Server-Side JavaScript
Reference

Version 1.2




Netscape Communications Corporation ("Netscape") and its licensors retain all ownership rights to the software programs
offered by Netscape (referred to herein as "Software") and related documentation. Use of the Software and related
documentation is governed by the license agreement accompanying the Software and applicable copyright law.

Your right to copy this documentation is limited by copyright law. Making unauthorized copies, adaptations, or compilation
works is prohibited and constitutes a punishable violation of the law. Netscape may revise this documentation from time to
time without notice.

THIS DOCUMENTATION IS PROVIDED "AS 1S" WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL NETSCAPE BE
LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND ARISING FROM ANY
ERROR IN THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION ANY LOSS OR INTERRUPTION OF BUSINESS,
PROFITS, USE, OR DATA.

The Software and documentation are copyright ©1994-1998 Netscape Communications Corporation. All rights reserved.

Netscape, Netscape Navigator, Netscape Certificate Server, Netscape DevEdge, Netscape FastTrack Server, Netscape ONE,
SuiteSpot and the Netscape N and Ship’s Wheel logos are registered trademarks of Netscape Communications Corporation in
the United States and other countries. Other Netscape logos, product names, and service names are also trademarks of
Netscape Communications Corporation, which may be registered in other countries. JavaScript is a trademark of Sun
Microsystems, Inc. used under license for technology invented and implemented by Netscape Communications Corporation.
Other product and brand names are trademarks of their respective owners.

The downloading, exporting, or reexporting of Netscape software or any underlying information or technology must be in
full compliance with all United States and other applicable laws and regulations. Any provision of Netscape software or
documentation to the U.S. Government is with restricted rights as described in the license agreement accompanying Netscape
software.

@ Recycled and Recyclable Paper

Version 1.2
©1998 Netscape Communications Corporation. All Rights Reserved
Printed in the United States of America. 00 99 98 5432 1

Netscape Communications Corporation, 501 East Middlefield Road, Mountain View, CA 94043



New Features in this Release

JavaScript version 1.2 provides the following new features and enhancements:

Changes to the Array object.

Ar r ay objects can be created using literal notation.

When the <SCRI PT> tag includes LANGUAGE="JavaScri pt 1. 2",
array(1) creates a new array with a[ 0] =1.

When created as the result of a match between a regular expression
and a string, arrays have new properties that provide information about
the match.

concat joins two arrays and returns a new array.
pop removes the last element from an array and returns that element.

push adds one or more elements to the end of an array and returns
that last element added.

shi ft removes the first element from an array and returns that element

unshi ft adds one or more elements to the front of an array and
returns the new length of the array.

sl i ce extracts a section from an array and returns a new array

spl i ce adds and/or removes elements from an array and returns the
removed elements.

sort now works on all platforms. It no longer converts undefined
elements to null; instead, it sorts them to the high end of the array.



4 Server-Side lavaScript Reference

Changes to the Function object.

= Nested functions. You can nest functions within functions. (That is,
JavaScript now supports lambda expressions and lexical closures.) See
Functi on.

= New function property arity. The ari ty property indicates the
number of arguments expected by a function.

= New arguments property. The ar gunent s. cal | ee property
provides information about the invoked function.

New Lock class. The Lock class allows safe sharing of information with
multiple incoming requests.

Changes to the Number object. Nunber now produces NaN rather than
an error if x is a string that does not contain a well-formed numeric literal.

New RegExp object for regular expressions. Regular expressions are
patterns used to match character combinations in strings. You create a
regular expression as an object that has methods used to execute a match
against a string. You can also pass the regular expression as an argument to
the St ri ng methods mat ch, repl ace, search, and split. The RegExp
object has properties most of which are set when a match is successful,
such as | ast Mat ch which specifies the last successful match. The Arr ay
object has new properties that provide information about a successful
match such as i nput which specifies the original input string against which
the match was executed. See RegExp for information.

New SendMail class. The SendMai | class lets you generate email from
JavaScript.

New or changed String methods.

= char CodeAt returns a number specifying the ISO-Latin-1 codeset
value of the character at the specified index in a string object.

= concat combines the text of two strings and returns a new string.

= fronChar Code constructs a string from a specified sequence of
numbers that are 1SO-Latin-1 codeset values.

< mat ch executes a search for a match between a string and a regular
expression.



r epl ace executes a search for a match between a string and a regular
expression, and replaces the matched substring with a new substring.

sear ch tests for a match between a string and a regular expression.
sl i ce extracts a section of an string and returns a new string.

spl it includes several new features and changes. It can take a regular
expression argument, as well as a fixed string, by which to split the
object string. It can take a limit count so that it won't include trailing
empty elements in the resulting array. If you specify
LANGUAGE="JavaScri pt 1. 2" in the <SCRI PT> tag,

string.split(" ") splits on any run of one or more white space
characters including spaces, tabs, line feeds, and carriage returns.

subst r returns the characters in a string collecting the specified
number of characters beginning with a specified location in the string.

subst ri ng if you specify LANGUAGE="JavaScri pt 1. 2" in the
<SCRI PT> tag, this method no longer swaps index numbers when the
first index is greater than the second.

New top-level functions Number and String. The Nunber function
converts an object to a number. The St ri ng function converts an object to
a string.

Changes to methods of all objects.

eval is no longer a method of individual objects; it is available only as
a top-level function.

t oSt ri ng converts an object or array to a literal. For this behavior,
LANGUAGE="JavaScri pt 1. 2" must be specified in the <SCRI PT> tag.

wat ch is a new method of all objects. It watches for a property to be
assigned a value and runs a function when that occurs.

unwat ch is a new method of all objects. It removes a watchpoint set
with the wat ch method.



New or changed operators.

The new del et e operator deletes an object, an object’s property, or an
element at a specified index in an array. See “delete” on page 395.

If the <SCRI PT> tag uses LANGUAGE=JavaScri pt 1. 2, the equality
operators == and ! = do not attempt to convert operands from one type
to another, and always compare identity of like-typed operands. See
“Comparison Operators” on page 385.

New or changed statements.

The br eak and cont i nue statements can now be used with the new
| abel ed statement.

do. .. whi | e repeats a loop until the test condition evaluates to false.

export allows a signed script to provide functions to other signed or
unsigned scripts.

i mport allows a script to import functions from a signed script which
has exported the information.

| abel allows the program to break outside nested loops or to continue
a loop outside the current loop.

swi t ch allows the program to test several conditions easily.

See the Server-Side JavaScript Guide for information on additional features.

6 Server-Side JavaScript Reference



New Features in thiS REICASE .........cov oo 3

ABOUL thiS BOOK ..o 13
New Features in this REIEASE .......ccccvciiii i 13
What You Should Already KNOW .......ccccocviiiiiiieseesec e 13
JAVASCIIPL VEISIONS ..ottt 14
Where to Find JavaScript INformation .........ccccccoviiiiviini e 15
DocumMENt CONVENTIONS .....cvviiiieiciieectiee e stie e stee e e stee e stre e e ste e e s ste e e s ne e e seeessreeesnreeens 16

Part 1 Object Reference

Chapter 1 Objects, Methods, and Properties ..........cccecevevvieinenenas 21
AATTY ettt ettt et s e e e et e et e e e e et e e et et e et e e e Rt e e et e e e et et e nee e e teeeanteeanreeeareeens 22
o] (0] o RSSO T TP USROPROP 43
2700 =T o TSSO 48
(o] 1= o | SRR 52
(0] o] 0= 1o o [ ST 56
(01T ] £ ] PR 75
ALADASE ....veeiecieic e e nreean 88
DALE ...iviiii ittt rara e 115
3] o 2o To | ST SRN 133
] PP 151
L1 1 1 o] o SRS 173
LAY AT URPR 187
B2V - Y 188
JAVACIASS ..o e e 191
=NV 7 1@ ] o =T ox SR S 192
JAVAPACKAGE ... ittt ettt re e 194
o T SRS 195
IMIAEN Lottt et e ettt e e be e be e ae e ereeabaans 199

Contents vii



LSS £ 1 1= USSR 218

NUMDET <ottt ne s 219
L ] oot SO URURSSRPRI 227
PACKAGES ...ttt b ettt bt e et sreen 237
1) =11 PR 241
=] <o o ST T PO PSUU P UUUPRUPP 244
[£=T0 B =T T ST R TP UPPOPN 265
RESUIESEE ...ttt et et sb et b e 273
SENAMAIT ... e 280
1T V<] S TR U TR UPPTPPRTN 287
K] 1 0] o ] U U P UOTPRPT 292
] 1 1o RSOSSN 296
10 o TSP TP U PP UUTRTPPPPTO 332

viii Server-Side JavaScript Reference



Chapter 2 Top-Level FUNCLIONS ..o 333

1o [0 (01 1=1 o | AU 335
AddRESPONSEHEAAET ......ecveeiie e s 336
o] (o] ISP 337
CAIIC b nre s 338
(o =T 01U o USSP 339
deleteRESPONSEHEAUEY .......coviiiiiiie et 340
TS0 1 1= SRS 340
BVAL ettt nb e ne e anas 341
FIUSN e e e 344
QELOPLONVAIUE ... e 345
(o [=1(@ ] 010 ToT 0 V7= 011010 o | S 346
(151N F= L TP U PP UUPT PR 347
NUMDET .t b ettt sbe b b 348
PASEFIOAL ...ttt be 349
72T 6= 1 | USRS 350
=T LT =Tod ST ORTRUOTRUPRTPIN 352
=705 (=T (O LU ] o1 1T o ISR 353
SSjS_generateClIENtID .........c.oooiii s 354
SSjS_QEICGIVANIADIE ....oocviieec e 354
SSJS_GEICHENTID ...ttt 356
] 1o S 358
(Lo T ot T oL PP PSPPI 359
1T PSRRI 360

Chapter 3 StatemMENTS ... 363
o1 1=T 1 365
o0 )1 010 01T o | TR 366
(o0 1 11 |1 = PSSR 367
O WHIIE e 368
123 q 01 ] ¢ AT TP P T PP PP PPRT 369
(0 ST 370
(0] S 1o SRR RUPRSUSR 371

Contents ix



L0103 1T o TP 372

T Bl e 373
0] o ) SR 373
=T o 1= RO USUR 374
[1=] (0 0 TSP TP 375
SWITCR ettt 376
12 LT OO PP PP PUPTTPURTO 377
WHRIIE e 378
WIHERL bbbttt bbbt 379
Chapter 4 OPEratOrS ......cccoiiiiiiieccee e 381
ASSIGNMENT OPEIALOIS ...coueviiiieiiie ettt sttt et et eeenae e s 384
(070 131 oL Vg TS0 0l @] o 1=T - | (o] £SO 385
Arithmetic OPEIALOIS .....eeieiiiectie ettt et 387
%0 (MOAUIUS) ..t enaeenne s 387
F4 (INCIEMENT) .t s 388
e (B L=To3 (] 10T o o ST 388
= (UNary NEJALION) ....oouiiiieiie ittt 388
BItWiSE OPEIALOIS ...c.vveiveiiiee et see et see et e et e e e e e et e e e snaeanee s 389
Bitwise Logical OPErators .......coccoooiiieiieiie et 390
Bitwise Shift OPErators ........cccccoiveiiveiie i 390
[WoTo [ o LI @] o] -1 0] £SO R TR P PP 392
[T @] o] - (o] PRSI 394
SPECIAI OPEIALOIS ....eiiiie ittt ettt st sb et e sneens 394
2 (Conditional OPErALOr) ......ccevveiieiiirie e 394
(o] 00100 T W] o =] 1 o] ) RSP SR 395
EIBLE . e 395
LTS PSPPI 397
TN e 399
137/ 010 ) ORI 400
VOIA o 401

X Server-Side JavaScript Reference



Part 3 LiveConnect Class Reference

Chapter 5 Java Classes, Constructors, and Methods ..................... 405
] (o7=T o] 1T 406
10 111 SO 408

Part 4 Appendixes
Appendix A Reserved WOrdS ... 415

Contents Xi



Xii Server-Side JavaScript Reference



About this Book

JavaScript is Netscape’s cross-platform, object-based scripting language for
client and server applications. This book is a reference manual for the
JavaScript language, including both core and server-side JavaScript.

This preface contains the following sections:
= New Features in this Release

< What You Should Already Know

= JavaScript Versions

= Where to Find JavaScript Information

< Document Conventions

New Features in this Release

For a summary of JavaScript 1.2 features, see “New Features in this Release” on
page 3. Information on these features has been incorporated in this manual.

What You Should Already Know

This book assumes you have the following basic background:
< A general understanding of the Internet and the World Wide Web (WWW).

= A general understanding of client-side JavaScript. This book does not
duplicate client-side language information.

= Good working knowledge of HyperText Markup Language (HTML).
Experience with forms and the Common Gateway Interface (CGIl) is also
useful.

13



JavaScript Versions

= Some programming experience in Pascal, C, Perl, Visual Basic, or a similar
language.

= Familiarity with relational databases and a working knowledge of Structured
Query Language (SQL), if you're going to use the LiveWire Database
Service.

JavaScript Versions

Each version of Navigator supports a different version of JavaScript. To help
you write scripts that are compatible with multiple versions of Navigator, this
manual lists the JavaScript version in which each feature was implemented.

The following table lists the JavaScript version supported by different Navigator
versions. Versions of Navigator prior to 2.0 do not support JavaScript.

Table 1 JavaScript and Navigator versions

JavaScript version Navigator version
JavaScript 1.0 Navigator 2.0
JavaScript 1.1 Navigator 3.0
JavaScript 1.2 Navigator 4.0-4.05

Each version of the Netscape Enterprise Server also supports a different version
of JavaScript. To help you write scripts that are compatible with multiple
versions of the Enterprise Server, this manual uses an abbreviation to indicate
the server version in which each feature was implemented.

Table 2 JavaScript and Netscape Enterprise Server versions

Abbreviation Enterpriser Server version
NES 2.0 Netscape Enterprise Server 2.0
NES 3.0 Netscape Enterprise Server 3.0

14 Server-Side JavaScript Reference



Where to Find JavaScript Information

Where to Find JavaScript Information

The server-side JavaScript documentation includes the following books:

The Server-Side JavaScript Guide provides information about the JavaScript
language and its objects. This book contains information for both core and
server-side JavaScript. Some core language features work differently on the
client than on the server; these differences are discussed in this book.

The Server-Side JavaScript Reference (this book) provides reference material
for the JavaScript language, including both core and server-side JavaScript.

If you are new to JavaScript, start with the Server-Side JavaScript Guide. Once
you have a firm grasp of the fundamentals, you can use the Server-Side
JavaScript Reference to get more details on individual objects and statements.

Use the material in the server-side books to familiarize yourself with core and

server-side JavaScript. Use the Client-Side JavaScript Guide and Client-Side
JavaScript Reference for information on scripting HTML pages.

The Netscape Enterprise Server Programmer’s Bookshelf summarizes the
different programming interfaces available with the 3.x versions of Netscape
web servers. Use this guide as a roadmap or starting point for exploring the
Enterprise Server documentation for developers.

The Netscape web site contains information that can be useful when you're
working with JavaScript. The following URLs are of particular interest:

http:// hone. net scape. conf one_stop/ i ntranet _apps/i ndex. htm

The Netscape AppFoundry Online home page is a source for starter
applications, technical information, tools, and expert forums for quickly
building and dynamically deploying open intranet applications. This site
also includes troubleshooting information in the resources section and extra
help on setting up your JavaScript environment.

http://hel p. net scape. conf products/tools/livew re/

Netscape’s technical support page for information on the LiveWire Database
Service contains many useful pointers to information on using LiveWire in
JavaScript applications.

15



Document Conventions

« http://developer.netscape.com/tech/javascript/ssjs/
index.html

Netscape’s support page for server-side JavaScript contains news and
resources related to server-side JavaScript. For quick access to this URL,
click the Documentation link on the Netscape Enterprise Server Application
Manager.

e http://devel oper. netscape. conl vi ewsource/ i ndex. ht m

View Source Magazine, Netscape’s online technical magazine for
developers, is updated every other week and frequently contains articles of
interest to JavaScript developers.

Document Conventions

JavaScript applications run on many operating systems; the information in this
book applies to all versions. File and directory paths are given in Windows
format (with backslashes separating directory names). For Unix versions, the
directory paths are the same, except that you use slashes instead of backslashes
to separate directories.

This book uses uniform resource locators (URLs) of the following form:

http://server. domai nl pathl file.htm

In these URLs, server represents the name of the server on which you run your
application, such as r esear chl or ww; domain represents your Internet
domain name, such as net scape. comor ui uc. edu; path represents the
directory structure on the server; and file. ht M represents an individual file
name. In general, items in italics in URLs are placeholders and items in normal
monospace font are literals. If your server has Secure Sockets Layer (SSL)
enabled, you would use ht t ps instead of htt p in the URL.

16 Server-Side JavaScript Reference



Document Conventions

This book uses the following font conventions:

The nonospace font is used for sample code and code listings, APl and
language elements (such as method names and property names), file
names, path names, directory names, HTML tags, and any text that must be
typed on the screen. (Mbnospace italic font is used for placeholders
embedded in code.)

Italic type is used for book titles, emphasis, variables and placeholders, and
words used in the literal sense.

Boldface type is used for glossary terms.

17



Document Conventions

18 Server-Side JavaScript Reference



Object Reference

» Objects, Methods, and
Properties

» Top-Level Functions



20 Server-Side JavaScript Reference



Chapter

Objects, Methods, and Properties

This chapter documents all the JavaScript objects, along with their methods and
properties. It is an alphabetical reference for the main features of JavaScript.

The reference is organized as follows:

= Full entries for each object appear in alphabetical order; properties and
functions not associated with any object appear in Chapter 2, “Top-Level
Functions.”

Each entry provides a complete description for an object. Tables included
in the description of each object summarize the object’s methods and
properties.

= Full entries for an object’s methods and properties appear in alphabetical
order after the object’s entry.

These entries provide a complete description for each method or property,
and include cross-references to related features in the documentation.

Chapter 1, Objects, Methods, and Properties 21



Array

Array

Created by

Parameters

Description

Lets you work with arrays.
Core object

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

The Array object constructor:

new Array(arraylLengt h)
new Array(el enent0, elenentl, ..., elenentN

An array literal:
[elenentO, elenentl, ..., elenentN

JavaScript 1.2 when you specify LANGUAGE="JavaScri pt 1. 2" in the
<SCRI PT> tag:

new Array(el enent0, elenentl, ..., elenentN

arrayLength The initial length of the array. You can access this value using the
| engt h property. If the value specified is not a number, an array of
length 1 is created, with the first element having the specified value.
The maximum length allowed for an array is 4,294,967,295.

el ement N A list of values for the array’s elements. When this form is specified,
the array is initialized with the specified values as its elements, and
the array’s | engt h property is set to the number of arguments.

An array is an ordered set of values associated with a single variable name.
The following example creates an Ar r ay object with an array literal; the
cof f ees array contains three elements and a length of three:

coffees = ["French Roast", "Col unbi an", "Kona"]

You can construct a dense array of two or more elements starting with index 0
if you define initial values for all elements. A dense array is one in which each
element has a value. The following code creates a dense array with three
elements:

nyArray = new Array("Hello", myVvar, 3.14159)

22 Server-Side JavaScript Reference



Array

Indexing an array. You index an array by its ordinal number. For example,
assume you define the following array:

nyArray = new Array("Wnd","Rain","Fire")

You then refer to the first element of the array as myArray[ 0] and the second
element of the array as nyArray[ 1] .

Specifying a single parameter. When you specify a single numeric parameter
with the Ar r ay constructor, you specify the initial length of the array. The
following code creates an array of five elements:

bi |l l'i ngMet hod = new Array(5)

The behavior of the Arr ay constructor depends on whether the single
parameter is a number.

= If the value specified is a number, the constructor converts the number to
an unsigned, 32-bit integer and generates an array with the | engt h
property (size of the array) set to the integer. The array initially contains no
elements, even though it might have a non-zero length.

= |If the value specified is not a number, an array of length 1 is created, with
the first element having the specified value.

The following code creates an array of length 25, then assigns values to the first
three elements:

nusi cTypes = new Array(25)

nmusi cTypes[ 0] = "R&B"
nmusi cTypes[ 1] = "Bl ues"
nusi cTypes[2] = "Jazz"

Chapter 1, Objects, Methods, and Properties 23



Array

When you specify a single parameter with the Ar r ay constructor in
JavaScript 1.2, the behavior depends on whether you specify
LANGUAGE="JavaScri pt 1. 2" in the <SCRI PT> tag:

= If you specify LANGUAGE="JavaScri pt 1. 2" in the <SCRI PT> tag, a
single-element array is returned. For example, new Array(5) creates a
one-element array with the first element being 5. A constructor with a single
parameter acts in the same way as a multiple parameter constructor. You
cannot specify the | engt h property of an Ar r ay using a constructor with
one parameter.

< If you do not specify LANGUAGE="JavaScri pt 1. 2" in the <SCRI PT>
tag, you specify the initial length of the array as with other JavaScript
versions.

Increasing the array length indirectly. An array’s length increases if you
assign a value to an element higher than the current length of the array. The
following code creates an array of length 0, then assigns a value to element 99.
This changes the length of the array to 100.

colors = new Array()
col ors[99] = "m dni ght bl ue"

Creating an array using the result of a match. The result of a match
between a regular expression and a string can create an array. This array has
properties and elements that provide information about the match. An array is
the return value of RegExp. exec, Stri ng. mat ch, and Stri ng. repl ace.
To help explain these properties and elements, look at the following example
and then refer to the table below:

<SCRI PT LANGUAGE="JavaScript1.2">

// Match one d foll owed by one or nore b's foll owed by one d

// Remenber matched b’s and the following d
//1gnore case

nyRe=/d(b+) (d)/i;
nyArray = myRe. exec("cdbBdbsbz");

</ SCRI PT>

24 Server-Side JavaScript Reference



Backward
Compatibility

Property
Summary

Array

The properties and elements returned from this match are as follows:

Property/Element Description Example

i nput A read-only property that reflects the cdbBdbsbz
original string against which the regular
expression was matched.

i ndex A read-only property that is the zero-based 1
index of the match in the string.

[0] A read-only element that specifies the last dbBd
matched characters.

[1], ...[n] Read-only elements that specify the [1]=bB
parenthesized substring matches, if [2]=d

included in the regular expression. The
number of possible parenthesized
substrings is unlimited.

JavaScript 1.1 and earlier. When you specify a single parameter with the
Ar r ay constructor, you specify the initial length of the array. The following
code creates an array of five elements:

bi I li ngMethod = new Array(5)

JavaScript 1.0. You must index an array by its ordinal number; for example
nyArray[ 0] .

Property Description

const ruct or Specifies the function that creates an object’s prototype.

i ndex For an array created by a regular expression match, the zero-based
index of the match in the string.

i nput For an array created by a regular expression match, reflects the
original string against which the regular expression was matched.

I ength An integer that specifies the number of elements in an array.

pr ot ot ype Allows the addition of properties to all objects.

Chapter 1, Objects, Methods, and Properties 25



Array

Method Summary

Examples

Method Description

concat Joins two arrays and returns a new array.

join Joins all elements of an array into a string.

pop Removes the last element from an array and returns that element.

push Adds one or more elements to the end of an array and returns the last
element added to the array.

reverse Transposes the elements of an array: the first array element becomes
the last and the last becomes the first.

shift Removes the first element from an array and returns that element

slice Extracts a section of an array and returns a new array.

splice Adds and/or removes elements from an array.

sort Sorts the elements of an array.

toString Returns a string representing the array and its elements. Overrides the
hj ect.toStri ng method.

unshi ft Adds one or more elements to the front of an array and returns the
new length of the array.

val ueCf Returns the primitive value of the array. Overrides the
hj ect . val ueOF method.

In addition, this object inherits the wat ch and unwat ch methods from
hj ect.

Example 1. The following example creates an array, nsgAr r ay, with a length
of 0, then assigns values to msgAr ray[ 0] and nsgAr ray[ 99], changing the
length of the array to 100.

nsgArray = new Array()
nsgArray[0] = "Hello"
nsgArray[99] = "world"
// The follow ng statenent is true,
/'l because defined nmsgArray[99] el enent.
if (msgArray.length == 100)
nyVar="The length is 100."

26 Server-Side JavaScript Reference



Array.concat

Example 2: Two-dimensional array. The following code creates a two-
dimensional array and assigns the results to nyVar .

nyVar ="Ml ti di mensi onal array test;
a = new Array(4)
for (i=0; i < 4; i++) {
a[i] = new Array(4)
for (j=0; j <4 j++) {
alil[j] = "["+i+", "4 +]"
}
}
for (i=0; i < 4; i++) {
str = "Row "+ +":"
for (j=0; j <4 j++) {
str += a[i][j]
}
nmyVar += str +";

}

This example assigns the following string to nyVar (line breaks are used here
for readability):

Mul ti di mensional array test;
Row 0:[0,0][0,1][0,2][0O, 3];
Row 1:[1,0][1,1][1,2][1,3];
Row 2:[2,0][2,1][2,2][2,3];
Row 3:[3,0][3,1][3,2][3,3];

concat

Syntax

Parameters

Joins two arrays and returns a new array.
Method of Array

Implemented in JavaScript 1.2, NES 3.0

concat (arrayNane2, arrayNane3, ..., arrayNaneN
arrayNane2. .. Arrays to concatenate to this array.
arrayNameN

Chapter 1, Objects, Methods, and Properties 27



Array.constructor

Description concat does not alter the original arrays, but returns a “one level deep” copy
that contains copies of the same elements combined from the original arrays.
Elements of the original arrays are copied into the new array as follows:

= Obiject references (and not the actual object): concat copies object
references into the new array. Both the original and new array refer to the
same object. If a referenced object changes, the changes are visible to both
the new and original arrays.

= Strings and numbers (not St ri hg and Numnber objects): concat copies
strings and numbers into the new array. Changes to the string or number in
one array does not affect the other arrays.

If a new element is added to either array, the other array is not affected.

The following code concatenates two arrays:

al pha=new Array("a","b","c")
nuneri c=new Array(1, 2, 3)
al phaNuneri c=al pha. concat (nurmeric) // creates array ["a","b","c", 1,2, 3]

The following code concatenates three arrays:

numl=[ 1, 2, 3]
nunk=[ 4, 5, 6]
nunB8=[ 7, 8, 9]
nuns=nunil. concat (nun®, nunB8) // creates array [1,2,3,4,5,6,7,8,9]

constructor

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Property of Array

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

Description See Obj ect . const ruct or.

28 Server-Side JavaScript Reference



Array.index

index

For an array created by a regular expression match, the zero-based index of the
match in the string.
Property of Array

Static
Implemented in JavaScript 1.2, NES 3.0

input

For an array created by a regular expression match, reflects the original string
against which the regular expression was matched.
Property of Array

Static
Implemented in JavaScript 1.2, NES 3.0

Syntax

Parameters

Description

join

Joins all elements of an array into a string.
Method of Array

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

j oi n( separ at or)

separator  Specifies a string to separate each element of the array. The separator is
converted to a string if necessary. If omitted, the array elements are
separated with a comma.

The string conversions of all array elements are joined into one string.

Chapter 1, Objects, Methods, and Properties 29



Array.length

Examples

See also

The following example creates an array, a, with three elements, then joins the
array three times: using the default separator, then a comma and a space, and
then a plus.

a = new Array("Wnd","Rain","Fire")

nyVar 1=a. j oi n() // assigns "Wnd,Rain,Fire" to myVarl
nyVar2=a.join(", ") // assigns "Wnd, Rain, Fire" to myVarl
nyVar3=a.join(" + ") // assigns "Wnd + Rain + Fire" to myVarl

Array.reverse

length

Description

Examples

An integer that specifies the number of elements in an array.
Property of Array

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

You can set the | engt h property to truncate an array at any time. When you
extend an array by changing its | engt h property, the number of actual
elements does not increase; for example, if you set | engt h to 3 when it is
currently 2, the array still contains only 2 elements.

In the following example, the get Choi ce function uses the | engt h property to
iterate over every element in the nusi cType array. nusi cType is a select
element on the nusi cFor mform.

function get Choice() {

for (var i = 0; i < docunment.nusicForm nusicType.length; i++) {
i f (docunent. nusi cForm nusi cType. options[i].selected == true) {
return docunent. musi cForm nusi cType. options[i].text
}
}

}

The following example shortens the array st at esUS to a length of 50 if the
current length is greater than 50.

if (statesUS.length > 50) {
st at esUS. | engt h=50

}

30 Server-Side JavaScript Reference



Array.pop

pop

Syntax
Parameters

Example

See also

Removes the last element from an array and returns that element. This method
changes the length of the array.
Method of Array

Implemented in JavaScript 1.2, NES 3.0

pop()
None.

The following code creates the nmyFi sh array containing four elements, then
removes its last element.

[*angel ", "clown", "mandarin", "surgeon"];
nyFi sh. pop();

nyFi sh
popped

push, shift,unshift

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Functi on. pr ot ot ype.

Property of Array

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

push

Syntax

Parameters

Adds one or more elements to the end of an array and returns the last element
added to the array. This method changes the length of the array.
Method of Array

Implemented in JavaScript 1.2, NES 3.0

push(elenentl, ..., elenentN

element1, ..., The elements to add to the end of the array.
el ement N

Chapter 1, Objects, Methods, and Properties 31



Array.reverse

Description  The behavior of the push method is analogous to the push function in Perl 4.
Note that this behavior is different in Perl 5.

Example The following code creates the nyFi sh array containing two elements, then
adds two elements to it. After the code executes, pushed contains “lion”.

nyFi sh
pushed

["angel ", "clown"];
nmyFi sh. push("drunm, "lion")

Seealso pop, shift,unshift

reverse

Transposes the elements of an array: the first array element becomes the last
and the last becomes the first.

Method of Array
Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

Syntax reverse()
Parameters None
Description The r ever se method transposes the elements of the calling array object.

Examples The following example creates an array nyArr ay, containing three elements,
then reverses the array.
nyArray = new Array("one", "two", "three")
nyArray. reverse()

This code changes nmyArr ay so that:
e nyArray[0] is “three”

e nyArray[1] is “two”

e nyArray[ 2] is “one”

Seealso Array.join, Array.sort

32 Server-Side JavaScript Reference



Array .shift

shift

Syntax
Parameters

Example

See also

Removes the first element from an array and returns that element. This method
changes the length of the array.
Method of Array

Implemented in JavaScript 1.2, NES 3.0

shift()
None.

The following code displays the nyFi sh array before and after removing its first
element. It also displays the removed element:

nyFish = ["angel ", "clown", "nmandarin", "surgeon"];

docunent.witel n("nyFish before: " + nyFish);

shifted = nyFish.shift();

docunent.witel n("nyFish after: " + nyFish);
docunent.witel n("Renoved this elenment: " + shifted);

This example displays the following:

nyFi sh before: ["angel", "clown", "mandarin", "surgeon"]
nyFish after: ["clown", "mandarin", "surgeon"]
Renoved this el ement: angel

pop, push, unshi ft

Chapter 1, Objects, Methods, and Properties 33



Array.slice

slice

Syntax

Parameters

Description

Extracts a section of an array and returns a new array.
Method of Array

Implemented in JavaScript 1.2, NES 3.0

slice(begin[, end])

begi n Zero-based index at which to begin extraction.
end Zero-based index at which to end extraction:
= sli ce extracts up to but not including end. sl i ce(1, 4) extracts
the second element through the fourth element (elements indexed 1,
2, and 3)
= As a negative index, end indicates an offset from the end of the

sequence. sl i ce( 2, -1) extracts the third element through the
second to last element in the sequence.

= If end is omitted, sl i ce extracts to the end of the sequence.

sl i ce does not alter the original array, but returns a new “one level deep”
copy that contains copies of the elements sliced from the original array.
Elements of the original array are copied into the new array as follows:

= For object references (and not the actual object), sl i ce copies object
references into the new array. Both the original and new array refer to the
same object. If a referenced object changes, the changes are visible to both
the new and original arrays.

= For strings and numbers (not St ri ng and Nunber objects), sl i ce copies
strings and numbers into the new array. Changes to the string or number in
one array does not affect the other array.

If a new element is added to either array, the other array is not affected.

34 Server-Side JavaScript Reference



Example

Array.slice

In the following example, sl i ce creates a new array, newCar , from nyCar .
Both include a reference to the object nyHonda. When the color of myHonda is
changed to pur pl e, both arrays reflect the change.

<SCRI PT LANGUAGE="JavaScri ptl.2">

//Using slice, create newCar from nyCar.

nyHonda = {col or:"red", wheel s: 4, engi ne: {cyl i nders: 4, si ze: 2. 2} }
nyCar = [nyHonda, 2, "cherry condition", "purchased 1997"]
newCar = nyCar.slice(0, 2)

//Wite the values of nyCar, newCar, and the color of nyHonda
/'l referenced fromboth arrays.

docunent.wite("nyCar = " + nmyCar + "<BR>")

docunent.wite("newCar = " + newCar + "<BR>")

docunent . wite("myCar[0].color =" + nyCar[0].color + "<BR>")
docunent.wite("newCar[0].color =" + newCar[0].color + "<BR><BR>")

// Change the col or of nyHonda.

myHonda. col or = "purple"

docunent.wite("The new color of nmy Honda is " + myHonda.col or +
" <BR><BR>")

//'Wite the color of nyHonda referenced fromboth arrays.

docunent.wite("nyCar[0].color =" + nyCar[0].color + "<BR>")
docunent.wite("newCar[0].color =" + newCar[0].color + "<BR>")
</ SCRI PT>

This script writes:

nyCar = [{color:"red", wheels:4, engine:{cylinders:4, size:2.2}}, 2,
“cherry condition", "purchased 1997"]

newCar = [{color:"red", wheels:4, engine:{cylinders:4, size:2.2}}, 2]

nyCar[0].color = red newCar[0].color = red

The new col or of nmy Honda is purple

nyCar[0].color = purple

newCar [ 0] . col or = purple

Chapter 1, Objects, Methods, and Properties 35



Array.sort

sort

Syntax

Parameters

Description

Sorts the elements of an array.
Method of Array

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: modified behavior.
ECMA version ECMA-262

sort ( conpar eFuncti on)

conpar eFuncti on Specifies a function that defines the sort order. If omitted, the array
is sorted lexicographically (in dictionary order) according to the
string conversion of each element.

If conpar eFunct i on is not supplied, elements are sorted by converting them to
strings and comparing strings in lexicographic (“dictionary” or “telephone
book,” not numerical) order. For example, “80” comes before “9” in
lexicographic order, but in a numeric sort 9 comes before 80.

If conpar eFunct i on is supplied, the array elements are sorted according to the
return value of the compare function. If a and b are two elements being
compared, then:

e |f conpareFunction(a, b) islessthan 0, sort b to a lower index than a.

< If conpar eFunction(a, b) returns 0, leave a and b unchanged with
respect to each other, but sorted with respect to all different elements.

« |If conpar eFunction(a, b) is greater than 0, sort b to a higher index than
a.

So, the compare function has the following form:

function conpare(a, b) {
if (ais less than b by sone ordering criterion)

return -1

if (ais greater than b by the ordering criterion)
return 1

/1 a must be equal to b

return O

36 Server-Side JavaScript Reference



Array.sort

To compare numbers instead of strings, the compare function can simply
subtract b from a:

function conpareNunbers(a, b) {
return a - b

}

JavaScript uses a stable sort: the index partial order of a and b does not change
if a and b are equal. If a’s index was less than b’s before sorting, it will be after
sorting, no matter how a and b move due to sorting.

The behavior of the sort method changed between JavaScript 1.1 and
JavaScript 1.2.

In JavaScript 1.1, on some platforms, the sort method does not work. This
method works on all platforms for JavaScript 1.2.

In JavaScript 1.2, this method no longer converts undefined elements to null;
instead it sorts them to the high end of the array. For example, assume you
have this script:

<SCRI PT>

a = new Array();
a[0] = "Ant";
a[5] = "Zebra";

function witeArray(x) {
for (i =0; i < x.length; i++) {
docunent.wite(x[i]);

if (i <x.length-1) docunent.wite(", ");
}
}
witeArray(a);
a.sort();

docunent.wite("<BR><BR>");
witeArray(a);
</ SCRI PT>

In JavaScript 1.1, JavaScript prints:

ant, null, null, null, null, zebra
ant, null, null, null, null, zebra

In JavaScript 1.2, JavaScript prints:

ant, undefined, undefined, undefined, undefined, zebra
ant, zebra, undefined, undefined, undefined, undefined

Chapter 1, Objects, Methods, and Properties 37



Array.sort

Examples The following example creates four arrays and displays the original array, then
the sorted arrays. The numeric arrays are sorted without, then with, a compare
function.

<SCRI PT>

stringArray = new Array("Bl ue", "Hunmpback", "Bel uga")
nunericStringArray = new Array("80","9","700")

nunber Array = new Array(40, 1,5, 200)

m xedNuneri cArray = new Array("80","9","700", 40, 1, 5, 200)

function conpareNunbers(a, b) {
return a - b

}

docunent.wite("<B>stringArray:</B> " + stringArray.join() +"<BR>")
document. write("<B>Sorted: </B> " + stringArray.sort() +"<P>")

docunent.wite("<B>nunberArray: </ B> " + nunberArray.join() +"<BR>")
docunent.wite("<B>Sorted without a conpare function:</B> " + nunberArray.sort() +"<BR>")

docunent.wite("<B>Sorted with conpareNunbers: </ B> " + nunberArray. sort (conpareNunbers)
+"'<p>")

docunent.wite("<B>nunericStringArray:</B> " + nunericStringArray.join() +"<BR>")
docunent.wite("<B>Sorted without a conmpare function:</B> " + numericStringArray.sort()
+" <BR>")

docunent.wite("<B>Sorted with conpareNunbers: </B> " +

nunericStringArray. sort (conpareNunbers) +"<P>")

docunent. wite("<B>m xedNumeri cArray: </ B> " + m xedNunericArray.join() +"<BR>")
docunent.wite("<B>Sorted wi thout a conpare function:</B> " + m xedNumericArray.sort()
+"<BR>")

docunent.wite("<B>Sorted with conpareNunbers: </B> " +

m xedNuneri cArray. sort (conpar eNunbers) +"<BR>")

</ SCRI PT>

This example produces the following output. As the output shows, when a
compare function is used, numbers sort correctly whether they are numbers or
numeric strings.

stringArray: Bl ue, Hunpback, Bel uga
Sorted: Bel uga, Bl ue, Hunmpback

nunber Array: 40, 1,5, 200
Sorted w thout a conpare function: 1,200,40,5
Sorted with conpareNunbers: 1,5, 40, 200

nunmericStringArray: 80,9, 700
Sorted without a conpare function: 700, 80,9
Sorted with conpareNunbers: 9, 80, 700

m xedNuneri cArray: 80,9, 700, 40, 1, 5, 200
Sorted without a conpare function: 1,200,40,5, 700, 80,9
Sorted with conpareNunbers: 1,5,9, 40, 80, 200, 700

38 Server-Side JavaScript Reference



Array.splice

Seealso Array.join, Array.reverse
splice
Changes the content of an array, adding new elements while removing old
elements.
Method of Array
Implemented in JavaScript 1.2, NES 3.0
Syntax splice(index, howhany, [elenentl][, ..., elenentN)
Parameters
i ndex Index at which to start changing the array.
howhany An integer indicating the number of old array elements to
remove. If howvany is 0, no elements are removed. In this
case, you should specify at least one new element.
elementl, ..., The elements to add to the array. If you don't specify any
el ement N elements, splice simply removes elements from the array.
Description  If you specify a different number of elements to insert than the number you're
removing, the array will have a different length at the end of the call.
The spl i ce method returns the element removed, if only one element is
removed (howiany parameter is 1); otherwise, spl i ce returns an array
containing the removed elements.
Examples The following script illustrate the use of spl i ce:

<SCRI PT LANGUAGE="JavaScri ptl.2">

nyFish = ["angel ", "clown", "nmandarin", "surgeon"];
docunent.witel n("nyFish: " + nyFish + "<BR>");

renmoved = nmyFish.splice(2, 0, "drunl);
docunent.witeln("After adding 1: " + nyFish);
docunent.witeln("renmoved is: " + renpved + "<BR>");

renoved = nyFi sh.splice(3, 1)
docunent.witeln("After renmoving 1. " + nyFish);
docunent.witeln("renmoved is: " + renpved + "<BR>");

renoved = nyFi sh.splice(2, 1, "trunpet")
docunent.witeln("After replacing 1: " + nyFish);
docunent.witeln("renmoved is: " + renpved + "<BR>");

Chapter 1, Objects, Methods, and Properties 39



Array.toString

removed = nmyFish.splice(0, 2, "parrot", "anenone", "blue")
docunent.witeln("After replacing 2: " + nyFish);
docunent.witeln("renmoved is: " + renoved);

</ SCRI PT>

This script displays:
nyFish: ["angel ", "clown", "mandarin", "surgeon"]

After adding 1: ["angel", "clown", "drumf, "mandarin", "surgeon"]
removed is: undefined

After removing 1. ["angel", "clown", "drunf, "surgeon"]
removed i s: mandarin

After replacing 1. ["angel", "clown", "trunpet", "surgeon"]
removed is: drum

Syntax
Parameters

Description

After replacing 2: ["parrot", "anenopne", "blue", "trunpet", "surgeon"]
renoved is: ["angel", "clown"]

toString

Returns a string representing the array and its elements.

Method of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

toString()

None.

The Arr ay object overrides the t oSt r i ng method of Obj ect . For Arr ay
objects, the t oSt ri ng method joins the array and returns one string
containing each array element separated by commas. For example, the
following code creates an array and uses t oSt ri ng to convert the array to a
string.

var nont hNames = new Array("Jan", "Feb","Mar", " Apr")

nyVar =nont hNanes. toString() // assigns "Jan, Feb, Mar, Apr" to nyVar

JavaScript calls the t oSt ri ng method automatically when an array is to be
represented as a text value or when an array is referred to in a string
concatenation.

40 Server-Side JavaScript Reference



Array.unshift

In JavaScript 1.2 when you specify LANGUAGE="JavaScri pt 1. 2" in the
<SCRIPT> tag, t oSt ri ng returns a string representing the source code of the
array.

<SCRI PT LANGUAGE="JavaScriptl.2">

var nont hNames = new Array("Jan","Feb","Mar", " Apr")

nyVar =nont hNanes. toString() // assigns '["Jan", "Feb", “"Mar", "Apr"]’
/Il to nmyVar

</ SCRI PT>

unshift

Syntax

Parameters

Example

See also

Adds one or more elements to the beginning of an array and returns the new
length of the array.
Method of Array

Implemented in JavaScript 1.2, NES 3.0

arrayName. unshift(elenent1,..., elenentN
elenmentl, ..., The elements to add to the front of the array.
el ement N

The following code displays the myFi sh array before and after adding elements
to it.

nyFish = ["angel ", "clown"];

docunent.witel n("nyFish before: " + nyFish);
unshifted = nyFish.unshift("drunf, "lion");
docunent.witeln("nyFish after: " + nyFish);
docunent.witeln("New |l ength: " + unshifted);

This example displays the following:

nyFi sh before: ["angel", "clown"]
nyFish after: ["drunf, "lion", "angel", "clown"]
New | ength: 4

pop, push, shi ft

Chapter 1, Objects, Methods, and Properties 41



Array.valueOf

valueOf

Syntax
Parameters

Description

See also

Returns the primitive value of an array.

Method of Array
Implemented in JavaScript 1.1
ECMA version ECMA-262
val ue ()

None

The Ar r ay object inherits the val ueO method of Cbj ect . The val ue
method of Ar r ay returns the primitive value of an array or the primitive value
of its elements as follows:

Obiject type of element Data type of returned value
Boolean Boolean

Number or Date number

All others string

This method is usually called internally by JavaScript and not explicitly in code.

bj ect. val ue™

42 Server-Side JavaScript Reference



blob

blob

Server-side object. Provides functionality for displaying and linking to BLOb
data.
Server-side object

Implemented in NES 2.0

Created by You do not create a separate bl ob object. Instead, if you know that the value of
a cursor property contains BLOb data, you use the methods to access that
data. Conversely, to store BLOb data in a database, use the bl ob function.

Method Summary

Method Description
bl obl nage Displays BLOb data stored in a database.
bl obLi nk Displays a link that references BLOb data with a link.

In addition, this object inherits the wat ch and unwat ch methods from
hj ect.

Chapter 1, Objects, Methods, and Properties 43



blob.blobimage

bloblmage

Syntax

Parameters

Returns

Description

Displays BLOb data stored in a database.
Method of bl ob

Implemented in NES 2.0

cursor Nane. col Nane. bl obl mage (format [, altText] [, align]
[, widthPixels] [, heightPixels] [, borderPixels] [, ismap])

f or mat The image format. This can be GIF, JPEG, or any other MIME image
format.
The acceptable formats are specified in the t ype=i nage section of
the file $nshone\ ht t pd- 80\ confi g\ m ne. t ypes, where
$nshonme is the directory in which you installed your server. The
client browser must also be able to display the image format.

al t Text The value of the ALT attribute of the i mage tag. This indicates text
to display if the client browser does not display images.

align The value of the ALI GN attribute of the i nage tag. This can be
"left","right", or any other value supported by the client
browser.

wi dt hPi xel s The width of the image in pixels.

hei ght Pi xel s The height of the image in pixels.

bor der Pi xel s The size of the outline border in pixels if the image is a link.

i smap True if the image is a clickable map. If this parameter is true, the

i mage tag has an ISMAP attribute; otherwise it does not.

An HTML IMG tag for the specified image type.

Use bl obl mage to create an HTML image tag for a graphic image in a standard
format such as GIF or JPEG.

The bl obl mage method fetches a BLOb from the database, creates a temporary
file (in memory) of the specified format, and generates an HTML image tag that
refers to the temporary file. The JavaScript runtime engine removes the
temporary file after the page is generated and sent to the client.

44 Server-Side JavaScript Reference



Examples

blob.blobimage

While creating the page, the runtime engine keeps the binary data that

bl obl mage fetches from the database in active memory, so requests that fetch a
large amount of data can exceed dynamic memory on the server. Generally it is
good practice to limit the number of rows retrieved at one time using

bl obl mage to stay within the server’s dynamic memory limits.

Example 1. The following example extracts a row containing a small image
and a name. It writes HTML containing the name and a link to the image:

cursor = connobj . cursor ("SELECT NAME, THUMB FROM FI SHTBL WHERE | D=2")
write(cursor.nane + " ")

write(cursor.thunb. bl obl mage("gif"))

wite("<BR>")

cursor. cl ose()

These statements produce this HTML:

Ant hi a <I MG SRC="LI VEW RE_TEMP11" ><BR>

Example 2. The following example creates a cursor from the r ockSt ar Bi os
table and uses bl obl nage to display an image retrieved from the phot os
column:

cursor = database. cursor ("SELECT * FROM rockSt ar Bi os
WHERE star|D = 23")
whi |l e(cursor.next()) {
write(cursor. photos. bl obl mage("gif", "Picture", "left",
30, 30, O,false))
}

cursor. cl ose()

This example displays an image as if it were created by the following HTML:

<IMG SRC="livewire_tenp.gif" ALT="Picture" ALl GN=LEFT
W DTH=30 HEI GHT=30 BORDER=0>

The livewire_tenp. gi f file in this example is the file in which the
rockSt ar Bi os table stores the BLOb data.

Chapter 1, Objects, Methods, and Properties 45



blob.blobLink

blobLink

Syntax

Parameters

Returns

Description

Returns a link tag that references BLOb data with a link. Creates an HTML link
to the BLOb.
Method of bl ob

Implemented in NES 2.0

cur sor Nane. col Nane. bl obLi nk (ni meType, |inkText)

m meType The MIME type of the binary data. This can be image/gif or any
other acceptable MIME type, as specified in the Netscape server
configuration file $nshome\httpd-80\config\mime.types, where
$nshone is the directory in which you installed your server.

Ii nkText The text to display in the link. This can be any JavaScript string
expression.

An HTML link tag.

Use bl obLi nk if you do not want to display graphics (to reduce bandwidth
requirements) or if you want to provide a link to an audio clip or other
multimedia content not viewable inline.

The bl obLi nk method fetches BLOb data from the database, creates a
temporary file in memory, and generates a hypertext link to the temporary file.
The JavaScript runtime engine on the server removes the temporary files that
bl obLi nk creates after the user clicks the link or sixty seconds after the request
has been processed.

The runtime engine keeps the binary data that bl obLi nk fetches from the
database in active memory, so requests that fetch a large amount of data can
exceed dynamic memory on the server. Generally it is good practice to limit the
number of rows retrieved at one time using bl obLi nk to stay within the
server’'s dynamic memory limits.

46 Server-Side JavaScript Reference



Example

blob.blobLink

Example 1. The following statements extract a row containing a large image
and a name. It writes HTML containing the name and a link to the image:

cursor = connobj . cursor ("SELECT NAME, PICTURE FROM FI SHTBL WHERE | D=2")
wite(cursor.name + " ")

write(cursor. picture. bl obLink("image/gif", "Link" + cursor.id))
wite("<BR>")

cursor. cl ose()

These statements produce this HTML:
Ant hi a <A HREF="LI| VEW RE_TEMP2" >Li nk2</ A><BR>

Example 2. The following example creates a cursor from the r ockSt ar Bi os
table and uses bl obLi nk to create links to images retrieved from the phot os
column:

wite("Cick alink to display an image: <P>")

cursor = database.cursor("select * fromrockStarBios")

whi | e(cursor.next()) {
write(cursor. photos. bl obLink("image/gif", "Image " + cursor.id))
write("<BR>")

}

cursor. cl ose()

This example generates the following HTML:

Click alink to display an image: <P>

<A HREF="LI VEW RE_TEMP1" >l mage 1</ A><BR>
<A HREF="LI VEW RE_TEMP2" >| mage 2</ A><BR>
<A HREF="LI VEW RE_TEMP3" >l mage 3</ A><BR>
<A HREF="LI VEW RE_TEMP4" >| mage 4</ A><BR>

The LI VEW RE_TEMP files in this example are temporary files created in
memory by the bl obLi nk method.

Chapter 1, Objects, Methods, and Properties 47



Boolean

Boolean

The Bool ean object is an object wrapper for a boolean value.
Core object

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

Created by The Bool ean constructor:
new Bool ean( val ue)

Parameters
val ue The initial value of the Bool ean object. The value is converted to a
bool ean value, if necessary. If value is omitted or is 0, -0, null, false, NaN,
undefined, or the empty string (" "), the object has an initial value of false.
All other values, including any object or the string " f al se", create an
object with an initial value of true.

Description When a Bool ean object is used as the condition in a conditional test,
JavaScript returns the value of the Bool ean object. For example, a Bool ean
object whose value is false is treated as the primitive value false, and a
Bool ean object whose value is true is treated as the primitive value t r ue in
conditional tests. If the Bool ean object is a f al se object, the conditional
statement evaluates to f al se.

Property
Summary Property Description
constructor Specifies the function that creates an object’s prototype.
pr ot ot ype Defines a property that is shared by all Boolean objects.
Method Summary
Method Description
toString Returns a string representing the specified object. Overrides the

bj ect.toStri ng method.

val ueCf Returns the primitive value of a Boolean object. Overrides the
oj ect . val ue method.

48 Server-Side JavaScript Reference



Examples

Boolean.constructor

In addition, this object inherits the wat ch and unwat ch methods from
hj ect.

The following examples create Bool ean objects with an initial value of false:

bNoPar am = new Bool ean()

bZero = new Bool ean(0)

bNul I = new Bool ean(null)
bEnmptyString = new Bool ean("")
bf al se = new Bool ean(fal se)

The following examples create Bool ean objects with an initial value of true:

btrue = new Bool ean(true)

btrueStri ng = new Bool ean("true")
bf al seString = new Bool ean("fal se")
bSuLi n = new Bool ean("Su Lin")

constructor

Description

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Property of Bool ean

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

See Cbj ect. constructor.

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Functi on. pr ot ot ype.

Property of Bool ean

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

Chapter 1, Objects, Methods, and Properties 49



Boolean.toString

toString

Returns a string representing the specified Boolean object.
Method of Bool ean

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
Syntax toString()

Parameters None.

Description The Bool ean object overrides the t oSt ri ng method of the Cbj ect object; it
does not inherit Obj ect . t oSt ri ng. For Bool ean objects, the t oSt ri ng
method returns a string representation of the object.

JavaScript calls the t oSt ri ng method automatically when a Boolean is to be
represented as a text value or when a Boolean is referred to in a string
concatenation.
For Bool ean objects and values, the built-in t oSt ri ng method returns the
string "true" or "fal se" depending on the value of the boolean object. In the
following code, fl ag. t oSt ri ng returns "true".
var flag = new Bool ean(true)
var nmyVar=flag.toString()
Seealso Object.toString
valueOf
Returns the primitive value of a Boolean object.
Method of Bool ean
Implemented in JavaScript 1.1
ECMA version ECMA-262
Syntax val ueOr ()
Parameters None

50 Server-Side JavaScript Reference



Description

Examples

See also

Boolean.valueOf

The val ue method of Bool ean returns the primitive value of a Boolean
object or literal Boolean as a Boolean data type.

This method is usually called internally by JavaScript and not explicitly in code.

X = new Bool ean();
nyVar =x. val ued () //assigns false to myVar

bj ect . val ue™

Chapter 1, Objects, Methods, and Properties 51



client

client

Created by

Description

Contains data specific to an individual client.
Server-side object

Implemented in NES 2.0

The JavaScript runtime engine on the server automatically creates a cl i ent
object for each client/application pair.

The JavaScript runtime engine on the server constructs a cl i ent object for
every client/application pair. A browser client connected to one application has
a different cl i ent object than the same browser client connected to a different
application. The runtime engine constructs a new cl i ent object each time a
user accesses an application; there can be hundreds or thousands of cl i ent
objects active at the same time.

You cannot use the cl i ent object on your application’s initial page. This page
is run when the application is started on the server. At this time, there is not a
client request, so there is no available cl i ent object.

The runtime engine constructs and destroys the cl i ent object for each client
request. However, at the end of a request, the runtime engine saves the names
and values of the cl i ent object’s properties so that when the same user returns
to the application with a subsequent request, the runtime engine can construct
a new cl i ent object with the saved data. Thus, conceptually you can think of
the cl i ent object as remaining for the duration of a client’s session with the
application. There are several different ways to maintain cl i ent property
values; for more information, see the Server-Side JavaScript Guide.

All requests by one client use the same cl i ent object, as long as those requests
occur within the lifetime of that cl i ent object. By default, a cl i ent object
persists until the associated client has been inactive for 10 minutes. You can use
the expi r at i on method to change this default lifetime or the dest r oy method
to explicitly destroy the cl i ent object.

Use the cl i ent object to maintain data that is specific to an individual client.
Although many clients can access an application simultaneously, the individual
cli ent objects keep their data separate. Each cl i ent object can track the
progress of an individual client across multiple requests to the same
application.

52 Server-Side JavaScript Reference



Property
Summary

Method Summary

Examples

client

The cl i ent object has no predefined properties. You create custom properties
to contain any client-specific data that is required by an application. The
runtime engine does not save cl i ent objects that have no property values.

You can create a property for the cl i ent object by assigning it a name and a
value. For example, you can create a cl i ent property to store a customer ID at
the beginning of an application so a user does not have to enter it with each
request.

Because of the techniques used to maintain cl i ent properties across multiple
client requests, there is one major restriction on cl i ent property values. The
JavaScript runtime engine on the server converts the values of all of the cl i ent
object’s properties to strings.

The runtime engine cannot convert an object to a string. For this reason, you
cannot assign an object as the value of a cl i ent property. If a client property
value represents another data type, such as a number, you must convert the
value from a string before using it. The core JavaScript par sel nt and

par seFl oat functions are useful for converting to integer and floating point
values.

Method Description
destr oy Destroys a client object.
expiration Specifies the duration of a cl i ent object.

In addition, this object inherits the wat ch and unwat ch methods from
hj ect.

Example 1. This example dynamically assigns a customer ID number that is
used for the lifetime of an application session. The assi gnl d function creates
an ID based on the user’s IP address, and the cust oner | d property saves the
ID.

<SERVER>cl i ent. custonerld = assignld(request.ip)</ SERVER>

See also the examples for the pr oj ect object for a way to sequentially assign a
customer ID.

Chapter 1, Objects, Methods, and Properties 53



client.destroy

See also

Example 2. This example creates a cust oner | d property to store a customer
ID that a user enters into a form. The form is defined as follows:

<FORM NAME="get Cust orer | nf 0" METHOD="post ">
<P>Enter your custoner |D:

<I NPUT TYPE="text" NAME="custoner Nunber">
</ FORM>

The following code assigns the value entered in the cust omer Nunber field
from the temporary r equest . cl i ent Nunber to the more permanent
client.custonerld:

<SERVER>cl i ent . cust oner | d=r equest . cust omer Nunber </ SERVER>

proj ect, request, server

destroy

Syntax

Description

Destroys a cl i ent object.
Method of client

Implemented in NES 2.0

destroy()

The dest r oy method explicitly destroys the cl i ent object that issues it and
removes all properties from the cl i ent object. If you do not explicitly issue a
dest r oy method, the JavaScript runtime engine on the server automatically
destroys the cl i ent object when its lifetime expires. The expi r at i on method
sets the lifetime of a cl i ent object; by default, the lifetime is 10 minutes.

If you are using client-cookies to maintain the cl i ent object, dest r oy
eliminates all cl i ent property values, but it does not affect what is stored in
Navigator cookie file. Use expi r ati on with an argument of 0 seconds to
remove all client properties stored in the cookie file.

When using client URL encoding to maintain the cl i ent object, dest r oy
removes all cl i ent properties after the method call. However, any links in a
page before the call to dest r oy retain properties in their URLs. Therefore, you
should generally call dest r oy either at the top or bottom of the page when
using client URL maintenance.

54 Server-Side JavaScript Reference



Examples

See also

client.expiration

The following method destroys the cl i ent object that calls it:

<server>client.destroy()</server>

client.expiration

expiration

Syntax

Parameters

Description

Examples

See also

Specifies the duration of a cl i ent object.
Method of client

Implemented in NES 2.0

expi rati on(seconds)

seconds An integer representing the number of seconds of client inactivity
before the cl i ent object expires.

By default, the JavaScript runtime engine on the server destroys the cl i ent
object after the client has been inactive for 10 minutes. This default lifetime lets
the runtime engine clean up cl i ent objects that are no longer necessary.

Use the expi rati on method to explicitly control the expiration of a cl i ent
object, making it longer or shorter than the default. You must use expi rati on
in each page of an application for which you want a cl i ent expiration other
than the default. Any page that does not specify an expiration will use the
default of 10 minutes.

Client expiration does not apply if using client URL encoding to maintain the
client object. In this case, client properties are stored solely in URLs on HTML
pages. The runtime engine cannot remove those properties.

The following example extends the amount of client inactivity before expiration
to 1 hour. This code is issued when an application is first launched.

<SERVER>cl i ent . expi rati on(3600) </ SERVER>

client.destroy

Chapter 1, Objects, Methods, and Properties 55



Connection

Connection

Represents a single database connection from a pool of connections.
Server-side object

Implemented in NES 3.0

Created by The DbPool . connecti on method. You do not call a connecti on
constructor directly. Once you have a Connect i on object, you use it for your
interactions with the database.

Description  You can use the pr ot ot ype property of the Connecti on class to add a
property to all Connect i on instances. If you do so, that addition applies to all
Connect i on objects running in all applications on your server, not just in the
single application that made the change. This allows you to expand the
capabilities of this object for your entire server.

Property
Summary Property Description
pr ot ot ype Allows the addition of properties to the connect i on object.
Method Summary
Method Description
begi nTransacti on Begins a new SQL transaction.
conmi t Transacti on Commits the current transaction.
connect ed Tests whether the database pool (and hence this
connection) is connected to a database.
cursor Creates a database cursor for the specified SQL SELECT
statement.
execut e Performs the specified SQL statement. Use for SQL
statements other than queries.
maj or Er r or Code Major error code returned by the database server or
ODBC.
maj or Err or Message Major error message returned by database server or
ODBC.
m nor Er r or Code Secondary error code returned by database vendor
library.

56 Server-Side JavaScript Reference



Connection.beginTransaction

Method Description
m nor Err or Message Secondary message returned by database vendor library.
rel ease Releases the connection back to the database pool.

rol | backTransacti on Rolls back the current transaction.

SQ.Tabl e Displays query results. Creates an HTML table for results
of an SQL SELECT statement.

st oredPr oc Creates a stored-procedure object and runs the specified
stored procedure.

toString Returns a string representing the specified object.

In addition, this object inherits the wat ch and unwat ch methods from
hj ect.

beginTransaction

Syntax
Parameters

Returns

Description

Begins a new SQL transaction.
Method of Connecti on

Implemented in NES 3.0

begi nTransacti on()
None.

0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated maj or Er r or Code and maj or Er r or Message methods to
interpret the cause of the error.

All subsequent actions that modify the database are grouped with this
transaction, known as the current transaction.

For the dat abase object, the scope of a transaction is limited to the current
request (HTML page) in the application. If the application exits the page before
calling the commi t Transacti on or rol | backTr ansact i on method, then the
transaction is automatically either committed or rolled back, based on the
setting of the conmi t f | ag parameter when the connection was established.
This parameter is provided when you make the connection by calling

dat abase. connect.

Chapter 1, Objects, Methods, and Properties 57



Connection.beginTransaction

Examples

For Connect i on objects, the scope of a transaction is limited to the lifetime of
that object. If the connection is released or the pool of connections is closed
before calling the conmi t Tr ansacti on or rol | backTr ansact i on method,
then the transaction is automatically either committed or rolled back, based on
the setting of the conmi t f | ag parameter when the connection was established.
This parameter is provided when you make the connection by calling the
connect method or in the DbPool constructor.

If there is no current transaction (that is, if the application has not called
begi nTransact i on), calls to commi t Transacti on and
rol | backTransacti on are ignored.

The LiveWire Database Service does not support nested transactions. If you call
begi nTransact i on when a transaction is already open (that is, you've called
begi nTransact i on and have yet to commit or roll back that transaction),
you'll get an error message.

This example updates the r ent al s table within a transaction. The values of
cust omer | Dand vi deol D are passed into the cur sor method as properties of
the r equest object. When the vi deoRet ur n Cur sor object opens, the next
method navigates to the only record in the answer set and updates the value in
the r et ur nDat e field.

The variable x is assigned a database status code to indicate if the updat eRow
method is successful. If updat eRow succeeds, the value of x is 0, and the
transaction is committed; otherwise, the transaction is rolled back.

// Begin a transaction
dat abase. begi nTransacti on();

// Create a Date object with the value of today's date
today = new Date();

/] Create a Cursor with the rented video in the answer set
vi deoReturn = dat abase. Cursor (" SELECT * FROM rental s WHERE
custonerld =" + request.custonmer!lD + " AND
videold = " + request.videolD, true);

/1 Position the pointer on the first row of the Cursor
/1 and update the row

vi deoRet ur n. next ()

vi deoReturn. returndate = today;

X = vi deoRet urn. updat eRow( "rental s");

58 Server-Side JavaScript Reference



Connection.commitTransaction

// End the transaction by commtting or rolling back

if (x == 0) {
dat abase. conmi t Transaction() }
el se {

dat abase. rol | backTransaction() }

/1 Close the Cursor
vi deoRet urn. cl ose();

commitTransaction

Syntax
Parameters

Returns

Description

Commits the current transaction
Method of Connection

Implemented in NES 3.0

conmmi t Transacti on()
None.

0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated maj or Er r or Code and maj or Er r or Message methods to
interpret the cause of the error.

This method attempts to commit all actions since the last call to
begi nTransacti on.

For the dat abase object, the scope of a transaction is limited to the current
request (HTML page) in the application. If the application exits the page before
calling the comni t Transacti on or rol | backTr ansact i on method, then the
transaction is automatically either committed or rolled back, based on the
setting of the conmi t f | ag parameter when the connection was established.
This parameter is provided when you make the connection with the dat abase
or DbPool object.

For Connect i on objects, the scope of a transaction is limited to the lifetime of
that object. If the connection is released or the pool of connections is closed
before calling the conmi t Tr ansacti on or rol | backTr ansact i on method,
then the transaction is automatically either committed or rolled back, based on
the commi t Fl ag value.

If there is no current transaction (that is, if the application has not called
begi nTransact i on), calls to conmi t Transacti on and
rol | backTransacti on are ignored.

Chapter 1, Objects, Methods, and Properties 59



Connection.connected

The LiveWire Database Service does not support nested transactions. If you call
begi nTransact i on when a transaction is already open (that is, you've called
begi nTransacti on and have yet to commit or roll back that transaction),
you'll get an error message.

connected

Syntax
Parameters

Returns

Description

Example

Tests whether the database pool and all of its connections are connected to a
database.
Method of Connecti on

Implemented in NES 3.0

connect ed()
None.

True if the pool (and hence a particular connection in the pool) is currently
connected to a database; otherwise, false.

The connect ed method indicates whether this object is currently connected to
a database.

If this method returns false for a Connect i on object, you cannot use any other
methods of that object. You must reconnect to the database, using the DoPool
object, and then get a new Connect i on object. Similarly, if this method returns
false for the dat abase object, you must reconnect before using other methods
of that object.

Example 1: The following code fragment checks to see if the connection is
currently open. If it's not, it reconnects the pool and reassigns a new value to
the nmyconn variable.

if (!nmyconn.connected()) {
nypool . connect ("1 NFORM X", "nyserv", "SYSTEM', "MANAGER', "nydb", 4);
nyconn = nypool . connecti on;

}

60 Server-Side JavaScript Reference



Connection.cursor

Example 2: The following example uses an i f condition to determine if an

application is connected to a database server. If the application is connected,
the i sConnect edRout i ne function runs; if the application is not connected,

the i sNot Connect ed routine runs.

i f (dat abase. connected()) {
i sConnect edRouti ne() }
el se {
i sNot Connect edRout i ne() }

cursor

Syntax

Parameters

Returns

Description

Creates a Cur sor object.
Method of Connecti on

Implemented in NES 3.0

cursor(sql Statenent [, updatable])

sql St at ement A JavaScript string representing a SQL SELECT statement supported
by the database server.

updat abl e A Bool ean parameter indicating whether or not the cursor is
updatable.

A new Cur sor object.

The cur sor method creates a Cur sor object that contains the rows returned by
a SQL SELECT statement. The SELECT statement is passed to the cur sor
method as the sql St at enent argument. If the SELECT statement does not
return any rows, the resulting Cur sor object has no rows. The first time you
use the next method on the object, it returns false.

You can perform the following tasks with the Cur sor object:

= Modify data in a server table.

= Navigate in a server table.

= Customize the display of the virtual table returned by a database query.
< Run stored procedures.

Chapter 1, Objects, Methods, and Properties 61



Connection.cursor

Examples

The cur sor method does not automatically display the returned data. To
display this data, you must create custom HTML code. This HTML code may
display the rows in an HTML table, as shown in Example 3. The SQ.Tabl e
method is an easier way to display the output of a database query, but you
cannot navigate, modify data, or control the format of the output.

The optional parameter updat abl e specifies whether you can modify the

Cur sor object you create with the cur sor method. To create a Cur sor object
you can modify, specify updat abl e as true. If you do not specify a value for
the updat abl e parameter, it is false by default.

If you create an updatable Cur sor object, the answer set returned by the

sqgl St at ement parameter must be updatable. For example, the SELECT
statement in the sql St at enent parameter cannot contain a GROUP BY clause;
in addition, the query usually must retrieve key values from a table. For more
information on constructing updatable queries, consult your database vendor’s
documentation.

Example 1. The following example creates the updatable cursor custs and
returns the columns | D, CUST_NAME, and CI TY from the cust oner table:

custs = database. Cursor("select id, cust_nane, city fromcustoner",
true)

Example 2. You can construct the SELECT statement with the string
concatenation operator (+) and string variables such as cl i ent or r equest
property values, as shown in the following example:

custs = dat abase. Cursor("sel ect * from custoner
where custonmerI D = " + request.custonerl|D);

Example 3. The following example demonstrates how to format the answer set
returned by the cur sor method as an HTML table. This example first creates
Cur sor object named vi deoSet and then displays two columns of its data
(videoSet.title and vi deoSet . synopsi s).

/'l Create the videoSet Cursor

<SERVER>

vi deoSet = dat abase. cursor("select * from videos
wher e vi deos. nunonhand > 0 order by title");

</ SERVER>

62 Server-Side JavaScript Reference



Connection.execute

// Begin creating an HTM.L table to contain the answer set
/1 Specify titles for the two colums in the answer set
<TABLE BORDER>
<CAPTI ON> Vi deos on Hand </ CAPTI ON>
<TR>

<TH>Ti tl e</ TH>

<TH>Synopsi s</ TH>
</ TR>

/1 Use a while loop to iterate over each row in the cursor
<SERVER>

whi | e(vi deoSet . next ()) {

</ SERVER>

/1 Use wite statements to display the data in both col ums
<TR>
<TH><A HREF='"rent. htm ?vi deol D="+vi deoSet . i d' >
<SERVER>wr i t e(vi deoSet . titl e) </ SERVER></ A></ TH>
<TD><SERVER>wri t e(vi deoSet . synopsi s) </ SERVER></ TD>
</ TR>

// End the while |oop
<SERVER>

}

</ SERVER>

/1 End the HTM. table
</ TABLE>

The values in the vi deoSet . ti t| e column are displayed within the A tag so a
user can click them as links. When a user clicks a title, the rent . ht M page
opens and the column value vi deoSet . i d is passed to it as the value of
request . vi deol D.

Seealso Connection. SQLTabl e, Connecti on. cursor
execute
Performs the specified SQL statement. Use for SQL statements other than
queries.
Method of Connecti on
Implemented in NES 3.0
Syntax execute (stnt)
Parameters

stnt A string representing the SQL statement to execute.

Chapter 1, Objects, Methods, and Properties 63



Connection.execute

Returns

Description

Examples

0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated maj or Er r or Code and maj or Er r or Message methods to
interpret the cause of the error.

This method enables an application to execute any data definition language
(DDL) or data manipulation language (DML) SQL statement supported by the
database server that does not return a Cursor, such as CREATE, ALTER, or DROP.

Each database supports a standard core of DDL and DML statements. In
addition, they may each also support DDL and DML statements specific to that
database vendor. You can use execut e to call any of those statements.
However, each database vendor may also provide functions you can use with
the database that are not DDL or DML statements. You cannot use execut e to
call those functions. For example, you cannot call the Oracle descri be
function or the Informix | oad function from the execut e method.

Although technically you can use execut e to perform data modification

(I NSERT, UPDATE, and DELETE statements), you should instead use Cur sor
objects. This makes your application more database-independent. Cursors also
provide support for binary large object (BLOb) data.

When using the execut e method, your SQL statement must strictly conform to
the syntax requirements of the database server. For example, some servers
require each SQL statement to be terminated by a semicolon. See your server
documentation for more information.

If you have not explicitly started a transaction, the single statement is
automatically committed.

In the following example, the execut e method is used to delete a customer
from the cust omer table. cust oner. | Drepresents the unique ID of a customer
that is in the I D column of the cust orrer table. The value for cust oner. I Dis
passed into the DELETE statement as the value of the | D property of the
request object.

if(request.ID!= null) {

dat abase. execut e("del ete from cust oner
where customer.ID =" + request.|D)

64 Server-Side JavaScript Reference



Connection.majorErrorCode

majorErrorCode

Syntax
Parameters

Returns

Description

Major error code returned by the database server or ODBC.
Method of Connecti on

Implemented in NES 3.0

maj or Er r or Code()

None.

The result returned by this method depends on the database server being used:
= Informix: the Informix error code.

= Oracle: the code as reported by Oracle Call-level Interface (OCI).

= Sybase: the DB-Library error number or the SQL server message number.

SQL statements can fail for a variety of reasons, including referential integrity
constraints, lack of user privileges, record or table locking in a multiuser
database, and so on. When an action fails, the database server returns an error
message indicating the reason for failure. The LiveWire™ Database Service
provides two ways of getting error information: from the status code returned
by various methods or from special properties containing error messages and
codes.

Status codes are integers between 0 and 27, with 0 indicating a successful
execution of the statement and other numbers indicating an error, as shown in
the following table.

Table 1.1 Database status codes.

Status Explanation Status Explanation

code code

0 No error 14 Null reference parameter

1 Out of memory 15 Connection object not found

2 Object never initialized 16 Required information is missing

3 Type conversion error 17 Object cannot support multiple
readers

4 Database not registered 18 Object cannot support deletions

Chapter 1, Objects, Methods, and Properties 65



Connection.majorErrorCode

Table 1.1 Database status codes.

Status Explanation Status Explanation

code code

5 Error reported by server 19 Object cannot support insertions
6 Message from server 20 Object cannot support updates
7 Error from vendor’s library 21 Object cannot support updates
8 Lost connection 22 Object cannot support indices

9 End of fetch 23 Object cannot be dropped

10 Invalid use of object 24 Incorrect connection supplied
11 Column does not exist 25 Object cannot support privileges
12 Invalid positioning within 26 Object cannot support cursors

object (bounds error)

13 Unsupported feature 27 Unable to open

Examples This example updates the r ent al s table within a transaction. The updat eRow
method assigns a database status code to the st at usCode variable to indicate
whether the method is successful.

If updat eRow succeeds, the value of st at usCode is 0, and the transaction is

committed. If updat eRow returns a st at usCode value of either five or seven,
the values of maj or Er r or Code, maj or Er r or Message, ni nor Er r or Code, and
mi nor Err or Message are displayed. If st at usCode is set to any other value,

the er r or Rout i ne function is called.

dat abase. begi nTransacti on()
st atusCode = cursor. updateRow "rental s")

if (statusCode == 0) {
dat abase. conmi t Transacti on()

}

66 Server-Side JavaScript Reference



Connection.majorErrorMessage

if (statusCode == 5 || statusCode == 7) {

wite("The operation failed to conpl ete.<BR>"
write("Contact your system administrator with the foll ow ng: <P>"
wite("The value of statusCode is " + statusCode + "<BR>")
wite("The value of nmjorErrorCode is " +

dat abase. maj or Error Code() + "<BR>")
wite("The val ue of nmjorErrorMssage is " +

dat abase. naj or Error Message() + "<BR>")
write("The value of minorErrorCode is " +

dat abase. mi nor Error Code() + "<BR>")
wite("The val ue of mnorErrorMessage is " +

dat abase. m nor Error Message() + "<BR>")
dat abase. rol | backTransacti on()

}

el se {

error Routine()

}

majorErrorMessage

Syntax
Parameters

Returns

Major error message returned by database server or ODBC. For server errors,
this typically corresponds to the server's SQLCODE.
Method of Connecti on

Implemented in NES 3.0

maj or Er r or Message()

None.

A string describing that depends on the database server:

Informix: “Vendor Library Error: string,” where string is the error text from
Informix.

Oracle: “Server Error: string,” where string is the translation of the return
code supplied by Oracle.

Sybase: “Vendor Library Error: string,” where string is the error text from
DB-Library or “Server Error string,” where string is text from the SQL server,
unless the severity and message number are both 0, in which case it returns
just the message text.

Chapter 1, Objects, Methods, and Properties 67



Connection.minorErrorCode

Description  SQL statements can fail for a variety of reasons, including referential integrity
constraints, lack of user privileges, record or table locking in a multiuser
database, and so on. When an action fails, the database server returns an error
message indicating the reason for failure. The LiveWire Database Service
provides two ways of getting error information: from the status code returned
by connect i on and DbPool methods or from special connect i on or DoPool
properties containing error messages and codes.

Examples See Connecti on. nmaj or Err or Code.

minorErrorCode

Secondary error code returned by database vendor library.
Method of Connection

Implemented in NES 3.0

Syntax mi nor Err or Code()
Parameters None.
Returns The result returned by this method depends on the database server:
= Informix: the ISAM error code, or 0 if there is no ISAM error.
= Oracle: the operating system error code as reported by OCI.
= Sybase: the severity level, as reported by DB-Library or the severity level, as

reported by the SQL server.

minorErrorMessage

Secondary message returned by database vendor library.
Method of Connecti on

Implemented in NES 3.0

Syntax m nor Error Message()

Parameters None.

68 Server-Side JavaScript Reference



Connection.prototype

Returns The string returned by this method depends on the database server:

= Informix: “ISAM Error: string,” where string is the text of the ISAM error
code from Informix, or an empty string if there is no ISAM error.

= Oracle: the Oracle server name.

= Sybase: the operating system error text, as reported by DB-Library or the
SQL server name.

prototype

Represents the prototype for this class. You can use the prototype to add

properties or methods to all instances of a class. For information on prototypes,

see Functi on. pr ot ot ype.

Property of Connecti on

Implemented in NES 2.0

release

Releases the connection back to the database pool.

Method of Connecti on

Implemented in NES 3.0

Syntax rel ease()
Parameters None.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated maj or Er r or Code and maj or Er r or Message methods to
interpret the cause of the error.

Description  Before calling the r el ease method, you should close all open cursors. When

you call the r el ease method, the runtime engine waits until all cursors have
been closed and then returns the connection to the database pool. The
connection is then available to the next user.

Chapter 1, Objects, Methods, and Properties 69



Connection.rollbackTransaction

If you don't call the r el ease method, the connection remains unavailable until
the object goes out of scope. Assuming the object has been assigned to a
variable, it can go out of scope at different times:

= If the variable is a property of the proj ect object (such as
proj ect . engconn), then it remains in scope until the application
terminates.

- If it is a property of the server object (such as server. engconn), it does
not go out of scope until the server goes down. You rarely want to have a
connection last the lifetime of the server.

= In all other cases, the variable is a property of the client request. In this
situation, the variable goes out of scope when the JavaScript fi nal i ze
method is called; that is, when control leaves the HTML page.

You must call the r el ease method for all connections in a database pool
before you can call the DbPool object’s di sconnect method. Otherwise, the
connection is still considered in use by the runtime engine, so the disconnect
waits until all connections are released.

rollbackTransaction

Syntax
Parameters

Returns

Description

Rolls back the current transaction.
Method of Connection

Implemented in NES 3.0

rol | backTransacti on()
None.

0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated maj or Er r or Code and maj or Er r or Message methods to
interpret the cause of the error.

This method will undo all modifications since the last call to
begi nTransacti on.

For the dat abase object, the scope of a transaction is limited to the current
request (HTML page) in the application. If the application exits the page before
calling the comni t Transacti on or rol | backTr ansact i on method, then the
transaction is automatically either committed or rolled back, based on the

70 Server-Side JavaScript Reference



Connection.SQLTable

setting of the conmi t f | ag parameter when the connection was established.
This parameter is provided when you make the connection with the dat abase
or DbPool object.

For Connect i on objects, the scope of a transaction is limited to the lifetime of
that object. If the connection is released or the pool of connections is closed
before calling the conmi t Tr ansacti on or rol | backTr ansact i on method,
then the transaction is automatically either committed or rolled back, based on
the commi t Fl ag value.

If there is no current transaction (that is, if the application has not called
begi nTransact i on), calls to conmi t Transacti on and
rol | backTransacti on are ignored.

The LiveWire Database Service does not support nested transactions. If you call
begi nTransact i on when a transaction is already open (that is, you've called
begi nTransact i on and have yet to commit or roll back that transaction),
you'll get an error message.

SQLTable

Syntax

Parameters

Returns

Description

Note

Displays query results. Creates an HTML table for results of an SQL SELECT
statement.
Method of Connecti on

Implemented in NES 3.0

SQLTabl e (stnt)

st nt A string representing an SQL SELECT statement.
A string representing an HTML table, with each row and column in the query as
a row and column of the table.

Although SQL.Tabl e does not give explicit control over how the output is
formatted, it is the easiest way to display query results. If you want to
customize the appearance of the output, use a Cur sor object to create your
own display function.

Every Sybase table you use with a cursor must have a unique index.

Chapter 1, Objects, Methods, and Properties 71



Connection.SQLTable

Example If connobj is a Connecti on object and r equest . sql contains an SQL query,
then the following JavaScript statements display the result of the query in a
table:

write(request.sql)
connobj . SQLTabl e(request . sqgl )

The first line simply displays the SELECT statement, and the second line
displays the results of the query. This is the first part of the HTML generated by
these statements:

select * fromvideos

<TABLE BORDER>

<TR>

<TH>title</ TH>

<TH>i d</ TH>

<TH>year </ TH>

<TH>cat egor y</ TH>

<TH>quantity</ TH>

<TH>nunmonhand</ TH>

<TH>synopsi s</ TH>

</ TR>

<TR>

<TD>A C ockwor k Orange</ TD>

<TD>1</ TD>

<TD>1975</ TD>

<TD>Sci ence Fiction</TD>

<TD>5</ TD>

<TD>3</ TD>

<TD> Little Alex, played by Ml col m Macdowel |,
and his droogies stop by the MIoko bar for a
refreshing libation before a wild night on the town.
</ TD>

</ TR>

<TR>

<TD>S| eepl ess In Seattl e</ TD>

As this example illustrates, SQLTabl e generates an HTML table, with column
headings for each column in the database table and a row in the table for each
row in the database table.

72 Server-Side JavaScript Reference



Connection.storedProc

storedProc

Syntax

Parameters

Returns

Description

Creates a stored procedure object and runs the specified stored procedure.
Method of Connecti on

Implemented in NES 3.0

storedProc (procName [, inargl [, inarg2 [, ... inargN1]])

pr ocNane A string specifying the name of the stored procedure to run.

inargl, ..., inargN The input parameters to be passed to the procedure, separated
by commas.

A new St pr oc object.

The scope of the stored procedure object is a single page of the application. In
other words, all methods to be executed for any instance of st or edPr oc must
be invoked on the same application page as the page on which the object is
created.

When you create a stored procedure, you can specify default values for any of
the parameters. Then, if a parameter is not included when the stored procedure
is executed, the procedure uses the default value. However, when you call a
stored procedure from a server-side JavaScript application, you must indicate
that you want to use the default value by typing "/ Def aul t /" in place of the
parameter. (Remember that JavaScript is case sensitive.) For example:

spCbj = connobj.storedProc ("newhire", "/Default/", 3)

toString

Syntax

Parameters

Returns a string representing the specified object.
Method of Connecti on

Implemented in NES 3.0

toString()

None.

Chapter 1, Objects, Methods, and Properties 73



Connection.toString

Description  Every object has a t oSt ri ng method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation.

You can use t oSt ri ng within your own code to convert an object into a string,
and you can create your own function to be called in place of the default
t oSt ri ng method.

This method returns a string of the following format:

db "name" "user Nane" "dbtype" "server Nane"

where

nane The name of the database.

user Nane The name of the user connected to the database.
dbType One of ORACLE, SYBASE, | NFORM X, DB2, or CDBC.
server Name The name of the database server.

The method displays an empty string for any of attributes whose value is
unknown.

For information on defining your own t oSt ri ng method, see the
bj ect.toString method.

74 Server-Side JavaScript Reference



Cursor

Created by

Description

Important

Cursor

Server-side object. A Cur sor object represents a database cursor for a specified
SQL SELECT statement.
Server-side object

Implemented in NES 2.0

The cur sor method of a Connect i on object or of the dat abase object. You
do not call a Cur sor constructor.

A database query is said to return a Cur sor. You can think of a Cursor as a
virtual table, with rows and columns specified by the query. A cursor also has a
notion of a current row, which is essentially a pointer to a row in the virtual
table. When you perform operations with a Cursor, they usually affect the
current row.

You can perform the following tasks with the Cur sor object:

= Modify data in a database table.

< Navigate in a database table.

= Customize the display of the virtual table returned by a database query.

You can use a Cur sor object to customize the display of the virtual table by
specifying which columns and rows to display and how to display them. The
Cur sor object does not automatically display the data returned in the virtual
table. To display this data, you must create HTML code such as that shown in
Example 4 for the cur sor method.

A pointer indicates the current row in a Cursor. When you create a Cursor, the
pointer is initially positioned before the first row of the cursor. The next
method makes the following row in the cursor the current row. If the SELECT
statement used in the call to the cur sor method does not return any rows, the
method still creates a Cur sor object. However, since that object has no rows,
the first time you use the next method on the object, it returns false. Your
application should check for this condition.

A database cursor does not guarantee the order or positioning of its rows. For
example, if you have an updatable cursor and add a row to the cursor, you
have no way of knowing where that row appears in the cursor.

Chapter 1, Objects, Methods, and Properties 75



Cursor

When finished with a Cur sor object, use the cl ose method to close it and
release the memory it uses. If you release a connection that has an open cursor,
the runtime engine waits until the cursor is closed before actually releasing the
connection.

If you do not explicitly close a cursor with the cl ose method, the JavaScript
runtime engine on the server automatically tries to close all open cursors when
the associated dat abase or DbPool object goes out of scope. This can tie up
system resources unnecessarily. It can also lead to unpredictable results.

You can use the pr ot ot ype property of the Cur sor class to add a property to
all Cur sor instances. If you do so, that addition applies to all Cur sor instances
running in all applications on your server, not just in the single application that
made the change. This allows you to expand the capabilities of this object for
your entire server.

Note Every Sybase table you use with a cursor must have a unique index.

Properties. The properties of cur sor objects vary from instance to instance.
Each Cur sor object has a property for each named column in the cursor. In
other words, when you create a cursor, it acquires a property for each column
in the virtual table, as determined by the SELECT statement.

Note Unlike other properties in JavaScript, cur sor properties corresponding to
column names are not case sensitive, because SQL is not case sensitive and
some databases are not case sensitive.

You can also refer to properties of a Cur sor object as elements of an array.
The 0-index array element corresponds to the first column, the 1-index array
element corresponds to the second column, and so on.

SELECT statements can retrieve values that are not columns in the database,
such as aggregate values and SQL expressions. You can display these values by
using the cursor’s property array index for the value.

Property
Summary Property Description
cur sor Col uim An array of objects corresponding to the columns in a cursor.
pr ot ot ype Allows the addition of properties to the Cur sor object.

76 Server-Side JavaScript Reference



Method Summary

Cursor.close

Method Description

cl ose Closes the cursor and frees the allocated memory.

col umName the name of the column in the cursor corresponding to the
specified number.

col ums Returns the number of columns in the cursor.

del et eRow Deletes the current row in the specified table.

i nsert Row Inserts a new row in the specified table.

next Moves the current row to the next row in the cursor.

updat eRow Updates records in the current row of the specified table in the
Ccursor.

In addition, this object inherits the wat ch and unwat ch methods from
hj ect.

close

Syntax
Parameters

Returns

Description

Closes the cursor and frees the allocated memory.
Method of Cur sor

Implemented in NES 2.0

cl ose()
None.

0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated maj or Er r or Code and maj or Er r or Message methods to
interpret the cause of the error.

The cl ose method closes a cursor or result set and releases the memory it uses.
If you do not explicitly close a cursor or result set with the cl ose method, the
JavaScript runtime engine on the server automatically closes all open cursors
and result sets when the corresponding cl i ent object goes out of scope.

Chapter 1, Objects, Methods, and Properties 77



Cursor.columnName

Examples

The following example creates the r ent al Set cursor, performs certain
operations on it, and then closes it with the cl ose method.

/'l Create a Cursor object
rental Set = database. cursor ("SELECT * FROM rental s")

/1 Perform operations on the cursor
cursor Qperations()

/1 Cl ose the cursor
err = rental Set. cl ose()

columnName

Syntax

Parameters

Returns

Returns the name of the column in the cursor corresponding to the specified
number.
Method of Cur sor

Implemented in NES 2.0

col umNane (n)

n Zero-based integer corresponding to the column in the query. The
first column in the result set is 0, the second is 1, and so on.

The name of the column.

The result sets for Informix and DB2 stored procedures do not have named
columns. Do not use this method when connecting to those databases. In those
cases you should always refer to the result set columns by the index number.

If your SELECT statement uses a wildcard (*) to select all the columns in a table,
the col utmName method does not guarantee the order in which it assigns
numbers to the columns. That is, suppose you have this statement:

custs = connobj.cursor ("select * from customer");

78 Server-Side JavaScript Reference



Examples

Cursor.columns

If the customer table has 3 columns, 1D, NAME, and CITY, you cannot tell
ahead of time which of these columns corresponds to cust s. col umNane(0) .
(Of course, you are guaranteed that successive calls to col utmNane have the
same result.) If the order matters to you, you can instead hard-code the column
names in the select statement, as in the following statement:

custs = connobj.cursor ("select ID, NAVE, CITY fromcustoner");

With this statement, cust s. col umNane(0) is ID, custs. col utmNane(1) is
NAME, and cust s. col umNane(2) is CITY.

The following example assigns the name of the first column in the
cust oner Set cursor to the variable header :

cust oner Set =dat abase. cur sor (SELECT * FROM cust omer ORDER BY nane)
header = custoner Set. col uimNane( 0)

columns

Syntax
Parameters
Returns

Examples

Returns the number of columns in the cursor.
Method of Cur sor

Implemented in NES 2.0

col ums()
None.
The number of named and unnamed columns.

See Example 2 of Cur sor for an example of using the col unms method with
the cur sor Col um array.

The following example returns the number of columns in the cust s cursor:

custs. col ums()

Chapter 1, Objects, Methods, and Properties 79



Cursor.cursorColumn

cursorColumn

Examples

An array of objects corresponding to the columns in a cursor.
Property of Cur sor

Implemented in NES 2.0

Example 1: Using column titles as cursor properties. The following
example creates the cust omer Set Cur sor object containing the i d, nane, and
ci ty rows from the cust oner table. The next method moves the pointer to
the first row of the cursor. The i d, nane, and ci ty columns become the

cur sor properties cust oner. i d, cust oner Set . nane, and

cust omer Set . ci t y. Because the pointer is in the first row of the cursor, the
wr i t e method displays the values of these properties for the first row.

/'l Create a Cursor object
cust oner Set = dat abase. cursor (" SELECT id, nane, city FROM custoner")

// Navigate to the first row
cust oner Set . next ()

write(custonmerSet.id + "<BR>")
write(custonerSet. nane + "<BR>")
write(custonmerSet.city + "<BR>")

/1 Close the cursor
cust oner Set . cl ose()

This query might return a virtual table containing the following rows:

1 John Smth Anytown
2 Fred Flintstone Bedrock
3 Ceorge Jetson Spacely

Example 2: Iterating with the cursor properties. In this example, the
cur sor property array is used in a f or statement to iterate over each column in
the cust omrer Set cursor.

/'l Create a Cursor object
cust oner Set = dat abase. cursor (" SELECT id, nane, city FROM custoner")

// Navigate to the first row
cust onmer Set . next ()

// Start a for |oop
for ( var i =0; i < customerSet.colums(); i++) {
write(custonmerSet[i] + "<BR>") }

/1 Close the cursor
cust oner Set . cl ose()

80 Server-Side JavaScript Reference



Cursor.deleteRow

Because the next statement moves the pointer to the first row, the preceding
code displays values similar to the following:

1
John Smith
Anyt own

Example 3. Using the cursor properties with an aggregate expression. In
this example, the sal ar ySet cursor contains a column created by the
aggregate function MAX.

sal arySet = dat abase. cursor (" SELECT nane, MAX(sal ary) FROM enpl oyee")

Because the aggregate column does not have a name, you must use the refer to
it by its index number, as follows:

wite(salarySet[1])

deleteRow

Syntax

Parameters

Returns

Description

Examples

Deletes the current row in the specified table.
Method of Cur sor

Implemented in NES 2.0

del et eRow (tabl e)

tabl e A string specifying the name of the table from which to delete a
row.

0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated maj or Er r or Code and maj or Er r or Message methods to
interpret the cause of the error.

The del et eRow method uses an updatable cursor to delete the current row
from the specified table. See Cur sor for information about creating an
updatable cursor.

In the following example, the del et eRow method removes a customer from the
cust oner database. The cur sor method creates the cust onmer Set cursor
containing a single row; the value for cust oner. 1 D is passed in as a r equest
object property. The next method moves the pointer to the only row in the
cursor, and the del et eRow method deletes the row.

Chapter 1, Objects, Methods, and Properties 81



Cursor.insertRow

dat abase. begi nTransacti on()

custoner Set = dat abase. cursor("select * from custoner where
custonmer.ID =" + request.ID, true)

cust oner Set . next ()

statusCode = customner Set. del et eRow( "cust oner")

cust oner Set . cl ose()

if (statusCode == 0) {
dat abase. conmi t Transaction() }

el se {
dat abase. rol | backTransaction() }

In this example, the del et eRow method sets the value of st at usCode to
indicate whether del et eRow succeeds or fails. If st at usCode is 0, the method
has succeeded and the transaction is committed; otherwise, the transaction is
rolled back.

insertRow

Syntax

Parameters

Returns

Description

Inserts a new row in the specified table.
Method of Cur sor

Implemented in NES 2.0

i nsert Row (table)

tabl e A string specifying the name of the table in which to insert a row.

0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated maj or Er r or Code and maj or Er r or Message methods to
interpret the cause of the error.

The i nsert Row method uses an updatable cursor to insert a row in the
specified table. See the cur sor method for information about creating an
updatable cursor.

The location of the inserted row depends on the database vendor library. If you
need to get at the row after calling the i nser t Row method, you must first close
the existing cursor and then open a new cursor.

82 Server-Side JavaScript Reference



Examples

Cursor.insertRow

You can specify values for the row you are inserting as follows:

= By explicitly assigning values to each column in the cursor and then calling
the i nsert Row method.

= By navigating to a row with the next method, explicitly assigning values for
some columns, and then calling the i nser t Row method. Columns that are
not explicitly assigned values receive values from the row to which you
navigated.

= By not navigating to another record and then calling the i nsert Row
method. If you do not issue a next method, columns that are not explicitly
assigned values are null.

The i nsert Row method inserts a null value in any table columns that do not
appear in the cursor.

The i nsert Row method returns a status code based on a database server
message to indicate whether the method completed successfully. If successful,
the method returns a 0; otherwise, it returns a nonzero integer to indicate the
reason it failed. See the Server-Side JavaScript Guide for an explanation of status
codes.

In some applications, such as a video-rental application, a husband, wife, and
children could all share the same account number but be listed under different
names. In this example, a user has just added a name to the account s table
and wants to add a spouse’s name to the same account.

custoner Set = dat abase. cursor("select * from custoner", true)
X=true

while (x) {
X = custonerSet.next() }

cust oner Set . nanme = request.theNane
cust onmer Set . i nsert Row( "account s")
cust oner Set . cl ose()

In this example, the next method navigates to the last row in the table, which
contains the most recently added account. The value of t heNane is passed in
by the r equest object and assigned to the nanme column in the cust oner Set
cursor. The i nsert Row method inserts a new row at the end of the table. The
value of the name column in the new row is the value of t heNarme. Because the
application used the next method to navigate, the value of every other column
in the new row is the same as the value in the previous row.

Chapter 1, Objects, Methods, and Properties 83



Cursor.next

next

Syntax
Parameters
Returns

Description

Examples

Moves the current row to the next row in the cursor.
Method of Cur sor

Implemented in NES 2.0

next ()
None.
False if the current row is the last row; otherwise, true.

Initially, the pointer (or current row) for a cursor or result set is positioned
before the first row returned. Use the next method to move the pointer
through the records in the cursor or result set. This method moves the pointer
to the next row and returns true as long as there is another row available.
When the cursor or result set has reached the last row, the method returns
false. Note that if the cursor is empty, this method always returns false.

Example 1. This example uses the next method to navigate to the last row in
a cursor. The variable x is initialized to true. When the pointer is in the last row
of the cursor, the next method returns false and terminates the whi | e loop.

cust oner Set = dat abase. cursor("select * fromcustoner", true)

X = true
while (x) {
X = custonerSet.next() }

Example 2. In the following example, the r ent al Set cursor contains columns
named vi deol d, r ent al Dat e, and dueDat e. The next method is called in a
whi | e loop that iterates over every row in the cursor. When the pointer is on
the last row in the cursor, the next method returns false and terminates the
whi | e loop.

84 Server-Side JavaScript Reference



Cursor.prototype

This example displays the three columns of the cursor in an HTML table:

<SERVER>

/'l Create a Cursor object

rental Set = dat abase. cursor ("SELECT videold, rental Date, returnDate
FROM rent al s")

</ SERVER>

/1l Create an HTM. table
<TABLE BORDER>

<TR>

<TH>Vi deo | D</ TH>
<TD>Rent al Dat e</ TD>
<TD>Due Dat e</ TD>

</ TR>

<SERVER>

// lterate through each row in the cursor
while (rental Set.next()) {

</ SERVER>

// Display the cursor values in the HTM. table
<TR>
<TH><SERVER>wri t e(rent al Set . vi deol d) </ SERVER></ TH>
<TD><SERVER>wri t e(rent al Set . r ent al Dat e) </ SERVER></ TD>
<TD><SERVER>wr i t e(rent al Set . r et ur nDat e) </ SERVER></ TD>
</ TR>

/1 Term nate the while |oop
<SERVER>

}
</ SERVER>

/1 End the table
</ TABLE>

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Functi on. pr ot ot ype.

Property of Cur sor

Implemented in NES 2.0

Chapter 1, Objects, Methods, and Properties 85



Cursor.updateRow

updateRow

Syntax

Parameters

Returns

Description

Updates records in the current row of the specified table in the cursor.
Method of Cur sor

Implemented in NES 2.0

updat eRow (t abl e)

tabl e String specifying the name of the table to update.

0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated maj or Er r or Code and maj or Er r or Message methods to
interpret the cause of the error.

The updat eRow method lets you use values in the current row of an updatable
cursor to modify a table. See the cur sor method for information about creating
an updatable cursor. Before performing an updat eRow, you must perform at
least one next with the cursor so the current row is set to a row.

Assign values to columns in the current row of the cursor, and then use the
updat eRow method to update the current row of the table specified by the
t abl e parameter. Column values that are not explicitly assigned are not
changed by the updat eRow method.

The updat eRow method returns a status code based on a database server
message to indicate whether the method completed successfully. If successful,
the method returns a 0; otherwise, it returns a nonzero integer to indicate the
reason it failed. See the Server-Side JavaScript Guide for an explanation of the
individual status codes.

86 Server-Side JavaScript Reference



Cursor.updateRow

Examples This example uses updat eRow to update the r et ur ndat e column of the
rent al s table. The values of cust omer | D and vi deol D are passed into the
cur sor method as properties of the r equest object. When the vi deoRet urn
Cur sor object opens, the next method navigates to the only record returned
and updates the value in the r et ur nDat e field.

// Create a cursor containing the rented video

vi deoReturn = dat abase. cursor ("SELECT * FROM rental s WHERE
custonerld = " + request.custonerlD + " AND
videold = " + request.videol D, true)

/1 Position the pointer on the first row of the cursor
vi deoRet ur n. next ()

/I Assign today’s date to the returndate column
videoReturn.returndate = today

/I Update the row
videoReturn.updateRow("rentals")

Chapter 1, Objects, Methods, and Properties 87



database

database

Created by

Description

Lets an application interact with a relational database.
Server-side object

Implemented in NES 2.0

NES 3.0: added st or edPr oc and st or edPr ocAr gs methods

The JavaScript runtime engine on the server automatically creates the dat abase
object. You indicate that you want to use this object by calling its connect
method.

The JavaScript runtime engine on the server creates a dat abase object when an
application connects to a database server. Each application has only one

dat abase object. You can use the dat abase object to interact with the
database on the server. Alternatively, you can use the DbPool and Connecti on
objects.

You can use the dat abase object to connect to the database server and
perform the following tasks:

= Display the results of a query as an HTML table
< Execute SQL statements on the database server
= Manage transactions

= Run stored procedures

= Handle errors returned by the target database

The scope of a database connection created with the database object is a single
HTML page. That is, as soon as control leaves the HTML page, the runtime
engine closes the database connection. You should close all open cursors,
stored-procedure objects, and result sets before the end of the page.

If possible, your application should make the database connection on its initial
page. Doing so prevents conflicts from multiple client requests trying to
manipulate the status of the connections at once.

Internally, JavaScript creates the dat abase object as an instance of the

DbBui | ti n class. In most circumstances, this is an implementation detail you
do not need to be aware of, because you cannot create instances of this class.
However, you can use the pr ot ot ype property of the DbBui | ti n class to add
a property to the predefined dat abase object. If you do so, that addition

88 Server-Side JavaScript Reference



Note

Property
Summary

database

applies to the dat abase object when used in all applications on your server,
not just in the single application that made the change. This allows you to
expand the capabilities of this object for your entire server.

Transactions. A transaction is a group of database actions that are performed
together. Either all the actions succeed together or all fail together. When you
attempt to have all of the actions make permanent changes to the database, you
are said to commit a transaction. You can also roll back a transaction that you
have not committed; this cancels all the actions.

You can use explicit transaction control for any set of actions, by using the
begi nTransacti on, conmi t Tr ansacti on, and rol | backTr ansacti on
methods. If you do not control transactions explicitly, the runtime engine uses
the underlying database’s auto-commit feature to treat each database
modification as a separate transaction. Each statement is either committed or
rolled back immediately, based on the success or failure of the individual
statement. Explicitly managing transactions overrides this default behavior.

In some databases, such as Oracle, auto-commit is an explicit feature that
LiveWire turns on for individual statements. In others, such as Informix, it is the
default behavior when you do not create a transaction.

You must use explicit transaction control any time you make changes to a
database. If you do not, your database may return errors; even it does not, you
cannot be guaranteed of data integrity without using transactions. In addition,
any time you use cursors, you are encourage to use explicit transactions to
control the consistency of your data.

For the dat abase object, the scope of a transaction is limited to the current
request (HTML page) in an application. If the application exits the page before
calling the commi t Transacti on or rol | backTr ansact i on method, then the
transaction is automatically either committed or rolled back, depending on the
setting for the conmi t f | ag parameter when the connection was established.
This parameter is provided either to the pool object’s constructor or to its
connect method. For further information, see connect.

Property Description

pr ot ot ype Allows the addition of properties to the dat abase object.

Chapter 1, Objects, Methods, and Properties 89



database

Method Summary

Method

Description

begi nTransacti on
conmi t Transacti on

connect

connect ed

cursor

di sconnect
execut e

maj or Er r or Code

maj or Er r or Message

m nor Er r or Code

m nor Er r or Message

rol | backTransacti on

SQLTabl e

st oredPr oc

st or edPr ocAr gs

toString

Begins an SQL transaction.
Commits the current SQL transaction.

Connects to a particular configuration of database and
user.

Returns true if the database pool (and hence this
connection) is connected to a database.

Creates a database cursor for the specified SQL SELECT
statement.

Disconnects all connections from the database.
Performs the specified SQL statement.

Major error code returned by the database server or
ODBC.

Major error message returned by the database server or
ODBC.

Secondary error code returned by vendor library.
Secondary message returned by vendor library.
Rolls back the current SQL transaction.

Displays query results. Creates an HTML table for results
of an SQL SELECT statement.

Creates a stored-procedure object and runs the specified
stored procedure.

Creates a prototype for a Sybase stored procedure.

Returns a string representing the specified object.

In addition, this object inherits the wat ch and unwat ch methods from

hj ect.

90 Server-Side JavaScript Reference



Examples

See also

database.beginTransaction

The following example creates a dat abase object and opens a standard
connection to the cust oner database on an Informix server. The name of the
server is bl ue, the user name is ADM N, and the password is MANAGER.

dat abase. connect ("1 NFORM X", "blue", "ADM N', "MANAGER', "inventory")

In this example, many clients can connect to the database simultaneously, but
they all share the same connection, user name, and password.

Cur sor, dat abase. connect

beginTransaction

Syntax
Parameters

Returns

Description

Begins a new SQL transaction.
Method of dat abase

Implemented in NES 2.0

begi nTransacti on()
None.

0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated maj or Er r or Code and maj or Er r or Message methods to
interpret the cause of the error.

All subsequent actions that modify the database are grouped with this
transaction, known as the current transaction.

For the dat abase object, the scope of a transaction is limited to the current
request (HTML page) in the application. If the application exits the page before
calling the comni t Transacti on or rol | backTr ansact i on method, then the
transaction is automatically either committed or rolled back, based on the
setting of the conmi t f | ag parameter when the connection was established.
This parameter is provided when you make the connection by calling

dat abase. connect.

For Connect i on objects, the scope of a transaction is limited to the lifetime of
that object. If the connection is released or the pool of connections is closed
before calling the conmi t Tr ansacti on or rol | backTr ansact i on method,
then the transaction is automatically either committed or rolled back, based on

Chapter 1, Objects, Methods, and Properties 91



database.beginTransaction

the setting of the conmi t f | ag parameter when the connection was established.
This parameter is provided when you make the connection by calling the
connect method or in the DbPool constructor.

If there is no current transaction (that is, if the application has not called
begi nTransact i on), calls to conmi t Transacti on and
rol | backTransacti on are ignored.

The LiveWire Database Service does not support nested transactions. If you call
begi nTransact i on when a transaction is already open (that is, you've called
begi nTransact i on and have yet to commit or roll back that transaction),
you'll get an error message.

Examples This example updates the r ent al s table within a transaction. The values of
cust omer | Dand vi deol D are passed into the cur sor method as properties of
the r equest object. When the vi deoRet ur n Cur sor object opens, the next
method navigates to the only record in the virtual table and updates the value
in the r et ur nDat e field.

The variable x is assigned a database status code to indicate if the updat eRow
method is successful. If updat eRow succeeds, the value of x is 0, and the
transaction is committed; otherwise, the transaction is rolled back.

// Begin a transaction
dat abase. begi nTransacti on();

// Create a Date object with the value of today's date
today = new Date();

/] Create a cursor with the rented video in the virtual table
vi deoReturn = dat abase. cursor (" SELECT * FROM rental s WHERE
custonerld =" + request.custonmerID + " AND
videold = " + request.videolD, true);

/1 Position the pointer on the first row of the cursor
/1 and update the row

vi deoRet ur n. next ()

vi deoRet urn. returndate = today;

X = vi deoRet urn. updat eRow( "rental s");

// End the transaction by committing or rolling back

if (x ==0) {
dat abase. conmi t Transaction() }
el se {

dat abase. rol | backTransaction() }

/1 C ose the cursor
vi deoRet urn. cl ose();

92 Server-Side JavaScript Reference



database.commitTransaction

commitTransaction

Syntax
Parameters

Returns

Description

Commits the current transaction.
Method of dat abase

Implemented in NES 2.0

conmi t Transacti on()
None.

0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated maj or Er r or Code and maj or Er r or Message methods to
interpret the cause of the error.

This method attempts to commit all actions since the last call to
begi nTransacti on.

For the dat abase object, the scope of a transaction is limited to the current
request (HTML page) in the application. If the application exits the page before
calling the commi t Transacti on or rol | backTr ansact i on method, then the
transaction is automatically either committed or rolled back, based on the
setting of the conmi t f | ag parameter when the connection was established.
This parameter is provided when you make the connection with the dat abase
or DbPool object.

For Connect i on objects, the scope of a transaction is limited to the lifetime of
that object. If the connection is released or the pool of connections is closed
before calling the conmi t Tr ansacti on or rol | backTr ansact i on method,
then the transaction is automatically either committed or rolled back, based on
the conmi t Fl ag value.

If there is no current transaction (that is, if the application has not called
begi nTransacti on), calls to commi t Transacti on and
rol | backTransacti on are ignored.

The LiveWire Database Service does not support nested transactions. If you call
begi nTransact i on when a transaction is already open (that is, you've called
begi nTransact i on and have yet to commit or roll back that transaction),
you'll get an error message.

Chapter 1, Objects, Methods, and Properties 93



database.connect

connect

Connects the pool to a particular configuration of database and user.
Method of dat abase

Implemented in NES 2.0
Syntax 1. connect (dbtype, serverNanme, username, password,
dat abaseNane)

2. connect (dbtype, serverNane, usernane, password,
dat abaseName [, maxConnections])

3. connect (dbtype, serverNane, usernane, password,
dat abaseNane [, naxConnections [, conmitflag]l])

94 Server-Side JavaScript Reference



Parameters

dbt ype

server Nanme

user Nanme

database.connect

Database type; one of ORACLE, SYBASE, | NFORM X, DB2, or
ODBC.

Name of the database server to which to connect. The server name
typically is established when the database is installed and is
different for different database types:

= DB2: Local database alias. On both NT and UNIX, this is set up
by the client or the DB2 Command Line Processor.

= Informix: Informix server. On NT, this is specified with the
set net 32 utility; on UNIX, in the sqgl host s file.

= Oracle: Service. On both NT and UNIX, this specified in the
t nsnanes. or a file. On NT, you can use the SQL*Net easy
configuration to specify it. If your Oracle database server is
local, specify the empty string for this argument.

= ODBC: Data source name. On NT, this is specified in the ODBC
Administrator; on UNIX, in the .odbc. i ni file. If you are using
the Web Server as a user the file . odbc. i ni must be in your
home directory; if as a system, it must be in the root directory.

= Sybase: Server name (the DSQUERY parameter). On NT, this is
specified with the sql edi t utility; on UNIX, with the
sybi ni t utility.
If in doubt, see your database or system administrator. For ODBC,
this is the name of the ODBC service as specified in Control Panel.

Name of the user to connect to the database. Some relational
database management systems (RDBMS) require that this be the
same as your operating system login name; others maintain their
own collections of valid user names. See your system administrator
if you are in doubt.

Chapter 1, Objects, Methods, and Properties 95



database.connect

passwor d

dat abaseNane

maxConnecti ons

96 Server-Side JavaScript Reference

User’s password. If the database does not require a password, use
an empty string ("").

Name of the database to connect to for the given ser ver Nane. If
your database server supports the notion of multiple databases on a
single server, supply the name of the database to use. If it does not,
use an empty string (""). For Oracle, ODBC, and DB2, you must
always use an empty string.

= For Oracle, specify this information in the t nsnanes. or a file.

= For ODBC, if you want to connect to a particular database,
specify the database name specified in the datasource
definition.

= For DB2, there is no concept of a database name; the database
name is always the server name (as specified with
server Nane).

Number of connections to be created and cached in the pool. The
runtime engine attempts to create as many connections as specified
with this parameter. If successful, it stores those connections for
later use.

If you do not supply this parameter, its value is whatever you
specify in the Application Manager when you install the application
as the value for Built-in Maximum Database Connections.

Remember that your database client license probably specifies a
maximum number of connections. Do not set this parameter to a
number higher than your license allows. For Sybase, you can have
at most 100 connections.

If your database client library is not multithreaded, it can only
support one connection at a time. In this case, your application
performs as though you specified 1 for this parameter. For a current
list of which database client libraries are multithreaded, see the
Enterprise Server 3.0 Release Notes



Returns

Description

database.connect

conmi t Fl ag A Boolean value indicating whether to commit a pending
transaction when the connection is released or the object is
finalized.

(If the transaction is on a single page, the object is finalized at the
end of the page. If the transaction spans multiple pages, the object
is finalized when the connection returns to the pool.)

If this parameter is false, a pending transaction is rolled back. If this
parameter is true, a pending transaction if committed. For DbPool ,
the default value is false; for dat abase, the default value is true. If
you specify this parameter, you must also specify the
maxConnect i ons parameter.

0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated maj or Er r or Code and maj or Er r or Message methods to
interpret the cause of the error.

When you call this method, the runtime engine first closes and releases any
currently open connections. It then reconnects the pool with the new
configuration. You should be sure that all connections have been released
before calling this method.

The first version of this method creates and caches one connection. When this
connection goes out of scope, pending transactions are rolled back.

The second version of this method attempts to create as many connections as
specified by the maxConnect i ons parameter. If successful, it stores those
connections for later use. If the runtime engine does not obtain the requested
connections, it returns an error. When this connection goes out of scope,
pending transactions are rolled back.

The third version of this method does everything the second version does. In
addition, the conmi t f | ag parameter indicates what to do with pending
transactions when this connection goes out of scope. If this parameter is false
(the default), a pending transaction is rolled back. If this parameter is true, a
pending transaction if committed.

If possible, your application should call this method on its initial page. Doing
so prevents conflicts from multiple client requests trying to connect and
disconnect.

Chapter 1, Objects, Methods, and Properties 97



database.connected

The following statement creates four connections to an Informix database
named mydb on a server named myserv, with user name SYSTEM and
password MANAGER. Pending transactions are rolled back at the end of a client

dat abase. connect ("1 NFORM X", "nyserv", "SYSTEM', "MANAGER', "mydb", 4)

connected

Tests whether the database pool and all of its connections are connected to a
database.
Method of dat abase

Implemented in NES 2.0

connect ed()

True if the pool (and hence a particular connection in the pool) is currently
connected to a database; otherwise, false.

The connect ed method indicates whether this object is currently connected to
a database.

If this method returns false for a Connect i on object, you cannot use any other
methods of that object. You must reconnect to the database, using the DoPool
object, and then get a new Connect i on object. Similarly, if this method returns
false for the dat abase object, you must reconnect before using other methods
of that object.

Example
request:
Syntax
Parameters None.
Returns
Description
Example

Example 1: The following code fragment checks to see if the connection is
currently open. If it's not, it reconnects the pool and reassigns a new value to
the nmyconn variable.

if (!'nyconn.connected()) {

nypool . connect ("I NFORM X', "myserver", "SYSTEM', "MANAGER', "nydb",
4);

nyconn = mnypool . connecti on;

}

98 Server-Side JavaScript Reference



database.cursor

Example 2: The following example uses an i f condition to determine if an

application is connected to a database server. If the application is connected,
the i sConnect edRout i ne function runs; if the application is not connected,

the i sNot Connect ed routine runs.

i f (dat abase. connected()) {
i sConnect edRouti ne() }
el se {
i sNot Connect edRout i ne() }

cursor

Syntax

Parameters

Returns

Description

Creates a Cur sor object.
Method of dat abase

Implemented in NES 2.0

cursor(sql Statenent[, updatable])

sql St at ement A JavaScript string representing a SQL SELECT statement supported
by the database server.

updat abl e A Bool ean parameter indicating whether or not the cursor is
updatable.

A new Cur sor object.

The cur sor method creates a Cur sor object that contains the rows returned by
a SQL SELECT statement. The SELECT statement is passed to the cur sor
method as the sql St at enent argument. If the SELECT statement does not
return any rows, the resulting Cur sor object has no rows. The first time you
use the next method on the object, it returns false.

You can perform the following tasks with the Cur sor object:

= Modify data in a server table.

= Navigate in a server table.

= Customize the display of the virtual table returned by a database query.
< Run stored procedures.

Chapter 1, Objects, Methods, and Properties 99



database.cursor

Examples

The cur sor method does not automatically display the returned data. To
display this data, you must create custom HTML code. This HTML code may
display the rows in an HTML table, as shown in Example 3. The SQ.Tabl e
method is an easier way to display the output of a database query, but you
cannot navigate, modify data, or control the format of the output.

The optional parameter updat abl e specifies whether you can modify the

Cur sor object you create with the cur sor method. To create a Cur sor object
you can modify, specify updat abl e as true. If you do not specify a value for
the updat abl e parameter, it is false by default.

If you create an updatable Cur sor object, the virtual table returned by the

sqgl St at ement parameter must be updatable. For example, the SELECT
statement in the sql St at enent parameter cannot contain a GROUP BY clause;
in addition, the query usually must retrieve key values from a table. For more
information on constructing updatable queries, consult your database vendor’s
documentation.

Example 1. The following example creates the updatable cursor custs and
returns the columns | D, CUST_NAME, and CI TY from the cust oner table:

cust s=dat abase. cursor("sel ect id, cust_name, city fromcustoner", true)

Example 2. You can construct the SELECT statement with the string
concatenation operator (+) and string variables such as cl i ent or r equest
property values, as shown in the following example:

custs = database.cursor("select * from custoner
where custonmerID = " + request.custonerl|D);

Example 3. The following example demonstrates how to format the virtual
table returned by the cur sor method as an HTML table. This example first
creates Cur sor object named vi deoSet and then displays two columns of its
data (vi deoSet.titl e and vi deoSet. synopsi s).

/] Create the videoSet cursor

<SERVER>

vi deoSet = dat abase. cursor("select * from vi deos
wher e vi deos. nunonhand > 0 order by title");

</ SERVER>

100 Server-Side JavaScript Reference



See also

database.disconnect

// Begin creating an HTM.L table to contain the virtual table
/1 Specify titles for the two colums in the virtual table
<TABLE BORDER>
<CAPTI ON> Vi deos on Hand </ CAPTI ON>
<TR>

<TH>Ti tl e</ TH>

<TH>Synopsi s</ TH>
</ TR>

/1 Use a while loop to iterate over each row in the cursor
<SERVER>

whi | e(vi deoSet . next ()) {

</ SERVER>

/1 Use wite statements to display the data in both col ums
<TR>
<TH><A HREF='"rent. htm ?vi deol D="+vi deoSet . i d' >
<SERVER>wr i t e(vi deoSet . titl e) </ SERVER></ A></ TH>
<TD><SERVER>wri t e(vi deoSet . synopsi s) </ SERVER></ TD>
</ TR>

// End the while |oop
<SERVER>

}

</ SERVER>

/1 End the HTM. table
</ TABLE>

The values in the vi deoSet . ti t| e column are displayed within the A tag so a
user can click them as links. When a user clicks a title, the rent . ht M page
opens and the column value vi deoSet . i d is passed to it as the value of
request . vi deol D.

dat abase. SQLTabl e, dat abase. cur sor

disconnect

Syntax

Parameters

Disconnects all connections in the pool from the database.
Method of dat abase

Implemented in NES 2.0

di sconnect ()

None.

Chapter 1, Objects, Methods, and Properties 101



database.execute

Returns

0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated maj or Er r or Code and maj or Er r or Message methods to
interpret the cause of the error.

Description  Before calling the di sconnect method, you must first call the r el ease method
for all connections in this database pool. Otherwise, the connection is still
considered in use by the system, so the disconnect waits until all connections
are released.

After disconnecting from a database, the only methods of this object you can
use are connect and connect ed.

Examples The following example uses an i f condition to determine if an application is
connected to a database server. If the application is connected, the application
calls the di sconnect method; if the application is not connected, the
i sNot Connect ed routine runs.

i f (dat abase. connected()) {
dat abase. di sconnect () }
el se {
i sNot Connect edRout i ne() }
execute
Performs the specified SQL statement. Use for SQL statements other than
queries.
Method of dat abase
Implemented in NES 2.0
Syntax execute (stnt)

Parameters
st nt A string representing the SQL statement to execute.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error

message passed by the database. If the method returns a nonzero status code,
use the associated maj or Er r or Code and maj or Er r or Message methods to
interpret the cause of the error.

102 Server-Side JavaScript Reference



Description

Examples

database.majorErrorCode

This method enables an application to execute any data definition language
(DDL) or data manipulation language (DML) SQL statement supported by the
database server that does not return a cursor, such as CREATE, ALTER, or DROP.

Each database supports a standard core of DDL and DML statements. In
addition, they may each also support DDL and DML statements specific to that
database vendor. You can use execut e to call any of those statements.
However, each database vendor may also provide functions you can use with
the database that are not DDL or DML statements. You cannot use execut e to
call those functions. For example, you cannot call the Oracle descri be
function or the Informix | oad function from the execut e method.

Although technically you can use execut e to perform data modification

(I NSERT, UPDATE, and DELETE statements), you should instead use Cur sor
objects. This makes your application more database-independent. Cursors also
provide support for binary large object (BLODb) data.

When using the execut e method, your SQL statement must strictly conform to
the syntax requirements of the database server. For example, some servers
require each SQL statement to be terminated by a semicolon. See your server
documentation for more information.

If you have not explicitly started a transaction, the single statement is
automatically committed.

In the following example, the execut e method is used to delete a customer

from the cust omer table. cust oner. | D represents the unique ID of a customer
that is in the ID column of the cust oner table. The value for cust oner. I Dis
passed into the DELETE statement as the value of the | D property of r equest .

if(request.ID != null) {
dat abase. execut e("del ete from custoner
where custoner.ID =" + request.|D)

majorErrorCode

Syntax

Major error code returned by the database server or ODBC.
Method of dat abase
Implemented in NES 2.0

maj or Er r or Code()

Chapter 1, Objects, Methods, and Properties 103



database.majorErrorCode

Parameters None.
Returns The result returned by this method depends on the database server being used:
= Informix: the Informix error code.
= Oracle: the code as reported by Oracle Call-level Interface (OCI).
= Sybase: the DB-Library error number or the SQL server message number.

Description  SQL statements can fail for a variety of reasons, including referential integrity
constraints, lack of user privileges, record or table locking in a multiuser
database, and so on. When an action fails, the database server returns an error
message indicating the reason for failure. The LiveWire™ Database Service
provides two ways of getting error information: from the status code returned
by various methods or from special properties containing error messages and
codes.

Status codes are integers between 0 and 27, with 0 indicating a successful
execution of the statement and other numbers indicating an error, as shown in
the following table.

Table 1.2 Database status codes.

Status Explanation Status Explanation

code code

0 No error 14 Null reference parameter

1 Out of memory 15 Connection object not found

2 Object never initialized 16 Required information is
missing

3 Type conversion error 17 Obiject cannot support multiple
readers

4 Database not registered 18 Obiject cannot support
deletions

5 Error reported by server 19 Obiject cannot support
insertions

6 Message from server 20 Obiject cannot support updates

7 Error from vendor’s library 21 Obiject cannot support updates

8 Lost connection 22 Obiject cannot support indices

9 End of fetch 23 Object cannot be dropped

104 Server-Side JavaScript Reference



Examples

database.majorErrorCode

Table 1.2 Database status codes. (Continued)

Status Explanation Status Explanation

code code

10 Invalid use of object 24 Incorrect connection supplied

11 Column does not exist 25 Obiject cannot support
privileges

12 Invalid positioning within 26 Obiject cannot support cursors

object (bounds error)

13 Unsupported feature 27 Unable to open

This example updates the rent al s table within a transaction. The updat eRow
method assigns a database status code to the st at usCode variable to indicate
whether the method is successful.

If updat eRow succeeds, the value of st at usCode is 0, and the transaction is

committed. If updat eRow returns a st at usCode value of either five or seven,
the values of maj or Er r or Code, maj or Er r or Message, ni nor Er r or Code, and
mi nor Err or Message are displayed. If st at usCode is set to any other value,

the er r or Rout i ne function is called.

dat abase. begi nTransacti on()
statusCode = cursor. updateRow("rental s")

if (statusCode == 0) {
dat abase. conmi t Transacti on()

}

if (statusCode == 5 || statusCode == 7) {
write("The operation failed to conpl ete. <BR>"
wite("Contact your systemadministrator with the follow ng: <P>"
write("The value of statusCode is " + statusCode + "<BR>")
write("The value of majorErrorCode is " +
dat abase. naj or Error Code() + "<BR>")
write("The val ue of majorErrorMessage is " +
dat abase. maj or Error Message() + "<BR>")
wite("The value of minorErrorCode is " +
dat abase. m nor Error Code() + "<BR>")
write("The val ue of mnorErrorMessage is " +
dat abase. mi nor Error Message() + "<BR>")
dat abase. rol | backTransacti on()

}

Chapter 1, Objects, Methods, and Properties 105



database.majorErrorMessage

el se {
error Routine()

}

majorErrorMessage

Syntax
Parameters

Returns

Description

Examples

Major error message returned by database server or ODBC. For server errors,
this typically corresponds to the server’s SQLCODE.
Method of dat abase

Implemented in NES 2.0

maj or Er r or Message()
None.
A string describing that depends on the database server:

= Informix: “Vendor Library Error: string,” where string is the error text from
Informix.

= Oracle: “Server Error: string,” where string is the translation of the return
code supplied by Oracle.

= Sybase: “Vendor Library Error; string,” where string is the error text from
DB-Library or “Server Error string,” where string is text from the SQL server,
unless the severity and message number are both 0, in which case it returns
just the message text.

SQL statements can fail for a variety of reasons, including referential integrity
constraints, lack of user privileges, record or table locking in a multi-user
database, and so on. When an action fails, the database server returns an error
message indicating the reason for failure. The LiveWire Database Service
provides two ways of getting error information: from the status code returned
by connect i on and DbPool methods or from special connect i on or DoPool
properties containing error messages and codes.

See dat abase. naj or Er r or Code.

106 Server-Side JavaScript Reference



database.minorErrorCode

minorErrorCode

Syntax
Parameters

Returns

Secondary error code returned by database vendor library.
Method of dat abase

Implemented in NES 2.0

m nor Er r or Code()

None.

The result returned by this method depends on the database server:

= Informix: the | SAMerror code, or 0 if there is no | SAMerror.

= Oracle: the operating system error code as reported by OCI.

= Sybase: the severity level, as reported by DB-Library or the severity level, as

reported by the SQL server.

minorErrorMessage

Syntax
Parameters

Returns

Secondary message returned by database vendor library.
Method of dat abase

Implemented in NES 2.0

m nor Er r or Message()
None.
The string returned by this method depends on the database server:

= Informix: “ISAM Error: string,” where string is the text of the ISAM error
code from Informix, or an empty string if there is no ISAM error.

e Oracle: the Oracle server name.

= Sybase: the operating system error text, as reported by DB-Library or the
SQL server name.

Chapter 1, Objects, Methods, and Properties 107



database.prototype

prototype

Represents the prototype for this class. You can use the prototype of the
DbBui | ti n class to add properties or methods to the dat abase object. For
information on prototypes, see Funct i on. pr ot ot ype.

Property of dat abase

Implemented in NES 2.0

rollbackTransaction

Syntax
Parameters

Returns

Description

Rolls back the current transaction.
Method of dat abase

Implemented in NES 2.0

rol | backTransacti on()
None.

0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated maj or Er r or Code and maj or Er r or Message methods to
interpret the cause of the error.

This method will undo all modifications since the last call to
begi nTransacti on.

For the dat abase object, the scope of a transaction is limited to the current
request (HTML page) in the application. If the application exits the page before
calling the comni t Transacti on or rol | backTr ansact i on method, then the
transaction is automatically either committed or rolled back, based on the
setting of the conmi t f | ag parameter when the connection was established.
This parameter is provided when you make the connection with the dat abase
or DbPool object.

For Connect i on objects, the scope of a transaction is limited to the lifetime of
that object. If the connection is released or the pool of connections is closed
before calling the conmi t Tr ansacti on or rol | backTr ansact i on method,
then the transaction is automatically either committed or rolled back, based on
the commi t Fl ag value.

108 Server-Side JavaScript Reference



database.SQLTable

If there is no current transaction (that is, if the application has not called
begi nTransact i on), calls to commi t Transacti on and
rol | backTransacti on are ignored.

The LiveWire Database Service does not support nested transactions. If you call
begi nTransact i on when a transaction is already open (that is, you've called
begi nTransact i on and have yet to commit or roll back that transaction),
you'll get an error message.

SQLTable

Syntax

Parameters

Returns

Description

Note

Example

Displays query results. Creates an HTML table for results of an SQL SELECT
statement.
Method of dat abase

Implemented in NES 2.0

SQLTabl e (stnt)

stmt A string representing an SQL SELECT statement.

A string representing an HTML table, with each row and column in the query as
a row and column of the table.

Although SQL.Tabl e does not give explicit control over how the output is
formatted, it is the easiest way to display query results. If you want to
customize the appearance of the output, use a Cur sor object to create your
own display function.

Every Sybase table you use with a cursor must have a unique index.

If connobj is a Connect i on object and r equest . sql contains an SQL query,
then the following JavaScript statements display the result of the query in a
table:

write(request.sql)
connobj . SQLTabl e(request . sqgl)

Chapter 1, Objects, Methods, and Properties 109



database.SQLTable

The first line simply displays the SELECT statement, and the second line
displays the results of the query. This is the first part of the HTML generated by
these statements:

select * from videos

<TABLE BORDER>

<TR>

<TH>title</ TH>

<TH>i d</ TH>

<TH>year </ TH>

<TH>cat egor y</ TH>

<TH>quantity</ TH>

<TH>nunmonhand</ TH>

<TH>synopsi s</ TH>

</ TR>

<TR>

<TD>A Cl ockwor k Orange</TD>

<TD>1</ TD>

<TD>1975</ TD>

<TD>Sci ence Fiction</TD>

<TD>5</ TD>

<TD>3</ TD>

<TD> Little Al ex, played by Ml col m Macdowel |,
and his droogies stop by the MIoko bar for a
refreshing libation before a wild night on the town.
</ TD>

</ TR>

<TR>

<TD>Sl eepl ess I n Seattle</ TD>

As this example illustrates, SQLTabl e generates an HTML table, with column
headings for each column in the database table and a row in the table for each
row in the database table.

110 Server-Side JavaScript Reference



database.storedProc

storedProc

Syntax

Parameters

Returns

Description

Creates a stored procedure object and runs the specified stored procedure.
Method of dat abase

Implemented in NES 3.0

storedProc (procName [, inargl [, inarg2 [, ... inargN1]])

pr ocNane A string specifying the name of the stored procedure to run.

inargl, ..., inargN The input parameters to be passed to the procedure, separated
by commas.

A new St pr oc object.

The scope of the stored-procedure object is a single page of the application. In
other words, all methods to be executed for any instance of st or edPr oc must
be invoked on the same application page as the page on which the object is
created.

When you create a stored procedure, you can specify default values for any of
the parameters. Then, if a parameter is not included when the stored procedure
is executed, the procedure uses the default value. However, when you call a
stored procedure from a server-side JavaScript application, you must indicate
that you want to use the default value by typing "/ Def aul t /" in place of the
parameter. (Remember that JavaScript is case sensitive.) For example:

spCbj = connobj.storedProc ("newhire", "/Default/", 3)

Chapter 1, Objects, Methods, and Properties 111



database.storedProcArgs

storedProcArgs

Syntax

Parameters

Returns

Description

Examples

Creates a prototype for a DB2, ODBC, or Sybase stored procedure.
Method of dat abase

Implemented in NES 3.0

storedProcArgs (procName [, typel [, ..., typeN])
pr ocNane The name of the procedure.
typel, ..., typeN Eachtypeisoneof:"IN',"QUT", or"| NOUT" Specifies the

type of each parameter: input ("1 N'), output (" OUT"), or both
input and output (" I NOUT").

Nothing.

This method is only needed for DB2, ODBC, or Sybase stored procedures. If
you call it for Oracle or Informix stored procedures, it does nothing.

This method provides the procedure name and the parameters for that stored
procedure. Stored procedures can accept parameters that are only for input
("IN™), only for output ("OUT"), or for both input and output ("INOUT").

You must create one prototype for each DB2, ODBC, or Sybase stored
procedure you use in your application. Additional prototypes for the same
stored procedure are ignored.

You can specify an INOUT parameter either as an INOUT or as an OUT
parameter. If you use an INOUT parameter of a stored procedure as an OUT
parameter, the LiveWire Database Service implicitly passes a NULL value for
that parameter.

Assume the i nout deno stored procedure takes one input parameter and one
input/output parameter, as follows:

create procedure inoutdenp ( @nparamint, @ noutparamint output)
as

if ( @noutparam == null)
@ nout param = @nparam + 1
el se

@ nout param = @ nout param + 1

112 Server-Side JavaScript Reference



database.toString

Assume execute the following code and then call out Par anet er s(0), the
result will be 101:

dat abase. st or edProcArgs("i noutdenmo”, "IN', "I1NOUT")
spobj = dat abase. st oredProc("i noutdenmp", 6, 100);
answer = spobj . out Paraneters(0);

The value of answer is 101. On the other hand, assume you execute this code:

dat abase. st or edPr ocArgs("i nout denmp”, "IN', "OUT")
spobj = dat abase. storedProc("i noutdeno”, 6, 100);
answer = spobj . out Paraneters(0);

In this case, the value of answer is 7.

toString

Syntax
Parameters

Description

Returns a string representing the specified object.
Method of dat abase

Implemented in NES 2.0

toString()
None.

Every object has a t oSt ri ng method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation.

You can use t oSt ri ng within your own code to convert an object into a string,
and you can create your own function to be called in place of the default
t oSt ri ng method.

This method returns a string of the following format:

db "name" "user Nane" "dbtype" "server Nane"

where

nane The name of the database.

user Nane The name of the user connected to the database.
dbType One of ORACLE, SYBASE, | NFORM X, DB2, or CDBC.
server Nane The name of the database server.

Chapter 1, Objects, Methods, and Properties 113



database.toString

The method displays an empty string for any of attributes whose value is
unknown.

For information on defining your own t oSt ri ng method, see the
hj ect .t oSt ri ng method.

114 Server-Side JavaScript Reference



Date

Created by

Parameters

Description

Date

Lets you work with dates and times.
Core object

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.1: added pr ot ot ype property
ECMA version ECMA-262

The Dat e constructor:

new Dat e()

new Date(m//iseconds)

new Dat e( dat eSt ri ng)

new Date(yr_num no_num day_nunj, hr_num nmn_num sec_num)

mlliseconds Integer value representing the number of milliseconds since 1
January 1970 00:00:00.

dateString String value representing a date. The string should be in a
format recognized by the Dat e. par se method.

yr_num no_num Integer values representing part of a date. As an integer value,

day_num the month is represented by 0 to 11 with 0=January and

11=December.

hr _num min_num Integer values representing part of a date.
sec_num ms_num

If you supply no arguments, the constructor creates a Dat e object for today’s
date and time according to local time. If you supply some arguments but not
others, the missing arguments are set to 0. If you supply any arguments, you
must supply at least the year, month, and day. You can omit the hours,
minutes, seconds, and milliseconds.

The date is measured in milliseconds since midnight 01 January, 1970 UTC. A
day holds 86,400,000 milliseconds. Dates prior to 1970 are not allowed.

JavaScript depends on platform-specific date facilities and behavior; the
behavior of the Dat e object varies from platform to platform.

Chapter 1, Objects, Methods, and Properties 115



Date

Property
Summary

Method Summary

The Dat e object supports a number of UTC (universal) methods, as well as
local time methods. UTC, also known as Greenwich Mean Time (GMT), refers
to the time as set by the World Time Standard. The local time is the time known
to the computer where JavaScript is executed.

For compatibility with millennium calculations (in other words, to take into
account the year 2000), you should always specify the year in full; for example,
use 1998, not 98. To assist you in specifying the complete year, JavaScript
includes the methods get Ful | Year, set Ful | Year, get Ful | UTCYear, and
set Ful | UTCYear .

The following example returns the time elapsed betweenti meAand ti neBin
milliseconds.

timeA = new Date();

/1 Statements here to take sone action.
tinmeB = new Date();

timeDifference = tineB - tineA

Property Description

const ruct or Specifies the function that creates an object’s prototype.

pr ot ot ype Allows the addition of properties to a Dat e object.

Method Description

get Dat e Returns the day of the month for the specified date
according to local time.

get Day Returns the day of the week for the specified date
according to local time.

get Hour s Returns the hour in the specified date according to
local time.

get M nut es Returns the minutes in the specified date according to
local time.

get Mont h Returns the month in the specified date according to
local time.

get Seconds Returns the seconds in the specified date according to
local time.

116 Server-Side JavaScript Reference



Date

Method Description

get Ti me Returns the numeric value corresponding to the time
for the specified date according to local time.

get Ti mezoneOf f set Returns the time-zone offset in minutes for the current
locale.

get Year Returns the year in the specified date according to
local time.

par se Returns the number of milliseconds in a date string
since January 1, 1970, 00:00:00, local time.

set Dat e Sets the day of the month for a specified date
according to local time.

set Hour s Sets the hours for a specified date according to local
time.

set M nut es Sets the minutes for a specified date according to local
time.

set Mont h Sets the month for a specified date according to local
time.

set Seconds Sets the seconds for a specified date according to local
time.

set Ti ne Sets the value of a Date object according to local time.

set Year Sets the year for a specified date according to local
time.

t oGMTSt ri ng Converts a date to a string, using the Internet GMT

conventions.

toLocal eString Converts a date to a string, using the current locale’s
conventions.

toString Returns a string representing the specified Date object.
Overrides the Cbj ect . t oSt ri ng method.

utc Returns the number of milliseconds in a Dat e object
since January 1, 1970, 00:00:00, universal time.

val ueCf Returns the primitive value of a Date object. Overrides
the Obj ect . val ueX method.

In addition, this object inherits the wat ch and unwat ch methods from
hj ect.

Chapter 1, Objects, Methods, and Properties 117



Date.constructor

Examples

The following examples show several ways to assign dates:

today = new Date()

bi rthday = new Dat e("Decenber 17, 1995 03: 24:00")
bi rt hday new Dat e(95, 11, 17)

bi rt hday new Dat e( 95, 11, 17, 3, 24, 0)

constructor

Description

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Property of Dat e

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

See (bj ect . constructor.

getDate

Syntax
Parameters
Description

Examples

See also

Returns the day of the month for the specified date according to local time.
Method of Dat e

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

get Dat e()
None
The value returned by get Dat e is an integer between 1 and 31.

The second statement below assigns the value 25 to the variable day, based on
the value of the Dat e object Xmas95.

Xmas95 = new Dat e( " Decenber 25, 1995 23:15:00")
day = Xnmes95. get Dat e()

Dat e. set Dat e

118 Server-Side JavaScript Reference



Date.getDay

getDay

Returns the day of the week for the specified date according to local time.
Method of Dat e

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Syntax get Day()

Parameters None

Description  The value returned by get Day is an integer corresponding to the day of the
week: 0 for Sunday, 1 for Monday, 2 for Tuesday, and so on.

Examples The second statement below assigns the value 1 to weekday, based on the
value of the Dat e object Xnmas95. December 25, 1995, is a Monday.
Xmas95 = new Dat e( " Decenber 25, 1995 23:15:00")
weekday = Xmas95. get Day()
Seealso Date.setDate
getHours
Returns the hour for the specified date according to local time.
Method of Dat e
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262
Syntax get Hour s()
Parameters None
Description  The value returned by get Hour s is an integer between 0 and 23.
Examples The second statement below assigns the value 23 to the variable hour s, based
on the value of the Dat e object Xmas95.
Xmas95 = new Dat e( " Decenber 25, 1995 23:15:00")
hours = Xmas95. get Hour s()
Seealso Date. setHours

Chapter 1, Objects, Methods, and Properties 119



Date.getMinutes

getMinutes

Syntax
Parameters
Description

Examples

See also

Returns the minutes in the specified date according to local time.
Method of Dat e

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

get M nut es()
None
The value returned by get M nut es is an integer between 0 and 59.

The second statement below assigns the value 15 to the variable mi nut es,
based on the value of the Dat e object Xmas95.

Xmas95 = new Dat e( " Decenber 25, 1995 23:15:00")
m nutes = Xmas95. get M nut es()

Dat e. set M nut es

getMonth

Syntax
Parameters

Description

Examples

See also

Returns the month in the specified date according to local time.
Method of Dat e

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

get Mont h()
None

The value returned by get Mont h is an integer between 0 and 11. 0 corresponds
to January, 1 to February, and so on.

The second statement below assigns the value 11 to the variable nont h, based
on the value of the Dat e object Xmas95.

Xmas95 = new Dat e( " Decenber 25, 1995 23:15:00")
nonth = Xmas95. get Mont h()

Dat e. set Mbnt h

120 Server-Side JavaScript Reference



Date.getSeconds

getSeconds

Returns the seconds in the current time according to local time.
Method of Dat e

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Syntax get Seconds()
Parameters None
Description  The value returned by get Seconds is an integer between 0 and 59.
Examples The second statement below assigns the value 30 to the variable secs, based
on the value of the Dat e object Xmas95.
Xmas95 = new Dat e( " Decenber 25, 1995 23:15:30")
secs = Xmas95. get Seconds()
Seealso Dat e. set Seconds
getTime
Returns the numeric value corresponding to the time for the specified date
according to local time.
Method of Dat e
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262
Syntax get Ti ne()
Parameters None
Description  The value returned by the get Ti me method is the number of milliseconds since

1 January 1970 00:00:00. You can use this method to help assign a date and
time to another Dat e object.

Chapter 1, Objects, Methods, and Properties 121



Date.getTimezoneOffset

Examples The following example assigns the date value of t heBi gDay to saneAsBi gDay:
t heBi gDay = new Date("July 1, 1999")
saneAsBi gDay = new Dat e()
sanmeAsBi gDay. set Ti ne(t heBi gDay. get Ti me())
Seealso Date.setTine
getTimezoneOffset
Returns the time-zone offset in minutes for the current locale.
Method of Dat e
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262
Syntax get Ti nezoneOf f set ()

Parameters None

Description The time-zone offset is the difference between local time and Greenwich Mean
Time (GMT). Daylight savings time prevents this value from being a constant.

Examples x = new Date()
current Ti meZoneOf f set | nHours = x. get Ti nezoneOf f set () /60
getYear
Returns the year in the specified date according to local time.
Method of Dat e
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262
Syntax get Year ()
Parameters None

122 Server-Side JavaScript Reference



Date.parse

Description The get Year method returns either a 2-digit or 4-digit year:
= For years between and including 1900 and 1999, the value returned by
get Year is the year minus 1900. For example, if the year is 1976, the value
returned is 76.
= For years less than 1900 or greater than 1999, the value returned by
get Year is the four-digit year. For example, if the year is 1856, the value
returned is 1856. If the year is 2026, the value returned is 2026.
Examples Example 1. The second statement assigns the value 95 to the variable year .
Xmas = new Dat e("Decenber 25, 1995 23:15:00")
year = Xnms.getYear() // returns 95
Example 2. The second statement assigns the value 100 to the variable year.
Xmas = new Dat e(" Decenber 25, 2000 23:15:00")
year = Xmas.getYear() // returns 100
Example 3. The second statement assigns the value -100 to the variable year .
Xmas = new Dat e(" Decenber 25, 1800 23:15:00")
year = Xmms.getYear() // returns -100
Example 4. The second statement assigns the value 95 to the variable year,
representing the year 1995.
Xmas. set Year (95)
year = Xmas.getYear() // returns 95
Seealso Date. set Year
parse
Returns the number of milliseconds in a date string since January 1, 1970,
00:00:00, local time.
Method of Dat e
Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262
Syntax Date. parse(dateString)

Chapter 1, Objects, Methods, and Properties 123



Date.prototype

Parameters
dateString A string representing a date.

Description The par se method takes a date string (such as "Dec 25, 1995") and returns
the number of milliseconds since January 1, 1970, 00:00:00 (local time). This
function is useful for setting date values based on string values, for example in
conjunction with the set Ti me method and the Dat e object.

Given a string representing a time, par se returns the time value. It accepts the
IETF standard date syntax: "Mon, 25 Dec 1995 13:30: 00 GMI™. It
understands the continental US time-zone abbreviations, but for general use,
use a time-zone offset, for example, "Mon, 25 Dec 1995 13: 30: 00
GMr+0430" (4 hours, 30 minutes west of the Greenwich meridian). If you do
not specify a time zone, the local time zone is assumed. GMT and UTC are
considered equivalent.

Because par se is a static method of Dat e, you always use it as Dat e. par se(),
rather than as a method of a Dat e object you created.

Examples If | PQdat e is an existing Dat e object, then you can set it to August 9, 1995 as
follows:

| POdat e. set Ti ne(Dat e. parse("Aug 9, 1995"))

Seealso Date. UTC

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Functi on. prot ot ype.

Property of Dat e

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

124 Server-Side JavaScript Reference



setDate

Date.setDate

Sets the day of the month for a specified date according to local time.

dayVal ue An integer from 1 to 31, representing the day of the month.

The second statement below changes the day for t heBi gDay to July 24 from its

hour sVal ue An integer between 0 and 23, representing the hour.

Method of Dat e
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262
Syntax set Dat e( dayVal ue)
Parameters
Examples
original value.
t heBi gDay = new Date("July 27, 1962 23:30:00")
t heBi gDay. set Dat e( 24)
Seealso Date. get Date
setHours
Sets the hours for a specified date according to local time.
Method of Dat e
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262
Syntax set Hour s( hour sVal ue)
Parameters
Examples theBi gDay. set Hour s(7)
Seealso Date. get Hours

Chapter 1, Objects, Methods, and Properties 125



Date.setMinutes

setMinutes

Syntax

Parameters

Examples

See also

Sets the minutes for a specified date according to local time.
Method of Dat e

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

set M nut es( m nut esVal ue)

m nut esVal ue An integer between 0 and 59, representing the minutes.

t heBi gDay. set M nut es(45)

Dat e. get M nut es

setMonth

Syntax

Parameters

Examples

See also

Sets the month for a specified date according to local time.
Method of Dat e

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

set Mont h( nont hVal ue)

mont hval ue An integer between 0 and 11 (representing the months January
through December).

t heBi gDay. set Mont h( 6)

Dat e. get Mont h

126 Server-Side JavaScript Reference



Date.setSeconds

setSeconds

Sets the seconds for a specified date according to local time.
Method of Dat e

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Syntax set Seconds( secondsVal ue)

Parameters

secondsVal ue An integer between 0 and 59.
Examples theBi gDay. set Seconds( 30)
See also Dat e. get Seconds
setTime
Sets the value of a Dat e object according to local time.
Method of Dat e
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262
Syntax set Ti me(t/neval ue)

Parameters

ti meval ue An integer representing the number of milliseconds since 1 January
1970 00:00:00.
Description  Use the set Ti me method to help assign a date and time to another Dat e object.
Examples theBigDay = new Date("July 1, 1999")
sanmeAsBi gDay = new Dat e()
saneAsBi gDay. set Ti me(t heBi gDay. get Ti ne())
Seealso Date.getTine

Chapter 1, Objects, Methods, and Properties 127



Date.setYear

setYear

Sets the year for a specified date according to local time.
Method of Dat e

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax set Year ( year Val ue)
Parameters

year Val ue An integer.

Description  If year Val ue is a number between 0 and 99 (inclusive), then the year for
dat eQbj ect Nane is set to 1900 + year Val ue. Otherwise, the year for
dat eChj ect Name is set to year Val ue.

Examples Note that there are two ways to set years in the 20th century.

Example 1. The year is set to 1996.
t heBi gDay. set Year (96)

Example 2. The year is set to 1996.

t heBi gDay. set Year (1996)

Example 3. The year is set to 2000.

t heBi gDay. set Year (2000)

Seealso Dat e. get Year

toGMTString

Converts a date to a string, using the Internet GMT conventions.

Method of Dat e
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax toGMIString()

Parameters None

128 Server-Side JavaScript Reference



Description

Examples

See also

Date.toLocaleString

The exact format of the value returned by t oGMTSt ri ng varies according to the
platform.

In the following example, t oday is a Dat e object:

t oday. t oGMTSt ri ng()

In this example, the t oGMTSt ri ng method converts the date to GMT (UTC)
using the operating system’s time-zone offset and returns a string value that is
similar to the following form. The exact format depends on the platform.

Mon, 18 Dec 1995 17:28:35 GV

Dat e. t oLocal eStri ng

toLocaleString

Syntax
Parameters

Description

Converts a date to a string, using the current locale’s conventions.
Method of Dat e

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

toLocal eString()
None

If you pass a date using t oLocal eStri ng, be aware that different platforms
assemble the string in different ways. Methods such as get Hour s,
get M nut es, and get Seconds give more portable results.

The t oLocal eSt ri ng method relies on the underlying operating system in
formatting dates. It converts the date to a string using the formatting convention
of the operating system where the script is running. For example, in the United
States, the month appears before the date (04/15/98), whereas in Germany the
date appears before the month (15.04.98). If the operating system is not year-
2000 compliant and does not use the full year for years before 1900 or over
2000, t oLocal eStri ng returns a string that is not year-2000 compliant.

t oLocal eSt ri ng behaves similarly to t oSt ri ng when converting a year
that the operating system does not properly format.

Chapter 1, Objects, Methods, and Properties 129



Date.toString

Examples In the following example, t oday is a Dat e object:

today = new Date(95, 11, 18,17,28,35) //nonths are represented by 0 to 11
t oday. t oLocal eString()

In this example, t oLocal eSt ri ng returns a string value that is similar to the
following form. The exact format depends on the platform.

12/ 18/ 95 17:28:35

Seealso Date.toGWTString

toString

Returns a string representing the specified Date object.
Method of Dat e

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Syntax toString()
Parameters None.

Description The Dat e object overrides the t oSt ri ng method of the Cbj ect object; it
does not inherit Obj ect . t oSt ri ng. For Dat e objects, thet oSt ri ng
method returns a string representation of the object.

JavaScript calls the t oSt ri ng method automatically when a date is to be
represented as a text value or when a date is referred to in a string
concatenation.

Examples The following example assigns the t oSt r i ng value of a Date object to myVar :

x = new Date();
nyVar=x.toString(); //assigns a value to nyVar sinmlar to:
//Non Sep 28 14:36:22 GMI-0700 (Pacific Daylight Tinme) 1998

Seealso Object.toString

130 Server-Side JavaScript Reference



Date.UTC

uTcC

Syntax

Parameters

Description

Examples

See also

Returns the number of milliseconds in a Dat e object since January 1, 1970,
00:00:00, universal time.

Method of Dat e

Static

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Dat e. UTC(year, nonth, day[, hrs, nin, sec])

year A year after 1900.

mont h An integer between 0 and 11 representing the month.

date An integer between 1 and 31 representing the day of the month.
hrs An integer between 0 and 23 representing the hours.

mn An integer between 0 and 59 representing the minutes.

sec An integer between 0 and 59 representing the seconds.

UTC takes comma-delimited date parameters and returns the number of
milliseconds between January 1, 1970, 00:00:00, universal time and the time
you specified.

You should specify a full year for the year; for example, 1998. If a year between
0 and 99 is specified, the method converts the year to a year in the 20th century
(1900 + year); for example, if you specify 95, the year 1995 is used.

The UTC method differs from the Dat e constructor in two ways.
= Dat e. UTC uses universal time instead of the local time.

= Dat e. UTCreturns a time value as a number instead of creating a Dat e
object.

Because UTC is a static method of Dat e, you always use it as Dat e. UTC(),
rather than as a method of a Dat e object you created.

The following statement creates a Dat e object using GMT instead of local time:

gnt Date = new Date(Date. UTC(96, 11, 1, 0, 0, 0))

Dat e. par se

Chapter 1, Objects, Methods, and Properties 131



Date.valueOf

valueOf

Returns the primitive value of a Date object.

Method of Dat e
Implemented in JavaScript 1.1
ECMA version ECMA-262

Syntax val ueOr ()
Parameters None

Description The val ueO method of Dat e returns the primitive value of a Date object as a
number data type, the number of milliseconds since midnight 01 January, 1970
UTC.

This method is usually called internally by JavaScript and not explicitly in code.

Examples x = new Date(56, 6, 17) ;
nyVar =x. val ueOr () // assi gns -424713600000 to myVar

Seealso Obj ect. val uet>d

132 Server-Side JavaScript Reference



DbPool

Created by

Description

DbPool

Represents a pool of connections to a particular database configuration.
Server-side object

Implemented in NES 3.0

To connect to a database, you first create a pool of database connections and
then access individual connections as needed. For more information on the
general methodology for using DbPool objects, see the Server-Side JavaScript
Guide.

The DbPool constructor.

The lifetime of a DoPool object (its scope) varies. Assuming it has been
assigned to a variable, a DbPool object can go out of scope at different times:

= |If the variable is a property of the proj ect object (such as
proj ect. engconn), then it remains in scope until the application
terminates or until you reassign the property to another value or to null.

= Ifitis a property of the server object (such as server. engconn), it
remains in scope until the server goes down or until you reassign the
property to another value or to null.

= In all other cases, the variable is a property of the r equest object. In this
situation, the variable goes out of scope when control leaves the HTML
page or you reassign the property to another value or to null.

It is your responsibility to release all connections and close all cursors, stored
procedures, and result sets associated with a DoPool object before that object
goes out of scope. Release connections and close the other objects as soon as
you are done with them.

If you do not release a connection, it remains bound and is unavailable to the
next user until the associated DbPool object goes out of scope. When you do
call r el ease to give up a connection, the runtime engine waits until all
associated cursors, stored procedures, and result sets are closed before actually
releasing the connection. Therefore, you must close those objects when you are
done with them.

Chapter 1, Objects, Methods, and Properties 133



DbPool

Property
Summary

Method Summary

You can use the pr ot ot ype property of the DbPool object to add a property to
all DbPool instances. If you do so, that addition applies to all DoPool objects
running in all applications on your server, not just in the single application that
made the change. This allows you to expand the capabilities of this object for
your entire server.

Property Description

prot ot ype Allows the addition of properties to a DbPool object.

Method Description

connect Connects the pool to a particular configuration of database
and user.

connect ed Tests whether the database pool and all of its connections

connection

DbPool

di sconnect
maj or Er r or Code

maj or Er r or Message

m nor Err or Code
m nor Er r or Message
st or edPr ocAr gs

toString

are connected to a database.
Retrieves an available connection from the pool.

Creates a pool of database Connection objects and
optionally connects the objects to a particular configuration
of database and user.

Disconnects all connections in the pool from the database.
Major error code returned by the database server or ODBC.

Major error message returned by database server or ODBC.
For server errors, this typically corresponds to the server’s
SQLCODE.

Secondary error code returned by database vendor library.
Secondary message returned by database vendor library.
Creates a prototype for a Sybase stored procedure.

Returns a string representing the specified object.

In addition, this object inherits the wat ch and unwat ch methods from

hj ect.

134 Server-Side JavaScript Reference



DbPool.connect

connect

Connects the pool to a particular configuration of database and user.
Method of DbPool

Implemented in NES 3.0
Syntax 1. connect (dbtype, serverNane, usernane, password,
dat abaseNane)

2. connect (dbtype, serverNane, usernane, password,
dat abaseNane[, maxConnections])

3. connect (dbtype, serverNanme, username, password,
dat abaseNane[, maxConnections[, commitflag]])

Chapter 1, Objects, Methods, and Properties 135



DbPool.connect

Parameters
dbt ype

server Nanme

user Nanme

136 Server-Side JavaScript Reference

Database type; one of ORACLE, SYBASE, INFORMIX, DB2, or
ODBC.

Name of the database server to which to connect. The server name
typically is established when the database is installed and is
different for different database types:

DB2: Local database alias. On both NT and UNIX, this is set up
by the client or the DB2 Command Line Processor.

Informix: Informix server. On NT, this is specified with the
setnet32 utility; on UNIX, in the sqglhosts file.

Oracle: Service. On both NT and UNIX, this specified in the

t nsnanes. or a file. On NT, you can use the SQL*Net easy
configuration to specify it. When your Oracle database server is
local, specify the empty string for this argument.

ODBC: Data source name. On NT, this is specified in the ODBC
Administrator; on UNIX, in the .odbc.ini file. If you are using

the Web Server as a user the file . odbc. i ni must be in your
home directory; if as a system, it must be in the root directory.

Sybase: Server name (the DSQUERY parameter). On NT, this is
specified with the sql edi t utility; on UNIX, with the
sybi ni t utility.

If in doubt, see your database or system administrator. For ODBC,
this is the name of the ODBC service as specified in Control Panel.

Name of the user to connect to the database. Some relational
database management systems (RDBMS) require that this be the
same as your operating system login name; others maintain their
own collections of valid user names. See your system administrator
if you are in doubt.



Returns

passwor d

dat abaseNane

maxConnecti ons

comi t Fl ag

DbPool.connect

User’s password. If the database does not require a password, use
an empty string ("").

Name of the database to connect to for the given ser ver Nane. If
your database server supports the notion of multiple databases on a
single server, supply the name of the database to use. If it does not,
use an empty string (""). For Oracle, ODBC, and DB2, you must
always use an empty string.

= For Oracle, specify this information in the t nsnanes. or a file.

= For ODBC, if you want to connect to a particular database,
specify the database name specified in the datasource
definition.

= For DB2, there is no concept of a database name; the database
name is always the server name (as specified with
server Nane).

Number of connections to be created and cached in the pool. The
runtime engine attempts to create as many connections as specified
with this parameter. If successful, it stores those connections for
later use. If you do not supply this parameter, its value is 1.

Remember that your database client license probably specifies a
maximum number of connections. Do not set this parameter to a
number higher than your license allows. For Sybase, you can have
at most 100 connections.

If your database client library is not multithreaded, it can only
support one connection at a time. In this case, your application
performs as though you specified 1 for this parameter. For a current
list of which database client libraries are multithreaded, see the
Enterprise Server 3.0 Release Notes.

A Boolean value indicating whether to commit a pending
transaction when the connection goes out of scope. If this
parameter is false, a pending transaction is rolled back. If this
parameter is true, a pending transaction if committed. For DbPool ,
the default value is false; for dat abase, the default value is true. If
you specify this parameter, you must also specify the
maxConnect i ons parameter.

0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated maj or Er r or Code and maj or Er r or Message methods to
interpret the cause of the error.

Chapter 1, Objects, Methods, and Properties 137



DbPool.connected

When you call this method, the runtime engine first closes and releases any
currently open connections. It then reconnects the pool with the new
configuration. You should be sure that all connections have been released
before calling this method.

The first version of this method creates and caches one connection. When this
connection goes out of scope, pending transactions are rolled back.

The second version of this method attempts to create as many connections as
specified by the maxConnect i ons parameter. If successful, it stores those
connections for later use. If the runtime engine does not obtain the requested
connections, it returns an error. When this connection goes out of scope,
pending transactions are rolled back.

The third version of this method does everything the second version does. In
addition, the conmi t f | ag parameter indicates what to do with pending
transactions when this connection goes out of scope. If this parameter is false
(the default), a pending transaction is rolled back. If this parameter is true, a
pending transaction if committed.

The following statement creates four connections to an Informix database
named mydb on a server named myserver, with user name SYSTEM and
password MANAGER. Pending transactions are rolled back at the end of a client

pool . connect ("I NFORM X", "nyserver", "SYSTEM', "MANAGER', "nydb", 4)

connected

Tests whether the database pool and all of its connections are connected to a
database.
Method of DbPool

Implemented in NES 3.0

connect ed()

Description
Example
request:
Syntax
Parameters None.
Returns

True if the pool (and hence a particular connection in the pool) is currently
connected to a database; otherwise, false.

138 Server-Side JavaScript Reference



DbPool.connection

Description The connect ed method indicates whether this object is currently connected to
a database.

If this method returns false for a Connect i on object, you cannot use any other
methods of that object. You must reconnect to the database, using the DbPool
object, and then get a new Connect i on object. Similarly, if this method returns
false for the dat abase object, you must reconnect before using other methods
of that object.

Example Example 1: The following code fragment checks to see if the connection is
currently open. If it's not, it reconnects the pool and reassigns a new value to
the nmyconn variable.

if (!nmyconn.connected()) {

nypool . connect ("I NFORM X', "nyserver", "SYSTEM', "MANAGER', "nydb",
4);

nyconn = nypool . connecti on;

}

Example 2: The following example uses an i f condition to determine if an

application is connected to a database server. If the application is connected,
the i sConnect edRout i ne function runs; if the application is not connected,

the i sNot Connect ed routine runs.

i f (dat abase. connected()) {
i sConnect edRouti ne() }
el se {
i sNot Connect edRout i ne() }

connection

Retrieves an available connection from the pool.
Method of DbPool

Implemented in NES 3.0

Syntax connection (name, tineout)

Parameters
name An arbitrary name for the connection. Primarily used for debugging.

ti meout The number of seconds to wait for an available connection before
returning. The default is to wait indefinitely. If you specify this
parameter, you must also specify the name parameter.

Returns A new Connect i on object.

Chapter 1, Objects, Methods, and Properties 139



DbPool.disconnect

disconnect

Syntax
Parameters

Returns

Description

Examples

Disconnects all connections in the pool from the database.
Method of DbPool

Implemented in NES 3.0

di sconnect ()
None.

0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated maj or Er r or Code and maj or Er r or Message methods to
interpret the cause of the error.

For the DbPool object, before calling the di sconnect method, you must first

call the r el ease method for all connections in this database pool. Otherwise,

the connection is still considered in use by the system, so the disconnect waits
until all connections are released.

After disconnecting from a database, the only methods of this object you can
use are connect and connect ed.

The following example uses an i f condition to determine if an application is
connected to a database server. If the application is connected, the application
calls the di sconnect method; if the application is not connected, the

i sNot Connect ed routine runs.

i f (dat abase. connected()) {
dat abase. di sconnect () }
el se {
i sNot Connect edRout i ne() }

DbPool

Creates a pool of database Connection objects and optionally connects the
objects to a particular configuration of database and user.
Method of DbPool

Implemented in NES 3.0

140 Server-Side JavaScript Reference



Syntax

Parameters

DbPool.disconnect

new DbPool ();

new DbPool (dbtype, serverName, usernane, password,
dat abaseNane) ;

new DbPool (dbtype, serverName, usernane, password,
dat abaseNane[, maxConnections]);

new DbPool (dbtype, serverName, usernane, password,
dat abaseNane[, maxConnections[, commtflag]]);

dbt ype Database type. One of ORACLE, SYBASE, | NFORM X, DB2, or
CDBC.
server Nane Name of the database server to which to connect. The server name

typically is established when the database is installed and is
different for different database types:

= DB2: Local database alias. On both NT and UNIX, this is set up
by the client or the DB2 Command Line Processor.

= Informix: Informix server. On NT, this is specified with the
set net 32 utility; on UNIX, in the sqgl host s file.

= Oracle: Service. On both NT and UNIX, this specified in the
t nsnanes. or a file. On NT, you can use the SQL*Net easy
configuration to specify it. When your Oracle database server is
local, specify the empty string for this argument.

= ODBC: Data source name. On NT, this is specified in the ODBC
Administrator; on UNIX, in the . odbc. i ni file. If you are
using the Web Server as a user the file . odbc. i ni must be in
your home directory; if as a system, it must be in the root
directory.

= Sybase: Server name (the DSQUERY parameter). On NT, this is
specified with the sqgl edi t utility; on UNIX, with the
sybi ni t utility.
If in doubt, see your database or system administrator. For ODBC,
this is the name of the ODBC service as specified in Control Panel.

user Nane Name of the user to connect to the database. Some relational

database management systems (RDBMS) require that this be the
same as your operating system login name; others maintain their
own collections of valid user names. See your system administrator
if you are in doubt.

Chapter 1, Objects, Methods, and Properties 141



DbPool.disconnect

passwor d

dat abaseNane

maxConnecti ons

comi t Fl ag

142 Server-Side JavaScript Reference

User’s password. If the database does not require a password,
use an empty string (").

Name of the database to connect to for the given ser ver Nane. If
your database server supports the notion of multiple databases on a
single server, supply the name of the database to use. If it does not,
use an empty string (""). For Oracle, ODBC, and DB2, you must
always use an empty string.

= For Oracle, specify this information in the t nsnanes. or a file.

= For ODBC, if you want to connect to a particular database,
specify the database name specified in the datasource
definition.

= For DB2, there is no concept of a database name; the database
name is always the server name (as specified with
server Nane).

Number of connections to be created and cached in the pool. The
runtime engine attempts to create as many connections as specified
with this parameter. If successful, it stores those connections for
later use. If you do not supply this parameter, its value is 1.

Remember that your database client license probably specifies a
maximum number of connections. Do not set this parameter to a
number higher than your license allows. For Sybase, you can have
at most 100 connections.

If your database client library is not multi-threaded, it can only
support one connection at a time. In this case, your application
performs as though you specified 1 for this parameter. For a current
list of which database client libraries are multi-threaded, see the
Enterprise Server 3.0 Release Notes.

A Boolean value indicating whether to commit a pending
transaction when the connection is released or the object is
finalized.

(If the transaction is on a single page, the object is finalized at the
end of the page. If the transaction spans multiple pages, the object
is finalized when the connection returns to the pool.)

If this parameter is false, a pending transaction is rolled back. If this
parameter is true, a pending transaction if committed. For DbPool ,
the default value is false; for dat abase, the default value is true. If
you specify this parameter, you must also specify the
maxConnect i ons parameter.



Description

DbPool.majorErrorCode

The first version of this constructor takes no parameters. It instantiates and
allocates memory for a DbPool object. This version of the constructor creates
and caches one connection. When this connection goes out of scope, pending
transactions are rolled back.

The second version of this constructor instantiates a DoPool object and then
calls the connect method to establish a database connection. This version of
the constructor also creates and caches one connection. When this connection
goes out of scope, pending transactions are rolled back.

The third version of this constructor instantiates a DbPool object and then calls
the connect method to establish a database connection. In addition, it attempts
to create as many connections as specified by the maxConnect i ons parameter.
If successful, it stores those connections for later use. If the runtime engine
does not obtain the requested connections, it returns an error. When this
connection goes out of scope, pending transactions are rolled back.

The fourth version of this constructor does everything the third version does. In
addition, the conmi t f | ag parameter indicates what to do with pending
transactions when the connection goes out of scope. If this parameter is false
(the default), a pending transaction is rolled back. If this parameter is true, a
pending transaction if committed.

To detect errors, you can use the maj or Er r or Code method.

If possible, your application should call this constructor and make the database
connection on its initial page. Doing so prevents conflicts from multiple client
requests trying to manipulate the status of the connections at once.

majorErrorCode

Syntax

Parameters

Major error code returned by the database server or ODBC.
Method of DbPool

Implemented in NES 3.0

maj or Er r or Code()

None.

Chapter 1, Objects, Methods, and Properties 143



DbPool.majorErrorCode

Returns The result returned by this method depends on the database server being used:
= Informix: the Informix error code.
= Oracle: the code as reported by Oracle Call-level Interface (OCI).
= Sybase: the DB-Library error number or the SQL server message number.

Description  SQL statements can fail for a variety of reasons, including referential integrity
constraints, lack of user privileges, record or table locking in a multi-user
database, and so on. When an action fails, the database server returns an error
message indicating the reason for failure. The LiveWire™ Database Service
provides two ways of getting error information: from the status code returned
by various methods or from special properties containing error messages and
codes.

Status codes are integers between 0 and 27, with 0 indicating a successful
execution of the statement and other numbers indicating an error, as shown in
the following table.

Table 1.3 Database status codes.

Status Explanation Status Explanation

code code

0 No error 14 Null reference parameter

1 Out of memory 15 Connection object not found

2 Object never initialized 16 Required information is
missing

3 Type conversion error 17 Obiject cannot support multiple
readers

4 Database not registered 18 Obiject cannot support
deletions

5 Error reported by server 19 Obiject cannot support
insertions

6 Message from server 20 Obiject cannot support updates

7 Error from vendor’s library 21 Obiject cannot support updates

8 Lost connection 22 Obiject cannot support indices

9 End of fetch 23 Obiject cannot be dropped

10 Invalid use of object 24 Incorrect connection supplied

144 Server-Side JavaScript Reference



Examples

DbPool.majorErrorCode

Table 1.3 Database status codes. (Continued)

Status Explanation Status Explanation

code code

11 Column does not exist 25 Obiject cannot support
privileges

12 Invalid positioning within 26 Obiject cannot support cursors

object (bounds error)

13 Unsupported feature 27 Unable to open

This example updates the rent al s table within a transaction. The updat eRow
method assigns a database status code to the st at usCode variable to indicate
whether the method is successful.

If updat eRow succeeds, the value of st at usCode is 0, and the transaction is

committed. If updat eRow returns a st at usCode value of either five or seven,
the values of maj or Er r or Code, maj or Er r or Message, ni nor Er r or Code, and
mi nor Err or Message are displayed. If st at usCode is set to any other value,

the er r or Rout i ne function is called.

dat abase. begi nTransacti on()
statusCode = cursor. updateRow("rental s")

if (statusCode == 0) {
dat abase. conmi t Transacti on()

}

if (statusCode == 5 || statusCode == 7) {
write("The operation failed to conpl ete. <BR>"
wite("Contact your systemadministrator with the follow ng: <P>"
wite("The value of statusCode is " + statusCode + "<BR>")
write("The value of majorErrorCode is " +
dat abase. naj or Error Code() + "<BR>")
wite("The val ue of nmjorErrorMssage is " +
dat abase. maj or Error Message() + "<BR>")
wite("The value of minorErrorCode is " +
dat abase. mi nor Error Code() + "<BR>")
write("The val ue of mnorErrorMessage is " +
dat abase. mi nor Error Message() + "<BR>")
dat abase. rol | backTransacti on()

}

el se {
error Routine()

}

Chapter 1, Objects, Methods, and Properties 145



DbPool.majorErrorMessage

majorErrorMessage

Syntax
Parameters

Returns

Description

Examples

Major error message returned by database server or ODBC. For server errors,
this typically corresponds to the server's SQLCODE.
Method of DbPool

Implemented in NES 3.0

maj or Er r or Message()
None.
A string describing that depends on the database server:

= Informix: “Vendor Library Error: string,” where string is the error text from
Informix.

= Oracle: “Server Error: string,” where string is the translation of the return
code supplied by Oracle.

= Sybase: “Vendor Library Error; string,” where string is the error text from
DB-Library or “Server Error string,” where string is text from the SQL server,
unless the severity and message number are both 0, in which case it returns
just the message text.

SQL statements can fail for a variety of reasons, including referential integrity
constraints, lack of user privileges, record or table locking in a multi-user
database, and so on. When an action fails, the database server returns an error
message indicating the reason for failure. The LiveWire Database Service
provides two ways of getting error information: from the status code returned
by connect i on and DbPool methods or from special connect i on or DoPool
properties containing error messages and codes.

See DbPool . maj or Er r or Code.

minorErrorCode

Syntax

Secondary error code returned by database vendor library.
Method of DbPool

Implemented in NES 3.0

nm nor Er r or Code()

146 Server-Side JavaScript Reference



DbPool.minorErrorMessage

The result returned by this method depends on the database server:

= Informix: the ISAM error code, or O if there is no ISAM error.

= Oracle: the operating system error code as reported by OCI.

= Sybase: the severity level, as reported by DB-Library or the severity level, as

reported by the SQL server.

minorErrorMessage

Secondary message returned by database vendor library.
Method of DbPool

Implemented in NES 3.0

m nor Er r or Message()

Parameters None.
Returns
Syntax

Parameters None.
Returns

The string returned by this method depends on the database server:

= Informix: “ISAM Error: string,” where string is the text of the ISAM error
code from Informix, or an empty string if there is no ISAM error.

= Oracle: the Oracle server name.
= Sybase: the operating system error text, as reported by DB-Library or the

SQL server name.

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Functi on. prot ot ype.

Property of DbPool

Implemented in NES 2.0

Chapter 1, Objects, Methods, and Properties 147



DbPool.storedProcArgs

storedProcArgs

Syntax

Parameters

Returns

Description

Examples

Creates a prototype for a DB2, ODBC, or Sybase stored procedure.
Method of DbPool

Implemented in NES 3.0

storedProcArgs (procName [, typel [, ... typeN])

pr ocNane The name of the procedure.

typel, ..., Eacht ypeisone of: "I N', " QUT", or " | NOUT" Specifies the type
typeN of each parameter: input ("1 N'), output (" QUT"), or both input

and output (" 1 NOUT").

Nothing.
This method is only for Sybase stored procedures.

This method provides the procedure name and the parameters for that stored
procedure. Sybase stored procedures can accept parameters that are only for
input ("I N), only for output ("OUT"), or for both input and output ("I NOUT").

You must create one prototype for each Sybase stored procedure you use in
your application. Additional prototypes for the same stored procedure are
ignored.

You can specify an | NOUT parameter either as an | NOUT or as an OUT
parameter. If you use an | NOUT parameter of a stored procedure as an OUT
parameter, the LiveWire Database Service implicitly passes a NULL value for that
parameter.

Assume the i nout deno stored procedure takes one input parameter and one
input/output parameter, as follows:

create procedure inoutdenp ( @nparamint, @ noutparamint output)
as

if ( @noutparam == null)
@ nout param = @nparam + 1
el se

@ nout param = @ nout param + 1

148 Server-Side JavaScript Reference



DbPool.toString

Assume execute the following code and then call out Par anet er s(0), the
result will be 101:

dat abase. st or edProcArgs("i noutdenmo”, "IN', "I1NOUT")
spobj = dat abase. st oredProc("i noutdenmp", 6, 100);
answer = spobj . out Paraneters(0);

The value of answer is 101. On the other hand, assume you execute this code:

dat abase. st or edPr ocArgs("i nout denmp”, "IN', "OUT")
spobj = dat abase. storedProc("i noutdeno”, 6, 100);
answer = spobj . out Paraneters(0);

In this case, the value of answer is 7.

toString

Syntax
Parameters

Description

Returns a string representing the specified object.
Method of DbPool

Implemented in NES 3.0

toString()
None.

Every object has a t oSt ri ng method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation.

You can use t oSt ri ng within your own code to convert an object into a string,
and you can create your own function to be called in place of the default
t oSt ri ng method.

This method returns a string of the following format:

db "name" "user Nane" "dbtype" "server Nane"

where

name The name of the database.

user Nane The name of the user connected to the database.
dbType One of ORACLE, SYBASE, | NFORM X, DB2, or ODBC.
server Name The name of the database server.

Chapter 1, Objects, Methods, and Properties 149



DbPool.toString

The method displays an empty string for any of attributes whose value is
unknown.

For information on defining your own t oSt ri ng method, see the
hj ect .t oSt ri ng method.

150 Server-Side JavaScript Reference



File

Created by

Parameters

Description

File

Lets an application interact with a physical file on the server.
Server-side object

Implemented in NES 2.0

The Fi | e constructor:

new Fi | e( pat h)

pat h A string representing the path and filename in the format of the
server’s file system (not a URL path).

You can use the Fi | e object to write to or read from a file on the server. For
security reasons, you cannot programmatically access the file system of client
machines.

You can use the Fi | e object to generate persistent HTML or data files without
using a database server. Information stored in a file is preserved when the
server goes down.

Exercise caution when using the Fi | e object. An application can read and write
files anywhere the operating system allows. If you create an application that
writes to or reads from your file system, you should ensure that users cannot
misuse this capability.

Specify the full path, including the filename, for the pat h parameter of the
Fi | e object you want to create. The path must be an absolute path; do not use
a relative path.

If the physical file specified in the path already exists, the JavaScript runtime
engine references it when you call methods for the object. If the physical file
does not exist, you can create it by calling the open method.

You can display the name and path of a physical file by calling the wri te
function and passing it the name of the related Fi | e object.

A pointer indicates the current position in a file. If you open a file in the a or a+
mode, the pointer is initially positioned at the end of the file; otherwise, it is
initially positioned at the beginning of the file. In an empty file, the beginning

Chapter 1, Objects, Methods, and Properties 151



File

Property
Summary

Method Summary

and end of the file are the same. Use the eof , get Posi ti on, and set Posi ti on
methods to specify and evaluate the position of the pointer. See the open
method for a description of the modes in which you can open a file.

You can use the pr ot ot ype property of the Fi | e object to add a property to all
Fi | e instances. If you do so, that addition applies to all Fi | e objects running in
all applications on your server, not just in the single application that made the
change. This allows you to expand the capabilities of this object for your entire

server

Property

Description

constructor

prot ot ype

Specifies the function that creates an object’s prototype.

Allows the addition of properties to a Fi | e object.

Method

Description

byt eToStri ng
cl earError
cl ose

eof

error
exi sts
flush

get Length
get Posi tion
open

read

readByte

readl n

set Posi tion

Converts a number that represents a byte into a string.
Clears the current file error status.
Closes an open file on the server.

Determines whether the pointer is beyond the end of an open
file.

Returns the current error status.

Tests whether a file exists.

Writes the content of the internal buffer to a file.

Returns the length of a file.

Returns the current position of the pointer in an open file.
Opens a file on the server.

Reads data from a file into a string.

Reads the next byte from an open file and returns its numeric
value.

Reads the current line from an open file and returns it as a string.

Positions a pointer in an open file.

152 Server-Side JavaScript Reference



File.byteToString

Method Description

stringToByte Converts the first character of a string into a number that
represents a byte.

wite Writes data from a string to a file on the server.

writeByte Writes a byte of data to a binary file on the server.

witeln Writes a string and a carriage return to a file on the server.

In addition, this object inherits the wat ch and unwat ch methods from
hj ect.

Examples Example 1. The following example creates the Fi | e object user | nf o that
refers to a physical file called i nf o. t xt . The i nf 0. t xt file resides in the same
directory as the application’s . web file:
userinfo = new File("info.txt")

Example 2. In the following example, the Fi | e object refers to a physical file
with an absolute path:
userinfo = new File("c:\\data\\info.txt")
Example 3. The following example displays the name of a Fi | e object
onscreen.
userinfo = new File("c:\\data\\info.txt")
write(userlnfo)
byteToString
Converts a number that represents a byte into a string.
Method of File
Static
Implemented in NES 2.0

Syntax byt eToStri ng( nunber)

Parameters

nunber A number that represents a byte.

Chapter 1, Objects, Methods, and Properties 153



File.byteToString

Description

Examples

See also

Use the stringToByt e and byt eToSt ri ng methods to convert data between
binary and ASCII formats. The byt eToSt ri ng method converts the nunber
argument into a string.

Because byt eToSt ri ng is a static method of Fi | e, you always use it as
File. byteToString(), rather than as a method of a Fi | e object you created.

If the argument you pass into the byt eToSt ri ng method is not a number, the
method returns an empty string.

The following example creates a copy of a text file, one character at a time. In
this example, a whi | e loop executes until the pointer is positioned past the end
of the file. Inside the loop, the r eadByt e method reads the current character
from the source file, and the byt eToSt ri ng method converts it into a string;
the wri t e method writes it to the target file. The last r eadByt e method
positions the pointer past the end of the file, ending the whi | e loop. See the
Fi | e object for a description of the pointer.

/] Create the source File object
source = new File("c:\data\source.txt")

/1 1f the source file opens successfully, create a target file
if (source.open("r")) {

target = new File("c:\data\target.txt")

target.open("w")

/1 Copy the source file to the target
while (!source.eof ()) {
data = File.byteToString(source.readByte())
target.wite(data);

}
source. cl ose()

target.close()

This example is similar to the example used for the wri t e method of Fi | e.
However, this example reads bytes from the source file and converts them to
strings, instead of reading strings from the source file.

File.stringToByte

154 Server-Side JavaScript Reference



File.clearError

clearError

Clears the current file error status.
Method of File

Implemented in NES 2.0

Syntax clearError()

Parameters None.

Description The cl ear Err or method clears both the file error status (the value returned by
the err or method) and the value returned by the eof method.

Examples See the example for the er r or method.
Seealso File.error, File. eof
close
Closes an open file on the server.
Method of File
Implemented in NES 2.0
Syntax cl ose()

Parameters None.

Description  When your application is finished with a file, you should close the file by
calling the cl ose method. If the file is not open, the cl ose method fails. This
method returns true if it is successful; otherwise, it returns false.

Examples See the examples for the open method.
Seealso Fil e. open, bl ob

Chapter 1, Objects, Methods, and Properties 155



File.constructor

constructor

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Property of File

Implemented in NES 2.0

Description See (bj ect . const ruct or.
eof
Determines whether the pointer is beyond the end of an open file.
Method of File
Implemented in NES 2.0

Syntax eof ()
Parameters None.
Description  Use the eof method to determine whether the position of the pointer is beyond

the end of a file. See Fi | e for a description of the pointer.

A call to set Posi ti on resulting in a location greater than

fil eObj ect Nane. get Lengt h places the pointer beyond the end of the file.
Because all read operations also move the pointer, a read operation that reads
the last byte of data (or character) in a file positions the pointer beyond the end
of the file.

The eof method returns true if the pointer is beyond the end of the file;
otherwise, it returns false.

156 Server-Side JavaScript Reference



File.error

Examples In this example, a whi | e loop executes until the pointer is positioned past the

end of the file. While the pointer is not positioned past the end of the file, the
r eadl n method reads the current line, and the wri t e method displays it. The
last r eadl n method positions the pointer past the end of the file, ending the
whi | e loop.
x = new File("c:\data\userInfo.txt")
if (x.open("r")) {

while (!'x.eof ()) {

line = x.readl n()
wite(line+"<br>");

}

x. close();
}

Seealso File.getPosition,File.setPosition
error
Returns the current error status.
Method of File
Implemented in NES 2.0
Syntax error()
Parameters None
Returns 0 if there is no error.

-1 if the file specified in fi | eCbj ect Name is not open

Otherwise, the method returns a honzero integer indicating the error status.
Specific error status codes are platform-dependent. Refer to your operating
system documentation for more information.

Chapter 1, Objects, Methods, and Properties 157



File.exists

Examples The following example uses the error method in anif statement to take
different actions depending on whether a call to the open method succeeded.
After the i f statement completes, the error status is reset with the cl ear Err or
method.

userlnput = new File("c:\data\input.txt")
user | nput. open("w")
if (userlnput.error() == 0) {
filelsOpen() }
el se {
filel sNot Open() }
user | nput.clearError()

Seealso File.clearError

exists

Tests whether a file exists.
Method of File

Implemented in NES 2.0

Syntax exi sts()
Parameters None.
Returns True if the file exists; otherwise, false.

Examples The following example uses an i f statement to take different actions
depending on whether a physical file exists. If the file exists, the JavaScript
runtime engine opens it and calls the wri t eDat a function. If the file does not
exist, the runtime engine calls the noFi | e function.

dataFile = new File("c:\data\nytest.txt")

if (dataFile.exists() ==true) {
dat aFi | e. open("w")
writeData()
dat aFil e. cl ose()

}
el se {

noFi | e()
}

158 Server-Side JavaScript Reference



File.flush

flush

Writes the content of the internal buffer to a file.
Method of File

Implemented in NES 2.0

Syntax flush()
Parameters None.

Description When you write to a file with any of the Fi | e object methods (write,
writeByte, orwiteln), the data is buffered internally. The f 1 ush method
writes the buffer to the physical file. The f I ush method returns true if it is
successful; otherwise, it returns false.

Do not confuse the f | ush method of the Fi | e object with the top-level

f 1 ush function. The f I ush function flushes a buffer of data and causes it to
display in the client browser; the f | ush method flushes a buffer of data to a
physical file.

Examples See the wri t e method for an example of the f I ush method.

Seealso File.wite, File.witeByte, File.witeln

getLength

Returns the length of a file.
Method of File

Implemented in NES 2.0

Syntax get Lengt h()
Parameters None.

Description  If this method is successful, it returns the number of bytes in a binary file or
characters in a text file; otherwise, it returns -1.

Chapter 1, Objects, Methods, and Properties 159



File.getPosition

The following example copies a file one character at a time. This example uses
get Lengt h as a counter in a f or loop to iterate over every character in the file.

/'l Create the source File object
source = new File("c:\data\source.txt")

/1 1f the source file opens successfully, create a target file
if (source.open("r")) {

target = new File("c:\data\target.txt")

target.open("a")

/1 Copy the source file to the target

for (var x = 0; Xx < source.getlLength(); x++) {
sour ce. set Posi ti on(x)
data = source.read(1)
target.wite(data)

source. cl ose()

target.close()

getPosition

Returns the current position of the pointer in an open file.
Method of File
Implemented in NES 2.0

get Posi tion()

-1 if there is an error.

Examples
}
}
Syntax
Parameters None
Returns
Description

Use the get Posi t i on method to determine the position of the pointer in a file.
See the Fi | e object for a description of the pointer. The get Posi ti on method
returns the current pointer position; the first byte in a file is byte 0.

160 Server-Side JavaScript Reference



Examples

File.getPosition

The following examples refer to the file i nf o. t xt, which contains the string
“Hello World.” The length of i nf 0. t xt is 11 bytes.

Example 1. In the following example, the first call to get Posi ti on shows that
the default pointer position is 0 in a file that is opened for reading. This
example also shows that a call to the r ead method repositions the pointer.

dataFile = new File("c:\data\info.txt")
dat aFil e. open("r")

wite("The position is " + dataFile.getPosition() + "<BR>")
wite("The next character is " + dataFile.read(1l) + "<BR>")
write("The new position is " + dataFile.getPosition() + "<BR>")

dat aFi |l e. cl ose()

This example displays the following information:

The position is O
The next character is H
The new position is 1

Example 2. This example uses set Posi ti on to position the pointer one byte
from the end of the eleven-byte file, resulting in a pointer position of offset 10.

dataFile = new File("c:\data\info.txt")
dat aFil e. open("r")

dat aFi |l e. set Posi tion(-1,2)
wite("The position is " + dataFile.getPosition() + "<BR>")
write("The next character is " + dataFile.read(1l) + "<BR>")

dat aFil e. cl ose()

This example displays the following information:

The position is 10
The next character is d

Example 3. You can position the pointer beyond the end of the file and still
evaluate get Posi t i on successfully. However, a call to eof indicates that the
pointer is beyond the end of the file.

dat aFil e. set Posi tion(1,2)
wite("The position is " + dataFile.getPosition() + "<BR>")
write("The value of eof is " + dataFile.eof () + "<P>")

This example displays the following information:

The position is 12
The val ue of eof is true

Chapter 1, Objects, Methods, and Properties 161



File.open

See also

File.eof,File.open, File. setPosition

open

Syntax

Parameters

Description

Opens a file on the server.
Method of File

Implemented in NES 2.0

open( node)

mode A string specifying whether to open the file to read, write, or
append, according to the list below.

Use the open method to open a file on the server before you read from it or
write to it. If the file is already open, the method fails and has no effect. The
open method returns true if it is successful; otherwise, it returns false.

The node parameter is a string that specifies whether to open the file to read,
write, or append data. You can optionally use the b parameter anytime you
specify the mode. If you do so, the JavaScript runtime engine on the server
opens the file as a binary file. If you do not use the b parameter, the runtime
engine opens the file as a text file. The b parameter is available only on
Windows platforms.

The possible values for node are as follows:

r [ b] opens a file for reading. If the file exists, the method succeeds and
returns true; otherwise, the method fails and returns false.

= w[ b] opens a file for writing. If the file does not already exist, it is created;
otherwise, it is overwritten. This method always succeeds and returns true.

= a[b] opens a file for appending (writing at the end of the file). If the file
does not already exist, it is created. This method always succeeds and
returns true.

= r+[b] opens a file for reading and writing. If the file exists, the method
succeeds and returns true; otherwise, the method fails and returns false.
Reading and writing commence at the beginning of the file. When writing,
characters at the beginning of the file are overwritten.

162 Server-Side JavaScript Reference



Examples

See also

File.prototype

= w+[ b] opens a file for reading and writing. If the file does not already exist,
it is created; otherwise, it is overwritten. This method always succeeds and
returns true.

= a+[ b] opens a file for reading and appending. If the file does not already
exist, it is created. This method always succeeds and returns true. Reading
and appending commence at the end of the file.

When your application is finished with a file, you should close the file by
calling the cl ose method.

Example 1. The following example opens the file i nf 0. t xt so an application
can write information to it. If i nf 0. t xt does not already exist, the open
method creates it; otherwise, the open method overwrites it. The ¢l ose method
closes the file after the wri t eDat a function is completed.

userinfo = new File("c:\data\info.txt")
user | nf 0. open("w')

writeData()

user | nfo.close()

Example 2. The following example opens a binary file so an application can
read data from it. The application uses an i f statement to take different actions
depending on whether the open statement finds the specified file.

entryGraphic = new File("c:\data\splash.gif")
if (entryGraphic.open("rb") == true) {

di spl ayProcedur e()

}

el se {
error Procedure()

}

entryG aphi c. cl ose()

File.close

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Functi on. pr ot ot ype.

Property of File

Implemented in NES 2.0

Chapter 1, Objects, Methods, and Properties 163



File.read

read

Syntax

Parameters

Description

Examples

See also

Reads data from a file into a string.
Method of File

Implemented in NES 2.0

read( count)

count An integer specifying the number of characters to read.

The r ead method reads the specified number of characters from a file, starting
from the current position of the pointer. If you attempt to read more characters
than the file contains, the method reads as many characters as possible. This
method moves the pointer the number of characters specified by the count
parameter. See the Fi | e object for a description of the pointer.

The r ead method returns the characters it reads as a string.

Use the r ead method to read information from a text file; use the r eadByt e
method to read data from a binary file.

The following example references the file i nf o. t xt, which contains the string
“Hello World.” The first r ead method starts from the beginning of the file and
reads the character “H.” The second r ead method starts from offset six and
reads the characters “World.”

dataFile = new File("c:\data\info.txt")
dat aFil e. open("r")

wite("The next character is " + dataFile.read(1l) + "<BR>")
dat aFi | e. set Posi ti on(6)
write("The next five characters are " + dataFile.read(5) + "<BR>")

dat aFil e. cl ose()

This example displays the following information:

The next character is H
The next five characters are Wrld

File.readByte,File.readln, File.wite

164 Server-Side JavaScript Reference



File.readByte

readByte

Syntax
Parameters

Description

Examples

Reads the next byte from an open file and returns its numeric value.
Method of File

Implemented in NES 2.0

readByt e()
None.

The r eadByt e method reads the next byte from a file, starting from the current
position of the pointer. This method moves the pointer one byte. See the Fi | e
object for a description of the pointer.

The r eadByt e method returns the byte it reads as a number. If the pointer is at
the end of the file when you issue r eadByt e, the method returns -1.

Use the r eadByt e method to read information from a binary file. You can use
the r eadByt e method to read from a text file, but you must use the

byt eToSt ri ng method to convert the value to a string. Generally it is better to
use the r ead method to read information from a text file.

You can use the wri t eByt e method to write data read by the r eadByt e
method to a file.

This example creates a copy of a binary file. In this example, a whi | e loop
executes until the pointer is positioned past the end of the file. While the
pointer is not positioned past the end of the file, the r eadByt e method reads
the current byte from the source file, and the wri t eByt e method writes it to
the target file. The last r eadByt e method positions the pointer past the end of
the file, ending the whi | e loop.

/] Create the source File object
source = new File("c:\data\source.gif")

/1 1f the source file opens successfully, create a target file
if (source.open("rb")) {

target = new File("c:\data\target.gif")

target.open("wbh")

Chapter 1, Objects, Methods, and Properties 165



File.readln

// Copy the source file to the target
while (!source.eof ()) {
data = source. readByte()
target.witeByte(data);
}
source. cl ose();

}

target.close()

Seealso File.read,File.readln, File.witeByte
readin
Reads the current line from an open file and returns it as a string.
Method of File
Implemented in NES 2.0
Syntax readl n()
Parameters None
Description The r eadl n method reads the current line of characters from a file, starting
from the current position of the pointer. If you attempt to read more characters
than the file contains, the method reads as many characters as possible. This
method moves the pointer to the beginning of the next line. See the Fi | e
object for a description of the pointer.
The r eadl n method returns the characters it reads as a string.
The line separator characters (“\ r” and “\ n” on Windows platforms and “\ n” on
UNIX platforms) are not included in the string that the r eadl n method returns.
The \r character is skipped; \ n determines the actual end of the line.
Use the r eadl n method to read information from a text file; use the r eadByt e
method to read data from a binary file. You can use the wri t el n method to
write data read by the r eadl n method to a file.
Examples See Fi | e. eof
Seealso File.read, File.readByte, File.writeln

166 Server-Side JavaScript Reference



File.setPosition

setPosition

Syntax

Parameters

Description

Examples

Positions a pointer in an open file.
Method of File

Implemented in NES 2.0

set Position(position[, reference])

position An integer indicating where to position the pointer.
reference An integer that indicates a reference point, according to the list
below.

Use the set Posi ti on method to reposition the pointer in a file. See the Fil e
object for a description of the pointer.

The posi ti on argument is a positive or negative integer that moves the pointer
the specified number of bytes relative to the r ef er ence argument. Position 0
represents the beginning of a file. The end of a file is indicated by

fil eObj ect Nane. get Lengt h().

The optional r ef er ence argument is one of the following values, indicating the
reference point for posi ti on:

< 0: relative to beginning of file.

= 1: relative to current position.

= 2: relative to end of file.

= Other (or unspecified): relative to beginning of file.

The set Posi ti on method returns true if it is successful; otherwise, it returns
false.

The following examples refer to the file i nf o. t xt, which contains the string
“Hello World.” The length of i nf o. t xt is 11 bytes. The first example moves
the pointer from the beginning of the file, and the second example moves the
pointer to the same location by navigating relative to the end of the file. Both
examples display the following information:

The position is 10
The next character is d

Chapter 1, Objects, Methods, and Properties 167



File.stringToByte

See also

Example 1. This example moves the pointer from the beginning of the file to
offset 10. Because no value for r ef er ence is supplied, the JavaScript runtime
engine assumes it is 0.

dataFile = new File("c:\data\info.txt")
dat aFil e. open("r")

dat aFi | e. set Posi ti on(10)
wite("The position is " + dataFile.getPosition() + "<BR>")
wite("The next character is " + dataFile.read(1) + "<P>")

dat aFi |l e. cl ose()

Example 2. This example moves the pointer from the end of the file to offset
10.

dataFile = new File("c:\data\info.txt")
dat aFil e. open("r")

dat aFi |l e. set Posi tion(-1,2)
wite("The position is " + dataFile.getPosition() + "<BR>")
write("The next character is " + dataFile.read(1) + "<P>")

dat aFil e. cl ose()

File.eof,File.getPosition,File.open

stringToByte

Syntax

Parameters

Converts the first character of a string into a number that represents a byte.
Method of File

Static
Implemented in NES 2.0

stringToByte(string)

string A JavaScript string.

168 Server-Side JavaScript Reference



File.write

Description Use the stringToByt e and byt eToSt ri ng methods to convert data between
binary and ASCII formats. The st ri ngToByt e method converts the first
character of its st ri ng argument into a number that represents a byte.
Because st ri ngToByt e is a static method of Fi | e, you always use it as
File.stringToByte(), rather than as a method of a Fi | e object you created.
If this method succeeds, it returns the numeric value of the first character of the
input string; if it fails, it returns 0.

Examples In the following example, the stri ngToByt e method is passed “Hello” as an
input argument. The method converts the first character, “H,” into a numeric
value representing a byte.
wite("The stringToByte value of Hello =" +

File.stringToByte("Hello") + "<BR>")
write("Returning that value to byteToString = " +
Fil e. byteToString(File.stringToByte("Hello")) + "<P>")
The previous example displays the following information:
The stringToByte value of Hello = 72
Returning that value to byteToString = H
Seealso File.byteToString
write
Writes data from a string to a file on the server.
Method of File
Implemented in NES 2.0
Syntax write(string)

Parameters
string A JavaScript string.

Description The wri t e method writes the string specified as st ri ng to the file specified as

fil eQbj ect Name. This method returns true if it is successful; otherwise, it
returns false.

Use the wri t e method to write data to a text file; use the wri t eByt e method to
write data to a binary file. You can use the r ead method to read data from a file
to a string for use with the wr i t e method.

Chapter 1, Objects, Methods, and Properties 169



File.writeByte

Examples

See also

This example creates a copy of a text file, one character at a time. In this
example, a whi | e loop executes until the pointer is positioned past the end of
the file. While the pointer is not positioned past the end of the file, the r ead
method reads the current character from the source file, and the wri t e method
writes it to the target file. The last r ead method positions the pointer past the
end of the file, ending the whi | e loop. See the Fi | e object for a description of
the pointer.

/'l Create the source File object
source = new File("c:\data\source.txt")

/1 1f the source file opens successfully, create a target file
if (source.open("r")) {

target = new File("c:\data\target.txt")

target.open("w')

/1 Copy the source file to the target
while (!source.eof ()) {
data = source.read(1)
target.wite(data);

}

source. cl ose();

target.flush()
target.close()

File.flush,File.read,File.witeByte, File.witeln

writeByte

Syntax

Parameters

Writes a byte of data to a binary file on the server.
Method of File
Implemented in NES 2.0

wri t eByt e( number)

nunber A number that specifies a byte of data.

170 Server-Side JavaScript Reference



Description

Examples

See also

File.writeln

The wri t eByt e method writes a byte that is specified as nunber to a file that is
specified as fi | eCbj ect Name. This method returns true if it is successful;
otherwise, it returns false.

Use the wri t eByt e method to write data to a binary file; use the wri t e method
to write data to a text file. You can use the r eadByt e method to read bytes of
data from a file to numeric values for use with the wri t eByt e method.

See the example for the r eadByt e method.

File.flush,File.readByte, File.wite, File.witeln

writeln

Syntax

Parameters

Description

Writes a string and a carriage return to a file on the server.
Method of File

Implemented in NES 2.0

writeln(string)

string A JavaScript string.

The wri t el n method writes the string specified as st ri ng to the file specified
as fi | eQhj ect Name. Each string is followed by the carriage return/line feed
character “\ n” (“\ r\ n” on Windows platforms). This method returns true if the
write is successful; otherwise, it returns false.

Use the wri t el n method to write data to a text file; use the wri t eByt e method
to write data to a binary file. You can use the r eadl n method to read data from
a file to a string for use with the wri t el n method.

Chapter 1, Objects, Methods, and Properties 171



File.writeln

Examples

See also

This example creates a copy of a text file, one line at a time. In this example, a
whi | e loop executes until the pointer is positioned past the end of the file.
While the pointer is not positioned past the end of the file, the r eadl n method
reads the current line from the source file, and the wri t el n method writes it to
the target file. The last r eadl n method positions the pointer past the end of the
file, ending the whi | e loop. See the Fi | e object for a description of the
pointer.

/'l Create the source File object
source = new File("c:\data\source.txt")

/1 1f the source file opens successfully, create a target file
if (source.open("r")) {

target = new File("c:\data\target.txt")

target.open("w')

/1 Copy the source file to the target
while (!source.eof ()) {
data = source.readl n()
target.witeln(data);

}
source. cl ose();

target.close()

Note that the r eadl n method ignores the carriage return/line feed characters
when it reads a line from a file. The wri t el n method appends these characters
to the string that it writes.

File.flush,File.readln, File.wite, File.witeByte

172 Server-Side JavaScript Reference



Function

Created by

Parameters

Description

Function

Specifies a string of JavaScript code to be compiled as a function.
Core object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: added ar i ty, ar gunent s. cal | ee properties; added
ability to nest functions

ECMA version ECMA-262

The Funct i on constructor:
new Function ([argl[, arg2[, ... argN],] functionBody)
The f unct i on statement (see “function” on page 372 for details):

function name([ parani, paranj, ... param]]) {
statenents

}

argl, arg2, (Optional) Names to be used by the function as formal argument
argh names. Each must be a string that corresponds to a valid JavaScript
identifier; for example " x" or "t heVal ue".

functionBody A string containing the JavaScript statements comprising the function

definition.
name The function name.
par am The name of an argument to be passed to the function. A function can

have up to 255 arguments.
statenents The statements comprising the body of the function.

Funct i on objects created with the Funct i on constructor are evaluated each
time they are used. This is less efficient than declaring a function and calling it
within your code, because declared functions are compiled.

To return a value, the function must have a r et ur n statement that specifies the
value to return.

Chapter 1, Objects, Methods, and Properties 173



Function

All parameters are passed to functions by value; the value is passed to the
function, but if the function changes the value of the parameter, this change is
not reflected globally or in the calling function. However, if you pass an object
as a parameter to a function and the function changes the object’s properties,
that change is visible outside the function, as shown in the following example:

function nyFunc(theQbject) {
t heObj ect . make="Toyot a"

}

nycar = {make:"Honda", nodel:"Accord", year: 1998}

x=mycar . make /1 returns Honda

nyFunc(nycar) /| pass object nycar to the function

y=nycar . nake /1 returns Toyota (prop was changed by the function)

The t hi s keyword does not refer to the currently executing function, so you
must refer to Funct i on objects by name, even within the function body.

Accessing a function’s arguments with the arguments array. You can
refer to a function’s arguments within the function by using the ar gunent s
array. See ar gunent s.

Specifying arguments with the Function constructor. The following code
creates a Funct i on object that takes two arguments.
var multiply = new Function("x", "y", "return x * y")

The arguments "x" and "y" are formal argument names that are used in the
function body, "return x * y".

The preceding code assigns a function to the variable mul ti pl y. To call the
Funct i on object, you can specify the variable name as if it were a function, as
shown in the following examples.

var theAnswer = nultiply(7,6)

var nyAge = 50
if (myAge >=39) {nmyAge=multiply (nyAge,.5)}

174 Server-Side JavaScript Reference



Function

Assigning a function to a variable with the Function constructor.

Suppose you create the variable mul t i pl y using the Funct i on constructor, as
shown in the preceding section:

var multiply = new Function("x", "y", "return x * y")

This is similar to declaring the following function:

function multiply(x,y) {
return x*y

}

Assigning a function to a variable using the Funct i on constructor is similar to
declaring a function with the f unct i on statement, but they have differences:

= When you assign a function to a variable using var multiply = new
Function("..."), mul tiply is a variable for which the current value is a
reference to the function created with new Function().

< When you create a function using function multiply() {...},
nmul ti ply is not a variable, it is the name of a function.

Nesting functions. You can nest a function within a function. The nested
(inner) function is private to its containing (outer) function:

= The inner function can be accessed only from statements in the outer
function.

= The inner function can use the arguments and variables of the outer
function. The outer function cannot use the arguments and variables of the
inner function.

The following example shows nested functions:

function addSquares (a,b) {

function square(x) {

return x*x

}

return square(a) + square(b)
}
a=addSquares(2,3) // returns 13
b=addSquares(3,4) // returns 25
c=addSquares(4,5) // returns 41

Chapter 1, Objects, Methods, and Properties 175



Function

Backward
Compatibility

Property
Summary

Method Summary

When a function contains a nested function, you can call the outer function and
specify arguments for both the outer and inner function:

function outside(x) {
function inside(y) {
return x+y
}

return inside

}

resul t=outside(3)(5) // returns 8

JavaScript 1.1 and earlier versions. You cannot nest a function statement in
another statement or in itself.

Property

Description

argunent s

argunents. cal | ee

argunents. cal l er

argunents. |l ength
arity

constructor

An array corresponding to the arguments passed to a
function.

Specifies the function body of the currently executing
function.

Specifies the name of the function that invoked the currently
executing function.

Specifies the number of arguments passed to the function.
Specifies the number of arguments expected by the function.

Specifies the function that creates an object’s prototype.

I ength Specifies the number of arguments expected by the function.

pr ot ot ype Allows the addition of properties to a Funct i on object.

Method Description

toString Returns a string representing the source code of the function.
Overrides the Obj ect . t oSt ri ng method.

val ueCf Returns a string representing the source code of the function.

Overrides the Obj ect . val ueOf method.

176 Server-Side JavaScript Reference



Function.arguments

Examples Example 1. The following function returns a string containing the formatted

representation of a number padded with leading zeros.
/1 This function returns a string padded with | eadi ng zeros
function padZeros(num total Len) {

var nunStr = numtoString() // Initialize return val ue

/1 as string
var nunZeros = totalLen - nunStr.length // Cal cul ate no. of zeros
if (nunZeros > 0) {
for (var i = 1; i <= nunZeros; i++) {
nunStr = "0" + nunttr
}

}

return nunstr
}
The following statements call the padZer os function.
resul t =padZeros(42,4) // returns "0042"
resul t =padZeros(42,2) // returns "42"
resul t =padZeros(5,4) // returns "0005"
arguments
An array corresponding to the arguments passed to a function.
Local variable of  All function objects
Property of Functi on
Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: added ar gunent s. cal | ee property
ECMA version ECMA-262
Description  You can refer to a function’s arguments within the function by using the

ar gunent s array. This array contains an entry for each argument passed to
the function. For example, if a function is passed three arguments, you can
refer to the arguments as follows:

ar gunent s[ 0]
argunent s[ 1]
ar gunent s[ 2]

The ar gunent s array can also be preceded by the function name:

nyFunc. ar gurment s[ 0]
nyFunc. ar gurment s[ 1]
nyFunc. ar gunent s[ 2]

Chapter 1, Objects, Methods, and Properties 177



Function.arguments

Examples

The ar gunent s array is available only within a function body. Attempting to
access the ar gunment s array outside a function declaration results in an error.

You can use the ar gunent s array if you call a function with more arguments
than it is formally declared to accept. This technique is useful for functions that
can be passed a variable number of arguments. You can use

argunent s. | engt h to determine the humber of arguments passed to the
function, and then process each argument by using the ar gument s array. (To
determine the number of arguments declared when a function was defined, use
the Functi on. | engt h property.)

Each local variable of a function is a property of the ar gunent s array. For
example, if a function myFunc has a local variable named nyLocal Var, you
can refer to the variable as ar gunent s. nyLocal Var.

Each formal argument of a function is a property of the ar gunent s array. For
example, if a function myFunc has two arguments named ar g1 and ar g2, you
can refer to the arguments as ar gunment s. ar g1 and ar gunent s. ar g2.
(You can also refer to them as ar gunent s[ 0] and ar gunent s[ 1] .)

The ar gunent s array has the following properties:

Property Description

argunent s. cal | ee  Specifies the function body of the currently executing
function.

argunent s. cal | er  Specifies the name of the function that invoked the
currently executing function. (Deprecated)

argunents. | ength  Specifies the number of arguments passed to the function.

Example 1. This example defines a function that concatenates several strings.
The only formal argument for the function is a string that specifies the
characters that separate the items to concatenate. The function is defined as
follows:

function nyConcat (separator) {
result="" // initialize |ist
// iterate through argunents
for (var i=1; i<argunents.length; i++) {
result += argunents[i] + separator

}

return result

178 Server-Side JavaScript Reference



Function.arguments

You can pass any number of arguments to this function, and it creates a list
using each argument as an item in the list.

// returns "red, orange, blue

nyConcat (", ","red","orange", "bl ue")

/'l returns "elephant; giraffe; lion; cheetah;"

nyConcat ("; ","elephant","giraffe","lion", "cheetah")

/'l returns "sage. basil. oregano. pepper. parsley
myConcat (". ","sage","basil", "oregano", "pepper", "parsley")

Example 2. This example defines a function that creates HTML lists. The only
formal argument for the function is a string that is " U" if the list is to be
unordered (bulleted), or " O if the list is to be ordered (numbered). The
function is defined as follows:

function list(type) {
docunent.wite("<" + type + "L>") // begin list
/] iterate through argunents
for (var i=1; i<argunents.length; i++) {
docunent.wite("<LI>" + argunments[i])

}

docunent.wite("</" + type + "L>") // end list

}

You can pass any number of arguments to this function, and it displays each
argument as an item in the type of list indicated. For example, the following
call to the function

list ( "J', "One", "Two", " Thr ee")
results in this output:

<UL>

<Ll >One
<Ll >Two
<LI >Thr ee
</ UL>

In server-side JavaScript, you can display the same output by calling thewr i t e
function instead of using docunment . write.

Chapter 1, Objects, Methods, and Properties 179



Function.arguments.callee

arguments.callee

Description

Examples

See also

Specifies the function body of the currently executing function.
Property of ar gurent s local variable; Funct i on (deprecated)

Implemented in JavaScript 1.2
ECMA version ECMA-262

The cal | ee property is available only within the body of a function.

The t hi s keyword does not refer to the currently executing function. Use the
cal | ee property to refer to a function within the function body.

The following function returns the value of the function’s cal | ee property.

function nyFunc() {
return argunments.call ee

}

The following value is returned:

function nyFunc() { return argunents.callee; }

Functi on. argunment s

arguments.caller

Description

Specifies the name of the function that invoked the currently executing
function.
Property of Function

Implemented in JavaScript 1.1, NES 2.0

The cal | er property is available only within the body of a function.

If the currently executing function was invoked by the top level of a JavaScript
program, the value of cal I er is null.

The t hi s keyword does not refer to the currently executing function, so you
must refer to functions and Funct i on objects by name, even within the
function body.

180 Server-Side JavaScript Reference



Examples

See also

Function.arguments.length

The cal | er property is a reference to the calling function, so

< If you use it in a string context, you get the result of calling
functionName. t oStri ng. That is, the decompiled canonical source form
of the function.

= You can also call the calling function, if you know what arguments it might
want. Thus, a called function can call its caller without knowing the name
of the particular caller, provided it knows that all of its callers have the same
form and fit, and that they will not call the called function again
unconditionally (which would result in infinite recursion).

The following code checks the value of a function’s cal | er property.

function nyFunc() {
if (argunments.caller == null) {
return ("The function was called fromthe top!")
} else return ("This function's caller was " + argunents.caller)

}

Functi on. argunents

arguments.length

Description

Example

Specifies the number of arguments passed to the function.
Property of ar gunent s local variable; Funct i on (deprecated)

Implemented in JavaScript 1.1
ECMA version ECMA-262

argunent s. | engt h provides the number of arguments actually passed to a
function. By contrast, the Funct i on. | engt h property indicates how many
arguments a function expects.

The following example demonstrates the use of Functi on. | engt h and
argunent s. | engt h.

function addNunmbers(x,y){
if (arguments.length == addNumbers. | ength) {
return (x+y)

}

else return 0

Chapter 1, Objects, Methods, and Properties 181



Function.arity

If you pass more than two arguments to this function, the function returns 0:

resul t =addNunber s( 3, 4, 5) /Il returns O
resul t =addNunber s( 3, 4) /'l returns 7
resul t =addNunber s( 103, 104) // returns 207

Functi on. argunents

Specifies the number of arguments expected by the function.
Property of Function

Implemented in JavaScript 1.2, NES 3.0

ari ty is external to the function, and indicates how many arguments a
function expects. By contrast, ar gunent s. | engt h provides the number of
arguments actually passed to a function.

The following example demonstrates the use of ari ty and
argunents. | engt h.

function addNunmbers(x,y){
if (argunments.|ength == addNunbers.|ength) {
return (x+y)

else return 0

If you pass more than two arguments to this function, the function returns 0:

resul t =addNunber s( 3, 4, 5) /Il returns O
resul t =addNunber s( 3, 4) /'l returns 7
resul t =addNunber s( 103, 104) // returns 207

See also
arity
Description
Example
}
}
See also

argunents. | engt h, Function. | ength

182 Server-Side JavaScript Reference



Function.constructor

constructor

Description

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Property of Functi on

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

See (bj ect. constructor.

length

Description

Example

See also

Specifies the number of arguments expected by the function.
Property of Function

Implemented in JavaScript 1.1
ECMA version ECMA-262

I engt h is external to a function, and indicates how many arguments the
function expects. By contrast, ar gunent s. | engt h is local to a function and
provides the number of arguments actually passed to the function.

See the example for ar gunent s. | engt h.

argunents. |l ength

prototype

A value from which instances of a particular class are created. Every object that
can be created by calling a constructor function has an associated pr ot ot ype

property.
Property of Function

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

Chapter 1, Objects, Methods, and Properties 183



Function.prototype

Description

Example

You can add new properties or methods to an existing class by adding them to
the prototype associated with the constructor function for that class. The syntax
for adding a new property or method is:

fun. prot otype. nane = val ue

where

fun The name of the constructor function object you want to change.
name The name of the property or method to be created.

val ue The value initially assigned to the new property or method.

If you add a property to the prototype for an object, then all objects created
with that object’s constructor function will have that new property, even if the
objects existed before you created the new property. For example, assume you
have the following statements:

var arrayl = new Array();

var array2 = new Array(3);

Array. prototype. description=null;

arrayl. descri ption="Contai ns sone stuff"
array2. descri pti on="Contains other stuff"

After you set a property for the prototype, all subsequent objects created with
Array will have the property:

anot her Array=new Array()
anot her Array. descri ption="Currently enpty"

The following example creates a method, str _r ep, and uses the statement
String. prototype.rep = str_rep to add the method to all St ri ng objects.
All objects created with new String() then have that method, even objects
already created. The example then creates an alternate method and adds that to
one of the St ri ng objects using the statement s1.rep = fake_rep. The

st r_rep method of the remaining St ri ng objects is not altered.

var sl = new String("a")
var s2 = new String("b")
var s3 = new String("c")

// Create a repeat-string-N-tinmes nethod for all String objects
function str_rep(n) {

var s = "", t = this.toString()
while (--n >=0) s +=1t
return s

184 Server-Side JavaScript Reference



Function.toString

String.prototype.rep = str_rep

sla=sl.rep(3) // returns "aaa"
s2a=s2.rep(5) // returns "bbbbb"
s3a=s3.rep(2) // returns "cc"

/] Create an alternate nethod and assign it to only one String variable
function fake_rep(n) {
return "repeat " + this +" " +n + " tines."

}

sl.rep = fake_rep

slb=sl.rep(1l) // returns "repeat a 1 times."
s2b=s2.rep(4) // returns "bbbb"
s3b=s3.rep(6) // returns "cccccc"

The function in this example also works on St ri ng objects not created with
the St ri ng constructor. The following code returns "zzz".

"z".rep(3)

toString

Syntax
Parameters

Description

Returns a string representing the source code of the function.
Method of Functi on

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

toString()
None.

The Funct i on object overrides the t oSt r i ng method of the Obj ect object;
it does not inherit Obj ect . t oSt ri ng. For Funct i on objects, thet oStri ng
method returns a string representation of the object.

JavaScript calls the t oSt ri ng method automatically when a Funct i on is to be
represented as a text value or when a Funct i on is referred to in a string
concatenation.

For Funct i on objects, the built-in t oSt ri ng method decompiles the function
back into the JavaScript source that defines the function. This string includes
the f uncti on keyword, the argument list, curly braces, and function body.

Chapter 1, Objects, Methods, and Properties 185



Function.valueOf

For example, assume you have the following code that defines the Dog object
type and creates t heDog, an object of type Dog:

function Dog(nane, breed, col or, sex) {
t hi s. nane=nane
t hi s. breed=br eed
thi s. col or=col or
thi s. sex=sex

}
t heDog = new Dog(" Gabby", "Lab", "chocol ate","girl")

Any time Dog is used in a string context, JavaScript automatically calls the
t oSt ri ng function, which returns the following string:

functi on Dog(nanme, breed, color, sex) { this.name = nanme; this.breed =
breed; this.color = color; this.sex = sex; }

Seealso Object.toString

valueOf

Returns a string representing the source code of the function.
Method of Functi on

Implemented in JavaScript 1.1
ECMA version ECMA-262

Syntax val ueOr ()
Parameters None

Description The val ueX method returns the following values:
= For the built-in Funct i on object, val ueO returns the following string
indicating that the source code is not available:

function Function() {
[native code]

}

= For custom functions, t oSour ce returns the JavaScript source that defines
the object as a string. The method is equivalent to the t oSt ri ng method
of the function.

This method is usually called internally by JavaScript and not explicitly in code.

Seealso Function.toString, Qoject. val ued™

186 Server-Side JavaScript Reference



java

java

A top-level object used to access any Java class in the package j ava. *.
Core object

Implemented in JavaScript 1.1, NES 2.0

Created by The j ava object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.
Description The j ava object is a convenience synonym for the property Packages. j ava.

See also Packages, Packages. j ava

Chapter 1, Objects, Methods, and Properties 187



JavaArray

JavaArray

Created by

Description

Property
Summary

A wrapped Java array accessed from within JavaScript code is a member of the
type JavaArr ay.
Core object

Implemented in JavaScript 1.1, NES 2.0

Any Java method which returns an array. In addition, you can create a
JavaArr ay with an arbitrary data type using the newl nst ance method of
the Arr ay class:

public static Object new nstance(Cl ass conponent Type,
int |ength)
throws NegativeArraySi zeException

The JavaAr r ay object is an instance of a Java array that is created in or
passed to JavaScript. JavaAr r ay is a wrapper for the instance; all references
to the array instance are made through the JavaArr ay.

You must specify a class object, such as one returned by

j ava. |l ang. Qbj ect . f or Nane, for the conponent Type parameter of
newl nst ance when you use this method to create an array. You cannot use a
Javad ass object for the conponent Type parameter.

Use zero-based indexes to access the elements in a JavaAr r ay object, just as
you do to access elements in an array in Java. For example:

var javaString = new java.lang.String("Hello world!");
var byteArray = javaString.getBytes();

byteArray[0] // returns 72

byteArray[1] // returns 101

Any Java data brought into JavaScript is converted to JavaScript data types.
When the JavaAr r ay is passed back to Java, the array is unwrapped and can
be used by Java code. See the Server-Side JavaScript Guide for more
information about data type conversions.

Property Description
I ength The number of elements in the Java array represented by
JavaArray.

188 Server-Side JavaScript Reference



Method Summary

Examples

JavaArray.length

Method Description
toString Returns a string identifying the object as a
JavaArray.

Example 1. Instantiating a JavaAr r ay in JavaScript.

In this example, the JavaArr ay byt eArray is created by the
j ava. |l ang. Stri ng. get Byt es method, which returns an array.

var javaString = new java.lang. String("Hello world!");
var byteArray = javaString.getBytes();

Example 2. Instantiating a JavaAr r ay in JavaScript with the newl nst ance
method.

Use a class object returned by j ava. | ang. Cl ass. f or Nane as the argument
for the newl nst ance method, as shown in the following code:

var dataType = java.lang. C ass. forNanme("java.l ang. String")
var dogs = java.lang.reflect. Array. newl nstance(dataType, 5)

length

Description

See also

The number of elements in the Java array represented by the JavaAr r ay
object.
Property of JavaArray

Implemented in JavaScript 1.1, NES 2.0

Unlike Array. | engt h, JavaArray. | engt h is a read-only property. You
cannot change the value of the JavaArray. | engt h property because Java
arrays have a fixed number of elements.

Array.length

Chapter 1, Objects, Methods, and Properties 189



JavaArray.toString

toString

Returns a string representation of the JavaArray.
Method of JavaArray

Implemented in JavaScript 1.1, NES 2.0

Parameters None

Description The t oSt ri hg method is inherited from the Cbj ect object and returns the
following value:

[ obj ect JavaArray]

190 Server-Side JavaScript Reference



JavaClass

Created by

Description

Property
Summary

Method Summary

Examples

See also

JavaClass

A JavaScript reference to a Java class.
Core object

Implemented in JavaScript 1.1, NES 2.0

A reference to the class name used with the Packages object:

Packages. Javad ass

where JavaClass is the fully-specified name of the object’s Java class. The
LiveConnect j ava, sun, and net scape objects provide shortcuts for
commonly used Java packages and also create Javad ass objects.

A Javad ass object is a reference to one of the classes in a Java package,
such as net scape. j avascri pt. JSObj ect . A JavaPackage object is a
reference to a Java package, such as net scape. j avascri pt. In JavaScript,
the JavaPackage and Javad ass hierarchy reflect the Java package and
class hierarchy.

You must create a wrapper around an instance of j ava. | ang. Cl ass before
you pass it as a parameter to a Java method—JavaCl ass objects are not
automatically converted to instances of j ava. | ang.  ass.

The properties of a JavaCl ass object are the static fields of the Java class.

The methods of a JavaCl ass object are the static methods of the Java class.

In the following example, x is a JavaC ass object referring to
j ava. awt . Font . Because BOLD is a static field in the Font class, it is also a
property of the JavaC ass object.

X = java.awt . Font
nyFont = x("helv",x.BOLD, 10) // creates a Font object

The previous example omits the Packages keyword and uses the j ava
synonym because the Font class is in the j ava package.

JavaArray, JavaCbj ect, JavaPackage, Packages

Chapter 1, Objects, Methods, and Properties 191



JavaObiject

JavaObject

Created by

Parameters

Description

Property
Summary

Method Summary

The type of a wrapped Java object accessed from within JavaScript code.
Core object

Implemented in JavaScript 1.1, NES 2.0

Any Java method which returns an object type. In addition, you can explicitly
construct a JavaQbj ect using the object’s Java constructor with the
Packages keyword:

new Packages. Javad ass( paraneterlLi st)

where JavaClass is the fully-specified name of the object’s Java class.

par anet er Li st An optional list of parameters, specified by the constructor in
the Java class.

The JavaObj ect object is an instance of a Java class that is created in or
passed to JavaScript. JavaCbj ect is a wrapper for the instance; all references
to the class instance are made through the Javabj ect .

Any Java data brought into JavaScript is converted to JavaScript data types.
When the JavaObj ect is passed back to Java, it is unwrapped and can be
used by Java code. See the Server-Side JavaScript Guide for more information
about data type conversions.

Inherits public data members from the Java class of which it is an instance as
properties. It also inherits public data members from any superclass as
properties.

Inherits public methods from the Java class of which it is an instance. The
Javanj ect also inherits methods from j ava. | ang. Obj ect and any other
superclass.

192 Server-Side JavaScript Reference



Examples

See also

JavaObject

Example 1. Instantiating a Java object in JavaScript.

The following code creates the JavaCbj ect t heSt ri ng, which is an
instance of the class j ava. | ang. Stri ng:

var theString = new Packages.java.lang. String("Hello, world")

Because the St ri ng class is in the j ava package, you can also use the j ava
synonym and omit the Packages keyword when you instantiate the class:

var theString = new java.lang. String("Hello, world")
Example 2. Accessing methods of a Java object.

Because the JavaObj ect t heStri ng is an instance of

j ava. |l ang. Stri ng, it inherits all the public methods of

java. |l ang. Stri ng. The following example uses the st art sWt h method
to check whether t heSt ri ng begins with “Hello”.

var theString = new java.lang. String("Hello, world")
theString.startsWth("Hello") // returns true

Example 3. Accessing inherited methods.

Because get Cl ass is a method of Obj ect, and j ava. | ang. Stri ng
extends Obj ect , the St ri ng class inherits the get G ass method.
Consequently, get Cl ass is also a method of the JavaCbj ect which
instantiates St ri ng in JavaScript.

var theString = new java.lang. String("Hello, world")
theString.getClass() // returns java.lang.String

JavaArray, Javad ass, JavaPackage, Packages

Chapter 1, Objects, Methods, and Properties 193



JavaPackage

JavaPackage

Created by

Description

Property
Summary

Examples

See also

A JavaScript reference to a Java package.
Core object

Implemented in JavaScript 1.1, NES 2.0

A reference to the package name used with the Packages keyword:

Packages. JavaPackage

where JavaPackage is the name of the object’s Java package. If the package is
in the j ava, net scape, or sun packages, the Packages keyword is
optional.

In Java, a package is a collection of Java classes or other Java packages. For
example, the net scape package contains the package

net scape. j avascri pt;the net scape. j avascri pt package contains the
classes JShj ect and JSExcepti on.

In JavaScript, a JavaPackage is a reference to a Java package. For example, a
reference to net scape is a JavaPackage. net scape. j avascri pt is both
a JavaPackage and a property of the net scape JavaPackage.

A JavadC ass obiject is a reference to one of the classes in a package, such as
net scape. j avascri pt. JSObj ect. The JavaPackage and JavaCl ass
hierarchy reflect the Java package and class hierarchy.

Although the packages and classes contained in a JavaPackage are its
properties, you cannot use a f or. . . i n statement to enumerate them as you
can enumerate the properties of other objects.

The properties of a JavaPackage are the JavaCl ass objects and any other
JavaPackage objects it contains.

Suppose the Redwood corporation uses the Java r edwood package to contain
various Java classes that it implements. The following code creates the
JavaPackage r ed:

var red = Packages.redwood

JavaArray, Javad ass, Javabj ect , Packages

194 Server-Side JavaScript Reference



Lock

Created by

Parameters

Property
Summary

Method Summary

See also
Syntax

Parameters

Lock

Provides a way to lock a critical section of code.

Server-side object

Implemented in

NES 3.0

The Lock constructor:

Lock();

None.

Failure to construct a new Lock object indicates an internal JavaScript error,
such as out of memory.

Property

Description

constructor

Specifies the function that creates an object’s prototype.

pr ot ot ype Allows the addition of properties to the object.

Method Description

isvalid Verifies that this Lock object was properly constructed.
| ock Obtains the lock.

unl ock Releases the lock.

In addition, this object inherits the wat ch and unwat ch methods from

hj ect.

proj ect. | ock, project. unl ock, server. | ock, server. unl ock

| ock(tineout)

ti meout

An integer indicating the number of seconds to wait for the lock. If
0, there is no timeout; that is, the method waits indefinitely to
obtain the lock. The default value is 0, so if you do not specify a
value, the method waits indefinitely.

Chapter 1, Objects, Methods, and Properties 195



Lock.constructor

Returns  True if it succeeds in obtaining the lock within the specified timeout. False if it
did not obtain the lock.

Description  You can obtain a lock for an object to ensure that different clients do not access
a critical section of code simultaneously. When an application locks an object,
other client requests must wait before they can lock the object.

Note that this mechanism requires voluntary compliance by asking for the lock
in the first place.

Seealso Lock. unl ock, Lock. i sValid, proj ect.|ock, server.|ock

constructor

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Property of Lock

Implemented in NES 2.0

Description See (bj ect . const ruct or.

isValid

Verifies that this Lock object was properly constructed.
Method of Lock

Implemented in NES 3.0

Syntax isValid()
Parameters None.
Returns  True, if this object was properly constructed; otherwise, false.

Description It is very rare that your Lock object would not be properly constructed. This
happens only if the runtime engine runs out of system resources while creating
the object.

196 Server-Side JavaScript Reference



Examples

See also

Lock.lock

This code creates a Lock object and verifies that nothing went wrong creating
it:

/'l construct a new Lock and save in project
proj ect.ordersLock = new Lock();
if (! project.ordersLock.isValid()) {
/1 Unable to create a Lock. Redirect to error page

}

Lock. | ock, Lock. unl ock

lock

Obtains the lock. If someone else has the lock, this method blocks until it can
get the lock, the specified timeout period has elapsed, or an error occurs.
Method of Lock

Implemented in NES 3.0

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Functi on. pr ot ot ype.

Property of Lock

Implemented in NES 2.0

Chapter 1, Objects, Methods, and Properties 197



Lock.unlock

unlock

Releases the lock.
Method of Lock

Implemented in NES 3.0

Syntax unl ock()
Parameters None.

Returns False if it fails; otherwise, true. Failure indicates an internal JavaScript error or
that you attempted to unlock a lock that you don’t own.

Description  If you unlock a lock that is unlocked, the resulting behavior is undefined.

Seealso Lock. | ock, Lock.isValid, project.unlock, server. unl ock

198 Server-Side JavaScript Reference



Math

Created by

Description

Property
Summary

Math

A built-in object that has properties and methods for mathematical constants
and functions. For example, the Mat h object’'s Pl property has the value of pi.
Core object

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

The Mat h object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

All properties and methods of Mat h are static. You refer to the constant PI as
Mat h. Pl and you call the sine function as Mat h. si n(x), where x is the
method’s argument. Constants are defined with the full precision of real
numbers in JavaScript.

It is often convenient to use the wi t h statement when a section of code uses
several Mat h constants and methods, so you don't have to type “Math”
repeatedly. For example,

with (Math) {

a =P *r*r
y = r*sin(theta)
X = r*cos(theta)
}
Property Description
E Euler’'s constant and the base of natural logarithms, approximately
2.718.
LN1O Natural logarithm of 10, approximately 2.302.
LN2 Natural logarithm of 2, approximately 0.693.
LOGLOE Base 10 logarithm of E (approximately 0.434).
LOXRE Base 2 logarithm of E (approximately 1.442).
Pl Ratio of the circumference of a circle to its diameter, approximately
3.14159.
SQRT1_2 Square root of 1/2; equivalently, 1 over the square root of 2,
approximately 0.707.
SQRT2 Square root of 2, approximately 1.414.

Chapter 1, Objects, Methods, and Properties 199



Math

Method Summary

Method Description

abs Returns the absolute value of a number.

acos Returns the arccosine (in radians) of a number.

asin Returns the arcsine (in radians) of a number.

atan Returns the arctangent (in radians) of a number.

at an2 Returns the arctangent of the quotient of its arguments.

ceil Returns the smallest integer greater than or equal to a number.

cos Returns the cosine of a number.

exp Returns E™mer where nunber is the argument, and E is Euler’s
constant, the base of the natural logarithms.

fl oor Returns the largest integer less than or equal to a number.

| og Returns the natural logarithm (base E) of a number.

max Returns the greater of two numbers.

mn Returns the lesser of two numbers.

pow Returns base to the exponent power, that is, baseexrenent,

random Returns a pseudo-random number between 0 and 1.

round Returns the value of a number rounded to the nearest integer.

sin Returns the sine of a number.

sqrt Returns the square root of a number.

tan Returns the tangent of a number.

In addition, this object inherits the wat ch and unwat ch methods from
hj ect.

200 Server-Side JavaScript Reference



Math.abs

abs

Syntax

Parameters

Examples

Description

Returns the absolute value of a number.
Method of Mat h

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

abs( x)

X A number

The following function returns the absolute value of the variable x:

function getAbs(x) {
return Math. abs(x)
}

Because abs is a static method of Mat h, you always use it as Mat h. abs(),
rather than as a method of a Mat h object you created.

acos

Syntax

Parameters

Description

Returns the arccosine (in radians) of a number.
Method of Mat h

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

acos( x)

X A number

The acos method returns a numeric value between 0 and pi radians. If the
value of nunber is outside this range, it returns NaN.

Because acos is a static method of Mat h, you always use it as Mat h. acos(),
rather than as a method of a Mat h object you created.

Chapter 1, Objects, Methods, and Properties 201



Math.asin

Examples The following function returns the arccosine of the variable x:

function get Acos(x) {
return Math. acos(x)

}

If you pass -1 to get Acos, it returns 3.141592653589793; if you pass 2, it returns
NaN because 2 is out of range.

See also Mat h. asi n, Mat h. at an, Mat h. at an2, Mat h. cos, Mat h. si n, Mat h. t an

asin

Returns the arcsine (in radians) of a number.

Method of Mat h

Static

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax asi n(x)

Parameters
X A number

Description The asi n method returns a numeric value between -pi/2 and pi/2 radians. If
the value of nunber is outside this range, it returns NaN.

Because asi n is a static method of Mat h, you always use it as Mat h. asi n(),
rather than as a method of a Mat h object you created.

Examples The following function returns the arcsine of the variable x:

function getAsin(x) {
return Math. asin(x)

}

If you pass get Asi n the value 1, it returns 1.570796326794897 (pi/2); if you
pass it the value 2, it returns NaN because 2 is out of range.

See also Mat h. acos, Mat h. at an, Mat h. at an2, Mat h. cos, Mat h. si n, Mat h. t an

202 Server-Side JavaScript Reference



Math.atan

atan

Returns the arctangent (in radians) of a number.

Method of Mat h
Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262
Syntax at an( x)
Parameters
X A number
Description The at an method returns a numeric value between -pi/2 and pi/2 radians.
Because at an is a static method of Mat h, you always use it as Mat h. at an(),
rather than as a method of a Mat h object you created.
Examples The following function returns the arctangent of the variable x:
function get Atan(x) ({
return Math. at an(x)
}
If you pass get At an the value 1, it returns 0.7853981633974483; if you pass it
the value .5, it returns 0.4636476090008061.
See also Mat h. acos, Mat h. asi n, Mat h. at an2, Mat h. cos, Mat h. si n, Mat h. t an
atan2
Returns the arctangent of the quotient of its arguments.
Method of Mat h
Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262
Syntax atan2(y, x)

Chapter 1, Objects, Methods, and Properties 203



Math.ceil

Parameters
y, X Number

Description The at an2 method returns a numeric value between -pi and pi representing the
angle theta of an (x, y) point. This is the counterclockwise angle, measured in
radians, between the positive X axis, and the point (x, y). Note that the
arguments to this function pass the y-coordinate first and the x-coordinate
second.

at an2 is passed separate x and y arguments, and at an is passed the ratio of
those two arguments.

Because at an2 is a static method of Mat h, you always use it as Mat h. at an2(),
rather than as a method of a Mat h object you created.

Examples The following function returns the angle of the polar coordinate:

function get Atan2(x,y) {
return Math. atan2(x,y)
}

If you pass get At an2 the values (90,15), it returns 1.4056476493802699; if you
pass it the values (15,90), it returns 0.16514867741462683.

See also Mat h. acos, Mat h. asi n, Mat h. at an, Mat h. cos, Mat h. si n, Mat h. t an

ceil

Returns the smallest integer greater than or equal to a number.

Method of Mat h

Static

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax ceil (x)

Parameters
X A number

Description Because cei | is a static method of Mat h, you always use it as Mat h. cei | (),
rather than as a method of a Mat h object you created.

204 Server-Side JavaScript Reference



Math.cos

Examples The following function returns the ceil value of the variable x:

function getCeil (x) {
return Math.ceil (x)
}
If you pass 45.95 to get Cei |, it returns 46; if you pass -45.95, it returns -45.

Seealso Math. fl oor

COS

Returns the cosine of a number.

Method of Mat h

Static

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax cos(x)

Parameters
X A number

Description The cos method returns a numeric value between -1 and 1, which represents
the cosine of the angle.

Because cos is a static method of Mat h, you always use it as Mat h. cos(),
rather than as a method of a Mat h object you created.

Examples The following function returns the cosine of the variable x:

function get Cos(x) {
return Math. cos(x)

}

If x equals 2*Mat h. Pl , get Cos returns 1; if x equals Mat h. PI, the get Cos
method returns -1.

See also Mat h. acos, Mat h. asi n, Mat h. at an, Mat h. at an2, Mat h. si n,
Mat h. t an

Chapter 1, Objects, Methods, and Properties 205



Math.E

E

Description

Examples

Euler’s constant and the base of natural logarithms, approximately 2.718.
Property of Mat h

Static, Read-only
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Because E is a static property of Mat h, you always use it as Mat h. E, rather than
as a property of a Mat h object you created.

The following function returns Euler’s constant:

function getEuler() {
return Math. E

}

exp

Syntax

Parameters

Description

Returns Ex, where x is the argument, and E is Euler’s constant, the base of the
natural logarithms.
Method of Mat h

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

exp(x)

X A number

Because exp is a static method of Mat h, you always use it as Mat h. exp(),
rather than as a method of a Mat h object you created.

206 Server-Side JavaScript Reference



Examples

See also

Math.floor

The following function returns the exponential value of the variable x:

function get Exp(x) {
return Math. exp(x)

}
If you pass get Exp the value 1, it returns 2.718281828459045.

Mat h. E, Mat h. | og, Mat h. pow

floor

Syntax

Parameters

Description

Examples

See also

Returns the largest integer less than or equal to a number.
Method of Mat h

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

floor(x)

X A number
Because f | oor is a static method of Mat h, you always use it as Mat h. f | oor (),
rather than as a method of a Mat h object you created.

The following function returns the floor value of the variable x:

function getFl oor(x) {
return Math. floor(x)
}

If you pass 45.95 to get Fl oor, it returns 45; if you pass -45.95, it returns -46.
Mat h. cei |

Chapter 1, Objects, Methods, and Properties 207



Math.LN10

LN10

The natural logarithm of 10, approximately 2.302.
Property of Mat h

Static, Read-only
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Examples The following function returns the natural log of 10:

function getNatLogl0() {
return Math. LN1O

}

Description  Because LNL10 is a static property of Mat h, you always use it as Mat h. LN10,
rather than as a property of a Mat h object you created.

LN2

The natural logarithm of 2, approximately 0.693.
Property of Mat h

Static, Read-only
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Examples The following function returns the natural log of 2:

function getNat Log2() {
return Math. LN2

}

Description Because LN2 is a static property of Mat h, you always use it as Mat h. LN2, rather
than as a property of a Mat h object you created.

208 Server-Side JavaScript Reference



Math.log

Syntax

Parameters

Description

Examples

See also

log

Returns the natural logarithm (base E) of a number.
Method of Mat h

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

I og( x)

X A number

If the value of nunmber is negative, the return value is always NaN.

Because | og is a static method of Mat h, you always use it as Mat h. | og(),
rather than as a method of a Mat h object you created.

The following function returns the natural log of the variable x:

function getLog(x) {
return Math. |l og(x)
}

If you pass get Log the value 10, it returns 2.302585092994046; if you pass it the
value 0, it returns - | nfi ni ty; if you pass it the value -1, it returns NaN
because -1 is out of range.

Mat h. exp, Mat h. pow

LOG10E

The base 10 logarithm of E (approximately 0.434).
Property of Mat h

Static, Read-only
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Chapter 1, Objects, Methods, and Properties 209



Math.LOG2E

Examples The following function returns the base 10 logarithm of E:

function getlLoglOe() {
return Math. LOGLOE

}

Description Because LOGLOE is a static property of Mat h, you always use it as
Mat h. LOGLOE, rather than as a property of a Mat h object you created.

LOG2E

The base 2 logarithm of E (approximately 1.442).
Property of Mat h

Static, Read-only
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Examples The following function returns the base 2 logarithm of E:

function getLog2e() {
return Math. LORZE

}

Description Because LOR2E is a static property of Mat h, you always use it as Mat h. LOGE,
rather than as a property of a Mat h object you created.

max

Returns the larger of two numbers.
Method of Mat h

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax max(Xx, ¥)

Parameters
X, Yy Numbers.

Description Because max is a static method of Mat h, you always use it as Mat h. max(),
rather than as a method of a Mat h object you created.

210 Server-Side JavaScript Reference



Examples

See also

Math.min

The following function evaluates the variables x and y:

function get Max(x,y) {
return Math. max(x,y)

}

If you pass get Max the values 10 and 20, it returns 20; if you pass it the values
-10 and -20, it returns -10.

Mat h. m n

min

Syntax

Parameters

Description

Examples

See also

Returns the smaller of two numbers.
Method of Mat h

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

mn(x,y)

X, Y Numbers.
Because ni n is a static method of Mat h, you always use it as Mat h. mi n(),
rather than as a method of a Mat h object you created.

The following function evaluates the variables x and vy:

function getMn(x,y) {
return Math. mn(x,y)
}

If you pass get M n the values 10 and 20, it returns 10; if you pass it the values
-10 and -20, it returns -20.

Mat h. max

Chapter 1, Objects, Methods, and Properties 211



Math.PI

Pl

The ratio of the circumference of a circle to its diameter, approximately
3.14159.

Property of Mat h

Static, Read-only
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Examples The following function returns the value of pi:

function getPi () {
return Math. Pl
}

Description Because Pl is a static property of Mat h, you always use it as Mat h. Pl , rather
than as a property of a Mat h object you created.

pow

Returns base to the exponent power, that is, baseseren,
Method of Mat h

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax pow X, ¥)

Parameters
base The base number

exponent  The exponent to which to raise base

Description Because pow is a static method of Mat h, you always use it as Mat h. pow(),
rather than as a method of a Mat h object you created.

212 Server-Side JavaScript Reference



Math.random

Examples function rai sePower(x,y) {
return Math. pow x,y)
}

If x is 7and y is 2, rai sePower returns 49 (7 to the power of 2).

See also Mat h. exp, Mat h. | og

random

Returns a pseudo-random number between 0 and 1. The random number
generator is seeded from the current time, as in Java.
Method of Mat h

Static
Implemented in JavaScript 1.0, NES 2.0: Unix only

JavaScript 1.1, NES 2.0: all platforms
ECMA version ECMA-262

Syntax random()
Parameters None.

Description Because r andomis a static method of Mat h, you always use it as
Mat h. randon( ), rather than as a method of a Mat h object you created.

Examples //Returns a random nunber between 0 and 1
function get Randon() {
return Math.randon()

}

round

Returns the value of a number rounded to the nearest integer.
Method of Mat h

Static

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax round( x)

Chapter 1, Objects, Methods, and Properties 213



Math.sin

Parameters
X A number

Description If the fractional portion of nunber is .5 or greater, the argument is rounded to
the next higher integer. If the fractional portion of nunber is less than .5, the
argument is rounded to the next lower integer.

Because r ound is a static method of Mat h, you always use it as Mat h. round(),
rather than as a method of a Mat h object you created.

Examples //Returns the val ue 20
x=Mat h. round( 20. 49)

// Returns the value 21
x=Mat h. r ound( 20. 5)

// Returns the value -20
x=Mat h. round( - 20. 5)

/'l Returns the value -21
x=Mat h. round( - 20. 51)

sin

Returns the sine of a number.

Method of Mat h

Static

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax si n(x)
Parameters
X A number
Description The si n method returns a numeric value between -1 and 1, which represents

the sine of the argument.

Because si n is a static method of Mat h, you always use it as Mat h. si n(),
rather than as a method of a Mat h object you created.

214 Server-Side JavaScript Reference



Examples

See also

Math.sqrt

The following function returns the sine of the variable x:

function getSine(x) {
return Math. sin(x)

}
If you pass get Si ne the value Mat h. Pl / 2, it returns 1.

Mat h. acos, Mat h. asi n, Mat h. at an, Mat h. at an2, Mat h. cos,
Mat h. t an

sqrt

Syntax

Parameters

Description

Examples

Returns the square root of a number.
Method of Mat h

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

sqrt (x)

X A number

If the value of nunmber is negative, sqrt returns NaN.

Because sqrt is a static method of Mat h, you always use it as Mat h. sqrt (),
rather than as a method of a Mat h object you created.

The following function returns the square root of the variable x:

function getRoot (x) {
return Math.sqgrt(x)

}

If you pass get Root the value 9, it returns 3; if you pass it the value 2, it returns
1.414213562373095.

Chapter 1, Objects, Methods, and Properties 215



Math.SQRT1_2

SQRT1. 2

The square root of 1/2; equivalently, 1 over the square root of 2, approximately
0.707.

Property of Mat h

Static, Read-only
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Examples The following function returns 1 over the square root of 2:

function getRoot1l 2() {
return Math. SQRT1_2
}

Description Because SQRT1_2 is a static property of Mat h, you always use it as
Mat h. SQRT1_2, rather than as a property of a Mat h object you created.

SQRT?2

The square root of 2, approximately 1.414.
Property of Mat h

Static, Read-only
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Examples The following function returns the square root of 2:

function getRoot2() {
return Math. SQRT2

}

Description Because SQRT2 is a static property of Mat h, you always use it as Mat h. SQRT2,
rather than as a property of a Mat h object you created.

216 Server-Side JavaScript Reference



Math.tan

tan

Syntax

Parameters

Description

Examples

See also

Returns the tangent of a number.

Method of Mat h

Static

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

tan( x)

X A number

The t an method returns a numeric value that represents the tangent of the
angle.

Because t an is a static method of Mat h, you always use it as Mat h. t an(),
rather than as a method of a Mat h object you created.

The following function returns the tangent of the variable x:

function get Tan(x) {
return Math.tan(x)

}

Mat h. acos, Mat h. asi n, Mat h. at an, Mat h. at an2, Mat h. cos,
Mat h. sin

Chapter 1, Objects, Methods, and Properties 217



netscape

netscape

A top-level object used to access any Java class in the package net scape. *.
Core object

Implemented in JavaScript 1.1, NES 2.0
Created by The net scape object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

Description The net scape object is a convenience synonym for the property
Packages. net scape.

See also Packages, Packages. net scape

218 Server-Side JavaScript Reference



Number

Created by

Parameters

Description

Number

Lets you work with numeric values. The Nurber object is an object wrapper for
primitive numeric values.
Core object

Implemented in JavaScript 1.1, NES 2.0
JavaScript 1.2: modified behavior of Nunber constructor

ECMA version ECMA-262

The Nunber constructor:

new Nunber ( val ue)

val ue The numeric value of the object being created.

The primary uses for the Nunber object are:

= To access its constant properties, which represent the largest and smallest
representable numbers, positive and negative infinity, and the Not-a-
Number value.

= To create numeric objects that you can add properties to. Most likely, you
will rarely need to create a Nunber object.

The properties of Nunber are properties of the class itself, not of individual
Nunber objects.

JavaScript 1.2: Nunber (x) now produces NaN rather than an error if x is a string
that does not contain a well-formed numeric literal. For example,

x=Nunber ("t hree");

docunent.wite(x + "<BR>");
prints NaN

You can convert any object to a number using the top-level Nunber function.

Chapter 1, Objects, Methods, and Properties 219



Number

Property
summary = pronerty Description
construct or Specifies the function that creates an object’s prototype.
MAX_VALUE The largest representable number.
M N_VALUE The smallest representable number.
NaN Special “not a number” value.

NEGATI VE_I NFI NI TY Special value representing negative infinity; returned on
overflow.

POSI TI VE_I NFI NI TY Special value representing infinity; returned on overflow.

pr ot ot ype Allows the addition of properties to a Nunber object.
Method Summary

Method Description

toString Returns a string representing the specified object. Overrides the

oj ect.toStri ng method.

val ueCf Returns the primitive value of the specified object. Overrides the
oj ect . val uef method.

In addition, this object inherits the wat ch and unwat ch methods from
hj ect.

Examples Example 1. The following example uses the Nunber object’s properties to
assign values to several numeric variables:

bi ggest Num = Nunber . MAX_VALUE

smal | est Num = Nunber. M N_VALUE

i nfiniteNum = Nurber. POSI TI VE_I NFI NI TY
negl nfini teNum = Nunber. NEGATI VE_I NFI NI TY
not ANum = Nunber . NaN

Example 2. The following example creates a Number object, nyNum then adds
a descri ption property to all Nunber objects. Then a value is assigned to the
myNumobject’s descri pti on property.

nyNum = new Nunber ( 65)

Nunber . pr ot ot ype. descri pti on=nul |
nyNum descri pti on="wi nd speed"

220 Server-Side JavaScript Reference



Number.constructor

constructor

Description

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Property of Nunmber

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

See (bj ect. constructor.

MAX_VALUE

Description

Examples

The maximum numeric value representable in JavaScript.
Property of Nunber

Static, Read-only
Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

The MAX_VALUE property has a value of approximately 1.79E+308. Values larger
than MAX_VALUE are represented as "I nfinity".

Because MAX_VALLUE is a static property of Nunber, you always use it as
Nunber . MAX_VALUE, rather than as a property of a Nunber object you created.

The following code multiplies two numeric values. If the result is less than or
equal to MAX_VALUE, the f unc1 function is called; otherwise, the f unc2
function is called.

if (nunl * nunR <= Nunber. MAX_VALUE)
funcl()

el se
func2()

Chapter 1, Objects, Methods, and Properties 221



Number.MIN_VALUE

MIN_VALUE

The smallest positive numeric value representable in JavaScript.
Property of Nunmber

Static, Read-only
Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

Description The M N_VALUE property is the number closest to 0, not the most negative
number, that JavaScript can represent.

M N_VALUE has a value of approximately 5e-324. Values smaller than
M N_VALUE (“underflow values”) are converted to 0.

Because M N_VALLE is a static property of Nunber, you always use it as
Nunber . M N_VALUE, rather than as a property of a Nunber object you created.

Examples The following code divides two numeric values. If the result is greater than or
equal to M N_VALUE, the f unc1 function is called; otherwise, the f unc2
function is called.

if (nunl / nun2 >= Nunber.M N_VALUE)
funcl()

el se
func2()

NaN

A special value representing Not-A-Number. This value is represented as the
unquoted literal NaN.
Property of Nunber

Read-only
Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

Description JavaScript prints the value Nunber . NaN as NaN.

NaN is always unequal to any other number, including NaN itself; you cannot
check for the not-a-number value by comparing to Nunber . NaN. Use the
i sNaN function instead.

222 Server-Side JavaScript Reference



Examples

See also

Number.NEGATIVE_INFINITY

You might use the NaN property to indicate an error condition for a function
that should return a valid number.

In the following example, if mont h has a value greater than 12, it is assigned
NaN, and a message is displayed indicating valid values.

var month = 13
if (month <1 || nonth > 12) {
nont h = Nurber . NaN
alert ("Month nmust be between 1 and 12.")

}

i sNaN, par seFl oat, par sel nt

NEGATIVE_INFINITY

Description

A special numeric value representing negative infinity. This value is represented
as the unquoted literal " - I nfini ty".

Property of Nunber

Static, Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

This value behaves slightly differently than mathematical infinity:

<« Any positive value, including POSI TI VE_I NFI NI TY, multiplied by
NEGATI VE_I NFI NI TY is NEGATI VE_I NFI NI TY.

= Any negative value, including NEGATI VE_| NFI NI TY, multiplied by
NEGATI VE_I NFI NI TY is POSI TI VE_I NFI NI TY.

« Zero multiplied by NEGATI VE_| NFI NI TY is NaN.
= NaN multiplied by NEGATI VE_I NFI NI TY is NaN.

= NEGATI VE_| NFI NI TY, divided by any negative value except
NEGATI VE_I NFI NI TY, is PCSI TI VE_I NFI NI TY.

= NEGATI VE_| NFI NI TY, divided by any positive value except
POSI TI VE_I NFI NI TY, is NEGATI VE_I NFI NI TY.

= NEGATI VE_I NFI NI TY, divided by either NEGATI VE_I NFI NI TY or
POSI TI VE_I NFI NI TY, is NaN.

= Any number divided by NEGATI VE_| NFI NI TY is Zero.

Because NEGATI VE_I NFI NI TY is a static property of Nunber, you always use it
as Nunber . NEGATI VE_I NFI NI TY, rather than as a property of a Nunber object
you created.

Chapter 1, Objects, Methods, and Properties 223



Number.POSITIVE_INFINITY

Examples In the following example, the variable smal | Nunber is assigned a value that is
smaller than the minimum value. When the i f statement executes,
smal | Nunber has the value "- I nfinity", so the f uncl function is called.

var smal | Nunmber = - Number. MAX_VALUE* 10

if (small Number == Nunber. NEGATI VE_I NFI NI TY)
funcl()

el se
func2()

POSITIVE_INFINITY

A special numeric value representing infinity. This value is represented as the
unquoted literal "I nfinity".

Property of Nunmber

Static, Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Description  This value behaves slightly differently than mathematical infinity:

= Any positive value, including POSI TI VE_| NFI NI TY, multiplied by
POSI TI VE_I NFI NI TY is POSI TI VE_I NFI NI TY.

= Any negative value, including NEGATI VE_I NFI NI TY, multiplied by
PCSI TI VE_I NFI NI TY is NEGATI VE_I NFI NI TY.

« Zero multiplied by PCSI TI VE_| NFI NI TY is NaN.
= NaN multiplied by POSI TI VE_I NFI NI TY is NaN.

< POSI TI VE_I NFI NI TY, divided by any negative value except
NEGATI VE_I NFI NI TY, is NEGATI VE_I NFI NI TY.

e POSI TI VE_|I NFI NI TY, divided by any positive value except
POSI TI VE_I NFI NI TY, is PCSI TI VE_I NFI NI TY.

= POSI TI VE_I NFI NI TY, divided by either NEGATI VE_I NFI NI TY or
POSI TI VE_I NFI NI TY, is NaN.

= Any number divided by POSI Tl VE_I NFI NI TY is Zero.

Because POSI Tl VE_I NFI NI TY is a static property of Nunber, you always use it
as Nunber . POSI TI VE_I NFI NI TY, rather than as a property of a Nunber object
you created.

224 Server-Side JavaScript Reference



Examples

Number.prototype

In the following example, the variable bi gNunber is assigned a value that is
larger than the maximum value. When the i f statement executes, bi gNunber
has the value "I nfi ni ty", so the f uncl function is called.

var bi gNunber = Nunmber. MAX VALUE * 10

i f (bigNunber == Nunber. POSI Tl VE_I NFI NI TY)
funcl()

el se
func2()

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Functi on. pr ot ot ype.

Property of Nunmber

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

toString

Syntax

Parameters

Description

Returns a string representing the specified Number object.
Method of Nunber

Implemented in JavaScript 1.1
ECMA version ECMA-262

toString()
toString(radix)

r adi x (Optional) An integer between 2 and 36 specifying the base to use for
representing numeric values.

The Numnber object overrides the t oSt ri ng method of the Obj ect object; it
does not inherit Obj ect . t oSt ri ng. For Nunber objects, the t oSt ri ng
method returns a string representation of the object.

JavaScript calls the t oSt ri ng method automatically when a number is to be
represented as a text value or when a number is referred to in a string
concatenation.

Chapter 1, Objects, Methods, and Properties 225



Number.valueOf

For Nunmber objects and values, the built-in t oSt ri ng method returns the string
representing the value of the number.
You can use t oSt ri ng on numeric values, but not on numeric literals:

/1 The next two lines are valid
var howhvany=10
al ert ("howMany.toString() is " + howMany.toString())

/1 The next |ine causes an error
alert("45.toString() is " + 45.to0String())

valueOf

Syntax
Parameters

Description

Examples

See also

Returns the primitive value of a Number object.

Method of Nunber
Implemented in JavaScript 1.1
ECMA version ECMA-262
val ued ()

None

The val ue method of Nunber returns the primitive value of a Number
object as a number data type.

This method is usually called internally by JavaScript and not explicitly in code.

X = new Nunber();
al ert (x.valued ()) //displays 0O

bj ect . val ue™

226 Server-Side JavaScript Reference



Object

Created by

Parameters

Property
Summary

Method Summary

Obj ect is the primitive JavaScript object type. All JavaScript objects are
descended from Obj ect . That is, all JavaScript objects have the methods
defined for Obj ect .

Core object

Implemented in JavaScript 1.0: t oSt r i ng method

JavaScript 1.1, NES 2.0: added eval and val ueOf methods;
const ruct or property

JavaScript 1.2: deprecated eval method

ECMA version ECMA-262

The bj ect constructor:

new Obj ect ()

Object

None
Property Description
const ruct or Specifies the function that creates an object’s prototype.
pr ot ot ype Allows the addition of properties to all objects.
Method Description
eval Deprecated. Evaluates a string of JavaScript code in the context of
the specified object.
toString Returns a string representing the specified object.
unwat ch Removes a watchpoint from a property of the object.
val ueCf Returns the primitive value of the specified object.
wat ch Adds a watchpoint to a property of the object.

Chapter 1, Objects, Methods, and Properties 227



Object.constructor

constructor

Description

Examples

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Property of hj ect

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

All objects inherit a construct or property from their pr ot ot ype:

0 = new bject // or o ={} in JavaScript 1.2

0. constructor == Object

a = new Array // or a =[] in JavaScript 1.2
a.constructor == Array

n = new Numrber (3)

n.constructor == Nunber

Even though you cannot construct most HTML objects, you can do
comparisons. For example,

docunent. construct or == Docunent
docunent. fornB. constructor == Form

The following example creates a prototype, Tr ee, and an object of that type,
t heTr ee. The example then displays the const ruct or property for the object
t heTr ee.

function Tree(nanme) {
t hi s. name=nane

}

theTree = new Tree(" Redwood")

docunent.witel n("<B>theTree.constructor is</B>" +
t heTree. constructor + "<P>")

This example displays the following output:

theTree.constructor is function Tree(nane) { this.name = nanme; }

228 Server-Side JavaScript Reference



Obiject.eval

eval

Syntax

Parameters

Description

Backward
Compatibility

See also

Deprecated. Evaluates a string of JavaScript code in the context of an object.
Method of hj ect

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2, NES 3.0: deprecated as method of objects; retained as
top-level function

eval (string)

string Any string representing a JavaScript expression, statement, or
sequence of statements. The expression can include variables and
properties of existing objects.

eval as a method of Object and every object derived from Object is
deprecated. Use the top-level eval function.

JavaScript 1.1. eval is a method of Object and every object derived from
Object.

eval

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For more information, see
Functi on. pr ot ot ype.

Property of hj ect

Implemented in JavaScript 1.1
ECMA version ECMA-262

Chapter 1, Objects, Methods, and Properties 229



Object.toString

Syntax

Description

toString

Returns a string representing the specified object.
Method of hj ect

Implemented in JavaScript 1.0

ECMA version ECMA-262

toString()

Every object has a t oSt ri ng method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation. For example, the following examples require t heDog to be
represented as a string:

docunent.wite(theDog)
docunent.wite("The dog is " + theDog)

By default, the t oSt ri ng method is inherited by every object descended from
hj ect . You can override this method for custom objects that you create. If
you do not override t oSt ri ng in a custom object, t oSt ri ng returns

[ obj ect type], where t ype is the object type or the name of the constructor
function that created the object.

For example:

var o = new Object()
o.toString // returns [object Object]

The behavior of the t oSt ri ng method depends on whether you specify
LANGUAGE="JavaScri pt 1. 2" in the <SCRI PT> tag:

< If you specify LANGUAGE="JavaScri pt 1. 2" in the <SCRI PT> tag, the
t oSt ri ng method returns an object literal.

< If you do not specify LANGUAGE="JavaScri pt 1. 2" in the <SCRI PT>
tag, the t oSt ri ng method returns [ obj ect type], as with other
JavaScript versions.

230 Server-Side JavaScript Reference



Object.toString

Built-in toString methods. Every built-in core JavaScript object overrides the
t oSt ri ng method of Obj ect to return an appropriate value. JavaScript calls
this method whenever it needs to convert an object to a string.

Some built-in client-side and server-side JavaScript objects do not override the
toString method of Object. For example, for an | mage object named seal i fe
defined as shown below, seal i fe.toString() returns [ obj ect | mage].

<I MG NAME="seal i fe" SRC="i nages\seaotter.gif" ALIGN="Ileft" VSPACE="10">

Overriding the default toString method. You can create a function to be
called in place of the default t oSt ri ng method. The t oSt ri ng method takes
no arguments and should return a string. The t oSt ri ng method you create can
be any value you want, but it will be most useful if it carries information about
the object.

The following code defines the Dog object type and creates t heDog, an object
of type Dog:
functi on Dog(nane, breed, col or, sex) {

t hi s. name=nane

this. breed=breed

t hi s. col or=col or
thi s. sex=sex

}
t heDog = new Dog(" Gabby","Lab", "chocol ate","girl")

If you call the t oSt ri ng method on this custom object, it returns the default
value inherited from Cbj ect :

theDog.toString() //returns [object Object]

The following code creates dogToSt ri ng, the function that will be used to
override the default t oSt ri ng method. This function generates a string
containing each property, of the form " property = val ue;".

function dogToString() {

var ret = "Dog " + this.name + " is [\n"
for (var prop in this)
ret +=" " + prop + " is " + this[prop] + ";\n"

return ret + "]"

}

The following code assigns the user-defined function to the object’'s t oSt ri ng
method:

Dog. prototype.toString = dogToString

Chapter 1, Objects, Methods, and Properties 231



Object.toString

With the preceding code in place, any time t heDog is used in a string context,
JavaScript automatically calls the dogToSt ri ng function, which returns the
following string:

Dog Gabby is [
name i s Gabby;
breed is Lab;
color is chocol ate;
sex is girl;

]

An object’s t oSt ri ng method is usually invoked by JavaScript, but you can
invoke it yourself as follows:

var dogString = theDog.toString()

Examples Example 1: The location object. The following example prints the string
equivalent of the current location.

docunent.wite("location.toString() is " + location.toString() + "<BR>")

The output is as follows:

| ocation.toString() is file:///C/TEMP/ nyprog. htnl

Example 2: Object with no string value. Assume you have an | mage object
named seal i f e defined as follows:

<I MG NAME="seal i fe" SRC="i nages\seaotter.gif" ALIGN="Ileft" VSPACE="10">

Because the | nage object itself has no special t oSt ri ng method,
seal i fe.toString() returns the following:

[ obj ect | nmage]
Example 3: The radix parameter. The following example prints the string
equivalents of the numbers 0 through 9 in decimal and binary.

for (x = 0; x < 10; x++) {
docunent.wite("Decimal: ", x.toString(10), " Binary: ",
x.toString(2), "<BR>")

232 Server-Side JavaScript Reference



See also

Object.unwatch

The preceding example produces the following output:

Decimal: 0 Binary: O
Decimal: 1 Binary: 1
Decimal: 2 Binary: 10
Decimal: 3 Binary: 11
Decimal : 4 Binary: 100
Decimal: 5 Binary: 101
Decimal: 6 Binary: 110
Decimal : 7 Binary: 111
Decimal : 8 Binary: 1000
Decimal : 9 Binary: 1001

bj ect . val ue™

unwatch

Syntax

Parameters

Description

Example

Removes a watchpoint set with the wat ch method.
Method of hj ect

Implemented in JavaScript 1.2, NES 3.0

unwat ch( prop)

prop The name of a property of the object.

The JavaScript debugger has functionality similar to that provided by this
method, as well as other debugging options. For information on the debugger,
see Getting Started with Netscape JavaScript Debugger.

By default, this method is inherited by every object descended from Obj ect .

See wat ch.

Chapter 1, Objects, Methods, and Properties 233



Object.valueOf

valueOf

Syntax
Parameters

Description

Returns the primitive value of the specified object.

Method of hj ect
Implemented in JavaScript 1.1
ECMA version ECMA-262
val ue ()

None

JavaScript calls the val ueO method to convert an object to a primitive value.
You rarely need to invoke the val ue& method yourself; JavaScript
automatically invokes it when encountering an object where a primitive value is
expected.

By default, the val uex method is inherited by every object descended from
bj ect . Every built-in core object overrides this method to return an
appropriate value. If an object has no primitive value, val ue returns the
object itself, which is displayed as:

[ obj ect bject]

You can use val uef within your own code to convert a built-in object into a
primitive value. When you create a custom object, you can override

hj ect. val uer to call a custom method instead of the default Obj ect
method.

Overriding valueOf for custom objects. You can create a function to be
called in place of the default val ue&* method. Your function must take no
arguments.

Suppose you have an object type myNunber Type and you want to create a
val ued method for it. The following code assigns a user-defined function to
the object’s val ueOf method:

nyNunmber Type. pr ot ot ype. val ueOf = new Functi on(functionText)
With the preceding code in place, any time an object of type myNunber Type is

used in a context where it is to be represented as a primitive value, JavaScript
automatically calls the function defined in the preceding code.

234 Server-Side JavaScript Reference



Object.watch

An object’s val ueO method is usually invoked by JavaScript, but you can
invoke it yourself as follows:

nyNunber . val ueOf ()

Note Obijects in string contexts convert via the t oSt r i ng method, which is different
from St ri ng objects converting to string primitives using val ueCf . All string
objects have a string conversion, if only "[ obj ect type]". But many objects
do not convert to number, boolean, or function.

Seealso parselnt, bject.toString
watch
Watches for a property to be assigned a value and runs a function when that
occurs.
Method of hj ect
Implemented in JavaScript 1.2, NES 3.0
Syntax watch(prop, handler)

Parameters
prop The name of a property of the object.
handl er A function to call.

Description  Watches for assignment to a property named pr op in this object, calling

handl er (prop, ol dval, newal ) whenever prop is set and storing the
return value in that property. A watchpoint can filter (or nullify) the value
assignment, by returning a modified newval (or ol dval ).

If you delete a property for which a watchpoint has been set, that watchpoint
does not disappear. If you later recreate the property, the watchpoint is still in
effect.

To remove a watchpoint, use the unwat ch method. By default, the wat ch
method is inherited by every object descended from Obj ect .

The JavaScript debugger has functionality similar to that provided by this
method, as well as other debugging options. For information on the debugger,
see Getting Started with Netscape JavaScript Debugger.

Chapter 1, Objects, Methods, and Properties 235



Object.watch

Example

<script |anguage="JavaScriptl.2">
o = {p:1}
0. wat ch("p",

function (id,oldval, newal) {

docunent.witeln("o." +id + "

+ oldval + " to " + newal)
return newal

b

0.p =2

o.p =3
delete o.p
o.p =4
o.unwat ch(’'p’)
o.p =5
</script>

This script displays the following:

0.p changed from 1 to 2
0.p changed from 2 to 3
0.p changed from 3 to 4

236 Server-Side JavaScript Reference

changed from"



Packages

Created by

Description

Property
Summary

Packages

A top-level object used to access Java classes from within JavaScript code.
Core object

Implemented in JavaScript 1.1, NES 2.0

The Packages object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

The Packages object lets you access the public methods and fields of an
arbitrary Java class from within JavaScript. The j ava, net scape, and sun
properties represent the packages java.*, netscape.*, and sun.* respectively. Use
standard Java dot notation to access the classes, methods, and fields in these
packages. For example, you can access a constructor of the Fr anme class as
follows:

var theFrame = new Packages.java.awt.Frane();

For convenience, JavaScript provides the top-level net scape, sun, and j ava
objects that are synonyms for the Packages properties with the same names.
Consequently, you can access Java classes in these packages without the
Packages keyword, as follows:

var theFrame = new java.aw . Frane();
The cl assNane property represents the fully qualified path name of any other

Java class that is available to JavaScript. You must use the Packages object to
access classes outside the net scape, sun, and j ava packages.

Property Description

cl assNane The fully qualified name of a Java class in a package other than
netscape, java, or sun that is available to JavaScript.

j ava Any class in the Java package java.*.

net scape Any class in the Java package netscape.*.

sun Any class in the Java package sun.*.

Chapter 1, Objects, Methods, and Properties 237



Packages.className

Examples The following JavaScript function creates a Java dialog box:

function createWndow() {
var theOamner = new Packages.java.aw . Frame();
var theW ndow = new Packages. j ava. awt . Di al og(t heOaner) ;
t heW ndow. set Si ze( 350, 200) ;
theW ndow. setTitle("Hello, World");
t heW ndow. set Vi si bl e(true);
}

In the previous example, the function instantiates t heW ndow as a new
Packages object. The set Si ze, set Ti tl e, and set Vi si bl e methods are
all available to JavaScript as public methods of j ava. awt . Di al og.

className

The fully qualified name of a Java class in a package other than net scape,
j ava, or sun that is available to JavaScript.
Property of Packages

Implemented in JavaScript 1.1, NES 2.0

Syntax Packages. c/ assNane
where ¢/ assnane is the fully qualified name of a Java class.

Description  You must use the ¢/ assName property of the Packages object to access
classes outside the net scape, sun, and j ava packages.

Examples The following code accesses the constructor of the Cor baCbj ect class in the
my Conpany package from JavaScript:

var theCbject = new Packages. nyConpany. Cor baOhj ect ()

In the previous example, the value of the ¢/ assNane property is
my Conpany. Cor baObj ect, the fully qualified path name of the
Cor ba(nhj ect class.

238 Server-Side JavaScript Reference



Packages.java

java

Syntax

Description

Examples

Any class in the Java package j ava. *.
Property of Packages

Implemented in JavaScript 1.1, NES 2.0

Packages. j ava

Use the j ava property to access any class in the j ava package from within
JavaScript. Note that the top-level object j ava is a synonym for
Packages. j ava.

The following code accesses the constructor of the j ava. awt . Fr ane class:

var theOwner = new Packages.java.awt. Franme();

You can simplify this code by using the top-level java object to access the
constructor as follows:

var theOwner = new java.aw . Franme();

netscape

Syntax

Description

Examples

Any class in the Java package net scape. *.
Property of Packages

Implemented in JavaScript 1.1, NES 2.0

Packages. net scape

Use the net scape property to access any class in the net scape package
from within JavaScript. Note that the top-level object net scape is a synonym
for Packages. net scape.

See the example for .Packages. j ava

Chapter 1, Objects, Methods, and Properties 239



Packages.sun

sun

Any class in the Java package sun. *.
Property of Packages

Implemented in JavaScript 1.1, NES 2.0

Syntax Packages. sun

Description  Use the sun property to access any class in the sun package from within
JavaScript. Note that the top-level object sun is a synonym for
Packages. sun.

Examples See the example for Packages. j ava

240 Server-Side JavaScript Reference



project

Created by

Description

Property
Summary

project

Contains data for an entire application.
Server-side object

Implemented in NES 2.0

The JavaScript runtime engine on the server automatically creates a pr oj ect
object for each application running on the server.

The JavaScript runtime engine on the server creates a pr oj ect object when an
application starts and destroys the pr oj ect object when the application or
server stops. The typical pr oj ect object lifetime is days or weeks.

Each client accessing the same application shares the same pr oj ect object.
Use the proj ect object to maintain global data for an entire application. Many
clients can access an application simultaneously, and the pr oj ect object lets
these clients share information.

The runtime engine creates a set of pr oj ect objects for each distinct Netscape
HTTPD process running on the server. Because several server HTTPD
processes may be running on different port numbers, the runtime engine
creates a set of proj ect objects for each process.

You can lock the proj ect object to ensure that different clients do not change
its properties simultaneously. When one client locks the pr oj ect object, other
clients must wait before they can lock it. See Lock for more information about
locking the proj ect object.

The proj ect object has no predefined properties. You create custom
properties to contain project-specific data that is required by an application.

You can create a property for the pr oj ect object by assigning it a name and a
value. For example, you can create a pr oj ect object property to keep track of
the next available Customer ID. Any client that accesses the application without
a Customer ID is sequentially assigned one, and the value of the ID is
incremented for each initial access.

Chapter 1, Objects, Methods, and Properties 241



project.lock

Method Summary

Method Description
| ock Obtains the lock.
unl ock Releases the lock.

In addition, this object inherits the wat ch and unwat ch methods from
hj ect.

Examples Example 1. This example creates the | ast | D property and assigns a value to it
by incrementing an existing value.

project.lastID = 1 + parselnt(project.lastlD, 10)

Example 2. This example increments the value of the | ast | D property and
uses it to assign a value to the cust orer | D property.

project. | ock()

project.lastlD = 1 + parselnt(project.lastlD, 10);
client.custonmerID = project.lastlD;

proj ect. unl ock();

In the previous example, notice that the pr oj ect object is locked while the
cust omer | D property is assigned, so no other client can attempt to change the
| ast | D property at the same time.

Seealso client,request, server

lock

Obtains the lock. If another thread has the lock, this method waits until it can
get the lock.

Method of pr oj ect

Implemented in NES 2.0

Syntax | ock()
Parameters None.

Returns  Nothing.

242 Server-Side JavaScript Reference



Description

See also

project.unlock

You can obtain a lock for an object to ensure that different clients do not access
a critical section of code simultaneously. When an application locks an object,
other client requests must wait before they can lock the object.

Note that this mechanism requires voluntary compliance by asking for the lock
in the first place.

Lock, proj ect . unl ock

unlock

Syntax
Parameters

Returns

Description

See also

Releases the lock.
Method of pr oj ect

Implemented in NES 2.0

unl ock()
None.

False if it fails; otherwise, true. Failure indicates an internal JavaScript error or
that you attempted to unlock a lock that you don’t own.

If you unlock a lock that is unlocked, the resulting behavior is undefined.

Lock, proj ect. | ock

Chapter 1, Objects, Methods, and Properties 243



RegExp

RegEXxp

A regular expression object contains the pattern of a regular expression. It has
properties and methods for using that regular expression to find and replace
matches in strings.

In addition to the properties of an individual regular expression object that you
create using the RegExp constructor function, the predefined RegExp object has
static properties that are set whenever any regular expression is used.

Core object

Implemented in JavaScript 1.2, NES 3.0

Created by A literal text format or the RegExp constructor function.
The literal format is used as follows:
| patternl fl ags
The constructor function is used as follows:
new RegExp("pattern'[, "flags"])

Parameters
pattern The text of the regular expression.

flags If specified, flags can have one of the following values:
= g: global match
= i :ignore case
= @i : both global match and ignore case

Notice that the parameters to the literal format do not use quotation marks to
indicate strings, while the parameters to the constructor function do use
quotation marks. So the following expressions create the same regular
expression:

[ ab+c/i
new RegExp("ab+c", "i")

Description  When using the constructor function, the normal string escape rules (preceding
special characters with \ when included in a string) are necessary. For example,
the following are equivalent:

= new RegBExp("\\w+")

re
re 1\ w+/

244 Server-Side JavaScript Reference



RegExp

The following table provides a complete list and description of the special
characters that can be used in regular expressions.

Table 1.4 Special characters in regular expressions.

Character Meaning

\ For characters that are usually treated literally, indicates that the next
character is special and not to be interpreted literally.

For example, / b/ matches the character 'b’. By placing a backslash in
front of b, that is by using / \ b/, the character becomes special to
mean match a word boundary.

_Or_

For characters that are usually treated specially, indicates that the next
character is not special and should be interpreted literally.

For example, * is a special character that means 0 or more occurrences
of the preceding character should be matched; for example, / a*/
means match 0 or more a’'s. To match * literally, precede the it with a
backslash; for example, / a\ */ matches 'a*'.

" Matches beginning of input or line.

For example, / *A/ does not match the 'A’ in "an A," but does match it
in"An A"

$ Matches end of input or line.

For example, / t $/ does not match the 't' in "eater", but does match it
in "eat"

* Matches the preceding character 0 or more times.

For example, / bo*/ matches 'boooo’ in "A ghost booooed" and 'b’ in
"A bird warbled", but nothing in "A goat grunted".

+ Matches the preceding character 1 or more times. Equivalentto {1, }.
For example, / a+/ matches the 'a’ in "candy" and all the a’s in
"Caaaaaaandy."

?

Matches the preceding character 0 or 1 time.
For example, / e?l e?/ matches the ’el’ in "angel" and the ’le’ in
"angle."

(The decimal point) matches any single character except the newline
character.

For example, / . n/ matches 'an’ and 'on’ in "nay, an apple is on the
tree", but not 'nay’.

Chapter 1, Objects, Methods, and Properties 245



RegExp

Table 1.4 Special characters in regular expressions. (Continued)

Character

Meaning

(x)

x|y

{n}

{n.}

{n. n

[xyz]

[*xyz]

[\hb]
\'b

Matches 'x’ and remembers the match.

For example, / (f 00) / matches and remembers 'foo’ in "foo bar." The
matched substring can be recalled from the resulting array’s elements
[1], ..., [n], or from the predefined RegExp object’s properties $1,
. $9.

Matches either 'x' or 'y'.
For example, / gr een| r ed/ matches 'green’ in "green apple" and 'red’
in "red apple.”

Where n is a positive integer. Matches exactly n occurrences of the
preceding character.

For example, / af{ 2}/ doesn't match the 'a' in "candy," but it matches
all of the a's in "caandy," and the first two a's in "caaandy."

Where n is a positive integer. Matches at least n occurrences of the
preceding character.

For example, / a{ 2, } doesn't match the 'a’ in "candy", but matches all
of the a's in "caandy" and in "caaaaaaandy."

Where n and mare positive integers. Matches at least n and at most m
occurrences of the preceding character.

For example, / a{ 1, 3}/ matches nothing in "cndy", the 'a' in "candy,"
the first two a's in "caandy," and the first three a's in "caaaaaaandy"”
Notice that when matching "caaaaaaandy”, the match is "aaa", even
though the original string had more a’s in it.

A character set. Matches any one of the enclosed characters. You can
specify a range of characters by using a hyphen.

For example, [ abcd] is the same as [ a- ¢c] . They match the 'b' in
"brisket" and the ‘c' in "ache".

A negated or complemented character set. That is, it matches anything
that is not enclosed in the brackets. You can specify a range of
characters by using a hyphen.

For example, [ “abc] is the same as [ *a- c] . They initially match 'r'
in "brisket" and 'h" in "chop."

Matches a backspace. (Not to be confused with \ b.)

Matches a word boundary, such as a space. (Not to be confused with
[\b].)

For example, / \ bn\ w matches the 'no’ in "noonday";/ \ wy\ b/
matches the 'ly" in "possibly yesterday."

246 Server-Side JavaScript Reference



RegExp

Table 1.4 Special characters in regular expressions. (Continued)

Character

Meaning

\B

\cX

\d

\D

\ f
\n
\'r

\'s

\'S

\ t
\v

\w

\W

Matches a non-word boundary.
For example, /\ W\ Bn/ matches 'on’ in "noonday", and / y\ B\ w/
matches 'ye’ in "possibly yesterday."

Where X is a control character. Matches a control character in a string.
For example, /\ cM matches control-M in a string.

Matches a digit character. Equivalent to [ 0- 9] .
For example, /\ d/ or/[0-9]/ matches 2" in "B2 is the suite
number."

Matches any non-digit character. Equivalent to [ 20- 9] .
For example, /\ D/ or /[ ~0-9]/ matches 'B’ in "B2 is the suite
number."

Matches a form-feed.
Matches a linefeed.
Matches a carriage return.

Matches a single white space character, including space, tab, form feed,
line feed. Equivalentto [ \f\n\r\t\v].
for example, /\ s\ w*/ matches ’ bar’ in "foo bar."

Matches a single character other than white space. Equivalent to [ »
\fAn\rit\v].
For example, /\ S/ \ w* matches 'foo’ in "foo bar."

Matches a tab
Matches a vertical tab.

Matches any alphanumeric character including the underscore.
Equivalent to [ A- Za- z0-9_] .
For example, / \ W matches 'a’ in "apple,” '5" in "$5.28," and '3’ in "3D."

Matches any non-word character. Equivalent to [ *A- Za-z0-9_] .
For example, /\W or /[ *$A- Za- z0- 9_] / matches '%’ in "50%."

Chapter 1, Objects, Methods, and Properties 247



RegExp

Table 1.4 Special characters in regular expressions. (Continued)

Character Meaning

\n Where n is a positive integer. A back reference to the last substring
matching the n parenthetical in the regular expression (counting left
parentheses).

For example, / appl e(, )\ sorange\ 1/ matches 'apple, orange’, in
"apple, orange, cherry, peach.” A more complete example follows this
table.

Note: If the number of left parentheses is less than the number
specified in \n, the \n is taken as an octal escape as described in the

next row.
\ooct al Where \ ooct al is an octal escape value or \ xhex is a hexadecimal
\ xhex escape value. Allows you to embed ASCII codes into regular

expressions.

The literal notation provides compilation of the regular expression when the
expression is evaluated. Use literal notation when the regular expression will
remain constant. For example, if you use literal notation to construct a regular
expression used in a loop, the regular expression won't be recompiled on each
iteration.

The constructor of the regular expression object, for example,

new RegExp("ab+c"), provides runtime compilation of the regular expression.
Use the constructor function when you know the regular expression pattern
will be changing, or you don’t know the pattern and are getting it from another
source, such as user input. Once you have a defined regular expression, and if
the regular expression is used throughout the script and may change, you can
use the conpi | e method to compile a new regular expression for efficient
reuse.

A separate predefined RegExp object is available in each window; that is, each
separate thread of JavaScript execution gets its own RegExp object. Because
each script runs to completion without interruption in a thread, this assures that
different scripts do not overwrite values of the RegExp object.

The predefined RegExp object contains the static properties i nput ,

mul tiline, |l astMatch,l|astParen,| eftContext,rightContext,
and $1 through $9. The i nput and nul ti | i ne properties can be preset. The
values for the other static properties are set after execution of the exec and

t est methods of an individual regular expression object, and after execution
of the mat ch and r epl ace methods of Stri ng.

248 Server-Side JavaScript Reference



RegExp

Property Note that several of the RegExp properties have both long and short (Perl-like)
Summary  names. Both names always refer to the same value. Perl is the programming
language from which JavaScript modeled its regular expressions.

Property Description

$1, ..., $9 Parenthesized substring matches, if any.

$_ See i nput .

$* See mul tiline.

$& See | ast Mat ch.

$+ See | ast Par en.

$ See leftContext.

$ See rightContext.

constructor Specifies the function that creates an object’s prototype.

gl obal Whether or not to test the regular expression against all possible
matches in a string, or only against the first.

i gnor eCase Whether or not to ignore case while attempting a match in a
string.

i nput The string against which a regular expression is matched.

| ast | ndex The index at which to start the next match.

| ast Mat ch The last matched characters.

| ast Par en The last parenthesized substring match, if any.

| ef t Cont ext The substring preceding the most recent match.

mul tiline Whether or not to search in strings across multiple lines.

pr ot ot ype Allows the addition of properties to all objects.

ri ght Cont ext

source

The substring following the most recent match.

The text of the pattern.

Chapter 1, Objects, Methods, and Properties 249



RegExp

Method Summary

Examples

Method Description

conpil e Compiles a regular expression object.

exec Executes a search for a match in its string parameter.

t est Tests for a match in its string parameter.

toString Returns a string representing the specified object. Overrides the

bj ect.toStri ng method.

val ueCf Returns the primitive value of the specified object. Overrides
the Obj ect . val ueX method.

In addition, this object inherits the wat ch and unwat ch methods from
hj ect.

Example 1. The following script uses the r epl ace method to switch the words
in the string. For the replacement text, the script uses the values of the $1 and
$2 properties of the global RegExp object. Note that the RegExp object name is
not be prepended to the $ properties when they are passed as the second
argument to the r epl ace method.

<SCRI PT LANGUAGE="JavaScri ptl.2">
re = /(\wr)\s(\w+)/;

str = "John Smth";
newstr=str.replace(re, "$2, $1");
docunent.wite(newstr)

</ SCRI PT>

This displays "Smith, John".

Example 2. In the following example, RegExp. i nput is set by the Change
event. In the get I nf o function, the exec method uses the value of
RegExp. i nput as its argument. Note that RegExp is prepended to the $
properties.

<HTM_>

<SCRI PT LANGUAGE="JavaScri pt1l.2">
function getlnfo() {
re = /(\w+)\s(\d+)/;
re.exec();
wi ndow. al ert (RegExp. $1 + ", your age is " + RegExp.$2);
}
</ SCRI PT>

250 Server-Side JavaScript Reference



RegExp.$1, ..., $9

Enter your first nane and your age, and then press Enter.

<FORMW>
<I NPUT TYPE: " TEXT" NAME="NaneAge" onChange="getlnfo(this);">
</ FORM>

</ HTML>

$1, ..., $9

Description

Examples

Properties that contain parenthesized substring matches, if any.
Property of RegExp

Static, Read-only
Implemented in JavaScript 1.2, NES 3.0

Because i nput is static, it is not a property of an individual regular expression
object. Instead, you always use it as RegExp. i nput .

The number of possible parenthesized substrings is unlimited, but the
predefined RegExp object can only hold the last nine. You can access all
parenthesized substrings through the returned array’s indexes.

These properties can be used in the replacement text for the

String. repl ace method. When used this way, do not prepend them with
RegExp. The example below illustrates this. When parentheses are not included
in the regular expression, the script interprets $n’s literally (where n is a
positive integer).

The following script uses the r epl ace method to switch the words in the
string. For the replacement text, the script uses the values of the $1 and $2
properties of the global RegExp object. Note that the RegExp object name is not
be prepended to the $ properties when they are passed as the second
argument to the r epl ace method.

<SCRI PT LANGUAGE="JavaScri pt1l.2">
re = /(\w+)\s(\w+)/;

str = "John Smth";
newstr=str.replace(re, "$2, $1");
docunent.wite(newstr)

</ SCRI PT>

This displays "Smith, John".

Chapter 1, Objects, Methods, and Properties 251



RegExp.$_

$

See i nput .

$*

See nul tiline.

$&

See | ast Mat ch.

$+

See | ast Par en.

$£

See | ef t Cont ext .

$1

See ri ght Cont ext .

compile

Compiles a regular expression object during execution of a script.
Method of RegExp
Implemented in JavaScript 1.2, NES 3.0

Syntax regexp.conpil e(pattern[, flags])

252 Server-Side JavaScript Reference



Parameters

Description

RegExp.constructor

regexp The name of the regular expression. It can be a variable name or a
literal.

pattern A string containing the text of the regular expression.
fl ags If specified, flags can have one of the following values:
= "g": global match
< "i":ignore case
= "gi": both global match and ignore case

Use the conpi | e method to compile a regular expression created with the
RegExp constructor function. This forces compilation of the regular expression
once only which means the regular expression isn't compiled each time it is
encountered. Use the conpi | e method when you know the regular expression
will remain constant (after getting its pattern) and will be used repeatedly
throughout the script.

You can also use the conpi | e method to change the regular expression during
execution. For example, if the regular expression changes, you can use the
conpi | e method to recompile the object for more efficient repeated use.

Calling this method changes the value of the regular expression’s sour ce,
gl obal , and i gnor eCase properties.

constructor

Description

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Property of RegExp

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

See (bj ect . constructor.

Chapter 1, Objects, Methods, and Properties 253



RegExp.exec

exec

Syntax

Parameters

Description

Executes the search for a match in a specified string. Returns a result array.
Method of RegExp

Implemented in JavaScript 1.2, NES 3.0

regexp. exec([str])
regexp([str])

regexp The name of the regular expression. It can be a variable name or a
literal.
str The string against which to match the regular expression. If

omitted, the value of RegExp. i nput is used.

As shown in the syntax description, a regular expression’s exec method can be
called either directly, (with r egexp. exec(str)) or indirectly (with
regexp(str)).

If you are executing a match simply to find t rue or f al se, use the t est
method or the Stri ng sear ch method.

If the match succeeds, the exec method returns an array and updates
properties of the regular expression object and the predefined regular
expression object, RegExp. If the match fails, the exec method returns nul | .

Consider the following example:

<SCRI PT LANGUAGE="JavaScri ptl.2">

//Match one d foll owed by one or nore b’s followed by one d
// Remermber matched b’s and the follow ng d

//1gnore case

nyRe=/d(b+) (d)/i g;

nyArray = myRe. exec("cdbBdbsbz");

</ SCRI PT>

254 Server-Side JavaScript Reference



The following table shows the results for this script:

RegExp.exec

Object Property/Index Description Example
myAr r ay The contents of myAr r ay ["dbBd", "bB", "d"]
i ndex The 0-based index of the match in the 1
string
i nput The original string cdbBdbsbz
[ 0] The last matched characters dbBd
[1, ...[m The parenthesized substring matches, if [1] = bB
any. The number of possible [2] =d
parenthesized substrings is unlimited.
nmyRe | ast | ndex The index at which to start the next 5
match.
i gnor eCase Indicates if the "i " flag was used to true
ignore case
gl obal Indicates if the " g" flag was used for a true
global match
source The text of the pattern d(b+) (d)
RegExp | ast Mat ch The last matched characters dbBd
$&
| ef t Cont ext The substring preceding the most recent c
$ match
ri ght Cont ext The substring following the most recent bsbz
$ match
$1, ...9$9 The parenthesized substring matches, if $1 = bB
any. The number of possible $2 =d
parenthesized substrings is unlimited, but
RegExp can only hold the last nine.
| ast Par en The last parenthesized substring match, if  d
$+

any.

Chapter 1, Objects, Methods, and Properties 255



RegExp.exec

Examples

If your regular expression uses the "g" flag, you can use the exec method
multiple times to find successive matches in the same string. When you do so,
the search starts at the substring of st r specified by the regular expression’s

| ast | ndex property. For example, assume you have this script:

<SCRI PT LANGUAGE="JavaScript1l.2">
nyRe=/ ab*/ g;
str = "abbcdef abh"
nyArray = myRe. exec(str);
docunent.witel n("Found " + myArray[0] +
Next match starts at " + nyRe.lastl ndex)
nySecondArray = myRe. exec(str);
docunent.witel n("Found " + nySecondArray[0] +
Next match starts at " + nyRe.lastl ndex)
</ SCRI PT>

This script displays the following text:

Found abb. Next match starts at 3
Found ab. Next match starts at 9

In the following example, the user enters a name and the script executes a
match against the input. It then cycles through the array to see if other names
match the user's name.

This script assumes that first names of registered party attendees are preloaded
into the array A, perhaps by gathering them from a party database.

<HTM.>

<SCRI PT LANGUAGE="JavaScript1.2">

A= ["Frank", "Emly", "Jane", "Harry", "N ck", "Beth", "Rick",
"Terrence", "Carol", "Ann", "Terry", "Frank", "Alice", "Rick",
"Bill", "Ton', "Fiona", "Jane", "WIlianf, "Joan", "Beth"]

256 Server-Side JavaScript Reference



RegExp.global

function | ookup() {
firstName = /\w+/i();
if (!firstName)

wi ndow. al ert (RegExp.input + " isn't a nane!");
el se {
count = 0;
for (i=0; i<A.length; i++)
if (firstNane[O0].toLowerCase() == Ali].toLowerCase()) count++;
if (count ==1)
mdstring = " other has "
el se
mdstring = " others have ";
wi ndow. al ert ("Thanks, " + count + midstring + "the sane name!")
}
}
</ SCRI PT>

Enter your first nane and then press Enter.

<FORM> <I NPUT TYPE: "TEXT" NAME="Fir st Nane" onChange="I| ookup(this);"> </
FORM>

</ HTML>

global

Description

Whether or not the " g" flag is used with the regular expression.
Property of RegExp

Read-only
Implemented in JavaScript 1.2, NES 3.0

gl obal is a property of an individual regular expression object.

The value of gl obal is true if the "g" flag was used; otherwise, f al se. The
"g" flag indicates that the regular expression should be tested against all
possible matches in a string.

You cannot change this property directly. However, calling the conpi | e
method changes the value of this property.

Chapter 1, Objects, Methods, and Properties 257



RegExp.ignoreCase

ignoreCase

Whether or not the "i " flag is used with the regular expression.
Property of RegExp

Read-only

Implemented in JavaScript 1.2, NES 3.0

Description i gnor eCase is a property of an individual regular expression object.

The value of i gnoreCase is true if the "i " flag was used; otherwise, f al se.
The "i " flag indicates that case should be ignored while attempting a match in
a string.

You cannot change this property directly. However, calling the conpi | e
method changes the value of this property.

input

The string against which a regular expression is matched. $_ is another name
for the same property.
Property of RegExp

Static
Implemented in JavaScript 1.2, NES 3.0

Description Because i nput is static, it is not a property of an individual regular expression
object. Instead, you always use it as RegExp. i nput .

If no string argument is provided to a regular expression’s exec or t est
methods, and if RegExp. i nput has a value, its value is used as the argument to
that method.

258 Server-Side JavaScript Reference



RegExp.lastindex

The script or the browser can preset the i nput property. If preset and if no
string argument is explicitly provided, the value of i nput is used as the string
argument to the exec or t est methods of the regular expression object. i nput
is set by the browser in the following cases:

< When an event handler is called for a TEXT form element, i nput is set to
the value of the contained text.

< When an event handler is called for a TEXTAREA form element, i nput is set
to the value of the contained text. Note that mul ti | i ne is also set to t rue
so that the match can be executed over the multiple lines of text.

< When an event handler is called for a SELECT form element, i nput is set to
the value of the selected text.

= When an event handler is called for a Li nk object, i nput is set to the value
of the text between <A HREF=...> and </ A>.

The value of the i nput property is cleared after the event handler completes.

lastindex

Description

A read/write integer property that specifies the index at which to start the next
match.
Property of RegExp

Implemented in JavaScript 1.2, NES 3.0
| ast | ndex is a property of an individual regular expression object.

This property is set only if the regular expression used the " g" flag to indicate
a global search. The following rules apply:

= If I ast | ndex is greater than the length of the string, r egexp. t est and
regexp. exec fail, and | ast I ndex is set to 0.

< If I ast I ndex is equal to the length of the string and if the regular
expression matches the empty string, then the regular expression matches
input starting at | ast | ndex.

Chapter 1, Objects, Methods, and Properties 259



RegExp.lastMatch

= If I ast I ndex is equal to the length of the string and if the regular
expression does not match the empty string, then the regular expression
mismatches input, and | ast | ndex is reset to 0.

= Otherwise, | ast | ndex is set to the next position following the most recent
match.

For example, consider the following sequence of statements:

re = /(hi)?2/ Matches the empty string.

9
re("hi") Returns ["hi ™, "hi"] with| ast| ndex equal to 2.
re("hi") Returns [ " "], an empty array whose zeroth element is the match
string. In this case, the empty string because | ast | ndex was 2
(and still is 2) and " hi " has length 2.
lastMatch

The last matched characters. $& is another name for the same property.
Property of RegExp

Static, Read-only
Implemented in JavaScript 1.2, NES 3.0

Description Because | ast Mat ch is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp. | ast Mat ch.

lastParen

The last parenthesized substring match, if any. $+ is another name for the same
property.

Property of RegExp

Static, Read-only
Implemented in JavaScript 1.2, NES 3.0

Description Because | ast Par en is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp. | ast Par en.

260 Server-Side JavaScript Reference



RegExp.leftContext

leftContext

The substring preceding the most recent match. $* is another name for the
same property.
Property of RegExp

Static, Read-only
Implemented in JavaScript 1.2, NES 3.0

Description Because leftContext is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.leftContext
multiline
Reflects whether or not to search in strings across multiple lines. $* is another
name for the same property.

Property of RegExp
Static
Implemented in JavaScript 1.2, NES 3.0
Description  Because multiline is static, it is not a property of an individual regular

expression object. Instead, you always use it as RegExp.multiline

The value of multiline is true if multiple lines are searched, false if
searches must stop at line breaks.

The script or the browser can preset the multiline property. When an event
handler is called for a TEXTAREAform element, the browser sets multiline to
true . multiline is cleared after the event handler completes. This means that,
if you've preset multiline to true , it is reset to false after the execution of any
event handler.

Chapter 1, Objects, Methods, and Properties 261



RegExp.prototype

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Functi on. prot ot ype.

Property of RegExp

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

rightContext

The substring following the most recent match. $' is another name for the
same property.
Property of RegExp

Static, Read-only
Implemented in JavaScript 1.2, NES 3.0

Description  Because ri ght Cont ext is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp. ri ght Cont ext .
source
A read-only property that contains the text of the pattern, excluding the forward
slashes and "g" or"i" flags.

Property of RegExp
Read-only
Implemented in JavaScript 1.2, NES 3.0
Description sour ce is a property of an individual regular expression object.

You cannot change this property directly. However, calling the conpi | e
method changes the value of this property.

262 Server-Side JavaScript Reference



RegExp.test

test

Executes the search for a match between a regular expression and a specified
string. Returns true or f al se.
Method of RegExp

Implemented in JavaScript 1.2, NES 3.0

Syntax regexp.test([str])

Parameters
regexp The name of the regular expression. It can be a variable name or a literal.
str The string against which to match the regular expression. If omitted, the

value of RegExp. i nput is used.

Description  When you want to know whether a pattern is found in a string use the t est
method (similar to the St ri ng. sear ch method); for more information (but
slower execution) use the exec method (similar to the St ri ng. mat ch
method).

Example The following example prints a message which depends on the success of the
test:
function testinput(re, str){
if (re.test(str))
mdstring = " contains ";
el se
mdstring = " does not contain “;
docunent.wite (str + mdstring + re.source);
}
toString
Returns a string representing the specified object.
Method of RegExp
Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262
Syntax toString()
Parameters None.

Chapter 1, Objects, Methods, and Properties 263



RegExp.valueOf

Description The RegExp object overrides the t oSt ri ng method of the Obj ect object; it
does not inherit Obj ect . t oSt ri ng. For RegExp objects, the t oSt ri ng
method returns a string representation of the object.

Examples The following example displays the string value of a RegExp object:

nyExp = new RegExp("a+b+c");
alert (nmyExp.toString()) di spl ays "/a+b+c/"

Seealso Object.toString

valueOf

Returns the primitive value of a RegExp object.

Method of RegExp
Implemented in JavaScript 1.1
ECMA version ECMA-262

Syntax val ueOr ()
Parameters None

Description The val ueOf method of RegExp returns the primitive value of a RegExp
object as a string data type. This value is equivalent to RegExp. t oSt ri ng.

This method is usually called internally by JavaScript and not explicitly in code.

Examples nyExp = new RegExp("a+b+c");
al ert (myExp. val uet ()) di spl ays "/ a+b+c/"

See also RegExp.toString, Object. val uet™

264 Server-Side JavaScript Reference



request

Created by

Description

request

Contains data specific to the current client request.
Server-side object

Implemented in NES 2.0

The JavaScript runtime engine on the server automatically creates a r equest
object for each client request.

The JavaScript runtime engine on the server creates a r equest object each time
the client makes a request of the server. The runtime engine destroys the
request object after the server responds to the request, typically by providing
the requested page.

The properties listed below are read-only properties that are initialized
automatically when a r equest object is created. In addition to these predefined
properties, you can create custom properties to store application-specific data
about the current request.

Custom properties. You can create a property for the r equest object by
assigning it a name and a value. For example, you can create a r equest
property to store the date and time that a request is received so you can enter
the date into the page content.

You can also create r equest object properties by encoding them in a URL.
When a user navigates to the URL by clicking its link, the properties are created
and instantiated to values that you specify. The properties are valid on the
destination page.

Use the following syntax to encode a r equest property in a URL:

<A HREF="URL?pr opertyNane=val ue&pr opert yNane=val ue...">

where:

= URL is the URL the page that will get the new r equest properties.
= propertyNane is the name of the property you are creating.

< val ue is the initial value of the new property.

Use escape to encode non-alphanumeric values in the URL string.

You can also create custom properties for the r equest object.

Chapter 1, Objects, Methods, and Properties 265



request

Property
summary = pponerty Description
agent Provides name and version information about the client
software.
i mgeX The horizontal position of the mouse pointer when the user

clicked the mouse over an image map.

i mgeY The vertical position of the mouse pointer when the user clicked
the mouse over an image map.

i nput Narre Represents an input element on an HTML form. (There is not a
property whose name is i nput Nane. Rather, each instance of
request has properties named after each input element.)

ip Provides the IP address of the client.

met hod Provides the HTTP method associated with the request.

pr ot ocol Provides the HTTP protocol level supported by the client’s
software.

Method Summary This object inherits the wat ch and unwat ch methods from Obj ect .

Examples Example 1. This example displays the values of the predefined properties of
the r equest object. In this example, an HTML form is defined as follows:

<FORM METHOD="post" NAME="i dForn ACTION="hello.htm ">
<P>Last narme:

<I NPUT TYPE="text" NAME="| ast Nane" SIZE="20">
<BR>Fi r st name:

<I NPUT TYPE="text" NAME="firstNane" SIZE="20">
</ FORM>

The following code displays the values of the r equest object properties that
are created when the form is submitted:

agent = <SERVER>write(request.agent) </ SERVER><BR>

ip = <SERVER>writ e(request.ip)</ SERVER><BR>

nmet hod = <SERVER>wr it e(request. net hod) </ SERVER><BR>
protocol = <SERVER>write(request. protocol )</ SERVER><BR>
| ast Nane = <SERVER>wri t e(request. | ast Nane) </ SERVER><BR>
firstName = <SERVER>write(request.firstNane)</ SERVER>

266 Server-Side JavaScript Reference



request.agent

When it executes, this code displays information similar to the following:

agent = "Mdzilla/2.0 (WnNT;I)"
ip = "165.327.114. 147"
met hod = " GET"

protocol = "HTTP/1.0"
| ast Nane = "Schaefer"
firstNane = "Jesse"

Example 2. The following example creates the r equest Dat e property and
initializes it with the current date and time:

request.requestDate = new Date()
Example 3. When a user clicks the following link, the i nfo. ht il page is

loaded, r equest . accessedFr omis created and initialized to "hel l o. ht mi ",
and request . formi d is created and initialized to " 047" .

Click here for
<A HREF="i nf 0. ht ml ?accessedFronxhel | 0. ht m & or m d=047">
addi tional information</A>.

Seealso client, project, server

agent

Provides name and version information about the client software.
Property of request

Read-only

Implemented in NES 2.0

Description The agent property identifies the client software. Use this information to
conditionally employ certain features in an application.

The value of the agent property is the same as the value of the user Agent
property of the client-side navi gat or object. The agent property specifies
client information in the following format:

codeName/r el easeNunber (pl atfornj country; platform dentifier)

Chapter 1, Objects, Methods, and Properties 267



request.agent

Examples

See also

The values contained in this format are the following:

= codeNane is the code name of the client. For example, " Mozi | | a" specifies
Navigator.

= rel easeNunber is the version number of the client. For example, " 2. 0b4"
specifies Navigator 2.0, beta 4.

= pl at f or mis the platform upon which the client is running. For example,
"W nl16" specifies a 16-bit version of Windows, such as Windows 3.11.

e country is either "1 " for the international release or "U' for the domestic
U.S. release. The domestic release has a stronger encryption feature than
the international release.

e platfornmdentifier isan optional identifier that further specifies the
platform. For example, in Navigator 1.1, pl at f or mis "w ndows" and
pl atform dentifier is"32bit". In Navigator 2.0, both pieces of
information are contained in the pl at f or mdesignation. For example, in
Navigator 2.0, the previous platform is expressed as " W nNT" .

The following example displays client information for Navigator 2.0 on
Windows NT:

write(request.agent)
\\Displays "Mzilla/2.0 (WnNT;I)"

The following example evaluates the r equest . agent property and runs the
ol dBr owser procedure for clients other than Navigator 2.0. If the browser is
Navigator 2.0, the cur rent Br owser function executes.

<SERVER>

var agent Var =r equest . agent

if (agentVar.indexOf("2.0")==-1)
ol dBrowser ()

el se
current Browser ()

</ SERVER>

request.ip, request. net hod, request. protocol

268 Server-Side JavaScript Reference



request.imageX

imageX

Description

Examples

See also

The horizontal position of the mouse pointer when the user clicked the mouse
over an image map.
Property of request

Read-only
Implemented in NES 2.0

The ISMAP attribute of the | MG tag indicates a server-based image map. When
the user clicks the mouse with the pointer over an image map, the horizontal
and vertical position of the pointer are returned to the server.

The i mageX property returns the horizontal position of the mouse cursor when
the user clicks on an image map.

Suppose you define the following image map:

<A HREF="mapchoi ce. htm ">

<I MG SRC="i nages\ nap. gi f" W DTH=599 W DTH=424 BORDER=0 | SMAP
ALT="SANTA CRUZ COUNTY">

</ A>

Note the | SMAP attribute that makes the image a clickable map. When the user
clicks the mouse on the image, the page mapchoi ce. ht M will have properties
request . i mageX and r equest . i mageY based on the mouse cursor position
where the user clicked.

request.i mageY

imageY

The vertical position of the mouse pointer when the user clicked the mouse
over an image map.
Property of request

Read-only
Implemented in NES 2.0

Chapter 1, Objects, Methods, and Properties 269



request.inputName

Description

Examples

See also

The ISMAP attribute of the | MG tag indicates a server-based image map. When
the user clicks the mouse with the pointer over an image map, the horizontal
and vertical position of the pointer are returned to the server.

The i mageY property returns the vertical position of the mouse cursor when the
user clicks on an image map.

See example for i mageX.

request.i mageX

inputName

Description

Examples

Represents an input element on an HTML form.
Property of request

Read-only
Implemented in NES 2.0

Each input element in an HTML form corresponds to a property of the r equest
object. The name of each of these properties is the name of the field on the
associated form. i nput Nane is a variable that represents the value of the name
property of an input field on a submitted form. By default, the value of the
JavaScript name property is the same as the HTML NAME attribute.

The following HTML source creates the r equest . | ast Nane and the
request . firstNane properties when i dFor mis submitted:

<FORM METHOD="post" NAME="i dForn ACTION="hello.htm ">
<P>Last nane:

<I NPUT TYPE="text" NAME="I| ast Nane" S| ZE="20">
<BR>Fi r st name:

<I NPUT TYPE="text" NAME="firstNane" SIZE="20">

</ FORM>

ip

Provides the IP address of the client.
Property of request

Read-only

Implemented in NES 2.0

270 Server-Side JavaScript Reference



Description

Examples

See also

request.method

The IP address is a set of four numbers between 0 and 255, for example,
198.217.226.34. You can use the IP address to authorize or record access in
certain situations.

In the following example, the i ndexOf method evaluates r equest . i p to
determine if it begins with the string " 198. 217. 226". The i f statement
executes a different function depending on the result of the i ndexOf' method.

<SERVER>

var i pAddress=request.ip

if (ipAddress.indexOr("198.217.226.")==-1)
i mtedAccess()

el se
full Access()

</ SERVER>

request. agent, request. et hod, r equest . pr ot ocol

method

Description

Examples

See also

Provides the HTTP method associated with the request.
Property of request

Read-only
Implemented in NES 2.0

The value of the net hod property is the same as the value of the met hod
property of the client-side For mobject. That is, net hod reflects the METHOD
attribute of the FORMtag. For HTTP 1.0, the net hod property evaluates to either
"get" or"post". Use the net hod property to determine the proper response
to a request.

The following example executes the post Response function if the met hod
property evaluates to " post " . If met hod evaluates to anything else, it executes
the get Response function.

<SERVER>

if (request.nethod=="post")
post Response()

el se
get Response()

</ SERVER>

request . agent, request.ip, request. prot ocol

Chapter 1, Objects, Methods, and Properties 271



request.protocol

protocol

Description

Examples

See also

Provides the HTTP protocol level supported by the client’s software.
Property of request

Read-only
Implemented in NES 2.0

For HTTP 1.0, the protocol value is " HTTP/ 1. 0". Use the pr ot ocol property to
determine the proper response to a request.

In the following example, the cur rent Prot ocol function executes if
request . prot ocol evaluatesto "HTTP/1.0".

<SERVER>

if (request.protocol =="HTTP/ 1. 0"
current Protocol ()

el se
unknownPr ot ocol ()

</ SERVER>

request. agent, request.ip, request. nmet hod

272 Server-Side JavaScript Reference



Resultset

Created by

Description

Resultset

Represents a virtual table created by executing a stored procedure.
Server-side object

Implemented in NES 3.0

The resul t Set method of a St pr oc object. The Resul t set object does not
have a constructor.

For Sybase, Oracle, ODBC, and DB2 stored procedures, the stored procedure
object has one result set object for each SELECT statement executed by the
stored procedure. For Informix stored procedures, the stored procedure object
always has one result set object.

A result set has a property for each column in the SELECT statement used to
generate the result set. For Sybase, Oracle, and ODBC stored procedures, you
can refer to these properties by the name of the column in the virtual table. For
Informix and DB2 stored procedures, the columns are not named. For these
databases, you must use a numeric index to refer to the column.

Result set objects are not valid indefinitely. In general, once a stored procedure
starts, no interactions are allowed between the database client and the database
server until the stored procedure has completed. In particular, there are three
circumstances that cause a result set to be invalid:

1. If you create a result set as part of a transaction, you must finish using the
result set during that transaction. Once you either commit or rollback the
transaction, you can’t get any more data from a result set, and you can't get
any additional result sets. For example, the following code is illegal:

dat abase. begi nTransacti on();

spobj = dat abase. storedProc("getcusts");
resobj = spobj.resultSet();

dat abase. commi t Transaction();

/* Illegal! Result set no |onger valid! */
coll = resobj[0];

Chapter 1, Objects, Methods, and Properties 273



Resultset

2. You must retrieve result set objects before you call a stored-procedure
object’s r et ur nVal ue or out Par anet er s methods. Once you call either of
these methods, you can't get any more data from a result set, and you can't
get any additional result sets.

spobj = dat abase. storedProc("getcusts");
resobj = spobj.resultSet();

retval = spobj.returnVal ue();

/* lllegal! Result set no longer valid! */

coll = resobj[0];

3. Similarly, you must retrieve result set objects before you call the associated
Connect i on object’s cur sor or SQLTabl e method. For example, the
following code is illegal:

spobj = dat abase. storedProc("getcusts");

cursobj = database. cursor("SELECT * FROM ORDERS; ") ;
/* 1llegal! The result set is no |onger available! */
resobj = spobj.resultSet();

coll = resobj[0];

When finished with a Resul t set object, use the cl ose method to close it and
release the memory it uses. If you release a connection that has an open result
set, the runtime engine waits until the result set is closed before actually
releasing the connection.

If you do not explicitly close a result set with the cl ose method, the JavaScript
runtime engine on the server automatically tries to close all open result sets
when the associated dat abase or DbPool object goes out of scope. This can tie
up system resources unnecessarily. It can also lead to unpredictable results.

You can use the pr ot ot ype property of the Resul t set class to add a property
to all Resul t set instances. If you do so, that addition applies to all Resul t set
objects running in all applications on your server, not just in the single
application that made the change. This allows you to expand the capabilities of
this object for your entire server.

Property
Summary

Property Description

pr ot ot ype Allows the addition of properties to a Resul t set object.

274 Server-Side JavaScript Reference



Resultset.close

Method Summary

Method Description

cl ose Closes a result set object.

col utmNane Returns the name of a column in the result set.

col ums Returns the number of columns in the result set.

next Moves the current row to the next row in the result set.

In addition, this object inherits the wat ch and unwat ch methods from
hj ect.

Examples Assume you have the following Oracle stored procedure:

create or replace package tinpack

as type tincurtype is ref cursor return custoner% ow ype;
type tinrentype is ref cursor return rental s% ow ype;
end tinpack;

create or replace procedure tinset4(tinrowsl in out tinpack.tincurtype,
tinrows in out tinpack.tinrentype)

as begin

open timows for select * fromrentals;

open timowsl for select * from custoner;

end tinset4;

Running this stored procedure creates two result sets you can access. In the
following code fragment the r esobj 1 result set has rows returned by the

ti nr ows ref cursor and the r esobj 2 result set has the rows returned by the
ti nrows1 ref cursor.

spobj = database.storedProc("tinmset4");
resobj 1l = spobj.resultSet();
resobj 2 = spobj.resultSet();

close

Closes the result set and frees the allocated memory.
Method of Resul t set

Implemented in NES 3.0

Syntax cl ose()

Parameters None.

Chapter 1, Objects, Methods, and Properties 275



Resultset.columnName

Returns

Description

Examples

See also

0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated maj or Er r or Code and maj or Er r or Message methods to
interpret the cause of the error.

The cl ose method closes a cursor or result set and releases the memory it uses.
If you do not explicitly close a cursor or result set with the cl ose method, the
JavaScript runtime engine on the server automatically closes all open cursors
and result sets when the corresponding cl i ent object goes out of scope.

The following example creates the r ent al Set cursor, performs certain
operations on it, and then closes it with the cl ose method.

// Create a Cursor object
rental Set = database. cursor ("SELECT * FROM rental s")

/1 Performoperations on the cursor
cursor Operations()

//Close the cursor
err = rental Set.cl ose()

Cur sor

columnName

Syntax

Parameters

Returns

Returns the name of the column in the result set corresponding to the specified
number.
Method of Resul t set

Implemented in NES 3.0

col umNane (n)

n Zero-based integer corresponding to the column in the query. The
first column in the result set is 0, the second is 1, and so on.

The name of the column. For Informix stored procedures, this method for the
Resul t set object always returns the string "Expression”.

If your SELECT statement uses a wildcard (*) to select all the columns in a table,
the col utmName method does not guarantee the order in which it assigns
numbers to the columns. That is, suppose you have this statement:

resSet = st(hj.resultSet("select * fromcustoner");

276 Server-Side JavaScript Reference



Examples

Resultset.columns

If the customer table has 3 columns, 1D, NAME, and CITY, you cannot tell
ahead of time which of these columns corresponds to

resSet . col uimNane( 0) . (Of course, you are guaranteed that successive calls
to col utmName have the same result.) If the order matters to you, you can
instead hard-code the column names in the select statement, as in the following
statement:

resSet = stCbj.resultSet("select 1D, NAME, CITY from custoner");

With this statement, r esSet . col uimNane( 0) is ID, resSet . col umName( 1) is
NAME, and r esSet . col uimNane(2) is CITY.

The following example assigns the name of the first column in the
cust oner Set cursor to the variable header :

cust oner Set =dat abase. cur sor (SELECT * FROM cust omer ORDER BY nane)
header = custoner Set. col uimNane( 0)

columns

Syntax
Parameters
Returns

Examples

Returns the number of columns in the result set.
Method of Resul t set

Implemented in NES 3.0

col ums()
None.
The number of named and unnamed columns.

See Example 2 of Cur sor for an example of using the col unms method with
the cur sor Col um array.

The following example returns the number of columns in the cust s cursor:

custs. col ums()

Chapter 1, Objects, Methods, and Properties 277



Resultset.next

next

Syntax
Parameters
Returns

Description

Examples

Moves the current row to the next row in the result set.
Method of Resul t set

Implemented in NES 3.0

next ()
None.
False if the current row is the last row; otherwise, true.

Initially, the pointer (or current row) for a cursor or result set is positioned
before the first row returned. Use the next method to move the pointer
through the records in the cursor or result set. This method moves the pointer
to the next row and returns true as long as there is another row available.
When the cursor or result set has reached the last row, the method returns
false. Note that if the cursor is empty, this method always returns false.

Example 1. This example uses the next method to navigate to the last row in
a cursor. The variable x is initialized to true. When the pointer is in the last row
of the cursor, the next method returns false and terminates the whi | e loop.

cust oner Set = dat abase. cursor("select * fromcustoner", true)

X = true
while (x) {
X = custonerSet.next() }

Example 2. In the following example, the r ent al Set cursor contains columns
named vi deol d, r ent al Dat e, and dueDat e. The next method is called in a
whi | e loop that iterates over every row in the cursor. When the pointer is on
the last row in the cursor, the next method returns false and terminates the
whi | e loop.

278 Server-Side JavaScript Reference



Resultset.prototype

This example displays the three columns of the cursor in an HTML table:

<SERVER>

/'l Create a Cursor object

rental Set = dat abase. cursor ("SELECT videold, rental Date, returnDate
FROM rent al s")

</ SERVER>

/1l Create an HTM. table
<TABLE BORDER>

<TR>

<TH>Vi deo | D</ TH>
<TD>Rent al Dat e</ TD>
<TD>Due Dat e</ TD>

</ TR>

<SERVER>

// lterate through each row in the cursor
while (rental Set.next()) {

</ SERVER>

// Display the cursor values in the HTM. table
<TR>
<TH><SERVER>wri t e(rent al Set . vi deol d) </ SERVER></ TH>
<TD><SERVER>wri t e(rent al Set . r ent al Dat e) </ SERVER></ TD>
<TD><SERVER>wr i t e(rent al Set . r et ur nDat e) </ SERVER></ TD>
</ TR>

/1 Term nate the while |oop
<SERVER>

}
</ SERVER>

/1 End the table
</ TABLE>

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Functi on. pr ot ot ype.

Property of Resul t set

Implemented in NES 2.0

Chapter 1, Objects, Methods, and Properties 279



SendMail

SendMalil

Sends an email message.
Server-side object

Implemented in NES 3.0

The To and Fr omattributes are required. All other properties are optional.

Created by The SendMai | constructor:

new SendMail ();
Parameters None.

Description  Whatever properties you specify for the SendMai | object are sent in the header
of the mail message.

The SendMai | object allows you to send either simple text-only mail messages
or complex MIME-compliant mail or add attachments to your message. To send
a MIME message, set the Cont ent - Type property to the MIME type of the
message.

You can use the pr ot ot ype property of the SendMai | object to add a property
to all SendMai | instances. If you do so, that addition applies to all SendMi |
objects running in all applications on your server, not just in the single
application that made the change. This allows you to expand the capabilities of
this object for your entire server.

Property
Summary Property Description

Bcc Comma-delimited list of recipients of the message whose names
should not be visible in the message.

Body Text of the message.

Cc Comma-delimited list of additional recipients of the message.

const ruct or Specifies the function that creates an object’s prototype.

Errorsto Address to which to send errors concerning the message.
Defaults to the sender’s address.

From User name of the person sending the message.

O gani zati on Organization information.

280 Server-Side JavaScript Reference



Method Summary

Examples

SendMail

Property Description

pr ot ot ype Allows the addition of properties to a SendMai | object.

Repl yt o User name to which replies to the message should be sent.
Defaults to the sender’s address.

Snt pser ver Mail (SMTP) server name. Defaults to the value specified
through the setting in the Administration server.

Subj ect Subject of the message.

To Comma-delimited list of primary recipients of the message.

Method Description

error Code Returns an integer error code associated with sending this

error Message

send

message.
Returns a string associated with sending this message.

Sends the mail message represented by this object.

In addition, this object inherits the wat ch and unwat ch methods from

hj ect.

Example 1: The following script sends mail to vpg and gwp, copying jaym,
with the specified subject and body for the message:

<server>

SMNane = new SendMail ();

SWMNane. To = "vpg@ol.com gwp@o2.cont
SWMNane. From = "nme@ryco. cont

SMNane. Cc = "jaym@hi sco. cont'

SMNane. Subj ect

"The State of the Universe"

SMNane. Body = "The universe, contrary to what you may have heard, is in
none too shabby shape. Not to worry! --ne"

SMNane. send()
</ server>

Chapter 1, Objects, Methods, and Properties 281



SendMail.Bcc

Example 2: The following example sends an image in a GIF file:

sm = new SendMai l ();
sm To = "satish";
sm From = "sati sh@et scape. cont';
sm Snt pserver = "fen.ntom coni;
sn{"Errors-to"] = "satish";
sn{"Content-type"] = "image/gif";
sn{ " Cont ent - Transf er - Encodi ng"] = "base64";
file = new File("/u/satish/LiveWre/mil/banner.gif");
openFlag = file.open("r");
if ( openFlag ) {

len = file.getlLength();

str = file.read(len);

sm Body = str;

smsend();

Example 3: The following example sends a multipart message:

sm = new SendMai | ();

sm To = "chandra@s. ui owa. edu, sati sh@et scape.conl';

sm From = "sati sh@et scape. cont';

sm Snt pserver = "fen.ntom coni;

sm Organi zati on = "Netscape Conm Corp";

sni{"Content-type"] = "nultipart/mxed; boundary=\"------------

8B3F7BA67B67C1DDE6C25D04\ " *;
file = new File("/u/satish/LiveWre/mil/mne");
openFlag = file.open("r");
if ( openFlag ) {
len = file.getLength();
str = file.read(len);
sm Body = str;

}

sm send();

The file mi me has HTML text and an Microsoft Word document separated by the
specified boundary. The resulting message appears as HTML text followed by
the Microsoft Word attachment.

Bcc

Comma-delimited list of recipients of the message whose names should not be
visible in the message.
Property of SendMai |

Implemented in NES 3.0

282 Server-Side JavaScript Reference



SendMail.Body

Body

Text of the message.
Property of SendMai |

Implemented in NES 3.0

Cc

Comma-delimited list of additional recipients of the message.
Property of SendMai |

Implemented in NES 3.0

constructor

Description

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Property of SendMai |

Implemented in NES 2.0

See Cbj ect. constructor.

errorCode

Syntax

Returns an integer error code associated with sending this message.
Method of SendMai |

Implemented in NES 3.0

public errorCode();

Chapter 1, Objects, Methods, and Properties 283



SendMail.errorMessage

Returns The possible return values and their meanings are as follows:

0 Successful send.
1 SMTP server not specified.
2 Specified mail server is down or doesn't exist.
3 At least one receiver’s address must be specified to send the message.
4 Sender’s address must be specified to send the message.
5 Mail connection problem; data not sent.
errorMessage

Returns a string associated with sending this message.
Method of SendMai |

Implemented in NES 3.0

Syntax public errorMessage();

Returns An error string.

Errorsto

Address to which to send errors concerning the message. Defaults to the
sender’s address.
Property of SendMai |

Implemented in NES 3.0

From

User name of the person sending the message.
Property of SendMai |

Implemented in NES 3.0

284 Server-Side JavaScript Reference



SendMail.Organization

Organization

Organization information.
Property of SendMai |

Implemented in NES 3.0

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Functi on. pr ot ot ype.

Property of SendMai |

Implemented in NES 2.0

Replyto

User name to which replies to the message should be sent. Defaults to the
sender’s address.
Property of SendMai |

Implemented in NES 3.0

send

Syntax

Returns

Sends the mail message represented by this object.
Method of SendMai |

Implemented in NES 3.0

public send ();

This method returns a Boolean value to indicate whether or not the mail was
successfully sent. If the mail was not successfully sent, you can use the
error Message and er r or Code methods to determine the nature of the error.

This method returns a string indicating the nature of the error that occurred
sending the message.

Chapter 1, Objects, Methods, and Properties 285



SendMail.Smtpserver

Smtpserver

Mail (SMTP) server name. Defaults to the value specified through the setting in
the Administration server.
Property of SendMai |

Implemented in NES 3.0

Subject

Subject of the message.
Property of SendMai |

Implemented in NES 3.0

To

Comma-delimited list of primary recipients of the message.
Property of SendMai |

Implemented in NES 3.0

286 Server-Side JavaScript Reference



server

Created by

Description

Property
Summary

server

Contains global data for the entire server.
Server-side object

Implemented in NES 2.0

The JavaScript runtime engine on the server automatically creates a single
server object to store information common to all JavaScript applications
running on the web server.

The JavaScript runtime engine on the server creates a ser ver object when the
server starts and destroys it when the server stops. Every application on a
server shares the same ser ver object. Use the ser ver object to maintain global
data for the entire server. Many applications can run on a server
simultaneously, and the ser ver object lets them share information.

The runtime engine creates a ser ver object for each distinct Netscape HTTPD
process running on the server.

The properties listed below are read-only properties that are initialized
automatically when a server object is created. These properties provide
information about the server process. In addition to these predefined
properties, you can create custom properties.

You can lock the server object to ensure that different applications do not
change its properties simultaneously. When one application locks the ser ver
object, other applications must wait before they can lock it.

Property Description

host String specifying the server name, subdomain, and domain
name.

host nanme String containing the full hostname of the server, including the
server name, subdomain, domain, and port number.

port String indicating the port number used for the server.

pr ot ocol String indicating the communication protocol used by the server.

Chapter 1, Objects, Methods, and Properties 287



server.host

Method Summary

Examples

See also

Method Description
| ock Obtains the lock.
unl ock Releases the lock.

In addition, this object inherits the wat ch and unwat ch methods from
hj ect.

The following example displays the values of the predefined ser ver object
properties:

<P>server. host = <SERVER>write(server. host); </ SERVER>

<BR>server. host nane = <SERVER>wri t e(server. host nane) ; </ SERVER>

<BR>server. protocol = <SERVER>write(server. protocol); </ SERVER>
<BR>server.port = <SERVER>write(server. port); </ SERVER>

The preceding code displays information such as the following:

server. host = www. nyWorl d. com
server. hostname = www. nyWor | d. com 85
server.protocol = http:

server.port = 85

client, project, request

host

Description

See also

A string specifying the server name, subdomain, and domain name.
Property of server

Read-only
Implemented in NES 2.0

The host property specifies a portion of a URL. The host property is a
substring of the host name property. The host nane property is the
concatenation of the host and port properties, separated by a colon. When
the port property is 80 (the default), the host property is the same as the
host nane property.

See Section 3.1 of RFC 1738 (htt p: // www. ci s. ohi o-state. edu/ htbin/rfc/
rfc1738. ht m ) for complete information about the hostname and port.

server. host nane, server. port, server. protocol

288 Server-Side JavaScript Reference



server.hostname

hostname

A string containing the full hostname of the server, including the server name,
subdomain, domain, and port number.
Property of server

Read-only
Implemented in NES 2.0

Description The host nane property specifies a portion of a URL. The host name property is
the concatenation of the host and port properties, separated by a colon.
When the port property is 80 (the default), the host property is the same as
the host nane property.

See Section 3.1 of RFC 1738 (htt p: // www. ci s. ohi o- st at e. edu/ htbin/rfc/
rfc1738. ht m ) for complete information about the hostname and port.

Seealso server. host, server. port, server. prot ocol
lock
Obtains the lock. If another thread has the lock, this method waits until it can
get the lock.
Method of server
Implemented in NES 2.0

Syntax | ock()
Parameters None

Returns  Nothing.

Description  You can obtain a lock for an object to ensure that different clients do not access
a critical section of code simultaneously. When an application locks an object,
other client requests must wait before they can lock the object.

Note that this mechanism requires voluntary compliance by asking for the lock
in the first place.
Seealso Lock, server. | ock

Chapter 1, Objects, Methods, and Properties 289



server.port

port

A string indicating the port number used for the server.
Property of server

Read-only

Implemented in NES 2.0

Description The port property specifies a portion of the URL. The port property is a
substring of the host name property. The host nane property is the
concatenation of the host and port properties, separated by a colon.

The default value of the port property is 80. When the port property is set to
the default, the values of the host and host nanme properties are the same.

See Section 3.1 of RFC 1738 (htt p: // www. ci s. ohi o-state. edu/ htbin/rfc/
rfc1738. ht m ) for complete information about the port.

See also server. host, server. host nane, server. prot ocol

protocol

A string indicating the communication protocol used by the server.
Property of server

Read-only

Implemented in NES 2.0

Description The pr ot ocol property specifies the beginning of the URL, up to and including
the first colon. The protocol indicates the access method of the URL. For
example, a protocol of "htt p: " specifies HyperText Transfer Protocol.

The prot ocol property represents the scheme name of the URL. See Section
2.1 of RFC 1738 (ht t p: / / www. ci s. ohi o- stat e. edu/ ht bin/rfc/
rfc1738. ht m ) for complete information about the protocol.

Seealso server. host, server. host nane, server. port

290 Server-Side JavaScript Reference



unlock

Syntax
Parameters

Returns

Description

See also

Releases the lock.
Method of server

Implemented in NES 2.0

unl ock()

None.

server.unlock

False if it fails; otherwise, true. Failure indicates an internal JavaScript error or
that you attempted to unlock a lock that you don’t own.

If you unlock a lock that is unlocked, the resulting behavior is undefined.

Lock, server. unl ock

Chapter 1, Objects, Methods, and Properties 291



Stproc

Stproc

Represents a call to a database stored procedure.
Server-side object

Implemented in NES 3.0

Created by The st or edPr oc method of the dat abase object or of a Connect i on object.
You do not call a St pr oc constructor.

Description  When finished with a St pr oc object, use the cl ose method to close it and
release the memory it uses. If you release a connection that has an open stored
procedure, the runtime engine waits until the stored procedure is closed before
actually releasing the connection.

If you do not explicitly close a stored procedure with the cl ose method, the
JavaScript runtime engine on the server automatically tries to close all open
stored procedures when the associated dat abase or Connect i on object goes
out of scope. This can tie up system resources unnecessarily. It can also lead to
unpredictable results.

You can use the pr ot ot ype property of the St proc class to add a property to
all st proc instances. If you do so, that addition applies to all St pr oc objects
running in all applications on your server, not just in the single application that
made the change. This allows you to expand the capabilities of this object for
your entire server.

Property
Summary Property Description
pr ot ot ype Allows the addition of properties to a St pr oc object.
Method Summary
Method Description
cl ose Closes a stored-procedure object.

out Par amCount Returns the number of output parameters returned by a stored
procedure.

out Par anet er s Returns the value of the specified output parameter.
resul t Set Returns a new result set object.

ret urnval ue Returns the return value for the stored procedure.

292 Server-Side JavaScript Reference



Stproc.close

In addition, this object inherits the wat ch and unwat ch methods from
hj ect.

close

Closes the stored procedure and frees the allocated memory.
Method of St proc

Implemented in NES 3.0

Syntax cl ose()
Parameters None.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated maj or Er r or Code and maj or Er r or Message methods to
interpret the cause of the error.

Description The cl ose method closes a stored procedure and releases the memory it uses.
If you do not explicitly close a stored procedure with the cl ose method, the
JavaScript runtime engine on the server automatically closes it when the
corresponding cl i ent object goes out of scope.
outParamCount
Returns the number of output parameters returned by a stored procedure.
Method of St proc
Implemented in NES 3.0

Syntax out Par anCount ()
Parameters None.
Returns The number of output parameters for the stored procedure. Informix stored

procedures do not have output parameters. Therefore for Informix, this method
always returns 0. You should always call this method before calling
out Par anet er s, to ensure that the stored procedure has output parameters.

Chapter 1, Objects, Methods, and Properties 293



Stproc.outParameters

outParameters

Syntax

Parameters

Returns

Description

Returns the value of the specified output parameter.
Method of St proc

Implemented in NES 3.0

out Paranmeters (n)

n Zero-based ordinal for the output parameter to return.

The value of the specified output parameter. This can be a string, number,
double, or object.

Do not use this method for Informix stored procedures, because they do not
have output parameters.

You should always call the out Par anCount method before you call this
method. If out Par anCount returns 0, the stored procedure has no output
parameters. In this situation, do not call this method.

You must retrieve result set objects before you call this method. Once you call
this method, you can't get any more data from a result set, and you can't get
any additional result sets.

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Functi on. pr ot ot ype.

Property of St proc

Implemented in NES 2.0

294 Server-Side JavaScript Reference



Stproc.resultSet

resultSet

Syntax
Parameters

Description

Returns a new result set object.
Method of St proc

Implemented in NES 3.0

resultSet ()
None.

Running a stored procedure can create 0 or more result sets. You access the
result sets in turn by repeated calls to the r esul t Set method. See the
description of the Resul t set for restrictions on when you can use this
method access the result sets for a stored procedure.

spobj = connobj . storedProc("getcusts");

/Il Creates a new result set object
resobj = spobj.resultSet();

returnValue

Syntax
Parameters

Returns

Description

Returns the return value for the stored procedure.
Method of St proc

Implemented in NES 3.0

ret urnVal ue()
None.

For Sybase, this method always returns the return value of the stored
procedure.

For Oracle, this method returns null if the stored procedure did not return a
value or the return value of the stored procedure.

For Informix, DB2, and ODBC, this method always returns null.

You must retrieve result set objects before you call this method. Once you call
this method, you can't get any more data from a result set, and you can't get
any additional result sets.

Chapter 1, Objects, Methods, and Properties 295



String

String

Created by
Parameters

Description

An object representing a series of characters in a string.
Core object

Implemented in JavaScript 1.0: Create a St r i ng object only by quoting characters.

JavaScript 1.1, NES 2.0: added St ri ng constructor; added

pr ot ot ype property; added spl i t method; added ability to pass
strings among scripts in different windows or frames (in previous
releases, you had to add an empty string to another window’s string
to refer to it)

JavaScript 1.2, NES 3.0: added concat, mat ch, repl ace,
sear ch, sli ce, and substr methods.

ECMA version ECMA-262

The St ring constructor:

new String(string)

string Any string.

The St ri ng object is a wrapper around the string primitive data type. Do not
confuse a string literal with the St ri ng object. For example, the following
code creates the string literal s1 and also the St ri ng object s2:

"foo" // creates a string literal value
new String("foo") // creates a String object

sl =
s2 =
You can call any of the methods of the St ri ng object on a string literal
value—JavaScript automatically converts the string literal to a temporary

St ri ng object, calls the method, then discards the temporary St ri ng object.
You can also use the Stri ng. | engt h property with a string literal.

You should use string literals unless you specifically need to use a St ri ng
object, because St ri ng objects can have counterintuitive behavior. For
example:

sl ="2 + 2" |/ creates a string literal value

s2 = new String("2 + 2") // creates a String object
eval (s1) /1 returns the nunber 4

eval (s2) // returns the string "2 + 2"

296 Server-Side JavaScript Reference



Property
Summary

Method Summary

String

A string can be represented as a literal enclosed by single or double quotation
marks; for example, “Netscape” or ‘Netscape’.

You can convert the value of any object into a string using the top-level
St ri ng function.

Property

Description

constructor

Specifies the function that creates an object’s prototype.

| ength Reflects the length of the string.

prot ot ype Allows the addition of properties to a St ri ng object.

Method Description

anchor Creates an HTML anchor that is used as a hypertext target.

bi g Causes a string to be displayed in a big font as if it were in a
Bl Gtag.

bl i nk Causes a string to blink as if it were in a BLI NK tag.

bol d Causes a string to be displayed as if it were in a B tag.

char At Returns the character at the specified i ndex.

char CodeAt Returns a number indicating the ISO-Latin-1 codeset value of
the character at the given index.

concat Combines the text of two strings and returns a new string.

fixed Causes a string to be displayed in fixed-pitch font as if it were in
aTT tag.

fontcol or Causes a string to be displayed in the specified color as if it
were in a <FONT COLOR=col or > tag.

fontsize Causes a string to be displayed in the specified font size as if it
were in a <FONT S| ZE=si ze> tag.

f r onChar Code Returns a string created by using the specified sequence of I1SO-
Latin-1 codeset values.

i ndexOf Returns the index within the calling St ri ng object of the first
occurrence of the specified value, or -1 if not found.

italics Causes a string to be italic, as if it were in an | tag.

Chapter 1, Objects, Methods, and Properties 297



String

Method Description

| ast | ndexOf Returns the index within the calling St ri ng object of the last
occurrence of the specified value, or -1 if not found.

l'ink Creates an HTML hypertext link that requests another URL.

mat ch Used to match a regular expression against a string.

repl ace Used to find a match between a regular expression and a string,
and to replace the matched substring with a new substring.

search Executes the search for a match between a regular expression
and a specified string.

slice Extracts a section of a string and returns a new string.

smal | Causes a string to be displayed in a small font, as if it were in a
SMALL tag.

split Splits a St r i ng object into an array of strings by separating the
string into substrings.

strike Causes a string to be displayed as struck-out text, as if it were in
a STRI KE tag.

sub Causes a string to be displayed as a subscript, as if it were in a
SUB tag.

substr Returns the characters in a string beginning at the specified
location through the specified number of characters.

substring Returns the characters in a string between two indexes into the
string.

sup Causes a string to be displayed as a superscript, as if it were in a

t oLower Case

toString

t oUpper Case

val uet*

SUP tag.
Returns the calling string value converted to lowercase.

Returns a string representing the specified object. Overrides the
oj ect.toStri ng method.

Returns the calling string value converted to uppercase.

Returns the primitive value of the specified object. Overrides the
oj ect . val uef method.

In addition, this object inherits the wat ch and unwat ch methods from

hj ect.

298 Server-Side JavaScript Reference



Examples

String

Example 1: String literal. The following statement creates a string literal:

var | ast_name = "Schaefer"

Example 2: String literal properties. The following statements evaluate to 8,
" SCHAEFER, " and "schaefer":

| ast _nane. | ength
| ast _nane. t oUpper Case()
| ast _nane. t oLower Case()

Example 3: Accessing individual characters in a string. You can think of a
string as an array of characters. In this way, you can access the individual
characters in the string by indexing that array. For example, the following code
displays “The first character in the string is H™:

var nyString = "Hello"
nyString[0] // returns "H'

Example 4: Pass a string among scripts in different windows or frames.
The following code creates two string variables and opens a second window:

var | ast Nane = "Schaefer"
var firstName = "Jesse"
enmpW ndow=wi ndow. open(’ string2. htm’,’wi ndowl’,’w dt h=300, hei ght =300")

If the HTML source for the second window (st ri ng2. ht nl ) creates two string
variables, enpLast Nane and enpFi r st Nane, the following code in the first
window assigns values to the second window’s variables:

enpW ndow. enpFi r st Name=f i r st Nane
empW ndow. enpLast Nanme=| ast Nanme

The following code in the first window displays the values of the second
window’s variables:

alert (' enpFirstNanme in enpWndow is ' + enpW ndow. enpFi r st Nane)
al ert (" enpLast Name in enpWndow is ' + enpW ndow. enpLast Nare)

Chapter 1, Objects, Methods, and Properties 299



String.anchor

anchor

Syntax

Parameters

Description

Examples

See also

Creates an HTML anchor that is used as a hypertext target.
Method of String

Implemented in JavaScript 1.0, NES 2.0

anchor (naneAttri but e)

nameAttribute A string.

Use the anchor method with the docunent . write or document. witeln
methods to programmatically create and display an anchor in a document.
Create the anchor with the anchor method, and then callwite orwiteln
to display the anchor in a document. In server-side JavaScript, use the wri t e
function to display the anchor.

In the syntax, the t ext string represents the literal text that you want the user
to see. The naneAt t ri but e string represents the NAVE attribute of the A tag.

Anchors created with the anchor method become elements in the
docunent . anchor s array.

The following example opens the msgW ndow window and creates an anchor
for the table of contents:

var nyString="Tabl e of Contents"
nsgW ndow. docunent.witel n(nyString. anchor ("contents_anchor"))

The previous example produces the same output as the following HTML:

<A NAME="cont ents_anchor">Tabl e of Contents</A>

In server-side JavaScript, you can generate this HTML by calling the wri t e
function instead of using docunent. writel n.

String.link

300 Server-Side JavaScript Reference



String.big

big

Syntax
Parameters

Description

Examples

See also

Causes a string to be displayed in a big font as if it were in a Bl Gtag.
Method of String

Implemented in JavaScript 1.0, NES 2.0

bi g()

None

Use the bi g method with the wri t e or wri t el n methods to format and
display a string in a document. In server-side JavaScript, use the wri t e
function to display the string.

The following example uses st ri ng methods to change the size of a string:
var worldString="Hello, world"

docunent.wite(worldString.snmall())
docunent.wite("<P>" + worldString.big())
docunent.wite("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hel | o, worl d</ SVALL>
<P><BI G>Hel | o, worl d</BI &G
<P><FONTSI ZE=7>Hel | o, wor| d</ FONTSI ZE>

String. fontsize, String.small

blink

Syntax
Parameters

Description

Causes a string to blink as if it were in a BLI NK tag.
Method of String

Implemented in JavaScript 1.0, NES 2.0

bl i nk()
None

Use the bl i nk method with the wri t e or wi t el n methods to format and
display a string in a document. In server-side JavaScript, use the wri t e
function to display the string.

Chapter 1, Objects, Methods, and Properties 301



String.bold

Examples

See also

The following example uses st ri ng methods to change the formatting of a
string:

var worldString="Hello, world"

docunent.wite(worldString.blink())
docunent.wite("<P>" + worldString. bold())
docunent.wite("<P>" + worldString.italics())
docunent.wite("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLI NK>Hel | o, wor | d</ BLI NK>
<P><B>Hel | o, worl d</ B>
<P><I>Hell o, world</I>

<P><STRI KE>Hel | o, wor| d</ STRI KE>

String.bold, String.italics,String.strike

bold

Syntax
Parameters

Description

Examples

Causes a string to be displayed as bold as if it were in a B tag.
Method of String

Implemented in JavaScript 1.0, NES 2.0

bol d()
None

Use the bol d method with the wri t e or wri t el n methods to format and
display a string in a document. In server-side JavaScript, use the wri t e
function to display the string.

The following example uses st ri ng methods to change the formatting of a
string:

var worldString="Hello, world"
docunent.wite(worl dString.blink())
docunent.wite("<P>" + worldString.bold())
docunent.wite("<P>" + worldString.italics())
docunent.wite("<P>" + worldString.strike())

302 Server-Side JavaScript Reference



String.charAt

The previous example produces the same output as the following HTML:

<BLI NK>Hel | o, wor | d</BLI NK>

<P><B>Hel | 0, worl d</B>
<P><| >Hel | o,

<P><STRI KE>Hel | o,

wor | d</ | >
wor | d</ STRI KE>

String.blink,String.italics,String.strike

charAt

See also
Method of
Syntax
Parameters
i ndex
Description
Examples

Returns the specified character from the string.
String

Implemented in
ECMA version

char At (i ndex)

JavaScript 1.0, NES 2.0
ECMA-262

An integer between 0 and 1 less than the length of the string.

Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character in a string called st ri ngNane
isstringNane. | ength - 1. If thei ndex you supply is out of range, JavaScript

returns an empty string.

The following example displays characters at different locations in the string
"Brave new worl d":

var anyString="Brave new worl d"

docunent.witel n("The character at index O is " + anyString.charAt(0))
docunent.witel n("The character at index 1 is " + anyString.charAt(1))
docunent.witel n("The character at index 2 is " + anyString.charAt(2))
docunent.witel n("The character at index 3 is " + anyString.charAt(3))
docunent.witeln("The character at index 4 is " + anyString.charAt(4))

Chapter 1, Objects, Methods, and Properties 303



String.charCodeAt

These lines display the following:

The character at index 0 is B
The character at index 1isr
The character at index 2 is a
The character at index 3 is v
The character at index 4 is e

In server-side JavaScript, you can display the same output by calling thew i t e
function instead of using document . wri t el n.

Seealso String.indexOf, String.lastlndexOf, String.split

charCodeAt

Returns a number indicating the 1SO-Latin-1 codeset value of the character at
the given index.

Method of String
Implemented in JavaScript 1.2, NES 3.0
ECMA version ECMA-262

Syntax char CodeAt ([ i ndex])

Parameters

i ndex An integer between 0 and 1 less than the length of the string. The
default value is 0.

Description  The ISO-Latin-1 codeset ranges from 0 to 255. The first 0 to 127 are a direct
match of the ASCII character set.

Example The following example returns 65, the 1SO-Latin-1 codeset value for A.

"ABC". char CodeAt (0) // returns 65

304 Server-Side JavaScript Reference



concat

Syntax

Parameters

Description

Example

String.concat

Combines the text of two or more strings and returns a new string.

Method of String
Implemented in JavaScript 1.2, NES 3.0

concat (string2, string3[, ...,

stringN)

string2. .. Strings to concatenate to this string.

stringN

concat combines the text from two strings and returns a new string. Changes
to the text in one string do not affect the other string.

The following example combines two strings into a new string.

s1="Ch "
s2="what a beauti ful
s3="nornin'."

s4=sl. concat(s2,s3) // returns "Oh what a beautiful nornin ."

constructor

Description

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the

function’s name.
Property of String

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

See (bj ect . constructor.

Chapter 1, Objects, Methods, and Properties 305



String.fixed

fixed

Syntax
Parameters

Description

Examples

Causes a string to be displayed in fixed-pitch font as if it were in a TT tag.
Method of String

Implemented in JavaScript 1.0, NES 2.0

fixed()
None

Use the fi xed method with the wri t e or wi t el n methods to format and
display a string in a document. In server-side JavaScript, use the wri t e
function to display the string.

The following example uses the fi xed method to change the formatting of a
string:

var worldString="Hello, world"
docunent.wite(worl dString.fixed())

The previous example produces the same output as the following HTML:

<TT>Hel | o, world</TT>

fontcolor

Syntax

Parameters

Causes a string to be displayed in the specified color as if it were in a <FONT
COLOR=col or > tag.
Method of String

Implemented in JavaScript 1.0, NES 2.0

fontcol or(col or)

col or A string expressing the color as a hexadecimal RGB triplet or as a string
literal. String literals for color names are listed in the Server-Side JavaScript
Guide.

306 Server-Side JavaScript Reference



Description

Examples

String.fontcolor

Use the f ont col or method with the wri t e or wi t el n methods to format
and display a string in a document. In server-side JavaScript, use the wri t e

function to display the string.

If you express col or as a hexadecimal RGB triplet, you must use the format
rrggbb. For example, the hexadecimal RGB values for salmon are r ed=FA,
gr een=80, and bl ue=72, so the RGB triplet for sal non is " FA8072".

The f ont col or method overrides a value set in the f gCol or property.

The following example uses the f ont col or method to change the color of a

string:

var worldString="Hello, world"

docunent.wite(worldString.fontcol or("mroon") +

is maroon in this line")

docunent.wite("<P>" + worldString.fontcol or("sal non") +

is salnon in this line")

docunent.wite("<P>" + worldString.fontcolor("red") +

isredin this line")

docunent.wite("<P>" + worldString.fontcol or("8000") +

is maroon in hexadeci nal

inthis line")

docunent.wite("<P>" + worldString.fontcol or("FA8072") +

i s salnon in hexadeci nal

in this line")

docunent.wite("<P>" + worldString.fontcol or("FF0O0") +

is red in hexadecinmal in this line")

The previous example produces the same output as the following HTML:

<FONT COLOR="nmaroon">Hel |l o, world</FONT> is maroon in this line

<P><FONT COLOR="sal non">Hel | o,

wor | d</ FONT> is salnon in this line

<P><FONT COLOR="red">Hell o, world</FONT> is red in this line

<FONT COLOR="8000">Hel | o, wor| d</ FONT>
is maroon in hexadecimal in this line
wor | d</ FONT>
is salnon in hexadecimal in this line

<P><FONT COLOR="FA8072">Hel | o,

<P><FONT COLOR="FF00">Hel | 0o, worl| d</ FONT>

is red in hexadecimal in this line

Chapter 1, Objects, Methods, and Properties 307



String.fontsize

fontsize

Syntax

Parameters

Description

Examples

See also

Causes a string to be displayed in the specified font size as if it were in a <FONT
Sl ZE=si ze> tag.
Method of String

Implemented in JavaScript 1.0, NES 2.0

fontsize(size)

si ze An integer between 1 and 7, a string representing a signed integer between 1
and 7.

Use the f ont si ze method with the wr i t e or wri t el n methods to format and
display a string in a document. In server-side JavaScript, use thewri t e
function to display the string.

When you specify si ze as an integer, you set the size of st ri ngNane to one of
the 7 defined sizes. When you specify si ze as a string such as " - 2", you adjust
the font size of st ri ngNane relative to the size set in the BASEFONT tag.

The following example uses st ri ng methods to change the size of a string:
var worldString="Hello, world"

docunent.wite(worldString.small())
docunent.wite("<P>" + worldString.big())
docunent.wite("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hel | o, worl d</ SMALL>
<P><BI G>Hel | 0o, worl d</BI &G
<P><FONTSI ZE=7>Hel | o, wor| d</ FONTSI ZE>

String. big,String. snall

308 Server-Side JavaScript Reference



String.fromCharCode

fromCharCode

Syntax

Parameters

Description

Examples

Returns a string created by using the specified sequence of 1SO-Latin-1 codeset
values.
Method of String

Static
Implemented in JavaScript 1.2, NES 3.0
ECMA version ECMA-262

f romChar Code( nunt, ..., numh)

nund, ..., numN A sequence of numbers that are ISO-Latin-1 codeset values.

This method returns a string and not a St ri ng object.

Because f r onChar Code is a static method of Stri ng, you always use it as
String. f ronChar Code( ), rather than as a method of a St ri ng object you
created.

The following example returns the string "ABC".

String. frontChar Code( 65, 66, 67)

indexOf

Syntax

Parameters

Returns the index within the calling St ri ng object of the first occurrence of the
specified value, starting the search at f r om ndex, or -1 if the value is not found.
Method of String

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

i ndexXf (searchVal ue[, fron ndex])

sear chval ue A string representing the value to search for.

from ndex The location within the calling string to start the search from. It can
be any integer between 0 and the length of the string. The default
value is 0.

Chapter 1, Objects, Methods, and Properties 309



String.indexOf

Description

Examples

Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character of a string called st ri ngNane
is stringNane.length - 1.

"Bl ue Wal e". i ndexOr ("Bl ue") /'l returns O
"Bl ue Whal e".indexOF ("Blute") /Il returns -1
"Bl ue Wal e".indexOr("Whale",0) // returns 5
"Bl ue Whal e".indexOr("Whale",5) // returns 5
"Bl ue Whal e".indexOF("",9) // returns 9
"Bl ue Whal e".indexOF("", 10) /1 returns 10
"Bl ue Whal e".indexOF("", 11) /1 returns 10

The i ndexOf method is case sensitive. For example, the following expression
returns -1:

"Bl ue Wal e".indexOf ("bl ue")

Example 1. The following example uses i ndexOf and | ast | ndexCf to locate
values in the string " Brave new worl d."

var anyString="Brave new worl d"

// Displays 8

docunent.wite("<P>The index of the first wfromthe beginning is " +
anyString.indexOf ("w'))

/1 Displays 10

docunent.wite("<P>The index of the first wfromthe end is " +
anyString.lastlndexOf("w'))

/1 Displays 6

docunent.wite("<P>The index of 'new fromthe beginning is " +
anyString.indexOf ("new'))

/1 Displays 6

docunent.wite("<P>The index of 'new fromthe end is " +
anyString. | astlndexOf ("new'))

Example 2. The following example defines two string variables. The variables
contain the same string except that the second string contains uppercase letters.
The first wr i t el n method displays 19. But because the i ndexOf method is
case sensitive, the string " cheddar " is not found in nyCapSt ri ng, so the
second wr i t el n method displays -1.

nyString="brie, pepper jack, cheddar"

nyCapString="Brie, Pepper Jack, Cheddar"

docunent.witel n(’ nyString.indexX ("cheddar") is ' +
nyString. i ndexOf ("cheddar"))

docunent.witel n(’ <P>nyCapString.indexOf ("cheddar") is ' +
myCapString. i ndexXf ("cheddar™))

310 Server-Side JavaScript Reference



See also

String.italics

Example 3. The following example sets count to the number of occurrences
of the letter x in the string str:

count = 0;
pos = str.indexOf ("x");
while ( pos !'=-1) {
count ++;
pos = str.indexOf ("x", pos+1);

}
String.charAt, String.lastlndexCOf, String.split

italics

Syntax
Parameters

Description

Examples

See also

Causes a string to be italic, as if it were in an <I > tag.
Method of String

Implemented in JavaScript 1.0, NES 2.0

italics()
None

Use the i t al i cs method with the wri t e or wri t el n methods to format and
display a string in a document. In server-side JavaScript, use the wri t e
function to display the string.

The following example uses st ri ng methods to change the formatting of a
string:
var worldString="Hello, world"

docunent.wite(worl dString.blink())
docunent.wite("<P>" + worldString.bold())
docunent.wite("<P>" + worldString.italics())
docunent.wite("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLI NK>Hel | o, wor | d</ BLI NK>
<P><B>Hel | 0, worl d</ B>

<P><|>Hel l 0, world</I|>

<P><STRI KE>Hel | o, wor| d</ STRI KE>

String. blink, String.bold, String.strike

Chapter 1, Objects, Methods, and Properties 311



String.lastindexOf

lastindexOf

Returns the index within the calling St ri ng object of the last occurrence of the
specified value, or -1 if not found. The calling string is searched backward,
starting at f r om ndex.

Method of String
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax | ast|ndexOf (searchVal ue[, fronm ndex])

Parameters
sear chval ue A string representing the value to search for.
from ndex The location within the calling string to start the search from. It can

be any integer between 0 and the length of the string. The default
value is the length of the string.

Description  Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character is st ri ngNane.length - 1.

"canal ". | ast | ndexOf ("a") /'l returns 3
“canal ".lastlndexOr("a",2) // returns 1
"canal ".lastlndexOf("a",0) // returns -1
"canal ". | ast | ndexOf (" x") // returns -1

The | ast | ndexOf method is case sensitive. For example, the following
expression returns -1:

"Blue Whale, Killer Whale".lastlndexOr("blue")

312 Server-Side JavaScript Reference



String.length

Examples The following example uses i ndexCf and | ast | ndexOf to locate values in the
string " Brave new world."

var anyString="Brave new worl d"

// Displays 8

docunent.wite("<P>The index of the first wfromthe beginning is " +
anyString.indexOf("w'))

// Displays 10

docunent.wite("<P>The index of the first wfromthe end is " +
anyString.|lastlndexOf ("w'))

// Displays 6

docunent.wite("<P>The index of "new fromthe beginning is " +
anyString.indexOf ("new'))

// Displays 6

docunent.wite("<P>The index of "new fromthe end is " +
anyString. |l astlndexOf ("new'))

In server-side JavaScript, you can display the same output by calling thewr i t e
function instead of using docunment . wri te.

Seealso String.charAt, String.indexOf, String.split

length

The length of the string.
Property of String
Read-only

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Description  For a null string, length is 0.

Examples The following example displays 8 in an Alert dialog box:

var x="Netscape"
alert("The string length is " + x.length)

Chapter 1, Objects, Methods, and Properties 313



String.link

link

Syntax

Parameters

Description

Examples

Creates an HTML hypertext link that requests another URL.
Method of String

Implemented in JavaScript 1.0, NES 2.0

link(hrefAttribute)

href Attribute Any string that specifies the HREF attribute of the A tag; it should be
a valid URL (relative or absolute).

Use the | i nk method to programmatically create a hypertext link, and then call
writeorwitel ntodisplay the link in a document. In server-side JavaScript,
use the wri t e function to display the link.

Links created with the I i nk method become elements in the I i nks array of the
docunent object. See docunent . | i nks.

The following example displays the word “Netscape” as a hypertext link that
returns the user to the Netscape home page:

var hot Text =" Net scape"
var URL="http://hone. netscape. cont

docunent.wite("dick to return to " + hotText.link(URL))

The previous example produces the same output as the following HTML:

Click to return to <A HREF="http://hone. net scape. cont >Net scape</ A>

match

Syntax

Parameters

Used to match a regular expression against a string.
Method of String
Implemented in JavaScript 1.2

mat ch( regexp)

regexp Name of the regular expression. It can be a variable name or a literal.

314 Server-Side JavaScript Reference



Description

Note

Examples

String.match

If you want to execute a global match, or a case insensitive match, include the
g (for global) and i (for ignore case) flags in the regular expression. These can
be included separately or together. The following two examples below show
how to use these flags with mat ch.

If you execute a match simply to find true or false, use St ri ng. sear ch or the
regular expression t est method.

Example 1. In the following example, nat ch is used to find 'Chapter’ followed
by 1 or more numeric characters followed by a decimal point and numeric
character 0 or more times. The regular expression includes the i flag so that
case will be ignored.

<SCRI PT>

str = "For nore information, see Chapter 3.4.5.1";
re = /(chapter \d+(\.\d)*)/i;

found = str.match(re);

docunent.wite(found);

</ SCRI PT>

This returns the array containing Chapter 3.4.5.1,Chapter 3.4.5.1,.1

" Chapter 3.4.5.1 is the first match and the first value remembered from
(Chapter \d+(\.\d)*).

.1’ is the second value remembered from (\.\d).
Example 2. The following example demonstrates the use of the global and

ignore case flags with mat ch.

<SCRI PT>

str = "abcDdcbha";

newArray = str.match(/d/gi);
docunent. wite(newArray);

</ SCRI PT>

The returned array contains D, d.

Chapter 1, Objects, Methods, and Properties 315



String.prototype

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Functi on. prot ot ype.

Property of String

Implemented in JavaScript 1.1, NES 3.0
ECMA version ECMA-262
replace

Syntax

Parameters

Description

Finds a match between a regular expression and a string, and replaces the
matched substring with a new substring.
Method of String

Implemented in JavaScript 1.2

repl ace(regexp, newSubStr)

regexp The name of the regular expression. It can be a variable name or a literal.

newSubStr  The string to put in place of the string found with r egexp. This string can
include the RegExp properties $1, ..., $9, | ast Match,
| ast Par en, | ef t Cont ext, and ri ght Cont ext .

This method does not change the St ri ng object it is called on; it simply returns
a new string.

If you want to execute a global search and replace, or a case insensitive search,
include the g (for global) and i (for ignore case) flags in the regular expression.
These can be included separately or together. The following two examples
below show how to use these flags with r epl ace.

316 Server-Side JavaScript Reference



Examples

String.replace

Example 1. In the following example, the regular expression includes the
global and ignore case flags which permits r epl ace to replace each occurrence
of 'apples’ in the string with 'oranges.’

<SCRI PT>
re = /apples/gi;
str = "Apples are round, and apples are juicy.";

newstr=str.replace(re, "oranges");
docunent.wite(newstr)
</ SCRI PT>

This prints "oranges are round, and oranges are juicy."

Example 2. In the following example, the regular expression is defined in
repl ace and includes the ignore case flag.

<SCRI PT>

str = "Twas the ni ght before Xmas...";
newstr=str.replace(/xmas/i, "Christmas");
docunent.wite(newstr)

</ SCRI PT>

This prints "Twas the night before Christmas..."

Example 3. The following script switches the words in the string. For the
replacement text, the script uses the values of the $1 and $2 properties.

<SCRI PT LANGUAGE="JavaScri pt1l.2">
re = /(\w+)\s(\w+)/;

str = "John Smth";

newstr = str.replace(re, "$2, $1");
docunent.wite(newstr)

</ SCRI PT>

This prints "Smith, John".

Example 4. The following example replaces a Fahrenheit degree with its
equivalent Celsius degree. The Fahrenheit degree should be a number ending
with F. The function returns the Celsius number ending with C. For example, if
the input number is 212F, the function returns 100C. If the number is OF, the
function returns -17.77777777777778C.

Chapter 1, Objects, Methods, and Properties 317



String.search

The regular expression t est checks for any number that ends with F. The
number of Fahrenheit degree is accessible to your function through the
parameter $1. The function sets the Celsius number based on the Fahrenheit
degree passed in a string to the f 2c function. f 2¢ then returns the Celsius
number. This function approximates Perl’s s///e flag.

function f2c(x) {
var s = String(x)
var test = /(\d+(\.\d*)?)FR\b/g
return s.repl ace
(test,
nyfunction ($0, $1, $2) {
return (($1-32) * 5/9) + "C';

}
)
}
search
Executes the search for a match between a regular expression and this Stri ng
object.
Method of String

Implemented in JavaScript 1.2

Syntax sear ch(regexp)
Parameters

regexp Name of the regular expression. It can be a variable name or a literal.

Description  If successful, sear ch returns the index of the regular expression inside the
string. Otherwise, it returns -1.

When you want to know whether a pattern is found in a string use sear ch
(similar to the regular expression t est method); for more information (but
slower execution) use mat ch (similar to the regular expression exec method).

318 Server-Side JavaScript Reference



Example

String.slice

The following example prints a message which depends on the success of the
test.

function testinput(re, str){
if (str.search(re) !'= -1)
mdstring = " contains ";
el se
m dstring = " does not contain "
docunent.wite (str + midstring + re.source);

slice

Syntax

Parameters

Description

Extracts a section of a string and returns a new string.
Method of String

Implemented in JavaScript 1.0, NES 2.0

slice(beginslicel, endSlice])

begi nSlice The zero-based index at which to begin extraction.

endSlice The zero-based index at which to end extraction. If omitted, sl i ce
extracts to the end of the string.

sl i ce extracts the text from one string and returns a new string. Changes to the
text in one string do not affect the other string.

sl i ce extracts up to but not including endSl i ce. string. slice(1,4)
extracts the second character through the fourth character (characters indexed
1, 2, and 3).

As a negative index, endSl i ce indicates an offset from the end of the string.
string. slice(2,-1) extracts the third character through the second to last
character in the string.

Chapter 1, Objects, Methods, and Properties 319



String.small

Example

The following example uses sl i ce to create a new string.

<SCRI PT>

str1="The norning is upon us.
str2=strl.slice(3,-5)
docunent.wite(str2)

</ SCRI PT>

This writes:

morning is upon

small

Syntax
Parameters

Description

Examples

See also

Causes a string to be displayed in a small font, as if it were in a <SMALL> tag.
Method of String

Implemented in JavaScript 1.0, NES 2.0

smal | ()
None

Use the smal | method with the writ e or wi t el n methods to format and
display a string in a document. In server-side JavaScript, use the wri t e
function to display the string.

The following example uses st ri ng methods to change the size of a string:
var worldString="Hello, world"

docunent.wite(worldString.small())
docunent.wite("<P>" + worldString.big())
docunent.wite("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hel | o, worl d</ SMALL>
<P><Bl G>Hel | 0o, worl d</BI G
<P><FONTSI ZE=7>Hel | o, wor | d</ FONTSI ZE>

String. big, String.fontsize

320 Server-Side JavaScript Reference



String.split

split

Syntax

Parameters

Description

Examples

Splits a St ri ng object into an array of strings by separating the string into
substrings.

Method of String
Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

split([separator][, limt])

separator  Specifies the character to use for separating the string. The separ at or is
treated as a string. If separ at or is omitted, the array returned contains
one element consisting of the entire string.

limt Integer specifying a limit on the number of splits to be found.

The spl it method returns the new array.

When found, separ at or is removed from the string and the substrings are
returned in an array. If separ at or is omitted, the array contains one element
consisting of the entire string.

In JavaScript 1.2, spl i t has the following additions:

= |t can take a regular expression argument, as well as a fixed string, by
which to split the object string. If separ at or is a regular expression, any
included parenthesis cause submatches to be included in the returned
array.

= It can take a limit count so that the resulting array does not include trailing
empty elements.

= If you specify LANGUAGE="JavaScri pt 1. 2" in the SCRI PT tag,
string.split(" ") splits on any run of 1 or more white space characters
including spaces, tabs, line feeds, and carriage returns. For this behavior,
LANGUAGE="JavaScri pt 1. 2" must be specified in the <SCRI PT> tag.

Example 1. The following example defines a function that splits a string into
an array of strings using the specified separator. After splitting the string, the

function displays messages indicating the original string (before the split), the
separator used, the number of elements in the array, and the individual array
elements.

Chapter 1, Objects, Methods, and Properties 321



String.split

function splitString (stringToSplit, separator) {
arrayOr Strings = stringToSplit.split(separator)
docunent.wite ('<P>The original string is: "' + stringToSplit + '"")
docunent.wite (' <BR>The separator is: "' + separator + '"")
docunent.wite ("<BR>The array has " + arrayOfStrings.length + " elenments: ")

for (var i=0; i < arrayO>rStrings.length; i++) {
docunent.wite (arrayOfStrings[i] +" [ ")
}
}

var tenpestString="Ch brave new world that has such people init."
var nont hString="Jan, Feb, Mar, Apr, May, Jun, Jul , Aug, Sep, Cct, Nov, Dec"

var space="
var comma=","

splitString(tenpestString, space)
splitString(tenpestString)
splitString(monthString, comm)

This example produces the following output:

The original string is: "Oh brave new world that has such people init."

The separator is:

The array has 10 el ements: Ch / brave / new/ world / that / has / such / people / in/ it.
/

The original string is: "Oh brave new world that has such people init."
The separator is: "undefined"
The array has 1 elenments: Ch brave new world that has such people init. /

The original string is: "Jan, Feb, Mar, Apr, May, Jun, Jul , Aug, Sep, Cct, Nov, Dec"

The separator is: ","

The array has 12 elenents: Jan / Feb / Mar / Apr / May / Jun / Jul / Aug / Sep / Cct / Nov
/| Dec /

Example 2. Consider the following script:

<SCRI PT LANGUAGE="JavaScript1l.2">

str="She sells seashel | s \ nby the\ n seashore"
docunent.wite(str + "<BR>")

asstr.split(" ")

docunent.wite(a)

</ SCRI PT>

Using LANGUAGE="JavaScri pt 1. 2", this script produces

"She", "sells", "seashells", "by", "the", "seashore"

Without LANGUAGE="JavaScri pt 1. 2", this script splits only on single space
characters, producing

"She", "sells", , , , "seashells", "by", , , "the", "seashore"

322 Server-Side JavaScript Reference



String.strike

Example 3. In the following example, spl it looks for 0 or more spaces
followed by a semicolon followed by 0 or more spaces and, when found,
removes the spaces from the string. naneLi st is the array returned as a result
of split.

<SCRI PT>

names = "Harry Trunmp ;Fred Barney; Helen Rigby ; Bill Abel ;Chris Hand "
docunent.wite (names + "<BR>" + "<BR>");

re = /\s*;\s*/;

nanmeLi st = nanes.split (re);

docunent . write(naneList);

</ SCRI PT>

This prints two lines; the first line prints the original string, and the second line
prints the resulting array.

Harry Trump ;Fred Barney; Helen Rigby ; Bill Abel ;Chris Hand
Harry Trump,Fred Barney,Helen Rigby,Bill Abel,Chris Hand

Example 4. In the following example, spl it looks for 0 or more spaces in a
string and returns the first 3 splits that it finds.

<SCRI PT LANGUAGE="JavaScri ptl.2">

nyVar =" Hello Wrld. How are you doi ng?
splits = nyVar.split(" ", 3);
docunent.wite(splits)

</ SCRI PT>

This script displays the following:
["Hello", "world.", "How']

Seealso String.charAt, String.indexOh, String. | astlndexOf

strike

Causes a string to be displayed as struck-out text, as if it were in a <STRI KE>
tag.

Method of String

Implemented in JavaScript 1.0, NES 2.0

Syntax strike()

Parameters None

Chapter 1, Objects, Methods, and Properties 323



String.sub

Description  Use the stri ke method with the write or writ el n methods to format and
display a string in a document. In server-side JavaScript, use the wri t e
function to display the string.

Examples The following example uses st ri ng methods to change the formatting of a
string:
var worldString="Hello, world"

docunent.wite(worldString.blink())
docunent.wite("<P>" + worldString. bold())
docunent.wite("<P>" + worldString.italics())
docunent.wite("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLI NK>Hel | o, wor | d</ BLI NK>
<P><B>Hel | 0, worl d</ B>

<P><I>Hel l o, world</I>

<P><STRI KE>Hel | o, wor | d</ STRI KE>

Seealso String.blink,String.bold, String.italics

sub

Causes a string to be displayed as a subscript, as if it were in a <SUB> tag.
Method of String

Implemented in JavaScript 1.0, NES 2.0

Syntax sub()
Parameters None

Description Use the sub method with the wri t e or wri t el n methods to format and
display a string in a document. In server-side JavaScript, use the wri t e
function to generate the HTML.

324 Server-Side JavaScript Reference



String.substr

Examples The following example uses the sub and sup methods to format a string:
var super Text ="superscript"
var subText ="subscript"
docunent.wite("This is what a " + superText.sup() + " looks like.")
docunent.wite("<P>This is what a " + subText.sub() + " |ooks like.")
The previous example produces the same output as the following HTML:
This is what a <SUP>superscript</SUP> | ooks |ike.
<P>This is what a <SUB>subscri pt</SUB> | ooks |ike.
Seealso String.sup
substr
Returns the characters in a string beginning at the specified location through
the specified number of characters.
Method of String
Implemented in JavaScript 1.0, NES 2.0
Syntax substr(start[, [length])

Parameters
start Location at which to begin extracting characters.
| ength The number of characters to extract

Description start is a character index. The index of the first character is 0, and the index

of the last character is 1 less than the length of the string. subst r begins
extracting characters at st art and collects | engt h number of characters.

If start is positive and is the length of the string or longer, subst r returns no
characters.

If start is negative, substr uses it as a character index from the end of the
string. If st art is negative and abs(start) is larger than the length of the
string, subst r uses 0 is the start index.

If I engt h is 0 or negative, subst r returns no characters. If | engt h is omitted,
start extracts characters to the end of the string.

Chapter 1, Objects, Methods, and Properties 325



String.substring

Example Consider the following script:
<SCRI PT LANGUAGE="JavaScri ptl.2">
str = "abcdefghij"

docunent.witeln("(1,2): ", str.substr(1,2))
docunent.witeln("(-2,2): ", str.substr(-2,2))
docunent.witeln("(1): ", str.substr(1l))
docunent.witeln("(-20, 2): ", str.substr(1,20))
docunent.witeln(" (20, 2): ", str.substr(20,2))
</ SCRI PT>

This script displays:

(1,2): bc

(-2,2): ij

(1): bcdefghij
(-20, 2): bcdefghij
(20, 2):

Seealso substring

substring

Returns a subset of a St ri ng object.
Method of String

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax substring(indexA, i ndexB)

Parameters
i ndexA An integer between 0 and 1 less than the length of the string.

i ndexB An integer between 0 and 1 less than the length of the string.

326 Server-Side JavaScript Reference



Description

Examples

String.substring

subst ri ng extracts characters from i ndexA up to but not including i ndexB. In
particular:

« If i ndexA s less than 0, i ndexA is treated as if it were 0.

< If i ndexB is greater than st ri ngNane. | engt h, i ndexB is treated as if it
were stringNane. | engt h.

« If i ndexA equals i ndexB, subst ri ng returns an empty string.
< If i ndexB is omitted, i ndexA extracts characters to the end of the string.
In JavaScript 1.2, using LANGUAGE="JavaScri pt 1. 2" in the SCRI PT tag,

< If i ndexA is greater than i ndexB, JavaScript produces a runtime error (out
of memory).

In JavaScript 1.2, without LANGUAGE="JavaScri pt 1. 2" in the SCRI PT tag,

< If i ndexA is greater than i ndexB, JavaScript returns a substring beginning
with i ndexB and ending with i ndexA - 1.

Example 1. The following example uses subst ri ng to display characters from
the string " Net scape™:

var anyString="Net scape"

// Displays "Net"
docunent.wite(anyString.substring(0, 3))
docunent.wite(anyString.substring(3,0))
// Displays "cap"
docunent.wite(anyString.substring(4,7))
docunent.wite(anyString.substring(7,4))
// Displays "Netscap"
docunent.wite(anyString.substring(0,7))
// Displays "Netscape"
docunent.wite(anyString.substring(O0,8))
docunent.wite(anyString.substring(0, 10))

Chapter 1, Objects, Methods, and Properties 327



String.sup

Example 2. The following example replaces a substring within a string. It will
replace both individual characters and substrings. The function call at the end
of the example changes the string " Brave New Wor | d" into " Brave New Web".

function replaceString(oldS, news, fullS) {
/1 Replaces oldS with newS in the string fullS
for (var i=0; i<fullS.length; i++) {
if (full S substring(i,i+oldS.length) == oldS) {
fullS = full S.substring(0,i)+newS+fullS.substring(i+oldS.length,fullS.|ength)

}
}

return fullS

}
repl aceString("World","Web","Brave New Worl d")

Example 3. In JavaScript 1.2, using LANGUAGE="JavaScri pt 1. 2", the
following script produces a runtime error (out of memory).

<SCRI PT LANGUAGE="JavaScript1.2">

str="Net scape"

docunent.wite(str.substring(0,3);

docunent.wite(str.substring(3,0);

</ SCRI PT>

Without LANGUAGE="JavaScri pt 1. 2", the above script prints the following:
Net Net

In the second wri t e, the index numbers are swapped.

Seealso substr

sup

Causes a string to be displayed as a superscript, as if it were in a <SUP> tag.
Method of String

Implemented in JavaScript 1.0, NES 2.0

Syntax sup()
Parameters None

Description Use the sup method with the wri t e or wi t el n methods to format and
display a string in a document. In server-side JavaScript, use the wri t e
function to generate the HTML.

328 Server-Side JavaScript Reference



String.toLowerCase

Examples The following example uses the sub and sup methods to format a string:

var super Text ="superscript"
var subText ="subscript"

docunent.wite("This is what a " + superText.sup() + " looks like.")
docunent.wite("<P>This is what a " + subText.sub() + " |ooks like.")

The previous example produces the same output as the following HTML:

This is what a <SUP>superscript</SUP> | ooks |ike.
<P>This is what a <SUB>subscri pt</SUB> | ooks |ike.

Seealso String.sub

toLowerCase

Returns the calling string value converted to lowercase.

Method of String
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax tolLower Case()
Parameters None

Description The t oLower Case method returns the value of the string converted to
lowercase. t oLower Case does not affect the value of the string itself.

Examples The following example displays the lowercase string " al phabet " :

var upper Text =" ALPHABET"
docunent.wite(upper Text.toLower Case())

Seealso String.toUpperCase

Chapter 1, Objects, Methods, and Properties 329



String.toString

toString

Returns a string representing the specified object.
Method of String

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Syntax toString()
Parameters None.

Description The St ri ng object overrides the t oSt ri ng method of the Obj ect object; it
does not inherit Obj ect . t oSt ri ng. For St ri ng objects, the t oSt ri ng
method returns a string representation of the object.

Examples The following example displays the string value of a String object:

X = new String("Hello world");
alert(x.toString()) /1 Displays "Hello world"

Seealso Object.toString

toUpperCase

Returns the calling string value converted to uppercase.
Method of String

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax toUpper Case()
Parameters None

Description The t oUpper Case method returns the value of the string converted to
uppercase. t oUpper Case does not affect the value of the string itself.

Examples The following example displays the string " ALPHABET" :

var | ower Text ="al phabet "
docunent.wite(l ower Text.toUpperCase())

Seealso String.toLowerCase

330 Server-Side JavaScript Reference



String.valueOf

Syntax
Parameters

Description

Examples

See also

valueOf

Returns the primitive value of a String object.
Method of String

Implemented in JavaScript 1.1

ECMA version ECMA-262

val ue ()

None

The val ueX method of St ri ng returns the primitive value of a String object
as a string data type. This value is equivalent to Stri ng.toStri ng.

This method is usually called internally by JavaScript and not explicitly in code.

X = new String("Hello world");
al ert (x.valueOd()) // Displays "Hello world"

String.toString, Oject. val ued

Chapter 1, Objects, Methods, and Properties 331



sun

sun

A top-level object used to access any Java class in the package sun. *.
Core object

Implemented in JavaScript 1.1, NES 2.0

Created by The sun object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.
Description The sun object is a convenience synonym for the property Packages. sun.

See also Packages, Packages. sun

332 Server-Side JavaScript Reference



Chapter

Top-Level Functions

This chapter contains all JavaScript functions not associated with any object. In
the ECMA specification, these functions are referred to as properties and
methods of the global object.

The following table summarizes the top-level functions.

Table 2.1 Top-level functions

Function Description

addd i ent Appends client information to URLs.

addResponseHeader Adds new information to the response header sent
to the client.

bl ob Assigns BLOb data to a column in a cursor.

callC Calls a native function.

debug Displays values of expressions in the trace window
or frame.

del et eResponseHeader Removes information from the header of the

response sent to the client.

escape Returns the hexadecimal encoding of an argument
in the ISO Latin-1 character set; used to create
strings to add to a URL.

Chapter 2, Top-Level Functions 333



Table 2.1 Top-level functions

Function Description

eval Evaluates a string of JavaScript code without
reference to a particular object.

flush Flushes the output buffer.

get Opti onVal ue

get Opt i onVal ueCount

i sNaN

Nunber

par seFl oat

par sel nt
redirect

regi st er CFuncti on

ssjs_generateCientlD

ssjs_get Cd Vari abl e

ssjs_getClientID

String

unescape

wite

Gets values of individual options in an HTML
SELECT form element.

Gets the number of options in an HTML SELECT
form element.

Evaluates an argument to determine if it is not a
number.

Converts an object to a number.

Parses a string argument and returns a floating-point
number.

Parses a string argument and returns an integer.
Redirects the client to the specified URL.

Registers a native function for use in server-side
JavaScript.

Returns an identifier you can use to uniquely specify
the cl i ent object.

Returns the value of the specified environment
variable set in the server process, including some
CGl variables.

Returns the identifier for the cl i ent object used by
some of JavaScript's client-maintenance techniques.

Converts an object to a string.

Returns the ASCII string for the specified
hexadecimal encoding value.

Adds statements to the client-side HTML page being
generated.

334 Server-Side JavaScript Reference



addClient

addClient

Syntax

Parameters

Description

Examples

See also

Adds cl i ent object property values to a dynamically generated URL or the URL
used with the redi rect function.
Server-side function

Implemented in NES 2.0

addd i ent (URL)

URL A string representing a URL

addd i ent is a top-level function and is not associated with any object.

Use addd i ent to preserve cl i ent object property values when you use

redi rect or generate dynamic links. This is necessary if an application uses
client or server URL encoding to maintain the cl i ent object; it does no harm in
other cases. Since the client maintenance technique can be changed after the
application has been compiled, it is always safer to use addd i ent, even if you
do not anticipate using a URL encoding scheme.

See the Server-Side JavaScript Guide for information about using URL encoding
to maintain client properties.

In the following example, addCl i ent is used with the r edi rect function to
redirect a browser:

redirect (addd i ent ("nypage. htm "))

In the following example, addd i ent preserves cl i ent object property values
when a link is dynamically generated:

<A HREF=' addCl i ent (" page" + project.pageno + "“.htm")’ >
Junp to new page</ A>

redi rect

Chapter 2, Top-Level Functions 335



addResponseHeader

addResponseHeader

Syntax

Parameters

Description

Adds new information to the response header sent to the client.
Server-side function

Implemented in NES 3.0

addResponseHeader (fi el d, val ue)

field A field to add to the response header.
val ue The information to specify for that field.

addResponseHeader is a top-level function and is not associated with any
object.

You can use the addResponseHeader function to add information to the
header of the response you send to the client.

For example, if the response you send to the client uses a custom content type,
you should encode this content type in the response header. The JavaScript
runtime engine automatically adds the default content type (t ext / ht ml ) to the
response header. If you want a custom header, you must first remove the old
default content type from the header and then add the new one. If your
response uses r oyal ai rways- f or mat as a custom content type, you would
specify it this way:

del et eResponseHeader ("content-type");

addResponseHeader (" content -type", “royal ai rways-format");

You can use the addResponseHeader function to add any other information
you want to the response header.

336 Server-Side JavaScript Reference



See also

blob

Syntax

Parameters

Returns

Description

blob

Remember that the header is sent with the first part of the response. Therefore,
you should call these functions early in the script on each page. In particular,
you should ensure that the response header is set before any of these happen:

= The runtime engine generates 64KB of content for the HTML page (it
automatically flushes the output buffer at this point).

= You call the f | ush function to clear the output buffer.
= You call the r edi rect function to change client requests.

del et eResponseHeader

Assigns BLODb data to a column in a cursor.
Server-side function

Implemented in NES 2.0

bl ob ( pat h)

pat h A string representing the name of a file containing BLOb data. This
string must be an absolute pathname.

A bl ob object.
bl ob is a top-level function and is not associated with any object.

Use this function with an updatable cursor to insert or update a row containing
BLODb data. To insert or update a row using SQL and the execut e method, use
the syntax supported by your database vendor.

On DB2, blobs are limited to 32 KBytes.

Remember that back slash ("\") is the escape character in JavaScript. For this
reason, in NT filenames you must either use 2 backslashes or a forward slash.

Chapter 2, Top-Level Functions 337



callC

Example The following statements update BLOb data from the specified GIF files in
columns PHOTO and OFFI CE of the current row of the EMPLOYEE table.
/]l Create a cursor

cursor = database. cursor (" SELECT * FROM cust oner WHERE
custoner.ID =" + request.custonerlD

// Position the pointer on the row
cursor. next ()

/'l Assign the blob data
cursor.photo = bl ob("c:/customer/photos/nyphoto.gif")
cursor.office = blob("c:/custoner/photos/nyoffice.gif")

// And update the row
cursor. updat eRow " enpl oyee")

callC

Calls an external function and returns the value that the external function
returns.
Server-side function

Implemented in NES 2.0

Syntax cal | C(JSFuncti onNane, argl,..., argN

Parameters
JSFunct i onName The name of the function as it is identified with
Regi st er CFuncti on.

argl...argN A comma-separated list of arguments to the external function. The
arguments can be any JavaScript values: strings, numbers, or
Boolean values. The number of arguments must match the number
of arguments required by the external function.

Description cal | Cis a top-level function and is not associated with any object.

The cal | C function returns the string value that the external function returns;
cal | C can only return string values.

338 Server-Side JavaScript Reference



Examples

See also

debug

Syntax

Parameters

Description

Examples

debug

The following example assigns a value to the variable i sRegi st er ed according
to whether the attempt to register the external function echoCCal | Ar gunent s
succeeds or fails. If i sRegi st ered is true, the cal | C function executes.

var isRegistered =
regi st er CFuncti on("echoCCal | Argunent s",
“c:/nypath/nystuff.dll",
"myst uf f _EchoCCal | Argunent s")
if (isRegistered == true) {
var returnValue =
cal |l C("echoCCal | Argunents", "first arg", 42, true, "last arg")
write(returnVal ue)

}

regi st er CFuncti on

Displays a JavaScript expression in the trace facility.
Server-side function

Implemented in NES 2.0

debug( expressi on)

expr essi on Any valid JavaScript expression.

debug is a top-level function and is not associated with any object.

Use this function to display the value of an expression for debugging purposes.
The value is displayed in the trace facility of the Application Manager following
the brief description “Debug message:”.

The following example displays the value of the variable dat a:

debug("The final value of data is " + data)

Chapter 2, Top-Level Functions 339



deleteResponseHeader

deleteResponseHeader

Syntax

Parameters

Description

escape

Syntax

Parameters

Removes information from the header of the response sent to the client.
Server-side function

Implemented in NES 3.0

del et eResponseHeader (fi el d)

field A field to remove from the response header.

del et eResponseHeader is a top-level function and is not associated with any
object.

You can use the del et eResponseHeader function to remove information from
the header of the response you send to the client. The most frequent use of this
function is to remove the default content-type information before adding your
own content-type information with addResponseHeader .

For more information, see addResponseHeader .

Returns the hexadecimal encoding of an argument in the 1SO-Latin-1 character
set.
Core function

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262 compatible, except for Unicode characters.

escape("string")

string A string in the ISO-Latin-1 character set.

340 Server-Side JavaScript Reference



Description

eval

Examples

See also

Syntax

eval

escape is a top-level function and is not associated with any object.

Use the escape and unescape functions to encode and decode (add property
values manually) a Uniform Resource Locator (URL), a Uniform Resource
Identifier (URI), or a URI-type string.

The escape function encodes special characters in the specified string and
returns the new string. It encodes spaces, punctuation, and any other character
that is not an ASCII alphanumeric character, with the exception of these
characters:

*@- _ + .

Example 1. The following example returns " 926" :

escape("&") // returns "9%26"

Example 2. The following statement returns a string with encoded characters
for spaces, commas, and apostrophes.

/1 returns "The_rain. %0l n9%20Spai n%2C¥%20Ma%®2ant
escape("The_rain. In Spain, M ant)

Example 3. In the following example, the value of the variable t heval ue is
encoded as a hexadecimal string and passed on to the r equest object when a
user clicks the link:

<A HREF=""nypage. ht m ?val 1="+escape(theVal ue)’')>Click Here</ A>

unescape

Evaluates a string of JavaScript code without reference to a particular object.
Core function

Implemented in JavaScript 1.0
ECMA version ECMA-262

eval (string)

Chapter 2, Top-Level Functions 341



eval

Parameters

Description

Backward
Compatibility

Examples

string A string representing a JavaScript expression, statement, or
sequence of statements. The expression can include variables and
properties of existing objects.

eval is a top-level function and is not associated with any object.

The argument of the eval function is a string. If the string represents an
expression, eval evaluates the expression. If the argument represents one or
more JavaScript statements, eval performs the statements. Do not call eval to
evaluate an arithmetic expression; JavaScript evaluates arithmetic expressions
automatically.

If you construct an arithmetic expression as a string, you can use eval to
evaluate it at a later time. For example, suppose you have a variable x. You can
postpone evaluation of an expression involving x by assigning the string value
of the expression, say "3 * x + 2", to a variable, and then calling eval ata
later point in your script.

If the argument of eval is not a string, eval returns the argument unchanged.
In the following example, the St ri ng constructor is specified, and eval
returns a St ri ng object rather than evaluating the string.

eval(new String("2+2")) // returns a String object containing "2+2"
eval("2+2") I/ returns 4

JavaScript 1.1. eval is also a method of all objects. This method is described
for the Qbj ect class.

The following examples display output using docunent . wri t e. In server-side
JavaScript, you can display the same output by calling the wri t e function
instead of using document . wri te.

Example 1. In the following code, both of the statements containing eval
return 42. The first evaluates the string "x + y + 1"; the second evaluates the
string " 42".

varx =2

vary =39

var z = "42"

eval("x +y + 1") // returns 42
eval(z) I returns 42

342 Server-Side JavaScript Reference



See also

eval

Example 2. In the following example, the get Fi el dName(n) function returns
the name of the specified form element as a string. The first statement assigns
the string value of the third form element to the variable fi el d. The second
statement uses eval to display the value of the form element.

var field = getFiel dNane(3)
docunent.wite("The field named ", field, " has value of "
eval (field + ".value"))

Example 3. The following example uses eval to evaluate the string str. This
string consists of JavaScript statements that open an Alert dialog box and assign
z a value of 42 if x is five, and assigns 0 to z otherwise. When the second
statement is executed, eval will cause these statements to be performed, and it
will also evaluate the set of statements and return the value that is assigned to
Z.

var str = "if (x ==5) {alert('z is 42'); z = 42;} else z = 0;
docunent.wite("<P>z is ", eval(str))

Example 4. In the following example, the set Val ue function uses eval to
assign the value of the variable newval ue to the text field t ext Qbj ect :

function setVal ue (textObject, newval ue) {
eval ("docunent.fornms[0]." + textObject + ".value") = newal ue

}

Example 5. The following example creates br eed as a property of the object
nmyDog, and also as a variable. The first write statement uses eval (' breed’)
without specifying an object; the string " br eed" is evaluated without regard to
any object, and the wri t e method displays " Shepher d", which is the value of
the br eed variable. The second write statement uses myDog. eval (’ breed’)
which specifies the object myDog; the string " br eed" is evaluated with regard
to the nyDog object, and the wri t e method displays " Lab", which is the value
of the br eed property of the nyDog object.

functi on Dog(nane, breed, color) {
t hi s. name=nane
this. breed=breed
t hi s. col or=col or
}
nyDog = new Dog(" Gabby")
nyDog. br eed="Lab"
var breed=' Shepherd’
docunent.wite("<P>" + eval ('breed))
docunent.wite("<BR>" + nyDog.eval ('breed’))

hj ect . eval method

Chapter 2, Top-Level Functions 343



flush

flush

Syntax
Parameters

Description

Examples

See also

Sends data from the internal buffer to the client.
Server-side function

Implemented in NES 2.0

f1 ush()
None.
f1 ush is a top-level function and is not associated with any object.

To improve performance, JavaScript buffers the HTML page it constructs. The
f 1 ush function immediately sends data from the internal buffer to the client. If
you do not explicitly call the f I ush function, JavaScript sends data to the client
after each 64KB of content in the constructed HTML page.

Use the f 1 ush function to control when data is sent to the client. For example,
call the f 1 ush function before an operation that creates a delay, such as a
database query. If a database query retrieves a large number of rows, you can
flush the buffer after retrieving a small number of rows to prevent long delays
in displaying data.

Because the f | ush function updates the client’s cookie file as part of the HTTP
header, you should perform any changes to the cl i ent object before flushing
the buffer, if you are using client cookie to maintain the cl i ent object. For
more information, see the Server-Side JavaScript Guide.

Do not confuse the f 1 ush method of the Fi | e object with the top-level f | ush
function.

The following example iterates through a text file and outputs each line in the
file, preceded by a line number and five spaces. The f | ush function then
causes the client to display the output.

while (!'In.eof()) {
AscLine = In.readln();
if (!'In.eof())
write(LPad(Li neCount + ": ", 5), AscLine, "\n");
Li neCount ++;
flush();
}

wite

344 Server-Side JavaScript Reference



getOptionValue

getOptionValue

Syntax

Parameters

Returns

Description

Examples

Returns the text of a selected OPTI ON in a SELECT form element.
Server-side function

Implemented in NES 2.0

get Opti onVal ue( nane, i ndex)

name A name specified by the NAME attribute of the SELECT tag
i ndex Zero-based ordinal index of the selected option.

A string containing the text for the selected option, as specified by the
associated OPTI ON tag.

get Opt i onVal ue is a top-level function and is not associated with any object.
It corresponds to the Opt i on. t ext property available to client-side
JavaScript.

The SELECT tag allows multiple values to be associated with a single form
element, with the MULTI PLE attribute. If your application requires select lists
that allow multiple selected options, you use the get Opt i onVal ue function to
get the values of selected options in server-side JavaScript.

Suppose you have the following form element:

<SELECT NAME="what -t o-wear" MJILTI PLE S| ZE=8>
<OPTI ON SELECTED>Jeans
<OPTI ON>Wbol Sweat er
<OPTI ON SELECTED>Sweat shirt
<OPTI ON SELECTED>Socks
<OPTI ON>Leat her Jacket
<OPTI ON>Boot s
<OPTI ON>Runni ng Shoes
<OPTI ON>Cape
</ SELECT>

Chapter 2, Top-Level Functions 345



getOptionValueCount

You could process the input from this select list in server-side JavaScript as
follows:

<SERVER>
var | ooplndex = 0
var | oopCount = get OptionVal ueCount ("what-to-wear") // 3 by default
while ( looplndex < | oopCount ) {
var optionVal ue = get Opti onVal ue("what-to-wear", | oopl ndex)
wite("<br>ltem#" + |looplndex + ": " + optionValue + "\n")
| oopl ndex++

}
</ SERVER>
If the user kept the default selections, this script would return

Item #1: Jeans
Item #3: Sweatshirt
Item #4: Socks

See also get Opti onVal ueCount

getOptionValueCount

Returns the number of options selected by the user in a SELECT form element.
Server-side function

Implemented in NES 2.0

Syntax get Opt i onVal ueCount ( nane)
Parameters
name Specified by the NAME attribute of the SELECT tag.
Description get Qpti onVal ueCount is a top-level function and is not associated with any

object.

Use this function with get Opt i onVal ue to process user input from SELECT
form elements that allow multiple selections.

Examples See the example for get Opt i onVal ue.

Seealso get Opti onVal ue

346 Server-Side JavaScript Reference



iISNaN

Syntax

Parameters

Description

Examples

See also

isNaN

Evaluates an argument to determine if it is not a number.
Core function

Implemented in JavaScript 1.0: Unix only

JavaScript 1.1, NES 2.0: all platforms
ECMA version ECMA-262

i sNaN( t est Val ue)

t est Val ue The value you want to evaluate.

i sNaN is a top-level function and is not associated with any object.

On platforms that support NaN, the par seFl oat and par sel nt functions
return NaN when they evaluate a value that is not a number. i sNaN returns true
if passed NaN, and false otherwise.

The following example evaluates f | oat Val ue to determine if it is a number
and then calls a procedure accordingly:
f | oat Val ue=par seFl oat (t oFl oat)

if (isNaN(floatValue)) {
not Fl oat ()

} else {
i sFl oat ()

}

Number . NaN, par seFl oat , par sel nt

Chapter 2, Top-Level Functions 347



Number

Number

Syntax

Parameter

Description

Example

See also

Converts the specified object to a number.
Core function

Implemented in JavaScript 1.2, NES 3.0
ECMA version ECMA-262

Nunber ( obj)

obj An object

Nunber is a top-level function and is not associated with any object.

When the object is a Dat e object, Nunber returns a value in milliseconds
measured from 01 January, 1970 UTC (GMT), positive after this date, negative
before.

If obj is a string that does not contain a well-formed numeric literal, Number
returns NaN.

The following example converts the Dat e object to a numerical value:

d = new Date ("Decenmber 17, 1995 03:24:00")
al ert (Nunber(d))

This displays a dialog box containing "819199440000."
Nurnber

348 Server-Side JavaScript Reference



parseFloat

parseFloat

Syntax

Parameters

Description

Parses a string argument and returns a floating point number.
Core function
Implemented in JavaScript 1.0: If the first character of the string specified in

parseFloat(st ri ng) cannot be converted to a number, returns NaN
on Solaris and Irix and 0 on all other platforms.

JavaScript 1.1, NES 2.0: Returns NaN on all platforms if the first
character of the string specified in parseFloat(st ri ng) cannot be
converted to a humber.

ECMA version ECMA-262

par seFl oat (st ring)

string A string that represents the value you want to parse.

par seFl oat is a top-level function and is not associated with any object.

par seFl oat parses its argument, a string, and returns a floating point number.
If it encounters a character other than a sign (+ or -), numeral (0-9), a decimal
point, or an exponent, it returns the value up to that point and ignores that
character and all succeeding characters. Leading and trailing spaces are
allowed.

If the first character cannot be converted to a number, par seFl oat returns NaN.

For arithmetic purposes, the NaN value is not a number in any radix. You can
call the i sNaN function to determine if the result of par seFl oat is NaN. If NaN
is passed on to arithmetic operations, the operation results will also be NaN.

Chapter 2, Top-Level Functions 349



parseint

Examples The following examples all return 3.14:

par seFl oat (" 3. 14")

par seFl oat ("314e-2")
par seFl oat (" 0. 0314E+2")
var x = "3.14"

par seFl oat ( x)

The following example returns NaN:

par seFl oat (" FF2")

See also i sNaN, parsel nt

parselnt

Parses a string argument and returns an integer of the specified radix or base.
Core function

Implemented in JavaScript 1.0: If the first character of the string specified in
parselnt(st r i ng) cannot be converted to a number, returns NaN
on Solaris and Irix and 0 on all other platforms.

JavaScript 1.1, LiveWire 2.0: Returns NaN on all platforms if the first
character of the string specified in parselnt(st ri ng) cannot be
converted to a number.

ECMA version ECMA-262

Syntax parselnt(string[, radix])

Parameters
string A string that represents the value you want to parse.

radi x An integer that represents the radix of the return value.

Description par sel nt is a top-level function and is not associated with any object.

The par sel nt function parses its first argument, a string, and attempts to return
an integer of the specified radix (base). For example, a radix of 10 indicates to
convert to a decimal number, 8 octal, 16 hexadecimal, and so on. For radixes
above 10, the letters of the alphabet indicate numerals greater than 9. For
example, for hexadecimal numbers (base 16), A through F are used.

350 Server-Side JavaScript Reference



Examples

See also

parselnt

If par sel nt encounters a character that is not a numeral in the specified radix,
it ignores it and all succeeding characters and returns the integer value parsed
up to that point. par sel nt truncates numbers to integer values. Leading and
trailing spaces are allowed.

If the radix is not specified or is specified as 0, JavaScript assumes the
following:

= If the input st ri ng begins with " 0x", the radix is 16 (hexadecimal).

= If the input st ri ng begins with " 0", the radix is eight (octal).

< If the input st ri ng begins with any other value, the radix is 10 (decimal).
If the first character cannot be converted to a number, par sel nt returns NaN.

For arithmetic purposes, the NaN value is not a number in any radix. You can
call the i sNaN function to determine if the result of par sel nt is NaN. If NaN is
passed on to arithmetic operations, the operation results will also be NaN.

The following examples all return 15:

parselnt ("F", 16)
parselnt("17", 8)
parselnt ("15", 10)
parsel nt (15.99, 10)
parsel nt (" FXX123", 16)
parselnt("1111", 2)
parselnt ("15*3", 10)

The following examples all return NaN:

parselnt ("Hello", 8)
parsel nt ("0x7", 10)
parsel nt ("FFF", 10)

Even though the radix is specified differently, the following examples all return
17 because the input st ri ng begins with " 0x".

parsel nt ("0x11", 16)
parsel nt ("0x11", 0)
parsel nt ("0x11")

i sNaN, par seFl oat , Obj ect . val uett

Chapter 2, Top-Level Functions 351



redirect

redirect

Syntax

Parameters

Description

Examples

See also

Redirects the client to the specified URL.
Server-side function

Implemented in NES 2.0

redirect (/ocation)

| ocation The URL to which you want to redirect the client.

redi rect is a top-level function and is not associated with any object.

The redi rect function redirects the client browser to the URL specified by the
| ocati on parameter. The value of | ocat i on can be relative or absolute.

When the client encounters a r edi r ect function, it loads the specified page
immediately and discards the current page. The client does not execute or load
any HTML or script statements in the page following the r edi rect function.

You can use the addd i ent function to preserve cl i ent object property
values. See addd i ent for more information.

The following example uses the r edi r ect function to redirect a client browser:
redirect ("http://ww.royal ai rways. com | w apps/ newhone. htm ")

The page displayed by the newhore. ht m link could contain content such as
the following:

<H1>New | ocat i on</ H1>

The URL you tried to access has been noved to: <BR>

<LI ><A HREF=htt p://ww. r oyal ai rways. com | w apps/i ndex. ht m >
http://ww.royal ai rways. cont | w apps/i ndex. ht m </ A>

<P>This notice will remain until 12/31/97.

addd i ent

352 Server-Side JavaScript Reference



registerCFunction

registerCFunction

Syntax

Parameters

Description

Examples

See also

Registers an external function for use with a server-side JavaScript application.
Server-side function

Implemented in NES 2.0

regi st er CFuncti on( JSFuncti onNane, |ibraryPat h,
ext er nal Functi onNane)

JSFunct i onNane The name of the function as it is called in JavaScript.

l'i braryPath The full filename and path of the library, using the conventions
of your operating system.

ext er nal Functi onNarre The name of the function as it is defined in the library.

regi st er CFuncti on is a top-level function and is not associated with any
object.

Use regi st er CFunct i on to make an external function available to a server-
side JavaScript application. The function can be written in any language, but
you must use C calling conventions.

To use an external function in a server-side JavaScript application, register the
function with r egi st er CFunct i on, and then call it with the cal | C function.
Once an application registers a function, you can call the function any number
of times.

The regi st er CFunct i on function returns true if the external function is
registered successfully; otherwise, it returns false. For example,

regi st er CFunct i on can return false if the JavaScript runtime engine cannot
find either the library or the specified function inside the library.

To use a backslash (\) character as a directory separator in the | i braryPat h
parameter, you must enter a double backslash (\\). The single backslash is a
reserved character.

See the example for the cal | C function.

call C

Chapter 2, Top-Level Functions 353



ssjs_generateClientID

ssjs_generateClientID

Returns a unique string you can use to uniquely specify the cl i ent object.
Server-side function

Implemented in NES 3.0

Syntax ssjs_generateCient!| D)
Parameters None.

Description ssjs_generated i entl Dis a top-level function and is not associated with
any object.

This function is closely related to ssj s_get Cl i ent | D. See the description of
that function for information on these functions and the differences between
them.

ssjs_getCGlVariable

Returns the value of the specified environment variable set in the server
process, including some CGI variables.
Server-side function

Implemented in NES 3.0

Syntax ssj s_get CAE Vari abl e( var Nane)

Parameters
var Name A string containing the name of the environment variable to
retrieve.

354 Server-Side JavaScript Reference



Description

ssjs_getCGlVariable

ssj s_get CA Vari abl e is a top-level function and is not associated with any

object.

ssj s_get Cd Vari abl e lets you access the environment variables set in the
server process, including the CGI variables listed in the following table.

Table 2.2 CGl variables accessible through ssj s_get CA Vari abl e

Variable Description

AUTH_TYPE The authorization type, if the request is protected by any
type of authorization. Netscape web servers support HTTP
basic access authorization. Example value: basi c

HTTPS If security is active on the server, the value of this variable

HTTPS_KEYSI ZE

HTTPS_SECRETKEYSI ZE

PATH_I NFO

PATH_TRANSLATED

QUERY_STRI NG

REMOTE_ADDR

REMOTE_HOST

REMOTE_USER

REQUEST_METHOD

is ON; otherwise, it is OFF. Example value: ON

The number of bits in the session key used to encrypt the
session, if security is on. Example value: 128

The number of bits used to generate the server’s private
key. Example value: 128

Path information, as sent by the browser. Example value:
/ cgivars/cgivars. htm

The actual system-specific pathname of the path contained
in PATH_| NFO. Example value: / usr/ ns- hore/
nmyhtt pd/j s/ sanpl es/ cgi var s/ cgi vars. htm

Information from the requesting HTML page; if “?” is
present, the information in the URL that comes after the
“?”. Example value: x=42

The IP address of the host that submitted the request.
Example value: 198. 93. 95. 47

If DNS is turned on for the server, the name of the host
that submitted the request; otherwise, its IP address.
Example value: ww. net scape. com

The name of the local HTTP user of the web browser, if
HTTP access authorization has been activated for this URL.
Note that this is not a way to determine the user name of
any person accessing your program. Example value:
ksmth

The HTTP method associated with the request. An
application can use this to determine the proper response
to a request. Example value: GET

Chapter 2, Top-Level Functions 355



ssjs_getClientID

Table 2.2 CGl variables accessible through ssj s_get CA Vari abl e (Continued)

Variable Description

SCRI PT_NAME The pathname to this page, as it appears in the URL.
Example value: cgi vars. ht m

SERVER_NANME The hostname or IP address on which the JavaScript
application is running, as it appears in the URL. Example
value: pi ccol 0. ntom com

SERVER_PORT The TCP port on which the server is running. Example
value: 2020
SERVER_PROTOCOL The HTTP protocol level supported by the client’s

software. Example value: HTTP/ 1. 0

SERVER_URL The URL that the user typed to access this server. Example
value: htt ps:// pi ccol 0: 2020

If you supply an argument that isn't one of the CGI variables listed in n, the
runtime engine looks for an environment variable by that name in the server
environment. If found, the runtime engine returns the value; otherwise, it
returns null. For example, the following code assigns the value of the standard
CLASSPATH environment variable to the JavaScript variable cl asspat h:

classpath = ssjs_get CA Vari abl e(" CLASSPATH") ;

ssjs_getClientID

Returns the identifier for the cl i ent object used by some of JavaScript’s client-
maintenance techniques.
Server-side function

Implemented in NES 3.0

Syntax ssjs_getdientlD()

Parameters None.

356 Server-Side JavaScript Reference



Description

ssjs_getClientID

ssjs_getdientl Dis a top-level function and is not associated with any
object.

For some applications, you may want to store information specific to a client/
application pair in the proj ect or server objects. In these situations, you
need a way to refer uniquely to the client/application pair. JavaScript provides
two functions for this purpose, ssjs_generated i entl Dand
ssjs_getdientlD.

Each time you call ssj s_gener at eCl i ent | D, the runtime engine returns a
new identifier. For this reason, if you use this function and want the identifier
to last longer than a single client request, you need to store the identifier,
possibly as a property of the cl i ent object.

If you use this function and store the ID in the cl i ent object, you may need to
be careful that an intruder cannot get access to that ID and hence to sensitive
information.

An alternative approach is to use the ssj s_get d i ent | D function. If you use
one of the server-side maintenance techniques for the cl i ent object, the
JavaScript runtime engine generates and uses a identifier to access the
information for a particular client/application pair.

When you use these maintenance techniques, ssj s_get C i ent | D returns the
identifier used by the runtime engine. Every time you call this function from a
particular client/application pair, you get the same identifier. Therefore, you do
not need to store the identifier returned by ssj s_get C i ent | D. However, if
you use any of the other maintenance techniques, this function returns
“undefined”; if you use those techniques you must instead use the

ssj s_generat e i ent | D function.

If you need an identifier and you're using a server-side maintenance technique,
you probably should use the ssj s_get d i ent | D function. If you use this
function, you do not need to store and track the identifier yourself; the runtime
engine does it for you. However, if you use a client-side maintenance
technique, you cannot use the ssj s_get d i ent | D function; you must use the
ssj s_generat ed i ent | D function.

Chapter 2, Top-Level Functions 357



String

String

Converts the specified object to a string.
Core function

Implemented in JavaScript 1.2, NES 3.0
ECMA version ECMA-262

Syntax String(obj)
Parameter
obj An obiject.
Description St ri ng is a top-level function and is not associated with any object.

The St ri ng method converts the value of any object into a string; it returns
the same value as the t oSt ri ng method of an individual object.

When the object is a Dat e object, St ri ng returns a more readable string
representation of the date. Its format is: Thu Aug 18 04:37:43 Pacific Daylight
Time 1983.

Example The following example converts the Dat e object to a readable string.

D = new Date (430054663215)
alert (String(D))

This displays a dialog box containing "Thu Aug 18 04:37:43 GMT-0700 (Pacific
Daylight Time) 1983."

Seealso String

358 Server-Side JavaScript Reference



unescape

unescape

Returns the ASCII string for the specified hexadecimal encoding value.
Core function

Implemented in JavaScript 1.0, NES 1.0
ECMA version ECMA-262 compatible, except for Unicode characters.

Syntax unescape(string)

Parameters
string A string containing characters in the form " %x" , where xx is a
2-digit hexadecimal number.

Description unescape is a top-level function and is not associated with any object.

The string returned by the unescape function is a series of characters in the
ISO-Latin-1 character set.

In server-side JavaScript, use this function to decode name/value pairs in URLs.
Examples The following example returns " &":

unescape( " %26")

The following example returns " ! #":

unescape("%19%23")

In the following example, val 1 has been passed to the r equest object as a
hexadecimal value. The statement assigns the decoded value of val 1 to
nyVal ue.

nyVal ue = unescape(request.val 1)

Seealso escape

Chapter 2, Top-Level Functions 359



write

write

Syntax

Parameters

Description

Examples

See also

Generates HTML based on an expression and sends it to the client.
Server-side function

Implemented in NES 2.0

write(expression)

expressi on A valid JavaScript expression.

writ e is a top-level function and is not associated with any object.

The wri t e function causes server-side JavaScript to generate HTML that is sent
to the client. The client interprets this generated HTML as it would static HTML.
The server-side wri t e function is similar to the client-side docunent . write
method.

To improve performance, the JavaScript engine on the server buffers the output
to be sent to the client and sends it in large blocks of at most 64 KBytes in size.
You can control when data are sent to the client by using the f | ush function.

Do not confuse the wri t e method of the Fi | e object with the write
function. The wri t e function outputs data to the client; the wri t e method
outputs data to a physical file on the server.

In the following example, the wri t e function is passed a string, concatenated
with a variable, concatenated with a BR tag:

write("The operation returned " + returnValue + "<BR>")

If ret urnval ue is 57, this example displays the following:

The operation returned 57

flush

360 Server-Side JavaScript Reference



Language Elements

« Statements

+ Operators



362 Server-Side JavaScript Reference



Chapter

Statements

This chapter describes all JavaScript statements. JavaScript statements consist of
keywords used with the appropriate syntax. A single statement may span
multiple lines. Multiple statements may occur on a single line if each statement
is separated by a semicolon.

Syntax conventions: All keywords in syntax statements are in bold. Words in
italics represent user-defined names or statements. Any portions enclosed in

square brackets, [ ], are optional. {statements} indicates a block of statements,
which can consist of a single statement or multiple statements delimited by a
curly braces { }.

The following table lists statements available in JavaScript.

Table 3.1 JavaScript statements.

br eak Terminates the current while or for loop and transfers program
control to the statement following the terminated loop.

conmment Notations by the author to explain what a script does. Comments
are ignored by the interpreter.

conti nue Terminates execution of the block of statements in a while or for
loop, and continues execution of the loop with the next iteration.

do...while Executes the specified statements until the test condition evaluates
to false. Statements execute at least once.

Chapter 3, Statements 363



Table 3.1 JavaScript statements. (Continued)

export

for

for...in

function

if...else

i mport

| abel

return

switch

var

whi | e

Allows a signed script to provide properties, functions, and objects
to other signed or unsigned scripts.

Creates a loop that consists of three optional expressions, enclosed
in parentheses and separated by semicolons, followed by a block
of statements executed in the loop.

Iterates a specified variable over all the properties of an object. For
each distinct property, JavaScript executes the specified statements.

Declares a function with the specified parameters. Acceptable
parameters include strings, numbers, and objects.

Executes a set of statements if a specified condition is true. If the
condition is false, another set of statements can be executed.

Allows a script to import properties, functions, and objects from a
signed script that has exported the information.

Provides an identifier that can be used with break or continue to
indicate where the program should continue execution.

Specifies the value to be returned by a function.

Allows a program to evaluate an expression and attempt to match
the expression’s value to a case label.

Declares a variable, optionally initializing it to a value.

Creates a loop that evaluates an expression, and if it is true,
executes a block of statements. The loop then repeats, as long as
the specified condition is true.

Establishes the default object for a set of statements.

364 Server-Side JavaScript Reference



break

Syntax

Parameter

Description

Examples

break

Use the break statement to terminate a loop, swi t ch, or label statement.

Terminates the current loop, swi t ch, or label statement and transfers program
control to the statement following the terminated loop.
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

break [/ abel]

| abel Identifier associated with the label of the statement.

The br eak statement includes an optional label that allows the program to
break out of a labeled statement. The statements in a labeled statement can be
of any type.

Example 1. The following function has a br eak statement that terminates the
whi | e loop when e is 3, and then returns the value 3 * x.

function testBreak(x) {
var i =0
while (i < 6) {
if (i == 3)
br eak
| ++
}

return i*x

}

Example 2. In the following example, a statement labeled checki andj
contains a statement labeled checkj . If br eak is encountered, the program
breaks out of the checkj statement and continues with the remainder of the
checki andj statement. If br eak had a label of checki andj , the program
would break out of the checki andj statement and continue at the statement
following checki andj .

Chapter 3, Statements 365



comment

checki andj
if (4==i) {
docunent.wite("You ve entered " + i + ".<BR>");
checkj
if (2=5)) {
docunent.wite("You ve entered " +j + ".<BR>");
break checkj ;
docunent.wite("The sumis " + (i+) + ".<BR>");
}
docunent.wite(i + "-" +j + "=" + (i-j) + ".<BR>");
}

Seealso continue, | abel,sw tch

comment

Notations by the author to explain what a script does. Comments are ignored
by the interpreter.
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax // comment text
/* multiple Iine conment text */

Description JavaScript supports Java-style comments:
< Comments on a single line are preceded by a double-slash (//).

= Comments that span multiple lines are preceded by a /* and followed by a
*/.

Examples // This is a single-line coment
/* This is a multiple-line cooment. It can be of any length, and

you can put whatever you want here. */

366 Server-Side JavaScript Reference



continue

Syntax

Parameter

Description

Examples

continue

Restarts a whi | e, do-whi | e, for, or | abel statement.
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

continue [/ abel]

| abel Identifier associated with the label of the statement.

In contrast to the br eak statement, cont i nue does not terminate the execution
of the loop entirely: instead,

< In awhil e loop, it jumps back to the condi ti on.
< Inafor loop, it jumps to the updat e expression.

The cont i nue statement can now include an optional label that allows the
program to terminate execution of a labeled statement and continue to the
specified labeled statement. This type of continue must be in a looping
statement identified by the label used by conti nue.

Example 1. The following example shows a whi | e loop that has a cont i nue
statement that executes when the value of i is 3. Thus, n takes on the values 1,
3,7, and 12.
i =0
n=20
while (i < 5) {

i ++

if (i == 3)

conti nue
n +=i

}

Example 2. In the following example, a statement labeled checki andj
contains a statement labeled checkj . If cont i nue is encountered, the program
continues at the top of the checkj statement. Each time conti nue is
encountered, checkj reiterates until its condition returns false. When false is
returned, the remainder of the checki andj statement is completed.

checki andj reiterates until its condition returns false. When false is returned,
the program continues at the statement following checkiand;.

Chapter 3, Statements 367



do...while

See also

If cont i nue had a label of checki andj , the program would continue at the top
of the checkiandj statement.

checki andj
while (i<4) {

docunent.wite(i + "<BR>");

i +=1,;

checkj

while (j>4) {
docunent.wite(j + "<BR>");
i-=1;
if ((j %) ==0)

continue checkj;
docunent.wite(j + " is odd. <BR>");
}

docunent.wite("i
docunent.wite("]

}

br eak,

"+ o+ "<br>");
"h o+ t<brsty;

| abel

do...while

Syntax

Parameters

Executes the specified statements until the test condition evaluates to false.
Statements execute at least once.
Implemented in JavaScript 1.2, NES 3.0

do
statenents
while (condition);

Block of statements that is executed at least once and is re-executed
each time the condition evaluates to true.

statenents

condi tion Evaluated after each pass through the loop. If condi ti on
evaluates to true, the statements in the preceding block are re-
executed. When condi t i on evaluates to false, control passes to

the statement following do whi | e.

368 Server-Side JavaScript Reference



Examples

export

Syntax

Parameters

Description

See also

export

In the following example, the do loop iterates at least once and reiterates until i
is no longer less than 5.
do {
i+=1
docunent.wite(i);
whil e (i<5);

Allows a signed script to provide properties, functions, and objects to other
signed or unsigned scripts.
Implemented in JavaScript 1.2, NES 3.0

export namel, name2, ..., nanmeN

export *

nameN List of properties, functions, and objects to be exported.

* Exports all properties, functions, and objects from the script.

Typically, information in a signed script is available only to scripts signed by
the same principals. By exporting properties, functions, or objects, a signed
script makes this information available to any script (signed or unsigned). The
receiving script uses the companion import statement to access the information.

i mport

Chapter 3, Statements 369



for

for

Syntax

Parameters

Examples

Creates a loop that consists of three optional expressions, enclosed in
parentheses and separated by semicolons, followed by a block of statements
executed in the loop.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

for ([initial-expression]; [condition]; [increment-expression])

statenents

initial-expression  Statement or variable declaration. Typically used to initialize a
counter variable. This expression may optionally declare new
variables with the var keyword. These variables are local to
the function, not to the loop.

condi tion Evaluated on each pass through the loop. If this condition
evaluates to true, the statements in st at ement s are
performed. This conditional test is optional. If omitted, the
condition always evaluates to true.

i ncrenent - expressi on Generally used to update or increment the counter variable.

statenents Block of statements that are executed as long as condition
evaluates to true. This can be a single statement or multiple
statements. Although not required, it is good practice to indent
these statements from the beginning of the f or statement.

The following f or statement starts by declaring the variable i and initializing it
to 0. It checks that i is less than nine, performs the two succeeding statements,
and increments i by 1 after each pass through the loop.

for (var i =0; i <9; i++) {
n +=i
nyfunc(n)

}

370 Server-Side JavaScript Reference



for...in

for...in

Iterates a specified variable over all the properties of an object. For each
distinct property, JavaScript executes the specified statements.
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax for (variable in object) {
statenents

}
Parameters
vari abl e Variable to iterate over every property, declared with the var
keyword. This variable is local to the function, not to the loop.
obj ect Object for which the properties are iterated.
statenents Specifies the statements to execute for each property.

Examples The following function takes as its argument an object and the object’s name. It
then iterates over all the object’s properties and returns a string that lists the
property names and their values.

function show_props(obj, objNanme) {

var result ="
for (var i in obj) {

result += objName + "." + i +" =" + obj[i] + "\n"
}

return result

Chapter 3, Statements 371



function

function

Syntax

Parameters

Description

Examples

See also

Declares a function with the specified parameters. Acceptable parameters
include strings, numbers, and objects.
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

function nane([ paramt [, param} [..., param) {
statenents

}

You can also define functions using the Funct i on constructor; see “Function”
on page 173.

nane The function name.

param The name of an argument to be passed to the function. A function
can have up to 255 arguments.

statenments The statements which comprise the body of the function.

To return a value, the function must have a r et ur n statement that specifies the
value to return.

A function created with the f unct i on statement is a Funct i on object and
has all the properties, methods, and behavior of Funct i on objects. See
“Function” on page 173 for detailed information on functions.

The following code declares a function that returns the total dollar amount of
sales, when given the number of units sold of products a, b, and c.

function calc_sales(units_a, units_b, units_c) {
return units_a*79 + units_b*129 + units_c*699

}

“Function” on page 173

372 Server-Side JavaScript Reference



if...else

Syntax

Parameters

Examples

import

Syntax

if...else

Executes a set of statements if a specified condition is true. If the condition is
false, another set of statements can be executed.
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

if (condition) {
statenentsl

}
[el se {
st at enment s2
}H
condi tion Can be any JavaScript expression that evaluates to true or false.
Parentheses are required around the condition. If condition
evaluates to true, the statements in st at ement s1 are executed.
statenentsl, Can be any JavaScript statements, including further nested i f
statements2 statements. Multiple statements must be enclosed in braces.
if (cipher_char == fromchar) {
result = result + to_char
X++}
el se

result = result + clear_char

Allows a script to import properties, functions, and objects from a signed script
that has exported the information.
Implemented in JavaScript 1.2, NES 3.0

i nport obj ect Nane. nanel, obj ect Nane. nane2, ..., object Nanme. naneN
i mport obj ect Nane. *

Chapter 3, Statements 373



label

Parameters
obj ect Name Name of the object that will receive the imported names.
nanmel, List of properties, functions, and objects to import from the export
namez, file.
nanmeN
* Imports all properties, functions, and objects from the export script.

Description The obj ect Nane parameter is the name of the object that will receive the
imported names. For example, if f and p have been exported, and if obj is an
object from the importing script, the following code makes f and p accessible
in the importing script as properties of obj .

import obj.f, obj.p

Typically, information in a signed script is available only to scripts signed by
the same principals. By exporting (using the export statement) properties,
functions, or objects, a signed script makes this information available to any
script (signed or unsigned). The receiving script uses the i nport statement to
access the information.

The script must load the export script into a window, frame, or layer before it
can import and use any exported properties, functions, and objects.

See also export

label

Provides a statement with an identifier that lets you refer to it elsewhere in your
program.
Implemented in JavaScript 1.2, NES 3.0

For example, you can use a label to identify a loop, and then use the br eak or
cont i nue statements to indicate whether a program should interrupt the loop
or continue its execution.

Syntax [ abel
statenents

374 Server-Side JavaScript Reference



Parameter

Examples

See also

return

Syntax

Parameters

Examples

return

| abel Any JavaScript identifier that is not a reserved word.

statenents Block of statements. br eak can be used with any labeled
statement, and continue can be used with looping labeled
statements.

For an example of a label statement using br eak, see br eak. For an example
of a label statement using cont i nue, see conti nue.

br eak, conti nue

Specifies the value to be returned by a function.
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

return expression

expressi on The expression to return.

The following function returns the square of its argument, x, where x is a
number.

function square(x) {
return x * x

}

Chapter 3, Statements 375



switch

switch

Syntax

Parameters

Description

Allows a program to evaluate an expression and attempt to match the
expression’s value to a case label.
Implemented in JavaScript 1.2, NES 3.0

switch (expression){
case [ abel
st at enents;
br eak;
case | abel
statenents;
br eak;

default : statenents;

}

expressi on Value matched against label.

| abel Identifier used to match against expression.

statenments Block of statements that is executed once if expr essi on matches

| abel .

If a match is found, the program executes the associated statement. If multiple
cases match the provided value, the first case that matches is selected, even if
the cases are not equal to each other.

The program first looks for a label matching the value of expression and then

executes the associated statement. If no matching label is found, the program

looks for the optional default statement, and if found, executes the associated

statement. If no default statement is found, the program continues execution at
the statement following the end of swi t ch.

The optional br eak statement associated with each case label ensures that the
program breaks out of switch once the matched statement is executed and
continues execution at the statement following switch. If br eak is omitted, the
program continues execution at the next statement in the swi t ch statement.

376 Server-Side JavaScript Reference



var

Examples In the following example, if expr essi on evaluates to “Bananas”, the program
matches the value with case “Bananas” and executes the associated statement.
When br eak is encountered, the program breaks out of swi t ch and executes
the statement following swi t ch. If br eak were omitted, the statement for case
“Cherries” would also be executed.

switch (i) {

case "Oranges”
docunment. write("Oranges are $0.59 a pound. <BR>");
br eak;

case "Appl es"
document . write("Apples are $0.32 a pound. <BR>");
br eak;

case "Bananas"
document . wri te("Bananas are $0.48 a pound. <BR>");
br eak;

case "Cherries"
document.write("Cherries are $3.00 a pound. <BR>");
br eak;

def aul t
docunent.wite("Sorry, we are out of " + i + ".<BR>");

}

docunent.wite("ls there anything el se you'd |ike?<BR>");

var

Declares a variable, optionally initializing it to a value.
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Syntax var varnanme [= value]l [..., varnane [= val ue] ]
Parameters
var nane Variable name. It can be any legal identifier.
val ue Initial value of the variable and can be any legal expression.

Chapter 3, Statements 377



while

Description

Examples

while

Syntax

Parameters

Examples

The scope of a variable is the current function or, for variables declared outside
a function, the current application.

Using var outside a function is optional; you can declare a variable by simply
assigning it a value. However, it is good style to use var, and it is necessary in
functions in the following situations:

< If a global variable of the same name exists.
= If recursive or multiple functions use variables with the same name.

var numhits = 0, cust_no =0

Creates a loop that evaluates an expression, and if it is true, executes a block of
statements. The loop then repeats, as long as the specified condition is true.
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

while (condition) {
statenents

}

condition Evaluated before each pass through the loop. If this condition
evaluates to true, the statements in the succeeding block are
performed. When condi ti on evaluates to false, execution
continues with the statement following st at enent s.

statenents Block of statements that are executed as long as the condition

evaluates to true. Although not required, it is good practice to
indent these statements from the beginning of the statement.

The following whi | e loop iterates as long as n is less than three.

n=20
x =0
while(n < 3) {
n ++
X +=n
}

378 Server-Side JavaScript Reference



with

Syntax

Parameters

Description

with

Each iteration, the loop increments n and adds it to x. Therefore, x and n take
on the following values:

= After the first pass:n=1and x =1
= After the second pass: n=2and x = 3
= After the third pass: n=3and x = 6

After completing the third pass, the condition n < 3 is no longer true, so the
loop terminates.

Establishes the default object for a set of statements.
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

with (object)(
statenents

}

obj ect Specifies the default object to use for the statements. The
parentheses around object are required.

st atenents Any block of statements.

JavaScript looks up any unqualified names within the set of statements to
determine if the names are properties of the default object. If an unqualified
name matches a property, then the property is used in the statement; otherwise,
a local or global variable is used.

Chapter 3, Statements 379



with

Examples The following wi t h statement specifies that the Mat h object is the default
object. The statements following the wi t h statement refer to the Pl property
and the cos and si n methods, without specifying an object. JavaScript
assumes the Mat h object for these references.

var a, X, y
var r=10
with (Math) {

a Pl *r *r
r * cos(Pl)
r * sin(Pl/2)

X
y

380 Server-Side JavaScript Reference



Chapter

Operators

JavaScript has assignment, comparison, arithmetic, bitwise, logical, string, and
special operators. This chapter describes the operators and contains
information about operator precedence.

The following table summarizes the JavaScript operators.

Table 4.1 JavaScript operators.

Operator Operator Description
category
Arithmetic + (Addition) Adds 2 numbers.
Operators . . .
P ++ (Increment) Adds one to a variable representing a number (returning
either the new or old value of the variable)
- (Unary negation, subtraction) As a unary operator, negates the value of
its argument. As a binary operator, subtracts 2 numbers.
-- (Decrement) Subtracts one from a variable representing a number
(returning either the new or old value of the variable)
* (Multiplication) Multiplies 2 numbers.
/ (Division) Divides 2 numbers.
% (Modulus) Computes the integer remainder of dividing 2 numbers.
String + (String addition) Concatenates 2 strings.
Operators . . .
P += Concatenates 2 strings and assigns the result to the first operand.

Chapter 4, Operators 381



Table 4.1 JavaScript operators. (Continued)

Operator
category

Operator

Description

Logical
Operators

Bitwise
Operators

&&

<<

>>

>>>

(Logical AND) Returns the first operand if it can be converted to false;
otherwise, returns the second operand. Thus, when used with Boolean
values, && returns true if both operands are true; otherwise, returns false.

(Logical OR) Returns the first operand if it can be converted to true;
otherwise, returns the second operand. Thus, when used with Boolean
values, || returns true if either operand is true; if both are false, returns
false.

(Logical NOT) Returns false if its single operand can be converted to true;
otherwise, returns true.

(Bitwise AND) Returns a one in each bit position if bits of both operands
are ones.

(Bitwise XOR) Returns a one in a bit position if bits of one but not both
operands are one.

(Bitwise OR) Returns a one in a bit if bits of either operand is one.
(Bitwise NOT) Flips the bits of its operand.

(Left shift) Shifts its first operand in binary representation the number of
bits to the left specified in the second operand, shifting in zeros from the
right.

(Sign-propagating right shift) Shifts the first operand in binary
representation the number of bits to the right specified in the second
operand, discarding bits shifted off.

(Zero-fill right shift) Shifts the first operand in binary representation the
number of bits to the right specified in the second operand, discarding
bits shifted off, and shifting in zeros from the left.

382 Server-Side JavaScript Reference



Table 4.1 JavaScript operators. (Continued)

Operator Operator Description
category
Assignment = Assigns the value of the second operand to the first operand.
Operators += Adds 2 numbers and assigns the result to the first.

-= Subtracts 2 numbers and assigns the result to the first.

*= Multiplies 2 numbers and assigns the result to the first.

/= Divides 2 numbers and assigns the result to the first.

% Computes the modulus of 2 numbers and assigns the result to the first.

&= Performs a bitwise AND and assigns the result to the first operand.

N= Performs a bitwise XOR and assigns the result to the first operand.

= Performs a bitwise OR and assigns the result to the first operand.
<<= Performs a left shift and assigns the result to the first operand.
>>= Performs a sign-propagating right shift and assigns the result to the first
operand.

>>>= Performs a zero-fill right shift and assigns the result to the first operand.
Comparison == Returns true if the operands are equal.
Operators I= Returns true if the operands are not equal.

> Returns true if the left operand is greater than the right operand.

>= Returns true if the left operand is greater than or equal to the right

operand.
< Returns true if the left operand is less than the right operand.
<= Returns true if the left operand is less than or equal to the right operand.

Chapter 4, Operators 383



Assignment Operators

Table 4.1 JavaScript operators. (Continued)

Operator Operator Description
category
Special ?: Performs a simple "i f...then...el se"
Operators .
P , Evaluates two expressions and returns the result of the second
expression.
del ete Deletes an object, an object’s property, or an element at a specified index
in an array.
new Creates an instance of a user-defined object type or of one of the built-in
object types.
this Keyword that you can use to refer to the current object.
t ypeof Returns a string indicating the type of the unevaluated operand.
voi d Specifies an expression to be evaluated without returning a value.

Assignment Operators

An assignment operator assigns a value to its left operand based on the value of
its right operand.
Implemented in JavaScript 1.0

ECMA version ECMA-262

The basic assignment operator is equal (=), which assigns the value of its right
operand to its left operand. That is, x =y assigns the value of y to x. The other
assignment operators are usually shorthand for standard operations, as shown
in the following table.

384 Server-Side JavaScript Reference



Comparison Operators

Table 4.2 Assignment operators

Shorthand operator Meaning

X +=y X =X +y
X -=y X =X -y
X *=y X =Xx*y
xl=y x=x/ly
X %y X =X %y
X<<:y X:X<<y
X >>=y X =X >>y
X >>>=y X = X >>>y
X &=y X =X &Yy
X "=y X =x "Ny
X |=y X =x|y

In unusual situations, the assignment operator is not identical to the Meaning
expression in Table 4.2. When the left operand of an assignment operator itself
contains an assignment operator, the left operand is evaluated only once. For
example:

a[i++] += 5 //i is evaluated only once
a[i++] = a[i++] + 5 //i is evaluated tw ce

Comparison Operators

A comparison operator compares its operands and returns a logical value based
on whether the comparison is true.
Implemented in JavaScript 1.0

ECMA version ECMA-262

The operands can be numerical or string values. Strings are compared based on
standard lexicographical ordering.

Chapter 4, Operators 385



Comparison Operators

A Boolean value is returned as the result of the comparison.

= Two strings are equal when they have the same sequence of characters,
same length, and same characters in corresponding positions.

= Two numbers are equal when they are numerically equal (have the same
number value). NaN is not equal to anything, including NaN. Positive and
negative zeros are equal.

= Two objects are equal if they refer to the same Object.

= Two Boolean operands are equal if they are both t r ue or f al se.

= Null and Undefined types are equal.

The following table describes the comparison operators.

Table 4.3 Comparison operators

Operator Description Examples returning true?
Equal (==) Returns true if the operands are equal. 3 ==varl
Not equal (! =) Returns true if the operands are not equal. varl !'= 4

Greater than (>)
Greater than or equal
(>=)

Less than (<)

Less than or equal (<=)

Returns true if the left operand is greater than the
right operand.

Returns true if the left operand is greater than or
equal to the right operand.

Returns true if the left operand is less than the
right operand.

Returns true if the left operand is less than or
equal to the right operand.

var2 > varl

var2 >= varl
varl >= 3

varl < var2

varl <= var2
var2 <= 5

a. These examples assume that var 1 has been assigned the value 3 and var 2 has been assigned the value 4.

Backward JavaScript 1.1 and earlier versions. The equality operators (== and !=)
Compatibility  perform a type conversion before the comparison is made.

386 Server-Side JavaScript Reference



Arithmetic Operators

Arithmetic Operators

Arithmetic operators take numerical values (either literals or variables) as their
operands and return a single numerical value. The standard arithmetic
operators are addition (+), subtraction (-), multiplication (*), and division (/).
Implemented in JavaScript 1.0

ECMA version ECMA-262

These operators work as they do in most other programming languages, except
the / operator returns a floating-point division in JavaScript, not a truncated
division as it does in languages such as C or Java. For example:

1/2 //returns 0.5 in JavaScri pt
1/2 //returns O in Java

% (Modulus)

The modulus operator is used as follows:

varl % var2

The modulus operator returns the first operand modulo the second operand,
that is, var 1 modulo var 2, in the preceding statement, where var 1 and var 2
are variables. The modulo function is the integer remainder of dividing var 1 by
var 2. For example, 12 % 5 returns 2.

Chapter 4, Operators 387



Arithmetic Operators

++ (Increment)

The increment operator is used as follows:
var++ or ++var

This operator increments (adds one to) its operand and returns a value. If used
postfix, with operator after operand (for example, x++), then it returns the
value before incrementing. If used prefix with operator before operand (for
example, ++x), then it returns the value after incrementing.

For example, if x is three, then the statementy = x++ setsy to 3 and
increments x to 4. If x is 3, then the statementy = ++x increments x to 4 and
sets y to 4.

-- (Decrement)

The decrement operator is used as follows:
var-- or --var

This operator decrements (subtracts one from) its operand and returns a value.
If used postfix (for example, x--), then it returns the value before decrementing.
If used prefix (for example, --x), then it returns the value after decrementing.

For example, if x is three, then the statementy = x-- setsy to 3 and
decrements x to 2. If x is 3, then the statement y = --x decrements x to 2 and
setsy to 2.

- (Unary Negation)

The unary negation operator precedes its operand and negates it. For example,
y = -x negates the value of x and assigns that to y; that is, if x were 3,y
would get the value -3 and x would retain the value 3.

388 Server-Side JavaScript Reference



Bitwise Operators

Bitwise Operators

Bitwise operators treat their operands as a set of 32 bits (zeros and ones), rather
than as decimal, hexadecimal, or octal numbers. For example, the decimal
number nine has a binary representation of 1001. Bitwise operators perform
their operations on such binary representations, but they return standard
JavaScript numerical values.

The following table summarizes JavaScript's bitwise operators:

Table 4.4 Bitwise operators

Operator Usage Description

Bitwise AND a&b Returns a one in each bit position for which
the corresponding bits of both operands are
ones.

Bitwise OR al b Returns a one in each bit position for which
the corresponding bits of either or both
operands are ones.

Bitwise XOR a™b Returns a one in each bit position for which
the corresponding bits of either but not both
operands are ones.

Bitwise NOT ~a Inverts the bits of its operand.

Left shift a<<b Shifts a in binary representation b bits to
left, shifting in zeros from the right.

Sign-propagating right a >> b Shifts a in binary representation b bits to

shift right, discarding bits shifted off.

Zero-fill right shift a >>b Shifts a in binary representation b bits to

the right, discarding bits shifted off, and
shifting in zeros from the left.

Chapter 4, Operators 389



Bitwise Operators

Bitwise Logical Operators

Implemented in JavaScript 1.0
ECMA version ECMA-262

Conceptually, the bitwise logical operators work as follows:

= The operands are converted to thirty-two-bit integers and expressed by a
series of bits (zeros and ones).

= Each bit in the first operand is paired with the corresponding bit in the
second operand: first bit to first bit, second bit to second bit, and so on.

= The operator is applied to each pair of bits, and the result is constructed
bitwise.

For example, the binary representation of nine is 1001, and the binary
representation of fifteen is 1111. So, when the bitwise operators are applied to
these values, the results are as follows:

- 15& 9 yields 9 (1111 & 1001 = 1001)
- 15| 9yields 15 (1111 | 1001 = 1111)
- 15~ 9yields 6 (1111 ~ 1001 = 0110)

Bitwise Shift Operators

Implemented in JavaScript 1.0
ECMA version ECMA-262

The bitwise shift operators take two operands: the first is a quantity to be
shifted, and the second specifies the number of bit positions by which the first
operand is to be shifted. The direction of the shift operation is controlled by the
operator used.

Shift operators convert their operands to thirty-two-bit integers and return a
result of the same type as the left operator.

390 Server-Side JavaScript Reference



Bitwise Operators

<< (Left Shift)

This operator shifts the first operand the specified number of bits to the left.
Excess bits shifted off to the left are discarded. Zero bits are shifted in from the
right.

For example, 9<<2 yields thirty-six, because 1001 shifted two bits to the left
becomes 100100, which is thirty-six.

>> (Sign-Propagating Right Shift)

This operator shifts the first operand the specified number of bits to the right.
Excess bits shifted off to the right are discarded. Copies of the leftmost bit are
shifted in from the left.

For example, 9>>2 yields two, because 1001 shifted two bits to the right
becomes 10, which is two. Likewise, -9>>2 yields -3, because the sign is
preserved.

>>> (Zero-Fill Right Shift)

This operator shifts the first operand the specified number of bits to the right.
Excess bits shifted off to the right are discarded. Zero bits are shifted in from
the left.

For example, 19>>>2 yields four, because 10011 shifted two bits to the right
becomes 100, which is four. For non-negative numbers, zero-fill right shift and
sign-propagating right shift yield the same result.

Chapter 4, Operators 391



Logical Operators

Logical Operators

Logical operators are typically used with Boolean (logical) values; when they
are, they return a Boolean value. However, the && and || operators actually
return the value of one of the specified operands, so if these operators are used
with non-Boolean values, they may return a non-Boolean value.

Implemented in JavaScript 1.0

ECMA version ECMA-262

The logical operators are described in the following table.

Table 4.5 Logical operators

Operator Usage Description

&& exprl && expr2  (Logical AND) Returns expr 1 if it can be
converted to false; otherwise, returns expr 2.
Thus, when used with Boolean values, && returns
true if both operands are true; otherwise, returns
false.

11 exprl || expr2 (Logical OR) Returns expr 1 if it can be converted
to true; otherwise, returns expr 2. Thus, when
used with Boolean values, | | returns true if either
operand is true; if both are false, returns false.

! L expr (Logical NOT) Returns false if its single operand
can be converted to true; otherwise, returns true.

Examples of expressions that can be converted to false are those that evaluate
to null, 0, the empty string (“”), or undefined.

Even though the && and || operators can be used with operands that are not
Boolean values, they can still be considered Boolean operators since their
return values can always be converted to Boolean values.

392 Server-Side JavaScript Reference



Logical Operators

Short-Circuit Evaluation. As logical expressions are evaluated left to right,
they are tested for possible “short-circuit” evaluation using the following rules:

= fal se && anything is short-circuit evaluated to false.
= true || anything is short-circuit evaluated to true.

The rules of logic guarantee that these evaluations are always correct. Note that
the anything part of the above expressions is not evaluated, so any side effects
of doing so do not take effect.

Backward JavaScript 1.0 and 1.1. The && and | | operators behave as follows:
Compatibility

Operator Behavior

&& If the first operand (expr 1) can be converted to false, the &&
operator returns false rather than the value of expr 1.

1 If the first operand (expr 1) can be converted to true, the ||
operator returns true rather than the value of expr 1.

Examples The following code shows examples of the && (logical AND) operator.

al=true && true /] t & t returns true
a2=true && false /1 t & f returns false
a3=fal se && true /Il f & & t returns false
ad=false & (3 == 4) /] f && f returns false
ab="Cat" && "Dog" /1t & t returns Dog

a6=fal se & "Cat" /I f & t returns false
a7="Cat" && false /1 t & f returns false

The following code shows examples of the || (logical OR) operator.

ol=true || true /1 t || t returns true
o2=false || true [/ f || t returns true
o3=true || false /1 t || f returns true
od4=false || (3 ==4) [/ f || f returns false
o5="Cat" || "Dog" /1t || t returns Cat
o6=false || "Cat" /1 f || t returns Cat
o7="Cat" || false /1 t || f returns Cat

The following code shows examples of the ! (logical NOT) operator.

nl=!true /1 't returns false
n2=!fal se /1 1'f returns true
n3=!"Cat" /1 't returns false

Chapter 4, Operators 393



String Operators

String Operators

In addition to the comparison operators, which can be used on string values,
the concatenation operator (+) concatenates two string values together,
returning another string that is the union of the two operand strings. For
example, "ny " + "string" returns the string "ny string".

Implemented in JavaScript 1.0

ECMA version ECMA-262

The shorthand assignment operator += can also be used to concatenate strings.
For example, if the variable myst ri ng has the value “alpha,” then the
expression nystring += "bet" evaluates to “alphabet” and assigns this value
to nystring.

Special Operators

Syntax

Parameters

Description

?. (Conditional operator)

The conditional operator is the only JavaScript operator that takes three
operands. This operator is frequently used as a shortcut for the i f statement.
Implemented in JavaScript 1.0

ECMA version ECMA-262

condition ? exprl : expr2

condi tion An expression that evaluates to t rue or f al se
expril, expr2 Expressions with values of any type.

If condi tion is true, the operator returns the value of expr 1; otherwise, it
returns the value of expr 2. For example, to display a different message based
on the value of the i sMenber variable, you could use this statement:

document.wite ("The fee is " + (isMenber ? "$2.00" : "$10.00"))

394 Server-Side JavaScript Reference



Syntax

Parameters

Description

Syntax

Parameters

Special Operators

, (Comma operator)

The comma operator evaluates both of its operands and returns the value of the
second operand.
Implemented in JavaScript 1.0

ECMA version ECMA-262

exprl, expr2

exprl, expr2 Any expressions

You can use the comma operator when you want to include multiple
expressions in a location that requires a single expression. The most common
usage of this operator is to supply multiple parameters in a f or loop.

For example, if a is a 2-dimensional array with 10 elements on a side, the
following code uses the comma operator to increment two variables at once.
The code prints the values of the diagonal elements in the array:

for (var i=0, j=9; i <= 9; i++, j--)
docunent.writeln("a["+i +", "+ +"]1=" + a[i,j])
delete

The delete operator deletes an object, an object’s property, or an element at a
specified index in an array.
Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA-262

del et e obj ect Nane

del et e obj ect Nane. property

del et e obj ect Nane[ i ndex]

del ete property /] legal only within a with statenent

obj ect Name The name of an object.
property The property to delete.
i ndex An integer representing the array index to delete.

Chapter 4, Operators 395



Special Operators

Description  The fourth form is legal only within a wi t h statement, to delete a property from
an object.

You can use the del et e operator to delete variables declared implicitly but not
those declared with the var statement.

If the del et e operator succeeds, it sets the property or element to undef i ned.
The del et e operator returns true if the operation is possible; it returns false if
the operation is not possible.

x=42

var y= 43

nyobj =new Nunber ()

nyobj . h=4 /'l create property h

delete x /] returns true (can delete if declared inplicitly)
delete y /1 returns false (cannot delete if declared with var)

delete Math.Pl // returns false (cannot del ete predefined properties)
del ete nmyobj.h // returns true (can del ete user-defined properties)
del et e nyobj /1 returns true (can del ete objects)

Deleting array elements. When you delete an array element, the array length
is not affected. For example, if you delete a[3], a[4] is still a[4] and a[3] is
undefined.

When the del et e operator removes an array element, that element is no
longer in the array. In the following example, trees[3] is removed with del et e.

trees=new Array("redwood", "bay", "cedar", "oak", "mapl e")
del ete trees[3]
if (3intrees) {

/1 this does not get executed

}

If you want an array element to exist but have an undefined value, use the
undef i ned keyword instead of the del et e operator. In the following
example, trees[3] is assigned the value undefined, but the array element still
exists:

trees=new Array("redwood", "bay", "cedar", "oak", "mapl e")
trees[ 3] =undef i ned
if (3intrees) {

// this gets executed

}

396 Server-Side JavaScript Reference



Syntax

Parameters

Description

Special Operators

new

The new operator creates an instance of a user-defined object type or of one of
the built-in object types that has a constructor function.
Implemented in JavaScript 1.0

ECMA version ECMA-262

obj ect Nane = new obj ect Type (parand [, paran?] ...[, param\)

obj ect Name Name of the new object instance.
obj ect Type Object type. It must be a function that defines an object type.

parami. .. paranmN Property values for the object. These properties are parameters
defined for the obj ect Type function.

Creating a user-defined object type requires two steps:
1. Define the object type by writing a function.
2. Create an instance of the object with new.

To define an object type, create a function for the object type that specifies its
name, properties, and methods. An object can have a property that is itself
another object. See the examples below.

You can always add a property to a previously defined object. For example, the
statement car 1. col or = "bl ack" adds a property col or to car 1, and assigns
it a value of " bl ack". However, this does not affect any other objects. To add
the new property to all objects of the same type, you must add the property to
the definition of the car object type.

You can add a property to a previously defined object type by using the
Functi on. pr ot ot ype property. This defines a property that is shared by all
objects created with that function, rather than by just one instance of the object
type. The following code adds a col or property to all objects of type car, and
then assigns a value to the col or property of the object car 1. For more
information, see pr ot ot ype

Car . prot ot ype. col or =nul |
car 1. col or="bl ack"
bi rt hday. descri pti on="The day you were born"

Chapter 4, Operators 397



Special Operators

Examples Example 1: Object type and object instance. Suppose you want to create an
object type for cars. You want this type of object to be called car, and you
want it to have properties for make, model, and year. To do this, you would
write the following function:

function car(make, nodel, year) {
t hi s. make = make
this. rodel = nodel
this.year = year

}

Now you can create an object called nmycar as follows:

nycar = new car ("Eagle", "Talon TSi", 1993)

This statement creates mycar and assigns it the specified values for its
properties. Then the value of nycar . make is the string " Eagl e", mycar . year is
the integer 1993, and so on.

You can create any number of car objects by calls to new. For example,

kenscar = new car ("N ssan", "300zX", 1992)

Example 2: Object property that is itself another object. Suppose you
define an object called per son as follows:

functi on person(nane, age, sex) {
thi s. nane = nane
this.age = age
this.sex = sex

}

And then instantiate two new per son objects as follows:

rand = new person("Rand MNally", 33, "M)
ken = new person("Ken Jones", 39, "M)

Then you can rewrite the definition of car to include an owner property that
takes a per son object, as follows:

function car(make, nodel, year, owner) {
this. make = make;
t hi s. rodel = nodel;
this.year = year;
this. owner = owner;

}

To instantiate the new objects, you then use the following:

car

1 = new car("Eagle", "Talon TSi", 1993, rand);
car2 =

new car ("N ssan", "300zZX", 1992, ken)

398 Server-Side JavaScript Reference



Syntax

Examples

Special Operators

Instead of passing a literal string or integer value when creating the new
objects, the above statements pass the objects r and and ken as the parameters
for the owners. To find out the name of the owner of car 2, you can access the
following property:

car 2. owner. nane

this

The this keyword refers to the current object. In general, in a method t hi s
refers to the calling object.
Implemented in JavaScript 1.0

ECMA version ECMA-262

t hi s[. propertyNane]

Suppose a function called val i dat e validates an object’s value property, given
the object and the high and low values:

function validate(obj, lowal, hival) {
if ((obj.value < lowal) || (obj.value > hival))
alert("lInvalid Value!")

}

You could call val i dat e in each form element’s onChange event handler,
using t hi s to pass it the form element, as in the following example:

<B>Enter a nunber between 18 and 99: </ B>
<INPUT TYPE = "text" NAME = "age" SIZE = 3
onChange="val i date(this, 18, 99)">

Chapter 4, Operators 399



Special Operators

typeof

The t ypeof operator is used in either of the following ways:

1. typeof operand
2. typeof (operand)

The t ypeof operator returns a string indicating the type of the unevaluated
operand. oper and is the string, variable, keyword, or object for which the type
is to be returned. The parentheses are optional.

Implemented in JavaScript 1.1

ECMA version ECMA-262

Suppose you define the following variables:

var nmyFun = new Function("5+2")
var shape="round"

var size=1

var today=new Date()

The t ypeof operator returns the following results for these variables:

typeof myFun is object

typeof shape is string

typeof size is nunber

typeof today is object

typeof dont Exi st is undefined

For the keywords t rue and nul |, the t ypeof operator returns the following
results:

typeof true is bool ean
typeof null is object

For a number or string, the t ypeof operator returns the following results:

typeof 62 is nunber
typeof "Hello world is string

For property values, the t ypeof operator returns the type of value the property
contains:

typeof docunent.lastMdified is string
typeof wi ndow. | ength is nunber
typeof Math.LN2 is nunber

400 Server-Side JavaScript Reference



Special Operators

For methods and functions, the t ypeof operator returns results as follows:

typeof blur is function

typeof eval is function

typeof parselnt is function
typeof shape.split is function

For predefined objects, the t ypeof operator returns results as follows:

typeof Date is function
typeof Function is function
typeof Math is function
typeof Option is function
typeof String is function

void

The void operator is used in either of the following ways:

1. void (expression)
2. void expression

The void operator specifies an expression to be evaluated without returning a
value. expr essi on is a JavaScript expression to evaluate. The parentheses
surrounding the expression are optional, but it is good style to use them.
Implemented in JavaScript 1.1

ECMA version ECMA-262

You can use the voi d operator to specify an expression as a hypertext link.
The expression is evaluated but is not loaded in place of the current document.

The following code creates a hypertext link that does nothing when the user
clicks it. When the user clicks the link, voi d( 0) evaluates to 0, but that has no
effect in JavaScript.

<A HREF="j avascript:void(0)">Cick here to do nothing</A>

The following code creates a hypertext link that submits a form when the user
clicks it.

<A HREF="j avascri pt: voi d(docunment.form submt())">
Click here to submt</A>

Chapter 4, Operators 401



Special Operators

402 Server-Side JavaScript Reference



LiveConnect Class Reference

» Java Classes, Constructors, and
Methods



404 Server-Side JavaScript Reference



Chapter

Java Classes, Constructors, and
Methods

This chapter documents the Java classes used for LiveConnect, along with their
constructors and methods. It is an alphabetical reference for the classes that
allow a Java object to access JavaScript code.

This reference is organized as follows:
= Full entries for each class appear in alphabetical order.

Tables included in the description of each class summarize the constructors
and methods of the class.

= Full entries for the constructors and methods of a class appear in
alphabetical order after the entry for the class.

Chapter 5, Java Classes, Constructors, and Methods 405



JSException.JSException

JSEXception

Description

Constructor
Summary

The public class JSExcept i on extends Except i on.

j ava. | ang. Obj ect

+----java.l ang. Throwabl e

+----java.l ang. Exception

+----netscape. javascript.JSException

JSExcept i on is an exception which is thrown when JavaScript code returns an
error.

The net scape. j avascri pt. JSExcept i on class has the following
constructors:

Constructor Description

JSException Constructs a JSExcept i on. You specify whether the
JSExcept i on has a detail message and other information.

The following sections show the declaration and usage of the constructors.

JSException

Declaration

Constructor. Constructs a JSExcept i on. You specify whether the JSExcept i on
has a detail message and other information.

1. public JSException()
2. public JSException(String s)

3. public JSException(String s,
String fil enane,
int |ineno,
String source,
i nt tokenl ndex)

406 Server-Side JavaScript Reference



JSException.JSException

Arguments
s The detail message.
filename The URL of the file where the error occurred, if possible.
l'i neno The line number if the file, if possible.
source The string containing the JavaScript code being evaluated.
t okenl ndex The index into the source string where the error occurred.

Description A detail message is a string that describes this particular exception.
Each form constructs a JSExcept i on with different information:

< Form 1 of the declaration constructs a JSExcept i on without a detail
message.

= Form 2 of the declaration constructs a JSExcept i on with a detail message.

= Form 3 of the declaration constructs a JSExcept i on with a detail message
and all the other information that usually comes with a JavaScript error.

Chapter 5, Java Classes, Constructors, and Methods 407



JSObject

JSODbject

Description

Method Summary

The public final class net scape. j avascri pt. JSCbj ect extends Obj ect .

j ava. | ang. Obj ect

+----netscape.javascri pt.JSObj ect

JavaScript objects are wrapped in an instance of the class
net scape. j avascri pt. JSCbj ect and passed to Java. JSQoj ect allows
Java to manipulate JavaScript objects.

When a JavaScript object is sent to Java, the runtime engine creates a Java
wrapper of type JSObj ect ; when a JSObj ect is sent from Java to JavaScript,
the runtime engine unwraps it to its original JavaScript object type. The
JShj ect class provides a way to invoke JavaScript methods and examine
JavaScript properties.

Any JavaScript data brought into Java is converted to Java data types. When the
JSObiject is passed back to JavaScript, the object is unwrapped and can be used
by JavaScript code. See the Server-Side JavaScript Guide for more information
about data type conversions.

The net scape. j avascri pt. JSObj ect class has the following methods:

Method Description

cal | Calls a JavaScript method.

equal s Determines if two JSCbj ect objects refer to the same
instance.

eval Evaluates a JavaScript expression.

get Menber Retrieves the value of a property of a JavaScript object.

get Sl ot Retrieves the value of an array element of a JavaScript object.

r enoveMenber Removes a property of a JavaScript object.

set Menber Sets the value of a property of a JavaScript object.

set Sl ot Sets the value of an array element of a JavaScript object.

toString Converts a JSObj ect to a string.

408 Server-Side JavaScript Reference



JSObject.call

The net scape. j avascri pt. JSObj ect class has the following static methods:

Method Description
get W ndow Gets a JSChj ect for the window containing the given
applet.

The following sections show the declaration and usage of these methods.

Method. Calls a JavaScript method. Equivalent to
“t hi s. met hodName(args[0], args[1], ...)”"inJavaScript.

public Object call(String methodNane,
oj ect args[])

equals

Method. Determines if two JSObj ect objects refer to the same instance.
Overrides: equal s in class j ava. | ang. Obj ect

publi ¢ bool ean equal s(Obj ect obj)

Method. Evaluates a JavaScript expression. The expression is a string of
JavaScript source code which will be evaluated in the context given by “this”.

public Object eval (String s)

getMember

Method. Retrieves the value of a property of a JavaScript object. Equivalent to
“t hi s. nane” in JavaScript.

call
Declaration
Declaration

eval
Declaration
Declaration

public Object getMenber(String nane)

Chapter 5, Java Classes, Constructors, and Methods 409



JSObject.getSlot

getSlot

Declaration

Method. Retrieves the value of an array element of a JavaScript object.
Equivalent to “t hi s[ i ndex] ” in JavaScript.

public Object getSlot(int index)

getWindow

Declaration

Static method. Returns a JSQbj ect for the window containing the given applet.
This method is useful in client-side JavaScript only.

public static JSOhject get Wndow( Appl et appl et)

removeMember

Declaration

Method. Removes a property of a JavaScript object.

public void renoveMenber (String nane)

setMember

Declaration

Method. Sets the value of a property of a JavaScript object. Equivalent to
“t hi s. name = val ue” in JavaScript.

public void set Menber(String nane,
oj ect val ue)

setSlot

Declaration

Method. Sets the value of an array element of a JavaScript object. Equivalent to
“t hi s[i ndex] = val ue” in JavaScript.

public void setSlot(int index,
oj ect val ue)

410 Server-Side JavaScript Reference



JSObject.toString

toString

Method. Converts a JSObj ect to a Stri ng.
Overrides: t oSt ri ng in class j ava. | ang. Obj ect

Declaration public String toString()

Chapter 5, Java Classes, Constructors, and Methods 411



JSObject.toString

412 Server-Side JavaScript Reference



Appendixes

* Reserved Words



414 Server-Side JavaScript Reference



This appendix lists the reserved words in JavaScript.

Appendix

Reserved Words

The reserved words in this list cannot be used as JavaScript variables,
functions, methods, or object names. Some of these words are keywords used
in JavaScript; others are reserved for future use.

abstract
bool ean
br eak
byt e
case
catch
char

cl ass
const
conti nue
debugger
defaul t
del ete
do
doubl e

el se
enum
export
ext ends
fal se
final
finally
f1 oat
for
function
goto

if

i mpl enent s
i mport
in

i nst anceof
int
interface
| ong
native
new

nul
package
private
protected
public
return
short
static
super

switch
synchroni zed
this

t hr ow

t hr ows
transi ent
true

try

t ypeof
var

voi d

vol atile
whi | e
with

Appendix A, Reserved Words 415



416 Server-Side JavaScript Reference



Symbols

- (bitwise NOT) operator 389

- (unary negation) operator 388
-- (decrement) operator 388

I (logical NOT) operator 392

I= (not equal) operator 386

$& property 252

$* property 252

$+ property 252

$_ property 252

$ property 252

$’ property 252

$1, ..., $9 properties 251

% (modulus) operator 387

%= operator 385

&& (logical AND) operator 392
& (bitwise AND) operator 389
&= operator 385

) 409

*/ comment 366

*= operator 385

+ (string concatenation) operator 394
++ (increment) operator 388
+= (string concatenation) operator 394
+= operator 385

/* comment 366

// comment 366

/= operator 385

< (less than) operator 386

<< (left shift) operator 389, 391

<<= operator 385

<= (less than or equal) operator 386
== (equal) operator 386

-= operator 385

> (greater than) operator 386

>= (greater than or equal) operator 386

>> (sign-propagating right shift) operator 389,

391
>>= operator 385
>>> (zero-fill right shift) operator 389, 391
>>>= gperator 385
2. (conditional) operator 394
~ (bitwise XOR) operator 389
A= operator 385
| (bitwise OR) operator 389
| = operator 385
I | (logical OR) operator 392
, (comma) operator 395

A

abs method 201

acos method 201

addClient function 335
addResponseHeader function 336
agent property 267

anchor method 300

anchors, creating 300

AND (&&) logical operator 392
AND (&) bitwise operator 389
arguments array 177

Index 417



arithmetic operators 387 BIG HTML tag 301
% (modulus) 387 big method 301

:'(Ejdrgr;rr?:;a% 03n8)8 388 binary data, converting to string 153

++ (increment) 388 bitwi(se op)erators 389
: & (AND) 389
arity property 182 - (NOT) 389
Array object 22 << (left shift) 389, 391
arrays >> (sign-propagating right shift) 389, 391
Array object 22 >>> (zero-fill right shift) 389, 391
creating from strings 321 ~ (XOR) 389
deleting elements 395 | (OR) 389
dense 22 logical 390
increasing length of 24 shift 390
indexing 23 BLINK HTML tag 301
Initial length of 23, 25 blink method 301
joining 29 blob function 337
length of, determining 30, 313 bloblmage method 44
referring to elements 23 blobLink method 46
sorting 36

blob object 43-47

asin method 202 Body property 283

assignment operators 384

%= 385 BOLD HTML tag 302
&= 385 bold method 302
= 385 Boolean object 48
+= 385
/= 385 break statement 365
<<= 385 bytes, converting to string 153
-= 385 byteToString method 153
>>= 385
>>>= 385
N= 385 C
|= 385 callC function 338
atan2 method 203 callee property 180
atan method 203 caller property 180
AUTH_TYPE CGI variable 355 call method (LiveConnect) 409
Cc property 283
B ceil method 204
Bcc property 282 C functions
calling 338

beginTransaction method
Connection object 57
database object 91

registering 353

418 Server-Side JavaScript Reference



CGil variables
AUTH_TYPE 355
HTTPS 355
HTTPS_KEYSIZE 355
HTTPS_SECRETKEYSIZE 355
PATH_TRANSLATED 355
QUERY_STRING 355
REMOTE_ADDR 355
REMOTE_HOST 355
REMOTE_USER 355
REQUEST METHOD 355
SCRIPT_NAME 356
SERVER_NAME 356
SERVER_PORT 356
SERVER_PROTOCOL 356
SERVER_URL 356

charAt method 303

charCodeAt method 304
classes, accessing Java 191, 237
className property 238
clearError method 155

client, preserving properties 335

client object 52-55
getting identifier 356
maintaining 335

close method
Cursor object 77
File object 155
Resultset object 275
Stproc object 293

columnName method
Cursor object 78
Resultset object 276

columns method
Cursor object 79
Resultset object 277

comma (,) operator 395
comments 366
comment statement 366

commitTransaction method
Connection object 59
database object 93

comparison operators 385
I= (not equal) 386
< (less than) 386
<= (less than or equal) 386
== (equal) 386
> (greater than) 386
>= (greater than or equal) 386

compile method 252

concat method
Array object 27
String object 305

conditional () operator 394

connected method
Connection object 60
database object 98
DbPool object 138

connection method 139
Connection object 56-74

connect method
database object 94
DbPool object 135

constructor property
Array object 28
Boolean object 49
Date object 118
File object 156
Function object 183
Lock object 196
Number object 221
Object object 228
RegExp object 253
SendMail object 283
String object 305

containership
specifying default object 379
with statement and 379

continue statement 367

Index 419



conventions 363
cos method 205
cursorColumn property 80

cursor method
Connection object 61
database object 99

Cursor object 75-87

D

database object 88-114
Date object 115

dates
converting to string 129
Date object 115
day of week 119
defining 115
milliseconds since 1970 131
month 120

DbPool object 133-150
scope 133

debug function 339

decrement (--) operator 388

default objects, specifying 379
delete operator 395
deleteResponseHeader function 340
deleteRow method 81

deleting
array elements 395
objects 395
properties 395

dense arrays 22
destroy method 54
directories, conventions used 16

disconnect method
database object 101
DbPool object 140

DNS 355
do...while statement 368
document conventions 16

420 Server-Side JavaScript Reference

E

environment variables
accessing 355

eof method 156

E property 206

equals method (LiveConnect 409

errorCode method 283

errorMessage method 284

error method 157

errors, status 155

errors,status 152

Errorsto property 284

escape function 340

Euler’s constant 206
raised to a power 206

eval function 341

eval method
LiveConnect 409
Object object 229

exceptions, LiveConnect 406
exec method 254

execute method
Connection object 63
database object 102

exists method 158

expiration method 55

exp method 206

export statement 369

expressions that return no value 401

F

File object 151-172

files, error status 152, 155
fixed method 306

floor method 207

flush function 344

flush method 159



fontcolor method 306

fonts
big 301
blinking 301
bold 302

fontsize method 308
for...in statement 371
for loops
continuation of 367
syntax of 370
termination of 365
for statement 370
fromCharCode method 309
From property 284

Function object 173
specifying arguments for 174
as variable value 175

functions
arguments array 177
callee property 180
caller property 180
calling external 338
declaring 372
Function object 173
length property 181
list of 333
nesting 175, 176
number of arguments 313
return values of 375
top-level 333
as variable value 175

function statement 372

G

getDate method 118

getDay method 119

getHours method 119

getLength method 159

getMember method (LiveConnect) 409
getMinutes method 120

getMonth method 120
getOptionValueCount function 346
getOptionValue function 345
getPosition method 160

getSeconds method 121

getSlot method (LiveConnect) 410
getTime method 121
getTimezoneOffset method 122
getwWindow method (LiveConnect) 410
getYear method 122

global object 333

global property 257

GMT time, defined, local time, defined 116

H

hostname 356
hostname property 289
host property 288
HTML, generating 360

HTML tags
BIG 301
BLINK 301
BOLD 302
IMG 44

HTTP method 355

HTTP protocol level 356
HTTPS_KEYSIZE CGI variable 355
HTTPS_SECRETKEYSIZE CGI variable 355
HTTPS CGI variable 355

HTTP user 355

if...else statement 373
ignoreCase property 258
imageX property 269
imageY property 269

Index 421



IMG HTML tag 44
import statement 373
increment (++) operator 388
indexOf method 309
index property 29
in keyword 371
inputName property 270
input property

Array object 29

RegExp object 258

insertRow method 82
ip property 270
isNaN function 347
isValid method 196
italics method 311

J

JavaArray object 188
JavaClass object 191
java object 187
JavaObject object 192
JavaPackage object 194
java property 239
JavaScript
background for using 13
debugging 339

reserved words 415
versions 14

join method 29

JSException class 406

JSException constructor (LiveConnect) 406
JSObiject class 408

K
keywords 415

422 Server-Side JavaScript Reference

L

label statement 374
lastindexOf method 312
lastindex property 259
lastMatch property 260
lastParen property 260
leftContext property 261

left shift (<<) operator 389, 391

length property
arguments array 181
Array object 30
Function object 183
JavaArray object 189
String object 313

link method 314

links
anchors for 300
for BLODb data 43, 46
with no destination 401

LiveConnect
JavaArray object 188
JavaClass object 191
java object 187
JavaObject object 192
JavaPackage object 194
JSException class 406
JSObiject class 408
netscape object 218
Packages object 237
sun object 332

LN10 property 208
LN2 property 208

lock method
Lock object 197
project object 242
server object 289

Lock object 195-198
LOGI10E property 209
LOGZ2E property 210



logarithms

base of natural 206

natural logarithm of 10 208
logical operators 392

I'(NOT) 392

&& (AND) 392

Il (OR) 392

short-circuit evaluation 393
log method 209
loops

continuation of 367

for 370

termination of 365

while 378

lowercase 298, 329

M

majorErrorCode method
Connection object 65
database object 103
DbPool object 143

majorErrorMessage method
Connection object 67
database object 106
DbPool object 146

match method 314

Math object 199
MAX_VALUE property 221
max method 210

method property 271
methods, top-level 333
MIN_VALUE property 222
min method 211

minorErrorCode method
Connection object 68
database object 107
DbPool object 146

minorErrorMessage method
Connection object 68
database object 107
DbPool object 147

modulo function 387
modulus (%) operator 387
multiline property 261
multimedia and blobLink 46

N
NaN property
Number object 222

natural logarithms
base of 206
e 206
e raised to a power 206
of 10 208

NEGATIVE_INFINITY property 223
nesting functions 175, 176
netscape.javascript.JSException class 406
netscape.javascript.JSObject class 408
netscape object 218

netscape property 239

new operator 397

next method
Cursor object 84
Resultset object 278

NOT (!) logical operator 392
NOT (-) bitwise operator 389
Number function 348
Number object 219

numbers
greater of two 210
identifying 347
Number object 219
obtaining integer 204
parsing from strings 349
square root 215

Index 423



@) pow method 212

Object object 227 project object 241-243

objects properties
creating new types 397 deleting 395 _
deleting 395 getting list of for an object 371

iterating for an object 371

getting list of properties for 371 presle rw?gsggent values 335
iterating properties 371 top-leve
Java, accessing 192 protocol property

open method 162 request object 272

server object 290
operators 381-401

establishing default 379

arithmetic 387 prototype property
assignment 384 Array object 31
bitwise 389 Boolean object 49
comparison 385 connection object 69
list of 381 Cursor object 85
logical 392 database object 108
special 394 Date objec'g 124
string 394 DbPool object 147
L File object 163
OR (]) bitwise operator 389 Function object 183
OR (]1) logical operator 392 Lock object 197
Organization property 285 Number object 225
outParamCount method 293 (R)e%eEffpogéejggtzggz
outParameters method 274, 294 Resultset object 279
output buffer, flushing 344 SendMail object 285
Stproc object 294
P String object 316

) push method 31
packages, accessing Java 194

Packages object 237 Q
parseFloat function 53, 349

parselnt function 53, 350 QUERY_STRING CGl variable 355

parse method 123 R
PATH_INFO CGI variable 355
PATH_TRANSLATED CGl variable 355 random method 213

readByte method 165
pop method 31 readln method 166

port property 290 read method 164

POSITIVE_INFINITY property 224 redirect function 352
RegExp object 244

Pl property 212

424 Server-Side JavaScript Reference



registerCFunction function 353
regular expressions 244

release method 69
REMOTE_ADDR CGl variable 355
REMOTE_HOST CGI variable 355
REMOTE_USER CGlI variable 355

removeMember method (LiveConnect) 410

replace method 316

Replyto property 285

request, changing 352
REQUEST_METHOD CGl variable 355
request object 265-272

reserved words 415

response headers, manipulating 336
resultSet method 295

Resultset object 273-279

return statement 375

returnValue method 274, 295
reverse method 32

rightContext property 262

rollbackTransaction method
Connection object 70
database object 108

round method 213

S

scope of DbPool object 133
SCRIPT_NAME CGI variable 356
search method 318

selection lists, number of options 313
SELECT tag 345

SendMail object 280-286

send method 285

server, global data for 287
SERVER_NAME CGI variable 356
SERVER_PORT CGl variable 356

SERVER_PROTOCOL CGI variable 356

SERVER_URL CGI variable 356
server object 287-291

session key 355

setDate method 125

setHours method 125

setMember method (LiveConnect) 410

setMinutes method 126

setMonth method 126

setPosition method 167
setSeconds method 127

setSlot method (LiveConnect) 410
setTime method 127

setYear method 128

shift method 33

short-circuit evaluation 393

sign-propagating right shift (>>) operator 389,
391

sin method 214

slice method 34, 319
small method 320
Smtpserver property 286
sort method 36

source property 262
special operators 394
splice method 39

split method 321

SQLTable method
Connection object 71
database object 109

SQRTL1_2 property 216

SQRT2 property 216

sqrt method 215

square roots 215
ssjs_generateClientID function 354
ssjs_getCGlVariable function 354

Index 425



ssjs_getClientID function 356
statements 363-380
syntax conventions 363

storedProcArgs method
database object 112
DbPool object 148

storedProc method
Connection object 73
database object 111
Stproc object 292-295
strike method 323
String function 358
String object 296
string operators 394
strings
blinking 301
bold 302
character position within 297, 303, 309
concatenating 394
converting from bytes 153
converting from date 129
converting to floating point 349
creating from arrays 29
defining 296
fontsize of 301
length of 313
lowercase 298, 329
parsing 349
splitting into arrays 321
String object 296
stringToByte method 168
Subject property 286
sub method 324
substring method 326
substr method 325
sun object 332
sun property 240
sup method 328
switch statement 376

syntax conventions 363

426 Server-Side JavaScript Reference

T

tan method 217
TCP port 356
test method 263
this keyword 399

times
Date object 115
defining 115
minutes 120

toGMTString method 128
toLocaleString method 129
toLowerCase method 329

top-level properties and functions 333
To property 286

toString method
Array object 40
Boolean object 50
built-in 231
Connection object 73
database object 113
Date object 130
DbPool object 149
Function object 185
JavaArray object 190
LiveConnect 411
Number object 225
Object object 230
RegExp object 263
String object 330
user-defined 231

toUpperCase method 330
trace facility 339

transactions
committing 97, 142
overview 89
rolling back 97, 142
scope of 57, 59, 70, 89, 91, 93, 108

typeof operator 400



U

unary negation (-) operator 388
unescape function 359

unique identifier
creating for client object 356

unlock method
Lock object 198
project object 243
server object 291

unshift method 41
unwatch method 233
updateRow method 86

URLs 356
adding information to 335
conventions used 16
escaping characters in 340
redirecting to 352

UTC method 131
UTC time, defined 116

\

valueOf method
Array object 42
Boolean object 50
Date object 132
Function object 186
Number object 226
Object object 234
RegExp object 264
String object 331

variables

declaring 377

initializing 377

syntax for declaring 377
var statement 377
versions of JavaScript 14

void operator 401

w

watch method 235

while loops
continuation of 367
syntax of 378
termination of 365

while statement 378
with statement 379
writeByte method 170

write function 360
and flush 344

writeln method 171
write method 169

X
XOR (”) operator 389

Z
zero-fill right shift (>>>) operator 389, 391

Index 427



	Server-Side JavaScript Reference
	New Features in this Release
	Contents
	About this Book
	New Features in this Release
	What You Should Already Know
	JavaScript Versions
	Where to Find JavaScript Information
	Document Conventions


	I. Object Reference
	1. Objects, Methods, and Properties
	Array
	concat
	constructor
	index
	input
	join
	length
	pop
	prototype
	push
	reverse
	shift
	slice
	sort
	splice
	toString
	unshift
	valueOf

	blob
	blobImage
	blobLink

	Boolean
	constructor
	prototype
	toString
	valueOf

	client
	destroy
	expiration

	Connection
	beginTransaction
	commitTransaction
	connected
	cursor
	execute
	majorErrorCode
	majorErrorMessage
	minorErrorCode
	minorErrorMessage
	prototype
	release
	rollbackTransaction
	SQLTable
	storedProc
	toString

	Cursor
	close
	columnName
	columns
	cursorColumn
	deleteRow
	insertRow
	next
	prototype
	updateRow

	database
	beginTransaction
	commitTransaction
	connect
	connected
	cursor
	disconnect
	execute
	majorErrorCode
	majorErrorMessage
	minorErrorCode
	minorErrorMessage
	prototype
	rollbackTransaction
	SQLTable
	storedProc
	storedProcArgs
	toString

	Date
	constructor
	getDate
	getDay
	getHours
	getMinutes
	getMonth
	getSeconds
	getTime
	getTimezoneOffset
	getYear
	parse
	prototype
	setDate
	setHours
	setMinutes
	setMonth
	setSeconds
	setTime
	setYear
	toGMTString
	toLocaleString
	toString
	UTC
	valueOf

	DbPool
	connect
	connected
	connection
	disconnect
	DbPool
	majorErrorCode
	majorErrorMessage
	minorErrorCode
	minorErrorMessage
	prototype
	storedProcArgs
	toString

	File
	byteToString
	clearError
	close
	constructor
	eof
	error
	exists
	flush
	getLength
	getPosition
	open
	prototype
	read
	readByte
	readln
	setPosition
	stringToByte
	write
	writeByte
	writeln

	Function
	arguments
	arguments.callee
	arguments.caller
	arguments.length
	arity
	constructor
	length
	prototype
	toString
	valueOf

	java
	JavaArray
	length
	toString

	JavaClass
	JavaObject
	JavaPackage
	Lock
	constructor
	isValid
	lock
	prototype
	unlock

	Math
	abs
	acos
	asin
	atan
	atan2
	ceil
	cos
	E
	exp
	floor
	LN10
	LN2
	log
	LOG10E
	LOG2E
	max
	min
	PI
	pow
	random
	round
	sin
	sqrt
	SQRT1_2
	SQRT2
	tan

	netscape
	Number
	constructor
	MAX_VALUE
	MIN_VALUE
	NaN
	NEGATIVE_INFINITY
	POSITIVE_INFINITY
	prototype
	toString
	valueOf

	Object
	constructor
	eval
	prototype
	toString
	unwatch
	valueOf
	watch

	Packages
	className
	java
	netscape
	sun

	project
	lock
	unlock

	RegExp
	$1, ..., $9
	$_
	$*
	$&
	$+
	$‘
	$’
	compile
	constructor
	exec
	global
	ignoreCase
	input
	lastIndex
	lastMatch
	lastParen
	leftContext
	multiline
	prototype
	rightContext
	source
	test
	toString
	valueOf

	request
	agent
	imageX
	imageY
	inputName
	ip
	method
	protocol

	Resultset
	close
	columnName
	columns
	next
	prototype

	SendMail
	Bcc
	Body
	Cc
	constructor
	errorCode
	errorMessage
	Errorsto
	From
	Organization
	prototype
	Replyto
	send
	Smtpserver
	Subject
	To

	server
	host
	hostname
	lock
	port
	protocol
	unlock

	Stproc
	close
	outParamCount
	outParameters
	prototype
	resultSet
	returnValue

	String
	anchor
	big
	blink
	bold
	charAt
	charCodeAt
	concat
	constructor
	fixed
	fontcolor
	fontsize
	fromCharCode
	indexOf
	italics
	lastIndexOf
	length
	link
	match
	prototype
	replace
	search
	slice
	small
	split
	strike
	sub
	substr
	substring
	sup
	toLowerCase
	toString
	toUpperCase
	valueOf

	sun

	2. Top-Level Functions
	addClient
	addResponseHeader
	blob
	callC
	debug
	deleteResponseHeader
	escape
	eval
	flush
	getOptionValue
	getOptionValueCount
	isNaN
	Number
	parseFloat
	parseInt
	redirect
	registerCFunction
	ssjs_generateClientID
	ssjs_getCGIVariable
	ssjs_getClientID
	String
	unescape
	write


	II. Language Elements
	3. Statements
	break
	comment
	continue
	do...while
	export
	for
	for...in
	function
	if...else
	import
	label
	return
	switch
	var
	while
	with

	4. Operators
	Assignment Operators
	Comparison Operators
	Arithmetic Operators
	% (Modulus)
	++ (Increment)
	-- (Decrement)
	- (Unary Negation)

	Bitwise Operators
	Bitwise Logical Operators
	Bitwise Shift Operators

	Logical Operators
	String Operators
	Special Operators
	?: (Conditional operator)
	, (Comma operator)
	delete
	new
	this
	typeof
	void



	III. LiveConnect Class Reference
	5. Java Classes, Constructors, and Methods
	JSException
	JSException

	JSObject
	call
	equals
	eval
	getMember
	getSlot
	getWindow
	removeMember
	setMember
	setSlot
	toString



	IV. Appendixes
	A. Reserved Words

	Index

