determine the panel size.
By default, invisible children are ignored.

Working with Compound Widgets

504 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 8-29 Panel Properties Dialog

Creating a Tab Folder

A tab folder is a widget that displays one or more pages with labeled tabs. The end
user views one tab page at a time by clicking on the tab for the page he wishes to
display. Typically, a tab folder provides a set of dialogs, each of which displays a
separate group of properties or settings.

Figure 8-30 illustrates a tab folder:

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Use This Property For This Purpose

Working with Compound Widgets

Chapter 8 Working with Widgets 505

Figure 8-30 Tab Folder

Tab folder widget In iPlanet UDS a tab folder is a compound widget that
consists of an array of panels. Each panel has a caption associated with it, and the
panel’s caption is used as the tab label. The contents of the panel provide the
contents of the tab page. When a panel is included in a tab folder widget, it is
referred to as a “tab page.” However, in the Window Workshop you can open the
panel’s properties dialog while it is in the tab folder and set any of the panel
properties as usual.

Figure 8-31 illustrates the tab folder components:

Figure 8-31 Tab Folder Components

Tab folders have two special properties that let you specify how the tabs are sized
and displayed: Header Style and Layout Policy.

tab

tab

tab

header

(panel)
page

Working with Compound Widgets

506 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Header Style property By default, when there are more tabs than can fit on the
tab header at one time, the tab folder provides a horizontal scrollbar to let the end
user view all the tabs. On Windows 95 and Windows NT 4.0/3.5.1, you have the
option of displaying multi-row tabs. The Multirow setting for the Header Style
property displays the tabs in multiple rows, which lets the end user view all the
tabs at once and provides the appearance of a file drawer. The Scrolling setting (the
default) for the Header Style property provides a horizontal scrollbar which the
end user can use to scroll through the tabs.

Figure 8-32 Header Style Property

Layout Policy property The Layout Policy property specifies whether the tabs
are packed or evenly spaced. The Packed setting (the default) creates tabs that are
sized individually to accommodate their labels. The Evenly Spaced setting creates
tabs with a uniform size—the tab size is determined by the longest label.

Figure 8-33 Layout Policy

Selecting the tab folder To set the properties on the tab folder, you must select
the tab folder widget. You can do this by clicking on the background of the tab
folder (click in the area to the right of the last tab) or by using Ctrl-Click to select
the parent of one of the tab pages (a panel).

Multi-row Scrolling

Evenly Packed
Spaced

Working with Compound Widgets

Chapter 8 Working with Widgets 507

There are two ways to create a tab folder in the Window Workshop:

• use the Widget > New > TabFolder command or New Tab Folder tool

When you use the Widget > New > TabFolder command or the Tab Folder tool
on the palette, iPlanet UDS creates a default tab folder, with three empty tab
pages. You can then design each of the tab pages, and add or remove tab pages
if desired.

• use the Widget > Group Into > Tab Folder command or Group into Tab Folder
tool

Before using the Widget > Group Into > Tab Folder command or Group into
Tab Folder tool, you must create the panels or other widgets you wish to
include in the tab folder. After grouping the widgets into a tab folder, you can
edit them as you wish.

Using the New > TabFolder Command

The New > TabFolder command creates a tab folder widget that contains three
empty tab pages. The tabs have the following default labels: Tab 1, Tab 2, and Tab
3.

After creating the tab folder, you can design each of the tab pages by adding
widgets to them as you would to any panel. The Window Workshop allows you to
select the tab page you wish to edit by clicking on its tab—clicking on its tab brings
the tab page to the top.

You can also add or delete tab pages, and reorder the pages as you wish. For
information about adding, deleting, and reordering tab pages, see “Editing the Tab
Folder” on page 510.

➤ To create a new tab folder

1. Choose the Widget > New > TabFolder command or click the New Tab Folder
tool.

2. On the form, draw a rectangle to indicate the tab folder’s size.

3. Design each of the tab pages by adding widgets to them. Use a grid field within
the panel to maintain portability.

Working with Compound Widgets

508 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Tab labels The label on an individual tab is determined by the Caption property
for the panel on the tab page. When you create a new tab folder, iPlanet UDS
provides default labels for each tab. To reset the default labels, you must use the
Caption property for the individual panels. See “Editing the Tab Folder” on
page 510 for information.

Tab properties By default the tabs for the tab folder are set with the following
properties:

• scrolling

If there are more tabs than can fit across the tab folder, iPlanet UDS provides a
horizontal scroll mechanism. On Windows 95 and Windows NT 4.0/3.51, you
can reset this property to provide multi-row tabs.

• packed

The Packed setting creates tabs that are sized individually to accommodate
their labels. You can reset this property to provide evenly spaced tabs. The
Evenly Spaced setting creates tabs with a uniform size—the tab size is
determined by the longest label.

Using the Group Into > TabFolder Command

The Group Into > TabFolder command lets you group existing panels, compound
widgets, and simple widgets into a tab folder. The Group Into > TabFolder
command creates tab pages from the selected widgets as follows:

• every panel becomes an individual tab page

• every compound widget is grouped into a new panel, which in turn, becomes
an individual tab page

• all simple widgets are grouped into single panel, which in turn, becomes a
single tab page

Working with Compound Widgets

Chapter 8 Working with Widgets 509

Page order The order of the tab pages in the tab folder is determined by the order
in which the widgets were originally added to the form. The first compound
widget is the first tab page, the second compound widget is the second tab page,
and so on. After creating the tab folder, you can reorder the tab pages as you wish
(see “Editing the Tab Folder” on page 510 for information).

Generally, you design the tab pages in the form of panels before giving the Group
Into > TabFolder command. Be sure to use grid fields within the panels to ensure
portability. If you wish to specify the tab label for each panel before giving the
Group Into command, you can do so by setting each panel’s Caption property on
the panel’s properties dialog.

➤ To create a tab folder

1. On your form, create the widgets you wish to use as or include on tab folder
pages.

2. Select all the widgets you want to include in the tab folder.

3. Choose the Widget > Group Into > TabFolder command.

After creating the tab folder, you can edit each of tab page by adding widgets,
deleting widgets, or changing widgets on it as you would on any panel. The
Window Workshop allows you to select the tab page you wish to edit by clicking
on its tab—clicking on its tab brings the tab page to the top.

You can also add or delete tab pages, and reorder the pages as you wish. For
information about adding, deleting, and reordering tab pages, see “Editing the Tab
Folder” on page 510. For information on setting the properties on the tab folder
itself, see “Setting Tab Folder Properties” on page 513.

Tab folder size The Group Into > TabFolder command uses a default size for the
tab folder. After creating the tab folder, you can resize it by using the widget’s
resize handles or by using the Widget > Size Policy... command.

Tab labels The label on an individual tab is determined by the Caption property
for the panel on the tab page. When you group widgets into a tab folder, iPlanet
UDS provides a default caption for each panel that does not already have one. To
reset the default captions, you must use the Caption property for the individual
panels. See “Editing the Tab Folder” below for information.

Working with Compound Widgets

510 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Tab properties By default, the tabs for the tab folder are set with the following
properties:

• scrolling

If there are more tabs than can fit across the tab folder, iPlanet UDS provides a
horizontal scroll mechanism. On Windows 95 and Windows NT 4.0/3.51, you
can reset this property to provide multi-row tabs.

• packed

The Packed setting creates tabs that are sized individually to accommodate
their labels. You can reset this property to provide evenly spaced tabs. The
Evenly Spaced setting creates tabs with a uniform size—the tab size is
determined by the longest label.

Editing the Tab Folder
You can use the Edit menu to copy, cut, delete, and paste the individual tab pages
within the tab folder the same way you use the Edit menu commands to
manipulate other widgets.

After creating a tab folder, you can make any of the following edits:

• add new tab pages

• delete tab pages

• reorder the pages in the tab folder

• change the labels on the tabs

Adding a tab page There are two different ways you can add a new tab page to a
tab folder: copy an existing tab folder page or create a new panel.

Copying an existing tab page is useful when the basic design of your tab pages is
similar. When you copy an existing tab page, everything on the tab page is
duplicated, including the tab label and all widgets on the panel. To copy an
existing tab page, you can use the Edit > Copy command or the Edit > Duplicate
command. Using the Edit > Copy command enables you to paste the new tab page
exactly where you want it. The Edit > Duplicate command always inserts the new
tab page at the beginning of the set.

Working with Compound Widgets

Chapter 8 Working with Widgets 511

➤ To copy an existing tab page with the Edit > Copy command

1. Select the tab page you wish to copy.

2. Choose the Edit > Copy command.

3. Choose the Edit > Paste command.

4. Indicate the position for the new tab page.

You can either select a tab page for the new page to precede or you can select a
tab page for the new tab page to follow. To indicate which tab page you want
your new tab page to precede, click on the left side of the tab. To indicate which
tab page you want your new tab page to follow, click on the right side of the
tab.

5. Edit the new tab page as desired.

Creating a new panel is useful when you want to design the tab page format from
scratch. To provide the label for the new tab page, you can set the panel’s Caption
property.

➤ To create a new tab page

1. Place the simple and compound widgets for the tab page directly on the form.

2. Choose the Widget > Group Into > Panel command to group the widgets into a
panel.

3. Choose the Edit > Cut command.

4. Choose the Edit > Paste command.

5. Indicate the position for the new tab page.

You can either select a tab page for the new page to precede or you can select a
tab page for the new tab page to follow. To indicate which tab page you want
your new tab page to precede, click on the left side of the tab. To indicate which
tab page you want your new tab page to follow, click on the right side of the
tab.

The Header Style property (described under “Setting Tab Folder Properties” on
page 513) lets you control how the user views the tabs, with scrolling or in multiple
rows. However, we strongly recommend that you limit the number of tabs so that
all the tabs are visible without using scrolling or multiple rows.

Deleting a tab page To delete a tab page, you simply remove the panel from the
tab folder using the Edit > Delete command.

Working with Compound Widgets

512 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To delete a tab page

1. Click the tab for the page you wish to delete.

Clicking the tab brings the selected page to the top of the tab folder.

2. Select the tab page you wish to delete by selecting its panel.

3. Choose the Edit > Delete command.

If you wish to remove the page from the tab folder but save it for use elsewhere,
you can use the Edit > Cut command, and then paste the panel wherever you want
it.

Reordering tab pages To reorder the tab pages in a tab folder, you must use the
Edit > Cut and Paste commands. Use the Cut command to remove the tab page you
wish to move, and use the Paste command to paste the tab page into the correct
position.

➤ To move a tab page

1. Select the tab page you wish to move.

2. Choose the Edit > Cut command.

3. Choose the Edit > Paste command.

4. Indicate the new position for the tab page.

You can either select a tab page for the moved page to precede or you can select
a tab page for the moved tab page to follow. To indicate which tab page you
want your moved tab page to precede, click on the right side of the tab. To
indicate which tab page you want your moved tab page to follow, click on the
left side of the tab.

Editing the tab label To edit a tab label, you must reset the Caption property for
the top-most panel.

➤ To edit a tab label

1. Double-click the panel, or select the panel and choose the Widget >
Properties... command.

2. On the Panel Properties dialog, enter the tab label in the Caption field.

Working with Compound Widgets

Chapter 8 Working with Widgets 513

Setting Tab Folder Properties
The Tab Folder properties dialog, shown in Figure 8-34, allows you to set the
following properties for a tab folder:

Figure 8-34 Tab Folder Properties Dialog

Use This Property For This Purpose

Attribute Name To set an attribute name for the tab folder.

Mapped Type To set the tab folder to map to a class. This is an optional setting; you
need not map a tab folder to a class. However, if you do map the tab
folder to a class, the named attributes of the widgets contained by the
tab folder must match the attribute names and types of the tab folder’s
class.

Header Style To specify how the tabs are displayed when there are more tabs than
can fit on one line across the top of the widget, Scrolling or Multi-row.

Layout Policy To specify how the size of the tabs is determined, Evenly Spaced or
Packed.

Help Text To open the Help Text dialog.

Size Policy To open the Size Policy dialog.

Working with Compound Widgets

514 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Creating an Array Field
An array field is compound field that displays an array of widgets in a tabular
format, like a spread sheet. In an array field, widgets are the same from row to row,
but their data varies. The array field includes tabular data, optional column titles,
and an optional scrollbar.

You create an array field by combining a group of widgets into an array field. Each
widget in the group becomes a template field for a column in the array field. The
array field initially consists of three identical rows. A row consists of one field from
each column in the array field.

Within an array field column, information can vary from row to row, but
formatting, based on a column’s template field, remains uniform.

Let’s say that you create an array field from a text field, a data field, and a picture
field. You’ll get an array field of three columns and three rows. Each row consists
of a text field, a data field, and a picture graphic, based on its template fields. When
you create new rows, they too will consist of these widgets. From row to row, the
widgets that map to data—text fields and data fields—can have different values,
while the picture graphic, a static widget which does not map to data, remains
constant.

Array field components An array field consists of five components. Each
component has its own properties dialog, which you can open by selecting that
component. Figure 8-35 illustrates the components of an array field.

Figure 8-35 Array Field Components

Column titles

Array field body

Array field columns

Working with Compound Widgets

Chapter 8 Working with Widgets 515

The following table describes how to select each of the array field components.

Modifying an Array Field
After creating an array field, you may wish to add or delete columns, or move
existing columns.

Adding a column To add a new column, you can either create a new widget and
drop it on top of the array field, or you can cut an existing widget from the form
and then paste it on top of the array field.

➤ To add a new column to the array field

1. On the widget palette, click the icon for the widget type you wish to add to the
array field.

2. Position the cursor over the array field and click to drop the new widget on top
of the array field. This will automatically add a column to the array field.

Deleting a column To delete a column from the array field, select the column
you wish to delete and then choose the Edit > Delete command. iPlanet UDS
automatically adjusts the other columns in the array field.

Moving a column To move a column in an array field, select the column you
wish to move and drag it into its new position. iPlanet UDS automatically adjusts
the other columns in the array field.

Array Field Component How to Select It

Single column Click on any widget in the column.

Single column title Click on the individual column title.

Column titles (a grid
field)

Lasso the titles, or click on an individual column title and then
select its parent.

Array field body (a
grid field)

Lasso the body of the array field, or select an individual column
and then select its parent.

Array field (complete) Lasso the entire array field, click on the background of the array
field, or select the parent of the body or title grid fields.

Working with Compound Widgets

516 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Setting Array Field Properties
The Array Field Properties dialog, shown in Figure 8-36, allows you to set the
following properties for an array field:

Use This Property For This Purpose

Attribute Name To set an attribute name for the array field.

Mapped Type The type of array to which the array field maps. If you map the array
field to a class, the named attributes of the widgets contained by the
array field must match the attribute names and types of the array’s
class.

Caption To specify the caption for the array field. The caption is displayed as
part of the array field’s upper border.

Message Number To set the message number for the array field’s caption. This
property is used for creating a multilingual window.

Set Number To specify the set number for the caption’s message number. If the set
number is unspecified, the default set number for the window is
used. This property is used for creating a multilingual window.

Allows Append To set the array field to allow the end user to automatically add rows.

Has Scrollbar To give the array field a vertical scrollbar.

Has Column
Titles

To give titles to array field columns.

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Working with Compound Widgets

Chapter 8 Working with Widgets 517

Figure 8-36 Array Field Properties Dialog

Creating a Grid Field

A grid field is a compound field that arranges its component fields in rows and
columns. This is useful for aligning widgets, either for form design or for uniform
display across different window systems (geometry management). See the iPlanet
UDS Programming Guide for a discussion of using grid fields to create a portable
user interface.

You create a grid field by creating the widgets to be contained by the grid field and
then “grouping” the widgets into a single grid field. The grid field organizes the
child widgets into rows and columns of cells.

Field size policies The size policies of the child fields within the grid field affect
their relationship to the grid field size. If a field in a grid field has a size policy of
Parent, iPlanet UDS uses the grid field cell size to determine the field’s height or
width. When the grid field changes size, the height or width of the child field will
automatically be resized to fit the cell. See “Size Policies” on page 439 for
information.

Working with Compound Widgets

518 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Grid field partnerships You can link grid fields together in row and column
partnerships, so that each grid field row or column sizes itself with the rows or
columns of the other grid fields in the partnership. To link grid fields in a row or
column partnership, you use the Arrange > GridFields Into Column Partnership
and GridFields Into Row Partnership commands.

Modifying a Grid Field
After creating a grid field, you may wish to add or delete widgets, or move existing
widgets.

Adding a widget To add a new widget, you can either create a new widget and
drop it on top of the grid field, or you can cut an existing widget from the form and
then paste it on top of the grid field.

➤ To add a new widget to the grid field

1. On the widget palette, click the icon for the widget type you wish to add to the
grid field.

2. Position the cursor over the grid field and click to drop the new widget on top
of the grid field.

iPlanet UDS automatically adjusts the other widgets in the grid field. If
necessary, iPlanet UDS automatically adds a column to the grid field.

Deleting a widget To delete a widget from the grid field, select the widget you
wish to delete and then choose the Edit > Delete command.

Moving a widget To move a widget in a grid field, select the widget you wish to
move and drag it into its new position. iPlanet UDS automatically adjusts the other
widgets in the grid field.

Working with Compound Widgets

Chapter 8 Working with Widgets 519

Setting Grid Field Properties
The Grid Field Properties dialog, shown in Figure 8-37, allows you to set the
following properties for a grid field:

Use This Property For This Purpose

Attribute Name To set an attribute name for the grid field.

Mapped Type The class to which the grid field maps. This is an optional setting; you
need not map a grid field to a class. However, if you do map the grid
field to a class, the named attributes of the widgets contained by the
grid field must match the attribute names and types of the grid field’s
class.

Caption To specify the caption for the grid field. The caption is displayed as
part of the grid field’s upper border.

Note that the caption size can affect the size of the grid field. If the
caption is longer than the current width of the grid field, the grid field
will be resized to accommodate the caption.

Message
Number

To set the message number for the grid field’s caption. This property
is used for creating a multilingual window.

Set Number To specify the set number for the caption’s message number. If the set
number is unspecified, the default set number for the window is used.
This property is used for creating a multilingual window.

Default Cell
Margins

To set the margins between grid field cell boundaries and cell contents
for the grid field as a whole. (You can set the increments used for the
margin steppers to 1, 10, or 100 mils.)

Default Cell
Gravity

To set the cell gravity for the grid field as a whole. Cell gravity
determines how a cell’s contents are aligned within the cell.

Ignore Invisible
Children

To specify whether or not the grid field leaves row and column space
for cells containing only invisible widgets.

Insert Policy To set the grid field’s policy for accepting or rejecting end user
attempts to insert widgets into occupied cells. Policies are to expand
the grid field to accommodate new widgets, replace affected widgets,
or reject the insertion.

Collapse on
Delete

To specify whether the grid field deletes rows and columns when
their contents are deleted, or to leave empty rows and columns.

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field. See below for information.

Working with Compound Widgets

520 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 8-37 Grid Field Properties Dialog

About Grid Field Sizing and Alignment

Size Policy dialog The grid field’s Size Policy dialog allows you to set the row
and column alignment, and the row and column justify weight for the grid field.

Figure 8-38 Grid Field Size Properties Dialog

Working with Compound Widgets

Chapter 8 Working with Widgets 521

Row alignment By default, when the grid field is enlarged vertically, iPlanet
UDS justifies the rows in the grid field, adding extra space evenly above, below,
and between the rows. By selecting another row alignment option, you can specify
that all space is added only above or below the rows, or to both above and below
(though not between).

Row justify weight When the row alignment for the grid field is Justify, the
amount of space added to each row is based on each row’s justify weight. The
justify weight for a grid field row determines what percentage of extra space is
allocated to the particular row when the grid field that contains the row is enlarged
vertically. The justify weight takes effect only when the Row Alignment option for
the grid field is set to Justify and the Height Policy properties for the fields in the
row are not set to Natural.

By default, the justify weight for all rows is zero. When all rows have a zero justify
weight, any extra vertical space is distributed evenly between the rows. However,
if you want certain rows in the grid field to get a larger percentage of the space, you
can specify the distribution explicitly. For example, in a grid field with three rows,
you could assign one row to get 80 percent of the space, while the other two get
only 10 percent.

You set the row justify weight for the grid field by using the Size Policy command.
On the Size Policy dialog for the grid field, select the row whose row justify weight
you wish to set and then enter a number to represent the percentage of space that
row should receive.

You can use any numbers you like to represent percentages. The weights are
converted by adding them up and calculating a percentage based on the total
(normalization). For example, specifying row justify weights for three rows of 1, 1,
and 2 is the same as 25 percent, 25 percent, and 50 percent.

Note that if you do not set the justify weight for all of the rows, the rows whose
justify weight you do not set keep the default justify weight of zero and so get zero
percent of the extra space.

Column alignment The column alignment for the grid field specifies how extra
space is added to the grid field when the grid field is enlarged horizontally. By
default, iPlanet UDS justifies the columns in the grid field, adding extra space
evenly to the left, right, and between the columns. By selecting another column
alignment option, you can specify that all space is added only to the left or right of
the columns, or to both to the right and left (though not between).

Working with Compound Widgets

522 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Column justify weight When the column alignment for a column is Justify, the
amount of space added to each column is based on each column’s justify weight.
The justify weight for a grid field column determines what percentage of extra
space is allocated to the particular column when the grid field that contains the
column is enlarged horizontally. The justify weight takes effect only when the
Column Alignment property for the grid field is set to Justify and the Width Policy
properties for the fields are not set to Natural.

By default, the justify weight for all columns is zero. When all columns have a zero
justify weight, any extra horizontal space is distributed evenly between the
columns. However, if you want certain columns in the grid field to get a larger
percentage of the space, you can specify the distribution explicitly. This works
exactly the same way as the row justify weight described above.

You set the column justify weight for the grid field by using the Size Policy
command. On the Size Policy dialog for the grid field, select the column whose
column justify weight you wish to set and then enter a number to represent the
percentage of space that column should receive.

Creating a Compound Graphic

A compound graphic is a compound field that contains any number of graphic
fields or compound graphics. The purpose of a compound graphic is to allow you
to combine a set of graphics into a single “picture” that you can display or
manipulate as a unit. The main difference between a compound graphic and a
panel is that a compound graphic can contain only graphic widgets while a panel
can contain any kind of widgets. Also, you can use the Style > Transparent
command to make the entire compound graphic transparent.

The compound graphic field provides a flexible boundary that expands or shrinks
when you move its components.

Working with Compound Widgets

Chapter 8 Working with Widgets 523

Setting Compound Graphic Properties
The Compound Graphic Properties dialog, shown in Figure 8-39, allows you to set
the following properties for a compound graphic:

Figure 8-39 Compound Graphic Properties Dialog

Use This Property For This Purpose

Attribute Name To set an attribute name for the compound graphic.

Caption To specify the caption for the compound graphic. The caption is
displayed as part of the compound graphic’s upper border.

Message Number To set the message number for the compound field’s caption. This
property is used for creating a multilingual window.

Set Number To specify the set number for the caption’s message number. If the
set number is unspecified, the default set number for the window is
used. This property is used for creating a multilingual window.

Margin If the height and width policies for the compound graphic are
Natural, use this to set the margin between the compound field
boundaries and its child graphic widgets.

Ignore Invisible
Children

If the size policies for the field are Natural, use this property to
specify whether or not invisible fields in the compound graphic are
used to determine the compound graphic size. By default, invisible
children are ignored.

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Working with Compound Widgets

524 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Creating a Viewport

A viewport is a compound field that provides a window onto another, larger
widget. The end user can scroll a viewport to bring different parts of the viewport’s
child widget into view. This allows you to add a widget to a form that would not
otherwise fit in a specified area.

Normally, you use a viewport to display large picture fields or compound fields. If
you use a viewport to display a compound field, remember that the viewport can
contain only one widget. Therefore, you should create the compound field first, for
example, by grouping a set of simple fields into a panel. After you create the
compound field, you can then group the compound field into a viewport.

Working with Compound Widgets

Chapter 8 Working with Widgets 525

Setting Viewport Properties
The Viewport Properties dialog, shown in Figure 8-40, allows you to set the
following properties for a viewport:

Figure 8-40 Viewport Properties Dialog

Use This Property For This Purpose

Attribute Name To set an attribute name for the viewport.

Has Horizontal
Scrollbar

To specify whether or not the viewport has a horizontal scrollbar. The
property is turned on by default.

Has Vertical
Scrollbar

To specify whether or not the viewport has a vertical scrollbar. The
property is turned on by default.

Help Text To open the Help Text dialog for the field.

Size Policy To open the Size Policy dialog for the field.

Working with Compound Widgets

526 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

527

Chapter 9

Using the Menu Workshop

This chapter provides background information about menu bars and popup
menus, and describes how to use the Menu Workshop.

In this chapter, you will learn how to:

• examine a menu bar definition

• create a menu bar

• edit a menu bar

• import and export a menu bar

• test a menu bar

• create popup menus

• implement Help commands on your menu bar

• set Menu Workshop preferences

About Menus
A menu bar is a set of pull-down menus available at the top of a window. To create
the menu bar for your window, you use menu widgets. The simple menu widgets
are controls that let the end user give commands or make selections. The
compound menu widget, submenu, lets you create pull-down and slide-off menus.

About Menus

528 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The following table describes the menu widgets. Figure 9-1 shows some menu
widgets as they are used in the Window Workshop.

Figure 9-1 Menu Widgets

The following sections provide information about menu widgets in general. This is
followed by details about the individual menu widgets.

Popup menus The Menu Workshop also allows you to create popup menus. A
popup menu is an independent menu associated with a specific widget on the
window. The popup menu is displayed next to the widget when the end user uses
the appropriate key combination. See “About Popup Menus” on page 540 for
background information about popup menus.

Tool Menu Widget Description

menu
command

A simple control that displays a command.

menu list A simple control that displays a set of options from which the end
user can make one selection.

menu toggle A simple control that displays a toggle which the end user can
switch on or off.

menu
separator

A horizontal line used to separate items on a submenu.

submenu A compound widget that provides a pull-down or slide off menu.

Menu bar

Submenu

Menu items

Menu items

Menu separator

(menu commands)
(menu lists)

About Menus

Chapter 9 Using the Menu Workshop 529

OLE menu groups When your window includes one or more OLE fields
(described under “Creating an OLE Field” on page 475, the Menu Workshop
allows you to create an OLE menu group. The OLE menu group enables you to
merge the submenus belonging to the OLE server application with the TOOL
submenus. See “About OLE Menu Groups” on page 543 for information.

Attribute Names
Like a form widget, every menu widget has an optional name. If you plan to
manipulate the menu widget from your TOOL code or reference the data that it
displays, you should name the widget.

Widget attribute and data attribute The widget name serves two functions. First,
the name identifies the attribute that points to the widget. To manipulate the
widget from your TOOL code, you must use the widget name enclosed in brackets.
Second, for the two menu widgets that display data, menu toggle and menu list,
the name identifies the attribute that contains the data. To manipulate the data
from your TOOL code, you must use the widget name without brackets.

Using an existing name For menu toggles and menu lists, if the name you give is
the same as an existing attribute in the window class and the data type of the
attribute is appropriate for the widget, iPlanet UDS uses the attribute for the
widget’s data.

Using a new name If the name you give is a new name, iPlanet UDS adds a new
attribute to the class with the mapping data type you specify on the properties
panel (described under “Setting Widget Properties” on page 553).

Mapped type For the two widgets that display data, you can choose the data
type of the attribute that contains the data. The following are the data types
available for each of the widgets:

See “Using iPlanet UDS Data Types” on page 132 for information on these data
types.

Menu Widget Attribute Data Types

menu toggle boolean, BooleanData

menu list string, TextData, TextNullable, integer, IntegerData, IntegerNullable

About Menus

530 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Menu Widget Events
Except for menu separators, every simple menu widget has one or more events that
the end user posts by clicking on the widget. For example, a menu command has
an Activate event, which indicates that the end user selected the command.

You use the menu events in your TOOL code to provide processing in response to
an end user’s actions. For example, your program can respond to the Activate
event on a Quit command by prompting the end user before closing the window.
The following example illustrates:

The class for a widget determines the types of events that the widget can produce.
For example, the MenuList class provides an AfterValueChange event, which is
posted when the end user selects a new item from the list. On the other hand, the
MenuCommand class provides an Activate event, which is posted when the end
user activates the command. The state of the widget (described below) also
determines whether or not the event will be posted.

See the Display Library online Help for complete information about the events
defined for each of the widgets. See the TOOL Reference Guide for information about
handing events in your TOOL code.

Status Text for Menu Widgets
You can provide status-line help for individual menu items that is displayed on the
Windows and Motif window systems. Status-line help for a menu item is displayed
when the mouse pauses over the menu item and status-line help for the window is
turned on.

Turning on status-line help To turn on status-line help for the window, you
must set up a status line widget on your window and map it to the StatusText
attribute of the Window object.

when <quit_menu>.Activate do
if self.Window.QuestionDialog
(messageText = ’Really?’,
 buttonSet = BS_OKCANCEL,
 defaultButton = BV_OK) = BV_OK then

exit;
end if;

About Menus

Chapter 9 Using the Menu Workshop 531

➤ To provide status-line help

1. Create a status line field on the window where you wish to display status line
help.

The status line field can be any field that display TextData and can be at any
location you wish.

2. Map the status line field to a TextData attribute.

3. In your code, set the value of Window.StatusText to the TextData attribute that
is mapped to your status line field.

4. Each time the mouse moves onto a menu item, iPlanet UDS automatically sets
the value of the WindowSystem.StatusText attribute to the status text value
you specified for the menu item with the Status Text command in the Menu
Workshop. The window is automatically refreshed, and the new value of the
StatusText attribute is displayed in your window’s status line field.

If Window.StatusText is NIL, there is no status line help displayed for the window.

See “Setting Status Line Help Text” on page 554 for information about using the
Menu Workshop to specify status-line help for individual menu widgets. See
iPlanet UDS Programming Guide for general information about implementing
status-line help for a window.

Using States for Menu Widgets
Like a form widget, a menu widget is always in a particular state. The state of the
menu widget determines how the user can interact with it. For example, when a
menu list is set to the Enabled state, the end user can select an item from the list.
However, when the menu list is set to the Disabled state, the field is visible but the
end user cannot interact with it at all.

States and events The state of the menu widget also determines which events
will be posted. For example, a menu command that is set to a Disabled state will
not post an Activate event when the end user clicks on the command.

NOTE This feature is available on Windows and Motif only. On all other
platforms, the status text associated with a menu item is ignored.

About Menus

532 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The widget states allow you to control which menu items are available to the end
user at a given time. The menu widget states are:

States and usage Like form widgets, the usage of the window determines which
state is in effect for a widget. When you create a widget in the Menu Workshop,
iPlanet UDS uses a default state of Enabled for the widget for each window usage.
However, if you want one of the widgets to be Disabled or Invisible, you can
change the widget state for a particular usage. Changing the widget state for a
usage determines what the state will be for the widget when that window usage is
in effect.

You set the state for an individual menu widget by using the Item > Starting State
command in conjunction with the Item > For Usage command.

Changing widget states from TOOL You can also change the widget state from
your TOOL code. The State attribute of the MenuWidget class lets you specify the
current state of the widget, regardless of what usage is in effect for the window.
This is often the simplest and most effective way of changing the states of your
widgets. See the Display Library online Help for information on the State attribute.

About Internationalizing Menus
The section “About Internationalizing Windows” on page 382 described how you
can use the Window Workshop to create a multilingual window. All menu items
except menu separators and the prefabricated commands have Msg Number and
Set properties in the Menu Workshop that you can use to specify a message
number and optional set number for the individual widget.

Message set used for menu items By default, all messages for a window are
loaded from the same message set, which you specify using the Default Set
Number property on the Window Properties dialog (see “Setting Window
Properties” on page 396). If you do not specify a value for an individual menu
item’s set number, iPlanet UDS will use the default set number for the window. If
you do specify a set number for the individual menu item, that set will be used.

State Description

Enabled Visible and selectable.

Disabled Visible but grayed. Not selectable.

Invisible Not displayed. Not selectable.

About Menus

Chapter 9 Using the Menu Workshop 533

Multilingual Help You can also create multilingual help for individual menu
items by using the Message Number and Set Number properties on the widget’s
Help Properties dialog.

About Submenus

A submenu is a group of menu items displayed either as a pull-down or a slide-off
menu. Your menu bar consists of a set of submenus. When you create a submenu in
the Menu Workshop, you give it a title and then provide the list of menu items to
appear on the submenu.

Note that you can construct the submenu or add items to it dynamically from your
TOOL code. For information on this, see the Submenu class in the Display Library
online Help.

Pull-down menus A pull-down menu is a set of menu items, which the end user
can display by pulling down the menu from its title on the menu bar. In iPlanet
UDS, if you add a submenu to your menu hierarchy at the top level, it becomes a
pull-down menu on the menu bar.

Slide-off menus A slide-off menu is a submenu that is displayed either on a
pull-down menu or another slide-off menu. The end user can display the items on
the slide-off menu by sliding to the right of its title. If you add a submenu to your
menu hierarchy at any level other than the first, it becomes a slide-off menu.
Slide-off menus can be nested to any level.

Submenu type When you create a new submenu, you have the option of
specifying the submenu type. The submenu type is either Custom, which means
that you provide the submenu title, or one of three prefabricated submenus.

Custom submenu The default type for a submenu is Custom. When you create a
custom submenu, you must specify the label that is displayed on the menu.

Prefabricated submenus The prefabricated iPlanet UDS submenus are provided
to let you ensure portability across window systems. When you include a
prefabricated submenu on your menu bar, iPlanet UDS ensures that the
appearance of the submenu (that is, its label and position on the menu bar) is
consistent with the standard for each window system on which your application
runs. For example, if you include the prefabricated Help submenu, it will appear in
the correct position on the menu bar.

About Menus

534 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The three prefabricated submenus are:

Note that these prefabricated submenus do not contain commands; you must
provide the commands yourself. See “About Menu Commands” on page 535 for
information on prefabricated commands you can use on the File, Edit, and Help
menus.

Events for submenus A submenu has two events: ChildActivate and
ChildAfterValueChange. You use these child events primarily to add items to the
submenu dynamically from your TOOL code. In order to handle events on a menu
item that was added to the menu dynamically, you must wait for the ChildActivate
and ChildAfterValueChange events posted on its parent submenu. See the Display
Library online Help for information about these events.

The following table briefly describes the submenu properties:

Submenu Description

File Uses the window system’s standard File menu title and position on the menu
bar.

Edit Uses the window system’s standard Edit menu title and position on the menu
bar.

Help Uses the window system’s standard Help menu title and position on the
menu bar. See “Using the Prefabricated Help Commands” on page 561 for
further information.

Submenu Property Description

Attribute Name The attribute name for the submenu must be a new name. A
submenu does not map to a data attribute.

Submenu Type Either a custom submenu or one of a set of prefabricated submenus.

Label Text The menu title that is displayed either on the menu bar (for
pull-down menus) or on the menu (for slide-off menus).

Msg Number Specifies the message number for the widget, which is used for
providing a multilingual menu.

Set Specifies the set number for the widget’s message number.

About Menus

Chapter 9 Using the Menu Workshop 535

About Menu Commands

A menu command is a single command that the end user can choose to give an
instruction to the application. Normally, you provide the code that is executed
when the user activates the command. However, for your convenience, iPlanet
UDS provides a set of prefabricated commands that you can include on your menu
bar if it is appropriate.

Command type When you create a new menu command, you have the option of
specifying the command type. The command type is either Custom, which means
that you provide the code that is executed when the end user gives the command,
or one of the seven prefabricated commands.

Custom commands The default command type for a menu command is Custom.
When you create a custom menu command, you must specify the label that is
displayed on the menu. Then, in your program, you must provide the code that is
executed when the end user chooses the command. For example, for a custom
“Properties” command, you specify a label of “Properties” and then provide the
code to display the properties dialog and change property settings.

Prefabricated commands iPlanet UDS provides prefabricated commands to let
you ensure portability across window systems. When you include a prefabricated
command on a menu, iPlanet UDS ensures that the appearance of the command
(that is, the text and shortcut key) and, in some cases, its behavior, is consistent
with the standard for each window system on which your application runs. For
international applications, prefabricated commands automatically use the
translated command provided by the current operating system.

About Menus

536 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The prefabricated commands fall into four categories:

Note that if you use an event statement to provide event handling code for any of
the prefabricated commands, your code will override the default behavior that
iPlanet UDS provides for these commands.

Printing commands The prefabricated Print command prints the current
window. The iPlanet UDS Print command uses the RenderAsImage method in the
FieldWidget class to convert the window into image data, and then sends the
image to the printer specified by the Print Setup or Page Setup command. The
image that is printed includes only those parts of the window that are visible on the
screen.

The prefabricated Print Setup command displays the window system’s Print Setup
or Page Setup dialog, where the end user can specify basic printing options. When
the end user clicks the OK button on the print dialog, the updated print option
information is reflected in the DefaultPrintOptions attribute for the window
system. You can then use this DefaultPrintOptions object whenever you need to

Categories Description

Edit menu
commands

Cut, Copy, Paste, Delete, Undo, Redo, Find, Find Next, Replace, Replace
Next, and Select All commands that look and behave according to your
window system standards.

The automatic behavior for the Cut, Copy, Paste, Delete, and Select All
commands for subclasses of CharacterField (text field, text edit field, data
field, and fillin field). The automatic behavior for the Undo and Redo
commands take effect only for the text edit field.

Print
commands

A Print command that prints the current window and a Print Setup or Page
Setup command that opens the window system’s print or page setup
dialog. These commands are described in further detail below.

Help
commands

Help Contents and Help Search commands, which automatically access
the default Help file. A Help on Help command, which automatically
accesses the appropriate Windows Help screen. An About command,
which has no default behavior. See “Using the Prefabricated Help
Commands” on page 561 for more information.

File menu
commands

Close and Exit commands for inclusion on a File menu. These provide the
window system standard name and shortcut key. However, you must
implement the behavior of the command.

About Menus

Chapter 9 Using the Menu Workshop 537

specify or set print options. See DefaultPrintOptions attribute of the
WindowSystem class in the Display Library online Help for information about
setting print options. See the PrintDocument class in the Display Library online
Help for general information about printing.

Text label for custom command For custom commands, you specify the text that
is displayed on the menu. If you wish, you can also specify a single mnemonic
character that can be used to activate the command. To do this, insert an
ampersand character before the appropriate character in the label. For example, if
you specify “&Save” as the label, the “S” will be the mnemonic character. On
window systems that support mnemonic characters, the mnemonic character will
be underlined. On window systems that do not support mnemonic characters, the
mnemonic character will simply be ignored.

Shortcut key for custom command For a custom menu command, you can
specify a shortcut key that the end user can enter to activate the command. The
drop list on the property panel lets you choose either a standard window system
shortcut key or key combination.

Is Input Finalized Normally, when the end user chooses a menu command, the
data validation events for the field that the end user has just left will be
automatically posted. For example, if the end user chooses a Close command after
entering data into a text field, the AfterValueChange events for the text field are
posted. This ensures that the data validation code for the text field is executed
before the window is closed.

However, under certain circumstances, you may wish to prevent automatic data
validation. For example, if you include a Cancel command that lets the user close
the window without making any changes, you do not want the data validation
code for any fields on the window to be executed. In this case, iPlanet UDS lets you
turn off the Is Input Finalized option for the menu command. When this option is
turned off, any AfterValueChange events for the previous field will be ignored.

The following table briefly describes the menu command properties:

Menu Command Property Description

Attribute Name The attribute name for the menu command must be a unique
name. A menu command does not map to a data attribute.

Command Type Either a custom command or one of a set of standard
commands.

Is Input Finalized Turning this off suppresses AfterValueChange events for the
field the user interacted with before activating the menu
command.

About Menus

538 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

About Menu Toggles

A menu toggle displays a label along with a toggle or a check box that the end user
can switch on or off. The Test Window menu item in the Window Workshop is an
example of a menu toggle.

Data for a menu toggle The mapped type for a toggle’s data attribute can be
either a simple boolean type or the BooleanData class. These data types represent
the current setting of the menu toggle as either TRUE (for on) or FALSE (for off).

Events for menu toggles A menu toggle has two events: Activate and
AfterValueChange. Essentially, they both mean the same thing. The Activate event
is posted whenever the user clicks the toggle. Since this always changes the toggle’s
value, the AfterValueChange is also posted. You can use either event in your event
handling code.

The following table briefly describes the menu toggle properties:

Label Text The text that appears on the menu for this command button.

Short Cut For a custom command, a key or key combination the end user
can type to activate the menu command.

Msg Number Specifies the message number for the widget, which is used for
providing a multilingual menu.

Set Specifies the set number for the widget’s message number.

Menu List Property Description

Attribute Name The name of the toggle and the name of the attribute that contains
the current value of the toggle.

Label Text The text displayed on the menu next to the toggle.

Mapped Type The data type of the attribute that contains the current value of the
toggle: boolean or BooleanData.

Msg Number Specifies the message number for the widget, which is used for
providing a multilingual menu.

Set Specifies the set number for the widget’s message number.

Menu Command Property Description

About Menus

Chapter 9 Using the Menu Workshop 539

About Menu Lists

A menu list displays a fixed set of choices from which the end user can make one
selection. When you create the menu list, you provide the list of string values that
are displayed to the end user.

If you wish, you can reference these string values directly in your TOOL code.
However, you also have the option of providing a list of integer values to represent
the strings. You can then use the integer value in your code to refer to the
corresponding string. The integers can be arbitrary numbers, and do not need to be
in sequential order.

Note that you can construct the menu list or add items to it dynamically from your
TOOL code. For information on this, see the Display Library online Help.

Mapped type for menu lists The mapped type of the menu list’s data attribute
determines how you can refer to the list elements from your code. If you use the
string, TextData, or TextNullable type, you must refer to the list element by
referencing the string or TextData object for the label text. If you use the integer,
IntegerData, or IntegerNullable type, you must use the integer value in the List
Item Value property.

Events for menu lists Menu lists have two events that the end user can cause to
be posted: Activate and AfterValueChange. The Activate event is posted every
time the user clicks a menu item, even if he or she clicks the list item that is
currently selected. The AfterValueChange event is posted only when the end user
selects a different item on the list. Depending on your particular needs, you should
use whichever event is most appropriate.

The following table briefly describes the menu list properties:

Menu List Property Description

Attribute name The name of the menu list and the name of the attribute that
contains the current value of the menu list. This must be the same
for all the individual elements on the list.

Label Text The text displayed by the individual menu item on the list.

Mapped type The data type of the attribute that contains the current value of the
menu list: string, TextData, TextNullable, integer, IntegerData, or
IntegerNullable.

About Menus

540 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

About Menu Separators

A menu separator is a horizontal line that you can use to divide menu items into
separate sections.

The following table briefly describes the menu separator properties:

About Popup Menus
A popup menu is an independent menu associated with a specific widget on the
window. The popup menu is displayed next to the widget when the end user uses
the appropriate key combination. Figure 9-2 illustrates a popup menu:

Figure 9-2 Popup Menu

List Item Value For lists with a numeric mapped type, the list item value is the
integer value for the individual list item.

Msg Number Specifies the message number for the widget, which is used for
providing a multilingual menu.

Set Specifies the set number for the widget’s message number.

Menu Separator Property Description

Attribute Name The attribute name for the separator must be a new name. A
separator does not map to a data attribute.

Menu List Property Description

About Menus

Chapter 9 Using the Menu Workshop 541

Activating a popup menu The key combination needed to activate a popup
menu depends on the particular window system. To activate a popup menu:

iPlanet UDS uses the position of the cursor at the time the popup key combination
is entered to determine which popup menu to display. If the widget over which the
cursor is positioned has a popup menu assigned to it, iPlanet UDS displays the
current widget’s popup menu. If the current widget does not have a popup menu
assigned to, iPlanet UDS displays its parent’s popup menu. If the parent widget
does not have a popup menu assigned to it, iPlanet UDS displays the popup menu
for the parent’s parent, and so on. If the top-level container for the widget, the
Window object, does not have a popup menu, nothing happens.

Choosing a menu item from a popup Once the popup menu is displayed, the
end user can choose a menu item from it the same way he chooses a menu item
from a menu on the menu bar.

Closing a popup menu The end user can close the popup menu any time with
the appropriate action. To dismiss the popup menu:

In iPlanet UDS, a popup menu is a submenu, just like a menu on the menu bar.
Like any pull-down or slide-off menu, a popup menu can contain any number of
menu toggles, menu lists, slide-off menus, and menu separators. The only
difference between a popup menu and a menu-bar menu is that the menu-bar
menu automatically appears on the menu bar while the popup menu appears on
the window when the end user activates it.

Window System Key Combination to Activate Popup Menu

Windows Use mouse outer button, or select the field and use Shift F10. The outer
mouse button is the right-most button on a right-handed mouse and the
left-most button on a left-handed mouse.

Motif Use mouse outer button, or select the field and use Shift F10. The outer
mouse button is the right-most button on a right-handed mouse and the
left-most button on a left-handed mouse.

Window System Key Combination to Dismiss Popup Menu

Windows Click outside the menu or press Esc key.

Motif Click outside the menu or press Esc key.

About Menus

542 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Creating a popup You create the popup menu using the Menu Workshop the
same way you create any submenu. Each time you add a new submenu to the
menu bar, you specify whether it is a menu-bar menu, whether it is a popup menu,
or whether it is both a menu-bar menu and a popup menu. A submenu that is both
a menu-bar menu and a popup menu appears as a standard menu on the menu bar
and, when it is activated, as a popup menu next to the widget to which it is
assigned. See “Creating Popup Menus” on page 558 for details about using the
Menu Workshop to create a popup menu.

Of course, you can also create popup menus in your TOOL code, as you would any
submenus, and add or delete menu items dynamically. See the PopupUsage
attribute in the Display Library online Help for information about creating popup
menus dynamically.

PopupMenu attribute Once the popup menu is created, you must use TOOL
code to display it. You can either assign the popup menu to a field widget so that
iPlanet UDS automatically displays it when the end user activates it or you can
explicitly display the popup yourself.

To assign the popup to a field widget, you use the field widget’s PopupMenu
attribute. When the submenu is assigned to the PopupMenu attribute, iPlanet UDS
automatically displays the popup menu. See the Display Library online Help for
information about the PopupMenu attribute.

Typically, you assign popups to field widgets in the Init method for the
UserWindow class. The following example illustrates:

PopupRequest event To explicitly display the popup, you can handle the
PopupRequest event on the window, and use the Window.ShowPopupMenu
method to display the popup menu when and where you wish. See the Display
Library online Help for information.

-- Assign a Popup SubMenu to a PushButton field.
<PopupDemoButton>.PopupMenu = <MoveTabSubMenu>;

About Menus

Chapter 9 Using the Menu Workshop 543

Activate and AfterValueChange events The events posted when the end user
chooses a menu item from a popup menu are the same events, Activate and
AfterValueChange, that are posted when the end user chooses a menu item from a
pull-down or slide-off menu. Both these events have a menuType parameter,
which allows you to detect whether the event was posted from a popup menu or a
menu bar menu. You handle the Activate and AfterValueChange events in your
code the same way you handle them normally. The following code illustrates:

When the end user activates the popup menu, iPlanet UDS posts the
PopupRequest event on the window, indicating which field widget received the
request. By default, iPlanet UDS automatically handles the PopupRequest event by
displaying the popup menu. However, you may wish to provide your own code to
display the popup menu. You can explicitly handle the PopupRequest event in
your code, and use the ShowPopupMenu method to display the menu at the
location you specify. See the Display Library online Help for information.

The section “Creating Popup Menus” on page 558 provides information about
using the Menu Workshop to create a popup menu. The PopupUsage attribute
section in the Display Library online Help provides a brief description of how to
create a popup menu dynamically.

About OLE Menu Groups
When your window includes one or more OLE fields (described under “Creating
an OLE Field” on page 475, you may wish to create an OLE menu group. This
feature is available for Windows only.

Microsoft defines three groups for submenus: File, View, and Window. You can
define the menus of a TOOL window as belonging to one of these groups. These
groups define how the TOOL window merges the submenus belonging to the OLE
server application with the TOOL submenus when you edit an embedded OLE
object in place in a TOOL window. The OLE menus are displayed only when the
user is editing an embedded object in place by clicking on the object.

For general information about integrating with OLE, see Integrating with External
Systems

-- When the user selects an item on the popup menu, respond.
when <TabOneItem>.Activate do
<BasicTabFolder>.TopPageIndex = 1;

About Menus

544 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The Item > OLE Menu Group command lets you define TOOL submenus that
merge with the OLE application submenus.

The OLE Menu Group command offers the following settings:

For example, a TOOL window has the following submenus with the following OLE
Menu Group settings in this order:

• AppFile—File Group

• AppEdit—Invisible

• Select—View Group

• Data—View Group

• Special—Window Group

Setting Description

Invisible Menu is not displayed when the embedded OLE object is edited in place.
This is the default value.

File Group Menu is displayed before the File menu of the application that edits the
embedded OLE object.

If there is no File menu in the editing application, this menu is displayed
before any iPlanet UDS View Group menus.

View Group Menu is displayed after the File menu and before the View menu of the
application that edits the embedded OLE object.

If there is no View menu in the editing application, the menu is displayed
after the application’s File menu and before any iPlanet UDS Window
Group menus.

Window
Group

Menu is displayed after the View menu and before the Window menu of
the application that edits the embedded OLE object.

If there is no Window menu in the editing application, the menu is
displayed after the application’s View menu.

Using the Menu Workshop

Chapter 9 Using the Menu Workshop 545

The OLE server application that edits an embedded OLE object has the following
submenus in the following order:

• File—File Group

• Edit—File Group

• View—View Group

• Window—Window Group

When the end user double-clicks the embedded OLE object, the following
submenus appear in the menu bar of the TOOL window in the following order:

• AppFile (TOOL)

• File (OLE server application)

• Edit (OLE server application)

• Select (TOOL)

• Data (TOOL)

• View (OLE server application)

• Special (TOOL)

• Window (OLE server application)

Using the Menu Workshop
You can open the Menu Workshop either from the Class Workshop or from the
Window Workshop using the File > Menu… command. From the Class Workshop,
you can also open the Menu Workshop by single-clicking the Menu Workshop
tool.

If a menu bar already exists for the window, the Menu Workshop displays the
existing menu bar. If a menu bar does not exist for the window, the Menu
Workshop displays an empty menu.

Using the Menu Workshop

546 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The Menu Workshop Window
The Menu Workshop provides an outline field, where the menu bar is displayed in
a hierarchical form, and a panel, where you can view or set the properties for the
currently selected menu item. The toolbar provides a palette of menu widgets,
which you use to add new widgets to the menu bar, and a set of tools for basic
operations. Figure 9-3 shows the Menu Workshop, and Figure 9-4 shows the Menu
Workshop Toolbar.

Figure 9-3 Menu Workshop

Figure 9-4 Menu Workshop Toolbar

Properties panel

Toolbar

Status line

Cut

Copy

Paste

Delete

New

New
Command

New
Toggle

New
List Item

New
SeparatorSubmenu

Using the Menu Workshop

Chapter 9 Using the Menu Workshop 547

Status line The status line in the Menu Workshop provides hints about the steps
you should follow next. It is a good idea to check the status line as you proceed
with your work.

Access to Other Workshops
From the Menu Workshop, you can access one other workshop:

Leaving the Menu Workshop
To leave the Menu Workshop, use the File > Close command. When you leave the
Menu Workshop, iPlanet UDS creates the widget attributes for all the menu
widgets you have added to the menu bar.

If you wish to remove all changes you have made to the menu bar since you
opened the Menu Workshop, you can use the File > Cancel command. The Cancel
command closes the Workshop and ignores all work done since the workshop was
opened or since your last Save All command.

Workshop How to access it

Class Workshop The File > Open Class… command opens the Class Workshop to
display the definition of the class to which the current menu bar
belongs. If the class is already being displayed, the Open Class…
command moves the input focus to the appropriate Class Workshop
window.

Examining a Menu Bar

548 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Examining a Menu Bar
You can examine the menu bar for a window either from the Class Workshop or
from the Window Workshop, by choosing the File > Menu… command.

Figure 9-5 illustrates a menu bar as displayed in the Menu Workshop:

Figure 9-5 Menu Bar in the Menu Workshop

In the Menu Workshop, the menu bar definition is displayed in an outline field in
the form of a hierarchy. The entries at the first level of the hierarchy are the
pull-down menus on the menu bar. The entries at the second level represent the
menu items on the pull-down menus. These items include menu buttons, menu
toggles, menu lists, menu separators, and slide-off menus. The third level
represents the items on the slide-off menus, which, again, can include any of the
simple menu items or other slide-off menus. The slide-off menus may be nested up
to any level.

Examining a Menu Bar

Chapter 9 Using the Menu Workshop 549

You can browse through this menu hierarchy the same way you browse through
any other outline field.

Icons in the outline field The outline field displays kind icons indicating the
type of each menu widget in the hierarchy. These icons are miniature versions of
the picture buttons you use to create the menu widgets, as shown below.

Attribute name and short cut The outline field also displays the attribute name
for each menu item and, for menu commands that have them, the short cut key
assignments.

Opening and closing submenus For a submenu, iPlanet UDS uses the expansion
arrow to indicate whether the submenu has menu items on it. A right-pointing
expansion arrow indicates that the submenu has menu items on it that are not
being displayed. To open the submenu, click once on the expansion arrow. A
downward-pointing expansion arrow indicates that the menu items are being
displayed. To close the submenu, click once on the expansion arrow.

Viewing the Widget Properties
The properties panel at the bottom of the workshop displays the appropriate
properties for the currently selected widget. If the widget is not already selected,
simply click on it to view its properties.

Icon Menu Widget

Submenu

Menu Command

Menu Toggle

Menu List Item

Menu Separator

Creating a Menu Bar

550 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Popup menus If the window’s definition includes popup menus, these will be
displayed as part of the menu bar (even though they will not be displayed on the
menu bar when the window is running). To see whether or not a menu item is on
the menu bar, is a popup menu, or is both on the menu bar and a popup menu,
select the menu item and choose the Item > Popup Usage command. The submenu
for the Popup Usage command indicates the current setting for the selected menu
item.

Status text To examine the status-line help text associated with a menu item,
select the menu item and choose the Item > Status Text command. This command
opens the Status Text dialog, which displays the menu item’s current status-line
help text.

Creating a Menu Bar
You create a new menu for a window by simply opening the Menu Workshop.
From the Class or Window Workshop, simply choose the File > Menu… command.
From the Class Workshop, you can open the Menu Workshop by single-clicking
the Menu Workshop tool.

Once in the Menu Workshop, you have the choice of using the Create Default
command to start with a default menu or simply creating your own menu bar from
scratch.

When you choose the File > Create Default command to create a default menu bar,
iPlanet UDS creates a menu bar with two pull-down menus.

Creating a Menu Bar

Chapter 9 Using the Menu Workshop 551

Figure 9-6 Menus Created by Create Default Command

The menu commands on the File and Edit pull-down menus are iPlanet UDS
prefabricated commands (as described under “About Menu Commands” on
page 535), with the exception of New…, Open…, and Save, which are simply
labeled menu commands.

Creating a Menu Bar

552 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Pull-down menus at the top level To create a menu bar, you build a hierarchy in
the outline field that represents the pull-down menus on the menu bar. The entries
at the first level of the hierarchy are always submenus, which become the
pull-down menus on the menu bar. For example, in the default menu, “File” is a
submenu that contains the four menu commands. Only submenus are allowed at
the first level of the hierarchy.

The entries at the second level become the menu items on the pull-down menus.
These include menu buttons, menu toggles, menu lists, menu separators, and
submenus. Adding a submenu at this level creates a slide-off menu.

The third level represents the items on the slide-off menus, which can include any
of the simple menu items or other slide-off menus. You can nest slide-off menus up
to any level (although we do recommend that you keep your menus as simple as
possible).

Adding Menu Widgets
To build the menu bar, you add menu widgets one by one to the hierarchy in the
outline field. After you add a new item, it is currently selected. You can then move
to the properties panel to set its properties.

By default, the new item you add to the hierarchy is inserted after the item you
select. However, if you wish to add new items before the item you select, you can
choose the Options > Insert Before command. This command switches you from
Insert After mode to Insert Before mode. To change back to Insert After mode, you
can choose the Options > Insert After command.

➤ To add a new menu widget to the menu bar

1. In the outline field, click in menu item that you want the new menu item to
follow or precede (depending on whether you are using Insert After or Insert
Before mode).

2. Click the appropriate menu widget button on the toolbar.

3. Set the properties for the menu item on the properties panel.

iPlanet UDS inserts the new menu item at the same level as the selected menu item.
If you insert a submenu, iPlanet UDS displays an “(empty menu)” entry one level
below the submenu. This allows you to insert menu items at the appropriate level
for the submenu.

Creating a Menu Bar

Chapter 9 Using the Menu Workshop 553

Adding list items The procedure you follow to create a menu list in the Menu
Workshop is different than the procedure you follow in the Window Workshop.
Rather than dropping the entire list widget onto the menu bar, you must add each
list element individually. Start by inserting each list element to the hierarchy one at
a time. Then, to unite the individual elements into a single menu list, give them the
same attribute name. (Note that if you change the attribute name of any of the
elements in the list, that element will no longer be part of the list widget.)

After adding the new menu items, you may wish to change them by moving them,
deleting them, or editing their properties. This is described under “Editing a Menu
Bar” on page 555.

Although iPlanet UDS automatically creates the widget attributes for the menu
items you have added to the menu bar when you close the Menu Workshop, you
may wish to create these attributes while you are still working on the menus. See
“Editing a Menu Bar” on page 555 for information on this.

Setting Widget Properties
You can set the widget properties for the currently selected widget on the
properties panel. If the widget is not already selected, select it by clicking on it.

Each type of widget has a different set of properties. The properties that are
unavailable for the particular widget will either be invisible or inactive. For
information about the properties you can set for an individual widget, see “About
Menus” on page 527.

Note that the changes you make to the widget properties will not be reflected in the
Menu browser until you select a different property or another menu item.

Setting Menu Widget States
To set the starting state for a menu item, you must use a combination of the Item >
For Usage and Starting State commands.

➤ To set a menu item’s state

1. Select the menu item whose starting state you wish to change.

2. Choose the Item > For Usage command, and select the window usage for
which you wish to specify the menu item’s starting state.

3. Choose the Item > Starting State command, and select the starting state for the
menu item.

Creating a Menu Bar

554 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Setting Status Line Help Text
To set status line help text for a menu item, you must use the Item > Status Text
command.

➤ To enter status line text

1. Select the menu item.

2. Choose the Item > Status Text command.

The Status Text dialog opens.

3. Enter the text you wish to appear in the status line and click OK.

Note that if you plan to use this menu in a multilingual application, you need to
enter a message number and set number. See the iPlanet UDS Programming Guide
for information on internationalizing applications.

Compiling the Menu Bar
Normally iPlanet UDS does not create the attributes for the menu items you add to
the menu bar until you close the Menu Workshop. However, if you wish to create
them while you are still working on the menu bar, you can use the File > Compile
command. (The File > Save All command also creates the attributes.)

Note that you are not required to use the Compile command. The Compile
command is provided for your convenience, so you can keep the list of attributes in
the Class Workshop synchronized with the attributes you are adding to the
window class when you add menu items to the menu bar.

Editing a Menu Bar

Chapter 9 Using the Menu Workshop 555

Editing a Menu Bar
To edit the menu bar, you can open the Menu Workshop either from the Class
Workshop or the Window Workshop, using the File > Menu… command. In the
Class Workshop, you also can open the Menu Workshop by single-clicking the
Menu Workshop tool.

Besides adding new menu items to the menu bar, you can modify the menu bar by:

• moving menu items

• changing submenu levels

• using edit commands to cut, copy, paste, and delete menu items

• modifying an individual menu item’s properties

Moving Menu Items
You can move any menu item (including a submenu) to another position by
dragging the item to a new position. If you move a submenu, iPlanet UDS moves
the menu widgets on the submenu.

➤ To move a menu item

1. Select the menu item’s icon.

2. Drag the row into position.

iPlanet UDS inserts the row you are moving either before or after the row on which
you drop it (depending on whether you are using Insert Before or Insert After
modes). The moved menu item will be at the same level as the menu item on which
it was dropped.

Changing Submenu Levels
If you wish to change the level of a submenu in the hierarchy, you can use the Item
> Promote Submenu and Demote Submenu commands on the Item menu to move
the entire submenu up or down one level.

Editing a Menu Bar

556 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To change the level of a submenu

1. Select the submenu title.

2. Choose the Item > Promote Submenu or Demote Submenu command as
appropriate.

Cut, Copy, Paste, and Delete
The Cut, Copy, Paste, and Delete commands on the Edit menu allow you to
manipulate the items the same way you can cut, copy, paste, and delete text in a
text editor.

➤ To use the Cut, Copy, and Delete commands

1. Select the menu item.

2. Choose the Edit > Cut, Copy or Delete command.

➤ To use the Paste command

1. Select the menu item that the copied or cut menu item should precede or
follow (depending on whether you are using Insert Before or Insert After
modes).

2. Choose the Edit > Paste command.

Modifying Properties
You can change any of the menu item’s properties by editing the settings on the
properties panel.

➤ To modify a menu item’s properties

1. Select the item.

2. Make any appropriate changes to the menu item’s properties.

The changes will not take effect until you select another property or another menu
item.

Importing and Exporting a Menu Bar

Chapter 9 Using the Menu Workshop 557

Importing and Exporting a Menu Bar
To allow you to copy a menu bar from one window class to another, the Menu
Workshop provides Import… and Export… commands. These commands let you
export a menu bar from one class into a file and then import the menu bar stored in
that file into another class.

The Export… command in the Menu Workshop allows you to export a menu bar to
a portable file, which you can then import into another iPlanet UDS window class.
The Import… command in the Menu Workshop replaces the menu bar in the
window class with the menu bar in the specified text file.

Importing a Menu Bar
The Import… command replaces the current menu bar with the menu bar in the
file you specify.

The menu bar that you import must have been created by the Export… command
in the Menu Workshop.

➤ To import a menu bar

1. Choose the File > Import… command.

2. Choose a menu bar file (a file with an .fsm suffix) to load.

After the menu bar has been successfully imported, iPlanet UDS displays the menu
bar in the Window Workshop. If there is an error, such as a bad file, iPlanet UDS
displays an error message.

Exporting a Menu Bar
The Export… command writes the definition of the current menu bar into a
portable file. iPlanet UDS stores the menu bar in a file with the name you specify
and an .fsm suffix.

Testing a Menu

558 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To export a menu bar

1. Choose the File > Export… command.

2. In the file selection dialog, specify the name of the file to contain the menu bar
definition. If you give the name of an existing file, the Export… command
overwrites the file.

While the menu bar is being exported, iPlanet UDS displays a message indicating
that the menu bar is being written to the specified file and prevents all input until
the export is complete.

Testing a Menu
To test the menu, you must test the window associated with the menu. To test a
window, open the window using the Window Workshop and switch into testing
mode. See “Testing a Window” on page 427 for information.

Creating Popup Menus
To create a popup menu in the Menu Workshop, you must create an ordinary
submenu. In fact, you must place the popup menu on the menu bar, even though
you do not want it to be displayed there.

Unlike menu bar menus, popup menus do not have titles. When you create a new
popup menu in the Menu Workshop, you still create a menu title. However, the
menu title is not displayed when the popup menu is displayed.

After creating the submenu itself, you should create all the menu commands, menu
lists, menu separators, or slide-off menus that you wish to include on the popup
menu.

Finally, you must use the Item > Popup Usage command. By default, any submenu
you add to a menu bar has the same popup usage setting as its parent menu. And
when top-level menu widgets are set to their default, they display only on the
menu bar. Therefore, by default, all submenus on the menu bar are displayed only
on the menu bar, and are not displayed as popup menus.

To change the setting for an individual submenu, select the submenu and choose
either the Item > Popup Usage > Popup Only or Popup Usage > Both commands.
You can simply keep the default popup usage settings for the individual items on
the submenu, because they will inherit the setting you specify for their parent.

Creating Popup Menus

Chapter 9 Using the Menu Workshop 559

The following table describes the Popup Usage commands:

You do not always need to create a new submenu. If you wish to use an existing
submenu as a popup menu, you can simply use the Item > Popup Usage > Popup
Only or Popup Usage > Both command to make the submenu into a popup menu.

Set PopupMenu attribute or use PopupRequest event Once the popup menu is
created, you must use TOOL code to display it. You can either assign it to a field
widget so that iPlanet UDS automatically displays it when the end user activates it
or you can explicitly display the popup yourself.

To assign the popup to a field widget, you use the field widget’s PopupMenu
attribute. When the submenu is assigned to the PopupMenu attribute, iPlanet UDS
automatically displays the popup menu. See the Display Library online Help for
information about the PopupMenu attribute.

To explicitly display the popup, you can handle the PopupRequest event on the
window, and use the Window.ShowPopupMenu method to display the popup
menu when and where you wish. See the Display Library online Help for
information on the PopupRequest event and ShowPopupMenu method.

The Popup Usage command is available for all the menu items that you create in
the Menu Workshop, not just for submenus. Using the Popup Usage command for
individual menu items enables you to specify which individual menu items within
a given submenu will appear on the popup menu and which will not. For example,

Popup Usage Value Description

Default Same as Inherit.

Menu Only The submenu or menu item is displayed on the menu bar, and is not
available for use as a popup menu.

Popup Only The submenu or menu item is not displayed on the menu bar, and is
available for use as a popup menu.

Both The submenu or menu item is displayed on the menu bar, and is also
available for use as a popup menu.

Inherit The submenu or menu item inherits the setting of its parent
submenu.When top-level menu widgets are set to Inherit, they use
the Menu Bar Only setting.

Creating Popup Menus

560 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

you could create a submenu that is both a menu-bar menu and a popup menu. The
individual items on the menu could include some menu items that show only on
the menu bar, some that show only on the popup, and some that show both on the
menu bar and the popup.

Remember, however, that the Popup Usage setting for the submenu itself
determines whether or not it is displayed as a popup menu. A submenu whose
Popup Usage setting is Menu Bar Only will never be displayed as a popup menu,
even if some menu items on it are set to Both or Popup Only. Likewise, a submenu
whose Popup Usage setting is Popup Only will never be display on the menu bar,
even if some menu items on it are set to Both or Popup Only.

➤ To create a popup menu in the Menu Workshop

1. Create a submenu, and add the appropriate menu items to it.

If an existing submenu on the menu bar already exists, you can use that.

2. Select the submenu, and choose the Item > Popup Usage >Popup Only or
Popup Usage > Both command.

3. In your TOOL code, assign the popup menu to a field widget by setting the
field widget’s PopupMenu attribute, and iPlanet UDS will automatically
display the popup. Or, use the ShowPopupMenu method to explicitly display
the popup in response to a PopupRequest event.

Designing a popup iPlanet UDS displays a popup menu relative to the cursor or
pointer hot spot. The position of the popup menu relative to the hot spot depends
on the size of the menu and the amount of space available on the screen. If the
popup menu can fit to the right of the hot spot without running over the right edge
of screen, iPlanet UDS displays it there. If not, iPlanet UDS displays the menu to
the left of hot spot. If the entire menu can fit below the hot spot, iPlanet UDS
displays it there. If it cannot, iPlanet UDS moves the menu up to display the entire
menu. The submenu label is never displayed. Keep these limitations in mind when
designing your popup menus.

Further guidelines are:

• keep the menu as short as possible

• use separators to group commands

• use standard ordering for commands the end user is accustomed to seeing on
the menu bar (for example, File or Edit menu commands)

For information about creating popup menus dynamically, see the PopupUsage
attribute section in the Display Library online Help.

Using the Prefabricated Help Commands

Chapter 9 Using the Menu Workshop 561

Using the Prefabricated Help Commands
The Menu Workshop provides a prefabricated Help menu and four prefabricated
Help commands. Using the prefabricated Help menu ensures that your Help menu
is portable—iPlanet UDS uses the title and position on the menu bar that is
customary on each particular window system. Some platforms, such as Windows
95, do not use these help menu commands in their standard online help. To
accommodate heterogeneous environments, iPlanet UDS will display the menu
items on the appropriate platforms, and hide them otherwise.

The iPlanet UDS Help commands that you can include on the Help menu are:

Of course, if you wish to provide your own help facilities, you can override the
default behavior of any of these commands by registering for their Activate events.
When you explicitly handle the Activate event on the Help Contents, Help Search,
and Help on Help commands, iPlanet UDS automatic help facilities are ignored. If
you wish to interact directly with Window Help, you can use the iPlanet UDS
WinHelp method defined on the WindowSystem class. See the iPlanet UDS
Programming Guide for complete information on implementing help in your
application.

To use iPlanet UDS automatic help facilities on your window, there are four basic
steps you must follow.

➤ To include a Help menu on a window

1. Create one Windows Help document for the application, or one for each
window in the application.

The Help document should be in the appropriate format, and should include
the information needed by the Help Contents and Help Search commands. See
iPlanet UDS Programming Guide for information.

Help Command Description

Help Contents Displays the Help Contents window, using the default help file.

Help Search Displays the Help Search window, using the default help file.

Help on Help Displays the standard Help on Help window, provided by Windows.

About Provides an About command in the appropriate location. You must
register for the AboutMenuActivate event and provide processing to
display the appropriate window.

Using the Prefabricated Help Commands

562 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

2. Add the Help submenu to the menu bar for each window where you wish to
provide help.

iPlanet UDS positions the Help menu in the appropriate place for the window
system, and provides the correct title.

3. Add the Help Contents, Help Search, and Help on Help prefabricated
commands to the Help menu.

You can also include the About command, but must take extra steps after
doing so (described under “Implementing the About Command” on page 562).

4. Set the DefaultHelpFile attribute for the partition or for each of the Window
objects to the help file you wish to use.

Implementing the About Command
The About command does not provide automatic behavior, but including this
command on your Help menu ensures that it will be portable. When you include
the prefabricated About command anywhere on your menu bar, iPlanet UDS uses
whatever position on the menu bar is customary on the particular window system.

AboutMenuActivate event iPlanet UDS also provides a special
AboutMenuActivate event, which allows you to detect when the end user chooses
the About command. To display information to the end user in response to his
choosing the About command, you must register for the AboutMenuActivate event
and provide processing to open the appropriate window.

AppTitle attribute The label for the About command consists of two parts, the
word “About” and the application title. You must specify the application title by
using the AppTitle attribute on the Partition object.

➤ To use the About command

1. Include the About command on the Help menu.

2. Set the AppTitle attribute on the Partition object to the application title you
wish to have displayed in the About command menu item.

3. Create an About window for the application.

4. Register for the AboutMenuActivate event on the About menu item and
provide processing to display the About window you created in the previous
step.

Creating OLE Menu Groups

Chapter 9 Using the Menu Workshop 563

Creating OLE Menu Groups
By default, OLE menus are not merged with TOOL menus when the end user is
editing the embedded OLE object in an OLE field.

To request that an iPlanet UDS submenu be merged with the OLE menus, you can
use the Item > OLE Menu Group command to select one of the following options:

➤ To use the OLE Menu Group command

1. In the Menu Workshop, select the submenu you wish to merge with the OLE
menus.

2. Choose the Item > OLE Menu Group command.

3. On the OLE Menu Group submenu, choose the appropriate option: File Group,
View Group, or Window Group.

Option Description

Invisible Menu is not displayed when the embedded OLE object is edited in
place. This is the default value.

File Group Menu is displayed before the File menu of the application that edits
the embedded OLE object.

If there is no File menu in the editing application, this menu is
displayed before any iPlanet UDS View Group menus.

View Group Menu is displayed after the File menu and before the View menu of
the application that edits the embedded OLE object.

If there is no View menu in the editing application, the menu is
displayed after the application’s File menu and before any iPlanet
UDS Window Group menus.

Window Group Menu is displayed after the View menu and before the Window menu
of the application that edits the embedded OLE object.

If there is no Window menu in the editing application, the menu is
displayed after the application’s View menu.

Setting Workshop Preferences

564 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Setting Workshop Preferences
The Menu Workshop allows you to set preferences that are saved as part of your
current workspace. The preferences that you set take effect for the current Menu
Workshop and all Menu Workshops that are opened in the future from the same
workspace. However, if any other Menu Workshops are already open, these will
not be changed.

To set the workshop preferences, give the Workshop Preferences… command on
the File menu. This command opens the Menu Workshop Preferences dialog,
where you can set any number of preferences.

Figure 9-7 Menu Workshop Preferences Dialog

The preferences you can set for the Menu Workshop fall into the following general
categories:

• workshop window size and position

• insert preference

• font preference

The workshop window size and position and font preferences are general iPlanet
UDS preferences and are described under “Setting Workshop Preferences” on
page 136. This section provides information about the preferences specific to the
Menu Workshop.

Setting Workshop Preferences

Chapter 9 Using the Menu Workshop 565

Insert Preference
The Insert preference specifies whether new items are added to the menu hierarchy
before or after the selected item.

By default, any new items you add to the menu hierarchy in the Menu Workshop
are inserted after the item you select. However, if you wish to add new items before
the item you select, you can choose the Insert Before preference on the Menu
Workshop Preferences dialog. This option switches the Menu Workshop from
Insert After mode to Insert Before mode.

To change back to Insert After mode, you can either choose the Insert After
preference on the Menu Workshop Preferences dialog, or you can use the Options
> Insert After command.

Setting Workshop Preferences

566 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

567

Chapter 10

Using the Method Workshop

This chapter provides background information about methods and describes how
to use the Method Workshop.

In this chapter, you will learn how to:

• examine a method

• create a method

• write the method source

• set method breakpoints

• edit a method

• import and export a method

• compile a method

• set code preferences

About Methods
A method is a procedure that is written specially for a particular class. A method
for a given class can be invoked only on objects of that class or of its subclasses.

All methods consist of a name and the TOOL source code that is executed when the
method is invoked. Most methods also include parameters, which allow the caller
to pass information to and from the object that the method is manipulating.

About Methods

568 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Method Components
A method consists of the following components:

A method’s signature consists of the method name, parameters, return type, return
event, and exception event. In other words, the method signature defines the
“interface” to the method.

The following sections provide detailed information about these components.

Method Name
The method name is the name the caller must use to invoke the method. The name
you select for the method is very important because if you use the name of an
inherited method, you will be overriding the inherited method. If you do not wish
to override the inherited method, you should not use the existing name. See
“Overriding Methods” on page 571 for information about overriding.

Component Description

name The name the caller will use to invoke the method.

parameters Used by the caller to provide input values to the method, to hold
output values from the method, or both.

return type The data type of one value that will be passed back to the caller by a
return statement in the method.

return event An event that is posted when the method is invoked with the start
task statement and the task completes successfully.

exception event An event that is posted when the method is invoked with the start
task statement and the task is terminated due to an unhandled
exception.

method source A list of TOOL statements, with an optional exception clause, that
provides the processing for the method.

About Methods

Chapter 10 Using the Method Workshop 569

Parameters
A method may have any number of parameters. Parameters provide input values
for the method, hold output values, or both.

Parameter name and type Every parameter has a name and a type. The name
identifies the parameter and is for use when the method is invoked, so that callers
can specify parameters by name. The type specifies the type of value allowed for
the parameter. The parameter type can be any simple data type or any class.

Parameter mechanism By default, a parameter is for input only. An input only
parameter means that the caller specifies a value for the parameter when invoking
the method and the method uses that value for processing.

However, you can specify that a parameter is for both input and output, or for
output only. An output parameter specifies a variable or attribute to hold a result
value from the method. After the method completes, the attribute or variable stores
the output value, which the caller can then use for processing. When a parameter is
declared for input and output, the attribute or variable specifies an input value
when the method is invoked, and holds the output value when the method
completes. When a parameter is declared for output only, the value of the variable
or attribute has no effect when the method is invoked.

Class type parameters When the type of a parameter is a class, iPlanet UDS
passes a reference to the object, not the object itself. A class parameter means that
even if the parameter is for input only, if the method makes changes to the object,
these changes are reflected when you return from the method. The object is
changed because both the invoking method and the invoked method are
referencing the same object.

Copy option The copy option allows you to prevent the calling and called
method from referencing the same object. When you specify copy for a class
parameter, iPlanet UDS makes a copy of the object and passes a reference to that
copy as the parameter. For an output parameter, iPlanet UDS returns a reference to
the copy. The copy option is also useful for improving the efficiency of distributed
applications. If the invoking method and the invoked method are going to be on
separate partitions, using a copy of the object rather than sharing a single object
may reduce communication costs.

Default value Normally, the parameters are required when the caller invokes the
method. However, if you wish to make a parameter optional, you can specify a
default value for the parameter. iPlanet UDS uses this value for the parameter
when the caller leaves this parameter off the parameter list. The default value for
the parameter must be compatible with the parameter’s data type. For parameters
with a class type, the default value must be NIL, which means “no object.”

About Methods

570 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Return Type
The method’s return type specifies the data type of the value that you will pass
back from the method with the return statement. The return value can be any
simple data type or any class. If you do not specify a return type, you cannot use
the return statement in the method to pass a value back to the caller. The return
type for the method has a copy option, which works exactly like the copy option
for a parameter, as described above.

Return Event
If you plan to use the start task statement to invoke the method as a separate
task and you want to receive notification when the task completes, you must define
a return event for the method. When you invoke the method with the start task
statement and you request the return event with the completion=event clause,
the method automatically produces a return event when it completes. The return
event uses the output and input-output parameters defined for the method. And if
the method is defined as having a return type, the last parameter for the event is a
return value called “return.” See the TOOL Reference Guide for information on the
start task statement and the return event.

Exception Event
If you plan to use the start task statement to invoke the method as a separate
task and you want to receive notification when the task is terminated due to an
unhandled exception, you must define an exception event for the method. When
you invoke the method with the start task statement and you request the
exception event with the completion=event clause, the method automatically
produces an exception event when it is terminated. The exception event has one
parameter called “exception,” which contains the exception that terminated the
task. See the TOOL Reference Guide for information on the start task statement
and the exception event.

Method Source
The source of the method is where you provide code that operates on the object,
invokes methods on other objects, and so on. To write the method, you use TOOL,
the iPlanet UDS object-oriented programming language. See the TOOL Reference
Guide for complete information on the language.

The method source consists of two parts, the statement block and the optional
exception handler.

About Methods

Chapter 10 Using the Method Workshop 571

Method statement block The method statement block consists of TOOL
statements and comments. Within an individual method, you can provide many
different kinds of processing, such as declaring variables, handling events, starting
transactions, initiating new tasks, accessing the database, and so on.

return statement If the method has a return type, you must use the return
statement in the method to exit from the method and return a value to the invoking
method. See the TOOL Reference Guide for information on the return statement.

Exception handler After the statement block, the optional exception clause
provides exception handling for the method as a whole. If you use it, the exception
handler for the method must be at the end of the method. See the TOOL Reference
Guide for information on using exception handlers.

Statement breakpoints When you are entering your method source code in the
Method Workshop, you can set statement breakpoints in the code for use with the
Debugger. The breakpoints that you set in the Method Workshop take effect in the
Debugger every time the method is invoked by the application.

Statement breakpoints added in the Method Workshop are persistent. Persistent
breakpoints stay in effect until you remove them from the method. You can remove
the persistent breakpoints either from the Method Workshop or from the
Debugger.

For information about setting breakpoints in your method source code, see “Setting
Breakpoints” on page 582.

Overriding Methods
iPlanet UDS allows you to override an inherited method. Overriding a method
means creating a method for the current class that has the same name and
parameters as a method it inherited from one of its superclasses. By providing
different source code for an inherited method, you are creating a different
“version” of the method for objects of the current class. When you invoke the
method on an object of the current class, iPlanet UDS uses the method you defined
specifically for the class rather than the inherited method.

For example, the Stream class in the Framework library defines a Close method
that closes a stream. The File class, a subclass of the Stream class, overrides the
Close method defined for the Stream class to close a file rather than a stream. When
you invoke the Close method on a Stream object, iPlanet UDS uses the Close
method implemented for the Stream class. However, because the File class
overrides the Close method, when you invoke the Close method on a File object,
iPlanet UDS uses the Close method implemented for the File class.

About Methods

572 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Polymorphism Using overriding for inherited methods provides the benefit of
polymorphism. Polymorphism means the ability of a data item to refer at runtime to
any number of different objects.

Declared type and runtime type In TOOL, we make the distinction between the
declared type and the runtime type. When you declare an item whose type is a
given class, the class that defines the data item is its declared type. However, when
you assign an object value to the data item, the runtime type of the object assigned to
the data item can be any subclass of the class that defines the data item. In other
words, the data item can take any number of forms (the term “polymorphism” is
literally defined as the ability to assume many different forms).

The benefit here is that you can perform an operation on a data item without
knowing anything about how the object’s class has implemented the operation.
Because the subclasses override the method to customize it for the particular class,
you are assured that the operation will work correctly for the object. For example,
invoking the Close method works on a data item whose declared type is Stream
will always work, even if the runtime type is a subclass of the Stream class, because
each of the subclasses of Stream override the Close method.

Overriding overloaded methods Note that if you override an inherited method
that is overloaded (described next), your class will not be able to access any of the
inherited methods with that name. Therefore, if your class needs the entire set of
overloaded methods, you must create the entire set again for your class.

Using drag and drop to copy method code When you want to create a method in
a subclass that overrides a method defined in a superclass, you can drag the
method from the Class Workshop for the superclass to the Class Workshop for the
subclass. The advantage of this technique is that the correct method signature and
method source code are automatically copied to the subclass.

➤ To override a method

1. In the Class Workshop for the subclass, choose the File > Open Superclass
command to locate the superclass where the method is defined.

2. Drag-and-drop the method signature from the superclass to your subclass.

This will create a method in the subclass with the correct name, parameters,
and return type.

3. Open the method in the subclass and, using the Method Workshop, edit the
source code appropriately.

About Methods

Chapter 10 Using the Method Workshop 573

Overloading Methods
iPlanet UDS also allows you to overload methods. Overloading a method means
that more than one method in a class can share the same name, although their
parameter lists must differ. Using overloading lets you have different versions of
the same method, with different parameter types. In this case, when the method is
invoked for the object, iPlanet UDS uses the parameter data types as well as the
method name to determine which code to execute. For example, the iPlanet UDS
Framework library provides two Add methods for the DateTime class. The first
version of the Add method provides two parameters so you can add an
IntervalData value to a DateTimeData value and replace the original
DateTimeData value with the result. The second version of the Add method has
one parameter so you can add an IntervalData value to the original DateTimeData
value.

Method signatures When a method is overloaded, each method that shares the
same name has its own method signature. A method signature is the method name
and the parameter list (also the return type, return event, and exception event if
there is one). For example, here are two method signatures for the RequestFocus
method:

RequestFocus()
RequestFocus(row:TemplateField, scrollPolicy:integer)

When you are working with an overloaded method in the Method Workshop, you
work with the individual method signatures associated with the overloaded
method as separate methods. For example, to update an overloaded method, in the
Class Workshop, you must open each method signature individually. Each time
you open a particular method signature, a new instance of the Method Workshop
opens, just for that signature. Once in the Method Workshop, you can edit the
method the same way you would edit a method that is not overloaded.

Converter Methods
A converter method is a special kind of method that you create to adjust for the
differences in a class element between two (or more) versions of a class. When you
are performing class version upgrade of an iPlanet UDS application (described
under “Class Versions” on page 289), you must write converter methods. The
purpose of converters is to enable code that calls or expects one version of a class
(by invoking a method or posting an event, for example) to actually use a different

Using the Method Workshop

574 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

version of the class. A converter allows older and newer code to communicate by
“bridging” the differences between two versions of a method or an event. The
iPlanet UDS Programming Guide provides complete information on converter
methods.

In the Method Workshop, you work with converter methods as individual
methods. For example, to update a converter method, you double-click the
individual converter name in the Class Workshop, which opens a new instance of
the Method Workshop. Once in the Method Workshop, you can then edit the
converter method the same way you would edit any method. See “Examining
Methods” on page 298 for information on examining converter methods and
“Creating a Converter Method” on page 318 for information on creating converter
methods.

Method Visibility
By default, the methods in a class are public, which means that any other classes in
the project, or classes that use this project as a supplier, can access them. iPlanet
UDS provides the option of defining any method as “private.” A private method
can be accessed only by the class that defines it, not by any other classes (even its
own subclasses). Only methods in the current class can invoke a private method.

Using the Method Workshop
You enter the Method Workshop from the Class Workshop either by opening an
existing method or by creating a new method.

Opening an existing method If you wish to examine or edit an existing method,
double-click the method name, or click the method name and choose the Element >
Open command. If the method is overloaded, you must open the particular
method signature you wish to examine. See “Examining Methods” on page 298 for
information about using the Class Workshop to open the Method Workshop for an
existing method.

CAUTION You should not use converters without a thorough understanding of
the iPlanet UDS upgrading features. Upgrading an iPlanet UDS
production environment requires very careful planning. See the
iPlanet UDS Programming Guide for complete information.

Using the Method Workshop

Chapter 10 Using the Method Workshop 575

Creating a new method If you wish to create a new method, choose the Element
> New Method command or single-click the New Method icon.

The Method Workshop Window
The Method Workshop window consists of three parts: the method definition line,
the method source code field, and the status line.

Figure 10-1 illustrates the Method Workshop.

Figure 10-1 Method Workshop

View menu Note that the View menu in the Method Workshop provides
commands that let you specify whether to display the method definition line and
the status line. The method source field is always displayed, but you can turn the
definition and status lines on or off as you choose.

Access to Other Workshops
From the Method Workshop, you can access one other workshop:

Workshop How to access it

Class Workshop The File > Open Class… command opens the Class Workshop to
display the definition of the class to which the current method belongs.
If the class is already being displayed, the Open Class… command
moves the input focus to the appropriate Class Workshop window.

Line numbers

Breakpoints

Status line

Method

Method

definition line

source code
field

Examining a Method

576 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Leaving the Method Workshop
To leave the Method Workshop, choose the File > Close command. This command
closes the current workshop only.

To leave the Method Workshop and erase all changes you have made since your
last Save All command, choose the File > Cancel command. This closes only the
current workshop.

Examining a Method
The Method Workshop displays the definition for the current method. If the
method you wish to examine is not already displayed, you must return to the Class
Workshop to open it. See “Examining Methods” on page 298 for information about
using the Class Workshop to open the Method Workshop for a given method.

Examining Parameters and TOOL Source
The Method Workshop displays the method’s definition and TOOL source directly
on the main Workshop window.

Method definition The top line of the window displays the definition of the
method using the syntax for the TOOL method statement (see TOOL Reference
Guide for information on the method statement). The method definition shows the
method name, the method parameters, including the name, type, and mechanism
(if other than the default), and the method return type. The method definition does
not show the return and exception events for the method; you must use the
Properties… command (described under “Examining Method Properties” on
page 577) to view them.

Parameters Note that if the method definition is not currently displayed in the
workshop window, you can turn it on with the View > Parameters command. This
command lets you control whether or not the method definition is displayed in the
current workshop. Your code preferences (see “Setting Code Preferences” on
page 590) determine whether the method definition line is automatically displayed
when you enter the workshop.

Creating a Method

Chapter 10 Using the Method Workshop 577

When the method definition is displayed, the parameter list may be too long to be
completely displayed. In this case, you can scroll horizontally to view the complete
definition.

Note that you can use the text editing commands to copy parameter text from the
method definition and paste it into the source code of a different, calling method.

TOOL source code The lower section of the window displays the source code for
the method. The TOOL source code field is a multiline text field, which you can
scroll to view the entire method. Your code preferences (see “Setting Code
Preferences” on page 590) determine whether line numbers and breakpoints are
automatically displayed when you enter the workshop.

Viewing line numbers If line numbers are not currently displayed for the source
code, you can turn them on with the View > Line Numbers command.

Viewing breakpoints If the breakpoints are not currently displayed for the
source code, you can turn them on with the View > Breakpoints command.

Searching for a line If you wish to search for specific lines in the method, you
can use the Edit > Go to Line or Find commands (see “Editing a Method” on
page 582 for information).

Examining Method Properties
To view the method’s properties, choose the File > Properties… command. This
command opens the Method Properties dialog, which displays the method’s name,
parameters, return type, return event, exception event, and visibility.

Creating a Method
To create a new method, you must start from the Class Workshop. Unless you
already have write access to the class, you must use the Project Workshop to check
out or branch the class before you can create a new method for it. See “Write Access
to Project Components” on page 257 for information on this.

Creating a Method

578 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To create a new method

1. In the Class Workshop, choose the Element > New Method command or
single-click the New Method tool.

2. The Method Properties dialog appears.

3. In the Method Properties dialog, enter the method’s name. The return type,
return event, exception event, and parameters are optional.

4. Click the OK button to add the method to the class and open the Method
Workshop.

The next section provides information about how to fill in the Method Properties
dialog, followed by information about how to enter the method source code.

Converter methods The procedure for creating converter methods is different
than the procedure described above (see “Creating a Converter Method” on
page 318 for information). However, the section “Writing the Method Source
Code” on page 580 applies both to standard methods and converter methods.

Creating a Method

Chapter 10 Using the Method Workshop 579

Specifying Method Properties
Method Name property The method name is any legal iPlanet UDS name.
Unless you wish to override the method, the name must be unique for the public
names of its superclasses.

Overriding an inherited method If you specify the name of an inherited method,
the new method you are creating will override the inherited method.

Private property By default, a method is public, which means all the other classes
in the project have access to the method. The Private toggle lets you set the
method’s visibility to private. A private method can be accessed only by the class
that defines it, not by any of the other classes in the project (not even by any of its
subclasses). Creating a private method essentially prevents the method from being
inherited.

Return Type property The Return type field lets you specify the type for the
return value of the method. This fillin field allows you to choose one of the
standard data types (see “Using iPlanet UDS Data Types” on page 132) or type in a
class name. The Copy toggle allows you to specify whether or not an object return
value should be a copy. If you are overriding a method, you must specify the same
return type as the inherited method or leave the field blank.

Return Event property The Return Event field lets you specify a name to use for
the method’s return event. The return event is the event that is posted when you
invoke the method using the start task statement with the completion= event
clause and the method completes successfully. The return event name can be any
legal iPlanet UDS name. If you are overriding a method, you must leave the field
blank, because only the original method can define the return event.

Exception Event property The Exception Event field lets you specify a name to
use for the method’s exception event. The exception event is the event that is
posted when you invoke the method using the start task statement with the
completion= event clause and the method is terminated due to any exception.
The exception event can be any legal iPlanet UDS name. If you are overriding a
method, you must leave the field blank, because only the original method can
define the exception event.

Creating a Method

580 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Method parameters To specify the method’s parameters, you fill in an array field
that specifies the name, type, mechanism, and optional default value for each
parameter. The following table describes how to fill in the array field:

Writing the Method Source Code
To write the method source code, you can either type the TOOL code directly into
the source field, or you can write the method in a text file and then use the Import
Text command to copy it into the source field. See “Importing and Exporting a
Method” on page 588 for information on the Import Text command.

Exception handler for method The method code in Method Workshop is
enclosed by an implicit begin/end statement (even though you do not see the
begin and end key words in the method code). Therefore, if you want to add an
exception handler for the method, simply put the exception section at the end of
the method. The following example illustrates:

Property How to fill it in

Parameter Name The Parameter Name field is a data field. Simply type in any legal
iPlanet UDS name.

Type The Type field is a fillin field that allows you to choose one of the
standard data types or type in a class name.

Mechanism By default, the mechanism for a parameter is input only. If you wish
to choose a different mechanism or if you wish to use the copy
option for a parameter of a class type, you can choose the
appropriate mechanism from the drop list.

Default Value If you wish to make a parameter optional, you can specify a default
value for it. The default value for the parameter must be compatible
with the parameter’s data type. For parameters with a class data
type, the default value must be “NIL,” which means “no object.” If
you leave the default value blank, the parameter is required.

Creating a Method

Chapter 10 Using the Method Workshop 581

Typing TOOL Code

Text editing The source code field is an iPlanet UDS text edit field. To type your
method directly into the field, simply position the cursor in the source code field
and start typing. To end a line, use the Return character. To indent a new line, use
the tab character. In the Method Workshop, the tab character is always set to four
character spaces.

Editing shortcut keys The Method Workshop provides text edit shortcut keys,
which you can use to select text and move the cursor. In addition, the Edit menu
provides editing commands for modifying the method source. See “Editing the
TOOL Source Code” on page 583 for information on the shortcut keys and the Edit
menu.

Drag and drop names A convenient way to enter text into the source code field is
to drag the names of project components or class elements displayed in other
workshops and drop them into the source code field. Dragging and dropping
project components allows you to quickly copy the names rather than keying them
in.

Automatic indenting If you have your code preferences set with automatic
indenting turned on, each line that you type in the source code field will
automatically be indented with the same number of tabs as the line it follows. If
you have your preferences set with automatic indenting turned off, each line that
you type will be aligned with the left margin. In this case, you must enter tabs or
use spaces to indent the line or, after entering the code, you can use the Indent and
Unindent commands (described under “Editing a Method” on page 582) to control
the indenting of selected blocks of code. See “Setting Code Preferences” on
page 590 for information on automatic indenting.

Code Example 10-1 Exception Handler Example

ImageStatusMessage.SetValue(‘Requesting Image.’);
PaintingImage = self.ImageManager.GetImage

(name = self.thePaintingForBid.Name);
exception
when e : GenericException do
ImageStatusMessage.SetValue(‘Image not available.’);
task.ErrorMgr.Clear();

Setting Breakpoints

582 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Setting Breakpoints
The Method Workshop allows you to set statement breakpoints in your method
source code. You can set your breakpoints before running the Debugger or while
the Debugger is running.

Before you can set any breakpoints, you must be sure that:

• The breakpoints column in the source code field is displayed. If it is not
displayed, you can turn it on with the View > Breakpoints command.

• The method is compiled. If the method has not been compiled, you can
compile the method with the File > Compile command.

You will know that you can set a breakpoint on a statement if a grey stop sign icon
is displayed in the column next to the statement. If the grey breakpoint icons are
not displayed, the method needs to be compiled before you can set breakpoints.
See “Compiling the Method” on page 589 later in this chapter for information
about using the Compile command.

➤ To set a breakpoint for a statement

1. Scroll to the statement where you want the breakpoint.

2. Click the grey icon to the left of the statement. A red stop sign icon indicates
that the statement now has a breakpoint.

Removing a breakpoint To remove a breakpoint, simply click the stop sign icon.
A grey toggle indicates that the statement no longer has a breakpoint. You can
remove breakpoints in the Method Workshop at any time, even while the
Debugger is running.

Note that you can also remove breakpoints from a method while you are in the
Debugger by using the Global Breakpoint Manager (see “Setting Breakpoints” on
page 640 for information on the Global Breakpoint Manager).

Editing a Method
To edit a method, you must start from the Class Workshop. Unless you already
have write access to the class, you must use the Project Workshop to check out or
branch the class before you can edit the method. See “Write Access to Project
Components” on page 257 for information on this.

Editing a Method

Chapter 10 Using the Method Workshop 583

➤ To edit a method

1. In the Class Workshop, double-click on the method name, or select the method
name and choose the Element > Open command.

2. When the Method Workshop opens, you can edit the method by changing its
source code or by changing the method’s properties.

Editing the TOOL Source Code
The Method Workshop provides the following text editing shortcuts:

Function Shortcut on Windows/Motif

Select one character to the left Shift-Left Arrow

Select one character to the right Shift-Right Arrow

Select one line down Shift-Down Arrow

Select one line up Shift-Up Arrow

Select from the cursor position to the beginning
of the current word

Shift-Ctrl-Left Arrow

Select from the cursor position to the end of the
current word

Shift-Ctrl-Right Arrow

Select from the cursor position to the beginning
of the current line

Shift-Home

Select from the cursor position to the end of the
current line

Shift-End

Select from the cursor position to the beginning
of the text

Shift-Ctrl-Home

Select from the cursor position to the end of the
text

Shift-Ctrl-End

Select all text Ctrl-A

Move cursor to the beginning of the line Home

Move cursor to the end of the line End

Move cursor one word to the left Ctrl-Left Arrow

Move cursor one word to the right Ctrl-Right Arrow

Move cursor to the beginning of the text Ctrl-Home

Move cursor to the end of the text Ctrl-End

Editing a Method

584 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Edit menu The Edit menu in the Method Workshop provides a set of basic
commands for editing the method. These commands allow you to use the window
system clipboard to cut, copy, and paste text, to search for and replace text, and to
change indenting of selected lines.

Text Editing
The Edit menu provides the following commands for editing the text:

The Cut, Copy, and Paste commands use the clipboard provided by your window
system.

Searching and Replacing
There are two ways to move the cursor to a particular line in your code. You can
use the Go to Line… command to go directly to the specified line number or you
can use the Find… command to search for a particular string. The Replace…
command lets you replace a search string with a new string.

The Go to Line… command prompts you to enter the number of the line to which
you wish to move. After you specify the line number, iPlanet UDS moves the
cursor to the first character of the line. If your line numbers are not currently
displayed, you can use the View > Line Numbers command.

The Edit > Find… command lets you search for a particular string. When you give
the Find… command, iPlanet UDS opens the Find dialog, where you specify the
search string. The Find… command then searches for the string starting from the
current insertion point. When it finds the string, iPlanet UDS highlights the string.
Figure 10-2 illustrates the Find dialog:

Command Description

Undo Removes your last edit.

Redo Makes the edit you removed with the Undo command.

Cut Removes the selected text and copies it into the clipboard.

Copy Copies the selected text into the clipboard.

Paste Inserts the current contents of the clipboard into the method.

Delete Removes the selected text.

Editing a Method

Chapter 10 Using the Method Workshop 585

Figure 10-2 Find Dialog

Case Sensitive option By default, the Find… command is case insensitive. If you
want to match the case used in the search string, click on the Case Sensitive toggle
in the Find dialog.

Wrap Around option By default, the Find… searches from the current insertion
point to the end of the method source code. If you wish to search past the end and
start from the beginning of the method source code, click on the Wrap Around
toggle.

Find Again command If you wish to move to the next occurrence of the string
you searched for in the last Find… command without opening the Find dialog, you
can simply give the Find Again command. This command uses the search string
you specified in your last Find… command. The Find Again command is especially
useful with its speed key.

Replace… command The Edit > Replace… command lets you search for a
particular string and replace that string with a new string. When you give the
Replace… command, iPlanet UDS opens the Replace dialog, where you specify the
search and replace strings. You then have the choice of using the Replace button to
replace the first occurrence of the search string or the Replace All button to replace
all occurrences of the search string within the method. Figure 10-3 shows the
Replace dialog:

Figure 10-3 Replace Dialog

Editing a Method

586 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Depending on your code preferences, the Replace command works in one of two
modes: Find After mode or Find Before mode. (See “Setting Code Preferences” on
page 590 for information on setting the Replace modes.)

Find After mode By default, the Method Workshop uses Find After mode. In this
mode, the Replace command replaces the currently selected text and then
automatically finds the next occurrence of the search string. Find After mode
allows you to check the search string in context before you actually make the
replacement.

Find Before mode If your code preferences are set to use the Find Before mode,
the Replace command searches for the next occurrence of the search string and
then automatically performs the replacement. Find Before mode allows you to
check the replacement in context before moving on to the next occurrence of the
search string.

Replace Again command If you wish to replace the next occurrence of a string
without opening the Replace dialog, you can simply give the Replace Again
command. This command uses the search and replace strings you specified in your
last Replace… command, and performs the replacement according to the current
Replace mode. In fact, giving the Replace Again command is the same as clicking
the Replace button on the Replace dialog. The Replace Again command is
especially useful with its speed key.

Indenting
The indenting commands let you move the currently selected lines of code down or
up one level.

The Indent command moves the currently selected lines down one level by
inserting a tab character at the start of each selected line.

The Unindent command moves the currently selected lines up one level by
deleting a tab character from the start of each selected line.

Cancelling Your Changes
If you ever make a set of edits that you want to erase completely, you can use the
File > Cancel command to revert to a previous version of the method. The Cancel
command erases all changes you made to the method since you last saved your
workspace or, if you have not given a Save All command, since you last opened the
method.

Editing a Method

Chapter 10 Using the Method Workshop 587

Editing the Method’s Properties
To edit the method’s properties, choose the File > Properties… command. This
command opens the Method Properties dialog, where you can make any
appropriate changes.

Editing the Parameters
The method’s parameters are displayed in the array field in the Method Properties
dialog. You can change the existing parameters or add new ones to the end of the
list.

Insert button If you wish to add a new parameter to the middle of the list, you
can use the Insert button.

➤ To add a new parameter

1. Select the parameter above which you wish to add the new parameter.

2. Click the Insert button.

3. Fill in the new row in the array field.

Delete button If you wish to delete a parameter from the list, you can use the
Delete button.

➤ To delete a parameter

1. Select the parameter you wish to delete.

2. Click the Delete button.

Importing and Exporting a Method

588 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Importing and Exporting a Method
iPlanet UDS lets you write a method or part of a method in an external text file and
then import it into the Method Workshop. You can also copy part or all of a
method to an external text file for use outside of iPlanet UDS.

Importing TOOL Code
Use the Import Text… command to insert the contents of a text file into the method
source. You can then edit the text as desired.

➤ To import method text

1. Position the cursor at the point where you wish to insert the imported text.

2. Choose the Edit > Import Text… command.

3. In the File Selection dialog, select the file that you wish to import.

Exporting TOOL Code
Use the Export Text… command to write a method or a section of a method to a
text file. This command writes the currently selected text into the file you specify. If
you do not select any text, the Export Text… command exports the entire method.

➤ To export method text

1. Select the text you wish to export.

2. Choose the Edit > Export Text… command.

3. In the File Selection dialog, specify the file name to which you wish to export
the text.

If you specify a new file name, the Export Text… command creates the file. If you
specify an existing file, the Export Text… command overwrites the file.

Compiling the Method

Chapter 10 Using the Method Workshop 589

Compiling the Method
After writing the method, you can compile it to check for errors. While it is not
necessary to compile your method before you run the project, the Compile
command allows you to check for syntax errors without actually executing the
code. To compile the method, simply choose the File > Compile command. iPlanet
UDS compiles the method and reports any errors in the Error window.

Finding an error The Error window displays the compilation errors messages for
the method in an outline field.

Figure 10-4 Error Window

You can jump directly from one of these messages to the code that caused the error.
In the Error window, double-click the error you wish to find. The Method
Workshop will then move the cursor to the line that contains the code that caused
the error.

You can keep the Error window open as long as you need it. When you are finished
using the window, simply close the window.

Setting Code Preferences

590 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Setting Code Preferences
The Method Workshop allows you to set code preferences that are saved as part of
your current workspace. The code preferences that you set in the Method
Workshop take effect for the current Method Workshop and all Method, Event
Handler, and Cursor Workshops that are opened in the future from the same
workspace. However if any other Method, Event Handler, or Cursor Workshops
are already open, their code preferences will not be changed.

To set the code preferences, choose the File > Workshop Preferences… command.
This command opens the Code Workshops Preferences dialog, where you can set
any number of preferences.

Figure 10-5 Code Workshops Preferences Dialog

The code preferences fall into the following general categories:

• workshop window size and positions

• replacement mode

• viewing preferences

• automatic indenting

• font preference

The workshop window size and position, viewing, and font preferences are
general iPlanet UDS preferences and are described under “Setting Workshop
Preferences” on page 136. This section provides information about the preferences
specific to the Code Preferences dialog.

Setting Code Preferences

Chapter 10 Using the Method Workshop 591

Replace Mode
As described under “Editing a Method” on page 582, you can choose one of two
modes for the Replace command. The Find Before mode performs the search before
the replace. The Find After mode performs the replace on the currently selected
text. To change the replace mode for the workspace, simply choose the appropriate
mode from the drop list.

Automatic Indenting
By default, the workshop provides automatic indenting for your source code. Each
line you type is automatically indented to the same level as the one it follows. If
you wish to turn this feature off, set the Auto Indent preference to off. When
automatic indenting is off for the workshop, each line you type in the source code
field is aligned with the left margin.

Replace Mode Definition

Find Before When you give the Replace command, iPlanet UDS moves to the next
occurrence of the “Find” string before performing the replacement.

Find After When you give the Replace command, iPlanet UDS performs the
replacement on the currently selected “Find” string and then finds the
next occurrence of the string.

Setting Code Preferences

592 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

593

Chapter 11

Using the Event Handler Workshop

This chapter provides background information about named event handlers and
describes how to use the Event Handler Workshop.

In this chapter, you will learn how to:

• examine an event handler

• create an event handler

• write the event handler source

• edit an event handler

• import and export an event handler

• compile an event handler

About Event Handlers
An event handler is a named block of TOOL code that provides the logic to be
executed in response to one or more events. The event handler provides reusable,
modular event handling code that you can include in any number of event
statements. For example, the following event handler performs field and cross-field
validation for some widgets:

About Event Handlers

594 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 11-1 Example Event Handler

To see this event handler in context, see the ArtObjectHandler method in the
ArtObjectWindow class in the iPlanet UDS example program NestedWindow.

register statement The TOOL register statement allows you to include an event
handler at any point within an event statement or in another event handler. The
following example illustrates using the register statement to include the
ArtObjectHandler event handler in an event loop statement:

Code Example 11-1 Event Handler example

event loop

preregister
-- Include the ArtObjectWindow’s event handler in this
-- event loop.

 register ArtObjectWindow.ArtObjectHandler
 (artType = ’Sculpture’);

when task.Shutdown do
exit;

...
end event;

Project: NestedWindow • Class: SellWindow • Method: Display

About Event Handlers

Chapter 11 Using the Event Handler Workshop 595

An event handler is associated with a particular class. Storing named event
handlers as part of a class definition allows you to provide event handling code
that is inherited by subclasses. This is especially useful when you are creating
window classes that inherit part of their physical layout from a superclass. When
the event handlers are inherited along with the widgets, the window classes inherit
the appropriate event handling code for the widgets they have inherited. For
example, the following Display method for an inherited window uses its own
event handlers as well as event handlers inherited from its superclass.

Event handlers are also useful for storing event handling code in a modular,
reusable form. For example, the event loop from the iPlanet UDS example program
NestedWindow, shown earlier in this chapter, uses an event handler that is also
used elsewhere in that application.

All event handlers consist of a name and TOOL event handling code to be included
in one or more event statements. Some handlers also include parameters, which
allow the programmer to pass information to the event handler, such as the object
for which the events are being handled.

Code Example 11-2 Display Method Using Inherited Event Handler

-- This window is inherited from DataEntryWindow. The fields
-- related to the ArtObject object were added. This event loop
-- registers event handlers on self (that relate to the
-- art object) and event handlers on super (which handle
-- generic button events).

self.Open();

event loop

preregister
register self.ArtObjectHandler();

register self.ResetHandler();

-- Use the inherited event handler to handle exit
-- button events.
register super.ExitHandler();

end event;
self.Close();

Project: InheritedWindow • Class: ArtDataEntryWindow • Method: Display()

About Event Handlers

596 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Overriding event handlers iPlanet UDS allows you to override an inherited
handler. Overriding a handler means creating a handler for the current class that
has the same name and parameters as a handler it inherited from one of its
superclasses. By providing different source code for an inherited handler, you are
creating a different implementation of the handler for objects of the current class.
When you include the handler in method code for the current class, iPlanet UDS
uses the handler you defined specifically for the class rather than the inherited
handler.

No overloading iPlanet UDS does not allow you to overload event handlers.
There can only be one event handler with a given name in the class.

Event handler visibility By default, the event handlers in a class are public,
which means that any other classes in the project, or classes that use this project as
a supplier, can access them. iPlanet UDS provides the option of defining any event
handler as “private.” A private event handler can be accessed only by the class that
defines it, not by any other classes (even its own subclasses). Only methods in the
current class can include a private event handler.

Event handler components An event handler consists of the following
components:

The following sections provide detailed information about these components.

Component Description

name The name the programmer will use to include the event handler in an
event statement using the register statement.

parameters Used by the programmer to provide input values to the event handler,
such as the object for which the events are being handled.

source code The code for handling one or more events plus optional preregister
and postregister clauses.

About Event Handlers

Chapter 11 Using the Event Handler Workshop 597

Event Handler Name
Overriding an inherited event handler The event handler name is the name you
must use to reference the event handler in an event statement or another event
handler. The name you choose for the event handler is very important because if
you use the name of an inherited event handler, you will be overriding the
inherited event handler. If you do not wish to override the inherited event handler,
you should not use the existing name.

No overloading Unlike method handlers, there is no overloading for event
handlers. There can only be one event handler with a given name in a class.

Of course, when you are writing an event handler that overrides another and you
wish to register the very event handler that you are overriding, you can do this by
using the super key word. See the register statement in the TOOL Reference Guide
for information on registering an inherited event handler.

Event Handler Parameters
A event handler may have any number of input parameters. These parameters
provide input values for the event handler, such as a reference to the object for
which to handle the events.

Parameter name and type Every parameter has a name and a type. The name
identifies the parameter and is for use when the handler is included in an event
statement or another event handler using the register statement. The type
specifies the type of value allowed for the parameter, which can be any simple data
type or any class.

Class type parameters When the type of a parameter is a class, iPlanet UDS
passes a reference to the object, not the object itself. Therefore, even though the
parameter is for input only, if the event handler makes changes to the object, these
changes are reflected when you exit the event handler. Both the invoking method
and the event handler are referencing the same object.

Copy option The copy mechanism for a parameter allows you to prevent the
event handler from referencing the same object as the method. When you specify
the copy mechanism for a class type parameter, iPlanet UDS makes a copy of the
object and passes a reference to that copy as the parameter.

About Event Handlers

598 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Default value By default, the parameters defined on an event handler are
required parameters. However, if you wish to make a parameter optional, you can
specify a default value for the parameter. iPlanet UDS uses this value for the
parameter when this parameter is excluded from the parameter list. The default
value for the parameter must be compatible with the parameter’s data type. For
parameters with a class data type, the default value must be NIL, which means “no
object.”

Event Handler Source
The source of the handler is where you provide code to handle one or more events.
To write the event handler, you use TOOL, the iPlanet UDS object-oriented
programming language. See the TOOL Reference Guide for complete information on
the language.

The syntax for the event handler source is:

[preregister statement_list]...
[[postregister] statement_list]
[when event_specification do statement_block]...
[exception_handler]

preregister clause The optional preregister clause provides a list of statements
to be executed before iPlanet UDS registers the events in the when clause list. The
preregister clause is especially useful for including other named event handlers
in the current event handler definition using the register statement.

postregister clause The optional postregister clause provides a list of
statements to be executed after iPlanet UDS registers the events in the when clause
list, but before the events are handled by the event handler. The postregister
clause is useful for ensuring that the code that posts an event is always executed
before the event handler attempts to handle the event.

when clause The when clause identifies an event that you wish to handle and
provides the corresponding code for that particular event. First, you must specify
which event that you wish to receive. Second, you can declare a series of variables
to receive the parameters that will be passed with the event. Finally, you must
provide the statement block to be executed when the event is triggered. An event
handler can include any number of when clauses for different events.

Exception handler The exception handler for the event handler statement
provides exception handling for the event handler as a whole.

Using the Event Handler Workshop

Chapter 11 Using the Event Handler Workshop 599

For a complete discussion of how to write the source for an event handler, see the
event handler statement in the TOOL Reference Guide.

Statement breakpoints When you are entering your event handler source code in
the Event Handler Workshop, you can set statement breakpoints in the code for
use with the Debugger. The breakpoints that you set in the Event Handler
Workshop take effect in the Debugger every time the event handler is executed by
the application.

Statement breakpoints added in the Event Handler Workshop are persistent.
Persistent breakpoints stay in effect until you remove them from the event handler.
You can remove the persistent breakpoints either from the Event Handler
Workshop or from the Debugger.

Setting breakpoints for an event handler is exactly the same as setting breakpoints
for a method. See “Setting Breakpoints” on page 582 for information about how to
set breakpoints.

Using the Event Handler Workshop
You enter the Event Handler Workshop from the Class Workshop either by
opening an existing event handler or by creating a new event handler.

Opening an existing event handler If you wish to examine or edit an existing
event handler, double-click the event handler name, or click the event handler
name and choose the Element > Open command.

Creating a new event handler If you wish to create a new event handler, choose
the Element > New > Event Handler command or single-click the New Event
Handler tool.

The Event Handler Workshop Window
The Event Handler Workshop window consists of three parts: the event handler
definition line, the event handler source code field, and the status line.

Figure 11-2 illustrates the Event Handler Workshop.

Using the Event Handler Workshop

600 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 11-2 Event Handler Workshop

View menu Note that the View menu in the Event Handler Workshop provides
commands that let you specify whether to display the handler definition line and
the status line. The event handler source field is always displayed, but you can turn
the definition and status lines on or off as you choose.

Access to Other Workshops
From the Event Handler Workshop, you can access one other workshop:

Leaving the Event Handler Workshop
To leave the Event Handler Workshop and save all your changes, choose the File >
Close command. This closes only the current workshop.

To leave the Event Handler Workshop and erase all changes you have made since
your last Save All command, choose the File > Cancel command. This closes only
the current workshop.

Workshop How to access it

Class Workshop The File > Open Class… command opens the Class Workshop to
display the definition of the class to which the current event handler
belongs. If the class is already being displayed, the Open Class…
command moves the input focus to the appropriate Class Workshop
window.

Status line

Breakpoints

Line numbers

Event handler

Source code

definition

field

Examining an Event Handler

Chapter 11 Using the Event Handler Workshop 601

Examining an Event Handler
The Event Handler Workshop displays the definition for the current event handler.
If the event handler you wish to examine is not already displayed, you must return
to the Class Workshop to open the event handler.

➤ To examine an event handler

1. In the Class Workshop, double-click on the event handler name, or select the
event handler name and choose the Element > Open command.

2. When the Event Handler Workshop, you can view the original handler
definition, including the handler source code.

Examining Parameters and TOOL Source Code
The Event Handler Workshop displays the event handler’s definition and TOOL
source directly on the main Workshop window.

Definition The top line of the window displays the definition of the event
handler using the syntax for the TOOL event handler statement (see TOOL
Reference Guide for information on the event handler statement).

The event handler definition shows the event handler name and the event handler
parameters, including the name and type.

Viewing parameters Note that if the event handler definition is not currently
displayed in the workshop window, you can turn it on with the View > Parameters
command. This command lets you control whether or not the event handler
definition is displayed in current workshop. Your code preferences (see “Setting
Code Preferences” on page 590) determine whether the event handler definition
line is automatically displayed when you enter the workshop.

When the event handler definition is displayed, the parameter list may be too long
to be completely displayed. In this case, you can scroll horizontally to view the
complete definition.

Note that you can use the text editing commands to copy parameter text from the
event handler definition and paste it into your source code.

TOOL source code The lower section of the window displays the source code for
the event handler. This is a multiline text field, which you can scroll to view the
entire method. Your preferences for the workshop (see “Setting Code Preferences”
on page 612) determine whether line numbers and breakpoints are automatically
displayed when you enter the workshop.

Creating an Event Handler

602 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Viewing line numbers If line numbers are not currently displayed for the source
code, you can turn them on with the View > Line Numbers command.

Viewing breakpoints If the breakpoints are not currently displayed for the
source code, you can turn them on with the View > Breakpoints command.

Searching for a line If you wish to search for specific lines in the event handler,
you can use the Edit > Go to Line or Find commands (see “Editing an Event
Handler” on page 605 for information).

Examining Event Handler Properties
To view the event handler’s properties, choose the File > Properties… command.
This command opens the Event Handler Properties dialog, which displays the
event handler’s name, parameters, and visibility.

Creating an Event Handler
To create a new event handler, you must start from the Class Workshop. Unless
you already have write access to the class, you must use the Project Workshop to
check out or branch the class before you can create a new event handler for it. See
“Write Access to Project Components” on page 257 for information.

➤ To create a new event handler

1. In the Class Workshop, choose the Element > New Event Handler command or
single-click the New Event Handler tool.

The Event Handler Properties dialog opens.

Creating an Event Handler

Chapter 11 Using the Event Handler Workshop 603

2. In the Event Handler Properties dialog, enter the event handler’s name. The
parameters and visibility are optional.

3. Click the OK button to add the event handler to the class and open the Event
Handler Workshop.

The next section provides information about how to fill in the Event Handler
Properties dialog. This is followed by information about how to enter the event
handler source code.

Specifying Event Handler Properties
Event Handler Name property The event handler name is any legal iPlanet UDS
name. Unless you wish to override the event handler, the name must be unique for
the public names of its superclasses.

Overriding an inherited event handler If you specify the name of an inherited
event handler, the new event handler you are creating will override the inherited
event handler.

Private property By default, an event handler is public, which means all the other
classes in the project have access to the event handler. The Private toggle lets you
set the event handler’s visibility to private. A private event handler can be accessed
only by the class that defines it, not by any of the other classes in the project (not
even by any of its subclasses). This essentially prevents the event handler from
being inherited.

Event handler parameters To specify the event handler’s parameters, you fill in
an array field that specifies the name, type, mechanism, and optional default value
for each parameter. The following table describes how to fill in the array field:

Column How to fill it in

Parameter Name The Parameter Name field is a data field. Simply type in any legal
iPlanet UDS name.

Type The Type field is a fillin field that allows you to choose one of the
standard data types (described in Chapter 2) or type in a class name.

Mechanism If you wish to use the copy option for a parameter of a class type, you
can choose this option.

Creating an Event Handler

604 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Event Handler Source Code
To write the event handler source code, you can either type the TOOL code directly
into the source field, or you can write the event handler in a text file and then use
the Import Text command to copy it into the source field. See “Importing and
Exporting an Event Handler” on page 610 for information on the Import Text
command.

Typing TOOL Code
Text editing The source code field is an iPlanet UDS text edit field. To type your
event handler directly into the field, simply position the cursor in the source code
field and start typing. To end a line, use the Return character. To indent a new line,
use the tab character. In the Event Handler Workshop, the tab character is always
set to four character spaces.

Editing shortcut keys The Event Handler Workshop provides text edit shortcut
keys, which you can use to select text and move the cursor. In addition, the Edit
menu provides editing commands for modifying the method source. See “Editing
the TOOL Source Code” on page 605 for information on the shortcut keys and the
Edit menu.

Drag and drop names Another way to enter text into the source code field is to
drag the names of project components or class elements displayed in other
workshops and drop them into the source code field. This allows you to quickly
copy the names rather than keying them in.

Automatic indenting If you have your code preferences set with automatic
indenting turned on, each line that you type in the source code field will
automatically be indented with the same number of tabs as the line it follows. If
you have your code preferences set with automatic indenting turned off, each line
that you type will be aligned with the left margin. In this case, you must use tabs or

Default Value If you wish to make a parameter optional, you can specify a default
value for it. The default value for the parameter must be compatible
with the parameter’s data type. For parameters with a class data type,
the default value must be “NIL,” which means “no object.” If you
leave the default value blank, the parameter is required.

Column How to fill it in

Editing an Event Handler

Chapter 11 Using the Event Handler Workshop 605

spaces to indent the line or, after entering the code, you can use the Indent and
Unindent commands (described under “Editing an Event Handler”) to control the
indenting of selected blocks of code. See “Setting Code Preferences” on page 590
for information on automatic indenting.

Editing an Event Handler
To edit an event handler, you must start from the Class Workshop. Unless you
already have write access to the class, you must use the Project Workshop to check
out or branch the class before you can edit the event handler. See “Write Access to
Project Components” on page 257 for information.

➤ To edit an event handler

1. In the Class Workshop, double-click on the event handler name, or select the
event handler name and choose the Element > Open command.

2. When the Event Handler Workshop opens, you can edit the event handler by
changing its source code or by changing the event handler’s properties.

Editing the TOOL Source Code
Edit shortcut keys The Event Handler Workshop provides the following text
editing shortcuts:

Function Shortcut on Windows/Motif

Select one character to the left Shift-Left Arrow

Select one character to the right Shift-Right Arrow

Select one line down Shift-Down Arrow

Select one line up Shift-Up Arrow

Select from the cursor position to the beginning of
the current word

Shift-Ctrl-Left Arrow

Select from the cursor position to the end of the
current word

Shift-Ctrl-Right Arrow

Select from the cursor position to the beginning of
the current line

Shift-Home

Editing an Event Handler

606 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Edit menu The Edit menu in the Event Handler Workshop provides a set of basic
commands for editing the method. These commands allow you to use the window
system clipboard to cut, copy, and paste text, to search for and replace text, and to
change indenting of selected lines.

Text Editing
The Edit menu provides the following commands for editing the text:

Select from the cursor position to the end of the
current line

Shift-End

Select from the cursor position to the beginning of
the text

Shift-Ctrl-Home

Select from the cursor position to the end of the
text

Shift-Ctrl-End

Select all text Ctrl-A

Move cursor to the beginning of the line Home

Move cursor to the end of the line End

Move cursor one word to the left Ctrl-Left Arrow

Move cursor one word to the right Ctrl-Right Arrow

Move cursor to the beginning of the text Ctrl-Home

Move cursor to the end of the text Ctrl-End

Command Description

Undo Removes your last edit.

Redo Makes the edit you removed with the Undo command.

Cut Removes the selected text and copies it into the clipboard.

Copy Copies the selected text into the clipboard.

Paste Inserts the current contents of the clipboard into the method.

Delete Removes the selected text.

Function Shortcut on Windows/Motif

Editing an Event Handler

Chapter 11 Using the Event Handler Workshop 607

The Cut, Copy, and Paste commands use the clipboard provided by your window
system.

Searching and Replacing
There are two ways to move the cursor to a particular line in your code. You can
use the Go to Line… command to go directly to the specified line number or you
can use the Find… command to search for a particular string. The Replace…
command lets you replace a search string with a new string.

The Go to Line… command prompts you to enter the number of the line to which
you wish to move. After you specify the line number, iPlanet UDS moves the
cursor to the first character of the line. If your line numbers are not currently
displayed, you can use the View > Line Numbers command.

The Edit > Find… command lets you search for a particular string. When you give
the Find… command, iPlanet UDS opens the Find dialog, where you specify the
search string. The Find… command then searches for the string starting from the
current insertion point. When it finds the string, iPlanet UDS highlights the string.
Figure 11-3 illustrates the Find dialog:

Figure 11-3 Find Dialog

Case Sensitive option By default, the Find… command is case insensitive. If you
want to match the case used in the search string, click on the Case Sensitive toggle
in the Find dialog.

Wrap Around option By default, the Find… searches from the current insertion
point to the end of the method source code. If you wish to search past the end and
start from the beginning of the method source code, click on the Wrap Around
toggle.

Editing an Event Handler

608 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

If you wish to move to the next occurrence of the string you searched for in the last
Find… command without opening the Find dialog, you can simply give the Find
Again command. This command uses the search string you specified in your last
Find… command. The Find Again command is especially useful with its speed
key.

The Edit > Replace… command lets you search for a particular string and replace
that string with a new string. When you give the Replace… command, iPlanet UDS
opens the Replace dialog, where you specify the search and replace strings. You
then have the choice of using the Replace button to replace the first occurrence of
the search string or the Replace All button to replace all occurrences of the search
string within the method. Figure 11-4 shows the Replace dialog:

Figure 11-4 Replace Dialog

Depending on your code preferences, the Replace command works in one of two
modes: Find After mode or Find Before mode. (See “Setting Code Preferences” on
page 590 for information on setting the Replace modes.)

Find After mode By default, the Event Handler Workshop uses Find After mode.
In this mode, the Replace command replaces the currently selected text and then
automatically finds the next occurrence of the search string. Find After mode
allows you to check the search string in context before you actually make the
replacement.

Find Before mode If your code preferences are set to use the Find Before mode,
the Replace command searches for the next occurrence of the search string and
then automatically performs the replacement. Find Before mode allows you to
check the replacement in context before moving on to the next occurrence of the
search string.

Editing an Event Handler

Chapter 11 Using the Event Handler Workshop 609

If you wish to replace the next occurrence of a string without opening the Replace
dialog, you can simply give the Replace Again command. This command uses the
search and replace strings you specified in your last Replace… command, and
performs the replacement according to the current Replace mode. In fact, giving
the Replace Again command is the same as clicking the Replace button on the
Replace dialog. The Replace Again command is especially useful with its speed
key.

Indenting
The indenting commands let you move the currently selected lines of code down or
up one level.

The Indent command moves the currently selected lines down one level by
inserting a tab character at the start of each selected line.

The Unindent command moves the currently selected lines up one level by
deleting a tab character from the start of each selected line.

Cancelling Your Changes
If you ever make a set of edits that you want to erase completely, you can use the
File > Cancel command to revert to a previous version of the event handler. The
Cancel command erases all changes you made to the event handler since you last
saved your workspace or, if you have not given a Save All command, since you last
opened the event handler.

Editing the Event Handler’s Properties
To edit the event handler’s properties, choose the File > Properties… command.
This opens the Event Handler Properties dialog, where you can make any
appropriate changes.

Editing the Parameters
The event handler’s parameters are displayed in the array field in the Event
Handler Properties dialog. You can change the existing parameters or add new
ones to the end of the list.

Insert button If you wish to add a new parameter to the middle of the list, you
can use the Insert button.

Importing and Exporting an Event Handler

610 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To insert a parameter

1. Select the parameter above which you wish to add the new parameter.

2. Click the Insert button.

3. Fill in the new row in the array field.

Delete button If you wish to delete a parameter from the list, you can use the
Delete button.

➤ To delete a parameter

1. Select the parameter you wish to delete.

2. Click the Delete button.

Importing and Exporting an Event Handler
iPlanet UDS lets you write an event handler or part of an event handler in an
external text file and then import it into the Event Handler Workshop. You can also
copy part or all of a event handler to an external text file for use outside of iPlanet
UDS.

Importing TOOL Code
Use the Import Text… command to insert the contents of a text file into the event
handler source. You can then edit the text as desired.

➤ To import event handler text

1. Position the cursor at the point where you wish to insert the imported text.

2. Choose the Edit > Import Text… command.

3. In the File Selection dialog, choose the file that you wish to import.

Exporting TOOL Code
Use the Export Text… command to write an event handler or a section of an event
handler to a text file. This command writes the currently selected text into the file
you specify. If you do not select any text, the Export Text… command exports the
entire event handler.

Compiling the Event Handler

Chapter 11 Using the Event Handler Workshop 611

➤ To export event handler text

1. Select the text you wish to export.

2. Choose the Edit > Export Text… command.

3. In the File Selection dialog, specify the file name to which you wish to export
the text.

If you specify a new file name, the Export Text… command creates the file. If you
specify an existing file, the Export Text… command overwrites the file.

Compiling the Event Handler
After writing the event handler, you can compile it to check for errors. While it is
not necessary to compile your event handler before you run the project, the
Compile command allows you to check for syntax errors without actually
executing the code. To compile the event handler, simply choose the File > Compile
command. iPlanet UDS compiles the event handler and reports any errors in the
Error window.

Finding an error The Error window displays the compilation errors messages for
the event handler in an outline field.

Setting Code Preferences

612 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

You can jump directly from one of these messages to the code that caused the error.
In the Error window, double-click the error you wish to find. The Event Handler
Workshop will then move the cursor to the line that contains the code that caused
the error.

You can keep the Error window open as long as you need it. When you are finished
using the window, simply close the window.

Setting Code Preferences
The Event Handler Workshop allows you to set code preferences that are saved as
part of your current workspace. The code preferences that you set in the Event
Handler Workshop take effect for the current Event Handler Workshop and all
Method, Event Handler, and Cursor Workshops that are opened in the future from
the same workspace. However if any other Method, Event Handler, or Cursor
Workshops are already open, these will not be changed.

To set the code preferences, choose the File > Workshop Preferences… command.
This command opens the Code Workshops Preferences dialog, where you can set
any number of preferences. See “Setting Code Preferences” on page 590 for
information about setting code preferences.

613

Chapter 12

Using the Cursor Workshop

This chapter provides background information about cursors and describes how to
use the Cursor Workshop.

In this chapter, you will learn how to:

• examine a cursor

• create a cursor

• write the cursor source

• edit a cursor

• import and export a cursor

• test a cursor

About Cursors
A cursor is a row marker that you can use for selecting and working with a set of
rows from a database. The cursor definition consists of a name and a select
statement that selects a set of rows from the database. After defining the cursor,
there are two different ways you can use it.

First, you can specify the cursor name in the TOOL for statement to repeat a
statement block for each row in the result set. The for statement automatically
opens the cursor, fetches the rows one at time as it goes through the loop, and then
closes the cursor.

About Cursors

614 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Second, you can use the TOOL sql open cursor statement to open the cursor.
Opening a cursor selects the rows from the database and positions the cursor
before the first row in the result set. You can then use the TOOL sql fetch
cursor statement to move one row at a time through the result set, and perform
any processing you wish on individual rows. When you are finished, you use the
TOOL sql close cursor command to close the cursor.

Figure 12-1 shows a cursor definition for BlobCursor in the Cursor Workshop. This
cursor selects a single column from a database table where the supplied name
parameter is like the Name column in the table. This is followed by example code
from the example, from the Windb example which shows the cursor being used to
fetch the BlobValue column from the ArtistBlob table.

Figure 12-1 Cursor Definition in Cursor Workshop

Code Example 12-1 Using a Cursor Example

rowcount : integer = 1;
binData : BinaryData = new;
blobCurs : BlobCursor;

begin transaction

sql open cursor blobCurs(name) on session self.MGRSession;
rowcount = (sql fetch cursor blobCurs into :binData);
sql close cursor blobCurs;
if rowcount = 0 then

About Cursors

Chapter 12 Using the Cursor Workshop 615

Read-only cursor By default, a cursor can be used for reading only. When you
use the sql fetch statement with a read-only cursor, you can access the values in
the row, but you cannot update or delete them. Using a read-only cursor keeps the
data available to others while you are working with the rows.

Cursor for updating However, the Cursor Workshop lets you specify that the
cursor allows updating as well as reading. Declaring a cursor for updating
provides a lock on the data to prevent inconsistencies during the update. When
you open a cursor that has been declared for updating, other users will not be able
to access the result set (and possibly other data) until you close the cursor.

You can either allow updating for all columns or limit updating to a specified list of
columns. Although it is not required, we recommend that you specify the
particular columns that can be updated. Limiting updating to a specified list of
columns allows iPlanet UDS to optimize the code and prevents updating of
columns that should not be changed.

A cursor consists of the following components:

The following sections provide detailed information about the placeholders and
cursor source.

return NIL;
end if;

end transaction;

Project: Windb • Class: ArtistBlobMgr • Method: GetArtist

Component Description

Name The name the caller will use to reference the cursor.

Placeholders Names that represent values which will be supplied at runtime.

Cursor source The cursor source consists of a select statement that selects a set of rows
from the database and an optional for clause lets you allow updating
for all columns or limit updating to a specified list of columns.

Code Example 12-1 Using a Cursor Example (Continued)

About Cursors

616 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Placeholders
A placeholder is a name that represents a value that will be supplied to the cursor’s
select statement at runtime. After declaring the placeholders, you can use them as
stand-ins in the where and having clauses of the cursor’s select statement. Finally,
when you open the cursor, you can set the values of the placeholders as part of the
sql open cursor statement.

Name and type for placeholders Each placeholder has a name and a type. The
name can be any legal iPlanet UDS name. The type can be any iPlanet UDS simple
data type or any subclass of the iPlanet UDS DataValue class.

Cursor Source
The cursor source consists of a select statement followed by an optional for clause

select statement The select statement for the cursor selects the database rows for
processing. iPlanet UDS executes this select statement when you use the sql open
cursor statement to open the cursor, and uses this select statement implicitly in a
for statement that uses the cursor. You can use the sql fetch cursor statement to
move the cursor through the result set.

The syntax for the select statement associated with a cursor is:

select [all | distinct] (* | column_list) from table_name [, table_name]...
[where search_expression]
[group by column_name [, column_name]...]
[having search_expression]
[order by column [asc | desc] [, column [asc | desc]]...]
[for {read only| update [of column [, column]...]}]

When you enter the select statement in the Cursor Workshop, you do not need a
semicolon at the end.

See Accessing Databases for descriptions of the individual clauses.

About Cursors

Chapter 12 Using the Cursor Workshop 617

Using placeholders You can use the placeholders that you declared for the
cursor in the search expressions for the where and having clauses. Later, when you
open the cursor, you can set the values for these placeholders. Because the
placeholders are iPlanet UDS names, you must preface them with colons to
distinguish them from column names. The following example illustrates:

For Clause
By default, a cursor is for reading only. The for update clause lets you allow
updating as well as reading. You can either allow updating for all columns or limit
updating to a specified list of columns.

Read-only cursor The read only option limits the cursor to reading only, which
is the default. When you use the fetch statement with a read-only cursor, you can
access the values in the row but you cannot update or delete it. Using a read-only
cursor keeps the data available for update by others while you are working with
the rows. Note that your particular DBMS may not support read-only cursors.

Update cursor The update option allows the cursor to be used for updating by
providing a lock on the data to prevent inconsistencies during the update. When
you open a cursor that has been declared for updating, other users will not be able
to access the result set (and possibly other data) until you close the cursor.
Although it is not required, we recommend that you use the of clause to specify
the particular columns that can be updated.

Using the of clause to specify the particular columns to be updated allows iPlanet
UDS to optimize the code and prevents updating of columns that should not be
changed. Any columns that you do not include in the of clause are available for
read only. Using the update option with the of clause will lock all the database
columns.

select name, age from emptable
where age = :age_val
for update of age

Using the Cursor Workshop

618 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Using the Cursor Workshop

You enter the Cursor Workshop from the Project Workshop either by opening an
existing cursor or by creating a new cursor.

Opening an existing cursor If you wish to examine or edit an existing cursor,
double-click the cursor name, or select the cursor name and choose the Component
> Open command.

Creating a new cursor If you wish to create a new cursor, choose the Component
> New Cursor command, or single-click the New Cursor tool on the toolbar.

The Cursor Workshop Window
The Cursor Workshop window consists of three parts: the cursor definition line,
the cursor source code field, and the status line. Figure 12-2 illustrates the Cursor
Workshop.

Figure 12-2 The Cursor Workshop

Cursor

Status

definition

Cursor
source

line

Line

Examining a Cursor

Chapter 12 Using the Cursor Workshop 619

View menu Note that the View menu in the Cursor Workshop provides
commands that let you specify whether to display the cursor definition line and the
status line. The cursor source code field is always displayed, but you can turn the
definition and status lines on or off as you choose.

Access to Other Workshops
From the Cursor Workshop, you can access one other workshop:

Leaving the Cursor Workshop
To leave the Cursor Workshop, choose the File > Close command. You can also use
the close box on the system menu. This closes only the current workshop.

To leave the Cursor Workshop and erase all changes you have made since your last
Save All command, choose the File > Cancel command. This closes only the current
workshop.

Examining a Cursor
The Cursor Workshop displays the definition for the current cursor. If the cursor
you wish to examine is not already displayed, you must return to the Project
Workshop to open the cursor.

➤ To examine a cursor

1. In the Project Workshop, select the cursor you wish to examine.

2. Double-click the cursor name, or choose the Component > Open command.

Workshop How to access it

Project
Workshop

The File > Open Project… command opens the Project Workshop to display
the definition of the project to which the current cursor belongs. If the
project is already being displayed, the Open Project… command moves the
input focus to the appropriate Project Workshop window.

Examining a Cursor

620 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Examining Placeholders and TOOL Source
The Cursor Workshop displays the cursor placeholders and TOOL source directly
on the main Workshop window.

Definition The top line of the window displays the cursor name and the cursor
placeholders if any.

Viewing placeholders Note that if the cursor definition is not currently
displayed in the workshop window, you can turn it on with the View >
Placeholders command. This command lets you control whether or not the cursor
definition is displayed in current workshop.

TOOL source code The lower section of the window displays the source code for
the cursor. This is a multiline text field, which you can scroll to view the entire
select statement.

Viewing line numbers If line numbers are not currently displayed for the source
code, you can turn them on with the View > Line Numbers command.

Searching for a line If you wish to search for specific lines in the cursor, you can
use the Edit > Go to Line or Find commands (see “Editing a Cursor” on page 622
for information on these).

Examining Cursor Properties
To view the cursor’s properties, choose the File > Properties… command. This
command opens the Cursor Properties dialog, shown in Figure 12-3, which
displays the cursor’s name and placeholders.

Figure 12-3 Cursor Properties Dialog

Creating a Cursor

Chapter 12 Using the Cursor Workshop 621

Creating a Cursor
To create a new cursor, you must start from the Project Workshop. Either use the
Component > New Cursor command, or single-click the New Cursor tool.

➤ To create a new cursor

1. Choose the Component > New Cursor command.

The Cursor Properties dialog opens.

2. In the Cursor Properties dialog, enter the cursor’s name in the Cursor Name
field, specify the cursor’s placeholders (described below) if any, and click OK.

3. When the Cursor Workshop opens, you can write the cursor source code. See
below for complete information on writing the cursor source code.

To specify the cursor’s placeholders, you fill in an array field that specifies the
name and type for each placeholder.

Writing the Cursor Source
To write the cursor’s source, type the TOOL code directly into the Source field, or
you can write the cursor in a text file and then use the Import Text… command to
copy it into the Source field. See “Importing Cursor Code” on page 628 for
information on the Import Text… command.

Column How to fill it in

Placeholder Name Type the name into the data field.

Data Type Select one of the standard data types from the drop list.

Editing a Cursor

622 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Typing the Cursor Source

Text editing The Source field is an iPlanet UDS text edit field. To type your
cursor directly into the field, simply position the cursor in the field and start
typing. The Edit Menu provides editing commands for modifying the cursor
source (see “Editing a Cursor” for information).

Editing shortcut keys The Cursor Workshop provides text edit shortcut keys,
which you can use to select text and move the cursor. In addition, the Edit menu
provides editing commands for modifying the method source. See “Editing the
Cursor Source Code” on page 623 for information on the shortcut keys and the Edit
menu.

Automatic indenting If you have your code preferences set with automatic
indenting turned on, each line that you type in the source code field will
automatically be indented with the same number of tabs as the line it follows. If
you have your code preferences set with automatic indenting turned off, each line
that you type will be aligned with the left margin. In this case, you must use tabs or
spaces to indent the line or, after entering the code, you can use the Indent and
Unindent commands (described under “Editing the Cursor Source Code” on
page 623) to control the indenting of selected blocks of code. See “Setting Code
Preferences” on page 590 for information on automatic indenting.

Editing a Cursor
To edit a cursor, you must start from the Project Workshop.

➤ To edit a cursor

1. Select the cursor you wish to edit.

2. Double-click the cursor, or choose the Component > Open command.

This command opens the Cursor Workshop, which displays the selected cursor.
You can then edit the cursor by editing its source or modifying its properties.

Editing a Cursor

Chapter 12 Using the Cursor Workshop 623

Editing the Cursor Source Code
Edit shortcut keys The Cursor Workshop provides the following text editing
shortcuts:

Edit menu The Edit menu in the Cursor Workshop provides a set of basic
commands for editing the method. These commands allow you to use the window
system clipboard to cut, copy, and paste text, to search for and replace text, and to
change indenting of selected lines.

Function Shortcut on Windows/Motif

Select one character to the left Shift-Left Arrow

Select one character to the right Shift-Right Arrow

Select one line down Shift-Down Arrow

Select one line up Shift-Up Arrow

Select from the cursor position to the beginning of the
current word

Shift-Ctrl-Left Arrow

Select from the cursor position to the end of the current
word

Shift-Ctrl-Right Arrow

Select from the cursor position to the beginning of the
current line

Shift-Home

Select from the cursor position to the end of the current
line

Shift-End

Select from the cursor position to the beginning of the
text

Shift-Ctrl-Home

Select from the cursor position to the end of the text Shift-Ctrl-End

Select all text Ctrl-A

Move cursor to the beginning of the line Home

Move cursor to the end of the line End

Move cursor one word to the left Ctrl-Left Arrow

Move cursor one word to the right Ctrl-Right Arrow

Move cursor to the beginning of the text Ctrl-Home

Move cursor to the end of the text Ctrl-End

Editing a Cursor

624 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Text Editing
The Edit menu in the Cursor Workshop provides a set of basic commands for
editing the source code. There are six commands for editing the text:

The Cut, Copy, and Paste commands use the clipboard provided by your window
system.

Searching and Replacing
There are two ways to move the cursor to a particular line in your code. You can
use the Go to Line… command to go directly to the specified line number or you
can use the Find… command to search for a particular string. The Replace…
command lets you replace a search string with a new string.

The Go to Line… command prompts you to enter the number of the line to which
you wish to move. After you specify the line number, iPlanet UDS moves the
cursor to the first character of the line. If your line numbers are not currently
displayed, you can use the View > Line Numbers command.

The Edit > Find… command lets you search for a particular string. When you give
the Find… command, iPlanet UDS opens the Find dialog, where you specify the
search string. The Find… command then searches for the string starting from the
current insertion point. When it finds the string, iPlanet UDS highlights the string.
Figure 12-4 illustrates the Find dialog:

Command Description

Undo Removes your last edit.

Redo Reverses your last Undo command.

Cut Removes the selected text and copies it into the clipboard.

Copy Copies the selected text into the clipboard.

Paste Inserts the current contents of the clipboard into the cursor.

Delete Removes the selected text.

Editing a Cursor

Chapter 12 Using the Cursor Workshop 625

Figure 12-4 Find Dialog

Case Sensitive option By default, the Find… command is case insensitive. If you
want to match the case used in the search string, click on the Case Sensitive toggle
in the Find dialog.

Wrap Around option By default, the Find… searches from the current insertion
point to the end of the method source code. If you wish to search past the end and
start from the beginning of the method source code, click on the Wrap Around
toggle.

Find Again command If you wish to move to the next occurrence of the string
you searched for in the last Find… command without opening the Find dialog, you
can simply give the Find Again command. This command uses the search string
you specified in your last Find… command. The Find Again command is especially
useful with its speed key.

Replace… command The Edit > Replace… command lets you search for a
particular string and replace that string with a new string. When you give the
Replace… command, iPlanet UDS opens the Replace dialog, where you specify the
search and replace strings. You then have the choice of using the Replace button to
replace the first occurrence of the search string or the Replace All button to replace
all occurrences of the search string within the method. Figure 12-5 shows the
Replace dialog:

Figure 12-5 Replace Dialog

Editing a Cursor

626 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Depending on your code preferences, the Replace command works in one of two
modes: Find After mode or Find Before mode. (See “Setting Code Preferences” on
page 590 for information on setting the Replace modes.)

Find After mode By default, the Cursor Workshop uses Find After mode. In this
mode, the Replace command replaces the currently selected text and then
automatically finds the next occurrence of the search string. Find After mode
allows you to check the search string in context before you actually make the
replacement.

Find Before mode If your code preferences are set to use the Find Before mode,
the Replace command searches for the next occurrence of the search string and
then automatically performs the replacement. Find Before mode allows you to
check the replacement in context before moving on to the next occurrence of the
search string.

Replace Again command If you wish to replace the next occurrence of a string
without opening the Replace dialog, you can simply give the Replace Again
command. This command uses the search and replace strings you specified in your
last Replace… command, and performs the replacement according to the current
Replace mode. In fact, giving the Replace Again command is the same as clicking
the Replace button on the Replace dialog. The Replace Again command is
especially useful with its speed key.

Indenting
The indenting commands let you move the currently selected lines of code down or
up one level.

The Indent command moves the currently selected lines down one level by
inserting a tab character at the start of each selected line.

The Unindent command moves the currently selected lines up one level by
deleting a tab character from the start of each selected line.

Cancelling Your Changes
If you ever make a set of edits that you want to erase completely, you can use the
Cancel command on the File menu to revert to a previous version of the cursor. The
Cancel command erases all changes you made to the cursor since you last opened it
or since your last Save All command.

Editing a Cursor

Chapter 12 Using the Cursor Workshop 627

Editing the Cursor’s Properties
To edit the cursor’s properties, choose the File > Properties… command. This
command opens the Cursor Properties dialog, where you can change the cursor
name or placeholders.

Figure 12-6 Cursor Properties Dialog

Editing the Cursor’s Placeholders
The cursor’s placeholders are displayed in the array field in the Cursor Properties
dialog. You can simply edit the existing placeholders or add new ones to the
middle or end of the list.

Insert button If you wish to add a new placeholder to the middle of the list, use
the Insert button.

➤ To insert a placeholder

1. Select the placeholder above which you wish to add the new placeholder.

2. Click the Insert button.

3. Fill in the new row in the array field.

Delete button If you wish to delete a placeholder from the list, use the Delete
button.

➤ To delete a placeholder

1. Select the placeholder you wish to delete.

2. Click the Delete button.

Importing and Exporting a Cursor

628 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Importing and Exporting a Cursor
iPlanet UDS lets you write the cursor code or part of the cursor code in an external
text file and then import it into the Cursor Workshop. You can also copy part or all
of the cursor code to an external text file.

Importing Cursor Code
Use the Import Text… command to insert the contents of a text file into the cursor
source. You can then edit the text as desired.

➤ To import a cursor

1. Position the cursor at the point where you wish to insert the imported text.

2. Choose the Edit > Import Text… command.

3. In the File Selection dialog, select the file that you wish to import.

Exporting Cursor Code
Use the Export Text… command to write a cursor or a section of a cursor to a text
file. This command writes the currently selected text into the file you specify. If you
do not select any text, the Export Text… command exports the entire cursor.

➤ To export a cursor

1. Select the text you wish to export.

2. Choose the Edit > Export Text… command.

3. In the File Selection dialog, specify the file name to which you wish to export
the text.

If you specify a new file name, the Export Text… command creates the file. If you
specify an existing file, the Export Text… command overwrites the file.

Testing the Cursor

Chapter 12 Using the Cursor Workshop 629

Testing the Cursor
After writing the cursor, you can compile it to check for errors. While it is not
necessary to compile your cursor before you run the project, the Compile
command allows you to check for syntax errors without actually executing the
code. To compile the cursor, simply select the Compile command from the File
menu. iPlanet UDS compiles the cursor and reports any errors in the Error
window.

Finding an error The Error window displays the compilation errors messages for
the SQL statement in an outline field.

You can jump directly from one of these messages to the code that caused the error.
In the Error window, double-click the error you wish to find. The Cursor
Workshop will then move the cursor to the line that contains the code that caused
the error.

You can keep the Error window open as long as you need it. When you are finished
using the window, simply close the window.

Setting Preferences

630 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Setting Preferences
The Cursor Workshop allows you to set code preferences that are saved as part of
your current workspace. The code preferences that you set in the Cursor Workshop
take effect for the current Cursor Workshop and all Method, Event Handler, and
Cursor Workshops that are opened in the future from the same workspace.
However if any other Method, Event Handler, or Cursor Workshops are already
open, these will not be changed.

To set the code preferences, choose the File > Workshop Preferences… command.
This command opens the Code Preferences dialog, where you can set any number
of preferences. See “Setting Code Preferences” on page 590 for information about
setting code preferences.

631

Chapter 13

Using the Debugger

This chapter describes how to use the iPlanet UDS Debugger to debug your
application.

In this chapter, you will learn how to:

• control program execution

• set breakpoints

• examine the program state

• debug multiple tasks

Because this chapter provides information about how to find bugs in your TOOL
code, you must be familiar with the programming language in order to understand
the material. This chapter assumes that you have read the TOOL Reference Guide
and have some experience writing iPlanet UDS methods and event handlers using
TOOL.

About the Debugger
The iPlanet UDS Debugger was designed specifically for debugging TOOL code.
Special features include the ability to set breakpoints for events and exceptions,
and to debug multiple tasks in parallel.

Breakpoints

About the Debugger

632 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

To help you monitor the flow of the application’s execution, iPlanet UDS lets you
set breakpoints on the following:

• statements

• method entry and exit

• event posting and delivery

• exception raising

Persistent breakpoints The statement breakpoints you set in the Debugger are
persistent; they stay in effect from the time you set them until you explicitly turn
them off.

Temporary breakpoints All other breakpoints you set in the Debugger are
temporary; they take effect for the current Debugger session only.

Setting breakpoints in other workshops iPlanet UDS lets you set statement
breakpoints directly in your TOOL code. In the Method, Cursor, and Event
Handler workshops, you can to turn on breakpoints for any statements in the
source code. Like the statement breakpoints you set in the Debugger, the statement
breakpoints you set in these workshops are persistent. See “Setting Breakpoints”
on page 640 for information about setting persistent breakpoints in these
workshops.

Multitasking
As an application runs, the Debugger displays each task individually. In each task,
you can set breakpoints, step through the code, and view the values of local
variables. Although an application can execute any number of tasks concurrently,
you may not wish to view them all simultaneously. Therefore, iPlanet UDS lets you
decide which tasks to display and which tasks to hide.

This chapter describes how to debug a single task, and includes a special section on
working with multiple tasks, “Working with Multiple Tasks” on page 649.

Debugging Distributed Applications
iPlanet UDS applications are designed to be distributed. However, you can only
step through code that is executing locally. If a method is invoked on a remote
object, iPlanet UDS executes the complete method. You cannot step through the
statements individually.

Using the Debugger

Chapter 13 Using the Debugger 633

Using the Debugger from the Project Workshop Therefore, when you run the
Debugger from the Project Workshop, iPlanet UDS automatically partitions your
application so that as much of it as possible will run on your workstation. This
allows you to step through code that would normally be executing remotely.

To partition your application for debugging, iPlanet UDS changes the visibility for
all your environment-wide service objects to user visibility. The user interface for
the application, the application startup code, and all service objects that the client
node can support are assigned to the client partition. iPlanet UDS runs the client
partition directly on your workstation. (For information about client partitions, see
“About Partitions” on page 664.)

Any service objects that the client node cannot support (because the external
manager is not available on the client node) are assigned to a special private
partition. iPlanet UDS automatically installs this partition on a suitable node in
your development environment, ensuring that two people testing the same
application will not accidentally share the same service object.

Using the Debugger from the Partition Workshop Debugging the application
from the Partition Workshop allows you to run the application using the current
configuration and to step through the code running only on the client partition.
You cannot use the iPlanet UDS Debugger to monitor code running on remote
partitions.

Using the Debugger
This section describes how to start and stop the Debugger, provides usage
information about the Debugger windows, and discusses how to control program
execution.

Throughout this section, references are made to the state of radio buttons. The
following table lists the button states and their physical descriptions.

Button State Description

Inactive/off Grey (unfilled)

Selected Filled (with dark color)

Current Highlighted (bright color)

Using the Debugger

634 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Starting the Debugger
You can start the Debugger either from the Project Workshop or the Partition
Workshop at any time during the development process. The Debugger executes the
application and allows you to monitor the code as it is being executed. When you
have located your bug and are ready to fix your code, you must exit the Debugger
and return to the appropriate workshop to edit your original source code.

Start class and method To run the Debugger, you must specify a start class and
method for the main project in the application. Start classes and methods are
described “Start Class and Method” on page 208. The Debugger uses the start class
and method as the starting point for running the application.

When you start the Debugger, iPlanet UDS begins executing the application by
constructing a new object of the start class. The Debugger displays the code for the
startup method in the Task window, and suspends execution immediately before
the first statement in the startup method. Note that the Init method that is
automatically invoked on the starting class is not under the control of the
Debugger.

The Debugger Windows
As you enter the Debugger, iPlanet UDS opens two windows: the Debugger
window and the Task window.

Debugger Window The Debugger Window, shown in Figure 13-1, displays a list
of the tasks in the application currently being executed, and provides access to the
Global Breakpoint Manager.

Figure 13-1 Debugger Window

Using the Debugger

Chapter 13 Using the Debugger 635

Task Window The Task window, shown in Figure 13-2, displays code for the
method in the task that is currently being executed, and allows you to set
breakpoints on the code. As you enter the Debugger, this window displays the
code for the startup method.

Figure 13-2 Task Window

Access to Other Workshops
The Debugger does not provide access to any other workshops.

Leaving the Debugger
You can leave the Debugger at any time by choosing the File > Exit Debugger
command on either the Debugger window or any of the Task windows. The Exit
Debugger command ends your debugging session and closes all the Debugger
windows. The global statement breakpoints that you set during your session are
saved. All other breakpoints are lost.

Breakpoint buttons

Method call

Toolbar

stack drop list

Controlling Program Execution

636 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Controlling Program Execution
This section describes how to:

• start execution

• suspend execution to examine the program state

• step into and out of methods

• restart the application after it completes

As you debug your application, the Debugger uses the following icons to indicate
the current state of the task.

Run Menu Commands on Task Window
The Debugger provides the following commands on the Run menu of the Task
window for controlling program execution:

Icon Description

Indicates the task is running.

Indicates the task is suspended.

Indicates the task is waiting for an event.

Indicates the task has completed.

Tool Command Description

Run Executes the application from the startup class and method, or
resumes execution after the task is suspended.

Stop Suspends execution of the task so you can examine the program
state.

Step Executes the current statement.

Step In Executes the first statement in the invoked method.

Controlling Program Execution

Chapter 13 Using the Debugger 637

The remainder of this section describes these commands in further detail.

Starting Execution
To start the application from the main project’s startup class and method, click the
Run button in the Task window or choose the Run > Run command. iPlanet UDS
starts the task by executing the statement immediately after the right-pointing
arrow. If the application has a user interface, iPlanet UDS displays the windows as
they are opened so that you can interact with them.

iPlanet UDS executes the task until one of the following occurs:

• you interrupt execution with the Run > Stop command

• iPlanet UDS reaches a breakpoint

• the task is waiting for an event from a window that it is displaying

• the application terminates

• you cancel the task with the Run > Cancel Task command

Resuming execution When the task is suspended because you gave a Run > Stop
command or because iPlanet UDS has reached a breakpoint, you can resume
execution with the Run > Run command. iPlanet UDS resumes execution by
executing the statement immediately after the right-pointing arrow.

When a task is suspended because it is waiting for an event from a window (that is,
the event loop for the Display method for window is waiting for an end user
interaction with the window), you will see the waiting icon next to the task name in
the Debugger window. To resume execution of a task that is waiting for an event,
you must perform the action the event loop is waiting for.

At any point during execution, you can cancel the task by using the l Run > Cancel
Task command.

Step Out Finishes executing the current method and returns to the
statement that originally invoked the method.

Cancel Task Stops executing the task and closes associated windows.

Restart After the application has completed, executes the application
again.

Tool Command Description

Controlling Program Execution

638 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

For information about restarting the application after it has completed or you have
cancelled the task, see “Application Completion” on page 640.

Suspending Execution
At any point while the application is executing, you can use the Run > Stop
command on the Task window to suspend execution. iPlanet UDS suspends
execution as soon as possible, and indicates the stopping point with a
right-pointing arrow. When a task is suspended, the icon in the Debugger window
changes to a debug icon—in other words, the debugger is blocking the task.

Reaching a breakpoint When the application reaches a breakpoint, iPlanet UDS
suspends execution and indicates the breakpoint with a right-pointing arrow. The
button corresponding to the method, event, or exception breakpoint is highlighted.
See “Setting Breakpoints” on page 640 to learn how to set the breakpoints.

Current program state When execution is suspended, either by the Stop
command or by a breakpoint, you can examine the current state of the program.
You can open the Variables window to display the current values for the method’s
local variables and the Method Call Stack drop list to view the invoking methods.
See “Examining the Program State” on page 642 for information on how to
examine this information.

After suspending execution and examining the program state, you have three
choices:

• step to the next statement

• step into an invoked method

• click the Run button to resume execution

The following sections describe how to step through your code.

Stepping by Statements
To execute the statement immediately following the last stopping point, use the
Run > Step command on the Task window. The Step command executes a single
statement. The right-pointing arrow indicates the statement that was executed, and
the Variable window displays the current values of the method’s local variables.

If the statement that you step to is a method, the Step command executes the entire
method. Alternatively, you can step into the method and step through its
statements one at a time by using the Step In command.

Controlling Program Execution

Chapter 13 Using the Debugger 639

Stepping In and Out of Methods
When the next statement in your code is a method invocation, you can use the Run
> Step In command on the Task window to step to the first statement of that
method. While debugging this method, you can execute the rest of the method and
return to the invoking method by using the Run > Step Out command on the Task
window.

Step In Command

The Run > Step In command on the Task window executes the first statement in the
invoked method. The Task window displays the code for the method, and the
right-pointing arrow indicates the statement awaiting execution. The Variable
window displays the current values for the invoked method’s local variables.

If the method is being invoked on a remote object or a 3GL object, iPlanet UDS
cannot step into the method, and the Step In command will not be available to you.
You also cannot step into a method that is contained in a library.

Step Out Command

Any time while you are debugging a method, you can return to the method that
originally invoked it. The Run > Step Out command on the Task window finishes
executing the current method and returns to the statement that originally invoked
the method.

Even though the Step Out command is designed to finish executing the current
method, if there are any remaining breakpoints in the current method, these will
cause the Debugger to stop. If you wish to ignore these breakpoints, you must turn
them off before giving the Step Out command.

If you give the Step Out command in the first method of a task, this completes the
entire task. The Task window closes and the Debugger window displays the RIP
icon by the task name.

Setting Breakpoints

640 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Application Completion
When the application completes, iPlanet UDS closes the Task window and the
Variable window for the task. The Debugger window displays a list of the
remaining tasks, with RIP icons indicating that all are now terminated.

At this point, you can start the Debugger again by choosing the File > Restart
command on the Debugger window. iPlanet UDS runs the application again, and
opens the Task window for the startup method. The terminated tasks from your
previous run are no longer displayed in the Debugger window.

Setting Breakpoints
The iPlanet UDS Debugger lets you set the following kinds of breakpoints:

Setting Statement Breakpoints
The Task window displays the method that is currently being executed. You can
set persistent statement breakpoints in the current method directly in this window.

➤ To set a breakpoint in the method currently displayed in the Task window

1. Scroll to the statement where you want the breakpoint.

2. Click the grey toggle to the left of the statement. A stop sign icon indicates that
the statement now has a breakpoint.

To remove a breakpoint, simply click the stop sign icon. A grey toggle indicates
that the statement no longer has a breakpoint.

Breakpoint Description

Statement Stops execution immediately prior to statement defined as
breakpoint.

Method Entry Stops execution when any method is invoked.

Method Exit Stops execution when any method ends.

Event Posted Stops execution when any event is posted.

Event Delivered Stops execution when any event is about to be handled.

Exception Raised Stops execution when any exception is raised.

Setting Breakpoints

Chapter 13 Using the Debugger 641

To set breakpoints in a method that will be invoked from the current method, you
must either step into the method to display it in the Task window or use the
Method Workshop to set persistent breakpoints directly in the method source code.

Global Breakpoint Manager You can view all the statement breakpoints for the
project you are debugging by using the Global Breakpoint Manager. To open the
Global Breakpoint Manager, use the Breakpoints > Global Breakpoint Manager
command on the Task window. The Global Breakpoint Manager window displays
a list of the breakpoints that you have already set. Although you cannot set new
breakpoints in this window, you can remove them. To remove a breakpoint,
simply click the stop sign icon.

Note that when you are debugging an application that uses multitasking, you can
set breakpoints for an individual task within the application. See “Working with
Multiple Tasks” on page 649 for information on setting task breakpoints.

Setting Method Breakpoints
You can request two different method breakpoints: entry and exit. An entry
breakpoint takes effect each time a new method is invoked. An exit breakpoint
takes effect each time iPlanet UDS exits a method (either because it completes or
because it was terminated due to an exception).

To request entry breakpoints, choose the Breakpoints > Method Entry command on
the Task window. When entry breakpoints are on, iPlanet UDS suspends execution
every time a method is invoked.

To request exit breakpoints, choose the Breakpoints > Method Exit command on
the Task window. When exit breakpoints are on, iPlanet UDS suspends execution
every time a method ends.

To turn these breakpoints off, choose the appropriate menu command again to
toggle it off.

Setting Event Breakpoints
You can request two different event breakpoints: event delivered and event posted.
An event delivered breakpoint takes effect every time an event is going to be
handled by a when clause of an event loop or event case statement. An event
posted breakpoint takes effect each time an event is posted by any method in the
task.

Examining the Program State

642 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Event delivered breakpoints To request event delivered breakpoints, click the
When radio button on the status line. This turns the toggle red, indicating that
breakpoints are on. (You can also use the Breakpoints > Event Delivered command
on the Task window to request event delivered breakpoints.)

Event posted breakpoints To request event posted breakpoints, click the Post
radio button on the status line. This turns the toggle red, indicating that event
posted breakpoints are on. (You can also use the Breakpoints > Event Posted
command on the Task window to request event posted breakpoints.)

To turn the event breakpoints off, click the corresponding radio button so it turns
back to grey.

Setting Exception Raised Breakpoints
Raise breakpoint You can request a breakpoint that takes effect each time an
exception is raised by a raise statement in any custom method in the task.

To request raise breakpoints, click the Raise radio button on the status line. This
turns the toggle red, indicating that raise breakpoints are on. (You can also use the
Breakpoints > Exception Raised command on the Task window to request raise
breakpoints.)

To turn the raise breakpoints off, click the Raise radio button so it turns back to
grey.

Examining the Program State
When program execution is suspended, you can examine the current state of the
program. The Debugger lets you inspect:

• current values of the method’s local variables

• call stack for the current method

• error stack for the task

• event queue for the task

Examining the Program State

Chapter 13 Using the Debugger 643

Inspecting Variables
Local Variables command To view the local variables for the method, choose the
View > Local Variables command on the Task window. This command opens the
Variables window, which displays the current values for each of the method’s local
variables.

Figure 13-3 Variables Window

Variables window The Variables window provides a browser that contains the
following columns:

Name The variable name.

Type The declared type of the variable.

Value For simple types, the current value of the variable. For class types, the
runtime type of the object to which the variable is currently pointing. It can also be
NIL for no object or Undefined for not applicable.

Changing the value of a simple variable You can use the Variables window to
change the value of a simple variable. Simply edit the value of the variable as
shown in the window.

➤ To change the value of a simple variable

1. Edit the value.

2. Click the Apply button.

Apply

Undo

Examining the Program State

644 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

If you decide not to change the value, click the Undo button to revert to the original
value.

More information about objects When you need more information about an
object, you have two alternatives. First, you can use the expansion arrow in the
browser to open the object. This displays the name, types, and values for each of
the object’s attributes. Second, you can use an Object Inspector to monitor the value
of an individual object.

Opening an Object Inspector To open an Object Inspector, double-click the
object reference. This opens the Object Inspector window, which displays the object
information. The Object Inspector window provides a temporary name for the
object, so that if you want to view the same Object Inspector again, you can refer to
the particular object by name.

The Object Inspector stays open until you close it by using the window close
mechanism provided by your particular window system. After you close the
window, the Object Inspector is hidden so you can easily display it again at any
time. To display a hidden Object Inspector, use the Inspections menu as described
under ““Using the Inspections Menu” on page 646.

As long as the Object Inspector is open, it shows the current values for the same
object. Even if the reference in the method changes to another object, the object
displayed in the window does not change.

The way you use the Object Inspector depends on the particular class of the object.
You use an Object Inspector window to inspect each of the following classes:

• DataValue subclasses (for example, TextData and IntegerData)

• Array or LargeArray classes

• standard objects (all other classes)

The following sections describe to how use each type of inspector.

Inspecting Standard Objects and Arrays
The Object Inspector provides a browser that displays the name, type, and value of
the object’s attributes.

Examining the Program State

Chapter 13 Using the Debugger 645

Figure 13-4 Object Inspector

The following list defines these columns.

Name The attribute name.

Type The declared type of the attribute.

Value For simple types, the current value of the attribute. For class types, the
runtime type of the object to which the attribute is currently pointing. It can also be
NIL for no object or Undefined for not applicable.

For attributes with a simple data type, this is all the information you need. For
attributes with a class type, the Value column displays the runtime class of the
object to which the attribute is currently pointing. You can inspect the object to
which the attribute is pointing either by using the expansion arrow to display its
attributes or by double-clicking the object reference to open another Object
Inspector.

If the object you are inspecting is an array, the columns have a slightly different
meaning.

Examining the Program State

646 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Name The row number for the object in the array.

Type The declared type of the object.

Value The runtime type of the object.

To examine an individual object in the array, you either use the expansion arrow to
display its attributes, or you can double-click the object reference to open an Object
Inspector.

Inspecting DataValue Objects
The DataValue Object Inspector displays the current value of the DataValue object
as a string.

Figure 13-5 DataValue Object Inspector

Updating the value of a DataValue object A special feature for DataValue
objects is that you can change the value from within the inspector.

➤ To change the value of a DataValue object

1. Edit the value.

2. Click the Apply button.

If you decide not to change the value, click the Undo button to revert to the original
value.

Using the Inspections Menu
The Inspections menu allows you display a hidden Object Inspector or, if the
Object Inspector is currently displayed, to move a particular Object Inspector to the
front of the window stack.

Apply

Undo

Examining the Program State

Chapter 13 Using the Debugger 647

➤ To view a previously displayed Object Inspector

1. Pull down the Inspections menu to see a list of the objects you have previously
inspected.

2. Choose the command for the object you wish to inspect again.

Viewing the Method Call Stack
To view the call stack for the current method, select the Method Call Stack drop list
on the Task window. This drop list displays the complete method call stack for the
current task. The first method on the list is the current method. The second method
on the list is the method that invoked the current method. The last method on the
list is the starting method for the task.

Figure 13-6 Method Call Stack

Method Call
Stack drop list

Examining the Program State

648 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Viewing the Error Stack
To view the error stack for the task, choose the View > Error Stack command on the
Task window. This command opens the Error dialog, where you can view the error
messages reported for the exceptions raised on the task. (Note that these are the
same messages that are produced by the ShowErrors method on the ErrorMgr
class. See the <Italic>Framework Library and AppletSupport Library for information.)

Viewing the Event Queue
To view the event queue for the task, choose the View > Event Queue command on
the Task window. This command opens the Event Queue dialog, which lists the
events currently in the queue.

Figure 13-7 Event Queue

The Debugger uses the following format to identify the events in the queue:

classname.eventname

The order of the events on the list shows the order in which they are queued.

Working with Multiple Tasks

Chapter 13 Using the Debugger 649

Working with Multiple Tasks
When an application uses multitasking, the Debugger lets you examine all tasks
that are executing concurrently. You can choose which tasks to monitor and which
not to monitor. You can control a task’s starting state. And you can set breakpoints
that take effect only for a single task. A “task breakpoint” takes affect when only
when the method is executing as part of the current task.

Task list The Debugger window displays a list of the tasks in the application.
Whenever a new task is started, iPlanet UDS adds the task to the list. The name of
the new task is indented below the task that started it, providing a task “call stack”
for the application.

Icons indicate the current status of each task.

You can use the Tasks > Startup Options > Start Suspended command on the
Debugger window to make all tasks start in a suspended state. This ensures that
each task is brought to your attention, because you will have to start each one.

By default, the first task in an application always starts in a suspended state.

When iPlanet UDS executes a start task statement, the Debugger automatically
opens a Task window for the new task. At this point you can:

• run the new task by clicking the Run button in the Debugger window

• leave the task in a suspended state

Icon Description

Indicates the task is running.

Indicates the task is suspended.

Indicates the task is waiting for an event.

Indicates the task has completed.

Working with Multiple Tasks

650 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Hiding and opening a task You can close the Task window without changing
the status of the task (it either keeps running or stays suspended). To hide a task,
simply close its Task window. iPlanet UDS displays an icon by the task name in the
Debugger window. The task continues to run while it is hidden. If the task reaches
a breakpoint, a suspended icon in the Debugger window indicates that the task is
suspended. As long as the task is not terminated, you can open it again by
double-clicking on the task name.

When the task completes or is terminated, iPlanet UDS closes the corresponding
Task window (if it is open) and displays an RIP icon by the task name in the
Debugger window.

Communication Between Tasks
One of the important issues you need to consider when you are debugging
multiple tasks is how the tasks interact with each other. For example, if you are
running one task while a concurrent task remains suspended, the running task
may reach a point where it is waiting for an event from the suspended task.
Because the suspended task cannot post the expected event, the running task will
not be able to finish. If there is a problem, you can always check the Debugger
window to see the status of each of the tasks in the application.

Setting Task Breakpoints
When you are debugging an application that uses multitasking, you may wish to
set statement breakpoints that take effect for the current task only. Normally, the
statement breakpoints that you set in the Task window are global breakpoints.
Global breakpoints take effect for all tasks in the application. However, the Task
window allows you set task breakpoints to take affect for the current task only.

➤ To set a task breakpoint in the Task window

1. Scroll to the statement where you want the breakpoint.

2. Shift-click the grey toggle to the left of the statement. A road block icon
indicates that the statement now has a task breakpoint.

When the task terminates, all task breakpoints that you have set are automatically
removed.

Removing a breakpoint To remove a task breakpoint before the task completes,
simply click the road block icon. A grey toggle indicates that the statement no
longer has a breakpoint.

651

Chapter 14

Using the Partition Workshop

This chapter provides conceptual information about distributed applications,
libraries, environments, and configurations, and describes how to use the Partition
Workshop.

In this chapter, you will learn how to:

• create a configuration

• examine a configuration

• modify a configuration

• combine service objects and partitions

• test a client configuration

• make an application distribution

• make a library distribution

For information on deploying new releases of existing applications, see the iPlanet
UDS Programming Guide.

About Distributed Applications
To distribute an application, iPlanet UDS divides it into logical sections, called
partitions. Each partition is an independent process that can run on its own
machine.

In iPlanet UDS, a distributed application consists of partitions running on different
nodes on a network. The server partitions run on server nodes, which may be
serving one client or any number of clients. The client partitions run on client
nodes, which may be communicating with any number of servers. Figure 14-1
illustrates the partitions in a distributed application.

About Distributed Applications

652 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 14-1 Partitions in a Distributed Application

The distributed application always runs within a particular environment. Using
the Partition Workshop, you partition an application specifically for each
environment in which it will run. This partitioning customizes the application for
the particular servers and clients on which it will be deployed.

Auction
Service

Image
Service

Client
Partition

Client
Partition

Client
Partition

Client
Partition

About Distributed Applications

Chapter 14 Using the Partition Workshop 653

While you are developing an application, you can test it either locally or in the
distributed development environment. Typically, you repeat a cycle of testing the
application in the distributed development environment and then making
appropriate changes.

➤ To develop and test a distributed application

1. Design the application and test it locally.

2. Test the application in the distributed development environment.

3. Make appropriate changes.

4. Repeat Steps 2 and 3 until the application is ready for deployment.

When the application has been developed and tested, it is ready for deployment.

➤ To deploy a distributed application

1. The system manager defines the deployment environments using the
Environment Console.

2. You partition the application for each deployment environment using the
Partition Workshop.

Partitioning an application creates a configuration for each deployment
environment.

3. You make an application distribution for each configuration.

The application distribution is a representation of the application outside of the
repository that is used to install the application in an environment.

4. The system manager installs the application distributions in the appropriate
environments.

This chapter describes how to use the Partition Workshop to test and modify an
application, and to make an application distribution. The iPlanet UDS System
Management Guide describes how to define environments and install iPlanet UDS
applications.

About Libraries

654 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

About Libraries
A library is a named collection of classes and other component definitions that can
be shared by any number of iPlanet UDS applications. iPlanet UDS automatically
provides several libraries for your use in developing applications, including
Framework, GenericDBMS, and Display. You can also create your own libraries for
use within your organization or for distribution or sale to other companies. For
example, you could create a library that provides access to an external service, such
as a stock market service, or a collection of statistical routines.

A library can be installed in both deployment environments and development
environments. When the library is installed in a deployment environment, any
number of applications running in the environment can reference it. This provides
the ability for multiple applications to share a single library, which makes
installation easier and more efficient.

When the library is installed in a development environment, the library can be
imported into any of the development repositories in the environment. Then, any
projects being developed in those repositories can include the library as a supplier
plan. This provides the ability for multiple projects within different development
repositories to share a single library.

Compiled libraries The ability to share a library rather than duplicating its
definitions provides efficiency gains. The option of providing compiled libraries
provides improved performance. A compiled library uses C++ code generation to
create a compiled shared library. Normally, the libraries running on server
machines are compiled. However, by default, all libraries are standard because
installation and management of standard libraries is simpler.

Library distribution A library distribution is a set of related libraries packaged
together for distribution. This provides a convenient way to bundle any number of
related libraries together for deployment and installation. When you bundle
libraries into a library distribution, you can make a single library distribution to
use for deployment.

To create a library, you must define a project that contains the definitions you want
to be shared and then configure that project as a library. A project becomes a
“library” rather than a project when you include that project in a library
distribution. There is a one-to-one correspondence between the projects you include
in a library distribution and the libraries that are available when that library
distribution is deployed. Each project in the library distribution gets compiled into
a separate shared library.

About Environments

Chapter 14 Using the Partition Workshop 655

➤ To create a library distribution

1. In the Project Workshop, configure the project as a library.

2. In the Partition Workshop, specify which other projects you wish to bundle
with the library project in the library distribution, and indicate the nodes on
which they should be installed.

At this point, you specify which libraries are compiled and which are standard.

3. Make a library distribution.

4. Install the library distribution into one or more iPlanet UDS environments.

5. Within a development environment, import the library definitions into the
development repositories. Then, use the libraries as supplier plans for
developing iPlanet UDS applications.

This chapter provides information about steps 1 through 3. For information about
installing libraries, see the iPlanet UDS System Management Guide. For information
about creating, deploying, and using libraries, see the iPlanet UDS Programming
Guide.

Compatibility level A library distribution has a compatibility level based on the
compatibility level of the project for which you give the Configure as > Library
command. Like an application’s compatibility level, the library distribution’s
compatibility level allows you to release different versions of the same library
within a single environment. The rules for when you need to raise the
compatibility level of a library distribution are the same as those for an application.
See the iPlanet UDS Programming Guide for information.

About Environments
An environment is the distributed system on which you run a distributed iPlanet
UDS application. An iPlanet UDS environment may consist of one or hundreds of
computers. A local- or wide-area network might contain several iPlanet UDS
environments. An iPlanet UDS developer or system manager uses the
Environment Console to define an environment by describing a set of nodes, each
of which corresponds to a particular machine in the environment. Only after an
environment has been defined can you partition the application to run in that
environment.

There are two kinds of environments in iPlanet UDS: development environments
and deployment environments.

About Environments

656 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Development environment A development environment is an environment in
which the development version of iPlanet UDS is installed. You create and test all
your iPlanet UDS applications in the development environment. In the Partition
Workshop, you can partition your application in the development environment for
initial testing of the distributed version of the application.

Deployment environment A deployment environment is an environment in
which the runtime version of iPlanet UDS is installed. You can have any number of
deployment environments in which you plan to install the production version of
your application, and each deployment environment can consist of a different
number of nodes, with varying architectures. In the Partition Workshop, you
partition your application for each of the deployment environments for final
testing. And when your application is complete, you use the Partition Workshop to
create an application distribution for each of the deployment environments. An
application distribution contains the files necessary for actually deploying the
applications.

Simulating deployment environments Because you cannot run the Partition
Workshop in the deployment environments (and you may not even have physical
access to them), iPlanet UDS simulates the deployment environments by using
nodes in your development environment as stand-ins for nodes in the deployment
environment. Every node in a deployment environment is assigned to a “testing
node,” which is the node in the development environment that is used to simulate
the deployment node for testing. (Of course, to simulate your deployment
environments, your development environment must include at least one of each
machine type that will be included in all your deployment environments.)

In the Partition Workshop, you select the environment into which you wish to
partition your application. This environment can either be the development
environment or a deployment environment; a deployment environment is
simulated within the development environment. While you are working in the
Partition Workshop, you can examine the node definitions for the environment in
which you are partitioning your application. However, you cannot change the
node definitions or any other part of the environment definition from the Partition
Workshop. The Environment Console or the Escript utility, its command-line
counterpart, are the only utilities that allow creation and modification of
environments.

Connected environments iPlanet UDS environments can be connected, that is,
partitions in one environment can find service objects in other iPlanet UDS
environments and access them. See “About Connected Environments” on
page 659.

The following section provides information about the properties of a node, which
you can examine from the Partition Workshop.

About Environments

Chapter 14 Using the Partition Workshop 657

About Nodes
A node is a machine in your network that is capable of running an iPlanet UDS
partition. In the Partition Workshop, you can examine the nodes in the
environment by viewing the node’s properties dialog. You cannot, however,
change node definitions from the Partition Workshop.

Every node has the following properties:

Each property is discussed in the following sections.

Node Name
The node name for the current node is the name that was assigned to it by the
system manager who defined the environment. You cannot change this name from
the Partition Workshop.

Node Property Description

Name The name assigned to the node when the environment was
defined.

Architecture The node type.

Testing Node The name of the node in the development environment used to
simulate the current node for testing.

Client Specifies that you plan to install client partitions on the current
node. A node where you plan to install only server partitions is
considered a server node.

Use as Model Specifies that the current node represents a number of identical
client nodes.

Use for Testing Specifies that the node can be used for simulating a node in a
deployment environment.

Resource Managers The list of resource managers available on the current node.

Installed Protocols The list of communication protocols that the node can use to
communicate with other iPlanet UDS nodes.

Installed Libraries The list of restricted, user-defined external projects installed on the
current node.

About Environments

658 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Node Architecture
The architecture of the node describes the node type. For the most current list of
node types, see the iPlanet UDS System Installation Guide.

Windows 95 is client node only All platforms that iPlanet UDS supports are
available for both client and server nodes with the exception of Windows 95, which
is a client node only.

Testing Node
The Partition Workshop allows you to test your configuration by using the testing
nodes in your development environment to simulate your deployment
environment. When the system manager defined your deployment environments,
she assigned each deployment node to a testing node in your development
environment. iPlanet UDS uses this testing node (instead of the deployment node)
whenever you test a configuration. The testing nodes allow the Partition Workshop
to simulate the deployment environment.

On a given node’s properties dialog, the testing node is the node in the
development environment that is being used to simulate the current node.

Client Node
The client partition in your configuration contains the user interface for the
application (if there is one) and the startup code. This partition allows the end user
to run the application from his or her workstation. The client partition may also
include user-visible service objects.

With the exception of Windows 95 nodes, which support only client partitions, a
client node can support both client and server partitions. The Partition Workshop
automatically assigns your client partitions to client nodes, however, it is possible
in the Partition Workshop to manually assign a client partition to a server node. See
“Modifying Node Assignments” on page 699 for information.

Use as Model
iPlanet UDS provides a special option for client nodes that lets the system manager
define one node to represent multiple client nodes. This features enables the
system manager to avoid having to add identical nodes to the environment for
every specific physical node. For example, if the site has 500 identically configured
(from iPlanet UDS’s perspective) PCs, the system manager can define a single
model PC node to represent them.

About Environments

Chapter 14 Using the Partition Workshop 659

When the Use as Model toggle is turned on for a node, you can assign the client
partition to it and have that single assignment represent a number of identical
client nodes.

Use for Testing
When the system manager is setting up your development environment, she can
specify which nodes in the development environment can be used for testing (that
is, simulating nodes in a deployment environment) and which cannot be used for
testing. If the Use for Testing toggle is on for a node, the node can be used for
simulating a node in deployment configuration.

Resource Managers
A resource manager is a database management system that can be accessed from
iPlanet UDS. When defining a node, the system manager assigns a name to each of
the external resource managers on the node that developers will be accessing from
iPlanet UDS applications. You need to use the external resource name in the
properties dialog for a DBSession or DBResourceMgr service object. When you
partition a service object, you use the resource manager name to identify the
particular DBMS installation used for the service object in that configuration.

Installed Protocols
For the current node, you can view a list of the communication protocols that the
node can use to communicate with other iPlanet UDS nodes. Your system manager
selects the installed protocols for the node when he or she is setting up the
environment. See the iPlanet UDS System Management Guide for complete
information on the installed protocols for a node.

Installed Libraries
For the current node, you can view a list of the restricted, user-defined external
libraries that are installed on the node. Partitions that use restricted external
libraries must be assigned to the nodes where the appropriate external libraries are
actually installed. See Integrating with External Systems for information about
external libraries.

About Connected Environments
If your system manager has connected your iPlanet UDS environments, the
environment in which you are partitioning a project may have one or more other
environments connected to it. Figure 14-2 illustrates connected environments.

About Environments

660 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 14-2 Connected Environments

When the current environment is connected to other environments, you can use
service objects from other environments in the current configuration. There are two
ways to use a service object that is in a different environment:

• You can share an existing service object in a connected environment rather
than starting that same service object in the current environment.

You do this by creating a reference partition (described under “Making a
Reference Partition” on page 689) and by setting the environment search path
for the service object in the reference partition (described under “Modifying a
Service Object Definition” on page 695).

• You can provide a list of service objects in connected environments to be used
for failover for a service object in the current environment.

You do this by specifying an environment search path for the service object
(described under “Modifying a Service Object Definition” on page 695).

Environment North America Environment Europe

About Application Configurations

Chapter 14 Using the Partition Workshop 661

If your environment is not connected to other environments, you can only use
service objects within the current environment. To see if a given environment is
connected to any other environments, you must use the Environment Console or
Escript. For information on how to do so, see the iPlanet UDS System Management
Guide.

See the iPlanet UDS Programming Guide for complete information on connected
environments and for instructions on using reference partitions and failover with
connected environments.

About Application Configurations
To distribute an application, iPlanet UDS divides the application into logical
sections, called partitions. Each partition is an independent process, which can run
on its own machine. A configuration customizes your application for the particular
hardware and software in that environment by assigning the partitions to nodes in
the environment. A configuration also allows you to replicate certain partitions for
load balancing or failover. The result is a distributed application from which you
can generate the files to be installed in the environment.

There are two basic kinds of application configurations: a client configuration and
a server configuration.

Client configuration A client configuration defines a client application, which is
an application that the end user can run from his or her workstation. A client
configuration contains one client partition, which includes the user interface for the
application (if there is one) and the startup code. A client configuration may also
contain one or more server partitions.

Applets In the Partition Workshop, any client configuration can be configured as
an applet, rather than as a client application. An applet is an application that can be
launched from another application using the AppletSupport library, but that
cannot be run as an independent client application. Except for this limitation in the
way it can be started, an applet is the same in every way as a client application. For
complete information on applets, see the iPlanet UDS Programming Guide.

Server configuration A server configuration defines an iPlanet UDS server
application, which provides processing for one or more client applications. A
server configuration has one or more server partitions, and no client partition.

About Application Configurations

662 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Relationship between partitions and projects As described under “Supplier
Plans” on page 209, an application consists of a main project and all of its supplier
plans. When iPlanet UDS partitions your application, it assigns all of the service
objects in the main project and its supplier projects to partitions. If any class within
a project is needed by a service object on a partition, iPlanet UDS also includes that
project definition on the partition. Therefore, a single project may appear on any
number of partitions.

For example, in the Art Auction application, the Painting class needs to be
available on the client partition because it is displayed to the end user on the
window; it also needs to be available on the server partition where the Image
Server is running because that is where the paintings are stored. Therefore, the
project that defines the Painting class needs to be on both partitions. Figure 14-3
illustrates the relationship between partitions, service objects, and projects:

Figure 14-3 Relationship between Partitions and Projects

Auction Server
Partition

Image Server
Partition

Auction Client
Partition

Project
Project

ImageService
Service Object

AuctionService
Service Object

AuctionServerProject
Utility

ImageProject
Utility

DisplayProject
Utility
Auction
ImageProject
AuctionServerProject

Project
Project

Project
Project

Project
Project

Project

About Application Configurations

Chapter 14 Using the Partition Workshop 663

Relationship between partitions and libraries The supplier libraries for the
application must also be installed on the partitions that need to access them.
However, the application configuration does not include the supplier libraries
(only the supplier projects). Therefore, you must make a separate library
distribution that contains the libraries needed by the application, and install the
library distribution along with the application distribution. See “About Library
Configurations” on page 673 for information.

Automatic partitioning iPlanet UDS automatically partitions your application
for each of your environments. Most of your service objects can run only on a
certain node. Therefore, iPlanet UDS automatically assigns the service objects to
specific partitions and assigns the partitions to the nodes in the environment that
have the appropriate resources and capabilities. For further details on automatic
partitioning, see “Default Configuration” on page 672.

After iPlanet UDS partitions the application, you can examine it and make
adjustments. If necessary, you can assign service objects to different partitions or
assign partitions to different nodes. For partitions that contain replicated service
objects, you can replicate the partitions to provide load balancing or failover.

When you examine a partition in the Partition Workshop, you see only the service
objects assigned to the partition, not the projects. However, iPlanet UDS ensures
that the project definitions needed by each service object are always included on
the partition. If you move a service object, the projects it needs are moved along
with it.

(Note that you can use the ShowApp command in Fscript to see which projects are
included on a partition. See the Fscript Reference Guide for information on the
ShowApp command.)

Testing a configuration After you adjust your configuration, you can test it by
running the partitioned application in the environment. This lets you test the
distributed application as it will appear to end users when it is installed.

Deploying applications The completed configuration is your “distributed
application.” When your configuration is ready, you can generate the distribution,
that is, the files necessary to install the application for production deployment. The
Partition Workshop provides a Make Distribution command for this purpose. See
“Making an Application Distribution” on page 716 for information.

About Application Configurations

664 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

About Partitions
A partition is a logical section of an application that represents either the client
portion of the application or one of the servers. When iPlanet UDS partitions an
application, it assigns all the service objects in the application to partitions; these
are the logical partitions. It then assigns the logical partitions to appropriate nodes in
the environment; these are the assigned partitions.

The Partition Workshop shows both the logical partitions into which your
application is divided and the assigned partitions that represent the processes that
will be installed in the environment. The following sections provide information
about the properties of logical and assigned partitions.

Logical Partitions
When iPlanet UDS partitions your application, it divides the application into one
client partition and any number of server partitions.

Client partition A client partition contains the user interface for the application
(if there is one) and the application startup code. In addition, if the application
contains any service objects with user visibility, iPlanet UDS will put them on the
client partition if the client nodes in the environment can support them. If you used
the Configure as > Server command to create a server configuration, iPlanet UDS
does not create a client partition for the application.

Server partition A server partition contains one or more service objects and the
projects accessed by the service objects. There are two types of server partitions:
replicated and non-replicated.

Replicated server partition A replicated server partition is a partition that
contains a service object that was defined as being replicated for load balancing or
failover. When a logical partition is replicated, you can assign it to any number of
nodes in the environment. For each assigned partition, you can specify a startup
replicate count, as described under “Assigning Partitions” on page 699.

Router partition When the service object in a partition is replicated for load
balancing, iPlanet UDS automatically creates an extra partition called a router
partition. The purpose of a router partition is to route the traffic between the
partitions that are load balancing work for the service object. Although the router
partition is usually assigned to the same node as one of the server partitions that it
is managing, it can be on any server node in the environment.

About Application Configurations

Chapter 14 Using the Partition Workshop 665

If the service object is replicated for both failover and load balancing, iPlanet UDS
replicates the router partition for failover and replicates the server partitions for
load balancing. As a result, if the first router partition fails, the second router
partition can take over and manage the partitions that are sharing the work load,
and so on for each replicated router partition. See the iPlanet UDS Programming
Guide for further information about the router.

Do not add service objects to router partition Although the router partition
appears in the Partition Workshop as a standard partition, we strongly recommend
that you do not move any service objects onto this partition.

Non-replicated server partition A non-replicated server partition is a partition
containing service objects that were not defined as being replicated. When a logical
partition is non-replicated, you can assign only one enabled partition in the
environment. Other copies you make of the non-replicated server partition will be
automatically disabled, as described under “Assigned Server Partition Properties”
on page 670.

In the Partition Workshop, you can change whether a partition is replicated or not
by modifying the definition of the service object that it contains. See “Modifying a
Service Object Definition” on page 695 for information.

Reference partition A special kind of logical partition is a reference partition. A
reference partition allows you to share an existing service object in another
application (or in another environment) rather than starting a new instance of the
server partition in the current application.

To share a service object between applications, you first deploy the service object in
one application. The application that deploys the service object can be either a
server application or a client application—it makes no difference.

Then, in the other applications that need to access that deployed service object, you
create a reference partition. Instead of containing a new service object, the reference
partition points to the existing service object that was originally deployed as part of
the first application.

Sharing services objects in the current environment Reference partitions allow
you to create business services that are shared by any number of applications in the
current environment. For example, if you want your application to interact with an
image server that is already provided by another application in the environment,
you can include the project that defines that service object as a supplier and then
create a reference partition that points to the existing service object. This way your
application will be sharing the existing service object with any other applications
that are using it, rather than creating a new instance of the service object.
Figure 14-4 illustrates a reference partition:

About Application Configurations

666 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 14-4 Reference Partition for Current Environment

Sharing services objects between connected environments If your deployment
environments are connected, you can create business services that are shared
across environments. For example, you may have a service object that can run only
in one environment, such as a service object that uses a specialized satellite feed or
stock ticker that can be accessed through a callout to an external service running in
one location. Or, imagine you have a service object that handles personnel data.
This service object only resides in the headquarters environment because that is
where the personnel database is. All other applications installed in their own local
environments must access the personnel database located at headquarters.

Applications in other environments can access the specialized service object in the
connected environment by using a reference partition. The following figure
illustrates:

Image
Tester

Image
Service

Client
Partition

Client
Partition

Auction
Service

Client
Partition

Client
Partition

Reference partition
for Image Tester
application

About Application Configurations

Chapter 14 Using the Partition Workshop 667

Figure 14-5 Reference Partition for Connected Environment

The advantages of using reference partitions include:

• modularity

The ability to share a single service object between multiple applications means
that you need to create and manage only that single service object. Without
reference partitions, you would need to create more than one version of the
service object.

• efficient use of resources

Only one service object needs to be running in order to provide services
needed by multiple applications. Without reference partitions, you would need
to run the service object within every application that needs its services.

For complete information about reference partitions, see the iPlanet UDS
Programming Guide.

Environment North America Environment Europe

About Application Configurations

668 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Assigned Partitions
An assigned partition represents a client or server partition that will be installed on
a particular node in the environment. The following two sections describe the
different properties available for the assigned client and server partitions.

Assigned Client Partition Properties
Figure 14-6 shows the properties available for an assigned client partition:

Figure 14-6 Assigned Partition Properties Dialog (Client Partition)

Compiled property A client partition can either be standard or compiled. A
standard partition runs with the iPlanet UDS runtime system using an image
repository and an iPlanet UDS interpreter (see the iPlanet UDS System Management
Guide for definitions of these terms). A compiled partition is a partition for which you
are going to use C++ code generation to create a compiled version. A compiled
partition can provide the advantage of improved performance, which is especially
significant for high-volume partitions.

When to use compiled partitions Compiled partitions provide improved
performance for process-intensive partitions, which are typically server partitions.
Because client partitions are not typically process-intensive, you may not see the
same performance gains for client partitions that you see for server partitions. One
good strategy might be to experiment to find out what works most effectively for
your particular application.

Because the compilation process can take some time, you may wish to use standard
partitions when you are developing and testing, and request compiled partitions
only when you are making the distribution for a deployed application. By default,
all partitions are standard.

About Application Configurations

Chapter 14 Using the Partition Workshop 669

Restrictions for compiled client partitions Compiled client partitions are not
supported on all the client platforms. The following table summarizes:

Windows NT and Windows 95 compiled clients Because Windows 95 code and
Windows NT code are binary compatible, iPlanet UDS compiled client partitions
built on these two operating systems are actually interchangeable. For purposes of
administration and processing throughput, we recommend that system
administrators configure Windows NT machines for the auto-compile service to
build compiled Windows 95 clients. However, for customers who do not have
Windows NT machines available, the AutocompileSvc_Part2 can actually be
placed onto a Windows95 node. See the iPlanet UDS System Management Guide for
information on setting up the auto-compile service. See “Auto-Compile Option” on
page 723 for information on using automatic compilation for Windows 95
compiled clients.

Compiled clients and applets Compiled client partitions cannot be launched by
the iPlanet UDS Launcher. Therefore, you cannot mark a client partition as an
applet in the Logical Partition dialog, and mark the same partition as Compiled in
the Assigned Partition dialog. See “Making an Applet” on page 694 for information
about making client applications into applets.

See “Making an Application Distribution” on page 716 for information about
creating the distribution for compiled partitions. See the iPlanet UDS System
Management Guide for information about installing compiled partitions.

Generate C++ API property If you are planning to access your application using
C++, you must generate a C++ API for each client partition that needs one. To
generate the C++ API for a client partition, on each client node for which you want
the API generated, you must turn on both the Compiled and Generate C++ API
properties for the assigned partition. When you later use the automatic compilation
feature of the Make Distribution command or the fcompile command to compile
the partitions, iPlanet UDS generates and compiles the files for the C++API. See
Integrating with External Systems for step-by-step instructions for generating a C++
API for an iPlanet UDS application.

Platform Client Code Generation
Available?

Autocompile Support?

Windows 95/NT Yes Yes

UNIX Yes Yes

OpenVMS Yes Yes

About Application Configurations

670 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Assigned Server Partition Properties
Figure 14-7 shows the properties available for an assigned server partition.

Figure 14-7 Assigned Partition Properties Dialog (Server Partition)

The exact properties available on this dialog depend whether or not the server
partition is replicated.

Compiled property A server partition can either be standard or compiled. A
standard partition runs with the iPlanet UDS runtime system using an image
repository and an iPlanet UDS interpreter (see iPlanet UDS System Management
Guide for definitions of these terms). A compiled partition is a partition for which you
are going to use C++ code generation to create a compiled version. A compiled
partition can provide the advantage of improved performance, which is especially
significant for high-volume partitions.

When to use compiled partitions Compiled partitions provide improved
performance for process-intensive partitions, which are typically server partitions.
One good strategy might be to experiment to find out what works most effectively
for your particular application.

Because the compilation process can take some time, you may wish to use standard
partitions when you are developing and testing, and request compiled partitions
only when you are making the distribution for a deployed application. By default,
all partitions are standard.

See “Making an Application Distribution” on page 716 for information about
creating the distribution for compiled partitions. See the iPlanet UDS System
Management Guide for information about installing compiled partitions.

About Application Configurations

Chapter 14 Using the Partition Workshop 671

Disabled property Every assigned server partition is either enabled or disabled.
An enabled server partition starts up automatically when the application starts.
Note that if the auto-start property for the individual service objects on the enabled
partition is turned off (it is on by default), the enabled partition will not
automatically start up. See the iPlanet UDS Programming Guide for complete
information on automatic startup for service objects.

Replicated partitions For a replicated partition, at least one copy of the partition
must be enabled. By default, all assigned replicated partitions are enabled.
However, you can disable an individual replicated partition, if appropriate.

Non-replicated partitions For a non-replicated partition, one and only one copy
of the partition must be enabled. If you enable one copy of a non-replicated
partition, the previously enabled copy will be automatically disabled. The only
way to disable an enabled non-replicated partition is to explicitly enable another
copy of the partition.

A disabled partition does not start up automatically when the application starts,
but simply provides an extra copy of the partition for installation that you can use
for manual backup. If no other copies of the logical partition are currently running,
you can start the disabled partition explicitly from the iPlanet UDS Environment
Console.

Service objects on disabled partitions not auto-started Disabled partitions by
definition are not auto-started. Therefore, if a service object on a disabled partition
is defined as “auto-started” using the “(a)” feature in the service object’s
environment search path, it will not be auto-started on the disabled partition. See
the iPlanet UDS Programming Guide for complete information on automatic startup
for service objects and on using the environment search path to auto-start them.

Thread Package property The Thread Package property specifies the thread
package used by the partition. The default thread package depends on the
particular platform (described in the iPlanet UDS System Installation Guide). If you
do not want to use the default thread package, you can use the Thread Package
property to specify one of the other thread packages supported for the particular
platform. See the iPlanet UDS System Installation Guide for information about which
thread packages are supported for each platform.

Server arguments The server arguments for server partitions specify the startup
flags to use for the assigned partition. These include the -fl flag to specify filter
settings for the partition’s log messages and the -fm flag to specify memory use for
the partition. You can also include your own application-specific flags. Note that
these take effect only when the partition is started using the Environment Console
or Escript; these arguments are ignored when the partition is starting manually
using the ftexec command.

About Application Configurations

672 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Replication Count property For replicated server partitions, you can specify the
number of replicates for the partition on each node where it is enabled. When the
application starts, iPlanet UDS automatically starts the specified number of
replicates of the partition, providing the automatic load balancing or failover for
the service objects on that partition. Note that when the system manager installs
the application, he or she can specify a different value for the number of automatic
startup replicates.

Default Configuration
When iPlanet UDS partitions an application, it assigns all the service objects in the
main project and all its supplier projects to logical partitions.

Client partition If the application has a client (that is, if you used the Configure
as > Client command to create the configuration), iPlanet UDS creates a client
partition to contain the user interface for the application and the application
startup code. In addition, if the application contains any user-visible service
objects, iPlanet UDS will put them on the client partition if the client nodes in the
environment can support them. The client partition is then assigned to every client
node in the environment.

Server partitions If a service object has environment visibility, iPlanet UDS
assigns it to a server partition. If a service object has user visibility and cannot run
on the client partition, iPlanet UDS assigns it to a different server partition than the
one that contains the environment-visible service objects. Each server partition is
then assigned to an appropriate node in the environment. If the partition requires a
database resource manager or a restricted C project, iPlanet UDS assigns the
partition to the node where the required resource or library is installed. If you have
previously specified a default node and/or excluded nodes for the configuration
(described in “Configuration Properties” on page 673), this will be taken into
account when the application is partitioned.

By default, iPlanet UDS assigns all compatible service objects to the same partition.
However, when you are ready to deploy the application, you may need to move
some of the service objects to partitions on different nodes in the deployment
environment. You should do this before making the application distribution for the
deployment environment. See “Modifying a Client or Server Configuration” on
page 686 for information on how to make new partitions and move service objects.

Unassigned service objects If you have any service objects in the application that
cannot be supported in the current environment (for example, because a DBMS
resource manager service object is defined for an external manager that is not
present in the environment, or because a restricted 3GL project has not been

About Library Configurations

Chapter 14 Using the Partition Workshop 673

installed in the environment), these will be unassigned. To run your application in
this environment, you must either update the service object definition or the
system manager must update the environment definition so the service object can
be assigned to a partition. You can then assign the partition to the appropriate
node.

Replication for load balancing and failover iPlanet UDS does not automatically
replicate your service objects for load balancing or failover. Instead, in the Partition
Workshop, you must replicate the partitions to which the service objects are
assigned. You can replicate a partition either by assigning it to an additional node
(as described under “Assigning Partitions” on page 699) or by setting the
replication count for an individual assigned partition on a single node (described
under “Setting Assigned Partition Properties” on page 700).

For each service object that is replicated for load balancing, iPlanet UDS
automatically creates a router partition. The router partitions are assigned to the
default server node for the environment.

Configuration Properties
For the configuration in general, you can set the following two properties:

Changing the node settings causes the application to be automatically
repartitioned after you click the OK button on the properties dialog.

About Library Configurations
A library distribution consists of one or more projects that you bundle together
using the Partition Workshop. When it is time to make the library distribution, you
must take one of the projects it will contain and configure it as a library with the
Configure as > Library command. The project you choose to configure provides the
name and compatibility level for the library distribution as a whole.

Property Description

Default node iPlanet UDS automatically assigns all partitions that can run on it to
the default node.

Excluded nodes iPlanet UDS will not use these nodes in the configuration.

About Library Configurations

674 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

A library configuration consists of projects assigned to nodes in the environment.
The default configuration places the project you configured as a library on all
nodes in the environment. When you modify the configuration, you can add other
projects to it and specify the nodes on which the libraries will be deployed.

When you are examining a library configuration, the left side of the Partition
Workshop shows a list of the projects included in the library configuration and the
right side of the Partition Workshop shows the assigned libraries, indicating the
specific nodes in the environment on which each project will be installed as a
library.

Standard or compiled libraries For assigned libraries, you can specify whether
the library on a given node is standard or compiled. The option of providing
compiled libraries provides improved performance. A compiled library uses C++
code generation to create a compiled shared library. Normally, the libraries
running on server machines are compiled. However, by default, all libraries are
standard because installation and management of standard libraries is simpler.

Compiled suppliers for compiled libraries If a given library has supplier
libraries, you must be sure to set the compilation options correctly for the main
library and its suppliers. Once you designate a given library on a particular node as
compiled, you must ensure that all its supplier libraries are also compiled. For a
standard library, the supplier libraries can either be standard or compiled.

Compiled libraries for compiled partitions When deciding whether or not a
library is compiled, you also need to take into account whether or not the partition
that will be using the library is compiled. If the partition is compiled, the library
that it accesses must also be compiled. If the partition is standard, the library that it
access can be either standard or compiled.

Configuration property A library configuration has only one property:

Property Description

Excluded nodes iPlanet UDS will not use these nodes in the configuration.

Using the Partition Workshop

Chapter 14 Using the Partition Workshop 675

Using the Partition Workshop
There are two ways to enter the Partition Workshop. First, if you wish to test a
client application in a distributed environment, you can use the Partition…
command in the Repository or Project Workshop. Second, when you are ready to
deploy a client application, a server application, or a library, you can use the
Configure as command in the Project Workshop.

The Plan > Run > Partition… command in the Repository and Project Workshops
opens the Partition Workshop, allowing you to run a client application using any of
its configurations. See “Testing a Client Configuration” on page 712 for
information about using the Partition Workshop to test a client application.

The File > Configure as command in the Project Workshop creates a configuration
for the current project (or opens the existing configuration for the current project if
there is one). You can then modify the configuration and, when ready, make the
final distribution for deployment. You can also open and modify the
configurations for other environments. See “Creating a Configuration” on page 677
for information about using the Configure as command.

To use the Partition Workshop, you must be running the iPlanet UDS Workshops
in distributed mode. If you are running in standalone mode, the Partition… and
Configure as commands will not be available.

Current environment is locked When you use the Partition Workshop for a
given environment, iPlanet UDS locks the environment so that no one using the
Environment Console or the Escript utility can modify the environment definition.
Therefore, you should be careful not to keep the environment locked for long
periods of time by leaving the Partition Workshop open unnecessarily.

The Partition Workshop Window
For a client or server configuration, the Partition Workshop window displays the
logical and assigned partitions in the environment. For a library configuration, the
Partition Workshop displays the assigned libraries in the environment. Figure 14-8
illustrates the Partition Workshop and Figure 14-9 shows the Partition Workshop
toolbar icons.

Using the Partition Workshop

676 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 14-8 Partition Workshop

Figure 14-9 Partition Workshop Toolbar

Access to Other Workshops
From the Partition Workshop, if you are working with a client configuration, you
can access the Debugger by clicking the Debugger button or selecting the Run >
Debug command.

Leaving the Partition Workshop
To leave the Partition Workshop, use the File > Close command to close the
workshop. This command closes only the current workshop.

Assigned Partitions

Logical Partitions
browser

browser

Save
All

Run Debug Repartition

Creating a Configuration

Chapter 14 Using the Partition Workshop 677

Creating a Configuration
The Configure as command creates a configuration, and determines the
configuration type: client, server, or library.

The Configure as > Client command creates a client configuration, which defines a
client application, an application that the end user can run from his or her
workstation. A client configuration contains one client partition, which includes
the user interface for the application (if there is one) and the startup code. A client
configuration may also contain one or more server partitions.

Applets In the Partition Workshop, any client configuration can be configured as
an applet, rather than as a client application. An applet is an application that can be
launched from another application using the AppletSupport library, but that
cannot be run as an independent client application.

Because the client configuration defines a client application, you can use the
Partition Workshop to test or debug the client configuration. Even applets can be
tested or debugged using the Partition Workshop.

The Configure as > Server command creates a server configuration, which includes
one or more server partitions. A server configuration defines an iPlanet UDS
service, which provides services for one or more client applications. A server
configuration has one or more server partitions, and no client partition.

Because the server configuration defines a server that cannot run on a client, you
cannot run or debug it from the Partition Workshop, even if the project that was
configured defines a start class and method.

The Configure as > Library command creates a library configuration, which
consists of projects assigned to nodes in the environment. The default
configuration places the project you configured as a library on all nodes in the
environment. When you modify the library configuration, you can add other
projects to it and specify the nodes on which the libraries will be deployed.

Because the library configuration defines sets of libraries, not applications, you
cannot run or debug it from the Partition Workshop, even if the project that was
configured defines a start class and method.

Creating a Configuration

678 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Using the Configure as Command
You can use the Configure as command to create a new configuration or to open an
existing configuration.

➤ To create a configuration or open an existing one

1. In the Project Workshop, select the project you wish to configure, or whose
configuration you wish to open.

2. Choose the File > Configure as command.

3. On the Configure as submenu, select the configuration type you wish to create
or open: Client, Server, or Library.

The Partition Workshop opens.

4. In the Partition Workshop, select the environment from the environment drop
list.

Selecting an environment The environment drop list shows all the environments
in your environment repository (see the iPlanet UDS System Management Guide for
information about the environment repository and about defining environments).
Note that if any environments are currently locked by the Environment Console or
the Escript utility, you will not be able to use them.

Automatic partitioning If you select an environment that does not yet have a
configuration, iPlanet UDS automatically partitions the application or libraries. The
automatic partitioning may take some time.

Incremental partitioning If you select an environment that already has a
configuration and you have changed any of the projects in the application in such a
way as to effect the configuration, iPlanet UDS automatically repartitions the
application. This automatic repartitioning is an incremental partitioning, that is,
iPlanet UDS only changes assignments that have become invalid, and does not
make new assignments. For example, if you have added new client nodes to the
environment, the incremental partitioning will not assign client partitions to the
new nodes. To force a complete repartitioning, you can use the File > Repartition
command (described under “Repartition Command” on page 704).

When the partitioning (or repartitioning) is complete, iPlanet UDS displays the
current configuration.

Examining a Configuration

Chapter 14 Using the Partition Workshop 679

Examining a Configuration
To examine a configuration, you can start from the Project Workshop or from the
Partition Workshop.

Configure as command From the Project Workshop you can examine the
configuration for any project in your workspace. In the Project Components
browser, select the project whose configuration you wish to examine and then
choose the appropriate File > Configure as command (see “Using the Configure as
Command” on page 678). When the Partition Workshop opens, select the
environment from the environment drop list.

From the Partition Workshop, you can examine the configuration for the current
project in any environment in your environment repository. Simply select the
appropriate environment from the environment drop list.

Read-only workspace If your workspace is open for reading only, you can use
the Partition Workshop to examine a configuration, test it, and make temporary
modifications to it. However, since you cannot save your workspace, any changes
you make to the configuration are only temporary.

When you enter the Partition Workshop, the workshop displays the configuration
that was open the last time you used the workshop (or the configuration for the
active environment if the last configuration is unavailable). If it is the first time you
have opened the Partition Workshop, the workshop displays the configuration for
the active environment. If you wish to select another configuration, you can select
the environment name from the environment drop list.

The following sections provide detailed information on examining the
configuration components in an application configuration, examining the
configuration components in a library configuration, and examining the
configuration properties (applies to both application and library configurations).

Examining an Application Configuration
In an application configurations, you can examine the following:

• the logical partitions

• the nodes in the environment

• the assigned partitions on specific nodes in the environment

Examining a Configuration

680 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Examining the Logical Partitions
The Logical Partition browser portion of the Partition Workshop, shown in
Figure 14-10, displays a two-level hierarchy that lists the names of the logical
partitions for the environment and the service objects contained in each partition.

Logical partition icons For logical partitions, the browser displays the logical
partition names. Icons indicate whether the partition is a client partition or a server
partition. You can identify a router partition by its name.

Figure 14-10 Logical Partition Browser

Double-click partition name to view assignments To view a list of the nodes to
which the partition is assigned, double-click on the partition name. A dialog
appears, as shown in Figure 14-11, that lists the nodes where the partition is
assigned and indicates whether the partition is enabled or disabled.

Figure 14-11 Logical Partitions Dialog

Client partition
icon

Server partition
icon

Service object
icon

Examining a Configuration

Chapter 14 Using the Partition Workshop 681

Examining a service object For service objects, the Logical Partition browser
displays the service objects’ names. To examine the service object definition,
double-click on the service object name. The Service Object Properties dialog
opens, displaying the full definition of the service object.

Reference partitions If the service object is in a reference partition, the Service
Object Properties dialog does not display the full definition of the service object.
Instead, the dialog displays the name of the referenced application and referenced
partition. (If the service object in the reference partition is in another environment,
the Service Object Properties dialog shows the environment search path.)

To display the full definition of the service object, you must examine the
configuration for the project where the service object was originally defined.

Unassigned service objects If there is a mismatch between the service objects
defined in the application and the external managers or installed C projects
provided by the environment, iPlanet UDS will not be able to assign all the service
objects to logical partitions. In this case, the unassigned service objects will be
displayed on the “Unassigned” list. Because you cannot run the application with
unassigned service objects, you must fix this problem either by modifying the
service object definition or having the system manager modify the environment
definition. See “Modifying a Service Object Definition” on page 695 for information
on modifying the service object definition.

Examining Nodes in an Application Configuration

View menu The Nodes browser displays the assigned partitions within the
environment. By default, the browser displays a topological view of the
environment. The View > Node Outline command lets you display the same
information in an outline form.

For each node in the environment, the browser displays a three-level hierarchy. At
the top level is the node name. At the second level are the partitions assigned on
that node. At the third level are the service objects assigned to each partition.

Examining node properties To examine the node properties, double-click the
node name, or select the node and give the Component > Properties… command.
The Node dialog appears, shown in Figure 14-12, displaying the node properties
described under “About Nodes” on page 657. These properties are the settings that
were specified for the node when the environment was created in the Environment
Console, and you cannot change them from the Partition Workshop. See the iPlanet
UDS System Management Guide for further information on the properties of a node.

Examining a Configuration

682 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 14-12 Node Properties Dialog

Examining the Assigned Partitions
For each assigned partition, you can examine information about the partition as
well as information about any DBSession service objects on the partition. To open
the Assigned Partition Properties dialog, double-click the assigned partition name
or select the partition and choose the Component > Properties… command. See
“Assigned Partitions” on page 668 for information about the properties available
for assigned client partitions and for assigned server partitions.

Projects assigned to partitions You cannot use the Partition Workshop to see
which projects in your application are assigned to a particular partition. However,
you can use Fscript to do so. The ShowApp command in Fscript shows the current
configuration information for the current application in the current environment.
Seethe Fscript Reference Guide for information on the ShowApp command.

Examining a Configuration

Chapter 14 Using the Partition Workshop 683

Examining Library Configurations
For library configurations, you can examine:

• the projects that are being configured as libraries

• the nodes in the environment

• the assigned libraries on specific nodes in the environment

Examining the Projects
For library configurations, the Project browser portion of the Partition Workshop,
shown in Figure 14-13, lists the projects included in the library configuration.

Figure 14-13 Project Browser

Double-click project name to view assignments To view a list of the nodes to
which the project is assigned, double-click on the project name. A dialog opens, as
shown in Figure 14-14, that lists the nodes where the project is assigned.

Library included
in configuration

Examining a Configuration

684 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 14-14 Logical Partition Dialog for a Project

Examining Nodes in a Library Configuration
For library configurations, the Nodes browser displays the assigned libraries
within the environment. By default, the browser displays a topological view of the
environment. The View > Node Outline command lets you display the same
information in an outline form.

For each node in the environment, the browser displays a two-level hierarchy. At
the top level is the node name. At the second level are the libraries assigned on that
node. If the libraries are not currently displayed, open the node by clicking the
expansion arrow.

Examining node properties To examine the node properties, double-click the
node name, or select the node and give the Component > Properties… command.
The Node dialog appears, shown in Figure 14-15, displaying the node properties
described under “About Nodes” on page 657. These properties are the settings that
were specified for the node when the environment was created in the Environment
Console, and you cannot change them from the Partition Workshop. See the iPlanet
UDS System Management Guide for further information on the properties of a node.

Examining a Configuration

Chapter 14 Using the Partition Workshop 685

Figure 14-15 Node Properties Dialog

Examining Assigned Libraries
For each assigned library, you can open a dialog that shows which libraries on the
node are compiled. To open the Compilation Properties for Node dialog, shown in
Figure 14-16, double-click the assigned library name or select the library and
choose the Component > Properties… command. A toggle next to the library’s
name indicates that the library is compiled.

Figure 14-16 Compilation Properties for Node Dialog

Modifying a Client or Server Configuration

686 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Viewing the Configuration Properties
To view the default node and excluded nodes for the current configuration, choose
the File > Properties… command. The Properties… command opens the
Configuration Properties dialog, shown in Figure 14-17, displaying all the nodes in
the environment. If the toggle next to the node name is checked, this indicates that
the node is excluded from the configuration.

Figure 14-17 Configuration Properties Dialog

Modifying a Client or Server Configuration
This section describes how to modify a client or server configuration. Because a
library configuration is so different, modifying a library configuration is described
separately under “Modifying a Library Configuration” on page 708.

Libraries in a separate distribution! Note that the application configuration does
not include the libraries that are needed by the application. If your application has
supplier libraries, you must create a separate library configuration for the libraries,
as described under “Modifying a Library Configuration” on page 708 and then
create a separate library distribution for them as described under “Making a
Library Distribution” on page 732. Both the application distribution and library
distribution must be installed in order for the application to run.

In the Partition Workshop, you can modify your client or server configuration by:

• changing a logical partition, which affects all assigned copies of that partition

You can modify your logical partitions by moving service objects from one
logical partition to another, creating new logical partitions, and changing the
service object definitions. Any changes you make to the logical partitions are
immediately reflected in the assigned copies of that partition.

Modifying a Client or Server Configuration

Chapter 14 Using the Partition Workshop 687

• changing the individual assigned partitions

• making reference partitions

A reference partition points to an existing service object in the installed
environment, allowing applications to share an existing service object.

• making a client application into an applet

• modifying a node

You can modify the nodes in the configuration by assigning partitions to them,
moving partitions from one node to another, deleting partitions, and setting
the properties of an individual assigned partition.

• setting the properties for the configuration itself, which causes iPlanet UDS to
repartition the application

Opening the configuration To modify a configuration, you must first open it
(described under “Creating a Configuration” on page 677). If you select an
environment that does not yet have a configuration, iPlanet UDS automatically
partitions the application. If you select an environment that already has a
configuration and you have changed any of your projects in such a way as to affect
the configuration, iPlanet UDS automatically performs an incremental partitioning
on the application, however, this may take some time.

Permanent changes Note that to make permanent changes to a configuration,
your workspace must be open for updating. If your workspace is open for reading
only, you can use the Partition Workshop to examine a configuration, test it, and
make temporary modifications to it. However, because you cannot save your
workspace, any changes you make to the configuration are only temporary.

Modifying Logical Partitions
You can make the following changes to a logical partition:

• move a service object from one partition to another

• create a new logical partition to contain the selected service object

• make a reference partition

• make an applet

• modify the definition of an individual service object

Modifying a Client or Server Configuration

688 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Moving Service Objects
You can move a service object to any compatible partition. For the partition to be
compatible, the service objects in the target partition must meet the following
conditions:

• If the service object you want to move is replicated, the service objects in the
target partition must be replicated the same way.

• If the service object you want to move is associated with a resource manager,
the service objects in the target partition must be associated with the same
resource manager, if any.

• If the service object you want to move belongs to a restricted project, the
service objects in the target partition can belong to another restricted project
only if both restricted projects can run on the same node.

If you do try to move a service object to an incompatible partition, you will get an
error message that explains why it is incompatible.

Mixing visibility You can include a user-visible service object in the same
partition as an environment-visible service object. However, when a user-visible
service object is in the same partition with an environment-visible service object,
the user-visible service object becomes accessible only within that partition. This
limited accessibility can be a useful optimization technique. See “Combining
Service Objects and Partitions” on page 705 for more information.

➤ To move a service object

1. In the Logical Partition browser, select the service object you wish to move.

2. Drag the service object on top of the target partition name.

If the partition is incompatible, iPlanet UDS will display an error dialog
explaining why the service object cannot be moved.

Creating a New Logical Partition

New Logical Partition command To create a new logical partition, you must
have at least one existing service object that you wish to assign to it.

➤ To create a logical partition

1. Select the service object you wish to move to the new partition.

2. Choose the Component > New Logical Partition command.

Modifying a Client or Server Configuration

Chapter 14 Using the Partition Workshop 689

Making a Reference Partition
Before you can make a reference partition, the application that includes the service
object must be deployed. Then, you must obtain the project that defines the service
object and include it as a supplier plan for your main project.

Project that defines the service object The project that you include as a supplier
plan for your main project must be the same project that was used to define the
service object in the deployed application. The supplier project in the current
application must match the project in the deployed application in the following
ways:

• the names of the projects must be the same

• the compatibility levels of the projects must be the same

• all runtime IDs must match

Any time that multiple repositories are using the same project, the project must
have been imported with IDs into all the repositories (except for an originating
repository) even when the project was originally imported into a repository
without IDs. Whenever a project without IDs is imported into a repository, new
IDs are automatically created for the project, its components, and its service objects.
If you simply import the same exported project without IDs into different
repositories, applications generated by these separate repositories will not
recognize that the projects, service objects, and components are the same because
the IDs are different.

If you have received an exported project that does not include unique IDs, you
need to get another copy of the exported project that includes these IDs; otherwise,
your application will not be able to use the deployed partition. The iPlanet UDS
runtime system uses the IDs to determine whether the requested service object and
the available service objects are the same.

There are four steps you must follow to include a service object from a deployed
application in your current application.

CAUTION If the project that defines the service object was created in another
repository, you need to export the project from the other repository
using the Fscript ExportPlan with the ids option. Then, you need to
import this exported plan into your repository.

Modifying a Client or Server Configuration

690 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To include the service object

1. Deploy the application that defines the service object that is to be shared.

2. If the service object is in a connected environment, you must make a
distribution for the server application that contains it in the current
environment (although you do not install it).

3. In the application that needs to access the deployed service object, include as a
supplier plan the project from the deployed application that originally defined
the service object.

4. Use the Partition Workshop to create a reference partition that points to the
existing service object.

If the service object is in a connected environment, the environment search
path for the service object in the reference partition must specify the
environment where the original server application that contains the service
object is deployed.

The remainder of this section describes how to use the Partition Workshop to
create a reference partition. See the iPlanet UDS Programming Guide for detailed
information on steps 1 through 3.

When you partition your application in the Partition Workshop, iPlanet UDS
creates new partitions containing all the service objects in the main project and all
of its supplier projects, just as usual. Therefore, the service object that you are
planning to include in the reference partition will be on a new partition (or it may
be sharing a new partition with other service objects).

At this point, you must create the reference partition to point to the deployed
service object, and move the service object from the new partition into the reference
partition. This tells iPlanet UDS to use the service object that the reference partition
points to, rather than creating a new instance of the service object.

New Reference Partition command To create the reference partition, use the
New Reference Partition command. When you choose the New Reference Partition
command, a dialog displays a list of the applications from which you can select an
existing service object. This list consists of all those applications for which
application distributions have already been made. Therefore, you should make
sure that the distribution that includes the service object you want to reference was
made before you try to reference it.

Modifying a Client or Server Configuration

Chapter 14 Using the Partition Workshop 691

➤ To make a reference partition

1. In the Logical Partition browser, select the service object name that you wish to
access from the reference partition.

2. Choose the Component > New Reference Partition… command.

The Select Containing Application dialog opens.

3. In the Select Containing Application dialog, select the application that contains
the existing service object you wish to reference, and click the OK button.

Automatic startup for reference partitions If automatic starting is specified for
the environment (the default), the reference partition will automatically start the
service object it references when this is necessary. If the automatic starting property
is turned off for the environment (check with your system manager), you can turn
on automatic startup for the service object in the reference partition by using the (a)
option in its environment search path. However, before using this auto-start
feature, please check with your system managers because auto-starting an
individual service object affects the startup behavior of the entire application.

For complete information about auto-starting service objects, see the iPlanet UDS
Programming Guide.

When the application that contains the reference partition is installed, the
application that contains the service object that is being referenced must also be
installed. If the application that contains the service object is not installed, the
application that contains the reference partition will fail at runtime when it tries to
access the service object.

Modifying a Client or Server Configuration

692 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

If, in the future, the compatibility level of the application that defines the service
object referenced by the reference partition is raised, and you want to use the new
release of the service object, you must update your application appropriately. For
information about using new compatibility levels for service objects, see the iPlanet
UDS Programming Guide.

Using Reference Partitions with Connected Environments
If your deployment environments are connected and a service object that you need
to access can run only in one of the environments, you can access that service object
from other environments by using a reference partition combined with an
environment search path. (To see if a given environment is connected to any other
environments, you must use the Environment Console or Escript. For information
on how to do so, see the iPlanet UDS System Management Guide.)

Environment search path In a reference partition to a connected environment,
you use the environment search path on the service object to specify the name of
the environment that contains the service object you want to access. When the
environment search path for a service object specifies an environment name other
than the current environment, every time the service object is referenced, iPlanet
UDS always uses the service object in the specified environment.

Search path excludes the local environment When you have applications in
multiple environments that need to use a specific service object in a specific
environment, you should deploy the application that contains the service object in
the environment in which it can run. Then, each application in the other
environments can create a reference partition to the service object in that
application. The search path from each application would only include the specific
environment where that service object is deployed. (It must exclude the local
environment).

Making a reference partition to a connected environment Making a reference
partition to a service object in a connected environment is similar to making a
reference partition to a service object within the current environment, however,
you must follow some extra steps. First, you must make a distribution for the
application that contains the service object.

Modifying a Client or Server Configuration

Chapter 14 Using the Partition Workshop 693

➤ To make the distribution

1. Import the project that defines the service object into the development
repository.

Remember, the project that defines the service object must have been exported
from the repository where it was defined using the Fscript ExportPlan
command with the ids option. If it was not, the application with the reference
partition will not be able to inter-operate with the application that is running
the service object. If your copy of the exported project does not include unique
IDs, you need to get another copy of the project that does.

2. In the Project Workshop, choose the File > Configure as > Server command to
partition the application that contains the service object.

3. In the Partition Workshop, partition the application appropriately and choose
the File > Make Distribution command to make a distribution for the
application.

Making the distribution makes the service object available for referencing in
the current environment. However, you should not install the application,
because the service object is intended to run outside of your environment and
cannot be installed in your current environment.

Second, you must use the service object’s environment search path to specify which
environment actually contains the service object to be accessed.

When a service object is in a reference partition and you provide an environment
search path for the service object, iPlanet UDS searches the environments in the
environment search path for a service object to use within the current application.
iPlanet UDS uses the first service object it finds in the search path.

Modifying a Client or Server Configuration

694 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To create the reference partition with an environment search path

1. Use the Component > New Reference Partition command to make a reference
partition for the service object and assign it.

2. In the assigned reference partition, double-click the service object name.

The Service Object Properties dialog opens.

3. Click the tab for the Search Path tab page.

4. On the Search Path tab page, enter the environment search path for the service
object (see “Specifying the Environment Search Path” on page 698 for the
environment search path syntax).

Because you want to use a service object in a different environment, the
environment search path should not include the current environment.

Making an Applet
An applet is a client application that can be launched from another application
using the AppletSupport library, but that cannot be run as an independent
application. See the iPlanet UDS Programming Guide for complete information on
writing and configuring an application that launches applets.

Applet property You can configure any client application as an applet by turning
on the Applet toggle in the Logical Partition Properties dialog for the client
partition.

Modifying a Client or Server Configuration

Chapter 14 Using the Partition Workshop 695

➤ To create an applet

1. In the Logical Partition browser, double-click the client partition.

The Logical Partition dialog opens.

2. In the Logical Partition dialog, turn on the Applet toggle.

Modifying a Service Object Definition
In the logical partition, you can modify certain properties of the service object.
Note, however, that changing the service object definition in the Partition
Workshop applies only to the current configuration. Changes do not affect the
original service object definition that you specified in the Project Workshop.

In addition, if the service object is in a reference partition, you cannot modify its
definition in the current configuration. You can only make changes to the service
object definition from the configuration that contains the original service object
definition. The exception to this is the environment search path. You must specify a
new environment search path for the service object in a reference partition; the
environment search path in the original service object definition is ignored in the
current configuration.

To modify a service object definition, double-click the service object name to open
the Service Object Properties dialog, as shown in Figure 14-18.

Modifying a Client or Server Configuration

696 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Figure 14-18 Service Object Properties Dialog

In the Service Object Properties dialog, you can update only certain properties. The
following table describes the properties on each tab page that you can update for
each kind of service object.

Service object Properties you can update

DB Resource Manager General Tab page: Failover (see below), Load Balancing (see
below)
Database Tab page: Database Manager
Search Path Tab page: Search Path (see below)

DB Session General Tab page: Failover (see below), Load Balancing (see
below)
Database Tab page: Database Manager, Database Name, User
Name, Password
Search Path Tab page: Search Path (see below).

User General Tab page: Failover (see below), Load Balancing (see
below)
Export Tab page: Export Name (see below), External Type (see
below)
Initial Values Tab page: initial values for attributes
Search Path Tab page: Search Path (see below)

Modifying a Client or Server Configuration

Chapter 14 Using the Partition Workshop 697

Unassigned service objects Use the Service Object properties dialog to modify
the definition of an unassigned service object. After you change the external
manager name to a name that is available in the current environment, iPlanet UDS
will automatically reassign the service object to the appropriate partition. And
when all unassigned service objects are assigned appropriately, you can run the
application.

Failover and Load Balancing
You can use the Failover and Load Balancing options to turn on replication for a
service object. Note, however, that when you turn on failover and load balancing
for a service object, iPlanet UDS does not automatically replicate your service
objects for load balancing or failover. Instead, you must replicate the partitions to
which the service objects are assigned. You can replicate a partition either by
assigning it to an additional node (as described under “Assigning Partitions” on
page 699) or by setting the startup replicates for an individual assigned partition on
a single node (described under “Setting Assigned Partition Properties” on
page 700).

Setting the Export Name and External Type
The Export Name and External Type properties are for use with the following
external systems:

• IIOP

• OLE

If your service object is not going to function as a server for one of these external
systems, you should ignore these properties. See Integrating with External Systems
for information about integrating OLE with iPlanet UDS applications. See the
documentation for the iPlanet UDS Java Interoperability Guide for information about
integrating with IIOP.

Export name The export name is the name to be used by the client to identify the
service object.

External type The external type specifies the type of external client application
that can access this service object, either DCE, ObjectBroker, OLE, IIOP, Encina, or
none. This external type tells iPlanet UDS to export the files that you need to set
this service object as a server for the specified external system.

For example, specifying DCE as the external type tells iPlanet UDS to export an
interface definition file when you make a distribution. You will later use the file to
set up this service object as a DCE server. The programmer writing DCE client
applications that access this service object will also read this file to understand how
to access the methods in this service object.

Modifying a Client or Server Configuration

698 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Specifying the Environment Search Path
The environment search path for the service object specifies the connected
environments in which iPlanet UDS searches for the service object (see the iPlanet
UDS Programming Guide for complete information on connected environments).

The environment search path you specify for an individual service object within a
configuration overrides the environment search path in the original service object
definition itself specified in the Project Workshop (it does not add to it). You can
use this feature only if the current environment is connected to other iPlanet UDS
environments (see the iPlanet UDS System Management Guide for information on
this).

Document your settings! If you use the environment search path for a service
object, you should be sure to document exactly what you specified for your system
manager. Setting the environment search path for an individual service object
overrides what the system manager specifies for the environment as a whole, and
the system manager needs to be aware of your changes.

Search path syntax To specify the environment search path, enter a string that
includes one or more environment paths. iPlanet UDS searches for the service
object in the same order as the paths in the string. A blank environment search path
specifies using the default search path.

The syntax of the search path string is:

path [(a)] [: path [(a)]...

path is:

(@ | @environment_name)

(a) option A special (a) option allows you to specify that the service object
identified by a specific path should automatically be started if necessary. However,
before using this auto-start feature, please check with your system managers
because auto-starting an individual service object affects the startup behavior of
the entire application. For complete information about auto-starting service objects,
see the iPlanet UDS Programming Guide.

You can use an environment variable You can use an environment variable to
specify the contents of the environment search path. In fact, we recommend using
an environment variable because this makes it possible to change the environment
search path for the service object after the application is deployed.

Modifying a Client or Server Configuration

Chapter 14 Using the Partition Workshop 699

The value for the environment variable is set on first access to the service object,
using the value of the environment variable as set on the service object’s partition.
The syntax is:

${environment_variable_name}

Be sure to include the braces!

The following example illustrates a search path that looks first in the current
environment, second in the “la” environment, and last in the “sf” environment:

@:@la:@sf

If environments have the same name If two or more connected environments
share the same environment name, and these environments are specified in the
environment search path, then you must use the environment UUID to specify
each environment. Specify this environment UUID in place of the
@environment_name, for example, B763E430-22FF-11D0-A5AA-5BC569EDAA77.
For more information about the environment UUID, see the iPlanet UDS System
Management Guide.

Modifying Node Assignments
You can modify a node assignment in the configuration by:

• assigning partitions to the node

• moving an assigned partition from one node to another

• deleting an assigned partition from the node

• setting properties of an individual assigned partition

Assigning Partitions

Drag logical partition onto a node To assign a logical partition to a node, you
simply drag the logical partition onto the appropriate node. The node must
provide the resources necessary to run the particular partition.

If the logical partition is replicated, the new assigned partition will be enabled. If
the logical partition is non-replicated and there is already a copy of the logical
partition assigned in the environment, the new assigned partition will be disabled.

Modifying a Client or Server Configuration

700 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To assign a logical partition

1. In the Logical Partitions browser, select the logical partition you wish to assign.

2. Drag the logical partition to the node to which you wish to assign it.

Moving Partitions
You can move an assigned partition to any compatible node. To be compatible, the
node must provide the resources required by the service objects on the assigned
partition.

Drag assigned partition to new node To move a partition from one node to
another, simply drag the partition to its new location. If the node is incompatible,
iPlanet UDS will display an error dialog explaining why the service object cannot
be moved.

Deleting Partitions
You can delete any disabled, assigned partition from any node. (The last enabled
copy cannot be deleted.)

➤ To delete a disabled, assigned partition

1. Select the assigned partition.

2. Choose the Edit > Delete command.

3. Confirm that you wish to delete the partition.

Setting Assigned Partition Properties

Double-click partition name To set the properties for an assigned partition,
double-click the assigned partition name, or select the assigned partition and
choose the Component > Properties… command. This command opens the
Assigned Partition dialog, where you can set the properties that are appropriate for
the particular partition.

The following two sections describe the different properties available for the
assigned client and server partitions.

Modifying a Client or Server Configuration

Chapter 14 Using the Partition Workshop 701

Assigned Client Partition Properties
Figure 14-19 shows the properties available for an assigned client partition:

Figure 14-19 Assigned Partition Properties Dialog (Client Partition)

Compiled property By default, a client partition is a standard partition. If you
wish to make the partition a compiled partition, turn on the Compiled toggle.
Remember, after specifying that the partition is compiled, you may need to
perform extra steps to produce the application distribution. See “Compiling
Partitions” on page 727 for information.

Restrictions for compiled clients Note that even though the Assigned Partition
dialog shows the Compiled option for all client platforms, code generation for
client partitions is not supported for all platforms. The following table summarizes:

Generate C++ API property For an assigned client partition, you can request that
iPlanet UDS generate and compile files for a C++ API. To generate the C++ API for
a particular assigned client partition, turn on both the Compiled and Generate C++
API properties on the Assigned Partition Properties dialog.

When you later use the automatic compilation feature of the Make Distribution
command or the fcompile command to compile the partitions, iPlanet UDS
generates and compiles the files for the C++API. See Integrating with External
Systems for step-by-step instructions for generating a C++ API for an iPlanet UDS
application.

Platform Client Code
Generation Available?

Autocompile Support?

Windows 95/NT Yes Yes

UNIX Yes Yes

OpenVMS Yes Yes

Modifying a Client or Server Configuration

702 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Assigned Server Partition Properties
Figure 14-20 shows the properties available for an assigned server partition:

Figure 14-20 Assigned Partition Properties Dialog (Server Partition)

The exact properties available on this dialog depend on whether or not the
partition is replicated.

Compiled property By default, a server partition is a standard partition. If you
wish to make the partition a compiled partition, click the Compiled toggle to on.
Remember, after specifying that the partition is compiled, you may need to
perform extra steps to produce the application distribution. See “Compiling
Partitions” on page 727 for information.

Disabled property The Disabled toggle indicates whether the assigned partition
is currently disabled. To enable a disabled partition, you can turn off this toggle. To
disable an enabled replicated partition, turn on this toggle.

Only one copy of a non-replicated partition can be enabled. Therefore, if you
enable a non-replicated partition, the other assigned copies of that partition will
automatically be disabled. To disable a non-replicated partition, you must
explicitly enable another copy of that partition.

Thread package property The Thread Package property specifies the thread
package used by the partition. The default thread package depends on the
particular platform (described in the iPlanet UDS System Installation Guide). If you
do not want to use the default thread package, use the Thread Package property to
specify one of the other thread packages supported for the particular platform. See
the iPlanet UDS System Installation Guide for information about which thread
packages are supported for each platform.

Modifying a Client or Server Configuration

Chapter 14 Using the Partition Workshop 703

Server Arguments property To specify startup flags for the server partition,
enter a list of flags in the Server Arguments field. These can be the following:

You can also include your own application-specific flags. See the CmdLineArgs
attribute of the Partition class in the Framework Library online Help for
information.

The syntax for the server arguments is platform dependent. For example, any
argument with parentheses needs to be enclosed in double quotes or there will be a
runtime error.

Replication Count property To provide startup replicates for a replicated
partition, enter the total number of partitions to be started in the Replication Count
field. When the application starts, iPlanet UDS automatically creates the number of
replicates you specify (unless the system manager overrides your setting).

Flag Description

-fm memory _flags Specifies the space to use for the memory manager. See Appendix
B for information.

-fl logger_flags Specifies the logger flags to use for the session. This has no effect
for standard partitions. See Appendix B for information on logger
flags.

NOTE The server arguments take effect only when the partition is starting
using the Partition Workshop, the Environment Console, or Escript;
these arguments are ignored when the partition is starting manually
using the ftexec command.

Modifying a Client or Server Configuration

704 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Setting Configuration Properties
To set the configuration properties for the current configuration, select the File >
Properties… command. This command opens the Configuration Properties dialog.

Figure 14-21 Configuration Properties Dialog

To specify a default node, select the node name from the drop list. To exclude a
node, turn on the toggle next to the node name.

Repartition Command
The File > Repartition… command erases all changes you have made to the
configuration and forces iPlanet UDS to perform a complete automatic partitioning
on the application. A complete partitioning removes all current assignments, and
then recreates the default partitioning scheme from scratch.

Normally, you do not need to use the Repartition… command. Repartitioning is
useful mainly when you have made changes to the configuration that you wish to
remove.

When you choose the Repartition… command, iPlanet UDS displays a
confirmation dialog to ensure that you do not accidentally erase your changes.
When you confirm that you want to repartition the application, iPlanet UDS
performs the repartitioning and displays the default configuration in your
workshop window.

Combining Service Objects and Partitions

Chapter 14 Using the Partition Workshop 705

Combining Service Objects and Partitions
When you partition your application for the first time, iPlanet UDS assigns the
service objects to logical partitions according to the rules described under “Default
Configuration” on page 672. The Partition Workshop then allows you to move
service objects between compatible partitions in many different ways.

The way you combine service objects onto partitions has a significant effect on the
performance and behavior of your application. Some particularly useful
combinations of service object are:

• combining user-visible service objects onto one partition

This combination minimizes server process resources and network connection
resources on clients and servers.

• combining environment-visible service objects onto one partition

This combination minimizes server process resources and network connection
resources on clients and servers.

• combining an environment-visible service object and a user-visible service
object

This combination make the user visible service object private to the partition
containing the environment-visible service object.

• combining load-balanced service objects on a single partition.

This combination allows you to minimize process resources and network
connection resources in some cases.

The following sections provide detailed information about these basic
combinations.

Combining User-Visible Service
Objects On Partitions
Private partition A partition that includes only user-visible service objects is a
private partition for the client partition (or for any other server partition that is
referencing one of the user-visible service objects). iPlanet UDS starts a new copy of
the private partition each time a client or another server accesses the service object
in the application.

Combining Service Objects and Partitions

706 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

By default, the Partition Workshop places all your user-visible service objects on
your client partition, if possible. Otherwise, the user-visible service objects are on a
private partition on whichever server node has the necessary resources.

By combining a number of user-visible service objects onto a single private
partition, you minimize the number of server processes needed to support each
client, as well as the network connection resources needed both on the client and
the server. In addition, any access between the service objects within the partition
is executed within the same process and is therefore very efficient.

Combining Environment-Visible
Service Objects On Partitions
Shared partition A partition that includes only environment-visible service
objects is a shared partition. All clients and servers that access the service objects in
the partition share the partition. There is only one copy of a shared partition per
application (unless it is replicated for load balancing or failover). The shared
partition can be started up manually from Environment Console or Escript, or it
will be started automatically on first access.

By default, the Partition Workshop places all your environment-visible service
objects in the same partition (to minimize the number of partitions) on a server
node.

By combining a number of environment-visible service objects onto a single shared
partition, you minimize the number of server processes needed to support the
clients of the application, as well as the network connection resources needed both
on the client and on the server. In addition, any access between the service objects
within the partition is executed within the same process and is therefore very
efficient.

However, if any of the environment-visible service objects are accessing a resource
that supports only single-threaded access, such as a relational DBMS or a C project
with the multi-threading option disabled, combining environment-visible service
objects into a single partition can cause poor interactive performance in the clients.
This is because access from one client to the single-threaded resource will delay
processing for all other clients that are accessing any of the service objects in the
shared partition. Therefore, to provide the best performance for a shared service
object that accesses single-threaded resource, we recommend placing the shared
service object in its own partition, possibly a partition that is replicated for load
balancing.

Combining Service Objects and Partitions

Chapter 14 Using the Partition Workshop 707

Combining Environment-Visible
with User-Visible Service Objects
A partition that includes both an environment-visible service object and a
user-visible service object makes the environment-visible service object shared for
the application and the user-visible service object private for that partition. The
user-visible service object can be accessed indirectly through the environment
visible service object—neither the client partition nor any other service objects can
access it directly.

The Partition Workshop does not include environment-visible and user-visible
service objects within the same partition by default. However, you can move a
user-visible service object onto the same partition with an environment-visible
service object.

This combination is very useful when you have an environment-visible TOOL class
service object that provides DBMS access through a user-visible DBSession or
DBResourceMgr service object. We recommend placing the TOOL class service
object on the same partition with the DBSession or DBResourceMgr service object
because this way a client can access the database only through the TOOL service
object. The DBSession or DBResourceMgr service object is protected from
inappropriate access, because no other partitions can access it.

Combining Load-Balanced Service Objects
When you combine more than one load-balanced service object on a single
partition, iPlanet UDS automatically places all the routers for the load-balanced
service objects onto a single router partition.

This architecture is useful for minimizing the number of server processes needed to
support an application, because only one process is needed to support both routers
for the application. You can use this architecture if you have several service objects
that need to access multi-threaded resources, such as:

• Service objects that access true multi-threaded C projects. The C projects must
have the multi-threaded option enabled, and must be implemented so they
support the multi-threaded conventions on the platform.

• TOOL class service objects that do not access single-threaded resources (such
as a relational DBMS).

Modifying a Library Configuration

708 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

However, if any of the load-balanced service objects access a resource that supports
only single-threaded access, such as a relational DBMS or a C project that has not
enabled the multi-threaded option, combining load-balanced service objects onto a
single partition can lead to uneven and unpredictable interactive performance in
the clients. This is because the two routers perform their routing completely
independently from one another. A client request on one of the routed service
objects can delay a concurrent client request on the other routed service object, even
though it is from an unrelated client. Because of this behavior, we do not
recommend this architecture for service objects that access relational DBMSs or
single-threaded external services.

Modifying a Library Configuration
Partitioning a library configuration is very different than partitioning a client or
server configuration. When you partition a client or server configuration, you
move partitions containing service objects onto nodes in the environment. When
you partition a library configuration, you move projects onto nodes, not partitions.

A library configuration consists of projects assigned to nodes in the environment.
Non-restricted projects can be assigned to any node in the environment. Restricted
projects can be assigned to any node on which they will run.

When you configure the project as a library, there is only one project in the shared
library, the project that you have “partitioned” by giving the Configure as >
Library command. This project you “partition” differs from other projects you later
add to the library configuration only in that its name is used to name the library
distribution and its compatibility level is used for the library distribution.
Otherwise, all projects in the configuration are exactly the same. Figure 14-22
illustrates a default library configuration:

Modifying a Library Configuration

Chapter 14 Using the Partition Workshop 709

Figure 14-22 Default Library Configuration

At this point, if you wish to package other projects in the library distribution, you
can add them to the library configuration.

➤ To partition a library configuration

1. Specify which projects should be included into the library distribution.

2. Indicate which libraries should be on which nodes in the environment.

3. Specify which libraries should be compiled and which should be standard.

Opening the configuration To modify a configuration, you must first open it
(described under “Creating a Configuration” on page 677). If you select an
environment that does not yet have a configuration, iPlanet UDS automatically
partitions the library configuration.

Permanent changes Note that to make permanent changes to a configuration,
your workspace must be open for updating. If your workspace is open for reading
only, you can use the Partition Workshop to examine a configuration and make
temporary modifications to it. However, because you cannot save your workspace,
any changes you make to the configuration are only temporary.

This following sections provide information adding projects to the library
configuration, deleting libraries from nodes, and turning on compilation for a
library. Setting the configuration properties for a library configuration is the same
as setting them for an application configuration. See “Setting Configuration
Properties” on page 704.

Modifying a Library Configuration

710 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Adding Projects to the Configuration
You can add any projects in your workspace to the library configuration.

Library names When your library configuration contains more than one library,
you must ensure that each library has a unique name. By default, iPlanet UDS uses
the first eight characters of the project name as the library name. If two or more
projects in the library configuration have names that start with the same first eight
characters, you must use the specify unique library names for the projects. See
“Setting Project Properties” on page 247 for information on setting the library
names.

➤ To add a project to the configuration

1. Drag the project from the Repository Workshop to the Partition Workshop.

2. In the Partition Workshop, drop the project on any node where you wish to
install it.

or

1. In the Partition Workshop, choose the Component > Add Project command.

The Add Project dialog opens.

2. On the Add Project dialog, select the project you wish to add and click the Add
button.

When you add a new project to the library configuration, iPlanet UDS
automatically assigns it to all the nodes where the original project is.

The following section describes how to modify this default configuration by
removing projects from a node.

Modifying a Library Configuration

Chapter 14 Using the Partition Workshop 711

Modifying the Default Configuration
You can modify a library configuration by:

• removing individual restricted external library from a node

• removing all libraries from a node

Because restricted external projects cannot run on all nodes in the environment,
you must remove them from the nodes where they cannot run.

➤ To remove a restricted external library

1. Select the assigned library.

2. Choose the Edit > Delete command.

3. Confirm that you wish to delete the assigned library.

If there is a node where you do not wish the libraries to be installed, you can
remove them from the node by deleting any non-restricted project or restricted
TOOL project. When you remove one of these projects from a node, all other
projects on that node will also be removed.

Standard or Compiled Libraries
By default, compilation for all libraries in the library configuration is turned off.

You also need to take into account whether or not the partition that will be using
the library is compiled. If the partition is compiled, the library that it accesses must
also be compiled. If the partition is standard, the library that it accesses can be
either standard or compiled.

Furthermore, if any of the libraries will be used as suppliers to client partitions
with C++ APIs, you need to compile the libraries and generate the handle classes
for them. For information about integrating with C++, see Integrating with External
Systems for complete in

To turn on compilation, you open the assigned library.

CAUTION Remember, if a given library has supplier libraries, you must be sure
to set the compilation options correctly for the main library and its
suppliers. Once you designate a given library on a particular node as
compiled, you must ensure that all its supplier libraries are also
compiled. For a standard library, the supplier libraries can either be
standard or compiled.

Testing a Client Configuration

712 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To turn on compilation for a library

1. Double-click the assigned library.

The Compilation Properties for Node dialog opens.

2. On the Compilation Properties for Node dialog, click on the Compiled toggle
next to the library name.

Remember, after specifying that the library is compiled, you may need to perform
extra steps to produce the library distribution. See “Compiling Libraries” on
page 735 for information.

Testing a Client Configuration
You test a client configuration in the Partition Workshop by selecting an
environment in which to run the client application. If you are in the Repository or
Project Workshops, you use the Partition command to enter the Partition
Workshop, and test the current client application.

➤ To test the client application from the Repository Workshop or Project
Workshop

1. Choose the Run > Partition… command or single-click the Partition Workshop
tool.

If the main project for the application was previously configured as a server or
library, you will be prompted to change it to a client.

2. In the Partition Workshop, select the environment from the environment drop
list.

If you are already in the Partition Workshop, you can simply select the
environment whose configuration you wish to test.

Testing a Client Configuration

Chapter 14 Using the Partition Workshop 713

Selecting an environment The environment drop list shows all the environments
in your environment repository (see iPlanet UDS System Management Guide for
information about the environment repository and about defining environments).
Note that if any environments are currently locked by the Environment Console or
the Escript utility, you will not be able to use them.

Automatic partitioning If you select an environment that does not yet have a
configuration, iPlanet UDS automatically partitions the application. The automatic
partitioning may take some time.

Incremental partitioning If you select an environment that already has a
configuration and you have changed any of the projects in the application in such a
way as to effect the configuration, iPlanet UDS automatically repartitions the
application. This automatic repartitioning is an incremental partitioning, that is,
iPlanet UDS only changes assignments that have become invalid, and does not
make new assignments. For example, if you have added new client nodes to the
environment, the incremental partitioning will not assign client partitions to the
new nodes. To force a complete repartitioning, you can use the Repartition
command (described under “Repartition Command” on page 704).

When the partitioning (or repartitioning) process is complete, iPlanet UDS displays
the current configuration.

The Partition Workshop provides two different ways to test the configuration for
an application:

Testing nodes Running or debugging the application from the Partition
Workshop runs the application using the current configuration. To simulate the
deployment environment, iPlanet UDS uses the testing nodes that were assigned to
each of the deployment nodes. If your environment definition does not assign the
appropriate testing nodes, you will not be able to run the application from the
Partition Workshop. See the iPlanet UDS System Management Guide for information
about specifying testing nodes for deployment environments.

Test Description

Run the application Runs the application from the startup method and reports
compilation errors.

Debug the application Starts the Debugger for the application, which allows you to
monitor the client code as it is being executed.

Testing a Client Configuration

714 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

When you test your configuration, iPlanet UDS automatically starts up the server
partitions on all the appropriate nodes. Therefore, all the appropriate node
managers and the environment manager must be running in the environment
before you can test. See the iPlanet UDS System Management Guide for information
about node and environment managers.

iPlanet UDS ensures that your testing does not interact with any installed
applications or with any applications being tested by other developers. For your
test run, iPlanet UDS provides separate copies of all service objects, even those in
reference partitions, so that your test does not interfere with concurrent use or
testing of the service object.

When applets are being launched When you test an application that launches
applets and client applications using the AppletSupport library, the applets or
client applications being launched must be available in the development
environment (installed or publicly available). If they are not installed or publicly
available, you will get an error. However, the main application itself does not have
to be installed. See the iPlanet UDS Programming Guide for complete information on
writing and configuring applications that launch applets or other applications.

Testing server applications Note that because a project that defines a server
application does not have a startup class and method, you cannot run or debug the
configuration for an application whose main project defines a server application.
However, if you run a client application that includes the project that defines the
server, you can test the server as part of that application.

TestClient utility If you wish to test shared service objects in the application by
running multiple clients, you can use the iPlanet UDS TestClient utility, which
allows any number of clients to participate in a test run from the Partition
Workshop. See the iPlanet UDS Programming Guide for information.

Running the Application
To run the application, choose the Run > Run command, or single-click the Run
tool on the toolbar. This works exactly like the Run Distributed command in the
Repository and Project Workshops.

iPlanet UDS starts executing the application by invoking the start method on an
object of the start class, and it runs until the application exits. All necessary server
partitions are started on the appropriate nodes. Any errors are reported in the
Error window (see “Using the Error Window” on page 269).

Testing a Client Configuration

Chapter 14 Using the Partition Workshop 715

The first time you run the application using the Run command, iPlanet UDS starts
up the remote server partitions for the application and leaves them running, even
when you exit from the application. This is for efficiency reasons, so that the next
time you run the application, it is not necessary to restart the remote server
partitions.

iPlanet UDS stops the remote partitions in the following cases:

• when you exit from the Partition Workshop

• when you run another application

• if you make changes to the a project that make the remote partition out of date

• if you change the configuration (in this case, it only stops the partitions that are
effected)

If necessary, you can stop the remote partitions explicitly at any time by using the
Run > Stop Remote Partitions command. This command allows you to recheck the
start logic of the remote partitions the next time you test the application.

If you are unable to exit the application, you can use the Cancel Run command at
any time to cancel execution. This cancels the client partition for the application.
The remote partitions will still continue to run; use the Stop Remote Partitions
command to stop these.

Debugging the Configuration
Debugging the application from the Partition Workshop allows you to run the
application using the current configuration and to step through the code running
on the client partition. You cannot use the iPlanet UDS Debugger to monitor code
running on remote partitions.

To debug the application, choose the Run > Debug command, or click the
Debugger tool. The Debugger uses the startup class and method as the starting
point for running the application. iPlanet UDS begins executing the application by
constructing a new object of the startup class. It displays the code for the startup
method in the Task Window, and suspends execution immediately before the first
statement in the startup method. See Chapter 13, “Using the Debugger,” for
information about using the Debugger.

Making an Application Distribution

716 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Making an Application Distribution
This section describes how to create an iPlanet UDS application distribution for
installation into an active iPlanet UDS environment. You create an application
distribution from a configuration using the Make Distribution command.

Libraries for application are in a separate distribution! The application
configuration does not include the libraries that are needed by the application. If
your application uses one or more libraries, you must be sure that they are installed
in all intended deployment environments. First, you must create a separate library
configuration for the libraries, as described under “Modifying a Library
Configuration” on page 708 and then create a separate library distribution for them
as described under “Making a Library Distribution” on page 732. Both the
application distribution and library distribution must be installed in order for the
application to run. See the iPlanet UDS System Management Guide for information
about installing applications and libraries.

Understanding Application Distributions
As the last step in the partitioning process, you create an application distribution. An
application distribution is a collection of files outside of the development
repository that represent an application intended for deployment. Once you create
an application distribution, you load the distribution into a target environment,
and install it using iPlanet UDS system management tools. Additional steps are
required if your configuration contains compiled partitions and you do not or
cannot use automatic compilation when you give the Make Distribution command.

Standard Partitions
A standard partition, with its companion runtime repository, runs against the
ftexec executor (or one of its variants), which is part of every iPlanet UDS
development or runtime system. Any partition, whether client or server, may be a
standard partition. See the iPlanet UDS System Management Guide for information
about ftexec and its variants.

If your application uses only standard application partitions, your application
distribution is complete when you create it (that is, after you give the Make
Distribution command). You can install the application immediately into an active
iPlanet UDS environment.

Making an Application Distribution

Chapter 14 Using the Partition Workshop 717

Compiled Partitions
A compiled partition runs as its own independent executable in the context of an
iPlanet UDS application. You designate a partition as compiled by opening the
assigned partition’s properties dialog (see “Setting Assigned Partition Properties”
on page 700).

Restrictions for compiled client partitions Compiled client partitions are not
supported on all the client platforms. The following table summarizes which
platforms support client code generation and indicates whether automatic
compilation (described below) is available:

Automatic compilation If your configuration contains compiled partitions, you
may wish to select the automatic compilation option when you give the Make
Distribution command. Automatic compilation will be available if your system
manager has set up your iPlanet UDS installation with the appropriate
applications. See the iPlanet UDS System Management Guide for information on this.

If automatic compilation is not available to you, or if for some reason you choose
not to use it, after giving the Make Distribution command, you must use the iPlanet
UDS fcompile command to generate C++ code for the partitions and compile the
code. This process is described under “Compiling Partitions” on page 727.

Platform Client Code Generation
Available?

Autocompile Support?

Windows 95/NT Yes Yes

UNIX Yes Yes

OpenVMS Yes Yes

Making an Application Distribution

718 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Launching Applets and Other Applications
If your client application launches one or more applets, you must create a separate
application distribution for each applet that the main application launches.
Likewise, if your client application launches other client applications, you must
create a separate distribution for each application that is launched (if the
distributions have not already been created).

To ensure that all the applications and applets required by a main client
application are installed when the main application is deployed:

• include all the application distributions with the main client applications

• write an Escript script that installs all the applications and applets when the
main client application is installed

See the iPlanet UDS Programming Guide and the iPlanet UDS System Management
Guide for complete information on writing and configuring applications that use
the Launch Server and applets.

Adding an Icon File for Windows to the Distribution
You can include in your application distribution icon files that iPlanet UDS will use
when creating the client icon on Windows 3.1, 95, and NT. After using the Make
Distribution command to generate the application distribution, add the
appropriate .ico files to the port-specific directories in the application distribution
directory structure shown in the following section.

Application Distribution Directory
An application distribution consists several elements, including the actual
partitions you assigned, and a group of files describing the application.

Distribution directory The distribution is contained in the following directory:

FORTE_ROOT/appdist/environment_ID/distribution_ID/cln

The environment _ID is the ID for the deployment environment, the distribution_ID
is the first eight characters of the name of the project that was configured. The n in
the cln is the compatibility level of the project that was configured.

Making an Application Distribution

Chapter 14 Using the Partition Workshop 719

Figure 14-23 Application Distribution Directory Structure

distID.ace

distID.adf

FORTE_ROOT

appdist

distID

cln

generic codegen

appgbl

partID.pgf

Application Distribution

KEY
envID environment ID
distID distribution ID
partID partition ID

Bold indicates literal names
provided by iPlanet UDS.

partID.btd partID.btx

appgbl

partID.exe

compiled partition
(executable file)

platform

partID partID partID

partition generation file
(TOOL project)

envID

__.fso

standard partition
(image repositories)

Making an Application Distribution

720 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The following table describes these files.

Name Purpose

—.ace File which maps iPlanet UDS application component names to unique
identifier names

—.adf Application distribution file. Contains information about the application
(partitioning) configuration—what partitions are assigned to what
nodes—for use in the deployment process. (The .adf extension is added to
the application’s unique identifier name.)

generic Directory that contains all portable files. The partition directories below
the generic directory contain all the standard partitions.

codegen Directory that contains all source files used for generating C++ compiled
partitions.

platform1… Directories that contain non-portable compiled partitions for each
supported platform.

appgbl Directory in which you or iPlanet UDS can place files that would be
installed along with any partition (generic directory) or set of partitions
assigned to a node (platform directories). For example, this file is used for
message files that are used for internationalization.

—.btd, —.btx Standard partition image repositories. (The .btd and .btx extensions are
added to the partition’s unique identifier name.)

—.pgf Partition generation file. Contains the source code used to make compiled
partitions for a single logical partition. (The .pgf extension is added to the
partition’s unique identifier name.)

—.exe, … Compiled partition executable file.(The name is platform dependent and
based on partition’s unique identifier name.)

Making an Application Distribution

Chapter 14 Using the Partition Workshop 721

File Naming Conventions
In iPlanet UDS distributions, all names are based on the name of the main project
for the application. The following table describes how the names of various
distribution components are determined:

For information about project names, see “Using iPlanet UDS Names” on page 131.
For information about environment names, see the iPlanet UDS System Management
Guide.

Name Determined by

Application name The name of the project that was configured.

Full project and
application names

The name of the project that was configured with the
compatibility level appended to the end. For example, if a
main project named “Auction” has a compatibility level of 1,
its full name is “Auction_cl1”. The full application name is
the same.

Distribution ID The first 8 characters of the name of the project that was
configured, not the entire project name (because name length
is limited on some platforms).

Standard partitions, runtime repositories, compiled
partitions, distribution information files, application
distribution files, and even some of the directory structure
that defines the application distribution all use the
distribution ID as a basis for their names.

Partition names The full application name plus an iPlanet UDS
system-generated number. For example, the name of a
partition for the “Auction_cl1” application is
“Auction_cl1_part# (where # is the system-generated
number).

Partition unique identifier The first 6 characters of the application name plus the
partition number. The partition generation file (.pgf) is
derived from the partition’s unique identifier.

Making an Application Distribution

722 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Using the Make Distribution Command
The Make Distribution command produces an application distribution from the
current configuration.

The following table briefly describes the options available for the Make
Distribution command:

When the Make Distribution completes, a message in the status line indicates that
the distribution was complete. You will be notified if automatic compilation or
installation fails.

Make Distribution Option Description

Local/Remote Specifies whether the distribution should be made on the local
node or a remote node. If you choose remote, you can select the
specific node where you wish to create the distribution. See
“Local/Remote Option” on page 723 for further information.

Auto-Compile Specifies whether partitions marked as compiled should be
automatically compiled while making the distribution. If
auto-compile is off, you must compile the partitions yourself as
described under “Compiling Partitions” on page 727.

Automatic compilation will work only if your system manager
has set up your iPlanet UDS installation correctly, and is not
available on all platforms for client partitions.
See“Auto-Compile Option” on page 723 for special
information about using automatic compilation for Windows
95 compiled clients.

Full or Partial Make If a distribution already exists for the configuration, a partial
make creates the distribution only for those components that
have changed since the last make. See “Full or Partial Make”
on page 725 for further information.

Install in Current
Environment

If the configuration is for the current environment, you can
automatically install. However, you should avoid installing too
many versions of the same application. See“Install in Current
Environment Option” on page 726 for further information.

Include Source When you are making a library distribution, this option
specifies that the library source code will be included in the
export files.

Making an Application Distribution

Chapter 14 Using the Partition Workshop 723

The following sections provide more detailed information about some of the Make
Distribution command’s options.

Local/Remote Option
When you make an application distribution from the Partition Workshop, the first
option on the Make Distribution dialog is where to store the application
distribution: on the local machine or on a remote server.

Do not use a model node If you are running the Partition Workshop on a model
node, do not select Local as the node where the application distribution is placed.
The Environment Manager never searches for application distributions on model
nodes, therefore, you should not make an application distribution on a model
node. Instead, select the remote node where you chose to store all application
distributions. Otherwise, the Environment Manager cannot locate the application
distribution.

Auto-Compile Option
In general, if your system manager has set up your environment to support
automatic compilation, you can use the Auto-Compile option to compile your
partitions automatically. However, for Windows 95 compiled client partitions,
there are special considerations.

Windows 95 and auto-compile If you want to use the auto-compile feature to
compile partitions that run on the Windows 95 platform, you have two choices:

• Compile partitions as Windows NT partitions, then include the compiled
executables or libraries as part of the Windows 95 distribution.

This approach is recommended, because most Windows NT machines are
usually more powerful than Windows 95 machines, which makes compilations
more efficient. See “Compiling Partitions as Windows NT partitions” on
page 724 for detailed instructions.

• Set up a Windows 95 node to act as a server that can auto-compile Windows 95
partitions.

This option is recommended if your environment does not include any
Windows NT nodes. See the iPlanet UDS System Management Guide for
complete information on how to set up a Windows 95 node to support
automatic compilation.

Making an Application Distribution

724 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Compiling Partitions as Windows NT partitions
You can compile partitions as Windows NT partitions, then include the compiled
executables or libraries as part of a Windows 95 distribution because Windows 95
code and Windows NT code are binary compatible. You might want to use this
approach if you have Windows NT nodes already available with auto-compile
services installed. Compiled Windows NT executables and libraries also run on
Windows 95.

➤ To compile partitions in Windows NT and use them in Windows 95
distributions

1. In the Partition Workshop, assign to Windows NT nodes the partitions that
you want to compile and run on Windows 95.

2. Make a distribution for the application using auto-compile, but not
auto-install.

3. Copy the compiled executable or library for the partition from pc_nt to the
pc_win95 directory for that partition in the FORTE_ROOT/appdist directory.

For example, if you have assigned the client partition for the Banking_cl0
application to a Windows NT node to auto-compile it, you need to copy the
following file:

FORTE_ROOT/appdist/environment_ID/banking/cl0/pc_nt/bankin0/bank
in0.exe

Copy this file to the following directory (make the pc_win95 and client
partition directories first, if they does not already exist):

FORTE_ROOT/appdist/environment_ID/banking/cl0/pc_win95 /banking0

➤ To install the Windows 95 distributions

1. In the Environment Console or Escript, load your application, lock the active
environment, then assign the client partitions to Windows 95 nodes and set the
partitions as compiled. Unlock the active environment when you are done.

You might get a warning on this step that says that the distribution does not
contain the compiled partition for Windows 95. You can ignore this warning
and continue.

2. Install the application using the Install command for the Application agent.

For more information about the Environment Console, see the iPlanet UDS System
Management Guide. For information about Escript and iPlanet UDS system agent
commands, see Escript and System Agent Reference Guide.

Making an Application Distribution

Chapter 14 Using the Partition Workshop 725

Full or Partial Make
The first time you make a distribution for a given configuration in a given
workspace, iPlanet UDS creates a full distribution, whether or not you select the
Full or Partial Make. The next time you make a distribution for the same
configuration in the same workspace and you have not yet given and Update
Workspace command, you can request a partial make. For a partial make, the Make
Distribution command changes the existing distribution by updating only those
components that have changed. Naturally, you should only choose the Partial
Make option after you have already created a full distribution.

In order to use a partial make, you must not only make the distribution from the
same workspace that you used to make the original distribution but you must also
use the same node. When you request a partial make, iPlanet UDS checks the node
to make sure that the appropriate full distribution is already present, and if it is not,
you will get an error.

Using Partial Make or Full Make with Auto-Compile If you have already made
a distribution that contains a compiled partition, and you want to make a
distribution again for the same application, you should consider the following
situations when you decide whether to make a partial distribution or a full
distribution.

• You have changed a server partition from a standard, or interpreted, partition
to a compiled partition.

You can use the Partial Make option with the Auto-Compile option, and the
new distribution will contain the newly-compiled server partition.

• You tried to make a distribution with the Auto-Compile option, and the
compile failed.

After you have corrected the cause of the compilation error, you need to select
the Full Make option with the Auto-Compile option to have the compiled
server partitions of the distribution auto-compiled.

• You made a distribution that contained a compiled server partition without
using the Auto-Compile option, and you now want to make a distribution
using the Auto-Compile option.

You need to select the Full Make option with the Auto-Compile option to have
the compiled server partitions of the distribution auto-compiled.

Making an Application Distribution

726 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Install in Current Environment Option
The Install in Current Environment Option lets you automatically install the
application in the development environment after the distribution is created.

Installing on Windows 95 If you are making this application distribution on
Windows 95 and you did not start the iPlanet UDS Workshops using the Launch
Server, the application is not automatically installed on the node running the
Partition Workshop, because the client node is not running a node manager. The
Environment Manager can only install applications on nodes that have a node
manager running. (See “Starting the iPlanet UDS Workshops” on page 110 for
information about starting the iPlanet UDS Workshops with and without the
iPlanet UDS Launch Server.)

To have the application installed on PC, start the Launch Server provided as
described under “Running the iPlanet UDS Launch Server” on page 121. The
Launch Server starts a node manager and prompts the Environment Manager to
install any application partitions that are assigned to the PC.

You can also start the Environment Console or Escript, which starts a node
manager on the client node. You can then install the application on the client node
using the Install command for the Environment Console or Escript.

For more information about the Launch Server, the Environment Console, Escript,
and how applications are deployed in the environment, see the iPlanet UDS System
Management Guide.

Using Auto-Install with Installed Applications By default, iPlanet UDS
assumes that, after you have installed an application, the configuration of the
installed application is the correct configuration for the application.

This assumption can affect whether your changes to the application configuration
in the Partition Workshop are used when installing the application or not.

If you change the contents of any logical partition, iPlanet UDS cannot re-install the
application because the new configuration is incompatible with the configuration
of the installed application.

Un-installing the installed application If you have changed only the partition
assignments of an application that is installed in the current environment, the
installed configuration will remain the same as for the original installation of the
application, no matter how you assign the logical partitions in the environment
after you have installed the application. Therefore, to see the changes, you must
first shutdown and un-install the installed application.

Making an Application Distribution

Chapter 14 Using the Partition Workshop 727

➤ To change the configuration of an installed application without changing the
contents of any logical partitions

1. Shutdown and un-install the application using the Environment Console or
Escript.

You might need to ask your system administrator to perform this task,
depending on who is permitted to use the Environment Console or Escript in
your environment. For information about how to un-install an application, see
the iPlanet UDS System Management Guide.

2. In the Partition Workshop, configure the application the way you want, then
choose the File > Make Distribution command.

In the Make Distribution dialog, choose the Full Make and Install in Current
Environment options. You can also choose the Auto-Compile option, if
appropriate. Click the Make button.

Compiling Partitions
If your configuration contains one or more compiled partitions and you did not use
automatic compilation with the Make Distribution command, the process for
making a distribution has some extra steps.

➤ To make a distribution for a configuration containing compiled partitions

1. Give the appropriate Make Distribution command.

For each compiled partition, iPlanet UDS creates a partition generation file
(.pgf file), which you use with the fcompile command to generate a
completed, compiled partition.

2. Set your environment variables and path as described under “Environment
Variables and Path”.

3. Run the fcompile command, as described under “Using the fcompile
Command for Partitions” on page 729.

Environment Variables and Path
Depending on certain characteristics of your system, you may need to set a few
environment variables before you make the distribution for a compiled partition.
You also have to make sure you have a valid C++ compiler installed and in your
path (see iPlanet UDS System Installation Guide for information about which version
of the C++ compiler you need).

Making an Application Distribution

728 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The following table describes the environment variables that affect the fcompile
command:

Environment Variable Description

ORACLE_HOME Set the ORACLE_HOME environment variable if you are
running Oracle in the partition. Set the variable to the root
directory of the Oracle installation. If you do not set this
environment variable, you will receive an error message.

SYBASE Set the SYBASE environment variable if you are running
Sybase in the partition. Set the variable to the root directory
of the Sybase installation. If you do not set this variable when
necessary, you will receive an error message.

FORTE_X_LIBDIRS Set this variable only if the Display library is contained in the
partition and if you are unsure if your X Window header
files reside in a standard location. Generally, you should set
this variable if you are running on a Sparc; if your hardware
vendor also supplied your windowing software, then you
probably do not need to set the variable. The syntax is:

FORTE_X_LIBDIRS -L/dir_name/lib

FORTE_X_HEADERDIRS Set this variable if the Display library is contained in the
partition. This variable points the C++ compiler to the
directory in which the header files for X Windows and Motif
are stored. The syntax is:

FORTE_X_HEADERDIRS -I/dir_name/include

To find out if the Display library is in the server partition,
use the FindProj, FindApp, and ShowApp commands in
Fscript.

FORTE_CG_RESERVED Set this variable to provide a file containing reserved words
to supplement the list of iPlanet UDS reserved words. You
should provide this file when your project uses names for
class components that are already reserved by your C++
compiler.The iPlanet UDS code generator uses the reserved
words file to rename the class components in order to avoid
conflicts.

The reserved word file is strictly optional—you do not need
to provide one. If you do not set the variable, the default is:
$FORTE_ROOT/install/scripts/cgreserv.lst. The syntax is:

FORTE_CG_RESERVED file_specification

Making an Application Distribution

Chapter 14 Using the Partition Workshop 729

Using the fcompile Command for Partitions
The fcompile command generates code, compiles, and links a compiled partition
from a .pgf file. The process for compiling a client partition and a server partition is
the same.

The portable syntax is:

fcompile [-c component_generation_file] [-d target_directory] [-o output_file]
[-cflags compiler_flags] [-lflags linking_flags]
[-fns name_server_address] [-fm memory_flags] [-fst integer]
[-fl logger_flags] [-cleanup]

The OpenVMS syntax is:

VFORTE FCOMPILE
[/COMPONENT=component_generation_file]
[/DIRECTORY=target_directory]
[/OUTPUT=output_file]
[/COMPILER=compiler_flags]
[/LINKING=linking_flags]
[/NAMESERVER=name_server_address]
[/REPOSITORY=repository_name]
[/MEMORY=memory_flags]
[/STACK=integer]
[/LOGGER=logger_flags]
[/CLEANUP]

The fcompile command has other flags that are for use only when integrating with
external systems. See Integrating with External Systems for information on these
flags.

The following table describes the command line flags for the fcompile command:

Flag Description

-c component_generation_file
/COMPONENT =
component_generation_file

Specifies the file that iPlanet UDS compiles. This value
includes the path where the file resides if the file is not in
the current directory. By default, iPlanet UDS compiles all
files in the current directory.

Making an Application Distribution

730 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

-d target_directory
/DIRECTORY =
target_directory

Specifies where the compiled directories will be placed. By
default, fcompile compiles files in the current directory,
and places the compiled files in the current directory.

target_directory is a directory specification in local syntax.

If the -c (/COMPONENT) flag is also specified, the -d flag
specifies where the compiled component files will be
placed. Otherwise, the directory specified by the -d
(/DIRECTORY) flag specifies both the directory containing
the files to be compiled and the directory where the
compiled files will be placed.

-o output_file
/OUTPUT = output_file

The log output file used by the fcompile command.

-cflags compiler_flags
/COMPILER =
compiler_flags

Specifies any C++ compiler options. Any header file
specifications included here are used before the
specifications included in the C project definition. For
more information about these options, see Integrating with
External Systems.

-lflags linking_flags
/LINKING = linking_flags

Specifies any linking flags. Any files included here are
linked before files specified in the extended properties of
the C project definition. For more information about
specifying linking flags in the C project, see Integrating with
External Systems.

-fm memory_flags
/MEMORY = memory_flags

Specifies the space to use for the memory manager. See
“-Fm Flag (Memory Manager)” on page 799 for
information.

-fst integer
/STACK=integer

Specifies the thread stack size in bytes for iPlanet UDS and
POSIX threads. This specification overrides default stack
size allocation. Typically, you use the default specification.
For compiling large applications, you may want to specify
a larger thread stack size. For more information on this
flag, refer to the iPlanet UDS System Management Guide.

-fl logger_flags
/LOGGER = logger_flags

Specifies the logger flags to use for the command. See “-Fl
Flag (iPlanet UDS Logger)” on page 795 for information.

-cleanup
/CLEANUP

Deletes all the files except for the newly compiled
partitions.

Flag Description

Making an Application Distribution

Chapter 14 Using the Partition Workshop 731

Where to run fcompile When you give the fcompile command for a given
partition, you must do so on machine with the same architecture as the node to
which the partition is assigned. For example, if you are building a compiled
partition for an RS6000, you must run fcompile on an RS6000.

Do not use a model node You cannot use a model node to create a distribution.
Therefore, you should not run the fcompile command on a machine that is
defined as a model node within the current environment.

➤ To run fcompile for a compiled partition

1. If necessary, move the .pgf file to the machine with the same architecture as the
intended partition.

2. Set the necessary environment variables, as described in “Environment
Variables and Path” on page 727.

3. Give the fcompile command as described above.

fcompile -c aucio1.pgf -d ./rs6000

This creates an executable partition file in the format used by the specific
platform.

4. Return the executable partition file to the component’s subdirectory of in the
appropriate port in the distribution directory.

File format for OpenVMS For OpenVMS only, you must ensure that the .pgf
file’s record format is stream_lf (you can check the format with the dir/full
command). If the record format is not stream_lf, or if you get an error reading the
file, use the following command to change the file format:

set file/attrib=rfm=stmlf ’filename’

Your application distribution is now ready to install. For instructions on installing
an application distribution, see the iPlanet UDS System Management Guide.

Compiling a Partition for Use
on Several Computing Platforms
You may need to compile a server for use on more than one computing platform.
For example, let’s say you are compiling a server partition for an application that is
load balancing across server platforms of varying architectures: one server is an
IBM RS/6000, one is a Sun SPARCStation running UNIX, and a third is a
VAXStation running VMS. In this case, you would compile three separate
executable partition files using the same .pgf file.

Making a Library Distribution

732 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Making a Library Distribution
This section describes how to create an iPlanet UDS library distribution for
installation in iPlanet UDS deployment and/or development environments.

The process of making a library distribution is similar to making an application
distribution. The major difference is that you can specify whether or not to include
source code in the library distribution.

By default, source code is not included in the library distribution. When the library
distribution is created without source code, iPlanet UDS developers using the
library cannot view the source code for the methods, cursors, and event handlers in
the library. A special option on the Make Distribution command allows you to
request that source code be included in the distribution. When the library
distribution is created with source code, iPlanet UDS developers using the library
can view (but not modify) all the source code. (If you need to distribute source code
that can be modified, you should simply ship the project export files.)

You create a library distribution from your library configuration, using the Make
Distribution command.

About Library Distributions
A library distribution is a collection of files outside of the development repository
that represent a library configuration (that is, a set of related shared libraries)
intended for deployment. Once you create a library distribution, you can load the
distribution into a target environment, and install it using iPlanet UDS system
management tools.

“Understanding Application Distributions” on page 716 describes the directory
structure iPlanet UDS uses for an application distribution. The following figure
shows the directories and files that iPlanet UDS adds to the distribution directory
structure when you create a library distribution.

Making a Library Distribution

Chapter 14 Using the Partition Workshop 733

Figure 14-24 Library Distribution Directory Structure

libID

libID

distID.ace

distID.adf

FORTE_ROOT

appdist

distID

cln

generic codegen

appgbl

__.fso libID.lgf

Library Distribution

KEY
envID environment ID
distID distribution ID
libID library (project) ID

Bold indicates literal names
provided by iPlanet UDS.

projects.btd
projects.btx

appgbl

library
(executable file)

platform

libID

inc

libID libID

C++ wrapper code files
(C project)

envID

libID.bom, .cc, .cdf, ...

libID

libID.pex
libID.exe,
.so, .a, .dll, ...

libID.h, .cdf, ...

library generation file
(TOOL project)

header files
library
import
file

library
(image repositories)

Making a Library Distribution

734 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The following table describes these files.

Name Purpose

—.ace File which maps iPlanet UDS library configuration
component names to unique identifier names.

—.adf Application distribution file. Contains information about the
library (partitioning) configuration—what libraries are
assigned to what nodes—for use in the deployment process.
(The .adf extension is added to the library configuration’s
unique identifier name.)

generic Directory that contains all portable files. The partition
directories below the generic directory contain all the
standard partitions.

codegen Directory that contains all source files used for generating
C++ compiled partitions.

platform1… Directories that contain non-portable compiled partitions for
each supported platform.

appgbl Directory in which you or iPlanet UDS can place files that
would be installed along with any library or set of libraries
assigned to a node.

projects.btd, projects.btx Standard image repository to be used on platforms for which
no compiled libraries have been made.

—.fso File that maps method names to ids, which might be used for
some external interfaces or compiled partitions.

—.h, —.cdf, … Header files

—.pex Export file used to import the library into development
repositories in a target development environment.

—.lgf Library generation file. Contains the source code used to
make compiled libraries for a single project. (The .lgf
extension is added to the library’s unique identifier name.)

—.bom, —.cc, —.cdf, … C++ wrapper files used as source code for making compiled
libraries for a single C project.

—.so, —.exe, —.a,
—.dll…

Compiled library file. (The name is platform dependent and
based on library’s unique identifier name.)

Making a Library Distribution

Chapter 14 Using the Partition Workshop 735

Using the Make Distribution Command
In the Partition Workshop, the File > Make Distribution command lets you make a
distribution for a library configuration the same way you make an application. The
only difference between using the Make Distribution command to create a library
distribution is that you have the option of specifying that the source code be
included in the library. See “Using the Make Distribution Command” on page 722
for complete information about the Make Distribution command.

➤ To make a library distribution

1. Choose the File > Make Distribution command.

2. Select the appropriate distribution options on the Make Distribution dialog.
The Include Source toggle lets you specify that the source code be included in
the distribution.

When the Make Distribution completes, a message in the status line indicates that
the distribution was complete.

If your configuration contains only standard libraries, or if your automatic library
compilation completed successfully, you now have a library distribution, ready to
install.

If your automatic compilation failed or if you did not select automatic compilation
for your compiled libraries, you must compile the individual libraries before you
can deploy the library distribution. The following section provides information
about compiling libraries.

Compiling Libraries
If your library configuration contains one or more compiled libraries and you did
not select automatic compilation when you gave the Make Distribution command
(or not all the libraries compiled successfully), you need to compile the libraries
yourself using the fcompile command.

.lgf files When you specify that a library is “compiled,” the Make Distribution
command creates a library generation file (.lgf), which you must use with the
fcompile command to generate the compiled library.

Compile supplier projects first! If your library configuration contains multiple
libraries, you must be sure to compile the libraries in the correct order. If any of the
projects in the configuration are suppliers for other projects in the configuration,
you must compile each of the supplier projects before compiling the main project.

Making a Library Distribution

736 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Note that the automatic compilation feature of the Make Distribution command
ensures that the libraries are compiled in the correct order. You need to be
concerned about compilation order only when using the fcompile command.

Platform-specific compilation You need to compile a library on the platform on
which it will run. To do so, you move the .lgf file to the appropriate node, compile
it, and then move the executable library file (and import file if appropriate) to the
library subdirectory for the specific platform in the library distribution directory.

If your library configuration contains more than one library, you need to move and
compile the libraries as a group, not one at a time.

➤ To compile multiple libraries

1. Move all the .lgf files to the nodes where they need to be compiled.

2. Compile all the libraries.

3. Move all executable library files and import files back to the appropriate
subdirectories in the library distribution.

If the environment includes a mixture of platforms, you may need to compile a
library on more than one platform. For example, let’s say you are compiling a
library for an environment that includes three servers: one server is an IBM
RS/6000, one is a Sun SPARCStation running UNIX, and a third is a VAXStation
running VMS. In this case, you would compile three separate executable library
files using the same .lgf file.

Before running fcompile, check to see if you need to set environment variables
prior to running fcompile. These environment variables are described under
“Environment Variables and Path” on page 727. You also need the C++ compiler.
See iPlanet UDS System Installation Guide for the currently supported compiler
version.

Making a Library Distribution

Chapter 14 Using the Partition Workshop 737

Using the fcompile Command for Libraries
The fcompile command generates code, compiles, and links a compiled library
from an .lgf file. See “Using the fcompile Command for Partitions” on page 729 for
the complete syntax of the command.

Where to run fcompile When you give the fcompile command for a given
library, you must do so on machine with the same architecture as the node to
which the library is assigned. For example, if you are building a compiled library
for an RS6000, you must run fcompile on an RS6000.

Do not use a model node You cannot use a model node to create a distribution.
Therefore, you should not run the fcompile command on a machine that is
defined as a model node within the current environment.

➤ To run fcompile for a compiled library

1. If necessary, move the .lgf file to a machine that has the correct architecture.

2. Set the necessary environment variables as described in “Environment
Variables and Path” on page 727.

3. Run the fcompile command as described above.

fcompile -c aucio1.lgf -d ./rs6000

This produces an executable library file in the format used by the specific
platform. It may also produce a library import file.

4. Move the executable library file (and import file if appropriate) to the library
subdirectory for the specific platform in the library distribution directory.

Making a Library Distribution

738 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

739

Appendix A

iPlanet UDS Example Applications

iPlanet UDS provides a number of example applications that illustrate how to use
TOOL and the iPlanet UDS classes. This appendix provides instructions on how to
install the examples, a brief overview of the applications to help you locate relevant
examples, and a section describing each example in detail. Typically, you run an
example application, then examine it in the various iPlanet UDS Workshops to see
how it is implemented. You can modify the examples if you wish.

How to Install iPlanet UDS Example Applications
You can access the iPlanet UDS example applications only if they have been
installed into your central repository or into a private local repository during
installation of iPlanet UDS, or if you have imported them into your repository.

The examples are located in subdirectories under the
FORTE_ROOT/install/examples directory. The example applications are stored as
.pex files. If they are not already installed in your repository, import them by
including the tstapps.fsc script in Fscript. The tstapps.fsc script is located in
the FORTE_ROOT/install/examples/install directory. Bring up Fscript in
standalone mode and issue the following command:

This will import most of the example applications and quit Fscript. Note that
certain highly specialized examples are not automatically imported by
tstapps.fsc.

fscript> UsePortable
fscript> SetPath %{FORTE_ROOT}/install/examples/install
fscript> Include tstapps.fsc

Overview of iPlanet UDS Example Applications

740 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

To run an application, select it in the Repository Workshop’s plan browser and
then click on the Run button.

If you want to remove all the examples from your workspace, you can do so by
including the remprj.fsc script in Fscript. Bring up Fscript in standalone mode
and issue the following commands:

This will exclude all the example applications and quit Fscript.

Overview of iPlanet UDS Example Applications
This section provides an overview of the iPlanet UDS example applications,
organized by general topic. The following tables list the example applications
under the particular part of the iPlanet UDS system they demonstrate.

The margin note for each of the following tables shows the name of the
subdirectory under FORTE_ROOT/install/examples where you can find the .pex
files for the examples. For the complete description of an individual application,
see “Application Descriptions” on page 746, which lists the applications in
alphabetical order.

General-Purpose Examples

fscript> UsePortable
fscript> SetPath %{FORTE_ROOT}/install/examples/install
fscript> Include remprj.fsc

Example Description

tool/ Auction Illustrates prominent features of an iPlanet UDS
distributed application.

AuctionServerProject Acts as server to the Auction project.

frame/ Banking Acts as a simple distributed application.

tool/ ImageProject Provides images for the Auction project.

ImageTester Retrieves an image using the ImageProject service.

Overview of iPlanet UDS Example Applications

Appendix A iPlanet UDS Example Applications 741

Display Library Examples

Framework Library Examples

Example Description

display/ AutoTester Shows how to use the Capture and Playback classes to
automate GUI testing.

ClipboardSample Illustrates the use of the Image and TextField classes.

DynamicList Shows how to move the contents of an array field to a
drop list, fillin field, and scroll list.

FileBrowser Illustrates drag and drop, and refreshing multiple
windows.

InheritedWindow Shows how to subclass your own UserWindow classes.

MultiList Shows how to move selected items in a scroll list to an
array field.

NestedWindow Illustrates multiple tasks, nested windows, event
handlers, and input validation.

PencilPlay Illustrates the use of the PictureButton, Rectangle,
Ellipse, Line, and Point classes.

PrintSample Shows how to use the printing classes.

SimpleOutline Illustrates the use of the OutlineField class.

TabFolders Illustrates the use of the TabFolder class and Popup
Menus.

TreeList Shows how to coordinate data displayed in TreeView
and List View fields.

Example Description

frame/ AdaptableAuction Shows how to dynamically load an
implementation of an interface.

frame/ Banking1-2 Illustrates how to use convertors to run old
and new clients and servers together.

frame/ DVSubClass Illustrates how to create subclasses of certain
iPlanet UDS data type classes.

Overview of iPlanet UDS Example Applications

742 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

AppletSupport Library Examples

frame/ FileUtil Illustrates the use of the file I/O classes with
a command line utility.

extcon/ InboundExternalConnection Illustrates how to use the
ExternalConnection class to listen for a
connection.

frame/ NomadicOrderClient Illustrates how to design an application that
uses nomadic clients.

frame/ OLMBanking Demonstrates how to use the Object Location
Manager to manage named objects.

extcon/ OutboundExternalConnection Illustrates how to use the
ExternalConnection class to initiate a
connection.

frame/ Timeit Illustrates the use of the Timer class.

frame/ TimeItV1-4 Illustrates runtime compatibility issues.

frame/ Utility Processes commands and handles basic I/O.

Example Description

frame/ AppletBanking Illustrates launching of applets from a main application.

frame/ LauncherGUI Provides a console interface from which the user can
control the execution of applets and iPlanet UDS clients.

Example Description

Overview of iPlanet UDS Example Applications

Appendix A iPlanet UDS Example Applications 743

GenericDBMS Library Examples

International Examples

SystemMonitor Examples

Example Description

database/ DynamicDataAccess Shows how to build dynamic SQL queries.

DynamicSQL Illustrates the use of the GenericDBMS classes with a
command line utility.

QueryMgr Acts as a server for DynamicDataAccess.

WinDB Illustrates the use of GenericDBMS classes in a
window-based application.

Example Description

internat/ InternatBank Uses catalog files to translate windows and error messages.

Example Description

sysmon/ AgentAccess Logs agent instrument data to a file.

AgentBanking Defines an agent and lets a user interact with the agent.

Overview of iPlanet UDS Example Applications

744 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

External Systems Examples—C

External Systems Examples—C++

External Systems Examples—DDE

Example Description

extsys/c/ AllCType Maps TOOL C data types to variables in C functions. All C data
types are covered.

DMathTm Shows how to integrate TOOL code with C functions in a
distributed application.

MathTime Shows how to integrate TOOL code with C functions.

XRefTime Shows how to free external resources based on TOOL memory
reclamation.

Example Description

extsys/cpp/server CPPBanking Demonstrates how to write a C++ application that
uses a generated C++ API to access the services of
an iPlanet UDS application.

Example Description

extsys/dde/ DDEClient Illustrates the use of the DDE Conversation class; iPlanet
UDS is the client.

DDEServer Lets an iPlanet UDS application act as Microsoft Windows
DDE server application.

Overview of iPlanet UDS Example Applications

Appendix A iPlanet UDS Example Applications 745

External Systems
Examples—ExternalConnections

External Systems Examples—OLE and ActiveX

Example Description

extcon InboundExternalConnection Illustrates how to use the
ExternalConnection class to listen for a
connection.

extcon OutboundExternalConnection Illustrates how to use the
ExternalConnection class to initiate a
connection.

Example Description

extsys/ole/client ActiveXDemo Demonstrates how to include an ActiveX control
in your iPlanet UDS application.

extsys/ole/server OLEBankingEV Demonstrates how to write a Visual Basic client
that interacts with an iPlanet UDS
environment-visible service object.

OLEBankingUV Demonstrates how to write a Visual Basic client
that interacts with an iPlanet UDS user-visible
service object.

extsys/ole/client OLESample Illustrates the use of OLEField, Olegen, and
iPlanet UDS’s OLE Automation.

Application Descriptions

746 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Application Descriptions
This section lists the example applications in alphabetical order. Each example has
five sections describing it.

The Description section defines the purpose of the example, what problem it
solves, and what TOOL features and iPlanet UDS classes it illustrates.

The Pex Files section gives you the subdirectory and file names of the exported
projects. The examples are in subdirectories under the
FORTE_ROOT/install/examples directory. You can import example applications
individually if you wish. When multiple .pex files are listed, there are supplier
projects in addition to the main project. You will need to import all the files listed
to run the application. Import them in the order given so that dependencies will be
satisfied.

The Mode section indicates whether the application can be run in either standalone
or distributed mode, or whether it must be run in distributed mode.

The Special Requirements section identifies whether you need a database
connection, an external file, or any other special setup.

Finally, the To Use section tells you how to step through the application’s
functions.

See the iPlanet UDS System Management Guide if you need directions to set up an
iPlanet UDS server. See Accessing Databases if you need information on how to
make a connection to a database. The database examples run against either Sybase
or Oracle.

Application Descriptions

Appendix A iPlanet UDS Example Applications 747

ActiveXDemo
Description ActiveXDemo shows how to use ActiveXField widgets to display
and interact with ActiveX controls. To use this example, you need the following
files:

• actxsamp.pex, which contains a project that uses ActiveX fields to interact with
the ActiveX control

• FourDir ActiveX control file, which is one of the following, depending on the
platform:

Pex File extsys\ole\client\actxsamp.pex.

Mode Standalone.

Special Requirements Windows 3.1, Windows 95, or Windows NT.

Platform File name for FourDir ActiveX control file

Windows 3.1 fdir16.ocx

Windows 95 fdir32.ocx

Windows NT fdir32.ocx

Windows NT on Alpha fdirant.ocx

Application Descriptions

748 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To use ActiveXDemo

1. Copy the .ocx file for the FourDir ActiveX control to another location on your
system. If you wish, you can copy olegen.exe from
FORTE_ROOT\install\bin directory to the same location.

2. Register the FourDir ActiveX control in the Windows registry. The following
table shows how to register the ActiveX control for each platform:

The regsvr.exe and regsvr32.exe are distributed with iPlanet UDS in the
FORTE_ROOT\install\bin directory.

For example, in Windows 95 or Windows NT, use the following command on
the command prompt in the directory that contains the .ocx file for the control:

regsvr32 fdir32.ocx

3. Use the Olegen utility to generate a pex file based on the .ocx file using a
command like the following:

olegen -it fdir32.ocx -of fdir32.pex -ai

This command generates a .pex file called fdir32.pex.

4. Import the generated .pex file into your repository.

5. Import the actxsamp.pex file into your repository.

6. Test run the ActiveXDemo application.

Platform Command to Register the Control

Windows 3.1 regsvr fdir16.ocx (must be run in the Windows Run
Command dialog)

Windows 95 regsvr32 fdir32.ocx

Windows NT regsvr32 fdir32.ocx

Windows NT on Alpha regsvr32 fdirant.ocx

Application Descriptions

Appendix A iPlanet UDS Example Applications 749

The window in the ActiveXDemo application is shown in the following figure:

Figure A-1 ActiveXDemo Window

The four arrows in this window belong to the FourDir ActiveX control in an
ActiveX field. The direction indicated by the selected arrow is reflected in the
Direction droplist, and vice-versa. Another ActiveX field is defined in the lower
right hand corner, but invisible.

The functions provided by the buttons are described below:

Button Description

More Arrows Sets the state of the invisible ActiveX field to update, then
creates a new instance of the fdir class (the ActiveX interface
class for the FourDir ActiveX control) and inserts it into the
ActiveX field. When you click one of the arrows in this
control, the selected arrow moves clockwise until it returns to
the arrow you selected.

Move Clockwise Makes the selected arrow the next one in a clockwise
direction.

Move Counterclockwise Makes the selected arrow the next one in a clockwise
direction.

Quit Shuts down this application.

Application Descriptions

750 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

FourDir ActiveX Control
The FourDir ActiveX control is a sample ActiveX control provided by iPlanet UDS
to demonstrate how you can use ActiveX controls in your iPlanet UDS
applications.

Figure A-2 The FourDir ActiveX Control

The FourDir ActiveX control is provided as an .ocx file, as described in
“ActiveXDemo” on page 747. This section also describes how to install the FourDir
ActiveX control.

The following table outlines the methods, properties, and events defined for the
FourDir ActiveX control:

Remove Arrows Removes the FourDir ActiveX control added by the More
Arrows button. When the More Arrows button is clicked, this
button replaces it.

Reverse Direction Makes the selected arrow the one pointing in the opposite
direction from the arrow currently selected.

Element Name Description

Property Value String. Sets the initial direction for the selected
arrow. Valid values are N (north), S (south), E
(east), or W (west). By default, the initial value is
N.

Button Description

Application Descriptions

Appendix A iPlanet UDS Example Applications 751

AdaptableAuction
Description AdaptableAuction shows how to use methods on the Partition and
Library classes to dynamically load implementations of an interface.

A simple auction application calculates the taxes on the items sold. A tax
calculation interface class provides the signature for a method which will calculate
the tax on a sale item. Two implementations of this interface are provided. The
implementations must be configured as libraries, in order to be dynamically
loaded. The AdaptableAuction application reads from a file to determine at
runtime which of the two implementations to load. You can copy over this file
while the application is running and it will load the other implementation, which
calculates the tax differently.

Pex Files frame/aa.pex

Mode Standalone or Distributed.

Special Requirements You will need to configure the two implementations as
libraries and distribute them. You will need to copy a file while the application is
running to see the dynamic loading behavior.

Method MoveClockwise No arguments and no return value. Changes the
selected arrow to the next arrow in the clockwise
direction.

MoveCounterClockwise No arguments and no return value. Changes the
selected arrow to the next arrow in the
counterclockwise direction.

MoveOpposite No arguments and no return value. Changes the
selected arrow to the arrow in the opposite
direction.

Event Click Posted when someone clicks an arrow in the
control.

Element Name Description

Application Descriptions

752 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To use Adaptable Auction

1. The two files dynload1.dat and dynload2.dat provide the library and class
information used by the application at runtime. The application expects a file
named dynload.dat to be in FORTE_ROOT/install/examples/frame. Copy
dynload1.dat to FORTE_ROOT/install/examples/frame/dynload.dat.

2. Import the aa.pex file, which includes the interface project, two
implementations of that interface, and the AdaptableAuction client and server
projects.

3. Configure the two implementation projects, AAImplementations and
AAImp2, as libraries. To do this, open the project workshop for each project.
Select File > Configure as | Library... Then select File > Make Distribution...
and perform a full make in the current environment. Once they have been
distributed as libraries, AAImplementations and AAImp2 can be deleted from
your workspace.

4. Run AdaptableAuction. Click the Calculate Tax for Sale Items button. This will
write information to the log. The data used to load the library and find the class
is written to the log. The log also shows information on each of three sale items,
including the tax amount. In each of the three sale items, the tax is seven
percent of the value of the bid amount. You can click the Calculate Tax for Sale
Items button several times, to confirm that the same output is written to the log
each time.

5. Do not exit the application. Copy the file dynload2.dat to
FORTE_ROOT/install/examples/frame/dynload.dat. Click the Calculate
Tax for Sale Items button again. Note that a different library and class have
been loaded this time. Also note, the second bidder’s tax amount is now 0. The
second implementation checked the bidder type. Since the second bidder was a
nonprofit organization, he was not charged any taxes.

AgentAccess
Description AgentAccess shows how to retrieve information from one or more
system-management agents and log this data into a file.

Pex Files sysmon/agentasv.pex, sysmon/agentacc.pex.

Mode Standalone or Distributed.

Special Requirements You need to use Escript or the Environment Console to set
up agent instruments to be logged by this application at regular intervals.

Application Descriptions

Appendix A iPlanet UDS Example Applications 753

➤ To use AgentAccess

1. Select instruments that will be logged by this application, and set them to be
logged using the Environment Console or Escript. Set instruments for logging
by first locating the agent that owns the instruments, then by setting each
instrument’s isLogged property to TRUE. For example, to log instrument data
from the DistObjectMgr agent, you can use a series of Escript commands, like
the following:

This series of commands assumes that you have just started Escript, or are at
the Environment Agent before you issue these commands. The ShowAgent
command, abbreviated as showag, displays information about the current
agent, including a list of instruments and subagents. The FindSubAgent
command, abbreviated as findsub, moves to a subagent of the current agent,
based on the name of the subagent.

To use this series of commands, you need to substitute the name of a node that
has a running standard partition for <node_name>. You need to substitute the
hexadecimal active partition identifier for <partition_identifier>. You can see
the list of available active partitions in the listing provided by the previous
showag command. For example, if the active partition name is
Forte_Executor_0x14d, you can substitute 0x14d for <partition_identifer>.

For information about setting instruments for logging using Escript or the
Environment Console, see iPlanet UDS System Management Guide.

escript> ShowAgent
escript> FindSubAgent <node_name>
escript> showag
escript> findsub Forte_Executor
escript> showag
escript> findsub <partition_identifier>
escript> showag
escript> findsub DistObjectMgr
escript> showag
escript> SetInstrumentLogging MethodsReceived TRUE
escript> SetInstrumentLogging MethodsSent TRUE

Application Descriptions

754 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

2. Set the LogTimer for the Active Partition agent where the ActivePartition or
one of its subagents contains the instrument. Starting from the ending point in
the above example, you can use a series of Escript commands like the following
to set a LogTimer to tick every 30 seconds:

In this series of commands, the FindParent command (abbreviated as
findpar) moves to the parent agent of the DistObjectMgr agent, which is the
Active Partition agent. The LogTimer instrument has a property that
determines whether it is ticking or not; the TRUE value enables the LogTimer.
The value 30000 means that the LogTimer will tick every 30 seconds (30000
milliseconds).

For more information about setting the LogTimer for an Active Partition agent
in Escript, see iPlanet UDS System Management Guide. For instructions for
setting the LogTimer in the Environment Console, see iPlanet UDS System
Management Guide.

3. When you start AgentAccess, you should define the Log File name as a file that
does not currently exist. The default log file name is agent.log, and the file is
always stored in FORTE_ROOT/log.

4. Select the Start button to start logging instrument data to your log file.

AgentBanking
Description AgentBanking shows how to implement an agent for the service
object of a simple banking application. This application also provides a simple
administrator’s window that lets the user manage the AgentBanking application
using instruments and commands provided by the service object’s agent.

Pex Files sysmon/agentbsv.pex, sysmon/agentb.pex.

Mode Distributed only.

Special Requirements You need to install this application to be able to see that
the agent is working. This application is designed to run with several clients in a
distributed environment. While it will work with a single client, some features do
not make sense with only one client running.

escript> FindPar
escript> UpdateInstrument LogTimer “TRUE 30000”

Application Descriptions

Appendix A iPlanet UDS Example Applications 755

➤ To use AgentBanking

1. Partition the AgentBanking application with the AgentBanking project as the
main project, using either the Partition command in the Partition Workshop or
the Partition command in Fscript.

2. Make a distribution of the application and auto-install the application in your
environment, using either the Make Distribution command in the Partition
Workshop or the MakeAppDistrib command (with the arguments 1 ““ ““ 1) in
Fscript.

3. Start the application using either the application icon, or a command like the
following:

ftexec -fi ct:$FORTE_ROOT/userapp/agentban/cl0/agentb0

For more information about starting client partitions, see iPlanet UDS System
Management Guide.

4. In the Banking: Welcome! window, enter any numeric value for the user ID.
(Note that each time you log in, you should enter a different user ID.) Select
either the User or Administrator buttons, then select the Start button.

If you login as a user, then you can select an account to work with, then add or
subtract amounts of money from the selected account.

If you login as an administrator, you can perform actions that affect the
running banking application by invoking commands and reading and
updating instruments on the BankServiceAgent agent for the service object of
the banking application.

5. You can also monitor the BankServiceAgent agent by using the Environment
Console or Escript at the same time as this application and looking at the
instrument values of the BankServiceAgent. This agent is a subagent of the
Active Partition agent for the server partition of the banking application. For
information about using the Environment Console or Escript, see iPlanet UDS
System Management Guide.

Application Descriptions

756 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

AllCType
Description AllCType shows how to map TOOL C data types to variables in C
functions. The “mapping methods” in this example are the methods defined in a
TOOL C project which enable TOOL methods to access C functions. The methods
and functions in this example perform extremely simple operations. Their purpose
is to show how to define input, output, and input output parameters, and return
values in the mapping methods, and how to call those methods from TOOL, and
how to de-reference the parameters in the C functions. Also see the MathTime and
DMathTm examples for a simple, practical example of how to use mapping
methods. DMathTm is the distributed version of MathTime.

Pex Files extsys/c/allctype.pex.

Mode Distributed only.

Special Requirements Access to a C++ Compiler, creation of a working
directory, autocompile must be turned on.

➤ To use AllCType

1. Create a working directory where you have read and write permission. Copy
the following three files from FORTE_ROOT/install/examples/extsys/c to
your working directory: allctype.pex, allctype.fsc, allctype.c. Set the
environment variable FORTE_EP_WRKDIR to your working directory.

2. Compile the file allctype.c into an object file called allctype.o. Under the
directory FORTE_ROOT/tmp, create the directory ‘examples’, if it isn’t there
already. Copy the file allctype.o to the FORTE_ROOT/tmp/examples
directory.

3. Before completing this step, make sure autocompile is available on your
system. If autocompile is not set up, ask your System Administrator to set it up
for you. Now run Fscript and enter the following commands:

4. The allctype.fsc script will import, distribute, compile, install, and run the
AllCType example. You may want to examine this script to understand the
steps involved in linking TOOL code with external C routines.

UsePortable
SetPath %{FORTE_EP_WRKDIR}
Include allctype.fsc

Application Descriptions

Appendix A iPlanet UDS Example Applications 757

AppletBanking
Description This application starts two applets that perform its functions:
Banking and BankRecords.

Pex Files In the FORTE_ROOT/install/examples/frame directory: apltbank.pex,
banksvc.pex, banking.pex, bankrec.pex

Mode Distributed.

Special Requirements Banking and BankRecords must be installed in your
environment as applets. The apltbank.fsc file contains the Fscript commands to
import, make distributions, and autoinstall Banking and BankRecords as applets.

The AppletSupport library is a supplier to the AppletBanking project. If this library
is not already in your repository, you need to import the apltsupp.pex file from
the FORTE_ROOT/userapp/appletsu/cl0 directory before you can import the
apltbank.pex file.

You can run the AppletBanking example either as a test run from within the iPlanet
UDS Workshops, or you can deploy the application.

➤ To use AppletBanking

1. Start the AppletBanking application.

2. Click a button to perform a function:

When a button is clicked, the application invokes the RunApplet method on
the LaunchService service object to start the appropriate applet.

For more information about how this application works, see the iPlanet UDS
Programming Guide and the Framework Library online Help.

Button Description

Manage Accounts Starts the Banking application in a separate window.

View Account Data Starts the BankRecords application in a separate window.

Quit Stops the AppletBanking, and also stops Banking and
BankRecords, if they have been started by AppletBanking.

Application Descriptions

758 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Auction
Description Auction illustrates prominent features and capabilities of an iPlanet
UDS distributed application: GUI independence, distributed processing, event
handling, multitasking, and image handling. The application allows a number of
bidders located at their respective computers to bid on a set of paintings being
offered by an auctioneer located at some other computer. The Art Auction
application provides a list of paintings available for bidding and notifies interested
bidders when a price changes.

Pex Files frame/utility.pex, tool/imageprj.pex, tool/aucserv.pex,
tool/auction.pex.

Mode Standalone or Distributed.

Special Requirements The image files used by this application must be located
in FORTE_ROOT/install/examples/images.

➤ To use Auction

1. Start up the auction by clicking the Be Auctioneer option in the radio list, then
clicking the Start Auction button.

2. Assume the role of a bidder by clicking the Be Bidder option in the radio list.
You should click on a painting in the array, then click the View Painting
button.

From the painting window, you can double-click on the image to see it
enlarged. You can also click the Bid button to set a bid.

3. Another bidder can view available paintings being offered and then join the
bidding process.

Both bidders become involved in bidding on the same painting. In the
standalone use of this application, you can simulate a second bidder on the
same screen by opening a second bidding window.

Application Descriptions

Appendix A iPlanet UDS Example Applications 759

AutoTester
Description AutoTester enables you to create test suites of iPlanet UDS GUI
applications. It shows how to use the Capture and Playback class in the Display
Library. You may find it covers all your automated testing needs. You may want to
modify it for special testing purposes, or just use it as a reference when creating
your own test utility.

Pex Files display/autotest.pex.

Mode Standalone or Distributed.

Special Requirements None.

➤ To use AutoTester

1. Refer to the testing chapter in iPlanet UDS Programming Guide for a complete
description of how to run AutoTester on the PencilPlay sample program.

Banking
Description Banking is a simple distributed application that demonstrates a
client partition that starts a server partition.

Pex Files frame/banksvr.pex, frame/banking.pex.

Mode Distributed.

Special Requirements None.

➤ To use Banking

1. Test run the application within the iPlanet UDS Workshops, or make
distribution and install the application, as described in A Guide to the iPlanet
UDS Workshops.

2. In the Select Account window, choose an account number and Click the
Display Info button.

3. In the Transactions window, enter a dollar amount in the Transaction Amount
field, then click the Deposit or Withdraw buttons.

4. To exit this application, click the Done button in the Transactions window,
then click the Quit button in the Select Account window.

Application Descriptions

760 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Banking1-2
Description Banking1-2 example illustrates iPlanet UDS’s interoperability
features. It creates an old server, a new server, an old client and a new client, and
allows you to run any combination of client and server.

Pex Files frame/banking1.pex, frame/banking2.pex, frame/banksvc1.pex,
frame/banksvc2.pex, interop.fsc.

Mode Distributed only.

Special Requirements None.

➤ To use Banking1-2

1. Run fscript and include interop.fsc.

fscript -i interop.fsc

2. Start a new server, and run both old and new clients with it.

3. Start an old server, and run both old and new clients with it.

-- Use the following commands to start servers and clients:
-- To start a new server:
ftexec -fi bt:$FORTE_ROOT/userapp/bankserv/cl0/bankse1 -ftsvr 0
-- To start an old server:
ftexec -fi bt:$FORTE_ROOT/userapp/bankser0/cl0/bankse1 -ftsvr 0
-- To start a new client:
ftexec -fi bt:$FORTE_ROOT/userapp/banking/cl0/bankin0
-- To start an old client:
ftexec -fi bt:$FORTE_ROOT/userapp/banking0/cl0/bankin0

Application Descriptions

Appendix A iPlanet UDS Example Applications 761

ClipboardSample
Description ClipboardSample uses the Image and TextField classes, and the
clipboard methods on WindowSystem. It allows you to move images and text to
and from a clipboard.

Pex Files display/clipbrd.pex.

Mode Standalone or Distributed.

Special Requirements PC client.

➤ To use ClipboardSample

1. You must load a clipboard viewer, and a paint program.

2. You can move the image and text from the ClipboardSample screen to the
clipboard, using the Move Image and Move Text buttons.

3. The image and text can be brought into the paint program, modified, placed on
the clipboard and then moved back into the ClipboardSample program using
the Copy From Clipboard button.

CPPBanking
Description CPPBanking shows how to create an iPlanet UDS service object for
which you can generate a C++ API. This example also shows how to generate a
C++ API and how to write a C++ client that uses the API.

• cppbank.pex contains the TOOL project CPPBanking, which contains a simple
class and starting method that references the BankServer service object in the
BankServices project.

• cppbancl.cpp is the C++ client application that uses the generated C++ API to
access an iPlanet UDS client partition.

BankServer is a simple bank account service object. That lets clients query and
update bank accounts.

Pex Files frame/banksvc.pex, extsys/cpp/server/cppbank.pex.

Mode Distributed only.

Special Requirements Access to a C++ compiler, set up autocompile, set up your
environment and c++ compiler and linker, as described in Integrating with External
Systems.

Application Descriptions

762 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To use CPPBanking

1. Import the banksvc.pex (BankServices project) and cppbank.pex
(CPPBanking project) files into your repository.

2. Partition the CPPBanking project.

3. Open the properties dialog for the client partition for the CPPBanking
application.

4. Mark the Generate C++ API toggle and click the OK button.

5. Make a distribution for this application using autocompile and autoinstall.

6. Compile the cppbancl.cpp file using the compiler and linking options
described in Integrating with External Systems.

DDEClient
Description DDEClient uses the DDEConversation class, which lets an iPlanet
UDS application access a Microsoft Windows Dynamic Data Exchange (DDE)
server application on a PC/Windows platform. It allows you to establish a
connection with Excel and move data to an Excel spreadsheet.

Pex Files extsys/dde/ddecli.pex.

Mode Standalone or Distributed.

Special Requirements PC client running Excel, access to
extsys/dde/ddecli.xls.

➤ To use DDEClient

1. Before trying to run this application, check the location of your Excel
executable.

If it is not in C:\EXCEL, edit the Display method in the DDEClientWindow
class to point to the right directory. Enter the full path name to your Excel
spreadsheet and click on the Connect button. If Excel is not running, it will be
started and Already Running will be checked.

2. Place the windows so that both the DDEclient and Excel are visible. You can
retrieve data from a particular cell of the spreadsheet by specifying the cell
name and clicking the Get button. Similarly, you can place data by entering the
Cell Value and clicking the Set button.

Application Descriptions

Appendix A iPlanet UDS Example Applications 763

3. You can also change data in the Excel spreadsheet, click on the HotLink and
WarmLink buttons, and note the status line at the bottom of the application. A
hot link changes the data in the client display, while a warm link only notifies
you of a change.

DDEServer
Description DDEServer uses the DDEServer and DDEClient classes, which let an
iPlanet UDS application act as a Microsoft Windows Dynamic Data Exchange
(DDE) server application on a PC/Windows platform. It is a simple utility for
servicing a DDE client application.

Pex Files extsys/dde/ddeserv.pex.

Mode Standalone or Distributed.

Special Requirements PC client running Excel, access to
extsys/dde/ddeserv1.xls and ddeserv2.xls.

➤ To use DDEServer

1. Start the application, then bring up Excel and open the example Excel files:
ddeserv1.xls and ddeserv2.xls.

2. Select the StartTimer button. You should see the changing numbers in the
iPlanet UDS server reflected in your example spreadsheets.

3. You can also use the appropriate menu items in Excel to retrieve data from the
DDEserver application and place in the Excel spreadsheet, or to export data
from the spreadsheet and place it in the DDEserver application.

DMathTm
Description DMathTm is the distributed version of MathTime. Both DMathTm
and MathTime are examples of a TOOL C project, along with a TOOL project that
calls the TOOL C project. They are both useful for seeing how to integrate TOOL
code with C functions. DMathTm shows how to use a service object to restrict
access to the C project. This is a realistic approach to accessing C functions in a
distributed environment, since pointers cannot be passed across partitions. The
example program allctype is a reference for how to define and call TOOL C
methods with parameters of all C data types at assorted levels of indirection.

Pex Files extsys/c/dmathtm.pex.

Application Descriptions

764 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Mode Distributed only.

Special Requirements Access to standard C Runtime Libraries and a C++
Compiler, creation of a working directory, autocompile must be turned on.

➤ To use DMathTm

1. Create a working directory where you have read and write permission. Copy
the following three files from FORTE_ROOT/install/examples/extsys/c to
your working directory: dmathtm.pex, dmathtm.fsc, dmathtm.c. Set the
environment variable FORTE_EP_WRKDIR to your working directory.

2. The file dmathtm.pex contains the C project DistMathAndTimeProject and the
TOOL project TestDistMathAndTimeProject. They assume you have access to
the standard C runtime libraries. Make sure you know where these are located
and what they are called on your system.

3. Edit your copy of dmathtm.pex so that its ExternalSharedLibs extended
property points to the standard C shared library. Search the file for the string
‘/usr/shlib/libc’. Change this string to the correct path and library name for
your system.

4. Compile the file dmathtm.c into an object file called dmathtm.o. Under the
directory FORTE_ROOT/tmp, create the directory ‘examples’, if it isn’t there
already. Copy the file dmathtm.o to the FORTE_ROOT/tmp/examples directory.

5. Before completing this step, make sure autocompile is available on your
system. If autocompile is not set up, ask your System Administrator to set it up
for you. Now run Fscript and enter the following commands:

The dmathtm.fsc script will import, distribute, compile, install, and run the
DMathTm example. You may want to examine this script to understand the steps
involved in linking TOOL code with external C routines.

fscript> UsePortable
fscript> SetPath %{FORTE_EP_WRKDIR}
fscript> Include dmathtm.fsc

Application Descriptions

Appendix A iPlanet UDS Example Applications 765

DVSubClass
Description DVSubClass illustrates how to create subclasses of certain iPlanet
UDS data type classes. It shows how you can provide additional input validation
and string interpretation for a subclassed data type, while still benefitting from all
the methods, attributes, and events defined on the superclass. There are two data
type subclasses in this example: GoodDateTime, a subclass of DateTimeNullable,
limits the acceptable range of dates. StockPrice, a subclass of DecimalNullable,
allows stock prices to be entered as decimal values or as fractions.

Pex Files frame/dvsubcl.pex.

Mode Standalone or Distributed.

Special Requirements None.

➤ To use DVSubClass

1. When you start the application, the window shows a default date and two
stock fields.

2. Enter a date that is before 1984 and press Return when you see the error
message.

3. Enter a date that is after 2007 and press Return at the error message again.

4. Enter a date between 1984 and 2007.

5. In the first stock field, enter a decimal value. You will see it displayed as an
integer and a fraction. The second stock field will display twice the value of the
decimal you entered.

6. In the first stock field, enter a value in the form of integer <space> fraction,
where fraction is 1/4, 1/2, or 3/4. Again the second stock field will display
twice that value.

7. Enter an invalid stock value such as 33 1/3. You will see an error message.
Note that the value in the second stock field is two times the value of the
decimal data, not the integer and fraction display.

Application Descriptions

766 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

DynamicDataAccess
Description DynamicDataAccess lets you construct ad hoc SQL queries. The data
fields used to display the data and the text graphics used for labels are created at
runtime to match the columns in the dynamic query.

Pex Files database/querymgr.pex, database/dda.pex.

Mode Distributed only.

Special Requirements Database connection. The files artist.dat and
painting.dat must be located in FORTE_ROOT/install/examples/database.

➤ To use DynamicDataAccess

1. Before running DynamicDataAccess, open the Project Workshop for the
QueryManager project.

2. Open the DBResourceMgr service object properties dialog. Make sure the
Database Manager value is correct for your database connection.

3. Run DynamicDataAccess. You will be prompted for a User Name, Password,
and Database. You must provide all three values.

This application will create its own tables and data in the database you
selected. The data is read in from the files
FORTE_ROOT/install/examples/database/artist.dat and painting.dat.

4. Choose Select from the radio list to select from existing artist and painting
values. Choose Insert to add your own data. Follow the prompts in the Insert
and Select Windows to construct SQL statements and view the results.

DynamicList
Description DynamicList uses the Array, PushButton, DropList, FillInField and
ScrollList classes. It allows you to move the contents of an array field to a drop list,
fillin field, and scroll list.

Pex Files display/dynlist.pex.

Mode Standalone or Distributed.

Special Requirements None.

Application Descriptions

Appendix A iPlanet UDS Example Applications 767

➤ To use DynamicList

1. Insert a new first row in the array field at the top of the screen using the Ins
button (and then edit the text).

2. You can delete the last row in the array using the Del button.

3. The primary function of this utility, however, is to move the current contents of
the array field to the various list fields using the Move List button,
automatically resizing these fields to accommodate entries in the array field.

DynamicSQL
Description DynamicSQL is a command line utility illustrating the use of the
GenericDBMS Library classes. It lets you perform standard SQL database access
commands.

Pex Files frame/utility.pex, database/dynsql.pex.

Mode Distributed only.

Special Requirements Database connection, table creation (if necessary).

➤ To use DynamicSQL

1. You need an environment that has a node with a resource manager. Before
running DynamicSQL, open the DynamicSQL Project Workshop. Open the
AnyDBMgr service object property sheet. Make sure the Database Manager
value is correct for your database connection. Save you changes and exit
iPlanet UDS.

2. DynamicSQL does not create any tables. You must either create them ahead of
time, or use an existing test table. If you need to create a test table, the files
maketst.syb and maketst.ora are provided in
FORTE_ROOT/install/examples/database. If you will be using maketst.syb,
edit the first line to use an existing database. For example, create a database
called testapps, then edit maketst.syb to start with:

use testapps

Use the standard mechanism for redirecting the maketst file to load the data
into your database.

Application Descriptions

768 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

3. Run DynamicSQL from fscript. You will need to know the name of the
database you will use, and a userid and password. Start fscript and enter the
following commands:

4. At the prompts enter your database name, then your userid and password.
You should then see a SQL> prompt. If you used the maketst file, enter:

SQL> select * from alltypes;

5. You should see the data displayed. Then enter:

6. To end your session, type:

SQL> exit

7. To end your fscript session, type:

Open
FindPlan DynamicSQL
Run

SQL> select * from alltypes where intcol = :a;
Enter values for the following placeholders:
a:> 1
Reexecute? (Y/N)y
Enter values for the following placeholders:
a:> 5
Reexecute? (Y/N)y

Commit
Exit

Application Descriptions

Appendix A iPlanet UDS Example Applications 769

FileBrowser
Description FileBrowser illustrates drag and drop functionality and refreshing
multiple windows. As its name implies, it is a file browser similar to the Windows
File Manager.

Pex Files display/fileb.pex.

Mode Standalone or Distributed.

Special Requirements Create a couple of temporary directories with junk files in
them.

➤ To use FileBrowser

1. Browse any drive and directory by entering it in the Volume field at the top left
of the window and clicking the Tab key.

2. You can expand directories using the triangular expansion tool.

3. To delete a file or directory (be careful, this is the real thing!), select an item in
the browser window and click on the trash can.

4. To open a second browser window double-click on the “Volume” label. With a
second window open you can copy between windows by dragging an entity
from one browser window and dropping it in the other.

FileUtil
Description FileUtil is a command line utility that uses the File I/O classes. It lets
you perform standard command line file operations.

Pex Files frame/utility.pex, frame/fileutil.pex.

Mode Standalone or Distributed.

Special Requirements None.

➤ To use FileUtil

1. After starting up the application, make sure that the iPlanet UDS Workshop
Interpreter Console window is visible. It is this application’s only window.

Application Descriptions

770 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

2. At the prompt (forte>) enter a question mark (‘?’) to get a list of FileUtil
commands.

3. Try using the available commands. To exit the application, type ‘quit’.

ImageTester
Description ImageTester retrieves an image using the ImageProject service. It is
normally used to start up the ImageProject service in conjunction with a
demonstration of the Auction application. It can also be used to set up a reference
partition in conjunction with Auction.

Pex Files frame/utility.pex, tool/imageprj.pex, tool/imagetst.pex.

Mode Standalone or Distributed.

Special Requirements The image files used by this application must be located
in FORTE_ROOT/install/examples/images.

➤ To use ImageTester

1. Enter a bitmap graphic file name in the Name field and click on the GetImage
button.

Graphic files, for example mona.fso, can be found in
FORTE_ROOT/install/examples/images. The .fso suffix is automatically
appended. Enter the filename without the suffix. For example, enter ‘mona’.

InboundExternalConnection
Description InboundExternalConnection illustrates how to use the
ExternalConnection class to listen for a connection. The iPlanet UDS program waits
for a new connection, then starts a task to handle each new connection. The C
program extcon will initiate the connection this example is waiting for. Once the
connection is established, data is read and written. For the read, the iPlanet UDS
program checks for an end of string marker to make sure all the data is received.

Pex Files inbound.pex.

Mode Distributed.

Special Requirements C compiler; C portion of this example will run on NT and
Unix platforms; it will not run on Windows or VMS.

Application Descriptions

Appendix A iPlanet UDS Example Applications 771

➤ To use InboundExternalConnection

1. Decide which platform you want to run the C program on, and which platform
you want to run the iPlanet UDS program on. Compile the C program
extcon.c into the executable extcon on the desired platform.

On most Unix systems, simply use the following command:

cc extcon.c -o extcon

This will work on the following platforms:

❍ AlphaOSF

❍ RS6000

❍ Solaris

❍ Data General

On Sequent, use the following command:

cc extcon.c -o extcon -lsocket -linet -lnsl

On HP, use the following command:

cc +Z extcon.c -o extcon

On NT, if you use Visual C to compile extcon.c, make sure to include
wsock32.lib with your standard Object/Library modules. Also, make sure
the application is defined as a console application, not a windows application.

2. Both the iPlanet UDS program and the C program will use a default port
number for the listener, unless you supply it as an environment variable. The
default port number is 6867. If you need to use another port number, set the
environment variable FORTE_EP_REG_PORT_1 to the desired port number in
both the environment where you will run the iPlanet UDS program and the
environment where you will run the C program.

3. If you want to establish an external connection between the iPlanet UDS
program and the C program running on the same Unix machine, you do not
need to set an environment variable for the node name. If you want to connect
between different machines, or if you want to make the connection on the same
NT machine, you will need to set an environment variable. Set the
environment variable FORTE_EP_NODENAME_1 in the environment where
you are running the C program. Set it to the name of the machine where the
iPlanet UDS program is running.

Application Descriptions

772 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

4. Use the file inbound.scr to supply the necessary commands to fscript.
Inbound.scr will import the pex file inbound.pex, find the project, run it, and
remove the project after the run is complete. Inbound.pex must be in the same
directory as inbound.scr. Use fscript’s -i flag to input inbound.scr to fscript:

fscript -i inbound.scr

Wait for fscript to import the project, load it, partition the service object, and
return the client partition. The iPlanet UDS program is now waiting to accept
an inbound connection.

5. On the machine where you compiled extcon, run it with the m command line
option:

extcon m

When you use the m option, extcon attempts to make a connection.

6. Observe the output of both processes. On the iPlanet UDS side, you should see
the following results:

From the C program, you should see the following lines:

Waiting to connect on port 6867
Waiting to connect on port 6867
Inbound Connection: server read got back 34 bytes
Lab<EOW1>50<EOW2>Stable<EOW3><EOS>
Inbound Connection: server wrote 35 bytes
Inbound Connection: server read got back 46 bytes
Storage Shed<EOW1>90<EOW2>Emergency<EOW3><EOS>
Inbound Connection: server wrote 35 bytes
Inbound Connection: server read got back 38 bytes
Vat<EOW1>200<EOW2>Red Alert<EOW3><EOS>
Inbound Connection: server wrote 35 bytes
Inbound Connection: RemoteAccessException caught in
ProcessConnection
Connection closed. All done.

Attempting to initiate connection on port 6867.
Attempting to initiate connection on the current machine.
Thank you for the information.
Thank you for the information.
Thank you for the information.

Application Descriptions

Appendix A iPlanet UDS Example Applications 773

InheritedWindow
Description InheritedWindow shows how to create subclasses of your own
UserWindow classes. In this example, the parent window has decorative widgets
at the top, and three buttons at the bottom. It is a generic data entry window. Two
windows are subclassed from this parent window. One is for entering information
about art, the other about artists. They both use their own event handlers to
validate data, and call the parent window’s event handler to perform exit
processing.

Pex Files display/inherwin.pex.

Mode Standalone or Distributed.

Special Requirements None.

➤ To use InheritedWindow

1. The first window lets you call up the Art Data Entry window or the Artist Data
Entry window. They are spawned as tasks, so you can have them both open at
once. They both have field and cross-field validation.

2. In the Artist window, try entering various countries. When you click OK, you
will be warned that only certain names are compatible with that country. In the
Art window, try entering various types of art.

3. Try entering ‘Performance’ as the type and ‘1910’ as the year, then click the OK
button.

In both windows, the Reset button will restore the original data, and the Cancel
button will let you exit even if the data is invalid. The OK button exits if the
data is valid, or keeps you in the grid if it is not.

InternatBank
Description InternatBank shows how to use several of the iPlanet UDS
international features. It can initially be brought up in several languages, and the
user can choose to switch languages at runtime. It uses message catalogs to
translate windows and error and informational messages.

Pex Files internat/internat.pex.

Mode Standalone or Distributed.

Application Descriptions

774 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Special Requirements Copy files from
FORTE_ROOT/install/examples/internat subdirectories to corresponding
directories under FORTE_ROOT/workmsg.

➤ To use InternatBank

1. If you are running this application on a machine other than a PC, be sure your
FORTE_LOCALE environment variable is set correctly.

2. Below the examples directory, you will find a subdirectory called internat.
Below it are the directories for each of the languages supported by the
InternatBank example: en_us, fr_fr, and de_de. In each of these directories is a
file called internat.cat. This is the compiled message catalog for each language.
Examine the text file that is compatible with the machine you are on. The
compiled message file, internat.cat, is portable across all platforms.

3. Before running InternatBank, you will need to copy the internat.cat files from
the language subdirectories under internat to the appropriate subdirectories
under FORTE_ROOT/workmsg.

For this application, you should create three subdirectories under workmsg:
en_us, fr_fr, de_de.

Copy the appropriate internat.cat files from the example program language
subdirectories to the workmsg subdirectories.

4. Choose the language you want the application to start in. At the first window,
select the language you wish to use.

You will see the screen change to that language immediately.

5. When you enter a numeric id, and click OK, the next screen will appear in the
chosen language. Numeric, date time, and money fields should display values
with appropriate formatting. You can move the Account Information window
aside, since it is started as a separate task, and change the language on the first
window. When you click OK, the Account Information window will come up
in the newly requested language.

6. To see the application start in French, exit iPlanet UDS, set the
language/territory component of your FORTE_LOCALE environment
variable to fr_fr. If you are using a PC, use the Control Panel to change the
FORTE_LOCALE. Restart iPlanet UDS and run InternatBank. The first screen
will be in French. You can still change to other languages at runtime.

Application Descriptions

Appendix A iPlanet UDS Example Applications 775

LauncherGUI
Description LauncherGUI is used to run both iPlanet UDS applets and standards
clients. It provides a console interface from which the user can control the
execution of applets and the installation of iPlanet UDS clients.

Pex Files FORTE_ROOT/userapp/appletsu/cl0/apltsupp.pex,
frame/launcher.pex.

Mode Distributed only.

Special Requirements Before loading the launcher.pex file, you must load the
AppletSupport Library. The location of this .pex file is described above.

➤ To use LauncherGUI

1. The LauncherGUI is provided as an image with the iPlanet UDS product set
and is called the iPlanet UDS Launcher Application. See “Using the iPlanet UDS
Launcher Application” on page 122 for a full description of how to use the
LauncherGUI example.

MathTime
Description MathTime is an example of a TOOL C project, along with a TOOL
project that calls the TOOL C project. It is useful for seeing how to integrate TOOL
code with C functions. The example program DMathTm is the distributed version
of MathTime. The example program AllCType is a reference for how to define and
call TOOL C methods with parameters of all C data types at assorted levels of
indirection.

Pex Files extsys/c/mathtime.pex.

Mode Distributed only.

Special Requirements Access to standard C Runtime Libraries and a C++
Compiler, creation of a working directory, autocompile must be turned on.

Application Descriptions

776 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To use MathTime

1. Create a working directory where you have read and write permission. Copy
the following three files from FORTE_ROOT/install/examples/extsys/c to
your working directory: mathtime.pex, mathtime.fsc, mathtime.c. Set the
environment variable FORTE_EP_WRKDIR to your working directory.

2. The file mathtime.pex contains the C project MathAndTimeProject and the
TOOL project TestMathAndTimeProject. They assume you have access to the
standard C runtime libraries. Make sure you know where these are located and
what they are called on your system.

3. Edit your copy of mathtime.pex so that its ExternalSharedLibs extended
property points to the standard C shared library. Search the file for the string
‘/usr/shlib/libc’. Change this string to the correct path and library name for
your system.

4. Compile the file mathtime.c into an object file called mathtime.o. Under the
directory FORTE_ROOT/tmp, create the directory ‘examples’, if it isn’t there
already. Copy the file mathtime.o to the FORTE_ROOT/tmp/examples
directory.

5. Before completing this step, make sure autocompile is available on your
system. If autocompile is not set up, ask your System Administrator to set it up
for you. Now run Fscript and enter the following commands:

6. The mathtime.fsc script will import, distribute, compile, install, and run the
MathTime example. You may want to examine this script to understand the
steps involved in linking TOOL code with external C routines.

fscript> UsePortable
fscript> SetPath %{FORTE_EP_WRKDIR}
fscript> Include mathtime.fsc

Application Descriptions

Appendix A iPlanet UDS Example Applications 777

MultiList
Description MultiList illustrates multiple selection capability. It allows you to
move selected items in a scroll list to an array field.

Pex Files display/mlist.pex.

Mode Standalone or Distributed.

Special Requirements None.

➤ To use MultiList

1. Move the contents of the array field at the top of the window to the scroll list
using the Move to List button.

2. After selecting more than one item in the scroll list, move the contents to the
array field by clicking the Move to Array button.

3. Check that the IsSelected ToggleFields in the array are properly set.

NestedWindow
Description NestedWindow illustrates multiple tasks, nested windows, event
handlers, and input validation. A launch window allows you to start two
windows. Each of these windows nests another window. Field and cross-field
input validation techniques are demonstrated.

Pex Files display/nestwin.pex.

Mode Standalone or Distributed.

Special Requirements None.

➤ To use NestedWindow

1. Click on the Purchase Art button. When the window comes up, move it aside.

2. On the first window, click on the Sell Art button. Notice that the same window
is nested in both. They should come up with different initial values in the Type
of Art field. This data was passed to the nested window’s event handler as a
parameter.

Application Descriptions

778 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

3. Experiment with entering different values in the Type of Art field and the Year
field. There is input validation on the Type of Art field. There is cross-field
validation between the Type of Art field and the Year field. Enter
‘Performance’ in the Type of Art field, and ‘1900’ in the Year field, then click
the OK button.

NomadicOrderClient
Description This application starts a standalone client. In standalone mode, you
can enter orders and search for entered orders on a local database based on the
customer ID. You can also search the server database for customer orders and
reconcile the local database with the server database. When you search for entered
orders in the server database, the client partition connects to the name server and
the service object. The client stays connected until you close the Find Order
window. When you reconcile with the server (upload new orders and download a
new copy of the server database to the client), the client connects to the service
object, then disconnects when it is done.

Pex Files FORTE_ROOT/install/examples/frame/nomad.pex

Mode Distributed

Special Requirements See the information about testing nomadic applications in
iPlanet UDS Programming Guide. You need to deploy this application to actually
connect to and disconnect from the environment.

➤ To use NomadicOrderClient

1. Start the application using the -fnomad flag, for example:

ftexec -fi c:\forte\userapp\nomadico\cl0\nomadi0 -fnomad

2. Enter one or more orders, remembering the customer IDs.

3. Perform the following actions, which cause the client to connect to the
environment, then disconnect:

a. Reconcile the client with the server.

b. Search for orders on the server.

Application Descriptions

Appendix A iPlanet UDS Example Applications 779

OLEBankEV
Description OLEBankEV shows how to create an environment-visible service
object that provides wrapper methods to the methods on other iPlanet UDS service
objects. This example then provides a Visual Basic client that shows how an OLE
client application could interact with the environment-visible service object to use
the services provided by the BankServices.BankServer service object.

• olebanev.pex contains the OLEBankEV project, which defines a class named
BankServiceOLEInterface, which defines wrapper methods that in turn invoke
methods on the BankServices.BankServer service object. This project also
defines an environment-visible service object called BankServerOLE.

• All the other files are part of the Visual Basic OLE client.

Pex Files frame/banksvc.pex, extsys/ole/server/olebanev.pex.

Mode Distributed only.

Special Requirements This example runs only on a Windows NT server node.
You need to have Microsoft Visual Basic installed on the Windows NT server node
and a C++ compiler. You should have autocompile set up.

The Visual Basic clients were written to use Visual Basic Version 4.0. If you are
using later versions of Visual Basic, you might need to upgrade the provided
Visual Basic components, adjust the following instructions.

➤ To use OLEBankEV

1. Import the .pex files, listed above.

2. Configure the OLEBankEV project as a server application.

3. Mark the BankServerOLE service object as an OLE server, as described in
Integrating with External Systems.

4. Remove the server partition from all nodes that are not running Windows NT.

5. Make a distribution using autocompile and autoinstall.

6. Start the iPlanet UDS server partition, as described in Integrating with External
Systems.

7. Using Visual Basic, open the OLEBankEV.vbp file.

8. Make sure that the OLEBankEV project can find the BankEV.frm file by using
the Visual Basic File > Add File command.

Application Descriptions

780 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

9. In Visual Basic, use the TOOL > References command to tell the OLE client
application the location of the iPlanet UDS service object .tlb file, which is in
the FORTE_ROOT\userapp\olebanke\cl0\ directory.

10. Run the Visual Basic OLE client example. Valid account numbers are 1000,
2000, and 3000.

OLEBankUV
Description OLEBankUV shows how to create a user-visible service object that
provides wrapper methods to the methods on other iPlanet UDS service objects.
This example then provides a Visual Basic client that shows how an OLE client
application could interact with the user-visible service object to use the services
provided by the BankServices.BankServer service object.

• olebanuv.pex contains the OLEBankUV project, which defines a class named
BankServiceOLEInterface, which defines wrapper methods that in turn invoke
methods on the BankServices.BankServer service object. This project also
defines a user-visible service object called BankServerOLE.

• All the other files are part of the Visual Basic OLE client.

Pex Files frame/banksvc.pex, extsys/ole/server/olebanuv.pex.

Mode Distributed only.

Special Requirements This example runs only on a node running Windows 95
and Windows NT. You need to have Microsoft Visual Basic installed on the
Windows NT or WIndows 95 node and a C++ compiler. You should have
autocompile set up.

The Visual Basic clients were written to use Visual Basic Version 4.0. If you are
using later versions of Visual Basic, you might need to upgrade the provided
Visual Basic components, adjust the following instructions.

➤ To use OLEBankUV

1. Import the .pex files, listed above.

2. Configure the OLEBankUV project as a client application, with the
BankServerOLE service object in the client partition.

3. Mark the BankServerOLE service object as an OLE server, as described in
Integrating with External Systems.

Application Descriptions

Appendix A iPlanet UDS Example Applications 781

4. Remove the client partition containing the BankServerOLE service object from
all nodes that are not running Windows 95 or Windows NT.

5. Make a distribution using autocompile and autoinstall.

6. Start the iPlanet UDS client partition, as described in Integrating with External
Systems.

7. Using Visual Basic, open the OLEBankUV.vbp file.

8. Make sure that the OLEBankUV project can find the BankUV.frm file by using
the Visual Basic File > Add File command.

9. In Visual Basic, use the TOOL > References command to tell the OLE client
application the location of the iPlanet UDS service object .tlb file, which is in
the FORTE_ROOT\userapp\olebanku\cl0\ directory

10. Run the Visual Basic OLE client example. Valid account numbers are 1000,
2000, and 3000.

OLESample
Description OLESample uses OLEField, Olegen, and iPlanet UDS’s
implementation of OLE Automation. It uses a Microsoft Chart application (part of
Microsoft Graph5.0). The chart is embedded in an OLEField. Olegen has been run
to create a Graph project. OLE Automation methods are used to access and
manipulate objects in the chart.

Pex Files extsys/ole/msgraph.pex, extsys/ole/olesam.pex.

Mode Standalone or Distributed.

Special Requirements MSWindows NT environment, MSGraph5.0.

➤ To use OLESample

1. The OLESample .pex files are not imported automatically by the tstapps.fsc
script, so you must first import them in the order given above. msgraph.pex
was generated by invoking Olegen. The following command line was used:

-- If you run this, use paths appropriate for your environment.
olegen -it c:\windows\msapps\msgraph5\gren50.olb
-of c:\examples\extsys\ole\msgraph.pex

Application Descriptions

782 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

You can generate your own msgraph.pex, to see olegen in operation, or you
can use the msgraph.pex provided in the examples directory.

2. Start the application. Click on the New Graph button. The embedded OLE field
will activate a generic Microsoft Graph Chart application.

3. Click on the iPlanet UDS window to deactivate the field.

4. Double-click in the OLE chart field to activate it. Choose Insert and Titles from
the Microsoft Graph Chart menu. Choose Chart Title and click the OK button.
Change the title if you wish.

5. Click in the iPlanet UDS window to deactivate Microsoft Graph Chart.

6. Click the Rotate Chart button as many times as you like.

7. Click the Change Title button and provide a title of your choice.

8. When you exit the example, the graph with your changes will be saved in the
file olesam.out in FORTE_ROOT/tmp.

9. Start the application again. This time the Load Saved Graph button will be
activated. Click it. The chart it loads will reflect the changes you just made after
creating a new chart. You can change the title and rotate the graph again. These
changes will be saved when you exit the application.

OLMBanking
Description OLMBanking shows how to use methods of the Framework
ObjectLocationmgr class to register named objects with the Name Service, then
bind to a particular named object and invoke methods on it. This application uses
the values of the -country command-line argument to determine which named
object to bind to.

This application lets the user select either the US or Canada, then select a bank
branch. Then, the user can deposit or withdraw money from the bank accounts at
the selected branch.

Pex Files frame/olmbank.pex.

Mode Distributed only.

Special Requirements None

Application Descriptions

Appendix A iPlanet UDS Example Applications 783

➤ To use OLMBanking

1. On the command line, specify the country whose branches are to be available,
using the -country command-line argument. Valid values are US (the default)
or Canada.

If you test run this example in the Window Workshops, then you cannot
specify the -country command-line argument, and you will always see the US
bank branches.

2. Select the branch, then the account at that branch.

3. Deposit and withdraw money from the account.

OutboundExternalConnection
Description OutboundExternalConnection illustrates how to use the
ExternalConnection class to initiate a connection. The C program extcon waits for
a new connection. OutboundExternalConnection will initiate the connection extcon
is waiting for. Once the connection is established, data is read and written. For the
read, the iPlanet UDS program makes sure the anticipated number of bytes have
been received. For the write, the iPlanet UDS program uses the UseData method on
MemoryStream to improve efficiency.

Pex Files outbound.pex.

Mode Distributed.

Special Requirements C compiler; C portion of this example will run on NT and
Unix platforms; it will not run on Windows or VMS.

➤ To use OutboundExternalConnection

1. Decide which platform you want to run the C program on, and which platform
you want to run the iPlanet UDS program on. Compile the C program extcon.c
into the executable extcon on the desired platform.

On most Unix systems, simply use the following command:

cc extcon.c -o extcon

This will work on the following platforms:

❍ AlphaOSF

❍ RS6000

Application Descriptions

784 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

❍ Solaris

❍ Data General

On Sequent, use the following command:

cc extcon.c -o extcon -lsocket -linet -lnsl

On HP, use the following command:

cc +Z extcon.c -o extcon

On NT, if you use Visual C to compile extcon.c, make sure to include
wsock32.lib with your standard Object/Library modules. Also, make sure
the application is defined as a console application, not a windows application.

2. Both the iPlanet UDS program and the C program will use a default port
number for the listener, unless you supply it as an environment variable. The
default port number is 6868. If you need to use another port number, set the
environment variable FORTE_EP_REG_PORT_2 to the desired port number in
both the environment where you will run the iPlanet UDS program and the
environment where you will run the C program.

3. If you want to establish an external connection between the iPlanet UDS
program and the C program running on the same machine, you do not need to
set an environment variable for the node name. If you want to connect between
different machines, you will need to set an environment variable. Set the
environment variable FORTE_EP_NODENAME_2 in the environment where
you are running the iPlanet UDS program. Set it to the name of the machine
where the C program is running.

4. On the machine where you compiled extcon, run it with the w command line
option, so that it will wait for a connection:

extcon w

Extcon will time out after three minutes. If you need more than three minutes
to start the iPlanet UDS part of this example, edit extcon.c. Increase the value of
DEFAULT_REG_UPTIME and recompile extcon.c

5. Use the file outbound.scr to supply the necessary commands to fscript.
Outbound.scr will import the pex file outbound.pex, find the project, run it,
and remove the project after the run is complete. Outbound.pex must be in the
same directory as outbound.scr. Use fscript’s -i flag to input outbound.scr
to fscript:

fscript -i outbound.scr

Application Descriptions

Appendix A iPlanet UDS Example Applications 785

6. Observe the output of both processes. On the iPlanet UDS side, you should see
the following results:

From the C program, you should see the following lines:

PencilPlay
Description PencilPlay uses the PictureButton, Rectangle, Ellipse, Line and Point
classes. It is a simple draw program that lets you dynamically create graphics.

Pex Files display/pencil.pex.

Mode Standalone or Distributed.

Special Requirements None.

➤ To use PencilPlay

1. Use any of the standard palette list tools and the commands in the two menus.
In addition you can move a selected item by positioning the cursor over it and
pressing the mouse button.

2. To copy a selected item choose the Copy command, then select the Paste
command. Drag the original item to a new location and a copy will appear
when you release the mouse button.

Attempting to make a connection on port 6868.
Attempting to make a connection on canis.
OutboundConnection: server read got back 14 bytes
Data received.
Outbound connection: close done

Waiting to connect on port 6868.
QString = Tire<EOW1>65psi<EOW2>Inflated<EOW3>

Application Descriptions

786 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

PrintSample
Description PrintSample shows how to use the printing classes. There are six
subsections to the application; each one shows how you might solve different
printing problems.

The first option, SimplePrint, uses no TOOL code. It relies on the Print and
PrintSetup menu commands to print the current UserWindow.

The second option, SimpleClone, clones the current UserWindow and makes some
changes to the cloned window’s data. It also shows how to force changes to the
DefaultPrintOptions object.

The third option, Expand&Tile, prints the current UserWindow, expanding all the
fields so that their hidden data as well as their displayed data will be printed.
When all the fields are expanded, page tiling will occur.

The fourth option, Report, uses a template window with header and footer
information to print the data from the current window. The data from a large array
is printed on a multi-page report. This part of the example shows how to create
page and line breaks, while using DrawMultiLineText.

The fifth option, EmptyPage, uses the EmptyPage class as the WorkingPage.

The sixth option, ExpandText, prints a TextData object that contains long lines.
DrawMultiLineText is used with different height and width policies on the
PrintDocument.

Pex Files display/printsam.pex.

Mode Standalone or Distributed.

Special Requirements Printer connection. The files artist.dat and
painting.dat must be located in FORTE_ROOT/install/examples/database. The
file hr.dat must be located in FORTE_ROOT/install/examples/display.

➤ To use PrintSample

1. From the main window, choose the buttons that sound of interest. Each
subsection allows you to print and to set up print options. Some have more
refined options.

2. Report lets you print the array without the report template, using standard
array field expansion and vertical tiling, for comparison. It also offers two
styles for the report: one where it is measured in mils, another where it is
measured in columns.

Application Descriptions

Appendix A iPlanet UDS Example Applications 787

3. The ExpandText option lets you see the use of DrawMultiLineText with and
without tiling and with various line spacing options. You can choose between
natural and explicit height and width policies to observe horizontal and
vertical tiling, as well as multi-page printing without tiling. You can also
choose various line spacing options.

SimpleOutline
Description SimpleOutline uses the OutlineField class. It is a simple utility for
building a document structured as an outline.

Pex Files display/soutline.pex.

Mode Standalone or Distributed.

Special Requirements None.

➤ To use SimpleOutline

1. Add a few initial entries by clicking on the AddChild button several times.

2. You can then add items before or after an item, delete an item, or add child
items by selecting an item and clicking on the appropriate button.

TabFolders
Description TabFolders illustrates how to use the TabFolder class, and how to
use Popup Menus. The example allows you to open two windows. One window
illustrates basic TabFolder and Popup functionality. The TabFolder widget was
constructed in the Window Workshop. The second window illustrates how to
create a TabFolder dynamically and how to show Popup Menus dynamically.

Pex Files display/tfolder.pex.

Mode Standalone or Distributed.

Special Requirements None.

Application Descriptions

788 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

➤ To use TabFolders

1. The first window presents two pushbutton fields: Basic TabFolder and
Dynamic TabFolder. Click Basic TabFolder.

2. A TabFolder with three tab pages appears on the Basic TabFolder window. The
second tab page is the top page. Bring other tab pages to the front by clicking
on them.

3. On the Bring To Front (Popup Demo) pushbutton, use the key combination
required by your client operating system to activate the Popup Menu. You will
see a submenu with three menu items: Tab One, Tab Two, and Tab Three. Click
any of these menu items, and that tab page will become the top tab page in the
tabfolder.

4. Back in the first window, click the Dynamic TabFolder pushbutton. Bring each
tab page to the front by clicking on it. Turn the Show Tree Tab Page toggle off.
The Tree Tab Page will disappear from the TabFolder. Turn the Show Tree Tab
Page toggle back on. The Tree Tab Page will reappear in the TabFolder.

5. The Popup Demo 1 and Popup Demo 2 pushbuttons each have Popup
submenus associated with them. The Bring To Front (Dynamic Popup Demo)
pushbutton will present a different popup menu depending on whether the
Tree Tab Page is visible or not visible. Try it under both conditions.

TimeIt
Description TimeIt illustrates the use of the Timer class. It provides a simple on
screen timer clock.

Pex Files frame/timeit.pex.

Mode Standalone or Distributed.

Special Requirements Client and server running on different machines.

➤ To use TimeIt

1. Click on the Start button to start the timer, and on the Stop button to stop the
timer.

Application Descriptions

Appendix A iPlanet UDS Example Applications 789

TimeItV1-4
Description The files timeitv1.pex, timeitv2.pex, timeitv3.pex, and
timeitv4.pex are different versions of the TimeIt application, used to illustrate
run-time compatibility issues. timeitv2.pex is compatible with timeitv1.pex,
while timeitv3.pex and timeitv4.pex are not.

Pex Files frame/timeitv1.pex, frame/timeitv2.pex, frame/timeitv3.pex,
frame/timeitv4.pex.

Mode Distributed only.

Special Requirements None.

➤ To use TimeItV1-4

1. You will build distributions from the different versions of TimeIt supplied, and
install partitions from different distributions on the client and the server. For
information on runtime compatibility, see the iPlanet UDS Programming Guide.

➤ To use TimeItV1

1. Import timeitv1.pex into your workspace.

2. Partition it so that the client partition (Timeit_cl0_Client_<node>) id is on the
client machine and the server partition (Timeit_cl0_Part1_<node>) is on the
server machine.

3. Make a distribution.

4. Install the distribution on both the client and server machine.

5. Run the server partition on the server machine and the client partition on the
client machine.

You’ll see the usual TimeIt example application. Pressing the Start button
makes the time display every second and beep at the minute. Now exit the
client partition and kill the server partition.

➤ To use TimeItV2

1. Import timeitv2.pex into the same workspace.

2. This time partition it with both partitions on the server machine and install it
only on the server machine.

Application Descriptions

790 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

3. Run the server and client partitions on the server machine. There is one new
feature: you can optionally beep at the quarter minute as well as the minute.

The following changes were made to TimeItV1:

❍ The class Clock has a new attribute BeepOnQuarterMinute. It has a higher
serial number than any previously existing attributes had.

❍ Clock has a new event, DoBeep.

❍ Clock has a new overloading of the method StartClock.

❍ ClockWindow has changed. It includes a new attribute ToBeep generated
by the new button.

None of the existing IDs have changed, and all the rules for adding things have
been obeyed. The partitions from TimeItV1 and TimeItV2 should be
compatible. To test this, run the client partition from the client machine, which
is still the version from TimeItV1. Note that it works correctly. It cannot access
the new feature of beeping on the quarter minute, but the existing features
work correctly.

➤ To use TimeItV3

1. Import timeitv3.pex into the same workspace.

2. Again, partition it so that both partitions run on the server machine, and install
it only on the server.

3. There is one important difference between TimeItV1 and TimeItV3 that will
cause an incompatibility: instead of adding a new overloading of StartClock,
TimeItV3 replaces the old StartClock, which had no parameters, with a new
one, which has a boolean input parameter. Since the overloading of the method
which the older client uses no longer exists, TimeItV3 is incompatible with
TimeItV1.

4. You can see this by running the new server partition on the server machine and
the old client partition on the client machine. When you click the Start button
on the client, which calls the method, you get the error:

SYSTEM ERROR: No actual parameter for argument 1 of StartClock

This happens because the client partition doesn’t pass a parameter, but the
server expects one.

Application Descriptions

Appendix A iPlanet UDS Example Applications 791

➤ To use TimeItV4

1. Import timeitv4.pex into the same workspace.

2. Again, partition it so that both partitions run on the server machine, and install
it only on the server.

3. There is one important difference between TimeItV1 and TimeItV4 that will
cause an incompatibility: TimeItV4 adds a parameter to the event
SecondElapsed which is used to communicate between the client and the
server. This makes the new server partition incompatible with the old client
partition.

To see this, run the new server partition and the old client partition. Click the Start
button. The first time SecondElapsed is sent to the client partition, the result is:

SYSTEM ERROR: After processing event <xxx> the stack is
incorrectly set.

iPlanet UDS’s interpreter’s stack is incorrect because the event was passed an
unexpected number of parameters.

TreeList
Description The TreeList example shows how to coordinate the display of data in
TreeView and ListView fields. The TreeView field displays a hierarchy of
biological classifications: orders, families, and genera. The ListView field displays
detailed information on species within a genus.

Pex Files display/tvlv.pex.

Mode Standalone or Distributed.

Special Requirements none.

➤ To use TreeListExample

1. Click on the controls in the TreeView field to expand and collapse the outline.
Not all the nodes have children, but by opening them all you will see order,
family, and genus names for some Costa Rican birds.

2. When you click a node at the genus level, you will see the species in that genus
displayed in the ListView field.

Application Descriptions

792 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

WinDB
Description WinDB uses the GenericDBMS Library classes. It lets you perform
standard SQL database access commands. It also illustrates how to send and
retrieve Binary Data (BLOBs) from a database, and how to read and write
serialized data to a file.

Pex Files database/windb.pex.

Mode Distributed only.

Special Requirements Database connection. The files artist.dat and
painting.dat must be located in FORTE_ROOT/install/examples/database.

➤ To use WinDB

1. You need an environment that has a node with a resource manager.

Before running WinDB, open the WinDB Project Workshop, and open the
MySession service object. Provide the correct values for your database in the
Database Manager, Database Name, User Name, and User Password fields,
then click OK. WinDB creates its own tables in the database you specified. The
data is provided from files in the FORTE_ROOT/install/examples/database
directory, called artist.dat and painting.dat.

2. Start the application. In the radio list, Table is selected by default. Click on the
Make Database button. The following painter names are valid:

3. Enter a valid painter name and click the Select button. (Note that additional
painting data is available for Edgar Degas and Leonardo da Vinci only.)

4. Enter a valid first letter of a painter name followed by% (such as E%), and click
the Select button.

5. Enter an invalid painter name and click the Select button.

6. Click on the Drop Database button.

Leonardo da Vinci
Henri Rousseau
Edgar Degas
Jaspar Johns
Pablo Picasso

Application Descriptions

Appendix A iPlanet UDS Example Applications 793

7. Now select Blob from the radio list, click on the Make Database button, and
make the same selections as you did for Table. Click the Drop Database button
when you’re done.

8. Now select File from the radio list, and click on the Make Database button. This
will actually create a file to which objects are written. This time, when you
select artists, you must type their entire name. Again, click the Drop Database
button when you’re done.

XRefTime
Description XRefTime is an example of a TOOL C project, along with a TOOL
project that calls the TOOL C project. It is useful for seeing how to use the
ExternalRef class to free memory associated with iPlanet UDS objects after those
objects have been reclaimed by memory management. The example program
MathTime shows how to write C projects. The example program DMathTm is the
distributed version of MathTime. The example program AllCType is a reference for
how to define and call TOOL C methods with parameters of all C data types at
assorted levels of indirection.

Pex Files extsys/c/xreftime.pex.

Mode Distributed only.

Special Requirements Access to standard C Runtime Libraries and a C++
Compiler, creation of a working directory, autocompile must be turned on.

➤ To use XRefTime

1. Create a working directory where you have read and write permission. Copy
the following three files from FORTE_ROOT/install/examples/extsys/c to
your working directory: xreftime.pex, xreftime.fsc, xreftime.c. Set the
environment variable FORTE_EP_WRKDIR to your working directory.

2. The file xreftime.pex contains the C project XRefTimeProject and the TOOL
project TestXRefTimeProject. They assume you have access to the standard C
runtime libraries. Make sure you know where these are located and what they
are called on your system.

3. Edit your copy of xreftime.pex so that its ExternalSharedLibs extended
property points to the standard C shared library. Search the file for the string
‘/usr/shlib/libc’. Change this string to the correct path and library name for
your system.

Application Descriptions

794 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

4. Compile the file mathtime.c into an object file called xreftime.o. Under the
directory FORTE_ROOT/tmp, create the directory ‘examples’, if it isn’t there
already. Copy the file xreftime.o to the FORTE_ROOT/tmp/examples directory.

5. Before completing this step, make sure autocompile is available on your
system. If autocompile is not set up, ask your System Administrator to set it up
for you. Now run Fscript and enter the following commands:

6. The xreftime.fsc script will import, distribute, compile, install, and run the
XRefTime example. You may want to examine this script to understand the
steps involved in linking TOOL code with external C routines.

UsePortable
SetPath %{FORTE_EP_WRKDIR}
Include xreftime.fsc

795

Appendix B

Memory and Logger Flags

This appendix contains a detailed description of how to use the memory (-fm) and
logger (-fl) flags.

-Fl Flag (iPlanet UDS Logger)
The -fl flog allows you to specify logger flags to be used for the command. The
logger flags set the file or files used by the LogMgr object for logging messages,
and specify the types of messages logged in each file. See LogMgr class in
Framework Library online Help for information on how to produce the actual
messages.

The -fl flag overrides the setting of the FORTE_LOGGER_SETUP environment
variable.

-fl file_name(file_filter)[file_name(file_filter)...]

For UNIX and VMS, any arguments that contain parentheses must be enclosed by
double quotes.

The following sections provide information specifying the file name and file filters.

File Name
The log file name is any valid file name where you want to log messages. The
special file names “%stdout” and “%stderr” log the messages to standard output
or standard error, respectively.

-Fl Flag (iPlanet UDS Logger)

796 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

You can specify several files for logging messages. Multiple logging files are useful,
for example, in an application where you want to display general tracing on
standard output (%stdout), but want detailed tracing logged to a file for later
review.

On Windows only, you can use the name “%stdwin” to create a simple, scrollable
output window for textual output. “%stdwin” is particularly useful to specify an
alternative file for the output from Fscript or the iPlanet UDS Workshops.

File Filter
Each file name is associated with a file filter.

message_type[:service_type[:group_number[:level_number]]]

A description of each file filter option follows.

Message Type Option
The most general filter is message type. The value of message type differentiates
messages such as errors, debugging information, or performance data. The
message types appear in the following table. Each type is paired with a runtime
LogMgr constant that corresponds to the message type when used with the more
complex versions of the Put and PutLine methods:

Type Meaning Put or PutLine Constant

err Error Messages SP_MT_ERROR

sec Security messages SP_MT_SECURITY

aud Audit messages SP_MT_AUDIT

prf Performance
information

SP_MT_PERFORMANCE

cfg Configuration
modification

SP_MT_CONFIGURATION

trc Debugging
Information

SP_MT_DEBUG

 * All of the above Any of the above

-Fl Flag (iPlanet UDS Logger)

Appendix B Memory and Logger Flags 797

By using the message type categories, you can print different types of messages to
different files. For example, you may want to print trace messages on standard
output, error messages on standard output and an error log file, and performance
information in a performance log file. The specification for this setup might be the
following:

%stdout(trc:user err:user) err.log(err:user) perf.log(prf:user)

Service Type Option
Within message types there are service types. Service types are the large
subdivisions you make within your program and typically map to projects. The
service type parameter is optional. If used, the service type value must be between
“user1” and “user10”. Typically, a service is a large portion of your application,
such as inventory control, accounts receivable, or employee administration.

The LogMgr constant that corresponds to the service types “user1” through
“user10” is SP_ST_USER1 through SP_ST_USER10. You can use these constants
with the advanced version of the Put or PutLine methods or with the Test
method. For convenience, you can use the name “user” or the asterisk symbol (*) to
specify all user service types. Previous examples used the specification “user”
without a trailing digit to indicate all user services.

For example, if you want all tracing to go to standard output, but tracing from
service types “user1” and “user3” to be logged in a special file as well, you would
use the following specification:

%stdout(trc:user) trc1_3.log(trc:user1 trc:user3)

Group Number Option
Within a service type there are group numbers. Group numbers are smaller
subdivisions you make within a particular service and typically map to a group of
related facilities. The optional group number provides further filtering within the
service. A group number is between 1 and 63 inclusive.

For example, within a particular service (say, “user3”) you may have subdivided
the modules into groups (for example, “transactions in progress”, “queued work
lists”, and “problem reports”). Each module is large enough to warrant a group
number within the service. “Transactions in progress” may be group number 2,
whereas “problem reports” may be the group number 4. The following
specification puts performance information from group number 2 into one file and
trace information from group number 4 into another file:

xactprog.prf(prf:user3:2) probrep.trc(trc:user3:4)

-Fl Flag (iPlanet UDS Logger)

798 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

The group number you specify in a Put method may be a constant that you defined
to be equivalent to the numeric literal that you specified in
FORTE_LOGGER_SETUP. For example, even though the literal 2 indicates the
“transaction in progress” group, your specification to print the related
performance information may be the following:

This code assumes the value of the TOOL constant TRANSACT_IN_PROGRESS
is 2.

You can also specify a range of group numbers using the syntax group#-group#. In
the previous example, if you want trace information from groups 2 through 4 to go
to a specific file, you would use the following statement:

some_trc.log(trc:user3:2-4)

Level Number Option
Within a group there are level numbers that you use to specify particularly detailed
levels of information. The greater the level number value, the more detailed the
information. The optional level number indicates the detail level of the information
printed. Level numbers must be from 1 to 255 inclusive.

As with group numbers, the level number is determined by the application.
Typically, developers use level numbers to filter out trace messages. Using the
current example, the specification%stdout(trc:user3:2:1) indicates that all level 1
trace data from the “transaction in progress” (group 2) module of the “user3”
service should be printed to standard output. Levels greater than 1 do not print.
Thus, the following fragment prints only one line:

 task.Part.LogMgr.PutLine(SP_MT_PERFORMANCE,
 SP_ST_USER3,TRANSACT_IN_PROGRESS,1,perfTextData);

 log: LogMgr = task.Part.LogMgr;
 -- Printed (level <= 1)
 log.Put(SP_MT_DEBUG, SP_MT_USER3, TRANSACT_IN_PROGRESS, 1,

’Browsing account # ’);
 log.PutLine(SP_MT_DEBUG, SP_MT_USER3, TRANSACT_IN_PROGRESS,

1,acc.Number);
 -- Not printed (level > 1)
 log.Put(SP_MT_DEBUG, SP_MT_USER3, TRANSACT_IN_PROGRESS,

2,acc.Owner);
 log.Put(SP_MT_DEBUG, SP_MT_USER3, TRANSACT_IN_PROGRESS,

2,acc.LastChangeDate);

-Fm Flag (Memory Manager)

Appendix B Memory and Logger Flags 799

-Fm Flag (Memory Manager)
The -fm flag allows you to control the space used by the iPlanet UDS memory
manager.

If you do not set the memory flags, iPlanet UDS uses defaults appropriate for the
operating system.

Note that you can change the memory configurations for a running application
using the Environment Console and instruments defined on the OperatingSystem
agent. See iPlanet UDS System Management Guide for information.

-fm(memory_option {: | =} number [, memory_option {: | =} number])

To make this flag portable across the platforms supported by iPlanet UDS, do not
include any spaces in this argument, and do not enclose any part of the argument
in single quotes.

For UNIX and VMS, any arguments that contain parentheses must be enclosed by
double quotes, as shown in the following example:

“-fm(n:4000,x:8000)”

In UNIX, if you include spaces in this argument, you need to enclose the values,
including the parentheses, in single quotes. You do not need to use single quotes
for any other platform. The following table describes the memory options. For
options that refer to “pages,” a page is 1024 bytes of memory.

Memory Option Description

c Specifies when the memory pool should be contracted. The value
represents the percentage utilization of the active pages that will trigger
a memory pool contraction. Range is 0 to 100. The default value is 80.

This option is valid only for Windows 95.

-Fm Flag (Memory Manager)

800 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

d Sets the level of debugging information that is provided. The value is
interpreted as a bit-mask of enabled options. The default is 0. The
options are:

1—Verify memory before every collect. This checks that all of the
memory manager’s data structures are correct, that all pages containing
user objects are correct, and that all pointers point to something legal.

2—Verify memory after every collect.

4—Verify memory before every allocation.

8—Zero-Fill free memory.

16—Pattern-Fill free memory.

e Specifies when the memory pool should be expanded. The value
represents the percentage utilization of the active pages that will trigger
a memory pool expansion. Range is 0 to 100. The default value is 80.

g Sets the percentage by which the memory pool is expanded. The default
is 10 percent.

i Incremental unit in pages for memory expansion or contracting. Range
is 64 to 1,048,576 (or 4,096 on Windows 3.1). Default is 256.

n Minimum number of pages managed by the memory manager. The
value specifies the absolute minimum number of pages that will be
allocated to the memory heap. Range is 1024 to 4194304 (32384 on
WIndows 3.1). Must be less than the x memory option. The default
value is 1024. See “Setting Maximum and Minimum Size of the Memory
Heap” on page 801 for information about how n and x interact.

r Sets the minimum number of free pages needed to perform a shutdown.
Range is 64 to 1,024. The default is 64.

s Sets the percentage by which the memory pool is contracted. The
default is 5 percent.

This option is valid only for Windows 3.1.

u Target average memory use. The value specifies the target percentage
utilization of the memory heap, calculated as the proportion of
allocated pages that are active. Specify this as a percent of currently
allocated memory. Legal range is 25 to 95. The default is 85.

Memory Option Description

-Fm Flag (Memory Manager)

Appendix B Memory and Logger Flags 801

Setting Maximum and Minimum Size of
the Memory Heap
To specify the maximum and minimum sizes of the iPlanet UDS memory heap, use
the n and x memory options as described in the previous table.

For most operating systems, iPlanet UDS follows these rules to determine the
actual maximum and minimum sizes, based on the values specified:

When you specify only the value of n:

• If n is less than 1024, n is set to 1024.

• If n is smaller than the default value of x (8192), then x is 8192.

• If n is larger than the default value of x (8192), then x is also set to n. The values
of the maximum and minimum memory heap sizes in this case are equal.

When you specify only the value of x:

• If x is larger than the default value of n (1024), then n is 1024.

• If x is smaller than the default value of n (1024), then n is also set to x. The
values of the maximum and minimum memory heap sizes in this case are
equal.

When you specify both the n and x values:

• x is set to the larger value specified, whether by x or n. The value of n is always
the value specified.

x Maximum number of pages managed by the memory manager. The
value specifies the absolute maximum number of pages that can be
allocated to the memory heap. Range is 1024 to 4194304 (32384 on
Windows 3.1). Must be greater than the n memory option.The default
value is 8192. See “Setting Maximum and Minimum Size of the Memory
Heap” for information about how n and x interact.

Memory Option Description

-Fm Flag (Memory Manager)

802 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

803

Index

SYMBOLS
.a file 734
.ace file 720, 734
.adf file 720, 734
.bom file 734
.btd file 720, 734
.btx file 720, 734
.cc file 734
.cdf file 734
.dll file 734
.exe file 720, 734
.fso file 734
.lgf file 734, 735
.pex file 734
.pgf file 720, 727
.so file 734

A
About command 562
AboutMenuActivate event 562
Abstract class 66
Activate event 543
ActiveX field 477–479

ActiveX Properties property 479
Attribute Name property 479
creating 477–479

Insert Control property 479
Mapped Type property 479

ActiveX Field Properties dialog 479
ActiveX Properties property 479
ActiveXDemo example program 747
Add Project command 710
Administrator password 149
AfterValueChange event 543
AgentAccess sample application 751, 752
AgentBanking sample application 754
Align To command 419
Alignment property

data field 451
list view field 469
outline field 474
text graphic 494

AllCType sample application 756
Allow Activate in Place property (OLE field) 476
Allow In Place Toolbar property (OLE field) 476
Allows Append property (array field) 516
Alternate window 368
Anchor URL property (window) 381
Applet

application distribution and 718
compiling client and 669
creating 694
defined 661
testing application with 714

AppletBanking application 757

Section A

804 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Application 716
testing 262
testing configuration for 714

Application configuration
creating 677
examining 679
testing 712

Application dictionary
defined 140
deleting from repository 163
deleting from workspace 182
exporting 186
icon 140, 171
importing 184
including in workspace 182

Application Dictionary Workshop 88
Application distribution

about 716
components of 718
creating 735
file naming conventions 721

Application model
defined 140
deleting from repository 163
deleting from workspace 182
exporting 186
icon 140, 171
importing 184
including in workspace 182

Application Model Workshop 85
AppTitle attribute 562
Array field 514–517

adding a column 515
Allows Append property 516
Attribute Name property 516
Caption property 516
Cell Gravity tool 392
components of 514
creating 514
data types 435
deleting a column 515
Has Column Titles property 516
Has Scrollbar property 516
Mapped Type property 516
Message Number property 516
moving a column 515

Set Number property 516
using in iPlanet UDS 125

Array field grouping tool 389
Array Field Properties dialog 516
Array Widget property (domain) 307
Array, inspecting in Debugger 644
Assigned client partition 668
Assigned partition

about 668–672
defined 668
deleting 700
examining 682
moving 699
setting properties 700

Assigned server partition 670
Assignment rule

defined 140
deleting from repository 163
deleting from workspace 182
exporting 186
icon 140, 171
importing 184
including in workspace 182

Assignment Rule Workshop 88
Attach Shadow command 144, 168
Attached shadow repository

about 144
detaching 166
using 164

Attribute
about 276
class type 277
creating 310
deleting 322
examining 300
examining extended properties 302
extended property 282, 338
icon 297
setting extended properties 321
simple type 277
virtual attribute 278
widget 291, 432

Attribute Name property
ActiveX field 479
array field 516

Section B

Index 805

Attribute Name property (continued)
compound graphic 523
data field 451
drop list 486
ellipse 499
fillin field 488
grid field 519
line 497
list view field 468
menu command 537
menu list 539
menu separator 540
menu toggle 538
OLE field 476
outline field 473
palette list 491
panel 503
picture button 462
picture field 457
picture graphic 497
polyline 500
push button 459
radio list 481
rectangle 498
scroll list 484
scrollbar 464
submenu 534
symbol 501
tab folder 513
text edit field 455
text field 453
text graphic 494
toggle field 458
tree view field 471
viewport 525

Attribute Properties dialog 310
Attribute Values property (service object) 206
Auction sample application 758
Auto Indent property (text edit field) 456
autoexec.bat file (Windows 95) 102
Auto-install

Make Distribution command and 726
on a PC 726
using with installed applications 726

Automatic partitioning 663, 704
Autosize Enabled property (window) 369, 397

Auto-start
for partition 671
for service object 698

AutoTester sample application 759, 760

B
Backup Repository command 168
Banking sample application 759
Baseline password

secure repository 149
standard repository 148

BinaryData class 133
BinaryNullable class 134
Boolean data type 132, 133
BooleanData class 133
BooleanNullable class 134
Branch All Components command 261
Branch command 259
Branch Conflicts dialog 177
Branching 146
Breakpoint

about 631
event delivered 640
event handler 599
Event Handler Workshop and 602
event posted 640
exception raised 640
method entry 640
method exit 640
Method Workshop and 571, 582
persistent 632
reaching 638
removing (Debugger) 640
removing (Method Workshop) 582
setting 640
statement 640
task 650
temporary 632
viewing with Repository Workshop 173

Breakpoints command
Event Handler Workshop 602
Method Workshop 577

Section C

806 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Bring to Front command 423
Browser button 126
Business model

defined 140
deleting from repository 163
deleting from workspace 182
exporting 186
icon 140, 170
importing 184
including in workspace 182

Business Model Workshop 85

C
C++

client partition and 669
Cancel command

Cursor Workshop 619, 626
Event Handler Workshop 600, 609
Menu Workshop 547
Method Workshop 576, 586
Window Workshop 395

Cancel Run command
Partition Workshop 715
Project Workshop 263, 268

Cancel Task command 637
Caption property

array field 516
compound graphic 523
grid field 519
panel 503
radio list 482

Cell Gravity command 421
Cell Gravity tool 392
Cell Margins command 422
Central repository

about 143–150
shadow 143
workspace for 143

Change Image property (picture button) 462
Checkout 146
Checkout All Components command 260

Checkout command 258
Class

about 275
abstract 66
attributes 276
Class Name property 306
constant 281
copying 252
creating 229–231, 302–322
custom 64, 203
default Init method 290
deleting 252
deleting elements 322
Distributed property 286, 307
event 279
event handler 280
event in 279
examining 221296–302
examining elements 297
examining properties 301
exporting 271
for windows 290
hierarchy 66
icons 218
importing 270
including in a project 202
inheritance 64
Interfaces Implemented property 308
method 278
modifying 250322–327
Monitored property 288, 308
prefabricated 63
private element 282
public element 282
Restricted property 307
restricted property 282
runtime properties of 284
Shared property 285, 307
Superclass property 306
testing 327
Transactional property 287, 307
undoing changes 259
updating properties 323
using 63
Version property 289, 308

Section C

Index 807

Class (continued)
virtual attribute 278
visibility of elements 282
widgets 432
write access 322

Class constant 281
Class Name property (class) 306
Class Properties dialog 303

General tab page 306
Interfaces Implemented tab page 308
Runtime tab page 307
using 306

Class property (service object) 237
Class Workshop

clipboard and 323
copying class elements 309
defining class elements 309
displaying parts of 295
entering 294
examining class elements 297
filter drop list 298
finding text 324
kind icons 297
leaving 296
overloading methods 317
overview 78
replacing text 325
sorting class elements 298
sorting preference 330
toolbar 295
window 294

Client configuration
defined 661
modifying 686
testing 712

Client Node property (node) 658
Client partition 664

Applet property 694
Compiled property 701
Generate C++ API property 701

Client project 201
Clipboard 129

Class Workshop and 323
Interface Workshop and 359
Menu Workshop and 556

ClipboardSample sample application 761

Close command
Class Workshop 296
Cursor Workshop 619
Event Handler Workshop 600
Interface Workshop 340
Menu Workshop 547
Method Workshop 576
Partition Workshop 676
Project Workshop 217
Window Workshop 395

Code generation
fcompile command 729
for libraries 735
for partitions 727

Code Preferences dialog 590, 591
Collapse on Delete property (grid field) 519
Collect Memory command 194
Color bar 392

color feature list 392
color inheritance tool 394
color palette 392

Color command 394, 416
Color Feature command 394
Color Feature Contrast command 416
Color Feature Fill command 416
Color feature list 392
Color inheritance tool 394
Color palette 392
Color Palette command 388
Column justify weight 522
Column Name property

list view field 468
outline field 474

Column Title property
list view field 468
outline field 474

Column Title Set Number property
list view field 468
outline field 474

Command type 535
Command Type property (menu command) 537
Communication protocols 98
Communication Provider property (Control

Panel) 98

Section C

808 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Compatibility level
library 655
project 211

Compatibility Level property (project) 210, 211, 247
Compilation Properties for Node dialog 712
Compile All Plans command 191
Compile command

Class Workshop 327
Cursor Workshop 629
Event Handler Workshop 611
Menu Workshop 554
Method Workshop 589
Project Workshop 263
Window Workshop 409

Compiled partition
about 717
defined 668, 670

Compiled property
client partition 701
server partition 702

Compiling
all plans 191
client partitions 668
cursor 629
event handler 611
forced compilation 192, 327
libraries 654, 674, 711, 735
menu bar 554
method 589
partitions 727
sever partitions 670
window 409

Component History window 220
Compound Field Lines command 388
Compound graphic 522–523

Attribute Name property 523
Caption property 523
creating 522
Ignore Invisible Children property 523
Margin property 523
Message Number property 523
property dialog 523
Set Number property 523

Compound graphic grouping tool 389
Compound widget

creating 405

moving 413
selecting 410
using 501

Conductor
checking out plans 146
compiling all plans 191
regenerating plans 179

Configuration
about 661–673
applet and 661
changing for an installed application 727
client 661
creating 677–678
debugging 715
default 672
examining 679–686
modifying 686, 704
properties 673
re-partitioning 704
server 661
setting properties 704
testing 712
viewing properties 686

Configure as Client command 677
Configure as command 675
Configure as Library command 673, 677
Configure as Server command 677
Connected environment 659

reference partition with 692
Connection Option property (service object) 241
Constant

about 281
copying 252
creating 232
creating for class 319
creating for interface 354
creating in project 232
defined 207
deleting 252, 322, 358
examining 224, 301
icon 218, 297, 342
in interface 337
modifying 251
setting extended properties 321
types 233
undoing changes 259

Section C

Index 809

Constant Properties dialog
adding a new constant 320, 355
constant types 320, 355
Interface Workshop 355

Context-sensitive help
about 443
window 383

Contrast command 416
Control Panel 92–100

closing 94
Communication Provider property 98
General Tab page 94
Log Flags tab page 98
Model Node property 97
Name Server Address property 97
Network tab page 96
Node Name property 97
opening 92
Repository Name property 94
Root Directory property 96
Time Zone property 96
Workspace Name property 95

Convert To command 413, 425
Converter command 296, 299, 318
Converter method

about 573
creating 318
defined 279
examining 299

Copy command
Class Workshop 323
Cursor Workshop 624
Event Handler Workshop 606
Interface Workshop 359
Menu Workshop 556
Method Workshop 584
Window Workshop 412

Copy tool 389
CPPBanking sample application 761
Create Default command 550
Create Default Methods property (domain) 307
Cursor

about 613–617
compiling 629
copying 252
creating 242621–622

defined 208
deleting 252
editing 622
examining 223, 619
example of 614
exporting cursor code 628
for clause 617
icon 218
importing cursor code 628
modifying 251
placeholders 616
read-only cursor 615, 617
select statement 616, 621
undoing changes 259
update cursor 615, 617

Cursor Properties dialog 243, 621, 627
Cursor Workshop

adding a placeholder 627
deleting a placeholder 627
edit shortcut keys 623
editing source code 623
entering 618
Find After mode 626
Find Before mode 626
finding text 624
indenting 622, 626
leaving 619
line numbers 620
overview 81
preferences 630
replacing text 624
shortcut keys 623
window 618

Custom class 64
Custom command 535
Custom submenu 533
Cut command

Class Workshop 323
Cursor Workshop 624
Event Handler Workshop 606
Interface Workshop 359
Menu Workshop 556
Method Workshop 584
Window Workshop 412

Cut tool 389

Section D

810 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

D
Data

form widget and 432
menu widget and 529

Data field 450–452
Alignment property 451
Attribute Name property 451
creating 450
data types 434
formatting templates 450
IME Mode property 451
Input Mask property 451
Mapped Type property 451
Max Characters property 451
Password Entry Field property 451
specifying data for 450
Template property 451
Validate on Keystroke property 451
Widget Type property 451

Data field Properties dialog 451
Data item 67
Data type 132–134

for widgets 434
Database Manager property (service object) 240
Database Name property (service object) 206
Database property (service object) 206, 240
DataValue classes 292

inspecting objects 646
DataValue Object Inspector 646
DateTimeData class 133
DateTimeNullable class 134
DBResourceMgr class 205
DBSession class 205
DCE (external type) 697
DDEClient sample application 762
DDEServer sample application 763
Debug command 676, 715
Debugger 633

about 631–633
breakpoints 631
Debugger Window 634
error stack 648
event queue 648
exiting 635

Global Breakpoint Manager 641
hiding a task 650
inspecting DataValue object 646
inspecting objects 644
inspecting variables 643
method call stack 638
multiple tasks and 632, 649
Object Inspector 644
opening a task 650
overview 81
program execution 636
reaching a breakpoint 638
resuming execution 637
setting event breakpoints 641
setting exception raised breakpoints 642
setting method breakpoints 641
setting statement breakpoints 640
setting task breakpoints 650
start class and method 634
starting 634
starting program execution 637
stepping by statements 638
stepping in and out of methods 639
suspending a task 637
suspending execution 638
task icons 636
task list 649
Task Window 635
toolbar 636
updating dataValue objects 646
using from Partition Workshop 633
using from Partition workshop 715
using from Project Workshop 270, 633
using the method call stack 647
using with distributed applications 632
Variables window 638, 643

Debugger Window 634
DecimalData class 133
DecimalNullable class 134
Declared type 572
Default Button property

picture button 462
push button 459

Default Cell Gravity property (grid field) 519
Default Cell Margins property (grid field) 519
Default configuration 672

Section D

Index 811

Default menu bar 550
Default Node property (configuration) 673
Default Set Number property (window) 382
Default Value property

event handler 604
method 580

Delete command
Class Workshop 322, 327
Cursor Workshop 624
Event Handler Workshop 606
Interface Workshop 358
Menu Workshop 556
Method Workshop 584
Partition Workshop 700
Project Workshop 252
Repository Workshop 182
Window Workshop 412

Delete Public Plan command 163
Delete tool 389
Delete Workspace command 183
Demote Submenu command 555
Deployment environment 656
Detach Shadow command 144, 166
Detached shadow repository

about 144
attaching 168
backing up 167

Development environment 656
Development process 75
Dialog 225
Dialog Duration property (service object) 205, 238
Disabled property (partition) 671, 702
Disabled state 436, 532
Display library 209

excluding from project 228
Display method 291
DisplayNode class

outline field and 472
tree view field and 470

Distributed application 69–75
about 651
defined 69
deploying 653
partitions in 69

service objects and 70
Distributed object 286
Distributed property (class) 286, 307
Distributed testing 268
Distribution directory 718
Distribution, application

about 716
applets and 718
directory 718
icon file 718
making 716

Distribution, library
about 732
directory 732
making 732

DMathTm sample application 763
Domain class

about 292
array widget 293
Array Widget property 307
Create Default Methods property 307
creating 231, 305
creating widget for 407
default FillString method 293
default SetValue method 293
defined 276
examining 222
form widget 293
Form Widget property 307
icon 218

Domain Class Properties dialog 305
Domain widget 407
Double data type 132, 133
Double-byte manager 446
DoubleData class 133
DoubleNullable class 134
Drag state 436
Draggable property (tree view field) 471
Drop list 485–487

Attribute Name property 486
creating 485
data types 434
Insert/Delete property 486
IntegerValue property 486

Section E

812 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Drop list (continued)
Mapped Type property 486
Msg Number property 486
Text Value Set Number property 486
TextValue property 486
Widget Type property 486

Drop List Properties dialog 486
Duplicate command 412
DVSubClass sample application 765
DynamicDataAccess sample application 766
DynamicList application 766
DynamicSQL sample application 767

E
Edit shortcut keys

Cursor Workshop 623
Event Handler Workshop 605
Method Workshop 583

Ellipse 499
Attribute Name property 499
creating 499

Ellipse Properties dialog 499
Enabled state 532
Encina (external type) 697
Enter Administrator Password dialog 181
Environment

about 655–661
connected 659
defined 74

Environment Console 83
Environment search path 698

reference partition and 692
specifying for service objects 238
syntax 698

Environment variable
setting in Control Panel 92
setting in operating system 100
setting on NT 101
setting on OpenVMS 104
setting on UNIX 103
setting on Windows 95 102

Error stack 648

Error Stack command 648
Error window

Class Workshop 328
Event Handler Workshop 611
Method Workshop 589
Project Workshop 269
Repository Workshop 192

Event
about 279
breakpoint on 640, 641
creating 314
creating for interface 352
deleting 322, 358
examining 300
examining for interface 345
exception 570, 579
extended property 282, 338
icon 297, 342
in interface 336
interacting with object 61
menu widgets and 530
parameters for 280
return 570, 579
setting extended properties 321
widget state and 435

Event Delivered command 642
Event handler

about 280593–599
breakpoints in 599
compiling 611
components of 596
creating 318602–605
creating for interface 353
Default Value property 604
deleting 322, 358
editing 605–610
Event Handler Name property 603
examining 301601–602
examining extended properties 302
examining for interface 345
example of 593
exception handler 598
exporting source code 610
extended property 282, 338
icon 297, 342
importing TOOL code for 610
in interface 336

Section E

Index 813

Event handler (continued)
inherited windows and 375
Mechanism property 603
name 597, 603
nested window and 377
overriding 596, 597
Parameter Name property 603
parameters 597
Parameters property 603
postregister clause 598
preregister clause 598
private 596
Private property 603
public 596
register statement for 594
setting extended properties 321
source code 598
syntax 598
Type property 603
visibility 596
when clause 598
writing source code 604

Event Handler Name property 603
Event Handler Properties dialog 602

Class Workshop 319
Interface Workshop 353

Event Handler Workshop
adding parameters 609
deleting parameters 610
drag and drop names 604
edit shortcut keys 605
editing source code 605
entering 599
Error window 611
Find After mode 608
Find Before mode 608
finding text 607
indenting 604, 609
leaving 600
overview 81
preferences 612
replacing text 607
shortcut keys 605
text editing 604
viewing breakpoints 602
viewing line numbers 602

window 599
writing TOOL code 604

Event Posted command 642
Event Properties dialog

Class Workshop 315
Interface Workshop 352

Event queue 648
Event Queue command 648
Examining 346
Exception

as breakpoint 640
breakpoint on 642

Exception event 570
Exception Event property (method) 579
Exception handler

event handler 598
method 571

Exception Raised command 642
Excluded nodes property (configuration) 673, 674
Exit command

Project Workshop 217
Repository Workshop 138, 159

Exit Debugger command 635
Exit on Tab property

text edit field 455
text field 453

Expand state 436
Explicit size policy 440
Export Class/Interface command 271
Export command

Menu Workshop 557
Window Workshop 428

Export name 697
Export Name property (service object) 697
Export Project command 186
Export Text command

Cursor Workshop 628
Event Handler Workshop 610
Method Workshop 588

Exporting
class 271
cursor code 628
event handler code 610
interface 271

Section F

814 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Exporting (continued)
menu bar 557
method code 588
plan 186
window 428

ExportPlan command (Fscript) 693
Express

checking out plans 146
compiling all plans 191
overview 85
regenerating plans 179
Repository Workshop and 141

Extended font 418
Extended Font command 418
Extended Properties command

Class Workshop 321
Interface Workshop 346, 356
Project Workshop 226, 248
Repository Workshop 161, 174

Extended Properties dialog
Class Workshop 321
Interface Workshop 357
Project Workshop 226, 248
Repository Workshop 161

Extended property
class elements 282
interface elements 338
project 161
project components 226, 248

External type 697
External Type property (service object) 697

F
Failover

about 73
partition 697
specifying for service objects 238

Failover property (service object) 205, 238
fcompile command 729–731

environment variables, used with 727
for libraries 737

-fcons flag 120
-fi flag 119
Field widget 364
Fields Into Height Partnership command 420, 442
Fields Into Width Partnership command 420, 442
FileBrowser sample application 769
FileUtil sample application 769
Fill command 416
Fill Pattern command 415
Fill patterns 415
Fillin field 487–489

Attribute Name property 488
creating 487
data types 434
IME Mode property 488
Insert/Delete property 488
Mapped Type property 488
Max Characters property 488
Msg Number property 488
Text Value Set Number property 488
TextValue property 488
Validate on Keystroke property 488
Widget Type property 488

Fillin Field Properties dialog 488
FillString method 293
Finalize Input property

picture button 462
push button 459

Find After mode
Cursor Workshop 626
Event Handler Workshop 608
Method Workshop 586

Find Again command
Cursor Workshop 625
Event Handler Workshop 608
Method Workshop 585

Find Before mode
Cursor Workshop 626
Event Handler Workshop 608
Method Workshop 586

Find Class/Interface command
Class Workshop 297
Project Workshop 221, 222

Section F

Index 815

Find command
Cursor Workshop 624
Event Handler Workshop 607
Method Workshop 584

Find dialog
Cursor Workshop 624
Event Handler Workshop 607
Method Workshop 585

Find Text command
Class Workshop 324
Project Workshop 253
Repository Workshop 188

Find Text dialog 254
Find Text in Class Dialog 324
Find Text in Project dialog 254
Find Text in Workspace dialog 188
Finding text

Cursor Workshop 624
Event Handler Workshop 607
Method workshop 584
Project Workshop 253
Repository Workshop 188

First/Last property (outline field) 474
Fixed-size widget 401
-fl flag 120, 795
Float data type 132, 133
Float-over help 383

about 444
Float-Over Text property (palette list) 491
-fm flag 119, 799
-fnd flag 119
-fnomad flag 120
-fns flag 119
-fnw flag 120
Font

extended 418
portable 417
setting for widget 417
system 418

For Usage command
Menu Workshop 553
Window Workshop 399

Force Compile command 192

Form
about 363
creating 400
defined 362
grid for 401
layers on 364

Form Widget property (domain) 307
Formatting templates 450
forte command 114

flags for 118
setting repository 120
setting workspace 121

FORTE command (OpenVMS) 115
flags for 118

FORTE_FTLAUNCH_PORT 105
FORTE_FTLAUNCH_PORT env. variable 114
FORTE_GC_SPECIAL 105
FORTE_ISFLOATOVERENABLED env.

variable 444
FORTE_LOGGER_SETUP 105
FORTE_LOGIN.COM file (OpenVMS) 104
FORTE_MODELNODE 106
FORTE_NODENAME 107
FORTE_NS_ADDRESS 107
FORTE_PROVIDERS 107
FORTE_RESPOSNAME 108
FORTE_ROOT 108
FORTE_STACK_SIZE 108
FORTE_TIMEZONE 109
FORTE_TIMEZONEDST 109
FORTE_WORKSPACE 109
fortedef file (UNIX) 103
FourDir ActiveX control 750
-fr flag 118
Frame Weight command 416
Frame, window 362
Frameless window style 365, 366
Framework library 209
-fs flag 119
-fss flag 120
ftclntws command

flags for 118
syntax 118

Section G

816 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

ftcmd command
flags for 118
syntax 115

-fterm flag 120
ftexec command

flags for 118
syntax 118

Fusion
product description 86
Repository Workshop and 141
system 86

-fw flag 119

G
Garbage collection (reclaiming memory) 194
Generate C++ API property (client partition) 701
GenericDBMS library 209

excluding from project 228
Get Expression property (virtual attribute) 314
Ghost box 410
Global Breakpoint Manager 641
Global Breakpoint Manager command 641
Go to Line command

Cursor Workshop 624
Event Handler Workshop 607
Method Workshop 584

Graphic widget 364
transparency 414

Gravity, image 441
Grid command 388
Grid field 517–520

adding a column 518
aligning cells 421
Attribute Name property 519
Caption property 519
cell margins 422
Collapse on Delete property 519
creating 517
Default Cell Gravity property 519
Default Cell Margins property 519
deleting a column 518
Ignore Invisible Children property 519

Insert Policy property 519
Mapped Type property 519
Message Number property 519
modifying 518
moving a column 518
Set Number property 519
Size Policy dialog 520

Grid field grouping tool 389
Grid Field Properties dialog 519
Grid, window 400
GridFields Into Column Partnership command 420,

518
GridFields Into Row Partnership command 420, 518
Group Into TabFolder command 508
Grouping tools 389

H
Has Column Titles property

array field 516
list view field 468
outline field 473

Has Controls property
outline field 473
tree view field 471

Has Horizontal Scrollbar property
list view field 468
outline field 473
tree view field 471
viewport 525

Has Row Highlights property
list view field 468
outline field 473
tree view field 471

Has Scrollbar property (array field) 516
Has Vertical Scrollbar property

list view field 468
outline field 473
tree view field 471
viewport 525

Header Style property 506, 513
Height partnership 442
Height Policy property (widget) 439

Section I

Index 817

Help 561
About command 562
adding to menu bar 561
context-sensitive help 383, 443
float-over help 383, 444
for a widget 443
for a window 383
HelpRequest event 384
IsFloatOverEnabled attribute 444
multilingual 448
setting for palette regions 490
status-line help 383, 445, 530
StatusText attribute 445
using iPlanet UDS’s Help 134
WinHelp method 384

Help key 134
Help menu 561

in iPlanet UDS Workshops 134
HelpRequest event 384
Hidden window 368
Hierarchy, class 66
Horizontal Scrollbar property (text field) 453, 455
Horz Move state 436
Horz Stretch state 436
HTML Options command 381

I
Icon

application dictionary 140, 171
application model 140, 171
assignment rule 140, 171
attribute 297
branched 172
business model 140, 170
checked out 172
constant 218, 297, 342
cursor 218
domain class 218
event 297, 342
event handler 297, 342
file in application distribution 718
library 140, 170
menu command 549

menu list 549
menu separator 549
menu toggle 549
method 297, 342
new 172
nonwindow class 218
process definition 140, 171
project 140, 170
project component (writeable) 219
running task 649
service object 218
submenu 549
suspended task 649
task 636, 649
user profile 140, 171
user validation 140, 171
virtual attribute 342
window class 218

Iconize Enabled property (window) 368, 397
Iconized window 368
Ignore Invisible Children property

compound graphic 523
grid field 519
panel 503

iIS
backbone system 86
process management system 86

Image
gravity of 441
picture field 456
picture graphic 495
size policy 441

Image Gravity property
picture field 457
text graphic 495

Image property
palette list 492
picture graphic 497

Image Size policy
picture field 457
text graphic 495

Image Source URL property (window) 381
Image Value property (palette list) 491
ImageData class 133
ImageNullable class 134

Section I

818 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

ImageTester sample application 770, 783
IME mode 446
IME Mode property

data field 451
fillin field 488
text edit field 455
text field 453

Import Class/Interface command 270
Import command

Menu Workshop 557
Repository Workshop 184
Window Workshop 428

Import Text command
Cursor Workshop 628
Event Handler Workshop 610
Method Workshop 588

Importing
class 270
cursor code 628
event handler code 610
interface 270
menu bar 557
method code 588
plan 184
window 428

Inactive state 436
Include Public command 182
Incremental partitioning 678, 713
Indent command

Cursor Workshop 626
Event Handler Workshop 609
Method Workshop 586

Indenting
Cursor Workshop 622, 626
Event Handler Workshop 604, 609
Method Workshop 581, 586
setting preference for 591

Inheritance 64
Inherited command

Class Workshop 296, 298
Interface Workshop 340, 343

Inherited window
about 290, 373
adding new widgets 424

changing widget properties 425
creating superclass window 426
defined 372
deleting inherited widgets 426
event handlers and 375
example of 373
moving inherited widgets 425
subclass window 424
using in Window Workshop 423
when to use 378
working with 423

InheritedWindow sample application 773
Init method 208

default 290
Initial Display State property (window) 368, 397
Initial Position Policy property (window) 396
Initial Position property (window) 367
Initial Values property (service object) 241
Input focus 438
Input Mask property (data field) 451
Input parameter 569
Input-output parameter 569
Insert After command 552
Insert Before command 552
Insert Cached Object property 476
Insert Control dialog 478
Insert Control property (ActiveX field) 479
Insert Object property (OLE field) 476
Insert Policy property (grid field) 519
Insert/Delete property

drop list 486
fillin field 488
palette list 492
radio list 482
scroll list 485

Installed Libraries property (node) 659
Installed Protocols property (node) 659
Installing

reinstalling using auto-install 726
using auto-install on a PC 726
with Make Distribution 726

Integer data type 132, 133

Section J

Index 819

Integer Value property
drop list 486
palette list 491
radio list 482
scroll list 484

IntegerData class 133
IntegerNullable class 134
Integrate Workspace command 153, 179
Integration history 172
Interface

about 331–338
constants in 337
copying 252
creating 231, 333347–357
defined 203
defining constant 354
defining event 352
defining event handler 353
defining method 348
defining virtual attribute 350
deleting 252
elements of 334
event handler in 336
event in 336
examining 222341–346
examining properties 346
exporting 271
hierarchy of 332
implementing 283, 308, 333
importing 270
method in 335
modifying 250358–359
opening 338
undoing changes 259
using as data type 332, 334
virtual attribute in 334
write access 358

Interface Properties dialog 347
Interface Workshop

clipboard and 359
copying elements 348
defining elements 348
entering 338
examining elements 342
examining interface elements 342
filter drop list 342

kind icons 342
leaving 340
overloading methods 349
overview 78
preferences for 360
sorting 343
toolbar 339
window 339

Interfaces Implemented property (class) 308
InternatBank sample application 773
Internationalization

Help 448
menu bar 532
widget text 446
window 382

IntervalData class 133
IntervalNullable class 134
Invisible state 436, 532
iPlanet Integration Server, See iIS
iPlanet UDS

before using 91
classes 203
libraries 209
starting 110

iPlanet UDS Workshops
leaving 138
starting 110–122

Is Input Finalized property (menu command) 537
Is Maximize Enabled property (window) 369, 397
IsFloatOverEnabled attribute 444
IsShared attribute 285
IsTransactional attribute 287
iUDS

about 53–56

J
Justify weight

column 522
row 521

Section K

820 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

K
Kanji 446
Keyboard, using in iPlanet UDS 124
Kind Icon command

Class Workshop 295, 298
Interface Workshop 340, 342
Project Workshop 216, 218
Repository Workshop 157

Kind icons
Class Workshop 297
Interface Workshop 342
Project Workshop 218
Repository Workshop 170

L
Label Text property

menu command 538
menu list 539
menu toggle 538
push button 459
submenu 534
text graphic 494
toggle field 458

Launch Server
about 111
starting 121

Launch Server Distributed icon 121
Launch Server Shutdown icon 121
Launch Server Standalone icon 121
Launcher Application 122

about 111
using 122

launcher script (UNIX) 122
Layout Policy property 513

radio list 482
tab folder 506

Library
about 654–655
as supplier plan 209
compatibility level 655
compiled 654

compiling 674, 711, 735
deleting from repository 163
deleting from workspace 182
examining 217–226
exporting 186
icon 140, 170
importing 185
including in workspace 182
making distribution for 732
name for 210, 710
supplier plans for 210
using as supplier plan 245

Library application 654
Library configuration

about 673
adding projects 710
creating 677
defined 708
examining 683
modifying 708, 711

Library distribution
about 732
components of 732
making 732

Library Name property (project) 210, 247
Library project 202
Line 497–498

Attribute Name property 497
creating 497

Line numbers
Cursor Workshop 620
Event Handler Workshop 602
Method Workshop 577

Line Numbers command
Cursor Workshop 620
Event Handler Workshop 602
Method Workshop 577

Line Properties dialog 497
Line style 416
Line Style command 417
Line weight 416
Line Weight command 417
List Item Value property (menu list) 540
List Style property (list view field) 468

Section M

Index 821

List view field 465–469
Alignment property 469
Attribute Name property 468
Column Name property 468
Column Title property 468
Column Title Set Number property 468
compared to outline field 466
creating 465
data types 434
Has Column Titles property 468
Has Horizontal Scrollbar property 468
Has Row Highlights property 468
Has Vertical Scrollbar property 468
List Style property 468
mapped type for 466
Mapped Type property 468
Msg Number property 468
portability 466
Scroll Policy property 468
Size Policy property (column) 469
sorting 466
State property (column) 469
styles 466
Width property 469

List View Properties dialog 468
List widget 480

data type for 480
integer values for 480

Load an Image from a File dialog 461, 496
Load balancing

about 72
partition 697
specifying for service object 238

Load Balancing property (service object) 206, 238
Load Cache File property 476
Local Variables command 643
Log Flags property (Control Panel) 98
Logger flags

-fl flag 795
setting in Repository Workshop 195

Logging
-fl flag 795
Modify Log Flags command 195

Logical name 104

Logical partition
about 664–667
creating 688
examining 680
modifying 687

Long data type 132, 133

M
Main project 209
Make Distribution command 722–727

Auto-Compile option 723
for libraries 735
Full or Partial Make option 725
Install in Current Environment option 726
Local/Remote option 723

Mapped type 434
Mapped Type property

ActiveX field 479
array field 516
data field 451
drop list 486
fillin field 488
grid field 519
list view field 468
OLE field 476
outline field 473
palette list 491
panel 503
picture field 457
radio list 481
scroll list 484
scrollbar 464
tab folder 513
text edit field 455
text field 453
toggle field 458
tree view field 471

Mapping Datatype property (menu toggle) 538
Mapping Type property (menu list) 539
Margin property

compound graphic 523
panel 503

Mark Line state 436

Section M

822 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Mark Point state 436
Mark Polyline state 436
Mark Rectangle state 436
Master password

secure repository 149
standard repository 148

MathTime sample application 775
Matrix Partner size policy 440
Max Characters property

data field 451
fillin field 488
text edit field 455
text field 453

Maximized window 368
Maximum Value property (scrollbar) 464
Mechanism property

event handler 603
method 580

Memory Manager 799
Memory, collecting 194
Menu bar

about 527–545
About command 562
adding Help menu 561
compiling 554
creating 550–554
default 550
defined 362, 527
editing 555
examining 548–550
exporting 557
importing 557
multilingual 532
testing 558

Menu command
about 535
Attribute Name property 537
command type 535
Command type property 537
custom command 535
icon 549
Is Input Finalized property 537
label for 537
Label Text property 538
Msg Number property 538

prefabricated command 535
Set property 538
Short Cut property 538
shortcut key 537

Menu command (Class Workshop) 302, 545
Menu command (Window Workshop) 396
Menu list

about 539
adding list items 553
Attribute Name property 539
creating 553
events for 539
icon 549
integer values for 539
Label Text property 539
List Item Value property 540
mapped type for 539
Mapping type property 539
Msg Number property 540
Set property 540

Menu separator
about 540
Attribute Name property 540
icon 549

Menu toggle
about 538
Attribute Name property 538
data for 538
data types 435
events for 538
icon 549
Label Text property 538
Mapping Datatype property 538
Msg Number property 538
Set property 538

Menu widget
attribute name 529
creating 552
data for 529
definition 528
events and 530
modifying properties 556
moving 555
multilingual 532
setting properties 553
setting state 553

Section M

Index 823

Menu widget (continued)
setting type for 529
slide-off 533
states for 531
status-line help 530, 554

Menu Workshop
adding widgets 552
clipboard and 556
closing submenus 549
creating default menu bar 550
demoting menus 555
Insert preference 565
kind icons 549
leaving 547
opening from Class Workshop 302
opening submenus 549
overview 80
preferences 564
promoting menus 555
selecting a menu widget 549
short cuts 549
starting 545
toolbar 546
viewing popups 550
viewing status text 550
window 546

Message number 446
Message Number property

array field 516
compound graphic 523
grid field 519
panel 503
push button 459
radio list 482
text graphic 494
toggle field 458
window 396

Message Set property (toggle field) 458
Method

about 278567–574
as breakpoint 640
breakpoints in 571
compiling 589
components of 568
converters 573

creating 316577–581
creating for interface 348
default 290
Default Value property 580
deleting 322, 358
editing 582
examining 298, 576
examining extended properties 302
exception event 570
Exception Event property 579
exception handler 571
exporting to a file 588
extended property 282, 338
icon 297, 342
importing TOOL code for 588
in interface 335
interaction with object 59
Mechanism property 580
Method Name property 579
name 568, 579
overloading 317, 349, 573
overriding 571
Parameter Name property 580
parameters 569
Parameters property 580
private 574
Private property 579
public 574
return event 570
Return Event property 579
return statement (TOOL) 571
return type 570
Return Type property 579
setting breakpoint on 641
setting extended properties 321
signatures 279, 573
source code 570
statement block 571
Type property 580
visibility 574
writing source code 580, 581

Method Call Stack 638, 647
Method Entry command 641
Method Exit command 641
Method name property 579

Section N

824 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Method Properties dialog 578
Class Workshop 316
Interface Workshop 349

Method signature
defined 279, 573
examining for interface 343

Method Workshop
adding parameters 587
automatic indenting 581
Automatic Indenting preference 591
breakpoints 577
cancelling changes 586
deleting parameters 587
drag and drop names 581
Edit menu 584
edit shortcut keys 583
entering 574
Error window 589
Find After mode 586
Find Before mode 586
finding text 584
indenting 586
leaving 576
line numbers 577
overview 80
preferences 590
Replace Mode preference 591
replacing text 584
setting breakpoints 582
shortcut keys 583
text editing 581
window 575
writing source code 580

Minimum Value property (scrollbar) 464
Model node 658
Model Node property (Control Panel) 97
Modify Log Flags command 195
Monitored object 288
Monitored property (class) 288, 308
Mouse, using in iPlanet UDS 123
Mouseless support

See Input focus
Move and Route state 436
Move state 436

Msg Number property
drop list 486
fillin field 488
list view field 468
menu command 538
menu list 540
menu toggle 538
outline field 474
palette list 491
radio list 482
scroll list 484
submenu 534

Multi-byte characters 446
MultiList sample application 777
Multiple selection property (scroll list) 484
Multiple selection scroll list 484
Multitasking, Debugger and 632, 649

N
Name

iPlanet UDS names 131
widget 433

Name Server Address property (Control Panel) 97
Natural size policy 440
Nested window

about 375
defined 373
event handler and 377
example of 375
Parent attribute 376
when to use 378

NestedWindow sample application 777
New Application Model command 158, 160
New Attribute command 310
New Business Model command 158, 160
New Constant command

Class Workshop 319
Interface Workshop 354
Project Workshop 232

New Cursor command 243, 621
New Domain Class command 231, 305
New Domain tool 407

Section O

Index 825

New Event command
Class Workshop 314
Interface Workshop 352

New Event Handler command 318, 602
Class Workshop 318
Interface Workshop 353

New Extended Property dialog
Class Workshop 321
Interface Workshop 357
Repository Workshop 162

New Interface command 232, 347
New Logical Partition command 688
New Method command 578

Class Workshop 316
Interface Workshop 348

New Nonwindow Class command 230, 303
New Process Definition command 160
New Process Development Plans command 158
New Project command 160, 227, 228

excluding GenericDBMS Project 228
New Project dialog 227, 228
New Reference Partition command 690
New Service Object command 234, 236
New Service Object dialog 235, 236

base class 236
general type 236
service object name 236

New Shadow command 163
New TabFolder command 507
New Virtual Attribute command

Class Workshop 311
Interface Workshop 350

New Window Class command 304, 385
Project Workshop 230

New Workspace command 152, 181
Node

Client Node property 658
default 673
definition 657
examining 681, 684
excluded 673, 674
Installed Libraries property 659
Installed Protocols property 659
model 658
modifying assignments to 699

Node Architecture property 658
Node Name property 657
properties 681
Resource Managers property 659
Testing Node property 658
Use as Model property 658
Use for Testing property 659

Node Architecture property (node) 658
Node name

setting with Control Panel 97
Node Name property

Control Panel 97
node 657

Node Outline command 681, 684
NomadicOrderClient application 778
Non-replicated partition 665
Non-resizeable window 366
Non-Resizeable window style property 365
Nonwindow class

creating 303
defined 275

Normal window 368
NT

Control Panel 101
DOS command line 102
Registry 101
setting environment variables 101
starting iPlanet UDS Workshops 112

O
Object

as parameter 597
data item and 67
declared type 572
defined 56
distributed object 286
inheritance 64
inspecting in Debugger 644
interaction between 59–63
IsShared attribute 285
IsTransactional attribute 287
monitored 288

Section O

826 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Object (continued)
polymorphism 572
runtime type 572
shared 285
transactional 287
used as parameter 569, 597
using 67

Object Inspector
about 644
Inspections menu 646

Object runtime properties 284
ObjectBroker (external type) 697
Object-oriented programming 56–68
OLE field 475–476

Allow Activate in Place property 476
Allow in Place Toolbar property 476
Attribute Name property 476
creating 475–476
Insert Cached Object property (OLE field) 476
Insert Object property 476
Load Cache File property 476
Mapped Type property 476

OLE Field Properties dialog 476
OLE menu group

about 543
creating 563

OLE Menu Group command 563
OLESample sample application 781
OLMBanking sample application 782
Open Class command

Cursor Workshop 619
Event Handler Workshop 600
Menu Workshop 547
Window Workshop 395

Open command
Project Workshop 221, 222, 223, 224, 574
Repository Workshop 172

Open Project command
Interface Workshop 340

Open Superclass command 296
Open Super-Interface command 341
Open Workspace command 169

OpenVMS
FORTE_LOGIN.COM file 104
setting logical names 104
starting iPlanet UDS Workshops 115

Orientation property
palette list 491
radio list 482
scrollbar 464

Outline field 472–475
Alignment property 474
Attribute Name property 473
Column Name property 474
Column Title property 474
Column Title Set Number property 474
creating 472
data types 435
DisplayNode class 472
First/Last property 474
Has Column Titles property 473
Has Controls property 473
Has Horizontal Scrollbar property 473
Has Row Highlights property 473
Has Vertical Scrollbar property 473
Mapped Type property 473
Msg Number property 474
Root Displayed property 473
Scroll Policy property 473
Size Policy property (column) 474
State property (column) 474
using in iPlanet UDS 125
when to use 472
Width property 474

Outline Field Properties dialog 473
Output parameter 569
Overloaded method 299
Overloading methods 317, 349, 573
Overriding

event handler 596, 597, 603
methods 67, 568, 571, 579

Section P

Index 827

P
Page Setup command (prefabricated) 536
Page template

about 378
defined 373
example of 378
overview 378

Palette list 489–492
Attribute Name property 491
creating 489
data types 435
Float-Over Text property 491
help for palette regions 490
Image button 492
Image Value property 491
Insert/Delete property 492
IntegerValue property 491
Mapped Type property 491
Msg Number property 491
order of items 490
Orientation property 491
Status Line Text property 491
Widget Type property 491
Wrap Size property 491

Palette list grouping tool 389
Palette List Properties dialog 491
Panel 502–504

Attribute Name property 503
Caption property 503
creating 502
Ignore Invisible Children property 503
Mapped Type property 503
Margin property 503
Message Number property 503
Set Number property 503

Panel grouping tool 389
Panel Properties dialog 503
Parameter Name property

event handler 603
method 580

Parameter, event handler 597
class type 597
Copy option 597
default value 598
editing 609

name 597
type 597

Parameter, method
about 569
class type 569
Copy option 569
default value 569
editing 587
examining 576
mechanism 569
name 569
type 569

Parameters command
Event Handler Workshop 601
Method Workshop 576

Parameters property
event handler 603
method 580

Parent attribute 376
Parent size policy 440
Partial 725
Partition

about 664–672
assigned 668
assigned client 668
assigned server 670
assigning 699
auto-starting 671
C++ integration and 669
client 664
combining service objects on 705
compiled 717
Compiled property 701, 702
compiling 668, 670, 727
defined 69, 664
deleting 700
Disabled property 671, 702
logical 664
moving 700
non-replicated 665
private 705
projects and 662
replicated 664
Replication Count property 672, 703
router 664
server 664

Section P

828 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Partition (continued)
server arguments 671
Server Arguments property 703
setting properties 700
shared 706
standard 716
thread package and 671
Thread Package property 702

Partition command 675
Partition Workshop

entering 675
environments 655
leaving 676
overview 82
using Debugger from 633
window 675

Partitioning
automatic 704
defined 75
for debugging 633
incremental 678, 713

Partnerships, widget
about 419
column 518
row 518

Passive state 436
Password

administrator 149, 194
baseline 194
baseline (secure repository) 149
baseline (standard repository) 148
changing for secure repository 194
master (secure repository) 149
master (standard repository) 148
setting for standard repository 193
workspace 194
workspace (secure repository) 149
workspace (standard repository) 148

Password Entry Field property (data field) 451
Paste command

Class Workshop 323
Cursor Workshop 624
Event Handler Workshop 606
Interface Workshop 359
Menu Workshop 556
Method Workshop 584

Paste tool 389
PDF files, viewing and searching 50
PencilPlay sample application 785
Persistent breakpoint 632
Picture button 461–462

Attribute Name property 462
Change Image property 462
creating 461
Default Button property 462
Finalize Input property 462

Picture Button Properties dialog 462
Picture field 456–457

Attribute Name property 457
creating 456
data types 435
Image Gravity property 457
Image Size policy 457
Mapped Type property 457

Picture Field Properties dialog 457
Picture graphic 495–497

Attribute Name property 497
creating 495
Image property 497

Picture Graphic Properties dialog 497
Placeholder

about 616
editing 627
using in select statement 617

Placeholders command 620
Plan

compiling 191
creating 160
deleting from repository 163
deleting from workspace 182
exporting 186
importing 184
including in workspace 182
opening 172
showing changes 174
testing 190–193

Point 500–501
Attribute Name property 501
creating 500
Symbol for Point property 501

Point Properties dialog 501

Section P

Index 829

Pointer data type 133
Polyline 500

Attribute Name property 500
creating 500
properties dialog 500

Polymorphism 572
Popup menu

about 540–543
Activate event 543
activating 128, 541
AfterValueChange event 543
assigning to widget 542, 559
choosing menu item from 129, 541
closing 129, 541
creating 558
defined 540
designing 560
Popup Usage command 558
using in iPlanet UDS 127

Popup Usage command 558
PopupMenu attribute 542, 559
PopupRequest event 542, 559
Portable font 417
Portable Font command 418
Prefabricated class 63
Prefabricated command 535
Prefabricated submenu 533
Preferences

Class Workshop 329
code 590
Cursor Workshop 630
Interface Workshop 360
Menu Workshop 564
Project Workshop 272
Repository Workshop 196
Window Workshop 429

Print command
prefabricated 536

Print Setup command (prefabricated) 536
Printing

adding to menu bar 536
iPlanet UDS workshops 130
using window for 378

PrintSample sample application 786

Private
class element 282
event handler 596
method 574

Private class elements 282
Private partition 705
Private property

event handler 603
method 579

Private repository 150
creating 150
using 151

Process definition
defined 140
deleting from repository 163
exporting 186
icon 140, 171
importing 184
including in workspace 182

Process Definition Workshop 89
Profiling 264
Profiling Options dialog 266
Project 201–212, 712

branching all components 261
checking out all components 260
classes in 202
client 201
compatibility level of 211
Compatibility Level property 247
compiling 263
compiling all 191
constants in 208
creating 227–248
debugging 270
deleting from repository 163
deleting from workspace 182
distributed testing 268
examining 217–226
excluding iPlanet UDS library 228
exporting 186
extended properties 161, 162
icon 140, 170
importing 184
including in workspace 182
interfaces in 203
library 202

Section Q

830 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Project (continued)
library name for 710
Library Name property 210, 247
modifying 249
profiling 264
project type 211
properties for 210
read access 213
replacing text 254
restricted availability 212
Restricted Availability property 247
reverting 256
server 202
service objects in 204
setting extended properties 161
setting properties 247
start class 208
start method 208
supplier plans for 209
testing 262
testing a configuration 714
write access 213, 257

Project Constant Properties dialog 224
Project properties

compatibility level 210
modifying 252
project type 210
restricted availability 210

Project Properties dialog 247
compatibility level 247
restricted availability 247

Project type property (project) 210, 211
Project Workshop

copying components 252
creating a TOOL project 227
displaying parts of 216
examining project components 218
filter drop list 219
finding text 253
kind icons 218
leaving 217
overview 77
preferences 272
sorting preference 273
toolbar 215
using the Debugger 633

window 214
writeable icons 219

Promote Submenu command 555
Properties command

Class Workshop 301, 323
Cursor Workshop 620, 627
Event Handler Workshop 602, 609
Interface Workshop 346
Method Workshop 577, 587
Partition Workshop 681, 684, 686, 704
Project Workshop 247
Window Workshop 408, 409

Public
class element 282
event handler 596
method 574

Public class elements 282
Pull-down menu

creating 552
defined 533

Push button 459–460
Attribute Name property 459
creating 459
Default Button property 459
Finalize Input property 459
Label Text property 459
Message Number property 459
Set Number property 459

Push Button Properties dialog 459

Q
Query usage 371

R
Radio list 481–483

Attribute Name property 481
Caption property 482
creating 481
data types 434
Insert/Delete property 482

Section R

Index 831

Radio list (continued)
IntegerValue property 482
Layout Policy property 482
Mapped Type property 481
Message Number property 482
Msg Number property 482
Orientation property 482
Set Number property 482
Text Value Set Number property 482
TextValue property 482
Widget Type property 481
Wrap Size property 482

Radio List Properties dialog 481
Read access 213
Read-only component 152
Rectangle 498

Attribute Name property 498
creating 498

Rectangle Properties dialog 498
Redo command

Cursor Workshop 624
Event Handler Workshop 606
Method Workshop 584

Redo tool 388
Reference partition

about 665–667
auto-start for 691
connected environment with 692
creating 689
examining 681
making 689
supplier project for 689

register statement (TOOL) 594
Remove Field From Height Partnership 420, 442
Remove Field From Width Partnership 420, 443
Remove GridField From Column Partnership 420
Remove GridField From Row Partnership 420
Repartition command 704
Repeat New command 405
Replace Again command

Cursor Workshop 626
Event Handler Workshop 609
Method Workshop 586

Replace command
Cursor Workshop 625
Method Workshop 585, 608

Replace dialog
Cursor Workshop 625
Event Handler Workshop 608
Method Workshop 585

Replace Mode preference 591
Replace Text command

Class Workshop 325
Project Workshop 254
Repository Workshop 188

Replace Text dialog 255
Replace Text in Class dialog 325
Replace Text in Project dialog 255
Replace Text in Workspace dialog 189
Replacing text

Class Workshop 325
Cursor Workshop 624
Event Handler Workshop 607
Method Workshop 584
Project Workshop 254
Repository Workshop 188

Replicated partition 664
Replication Count property (partition) 672, 703
Repository

about 139
administrator password 194
attached shadow 144
backing up 168
baseline password 193, 194
central 143
database for 143
definition 91, 139
detached shadow 144
examining 159
reserved workspace 145
security of 147
shadow 143
source code control 152
using 159–168
workspace password 193, 194

Repository Name property (Control Panel) 94

Section S

832 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Repository Workshop
Commit to Central preference 199
compiling all plans 191
Error window 192
Importing Project preference 198
kind icons 140, 170
leaving 159
overview 76
Save Before Running preference 199
Sorting preference 198
window 155
writeable icons 172

Resizeable window style 365
Resource Managers property (node) 659
Restart command 637, 640
Restricted Availability property (project) 210, 212,

247
Restricted class 282
Restricted project 212
Restricted property (class) 282, 307
Return event 570
Return Event property (method) 579
return statement (TOOL) 571
Return type 570
Return Type property (method) 579
Revert command 256
Root Directory property (Control Panel) 96
Root Displayed property

outline field 473
tree view field 471

Route state 436
Router partition 664, 707
Row justify weight 521
rpcopy utility 150
rpcreate utility 150
Run Code Fragment dialog 267
Run command

Debugger 636, 637
Partition Workshop 714

Run Distributed command 268
Runtime type 572

S
Sample applications

ActiveXDemo 747
AgentAccess 751, 752
AgentBanking 754
AllCType 756
Auction 758
AutoTester 759, 760
Banking 759
ClipboardSample 761
CPPBanking 761
DDEClient 762
DDEServer 763
DMathTm 763
DVSubClass 765
DynamicDataAccess 766
DynamicList 766
DynamicSQL 767
FileBrowser 769
FileUtil 769
ImageTester 770, 783
InheritedWindow 773
InternatBank 773
MathTime 775
MultiList 777
NestedWindow 777
NomadicOrderClient 778
OLEBankEV 779
OLEBankUV 780
OLESample 781
PencilPlay 785
PrintSample 786
SimpleOutline 787
TabFolders 787
TimeIt 788, 791
TimeItV1-4 789
WinDB 792
XRefTime 793

Save All command 174
Commit to Central preference 199
Save Before Running preference 199

Scaling images 441

Section S

Index 833

Scroll list 483–485
Attribute Name property 484
creating 483
data types 434
Insert/Delete property 485
IntegerValue property 484
Mapped Type property 484
Msg Number property 484
multiple selection 484
Multiple Selection property 484
single selection 484
Text Value Set Number property 484
TextValue property 484
Widget Type property 484

Scroll List Properties dialog 484
Scroll Policy property

list view field 468
outline field 473
text edit field 455
tree view field 471

Scrollbar 463–464
Attribute Name property 464
creating 463
data types 435
Mapped Type property 464
Maximum Value property 464
Minimum Value property 464
Orientation property 464
ViewSize property 464

Scrollbar Properties dialog 464
Search Path property (service object) 206, 238
Secure repository

about 148
creating workspace in 181
passwords for 149
security for 149

Security
of repository 147
secure repository 149
standard repository 148

Select Children command 411
Select Only state 436
Select Siblings command 411
select statement (TOOL) 616, 621

for clause 617
Selecting widgets 410

Selection tool 390
Server Arguments property (partition) 703
Server configuration

defined 661
modifying 686

Server partition 664
Server project 202
Service object

Attribute Values property 206
auto-starting 698
base class 236
Class property 237
combining on partitions 705
Connection Option property 241
copying 252
creating 234–242
Database Manager property 240
Database Name property 206, 240
DBResourceMgr type 205
DBSession type 205
defined 71, 204
deleting 252
Dialog Duration property 205, 238
environment search path 698
examining 223
examining in partition 681
export name for 697
Export Name property 697
external type for 697
External Type property 697
Failover property 205, 238
icon 218
Initial Values property 241
Load Balancing property 206, 238
modifying 251
modifying in partition 695
moving to a new partition 688
Search Path property 206, 238
TOOL class type 205
unassigned 681, 697
undoing changes 259
User Name property 206, 240
User Password property 206, 240
Visibility property 205, 237

Section S

834 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Service Object Properties dialog 223, 236
Connection tab page 241
Database tab page 240
General tab page 237
Initial Values tab page 241
Partition Workshop 695
Project Workshop 235
Search Path tab page 238

Set Administrator Password command 194
Set Baseline Password command 193, 194
Set Expression property (virtual attribute) 313
Set number 446
Set Number property

array field 516
compound graphic 523
grid field 519
panel 503
push button 459
radio list 482
text graphic 494
window 396

Set property
menu command 538
menu list 540
menu toggle 538
submenu 534

Set Workspace Password command 193, 194
SetValue method 293
Shadow repository 143

attached 144
attaching 168
creating 163
detached 144
detaching 166
name for 163

Shared object 285
Shared partition 706
Shared property (class) 285, 307
Short Cut property (menu command) 538
Shortcut keys

assigning to menu bar 537
Cursor Workshop 623
Event Handler Workshop 605
Method Workshop 583

Show Breakpoints command 173

Show History command 220
Show Integration History command 172
Show Line Numbers property (text edit field) 455
Show Plan Changes dialog 175
Show Repository Info command 160
Show Text Cursor property (text edit field) 456
Signature, method 279, 573
Simple data type

boolean 132
double 132
float 132
integer 132
long 132

Simple widget
about 364
creating 402
using 449

SimpleOutline sample application 787
Single selection scroll list 484
Size Partner size policy 440
Size partnership 442
Size Policy command 439
Size Policy property

list view field column 469
outline field (column) 474

Size Properties dialog 439
Size To command 419
Sizeable widget 401
Skip on Tab command 437
Slide-off menu 533
Sort by Datatype command

Class Workshop 298
Interface Workshop 343

Sort by Kind command
Class Workshop 298
Interface Workshop 343
Project Workshop 219
Repository Workshop 172

Sort by Name command
Class Workshop 298
Interface Workshop 343
Project Workshop 219
Repository Workshop 172

Sort by Superclass command 298

Section S

Index 835

Sort by Super-Interface command 343
Source code

breakpoints in 571
editing 583, 605
event handler 598, 601
examining 577
method 570
writing 580
writing for eventhandler 604

Source code control 152
Standard class 275
Standard partition 668, 670, 716
Standard repository

about 147
passwords for 148
security for 148

Start class 208
examining 225
for Debugger 634
specifying 246

Start Class Method command 225, 246
Start Class Method dialog 225
Start method 208

examining 225
specifying 246

Start Suspended command 649
start task statement (TOOL) 570
Starting State command

Menu Workshop 553
Window Workshop 399

Startup Class and Method dialog 246
State

about 435
Drag 436
events and 435
Expand 436
for widget 371
Horz Move state 436
Horz Stretch state 436
Inactive 436
Invisible 436
Mark Line state 436
Mark Point 436
Mark Polyline 436
Mark Rectangle 436

menu widget and 531
Move 436
Move and Route 436
Route 436
Select Only 436
setting 398, 414
Stretch 436
Update 435, 436
Vert Move state 436
Vert Stretch 436
window usage and 437

State property
list view field (column) 469
outline field (column) 474

Statement breakpoint on 640
Status Line command

Class Workshop 295
Interface Workshop 340
Project Workshop 216
Repository Workshop 157
Window Workshop 388

Status Line Text property (palette list) 491
Status Text command 554
Status-line help 383

about 445
menu widget 554
menu widgets 530

StatusText attribute 445
Stay On Top property (window) 369, 397
Step command 636, 638
Step In command 636, 638, 639
Step Out command 637, 639
Stepping

by statements 638
in and out of methods 639

Stop command 636, 637, 638
Stop Remote Partitions command

Partition Workshop 715
Project Workshop 268

Stretch state 436
String data type 132, 133
Subclass window

adding widgets 424
changing widget properties 425
deleting inherited widgets 426

Section T

836 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Subclass window (continued)
moving inherited widgets 425
working with 424

Submenu
about 533
Attribute Name property 534
changing level of 555
custom 533
defined 533
events for 534
icon 549
Label Text property 534
Msg Number property 534
prefabricated 533
pull-down menu 533
Set property 534
slide-off menu 533
Submenu Type property 534
type 533

Submenu Type property (submenu) 534
Superclass property (class) 306
Superclass window 426
Supplier classes 203
Supplier plan

definition 209
Display library 209
examining 225
for library 210
Framework library 209
GenericDBMS library 209
iPlanet UDS libraries as 209
library as 209
removing 245
restricted availability 209
restricted availability and 209
specifying 244
using library as 245

Supplier Plans command 225, 244
Supplier Plans dialog 225, 244

deleting plans 245
Symbol for Point property (point) 501
System baseline 145
System Close Policy property (window) 370, 397
System font 418
System Font command 418

T
Tab folder 504–513

about 504
adding a tab page 510
Attribute Name property 513
creating 504–508
deleting a tab page 511
editing 510
editing tab label 512
Group Into TabFolder command 508
Header Style property 506, 513
Layout Policy property 506

tab folder 513
Mapped Type property 513
New TabFolder command 507
reordering tab pages 512
selecting 506
tab labels 508, 509

Tab folder grouping tool 389
Tab Folder Properties dialog 513
Tab label 508, 509

editing 512
Tabbing 437
Tabfolders sample application 787
Task

communication between tasks 650
completed icon 649
icons for 649
multiple 649
resuming execution in debugger 637
setting breakpoints 650
suspending execution in debugger 638
suspending in debugger 637
viewing event queue 648
waiting icon 649

Task list
hiding a task 650
opening a task 650

Task Window 635, 640
Template property (data field) 451
Templates, formatting 450
Temporary breakpoint 632
Test Code Fragment command 267
Test Debug command 270

Section T

Index 837

Test Run command 263
Test Run with Profiling command 264
Test Usage command 399, 427
Test Window command 399, 427
TestClient utility 714
Testing

applications 262
class 327
client configuration 712
code fragment 267
cursor 629
distributed testing 268
event handler 611
menu bar 557, 558
method 589
profiling 264
Save Before Running preference 199
window 427
window usage 399, 427

Testing Node property (node) 658
Text edit field 454–456

Attribute Name property 455
Auto Indent property 456
Exit on Tab property 455
IME Mode property 455
Mapped Type property 455
Max Characters property 455
Scroll Policy property 455
Show Line Numbers 455
Show Text Cursor property 456
Validate on Keystroke property 455
Vertical Scrollbar property 455
Widget Type property 455

Text Edit Field Properties dialog 455
Text field 452–454

Attribute Name property 453
creating 452
data types 434
Exit on Tab property 453
Horizontal Scrollbar property 453, 455
IME Mode property 453
Mapped Type property 453
Max Characters property 453
Validate on Keystroke property 453
Vertical Scrollbar property 453

Widget Type property 453
Word Wrap property 453

Text Field Properties dialog 453
Text graphic 493–494

Alignment property 494
Attribute Name property 494
creating 493
Image Gravity property 495
Image Size policy 495
Label Text property 494
Message Number property 494
properties dialog 494
Set Number property 494

Text Graphic Creation tool 391
Text Graphic Edit tool 391
Text Graphic Properties dialog 494
Text Value property

drop list 486
fillin field 488
radio list 482
scroll list 484

Text Value Set Number property
drop list 486
fillin field 488
radio list 482
scroll list 484

TextData class 133
TextNullable class 134
Thread package 671
Thread Package property (partition) 702
Three-dimensional window 372
Time Zone property (Control Panel) 96
TimeIt sample application 788, 791
TimeItV1-4 sample applications 789
To 714
Toggle field 458–459

Attribute Name property 458
creating 458
data types 434
Label Text property 458
Mapped Type property 458
Message Number property 458
Message Set property 458

Section U

838 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Toggle Field Properties dialog 458
TOOL class service object 205
Tool Window property (window) 369, 397
Toolbar

Class Workshop 295
Interface Workshop 339
Menu Workshop 546
Project Workshop 215
Task window 636
widget grouping tools 389
Window Workshop 388

Toolbar command
Class Workshop 295
Interface Workshop 340
Project Workshop 216
Repository Workshop 157
Window Workshop 388

Transactional object 287
Transactional property (class) 287, 307
Transparent command 414
Transport provider 98
Tree view field 470–472

Attribute Name property 471
compared to outline field 470
creating 470
data types 435
DisplayNode class and 470
Draggable property 471
Has Controls property 471
Has Horizontal Scrollbar property 471
Has Row Highlights property 471
Has Vertical Scrollbar property 471
Mapped Type property 471
Root Displayed property 471
Scroll Policy property 471

Tree View Field Properties dialog 471
Tree View Properties dialog 471
Two-dimensional window 372
Type property

event handler 603
method 580

U
Undo command

Cursor Workshop 624
Event Handler Workshop 606
Method Workshop 584

Undo tool 388
Unindent command

Cursor Workshop 626
Event Handler Workshop 609
Method Workshop 586

UNIX
FORTE_FTLAUNCHPORT 114
fortedef file 103
setting environment variables 103
starting iPlanet UDS Workshops 114

Update state 435
Update usage 371
Update Workspace command 176
Update Workspace dialog 177
Usage

about 370
setting 398
testing 399, 427
widget state and 437

Usage property (window) 370, 398
Use as Model property (node) 658
Use for Testing property (node) 659
User Name property (service object) 206, 240
User Password property (service object) 206, 240
User profile

defined 140
deleting from repository 163
deleting from workspace 182
exporting 186
icon 140, 171
importing 184
including in workspace 182

User Profile Workshop 88
User validation

defined 140
deleting from repository 163
deleting from workspace 182

Section V

Index 839

User validation (continued)
exporting 186
icon 140, 171
importing 184
including in workspace 182

User1 usage 371
User2 usage 371
User3 usage 371
UserWindow class 290

V
Validate on Keystroke property

data field 451
fillin field 488
text edit field 455
text field 453

Validation Workshop 89
Variable, inspecting 643
Variables window 638, 643
Version property (class) 289, 308
Vert Move state 436
Vert Stretch state 436
Vertical Scrollbar property

text edit field 455
text field 453

View Converters command 299
View Grid command 400
View Only state 435
View Size property (scrollbar) 464
View usage 371
Viewport 524–525

Attribute Name property 525
creating 524
Has Horizontal Scrollbar property 525
Has Vertical Scrollbar property 525

Viewport grouping tool 389
Viewport Properties dialog 525
Virtual attribute

about 278
creating 311
defined 278

deleting 358
example 312
extended property 282, 338
Get Expression property 314
icon 342
in interface 334, 350
Set Expression property 313

Virtual Attribute Properties dialog
Class Workshop 311
Interface Workshop 351

Visibility
class elements 282
defined 67
event handler 596
method 574

Visibility property (service object) 205, 237
Visual Style command 416
Visual Style property (window) 372, 398

W
Web page 381
Widget 394

about 431–448
aligning 419
arranging 419
attribute for 291, 432
class for 432
coloring 393
compound 364
context-sensitive help 443
converting 413
copying 412
creating 401–406
creation tools 391
data type 434
defined 364
displaying data in 433
field 364
fill patterns 415
fixed size 401
float-over help 444
formatting 414
graphic 364

Section W

840 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Widget (continued)
height partnership 442
Height Policy property 439
help for 443
input focus 438
internationalizing 446
layering 423
line style 416
line weight 416
mapped type 434
mapping 432
message and set numbers 446
modifying 411
moving 412
naming 433
partnerships 419
referencing 432
removing 412
resizing 413
selecting 410
selecting a group 410
selecting single 410
setting font for 417
setting properties 408
setting state of 398
simple 364
size partnerships 442
sizeable 401
sizing 419, 438
states 371, 435
status-line help 445
tabbing and 437
Width partnership 442
Width Policy property 439

Widget palette 390, 391
selection tool 390
sticky palette 392
Text Graphic tools 391
widget tools 402

Widget Palette command 388
Widget selection tool 390
Widget Status command 388
Widget Type property

data field 451
drop list 486
fillin field 488

palette list 491
radio list 481
scroll list 484
text edit field 455
text field 453

Width partnership 442
Width Policy property (widget) 439
Width property

list view field 469
outline field 474

WinDB sample application 792
Window

about 362–384
Anchor URL property 381
Autosize Enabled property 369, 397
coloring 393
compiling 409
components of 362
context-sensitive help 383
creating attributes for 409
creating menu bar for 396
default message set 382
defined 362
designing 396–401
exporting 428
float-over help 383
frame 362
frameless style 365, 366
grid 400
help for 383
Iconize Enabled property 368, 397
Image Source URL property 381
importing 428
inherited 290, 373
Initial Display State property 368, 397
Initial Position Policy property 396
Initial Position property 367
Initial Usage property 398
input focus 438
Is Maximize Enabled property 369, 397
kinds 372
Message Number property 396
multilingual 382
nested 375
non-resizeable style 365, 366
page template 378

Section W

Index 841

Window (continued)
Query usage 371
Repeat mode 405
resizeable style 365
Set Number property 396
setting properties 396, 409
setting usage of 398
status-line help 383
Stay On Top property 369, 397
style 365
System Close Policy property 370, 397
tabbing on 437
testing 427
Tool Window property 369, 397
Update usage 371
Usage property 370
User1 usage 371
User2 usage 371
User3 usage 371
View usage 371
Visual Style property 372, 398
Web page 381
Window Style property 365, 397
Window Title property 396
X,Y property 397

Window class
about 290
creating 230, 304
default Display method 291
defined 275
examining 221, 302
icon 218
widget attributes 291

Window Class Properties dialog 304, 385
Window command 302
Window Properties command 396, 409
Window Properties dialog 396
Window Style property 365, 397
Window Title property (window) 396
Window Workshop

Cell Gravity tool 392
color bar 392
color feature list 392
color inheritance tool 394
color palette 392
displaying parts of 387

editing tools 389
entering 384
ghost box 410
grouping tools 389
leaving 395
multilingual help 448
opening from Class Workshop 302
overview 79
popup menu in 386
preferences 429
Repeat New preference 430
selection tool 390
status line 394
sticky palette 392
Text Graphic tools 391
toolbar 388
widget creation tools 391
widget palette 390
window 386

Window Workshop Preferences dialog 429
Windows 95

autoexec.bat file 102
automatic compilation and 723
Registry 102
setting environment variables 102
starting iPlanet UDS Workshops 112

WinHelp method 384
Word Wrap property (text field) 453
Workshop

filters 137
font preference 138
setting preferences 136
setting size and position 136
using 123
viewing preferences 137

Workshop Preferences command
about 136
Class Workshop 329
Cursor Workshop 630
Event Handler Workshop 612
Interface Workshop 360
Menu Workshop 564
Method Workshop 590
Project Workshop 272
Repository Workshop 196, 429

Section X

842 iPlanet Unified Development Server • A Guide to the iPlanet UDS Workshops • August 2001

Workspace
about 151–155
creating 152, 181
creating in secure repository 181
definition 151
deleting 183
deleting plans 182
examining 170
finding text in 188
including plans 182
integrating 155, 175, 179
integration history 172
opening 169
replacing text in 188
saving 174
updating 154, 175, 176
using 153168–190

Workspace Name property (Control Panel) 95
Workspace password

secure repository 149
standard repository 148

Wrap Size property
palette list 491
radio list 482

Write access 213
project components 257
to class 322
to interface 358

Writeable component 152
Writeable Icon command

Project Workshop 216, 219
Repository Workshop 157, 172

X
X,Y property (window) 397
XRefTime sample application 793

	Contents
	List of Figures
	List of Procedures
	List of Code Examples
	Preface
	Product Name Change
	Audience for This Guide
	Organization of This Guide
	Text Conventions
	Other Documentation Resources
	iPlanet UDS Documentation
	Express Documentation
	WebEnterprise and WebEnterprise Designer Documentation
	Online Help

	iPlanet UDS Example Programs
	Viewing and Searching PDF Files
	To copy the documentation to a client or server
	To view and search the documentation

	1 Overview
	About iPlanet UDS
	Modular Construction
	Construction Crew
	Connecting to Services

	Object-Oriented Programming
	How Objects Interact
	Methods
	Events

	Using Classes
	Prefabricated Classes
	Custom Classes
	Inheritance
	Abstract Classes

	Planning Your Class Hierarchy
	Overriding Methods
	Using Private Methods

	Working with Objects

	About Distributed Applications
	About Partitions
	About Service Objects
	DBMS Resource Manager Service Objects
	Load Balancing and Failover
	Using Load Balancing For Performance
	Using Failover for Reliability

	About Environments
	Partitioning an Application

	The Development and Deployment Process
	To develop and deploy an application
	Repository Workshop
	Project Workshop
	Creating Projects
	Testing Projects

	Class Workshop
	Interface Workshop
	Window Workshop
	Tool Palette

	Menu Workshop
	Method Workshop
	Event Handler Workshop
	Cursor Workshop
	Debugger
	Partition Workshop
	Examining Partitions
	Creating Configurations

	Environment Console
	Examining Environments
	Creating Environments
	Managing the iPlanet UDS Runtime Environment

	Express
	Application Model Workshop
	Business Model Workshop
	iPlanet Integration Server
	XML/XSL Workshop
	Process Development Workshops

	2 Using the iPlanet UDS Workshops
	Before Using the iPlanet UDS Workshops
	Using the iPlanet UDS Control Panel
	Opening the Control Panel
	The Control Panel Window
	Closing the Control Panel

	General Tab Page
	Repository Name
	Workspace Name
	Root Directory
	Time Zone and Daylight Savings

	Network Tab Page
	Model Node
	Node Name
	Name Server Address
	Communication Provider

	Log Flags Tab Page
	Inserting and Deleting Log Settings
	Changing Default Filter Settings
	Modifying Log Specifications at Runtime

	Setting Environment Variables Without the Control Panel
	Setting Environment Variables on NT
	Using the Registry
	Using the NT Control Panel
	Using the DOS Command Line
	Using the iPlanet UDS Control Panel

	Setting Environment Variables on Windows 95
	Using the Registry
	Using autoexec.bat
	Using the iPlanet UDS Control Panel

	Setting Environment Variables on UNIX
	Using fortedef
	Using the Command Line

	Setting Logical Names on OpenVMS
	Using the FORTE_LOGIN.COM File
	Using Your Personal login.com File
	Using the Command Line

	Common Environment Variables
	Modifying Logging At Runtime

	Starting the iPlanet UDS Workshops
	Standalone Mode
	Distributed Mode
	iPlanet UDS Launch Server
	iPlanet UDS Launcher Application

	Starting the Workshops on Windows 95, Windows NT, Alpha NT
	Using Shortcuts
	To start the iPlanet UDS Workshops on Windows

	Starting the Workshops on UNIX
	To start the iPlanet UDS Workshops on UNIX

	Starting the Workshops on OpenVMS
	To start the iPlanet UDS Workshops on OpenVMS

	Ftcmd Command
	Specifying Arguments

	Ftexec Command
	Ftclntws Command
	Flags for ftcmd, forte, ftexec, and ftclntws Commands
	Choosing a Repository
	Choosing a Workspace

	Running the iPlanet UDS Launch Server
	To start the Launch Server

	Using the iPlanet UDS Launcher Application
	Using Distributed Mode

	Using iPlanet UDS Windows
	Using the Mouse
	Using the Keyboard
	Using Specialized iPlanet UDS Widgets
	Array Fields
	Outline Fields
	Browser Buttons
	Using Popup Menus

	Importing and Exporting Data
	Using the Clipboard
	Using Multiple Windows
	Printing Windows

	Using iPlanet UDS Names
	Rules for Naming Components

	Using iPlanet UDS Data Types
	Simple Data Types
	Data Type Classes
	NULL Class Types

	Using iPlanet UDS Online Help
	Jumps and Pop-ups
	Searching
	Other Features

	Setting Workshop Preferences
	Workshop Size and Position
	Filters
	Viewing Preferences
	Font Preference
	To set the font for the workshop

	Leaving iPlanet UDS
	About International Support

	3 Using the Repository Workshop
	About Repositories
	Type of Repository
	Workspaces

	About Central Repositories
	Shadow Repositories
	Attached Shadow Repository
	Detached Shadow Repository

	Using the Central Repository
	Checkout and Branching
	Updating and Integrating
	About Repository Security
	Security for Standard Repositories
	Security for Secure Repositories

	About Private Repositories
	Creating a Private Repository
	Using a Private Repository

	About Workspaces
	Using Workspaces for Collaboration
	Source Code Control
	Creating a Workspace
	Using a Workspace
	To use a workspace for collaboration

	Using the Repository Workshop
	The Repository Workshop Window
	View Menu
	Access to Other Workshops
	Leaving the Repository Workshop

	Using a Repository
	Examining the Repository
	Viewing Workspace Status
	Viewing Repository Information

	Creating and Deleting Plans
	Setting Extended Properties for Projects
	To set extended properties for a project
	To delete extended properties for a project
	Deleting Plans from the Repository Baseline
	To delete a plan from the repository

	Creating and Using Shadow Repositories
	Creating a Shadow Repository
	To create a new shadow
	Using an Attached Shadow Repository
	Detaching a Shadow Repository
	To detach your shadow and move it to another machine
	Attaching a Shadow
	To attach a detached shadow

	Backing Up a Repository
	To backup the repository

	Using Workspaces
	Opening a Workspace
	To open a workspace

	Examining a Workspace
	To display the integration history for a workspace
	To browse through the breakpoints
	To delete a breakpoint

	Saving a Workspace
	Showing Plan Changes
	To view plan changes

	Updating and Integrating a Workspace
	Updating a Workspace
	To update your workspace
	Integrating a Workspace
	To integrate your workspace

	Creating a Workspace
	To create a new workspace
	To create a new workspace in a secure repository
	Including Plans in a Workspace
	To include a plan in the workspace
	Deleting Plans from a Workspace
	To remove a plan from the workspace
	Deleting a Workspace
	To delete a workspace

	Importing and Exporting Plans and Libraries
	Importing a Plan
	To import a plan
	Importing a Library
	To import a library
	Exporting a Plan
	To export a plan

	Finding and Replacing Text
	Finding Text
	To find a string
	Replacing Text
	To make a global replacement

	Testing a Plan
	Compiling Plans
	To compile all plans
	Using the Error Window for Project Errors

	Setting Repository Passwords
	Setting Passwords in a Standard Repository
	Changing Passwords in a Secure Repository

	Utilities
	Collecting Memory
	Modifying Log Flags
	Inserting and Deleting Log Settings

	Setting Workshop Preferences
	Sorting Preference
	Importing Project Preference
	Saving Preferences
	Saving Commits to Central
	Saving Before Running

	4 Using the Project Workshop
	About Projects
	Classes
	Interfaces
	Service Objects
	Constants
	Cursors
	Start Class and Method
	Supplier Plans
	Project Properties
	Project Type
	Compatibility Level
	Restricted Availability
	Writeable and Read Only Components

	Using the Project Workshop
	To open an existing project or library
	To create a new project
	The Project Workshop Window

	View Menu
	Access to Other Workshops
	Leaving the Project Workshop
	Examining a Project or Library
	To open a project or library

	Examining the Components
	To display the component history

	Examining a Class
	To search for a class

	Examining a Window Class
	Examining a Domain Class

	Examining an Interface
	To search for a interface

	Examining a Cursor
	Examining a Service Object

	Examining a Constant
	Examining Start Class and Method
	Examining Supplier Plans
	Examining Extended Properties
	Creating a TOOL Project
	To create a new TOOL project
	To define project components

	Using the New Project Command
	Defining Classes
	Creating a Standard (Nonwindow) Class
	Creating a Window Class
	Creating a Domain Class

	Defining Interfaces
	To create an interface

	Defining Project Constants
	To create a constant

	Defining Service Objects
	To create a service object
	New Service Object Dialog
	Service Object Properties Dialog
	To specify a new connection option

	Defining Cursors
	To create a cursor

	Specifying Supplier Plans
	To add a new project or library to the list of suppliers
	To delete a supplier from the list
	Using a Library as a Supplier Plan
	To use a library as a supplier plan

	Specifying Start Class and Method
	Setting Project Properties
	Setting Extended Properties on Project Components
	To create a new property

	Modifying a TOOL Project
	To modify a project

	Modifying a Class
	Modifying an Interface
	Modifying a Constant
	Modifying a Service Object
	Modifying a Cursor
	Modifying Project Properties
	Deleting Components
	To delete a project component
	Copying and Moving Components
	To copy a project component

	Finding and Replacing Text
	Finding Text
	To find a string
	Replacing Text
	To make a global replacement
	Reverting a Project
	To revert your changes

	Write Access to Project Components
	Checking Out a Component
	To checkout a project component

	Branching a Component
	To branch a project component

	Undoing Changes
	To undo your changes
	To restore a component

	Checking out All Project Components
	To checkout all project components

	Branching All Project Components
	To branch all project components

	Testing a TOOL Project
	Compiling the Project
	Running the Project Locally
	Running with Profiling
	To test run an application with profiling

	Running a Code Fragment
	To run a code fragment

	Running the Project in a Distributed Environment
	Using the Error Window
	Debugging the Project
	Importing and Exporting Classes and Interfaces
	Importing a Class or Interface
	Overwriting an Existing class or Interface
	To import a class or interface

	Exporting a Class
	To export a class or interface

	Setting Workshop Preferences
	Sorting Preference

	5 Using the Class Workshop
	About Classes
	Attributes
	Virtual Attributes

	Methods
	Overloading Methods

	Events
	Event Handlers
	Constants
	Visibility of Class Elements
	Extended Properties of Class Elements
	Restricted Property
	Implementing Interfaces
	Object Runtime Properties
	Shared Property
	Distributed Property
	Transactional Property
	Monitored Property

	Class Versions
	Default Init Method
	Window Classes
	Domain Classes

	Using the Class Workshop
	The Class Workshop Window
	View Menu
	Leaving the Class Workshop

	Examining a Class
	To examine a class from the Project Workshop
	To examine a class with the Open Superclass command
	To examine a class with the Find Class/Interface… command
	Examining the Class Elements
	Examining Methods
	To view converter methods
	Examining Attributes
	Examining Events
	Examining Event Handlers
	Examining Constants

	Examining Class Properties
	Examining Extended Properties for Class Elements
	Examining Window Classes

	Creating a Class
	Creating a Nonwindow Class
	To create a nonwindow class

	Creating a Window Class
	To create a window class

	Creating a Domain Class
	To create a domain class

	Using the Class Properties Dialog
	General Page
	Runtime Page
	Interfaces Implemented Page

	Defining Class Elements
	To drag and drop an class element

	Defining Attributes
	To create an attribute

	Defining Virtual Attributes
	To create a virtual attribute

	Defining Events
	To create an event

	Defining Methods
	To create a new method
	Overloading Methods
	To overload an existing method
	Creating a Converter Method
	To create a method converter

	Defining Event Handlers
	To create a new event handler

	Defining Class Constants
	To create a constant

	Setting Extended Properties for Class Elements
	To set extended properties for a class element

	Modifying a Class
	Updating Class Elements
	Deleting Class Elements
	To delete a class element

	Updating Class Properties
	Updating Extended Properties for Class Elements
	Using the Clipboard
	Finding and Replacing Text
	Finding Text
	To find a string
	Replacing Text
	To make a global replacement

	Testing a Class
	Using the Error Window

	Setting Workshop Preferences
	Sorting Preference

	6 Using the Interface Workshop
	About Interfaces
	Implementing an Interface
	Using an Interface as a Data Type

	Creating an Interface
	Implementing an Interface
	Interface Elements
	Virtual Attributes
	Methods
	Events
	Event Handlers
	Constants

	Extended Properties of Interface Elements

	Using the Interface Workshop
	The Interface Workshop Window
	View Menu
	Access to Other Workshops
	Leaving the Interface Workshop

	Examining an Interface
	To examine an interface from the Project Workshop
	To use the Open Super-Interface command in the Interface Workshop
	Examining the Interface Elements
	Examining Methods
	Examining Virtual Attributes
	Examining Events
	Examining Event Handlers
	Examining Constants

	Examining Interface Properties
	Examining Extended Properties

	Creating an Interface
	To create an interface
	Defining Interface Elements
	To drag and drop an interface element
	Defining Methods
	To create a new method
	To overload an existing method
	Defining Virtual Attributes
	To create a virtual attribute
	Defining Events
	To create an event
	Defining Event Handlers
	To create a new event handler
	Defining Interface Constants
	To create a constant

	Setting Extended Properties for Interface Elements
	To set extended properties for a interface element

	Modifying an Interface
	Updating Interface Elements
	Deleting Interface Elements
	To delete an interface element

	Updating Interface Properties
	Updating Extended Properties for Interface Elements
	Using the Clipboard

	Setting Workshop Preferences

	7 Using the Window Workshop
	About Windows
	About Window Components
	About Forms
	About Widgets
	About Simple Widgets

	About Window Style and Other Properties
	Window Style
	Initial Position Property
	Iconize Enabled Property
	Initial Display State
	Maximize Enabled
	Autosize Enabled
	Stay On Top Property
	Tool Window Property
	System Close Policy
	Usage Property
	Visual Style Property

	About Creating New Windows
	About Inherited Windows
	About Nested Windows
	Inherited Windows or Nested Windows?
	About Windows as Page Templates
	About Windows as Web Pages
	To set the HTML options for a widget

	About Internationalizing Windows
	About Help for Windows

	Using the Window Workshop
	Entering the Window Workshop
	To create a new window class
	To modify the window for an existing class

	The Window Workshop Window
	Viewing Window Workshop Tools

	Using the Toolbar
	The Undo and Redo Tools
	The Widget Editing Tools
	To cut, copy, or delete a widget
	To paste a widget
	The Widget Grouping Tools

	Using the Widget Palette
	The Widget Selection Tool
	To select a single widget
	To select multiple widgets
	To select a compound widget
	The Text Graphic Tools
	To create a text graphic
	To edit a text graphic
	The Widget Creation Tools
	Using the Cell Gravity Tool
	To align a field

	Using the Color Bar
	To drop a color onto a widget

	Using the Widget Status Line
	Access to Other Workshops
	Leaving the Window Workshop

	Designing a Window
	Setting Window Properties
	Setting Window Usages and Widget States
	To define a window usage
	To use the Starting State status field
	To test a window usage

	Creating a Form
	Using a Placement Grid
	To turn on the placement grid

	Creating Widgets
	Creating Simple Widgets
	To create a fixed-size widget
	To create a sizeable widget
	Using Repeat Mode

	Creating Compound Widgets
	To create a compound widget

	Creating Domain Widgets
	To create a domain widget with drag and drop
	To create a domain widget with the palette

	Setting Widget Properties
	To open the properties dialog for a simple field or graphic
	To open the properties dialog for a compound widget
	Setting the Properties for a Window

	Creating Attributes

	Selecting Widgets
	Selecting Single Widgets
	To select a parent widget

	Selecting a Group of Widgets
	Using a Ghost Box
	To use a ghost box
	Using Shift-Click
	To use Shift-Click
	Using the Select Commands

	Modifying Widgets
	Removing Widgets
	To remove widgets
	Copying Widgets
	To use the Duplicate command
	To use the Copy and Paste commands
	Moving Widgets
	To move a simple widget
	To move a compound widget
	Resizing Widgets
	To resize a widget
	Converting Widgets
	To convert a widget
	Setting a Widget State
	To set a widget state

	Formatting Widgets
	Transparency for Graphic Fields
	Creating Fill Patterns
	To select a fill pattern
	To select a contrast color
	To select a background color
	Controlling Line Style and Weight
	To modify the frame weight of a widget
	To set the visual style of a widget
	To modify the weight of a line widget
	To modify the style of a line widget
	Setting Widget Fonts
	To set the font for a widget to a portable font
	To set the font for a widget to a system font
	To set the font for a widget to an extended font

	Arranging Widgets
	Sizing and Aligning Widgets
	To make a group of widgets uniform size
	To align a group of widgets
	Widget Partnership Commands
	Aligning Cells in a Grid Field
	Cell Margins
	To set margins
	Stacking Widgets in Layers
	To send a widget behind another widget
	To send a widget to the front

	Working with Inherited Windows
	Working with a Subclass Window
	Adding New Widgets
	Moving Inherited Widgets
	Changing Widget Properties
	To change the widget type
	Deleting Inherited Widgets

	Creating a Superclass Window

	Testing a Window
	Testing Window Usages
	To test a window in a specific usage

	Importing and Exporting a Window
	Importing a Window
	To import a window

	Exporting a Window
	To export a window

	Setting Window Workshop Preferences
	Repeat New Preference

	8 Working with Widgets
	About iPlanet UDS Widgets
	Naming Widgets
	About Widgets and Data Types
	About Widget States
	Using Widget States with Window Usages

	About Tabbing
	About Input Focus
	About Sizing
	Size Policies
	Size Partnerships

	About Help for Widgets
	About Context-Sensitive Help
	About Float-Over Help
	To provide float-over help for a field
	About Status-Line Help

	About Internationalizing Widgets
	Specifying Message and Set Numbers for Widgets
	To specify message and set numbers in the Window Workshop
	Multilingual Help for Widgets

	Working with Simple Widgets
	Creating a Data Field
	Specifying Data for a Data Field
	Setting Data Field Properties

	Creating a Text Field
	Setting Text Field Properties

	Creating a Text Edit Field
	Setting Text Edit Field Properties

	Creating a Picture Field
	Setting Picture Field Properties

	Creating a Toggle Field
	Setting Toggle Field Properties

	Creating a Push Button
	Setting Push Button Properties

	Creating a Picture Button
	To create a picture button
	To replace an existing image
	Setting Picture Button Properties

	Creating a Scrollbar
	Setting Scrollbar Properties

	Creating a List View Field
	To create a list view field
	Setting List View Field Properties

	Creating a Tree View Field
	To create a tree view field
	Setting Tree View Field Properties

	Creating an Outline Field
	To create an outline field
	Setting Outline Field Properties

	Creating an OLE Field
	Setting OLE Field Properties

	Creating an ActiveX Field
	To define an ActiveX field
	To define the mapped type
	To insert the ActiveX control into the ActiveX field
	To set the initial property values for the ActiveX control
	Setting ActiveX Field Properties

	Working with List Widgets
	Creating a Radio List
	Setting Radio List Properties

	Creating a Scroll List
	Setting Scroll List Properties

	Creating a Drop List
	Setting Drop List Properties

	Creating a Fillin Field
	Setting Fillin Field Properties

	Creating a Palette List
	To create a palette
	Help for Palette Regions
	Setting Palette List Properties

	Working with Graphic Widgets
	Creating a Text Graphic
	Setting Text Graphic Properties

	Creating a Picture Graphic
	To create a picture graphic
	To drag and drop an image file
	To replace an existing image
	Setting Picture Graphic Properties

	Creating a Line
	Setting Line Properties

	Creating a Rectangle
	Setting Rectangle Properties

	Creating an Ellipse
	Setting Ellipse Properties

	Creating a Polyline
	Setting Polyline Properties

	Creating a Point
	Setting Point Properties

	Working with Compound Widgets
	Creating a Panel
	Setting Panel Properties
	Creating a Tab Folder
	Using the New > TabFolder Command
	To create a new tab folder
	Using the Group Into > TabFolder Command
	To create a tab folder
	Editing the Tab Folder
	To copy an existing tab page with the Edit > Copy command
	To create a new tab page
	To delete a tab page
	To move a tab page
	To edit a tab label
	Setting Tab Folder Properties

	Creating an Array Field
	Modifying an Array Field
	To add a new column to the array field
	Setting Array Field Properties

	Creating a Grid Field
	Modifying a Grid Field
	To add a new widget to the grid field
	Setting Grid Field Properties
	About Grid Field Sizing and Alignment

	Creating a Compound Graphic
	Setting Compound Graphic Properties

	Creating a Viewport
	Setting Viewport Properties

	9 Using the Menu Workshop
	About Menus
	Attribute Names
	Menu Widget Events
	Status Text for Menu Widgets
	To provide status-line help

	Using States for Menu Widgets
	About Internationalizing Menus
	About Submenus
	About Menu Commands
	About Menu Toggles
	About Menu Lists
	About Menu Separators
	About Popup Menus
	About OLE Menu Groups

	Using the Menu Workshop
	The Menu Workshop Window
	Access to Other Workshops
	Leaving the Menu Workshop

	Examining a Menu Bar
	Viewing the Widget Properties

	Creating a Menu Bar
	Adding Menu Widgets
	To add a new menu widget to the menu bar

	Setting Widget Properties
	Setting Menu Widget States
	To set a menu item’s state

	Setting Status Line Help Text
	To enter status line text

	Compiling the Menu Bar

	Editing a Menu Bar
	Moving Menu Items
	To move a menu item

	Changing Submenu Levels
	To change the level of a submenu

	Cut, Copy, Paste, and Delete
	To use the Cut, Copy, and Delete commands
	To use the Paste command

	Modifying Properties
	To modify a menu item’s properties

	Importing and Exporting a Menu Bar
	Importing a Menu Bar
	To import a menu bar

	Exporting a Menu Bar
	To export a menu bar

	Testing a Menu
	Creating Popup Menus
	To create a popup menu in the Menu Workshop

	Using the Prefabricated Help Commands
	To include a Help menu on a window
	Implementing the About Command
	To use the About command

	Creating OLE Menu Groups
	To use the OLE Menu Group command

	Setting Workshop Preferences
	Insert Preference

	10 Using the Method Workshop
	About Methods
	Method Components
	Method Name
	Parameters
	Return Type
	Return Event
	Exception Event
	Method Source

	Overriding Methods
	To override a method

	Overloading Methods
	Converter Methods
	Method Visibility

	Using the Method Workshop
	The Method Workshop Window
	Access to Other Workshops
	Leaving the Method Workshop

	Examining a Method
	Examining Parameters and TOOL Source
	Examining Method Properties

	Creating a Method
	To create a new method
	Specifying Method Properties
	Writing the Method Source Code
	Typing TOOL Code

	Setting Breakpoints
	To set a breakpoint for a statement

	Editing a Method
	To edit a method
	Editing the TOOL Source Code
	Text Editing
	Searching and Replacing
	Indenting
	Cancelling Your Changes

	Editing the Method’s Properties
	Editing the Parameters
	To add a new parameter
	To delete a parameter

	Importing and Exporting a Method
	Importing TOOL Code
	To import method text

	Exporting TOOL Code
	To export method text

	Compiling the Method
	Setting Code Preferences
	Replace Mode
	Automatic Indenting

	11 Using the Event Handler Workshop
	About Event Handlers
	Event Handler Name
	Event Handler Parameters
	Event Handler Source

	Using the Event Handler Workshop
	The Event Handler Workshop Window
	Access to Other Workshops
	Leaving the Event Handler Workshop

	Examining an Event Handler
	To examine an event handler
	Examining Parameters and TOOL Source Code
	Examining Event Handler Properties

	Creating an Event Handler
	To create a new event handler
	Specifying Event Handler Properties
	Event Handler Source Code
	Typing TOOL Code

	Editing an Event Handler
	To edit an event handler
	Editing the TOOL Source Code
	Text Editing
	Searching and Replacing
	Indenting
	Cancelling Your Changes

	Editing the Event Handler’s Properties
	Editing the Parameters
	To insert a parameter
	To delete a parameter

	Importing and Exporting an Event Handler
	Importing TOOL Code
	To import event handler text

	Exporting TOOL Code
	To export event handler text

	Compiling the Event Handler
	Setting Code Preferences

	12 Using the Cursor Workshop
	About Cursors
	Placeholders
	Cursor Source
	For Clause

	Using the Cursor Workshop
	The Cursor Workshop Window
	Access to Other Workshops
	Leaving the Cursor Workshop

	Examining a Cursor
	To examine a cursor
	Examining Placeholders and TOOL Source
	Examining Cursor Properties

	Creating a Cursor
	To create a new cursor
	Writing the Cursor Source
	Typing the Cursor Source

	Editing a Cursor
	To edit a cursor
	Editing the Cursor Source Code
	Text Editing
	Searching and Replacing
	Indenting
	Cancelling Your Changes

	Editing the Cursor’s Properties
	Editing the Cursor’s Placeholders
	To insert a placeholder
	To delete a placeholder

	Importing and Exporting a Cursor
	Importing Cursor Code
	To import a cursor

	Exporting Cursor Code
	To export a cursor

	Testing the Cursor
	Setting Preferences

	13 Using the Debugger
	About the Debugger
	Breakpoints
	Multitasking
	Debugging Distributed Applications

	Using the Debugger
	Starting the Debugger
	The Debugger Windows

	Access to Other Workshops
	Leaving the Debugger

	Controlling Program Execution
	Run Menu Commands on Task Window
	Starting Execution
	Suspending Execution
	Stepping by Statements
	Stepping In and Out of Methods
	Step In Command
	Step Out Command

	Application Completion

	Setting Breakpoints
	Setting Statement Breakpoints
	To set a breakpoint in the method currently displayed in the Task window

	Setting Method Breakpoints
	Setting Event Breakpoints
	Setting Exception Raised Breakpoints

	Examining the Program State
	Inspecting Variables
	To change the value of a simple variable

	Inspecting Standard Objects and Arrays
	Inspecting DataValue Objects
	To change the value of a DataValue object
	Using the Inspections Menu
	To view a previously displayed Object Inspector

	Viewing the Method Call Stack
	Viewing the Error Stack
	Viewing the Event Queue

	Working with Multiple Tasks
	Communication Between Tasks
	Setting Task Breakpoints
	To set a task breakpoint in the Task window

	14 Using the Partition Workshop
	About Distributed Applications
	To develop and test a distributed application
	To deploy a distributed application

	About Libraries
	To create a library distribution

	About Environments
	About Nodes
	Node Name
	Node Architecture
	Testing Node
	Client Node
	Use as Model
	Use for Testing
	Resource Managers
	Installed Protocols
	Installed Libraries

	About Connected Environments

	About Application Configurations
	About Partitions
	Logical Partitions
	Assigned Partitions

	Default Configuration
	Configuration Properties

	About Library Configurations
	Using the Partition Workshop
	The Partition Workshop Window
	Access to Other Workshops
	Leaving the Partition Workshop

	Creating a Configuration
	Using the Configure as Command
	To create a configuration or open an existing one

	Examining a Configuration
	Examining an Application Configuration
	Examining the Logical Partitions
	Examining Nodes in an Application Configuration
	Examining the Assigned Partitions

	Examining Library Configurations
	Examining the Projects
	Examining Nodes in a Library Configuration
	Examining Assigned Libraries

	Viewing the Configuration Properties

	Modifying a Client or Server Configuration
	Modifying Logical Partitions
	Moving Service Objects
	To move a service object
	Creating a New Logical Partition
	To create a logical partition
	Making a Reference Partition
	To include the service object
	To make a reference partition
	To make the distribution
	To create the reference partition with an environment search path
	Making an Applet
	To create an applet
	Modifying a Service Object Definition

	Modifying Node Assignments
	Assigning Partitions
	To assign a logical partition
	Moving Partitions
	Deleting Partitions
	To delete a disabled, assigned partition
	Setting Assigned Partition Properties

	Setting Configuration Properties
	Repartition Command

	Combining Service Objects and Partitions
	Combining User-Visible Service Objects On Partitions
	Combining Environment-Visible Service�Objects�On�Partitions
	Combining Environment-Visible with�User�Visible�Service�Objects
	Combining Load-Balanced Service Objects

	Modifying a Library Configuration
	To partition a library configuration
	Adding Projects to the Configuration
	To add a project to the configuration

	Modifying the Default Configuration
	To remove a restricted external library

	Standard or Compiled Libraries
	To turn on compilation for a library

	Testing a Client Configuration
	To test the client application from the Repository Workshop or Project Workshop
	Running the Application
	Debugging the Configuration

	Making an Application Distribution
	Understanding Application Distributions
	Standard Partitions
	Compiled Partitions
	Launching Applets and Other Applications
	Adding an Icon File for Windows to the Distribution

	Application Distribution Directory
	File Naming Conventions

	Using the Make Distribution Command
	Local/Remote Option
	Auto-Compile Option
	To compile partitions in Windows NT and use them in Windows 95 distributions
	To install the Windows 95 distributions
	Full or Partial Make
	Install in Current Environment Option
	To change the configuration of an installed application without changing the contents of any logi...

	Compiling Partitions
	To make a distribution for a configuration containing compiled partitions
	Environment Variables and Path
	Using the fcompile Command for Partitions
	To run fcompile for a compiled partition
	Compiling a Partition for Use on Several Computing Platforms

	Making a Library Distribution
	About Library Distributions
	Using the Make Distribution Command
	To make a library distribution

	Compiling Libraries
	To compile multiple libraries
	Using the fcompile Command for Libraries
	To run fcompile for a compiled library

	A iPlanet UDS Example Applications
	How to Install iPlanet UDS Example Applications
	Overview of iPlanet UDS Example Applications
	General-Purpose Examples
	Display Library Examples
	Framework Library Examples
	AppletSupport Library Examples
	GenericDBMS Library Examples
	International Examples
	SystemMonitor Examples
	External Systems Examples—C
	External Systems Examples—C++
	External Systems Examples—DDE
	External Systems Examples—ExternalConnections
	External Systems Examples—OLE and ActiveX

	Application Descriptions
	ActiveXDemo
	To use ActiveXDemo
	FourDir ActiveX Control

	AdaptableAuction
	To use Adaptable Auction

	AgentAccess
	To use AgentAccess

	AgentBanking
	To use AgentBanking

	AllCType
	To use AllCType

	AppletBanking
	To use AppletBanking

	Auction
	To use Auction

	AutoTester
	To use AutoTester

	Banking
	To use Banking

	Banking1-2
	To use Banking1-2

	ClipboardSample
	To use ClipboardSample

	CPPBanking
	To use CPPBanking

	DDEClient
	To use DDEClient

	DDEServer
	To use DDEServer

	DMathTm
	To use DMathTm

	DVSubClass
	To use DVSubClass

	DynamicDataAccess
	To use DynamicDataAccess

	DynamicList
	To use DynamicList

	DynamicSQL
	To use DynamicSQL

	FileBrowser
	To use FileBrowser

	FileUtil
	To use FileUtil

	ImageTester
	To use ImageTester

	InboundExternalConnection
	To use InboundExternalConnection

	InheritedWindow
	To use InheritedWindow

	InternatBank
	To use InternatBank

	LauncherGUI
	To use LauncherGUI

	MathTime
	To use MathTime

	MultiList
	To use MultiList

	NestedWindow
	To use NestedWindow

	NomadicOrderClient
	To use NomadicOrderClient

	OLEBankEV
	To use OLEBankEV

	OLEBankUV
	To use OLEBankUV

	OLESample
	To use OLESample

	OLMBanking
	To use OLMBanking

	OutboundExternalConnection
	To use OutboundExternalConnection

	PencilPlay
	To use PencilPlay

	PrintSample
	To use PrintSample

	SimpleOutline
	To use SimpleOutline

	TabFolders
	To use TabFolders

	TimeIt
	To use TimeIt

	TimeItV1-4
	To use TimeItV1-4
	To use TimeItV1
	To use TimeItV2
	To use TimeItV3
	To use TimeItV4

	TreeList
	To use TreeListExample

	WinDB
	To use WinDB

	XRefTime
	To use XRefTime

	B Memory and Logger Flags
	-Fl Flag (iPlanet UDS Logger)
	File Name
	File Filter
	Message Type Option
	Service Type Option
	Group Number Option
	Level Number Option

	-Fm Flag (Memory Manager)
	Setting Maximum and Minimum Size of the Memory Heap

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

