
World Wide Web

ww
Perso

ore

y

merchant system
ML

Int

server
security

ne

URL

HT

r

na
community system

Ja

Mozill

Publis

Chat

encryp

SSL
TCP/IP

nal

ISt

Prox

HT

Inte

vigator

a

hing

Netscape Directory SDK
4.0 for Java

Programmer’s Guide

Netscape Directory SDK for Java
Version 4.0
comp.sys
directory server

http://www
ernet

ws

ML

mail

electronic commerce

vaScript
Proxycertificate

Publishing

tion

secure sockets layer

Netscape Communications Corporation ("Netscape") and its licensors retain all ownership rights to the software
programs and libraries offered by Netscape (referred to herein as "Software") and related documentation. Use of the
Software and related documentation is governed by the license agreement accompanying the Software and applicable
copyright law.

Your right to copy this documentation is limited by copyright law. Making unauthorized copies, adaptations, or
compilation works is prohibited and constitutes a punishable violation of the law. Netscape may revise this
documentation from time to time without notice.

THIS DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL
NETSCAPE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OR DATA, INTERRUPTION
OF BUSINESS, OR FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND,
ARISING FROM ANY ERROR IN THIS DOCUMENTATION.

The Software and documentation are copyright © 1999 Netscape Communications Corporation. All rights reserved.

The Software contains encryption software from RSA Data Security, Inc. Copyright © 1994, 1995 RSA Data Security,
Inc. All rights reserved. Portions of the Software copyright © 1992-1996 Regents of the University of Michigan. All
rights reserved. The portion of the Software that provides the DBM function is copyright (c) 1990, 1993, 1994 The
Regents of the University of California (the "Regents"). All rights reserved.

Netscape and Netscape Navigator are registered trademarks of Netscape Communications Corporation in the United
States and other countries. Netscape's logos and Netscape product and service names are also trademarks of Netscape
Communications Corporation, which may be registered in other countries. Other product and brand names are
trademarks of their respective owners.

The downloading, export or reexport of Netscape software or any underlying information or technology must be in
full compliance with all United States and other applicable laws and regulations. Any provision of Netscape software
or documentation to the U.S. Government is with restricted rights as described in the license agreement
accompanying Netscape software.

The Team:
Engineering: Rob Weltman, Miodrag Kekic
Marketing: Michael Mullany
Publications: Gina Cariaga, Jacob Rosenschein
Quality Assurance: Sudesh Chandra, Tobias Crawley
Release: Walt Miller
Support: Thanos Foufoulas

Version 4.0

©Netscape Communications Corporation 1999
All Rights Reserved

Printed in USA
00 99 98 10 9 8 7 6 5 4 3 2 1

Netscape Communications Corporation 501 East Middlefield Road, Mountain View, CA 94043

Recycled and Recyclable Paper

Contents

Preface ... xiii

The Netscape Directory SDK 4.0 for Java Programmer’s Guide docu-
ments the Netscape Directory SDK 4.0 for Java, a development kit for
writing LDAP (Lightweight Directory Access Protocol) applications.

Who Should Read This Guide .. xiii

Where to Find LDAP Information ... xiii

What’s New in This Release ...xiv

What’s in This Guide ..xiv

Where to Find Reference Information ..xv

Documentation Conventions ..xv

About the Sample Code ...xvi

Part 1 Introduction to LDAP and the Netscape Directory SDK for Java
Chapter 1 Understanding LDAP ..19

This chapter explains the LDAP protocol and the concepts behind
LDAP.

How Directory Services Work ..20

How LDAP Servers Organize Directories ...21

How LDAP Clients and Servers Work ..23

Understanding the LDAP v3 Protocol ...23

For More Information ..24

Chapter 2 Using the Netscape Directory SDK for Java25

This chapter describes the Lightweight Directory Access Protocol
(LDAP) Java classes and the Netscape Directory SDK for Java.

Understanding the LDAP Java Classes ..25

Getting Started with the Netscape Directory SDK for Java26

Getting and Installing the SDK ...27

Exploring the SDK ..27
Contents iii

Preparing to Use the SDK .. 29

Writing Applets with the SDK ... 29

Checking the Version of Classes from an Applet ... 30

Working with the LDAP JavaBeans ... 31

Using the Classes in JavaScript .. 33

Chapter 3 Quick Start ... 35

This chapter provides a simple example of an LDAP client written with
the Netscape Directory SDK for Java.

Understanding the Sample Client ... 35

Sample Code ... 36

Part 2 Writing Clients with the Netscape Directory SDK for Java
Chapter 4 Writing an LDAP Client ... 41

This chapter describes the general process of writing an LDAP client.
The chapter covers the procedures for connecting to an LDAP server,
authenticating, requesting operations, and disconnecting from the
server.

Overview: Designing an LDAP Client .. 42

Creating a Connection and Setting Preferences .. 44

Connecting to the LDAP Server .. 44

Binding and Authenticating to an LDAP Server .. 45

Understanding Authentication Methods .. 46

Simple Authentication .. 46

Certificate-Based Client Authentication (over SSL) 46

Simple Authentication and Security Layer (SASL) 46

Using Simple Authentication .. 47

Binding Anonymously .. 47

Specifying the LDAP Version ... 47

Authenticating with the connect Method .. 48
iv Netscape Directory SDK 4.0 for Java Programmer’s Guide

Performing LDAP Operations ... 48

Closing the Connection to the Server .. 49

Chapter 5 Using the LDAP Java Classes .. 51

This chapter covers some of the general LDAP Java classes that are
commonly used when writing LDAP clients.

Getting Information About the SDK ... 51

Handling Exceptions ... 52

Getting Information About the Error ... 53

Getting the Error Message .. 54

Handling Referrals ... 55

Understanding Referrals ... 56

Enabling or Disabling Referral Handling .. 57

Limiting Referral Hops .. 57

Binding When Following Referrals .. 58

Using an In-Memory Cache .. 59

How the Cache Operates ... 60

Setting Up an In-Memory Cache .. 61

Caching Requests by Base DN ... 62

Sharing a Cache Between Connections ... 62

Flushing the Cache ... 62

Getting Cache Statistics .. 63

Cloning a Connection ... 65

Manipulating Distinguished Names .. 65

Getting the Components of a Distinguished Name 66

Chapter 6 Searching the Directory .. 67

This chapter explains how to use the LDAP Java classes to search the
directory and retrieve entries. The chapter also describes how to get at-
tributes and attribute values from an entry.

Overview: Searching with the LDAP Java Classes ... 68

Sending a Search Request ... 68

Specifying the Base DN and Scope ... 70

Specifying a Search Filter ... 72
Contents v

Specifying the Attributes to Retrieve ... 74

Setting Search Preferences ... 76

Setting Preferences for All Searches ... 76

Overriding Preferences on Individual Searches 76

Configuring the Search to Wait for All Results ... 77

Setting Size and Time Limits ... 77

Example of Sending a Search Request .. 78

Getting the Search Results .. 79

Getting Entries from the Results .. 80

Getting Distinguished Names from the Results .. 81

Getting Attributes from an Entry ... 82

Getting the Name and Values of an Attribute .. 83

Sorting the Search Results .. 84

Abandoning a Search .. 85

Example: Searching the Directory .. 85

Reading an Entry ... 87

Listing Subentries .. 89

Chapter 7 Using Filter Configuration Files ... 93

This chapter explains how to use API function to work with filter con-
figuration files. Filter configuration files can help simplify the process
of selecting the appropriate search filter for a search request.

Understanding Filter Configuration Files ... 94

Understanding the Configuration File Syntax .. 94

Understanding Filter Parameters .. 96

Loading a Filter Configuration File .. 97

Retrieving Filters .. 98

Adding Filter Prefixes and Suffixes .. 101

Adding Affixes for All Filters .. 102

Adding Affixes By Using setFilterAffixes ... 103

Adding Affixes By Using getFilter ... 104

Adding Affixes By Using setupFilter ... 105
vi Netscape Directory SDK 4.0 for Java Programmer’s Guide

Chapter 8 Adding, Updating, and Deleting Entries 107

This chapter explains how to use the LDAP Java classes to add, modify,
delete, and rename entries in the directory.

Adding a New Entry .. 107

Creating a New Attribute .. 108

Creating a New Attribute Set .. 108

Creating a New Entry ... 109

Adding the Entry to the Directory ... 109

Example of Adding an Entry .. 110

Modifying an Entry .. 112

Specifying the Changes .. 112

Adding New Values to an Attribute .. 113

Removing Values to an Attribute .. 113

Replacing the Values of an Attribute .. 114

Adding a New Attribute ... 115

Removing an Attribute ... 115

Modifying the Entry in the Directory ... 116

Example of Modifying an Entry ... 116

Deleting an Entry .. 118

Example of Deleting an Entry .. 118

Changing the Name of an Entry ... 119

Removing the Attribute for the Old RDN .. 120

Example of Renaming an Entry ... 121

Chapter 9 Comparing Values in Entries .. 123

This chapter explains how to compare the value of an attribute in an
entry against a specified value.

Comparing the Value of an Attribute ... 123

Specifying the Attribute and Value .. 124

Performing the Comparison ... 124

Example of Comparing a Value Against an Attribute 124

Chapter 10 Working with LDAP URLs .. 127

This chapter describes what LDAP URLs are and explains how to use
Contents vii

LDAP URLs to search and retrieve data from the directory.

Understanding LDAP URLs ... 127

Examples of LDAP URLs ... 130

Getting the Components of an LDAP URL .. 131

Processing an LDAP URL .. 131

Part 3 Advanced Topics

Chapter 11 Getting Server Information ... 135

This chapter explains how to access and modify information about
your LDAP server over the LDAP protocol.

Understanding DSEs ... 135

Getting the Root DSE .. 136

Determining If the Server Supports LDAP v3 .. 139

Getting Schema Information ... 140

Overview: Schema Over LDAP .. 141

Getting the Schema for an LDAP Server ... 142

Working with Object Class Descriptions ... 143

Working with Attribute Type Descriptions ... 144

Working with Matching Rule Descriptions ... 145

Example of Working with the Schema ... 146

Chapter 12 Connecting Over SSL ... 149

This chapter describes the process of enabling an LDAP client to con-
nect to an LDAP server over the Secure Sockets Layer (SSL) protocol.
The chapter covers the procedures for connecting to an LDAP server
and authenticating.

How SSL Works with the Netscape Directory SDK for Java 149

Understanding SSL .. 150

SSL Over LDAP ... 150

Interfaces and Classes for SSL .. 150
viii Netscape Directory SDK 4.0 for Java Programmer’s Guide

Prerequisites for Connecting Over SSL .. 151

Connecting to the Server Over SSL .. 152

Using Certificate-Based Client Authentication ... 153

Chapter 13 Working with LDAP Controls ... 155

This chapter explains how LDAP controls work and how to use the
LDAP controls that are supported by the Netscape Directory Server.

How LDAP Controls Work ... 156

Using Controls in the LDAP Java Classes ... 157

Determining the Controls Supported By the Server .. 158

Using the Server-Side Sorting Control .. 161

Specifying the Sort Order ... 162

Creating the Control ... 163

Performing the Search .. 163

Interpreting the Results .. 165

Known Problems with Server Sorting ... 166

Example of Using the Server-Sorting Control ... 167

Using the Persistent Search Control ... 170

Creating the Control ... 171

Performing the Search .. 172

Example of Using the Persistent Search Control .. 173

Using the Entry Change Notification Control .. 176

Getting the Control ... 176

Working with Change Log Numbers ... 177

Using the Virtual List View Control .. 177

Using the Manage DSA IT Control ... 178

Using Password Policy Controls ... 179

Using the Proxied Authorization Control ... 180

Chapter 14 Using SASL Authentication .. 181

This chapter describes the process of using a SASL mechanism to au-
Contents ix

thenticate an LDAP client to an LDAP server.

Understanding SASL .. 181

Preparing to Use SASL Authentication ... 182

Supporting SASL on the Server .. 183

Supporting SASL on the Client .. 183

Implementing javax.security.auth.callback ... 184

Using SASL in the Client ... 186

Using the External Mechanism .. 187

Additional SASL Mechanisms ... 188

For More Information ... 189

Chapter 15 Using the JNDI Service Provider 191

This chapter explains JNDI and shows you how to use Netscape’s LDAP
Service Provider for JNDI.

How JNDI Works .. 191

Netscape’s LDAP Service Provider ... 192

Installing the Service Provider .. 192

Add the Provider to the Classpath ... 193

Specify the Service Provider when Creating the Initial Context 193

Add the JNDI object schema to the Directory (Optional) 193

Updating Netscape Directory Server 4.1 .. 194

Updating Pre-4.1 Netscape Directory Servers .. 194

JNDI Environment Properties ... 194

Working with Controls ... 201

Chapter 16 Working with Extended Operations 205

This chapter explains how LDAP v3 extended operations work and
how to use the extended operations that are supported by your LDAP
x Netscape Directory SDK 4.0 for Java Programmer’s Guide

server.

How Extended Operations Work ... 205

Implementing Support for Extended Operations on the Server 206

Determining the Extended Operations Supported .. 207

Performing an Extended Operation ... 207

Example: Extended Operation ... 207

Chapter 17 Using the Asynchronous Interface 211

This chapter shows you how to use the Asynchronous Interface to
LDAP in Java applications.

Synchronous vs. Asynchronous Connections .. 211

Common Uses for the Asynchronous Interface ... 212

New Classes in the Asynchronous Interface .. 213

Performing Asynchronous Searches ... 214

Searching Multiple Servers ... 214

Multiple Search Statements .. 216

Where to Go for More Information .. 217

Glossary .. 219

This glossary defines terms commonly used when working with LDAP.

Index .. 223
Contents xi

xii Netscape Directory SDK 4.0 for Java Programmer’s Guide

Preface
The Netscape Directory SDK 4.0 for Java Programmer’s Guide documents the
Netscape Directory SDK 4.0 for Java, a development kit for writing LDAP
(Lightweight Directory Access Protocol) applications.

The chapter has the following sections:

• “Who Should Read This Guide”

• “Where to Find LDAP Information”

• “What’s New in This Release”

• “What’s in This Guide”

• “Where to Find Reference Information”

• “Documentation Conventions”

• “About the Sample Code”

Who Should Read This Guide
This guide is intended for use by Java programmers who want to enable new
or existing applications and applets to connect to, search, and update LDAP
servers. It assumes that you are familiar with writing and compiling Java
applications and applets. If you plan to use the LDAP Java Beans, you should
also be familiar with Java Beans.

Where to Find LDAP Information
To find more information about the LDAP protocol and directories, see LDAP
and Directory Developer Central at the Netscape DevEdge site:

http://developer.netscape.com/tech/directory/index.html
xiii

What’s New in This Release
What’s New in This Release
This manual accompanies the Netscape Directory SDK 4.0 for Java release. This
SDK supports the LDAP v3 protocol and includes classes and methods for:

• working with LDAP v3 controls (for example, to request server-side sorting
of search results)

• requesting LDAP v3 extended operations and parsing extended responses

• handling search references

• using a SASL mechanism for authentication

• interacting with the Java Naming and Directory Interface (JNDI)

• managing asynchronous connections

The Netscape Directory SDK 4.0 for Java supports the specifications detailed in
the Internet-Draft "The Java LDAP Application Program Interface". This Internet-
Draft is available at http://www.ietf.org/internet-drafts/draft-ietf-
ldapext-ldap-java-api-06.txt

Note Internet-Drafts expire every six months. If the URL above does not work, try
incrementing the number by one. For example, draft-06.txt would become
draft-07.txt.

For late-breaking information about the Netscape Directory SDK 4.0 for Java,
read the Release Notes at:

http://developer.netscape.com/docs/manuals/dirsdk/jsdk40/

relnotes.html

What’s in This Guide
This guide explains how to use the Netscape Directory SDK 4.0 for Java to
enable applications to interact with LDAP servers. The guide documents the
Java LDAP API, which consists of interfaces, classes, and methods used to
communicate with LDAP servers.

This manual is organized into three parts:
xiv Netscape Directory SDK 4.0 for Java Programmer’s Guide

Where to Find Reference Information
• Part 1, “Introduction to LDAP and the Netscape Directory SDK for Java”,
explains how you can use the Netscape Directory SDK 4.0 for Java to
enable your applications for LDAP.

• Part 2, “Writing Clients with the Netscape Directory SDK for Java” teaches
you how to employ the LDAP Java API in your software.

• Part 3, “Advanced Topics”, contains additional material that you might need,
including documentation of the classes and methods that support LDAP v3
features, a discussion of secure authentication methods and information
about JNDI and asynchronous communication.

Where to Find Reference Information
All interface, class and method reference materials for the Netscape Directory
SDK 4.0 for Java are generated using the Javadoc utility. You can access this
information either online at: http://developer.netscape.com/docs/
manuals/dirsdk/jsdk40/Reference/ or by pointing your Web browser to
the index.html file in the /dist/doc subdirectory of your SDK installation.
Any updates or changes to these materials are reflected in the online
references.

Documentation Conventions
This book uses the following font conventions:

• The monospace font is used for sample code and code listings, API and
language elements (such as function names and class names), filenames,
pathnames, directory names, HTML tags, and any text that must be typed
on the screen. (Monospace italic font is used for placeholders
embedded in code.)

• Italic type is used for book titles, emphasis, variables and placeholders, and
words used in the literal sense.

• Boldface type is used for glossary terms.
xv

About the Sample Code
This book contains sample Java code for LDAP clients. This code was tested
with the JDK 1.1.8 on a machine running Microsoft Windows NT version 4.0
SP4.
xvi Netscape Directory SDK 4.0 for Java Programmer’s Guide

1
Introduction to LDAP and the
Netscape Directory SDK for
Java
Chapter 1 Understanding LDAP

This chapter explains the LDAP protocol and the concepts behind LDAP.

Chapter 2 Using the Netscape Directory SDK for Java

This chapter describes the Lightweight Directory Access Protocol (LDAP) Java classes and
the Netscape Directory SDK for Java.

Chapter 3 Quick Start

This chapter provides a simple example of an LDAP client written with the Netscape
Directory SDK for Java.

18 Netscape Directory SDK 4.0 for Java Programmer’s Guide

C h a p t e r

1
Understanding LDAP
This chapter explains the LDAP protocol and the concepts behind LDAP.

LDAP (Lightweight Directory Access Protocol) is the Internet directory protocol.
Developed at the University of Michigan at Ann Arbor in conjunction with the
Internet Engineering Task Force, LDAP is a protocol for accessing and
managing directory services.

The chapter is organized in the following sections:

• “How Directory Services Work”

• “How LDAP Servers Organize Directories”

• “How LDAP Clients and Servers Work”

• “Understanding the LDAP v3 Protocol”

• “For More Information”

If you are already familiar with LDAP, you can skip ahead to Chapter 2, “Using
the Netscape Directory SDK for Java.”
Chapter 1, Understanding LDAP 19

How Directory Services Work
How Directory Services Work
A directory consists of entries containing descriptive information. For example,
a directory might contain entries describing people or network resources, such
as printers or fax machines.

The descriptive information is stored in the attributes of the entry. Each
attribute describes a specific type of information. For example, attributes
describing a person might include the person’s name (common name, or cn),
telephone number, and email address.

The entry for Barbara Jensen might have the following attributes:

cn: Barbara Jensen
mail: babs@ace.com
telephoneNumber: 555-1212
roomNumber: 3995

An attribute can have more than one value. For example, a person might have
two common names (a formal name and a nickname) or two telephone
numbers:

cn: Jennifer Jensen
cn: Jenny Jensen
mail: jen@ace.com
telephoneNumber: 555-1213
telephoneNumber: 555-2059
roomNumber: 3996

Attributes can also contain binary data. For example, attributes of a person
might include the JPEG photo of the person or the voice of the person recorded
in an audio file format.

A directory service is a distributed database application designed to manage the
entries and attributes in a directory. A directory service also makes the entries
and attributes available to users and other applications. The Netscape Directory
Server is an example of a directory service.

For example, a user might use the directory service to look up someone’s
telephone number. Another application might use the directory service to
retrieve a list of email addresses.

LDAP is a protocol defining a directory service and access to that service. LDAP
is based on a client-server model. LDAP servers provide the directory service,
and LDAP clients use the directory service to access entries and attributes.
20 Netscape Directory SDK 4.0 for Java Programmer’s Guide

How LDAP Servers Organize Directories
An example of an LDAP server is the Netscape Directory Server, which
manages and provides information about users and organizational structures of
users, such as groups and departments. Examples of LDAP clients might
include the HTTP gateway to the Netscape Directory Server, Netscape
Navigator, and Netscape Communicator. The gateway uses the directory service
to find, update, and add information about users.

How LDAP Servers Organize Directories
Because LDAP is intended to be a global directory service, data is organized
hierarchically, starting at a root and branching down into individual entries.

At the top level of the hierarchy, entries represent larger organizations. Under
these larger organizations in the hierarchy might be entries for smaller
organizations. The hierarchy might end with entries for individual people or
resources.

Figure 1.1 illustrates an example of a hierarchy of entries in an LDAP directory
service.

Figure 1.1 A hierarchy of entries in the directory

Each entry is uniquely identified by a distinguished name. A distinguished
name consists of a name that uniquely identifies the entry at that hierarchical
level (for example, bjensen and kjensen are different user IDs that identify
different entries at the same level) and a path of names that trace the entry back
to the root of the tree.

For example, this might be the distinguished name for the bjensen entry:

uid=bjensen, ou=People, o=Airius.com
Chapter 1, Understanding LDAP 21

How LDAP Servers Organize Directories
Here, uid represents the user ID of the entry, ou represents the
organizational unit in which the entry belongs, and o represents the larger
organization in which the entry belongs.

The following diagram shows how distinguished names are used to identify
entries uniquely in the directory hierarchy.

Figure 1.2 An example of a distinguished name in the directory

The data stored in a directory can be distributed among several LDAP servers.
For example, one LDAP server at Airius.com might contain entries representing
North American organizational units and employees, while another LDAP
server might contain entries representing European organizational units and
employees.

Some LDAP servers are set up to refer requests to other LDAP servers. For
example, if the LDAP server at Airius.com receives a request for information
about an employee in a Pacific Rim branch, that server can refer the request to
the LDAP server at the Pacific Rim branch. In this way, LDAP servers can
appear to be a single source of directory information. Even if an LDAP server
does not contain the information you request, the server can refer you to
another server that does contain the information.
22 Netscape Directory SDK 4.0 for Java Programmer’s Guide

How LDAP Clients and Servers Work
How LDAP Clients and Servers Work
In the LDAP client-server model, LDAP servers (such as the Netscape Directory
Server) make information about people, organizations, and resources accessible
to LDAP clients. The LDAP protocol defines operations that clients use to search
and update the directory. An LDAP client can perform these operations, among
others:

• searching for and retrieving entries from the directory

• adding new entries to the directory

• updating entries in the directory

• deleting entries from the directory

• renaming entries in the directory

For example, to update an entry in the directory, an LDAP client submits the
distinguished name of the entry with updated attribute information to the LDAP
server. The LDAP server uses the distinguished name to find the entry and
performs a modify operation to update the entry in the directory.

To perform any of these LDAP operations, an LDAP client needs to establish a
connection with an LDAP server. The LDAP protocol specifies the use of TCP/
IP port number 389, although servers may run on other ports.

The LDAP protocol also defines a simple method for authentication. LDAP
servers can be set up to restrict permissions to the directory. Before an LDAP
client can perform an operation on an LDAP server, the client must authenticate
itself to the server by supplying a distinguished name and password. If the user
identified by the distinguished name does not have permission to perform the
operation, the server does not execute the operation.

Understanding the LDAP v3 Protocol
Many LDAP servers support version 2 of the LDAP protocol. This version of the
protocol is specified in RFC 1777 (you can find a copy of this RFC at http://
www.ietf.org/rfc/rfc1777.txt).
Chapter 1, Understanding LDAP 23

The most recent proposed standard is version 3 of the LDAP protocol, which is
specified in RFC 2251 (you can find a copy of this RFC at http://
www.ietf.org/rfc/rfc2251.txt). Some LDAP servers, such as the Netscape
Directory Server 3.0 and later, support this newer version of the protocol.

The Netscape Directory SDK for Java 4.0 supports both of these versions of the
protocol. Clients built with this SDK can interact with LDAP v2 servers and
LDAP v3 servers.

The LDAP v3 protocol includes these new features:

• You can specify controls (both on the server and on the client) that extend
the functionality of an LDAP operation.

• You can request the server to perform extended operations (beyond the
standard LDAP operations).

• You can use Simple Authentication and Security Layer (SASL) mechanisms
to authenticate to the directory.

• Servers have DSEs (DSA-specific entries, where a DSA is a directory server)
that provide information including the versions of the LDAP protocol
supported, a list of the controls, extended operations, and SASL
mechanisms supported by the server, and the naming contexts of the server
(specifying the portion of the directory tree managed by this server).

• Servers make their schemas available to clients. (You can get a directory
server’s schema from the root DSE.)

• Both client and severs can support data in UTF-8 format. Clients can now
request and receive data that is tagged with language information.

For More Information
Chapter 1, “Welcome to the Directory Server,” in the Netscape Directory
Deployment Guide. provides a more detailed introduction to the LDAP protocol
and directory services.
24 Netscape Directory SDK 4.0 for Java Programmer’s Guide

C h a p t e r

2
Using the Netscape Directory SDK for

Java
This chapter describes the Lightweight Directory Access Protocol (LDAP) Java
classes and the Netscape Directory SDK for Java.

The chapter contains the following sections:

• “Understanding the LDAP Java Classes”

• “Getting Started with the Netscape Directory SDK for Java”

Understanding the LDAP Java Classes
The Netscape Directory SDK for Java includes the LDAP Java classes, which
you use to build LDAP clients. The LDAP Java classes allow you to write
applets and applications that can connect to LDAP servers and perform
standard LDAP operations (for example, you can search for entries or add,
update, or delete entries).

The classes are organized in the following packages:

• netscape.ldap contains the main LDAP Java classes, including classes that
allow you to connect to an LDAP server, manipulate entries and attributes,
and retrieve search results.
Chapter 2, Using the Netscape Directory SDK for Java 25

Getting Started with the Netscape Directory SDK for Java
• netscape.ldap.beans contains the LDAP JavaBeans. You can use these
Beans in a development environment such as Sun’s Bean Development Kit
(BDK).

• netscape.ldap.ber.stream contains the LDAP Java classes that
implement the Basic Encoding Rules (BER) for transfer syntax. For more
information on BER, see ISO/IEC 8825 at http://www.iso.ch/.

• netscape.ldap.controls contains the LDAP Java classes that implement
specific LDAP v3 controls. These include controls to request server-side
sorting and persistent searches.

• netscape.ldap.util contains utility classes, such as classes to parse LDIF
data and filters that allow regular expression matching.

• com.netscape.sasl contains the interfaces and classes that you can use to
enable your client to authenticate by using a SASL mechanism.

• com.netscape.jndi contains Netscape’s LDAP service provider and its
dependent classes. This JNDI implementation is discussed further in
Chapter 15, “Using the JNDI Service Provider.”

Typically, clients execute the methods in the Netscape Directory SDK for Java
synchronously. All LDAP operations block until they are completed (with the
exception of the search method, which can return information before all the
results have been received).

An asynchronous interface is also provided for circumstances requiring low-
level interaction with an LDAP server. The asynchronous interface is discussed
more fully in Chapter 17, “Using the Asynchronous Interface.”

Subsequent chapters in this manual explain how to use these LDAP Java
classes.

Getting Started with the Netscape Directory
SDK for Java

This section covers the following topics:

• Getting and Installing the SDK
26 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Getting Started with the Netscape Directory SDK for Java
• Exploring the SDK

• Preparing to Use the SDK

• Writing Applets with the SDK

• Checking the Version of Classes from an Applet

• Working with the LDAP JavaBeans

• Using the Classes in JavaScript

Getting and Installing the SDK

You can get the Netscape Directory SDK for Java from Netscape’s DevEdge
web site at the following location:

http://developer.netscape.com/tech/directory/index.html

The SDK is available as a GNU-zipped tar file for UNIX, a self-extracting
executable for Windows, and a StuffIt archive for the Macintosh.

To install the SDK:

1. Download the appropriate file for your operating system

2. Expand the file (it contains a number of subdirectories).

Exploring the SDK

The Netscape Directory SDK for Java contains the following directories:

• beans

This directory contains the LDAP JavaBean class files, which are part of the
netscape.ldap.beans package.

Note that these classes are not included with Netscape Communicator. If
you are writing applications or applets that use these classes, make sure to
provide these classes to your users.

This directory also contains a makejars.bat file and a makejars.sh
shell script. You can use these to create JAR files for the LDAP JavaBeans.
Chapter 2, Using the Netscape Directory SDK for Java 27

Getting Started with the Netscape Directory SDK for Java
• examples

This directory contains sample source code for LDAP applications in Java.
The examples are organized in different subdirectories:

• java contains examples of the standard LDAP operations, such as
adding an entry and searching for entries. This directory also contains
examples using LDAP controls.

• java/beans contains examples of using the LDAP JavaBeans.

• java/ldapfilt contains an example of using an LDAP filter
configuration file with the LDAP filter classes. (Note that the LDAP filter
classes are not included with Netscape Communicator.)

• js contains an example of using LiveConnect to create and manipulate
LDAP Java objects from JavaScript. (LiveConnect is Netscape’s
technology for enabling communication in a single page between a
variety of elements including JavaScript, HTML, plug-ins and Java
applets.)

• packages

This directory contains the following JAR files:

• ldapjdk.jar - This JAR file contains the classes in the netscape.ldap,
netscape.ldap.controls, netscape.ldap.util, and
com.netscape.sasl packages.

• ldapfilt.jar- This JAR file contains the filter classes in the
netscape.ldap.util package and the com.oroinc.text.regex
package.

com.oroinc.text.regex is the OROMatcher™ regular expression
package from ORO Java Software. If you want to use the OROMatcher
package separately (not through the Netscape Directory SDK for Java
classes), you must obtain a license to use the OROMatcher package from
ORO Java Software. (You can also obtain the OROMatcher documentation
directly from ORO.)
28 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Getting Started with the Netscape Directory SDK for Java
• tools

This directory contains Java classes that are similar to the command-line
utilities provided with the Netscape Directory Server 4.0 and the Netscape
Directory C SDK. (Note that the Java tools do not support all of the
command-line arguments available with these other utilities.)

Preparing to Use the SDK

Before compiling any applets or applications, make sure to add the following
to your CLASSPATH environment variable:

• the packages/ldapjdk.jar file, which contains the main LDAP Java
classes

• the packages/ldapfilt.jar file, if you plan to use any of the LDAP Java
filter classes

• the classes directory, if you plan to use any of the LDAP JavaBean classes

Writing Applets with the SDK

In Netscape Communicator, an applet can connect to servers on hosts other
than the host that served the applet. This capability is part of the new signed
applet security framework.

To take advantage of this capability, your applet class (the class making an
LDAP connection) must be signed. Your applet class needs to request certain
special rights before connecting to other servers.

The rest of this section summarizes the steps that you need to take to enable
your applet to connect to other LDAP servers.

1. Get a certificate from your organization's certificate authority (if your
organization issues certificates internally) or from a third-party certificate
authority, such as RSA, Verisign, or ATT.

Users should have the certificate from the certificate authority in the
Communicator certificate database.
Chapter 2, Using the Netscape Directory SDK for Java 29

Getting Started with the Netscape Directory SDK for Java
2. Create a JAR file with your classes and have them signed.

To do this, you can use the JAR file management tools, which are available
at:

http://developer.netscape.com/software/

Additional documentation on Netscape Object Signing technology is
available at:

http://developer.netscape.com/docs/manuals/signedobj/

3. Add the following line to your applet code in the thread where you invoke
LDAPConnection.connect:

PrivilegeManager.enablePrivilege("UniversalConnect");

At this point in the code, the user of your applet will be prompted with a
dialog box identifying the author of the signed class and asking permission
to grant the right to access the LDAP server. The user can either allow
access for this time only or forever.

If you want to test the ability for your applet to connect to other hosts (other
than the originating one) without using object signing and certificates (for
example, in case you want to test your applet while waiting for your certificate
to be issued), you can configure Netscape Communicator to bypass this check.

First, exit Communicator (or make sure that it is not running). Then, add the
following line to the prefs.js file:

user_pref("signed.applets.codebase_principal_support", true);

Checking the Version of Classes from an
Applet

Netscape Communicator 4.0 and more recent versions include a copy of the
LDAP Java classes. Different versions of Communicator have different versions
of the classes.

The following table lists some of the different versions of the classes that have
been released up to this point in time.
30 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Getting Started with the Netscape Directory SDK for Java
Version 3.03 and beyond of the LDAP Java classes include new classes such as
LDAPCache and LDAPSchema. If you plan to use these classes in an applet,
make sure to check the version of the LDAP Java classes available in the
browser.

To get the version number, invoke the LDAPConnection.getProperty method
and pass in the constant LDAPConnection.LDAP_PROPERTY_SDK. The version
number is a Float type. For example:

...
Float sdkVersion = (Float)myConn.getProperty(myConn.LDAP_PROPERTY_SDK
);
System.out.println("LDAP Java Classes version: " + sdkVersion);
...

For information on the differences between the LDAP Java classes in this
release and in previous releases, see the release notes at:

http://developer.netscape.com/tech/directory/
index.html?content=java40relnotes.html

Working with the LDAP JavaBeans

The Netscape Directory SDK for Java includes a set of LDAP JavaBeans that you
can use in a design environment, such as Sun Microsystems’ BeanBox or
Symantec’s Visual Cafe.

These Beans are part of the netscape.ldap.beans package. The class files are
located in the beans directory.

The following JavaBeans are included with the SDK:

Table 2.1 Recently released versions of the LDAP Java classes

Version Description

3.03 Released with the Netscape Directory SDK for Java 3.0

3.1 Released with the Netscape Directory SDK for Java 3.1.

4.0 Available at:
http://developer.netscape.com/software/ldap/
Chapter 2, Using the Netscape Directory SDK for Java 31

Getting Started with the Netscape Directory SDK for Java
• The LDAPGetEntries Bean allows you to search the directory and get an
array of the DNs found by the search. You can use the properties of this
Bean to specify the search criteria. The getEntries method performs the
search and sets the Result property to the array of DNs found.

• The LDAPGetProperty Bean allows you to find an entry in the directory
and get the values of a specified attribute in that entry. You can use the
properties of this Bean to specify the search criteria. The getProperty
method performs the search and sets the Result property to the array of
the string values of the specified attribute.

• The LDAPIsMember Bean determines is a user is a member of a group (the
user and group can be specified as properties of this Bean). The isMember
method sets the Result property to the string "Y" or "N" to indicate if the
user is a member.

• The LDAPSimpleAuth Bean authenticates to an LDAP server. The
authenticate method performs the authentication and sets the Result
property to the string "Y" or "N" to indicate whether or not authentication
was successful.

The netscape.ldap.beans package also includes the following classes:

• The LDAPBasePropertySupport class is a base class that the other Bean
classes extend. This class specifies accessor methods that are inherited by
the other Bean classes.

• The DisplayString class extends the java.awt.TextArea class and is
provided to help you display the results of some of the Beans.

Before you use the Beans in a design environment, make sure to set your
CLASSPATH environment variable to include the LDAP Java classes. For
example:

• If you are using Sun Microsystems BeanBox utility, make sure that in the
run.bat file, the makefile, or the current shell or console window, the
CLASSPATH environment variable includes the path to the ldapjdk.jar
file. For example:

set CLASSPATH=classes;D:\netscape\ldapjdk\packages\ldapjdk.jar

• If you are using Symantec Visual Cafe 2.x, make sure that in the
VisualCafe\bin\sc.ini file, the CLASSPATH entry includes the path to
the ldapjdk.jar file. For example:
32 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Getting Started with the Netscape Directory SDK for Java
CLASSPATH=.;...<other_paths>;
D:\NETSCAPE\LDAPJDK\PACKAGES\LDAPJDK.JAR

Next, set up your design environment to include the JAR files under the beans
directory of the Netscape Directory SDK for Java. For example:

• If you are using the BeanBox utility, copy the JAR files to the BDK/jars
directory. When you start up the BeanBox, the LDAP JavaBeans should be
loaded in automatically.

• If you are using Visual Cafe, choose the View | Component Library menu
command to display the Component Library window. After making sure
that you have a project currently open, choose the Insert | Component Into
Library menu command and select a JAR file containing an LDAP JavaBean.
This should add the Bean to your component library.

Note that the LDAP JavaBeans are not visible Beans; they are not UI
components.

The Beans have a Debug property that you can set to specify that you want
debugging information printed out. This information is printed to standard
output, so if you are testing the applet in BeanBox or in appletviewer, debug
messages are printed out to the console or shell window.

Using the Classes in JavaScript

Using Netscape Communicator’s LiveConnect capabilities, you can use the
LDAP Java classes from within JavaScript code in an HTML page. (LiveConnect
enables communication between JavaScript and Java applets in a page and
between JavaScript and plug-ins loaded on a page.)

To see an example of how you can do this, see the sample JavaScript code in
the HTML file in the examples/js directory. For information on LiveConnect,
see the chapter on LiveConnect in the Netscape JavaScript Guide (available at
http://developer.netscape.com/docs/manuals/js/client/jsguide/

index.htm) and Netscape Tech Note TN-JSCR-03-9707 (available at http://
developer.netscape.com/docs/technote/javascript/liveconnect/

liveconnect_rh.html).
Chapter 2, Using the Netscape Directory SDK for Java 33

Getting Started with the Netscape Directory SDK for Java
34 Netscape Directory SDK 4.0 for Java Programmer’s Guide

C h a p t e r

3
Quick Start
This chapter provides a simple example of an LDAP client written with the
Netscape Directory SDK for Java.

The chapter contains the following sections:

• “Understanding the Sample Client”

• “Sample Code”

Understanding the Sample Client
The following is the source code for a program that retrieves the full name
("cn"), last name ("sn"), email address ("mail"), and telephone number
("telephoneNumber") of Barbara Jensen. You can find this program in the
GetAttrs.java file in the examples/java directory.

Basically, the example does the following:

1. Creates a new LDAPConnection object, which represents the connection to
the LDAP server.

2. Connects to the server.
Chapter 3, Quick Start 35

Sample Code
3. Performs a search that retrieves a single entry, identified by its DN. To do
this, the search criteria is set up so that:

• The base distinguished name (the starting point of the search) is the
entry "uid=bjensen, ou=People, o=Airius.com"

• The scope of the search is LDAPConnection.SCOPE_BASE, which only
includes the base DN

• The search filter is "(objectclass=*)", which finds anything that
matches. Since the scope narrows the search down to a single entry, the
search filter does not need to be used.

(Note that performing a search for a single entry is equivalent to invoking
the LDAPConnection.read method.)

• The string array attrNames contains the attributes that the search will
return.

• The attrsOnly property is set to false, which means that the names
and values of the specified attributes will be returned.

4. Iterates through the enumerated search results to retrieve and print the
values of the cn, sn, mail, and telephoneNumber attributes. This iteration
also allows the client to obtain multiple instances of a single attribute (two
telephone numbers, for example).

5. Disconnects from the server.

Before you compile the sample client, replace "localhost" and "389" with the
hostname and port number of the LDAP server that you are using. Also, make
sure that the packages/ldapjdk.jar file is in your CLASSPATH.

Sample Code
import netscape.ldap.*;
import java.util.*;
public class GetAttrs {

public static void main(String[] args)
{

LDAPConnection ld = null;
LDAPEntry findEntry=null;
36 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Sample Code
int status = -1;
try {

ld = new LDAPConnection();
/* Connect to server */
String MY_HOST = "localhost";
int MY_PORT = 389;
ld.connect(MY_HOST, MY_PORT);
String ENTRYDN = "uid=bjensen, ou=People, o=Airius.com";
String[] attrNames = {

"cn", /* Get canonical name(s) (full name) */
"sn", /* Get surname(s) (last name) */
"mail", /* Get email address(es) */
"telephonenumber" };/* Get telephone number(s) */

LDAPSearchResults res = ld.search(ENTRYDN,
LDAPConnection.SCOPE_BASE, "objectclass=*",
attrNames, false);

/* Loop on results until finished; will only be one! */
while (res.hasMoreElements()) {

/* Next directory entry, really only one at most */
LDAPEntry findEntry = null;
try {

findEntry = res.next();
/* If the next result is a search reference,

print the LDAP URLs in the reference. */
} catch (LDAPReferralException e) {

System.out.println("Search reference: ");
LDAPUrl refUrls[] = e.getURLs();
for (int i=0; i<refUrls.length; i++) {

System.out.println("\t" + refUrls[i].getURL());
}
continue;

} catch (LDAPException e) {
System.out.println("Error: " + e.toString());
continue;

}
/* Get the attributes of the entry */
LDAPAttributeSet findAttrs=findEntry.getAttributeSet();
Enumeration enumAttrs = findAttrs.getAttributes();
/* Loop on attributes */
while (enumAttrs.hasMoreElements()) {

LDAPAttribute anAttr =
(LDAPAttribute)enumAttrs.nextElement();

String attrName = anAttr.getName();
if (attrName.equals("cn"))

System.out.println("Full name:");
else if (attrName.equals("sn"))

System.out.println("Last name (surname):");
else if (attrName.equals("mail"))

System.out.println("Email address:");
else if (attrName.equals("telephonenumber"))
Chapter 3, Quick Start 37

Sample Code
System.out.println("Telephone number:");
/* Loop on values for this attribute */
Enumeration enumVals = anAttr.getStringValues();
while (enumVals.hasMoreElements()) {

String aVal = (String)enumVals.nextElement();
System.out.println("\t" + aVal);

}
}

}
}
catch(LDAPException e) {

System.out.println("Error: " + e.toString());
}
/* Done, so disconnect */
if ((ld != null) && ld.isConnected()) {

try {
 ld.disconnect();
} catch (LDAPException e) {

System.out.println("Error: " + e.toString());
}

}
System.exit(status);

}
}

38 Netscape Directory SDK 4.0 for Java Programmer’s Guide

2
Writing Clients with the
Netscape Directory SDK for
Java
Chapter 4 Writing an LDAP Client

This chapter describes the general process of writing an LDAP client. The chapter covers the
procedures for connecting to an LDAP server, authenticating, requesting operations, and
disconnecting from the server.

Chapter 5 Using the LDAP Java Classes

This chapter covers some of the general LDAP Java classes that are commonly used when
writing LDAP clients.

Chapter 6 Searching the Directory

This chapter explains how to use the LDAP Java classes to search the directory and retrieve
entries. The chapter also describes how to get attributes and attribute values from an entry.

Chapter 7 Using Filter Configuration Files

This chapter explains how to use API function to work with filter configuration files. Filter
configuration files can help simplify the process of selecting the appropriate search filter for
a search request.

Chapter 8 Adding, Updating, and Deleting Entries

This chapter explains how to use the LDAP Java classes to add, modify, delete, and rename
entries in the directory.

Chapter 9 Comparing Values in Entries

This chapter explains how to compare the value of an attribute in an entry against
a specified value.

Chapter 10 Working with LDAP URLs

This chapter describes what LDAP URLs are and explains how to use LDAP URLs to
search and retrieve data from the directory.
40 Netscape Directory SDK 4.0 for Java Programmer’s Guide

C h a p t e r

4
Writing an LDAP Client
This chapter describes the general process of writing an LDAP client. The
chapter covers the procedures for connecting to an LDAP server,
authenticating, requesting operations, and disconnecting from the server.

The chapter includes the following sections:

• “Overview: Designing an LDAP Client”

• “Creating a Connection and Setting Preferences”

• “Connecting to the LDAP Server”

• “Binding and Authenticating to an LDAP Server”

• “Performing LDAP Operations”

• “Closing the Connection to the Server”

The next chapter, “Using the LDAP Java Classes,” also includes important
information on using the LDAP Java classes to write an LDAP client.
Chapter 4, Writing an LDAP Client 41

Overview: Designing an LDAP Client
Overview: Designing an LDAP Client
With the Netscape Directory SDK for Java, you can write an application or
applet that can interact with an LDAP server. The following procedure outlines
the typical process of communicating with an LDAP server. Follow these steps
when writing your LDAP client:

1. Create a new LDAPConnection object, and set any preferences that you
want applied to all LDAP operations. (See “Creating a Connection and
Setting Preferences” for details.)

2. Connect to an LDAP server. (See “Connecting to the LDAP Server” for
details.)

3. If necessary, bind to the LDAP server. If you intend to use any of the LDAP
v3 features (such as controls or extended operations), specify the version of
LDAP supported by your client. (See “Binding and Authenticating to an
LDAP Server” for details.)

4. Perform the operations (for example, search the directory or modify entries
in the directory). (See “Performing LDAP Operations” for details.)

5. When you are done, disconnect from the LDAP server. (See “Closing the
Connection to the Server” for details.)

The following is a simple example of an LDAP client that follows the steps
listed above to search a directory. The client connects to the LDAP server
running on the local machine at port 389, authenticates as the DN
"uid=bjensen,ou=People,o=Airius.com", searches the directory for entries with
the last name "Jensen" ("sn=Jensen"), and prints out the DNs of any matching
entries.

import netscape.ldap.*;
import java.util.*;
public class SimpleExample {

public static void main(String[] args)
{

/* Step 1: Create a new connection. */
LDAPConnection ld = new LDAPConnection();

try {
/* Step 2: Connect to an LDAP server. */
ld.connect("localhost", LDAPv2.DEFAULT_PORT);
42 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Overview: Designing an LDAP Client
/* Step 3: Authenticate to the server.
If you do not specify a version number,
this method authenticates your client
as an LDAP v2 client (not LDAP v3). */

ld.authenticate("uid=bjensen,ou=People,o=Airius.com",
"hifalutin");

/* Step 4: Perform your LDAP operations. */
/* Search for all entries with the last name "Jensen". */
LDAPSearchResults results = ld.search("o=Airius.com",

LDAPv2.SCOPE_SUB, "(sn=Jensen)", null, false);
/* Print the DNs of the matching entries. */
while (results.hasMoreElements()) {

LDAPEntry entry = null;
try {

entry = results.next();
System.out.println(entry.getDN());

} catch (LDAPReferralException e) {
System.out.println("Search references: ");
LDAPUrl refUrls[] = e.getURLs();
for (int i=0; i < refUrls.length; i++) {

System.out.println("\t" + refUrls[i].getURL());
}
continue;

} catch (LDAPException e) {
System.out.println("Error: " + e.toString());
continue;

}
}

} catch(LDAPException e) {
System.out.println("Error: " + e.toString());

}

/* Step 5: Disconnect from the server when done. */
try {

ld.disconnect();
} catch(LDAPException e) {

System.out.println("Error: " + e.toString());
System.exit(1);

}
System.exit(0);

}
}

The rest of this chapter explains how to connect to the server, bind to the
server, perform LDAP operations, and disconnect from the server.
Chapter 4, Writing an LDAP Client 43

Creating a Connection and Setting Preferences
Creating a Connection and Setting
Preferences

The first step in writing an LDAP client is creating an LDAPConnection object.
This object represents the connection to an LDAP server.

For example:

LDAPConnection ld = new LDAPConnection();

Note If you plan to connect to the LDAP server over a Secure Sockets Layer (SSL),
you need to specify a class that implements SSL sockets. For details, see
Chapter 12, “Connecting Over SSL”.

In addition, the object also contains preferences for the LDAP session (for
example, whether or not referrals are automatically followed).

To get or set the value of a preference, invoke the getOption method or the
setOption method. In both of these methods, you can use the option
parameter to specify the preference that you want to work with.

For a complete list of the preferences that you can get and set, see the
documentation on the getOption method or the setOption method.

Connecting to the LDAP Server
To connect to an LDAP server, use the connect method of the
LDAPConnection object. For example:

LDAPConnection ld = new LDAPConnection();
ld.connect("ldap.airius.com", LDAPv2.DEFAULT_PORT);

DEFAULT_PORT specifies the default LDAP port, port 389.

You can also specify a list of LDAP servers to attempt to connect to. If the first
LDAP server in the list does not respond, the client will attempt to connect to
the next server in the list.

Use a space-delimited list of the host names as the first argument of the
connect method. If the server is not using the default LDAP port (port 389),
specify the port number in hostname:portnumber format. For example:
44 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Binding and Authenticating to an LDAP Server
LDAPConnection ld = new LDAPConnection();
ld.connect("ldap1.airius.com ldap2.airus.com:3890

ldap3.airius.com:39000", LDAPv2.DEFAULT_PORT);

Binding and Authenticating to an LDAP
Server

When connecting to the LDAP server, your client may need to send a bind
operation request to the server. This is also called binding to the server.

An LDAP bind request contains the following information:

• the LDAP version of the client

• the DN that the client is attempting to authenticate as

• the method of authentication that should be used

• the credentials to be used for authentication

Your client should send a bind request to the server in the following situations:

• You want to authenticate to the server.

For example, you may want to add or modify entries in the directory, which
requires you to authenticate as a user with access privileges.

• You are connecting to an LDAP v2 server.

LDAP v2 servers typically require clients to bind before any operations can
be performed. (Note that the Netscape Directory Server 1.0x is an LDAP v2
server but does not require clients to bind.)

LDAP clients can also bind as an anonymous clients to the server (for example,
the LDAP server may not require authentication if your client is just searching
the directory).

This chapter explains how to set up your client to bind to an LDAP server.
Topics covered here include:

• “Understanding Authentication Methods”

• “Using Simple Authentication”
Chapter 4, Writing an LDAP Client 45

Binding and Authenticating to an LDAP Server
• “Binding Anonymously”

• “Specifying the LDAP Version”

• “Authenticating with the connect Method”

Understanding Authentication Methods

When binding to an LDAP server, you can authenticate your client using one of
three methods: Simple authentication, Certificate-based client authentication
(over SSL), and the Simple Authentication and Security Layer (SASL). This
section will discuss the differences between these methods.

Simple Authentication

With simple authentication, your clients provides the distinguished name of the
user and the user’s password to the LDAP server.

For more information on simple authentication, see “Using Simple
Authentication”.

You can also use this method to bind as an anonymous client by providing
null values as the user’s distinguished name and password (as described in
“Binding Anonymously”).

Certificate-Based Client Authentication (over SSL)

With certificate-based client authentication, your client sends its certificate to
the LDAP server. The certificate identifies your LDAP client.

For more information on using certificate-based client authentication, see
Chapter 12, “Connecting Over SSL”.

Simple Authentication and Security Layer (SASL)

SASL is described in RFC 2222. Some LDAP v3 servers (including the Netscape
Directory Server 3.0 and later) support authentication through SASL.

For more information on using SASL mechanisms for authentication, see
Chapter 14, “Using SASL Authentication”.
46 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Binding and Authenticating to an LDAP Server
Using Simple Authentication

If you plan to use simple authentication, use the authenticate method of the
LDAPConnection object. For example:

LDAPConnection ld = new LDAPConnection();
ld.connect("ldap.airius.com", LDAPv2.DEFAULT_PORT);
ld.authenticate("uid=bjensen,ou=People,o=Airius.com", "hifalutin");

If you are binding to the Netscape Directory Server 3.0 or later, the server may
send back special controls to indicate that your password has expired or will
expire in the near future. For more information on these controls, see “Using
Password Policy Controls”.

Binding Anonymously

In some cases, you may not need to authenticate to the LDAP server. For
example, if you are writing a client to search the directory (and if users don’t
need special access permissions to search), you might not need to authenticate
before performing the search operation.

However, in the LDAP v2 protocol, the server still expects the client to send a
bind request, even if the operation does not require the client to authenticate
itself. (In the LDAP v3 protocol, the server no longer expects the client to send
a bind request in this type of situation.)

In this kind of situation, use the authenticate method and specify null for
the DN and password. For example:

LDAPConnection ld = new LDAPConnection();
ld.connect("ldap.airius.com", LDAPv2.DEFAULT_PORT);
ld.authenticate(null, null);

Specifying the LDAP Version

As part of the bind request sent to the server, the client includes the version of
the LDAP protocol that it supports. By default, clients built with the Netscape
Directory SDK for Java identify themselves as LDAP v2 clients.

If you want to use any of the LDAP v3 features (such as controls or extended
operations), you need to identify your client as an LDAP v3 client.
Chapter 4, Writing an LDAP Client 47

Performing LDAP Operations
(Before you set up your client to use LDAP v3 or request any LDAP v3 features,
you should first verify that the server supports LDAP v3.)

To identify your client as an LDAP v3 client, do one of the following:

• Specify version 3 when invoking the authenticate method. For example:

LDAPConnection ld = new LDAPConnection();
ld.connect("ldap.airius.com", LDAPv2.DEFAULT_PORT);
ld.authenticate(3, null, null);

• Invoke the setOption method of the LDAPConnection object to set the
LDAPv2.PROTOCOL_VERSION preference to 3, then invoke the
authenticate method. For example:

LDAPConnection ld = new LDAPConnection();
ld.connect("ldap.airius.com", LDAPv2.DEFAULT_PORT);
ld.setOption(LDAPv2.PROTOCOL_VERSION, 3);
ld.authenticate(null, null);

Authenticating with the connect Method

The connect method of the LDAPConnection object has a signature that
allows you to authenticate and specify the LDAP version supported by your
client.

You can specify all of this information using one method, rather than invoking
several methods. For example:

LDAPConnection ld = new LDAPConnection();
ld.connect(3, "ldap.airius.com", DEFAULT_PORT,

"uid=bjensen,ou=People,o=Airius.com", "hifalutin");

Performing LDAP Operations
Once you initialize a session with an LDAP server and complete the
authentication process, you can perform LDAP operations (such as searching
the directory, adding new entries, updating existing entries, and removing
entries), provided that the server’s access control allows you to request these
operations.
48 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Closing the Connection to the Server
To perform LDAP operations, invoke these methods of the LDAPConnection
object:

• To search for entries in the directory, use the search method (see
“Searching the Directory” for details).

• To retrieve a single entry in the directory, use the read method (see
“Searching the Directory” for details).

• To determine whether an attribute contains a certain value, use the
compare method (see “Comparing the Value of an Attribute” for details).

• To add entries to the directory, use the add method (see “Adding a New
Entry” for details).

• To modify entries in the directory, use the modify method (see “Modifying
an Entry” for details).

• To delete entries from the directory, use the delete method (see “Deleting
an Entry” for details).

• To rename entries in the directory, use the rename method (see “Changing
the Name of an Entry” for details).

Closing the Connection to the Server
When you have finished performing all necessary LDAP operations, you need
to close the connection to the LDAP server.

Use the disconnect method of the LDAPConnection object to disconnect from
the LDAP server. For example:

LDAPConnection ld = new LDAPConnection();
ld.connect("ldap.airius.com", LDAPv2.DEFAULT_PORT);
...
/* Authenticate and perform LDAP operations on the server. */
...
ld.disconnect();
Chapter 4, Writing an LDAP Client 49

Closing the Connection to the Server
50 Netscape Directory SDK 4.0 for Java Programmer’s Guide

C h a p t e r

5
Using the LDAP Java Classes
This chapter covers some of the general LDAP Java classes that are commonly
used when writing LDAP clients.

This chapter covers the following topics:

• “Getting Information About the SDK”

• “Handling Exceptions”

• “Handling Referrals”

• “Using an In-Memory Cache”

• “Cloning a Connection”

• “Manipulating Distinguished Names”

Getting Information About the SDK
You can get version information about the Netscape Directory SDK for Java
that you are using (for example, the version of the LDAP Java classes or the
highest version of the LDAP protocol that it supports).
Chapter 5, Using the LDAP Java Classes 51

Handling Exceptions
To get this information, use the getProperty method of the LDAPConnection
object. For a complete list of the SDK properties you can get, see the
documentation on the getProperty method.

For example, the following section of code lists the properties of the SDK:

LDAPConnection ld = new LDAPConnection();
try {

System.out.println("LDAP Java Classes Version: " +
(Float)ld.getProperty(LDAPConnection.LDAP_PROPERTY_SDK));

System.out.println("Highest version of LDAP supported: " +
(Float)ld.getProperty(LDAPConnection.LDAP_PROPERTY_PROTOCOL));

System.out.println("Authentication methods supported: " +
(String)ld.getProperty(LDAPConnection.LDAP_PROPERTY_SECURITY));

} catch (LDAPException e) {
System.out.println("Could not get SDK properties.");
System.out.println("Error: " + e.toString());

}
...

For information on the different versions of the LDAP Java classes, see the
documentation on LDAP_PROPERTY_SDK.

Note that although a setProperty method is listed as one of the available
methods, there are currently no properties that you can set. Invoking this
method throws an LDAPException.

Handling Exceptions
In the LDAP protocol, the success or failure of an operation is specified by an
LDAP result code sent back to the client. (For example, the result code 0
indicates that the operation was successful, and a non-zero result code usually
indicates that an error occurred.)

The following sections explain more about exceptions in the LDAP Java classes.

• “Getting Information About the Error”

• “Getting the Error Message”
52 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Handling Exceptions
Getting Information About the Error

In the LDAP Java classes, when an error occurs, an LDAPException is thrown.
(Note that referrals cause an LDAPReferralException to be thrown. For
details, see “Handling Referrals”.)

An LDAPException contains the following information:

• the LDAP result code for the error that occurred

• a message containing any additional information about the error from the
server

If the error occurred because an entry specified by a DN could not be found,
the LDAPException also contains the DN of the "closest matching entry" that
could be found.

To get information from the LDAPException, use one of the following
methods:

• To get the string representation of the exception, use the toString
method.

• To get the LDAP result code, use the getLDAPResultCode method.

• To get any additional information sent by the server, use the
getLDAPErrorMessage method.

• To get the closest matching DN (in cases where your client specified a DN
to a non-existent entry), use the getMatchedDN method.

Note that you can also get the error message describing the LDAP result code
by using the errorCodeToString method. (See the section “Getting the Error
Message” for details.)

The Directory SDK for Java’s JavaDocs include a listing and descriptions of the
different LDAP result codes. For information on using these JavaDocs, see
“Where to Find Reference Information”.

The following section of code gets and prints information about an
LDAPException:

...
try {
/* Attempt to perform an LDAP operation here. */
Chapter 5, Using the LDAP Java Classes 53

Handling Exceptions
} catch(LDAPException e) {
/* Get and print the result code and any other info. */
int resultCode = e.getLDAPResultCode();
String serverInfo = e.getLDAPErrorMessage();
System.out.println("LDAP Result Code: " + resultCode);
if (serverInfo != null) {

System.out.println("Additional Info: " + serverInfo);
}
/* If the exception was thrown because an entry

was not found, print the DN of the closest entry found. */
switch(resultCode) {

case LDAPException.NO_SUCH_OBJECT:
case LDAPException.ALIAS_PROBLEM:
case LDAPException.INVALID_DN_SYNTAX:
case LDAPException.ALIAS_DEREFERENCING_PROBLEM:

String matchedDN = e.getMatchedDN();
if (matchedDN != null) {

System.out.println("Closest Entry: " + matchedDN);
}
break;

default:
break;

}
}
...

Getting the Error Message

To get the error message for an LDAP result code, use the errorCodeToString
method. For example:

...
try {
/* Attempt to perform an LDAP operation here. */
} catch(LDAPException e) {

/* Get and print the error message. */
int resultCode = e.getLDAPResultCode();
System.out.println("Error: " + e.errorCodeToString(resultCode));

}
...

Error messages corresponding to each LDAP result code are stored in files in
the following location:

dir_root/netscape/ldap/error/ErrorCodes_locale_name.props
54 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Handling Referrals
where dir_root is a directory that is in your CLASSPATH, and locale_name
is the language and country (concatenated and delimited by an underscore) of
the current locale.

For example:

netscape/ldap/error/ErrorCodes_en_US.props
netscape/ldap/error/ErrorCodes_en.props

A default error messages file is provided in the following location:

netscape/ldap/error/ErrorCodes.props

The result codes and their corresponding descriptions have the following
format in the file:

resultcode=errormessage

For example:

0=Success
1=Operations error
2=Protocol error
3=Timelimit exceeded
4=Sizelimit exceeded
5=Compare false
6=Compare true
...

When you invoke the errorCodeToString method of an LDAPException, the
method retrieves the error messages file for the specified locale (or the default
locale, if no locale is specified) and reads the error message from the file.

The method searches for the error messages file in the following locations in
this order (if no file is found, the method tries to find the next file in this list):

netscape/ldap/error/ErrorCodes_language_country.props
netscape/ldap/error/ErrorCodes_language.props
netscape/ldap/error/ErrorCodes.props

Handling Referrals
If an LDAP server receives a request for a DN that is not under its directory tree,
it can refer clients to another LDAP server that may contain that DN. This is
known as a referral.
Chapter 5, Using the LDAP Java Classes 55

Handling Referrals
This section explains how to set up your LDAP client to handle referrals
automatically. The following topics are covered:

• “Understanding Referrals”

• “Enabling or Disabling Referral Handling”

• “Limiting Referral Hops”

• “Binding When Following Referrals”

Understanding Referrals

Suppose an LDAP server has a directory that starts under "o=Airius.com". If
your client sends the server a request to modify the entry with the DN
"uid=bjensen,ou=People,o=AiriusWest.com" (an entry that is not under
"o=Airius.com"), one of the following may occur:

• If the server is not configured to send a referral, an LDAPException is
thrown with the LDAP result code LDAPException.NO_SUCH_OBJECT.

• If the server is configured to refer you to another LDAP server, the server
sends a referral back to your client. Depending on how your LDAP client is
configured one of the following may occur:

• If your client handles referrals automatically, your client connects to the
LDAP server specified in the referral and requests to modify the entry.
(The client binds anonymously to that server. To bind as a specific user,
see the section “Binding When Following Referrals”.)

• If your client does not handle referrals automatically, an
LDAPReferralException is thrown. You can get the LDAP URL
specified in the referral by catching the exception and invoking the
getURLs method.

By default, clients built with the Netscape Directory SDK for Java are
configured to follow referrals automatically.

Another concept similar to a referral is a search reference. A search reference is
an entry with the object class "referral". The "ref" attribute of this object contains
an LDAP URL that identifies another LDAP server.
56 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Handling Referrals
When your client searches a subtree of the directory that contains search
references, the server returns a mix of matching entries and search references.
As you iterate through the enumeration of search results, if you encounter a
search reference and your client does not handle referrals automatically, an
LDAPReferralException is thrown.

Enabling or Disabling Referral Handling

By default, clients built with the Netscape Directory SDK for Java automatically
follow these referrals to other servers.

To change the way your client handles referrals, use the setOption method of
the LDAPConnection object (to change the behavior for all LDAP operations)
or the setReferrals method of the LDAPConstraints object (to change the
behavior for a specific search request):

• To prevent the client from automatically following referrals, pass
LDAPv2.REFERRALS and false as arguments to the setOption method, or
pass false as the argument to the setReferrals method.

• If you want the client to automatically follow referrals again, pass
LDAPv2.REFERRALS and true as arguments to the setOption method, or
pass true as the argument to the setReferrals method.

Limiting Referral Hops

As a preference for the connection (or as a search constraint for specific search
operations), you can specify the maximum number of referral hops that should
be followed in a sequence of referrals. This is called the referral hop limit.

For example, suppose you set a limit of 2 referral hops. If your client is referred
from LDAP server A to LDAP server B, from LDAP server B to LDAP server C,
and from LDAP server C to LDAP server D, your client is being referred 3 times
in a row, and it will not follow the referral to LDAP server D because this
exceeds the referral hop limit.

If the referral hop limit is exceeded, an LDAPReferralException is thrown.
Chapter 5, Using the LDAP Java Classes 57

Handling Referrals
To set the referral hop limit, use the LDAPv2.REFERRALS_HOP_LIMIT preference
with the setOption method of the LDAPConnection object (to change the
behavior for all LDAP operations) or the setHopLimit method of the
LDAPConstraints object (to change the behavior for a specific search
request).

By default, the maximum number of referral hops is 10.

Binding When Following Referrals

If the connection is set up so that referrals are always followed (see “Enabling
or Disabling Referral Handling” for more information), the LDAP server that you
connect to may refer you to another LDAP server. By default, the client binds
anonymously (no username or password are specified) when following
referrals.

If you want your client to authenticate to the LDAP server that it is referred to,
you need to specify a way to get the DN and password to be used for
authentication. You need to define a class that implements the LDAPRebind
interface. Then, you specify an object of this new class using the
LDAPv2.REFERRALS_REBIND_PROC preference with the setOption method of
the LDAPConnection object (to set this for all LDAP operations) or the
setRebindProc method of the LDAPConstraints object (to change the
behavior for a specific search request).

The LDAPRebind interface specifies a getRebindAuthentication method that
returns an LDAPRebindAuth object. The getRebindAuthentication method
and the LDAPRebindAuth object it returns are used to get the DN and password
for authentication.

The following steps explain how this works:

1. The LDAP server sends a referral back to the client. The referral contains an
LDAP URL that identifies another LDAP server.

2. The client creates a new LDAPConnection object.

3. The client connects to the host and port specified in the LDAP URL.
58 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Using an In-Memory Cache
4. Using the getRebindProc method to find your object (the one that
implements the LDAPRebind interface), the client invokes the
getRebindAuthentication method, passing in the host and port specified
in the LDAP URL.

5. The getRebindAuthentication method in your object returns an
LDAPRebindAuth object.

6. The client invokes the getDN and getPassword methods of the returned
LDAPRebindAuth object to get the DN and password to use for
authentication.

7. The client invokes the authenticate method of the LDAPConnection
object and passes the DN and password to authenticate to the server.

Basically, you need to define the following:

• a class that implements the LDAPRebind interface

• a getRebindAuthentication that takes host name and port number and
creates an LDAPRebindAuth object that specifies the DN and password to
use for authentication

Using an In-Memory Cache
The Netscape Directory SDK for Java includes an LDAPCache class that allows
you to create an in-memory cache of search results for your client. When send
a search request and receive results, the search request and its results are
cached. The next time your client issues the same search request, the results are
read from the cache.

This section covers the following topics:

• “How the Cache Operates”

• “Setting Up an In-Memory Cache”

• “Caching Requests by Base DN”

• “Sharing a Cache Between Connections”

• “Flushing the Cache”
Chapter 5, Using the LDAP Java Classes 59

Using an In-Memory Cache
• “Getting Cache Statistics”

How the Cache Operates

Each item in the cache represents a search request and its results. When you
create the cache, you can specify the maximum size of the cache and the
maximum amount of time that an item can be cached:

• When an item's age exceeds that time limit, the item is removed from the
cache. The cache is checked once a minute for expired items.

• If adding a new item will cause the cache to exceed its maximum size,
items are removed from the cache to make space for the new item. Items
are removed on a FIFO (first in, first out) basis.

Each item is uniquely identified by the search criteria, which includes:

• the host name and port number of the LDAP server

• the base DN of the search

• the search filter

• the scope of the search

• the attributes to be returned in the search results

• the DN used to authenticate the client when binding to the server

• the LDAP v3 controls specified in the search request

Once a search request is cached, if your client performs the same search again,
the results are read from the cache instead of from the server.

Note that if any part of a search request differs from a cached search request
(for example, if a different DN is used when authenticating to the server or if
the search request specifies that a different set of attributes should be returned),
the results are not read from the cache and the search request is sent to the
server.
60 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Using an In-Memory Cache
Finally, when creating the cache, you can specify a list of the base DNs in
search requests that you want to cache. For example, if you specify
"ou=People, o=Airius.com" as a base DN to cache, your client caches search
requests where the base DN is "ou=People, o=Airius.com".

Setting Up an In-Memory Cache

To set up a cache for your connection, do the following:

1. Construct a new LDAPCache object which represents the cache.

2. Invoke the setCache method of an LDAPConnection object to associate
the cache with the connection.

For example, the following section of code creates a cache with the maximum
size of 1MB. Items in the cache expire and are automatically removed after 1
hour.

...
import netscape.ldap.*;
import java.util.*;
...
LDAPConnection ld = null;
int status = -1;
String MY_HOST = "localhost";

try {
ld = new LDAPConnection();

/* Create a cache for the connection */
int MAX_TIME_CACHED = 3600;
int MAX_SIZE = 1000000;
LDAPCache myCache = new LDAPCache(MAX_TIME_CACHED, MAX_SIZE);
ld.setCache(myCache);

/* Connect to server */
ld.connect(MY_HOST, LDAP_PORT);
...

} catch(LDAPException e) {
System.out.println("Error: " + e.toString());

}
...
Chapter 5, Using the LDAP Java Classes 61

Using an In-Memory Cache
Caching Requests by Base DN

If you do not want all search requests cached, you can specify a set of base
DNs for search requests that you want cached in the LDAPCache constructor.

For example, the following section of code constructs a cache that only tracks
search requests that specify the base DNs "ou=People, o=Airius.com" and
"ou=Groups,o=Airius.com".

...
/* Create a cache for the connection */
int MAX_TIME_CACHED = 3600;
int MAX_SIZE = 1000000;
String [] BASE_DN_CACHED = {"ou=People,o=Airius.com",

"ou=Groups,o=Airius.com"};
LDAPCache myCache = new LDAPCache(MAX_TIME_CACHED, MAX_SIZE,

BASE_DN_CACHED);
...

Sharing a Cache Between Connections

You can also share the same in-memory cache among different connections. To
do this:

1. Invoke the getCache method of an LDAPConnection object to get the
LDAPCache object associated with it.

2. Invoke the setCache method of a different LDAPConnection object to
associate the retrieved LDAPCache object with it.

Note that when you clone an LDAPConnection object, the new object
automatically shares the same LDAPCache object with the original object.

Flushing the Cache

To flush items from the cached, invoke the flushEntries method of the
LDAPCache object. You can either flush selected items from the cache or all
items from the cache.
62 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Using an In-Memory Cache
To flush selected items from the cache, specify the base DN of the search
requests that you want to flush. To do this, you can specify a DN and search
scope as arguments to the flushEntries method. If the base DN of a cached
search request falls within the scope you’ve specified, the search request is
flushed from the cache.

For example, the following section of code flushes selected search requests
from the cache. If the base DN of a search request falls under the
"ou=People,o=Airius.com" subtree, the item is removed from the cache.

...
import netscape.ldap.*;
import java.util.*;
...
LDAPCache myCache;
...
/* Perform search requests. */
...
/* Flush items from the cache. Flush the

search requests that have base DNs under the
"ou=People, o=Airius.com" subtree. */

myCache.flushEntries("ou=People, o=Airius.com",
LDAPConnection.SCOPE_SUB);

...

To flush all items from the cache, pass null for the first argument of the
flushEntries method:

myCache.flushEntries(null, 0);

Getting Cache Statistics

You can invoke the following methods of the LDAPCache object to get statistics
on the cache:

• To get the total amount of available space (in bytes) left in the cache,
invoke the getAvailableSize method.

• To get the array of base DNs of the search requests to be cached, invoke
the getBaseDNs method.

• To get the total number of items that have been flushed from the cache (not
including items flushed when invoking the flushEntries method), invoke
the getNumFlushes method.
Chapter 5, Using the LDAP Java Classes 63

Using an In-Memory Cache
• To get the maximum size of the cache (in bytes), invoke the getSize
method.

• To get the maximum amount of time that an item can be cached (in
seconds), get the getTimeToLive method.

You can also get a running count of the number of requests that access the
cache:

• To get the total number of requests for retrieving items from the cache,
invoke the getTotalOperation method.

• To get the total number of requests that retrieved an item from the cache,
invoke the getNumHits method.

• To get the total number of requests that failed to find and retrieve an item
from the cache, invoke the getNumMisses method.

For example, the following section of code gets and prints cache statistics.

...
import netscape.ldap.*;
import java.util.*;
...
import netscape.ldap.*;
import java.util.*;
...
LDAPConnection ld;
...
if ((ld != null) && ld.isConnected()) {

LDAPCache connCache = ld.getCache();
if (connCache != null) {

System.out.println("Cache size:\t\t" +
connCache.getSize()/1000 + " kbytes");

System.out.println("Available:\t\t" +
connCache.getAvailableSize()/1000 + " kbytes");

System.out.println("Maximum age:\t\t" +
connCache.getTimeToLive()/1000 + " seconds");

System.out.println("Total hits:\t\t" +
connCache.getNumHits() + " hits");

System.out.println("Total misses:\t\t" +
connCache.getNumMisses() + " misses");

System.out.println("Total requests:\t\t" +
connCache.getTotalOperations() + " requests");

} else {
System.out.println("No cache associated with the connection.");

...
64 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Cloning a Connection
Cloning a Connection
You can create several LDAPConnection objects that share a single physical
network connection to the LDAP server by invoking the
LDAPConnection.clone method. (Note, however, that if you clone an object
before a connection is made to the server, the cloned object does not share the
same connection as the original object.)

Each clone can disconnect from the server without affecting the connection for
the other clones. The network connection remains open until all clones have
disconnected or gone out of scope.

If the clone disconnects or reconnects, it is completely dissociated from the
source object and other clones.

Note the following:

• A cloned LDAPConnection object has a separate set of session preferences
and constraints (in other words, it is associated with its own
LDAPSearchConstraints object). Changing an option or search constraint
will only affect requests issued using that object.

For example, suppose an LDAPConnection object allows a maximum of
100 results to be returned from a search. If you clone an LDAPConnection
object and change the maximum number of results in the clone from 100 to
200, the initial object will still allow only 100 results to be returned.

• All clones are authenticated to the server as the same user. If you
reauthenticate to the server as a different user, the current clone will be
disconnected and will connect separately to the server. (The
LDAPConnection object will no longer be a clone of another
LDAPConnection object.)

Manipulating Distinguished Names
A distinguished name (DN) uniquely identifies an entry in the directory tree.
You can get the DN for an entry (see “Getting Distinguished Names from the
Results”) or specify a DN to read an entry from the directory (see “Reading an
Entry”).
Chapter 5, Using the LDAP Java Classes 65

Manipulating Distinguished Names
The Netscape Directory SDK for Java contains a utility class, LDAPDN, that
provides methods for manipulating DNs.

Getting the Components of a
Distinguished Name

If you want to access individual components of a distinguished name or a
relative distinguished name, invoke the LDAPDN.explodeDN method or the
LDAPDN.explodeRDN method.

Both functions return an array of strings representing the individual
components of the distinguished name.

You can specify whether or not you want the names of the components
included in the array by using the notypes parameter.

• Set notypes to false if you want to include component names in the
array.

LDAPDN.explodeDN("uid=bjensen, ou=People, o=Airius.com", false)

The method returns this array:

{ "uid=bjensen", "ou=People", "o=Airius.com" }

• Set notypes to true if you don’t want to include the component names
in the array.

LDAPDN.explodeDN("uid=bjensen, ou=People, o=Airius.com", true)

The method returns this array:

{ "bjensen", "People", "Airius.com" }
66 Netscape Directory SDK 4.0 for Java Programmer’s Guide

C h a p t e r

6
Searching the Directory
This chapter explains how to use the LDAP Java classes to search the directory
and retrieve entries. The chapter also describes how to get attributes and
attribute values from an entry.

This chapter covers the following topics:

• “Overview: Searching with the LDAP Java Classes”

• “Sending a Search Request”

• “Getting the Search Results”

• “Sorting the Search Results”

• “Abandoning a Search”

• “Example: Searching the Directory”

• “Reading an Entry”

• “Listing Subentries”
Chapter 6, Searching the Directory 67

Overview: Searching with the LDAP Java Classes
Overview: Searching with the LDAP Java
Classes

In the Netscape Directory SDK for Java, searches are represented by objects of
the following classes:

• You can send a search request by invoking the search method of the
LDAPConnection object.

• You can specify a set of search constraints (such as the maximum number
of results to return or the maximum amount to time allowed for a search)
by using an LDAPSearchConstraints object.

• You can either specify different parts of the search criteria in separate
arguments, or you can construct an LDAPUrl object to specify the search
criteria.

• The server returns the search results to the LDAP Java classes, which
represents the results as an LDAPSearchResults object.

• You can search for a single entry by invoking the read method of the
LDAPConnection object.

The rest of this chapter explains how to use these classes and methods to
search a directory.

Sending a Search Request
To search the directory, use the search method of the LDAPConnection
object. The search results are returned in the form of an LDAPSearchResults
object.

public LDAPSearchResults search(String base, int scope,
String filter, String attrs[], boolean attrsOnly,
LDAPSearchConstraints cons) throws LDAPException

You need to specify the following information as arguments to the search
method:

• base specifies the starting point in the directory, or the base DN (an entry
where to start searching)
68 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Sending a Search Request
To search entries under “o=Airius.com”, the base DN is “o=Airius.com”. See
“Specifying the Base DN and Scope” for details.

• scope specifies the scope of the search (which entries you want to search)

You can narrow the scope of the search to search only the base DN, entries
at one level under the base DN, or entries at all levels under the base DN.
See “Specifying the Base DN and Scope” for details.

• filter specifies a search filter (what to search for)

A search filter can be as simple as “find entries where the last name is
Jensen” or as complex as “find entries that belong to Dept. #17 and whose
first names start with the letter F.” See “Specifying a Search Filter” for
details.

• attrs and attrsOnly specify the type of information that you want
return (which attributes you want to retrieve)

For example, you can return only email addresses and phone numbers, or
you can set up a search to return all attributes in an entry. You can also
specify that you only want to return the names of attributes, not the values.
See “Specifying the Attributes to Retrieve” for details.

• cons specifies the search constraints that you want applied to this search

For example, you can set up a set of search constraints that differs from the
default set of constraints. See “Setting Search Preferences” for details.

Figure 6.1 illustrates how search criteria works.
Chapter 6, Searching the Directory 69

Sending a Search Request
Figure 6.1 Search criteria of an LDAP search operation

You can also specify the criteria in the form of an LDAP URL. An LDAP URL
allows you to specify the hostname and port number of the LDAP server that
you want to search. (If you want to search a different LDAP server than the one
you are connected to, you can invoke the search method and specify an LDAP
URL in the form of an LDAPUrl object.)

For details on using LDAP URLs for searches, see Chapter 10, “Working with
LDAP URLs”.

Specifying the Base DN and Scope

When sending a search request, you need to specify the base DN and scope of
the search to identify the entries that you want searched.

The base DN (the base argument) is the DN of the entry that serves as the
starting point of the search.

To specify the scope of the search, you pass one of the following values as the
scope parameter:

• LDAPv2.SCOPE_SUB searches the base entry and all entries at all levels
below the base entry (as illustrated in Figure 6.2).
70 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Sending a Search Request
Figure 6.2 Example of a search with the scope LDAPv2.SCOPE_SUB

• LDAPv2.SCOPE_ONE searches all entries at one level below the base
entry (as illustrated in Figure 6.3). The base entry is not included in the
search. Use this setting if you just want a list of the entries under a given
entry. (See “Listing Subentries” on page 89 for an example.)

Figure 6.3 Example of a search with the scope LDAPv2.SCOPE_ONE

• LDAPv2.SCOPE_BASE searches only the base entry. Use this setting if
you just want to read the attributes of the base entry (as illustrated in
Figure 6.4). (See “Reading an Entry” on page 87 for an example.)
Chapter 6, Searching the Directory 71

Sending a Search Request
Figure 6.4 Example of a search with the scope LDAPv2.SCOPE_BASE

Specifying a Search Filter

When you search the directory, you use a search filter to define the search.
Here is the basic syntax for a search filter:

(attribute operator value)

Here is a simple example of a search filter:

(cn=Barbara Jensen)

In this example, cn is the attribute, = is the operator, and Barbara Jensen is
the value. The filter finds entries with the common name Barbara Jensen

For a listing of valid attributes that you can use in your search filter, see the
documentation for the LDAP server. (For information on the attributes in the
schema for the Netscape Directory Server, see the Administrator’s Guide.)

Table 6.1 lists the valid operators you can use.
72 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Sending a Search Request
Note that when comparing values containing letters, the letter a is less than the
value z. For example, the following filter finds all entries with last names
beginning with a through jensen:

(sn<=jensen)

Using Boolean operators and parentheses, you can combine different sets of
conditions. Here is the syntax for combining search filters:

(boolean_operator (filter1)(filter2)(filter3))

Table 6.2 lists the valid boolean operators you can use.

Table 6.1 Basic operators for search filters

Operator Description Example

= Returns entries whose attribute is
equal to the value.

(cn=Barbara Jensen)

finds the entry “cn=Barbara
Jensen”

>= Returns entries whose attribute is
greater than or equal to the value.

(sn >= jensen)

finds all entries from
“sn=jensen” to “sn=z...”

<= Returns entries whose attribute is less
than or equal to the value.

(sn <= jensen)

finds all entries from “sn=a...”
to “sn=jensen”

=* Returns entries that have a value set
for that attribute.

(sn =*)

finds all entries that have the
sn attribute.

~= Returns entries whose attribute value
approximately matches the specified
value. Typically, this is an algorithm
that matches words that sound alike.

(sn ~= jensen)

finds the entry “sn = jansen”

Table 6.2 Boolean operators for search filters

Boolean Operator Description

& Returns entries matching all specified filter criteria.
Chapter 6, Searching the Directory 73

Sending a Search Request
For example, you can use this filter to search for all entries with the last name
Jensen or the last name Johnson:

(|(sn=Jensen)(sn=Johnson))

You can also include wildcards to search for entries that start with, contain, or
end with a given value. For example, you can use this filter to search for all
entries whose names begin with the letter F:

(givenName=F*)

Specifying the Attributes to Retrieve

Using the attrs argument, you can either retrieve all attributes in entries
returned by the search, or you can specify the attributes that you want returned
in the search results. For example, you can specify that you want to return the
following attributes:

• To return selected attributes, pass an array of the attribute names as the
attrs argument. For example, to return only email addresses and phone
numbers, pass the array {"mail", "telephoneNumber"} as the attrs
argument.

• To return all attributes in an entry, pass null as the attrs argument.

• To return none of the attributes from an entry, pass LDAPv3.NO_ATTRS as
the attrs argument.

| Returns entries matching one or more of the filter
criteria.

! Returns entries for which the filter is not true.You can
only apply this operator to a single filter. For example,
you can use:

(!(filter))

but not:

(!(filter1)(filter2))

Table 6.2 Boolean operators for search filters

Boolean Operator Description
74 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Sending a Search Request
Note that if you plan to sort the results on your client (see “Sorting the Search
Results”), you need to return the attributes that you plan to use for sorting. For
example, if you plan to sort by email address, make sure that the mail attribute
is returned in the search results.

Some attributes are used by servers for administering the directory. For
example, the creatorsName attribute specifies the DN of the user who added
the entry.These attributes are called operational attributes.

Servers do not normally return operational attributes in search results unless
you specify the attributes by name. For example, if you pass null for the
attrs argument to retrieve all of the attributes in entries found by the search,
the operational attribute creatorsName will not be returned to your client. You
need to explicitly specify the creatorsName attribute in the attrs argument.

To return all attributes in an entry and selected operational attributes, pass a
string array containing LDAPv3.ALL_USER_ATTRS and the names of the
operational attributes as the attrs argument.

The following table lists some of the operational attributes and the information
they contain.

Table 6.3 Information available in operational attributes

Attribute Name Description of Values

createTimestamp The time the entry was added to the directory.

modifyTimestamp The time the entry was last modified.

creatorsName Distinguished name (DN) of the user who added the
entry to the directory.

modifiersName Distinguished name (DN) of the user who last modified
the entry.

subschemaSubentry Distinguished name (DN) of the subschema entry,
which controls the schema for this entry. (See “Getting
Schema Information” for details.)
Chapter 6, Searching the Directory 75

Sending a Search Request
Setting Search Preferences

For a given search, you can apply a set of preferences that determine how the
search is performed. For example, you can specify the maximum number of
results to be returned or the maximum amount of time to wait for a search.

The LDAPSearchConstraints class represents a set of search constraints. The
methods of this class allow you to get and set the constraints.

The rest of this section explains how to set these constraints. The following
topics are discussed:

• Setting Preferences for All Searches

• Overriding Preferences on Individual Searches

• Configuring the Search to Wait for All Results

• Setting Size and Time Limits

Setting Preferences for All Searches

The LDAPConnection object (which represents a connection to the LDAP
server) is associated with a default set of search constraints. These constraints
apply to all searches performed over the connection.

• To get the default set of search constraints for the connection, you can use
the getSearchConstraints method.

• To get or set any of the search constraints individually, you can use the
getOption method and the setOption method.

For example, if you want to specify the maximum number of results returned,
you can either set this constraint for the connection:

LDAPConnection ld = new LDAPConnection();
ld.connect("ldap.airius.com", LDAPv2.DEFAULT_PORT);
ld.setOption(LDAPv2.SIZELIMIT, new Integer(100));

Overriding Preferences on Individual Searches

To override the default set of search constraints for a given search request,
construct your own LDAPSearchConstraints object and pass it to the search
method of the LDAPConnection object.
76 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Sending a Search Request
You can modify a copy of the existing search constraints and pass the modified
set of constraints to the search method. Invoke the getSearchConstraints
method of the LDAPConnection object to get the default set of constraints for
that connection, then invoke the clone method of the
LDAPSearchConstraints object to make a copy of the set.

Configuring the Search to Wait for All Results

By default, the search method of the LDAPConnection object does not block
until all results are received. Instead, the search method returns as soon as
one of the results has been received.

If you want to change this so that the search method blocks until all results are
returned, you can do one of the following:

• Use the setOption method of the LDAPConnection object to set the
LDAPv2.BATCHSIZE preference to 0.

• Pass a 0 to the setBatchSize method of the LDAPSearchConstraints
object to change this for a particular set of search constraints.

Note that in either case, you still need to invoke the next method of the
returned LDAPSearchResults object to retrieve each individual result.

Setting Size and Time Limits

By default, when you search the directory from a client built with the Netscape
Directory SDK for Java, the maximum number of entries to return is set to 1000,
and there is no maximum time limit for waiting on an operation to complete.

To change these default values, you can do one of the following:

• Use the setOption method of the LDAPConnection object to set the
LDAPv2.SIZELIMIT and LDAPv2.TIMELIMIT preferences.

• Use the setMaxResults method and the setTimeLimit method of the
LDAPSearchConstraints object to change this for a particular set of search
constraints.

Setting the size limit or time limit may cause an LDAPException to be thrown if
the size limit or time limit is exceeded:
Chapter 6, Searching the Directory 77

Sending a Search Request
• If the size limit is exceeded, the server returns an
LDAPException.SIZE_LIMIT_EXCEEDED result code.

• If the time limit is exceeded, the server returns an
LDAPException.TIME_LIMIT_EXCEEDED result code.)

Note that the smallest unit supported by the Netscape Directory Server is
seconds, not milliseconds. Since the Netscape Directory SDK for Java allows
you to specify the time limit in milliseconds, the value that you specify will be
rounded to the nearest second by the Directory Server.

Example of Sending a Search Request

The following section of code searches for all entries with the last name (or
surname) "Jensen" in the Airius.com organization. The search retrieves the
names and values of the cn, mail, and telephoneNumber attributes.

...
LDAPConnection ld = null;
try {

/* Create a new LDAPConnection object. */
ld = new LDAPConnection();

/* Connect and bind to the server. */
String HOSTNAME = "localhost";
ld.connect(HOSTNAME, DEFAULT_PORT, null, null);

/* Specify the search criteria. */
String baseDN = "o=Airius.com";
int searchScope = LDAPv2.SCOPE_SUB;
String searchFilter = "(sn=Jensen)";
String getAttrs[] = {"cn", "mail", "telephoneNumber"};

/* Send the search request. */
LDAPSearchResults res = ld.search(baseDN, searchScope,

searchFilter, getAttrs, false);
...

} catch(LDAPException e) {
System.out.println("Error: " + e.toString);

}
...
78 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Getting the Search Results
Getting the Search Results
When you invoke the search method of an LDAPConnection object to search
the directory, the method returns the search results in the form of an
LDAPSearchResults object.

The search results consist of an enumeration of entries, which are represented
by LDAPEntry objects. The search results can also include smart referrals (also
known as a search reference) and exceptions.

Each entry contains a set of attributes, which are represented by
LDAPAttributeSet objects. Individual attributes are represented by
LDAPAttribute objects. Each attribute has a set of values that you can get.

Figure 6.5 illustrates the relationship between entries, attributes, values, and
search results.

Figure 6.5 Search results in terms of entries, attributes, and values

The rest of this section explains the steps for getting data from the search
results:

• For information on getting individual entries from the results, see “Getting
Entries from the Results”.

• For information on getting the DN of an entry, see “Getting Distinguished
Names from the Results”.

• For information on getting the attributes of an entry, see “Getting Attributes
from an Entry”.
Chapter 6, Searching the Directory 79

Getting the Search Results
• For information on getting the values of an attribute, see “Getting the Name
and Values of an Attribute”.

Getting Entries from the Results

The LDAPSearchResults object represents the results of the search. These
results can include entries found by the search, search references, and result
codes. (If your LDAP client receives an ADMIN_LIMIT_EXCEEDED,
TIME_LIMIT_EXCEEDED, or SIZE_LIMIT_EXCEEDED result code from the
server, the Netscape Directory SDK for Java adds an exception for this result
code to the search results.)

To get entries from the LDAPSearchResults object, you can either invoke the
next method or the nextElement method.

• When you invoke the next method, if the next item in the search results is
an entry, the method returns an LDAPEntry object.

If the next item is a search reference, one of the following can occur:

• If referrals are not followed automatically, or if the referral hop limit has
been exceeded, an LDAPReferralException is thrown.

• If referrals are followed automatically and if the referral hop limit has
not been exceeded, the LDAP Java classes follow the referral and
retrieve the entry for you. (The method creates a new connection to the
server specified in the referral and attempts to retrieve the entry from
that server.)

For information about referrals and search references, see “Handling
Referrals”.

If the next item is an LDAP result code such as ADMIN_LIMIT_EXCEEDED,
TIME_LIMIT_EXCEEDED, or SIZE_LIMIT_EXCEEDED, the LDAP Java classes
throw an LDAPException.

• When you invoke the nextElement method, the method returns an object
that you must cast. The object is an LDAPEntry object, an
LDAPReferralException, or an LDAPException.

As you iterate through the search results, you can invoke the
hasMoreElements method to determine if you have reached the end of the
search results.
80 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Getting the Search Results
For example:

...
LDAPConnection ld = null;
try {

/* Create a new LDAPConnection object. */
ld = new LDAPConnection();
...
/* Send the search request. */
LDAPSearchResults res = ld.search(baseDN, searchScope,

searchFilter, getAttrs, false);

/* Iterate through the results until finished. */
while (res.hasMoreElements()) {

/* Get the next entry in the results. */
LDAPEntry findEntry = null;
try {

findEntry = res.next();

/* If it is a search reference,
print the LDAP URLs in the reference. */

} catch (LDAPReferralException e) {
System.out.println("Search references: ");
LDAPUrl refUrls[] = e.getURLs();
for (int i=0; i < refUrls.length; i++) {

System.out.println("\t" + refUrls[i].getUrl());
}
continue;

} catch (LDAPException e) {
System.out.println("Error: " + e.toString());
continue;

}
...

}
...

} catch (LDAPException e) {
...}

Getting Distinguished Names from the
Results

To get the distinguished name of an LDAPEntry object, invoke the getDN
method. This method returns a string. For example:

...
LDAPEntry nextEntry = res.next();
Chapter 6, Searching the Directory 81

Getting the Search Results
String nextDN = nextEntry.getDN();
...

Note that although the netscape.ldap package includes an LDAPDN class, you
typically do not construct objects of this class to represent DNs. The LDAPDN
class is mainly a utility class that provides methods for manipulating string DNs.
(See “Getting the Components of a Distinguished Name” for details.)

Getting Attributes from an Entry

To get the set of attributes in an LDAPEntry object, invoke the
getAttributeSet method. This method returns an LDAPAttributeSet object.

For example:

...
LDAPEntry nextEntry = res.next();
LDAPAttributeSet entryAttrs = nextEntry.getAttributeSet();
...

To get individual attributes from an LDAPAttributeSet object, invoke the
getAttributes method. This method returns an enumeration of attributes.
You can then iterate through the elements in this enumeration to retrieve
individual LDAPAttribute objects.

For example:

...
/* Get the set of attributes for an entry. */
LDAPAttributeSet entryAttrs = nextEntry.getAttributeSet();

/* Get an enumeration of those attribute. */
Enumeration enumAttrs = entryAttrs.getAttributes();

/* Loop through the enumeration to get each attribute. */
while (enumAttrs.hasMoreElements()) {

LDAPAttribute nextAttr =
(LDAPAttribute)enumAttrs.nextElement();

...
}
...

To determine the number of attributes in the LDAPAttributeSet object,
invoke the size method.

You can also retrieve a specific attribute from the entry or from the attribute set:
82 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Getting the Search Results
• To get a specific attribute from an LDAPEntry object, invoke the
getAttribute method.

• To get a specific attribute from an LDAPAttributeSet object by invoking
the getAttribute method.

Both methods return an LDAPAttribute object.

For example:

...
LDAPEntry nextEntry = res.next();
LDAPAttribute anAttr = nextEntry.getAttribute("cn");
...

Getting the Name and Values of an
Attribute

To get the name of an LDAPAttribute object, invoke the getName method.
For example:

...
LDAPAttribute nextAttr =

(LDAPAttribute)enumAttrs.nextElement();
String attrName = nextAttr.getName();
...

To get the values in an LDAPAttribute object, you can use the following
methods:

• To get the string values, invoke the getStringValues method.

• To get the binary values as byte arrays, invoke the getByteValues method.

Both methods return an enumeration that you can iterate through to retrieve
individual results. If an error occurs (for example, if you invoke
getStringValues and the values are binary data), the methods return null.

You can also count the number of values in an attribute by invoking the size
method of the LDAPAttribute object.

For example:

...
LDAPAttribute nextAttr =
Chapter 6, Searching the Directory 83

Sorting the Search Results
(LDAPAttribute)enumAttrs.nextElement();

/* Get and print the attribute name. */
String attrName = nextAttr.getName();
System.out.println("\t" + attrName + ":");

/* Iterate through the attribute’s values. */
Enumeration enumVals = nextAttr.getStringValues();
if (enumVals != null) {

while (enumVals.hasMoreElements()) {
String nextValue = (String)enumVals.nextElement();
System.out.println("\t\t" + nextValue);

}
}
...

Sorting the Search Results
With the Netscape Directory SDK for Java, you can sort the search results in
two ways:

• You can specify that the LDAP server should sort the results before
returning the results to your client.

To do this, you need to send a server-side sorting control to the server. For
details, see Chapter 13, “Working with LDAP Controls”. Note that in the
Netscape Directory Server, server-side sorting works best if you specify a
filter that uses an indexed attribute.

• After you receive the results from the server, you can sort them on your
client.

To do this, you need to specify the names of the attributes that you want to
use for sorting. You also need to specify whether or not the sorting is done
in ascending or descending order.

You can sort the results on the client by invoking the sort method of the
LDAPSearchResults object.

When invoking this method, you need to pass a comparator object, which is an
object of a class that implements the LDAPEntryComparator interface. The
Netscape Directory SDK for Java includes an LDAPCompareAttrNames class
that implements this interface. This class specifies how entries are compared
with each other and sorted.
84 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Abandoning a Search
To construct an LDAPCompareAttrNames object, you need to specify the
attributes that you want to use for sorting and, optionally, the sort order.

For example, the following section of code sorts first by surname (“sn”) and
then by common name (“cn”) in ascending order:

...
LDAPConnection ld = new LDAPConnection();
ld.connect(...);
LDAPSearchResults res = ld.search(...);
String[] sortAttrs = {"sn", "cn"};
boolean[] ascending = {true, true};
res.sort(new LDAPCompareAttrNames(sortAttrs, ascending));
...

Note Since the sorting is done by the client, the attributes used for sorting must be
returned in the search results. If you are returning only a subset of attributes in
the search results, make sure to include the attributes that you specify in the
LDAPCompareAttrNames constructor.

If all search results have not yet been returned, the sort method will block
until all results have been received.

Abandoning a Search
At any point during a search operation, you can send a request to the server to
abandon (or cancel) the search. To abandon the search, use the abandon
method of the LDAPConnection object. Pass in the LDAPSearchResults object
that was returned to you when you first invoked the search method.

Example: Searching the Directory
The following section of code prints out the values of all attributes in the
entries returned by a search.

...
import netscape.ldap.*;
import java.util.*;
public class Search {

public static void main(String[] args) {
LDAPConnection ld = null;
int status = -1;
Chapter 6, Searching the Directory 85

Example: Searching the Directory
try {
ld = new LDAPConnection();

/* Connect to the server. */
String MY_HOST = "localhost";
int MY_PORT = 389;
ld.connect(MY_HOST, MY_PORT);

/* Search for all entries with surname of Jensen. */
String MY_FILTER = "sn=Jensen";
String MY_SEARCHBASE = "o=Airius.com";

/* Send the search request. */
LDAPSearchResults res = ld.search(MY_SEARCHBASE,

LDAPConnection.SCOPE_SUB,
MY_FILTER, null, false);

/* Sort the results first by last name, then by first. */
String[] sortAttrs = {"sn", "cn"};
boolean[] ascending = {true, true};
res.sort(new LDAPCompareAttrNames(sortAttrs, ascending));

/* Iterate through and print out the results. */
while (res.hasMoreElements()) {

/* Get the next directory entry. */
LDAPEntry findEntry = null;
try {

findEntry = res.next();

/* If the next result is a search reference,
print the LDAP URLs in that reference. */

} catch (LDAPReferralException e) {
System.out.println("Search references: ");
LDAPUrl refUrls[] = e.getURLs();
for (int i=0; i < refUrls.length; i++) {

System.out.println("\t" + refUrls[i].getURL());
}
continue;

} catch (LDAPException e) {
System.out.println("Error: " + e.toString());
continue;

}

/* Print the DN of the entry. */
System.out.println(findEntry.getDN());

/* Get the attributes of the entry */
LDAPAttributeSet findAttrs =

findEntry.getAttributeSet();
Enumeration enumAttrs = findAttrs.getAttributes();
86 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Reading an Entry
System.out.println("\tAttributes: ");
/* Loop on attributes */
while (enumAttrs.hasMoreElements()) {

LDAPAttribute anAttr =
(LDAPAttribute)enumAttrs.nextElement();

String attrName = anAttr.getName();
System.out.println("\t\t" + attrName);
/* Loop on values for this attribute */
Enumeration enumVals = anAttr.getStringValues();
if (enumVals != null) {

while (enumVals.hasMoreElements()) {
String aVal = (String)enumVals.nextElement();
System.out.println("\t\t\t" + aVal);

}
}

}
}
status = 0;

} catch(LDAPException e) {
System.out.println("Error: " + e.toString());

}
/* Done, so disconnect */
if ((ld != null) && ld.isConnected()) {

try {
ld.disconnect();

} catch (LDAPException e) {
System.out.println("Error: " + e.toString());

}
}
System.exit(status);

}
}

Reading an Entry
To get a single entry from the directory, use the read method of the
LDAPConnection object. You can specify the DN of the entry and (optionally)
the attributes that you want to retrieve (if you don’t want to get all attributes of
the entry back). Or you can specify an LDAP URL that identifies the entry that
you want to retrieve.

You can use the same classes and methods described in “Getting Attributes
from an Entry” and “Getting the Name and Values of an Attribute” to retrieve
data from the entry.
Chapter 6, Searching the Directory 87

Reading an Entry
The following section of code gets an entry and prints the values of its
attributes.

import netscape.ldap.*;
import java.util.*;
public class RdEntry {

public static void main(String[] args)
{

LDAPConnection ld = null;
int status = -1;
try {

ld = new LDAPConnection();

/* Connect to the server. */
String MY_HOST = "localhost";
int MY_PORT = 389;
ld.connect(MY_HOST, MY_PORT);

/* Get the specified entry and all of its attributes. */
String ENTRYDN = "uid=bjensen, ou=People, o=Airius.com";
LDAPEntry findEntry = ld.read(ENTRYDN);

/* Get and print the DN of the entry. */
System.out.println(findEntry.getDN());

/* Get the set of attributes in the entry. */
LDAPAttributeSet findAttrs = findEntry.getAttributeSet();
Enumeration enumAttrs = findAttrs.getAttributes();
System.out.println("\tAttributes: ");

/* Get each individual attribute. */
while (enumAttrs.hasMoreElements()) {

LDAPAttribute anAttr =
(LDAPAttribute)enumAttrs.nextElement();

/* Get and print the attribute name. */
String attrName = anAttr.getName();
System.out.println("\t\t" + attrName);

/* Get and print each value of this attribute. */
Enumeration enumVals = anAttr.getStringValues();
if (enumVals != null) {

while (enumVals.hasMoreElements()) {
String aVal = (String)enumVals.nextElement();
System.out.println("\t\t\t" + aVal);

}
}

}
}
catch(LDAPException e) {
88 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Listing Subentries
System.out.println("Error: " + e.toString());
}
/* Done, so disconnect from the server. */
if ((ld != null) && ld.isConnected()) {

try {
ld.disconnect();

} catch (LDAPException e) {
System.out.println("Error: " + e.toString());

}
}
System.exit(status);

}
}

Listing Subentries
To list the subentries beneath a particular entry, set the starting point of the
search to the entry, and set the scope of the search to LDAPv2.SCOPE_ONE.

Figure 6.6 Using the LDAPv2.SCOPE_ONE scope to list subentries

The following section of code performs a one-level search.

...
import netscape.ldap.*;
import java.util.*;
...
LDAPConnection ld = null;
try {

ld = new LDAPConnection();
Chapter 6, Searching the Directory 89

Listing Subentries
/* Connect to the server. */
String MY_HOST = "localhost";
int MY_PORT = LDAPv2.DEFAULT_PORT;
ld.connect(MY_HOST, MY_PORT);

/* Search for all entries at this level. */
String MY_FILTER = "objectclass=*";
String MY_SEARCHBASE = "o=Airius.com";
LDAPSearchResults res = ld.search(MY_SEARCHBASE,
LDAPConnection.SCOPE_ONE, MY_FILTER, null, false);

/* Loop on results until finished */
while (res.hasMoreElements()) {

/* Get the next directory entry */
LDAPEntry findEntry = null;
try {

findEntry = res.next();

/* If the next result is a search reference,
print the LDAP URLs in the reference. */

} catch (LDAPReferralException e) {
System.out.println("Search references: ");
LDAPUrl refUrls[] = e.getURLs();
for (int i=0; i < refUrls.length; i++) {

System.out.println("\t" + refUrls[i].getUrl());
}
continue;

} catch (LDAPException e) {
System.out.println("Error: " + e.toString());
continue;

}

/* Print the DN of the entry. */
System.out.println(findEntry.getDN());

/* Get the attributes of the entry */
LDAPAttributeSet findAttrs = findEntry.getAttributeSet();
Enumeration enumAttrs = findAttrs.getAttributes();
System.out.println("\tAttributes: ");
/* Loop on attributes */
while (enumAttrs.hasMoreElements()) {

LDAPAttribute anAttr = (LDAPAttribute)enumAttrs.nextElement();
String attrName = anAttr.getName();
System.out.println("\t\t" + attrName);

/* Loop on values for this attribute */
Enumeration enumVals = anAttr.getStringValues();
if (enumVals != null) {

while (enumVals.hasMoreElements()) {
String aVal = (String)enumVals.nextElement();
90 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Listing Subentries
System.out.println("\t\t\t" + aVal);
}

}
}

}
} catch(LDAPException e) {

System.out.println("Error: " + e.toString());
}

/* Done, so disconnect */
if ((ld != null) && ld.isConnected()) {

try {
ld.disconnect();

} catch (LDAPException e) {
System.out.println("Error: " + e.toString());

}
...
Chapter 6, Searching the Directory 91

Listing Subentries
92 Netscape Directory SDK 4.0 for Java Programmer’s Guide

C h a p t e r

7
Using Filter Configuration Files
This chapter explains how to use API function to work with filter configuration
files. Filter configuration files can help simplify the process of selecting the
appropriate search filter for a search request.

The chapter contains the following sections:

• “Understanding Filter Configuration Files”

• “Understanding the Configuration File Syntax”

• “Understanding Filter Parameters”

• “Loading a Filter Configuration File”

• “Retrieving Filters”

• “Adding Filter Prefixes and Suffixes”

Note that the LDAP filter classes use the OROMatcher™ regular expression
package (from ORO Java Software), which is provided with the SDK. If you
want to use the OROMatcher package separately (not through the Netscape
Directory SDK for Java classes), you must obtain a license to use the
OROMatcher package from ORO Java Software. (You can also obtain the
OROMatcher documentation directly from ORO.)

For details, see the ORO home page at http://www.oroinc.com/.
Chapter 7, Using Filter Configuration Files 93

Understanding Filter Configuration Files
Understanding Filter Configuration Files
Suppose that you are writing a client that allows users to search the directory.
You might want to use different search filters tailored for specific types of
search criteria. For example, suppose the user wants to search for this:

bjensen@airius.com

You might want to use this search filter:

(mail=bjensen@airius.com)

Similarly, suppose the search term entered by the user contains numbers, like
this:

555-1212

In this case, you might want to use this search filter:

(telephoneNumber=555-1212)

Rather than write code to explicitly create the appropriate filter (based on the
user’s search criteria), you can include the filters in a filter configuration file.

A filter configuration file contains a list of filters that you can load and use in
your searches.

Understanding the Configuration File Syntax
A filter configuration file has the following format:

tag

pattern1 delimiters filter1-1 desc1-1 [scope1]

filter1-2 desc1-2 [scope2]

pattern2 delimiters filter2-1 desc2-1 [scope3]

...

This format is explained below:
94 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Understanding the Configuration File Syntax
• tag identifies a group of filters. You can use different tags to distinguish
filters for different types of objects. For example, you can use a tag to
represent filters for person entries, a tag to represent filters for organization
entries, and so on:

"people"

... (filters for searching "person" entries) ...

"organization"

... (filters for "organization" entries) ...

You can specify a tag (or part of a tag) as a parameter. The tag narrows the
list of filters that the function can retrieve.

• pattern1 and pattern2 are regular expressions used to determine which
filter is selected, based on the search criteria. For example, if you specify
"^[0-9]" as the pattern for a filter, the filter is selected for all search criteria
beginning with a number.

"people"

"^[0-9]" ...

For more information on regular expressions, consult your UNIX
documentation (for example, documentation on the ed command contains
some information on regular expressions).

• delimiters specifies the delimiters used to distinguish one field from
another within the search criteria. For example, if the search criteria consists
of a city name and state abbreviation separated by a comma, specify "," as
the delimiter.

• filter1-1, filter1-2, and filter2-1 are filters. Use %v to represent
the search criteria. For example, to search e-mail addresses, use the filter
(mail=%v). During runtime, if the search criteria bjensen@airius.com is
entered, the filter becomes (mail=bjensen@airius.com).

If the search criteria consists of a number of delimited fields (for example, a
"last name, first name" format like "Jensen, Barbara"), use %v1, %v2, ... ,
%vn to represent the different fields within the search criteria. For example:

"people"

"^[A-Z]*,""," (&(sn=%v1)(givenName=%v2))
Chapter 7, Using Filter Configuration Files 95

Understanding Filter Parameters
In this example, the delimiter is a comma. The word before the delimiter
replaces %v1 in the filter, and the word after the delimiter replaces %v2 in
the filter. If the user searches for:

Jensen, Barbara

the resulting filter is:

(&(sn=Jensen)(givenName=Barbara))

You can also specify ranges of fields. For example, to specify the values in
the first three fields, use %v1-3. To specify values from the third field to the
last field, use %v3-. To specify the value in the last field, use %v$.

• desc1-1, desc1-2, and desc2-1 are phrases briefly describing the filters.

• scope1, scope2, and scope3 specify the scope of each search. This field
is optional and can have the values "base", "onelevel", or "subtree".

For example, the following section of a filter configuration file specifies a filter
for telephone numbers and two filters for email addresses. The telephone
number filter is used if the search criteria contains one or more numbers. The
email filters are used if the search criteria contains an at sign (@).

"people"

"^[0-9][0-9-]*$" " " "(telephoneNumber=*%v))" "phone number ends with"

"@" " " "(mail=%v)" "email address is"

"(mail=%v*)" "email address starts with"

You should specify the filters in the order that you want them to be used. For
example, if you want to apply the (mail=%v) filter before the (mail=%v*)
filter, make sure that the filters appear in that order.

Understanding Filter Parameters
Within a filter, you can use the following parameters:

• %v

This parameter means that the entire search criteria is inserted in place of
%v. For example, if the filter is (mail=%v), entering the word jensen
results in the filter (mail=jensen).
96 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Loading a Filter Configuration File
• %v$

This parameter means that the last word in the search criteria is inserted in
place of %v. For example, if the filter is (sn=%v$), entering the words
Barbara Jensen results in the filter (sn=Jensen).

• %vN (Note: N is a single digit between 1 and 9)

This parameter means that the Nth word in the search criteria is inserted in
place of %vN. For example, if the filter is (sn=%v2), entering the words
Barbara Jensen results in the filter (sn=Jensen).

• %vM-N (Note: M and N are single digits between 1 and 9)

This parameter means that the sequence of the Mth through the Nth words
in the search criteria is inserted in place of %vM-N. For example, if the filter
is (cn=%v1-2), entering the words Barbara Jensen results in the filter
(cn=Barbara Jensen).

• %vN- (Note: N is a single digit between 1 and 9)

This parameter means that the sequence of the Nth through the last words
in the search criteria is inserted in place of %vN-. For example, if the filter is
(cn=%v2-), entering the words Ms. Barbara Jensen results in the filter
(cn=Barbara Jensen).

Loading a Filter Configuration File
To use a filter configuration file, you need to create an
LDAPFilterDescriptor object. The LDAPFilterDescriptor constructor
allows you to read in the filter configuration file from:

• a file in the local file system (you can specify the path to the file)

• a file served by a web server (you can specify a URL to the file)

• a location in memory (you can specify a StringBuffer containing the filter
configuration information)

The following section of code reads in a filter configuration file named
ldapfilter.conf in the current directory.
Chapter 7, Using Filter Configuration Files 97

Retrieving Filters
...
import netscape.ldap.util.*;
...
LDAPFilterDescriptor filtdesc = null;
try {

/* Read in the filter configuration file. */
filtdesc = new LDAPFilterDescriptor("ldapfilter.conf");

} catch (Exception e) {
System.out.println("Error: " + e.toString());

}
...

Retrieving Filters
After loading a filter configuration file into memory, you can retrieve filters
based on the search criteria. For example, if the search criteria is an e-mail
address (bjensen@airius.com), you can have your client automatically search
for this value in the mail attribute.

To use the filter configuration file, do the following:

1. Invoke the LDAPFilterDescriptor constructor to read in the filter
configuration file.

2. Invoke the getFilters method of the LDAPFilterDescriptor object.

Specify the tag of the section that you want to use in the filter configuration
file.

This method returns an LDAPFilterList object, which is an enumeration
of LDAPFilter objects containing the filters for the specified search term.

3. Invoke the next method of the LDAPFilterList object to iterate through
the LDAPFilter objects.

4. For each LDAPFilter object, get the filter by invoking the getFilter
method, passing no arguments.

Note that you do not need to invoke the setupFilter of the LDAPFilter
object to generate the filter. The getFilters method of the
LDAPFilterDescriptor object does this already. You just need to invoke the
getFilter method of the LDAPFilter object to get the generated filter.
98 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Retrieving Filters
To get the total number of filter configuration lines that match the specified
search term, invoke the numFilters method of the LDAPFilterList object.
Note that this number decrements each time you invoke the next or
nextElement method.

The following section of code uses a filter configuration file containing the
following filters:

"people"

"^[0-9][0-9-]*$" " " "(telephoneNumber=*%v))" "phone number ends with"

"@" " " "(mail=%v)" "email address is"

"(mail=%v*)" "email address starts with"

The following section of code retrieves, generates, and prints filters that match
the search criteria.

...
import netscape.ldap.util.*;
import java.util.*;

...
String searchTerm = "bjensen@airius.com";
LDAPFilterDescriptor filtdesc = null;
try {

/* Read in the filter configuration file. */
filtdesc = new LDAPFilterDescriptor("ldapfilt.conf");

/* Get filters from the section "people" for the search term. */
LDAPFilterList filtlist = null;
try {

filtlist = filtdesc.getFilters("people", searchTerm);
} catch (Exception e) {

System.out.println("No matching tag section or filter found.");
System.exit(0);

}

int totalFilters = filtlist.numFilters();
System.out.println("Found " + totalFilters +

" applicable filters.\n");

/* Iterate through the lines in the list. */
while (filtlist.hasMoreElements()) {

LDAPFilter filtline = filtlist.next();
System.out.println("Filter #" + (totalFilters -

filtlist.numFilters()));

/* Get and print information about the selected line
of filter configuration information. */
Chapter 7, Using Filter Configuration Files 99

Retrieving Filters
System.out.println(" Description: " +
filtline.getDescription());

System.out.println(" Line #: " + filtline.getLineNumber());
System.out.println(" Matches pattern: " +

filtline.getMatchPattern());
System.out.println(" Filter template: " +

filtline.getFilterTemplate());
System.out.println(" Delimiter: " + filtline.getDelimeter());
System.out.println(" Scope: " + filtline.getScope());

/* Get the generated filter. */
String filterString = filtline.getFilter();
System.out.println(" Generated filter string: " + filterString +

"\n");
}

} catch (Exception e) {
System.out.println("Error: " + e.toString());

}
System.exit(0);
...

Suppose that the search criteria is bjensen@airius.com. In this case, the code
prints the following output:

java GetFilter bjensen@airius.com
Found 2 applicable filters.

Filter #1
Description: email address is
Line #: 3
Matches pattern: @
Filter template: (mail=%v)
Delimiter:
Scope: subtree
Generated filter string: (mail=bjensen@airius.com)

Filter #2
Description: email address starts with
Line #: 4
Matches pattern: @
Filter template: (mail=%v*)
Delimiter:
Scope: subtree
Generated filter string: (mail=bjensen@airius.com*)
100 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Adding Filter Prefixes and Suffixes
Adding Filter Prefixes and Suffixes
If you need to apply a filter to all searches, you can add a filter prefix and suffix
to all filters (rather than add the criteria to all filters). For example, if your client
searches only for person entries, you can add the following filter prefix to
restrict the search:

(&(l=Sunnyvale)

Note that this filter now requires the following suffix to balance the number of
parentheses:

)

For example, given the following filter:

(sn=Jensen)

you can use the filter prefix "(&(l=Sunnyvale" and the filter suffix ")" to narrow
down the search to only the entries with l=Sunnyvale:

(&(l=Sunnyvale)(sn=Jensen))

You can set up the filter prefix and suffix in several ways:

• To set these for all filters generated from the filter configuration file, invoke
the setFilterAffixes method of the LDAPFilterDescriptor object. See
“Adding Affixes for All Filters” for an example.

• To set the prefix or suffix for a specific filter, do one of the following:

• Invoke the setFilterAffixes method of the LDAPFilter object, then
invoke the getFilter method, passing in the search term again. This
builds the filter again, using the specified search term with the prefix
and suffix. See “Adding Affixes By Using setFilterAffixes” for an
example.

• Invoke the getFilter method, passing in the search term, the prefix,
and the suffix. See “Adding Affixes By Using getFilter” for an example.

• Invoke the setupFilter method, passing the search term, the prefix,
and the suffix. See “Adding Affixes By Using setupFilter” for an
example.

Note that setting the prefix and suffix for an individual filter will override
any prefix or suffix set for the entire filter configuration file.
Chapter 7, Using Filter Configuration Files 101

Adding Filter Prefixes and Suffixes
The rest of this section contains examples that illustrate these different
approaches to setting prefixes and suffixes.

• “Adding Affixes for All Filters”

• “Adding Affixes By Using setFilterAffixes”

• “Adding Affixes By Using getFilter”

• “Adding Affixes By Using setupFilter”

Adding Affixes for All Filters

The following section of code loads the filter configuration file named
myfilters.conf into memory and adds the prefix "(&(l=Sunnyvale)" and the
suffix ")" to each filter that will be retrieved from that file:

...
import netscape.ldap.util.*;
...
LDAPFilterDescriptor filtdesc = null;
try {

/* Read in the filter configuration file. */
filtdesc = new LDAPFilterDescriptor("myfilter.conf");

/* Add the specified prefix and suffix to all filters. */
String prefix = "(&(l=Sunnyvale)";
String suffix = ")";
filtdesc.setFilterAffixes(prefix, suffix);

/* Get filters from the section "people" for the search term. */
LDAPFilterList filtlist = null;
try {

filtlist = filtdesc.getFilters("people", searchTerm);
} catch (Exception e) {

System.out.println("No matching tag section or filter found.");
System.exit(0);

}

/* Iterate through the lines in the list. */
while (filtlist.hasMoreElements()) {

LDAPFilter filtline = filtlist.next();

/* Get and print each filter. */
String filterString = filtline.getFilter();
System.out.println(" Generated filter string: " + filterString +

"\n");
102 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Adding Filter Prefixes and Suffixes
}
} catch (Exception e) {

System.out.println("Error: " + e.toString());
}
...

For example, if the following search term is passed to the
LDAPFilterDescriptor.getFilters method:

bjensen@airius.com

and the corresponding filter (without a prefix or suffix) is:

(mail=bjensen@airius.com)

the entire generated filter string (retrieved by the LDAPFilter.getFilter
method) will be:

(&(l=Sunnyvale)(mail=bjensen@airius.com))

Adding Affixes By Using setFilterAffixes

The following section of code loads the filter configuration file named
myfilters.conf into memory and uses the LDAPFilter.setFilterAffixes
method to add a prefix and suffix to a generated filter:

...
import netscape.ldap.util.*;
...
LDAPFilterDescriptor filtdesc = null;
try {

/* Read in the filter configuration file. */
filtdesc = new LDAPFilterDescriptor("myfilter.conf");

/* Get filters from the section "people" for the search term. */
LDAPFilterList filtlist = null;
try {

filtlist = filtdesc.getFilters("people", searchTerm);
} catch (Exception e) {

System.out.println("No matching tag section or filter found.");
System.exit(0);

}

/* Iterate through the lines in the list. */
while (filtlist.hasMoreElements()) {

LDAPFilter filtline = filtlist.next();

/* Add the prefix and suffix, and generate the filter. */
Chapter 7, Using Filter Configuration Files 103

Adding Filter Prefixes and Suffixes
String prefix = "(&(l=Sunnyvale)";
String suffix = ")";
filtline.setFilterAffixes(prefix, suffix);
String filterString = filtline.getFilter(searchTerm);
System.out.println(" Generated filter string: " + filterString +

"\n");
}

} catch (Exception e) {
System.out.println("Error: " + e.toString());

}
...

For example, if the following search term is passed to the
LDAPFilterDescriptor.getFilters method:

bjensen@airius.com

and the corresponding filter (without a prefix or suffix) is:

(mail=bjensen@airius.com)

the entire generated filter string (retrieved by the LDAPFilter.getFilter
method) will be:

(&(l=Sunnyvale)(mail=bjensen@airius.com))

Adding Affixes By Using getFilter

The following section of code loads the filter configuration file named
myfilters.conf into memory and uses the LDAPFilter.getFilter method
to add a prefix and suffix to a generated filter:

...
import netscape.ldap.util.*;
...
LDAPFilterDescriptor filtdesc = null;
try {

/* Read in the filter configuration file. */
filtdesc = new LDAPFilterDescriptor("myfilter.conf");

/* Get filters from the section "people" for the search term. */
LDAPFilterList filtlist = null;
try {

filtlist = filtdesc.getFilters("people", searchTerm);
} catch (Exception e) {

System.out.println("No matching tag section or filter found.");
System.exit(0);

}

104 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Adding Filter Prefixes and Suffixes
/* Iterate through the lines in the list. */
while (filtlist.hasMoreElements()) {

LDAPFilter filtline = filtlist.next();

/* Add the prefix and suffix, and generate the filter. */
String prefix = "(&(l=Sunnyvale)";
String suffix = ")";
String filterString = filtline.getFilter(searchTerm, prefix,

suffix);
System.out.println(" Generated filter string: " + filterString +

"\n");
}

} catch (Exception e) {
System.out.println("Error: " + e.toString());

}
...

For example, if the following search term is passed to the
LDAPFilterDescriptor.getFilters method:

bjensen@airius.com

and the corresponding filter (without a prefix or suffix) is:

(mail=bjensen@airius.com)

the entire generated filter string (retrieved by the LDAPFilter.getFilter
method) will be:

(&(l=Sunnyvale)(mail=bjensen@airius.com))

Adding Affixes By Using setupFilter

The following section of code loads the filter configuration file named
myfilters.conf into memory and uses the LDAPFilter.setupFilter
method to add a prefix and suffix to a generated filter:

...
import netscape.ldap.util.*;
...
LDAPFilterDescriptor filtdesc = null;
try {

/* Read in the filter configuration file. */
filtdesc = new LDAPFilterDescriptor("myfilter.conf");

/* Get filters from the section "people" for the search term. */
LDAPFilterList filtlist = null;
Chapter 7, Using Filter Configuration Files 105

Adding Filter Prefixes and Suffixes
try {
filtlist = filtdesc.getFilters("people", searchTerm);

} catch (Exception e) {
System.out.println("No matching tag section or filter found.");
System.exit(0);

}

/* Iterate through the lines in the list. */
while (filtlist.hasMoreElements()) {

LDAPFilter filtline = filtlist.next();

/* Add the prefix and suffix, and generate the filter. */
String prefix = "(&(l=Sunnyvale)";
String suffix = ")";
filtline.setupFilter(searchTerm, prefix, suffix);

String filterString = filtline.getFilter();System.out.println("
Generated filter string: " + filterString +

"\n");
}

} catch (Exception e) {
System.out.println("Error: " + e.toString());

}
...

For example, if the following search term is passed to the
LDAPFilterDescriptor.getFilters method:

bjensen@airius.com

and the corresponding filter (without a prefix or suffix) is:

(mail=bjensen@airius.com)

the entire generated filter string (retrieved by the LDAPFilter.getFilter
method) will be:

(&(l=Sunnyvale)(mail=bjensen@airius.com))
106 Netscape Directory SDK 4.0 for Java Programmer’s Guide

C h a p t e r

8
Adding, Updating, and Deleting

Entries
This chapter explains how to use the LDAP Java classes to add, modify, delete,
and rename entries in the directory.

The chapter includes the following sections:

• “Adding a New Entry”

• “Modifying an Entry”

• “Deleting an Entry”

• “Changing the Name of an Entry”

Adding a New Entry
To add an entry to the directory, you need to follow this general procedure:

1. Create each individual attribute that will be in the entry. (See “Creating a
New Attribute”.)

2. Create the set of attributes that make up the entry, and add each of the
attributes to this set. (See “Creating a New Attribute Set”.)
Chapter 8, Adding, Updating, and Deleting Entries 107

Adding a New Entry
3. Create the new entry, specifying a unique distinguished name (DN) to
identify the entry and the set of attributes that make up the entry. (See
“Creating a New Entry”.)

4. Add the new entry to directory. (See “Adding the Entry to the Directory”.)

For a complete example, see “Example of Adding an Entry”.

Creating a New Attribute

An attribute can have a single value or multiple values and can contain string
values or binary data. In the LDAP Java classes, an attribute is represented by
an LDAPAttribute object.

To create a new attribute, use the LDAPAttribute constructor. You can specify
a single string value, multiple string values, or a binary value when constructing
the object.

For example, the following section of code creates a new object for the
attribute “cn” with the value “Jane St. Clair”.

...
LDAPAttribute attr = new LDAPAttribute("cn", "Jane St. Clair");
...

The following section of code creates an attribute “objectclass” with the values
“top”, “person”, “organizationalPerson”, and “inetOrgPerson”.

...
String objectclasses[] = { "top",

"person", "organizationalPerson", "inetOrgPerson" };
LDAPAttribute attr = new LDAPAttribute("objectclass", objectclasses);
...

You can also add string or binary values to an LDAPAttribute object by
invoking the addValue method.

Creating a New Attribute Set

To specify the set of attributes in an entry, you need to create an attribute set.
In the LDAP Java classes, a set of one or more attributes is represented by an
LDAPAttributeSet object.
108 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Adding a New Entry
To create a new attribute set, use the LDAPAttributeSet constructor and
invoke the add method to add LDAPAttribute objects to the set.

For example:

...
LDAPAttribute attr1 = new LDAPAttribute("cn", "Jane St. Clair");
String objectclasses[] = { "top",

"person", "organizationalPerson", "inetOrgPerson" };
LDAPAttribute attr2 = new LDAPAttribute("objectclass", objectclasses);
LDAPAttributeSet attrSet = new LDAPAttributeSet();
attrSet.add(attr1);
attrSet.add(attr2);
...

Creating a New Entry

An entry contains a distinguished name (DN), which identifies the entry in the
directory, and a set of attributes. In the LDAP Java classes, an entry is
represented by an LDAPEntry object.

To create a new entry, use the LDAPEntry constructor. For example:

...
LDAPAttribute attr1 = new LDAPAttribute("cn", "Jane St. Clair");
String objectclasses[] = { "top",

"person", "organizationalPerson", "inetOrgPerson" };
LDAPAttribute attr2 = new LDAPAttribute("objectclass", objectclasses);
LDAPAttributeSet attrSet = new LDAPAttributeSet();
attrSet.add(attr1);
attrSet.add(attr2);
String dn = "uid=jsclair,ou=People,o=Airius.com";
LDAPEntry newEntry = new LDAPEntry(dn, attrs);
...

Adding the Entry to the Directory

To add the entry to the directory, invoke the add method of the
LDAPConnection object. For example:

...
try {

LDAPConnection ld = new LDAPConnection();
ld.connect("localhost", LDAPv2.DEFAULT_PORT);
ld.authenticate("cn=Directory Manager", "23skidoo");
Chapter 8, Adding, Updating, and Deleting Entries 109

Adding a New Entry
LDAPEntry newEntry = new LDAPEntry(dn, attrs);
ld.add(newEntry);

...

Before you add an entry, make sure of the following:

• You have specified the object classes of the entry (use the “objectclass”
attribute to specify these) and the required attributes for that object class.

For example, in the Netscape Directory Server, organizational units are
represented by entries of the “organizationalUnit” object class. To add an
entry for a person, you need to specify the following attributes in the entry:

• objectclass (this attribute should have the values “top” and
“organizationalUnit”)

• ou (this is a required attribute)

For a listing of object classes and their required attributes, see the Directory
Server Administrator’s Guide.

• Make sure that you authenticate as a user who has the access permissions
to add the entry to the directory. (If you do not have permission to add the
entry, an LDAPException is thrown with the result code
LDAPException.INSUFFICIENT_ACCESS_RIGHTS.)

Example of Adding an Entry

The following example adds a new entry to the directory for the user named
William Jensen.

import netscape.ldap.*;
import java.util.*;
public class Add {

public static void main(String[] args) {
/* Specify the DN of the new entry. */
String dn = "uid=wbjensen, ou=People, o=Airius.com";

/* Create a new attribute set for the entry. */
LDAPAttributeSet attrs = new LDAPAttributeSet();

/* Create and add attributes to the attribute set. */
String objectclass_values[] = { "top", "person",

"organizationalPerson", "inetOrgPerson" };
LDAPAttribute attr = new LDAPAttribute("objectclass",

objectclass_values);
110 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Adding a New Entry
attrs.add(attr);

String cn_values[] = { "William B Jensen", "William Jensen",
"Bill Jensen" };

attr = new LDAPAttribute("cn", cn_values);
attrs.add(attr);

String givenname_values[] = { "William", "Bill" };
attr = new LDAPAttribute("givenname", givenname_values);
attrs.add(attr);

attrs.add(new LDAPAttribute("sn", "Jensen"));
attrs.add(new LDAPAttribute("telephonenumber",

"+1 415 555 1212"));
attrs.add(new LDAPAttribute("uid", "wbjensen"));

/* Create an entry with this DN and these attributes . */
LDAPEntry myEntry = new LDAPEntry(dn, attrs);

/* Connect to the server and add the entry. */
LDAPConnection ld = null;
int status = -1;
try {

ld = new LDAPConnection();

/* Connect to the server. */
String HOSTNAME= "localhost";
ld.connect(HOSTNAME, LDAPv2.DEFAULT_PORT);

/* Authenticate to the server as the directory manager. */
String MGR_DN = "cn=Directory Manager";
String MGR_PW = "23skidoo";
ld.authenticate(MGR_DN, MGR_PW);

/* Add the entry to the directory. */
ld.add(myEntry);
System.out.println("Added entry successfully.");

}
catch(LDAPException e) {

if (e.getLDAPResultCode() ==
LDAPException.ENTRY_ALREADY_EXISTS)
System.out.println("Error: Entry already present");

else
System.out.println("Error: " + e.toString());

}

/* When done, disconnect from the server. */
if ((ld != null) && ld.isConnected()) {

try {
Chapter 8, Adding, Updating, and Deleting Entries 111

Modifying an Entry
ld.disconnect();
} catch (LDAPException e) {

System.out.println("Error: " + e.toString());
}

}
System.exit(status);

}
}

Modifying an Entry
To modify an entry in the directory, you need to follow this general procedure:

1. Specify each change to an attribute that needs to be made. You can do one
of the following:

• If you are making only one change to the entry, you need to construct
an LDAPModification object specifying the change that needs to be
made.

• If you are making more than one change, you need to construct an
LDAPModificationSet object specifying the changes that need to be
made.

See “Specifying the Changes” for details.

2. Use the distinguished name of the entry to find and update the entry in the
directory. (See “Modifying the Entry in the Directory”.)

For a complete example, see “Example of Modifying an Entry”.

Specifying the Changes

You can add a new attribute, removing an existing attribute, or changing the
values of an existing attribute. This section describes the process of specifying
these changes.

• Adding New Values to an Attribute

• Removing Values to an Attribute
112 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Modifying an Entry
• Replacing the Values of an Attribute

• Adding a New Attribute

• Removing an Attribute

Adding New Values to an Attribute

To add new values to an attribute in an entry, construct a new LDAPAttribute
object, specifying the name of the attribute and the values that you want to add.
Then, do one of the following:

• If you are only making a single change to the entry, construct a new
LDAPModification object to specify that change. Pass
LDAPModification.ADD and the LDAPAttribute object as arguments to
the LDAPModification constructor.

• If you are collecting multiple changes to an entry in an
LDAPModificationSet object, invoke the add method to add this change
to the list. Pass LDAPModification.ADD and the LDAPAttribute object as
arguments to this method.

For example, the following section of code prepares to add the value
“babs@airius.com” to the “mail” attribute to an entry.

...
LDAPModificationSet mods = new LDAPModificationSet();
LDAPAttribute attrMail = new LDAPAttribute("mail",

"babs@airius.com");
mods.add(LDAPModification.ADD, attrMail);
...

Note that if the specified attribute does not exist in the entry, the attribute will
be added to the entry. For example, if the “mail” attribute does not exist in the
entry, adding the value “babs@airius.com” will add the “mail” attribute to the
entry.

Removing Values to an Attribute

To remove values from an attribute in an entry, construct a new
LDAPAttribute object, specifying the name of the attribute and the values that
you want to remove. Then, do one of the following:
Chapter 8, Adding, Updating, and Deleting Entries 113

Modifying an Entry
• If you are only making a single change to the entry, construct a new
LDAPModification object to specify that change. Pass
LDAPModification.DELETE and the LDAPAttribute object as arguments
to the LDAPModification constructor.

• If you are collecting multiple changes to an entry in an
LDAPModificationSet object, invoke the add method to add this change
to the list. Pass LDAPModification.DELETE and the LDAPAttribute object
as arguments to this method.

For example, the following section of code prepares to remove the value
“babs@airius.com” from the “mail” attribute to an entry.

...
LDAPModificationSet mods = new LDAPModificationSet();
LDAPAttribute attrMail = new LDAPAttribute("mail",

"babs@airius.com");
mods.add(LDAPModification.DELETE, attrMail);
...

Note that if you are removing all values in the attribute, the attribute will be
removed. For example, if “babs@airius.com” is the only value of the “mail”
attribute, removing this value will remove the “mail” attribute from the entry.

Also note that if you do not specify any values in the LDAPAttribute object,
the attribute will be removed. For example, if you construct the object by
invoking LDAPAttribute("mail"), the “mail” attribute will be removed.

Replacing the Values of an Attribute

To replace all of the values of an attribute in an entry, construct a new
LDAPAttribute object, specifying the name of the attribute and the new values
that should replace all of the existing values of the attribute. Then, do one of
the following:

• If you are only making a single change to the entry, construct a new
LDAPModification object to specify that change. Pass
LDAPModification.REPLACE and the LDAPAttribute object as arguments
to the LDAPModification constructor.

• If you are collecting multiple changes to an entry in an
LDAPModificationSet object, invoke the add method to add this change
to the list. Pass LDAPModification.REPLACE and the LDAPAttribute
object as arguments to this method.
114 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Modifying an Entry
For example, the following section of code prepares to replace the existing
values of the “mail” attribute with the values “bjensen@airius.com” and
“babs@airius.com”.

...
LDAPModificationSet mods = new LDAPModificationSet();
String attrValues = { "bjensen@airius.com", "babs@airius.com" }
LDAPAttribute attrMail = new LDAPAttribute("mail", attrValues);
mods.add(LDAPModification.REPLACE, attrMail);
...

Note that if the specified attribute does not exist in the entry, the attribute will
be added to the entry. For example, if the “mail” attribute does not exist in the
entry, replacing the values “bjensen@airius.com” and “babs@airius.com” will
add the “mail” attribute to the entry.

Also note that if you do not specify any values in the LDAPAttribute object,
the attribute will be removed. For example, if you construct the object by
invoking LDAPAttribute("mail"), the “mail” attribute will be removed.

Adding a New Attribute

To add a new attribute to an entry, follow the instructions under “Adding New
Values to an Attribute” or “Replacing the Values of an Attribute”. If you add or
replace values for an attribute that does not exist in the entry, the attribute will
be added to the entry.

Removing an Attribute

To remove an attribute from an entry, you can do one of the following:

• replace the values of the attribute with no values (construct the
LDAPAttribute object with no values)

• specify that you want to remove a value from the attribute, and specify no
value (construct the LDAPAttribute object with no values)

• remove all values of the attribute

For example, the following section of code prepares to remove the “mail” and
“description” attributes from an entry. This example demonstrates how you can
use either LDAPModification.REPLACE or LDAPModification.DELETE to
remove the attribute.
Chapter 8, Adding, Updating, and Deleting Entries 115

Modifying an Entry
...
LDAPModificationSet mods = new LDAPModificationSet();
LDAPAttribute attrMail = new LDAPAttribute("mail");
LDAPAttribute attrDesc = new LDAPAttribute("description");
mods.add(LDAPModification.REPLACE, attrMail);
mods.add(LDAPModification.DELETE, attrDesc);
...

For more information on removing or replacing values, see “Removing Values
to an Attribute” or “Replacing the Values of an Attribute”.

Modifying the Entry in the Directory

When you are done specifying the change (an LDAPModification object) or
list of changes (LDAPModificationSet) that you want made, you can pass this
object with the distinguished name of the entry that you want modified to the
modify method of the LDAPConnection object.

Before you modify an entry, make sure of the following:

• You are not removing any of the required attributes for that object class.

For example, in the Netscape Directory Server, organizational units are
represented by entries of the “organizationalUnit” object class. The “ou”
attribute is a required attribute of the object class and should not be
removed.

For a listing of object classes and their required attributes, see the Directory
Server Administrator’s Guide.

• Make sure that you authenticate as a user who has the access permissions
to modify the entry in the directory. (If you do not have permission to
modify the entry, an LDAPException is thrown with the result code
LDAPException.INSUFFICIENT_ACCESS_RIGHTS.)

Example of Modifying an Entry

The following example modifies the entry in the directory for the user named
William Jensen.

import netscape.ldap.*;
import java.util.*;
public class ModAttrs {
116 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Modifying an Entry
public static void main(String[] args) {
/* Specify the entry to be modified. */
String ENTRYDN = "uid=wbjensen, ou=People, o=Airius.com";

/* Create a new set of modifications. */
LDAPModificationSet mods = new LDAPModificationSet();

/* Add each change to an attribute to the set of modifications. */
LDAPAttribute attrEmail = new LDAPAttribute("mail",

"willj@airius.com");
mods.add(LDAPModification.REPLACE, attrEmail);

LDAPAttribute attrDesc = new LDAPAttribute("description",
"This entry was modified with the modattrs program");

mods.add(LDAPModification.ADD, attrDesc);

LDAPAttribute attrPhone = new
LDAPAttribute("telephoneNumber");

mods.add(LDAPModification.DELETE, attrPhone);

/* Connect to the server and modify the entry. */
LDAPConnection ld = null;
int status = -1;
try {

ld = new LDAPConnection();

/* Connect to the server. */
String HOSTNAME = "localhost";
ld.connect(HOSTNAME, LDAPv2.DEFAULT_PORT);

/* Authenticate to the server as directory manager */
String MGR_DN = "cn=Directory Manager";
String MGR_PW = "23skidoo";
ld.authenticate(MGR_DN, MGR_PW);

/* Now modify the entry in the directory */
ld.modify(ENTRYDN, mods);
System.out.println("Successfully modified the entry.");

} catch(LDAPException e) {
if (e.getLDAPResultCode() ==

LDAPException.NO_SUCH_OBJECT)
System.out.println("Error: No such entry");

else if (e.getLDAPResultCode() ==
LDAPException.INSUFFICIENT_ACCESS_RIGHTS)
System.out.println("Error: Insufficient rights");

else if (e.getLDAPResultCode() ==
LDAPException.ATTRIBUTE_OR_VALUE_EXISTS)
System.out.println("Error: Attribute or value exists");

else
System.out.println("Error: " + e.toString());
Chapter 8, Adding, Updating, and Deleting Entries 117

Deleting an Entry
}

/* Disconnect when done. */
if ((ld != null) && ld.isConnected()) {

try {
ld.disconnect();

} catch (LDAPException e) {
System.out.println("Error: " + e.toString());

}
}
System.exit(status);

}
}

Deleting an Entry
To remove an entry from the directory, invoke the delete method of the
LDAPConnection object and specify the distinguished name (DN) of the entry
that you want to remove.

Before you delete an entry, make sure that you authenticate as a user who has
the access permissions to remove the entry from the directory. (If you do not
have permission to remove the entry, an LDAPException is thrown with the
result code LDAPException.INSUFFICIENT_ACCESS_RIGHTS.)

Example of Deleting an Entry

The following section of code deletes the entry for the user named William
Jensen.

import netscape.ldap.*;
import java.util.*;
public class Del {

public static void main(String[] args) {

/* Connect to the server and delete the entry. */
LDAPConnection ld = null;
int status = -1;
try {

ld = new LDAPConnection();

/* Connect to the server. */
String HOSTNAME = "localhost";
118 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Changing the Name of an Entry
ld.connect(HOSTNAME, LDAPv2.DEFAULT_PORT);

/* Authenticate to the server as the directory manager. */
String MGR_DN = "cn=Directory Manager";
String MGR_PW = "23skidoo";
ld.authenticate(MGR_DN, MGR_PW);

/* Delete the entry. */
String dn = "uid=wbjensen, ou=People, o=Airius.com";
ld.delete(dn);
System.out.println("Entry deleted");

}

catch(LDAPException e) {
if (e.getLDAPResultCode() ==

LDAPException.NO_SUCH_OBJECT)
System.out.println("Error: No such entry");

else if (e.getLDAPResultCode() ==
LDAPException.INSUFFICIENT_ACCESS_RIGHTS)
System.out.println("Error: Insufficient rights");

else
System.out.println("Error: " + e.toString());

}
/* When done, disconnect from the server. */
if ((ld != null) && ld.isConnected()) {

try {
ld.disconnect();

} catch (LDAPException e) {
System.out.println("Error: " + e.toString());

}
}
System.exit(status);

}
}

Changing the Name of an Entry
To rename an entry, invoke the rename method of the LDAPConnection
object. Using this method, you can do the following:

• Change the relative distinguished name (RDN) of an entry. For example,
you can

• Change the location of an entry in the directory tree (in other words,
change the distinguished name of an entry)
Chapter 8, Adding, Updating, and Deleting Entries 119

Changing the Name of an Entry
Note that not all LDAP servers support the ability to change the location of an
entry in the directory tree. (The Netscape Directory Server does not yet support
this capability.)

For a complete example, see “Example of Renaming an Entry”.

Removing the Attribute for the Old
RDN

When invoking the rename method of the LDAPConnection object, you can
specify a deleteoldrdn parameter that allows you to remove the old RDN
from the entry. The deleteoldrdn parameter is best explained through this
example. Suppose an entry has the following values for the uid attribute:

uid: wbjensen
uid: wbj

The following method adds "wjensen" to this list of values and removes the
"wbjensen" value:

ld.rename("uid=wbjensen,ou=People,o=Airius.com", "uid=wjensen",
true);

The resulting entry has the following values:

uid: wjensen
uid: wbj

If instead false is passed for the deleteoldrdn parameter:

ld.rename("uid=wbjensen,ou=People,o=Airius.com", "uid=wjensen",
false);

the "Barbara Jensen" value is not removed from the entry:

uid: wjensen
uid: wbjensen
uid: wbj

Before you rename an entry, make sure that you authenticate as a user who has
the access permissions to rename the entry in the directory. (If you do not have
permission to rename the entry, an LDAPException is thrown with the result
code LDAPException.INSUFFICIENT_ACCESS_RIGHTS.)
120 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Changing the Name of an Entry
Example of Renaming an Entry

The following example changes the RDN of an entry from uid=wbjensen to
uid=wjensen.

import netscape.ldap.*;
import java.util.*;
public class Rename {

public static void main(String[] args) {
/* Connect to the server and rename the entry. */
LDAPConnection ld = null;
int status = -1;
try {

ld = new LDAPConnection();

/* Connect to the server. */
String HOSTNAME = "localhost";
ld.connect(HOSTNAME, LDAPv2.DEFAULT_PORT);

/* Authenticate to the server as the directory manager. */
String MGR_DN = "cn=Directory Manager";
String MGR_PW = "23skidoo";
ld.authenticate(MGR_DN, MGR_PW);

/* Change the RDN of the entry. */
String dn = "uid=wbjensen,ou=People,o=Airius.com";
String nrdn = "uid=wjensen";
ld.rename(dn, nrdn, true);
System.out.println("Entry " + dn + " has been renamed.");

}
catch(LDAPException e) {

if (e.getLDAPResultCode() ==
LDAPException.NO_SUCH_OBJECT)
System.out.println("Error: No such entry");

else if (e.getLDAPResultCode() ==
LDAPException.INSUFFICIENT_ACCESS_RIGHTS)
System.out.println("Error: Insufficient rights");

else if (e.getLDAPResultCode() ==
LDAPException.ATTRIBUTE_OR_VALUE_EXISTS)
System.out.println("Error: Attribute or value exists");

else
System.out.println("Error: " + e.toString());

}
/* Done, so disconnect */
if ((ld != null) && ld.isConnected()) {

try {
ld.disconnect();

} catch (LDAPException e) {
System.out.println("Error: " + e.toString());
Chapter 8, Adding, Updating, and Deleting Entries 121

Changing the Name of an Entry
}
}
System.exit(status);

}
}

122 Netscape Directory SDK 4.0 for Java Programmer’s Guide

C h a p t e r

9
Comparing Values in Entries
This chapter explains how to compare the value of an attribute in an entry
against a specified value.

Comparing the Value of an Attribute
The LDAP Java classes allow you to compare a specified value against the
value of an entry in the directory. For example, you can check to see if the
“mail” attribute of an entry contains the value “bjensen@airius.com”.

To compare a specified value against an attribute of an entry in the directory,
you need to follow this general procedure:

1. Specify the name of the attribute that you want to check and the value that
you want to use for comparison. (See “Specifying the Attribute and Value”.)

2. Use the distinguished name of the entry to find the entry in the directory
and perform the comparison. (See “Performing the Comparison”.)

For a complete example, see “Example of Comparing a Value Against an
Attribute”.
Chapter 9, Comparing Values in Entries 123

Comparing the Value of an Attribute
Specifying the Attribute and Value

Use an LDAPAttribute object to specify the name of the attribute that you
want to check and the value that you want to use in the comparison.

For example, to compare the value “bjensen@airius.com” against the value of
the “mail” attribute in an entry, use the following constructor:

...
LDAPAttribute attr = new LDAPAttribute("mail", "bjensen@airius.com");
...

Performing the Comparison

To perform the comparison, use the compare method of the LDAPConnection
object. Specify the distinguished name (DN) of the entry that you want to
compare.

This method returns true if the attribute in the entry contains the specified
value.

Example of Comparing a Value Against
an Attribute

The following section of code determines if the values “person” and “xyzzy” are
in the “objectclass” attribute of the entry for Barbara Jensen.

import netscape.ldap.*;
import java.util.*;
public class Compare {

public static void main(String[] args) {

/* Connect to the server and perform the comparison. */
LDAPConnection ld = null;
int status = -1;
try {

ld = new LDAPConnection();

/* Connect to the server. */
String HOSTNAME = "localhost";
ld.connect(HOSTNAME, LDAPv2.DEFAULT_PORT);
124 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Comparing the Value of an Attribute
/* Authenticate to the server as the directory manager. */
String MGR_DN = "cn=Directory Manager";
String MGR_PW = "23skidoo";
ld.authenticate(MGR_DN, MGR_PW);

/* Perform the comparisons. */
String ENTRYDN = "uid=bjensen, ou=People, o=Airius.com";
LDAPAttribute attr = new LDAPAttribute("objectclass",

"person");
boolean ok = ld.compare(ENTRYDN, attr);
reportResults(ok, attr);

attr = new LDAPAttribute("objectclass", "xyzzy");
ok = ld.compare(ENTRYDN, attr);
reportResults(ok, attr);

}
catch(LDAPException e) {

System.out.println("Error: " + e.toString());
}

/* Done, so disconnect */
if ((ld != null) && ld.isConnected()) {

try {
ld.disconnect();

} catch (LDAPException e) {
System.out.println("Error: " + e.toString());
}

}
System.exit(status);

}

/* Print the results of the comparison. */
private static void reportResults(boolean ok, LDAPAttribute attr) {

String result;
if (ok)

result = new String();
else

result = new String("not ");
Enumeration en = attr.getStringValues();
if (en != null) {

String val = (String)en.nextElement();
System.out.println(

"The value " + val + " is " + result + "contained in the " +
attr.getName() + " attribute.");

}
}

}

Chapter 9, Comparing Values in Entries 125

Comparing the Value of an Attribute
126 Netscape Directory SDK 4.0 for Java Programmer’s Guide

C h a p t e r

10
Working with LDAP URLs
This chapter describes what LDAP URLs are and explains how to use LDAP
URLs to search and retrieve data from the directory.

The chapter contains the following sections:

• “Understanding LDAP URLs”

• “Examples of LDAP URLs”

• “Getting the Components of an LDAP URL”

• “Processing an LDAP URL”

Understanding LDAP URLs
An LDAP URL is a URL that begins with the ldap:// protocol prefix (or
ldaps://, if the server is communicating over an SSL connection) and
specifies a search request to be sent to an LDAP server.

In the LDAP Java classes, you can represent an LDAP URL as an LDAPUrl
object. You can invoke methods of this object to parse an LDAP URL into its
components and to process a search request specified by an LDAP URL.

LDAP URLs have the following syntax:
Chapter 10, Working with LDAP URLs 127

Understanding LDAP URLs
ldap[s]://<hostname>:<port>/<base_dn>?<attributes>?<scope>?<filter>

(RFC 2255, The LDAP URL Format, also specifies that a "bindname" extension
can be present at the end of the URL. At this point in time, the LDAP Java
classes do not handle this extension.)

The ldap:// protocol is used to connect to LDAP servers over unsecured
connections, and the ldaps:// protocol is used to connect to LDAP servers
over SSL connections.

Table 10.1 lists the components of an LDAP URL.

Table 10.1 Components of an LDAP URL

Component Description

<hostname> Name (or IP address in dotted format) of the LDAP server (for
example, ldap.netscape.com or 192.202.185.90).

<port> Port number of the LDAP server (for example, 696).
If no port is specified, the standard LDAP port (389) is used.

<base_dn> Distinguished name (DN) of an entry in the directory. This
DN identifies the entry that is starting point of the search.
If this component is empty, the search starts at the root DN.

<attributes> The attributes to be returned. To specify more than one
attribute, use commas to delimit the attributes (for example,
"cn,mail,telephoneNumber").
If no attributes are specified in the URL, all attributes are
returned.
128 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Understanding LDAP URLs
Any "unsafe" characters in the URL need to be represented by a special
sequence of characters (this is often called escaping unsafe characters). For
example, a space must be represented as %20. Thus, the distinguished name
"ou=Product Development" must be encoded as
"ou=Product%20Development".

Note that <attributes>, <scope>, and <filter> are identified by their
positions in the URL. If you do not want to specify any attributes, you still need
to include the question marks delimiting that field.

For example, to specify a subtree search starting from "o=Airius.com" that
returns all attributes for entries matching "(sn=Jensen)", use the following
URL:

ldap://ldap.netscape.com/o=Airius.com??sub?(sn=Jensen)

Note that the two consecutive question marks — ?? — indicate that no attributes
have been specified. Since no specific attributes are identified in the URL, all
attributes are returned in the search.

<scope> The scope of the search, which can be one of these values:

• base retrieves information only about the distinguished
name (<base_dn>) specified in the URL.

• one retrieves information about entries one level below
the distinguished name (<base_dn>) specified in the URL.
The base entry is not included in this scope.

• sub retrieves information about entries at all levels
below the distinguished name (<base_dn>) specified in
the URL. The base entry is included in this scope.

If no scope is specified, the server performs a base search.

<filter> Search filter to apply to entries within the specified scope of
the search.
If no filter is specified, the server uses the filter
(objectClass=*).

Table 10.1 Components of an LDAP URL

Component Description
Chapter 10, Working with LDAP URLs 129

Examples of LDAP URLs
Examples of LDAP URLs
The following LDAP URL specifies a base search for the entry with the
distinguished name "o=Airius.com".

ldap://ldap.netscape.com/o=Airius.com

• Because no port number is specified, the standard LDAP port number (389)
is used.

• Because no attributes are specified, the search returns all attributes.

• Because no search scope is specified, the search is restricted to the base
entry "o=Airius.com".

• Because no filter is specified, the default filter "(objectclass=*)" is used.

The following LDAP URL retrieves the postalAddress attribute of the
o=Airius.com entry:

ldap://ldap.netscape.com/o=Airius.com?postalAddress

• Because no search scope is specified, the search is restricted to the base
entry "o=Airius.com".

• Because no filter is specified, the default filter "(objectclass=*)" is used.

The following LDAP URL retrieves the cn, mail, and telephoneNumber
attributes of the entry for Barbara Jensen:

ldap://ldap.netscape.com/
uid=bjensen,ou=People,o=Airius.com?cn,mail,telephoneNumber

• Because no search scope is specified, the search is restricted to the base
entry "uid=bjensen,ou=People,o=Airius.com".

• Because no filter is specified, the default filter "(objectclass=*)" is used.

The following LDAP URL specifies a search for entries that have the last name
Jensen and are at any level under "o=Airius.com":

ldap://ldap.netscape.com/o=Airius.com??sub?(sn=Jensen)

• Because no attributes are specified, the search returns all attributes.

• Because the search scope is sub, the search encompasses the base entry
"o=Airius.com" and entries at all levels under the base entry.
130 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Getting the Components of an LDAP URL
The following LDAP URL specifies a search for the object class for all entries
one level under "o=Airius.com":

ldap://ldap.netscape.com/o=Airius.com?objectClass?one

• Because the search scope is one, the search encompasses all entries one
level under the base entry "o=Airius.com". The search scope does not
include the base entry.

• Because no filter is specified, the default filter "(objectclass=*)" is used.

Important The syntax for LDAP URLs does not include any means for specifying
credentials or passwords. Search requests initiated through LDAP URLs are
unauthenticated.

Getting the Components of an LDAP URL
To get the individual components of an LDAP URL, pass the URL to the
LDAPUrl constructor to create a new LDAPUrl object, then use the following
methods:

• To get an array of the attributes that should be returned in the search
results, use the getAttributeArray method. To get these attributes as an
enumeration, use the getAttributes method.

• To get the hostname of the LDAP server, use the getHost method.

• To get the port number of the LDAP server, use the getPort method.

• To get the base DN, use the getDN method.

• To get the scope of the search, use the getScope method.

• To get the search filter, use the getFilter method.

Processing an LDAP URL
To process the search request specified by an LDAP URL, you can invoke one
of the following methods, passing in the LDAPUrl object:
Chapter 10, Working with LDAP URLs 131

Processing an LDAP URL
• If the URL specifies a base search for a single entry, invoke the read
method of the LDAPConnection object to read the entry from the directory.

• Otherwise, invoke the search method of the LDAPConnection object to
perform the search.

Both methods create a new LDAPConnection object, connect to the LDAP
server specified in the URL, perform the search, and disconnect.
132 Netscape Directory SDK 4.0 for Java Programmer’s Guide

3
Advanced Topics
Chapter 11 Getting Server Information

This chapter explains how to access and modify information about your LDAP server over
the LDAP protocol.

Chapter 12 Connecting Over SSL

This chapter describes the process of enabling an LDAP client to connect to an LDAP server
over the Secure Sockets Layer (SSL) protocol. The chapter covers the procedures for
connecting to an LDAP server and authenticating.

Chapter 13 Working with LDAP Controls

This chapter explains how LDAP controls work and how to use the LDAP controls that are
supported by the Netscape Directory Server.

Chapter 14 Using SASL Authentication

This chapter describes the process of using a SASL mechanism to authenticate an LDAP
client to an LDAP server.

Chapter 15 Using the JNDI Service Provider

This chapter explains JNDI and shows you how to use Netscape’s LDAP Service Provider for
JNDI.

Chapter 16 Working with Extended Operations

This chapter explains how LDAP v3 extended operations work and how to use
the extended operations that are supported by your LDAP server.

Chapter 17 Using the Asynchronous Interface

This chapter shows you how to use the Asynchronous Interface to LDAP in Java
applications.
134 Netscape Directory SDK 4.0 for Java Programmer’s Guide

C h a p t e r

11
Getting Server Information
This chapter explains how to access and modify information about your LDAP
server over the LDAP protocol.

The chapter includes the following sections:

• “Understanding DSEs”

• “Getting the Root DSE”

• “Determining If the Server Supports LDAP v3”

• “Getting Schema Information”

Understanding DSEs
A DSE is a DSA-specific entry in the directory. (A DSA is a directory system
agent, which is an X.500 term for a directory server.) A DSE contains
information specific to the server.

In a directory tree, the root of the tree is the root DSE. It is not part of any
naming context (for example, it is above "o=Airius.com" in the directory tree).

(Note that the root DSE is specified as part of the LDAP v3 protocol. LDAP v2
servers do not necessarily have a root DSE.)
Chapter 11, Getting Server Information 135

Getting the Root DSE
The root DSE can contain the following information:

• the naming contexts of this server (for example, "o=Airius.com")

• URLs of alternate servers to contact if this server is unavailable

• the LDAP v3 extended operations supported by this server (see Chapter 16,
“Working with Extended Operations”for details)

• the LDAP v3 controls supported by this server (see Chapter 13, “Working
with LDAP Controls” for details)

• the SASL mechanisms supported by this server (see Chapter 14, “Using SASL
Authentication” for details)

• the versions of the LDAP protocol supported by this server (for example, 2
and 3)

• additional server-specific information

Getting the Root DSE
The root DSE for an LDAP server specifies information about the server. The
following table lists the types of information available in different attributes of
the root DSE.

Table 11.1 Information available in the root DSE

Attribute Name Description of Values

namingContexts The values of this attribute are the naming contexts
supported by this server (for example, "o=Airius.com").

altServer The values of this attribute are LDAP URLs that identify
other servers that can be contacted if this server is
unavailable.

supportedExtension The values of this attribute are the object identifiers
(OIDs) of the LDAP v3 extended operations supported
by this server.
If this attribute is not in the root DSE, the server does
not support any extended operations.
136 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Getting the Root DSE
To get the root DSE for an LDAP server, do the following:

1. Turn off automatic referral handling and connect to the LDAP server (see
“Creating a Connection and Setting Preferences”, “Connecting to the LDAP
Server”, and “Enabling or Disabling Referral Handling” for details).

2. Search the directory using the following criteria:

• Set the search scope to a base search.

• Specify an empty string for the base DN.

• Use the search filter (objectclass=*).

For details on how to use Java classes to search the directory, see
Chapter 6, “Searching the Directory”.

If an LDAPException is thrown with a result code such as
OPERATION_ERROR, PROTOCOL_ERROR, REFERRAL, or NO_SUCH_OBJECT, the
LDAP server probably does not support LDAP v3.

The following section of code gets the root DSE for a server and prints out its
attributes.

...
import netscape.ldap.*;
import java.util.*;
...

supportedControl The values of this attribute are the object identifiers
(OIDs) of the LDAP v3 controls supported by this
server.
If this attribute is not in the root DSE, the server does
not support any LDAP v3 controls.

supportedSASLMechanisms The values of this attribute are the names of the SASL
mechanisms supported by the server.
If this attribute is not in the root DSE, the server does
not support any SASL mechanisms.

supportedLDAPVersion The values of this attribute are the versions of the
LDAP protocol supported by this server (for example,
2 and 3).

Table 11.1 Information available in the root DSE

Attribute Name Description of Values
Chapter 11, Getting Server Information 137

Getting the Root DSE
/* Create a new connection. */
LDAPConnection ld = new LDAPConnection();
String hostname = "localhost";
int portnumber = LDAPv2.DEFAULT_PORT;

try {
/* Connect to the LDAP server. */
ld.connect(3, hostname, portnumber);

/* Get the root DSE by doing a search where:
- The scope is SCOPE_BASE
- The base is ""
- The search filter is "(objectclass=*)"

*/
int MY_SCOPE = LDAPv2.SCOPE_BASE;
String MY_FILTER = "(objectclass=*)";
String MY_SEARCHBASE = "";
LDAPSearchResults res = ld.search(MY_SEARCHBASE,

MY_SCOPE, MY_FILTER, null, false);

/* There should be only one entry in the results (the root DSE). */
while (res.hasMoreElements()) {

LDAPEntry findEntry = (LDAPEntry)res.nextElement();

/* Get the attributes of the root DSE. */
LDAPAttributeSet findAttrs = findEntry.getAttributeSet();
Enumeration enumAttrs = findAttrs.getAttributes();

/* Iterate through each attribute. */
while (enumAttrs.hasMoreElements()) {

LDAPAttribute anAttr = (LDAPAttribute)enumAttrs.nextElement();

/* Get and print the attribute name. */
String attrName = anAttr.getName();
System.out.println(attrName);

/* Get the values of the attribute. */
Enumeration enumVals = anAttr.getStringValues();

/* Get and print each value. */
if (enumVals == null) {

System.out.println("\tNo values found.");
continue;

}
while (enumVals.hasMoreElements()) {

String aVal = (String)enumVals.nextElement();
System.out.println("\t" + aVal);

}
}

}

138 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Determining If the Server Supports LDAP v3
}
catch(LDAPException e) {

System.out.println("Error: " + e.toString());
}
...

Determining If the Server Supports LDAP v3
You can determine what version an LDAP server supports by getting the
supportedLDAPVersion attribute from the root DSE. This attribute should
contain the value 3. (It may also contain other values, such as 2, so you may
want to check through the values of this attribute.)

Note that you do not need to authenticate or bind (see “Binding and
Authenticating to an LDAP Server” for details) before searching the directory.
Unlike the LDAP v2 protocol, the LDAP v3 protocol states that clients do not
need to bind to the server before performing LDAP operations.

The following section of code connects to an LDAP server and determines
whether or not that server supports the LDAP v3 protocol.

...
import netscape.ldap.*;
import java.util.*;
...
/* Create a new connection. */
LDAPConnection ld = new LDAPConnection();
String hostname = "localhost";
int portnumber = LDAPv2.DEFAULT_PORT;
boolean supportsV3 = false;

try {
/* Connect to the LDAP server. */
ld.connect(3, hostname, portnumber);

/* Get the root DSE by doing a search where:
- The scope is SCOPE_BASE
- The base is ""
- The search filter is "(objectclass=*)"

*/
int MY_SCOPE = LDAPv2.SCOPE_BASE;
String MY_FILTER = "(objectclass=*)";
String MY_SEARCHBASE = "";
LDAPSearchResults res = ld.search(MY_SEARCHBASE,

MY_SCOPE, MY_FILTER, null, false);
Chapter 11, Getting Server Information 139

Getting Schema Information
/* There should be only one entry in the results (the root DSE). */
while (res.hasMoreElements()) {

LDAPEntry findEntry = (LDAPEntry)res.nextElement();

/* Get the supportedLDAPVersion attribute. */
LDAPAttribute versionAttr =

findEntry.getAttribute("supportedLDAPVersion");

/* Check if "3" is one of the supported LDAP versions. */
Enumeration enumVals = versionAttr.getStringValues();
if (enumVals == null) {

System.out.println("\tNo values found.");
continue;

}
while (enumVals.hasMoreElements()) {

String aVal = (String)enumVals.nextElement();
if (aVal.equalsIgnoreCase("3")) {

supportsV3 = true;
break;

}
}

}
}
catch(LDAPException e) {

System.out.println("Error: " + e.toString());
}
if (supportsV3) {

System.out.println("This server supports LDAP v3.");
} else {

System.out.println("This server does not support LDAP v3.");
}
...

Getting Schema Information
In the LDAP v3 protocol, you can get and modify the schema for an LDAP
server over the LDAP protocol. This section discusses the classes and methods
that you can use to do this.

• “Overview: Schema Over LDAP”

• “Getting the Schema for an LDAP Server”

• “Working with Object Class Descriptions”

• “Working with Attribute Type Descriptions”
140 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Getting Schema Information
• “Working with Matching Rule Descriptions”

• “Example of Working with the Schema”

Overview: Schema Over LDAP

An entry can specify the schema that defines the object classes, attributes, and
matching rules used by the directory. This entry is called the subschema entry.

To find the DN of the subschema entry, get the subschemaSubentry
operational attribute from the root DSE or from any entry. (See “Specifying the
Attributes to Retrieve” for details.) For example, in the root DSE for the
Netscape Directory Server 4.1, the subschemaSubentry attribute specifies the
location of the subschema entry.

The subschema entry itself can have the following attributes:

• objectClasses specifies the object class definitions in the schema. Each
value of this attribute is an object class that is known to the server.

• attributeTypes specifies the attribute type definitions in the schema.
Each value of this attribute is an attribute type that is known to the server.

• matchingRules specifies the matching rule definitions in the schema. Each
value of this attribute is a matching rule that is known to the server.

• matchingRuleUse specifies the use of a matching rule in the schema. Each
value of this attribute is a matching rule use description. A matching rule
use description specifies the OIDs of the attributes that can be used with
this extensible matching rule.

In the Netscape Directory SDK for Java, the schema and elements in the
schema (object classes, attribute types, matching rules, and the use of matching
rules) are represented by classes in the netscape.ldap package. The
following table lists these classes.
Chapter 11, Getting Server Information 141

Getting Schema Information
Internally, these classes and their methods get and manipulate the subschema
entry using standard LDAP operations, such as search and modify.

Getting the Schema for an LDAP Server

To get the schema for an LDAP v3 server, construct a new LDAPSchema object.
Then, invoke the fetchSchema method, passing in an LDAPConnection object.

For example:

...
import netscape.ldap.*;
...
LDAPConnection ld = new LDAPConnection();

/* Construct a new LDAPSchema object to hold
the schema that you want to retrieve. */

LDAPSchema dirSchema = new LDAPSchema();
try {

ld.connect(hostname, portnumber, bindDN, bindPW);
/* Get the schema from the Directory. Anonymous access okay. */
dirSchema.fetchSchema(ld);
...

} catch (Exception e) {
System.err.println(e.toString());

}
...

Table 11.2 Classes that represent the schema and schema elements

Class Name Description

LDAPSchema The schema used by an LDAP server.

LDAPSchemaElement Base class that represents a generic element in the
schema.

LDAPObjectClassSchema An object class description in the schema.

LDAPAttributeSchema An attribute type description in the schema.

LDAPMatchingRuleSchema A matching rule or matching rule use description
in the schema.
142 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Getting Schema Information
Working with Object Class Descriptions

In the LDAP Java classes, the object class descriptions in a schema are
represented by objects of the LDAPObjectClassSchema class.

To get the object class descriptions from the schema, you can invoke one of the
following methods:

• To get an enumeration of LDAPObjectClassSchema objects representing
the object classes in the schema, invoke the getObjectClasses method.

• To get a specific object class description, invoke the getObjectClass
method and pass in the name of the object class.

• To get an enumeration of the names of object classes in the schema, invoke
the getObjectClassNames method.

An object class description consists of the following information, which you can
retrieve by invoking methods of the LDAPObjectClassSchema object:

• an OID identifying the object class (get this by invoking the getOID
method, which is inherited from the LDAPSchemaElement base class)

• a name identifying the object class (get this by invoking the getName
method, which is inherited from the LDAPSchemaElement base class)

• a description of the object class (get this by invoking the getDescription
method, which is inherited from the LDAPSchemaElement base class)

• the name of the parent object class (get this by invoking the getSuperior
method)

• the list of attribute types that are required in this object class (get this by
invoking the getRequiredAttributes method)

• the list of attribute types that are allowed (optional) in this object class (get
this by invoking the getOptionalAttributes method)

To add an object class description to the schema, construct a new
LDAPObjectClassSchema object. You can specify the pieces of information in
the object as individual arguments or in a description formatted according to
RFC 2252, Lightweight Directory Access Protocol (v3): Attribute Syntax
Definitions (http://www.ietf.org/rfc/rfc2252.txt).
Chapter 11, Getting Server Information 143

Getting Schema Information
Then, you can either invoke the add method of this object (inherited from the
LDAPSchemaElement base class) or the addObjectClass method of the
LDAPSchema object.

To remove an object class description, you can invoke the remove method of
this object (inherited from the LDAPSchemaElement base class).

Working with Attribute Type
Descriptions

In the LDAP Java classes, the attribute type descriptions in a schema are
represented by objects of the LDAPAttributeSchema class.

To get the attribute type descriptions from the schema, you can invoke one of
the following methods:

• To get an enumeration of LDAPAttributeSchema objects representing the
attribute types in the schema, invoke the getAttributes method.

• To get a specific attribute type description, invoke the getAttribute
method and pass in the name of the attribute type.

• To get an enumeration of the names of attribute types in the schema,
invoke the getAttributeNames method.

An attribute type description consists of the following information, which you
can retrieve by invoking methods of the LDAPAttributeSchema object:

• an OID identifying the attribute type (get this by invoking the getOID
method, which is inherited from the LDAPSchemaElement base class)

• a name identifying the attribute type (get this by invoking the getName
method, which is inherited from the LDAPSchemaElement base class)

• a description of the attribute type (get this by invoking the
getDescription method), which is inherited from the
LDAPSchemaElement base class)

• the syntax used by the attribute type (get this by invoking the getSyntax
method)
144 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Getting Schema Information
• an indicator of whether the attribute type is single-valued or multi-valued
(get this by invoking the isSingleValued method)

To add an attribute type description to the schema, construct a new
LDAPAttributeSchema object. You can specify the pieces of information in the
object as individual arguments or in a description formatted according to RFC
2252, Lightweight Directory Access Protocol (v3): Attribute Syntax Definitions
(http://www.ietf.org/rfc/rfc2252.txt).

Then, you can either invoke the add method of this object (inherited from the
LDAPSchemaElement base class) or the addAttribute method of the
LDAPSchema object.

To remove an attribute type description, you can invoke the remove method of
this object (inherited from the LDAPSchemaElement base class).

Working with Matching Rule
Descriptions

In the LDAP Java classes, the matching rule descriptions and matching rule
"use" descriptions in a schema are represented by objects of the
LDAPMatchingRuleSchema class.

To get the matching rule descriptions from the schema, you can invoke one of
the following methods:

• To get an enumeration of LDAPMatchingRuleSchema objects representing
the matching rules in the schema, invoke the getMatchingRules method.

• To get a specific matching rule description, invoke the getMatchingRule
method and pass in the name of the matching rule.

• To get an enumeration of the names of matching rules in the schema,
invoke the getMatchingRuleNames method.

A matching rule description consists of the following information, which you
can retrieve by invoking methods of the LDAPMatchingRuleSchema object:

• an OID identifying the matching rule (get this by invoking the getOID
method, which is inherited from the LDAPSchemaElement base class)
Chapter 11, Getting Server Information 145

Getting Schema Information
• a name identifying the matching rule (get this by invoking the getName
method, which is inherited from the LDAPSchemaElement base class)

• a description of the matching rule (get this by invoking the
getDescription method, which is inherited from the
LDAPSchemaElement base class)

• the syntax of the matching rule (get this by invoking the getSyntax
method, which is inherited from the LDAPAttributeSchema class)

To add a matching rule description to the schema, construct a new
LDAPMatchingRuleSchema object. You can specify the pieces of information in
the object as individual arguments or in a description formatted according to
RFC 2252, Lightweight Directory Access Protocol (v3): Attribute Syntax
Definitions (http://www.ietf.org/rfc/rfc2252.txt).

Then, you can either invoke the add method of this object (inherited from the
LDAPSchemaElement base class) or the addMatchingRule method of the
LDAPSchema object.

To remove a matching rule description, you can invoke the remove method of
this object (inherited from the LDAPSchemaElement base class).

Example of Working with the Schema

The following section of code illustrates how to get the schema and how to add
object classes and attribute types.

...
import netscape.ldap.*;
import java.util.*;
...
public class GetSchema {

public static void main(String[] args) {
LDAPConnection ld = new LDAPConnection();
String hostname = "localhost";
int portnumber = LDAPv2.DEFAULT_PORT;
String bindDN = "cn=Directory Manager";
String bindPW = "23skidoo";

/* Construct a new LDAPSchema object to hold
the schema that you want to retrieve. */

LDAPSchema dirSchema = new LDAPSchema();
try {

ld.connect(hostname, portnumber, bindDN, bindPW);
146 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Getting Schema Information
/* Get the schema from the Directory. Anonymous access okay. */
dirSchema.fetchSchema(ld);

/* Get and print the def. of the inetOrgPerson object class. */
LDAPObjectClassSchema objClass =

dirSchema.getObjectClass("inetOrgPerson");
if (objClass != null)

System.out.println("inetOrgPerson := " +
objClass.toString());

/* Get and print the def. of the userPassword attribute. */
LDAPAttributeSchema attrType =

dirSchema.getAttribute("userpassword");
if (attrType != null)

System.out.println("userPassword := " +
attrType.toString());

/* Add a new object class. */
String[] requiredAttrs = {"cn", "mail"};
String[] optionalAttrs = {"sn", "phoneNumber"};
LDAPObjectClassSchema newObjClass = new LDAPObjectClassSchema(

"newInetOrgPerson", "1.2.3.4.5.6.7", "top", "Experiment",
requiredAttrs, optionalAttrs);

/* Add the new object class to the schema. */
newObjClass.add(ld);

/* Create a new attribute type "hairColor". */
LDAPAttributeSchema newAttrType = new LDAPAttributeSchema(

"hairColor", "1.2.3.4.5.4.3.2.1", "Blonde, red, etc",
LDAPAttributeSchema.cis, false);

/* Add the new attribute type to the schema. */
newAttrType.add(ld);

/* Fetch schema again from the server to verify that the
changes were made. */

dirSchema.fetchSchema(ld);

/* Get and print the new attribute type. */
newAttrType = dirSchema.getAttribute("hairColor");
if (newAttrType != null)

System.out.println("hairColor := " +
newAttrType.toString());

/* Get and print the new object class. */
newObjClass = dirSchema.getObjectClass("newInetOrgPerson");
if (newObjClass != null)

System.out.println("newInetOrgPerson := " +
Chapter 11, Getting Server Information 147

Getting Schema Information
newObjClass.toString());

ld.disconnect();
} catch (Exception e) {

System.err.println(e.toString());
System.exit(1);

}
System.exit(0);

}
}
...
148 Netscape Directory SDK 4.0 for Java Programmer’s Guide

C h a p t e r

12
Connecting Over SSL
This chapter describes the process of enabling an LDAP client to connect to an
LDAP server over the Secure Sockets Layer (SSL) protocol. The chapter covers
the procedures for connecting to an LDAP server and authenticating.

The chapter includes the following sections:

• “How SSL Works with the Netscape Directory SDK for Java”

• “Prerequisites for Connecting Over SSL”

• “Connecting to the Server Over SSL”

• “Using Certificate-Based Client Authentication”

How SSL Works with the Netscape Directory
SDK for Java

The Netscape Directory SDK for Java includes classes and methods to enable
your application to connect to an LDAP server over a Secure Sockets Layer
(SSL).
Chapter 12, Connecting Over SSL 149

How SSL Works with the Netscape Directory SDK for Java
Understanding SSL

The primary goal of the SSL Protocol is to provide privacy and reliability
between two communicating applications. For more information on SSL, see:

• The SSL 3.0 Protocol Specification (http://home.netscape.com/eng/ssl3/ssl-
toc.html)

The Netscape Directory SDK for Java supports SSL 3.0. Note that SSL is not
supported by all LDAP servers.

SSL Over LDAP

When an LDAP client connects to an LDAP server over SSL, the LDAP server
identifies itself by sending its certificate to the LDAP client. The LDAP client
needs to determine whether or not the certificate authority (CA) who issued the
certificate is trusted.

The LDAP server may also request that the client send a certificate to
authenticate itself. (This process is called certificate-based client authentication.)

After receiving the client’s certificate, the LDAP server determines whether or
not the CA who issued the certificate is trusted. If the CA is trusted, the server
uses the subject name in the certificate to determine if the client has access
rights to perform the requested operation.

In order to use SSL, you need a certificate database to hold the CA certificate
and (if certificate-based client authentication is used) the client’s certificate. For
details, see “Prerequisites for Connecting Over SSL”.

Interfaces and Classes for SSL

The Netscape Directory SDK for Java includes the LDAPSocketFactory
interface, which describes a single method, makeSocket, that returns a socket
to a given server (specified by a host name and port number). To establish an
SSL connection, you need to create an object of a class that implements this
interface.
150 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Prerequisites for Connecting Over SSL
Note that the classes that implement this interface in the Netscape Directory
SDK for Java rely on a separate class that implements SSL sockets. In the
constructors for object that implement LDAPSocketFactory, you typically need
to specify the name of a class that implements SSL sockets.

The following classes implement this interface:

• LDAPSSLSocketFactory

Use this class if you are using the netscape.net.SSLSocket class (which
is provided with Netscape Communicator 4.05 and more recent versions) to
implement SSL sockets. You can also use this class if the class that
implements SSL sockets extends the Socket object.

• LDAPSSLSocketWrapFactory

Use this class if the class that implements SSL sockets does not extend the

Socket object. The LDAPSSLSocketWrapFactory class wraps your SSL
socket implementation class in a class that does extend the Socket object.

You can construct an object of one of these factory classes and pass the factory
object to the constructor for the LDAPConnection object to identify the socket
factory that you want used for the connection.

Prerequisites for Connecting Over SSL
The LDAP Java classes that enable you to connect over SSL rely assume the
following:

• Your client has access to a Netscape certificate database.

If you are running your client as an applet in a Netscape Navigator browser,
you can use this certificate database to determine if you trust the certificate
sent from the server.

• The database that you are using contains any one of the following:

• the certificate of the certificate authority (CA) that issued the server’s
certificate

• if the certificate authorities (CAs) are organized in a hierarchy, the
certificate of any of the CAs in the hierarchy

• the certificate of the LDAP server
Chapter 12, Connecting Over SSL 151

Connecting to the Server Over SSL
• The CA certificate is marked as "trusted" in the certificate database.

• If you plan to use certificate-based client authentication, you also need the
following:

• a client certificate (issued by a CA trusted by the LDAP server) in the
certificate database

• a public/private key pair in a Netscape key file (this can be either the
key.db file used by Netscape Navigator or the <alias>-key.db file
used by Netscape servers)

Essentially, when your client sends an initial request to the secure LDAP server,
the server sends its certificate back to your client. Your client determines which
CA issued the server’s certificate and searches the certificate database for the
certificate of that CA.

If your client cannot find the CA certificate or if the CA certificate is marked as
"not trusted," your client refuses to connect to the server.

If you are using certificate-based client authentication, your client retrieves its
certificate from the certificate database and sends it to the server for
authentication. The server determines which CA issued the client’s certificate
and searches its certificate database for the certificate of that CA.

If the server cannot find the CA certificate or if the CA certificate is marked as
"not trusted," the server refuses to authenticate your client.

Connecting to the Server Over SSL
To connect to an LDAP server using SSL, do the following:

1. Construct a new LDAPSSLSocketFactory object or a new
LDAPSSLSocketWrapFactory object.

This object represents the SSL socket factory that will be used to create the
sockets for establishing connections with the LDAP server.

The constructors for these classes allow you to specify the name of the class
that will be used to create the actual sockets.
152 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Using Certificate-Based Client Authentication
• For the LDAPSSLSocketFactory constructor, you should specify a class
that implements the javax.net.ssl.SSLSocket interface. By default,
if you do not specify a class, the netscape.net.SSLSocket class is
used. This class is included with Netscape Communicator 4.05.

• If the SSL socket class does not extend the Socket class (for example,
if it just extends the Object class), use the
LDAPSSLSocketWrapFactory constructor.

2. Pass the object you constructed to the LDAPConnection constructor.

When first establishing a connection to the LDAP server, the makeSocket
method of the specified object will be used to construct the socket.

Using Certificate-Based Client Authentication
Some LDAP servers may be configured to use certificate-based client
authentication. A server may request that your client send a certificate to
identify itself.

Using the Netscape Directory SDK for Java, you can set up your client to
perform certificate-based authentication in either of the following situations:

• Your client is an applet running in a Netscape browser.

• Your client is using a class that implements the LDAPSocketFactory
interface and supports certificate-based client authentication.

Note the following:

• The LDAPSSLSocketWrapFactory class currently does not support
certificate-based client authentication.

• The LDAPSSLSocketFactory class relies on the Netscape browser to
support certificate-based client authentication. This class does not support
the use of certificates for authentication outside the browser (for example, if
your client is a stand-alone Java application).

To enable an applet to use certificate-based client authentication, do the
following:

1. Construct a new LDAPSSLSocketFactory object.
Chapter 12, Connecting Over SSL 153

Using Certificate-Based Client Authentication
2. Invoke the enableClientAuth method of the object to enable certificate-
based client authentication.

3. Pass the object you constructed to the LDAPConnection constructor.
154 Netscape Directory SDK 4.0 for Java Programmer’s Guide

C h a p t e r

13
Working with LDAP Controls
This chapter explains how LDAP controls work and how to use the LDAP
controls that are supported by the Netscape Directory Server.

The chapter includes the following sections:

• “How LDAP Controls Work”

• “Using Controls in the LDAP Java Classes”

• “Determining the Controls Supported By the Server”

• “Using the Server-Side Sorting Control”

• “Using the Persistent Search Control”

• “Using the Entry Change Notification Control”

• “Using the Virtual List View Control”

• “Using the Manage DSA IT Control”

• “Using Password Policy Controls”

• “Using the Proxied Authorization Control”
Chapter 13, Working with LDAP Controls 155

How LDAP Controls Work
How LDAP Controls Work
The LDAP v3 protocol (documented in RFC 2251, "Lightweight Directory Access
Protocol (v3)") allows clients and servers to use controls as a mechanism for
extending an LDAP operation. A control is a way to specify additional
information as part of a request and a response.

For example, a client can send a control to a server as part of a search request
to indicate that the server should sort the search results before sending the
results back to the client.

Servers can also send controls back to clients. For example, the Netscape
Directory Server sends a control back to a client during the authentication
process if the client’s password has expired or is going to expire.

A control specifies the following information:

• A unique object identifier (OID)

• An indication of whether or not the control is critical to the operation

• Optional data related to the control (for example, for the server-side sorting
control, the attributes used for sorting search results)

The OID identifies the control. If you plan to use a control, you need to make
sure that the server supports the control. (See “Determining the Controls
Supported By the Server” for details.)

When your client includes a control in a request for an LDAP operation, the
server may respond in one of the following ways:

• If the server supports this control and if the control is appropriate to the
operation, the server should make use of the control when performing the
operation.

• If the server does not support the control type or if the control is not
appropriate, the server should do one of the following:

• If the control is marked as critical to the operation, the server should not
perform the operation and should send an "unavailable critical
extension" result code. When receiving this result code, your client
throws an LDAPException with the result code
LDAPException.UNAVAILABLE_CRITICAL_EXTENSION.
156 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Using Controls in the LDAP Java Classes
• If the control is marked as not critical to the operation, the server should
ignore the control and should proceed to perform the operation.

Note that servers can also send controls back to clients.

There are two types of controls:

• Server controls can be included in requests sent by clients and in responses
sent by servers.

• Client controls affect the behavior of the LDAP Java classes only and are
never sent to the server. (At this point in time, no client controls are
supported in the Netscape Directory SDK for Java.)

The next section describes how controls are implemented in the LDAP Java
classes and which classes and methods you can use to create, send, and parse
data from LDAP controls.

Using Controls in the LDAP Java Classes
In the LDAP Java classes, a control is represented by an object of the
LDAPControl class.

To include a control in a request, you should do the following:

1. Invoke the getSearchConstraints method of the LDAPConnection
object to get a clone of LDAPSearchConstraints for this connection.

2. Invoke the setServerControls method of the cloned constraints object,
passing in the LDAPControl object that represents the control you want to
include.

3. Invoke the appropriate method to perform the LDAP operation, passing in
the constraints object. For example, if you are performing a search, invoke
the search method and pass the search constraints as an argument.

(You can also include controls by invoking the setServerControls method
for the default set of search constraints or by invoking the setOption method
to set the LDAPv3.SERVERCONTROLS option. Note, however, that these controls
Chapter 13, Working with LDAP Controls 157

Determining the Controls Supported By the Server
will be sent to the server with every request. In general, controls tend to be
specific to a type of operation, so you should only include a control in a
request for the operation that it applies to.)

You can then retrieve data from the returned controls through accessor
methods in the LDAPControl object.

The rest of this chapter explains how to use the LDAP Java classes to send and
retrieve specific types of controls.

Determining the Controls Supported By the
Server

According to the LDAP v3 protocol, servers should list any controls that they
support in the supportedControl attribute in the root DSE.

The following table lists some of the OIDs for server controls.

Table 13.1 LDAP v3 Server Controls

OID of Control and Defined Constant Description of Control

2.16.840.1.113730.3.4.2
netscape.ldap.LDAPControl.
MANAGEDSAIT

"Manage DSA IT" control (see “Using the
Manage DSA IT Control” for details)

2.16.840.1.113730.3.4.3
netscape.ldap.controls.
LDAPPersistSearchControl.
PERSISTENTSEARCH

"Persistent search" control (see “Using
the Persistent Search Control” for details)

2.16.840.1.113730.3.4.4
netscape.ldap.LDAPControl.
PWEXPIRED

 "Password expired" control (see “Using
Password Policy Controls” for details)

2.16.840.1.113730.3.4.5
netscape.ldap.LDAPControl.
PWEXPIRING

"Password expiration warning" control
(see “Using Password Policy Controls”
for details)

2.16.840.1.113730.3.4.9
netscape.ldap.controls.
LDAPVirtualListControl.
VIRTUALLIST

"Virtual list view" control (see “Using the
Virtual List View Control” for details)
158 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Determining the Controls Supported By the Server
The following example is a simple command-line program that searches for the
root DSE and prints the values of the supportedControl attribute.

...
import netscape.ldap.*;
import netscape.ldap.controls.*;
import java.util.*;
...
public class ListCtrl {

public static void main(String[] args) {

/* Hashtable mapping OIDs of known controls to descriptions of
each control. */

Hashtable knownControls = new Hashtable();
knownControls.put(LDAPSortControl.SORTREQUEST,

"Sort control");
knownControls.put(LDAPControl.MANAGEDSAIT,

"ManageDsaIT control");
knownControls.put(LDAPPersistSearchControl.PERSISTENTSEARCH,

"Persistent Search control");
knownControls.put(LDAPControl.PWEXPIRED,

"Password Expiration Notification control");
knownControls.put(LDAPControl.PWEXPIRING,

"Password Expiration Warning control");
knownControls.put(LDAPVirtualListControl.VIRTUALLIST,

"Virtual List View control");
knownControls.put(LDAPProxiedAuthControl.PROXIEDAUTHREQUEST,

"Proxied Authorization control");

LDAPConnection ld = new LDAPConnection();
String hostname = "localhost";
int portnumber = LDAPv2.DEFAULT_PORT;
try {

/* Connect and authenticate to server */
ld.connect(3, hostname, portnumber);

2.16.840.1.113730.3.4.12
netscape.ldap.controls.
LDAPProxiedAuthControl.
PROXIEDAUTHREQUEST

"Proxied authorization" control (see
"Using the Proxied Authorization
Control" for details)

1.2.840.113556.1.4.473
netscape.ldap.controls.
LDAPSortControl.SORTREQUEST

 "Server-side sorting" control (see “Using
the Server-Side Sorting Control” for
details)

Table 13.1 LDAP v3 Server Controls

OID of Control and Defined Constant Description of Control
Chapter 13, Working with LDAP Controls 159

Determining the Controls Supported By the Server
/* The list of supported controls can be retrieved by
getting the root DSE. To get the root DSE, you need
to do a search where:
- The scope is SCOPE_BASE
- The base is ""
- The search filter is "(objectclass=*)"
The values of the supportedControl attribute of the
resulting entry are the OIDs of the supported controls. */

int MY_SCOPE = LDAPv2.SCOPE_BASE;
String MY_FILTER = "(objectclass=*)";
String MY_SEARCHBASE = "";
String getAttrs[] = { "supportedControl" };
LDAPSearchResults res = ld.search(MY_SEARCHBASE,

MY_SCOPE, MY_FILTER, getAttrs, false);

/* There should only be one entry found. */

/* Get the attributes of this entry. */
LDAPEntry DSE = (LDAPEntry)res.nextElement();
LDAPAttributeSet findAttrs = DSE.getAttributeSet();
Enumeration enumAttrs = findAttrs.getAttributes();

/* Print each attribute returned
(this should only be the supportedControl attribute) */

while (enumAttrs.hasMoreElements()) {
LDAPAttribute anAttr =

(LDAPAttribute)enumAttrs.nextElement();
String attrName = anAttr.getName();
System.out.println(attrName);

/* Get the values of this attribute. */
Enumeration enumVals = anAttr.getStringValues();
if (enumVals == null) {

System.out.println("\tNo values.");
continue;

}
while (enumVals.hasMoreElements()) {

String aVal = (String)enumVals.nextElement();

/* Each value should be the OID of a control. Look up the
description corresponding to the OID. */

String aDesc = (String)knownControls.get(aVal);
if (aDesc != null) {

System.out.println("\t" + aDesc+ " (" + aVal + ")");
} else {

System.out.println("\t" + aVal);
}

}
}

160 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Using the Server-Side Sorting Control
}
catch(LDAPException e) {

System.out.println("Error: " + e.toString());
}
try {

ld.disconnect();
}
catch(LDAPException e) {

 System.exit(1);
}
System.exit(0);

}
}
...

Using the Server-Side Sorting Control
The control with the OID 1.2.840.113556.1.4.473 (or the constant
netscape.ldap.LDAPControl.SORTREQUEST) is a server-side sorting control.
When you send a search request with this control to the server, the server
should sort the results before sending them back to you.

The server-side sorting control is described in the Internet-Draft "LDAP Control
Extension for Server Side Sorting of Search Results." This document is available
at: http://www.ietf.org/internet-drafts/draft-ietf-ldapext-
sorting-02.txt

Note Internet-Drafts expire every six months. If the URL above does not work, try
incrementing the number by one. For example, draft-06.txt would become
draft-07.txt.

This section covers the following topics:

• “Specifying the Sort Order”

• “Creating the Control”

• “Performing the Search”

• “Interpreting the Results”

• “Known Problems with Server Sorting”

• “Example of Using the Server-Sorting Control”
Chapter 13, Working with LDAP Controls 161

Using the Server-Side Sorting Control
Specifying the Sort Order

To specify the sort order of the results, construct one or more LDAPSortKey
objects. Each object represents a sort key generated from a string in the
following format:

[-]<attrname>[:<matchingruleoid>]

<attrname> is the name of the attribute that you want to sort by.
<matchingruleoid> is the optional OID of a matching rule that you want to
use for sorting. The minus sign indicates that the results should be sorted in
reverse order for that attribute.

For example, the following string specifies that results should be sorted by first
name ("givenname") in descending order:

"-givenname"

Pass this string to the LDAPSortKey constructor to create a sort key. For
example:

LDAPSortKey sortByFirstNameReverse = new LDAPSortKey("-givenname");

To sort by more than one attribute, construct more than one LDAPSortKey
object and create an array of the objects.

For example, suppose you want to sort the result by last name ("sn") in
ascending order. If two or more entries have the same last name, you want to
sort the result by first name ("givenname") in ascending order.

To specify this sort order, you construct two LDAPSortKey objects and create
an array:

...
LDAPSortKey sortByLastName = new LDAPSortKey("sn");
LDAPSortKey sortByFirstName = new LDAPSortKey("givenname");
LDAPSortKey[] sortOrder = { sortByLastName, sortByFirstName };
...

If you are using the Netscape Directory Server 3.x, keep the following in mind:
162 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Using the Server-Side Sorting Control
• For attributes that have multiple values, the Netscape Directory Server 3.x
will use the "highest" value when sorting.

For example, suppose you choose to sort by the ou attribute. If an entry has
"Accounting" and "People" as values of the ou attribute, the server will use
"People" when sorting this entry.

On the other hand, if the values are "People" and "Product Development",
the server will use "Product Development" when sorting the entry.

• If an entry does not contain the attribute used for sorting, the Netscape
Directory Server 3.x sorts that entry before other entries that do contain the
attribute.

For example, suppose the entry for Barbara Jensen does not contain the ou
attribute and the entry for Kurt Jensen does contain the ou attribute. If the
server is sorting by the ou attribute, Barbara Jensen’s entry will come before
Kurt Jensen’s entry in the sorted results.

Creating the Control

Next, to create the server-side sorting control, construct a new
LDAPSortControl object. Pass the LDAPSortKey object (or the array of
LDAPSortKey objects) to the LDAPSortControl constructor.

In the constructor, you can also specify whether or not the control is critical to
the search operation. If the control is marked as critical and the server cannot
sort the results, the server should not send back any entries. (See “Interpreting
the Results” for more information on the effect of a critical control.)

For example, the following section of code creates a server-side sorting control
and specifies that the control is critical to the search operation:

LDAPSortKey sortOrder = new LDAPSortKey("-givenname");
LDAPSortControl sortCtrl = new LDAPSortControl(sortOrder, true);

Performing the Search

To specify that you want the server to sort the results, do the following:
Chapter 13, Working with LDAP Controls 163

Using the Server-Side Sorting Control
1. Get a clone of LDAPSearchConstraints for the current connection by
invoking the getSearchConstraints method of the LDAPConnection
object.

2. Invoke the setServerControls method for the copied
LDAPSearchConstraints object, and pass in the LDAPSortControl object
that you have constructed.

3. Invoke the search method of the LDAPConnection object, passing in the
LDAPSearchConstraints object.

The server returns a result for the search operation and a response control.
The response control indicates the success or failure of the sorting.

4. Invoke the getResponseControls method of the LDAPSearchResults
object to retrieve any controls sent back by the server in response to the
search.

Response controls are passed back as an array of LDAPControl objects.

5. Examine the type of each returned control. If a control is an instance of
LDAPSortControl, you can read the result code for the sorting operation
using the getResultCode method.

If the sorting operation failed, the server may also return the name of the
attribute that caused the failure. You can read the name of this attribute
with the getFailedAttribute method.

The server can return the following result codes that apply to the sorting
operation.

Table 13.2 LDAP result codes for sorting search results

Result Code Description

LDAPException.SUCCESS The results were sorted successfully.

LDAPException.
OPERATION_ERROR

An internal server error occurred.

LDAPException.
TIME_LIMIT_EXCEEDED

The maximum time allowed for a search was
exceeded before the server finished sorting
the results.
164 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Using the Server-Side Sorting Control
Interpreting the Results

The following table lists the kinds of results to expect from the LDAP server
under different situations.

LDAPException.
STRONG_AUTH_REQUIRED

The server refused to send back the sorted
search results because it requires you to use a
stronger authentication method.

LDAPException.
ADMIN_LIMIT_EXCEEDED

There are too many entries for the server to
sort.

LDAPException.
NO_SUCH_ATTRIBUTE

The sort key list specifies an attribute that
does not exist.

LDAPException.
INAPPROPRIATE_MATCHING

The sort key list specifies a matching rule that
is not recognized or appropriate

LDAPException.
INSUFFICIENT_ACCESS_RIGHTS

The server did not send the sorted results
because the client has insufficient access
rights

LDAPException.BUSY The server is too busy to sort the results.

LDAPException.
UNWILLING_TO_PERFORM

The server is unable to sort the results.

LDAPException.OTHER This general result code indicates that the
server failed to sort the results for a reason
other than the ones listed above.

Does the
Server
Support the
Sort Control?

Is the Sort
Control
Marked as
Critical?

Are There
any Other
Conditions?

Results from the LDAP Server

No No N/A The server ignores the sorting
control and returns the entries
unsorted.

No Yes N/A The server does not send back any
entries

Table 13.2 LDAP result codes for sorting search results

Result Code Description
Chapter 13, Working with LDAP Controls 165

Using the Server-Side Sorting Control
Known Problems with Server Sorting

The following problems may occur when using the server-side sorting control
with the Netscape Directory Server 3.x (most of these problems are fixed in
version 4.0 of the server):

Yes No The server
cannot sort
the results
using the
specified
sort key list.

• The server returns the entries
unsorted.

• The server sends back the
sorting response control, which
specifies the result code of the
sort attempt and (optionally) the
attribute type that caused the
error.

Yes Yes The server
cannot sort
the results
using the
specified
sort key list.

• The server does not send back
any entries.

• The server sends back the
sorting response control, which
specifies the result code of the
sort attempt and (optionally) the
attribute type that caused the
error.

Yes Yes or No
(Does not
affect the
results)

The search
itself failed.

• The server sends back a result
code for the search operation.

• The server does not send back
the sorting response control.

Yes Yes or No
(Does not
affect the
results)

The server
successfully
sorted the
entries.

• The server sends back the
sorted entries.

• The server sends back the
sorting response control, which
specifies the result code of the
sort attempt
(LDAPException.SUCCESS).

Does the
Server
Support the
Sort Control?

Is the Sort
Control
Marked as
Critical?

Are There
any Other
Conditions?

Results from the LDAP Server
166 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Using the Server-Side Sorting Control
• The server does not sort entries if the search filter consists of unindexed
attributes.

When processing a search request, the server generates a list of potential
candidates from the indexes, sorts the candidate list, then compares each
candidate against the search filter.

If no indexes are applicable to the search, the candidate list consists of all
entries. If the candidate lists consists of all entries, the server does not sort
the list and instead sends back an LDAP_UNWILLING_TO_PERFORM result
code.

For example, suppose your search filter is "l=Sunnyvale". Since the "l"
attribute (the "location" attribute) is not indexed by default, the server
cannot use any indexes to narrow down the list of potential candidates, and
all entries are considered candidates. If you attempt to sort by any attribute,
the server will refuse to sort the entries.

• The server does not sort entries if you bind as the root DN and specify no
time limit.

Normally, if you bind as the root DN and specify no time limit, the server
allows you an infinite time limit. As the server sorts the list of candidate
entries during a search, the server checks to determine if the time limit has
been exceeded. However, the server incorrectly calculates the amount of
time allowed, so larger sets of candidates will not be sorted.

Example of Using the Server-Sorting
Control

The following program uses the server-sorting control to get a list of all users in
the directory, sorted in ascending order by last name, then in descending order
by first name.

...
import netscape.ldap.*;
import netscape.ldap.controls.*;
import java.util.*;
...
public class SrchSort {

public static void main(String[] args) {
LDAPConnection ld = new LDAPConnection();
String hostname = "localhost";
int portnumber = LDAPv2.DEFAULT_PORT;
Chapter 13, Working with LDAP Controls 167

Using the Server-Side Sorting Control
int status = -1;

try {
/* Connect to server */
ld.connect(3, hostname, portnumber, "", "");

/* Search for last names that start with "Wa". */
String MY_FILTER = "sn=Wa*";
String MY_BASE = "o=Airius.com";
String[] attrs = { "sn", "givenname" };

/* Create sort keys that specify the sort order. */
LDAPSortKey sortByLastName = new LDAPSortKey("sn");
LDAPSortKey sortByFirstName = new LDAPSortKey("-givenname");
LDAPSortKey[] sortOrder = { sortByLastName, sortByFirstName };

/* Create a server control using that sort key. */
LDAPSortControl sortCtrl = new LDAPSortControl(sortOrder,

true);

/* Create search constraints to use that control. */
LDAPSearchConstraints cons = ld.getSearchConstraints();
cons.setServerControls(sortCtrl);

/* Perform the search. */
LDAPSearchResults res = ld.search(MY_BASE,

LDAPv3.SCOPE_SUB, MY_FILTER, attrs, false, cons);

/* Loop through the results until finished. */
System.out.println("Sorted Results from Server");
System.out.println("==========================");
while (res.hasMoreElements()) {

/* Get the next directory entry. */
LDAPEntry findEntry = null;
try {

findEntry = res.next();

/* Skip any referrals found for now. */
} catch (LDAPReferralException e) {

continue;
} catch (LDAPException e) {

System.out.println("Error: " + e.toString());
continue;

}

/* Get the set of attributes for that entry. */
LDAPAttributeSet findAttrs = findEntry.getAttributeSet();
Enumeration enumAttrs = findAttrs.getAttributes();
168 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Using the Server-Side Sorting Control
/* Iterate through the attributes. */
while (enumAttrs.hasMoreElements()) {

LDAPAttribute anAttr =
(LDAPAttribute)enumAttrs.nextElement();

/* Get the set of values for each attribute. */
Enumeration enumVals = anAttr.getStringValues();
if (enumVals == null) {

System.out.println("\tNo values.");
continue;

}

/* Iterate through the values and print each value. */
String aVal = (String)enumVals.nextElement();
System.out.print(aVal);
while (enumVals.hasMoreElements()) {

aVal = (String)enumVals.nextElement();
System.out.print(", " + aVal);

}
System.out.print("\t\t");

}
System.out.println("");
}

/* Determine if the server sent a control back to you. */
LDAPControl[] returnedControls = res.getResponseControls();
if (returnedControls != null) {

for (int i=0; i<returnedControls.length; i++){
if (!(returnedControls[i] instanceof LDAPSortControl)){

continue;
}
LDAPSortControl sortRsp = (LDAPSortControl)

returnedControls[i];
int resultCode = sortRsp.getResultCode;

/*Check if the result code indicated an error occurred.*/
if (resultCode != 0) {

System.out.println("Result code: " + resultCode);
System.out.println(

LDAPException.errorCodeToString(resultCode));

/* If the server specified the attribute that
caused the failure, print it out. */
String failedAttr = sortRsp.getFailedAttribute();
if (failedAttr != null) {

System.out.println("Failed on "+failedAttr);
} else {

System.out.println("Server did not indicate which
" + "attribute caused sorting to fail.");

}

Chapter 13, Working with LDAP Controls 169

Using the Persistent Search Control
}
}

}
status = 0;

}
catch(LDAPException e) {

System.out.println("Error: " + e.toString());
}

/* Done, so disconnect */
if ((ld != null) && ld.isConnected()) {

try {
ld.disconnect();
System.out.println("");

} catch (LDAPException e) {
System.out.println("Error: " + e.toString());

}
}

System.exit(status);
}

}
...

Using the Persistent Search Control
The control with the OID 2.16.840.1.113730.3.4.3 (the constant
netscape.ldap.controls.LDAPPersistSearchControl.PERSISTENTSEARCH
) is the persistent search control. A persistent search (an ongoing search
operation), which allows your LDAP client to get notification of changes to the
directory.

The persistent search control is described in the Internet-Draft "Persistent
Search: A Simple LDAP Change Notification Mechanism." This document is
available at: http://www.ietf.org/internet-drafts/draft-ietf-
ldapext-psearch-00.txt

Note Internet-Drafts expire every six months. If the URL above does not work, try
incrementing the number by one. For example, draft-06.txt would become
draft-07.txt.

To use persistent searching for change notification, you create a "persistent
search" control that specifies the types of changes that you want to track. You
include the control in a search request. If an entry in the directory is changed,
170 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Using the Persistent Search Control
the server determines if the entry matches the search criteria in your request
and if the change is the type of change that you are tracking. If both of these
are true, the server sends the entry to your client.

You can use this control in conjunction with an "entry change notification"
control (see “Using the Entry Change Notification Control”).

The rest of this section describes how to create and use this control.

• “Creating the Control”

• “Performing the Search”

• “Example of Using the Persistent Search Control”

Creating the Control

To create a persistent search control, you construct a new
LDAPPersistSearchControl object. When invoking the
LDAPPersistSearchControl constructor, you can specify the following
information:

• The type of change you want to track. You can specify any of the following
(or any combination of the following using a bitwise OR operator):

• ADD indicates that you want to track added entries

• DELETE indicates that you want to track deleted entries

• MODIFY indicates that you want to track modified entries

• MODDN indicates that you want to track renamed entries

• A preference indicating whether you want the server to return all entries
that initially matched the search criteria

• A preference indicating whether or not you want entry change notification
controls included with every modified entry returned by the server

For example, the following section of code

...
/* Track all types of changes. */
int op = LDAPPersistSearchControl.ADD |
Chapter 13, Working with LDAP Controls 171

Using the Persistent Search Control
LDAPPersistSearchControl.MODIFY |
LDAPPersistSearchControl.DELETE |
LDAPPersistSearchControl.MODDN;

/* Return only entries that have changed. */
boolean changesOnly = true;

/* Return an "entry change notification" control. */
boolean returnControls = true;

/* Mark the control as critical. */
boolean isCritical = true;

/* Create the control. */
LDAPPersistSearchControl persistCtrl = new

LDAPPersistSearchControl(op, changesOnly,
returnControls, isCritical);

...

Performing the Search

To specify that you want to start a persistent search, do the following:

1. Get a clone of LDAPSearchConstraints for the current connection by
invoking the getSearchConstraints method of the LDAPConnection
object.

2. Invoke the setServerControls method for the cloned
LDAPSearchConstraints object, and pass in the
LDAPPersistSearchControl object that you have constructed.

3. Invoke the search method of the LDAPConnection object, passing in the
LDAPSearchConstraints object.

The server returns matching entries as they change. If you specified that
you wanted an "entry change notification" control included with each entry,
you can get these controls from the server’s results. For details, see “Using
the Entry Change Notification Control”.

To end the persistent search, you can either invoke the abandon method of the
LDAPConnection object to abandon the search operation, or you can invoke
the disconnect method to disconnect from the server.
172 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Using the Persistent Search Control
Example of Using the Persistent Search
Control

The following program performs a persistent search and receives "entry change
notification" controls from the server.

import netscape.ldap.*;
import netscape.ldap.controls.*;
import java.util.*;
public class SrchPrst implements Runnable {

private String hostname;
private int portnumber;
public SrchPrst() {
}

public static void main(String[] args) {
/* Start up a new thread. */
Thread th = new Thread(new SrchPrst(), "mainConn");
th.start();
System.out.println("Main thread started.");

}

public void run() {
LDAPConnection ld = new LDAPConnection();
String hostname = "localhost";
int portnumber = LDAPv2.DEFAULT_PORT;
try {

/* Connect to server */
ld.connect(3, hostname, portnumber, "", "");
/* Specify that you want to track changes to all entries. */
String MY_FILTER = "(objectclass=*)";
String MY_BASE = "o=Airius.com";

/* Create a persistent search control. */
int op = LDAPPersistSearchControl.ADD |

LDAPPersistSearchControl.MODIFY |
LDAPPersistSearchControl.DELETE |
LDAPPersistSearchControl.MODDN;

boolean changesOnly = true;
boolean returnControls = true;
boolean isCritical = true;
LDAPPersistSearchControl persistCtrl = new

LDAPPersistSearchControl(op, changesOnly,
returnControls, isCritical);

/* Create search constraints to use that control. */
LDAPSearchConstraints cons = ld.getSearchConstraints();
cons.setServerControls(persistCtrl);
Chapter 13, Working with LDAP Controls 173

Using the Persistent Search Control
/* Start the persistent search. */
LDAPSearchResults res = ld.search(MY_BASE,

LDAPv3.SCOPE_SUB, MY_FILTER, null, false, cons);

/* Loop through the results until finished. */
while (res.hasMoreElements()) {

/* Print any entries that have changed. */
System.out.println("\n======= Changed Entry =======");

/* Get the next directory entry. */
LDAPEntry findEntry = res.next();

/* Get the set of attributes for that entry. */
LDAPAttributeSet findAttrs = findEntry.getAttributeSet();
Enumeration enumAttrs = findAttrs.getAttributes();

/* Iterate through the attributes. */
while (enumAttrs.hasMoreElements()) {

LDAPAttribute anAttr =
(LDAPAttribute)enumAttrs.nextElement();

String attrName = anAttr.getName();
System.out.println("\t" + attrName);

/* Get the set of values for each attribute. */
Enumeration enumVals = anAttr.getStringValues();

/* Iterate through the values and print each value. */
while (enumVals.hasMoreElements()) {

String aVal = (String)enumVals.nextElement();
System.out.println("\t\t" + aVal);

}
}

/* Get any entry change controls. */
LDAPControl[] responseCtrls = res.getResponseControls();
if (responseCtrls != null) {

for (int i=0; i<responseCtrls.length; i++){
if (!(responseCtrls[i] instanceof

LDAPEntryChangeControl)){
continue;

}
LDAPEntryChangeControl entryCtrl =

(LDAPEntryChangeControl) responseCtrls[i];

/* Get information on the type of change made. */
int changeType = entryCtrl.getChangeType();
if (changeType != -1) {

System.out.print("Change made: ");
switch (changeType) {
174 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Using the Persistent Search Control
case LDAPPersistSearchControl.ADD:
System.out.println("Added new entry.");
break;

case LDAPPersistSearchControl.MODIFY:
System.out.println("Modified entry.");
break;

case LDAPPersistSearchControl.DELETE:
System.out.println("Deleted entry.");
break;

case LDAPPersistSearchControl.MODDN:
System.out.println("Renamed entry.");
break;

}
}

/* Get the change log number, if present. */
int changeNumber = entryCtrl.getChangeNumber();
if (changeNumber != -1) {

System.out.println("Change log number: " +
changeNumber);

}

/* Get the previous DN of the entry,
if a modify DN operation was performed. */

String oldDN = entryCtrl.getPreviousDN();
if (oldDN != null) {

System.out.println("Previous DN: " + oldDN);
}

} else {
System.out.println("No entry change control.");

}
System.out.println("\n");

}
}

}
catch(LDAPException e) {

System.out.println("Error: " + e.toString());
}

}
}
...
Chapter 13, Working with LDAP Controls 175

Using the Entry Change Notification Control
Using the Entry Change Notification Control
The control with the OID 2.16.840.1.113730.3.4.7 (or the constant
netscape.ldap.controls.LDAPEntryChangeControl.ENTRYCHANGED) is the
"entry change notification" control. These types of controls can be included
with entries sent back from the server during a persistent search. (For more
information on persistent searches, see “Using the Persistent Search Control”.)

The "entry change notification" control is described in the Internet-Draft
"Persistent Search: A Simple LDAP Change Notification Mechanism." This
document is available at: http://www.ietf.org/internet-drafts/draft-
ietf-ldapext-psearch-00.txt

Note Internet-Drafts expire every six months. If the URL above does not work, try
incrementing the number by one. For example, draft-06.txt would become
draft-07.txt.

The rest of this section describes how to use these types of controls.

• “Getting the Control”

• “Working with Change Log Numbers”

Getting the Control

To get an "entry change notification" control that is included with an entry, do
the following:

1. As you retrieve each entry, invoke the getResponseControls method of
the LDAPConnection object to retrieve any response controls sent back
from the server.

Response controls are passed back as an array of LDAPControl objects.

2. Pass this array of LDAPControl objects as an argument to the
LDAPPersistSearchControl.parseResponse static method to retrieve the
"entry change notification" control.

An "entry change notification" control is represented by an object of the
LDAPEntryChangeControl class. To get data from this control, you can invoke
the accessor methods, such as getChangeNumber, getChangeType, and
getPreviousDN.
176 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Using the Virtual List View Control
Working with Change Log Numbers

If the Netscape Directory Server is set up to be a supplier (for replicating
changes in the directory to other servers), the server keeps a record of the
changes made to the directory in a change log. Each record of a change has a
number that identifies it in the log.

You can get the change number for a modified entry from the
LDAPEntryChangeControl object.

If you want to look up the record for a particular change log number (to get
more information about the change that took place), you can search for the
record. In the Netscape Directory Server, the change log is represented by an
entry in the directory, and individual change records are represented by entries
in a subtree beneath the change log entry.

To determine the DN for the change log entry, search the root DSE and retrieve
the changelog attribute. For example, the value of this attribute might be
"cn=changelog", which is the DN for the change log entry.

Each change log record is an entry under the change log entry. The change log
number is the value of the changenumber attribute of the record. To get a
specific change log record, you can search the directory with the base DN
"cn=changelog" and with the search filter "changenumber=<value>", where
<value> is the change number of the record.

Note that you may need to authenticate as the directory manager to have access
to these entries.

Using the Virtual List View Control
The control with the OID 2.16.840.1.113730.3.4.9 (or the constant
netscape.ldap.controls.LDAPVirtualListControl.VIRTUALLIST) is a
virtual list view control. When you send a search request with this control and
with a server-side sorting control to the server, the server should sort the results
and return the specified subset of entries back to your client.
Chapter 13, Working with LDAP Controls 177

Using the Manage DSA IT Control
The virtual list view control is described in the Internet-Draft "LDAP Extensions
for Scrolling View Browsing of Search Results." This document is available at:
http://www.ietf.org/internet-drafts/draft-ietf-ldapext-ldapv3-

vlv-01.txt

Note Internet-Drafts expire every six months. If the URL above does not work, try
incrementing the number by one. For example, draft-06.txt would become
draft-07.txt.

Although Netscape Directory Server 4.x supports this control, not all servers do.
For information on determining if a server supports this or other LDAP v3
controls, see “Determining the Controls Supported By the Server”.

Note that after you set the list size by invoking the setListSize method of the
LDAPVirtualListControl object, you need to invoke the setRange method
to recreate the control using the new data. (setRange generates the BER-
encoded request to be sent to the server; setListSize does not do this.)

Using the Manage DSA IT Control
The control with the OID 2.16.840.1.113730.3.4.2 (or the constant
netscape.ldap.LDAPControl.MANAGEDSAIT) is the manage DSA IT control.
You can use this control to manage search references in the directory.

The manage DSA IT control is described in the Internet-Draft "LDAP Control
Extension for Server Side Sorting of Search Results." This document is available
at: http://www.ietf.org/internet-drafts/draft-ietf-ldapext-
sorting-00.txt

Note Internet-Drafts expire every six months. If the URL above does not work, try
incrementing the number by one. For example, draft-06.txt would become
draft-07.txt.

To create this control, construct a new LDAPControl object. In the
LDAPControl constructor, set the OID of the control to 2.16.840.1.113730.3.4.2.

When you add this control to the array of LDAPControl objects that you pass
to a method that performs an LDAP operation, the server treats search
references as ordinary entries.
178 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Using Password Policy Controls
Rather than returning a reference to you, the server returns the entry containing
the reference. This allows your client application to manage search references
in the directory.

Using Password Policy Controls
The Netscape Directory Server 3.0 and later versions use two server response
controls to send information back to a client after an LDAP bind operation:

• The control with the OID 2.16.840.1.113730.3.4.4 (or the constant
netscape.ldap.LDAPControl.PWEXPIRED) is the expired password
control.

This control is used if the server is configured to require users to change
their passwords when first logging in and whenever the passwords are
reset.

If the user is logging in for the first time or if the user’s password has been
reset, the server sends this control to indicate that the client needs to
change the password immediately.

At this point, the only operation that the client can perform is to change the
user’s password. If the client requests any other LDAP operation, the server
sends back an LDAP_UNWILLING_TO_PERFORM result code with an expired
password control.

• The control with the OID 2.16.840.1.113730.3.4.5 (or the constant
netscape.ldap.LDAPControl.PWEXPIRING) is the password expiration
warning control.

This control is used if the server is configured to expire user passwords
after a certain amount of time.

The server sends this control back to the client if the client binds using a
password that will soon expire. If you invoke the getValue method for this
LDAPControl object, the method returns the number of seconds before the
password will expire.

To get these server response controls when binding, invoke the
getResponseControls method of the LDAPConnection object after you
attempt to authenticate to the server.
Chapter 13, Working with LDAP Controls 179

Using the Proxied Authorization Control
Using the Proxied Authorization Control
The control with the OID 2.16.840.1.113730.3.4.12 (or the constant
netscape.ldap.LDAPProxiedAuthControl.PROXIEDAUTHREQUEST) allows
LDAP clients to use different credentials, without rebinding, when executing
LDAP operations. This is called proxied authorization.

For example, suppose we have a messaging server that stores its user profiles
on an LDAP server. For certain types of requests the messaging server needs to
use a DN and password other than its own. Doing this without proxied
authorization requires the messaging server to rebind, using the different
credentials, before executing each operation.

If the messaging server uses the proxied authorization control, it can act as the
user when executing an operation, while only maintaining its own binding to
the LDAP server. This drastically improves performance, especially when
processing a large number of requests.

The control is described more fully in the Internet-Draft "LDAP Proxied
Authorization Control." This document is available at: http://www.ietf.org/
internet-drafts/draft-weltman-ldapv3-proxy-03.txt.

Note Internet-Drafts expire every six months. If the URL above does not work, try
incrementing the number by one. For example, draft-06.txt would become
draft-07.txt.
180 Netscape Directory SDK 4.0 for Java Programmer’s Guide

C h a p t e r

14
Using SASL Authentication
This chapter describes the process of using a SASL mechanism to authenticate
an LDAP client to an LDAP server.

The chapter includes the following sections:

• “Understanding SASL”

• “Preparing to Use SASL Authentication”

• “Using SASL in the Client”

• “For More Information”

Understanding SASL
The Simple Authentication and Security Layer (SASL) is an authentication
method. It allows you to use mechanisms other than simple passwords and SSL
for authenticating over connection-based protocols, such as LDAP.

All SASL mechanisms are registered with the Internet Assigned Numbers
Authority (IANA). Included among these mechanisms are KERBEROS_V4,
GSSAPI, and several others. The client implements these mechanisms through
the use of mechanism drivers. These drivers are classes that contain the code
required for authenticating over a given mechanism.
Chapter 14, Using SASL Authentication 181

Preparing to Use SASL Authentication
When a client attempts to authenticate to a Directory Server using the
LDAPConnection.authenticate method, it can specify a list of SASL
mechanisms to use. If the client does not specify any mechanisms, the SDK will
query the server to find out which mechanisms it supports. If the SDK and the
server have a common mechanism, authentication can occur.

If the server supports a requested mechanism, it responds with one or more
challenges. In order to authenticate, the client must correctly respond to these
challenges. This is handled transparently by the SDK using a mechanism driver.

If the server does not support any of the requested mechanisms, the SDK
throws an AuthenticationNotSupportedException.

If the mechanism driver requires additional authentication data from the client it
sends a Callback object to the client. To prepare for this, the client
implements a CallbackHandler and passes it to the SDK. If the SASL
mechanism needs to obtain additional credentials or notify the client of errors
during the SASL negotiations, it calls the CallbackHandler object with
Callback objects for each item to be processed. The CallbackHandler then
decides how to proceed.

The Netscape Directory SDK for Java includes a package called
com.netscape.sasl which contains the code necessary to perform all of the
steps involved in SASL authentication.

Preparing to Use SASL Authentication
Before performing SASL authentication

• the LDAP server must support at least one SASL mechanism

• your client environment must support at least one of the SASL mechanisms
supported by the server.

The rest of this section describes how to do this using the Netscape Directory
SDK for Java and the Netscape Directory Server.
182 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Preparing to Use SASL Authentication
Supporting SASL on the Server

If you are running Netscape Directory Server 3.0 or later, you can write your
own server plug-in to handle SASL authentication.

This pre-operation bind plug-in uses a registered SASL mechanism to

• get information from a SASL bind request

• create and send a SASL bind response back to the client.

This response can take the form of a challenge requiring an answer from
the client, an error message, or a success message indicating that
authentication is complete.

For more information on how to write this plug-in, see "Defining Functions for
Authentication" in the Netscape Directory Server Plug-In Programmer’s Guide.

For more information on SASL mechanisms, see “For More Information” at the
end of this chapter.

Supporting SASL on the Client

In order to authenticate over SASL, you will need to have a mechanism
available in your SASL client package. If you have obtained a ClientFactory
class that can produce a SASL mechanism which your server supports, you can
name its package in your code.

There are two ways to do this. You can either

• request a SASL client and specify the package in the
javax.security.sasl.client.pkgs property of its Hashtable

or

• set the package as the default factory for the session with
Sasl.setSaslClientFactory.

For example, if you have a class called mysecurity.sasl.ClientFactory
which is capable of producing a SaslClient object for one or more
mechanisms, you could either write:
Chapter 14, Using SASL Authentication 183

Preparing to Use SASL Authentication
Hashtable props = new Hashtable();
props.put ("javax.security.sasl.client.pkgs", "mysecurity.sasl");
ld.authenticate(dn, props, cbh);

or

Sasl.setSaslClientFactory (new mysecurity.sasl.ClientFactory());
ld.authenticate(dn, props, cbh);

The arguments are as follows:

Implementing
javax.security.auth.callback

Some SASL mechanisms require additional credentials during the authentication
process. In order to provide this additional information, your SASL client may
need to implement Callback objects and a CallbackHandler to list them.
Callback and CallbackHandler are part of the
javax.security.auth.callback package. The package is part of the Java
Authentication and Authorization Service (JAAS) and is contained in the
jaas.jar file.

To install the javax.security.auth.callback classes:

1. Locate the jaas.jar file

The file is included in the directory/java-sdk/ldapjdk/lib directory
of the Directory SDK for Java. You can also download the release version of
these classes and all subsequent updates at

http://java.sun.com:8081/security/jaas/index.html.

Table 14.1 Arguments for LDAPConnection.authenticate (above)

Argument Name Description

dn Authentication DN

props Any optional properties that the mechanism accepts. See
Table 14.3 for details.

cbh An instance of the CallbackHandler implemented in your
application.
184 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Preparing to Use SASL Authentication
2. Add the jaas.jar file to your CLASSPATH

3. Import javax.security.auth.callback.* in your code.

The following is an example of Callback and CallbackHandler
implementations.

class SampleCallbackHandler implements CallbackHandler {
SampleCallbackHandler(String userName) {

userName = userName;
}
/** Invoke the requested Callback */
public void invokeCallback(Callback[] callbacks)

throws java.io.IOException, UnsupportedCallbackException {
for (int i = 0; i < callbacks.length; i++) {

if (callbacks[i] instanceof TextOutputCallback) {
// display the message according to the
// specified STYLE
TextOutputCallback toc =

(TextOutputCallback)callbacks[i];
switch (toc.getStyle()) {

case TextOutputCallback.ERROR:
System.out.println("ERROR: " +

toc.getMessage());
break;
case TextOutputCallback.INFORMATION:
System.out.println(toc.getMessage());
break;
case TextOutputCallback.WARNING:

System.out.println("WARNING: " +
toc.getMessage());

break;
}

} else if (callbacks[i] instanceof
TextInputCallback) {

// prompt the user for information
TextInputCallback tic =

(TextInputCallback)callbacks[i];
// display the prompt like this:
// prompt [default_reply]:
System.err.print(tic.getPrompt() +

" [" +
tic.getDefaultText() +
"]: ");

System.err.flush();
BufferedReader reader =

new BufferedReader(
new InputStreamReader(System.in));

tic.setText(reader.readLine());
} else if (callbacks[i] instanceof NameCallback) {
Chapter 14, Using SASL Authentication 185

Using SASL in the Client
((NameCallback)callbacks[i]).setName(
_userName);

} else if (callbacks[i] instanceof
PasswordCallback) {

// prompt the user for sensitive information
PasswordCallback pc =

(PasswordCallback)callbacks[i];
System.err.print(pc.getPrompt() + " ");
System.err.flush();
pc.setPassword(readPassword(System.in));

} else if (callbacks[i] instanceof
LanguageCallback) {

// Get the language from the locale
LanguageCallback lc =

(LanguageCallback)callbacks[i];
lc.setLocale(Locale.getDefault());

} else {
throw new UnsupportedCallbackException

(callbacks[i], "Unrecognized Callback");
}

}
}

/** Reads user password from given input stream. */
private char[] readPassword(InputStream in) {

// insert code to read a user password from the
// input stream

}
private String _userName = null;

}

Using SASL in the Client
You are ready to authenticate when you have

• determined that there is at least one SASL mechanism in common between
the server and your client environment

• implemented javax.security.auth.callback.CallbackHandler (if
you may need to supply additional credentials during authentication).

The following example shows you how to use SASL in an application:

Hashtable props = new Hashtable();
props.put("javax.security.sasl.client.pkgs",

"mysecurity.sasl");
ld.authenticate(dn, props, new SampleCallbackHandler());
186 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Using SASL in the Client
Using the External Mechanism

The Netscape Directory SDK for Java includes a mechanism called EXTERNAL.
This mechanism verifies that SSL authentication has already completed before it
allows a client to connect over LDAP.

To use the EXTERNAL mechanism:

1. Bind to the server and authenticate using SSL.

For more information, see “Connecting to the Server Over SSL”.

2. Call the LDAPConnection.authenticate method as follows:

ld = new LDAPConnection();
ld.authenticate(null, new String[]{"EXTERNAL"}, null,

(CallbackHandler)null);

LDAPConnection.authenticate takes the following arguments:

Table 14.3 lists the properties that you can specify for the props argument.

Table 14.2 Arguments taken by the LDAPConnection.authenticate method

Argument Name Description

dn Authentication DN

mechanisms The list of SASL mechanism to use for authentication. If
null is specified, the SDK will query the server for all
available mechanisms.

props Any optional properties that the mechanism accepts. See
Table 14.3 for more details.

cbh An instance of the CallbackHandler implemented in
your application.
Chapter 14, Using SASL Authentication 187

Using SASL in the Client
The javadocs for the Directory SDK for Java describe the LDAPConnection
interface and authenticate method more fully. For information on using the
javadocs, see “Where to Find Reference Information”.

Additional SASL Mechanisms

Authentication using a SASL mechanism other than EXTERNAL requires you to
implement classes for the mechanism in the client and on the server. For
information on obtaining classes for SASL mechanisms see “For More
Information”.

Table 14.3 Acceptable values for the props argument.

Property Name Description

javax.security.sasl.

encryption.minimum

The minimum key length to be used during the session.
The default value is "0" (zero), no session protection. A
value of "1" enables integrity protection only.

javax.security.sasl.

encryption.maximum

The maximum key length to be used during the session.
The default value is "256".

javax.security.sasl.

server.authentication

A boolean value. "True" if a server must authenticate to
the client. The default value is "false".

javax.security.sasl.ip.

local

This is the client’s IP address in dotted decimal format.
This value is required for KERBEROS_V4 authentication.
There is no default value.

javax.security.sasl.ip.

remote

This is the server’s IP address in dotted decimal format.
This value is required for KERBEROS_V4 authentication.
There is no default value.

javax.security.sasl.

maxbuffer

Specifies the maximum size of the security layer frames.
The default is "0" (zero) meaning that the client will not
use the security layer. See

javax.security.sasl.

client.pkgs

A bar-separated list of package names that are to be used
when locating a SaslClientFactory.
188 Netscape Directory SDK 4.0 for Java Programmer’s Guide

For More Information
For More Information
SASL is described in RFC 2222, which you can find at

http://www.ietf.org/rfc/rfc2222.txt

A current listing of registered SASL mechanisms is available at

http://www.isi.edu/in-notes/iana/assignments/sasl-mechanisms
Chapter 14, Using SASL Authentication 189

For More Information
190 Netscape Directory SDK 4.0 for Java Programmer’s Guide

C h a p t e r

15
Using the JNDI Service Provider
This chapter explains JNDI and shows you how to use Netscape’s LDAP
Service Provider for JNDI.

The Java Naming and Directory Interface (JNDI)™ allows Java applications to
use a single set of methods to access multiple naming and directory services
such as LDAP and NIS. JNDI was developed by the JavaSoft division of Sun
Microsystems along with several industry partners, including Netscape.

The chapter contains the following sections:

• “How JNDI Works”

• “Installing the Service Provider”

• “JNDI Environment Properties”

• “Working with Controls”

How JNDI Works
JNDI is a Java API that provides a common way for programmers to access a
variety of naming and directory services. The API consists of several packages:

• javax.naming for naming operations (access entries)
Chapter 15, Using the JNDI Service Provider 191

Installing the Service Provider
• javax.naming.directory for directory operations (access attributes)

• javax.naming.event for requesting event notification

• javax.naming.ldap for LDAP-specific features.

JNDI operates through a layer of software called a Service Provider. The Service
Provider implements the JNDI operations in terms of a particular underlying
protocol.

JNDI’s Service Provider Interface (SPI) allows you to select Service Providers at
runtime. In many cases you can use the same JNDI methods regardless of
whether the Service Provider is talking to an LDAP server or using another
protocol such as NIS. In order to access all of the functionality of the LDAP
protocol, however, you will have to use methods outside of this abstraction.

For more information about JNDI and Service Providers as well as software,
examples, and sample code visit http://java.sun.com/products/jndi.

Netscape’s LDAP Service Provider

Netscape’s LDAP Service Provider is based on version 1.2 of JNDI. In order to
have JNDI use Netscape’s LDAP Service Provider, you must prepare your
environment and select the Service Provider in your code. The following
section will help you do this.

Installing the Service Provider
Installing the Netscape LDAP Service Provider involves

• adding the service provider to the CLASSPATH

• specifying the Netscape LDAP Service Provider as the JNDI context in your
code.

• (Optional) adding the JNDI object schema to the Directory.

The rest of this section will show you how to perform these tasks.
192 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Installing the Service Provider
Add the Provider to the Classpath

Before using the Netscape LDAP Service Provider for JNDI in an application
launched from the command line, you must add the provider and its associated
JAR files to your Java CLASSPATH.

To do this, include the following files in your CLASSPATH:

• ldapsp.jar, the Netscape LDAP Service Provider for JNDI

• ldapjdk.jar, the Netscape Directory SDK for Java 4.0 (required by the
LDAP Service Provider)

• jndi.jar, the Java Naming and Directory Interface version 1.2.

Specify the Service Provider when
Creating the Initial Context

In order to communicate with an LDAP server, JNDI needs to know where to
find the LDAP Service Provider.

To have it use the Netscape Service Provider, add the following code to your
Java application:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.netscape.jndi.ldap.LdapContextFactory");
/* Insert any additional "env.put(... ...)" statements
DirContext ctx = new InitialDirContext(env);

Add the JNDI object schema to the
Directory (Optional)

Before you can store Java objects in an LDAP directory, you must make sure
that the JNDI object schema is available to the directory. If you are using
Netscape Directory Server, this requires a modification to your directory
schema.
Chapter 15, Using the JNDI Service Provider 193

JNDI Environment Properties
Depending on which version of Netscape Directory Server you are using, there
are two ways to do this.

Updating Netscape Directory Server 4.1

If you are using Netscape Directory Server 4.1 you must update the existing
JNDI schema file. This is done as follows:

1. Stop the server

2. In the <server-root>/slapd-<id>/config/ directory, replace the java-
object-schema.conf file with the one provided in the Netscape Directory
SDK for Java.

3. Restart the server

Updating Pre-4.1 Netscape Directory Servers

If you are using Netscape Directory Server 4.0 or earlier, you must add the JNDI
schema file. This is done as follows:

1. Stop the server.

2. Copy the java-object-schema.conf file that is included with the
Netscape Directory SDK for Java to the <server-root>/slapd-<id>/
config directory.

3. Edit <server-root>/slapd-<id>/config/ns-schema.conf to include
the following line:
include <server-root>/slapd-<id>/config/java-object-schema.conf

4. Restart the server.

JNDI Environment Properties
JNDI has a number of environment properties that you can set at the system
level or pass directly to the initial context via a Hashtable. Netscape’s LDAP
Service Provider accepts all properties that are defined globally for JNDI. For
194 Netscape Directory SDK 4.0 for Java Programmer’s Guide

JNDI Environment Properties
those settings that are relevant to LDAP, but not included in the JNDI
specification, Netscape’s LDAP Service Provider uses the same property names
and semantics as the Sun Microsystems LDAP Service Provider.

If a change or addition to the JNDI context environment occurs after an initial
context is created, it will be immediately visible unless the changed property
pertains to the connection. To force these changes to take effect, invoke the
LdapContext.reconnect() method. LdapContext is an extended Context
that supports LDAP-specific methods (see “Working with Controls”).

The following table contains all JNDI environment properties that are relevant
for the Netscape LDAP Service Provider. (Any additional properties that are
used by the JNDI Naming Manager are not listed here.) The provider will
silently ignore any properties that are not in the table.

Table 15.1 Descriptions of JNDI Environment Properties

Environment Property Description

java.naming.factory.initial Used to select the LDAP provider. To select
the Netscape LDAP provider, specify
com.netscape.jndi.ldap.LdapContextFactory

java.naming.provider.url Specifies LDAP server information. For
example:

env.put(Context.PROVIDER_URL,

"ldap://dilly.mcom.com:389");

If this property is not set, the Service
Provider will attempt to access an LDAP
server at port 389 of the local host.

java.naming.ldap.version Specifies the protocol version for the Service
Provider. Two values are possible:
2 - selects LDAP Version 2 (LDAPv2)
3 - selects LDAP Version 3 (LDAPv3)
For example:
env.put("java.naming.ldap.version", "3");

sets the protocol version to 3.

If this property is not set, the Service
Provider will attempt to use LDAPv3. If this
fails, LDAPv2 is used.
Chapter 15, Using the JNDI Service Provider 195

JNDI Environment Properties
java.naming.security.authentication Specifies the authentication mechanism that
the Service Provider will use. The following
values are permitted:
none - use no authentication (anonymous)
simple - use weak authentication (clear text
password)

If this environment property is not set but
the java.naming.security.principal
property has been set, the Service Provider
will use simple authentication. If neither
property is set, the Service Provider will
bind anonymously.

java.naming.security.principal Specifies the DN of the authenticating
principal. For example:

env.put(Context.SECURITY_PRINCIPAL,

"cn=Directory Manager");

If this property is not set, the Service
Provider will bind anonymously.

java.naming.security.credentials Specifies the password of the authenticating
principal. For example:

env.put(Context.SECURITY_CREDENTIALS,

"secret");

Table 15.1 Descriptions of JNDI Environment Properties

Environment Property Description
196 Netscape Directory SDK 4.0 for Java Programmer’s Guide

JNDI Environment Properties
java.naming.security.protocol Specifies the security protocol that the
Service Provider will use. One possible
value is defined:

ssl - use Secure Socket Layer

This is implemented as follows:

env.put(Context.SECURITY_PROTOCOL,

"ssl");

When this property is set and the
java.naming.ldap.factory.socket property
has not been set, the default socket factory
netscape.net.SSLSocket is used.

This class is provided with Netscape
Communicator 4.05 and higher.If
java.naming.ldap.factory.socket
has been set, the socket factory specified
therein is used.

java.naming.security.sasl.authoriza

tionId

Specifies which user DN to use for SASL
authentication.

java.naming.security.sasl.callback Specifies a callback handler for SASL
mechanisms. This value of this property
must be an instance of
javax.security.auth.callback.

CallbackHandler.

java.naming.security.sasl.client.pk

gs

Specifies a "|"-separated list of packages.
These packages are used to located factories
that produce SASL mechanism drivers.

Table 15.1 Descriptions of JNDI Environment Properties

Environment Property Description
Chapter 15, Using the JNDI Service Provider 197

JNDI Environment Properties
java.naming.ldap.factory.socket Specifies the class name of a socket factory.
This environment property is used to
override the default socket factory.
For example:

env.put("Java.naming.ldap.factory.

socket", "crysec.SSL.SSLSocket");

If the java.naming.security.protocol
property has been set, but this property is
not set, then the default value of
netscape.net.SSLSocket is used.

See Chapter 12, “Connecting Over SSL” for
more information.

java.naming.ldap.ssl.ciphers Specifies the suite of ciphers used for SSL
connections. These connections are made
through sockets created by the factory
specified with java.naming.ldap.factory.
socket. The value of this property is of the
type java.lang.Object. For example:

env.put("java.naming.ldap.ssl.ciphers",

crysec.SSL.SSLParams.getcipherSuite());

java.naming.batchsize Specifies if searches are to block until all
results are available or to return results in
batches. A setting of 0 (zero) indicates that
the Service Provider should block until all
results are received.

If this property is not set or is "0" then
search results are returned in batches of
one.

Table 15.1 Descriptions of JNDI Environment Properties

Environment Property Description
198 Netscape Directory SDK 4.0 for Java Programmer’s Guide

JNDI Environment Properties
java.naming.ldap.maxresults Specifies the default maximum number of
results returned for a search request. 0
(zero) means that there is no limit. If not
specified, the default value is 1000.

A request using the parameter
SearchConstraints in the
DirContext.search() method can override
this value.

java.naming.referral Specifies the maximum number of referrals
to follow in a chain of referrals. A setting of
0 (zero) indicates that there is no limit. The
default limit is 10.

java.naming.ldap.deleteRDN Specifies whether the old RDN is removed
during rename(). If the value is set to true,
the old RDN is removed. Otherwise, the
RDN is not removed. The default value is
true.

java.naming.ldap.derefAliases Specifies how aliases are dereferenced
during search operations.

The possible values are:
always - always dereference aliases
never - never dereference aliases
finding - dereference aliases only during
name resolution
searching - dereference aliases only after
name resolution.

NOTE: Netscape Directory Server 3.x and
4.x do not support aliases.

java.naming.ldap.typesOnly Specifies whether to only return attribute
types during searches and calls to
getAttributes(). Possible values are true or
false. The default is false.

java.naming.ldap.control.connect An array of controls to set for an
LDAPConnection when executing LDAP

operations.

Table 15.1 Descriptions of JNDI Environment Properties

Environment Property Description
Chapter 15, Using the JNDI Service Provider 199

JNDI Environment Properties
java.naming.ldap.attributes.binary Specifies attributes that have binary syntax.
It extends the Service Provider’s list of
known binary attributes. The value of this
property is a list of comma-separated
attribute names. For example:

env.put("java.naming.ldap.attributes.

binary", "mpegVideo, mpegAudio");

In contrast to the Netscape Directory SDK
for Java, JNDI does not allow you a choice
of whether to read attributes as Strings or
byte arrays. All attributes are returned as
Strings unless they are considered to have
binary syntax. The values of attributes that
have binary syntax are returned as byte
arrays instead of Strings.

Table 15.1 Descriptions of JNDI Environment Properties

Environment Property Description
200 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Working with Controls
Working with Controls
JNDI 1.2 and the Netscape LDAP Service Provider support LDAP controls. Since
JNDI only defines a generic interface for controls, the task of defining particular
controls and their interfaces is left to the Service Provider. All controls

java.naming.ldap.attributes.binary

(continued)

If this property is not set then, by default,
only the following attributes and OIDs are
recognized as having binary syntax:
attribute names containing ;binary
photo (0.9.2342.19200300.100.1.7)
personalSignature
(0.9.2342.19200300.100.1.53)
audio (0.9.2342.19200300.100.1.55)
jpegPhoto (0.9.2342.19200300.100.1.60)
jpegSerialzedData
(1.3.6.1.4.1.42.2.27.4.1.7)
thumbnailPhoto
(1.3.6.1.4.1.1466.101.120.35)
thumbnailLogo
(1.3.6.1.4.1.1466.101.120.36)
userPassword (2.5.4.35)
userCertificate (2.5.4.36)
cACertificate (2.5.4.37)
authorityRevocationList (2.5.4.38)
certificateRevocationList (2.5.4.39)
crossCertificatePair (2.5.4.40)
x500UniqueIdentifier (2.5.4.45)

java.naming.ldap.ref.separator Specifies the character to use when
encoding a RefAddr object in the
javaReferenceAddress attribute. This
property is used to avoid a conflict should
the default separator character appear in the
components of a RefAddr object.
If no value is specified, then the default
separator is the hash character (#).

Table 15.1 Descriptions of JNDI Environment Properties

Environment Property Description
Chapter 15, Using the JNDI Service Provider 201

Working with Controls
supported by the Netscape Directory Server are implemented in the
com.netscape.jndi.ldap.controls package. If you plan to use controls,
you will need to import this package in your source code.

Note This is in addition to the JNDI packages that are already specified in your
CLASSPATH.

Netscape’s LDAP Service Provider is implemented on top of the Directory SDK
which means that any controls that are available in the SDK are also available
through JNDI. These controls use the same API as the Directory SDK, except
that they begin with "Ldap" instead of "LDAP." For instance, the SDK control
LDAPSortControl is available as LdapSortControl in the Netscape LDAP
Service Provider for JNDI.

For more information about controls, see Chapter 13, “Working with LDAP
Controls.”

The following example shows you how to use LdapSortControl. Since
controls are not part of the generalized directory context (DirContext), you
must call getInitialLdapContext() instead of getInitialDirContext().
This creates an LdapContext object as the initial context.

import java.util.Hashtable;
import javax.naming.*;
import javax.naming.directory.*;
import javax.naming.ldap.*;
import com.netscape.jndi.ldap.controls.*;
public class SortReverseOrder {

public static void main (String[] args) {
Hashtable env = new Hashtable(5, 0.75f);
/** Specify the initial context implementation to use.*/
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.netscape.jndi.ldap.LdapContextFactory");
/* Specify host and port to use for directory service */
env.put(Context.PROVIDER_URL, "ldap://localhost:389");
LdapContext ctx = null;
try {

/* get a handle to an Initial DirContext */
ctx = new InitialLdapContext(env, null);
/* specify search constraints to search subtree */
SearchControls cons = new SearchControls();
cons.setSearchScope(SearchControls.SUBTREE_SCOPE);
cons.setReturningAttributes(new String[] { "sn" });
// specify sort control
ctx.setRequestControls(
new Control[] {new LdapSortControl(

new LdapSortKey[]{
new LdapSortKey("sn", true, null)},Control.CRITICAL)});
202 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Working with Controls
/* search for all entries of type "person" */
NamingEnumeration results = ctx.search("o=mcom.com",

"(objectclass=person)", cons);
/* for each entry print out name + all attrs and values */
while (results != null && results.hasMore()) {

SearchResult si = (SearchResult)results.next();
Attributes attrs = si.getAttributes();

/* print each attribute */
for (NamingEnumeration ae = attrs.getAll();

ae.hasMoreElements();) {
Attribute attr = (Attribute)ae.next();
String attrId = attr.getID();
/* print each value */
for (NamingEnumeration vals = attr.getAll();

vals.hasMore();
System.out.println(attrId + ": " + vals.next()));}
System.out.println();

}
}
catch (NamingException e) {

System.err.println("Search example failed.");
e.printStackTrace();

}
finally {

// cleanup
if (ctx != null) {

try { ctx.close(); } catch (Exception e) {}
}

}
}

}
Chapter 15, Using the JNDI Service Provider 203

Working with Controls
204 Netscape Directory SDK 4.0 for Java Programmer’s Guide

C h a p t e r

16
Working with Extended Operations
This chapter explains how LDAP v3 extended operations work and how to use
the extended operations that are supported by your LDAP server.

The chapter includes the following sections:

• “How Extended Operations Work”

• “Implementing Support for Extended Operations on the Server”

• “Determining the Extended Operations Supported”

• “Performing an Extended Operation”

• “Example: Extended Operation”

How Extended Operations Work
Extended operations are part of the LDAP v3 protocol. Each extended
operation is identified by an OID.

LDAP clients can request the operation by sending an extended operation
request. Within the request, the client specifies:

• the OID of the extended operation that should be performed
Chapter 16, Working with Extended Operations 205

Implementing Support for Extended Operations on the Server
• data specific to the extended operation

The server receives the request, and performs the extended operation. The
server can send back to the client a response containing:

• an OID

• any additional data

In order to use extended operations, both the server and the client must
understand the specific extended operation to be performed.

• You need to write a client that can send requests for a specific extended
operation and that can receive extended responses from the server.

• Your LDAP server needs to be able to handle requests for specific extended
operations and send responses back to the client.

The rest of this chapter describes how to set these up.

Implementing Support for Extended
Operations on the Server

If you are running your own Netscape Directory Server 3.0 or later, you can
write your own server plug-in that handles extended operations.

You can write an extended operation plug-in that:

• registers the OID of an extended operation as supported (so that the OID
appears as a value of the supportedExtension attribute; see “Determining
the Extended Operations Supported” for more information)

• gets information from an extended operation reqeuest

• creates and sends an extended operation response back to the client

For more information, see the Netscape Directory Server Plug-In Programmer’s
Guide.
206 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Determining the Extended Operations Supported
Determining the Extended Operations
Supported

To determine the extended operations supported by the server, get the root
DSE of the server, and check the supportedExtension attribute. The values of
this attribute are the object identifiers (OIDs) of the extended operations
supported by this server.

If the root DSE does not have a supportedExtension attribute, the server does
not support any extended operations.

For information on getting the root DSE, see “Getting the Root DSE”.

Performing an Extended Operation
To perform an extended operation, do the following:

1. Construct a new LDAPExtendedOperation object, specifying the OID of
the extended operation and the data that you want applied to the
operation.

2. Invoke the extendedOperation method of the LDAPConnection object,
passing it the newly constructed LDAPExtendedOperation object.

The LDAPExtendedOperation object that this method returns represents the
server’s response. You can invoke the getID and getValue methods of this
object to get the OID and the data from the server’s response.

Example: Extended Operation
The following program is an example of an LDAP client that request an
extended operation with the OID 1.2.3.4 from the server.

...
import netscape.ldap.*;
import java.util.*;
import java.io.*;
...
public class ReqExtOp {
Chapter 16, Working with Extended Operations 207

Example: Extended Operation
public static void main(String[] args) {
LDAPConnection ld = null;
int status = -1;
try {

ld = new LDAPConnection();

/* Connect to server */
String MY_HOST = "localhost";
int MY_PORT = LDAPv2.DEFAULT_PORT;
ld.connect(MY_HOST, MY_PORT);
System.out.println("Connected to server.");

/* Authenticate to the server as directory manager */
String MGR_DN = "cn=Directory Manager";
String MGR_PW = "23skidoo";
if (ld.LDAP_VERSION < 3) {

ld.authenticate(3, MGR_DN, MGR_PW);
} else {

System.out.println("Specified LDAP server does not " +
"support v3 of the LDAP protocol.");

ld.disconnect();
System.exit(1);

}
System.out.println("Authenticated to directory.");

/* Create an extended operation object */
String myval = "My Value";
byte vals[] = myval.getBytes("UTF8");
LDAPExtendedOperation exop =

new LDAPExtendedOperation("1.2.3.4", vals);
System.out.println("Created LDAPExtendedOperation object.");

/* Request the extended operation from the server. */
LDAPExtendedOperation exres = ld.extendedOperation(exop);
System.out.println("Performed extended operation.");

/* Get data from the response sent by the server. */
System.out.println("OID: " + exres.getID());
String retValue = new String(exres.getValue(), "UTF8");
System.out.println("Value: " + retValue);

}
catch(LDAPException e) {

System.out.println("Error: " + e.toString());
}
catch(UnsupportedEncodingException e) {

System.out.println("Error: UTF8 not supported");
}

/* Done, so disconnect */
if ((ld != null) && ld.isConnected()) {
208 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Example: Extended Operation
try {
ld.disconnect();

} catch (LDAPException e) {
System.out.println("Error: " + e.toString());

}
}
System.exit(status);

}
}
...
Chapter 16, Working with Extended Operations 209

Example: Extended Operation
210 Netscape Directory SDK 4.0 for Java Programmer’s Guide

C h a p t e r

17
Using the Asynchronous Interface
This chapter shows you how to use the Asynchronous Interface to LDAP in
Java applications.

This chapter contains the following sections:

• “Synchronous vs. Asynchronous Connections”

• “Common Uses for the Asynchronous Interface”

• “New Classes in the Asynchronous Interface”

• “Performing Asynchronous Searches”

• “Where to Go for More Information”

Synchronous vs. Asynchronous Connections
Most operations using the Directory SDK for Java are performed
synchronously. A connection is established, a request is sent, the results are
returned, and the application resumes. Though the SDK can deliver one search
result at a time, other operations block until completion when accessing an
LDAP server.
Chapter 17, Using the Asynchronous Interface 211

Common Uses for the Asynchronous Interface
Sometimes it is useful to initiate a new request while another one executes. An
additional interface is provided to access the SDK’s built-in support for these
asynchronous requests. By returning control to an application before obtaining
a response, the Asynchronous Interface allows you to perform complex
operations requiring access to low-level LDAP mechanisms.

Beginning with version 4.0 of the Directory SDK for Java, LDAPConnection
methods support both asynchronous and synchronous requests. Synchronous
methods wait for response messages from a server and then process them for
you. Asynchronous methods require you to check for the messages and
perform the processing in your code. This allows you to make additional LDAP
requests while waiting for results to return.

Common Uses for the Asynchronous
Interface

Since it involves managing more complex code in an application, it is best to
use the asynchronous methods only when required. The most common use is
for merging the results of searches that involve multiple servers or that are
executed simultaneously on different subtrees. This is sometimes referred to as
“multiplexing.”

A search that multiplexes servers can make a request to an array of hosts. A
search that multiplexes query statements can make different requests to
different subtrees of a server. If you combine these search methods you can
perform complex searches across a number of servers without having to wait
for individual responses.

The following example illustrates a practical use of multiplexed searches and
the asynchronous interface.

Suppose we want to implement event notification as a generic service using
LDAP persistent search. Synchronous methods require a new thread for every
request to the service. This solution is not scalable and can exhaust system
resources very quickly.

If we rewrite the search using the asynchronous interface, performance will
improve dramatically. Since asynchronous searches do not block until
completion, we can multiplex the persistent search results into one queue and
then process them on a single thread.
212 Netscape Directory SDK 4.0 for Java Programmer’s Guide

New Classes in the Asynchronous Interface
New Classes in the Asynchronous Interface
The Directory SDK for Java handles asynchronous communication through the
LDAPAsynchronousConnection interface and its dependent classes. These files
collectively form the asynchronous extensions to the LDAP API.

LDAPAsynchronousConnection defines methods for authenticating to a server,
as well as for searching, modifying, comparing and deleting entries in the
directory.

When you call a method of LDAPAsynchronousConnection, it returns a
listener object. This object acts as a message queue and accepts search results
and server-generated responses to LDAP requests. It is the responsibility of the
LDAP client to read and process these messages.

LDAPAsynchronousConnection incorporates the following classes which
handle asynchronous client-server interactions:

• LDAPMessage, which is the base class for LDAP request and response
messages.

• LDAPResponse, which extends LDAPMessage, represents a message
received from an LDAP server in response to a request.

• LDAPExtendedResponse, which extends LDAPResponse. It is the response
that an LDAP server returns when handling an extended operation request.

• LDAPResponseListener queues LDAPResponse messages.

• LDAPSearchResult, which extends LDAPMessage. It contains a single
LDAP entry and is one of the responses that an LDAP server can return
when handling a search request.

• LDAPSearchResultReference, which extends LDAPMessage. It contains a
referral and is one of the responses that an LDAP server can return when
handling a search request.

• LDAPSearchListener queues search results and references.

The rest of this chapter shows you how to use the asynchronous interface to
perform multiplexed searches.
Chapter 17, Using the Asynchronous Interface 213

Performing Asynchronous Searches
Performing Asynchronous Searches
One of the most common uses of the asynchronous interface is for performing
multiplexed searches using more than one server or query. The rest of this
section will show you how to do this.

Searching Multiple Servers

To perform a search on more than one server:

1. Connect to all the servers.

2. Create a response listener for one search.

3. Share the response listener all the other searches.

4. Obtain and process the results.

5. Disconnect from the servers.

The following code demonstrates how to do this in an application:

import netscape.ldap.*;
import java.util.*;
/* This example multiplexes the input from three different servers */
public class MultiplexServers {

public static void main(String[] args)
{

try {
LDAPAsynch[] ld = new LDAPAsynch[3];
String[] hosts = { "foo1", "foo2", "foo3" };
int[] ports = { 389, 389, 2018 }
String[] bases =

{ "o=Airius.com", "o=Acme.com", "dc=Acme,dc=com" };
/* search for all entries with surname of Jensen */
String MY_FILTER = "sn=Jensen";
for(int i = 0; i < ld.length; i++) {

ld[i] = new LDAPAsynch();
/* Connect to server */
ld[i].connect(hosts[i], ports[i]);

}
/* Get a response listener for one search */
LDAPSearchListener l =

ld[0].search(bases[0],
ld.SCOPE_SUB,
214 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Performing Asynchronous Searches
MY_FILTER,
null,
false,
(LDAPSearchListener)null);

/* Share the listener */
for(i = 1; i < ld.length; i++) {

ld[i].search(bases[i],
ld[i].SCOPE_SUB,
MY_FILTER,
null,
false,
l);

}
/* Loop on results until finished */
LDAPMessage msg;
while((msg = l.getResponse()) != null) {

if (msg instanceof LDAPSearchResultReference) {
String[] urls =

((LDAPSearchResultReference)msg).getUrls();
// Do something with the referrals...

} else if (msg instanceof LDAPSearchResult) {
LDAPEntry entry =

((LDAPSearchResult)msg).getEntry();
// The rest of the processing is the same as for
// a synchronous search
System.out.println(entry.getDN());

} else {
// A search response
LDAPResponse res = (LDAPResponse)msg;
int status = res.getResultCode();
if (status == LDAPException.SUCCESS) {

// Nothing to do
} else {

String err =
LDAPException.errorCodeToString(status);

throw new LDAPException(
err,
status,
res.getErrorMessage(),
res.getMatchedDN());

}
}

}
} catch (LDAPException e) {

System.err.println(e.toString());
}
/* Done, so disconnect */
if (ld.isConnected()) {

ld.disconnect();
}

Chapter 17, Using the Asynchronous Interface 215

Performing Asynchronous Searches
}
}

Multiple Search Statements

To perform multiple searches in different subtrees of a single server:

1. Connect to the server.

2. Create a response listener for one search.

3. Share (multiplex) the response listener with the other searches.

4. Obtain and process the results.

5. Disconnect from the server.

The following code demonstrates how to do this in an application:

import netscape.ldap.*;
import java.util.*;
/* This example multiplexes the input from three searches in
different subtrees of the same server */
public class MultiplexTrees {

public static void main(String[] args)
{

try {
LDAPAsynch ld = new LDAPAsynch();
/* Connect to server */
String MY_HOST = "localhost";
int MY_PORT = 389;
ld.connect(MY_HOST, MY_PORT);
String MY_FILTER = "sn=Jensen";
String[] bases =

{ "o=Airius.com", "o=Acme.com", "dc=Acme,dc=com" };
/* Get a response listener for one search */
LDAPSearchListener l =

ld.search(bases[0],
ld.SCOPE_SUB,
MY_FILTER,
null,
false,
(LDAPSearchListener)null);

/* Share the listener */
for(i = 1; i < bases.length; i++) {

ld.search(bases[i],
ld.SCOPE_SUB,
216 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Where to Go for More Information
MY_FILTER,
null,
false,
l);

}
/* Loop on results until finished */
LDAPMessage msg;
while((msg = l.getResponse()) != null) {

/* The rest is the same as in the previous example */
/* ... */

Where to Go for More Information
The javadocs for the Directory SDK for Java describe all the classes, methods
and exceptions of the LDAPAsynchronousConnection interface. For more
information on using the javadocs, see “Where to Find Reference Information”.

The Internet-Draft titled “The Java LDAP Application Program Interface
Asynchronous Extension” is available at the following URL:

http://www.ietf.org/internet-drafts/draft-ietf-ldapext-ldap-

java-api-asynch-ext-00.txt.

Note Internet-Drafts expire every six months. If the URL above does not work, try
incrementing the number by one. For example, draft-06.txt would become
draft-07.txt.
Chapter 17, Using the Asynchronous Interface 217

Where to Go for More Information
218 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Glossary
This glossary defines terms commonly used when working with LDAP.

base DN The distinguished name (DN) that identifies the starting point of a search.

For example, if you want to search all of the entries in the
“ou=People,o=Airius.com” subtree of the directory, “ou=People,o=Airius.com”
is the base DN.

For more information on base DNs and searching the directory, see “Specifying
the Base DN and Scope”.

continuation
reference

See search reference.

control LDAP controls are specified as part of the LDAP v3 protocol. A control provides
the means to specify additional information for an operation. Clients and
servers can send controls as part of the requests and responses for an opera-
tion.

For more information on LDAP controls, see Chapter 13, “Working with LDAP
Controls”.

DIT The hierarchical organization of entries that make up a directory. DIT stands
for “Directory Information Tree.”

DSA An X.500 term for an LDAP server. DSA stands for “Directory System Agent.”
Chapter , Glossary 219

DSE An entry containing server-specific information. DSE stands for “DSA-specific
entry.” Each server has different attribute values for the DSE.

extended
operation

An extension mechanism in the LDAP v3 protocol. You can define extended
operations to perform services not covered by the protocol. The extended
operation mechanism specifies the means for an LDAP client to request a
custom operation (not specified in the LDAP protocol) from an LDAP server.

For more information on extended operations, see Chapter 16, “Working with
Extended Operations”.

LDIF LDAP Data Interchange Format. The format is specified in the Internet-Draft
“The LDAP Data Interchange Format -- Technical Specification,” which is
available at the following location: http://www.ietf.org/internet-
drafts/draft-good-ldap-ldif-04.txt. Note that Internet-Drafts expire
every six months. If the URL above does not work, try incrementing the
number by one. For example, draft-06.txt would become draft-07.txt.

operational
attributes

Attributes that are used by servers for administering the directory. For example,
creatorsName is an operational attribute that specifies the DN of the user who
added the entry. Operational attributes are not returned in any search results
unless you specify the attribute by name in the search request.

For more information on searching the operational attributes, see “Specifying
the Attributes to Retrieve”.

referral Refers an LDAP client to another LDAP server. An LDAP server can be config-
ured to send your client a referral if your client requests a DN with a suffix that
is not in the server’s directory tree (for example, if the directory includes entries
under “o=Airius.com” and your client requests an entry under “o=Airi-
usWest.com”).

Referrals contain LDAP URLs that specify the host, port, and base DN of
another LDAP server.

Note that referrals are not the same as (but are similar to) search references. A
search reference is returned as part of the results of a search; a referral is
returned when the base DN of a search (or the target DN of any other LDAP
operation) is not part of the LDAP server’s directory tree.

For more information on handling referrals, see “Handling Referrals”.

referral hop limit The maximum number of referrals that your client should follow in a row. For
example, suppose your client receives a referral from LDAP server A to LDAP
server B. After your client follows the referral to LDAP server B, that server
220 Netscape Directory SDK 4.0 for Java Programmer’s Guide

sends you a referral to LDAP server C, which in turn refers you to LDAP server
D. Your client has been referred 3 times in a row. If the referral hop limit is 2,
the referral hop limit has been exceeded.

For more information on handling referrals, see “Handling Referrals”.

root DSE An entry (a DSE) that is located at the root of the DIT.

For information on getting the root DSE of an LDAP server, see “Getting the
Root DSE”.

search reference Also known as continuation references, search result references, or smart refer-
rals. A search reference is an entry in the directory that refers to another LDAP
server (the reference is in the form of an LDAP URL).

Search references are returned in search results along with entries found in the
search. (A referral, on the other hand, is returned before searching through any
entries. A referral is returned if the base DN does not have a suffix that is
handled by the server.)

For more information on handling search references, see “Getting the Search
Results”.

search result
reference

See search reference.

server plug-in Beginning with version 3.0, Netscape Directory Server supports a plug-in
interface that allows you to extend the functionality of the server. You can write
plug-ins that handle extended operations or SASL authentication requests. For
more information on server plug-ins, see the Netscape Directory Server
Programmer’s Guide.

smart referral See search reference.

subschema entry Entry containing all the schema definitions (definitions of object classes,
attributes, matching rules, and so on) used by entries in part of a directory tree.

For more information on getting the subschema entry, see “Getting the Schema
for an LDAP Server”.
Chapter , Glossary 221

222 Netscape Directory SDK 4.0 for Java Programmer’s Guide

Index

A
abandoning a search 85

adding
attributes to an entry 115
entries 107
JNDI object schema 193
values to an attribute 113

anonymous bind 47

applets
checking version of LDAP

classes 30
security framework and 29

asynchronous interface
classes 213
common uses 212
connections, explained 211
searches with multiple servers 214
searches with multiple

statements 216

AsynchronousConnection
See LDAPAsynchronousConnection

attributes
adding to an entry 115
adding values to 113
comparing 123
defined 20
example of 20
getting from an entry 82
getting names and values of 83
operational 74
removing from an entry 115
removing values from 113
replacing values of 114
retrieving in a search 74

authentication
certificate-based 46, 153

reauthenticating during referrals 58
SASL callbacks, implementing 184
simple 46
using SASL 186

B
base DN

explained 70

beans 31

bind operation 45

binding 45
anonymously 47

C
cache 59

explained 60
flushing 62
getting statistics 63
setting up 61
sharing between connections 62

callbacks
implementing for SASL 184

certificate-based client
authentication 46, 153

changing the name of an entry 119

CLASSPATH
beans and 32
setting 29

closing an LDAP connection 49

cn
example of 21

com.oroinc.text.regex package 28

common names
example of 21
Index 223

comparing attributes 123

comparing entries 123

connect (method of
LDAPConnection)

example 44

connection
caching results 59
cloning 65
closing 49
creating 44
establishing 44
setting preferences 44
sharing a cache 62
specifying multiple LDAP

servers 44
using SSL 149

controls 155

D
deleting entries 118

directory
defined 20

directory service
defined 20

distinguished names
defined 21
getting from an entry 81
illustrated 22
manipulating 65

DN
See distinguished names

DSE 135
root 136

E
ending an LDAP session 49

entries
adding 107
change notification 176
comparing 123
defined 20

deleting 118
example of 20
getting attributes from 82
getting from search results 80
listing subentries of 89
modifying 112
organization in LDAP 21
reading from directory 87
removing 118
removing attributes from 115
renaming 119
searching for 67
updating 112

environment properties
JNDI 194–201

ErrorCodes.props file 54

exceptions
getting information about 53
handling 52

extended operations 205

EXTERNAL mechanism
using with SASL 187

F
failover support 44

filter configuration files 93
loading 97
retrieving filters 98
syntax 94

filters 72
configuration files 93
retrieving from files 98

I
in-memory cache 59

J
Java beans 31

Java Naming and Directory Interface
See JNDI
224 Netscape Directory SDK 4.0 for Java Programmer’s Guide

JavaScript 33

JNDI
environment properties 194–201
explained 191
Netscape LDAP Service Provider

for 192
object schema, adding 193

L
LDAP

organization of data 21

LDAP clients 20
authenticating with LDAP

servers 45
authentication 23
binding with LDAP servers 45
closing connection to server 49
connecting to a server 44
connecting with LDAP servers 23
controls and 155
example of 21, 35, 42
extended operations and 207
general procedure for writing 42
LDAP servers and 23
operations performed by 23
specifying protocol version 47
using SSL 149
writing applets 29

LDAP Java beans 31

LDAP Java Classes 25
different versions of 30
getting information about 51
JavaScript and 33
LiveConnect and 33

LDAP operations 48

LDAP result code 53
string description for 54

LDAP servers 20
authenticating to 45
authentication 23
binding to 45
closing connection from client 49
connecting to 44

connecting with LDAP clients 23
controls and 155
example of 21
extended operations and 206
how data is distributed 22
how data is organized 21
how referrals work 22
LDAP clients and 23
protocol version supported 139
schema 140
searching 67
using SSL 149

LDAP session
caching results 59
ending 49
setting preferences 44
starting 44

LDAP URLs 127

LDAPAsynchronousConnection 213

LDAPCompareAttributeNames (class)
example of 84

LDAPEntryComparator (interface)
example of 84

ldapfilt.jar JAR file 28

ldapjdk.jar JAR file 28

LiveConnect 33

loading filter configuration files 97

M
makejars.bat batch file 27

makejars.sh shell script 27

mechanism
EXTERNAL for SASL 187

multiplex searches
See asynchronous

searches

N
Netscape Directory SDK for Java 26

contents 27
Index 225

downloading 27
example of using 35
exploring 27
getting information about 51
installing 27
JavaScript and 33
LDAP Java beans 31
packages 25
what’s new xiv
writing applets for 29

O
object schema

adding JNDI 193

operational attributes 74

overview of this manual xiv

P
packages

summary of 25

password policy controls 179

persistent searches 170

properties
JNDI environment 194–201

R
reading an entry from the

directory 87

referrals 22, 55
getting from search results 80
handling automatically 57
LDAPReferralException and 80
reauthenticating 58
specifying maximum hops 57

removing
entries 118
values from an attribute 113

renaming an entry 119

root DSE 136

S
SASL

authenticating with 186
callbacks, implementing 184
client-side requirements 183
defined 181–182
server-side requirements 183
using the EXTERNAL mechanism

with 187

schema 140
adding JNDI 193

scope
explained 70

search filters 72
configuration files 93
retrieving from files 98

search results
caching 59
entry change notification 176
getting 79
getting attributes 82
getting DNs 81
getting entries 80
setting size limits 77
setting time limits 77
sorting 84, 161

searching the directory 67
abandoning the search 85
example of 85

simple authentication 46

Simple Authentication and Security
Layer

See SASL

sorting search results 84, 161

SSL 149
authenticating over 46
using with SASL 187

synchronous connections
explained 211
226 Netscape Directory SDK 4.0 for Java Programmer’s Guide

U
URLs, LDAP 127
Index 227

228 Netscape Directory SDK 4.0 for Java Programmer’s Guide

	Preface
	Who Should Read This Guide
	Where to Find LDAP Information
	What’s New in This Release
	What’s in This Guide
	Where to Find Reference Information
	Documentation Conventions
	About the Sample Code

	Introduction to LDAP and the Netscape Directory SDK for Java
	Understanding LDAP
	How Directory Services Work
	How LDAP Servers Organize Directories
	How LDAP Clients and Servers Work
	Understanding the LDAP v3 Protocol
	For More Information

	Using the Netscape Directory SDK for Java
	Understanding the LDAP Java Classes
	Getting Started with the Netscape Directory SDK for Java
	Getting and Installing the SDK
	Exploring the SDK
	Preparing to Use the SDK
	Writing Applets with the SDK
	Checking the Version of Classes from an Applet
	Working with the LDAP JavaBeans
	Using the Classes in JavaScript

	Quick Start
	Understanding the Sample Client
	Sample Code

	Writing Clients with the Netscape Directory SDK for Java
	Writing an LDAP Client
	Overview: Designing an LDAP Client
	Creating a Connection and Setting Preferences
	Connecting to the LDAP Server
	Binding and Authenticating to an LDAP Server
	Understanding Authentication Methods
	Simple Authentication
	Certificate-Based Client Authentication (over SSL)
	Simple Authentication and Security Layer (SASL)

	Using Simple Authentication
	Binding Anonymously
	Specifying the LDAP Version
	Authenticating with the connect Method

	Performing LDAP Operations
	Closing the Connection to the Server

	Using the LDAP Java Classes
	Getting Information About the SDK
	Handling Exceptions
	Getting Information About the Error
	Getting the Error Message

	Handling Referrals
	Understanding Referrals
	Enabling or Disabling Referral Handling
	Limiting Referral Hops
	Binding When Following Referrals

	Using an In-Memory Cache
	How the Cache Operates
	Setting Up an In-Memory Cache
	Caching Requests by Base DN
	Sharing a Cache Between Connections
	Flushing the Cache
	Getting Cache Statistics

	Cloning a Connection
	Manipulating Distinguished Names
	Getting the Components of a Distinguished Name

	Searching the Directory
	Overview: Searching with the LDAP Java Classes
	Sending a Search Request
	Specifying the Base DN and Scope
	Specifying a Search Filter
	Specifying the Attributes to Retrieve
	Setting Search Preferences
	Setting Preferences for All Searches
	Overriding Preferences on Individual Searches
	Configuring the Search to Wait for All Results
	Setting Size and Time Limits

	Example of Sending a Search Request

	Getting the Search Results
	Getting Entries from the Results
	Getting Distinguished Names from the Results
	Getting Attributes from an Entry
	Getting the Name and Values of an Attribute

	Sorting the Search Results
	Abandoning a Search
	Example: Searching the Directory
	Reading an Entry
	Listing Subentries

	Using Filter Configuration Files
	Understanding Filter Configuration Files
	Understanding the Configuration File Syntax
	Understanding Filter Parameters
	Loading a Filter Configuration File
	Retrieving Filters
	Adding Filter Prefixes and Suffixes
	Adding Affixes for All Filters
	Adding Affixes By Using setFilterAffixes
	Adding Affixes By Using getFilter
	Adding Affixes By Using setupFilter

	Adding, Updating, and Deleting Entries
	Adding a New Entry
	Creating a New Attribute
	Creating a New Attribute Set
	Creating a New Entry
	Adding the Entry to the Directory
	Example of Adding an Entry

	Modifying an Entry
	Specifying the Changes
	Adding New Values to an Attribute
	Removing Values to an Attribute
	Replacing the Values of an Attribute
	Adding a New Attribute
	Removing an Attribute

	Modifying the Entry in the Directory
	Example of Modifying an Entry

	Deleting an Entry
	Example of Deleting an Entry

	Changing the Name of an Entry
	Removing the Attribute for the Old RDN
	Example of Renaming an Entry

	Comparing Values in Entries
	Comparing the Value of an Attribute
	Specifying the Attribute and Value
	Performing the Comparison
	Example of Comparing a Value Against an Attribute

	Working with LDAP URLs
	Understanding LDAP URLs
	Examples of LDAP URLs
	Getting the Components of an LDAP URL
	Processing an LDAP URL

	Advanced Topics
	Getting Server Information
	Understanding DSEs
	Getting the Root DSE
	Determining If the Server Supports LDAP v3
	Getting Schema Information
	Overview: Schema Over LDAP
	Getting the Schema for an LDAP Server
	Working with Object Class Descriptions
	Working with Attribute Type Descriptions
	Working with Matching Rule Descriptions
	Example of Working with the Schema

	Connecting Over SSL
	How SSL Works with the Netscape Directory SDK for Java
	Understanding SSL
	SSL Over LDAP
	Interfaces and Classes for SSL

	Prerequisites for Connecting Over SSL
	Connecting to the Server Over SSL
	Using Certificate-Based Client Authentication

	Working with LDAP Controls
	How LDAP Controls Work
	Using Controls in the LDAP Java Classes
	Determining the Controls Supported By the Server
	Using the Server-Side Sorting Control
	Specifying the Sort Order
	Creating the Control
	Performing the Search
	Interpreting the Results
	Known Problems with Server Sorting
	Example of Using the Server-Sorting Control

	Using the Persistent Search Control
	Creating the Control
	Performing the Search
	Example of Using the Persistent Search Control

	Using the Entry Change Notification Control
	Getting the Control
	Working with Change Log Numbers

	Using the Virtual List View Control
	Using the Manage DSA IT Control
	Using Password Policy Controls
	Using the Proxied Authorization Control

	Using SASL Authentication
	Understanding SASL
	Preparing to Use SASL Authentication
	Supporting SASL on the Server
	Supporting SASL on the Client
	Implementing javax.security.auth.callback

	Using SASL in the Client
	Using the External Mechanism
	Additional SASL Mechanisms

	For More Information

	Using the JNDI Service Provider
	How JNDI Works
	Netscape’s LDAP Service Provider

	Installing the Service Provider
	Add the Provider to the Classpath
	Specify the Service Provider when Creating the Initial Context
	Add the JNDI object schema to the Directory (Optional)
	Updating Netscape Directory Server 4.1
	Updating Pre-4.1 Netscape Directory Servers

	JNDI Environment Properties
	Working with Controls

	Working with Extended Operations
	How Extended Operations Work
	Implementing Support for Extended Operations on the Server
	Determining the Extended Operations Supported
	Performing an Extended Operation
	Example: Extended Operation

	Using the Asynchronous Interface
	Synchronous vs. Asynchronous Connections
	Common Uses for the Asynchronous Interface
	New Classes in the Asynchronous Interface
	Performing Asynchronous Searches
	Searching Multiple Servers
	Multiple Search Statements

	Where to Go for More Information

	Glossary
	base DN
	continuation reference
	control
	DIT
	DSA
	DSE
	extended operation
	LDIF
	operational attributes
	referral
	referral hop limit
	root DSE
	search reference
	search result reference
	server plug-in
	smart referral
	subschema entry

	Index

