
World Wide Web

ww
Perso

ore

y

merchant system
ML

Int

server
security

ne

URL

HT

r

na
community system

Ja

Mozill

Publis

Chat

encryp

SSL
TCP/IP

nal

ISt

Prox

HT

Inte

vigator

a

hing

Server-Side JavaScript 
Guide

 Version 1.2
comp.sys
directory server

http://www
ernet

ws

ML

mail

electronic commerce

vaScript
Proxycertificate

Publishing

tion

secure sockets layer



Netscape Communications Corporation ("Netscape") and its licensors retain all ownership rights to the software programs 
offered by Netscape (referred to herein as "Software") and related documentation. Use of the Software and related 
documentation is governed by the license agreement accompanying the Software and applicable copyright law.

Your right to copy this documentation is limited by copyright law. Making unauthorized copies, adaptations, or compilation 
works is prohibited and constitutes a punishable violation of the law. Netscape may revise this documentation from time to 
time without notice.

THIS DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL NETSCAPE BE 
LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND ARISING FROM ANY 
ERROR IN THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION ANY LOSS OR INTERRUPTION OF BUSINESS, 
PROFITS, USE, OR DATA.

The Software and documentation are copyright ©1994-1998 Netscape Communications Corporation. All rights reserved.

Netscape, Netscape Navigator, Netscape Certificate Server, Netscape DevEdge, Netscape FastTrack Server, Netscape ONE, 
SuiteSpot and the Netscape N and Ship’s Wheel logos are registered trademarks of Netscape Communications Corporation in 
the United States and other countries. Other Netscape logos, product names, and service names are also trademarks of 
Netscape Communications Corporation, which may be registered in other countries. JavaScript is a trademark of Sun 
Microsystems, Inc. used under license for technology invented and implemented by Netscape Communications Corporation. 
Other product and brand names are trademarks of their respective owners.

The downloading, exporting, or reexporting of Netscape software or any underlying information or technology must be in 
full compliance with all United States and other applicable laws and regulations. Any provision of Netscape software or 
documentation to the U.S. Government is with restricted rights as described in the license agreement accompanying Netscape 
software.

.

Version 1.2

©1998 Netscape Communications Corporation. All Rights Reserved

Printed in the United States of America. 00 99 98 5 4 3 2 1

Netscape Communications Corporation, 501 East Middlefield Road, Mountain View, CA 94043

Recycled and Recyclable Paper



New Features in this Release
This section contains the following topics:

• Changes to Server-Side JavaScript

• Changes to Core JavaScript 1.2

• Upgrading from an Earlier Release

• Backward Compatibility with Earlier Releases

Changes to Server-Side JavaScript
With the release of the 3.x versions of Netscape web servers, Netscape 
LiveWire 1.01 is fully integrated into the web servers. Since LiveWire database 
connectivity is now integrated as the LiveWire Database Service portion of 
server-side JavaScript, developers do not have to install LiveWire as a separate 
product. Simply turn on the JavaScript support in the Administration Server to 
make the necessary components available.

The following improvements have been made to server-side JavaScript:

• Support for core JavaScript 1.2. See “Changes to Core JavaScript 1.2” on 
page 5.

• New Lock class. The Lock class allows safe sharing of information with 
multiple incoming requests. See “Sharing Objects Safely with Locking” on 
page 279.

• New SendMail class. The SendMail class lets you generate email from 
JavaScript. See “Mail Service” on page 287.

• Property value types. Property values can be of any data type, rather than 
just strings, for the project, server, and request objects. In particular, 
you can now use project and server objects to store references to other 
objects. See “The project Object” on page 260, “The server Object” on 
page 261, and “The request Object” on page 249. 
3



Changes to Server-Side JavaScript
• Direct access to HTTP request and response headers. See “Request and 
Response Manipulation” on page 302.

• Access Java classes. You can access Java classes using LiveConnect. See 
Chapter 21, “LiveConnect Overview.”

• IIOP. You can access legacy applications using IIOP. See Chapter 22, 
“Accessing CORBA Services.”

• Multiple simultaneous connections. LiveWire has support for multiple 
simultaneous connections to multiple databases. See Chapter 15, 
“Connecting to a Database.”

• Span multiple client requests. LiveWire database connections and 
transactions (and the objects used with them) can span multiple client 
requests instead of having to be restarted for each request. See “Individual 
Database Connections” on page 323 and “Managing Transactions” on 
page 348.

• Stored procedures. LiveWire has support for stored procedures. See 
“Calling Stored Procedures” on page 354.

• ODBC support. LiveWire has ODBC support under Unix. See “Supported 
Database Clients and ODBC Drivers” on page 372.

• Multithreading. LiveWire supports multithreading of Informix, Oracle, and 
Sybase database client libraries for improved performance and scalability. 
See “Supported Database Clients and ODBC Drivers” on page 372. This 
support is available only if the underlying platform supports multithreading. 
For information on which platforms support it, see Enterprise Server 3.x 
Release Notes
4 Server-Side JavaScript Guide



Changes to Core JavaScript 1.2
Changes to Core JavaScript 1.2
JavaScript version 1.2 provides the following new features and enhancements:

• Create objects with initializers. You can create objects using object 
initializers. See “Object Literals” on page 83 and “Creating New Objects” on 
page 141.

• Changes to arrays. Array objects can be created using literal notation. 
See “Creating an Array” on page 148.

• Regular expressions. Regular expressions are patterns used to match 
character combinations in strings. You create a regular expression as an 
object that has methods used to execute a match against a string. You can 
also pass the regular expression as an argument to the String methods 
match, replace, search, and split. The RegExp object has properties 
most of which are set when a match is successful, such as lastMatch 
which specifies the last successful match. The Array object has new 
properties that provide information about a successful match such as input 
which specifies the original input string against which the match was 
executed. See Chapter 6, “Regular Expressions” for information.

• New top-level functions Number and String. The Number function 
converts an object to a number. The String function converts an object to 
a string. See “Number and String Functions” on page 137.

• Changes to eval. eval is no longer a method of individual objects; it is 
available only as a top-level function. See “eval Function” on page 135.

• New and changed operators.

• The new delete operator deletes an object, an object’s property, or an 
element at a specified index in an array. See “delete” on page 98.

• If the <SCRIPT> tag uses LANGUAGE=JavaScript1.2, the equality 
operators == and != do not attempt to convert operands from one type 
to another, and always compare identity of like-typed operands. See 
“Comparison Operators” on page 90.
5



Upgrading from an Earlier Release
• New and changed statements.

• The break and continue statements can now be used with the new 
labeled statement. See “break Statement” on page 126 and “continue 
Statement” on page 127.

• do...while repeats a loop until the test condition evaluates to false. 
See “do...while Statement” on page 124.

• label allows the program to break outside nested loops or to continue 
a loop outside the current loop. See “label Statement” on page 125.

• switch allows the program to test several conditions easily. See 
“switch Statement” on page 121.

See the Server-Side JavaScript Reference for information on additional features.

Upgrading from an Earlier Release
If you have previously installed a 2.0 version of a Netscape web server, you 
should migrate the server settings when you install a 3.x version of a Netscape 
web server. For information on how to install the server and migrate settings, 
see the administrator’s guide for your web server. If you do not migrate old 
server settings when you install the server, you can migrate them later, using 
the “Migrate from previous version” link on the Netscape Server Administration 
Page. Information on this link is also in the administrator’s guide for your web 
server.

If you have previously created JavaScript applications using LiveWire 1.x, you 
should be aware of the following changes that occur when you upgrade to 3.x 
and migrate old server settings:

• Settings preserved. If the 2.x server had LiveWire turned on, the 3.x server 
will have server-side JavaScript turned on. Whether or not the Application 
Manager requires a password is also preserved. For more information, see 
“Configuration Information” on page 49.
6 Server-Side JavaScript Guide



Upgrading from an Earlier Release
• Config file upgraded and renamed. The existing livewire.conf file is 
upgraded and renamed jsa.conf. The new jsa.conf file points to the 
new Application Manager and the new sample applications. It also contains 
entries for all other applications you had in the old livewire.conf file. For 
details of the jsa.conf file, see “Application Manager Details” on page 71.

• Applications are not moved. Upgrading server settings does not move 
your applications nor does it recompile them for use with the 3.x web 
server. If your existing applications are in the LiveWire/docs directory, 
you must move (or copy) them to a new directory. In addition, you must 
manually recompile user-defined applications before you can use them with 
a 3.x web server, as described in “Backward Compatibility with Earlier 
Releases” on page 8. Be aware that an application can’t be used with 
Enterprise Server 2.0 after recompiling. If you want to use an application 
with both servers, you should copy the application instead of moving it.

• New versions of the sample applications. Many of the sample 
applications that shipped with LiveWire 1.x have been changed. The 
upgrade process installs new versions of the world, hangman, cipher, 
dbadmin, and viewer sample applications. In addition, the sample 
application lwccall has been updated and renamed jsaccall. The 
sample application video has been updated and renamed oldvideo; a new 
version of this application, using new LiveWire Database Service features, is 
named videoapp. Finally, there are several new sample applications, bank, 
bugbase, flexi, and sendmail, that demonstrate other new server-side 
JavaScript features. For information on the sample applications, see Chapter 
11, “Quick Start with the Sample Applications.”

If you modified the old sample applications in the old samples directory 
and you want to transfer your changes to the new server, you must move 
(or copy) them and recompile them, as you do your own applications. 

• Changes you should make. For information on changes you may have to 
make in your code when upgrading, see the next section, “Backward 
Compatibility with Earlier Releases.”
7



Backward Compatibility with Earlier Releases
Backward Compatibility with Earlier Releases
You should be aware of the following changes in the behavior of server-side 
JavaScript applications.

• Recompile applications. Web files compiled with the earlier version will 
not run with 3.x Netscape web servers. You must recompile all of your 
existing JavaScript applications. In earlier releases, the JavaScript application 
compiler was called lwcomp. It is now called jsac and has additional 
options. For information on using the compiler, see “Compiling an 
Application” on page 59. Once you recompile your applications, they will 
not work under LiveWire 1.x.

• Change JavaScript code. Some changes in core and client-side JavaScript 
may require you to change your JavaScript source code. For information on 
these changes, see “Changes to Core JavaScript 1.2” on page 5.

• Change property references. In earlier releases, you could refer to an 
object’s properties by their property name or by their ordinal index. In this 
release, however, if you initially define a property by its name, you must 
always refer to it by its name, and if you initially define a property by an 
index, you must always refer to it by its index. So, the following code is 
now illegal:

obj = new Object();
obj.prop = 42;
write(obj[0] == 42); //Illegal! Cannot refer to obj.prop as obj[0]

• Variable with no value returns undefined. In earlier releases, if you 
referred to a defined variable for which you had provided no value, it 
returned NULL. In this release, it returns undefined. Consider this code: 

<server>
var myVar;
write("The value of myVar is: " + myVar);
<server>

In earlier releases, that code would produce this output:

The value of myVar is: NULL

Now it produces this output:

The value of myVar is: undefined
8 Server-Side JavaScript Guide



Backward Compatibility with Earlier Releases
• client and request objects not created automatically. In earlier releases, 
the runtime engine created client and request objects for an 
application’s initial page. The properties of this client object were not 
available on other pages. In this release, the runtime engine creates neither 
a client object nor a request object for an application’s initial page. You 
can use the following statements to create these objects:

client = new Object();
request = new Object();

Note, however, that if you create these objects, their properties are still not 
available on any other pages of the application.

• Site Manager removed. LiveWire 1.x included Site Manager for managing 
your web sites. This functionality was removed from the 3.x web servers. 
You can instead use the Web Publisher to publish your documents, and you 
must use the command-line compiler, jsac, to compile your applications.

• Changes to the lock method. The behavior of the lock method for the 
project and server objects has changed. In earlier releases, if you called 
project.lock or server.lock, no other thread (for either the same or a 
different application) could make any changes to the project or server 
object until you called project.unlock or server.unlock. That is, the 
locking did not require any cooperation.

In this release, cooperation among different applications or pages in the 
same application is required. If one thread calls project.lock or 
server.lock, and if another thread then calls the same method, that 
method will wait until the first thread calls project.unlock or 
server.unlock or until a specified timeout period has elapsed. If, 
however, the second thread does not call project.lock or server.lock, 
it can make changes to those objects. For more information on locking, see 
“Sharing Objects Safely with Locking” on page 279.
9



Backward Compatibility with Earlier Releases
• Changes to LiveWire Database Service. There are several changes in 
how you can use the LiveWire Database Service to connect your JavaScript 
application to a relational database:

— Very Important: In this release, if your database server and web server 
are not on the same machine, you must install a database client to use 
the LiveWire Database Service. In earlier releases, this was optional. In 
addition, the required version of the client library may be newer than 
that required in LiveWire 1.x. For more information, see “Supported 
Database Clients and ODBC Drivers” on page 372.

— In earlier releases, you could leave a database connection or cursor 
open and allow the system to close it for you. In this release, the system 
no longer does this. When finished with them, your code must release 
all connections opened with DbPool objects and close all cursors 
opened either with database or Connection objects. For information 
on managing connections, see Chapter 15, “Connecting to a Database.” 
For information on cursors, see “Manipulating Query Results with 
Cursors” on page 338.

— In earlier releases, you could choose to modify a row with an updatable 
cursor without first starting an explicit transaction by calling 
beginTransaction. In this release, you must always use explicit 
transaction control (with the beginTransaction, commitTransaction, 
and rollbackTransaction methods) when using an updatable cursor 
and making changes to the database. For information on cursors, see 
“Manipulating Query Results with Cursors” on page 338. For 
information on transactions, see “Managing Transactions” on page 348.

— In earlier releases, if a JavaScript error occurred while a transaction was 
in progress, that transaction was committed. In this release, if the 
transaction is through the database object, the transaction is rolled 
back. If the transaction is through a DbPool object, the value of the 
commitFlag parameter when the connection was established 
determines whether the transaction is committed or rolled back. For 
information on establishing connections, see Chapter 15, “Connecting to 
a Database.”
10 Server-Side JavaScript Guide



Contents

New Features in this Release .......................................................................3

Changes to Server-Side JavaScript ........................................................................3

Changes to Core JavaScript 1.2 .............................................................................5

Upgrading from an Earlier Release .......................................................................6

Backward Compatibility with Earlier Releases .....................................................8

About this Book ..............................................................................................23

New Features in this Release ..............................................................................23

What You Should Already Know .......................................................................23

JavaScript Versions ..............................................................................................24

Where to Find JavaScript Information ................................................................25

Document Conventions .......................................................................................26

Chapter 1 JavaScript Overview ................................................................29

What Is JavaScript? ...............................................................................................30

Core, Client-Side, and Server-Side JavaScript .....................................................31

Core JavaScript ................................................................................................32

Client-Side JavaScript ......................................................................................32

Server-Side JavaScript .....................................................................................34

JavaScript and Java ..............................................................................................36

Debugging JavaScript ..........................................................................................37

Visual JavaScript ..................................................................................................38

JavaScript and the ECMA Specification ..............................................................38

Relationship Between JavaScript and ECMA Versions ..................................39

JavaScript Documentation vs. the ECMA Specification .................................40

JavaScript and ECMA Terminology ................................................................40
Contents xi



Part 1  Developing Server Applications
Chapter 2 Getting Started .......................................................................... 43

Architecture of JavaScript Applications .............................................................. 43

System Requirements .......................................................................................... 47

Configuration Information .................................................................................. 49

Enabling Server-Side JavaScript ..................................................................... 49

Protecting the Application Manager .............................................................. 49

Setting Up for LiveConnect ............................................................................ 50

Locating the Compiler .................................................................................... 51

Chapter 3 How to Develop Server Applications ............................... 53

Basic Steps in Building an Application .............................................................. 54

JavaScript Application Manager Overview ........................................................ 56

Creating Application Source Files ...................................................................... 58

Compiling an Application ................................................................................... 59

Installing a New Application .............................................................................. 61

Application URLs ............................................................................................ 64

Controlling Access to an Application ................................................................. 65

Modifying Installation Fields .............................................................................. 66

Removing an Application ................................................................................... 66

Starting, Stopping, and Restarting an Application ............................................. 66

Running an Application ...................................................................................... 67

Debugging an Application .................................................................................. 68

Using the Application Manager ..................................................................... 68

Using Debug URLs ......................................................................................... 69

Using the debug Function ............................................................................. 70

Deploying an Application ................................................................................... 70

Application Manager Details .............................................................................. 71

Configuring Default Settings .......................................................................... 71

Under the Hood ............................................................................................. 73
xii Server-Side JavaScript Guide



Part 2  Core Language Features
Chapter 4 Values, Variables, and Literals ............................................ 77

Values .................................................................................................................. 77

Data Type Conversion .................................................................................... 78

Variables .............................................................................................................. 79

Declaring Variables ......................................................................................... 79

Evaluating Variables ....................................................................................... 79

Variable Scope ................................................................................................ 80

Literals .................................................................................................................. 81

Array Literals ................................................................................................... 81

Boolean Literals .............................................................................................. 82

Floating-Point Literals ..................................................................................... 83

Integers ............................................................................................................ 83

Object Literals ................................................................................................. 83

String Literals ................................................................................................... 84

Chapter 5 Expressions and Operators ................................................. 87

Expressions .......................................................................................................... 87

Operators ............................................................................................................. 88

Assignment Operators .................................................................................... 89

Comparison Operators ................................................................................... 90

Arithmetic Operators ...................................................................................... 91

Bitwise Operators ........................................................................................... 92

Logical Operators ........................................................................................... 95

String Operators .............................................................................................. 96

Special Operators ........................................................................................... 97

Operator Precedence .................................................................................... 102

Chapter 6 Regular Expressions ............................................................. 103

Creating a Regular Expression .......................................................................... 104

Writing a Regular Expression Pattern .............................................................. 104

Using Simple Patterns ................................................................................... 105

Using Special Characters .............................................................................. 105

Using Parentheses ......................................................................................... 110
Contents xiii



Working with Regular Expressions .................................................................. 110

Using Parenthesized Substring Matches ...................................................... 113

Executing a Global Search and Ignoring Case ........................................... 115

Examples ........................................................................................................... 116

Changing the Order in an Input String ....................................................... 116

Using Special Characters to Verify Input .................................................... 117

Chapter 7 Statements ................................................................................ 119

Conditional Statements ..................................................................................... 120

if...else Statement .......................................................................................... 120

switch Statement ........................................................................................... 121

Loop Statements ................................................................................................ 122

for Statement ................................................................................................. 122

do...while Statement ..................................................................................... 124

while Statement ............................................................................................ 124

label Statement ............................................................................................. 125

break Statement ............................................................................................ 126

continue Statement ....................................................................................... 127

Object Manipulation Statements ....................................................................... 128

for...in Statement .......................................................................................... 128

with Statement .............................................................................................. 129

Comments .......................................................................................................... 130

Chapter 8 Functions .................................................................................. 131

Defining Functions ............................................................................................ 131

Calling Functions ............................................................................................... 132

Using the arguments Array ............................................................................... 133

Predefined Functions ........................................................................................ 134

eval Function ................................................................................................ 135

isFinite Function ........................................................................................... 135

isNaN Function ............................................................................................. 136

parseInt and parseFloat Functions .............................................................. 136

Number and String Functions ...................................................................... 137

escape and unescape Functions .................................................................. 138
xiv Server-Side JavaScript Guide



Chapter 9 Working with Objects .......................................................... 139

Objects and Properties ...................................................................................... 140

Creating New Objects ....................................................................................... 141

Using Object Initializers ............................................................................... 141

Using a Constructor Function ...................................................................... 142

Indexing Object Properties .......................................................................... 144

Defining Properties for an Object Type ...................................................... 144

Defining Methods ......................................................................................... 145

Using this for Object References ................................................................. 146

Deleting Objects ........................................................................................... 147

Predefined Core Objects ................................................................................... 147

Array Object .................................................................................................. 147

Boolean Object ............................................................................................. 151

Date Object ................................................................................................... 151

Function Object ............................................................................................ 155

Math Object ................................................................................................... 156

Number Object ............................................................................................. 158

RegExp Object .............................................................................................. 158

String Object ................................................................................................. 159

Chapter 10 Details of the Object Model ............................................. 161

Class-Based vs. Prototype-Based Languages ................................................... 162

Defining a Class ............................................................................................ 162

Subclasses and Inheritance .......................................................................... 163

Adding and Removing Properties ................................................................ 163

Summary of Differences ............................................................................... 163

The Employee Example .................................................................................... 165

Creating the Hierarchy ...................................................................................... 166

Object Properties ............................................................................................... 169

Inheriting Properties ..................................................................................... 169

Adding Properties ......................................................................................... 171

More Flexible Constructors ............................................................................... 173
Contents xv



Property Inheritance Revisited ......................................................................... 178

Local versus Inherited Values ...................................................................... 178

Determining Instance Relationships ............................................................ 180

Global Information in Constructors ............................................................. 181

No Multiple Inheritance ............................................................................... 183

Part 3  Server-Side JavaScript Features

Chapter 11 Quick Start with the Sample Applications ................. 187

Hello World ....................................................................................................... 190

What Hello World Does ............................................................................... 191

Looking at the Source Script ........................................................................ 192

Modifying Hello World ................................................................................ 195

Hangman ........................................................................................................... 196

Looking at the Source Files .......................................................................... 198

Debugging Hangman ................................................................................... 201

Chapter 12 Basics of Server-Side JavaScript ..................................... 203

What to Do Where ............................................................................................ 204

Overview of Runtime Processing ..................................................................... 206

Server-Side Language Overview ....................................................................... 208

Core Language .............................................................................................. 209

Usage ............................................................................................................. 211

Environment ................................................................................................. 211

Classes and Objects ...................................................................................... 213

Embedding JavaScript in HTML ....................................................................... 216

The SERVER tag ............................................................................................ 217

Backquotes ................................................................................................... 218

When to Use Each Technique  .................................................................... 220

Runtime Processing on the Server ................................................................... 220

Constructing the HTML Page ............................................................................ 225

Generating HTML ......................................................................................... 226

Flushing the Output Buffer .......................................................................... 226

Changing to a New Client Request ............................................................. 227
xvi Server-Side JavaScript Guide



Accessing CGI Variables ................................................................................... 228

Communicating Between Server and Client .................................................... 232

Sending Values from Client to Server .......................................................... 232

Sending Values from Server to Client .......................................................... 237

Using Cookies ............................................................................................... 239

Garbage Collection ............................................................................................ 242

Chapter 13 Session Management Service .......................................... 245

Overview of the Predefined Objects ................................................................ 246

The request Object ............................................................................................ 249

Properties ...................................................................................................... 250

Working with Image Maps ........................................................................... 252

The client Object ............................................................................................... 252

Properties ...................................................................................................... 253

Uniquely Referring to the client Object ...................................................... 255

Creating a Custom client Object .................................................................. 256

The project Object ............................................................................................ 260

Properties ...................................................................................................... 260

Sharing the project Object ........................................................................... 261

The server Object .............................................................................................. 261

Properties ...................................................................................................... 262

Sharing the server Object ............................................................................. 263

Techniques for Maintaining the client Object ................................................. 263

Comparing Client-Maintenance Techniques ............................................... 264

Client-Side Techniques ................................................................................. 268

Server-Side Techniques ................................................................................ 271

The Lifetime of the client Object ................................................................. 275

Manually Appending client Properties to URLs .......................................... 277

Sharing Objects Safely with Locking ................................................................ 279

Using Instances of Lock ............................................................................... 280

Special Locks for project and server Objects .............................................. 283

Avoiding Deadlock ....................................................................................... 284
Contents xvii



Chapter 14 Other JavaScript Functionality ...................................... 287

Mail Service ....................................................................................................... 287

File System Service ............................................................................................ 290

Security Considerations ................................................................................ 290

Creating a File Object ................................................................................... 291

Opening and Closing a File ......................................................................... 291

Locking Files ................................................................................................. 292

Working with Files ....................................................................................... 293

Example ........................................................................................................ 297

Working with External Libraries ....................................................................... 297

Guidelines for Writing Native Functions ..................................................... 299

Identifying Library Files ............................................................................... 299

Registering Native Functions ....................................................................... 300

Using Native Functions in JavaScript ........................................................... 300

Request and Response Manipulation ............................................................... 302

Request Header ............................................................................................ 303

Request Body ................................................................................................ 304

Response Header .......................................................................................... 305

Part 4  LiveWire Database Service

Chapter 15 Connecting to a Database ................................................ 309

Interactions with Databases .............................................................................. 310

Approaches to Connecting ............................................................................... 311

Database Connection Pools .............................................................................. 314

Single-Threaded and Multithreaded Databases ............................................... 316

Managing Connection Pools ............................................................................. 318

Sharing a Fixed Set of Connection Pools .................................................... 320

Sharing an Array of Connection Pools ........................................................ 321

Individual Database Connections ..................................................................... 323

Maintaining a Connection Across Requests ................................................ 325

Waiting for a Connection ............................................................................. 327

Retrieving an Idle Connection ..................................................................... 328
xviii Server-Side JavaScript Guide



Chapter 16 Working with a Database ................................................. 335

Automatically Displaying Query Results .......................................................... 336

Executing Arbitrary SQL Statements ................................................................. 337

Manipulating Query Results with Cursors ....................................................... 338

Creating a Cursor .......................................................................................... 339

Displaying Record Values ............................................................................ 341

Displaying Expressions and Aggregate Functions ...................................... 343

Navigating with Cursors ............................................................................... 344

Working with Columns ................................................................................ 345

Changing Database Information .................................................................. 346

Managing Transactions ..................................................................................... 348

Using the Transaction-Control Methods ...................................................... 349

Working with Binary Data ................................................................................ 351

Calling Stored Procedures ................................................................................. 354

Exchanging Information ............................................................................... 354

Steps for Using Stored Procedures .............................................................. 356

Registering the Stored Procedure ................................................................ 357

Defining a Prototype for a Stored Procedure ............................................. 358

Executing the Stored Procedure .................................................................. 358

Working with Result Sets ............................................................................. 360

Working with Return Values ........................................................................ 366

Working with Output Parameters ................................................................ 367

Informix and Sybase Exceptions ................................................................. 368

Chapter 17 Configuring Your Database ............................................. 369

Checking Your Database Configuration .......................................................... 370

Supported Database Clients and ODBC Drivers ............................................. 372

DB2 .................................................................................................................... 376

DB2 Remote .................................................................................................. 376

DB2 Local ...................................................................................................... 377

Informix ............................................................................................................. 378

Informix Remote ........................................................................................... 378

Informix Local ............................................................................................... 379
Contents xix



ODBC ................................................................................................................ 379

ODBC Data Source Names (NT only) ......................................................... 380

OpenLink ODBC Driver (Solaris only) ........................................................ 380

Visigenic ODBC Driver (Unix only) ............................................................ 381

Oracle ................................................................................................................ 381

Oracle Remote .............................................................................................. 382

Oracle Local .................................................................................................. 383

Sybase ................................................................................................................ 383

Sybase Remote .............................................................................................. 384

Sybase Local ................................................................................................. 384

Sybase (Unix only) ....................................................................................... 385

Chapter 18 Data Type Conversion ....................................................... 387

Working with Dates and Databases ................................................................. 388

Data-Type Conversion by Database ................................................................ 388

Chapter 19 Error Handling for LiveWire .......................................... 391

Return Values .................................................................................................... 392

Number ......................................................................................................... 392

Object ............................................................................................................ 393

Boolean ......................................................................................................... 394

String ............................................................................................................. 395

Void ............................................................................................................... 395

Error Methods .................................................................................................... 396

Status Codes ...................................................................................................... 397

Chapter 20 Videoapp and Oldvideo Sample Applications .......... 399

Configuring Your Environment ........................................................................ 400

Connecting to the Database and Recompiling ........................................... 400

Creating the Database .................................................................................. 401

Running Videoapp ............................................................................................ 406

Looking at the Source Files .............................................................................. 407

Application Architecture .............................................................................. 408

Modifying videoapp ..................................................................................... 411
xx Server-Side JavaScript Guide



Part 5  Working with LiveConnect
Chapter 21 LiveConnect Overview ...................................................... 415

What Is LiveConnect? ........................................................................................ 416

Working with Wrappers ................................................................................... 417

JavaScript to Java Communication ................................................................... 418

The Packages Object .................................................................................... 419

Working with Java Arrays ............................................................................ 420

Package and Class References ..................................................................... 420

Arguments of Type char ............................................................................... 421

Example of JavaScript Calling Java .............................................................. 421

Java to JavaScript Communication ................................................................... 422

Using the LiveConnect Classes .................................................................... 423

Accessing Server-Side JavaScript .................................................................. 426

Data Type Conversions ..................................................................................... 429

JavaScript to Java Conversions ..................................................................... 429

Java to JavaScript Conversions ..................................................................... 435

Chapter 22 Accessing CORBA Services ............................................... 437

About CORBA Services ..................................................................................... 437

Flexi Sample Application .................................................................................. 439

CORBA Client and Server Processes ........................................................... 440

Starting FlexiServer ....................................................................................... 441

Starting Flexi ................................................................................................. 442

Using Flexi .................................................................................................... 442

Looking at the Source Files .......................................................................... 443

Deployment Alternatives .................................................................................. 447

Glossary .......................................................................................................... 449

Index ................................................................................................................ 455
Contents xxi



xxii Server-Side JavaScript Guide



About this Book
JavaScript is Netscape’s cross-platform, object-based scripting language for 
client and server applications. This book explains everything you need to 
know to begin creating server-side JavaScript applications.

This preface contains the following sections:

• New Features in this Release

• What You Should Already Know

• JavaScript Versions

• Where to Find JavaScript Information

• Document Conventions

New Features in this Release
For a summary of JavaScript 1.2 features, see “New Features in this Release” on 
page 3. Information on these features has been incorporated in this manual.

What You Should Already Know
This book assumes you have the following basic background:

• A general understanding of the Internet and the World Wide Web (WWW).

• A general understanding of client-side JavaScript. This book does not 
duplicate client-side language information.

• Good working knowledge of HyperText Markup Language (HTML). 
Experience with forms and the Common Gateway Interface (CGI) is also 
useful.

• Some programming experience in Pascal, C, Perl, Visual Basic, or a similar 
language.
23



JavaScript Versions
• Familiarity with relational databases and a working knowledge of Structured 
Query Language (SQL), if you’re going to use the LiveWire Database 
Service.

JavaScript Versions
Each version of Navigator supports a different version of JavaScript. To help 
you write scripts that are compatible with multiple versions of Navigator, this 
manual lists the JavaScript version in which each feature was implemented.

The following table lists the JavaScript version supported by different Navigator 
versions. Versions of Navigator prior to 2.0 do not support JavaScript.

Each version of the Netscape Enterprise Server also supports a different version 
of JavaScript. To help you write scripts that are compatible with multiple 
versions of the Enterprise Server, this manual uses an abbreviation to indicate 
the server version in which each feature was implemented.

Table 1 JavaScript and Navigator versions

JavaScript version Navigator version

JavaScript 1.0 Navigator 2.0

JavaScript 1.1 Navigator 3.0

JavaScript 1.2 Navigator 4.0–4.05

Table 2 JavaScript and Netscape Enterprise Server versions

Abbreviation Enterpriser Server version

NES 2.0 Netscape Enterprise Server 2.0

NES 3.0 Netscape Enterprise Server 3.0
24 Server-Side JavaScript Guide



Where to Find JavaScript Information
Where to Find JavaScript Information
The server-side JavaScript documentation includes the following books:

• The Server-Side JavaScript Guide (this book) provides information about the 
JavaScript language and its objects. This book contains information for both 
core and server-side JavaScript. Some core language features work 
differently on the client than on the server; these differences are discussed 
in this book.

• The Server-Side JavaScript Reference provides reference material for the 
JavaScript language, including both core and server-side JavaScript.

If you are new to JavaScript, start with Chapter 1, “JavaScript Overview,” then 
continue with the rest of the book. Once you have a firm grasp of the 
fundamentals, you can use the Server-Side JavaScript Reference to get more 
details on individual objects and statements.

Use the material in this book to familiarize yourself with core and server-side 
JavaScript. Use the Client-Side JavaScript Guide and Client-Side JavaScript 
Reference for information on scripting HTML pages.

The Netscape Enterprise Server Programmer’s Bookshelf summarizes the 
different programming interfaces available with the 3.x versions of Netscape 
web servers. Use this guide as a roadmap or starting point for exploring the 
Enterprise Server documentation for developers.

The Netscape web site contains information that can be useful when you’re 
working with JavaScript. The following URLs are of particular interest:

• http://home.netscape.com/one_stop/intranet_apps/index.html

The Netscape AppFoundry Online home page is a source for starter 
applications, technical information, tools, and expert forums for quickly 
building and dynamically deploying open intranet applications. This site 
also includes troubleshooting information in the resources section and extra 
help on setting up your JavaScript environment.

• http://help.netscape.com/products/tools/livewire/

Netscape’s technical support page for information on the LiveWire Database 
Service contains many useful pointers to information on using LiveWire in 
JavaScript applications.
25



Document Conventions
• http://developer.netscape.com/tech/javascript/ssjs/
index.html

Netscape’s support page for server-side JavaScript contains news and 
resources related to server-side JavaScript. For quick access to this URL, 
click the Documentation link on the Netscape Enterprise Server Application 
Manager.

• http://developer.netscape.com/viewsource/index.html

View Source Magazine, Netscape’s online technical magazine for 
developers, is updated every other week and frequently contains articles of 
interest to JavaScript developers.

Document Conventions
JavaScript applications run on many operating systems; the information in this 
book applies to all versions. File and directory paths are given in Windows 
format (with backslashes separating directory names). For Unix versions, the 
directory paths are the same, except that you use slashes instead of backslashes 
to separate directories.

This book uses uniform resource locators (URLs) of the following form:

http://server.domain/path/file.html

In these URLs, server represents the name of the server on which you run your 
application, such as research1 or www; domain represents your Internet 
domain name, such as netscape.com or uiuc.edu; path represents the 
directory structure on the server; and file.html represents an individual file 
name. In general, items in italics in URLs are placeholders and items in normal 
monospace font are literals. If your server has Secure Sockets Layer (SSL) 
enabled, you would use https instead of http in the URL.
26 Server-Side JavaScript Guide



Document Conventions
This book uses the following font conventions:

• The monospace font is used for sample code and code listings, API and 
language elements (such as method names and property names), file 
names, path names, directory names, HTML tags, and any text that must be 
typed on the screen. (Monospace italic font is used for placeholders 
embedded in code.)

• Italic type is used for book titles, emphasis, variables and placeholders, and 
words used in the literal sense.

• Boldface type is used for glossary terms.
27



Document Conventions
28 Server-Side JavaScript Guide



C h a p t e r

1
Chapter 1JavaScript Overview
This chapter introduces JavaScript and discusses some of its fundamental 
concepts.

This chapter contains the following sections:

• What Is JavaScript?

• Core, Client-Side, and Server-Side JavaScript

• JavaScript and Java

• Debugging JavaScript

• Visual JavaScript

• JavaScript and the ECMA Specification
Chapter 1, JavaScript Overview 29



What Is JavaScript?
What Is JavaScript?
JavaScript is Netscape’s cross-platform, object-oriented scripting language. Core 
JavaScript contains a core set of objects, such as Array, Date, and Math, and 
a core set of language elements such as operators, control structures, and 
statements. Core JavaScript can be extended for a variety of purposes by 
supplementing it with additional objects; for example:

• Client-side JavaScript extends the core language by supplying objects to 
control a browser (Navigator or another web browser) and its Document 
Object Model (DOM). For example, client-side extensions allow an 
application to place elements on an HTML form and respond to user events 
such as mouse clicks, form input, and page navigation.

• Server-side JavaScript extends the core language by supplying objects 
relevant to running JavaScript on a server. For example, server-side 
extensions allow an application to communicate with a relational database, 
provide continuity of information from one invocation to another of the 
application, or perform file manipulations on a server.

JavaScript lets you create applications that run over the Internet. Client 
applications run in a browser, such as Netscape Navigator, and server 
applications run on a server, such as Netscape Enterprise Server. Using 
JavaScript, you can create dynamic HTML pages that process user input and 
maintain persistent data using special objects, files, and relational databases.

Through JavaScript’s LiveConnect functionality, you can let Java and JavaScript 
code communicate with each other. From JavaScript, you can instantiate Java 
objects and access their public methods and fields. From Java, you can access 
JavaScript objects, properties, and methods.

Netscape invented JavaScript, and JavaScript was first used in Netscape 
browsers.
30 Server-Side JavaScript Guide



Core, Client-Side, and Server-Side JavaScript
Core, Client-Side, and Server-Side JavaScript
The components of JavaScript are illustrated in the following figure.

Figure 1.1 The JavaScript language 

The following sections introduce the workings of JavaScript on the client and 
on the server.

CLIENT-SIDE JAVASCRIPT

Core 
JavaScript

Core language 
features (such
as variables, 
functions, and
LiveConnect)

Client-side
additions
(such as window 
and history)

Server-side 
additions
(such as server
and database

SERVER-SIDE JAVASCRIPT

Client-side 

Server-side
Chapter 1, JavaScript Overview 31



Core, Client-Side, and Server-Side JavaScript
Core JavaScript

Client-side and server-side JavaScript have the following elements in common:

• Keywords

• Statement syntax and grammar

• Rules for expressions, variables, and literals

• Underlying object model (although client-side and server-side JavaScript 
have different sets of predefined objects)

• Predefined objects and functions, such as such as Array, Date, and Math

Client-Side JavaScript

Web browsers such as Navigator (2.0 and later versions) can interpret client-
side JavaScript statements embedded in an HTML page. When the browser (or 
client) requests such a page, the server sends the full content of the document, 
including HTML and JavaScript statements, over the network to the client. The 
browser reads the page from top to bottom, displaying the results of the HTML 
and executing JavaScript statements as they are encountered. This process, 
illustrated in the following figure, produces the results that the user sees.
32 Server-Side JavaScript Guide



Core, Client-Side, and Server-Side JavaScript
Figure 1.2 Client-side JavaScript 

Client-side JavaScript statements embedded in an HTML page can respond to 
user events such as mouse clicks, form input, and page navigation. For 
example, you can write a JavaScript function to verify that users enter valid 
information into a form requesting a telephone number or zip code. Without 
any network transmission, the embedded JavaScript on the HTML page can 
check the entered data and display a dialog box if the user enters invalid data.

Different versions of JavaScript work with specific versions of Navigator. For 
example, JavaScript 1.2 is for Navigator 4.0. Some features available in 
JavaScript 1.2 are not available in JavaScript 1.1 and hence are not available in 
Navigator 3.0. For information on JavaScript and Navigator versions, see 
“JavaScript Versions” on page 24.

<HEAD><TITLE>A Simple Document</TITLE>
<SCRIPT>
function update(form) {

alert("Form being updated")
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME="myform" ACTION="start.htm"
METHOD="get">
Enter a value:
. . .
</FORM>
</BODY>

mypage.html

Internet
Chapter 1, JavaScript Overview 33



Core, Client-Side, and Server-Side JavaScript
Server-Side JavaScript

On the server, you also embed JavaScript in HTML pages. The server-side 
statements can connect to relational databases from different vendors, share 
information across users of an application, access the file system on the server, 
or communicate with other applications through LiveConnect and Java. HTML 
pages with server-side JavaScript can also include client-side JavaScript.

In contrast to pure client-side JavaScript pages, HTML pages that use server-side 
JavaScript are compiled into bytecode executable files. These application 
executables are run by a web server that contains the JavaScript runtime 
engine. For this reason, creating JavaScript applications is a two-stage process.

In the first stage, shown in Figure 1.3, you create HTML pages (which can 
contain both client-side and server-side JavaScript statements) and JavaScript 
files. You then compile all of those files into a single executable.

Figure 1.3 Server-side JavaScript during development 

Web file
(bytecode
executable)

JavaScript
application
compiler

...
function Substitute( guess, word, answer)  {

var result = "";
var len = word.length;
var pos = 0;
while( pos < len ) {

var word_char  = word.substring( pos, pos + 1);
var answer_char = answer.substring( pos, pos + 1 );
if ( word_char == guess ) result = result + guess;
else result = result + answer_char;
pos = pos + 1;

}
return result;

}

hangman.js

hangman.htm

<HTML> <HEAD> <TITLE> Hangman </TITLE></HEAD>
<BODY> </H1> Hangman </H1> 

<SERVER>
if (client.gameno == null)  {

client.gameno = 1
client.newgame = "true"

}
</SERVER>
You have used the following letters so far:
<SERVER>write(client.used)</SERVER>
<FORM METHOD="post" ACTION="hangman.htm">
<P>
What is your guess?
<INPUT TYPE="text" NAME="guess" SIZE="1">
...
</BODY></HTML>
34 Server-Side JavaScript Guide



Core, Client-Side, and Server-Side JavaScript
In the second stage, shown in Figure 1.4, a page in the application is requested 
by a client browser. The runtime engine uses the application executable to look 
up the source page and dynamically generate the HTML page to return. It runs 
any server-side JavaScript statements found on the page. The result of those 
statements might add new HTML or client-side JavaScript statements to the 
HTML page. The run-time engine then sends the resulting page over the 
network to the Navigator client, which runs any client-side JavaScript and 
displays the results.

Figure 1.4 Server-side JavaScript during runtime 

Web file
(bytecode
executable)

JavaScript
runtime
engine

Internet
<HTML><HEAD><TITLE>Hangman</TITLE></>HEAD>
<BODY><H1> Hangman </H1>
You have used the following letters so far:
S A M
<FORM METHOD="post" ACTION="hangman.html">
<P>
What is your guess?
<INPUT TYPE="text" NAME="guess" SIZE="1">
...
</BODY></HTML>
Chapter 1, JavaScript Overview 35



JavaScript and Java
In contrast to standard Common Gateway Interface (CGI) programs, all 
JavaScript source is integrated directly into HTML pages, facilitating rapid 
development and easy maintenance. Server-side JavaScript’s Session 
Management Service contains objects you can use to maintain data that persists 
across client requests, multiple clients, and multiple applications. Server-side 
JavaScript’s LiveWire Database Service provides objects for database access that 
serve as an interface to Structured Query Language (SQL) database servers.

JavaScript and Java
JavaScript and Java are similar in some ways but fundamentally different in 
others. The JavaScript language resembles Java but does not have Java’s static 
typing and strong type checking. JavaScript supports most Java expression 
syntax and basic control-flow constructs.

In contrast to Java’s compile-time system of classes built by declarations, 
JavaScript supports a runtime system based on a small number of data types 
representing numeric, Boolean, and string values. JavaScript has a prototype-
based object model instead of the more common class-based object model. The 
prototype-based model provides dynamic inheritance; that is, what is inherited 
can vary for individual objects. JavaScript also supports functions without any 
special declarative requirements. Functions can be properties of objects, 
executing as loosely typed methods.

JavaScript is a very free-form language compared to Java. You do not have to 
declare all variables, classes, and methods. You do not have to be concerned 
with whether methods are public, private, or protected, and you do not have to 
implement interfaces. Variables, parameters, and function return types are not 
explicitly typed.

Java is a class-based programming language designed for fast execution and 
type safety. Type safety means, for instance, that you can’t cast a Java integer 
into an object reference or access private memory by corrupting Java 
bytecodes. Java’s class-based model means that programs consist exclusively of 
classes and their methods. Java’s class inheritance and strong typing generally 
require tightly coupled object hierarchies. These requirements make Java 
programming more complex than JavaScript authoring.
36 Server-Side JavaScript Guide



Debugging JavaScript
In contrast, JavaScript descends in spirit from a line of smaller, dynamically 
typed languages such as HyperTalk and dBASE. These scripting languages offer 
programming tools to a much wider audience because of their easier syntax, 
specialized built-in functionality, and minimal requirements for object creation.

For more information on the differences between JavaScript and Java, see 
Chapter 10, “Details of the Object Model.”

Debugging JavaScript
JavaScript allows you to write complex computer programs. As with all 
languages, you may make mistakes while writing your scripts. The Netscape 
JavaScript Debugger allows you to debug your scripts.

For information on using the Debugger, see Getting Started with Netscape 
JavaScript Debugger.

Table 1.1  JavaScript compared to Java

JavaScript Java

Interpreted (not compiled) by client. Compiled bytecodes downloaded from 
server, executed on client.

Object-oriented. No distinction between 
types of objects. Inheritance is through 
the prototype mechanism, and properties 
and methods can be added to any object 
dynamically.

Class-based. Objects are divided into 
classes and instances with all inheritance 
through the class hierarchy. Classes and 
instances cannot have properties or 
methods added dynamically.

Code integrated with, and embedded in, 
HTML.

Applets distinct from HTML (accessed 
from HTML pages).

Variable data types not declared 
(dynamic typing).

Variable data types must be declared 
(static typing).

Cannot automatically write to hard disk. Cannot automatically write to hard disk.
Chapter 1, JavaScript Overview 37



Visual JavaScript
Visual JavaScript
Netscape Visual JavaScript is a component-based visual development tool for 
the Netscape Open Network Environment (ONE) platform. It is primarily 
intended for use by application developers who want to build cross-platform, 
standards-based, web applications from ready-to-use components with minimal 
programming effort. The applications are based on HTML, JavaScript, and Java.

For information on Visual JavaScript, see the Visual JavaScript Developer’s 
Guide.

JavaScript and the ECMA Specification
Netscape invented JavaScript, and JavaScript was first used in Netscape 
browsers. However, Netscape is working with ECMA (European Computer 
Manufacturers Association) to deliver a standardized, international 
programming language based on core JavaScript. ECMA is an international 
standards association for information and communication systems. This 
standardized version of JavaScript, called ECMAScript, behaves the same way in 
all applications that support the standard. Companies can use the open 
standard language to develop their implementation of JavaScript. The first 
version of the ECMA standard is documented in the ECMA-262 specification.

The ECMA-262 standard is also approved by the ISO (International 
Organization for Standards) as ISO-16262. You can find a PDF version of 
ECMA-262 at Netscape DevEdge Online. You can also find the specification on 
the ECMA web site. The ECMA specification does not describe the Document 
Object Model (DOM), which is being standardized by the World Wide Web 
Consortium (W3C). The DOM defines the way in which HTML document 
objects are exposed to your script.
38 Server-Side JavaScript Guide



JavaScript and the ECMA Specification
Relationship Between JavaScript and 
ECMA Versions

Netscape works closely with ECMA to produce the ECMA specification. The 
following table describes the relationship between JavaScript and ECMA 
versions.

The Server-Side JavaScript Reference indicates which features of the language 
are ECMA-compliant.

JavaScript will always include features that are not part of the ECMA 
specification; JavaScript is compatible with ECMA, while providing additional 
features.

Table 1.2 JavaScript and ECMA versions

JavaScript version Relationship to ECMA version

JavaScript 1.1 ECMA-262 is based on JavaScript 1.1.

JavaScript 1.2 ECMA-262 was not complete when JavaScript 1.2 was released. 
JavaScript 1.2 is not fully compatible with ECMA-262 for the 
following reasons:

• Netscape developed additional features in JavaScript 1.2 
that were not considered for ECMA-262.

• ECMA-262 adds two new features: internationalization using 
Unicode, and uniform behavior across all platforms. Several 
features of JavaScript 1.2, such as the Date object, were 
platform-dependent and used platform-specific behavior.
Chapter 1, JavaScript Overview 39



JavaScript and the ECMA Specification
JavaScript Documentation vs. the ECMA 
Specification

The ECMA specification is a set of requirements for implementing ECMAScript; 
it is useful if you want to determine whether a JavaScript feature is supported 
under ECMA. If you plan to write JavaScript code that uses only features 
supported by ECMA, then you may need to review the ECMA specification.

The ECMA document is not intended to help script programmers; use the 
JavaScript documentation for information on writing scripts.

JavaScript and ECMA Terminology

The ECMA specification uses terminology and syntax that may be unfamiliar to 
a JavaScript programmer. Although the description of the language may differ 
in ECMA, the language itself remains the same. JavaScript supports all 
functionality outlined in the ECMA specification.

The JavaScript documentation describes aspects of the language that are 
appropriate for a JavaScript programmer. For example:

• The global object is not discussed in the JavaScript documentation because 
you do not use it directly. The methods and properties of the global object, 
which you do use, are discussed in the JavaScript documentation but are 
called top-level functions and properties.

• The no parameter (zero-argument) constructor with the Number and 
String objects is not discussed in the JavaScript documentation, because 
what is generated is of little use. A Number constructor without an 
argument returns +0, and a String constructor without an argument 
returns “” (an empty string).
40 Server-Side JavaScript Guide



1
Developing Server Applications
• Getting Started

• How to Develop Server 
Applications



42 Server-Side JavaScript Guide



C h a p t e r

2
Chapter 2Getting Started
This chapter provides an overview of what a typical server-side JavaScript 
application looks like, and it shows you how to set up your system for server-
side development.

This chapter contains the following sections:

• Architecture of JavaScript Applications

• System Requirements

• Configuration Information

Architecture of JavaScript Applications
As discussed in earlier sections, JavaScript applications have portions that run 
on the client and on the server. In addition, many JavaScript applications use 
the LiveWire Database Service to connect the application to a relational 
database. For this reason, you can think of JavaScript applications as having a 
three-tier client-server architecture, as illustrated in Figure 2.1.
Chapter 2, Getting Started 43



Architecture of JavaScript Applications
Figure 2.1 Architecture of the client-server JavaScript application environment 

The three tiers are:

• WWW clients (such as Netscape Navigator clients): This tier provides a 
cross-platform end-user interface to the application. This tier can also 
contain some application logic, such as data-validation rules implemented 
in client-side JavaScript. Clients can be inside or outside the corporate 
firewall.

• Netscape WWW server/database client: This tier consists of a Netscape 
server, with server-side JavaScript enabled. It contains the application logic, 
manages security, and controls access to the application by multiple users, 
using server-side JavaScript. This tier allows clients both inside and outside 
the firewall to access the application. The WWW server also acts as a client 
to any installed database servers. 

WWW Clients
(Netscape
Communicator)

Netscape web server
(also may be a database client)

CLIENT-SIDE
ENVIRONMENT

SERVER-SIDE
ENVIRONMENT

HTML parser
and JavaScript
interpreter Optional database servers

behind firewall

JavaScript
applications

and JavaScript
runtime engine
44 Server-Side JavaScript Guide



Architecture of JavaScript Applications
• Database servers: This tier consists of SQL database servers, typically 
running on high-performance workstations. It contains all the database 
data, metadata, and referential integrity rules required by the application. 
This tier typically is inside the corporate firewall and can provide a layer of 
security in addition to that provided by the WWW server. Netscape 
Enterprise Server supports the use of ODBC, DB2, Informix, Oracle, and 
Sybase database servers. Netscape FastTrack Server supports only ODBC. 
For further information about the LiveWire Database Service, see Part 4, 
“LiveWire Database Service.”

The JavaScript client-side environment runs as part of WWW clients, and the 
JavaScript server-side environment runs as part of a Netscape web server with 
access to one or more database servers. Figure 2.2 shows more detail of how 
the server-side JavaScript environment, and applications built for this 
environment, fit into the Netscape web server.

The top part of Figure 2.2 shows how server-side JavaScript fits into a Netscape 
web server. Inside the web server, the server-side JavaScript runtime 
environment is built from three main components which are listed below. The 
JavaScript Application Manager then runs on top of server-side JavaScript, as do 
the sample applications provided by Netscape (such as the videoapp 
application) and any applications you create.

Figure 2.2 Server-side JavaScript in the Netscape server environment 

Internet

Netscape
web
server

Relational
database

NSAPI

SSJS
Application

Manager

SSJS
runtime
library

LiveWire
database

access library

Java
Virtual

Machine

Video
store

Server-side JavaScript

Your application•••
Chapter 2, Getting Started 45



Architecture of JavaScript Applications
These are the three primary components of the JavaScript runtime environment:

• The JavaScript runtime library: This component provides basic JavaScript 
functionality. An example is the Session Management Service, which 
provides predefined objects to help manage your application and share 
information between the client and the server and between multiple 
applications. The Session Management Service is described in Chapter 13, 
“Session Management Service.”

• The LiveWire database access library: This component extends the base 
server-side JavaScript functionality with classes and objects that provide 
seamless access to external database servers. It is described in Part 4, 
“LiveWire Database Service.”

• The Java virtual machine: Unlike the other components, the Java virtual 
machine is not only for use with JavaScript; any Java application running on 
the server uses this virtual machine. The Java virtual machine has been 
augmented to allow JavaScript applications to access Java classes, using 
JavaScript’s LiveConnect functionality. LiveConnect is described in Chapter 
21, “LiveConnect Overview.”

In general, a JavaScript application can contain statements interpreted by the 
client (with the JavaScript interpreter provided with Netscape Navigator or 
some other web browser) and by the server (with the JavaScript runtime engine 
just discussed).

When you run a JavaScript application, a variety of things occur, some on the 
server and some on the client. Although the end user does not need to know 
the details, it is important for you, the application developer, to understand 
what happens “under the hood.”

In creating your application, you write HTML pages that can contain both 
server-side and client-side JavaScript statements. In the source code HTML, 
client-side JavaScript is delimited by the SCRIPT tag and server-side JavaScript 
by the SERVER tag. 

You can also write files that contain only JavaScript statements and no HTML 
tags. A JavaScript file can contain either client-side JavaScript or server-side 
JavaScript; a single file cannot contain both client-side and server-side objects 
or functions.
46 Server-Side JavaScript Guide



System Requirements
If the HTML and JavaScript files contain server-side JavaScript, you then 
compile them into a single JavaScript application executable file. The 
executable is called a web file and has the extension .web. The JavaScript 
application compiler turns the source code HTML into platform-independent 
bytecodes, parsing and compiling server-side JavaScript statements. 

Finally, you deploy your application on your web server and use the JavaScript 
Application Manager to install and start the application, so that users can access 
your application.

At runtime, when a client requests a page from a server-side JavaScript 
application, the runtime engine locates the representation of that file in the 
application’s web file. It runs all the server code found and creates an HTML 
page to send to the client. That page can contain both regular HTML tags and 
client-side JavaScript statements. All server code is run on the server, before the 
page goes to the client and before any of the HTML or client-side JavaScript is 
executed. Consequently, your server-side code cannot use any client-side 
objects, nor can your client-side code use any server-side objects. 

For more details, see Chapter 12, “Basics of Server-Side JavaScript.”

System Requirements
To develop and run JavaScript applications that take advantage of both client-
side and server-side JavaScript, you need appropriate development and 
deployment environments. In general, it is recommended that you develop 
applications on a system other than your deployment (production) server 
because development consumes resources (for example, communications 
ports, bandwidth, processor cycles, and memory). Development might also 
disrupt end-user applications that have already been deployed.

A JavaScript development environment consists of

• Development tools for authoring and compiling JavaScript applications. 
These tools typically are resident on the development machine.

• A development machine with a web server for running JavaScript 
applications that are under development.

• A deployment machine with a web server for deploying finished 
applications. End users access completed applications on this server.
Chapter 2, Getting Started 47



System Requirements
The development tools needed include:

• A JavaScript-enabled browser, such as Netscape Navigator, included in 
Netscape Communicator.

• A JavaScript application compiler, such as the one bundled with Netscape 
web servers.

• An editor, such as Emacs or Notepad.

The development and deployment machines require the following software:

• A web server.

• A JavaScript runtime engine, such as the one bundled with Netscape web 
servers.

• A way to configure your server to run JavaScript applications, as provided 
in the JavaScript Application Manager bundled with Netscape web servers.

In addition, if your application uses JavaScript’s LiveWire Database Service, you 
need the following:

• Relational database server software on your database server machine. For 
more information, refer to your database server documentation. In some 
cases, you may want to install the web server and the database server on 
the same machine. For specific requirements for server-side JavaScript, see 
Chapter 17, “Configuring Your Database.”

• Your database’s client and networking software on your web server 
machine. If you use one machine as both your database server and web 
server, typically the necessary database client software is installed when the 
database server is installed. Otherwise, you must ensure that the database 
client software is installed on the same machine as the web server, so that it 
can access the database as a client. For more information on database client 
software requirements, refer to the database vendor’s documentation.
48 Server-Side JavaScript Guide



Configuration Information
Configuration Information
This section provides configuration information for using server-side JavaScript. 
For additional information on setting up your database to work with the 
LiveWire Database Service, see Chapter 17, “Configuring Your Database.”

Enabling Server-Side JavaScript

To run JavaScript applications on your server, you must enable the JavaScript 
runtime engine from your Server Manager by clicking Programs and then 
choosing server-side JavaScript. At the prompt “Activate the JavaScript 
application environment?”, choose Yes and click OK. You are also asked about 
restricting access to the Application Manager. For more information, see 
“Protecting the Application Manager” on page 49.

Note If you do not enable the JavaScript runtime engine, JavaScript applications 
cannot run on the server.

Once you activate the JavaScript application environment, you must stop and 
restart your web server for the associated environment variables to take effect. 
If you do not, JavaScript applications that use the LiveWire Database Service 
will not run.

Protecting the Application Manager

The Application Manager provides control over JavaScript applications. Because 
of its special capabilities, you should protect it from unauthorized access. If you 
don’t restrict access to the Application Manager, anyone can add, remove, 
modify, start, and stop applications on your server. This can have undesirable 
consequences. 

You (the JavaScript application developer) need to have permission to use the 
Application Manager on your development server, because you use it to work 
with the application as you develop it. Your web server administrator, 
however, may choose to not give you this access to the deployment server.

When you enable the JavaScript runtime engine in the Server Manager, a 
prompt asks you whether to restrict access to the Application Manager. Choose 
Yes to do so, then click OK. (Yes is the default.) After this point, anyone 
Chapter 2, Getting Started 49



Configuration Information
attempting to access the Application Manager must enter the Server Manager 
user name and password to use the Application Manager and the dbadmin 
sample application. For more information, see the administrator’s guide for 
your web server.

If your server is not using the Secure Sockets Layer (SSL), the user name and 
password for the Application Manager are transmitted unencrypted over the 
network. An intruder who intercepts this data can get access to the Application 
Manager. If you use the same password for your administration server, the 
intruder will also have control of your server. Therefore, it is recommended that 
you do not use the Application Manager outside your firewall unless you use 
SSL. For instructions on how to turn on SSL for your server, see the 
administrator’s guide for your web server.

Setting Up for LiveConnect

Netscape web servers include Java classes you can use with JavaScript. The 
installation procedures for these servers put those classes in the 
$NSHOME\js\samples directory, where $NSHOME is the directory in which you 
installed the server. The installation procedure also modifies the web server’s 
CLASSPATH environment variable to automatically include this directory.

You must either install your Java classes in this same directory or modify the 
CLASSPATH environment variable of the server to include the location of your 
Java classes. In addition, the CLASSPATH environment variable of the process in 
which you compile the Java classes associated with your JavaScript application 
must also include the location of your Java classes.

Remember, if you use the Admin Server to start your web server, you’ll have to 
set CLASSPATH before you start the Admin Server. Alternatively, you can 
directly modify the obj.conf file for your web server. For information on this 
file, see your web server’s administrator’s guide.

On NT, if you modify CLASSPATH and you start the server using the Services 
panel of the control panel, you must reboot your machine after you set 
CLASSPATH in the System panel of the control panel.
50 Server-Side JavaScript Guide



Configuration Information
Locating the Compiler

Installation of a Netscape server does not change your PATH environment 
variable to include the directory in which the JavaScript application compiler is 
installed. If you want to be able to easily refer to the location of the compiler, 
you must modify this environment variable. 

On Unix systems, you have various choices on how to change your PATH 
environment variable. You can add $NSHOME/bin/https, where $NSHOME is 
the directory in which you installed the server. See your system administrator 
for information on how to do so.

To change your NT system path, start the Control Panel application, locate the 
System dialog box, and set the PATH variable in the Environment settings to 
include the %NSHOME%\bin\https, where NSHOME is the directory in which you 
installed the server.

If you move the JavaScript application compiler to a different directory, you 
must add that directory to your PATH environment variable.
Chapter 2, Getting Started 51



Configuration Information
52 Server-Side JavaScript Guide



C h a p t e r

3
Chapter 3How to Develop Server Applications
This chapter describes the process of developing your application, such as how 
to use the JavaScript application compiler and how to use the Application 
Manager of Netscape servers to install or debug your application. For 
information on using only client-side JavaScript, see the Client-Side JavaScript 
Guide.

This chapter contains the following sections:

• Basic Steps in Building an Application

• JavaScript Application Manager Overview

• Creating Application Source Files

• Compiling an Application

• Installing a New Application

• Controlling Access to an Application

• Modifying Installation Fields

• Removing an Application

• Starting, Stopping, and Restarting an Application

• Running an Application

• Debugging an Application

• Deploying an Application

• Application Manager Details
Chapter 3, How to Develop Server Applications 53



Basic Steps in Building an Application
Basic Steps in Building an Application
Normally, HTML is static: after you write an HTML page, its content is fixed. 
The fixed content is transmitted from the server to the client when the client 
accesses the page’s URL. With JavaScript, you can create HTML pages that 
change based on changing data and user actions. Figure 3.1 shows the basic 
procedure for creating and running a JavaScript application.

Figure 3.1 Creating and running a JavaScript application

You take these basic steps to build a JavaScript application: 

1. Create the source files. The source files can be HTML files with embedded 
JavaScript, files containing only JavaScript, or Java source files. (See 
“Creating Application Source Files” on page 58.)

2. Build the application by using the JavaScript application compiler to create 
the bytecode executable (.web file). (See “Compiling an Application” on 
page 59.) Compile Java source files into class files.

Create 
source files

Development

Testing

Move the
application to a

production server

Build the application
by using the JavaScript
application compiler
to create the web file

Production
server

Publish the web file and 
any needed HTML, Java, 
and JavaScript files on 
the development 
server

Install the application 
using the JavaScript 
Application Manager

Run the application 
by clicking Run in 
Application Manager 
or loading the 
application URL in 
your browser

Deployment
54 Server-Side JavaScript Guide



Basic Steps in Building an Application
3. Publish the web file, any needed uncompiled HTML, image, and client-side 
JavaScript files, and compiled Java class files in appropriate directories on 
the server. You can use the Netscape Web Publisher to publish your files, as 
described in the Web Publisher User’s Guide.

4. Install the application for the first time (see “Installing a New Application” 
on page 61) using the JavaScript Application Manager. You also use the 
Application Manager to restart an application after rebuilding it (see 
“Starting, Stopping, and Restarting an Application” on page 66). Installing or 
restarting the application enables the JavaScript runtime engine to run it.

After installing an application, you may want to protect it. See “Deploying 
an Application” on page 70. You do not need to restart an application after 
you initially install it.

5. Run the application by clicking Run in the Application Manager or loading 
the application URL in your browser. (See “Running an Application” on 
page 67 and “Application URLs” on page 64.) For example, to run Hello 
World, load http://server.domain/world/. You can also debug the 
application by clicking Debug in the Application Manager. (See “Debugging 
an Application” on page 68.)

6. After you have completed developing and testing your application, you 
need to deploy it to make it available to users. Deploying generally involves 
installing it on a production server and changing access restrictions. (See 
“Deploying an Application” on page 70.)

Before you can develop JavaScript applications, you need to enable the runtime 
engine on the server and should protect the JavaScript Application Manager 
from unauthorized access. For more information, see “Configuration 
Information” on page 49.
Chapter 3, How to Develop Server Applications 55



JavaScript Application Manager Overview
JavaScript Application Manager Overview
Before learning how to create JavaScript applications, you should become 
familiar with the JavaScript Application Manager. You can use the Application 
Manager to accomplish these tasks: 

• Add a new JavaScript application. 

• Modify any of the attributes of an installed application.

• Stop, start, and restart an installed application.

• Run and debug an active application.

• Remove an installed application.

The Application Manager is itself a JavaScript application that demonstrates the 
power and flexibility of JavaScript. You start the JavaScript Application Manager 
from the following URL in Navigator:

http://server.domain/appmgr

In response, the Application Manager displays the page shown in Figure 3.2.
56 Server-Side JavaScript Guide



JavaScript Application Manager Overview
Figure 3.2 Application Manager 

The Application Manager displays, in a scrolling list in the left frame, all 
JavaScript applications currently installed on the server. Select an application by 
clicking its name in the scrolling list.

For the selected application, the right frame displays the

• Application name at the top of the frame

• Path of the application web file on the server 

• Default and initial pages for the application

• Maximum number of database connections allowed for the predefined 
database object

• External libraries (if any)
Chapter 3, How to Develop Server Applications 57



Creating Application Source Files
• Client object maintenance technique

• Status of the application: active or stopped (Users can run only active 
applications. Stopped applications are not accessible.)

For a description of these fields, see “Installing a New Application” on page 61.

Click the Add Application button in the top frame to add a new application. 
Click the task buttons in the left frame to perform the indicated action on the 
selected application. For example, to modify the installation fields of the 
selected application, click Modify.

Click Configure to configure the default settings for the Application Manager. 
Click Documentation to reach Netscape’s technical support page for server-side 
JavaScript, including links to all sorts of documentation about it. Click Help for 
more instructions on using the Application Manager. 

Creating Application Source Files
The first step in building a JavaScript application is to create and edit the source 
files. The web file for a JavaScript application can contain two kinds of source 
files:

• Files with standard HTML or JavaScript embedded in HTML. These files 
have the file extension (suffix) .html or .htm.

• Files with JavaScript functions only. These files have the file extension .js.

When you use JavaScript in an HTML file, you must follow the rules outlined in 
“Embedding JavaScript in HTML” on page 216. 

Do not use any special tags in .js files; the JavaScript application compiler on 
the server and the JavaScript interpreter on the client assume everything in the 
file is JavaScript. While an HTML file is used on both the client and the server, a 
single JavaScript file must be either for use on the server or on the client; it 
cannot be used on both. Consequently, a JavaScript file can contain either 
client-side JavaScript or server-side JavaScript, but a single file cannot contain 
both client-side and server-side objects or functions.
58 Server-Side JavaScript Guide



Compiling an Application
The JavaScript application compiler compiles and links the HTML and 
JavaScript files that contain server-side JavaScript into a single platform-
independent bytecode web file, with the file extension .web, as described in 
“Compiling an Application” on page 59.

You install a web file to be run with the JavaScript runtime engine, as described 
in “Installing a New Application” on page 61.

Compiling an Application
You compile a JavaScript application using the JavaScript application compiler, 
jsac. The compiler creates a web file from HTML and JavaScript source files.

For ease of accessing the compiler, you may want to add the directory in which 
it is installed to your PATH environment variable. For information on how to do 
so, see “Locating the Compiler” on page 51.

You only need to compile those pages containing server-side JavaScript or both 
client-side and server-side JavaScript. You do not need to compile pages that 
contain only client-side JavaScript. You can do so, but runtime performance is 
better if you leave them uncompiled.

The compiler is available from any command prompt. Use the following 
command-line syntax to compile and link JavaScript applications on the server:

jsac [-h] [-c] [-v] [-d] [-l]
[-o outfile.web]
[-i inputFile]
[-p pathName]
[-f includeFile]
[-r errorFile]
[-a 1.2]
script1.html [...scriptN.html] 
[funct1.js ... functN.js]

Items enclosed in square brackets are optional. The syntax is shown on 
multiple lines for clarity. The scriptN.html and functN.js files are the input 
files to the compiler. There must be at least one HTML file. By default, the 
HTML and JavaScript files are relative to the current directory. Files you specify 
must be either JavaScript files or HTML files; you cannot specify other files, 
such as GIF files.
Chapter 3, How to Develop Server Applications 59



Compiling an Application
On all platforms, you may use either the dash (-) or the forward slash (/) to 
indicate a command-line option. That is, the following lines are equivalent:

jsac -h
jsac /h

Note that because the forward slash indicates a command-line option, an input 
file cannot start with a forward slash to indicate that it is an absolute pathname. 
That is, the following call is illegal:

jsac -o myapp.web /usr/vpg/myapp.html

This restriction does not apply to any of the pathnames you supply as 
arguments to command-line options; only to the input files. On NT, you can 
instead use backslash (\) to indicate an absolute pathname in an input file, as 
in the following call:

jsac -o myapp.web \usr\vpg\myapp.html

On Unix, you must use the -i command-line option to specify an absolute 
pathname, as described below.

The following command-line options are available:

• -h: Displays compiler syntax help. If you supply this option, don’t use any 
other options.

• -c: Checks syntax only; does not generate a web file. If you supply this 
option, you do not need to supply the -o option.

• -v: (Verbose) Displays information about the running of the compiler.

• -d: Displays generated JavaScript contents.

• -l: Specifies the character set to use when compiling (such as iso-8859-1, 
x-sjis, or euc-kr)

• -o outfile: Creates a bytecode-format web file, named outfile.web. If 
you do not supply this option, the compiler does not generate a web file. 
(Omit this option only if you’re using the -c option to check syntax or -h to 
get help.)

• -i inputFile: Allows you to specify an input file using its full pathname 
instead of a relative pathname. You can provide only one filename to this 
option. If you need to specify multiple filenames using full pathnames, use 
the -f option.
60 Server-Side JavaScript Guide



Installing a New Application
• -p pathName: Specifies a directory to be the root of all relative pathnames 
used during compilation. (Use before the -f option.) You can provide only 
one pathname to this option.

• -f includeFile: Specifies a file that is actually a list of input files, 
allowing you to circumvent the character limit for a command line. You can 
provide only one filename to this option. The list of input files in 
includeFile is white-space delimited. If a filename contains a space, you 
must enclose the filename in double quotes.

• -r errorFile: Redirects standard output (including error messages) to the 
specified file. You can provide only one filename to this option.

• -a 1.2: Changes how the compiler handles comparison operators on the 
server. For more information, see “Comparison Operators” on page 209.

For example, the following command compiles and links two JavaScript-
enhanced HTML pages, main.html and hello.html, and a server-side 
JavaScript file, support.js, creating a binary executable named myapp.web. In 
addition, during compilation, the compiler prints progress information to the 
command line.

jsac -v -o myapp.web main.html hello.html support.js

As a second example, the following command compiles the files listed in the 
file looksee.txt into a binary executable called looksee.web:

jsac -f looksee.txt -o looksee.web

Here, looksee.txt might contain the following: 

looksee1.html
looksee2.html
\myapps\jsplace\common.js
looksee3.html

Installing a New Application
You cannot run an application and clients cannot access it until you install it. 
Installing an application identifies it to the server. After you have installed the 
application, you can rebuild and run it any number of times. You need to 
reinstall it only if you subsequently remove it. You can install up to 120 
JavaScript applications on one server.
Chapter 3, How to Develop Server Applications 61



Installing a New Application
Before you install, you must move all application-related files to the correct 
directory, by publishing the files. Otherwise, you’ll get an error when you 
install the application. For security reasons, you may not want to publish your 
JavaScript source files on your deployment server. See “Application URLs” on 
page 64 for restrictions on where you can place your files.

To install a new application with the Application Manager, click Add 
Application. In response, the Application Manager displays, in its right frame, 
the form shown in Figure 3.3. 

Figure 3.3 Add Application form 
62 Server-Side JavaScript Guide



Installing a New Application
Fill in the fields in the Add Application form, as follows: 

• Name: the name of the application. This name defines the application URL. 
For example, the name of the Hello World application is “world,” and its 
application URL is http://server.domain/world. This is a required field, 
and the name you type must be different from all other application names 
on the server. See “Application URLs” on page 64.

• Web File Path: the full pathname of the application web file. This is a 
required field. For example, if you installed the Netscape server in 
c:\nshome, the web file path for the Hello World application is 
c:\nshome\js\samples\world\hello.web. 

• Default Page: the page that the JavaScript runtime engine serves if the user 
does not indicate a specific page in the application. This page is analogous 
to index.html for a standard URL.

• Initial Page: the page that the JavaScript runtime engine executes when you 
start the application in the Application Manager. This page is executed 
exactly once per running of the application. It is generally used to initialize 
values, create locks, and establish database connections. Any JavaScript 
source on this page cannot use either of the predefined request or client 
objects. This is an optional field. 

• Built-in Maximum Database Connections: the default value for the 
maximum number of database connections that this application can have at 
one time using the predefined database object. JavaScript code can 
override what you specify in this setting when it calls the 
database.connect method.

• External Libraries: the pathnames of external libraries to be used with the 
application. If you specify multiple libraries, delimit the names with either 
commas or semicolons. This is an optional field. Libraries installed for one 
application can be used by all applications on the server. See “Working with 
External Libraries” on page 297.

• Client Object Maintenance: the technique used to save the properties of the 
client object. This can be client cookie, client URL, server IP, server 
cookie, or server URL. See “Techniques for Maintaining the client Object” 
on page 263.

After you have provided all the required information, click Enter to install the 
application, Reset to clear all the fields, or Cancel to cancel the operation.
Chapter 3, How to Develop Server Applications 63



Installing a New Application
You must stop and restart your server after you add or change the external 
libraries for an application. You can restart a server from your Server Manager; 
see the administrator’s guide for your web server for more information.

Application URLs

When you install an application, you must supply a name for it. This name 
determines the base application URL, the URL that clients use to access the 
default page of a JavaScript application. The base application URL is of the form

http://server.domain/appName

Here, server is the name of the HTTP server, domain is the Internet domain 
(including any subdomains), and appName is the application name you enter 
when you install it. Individual pages within the application are accessed by 
application URLs of the form

http://server.domain/appName/page.html

Here, page is the name of a page in the application. For example, if your server 
is named coyote and your domain name is royalairways.com, the base 
application URL for the hangman sample application is

http://coyote.royalairways.com/hangman

When a client requests this URL, the server generates HTML for the default page 
in the application and sends it to the client. The application URL for the 
winning page in this application is

http://coyote.royalairways.com/hangman/youwon.html

Important Before you install an application, be sure the application name you choose 
does not usurp an existing URL on your server. The JavaScript runtime engine 
routes all client requests for URLs that match the application URL to the 
directory specified for the web file. This circumvents the server’s normal 
document root. 

For instance, suppose a client requests a URL that starts with this prefix from 
the previous example:

http://coyote.royalairways.com/hangman
64 Server-Side JavaScript Guide



Controlling Access to an Application
In this case, the runtime engine on the server looks for a document in the 
samples\hangman directory and not in your server’s normal document root. 
The server also serves pages in the directory that are not compiled into the 
application.

You can place your source (uncompiled) server-side JavaScript files in the same 
directory as the web file; however, you should do so only for debugging 
purposes. When you deploy your application to the public, for security reasons, 
you should not publish uncompiled server-side JavaScript files.

Controlling Access to an Application
When you install an application, you may want to restrict the users who can 
access it, particularly if the application provides access to sensitive information 
or capabilities. 

If you work on a development server inside a firewall, then you may not need 
to worry about restricting access while developing the application. It is 
convenient to have unrestricted access during development, and you may be 
able to assume that the application is safe from attack inside the firewall. If you 
use sample data during the development phase, then the risk is even less. 
However, if you leave your application open, you should be aware that anyone 
who knows or guesses the application URL can use the application.

When you finish development and are ready to deploy your application, you 
should reconsider how you want to protect it. You can restrict access by 
applying a server configuration style to the application. For information on 
configuration styles, see the administrator’s guide for your web server.

Note Controlling access to applications with configuration styles is available only 
with Netscape 2.0 servers and later versions.
Chapter 3, How to Develop Server Applications 65



Modifying Installation Fields
Modifying Installation Fields
To modify an application’s installation fields, select the application name in the 
left frame of the Application Manager and click Modify.

You can change any of the fields defined when you installed the application, 
except the application name. To change the name of an application, you must 
remove the application and then reinstall it.

If you modify the fields of a stopped application, the Application Manager 
automatically starts it. When you modify fields of an active application, the 
Application Manager automatically stops and restarts it.

Removing an Application
To remove the selected application, click Remove in the Application Manager. 
The Application Manager removes the application so that it cannot be run on 
the server. Clients are no longer able to access the application. If you delete an 
application and subsequently want to run it, you must install it again.

Although clients can no longer use the application, removing it with the 
Application Manager does not delete the application’s files from the server. If 
you want to delete them as well, you must do so manually.

Starting, Stopping, and Restarting an 
Application

After you first install an application, you must start it to run it. Select the 
application in the Application Manager and click Start. If the application 
successfully starts, its status, indicated in the right frame, changes from Stopped 
to Active.

You can also start an application by loading the following URL:

http://server.domain/appmgr/control.html?name=appName&cmd=start

Here, appName is the application name. You cannot use this URL unless you 
have access privileges for the Application Manager.
66 Server-Side JavaScript Guide



Running an Application
If you want to stop an application and thereby make it inaccessible to users, 
select the application name in the Application Manager and click Stop. The 
application’s status changes to Stopped and clients can no longer run the 
application. You must stop an application if you want to move the web file or 
update an application from a development server to a deployment server.

You can also stop an application by loading the following URL:

http://server.domain/appmgr/control.html?name=appName&cmd=stop

Here, appName is the application name. You cannot use this URL unless you 
have access privileges for the Application Manager.

You must restart an application each time you rebuild it. To restart an active 
application, select it in the Application Manager and click Restart. Restarting 
essentially reinstalls the application; the software looks for the specified web 
file. If there is not a valid web file, then the Application Manager generates an 
error.

You can also restart an application by loading the following URL:

http://server.domain/appmgr/control.html?name=appName&cmd=restart

Here, appName is the application name. You cannot use this URL unless you 
have access privileges for the Application Manager.

Running an Application
Once you have compiled and installed an application, you can run it in one of 
two ways:

• Select the application name in the Application Manager, and then click Run. 
In response, the Application Manager opens a new Navigator window to 
access the application.

• Load the base application URL in Navigator by typing it in the Location 
field.

The server then generates HTML for the specified application page and sends it 
to the client.
Chapter 3, How to Develop Server Applications 67



Debugging an Application
Debugging an Application
To debug an application, do one of the following:

• Select the application name in the Application Manager, and then click 
Debug, as described in “Using the Application Manager” on page 68.

• Load the application’s debug URL, as described in “Using Debug URLs” on 
page 69.

You can use the debug function to display debugging information, as described 
in “Using the debug Function” on page 70.

Once you’ve started debugging a JavaScript application in this way, you may 
not be able to stop or restart it. In this situation, the Application Manager 
displays the warning “Trace is active.” If this occurs, do the following:

1. Close any windows running the debugger.

2. Close any windows running the affected application.

3. In the Application Manager, select the affect application and click Run.

You can now stop or restart the application.

Using the Application Manager

To debug an application, select it in the left frame of the Application Manager 
and then click Debug. In response, the Application Manger opens a new 
Navigator window in which the application runs. The trace utility also appears, 
either in a separate frame of the window containing the application or in 
another window altogether. (You can determine the appearance of the debug 
window when you configure the default settings for the Application Manager, 
as described in “Configuring Default Settings” on page 71.)

The trace utility displays this debugging information:

• Values of object properties and arguments of debug functions called by the 
application

• Property values of the request and client objects, before and after 
generating HTML for the page 
68 Server-Side JavaScript Guide



Debugging an Application
• Property values of the project and server objects

• Indication of when the application assigns new values to properties

• Indication of when the runtime engine sends content to the client

The following figure shows what you might see if you debug the Hangman 
application. 

Figure 3.4 Debugging Hangman 

Using Debug URLs

Instead of using the Application Manager, you may find it more convenient to 
use an application’s debug URL. To display an application’s trace utility in a 
separate window, enter the following URL:

http://server.domain/appmgr/trace.html?name=appName
Chapter 3, How to Develop Server Applications 69



Deploying an Application
Here, appName is the name of the application. To display the trace utility in the 
same window as the application (but in a separate frame), enter this URL:

http://server.domain/appmgr/debug.html?name=appName

You cannot use these two URLs unless you have access privileges to run the 
Application Manager. You may want to bookmark the debug URL for 
convenience during development.

Using the debug Function

You can use the debug function in your JavaScript application to help trace 
problems with the application. The debug function displays values to the 
application trace utility. For example, the following statement displays the value 
of the guess property of the request object in the trace window along with 
some identifying text: 

debug ("Current Guess is ", request.guess); 

Deploying an Application
After you have finished developing and testing your application, you are ready 
to deploy it so that it is available to its intended users. This involves two steps:

• Moving the application from the development server to the deployment 
(production) server that is accessible to end users

• Applying or changing access restrictions to the application, as appropriate

You should move the application web file to the deployment server, along with 
any images and uncompiled HTML and JavaScript files that are needed. For 
more information on how to deploy your application files, see the Web 
Publisher User’s Guide.

Note In general, for security reasons, you should not deploy source files. 

Depending on the application, you might want to restrict access to certain 
groups or individuals. In some cases, you might want anyone to be able to run 
the application; in these cases you don’t need to apply any restrictions at all. If 
70 Server-Side JavaScript Guide



Application Manager Details
the application displays sensitive information or provides access to the server 
file system, you should restrict access to authorized users who have the proper 
user name and password.

You restrict access to an application by applying a server configuration style 
from your Server Manager. For information on using Server Manager and 
configuration styles, see the administrator’s guide for your web server.

Application Manager Details
This section shows how to change default settings for the Application Manager. 
In addition, it talks about the format of the underlying file in which the 
Application Manager stores information. 

Configuring Default Settings

To configure default settings for the Application Manager, click Configure in the 
Application Manager’s top frame. In response, the Application Manager displays 
the form shown in Figure 3.5.

You can specify these default values:

• Web File Path: A default directory path for your development area. 

• Default Page: A default name for the default page of a new application.

• Initial Page: A default name for the initial page of a new application.

• Built-in Maximum Database Connections: A default value for the maximum 
number of database connections you can make for the predefined 
database object.

• External Libraries: A default directory path for native executables libraries. 

• Client Object Maintenance: A default maintenance technique for the 
client object properties.

When you install a new application, the default installation fields are used for 
the initial settings.
Chapter 3, How to Develop Server Applications 71



Application Manager Details
In addition, you can specify these preferences:

• Confirm on: Whether you are prompted to confirm your action when you 
remove, start, stop, or restart an application.

• Debug Output: Whether, when debugging an application, the application 
trace appears in the same window as the application but in another frame, 
or in a window separate from the application.

Figure 3.5 Default Settings form 
72 Server-Side JavaScript Guide



Application Manager Details
Under the Hood

The Application Manager is a convenient interface for modifying the 
configuration file $NSHOME\https-serverID\config\jsa.conf, where 
$NSHOME is the directory in which you installed the server and serverID is the 
server’s ID. In case of catastrophic errors, you may need to edit this file 
yourself. In general, this is not recommended, but the information is provided 
here for troubleshooting purposes.

Each line in jsa.conf corresponds to an application. The first item on each 
line is the application name. The remaining items are in the format 
name=value, where name is the name of the installation field, and value is its 
value. The possible values for name are:

• uri: the application name portion of the base application URL

• object: path to the application web file

• home: application default page

• start: application initial page

• maxdbconnect: default maximum number of database connections allowed 
for the predefined database object

• library: paths to external libraries, separated by commas or semicolons

• client-mode: technique for maintaining the client object

The jsa.conf file is limited to 1024 lines, and each line is limited to 1024 
characters. If the fields entered in the Application Manager cause a line to 
exceed this limit, the line is truncated. This usually results in loss of the last 
item, external library files. If this occurs, reduce the number of external libraries 
entered for the application, and add the libraries to other applications. Because 
installed libraries are accessible to all applications, the application can still use 
them.

A line that starts with # indicates a comment. That entire line is ignored. You 
can also include empty lines in the file.

Do not include multiple lines specifying the same application name. Doing so 
causes errors in the Application Manager.
Chapter 3, How to Develop Server Applications 73



Application Manager Details
74 Server-Side JavaScript Guide



2
Core Language Features
• Values, Variables, and Literals

• Expressions and Operators

• Regular Expressions

• Statements

• Functions

• Working with Objects

• Details of the Object Model



76 Server-Side JavaScript Guide



C h a p t e r

4
Chapter 4Values, Variables, and Literals
This chapter discusses values that JavaScript recognizes and describes the 
fundamental building blocks of JavaScript expressions: variables and literals.

This chapter contains the following sections:

• Values

• Variables

• Literals

Values
JavaScript recognizes the following types of values:

• Numbers, such as 42 or 3.14159.

• Logical (Boolean) values, either true or false.

• Strings, such as “Howdy!”.

• null, a special keyword denoting a null value; null is also a primitive 
value. Because JavaScript is case sensitive, null is not the same as Null, 
NULL, or any other variant.

• undefined, a top-level property whose value is undefined; undefined is 
also a primitive value.
Chapter 4, Values, Variables, and Literals 77



Values
This relatively small set of types of values, or data types, enables you to 
perform useful functions with your applications. There is no explicit distinction 
between integer and real-valued numbers. Nor is there an explicit date data 
type in JavaScript. However, you can use the Date object and its methods to 
handle dates.

Objects and functions are the other fundamental elements in the language. You 
can think of objects as named containers for values, and functions as 
procedures that your application can perform.

Data Type Conversion

JavaScript is a dynamically typed language. That means you do not have to 
specify the data type of a variable when you declare it, and data types are 
converted automatically as needed during script execution. So, for example, 
you could define a variable as follows:

var answer = 42

And later, you could assign the same variable a string value, for example,

answer = "Thanks for all the fish..."

Because JavaScript is dynamically typed, this assignment does not cause an 
error message.

In expressions involving numeric and string values with the + operator, 
JavaScript converts numeric values to strings. For example, consider the 
following statements:

x = "The answer is " + 42 // returns "The answer is 42"
y = 42 + " is the answer" // returns "42 is the answer"

In statements involving other operators, JavaScript does not convert numeric 
values to strings. For example:

"37" - 7 // returns 30
"37" + 7 // returns 377
78 Server-Side JavaScript Guide



Variables
Variables
You use variables as symbolic names for values in your application. You give 
variables names by which you refer to them and which must conform to certain 
rules.

A JavaScript identifier, or name, must start with a letter or underscore (“_”); 
subsequent characters can also be digits (0-9). Because JavaScript is case 
sensitive, letters include the characters “A” through “Z” (uppercase) and the 
characters “a” through “z” (lowercase).

Some examples of legal names are Number_hits, temp99, and _name.

Declaring Variables

You can declare a variable in two ways:

• By simply assigning it a value. For example, x = 42

• With the keyword var. For example, var x = 42

Evaluating Variables

A variable or array element that has not been assigned a value has the value 
undefined. The result of evaluating an unassigned variable depends on how 
it was declared:

• If the unassigned variable was declared without var, the evaluation results 
in a runtime error.

• If the unassigned variable was declared with var, the evaluation results in 
the undefined value, or NaN in numeric contexts.
Chapter 4, Values, Variables, and Literals 79



Variables
The following code demonstrates evaluating unassigned variables.

function f1() {
return y - 2;

}
f1() //Causes runtime error

function f2() {
return var y - 2;

}
f2() //returns NaN

You can use undefined to determine whether a variable has a value. In the 
following code, the variable input is not assigned a value, and the if 
statement evaluates to true.

var input;
if(input === undefined){

doThis();
} else {

doThat();
}

The undefined value behaves as false when used as a Boolean value. For 
example, the following code executes the function myFunction because the 
array element is not defined:

myArray=new Array()
if (!myArray[0])

myFunction()

When you evaluate a null variable, the null value behaves as 0 in numeric 
contexts and as false in Boolean contexts. For example:

var n = null
n * 32 //returns 0

Variable Scope

When you set a variable identifier by assignment outside of a function, it is 
called a global variable, because it is available everywhere in the current 
document. When you declare a variable within a function, it is called a local 
variable, because it is available only within the function.

Using var to declare a global variable is optional. However, you must use var 
to declare a variable inside a function.
80 Server-Side JavaScript Guide



Literals
You can access global variables declared in one window or frame from another 
window or frame by specifying the window or frame name. For example, if a 
variable called phoneNumber is declared in a FRAMESET document, you can 
refer to this variable from a child frame as parent.phoneNumber.

Literals
You use literals to represent values in JavaScript. These are fixed values, not 
variables, that you literally provide in your script. This section describes the 
following types of literals:

• Array Literals

• Boolean Literals

• Floating-Point Literals

• Integers

• Object Literals

• String Literals

Array Literals

An array literal is a list of zero or more expressions, each of which represents 
an array element, enclosed in square brackets ([]). When you create an array 
using an array literal, it is initialized with the specified values as its elements, 
and its length is set to the number of arguments specified.

The following example creates the coffees array with three elements and a 
length of three:

coffees = ["French Roast", "Columbian", "Kona"]

Note An array literal is a type of object initializer. See “Using Object Initializers” on 
page 141.

If an array is created using a literal in a top-level script, JavaScript interprets the 
array each time it evaluates the expression containing the array literal. In 
addition, a literal used in a function is created each time the function is called.

Array literals are also Array objects. See “Array Object” on page 147 for details 
on Array objects.
Chapter 4, Values, Variables, and Literals 81



Literals
Extra Commas in Array Literals

You do not have to specify all elements in an array literal. If you put two 
commas in a row, the array is created with spaces for the unspecified elements. 
The following example creates the fish array:

fish = ["Lion", , "Angel"]

This array has two elements with values and one empty element (fish[0] is 
“Lion”, fish[1] is undefined, and fish[2] is “Angel”):

If you include a trailing comma at the end of the list of elements, the comma is 
ignored. In the following example, the length of the array is three. There is no 
myList[3]. All other commas in the list indicate a new element.

myList = [’home’, , ’school’, ];

In the following example, the length of the array is four, and myList[0] is 
missing.

myList = [ , ’home’, , ’school’];

In the following example, the length of the array is four, and myList[3] is 
missing. Only the last comma is ignored. This trailing comma is optional.

myList = [’home’, , ’school’, , ];

Boolean Literals

The Boolean type has two literal values: true and false.

Do not confuse the primitive Boolean values true and false with the true and 
false values of the Boolean object. The Boolean object is a wrapper around the 
primitive Boolean data type. See “Boolean Object” on page 151 for more 
information.
82 Server-Side JavaScript Guide



Literals
Floating-Point Literals

A floating-point literal can have the following parts:

• A decimal integer

• A decimal point (“.”)

• A fraction (another decimal number)

• An exponent

The exponent part is an “e” or “E” followed by an integer, which can be signed 
(preceded by “+” or “-”). A floating-point literal must have at least one digit and 
either a decimal point or “e” (or “E”).

Some examples of floating-point literals are 3.1415, -3.1E12, .1e12, and 2E-12

Integers

Integers can be expressed in decimal (base 10), hexadecimal (base 16), and 
octal (base 8). A decimal integer literal consists of a sequence of digits without 
a leading 0 (zero). A leading 0 (zero) on an integer literal indicates it is in octal; 
a leading 0x (or 0X) indicates hexadecimal. Hexadecimal integers can include 
digits (0-9) and the letters a-f and A-F. Octal integers can include only the digits 
0-7.

Some examples of integer literals are: 42, 0xFFF, and -345.

Object Literals

An object literal is a list of zero or more pairs of property names and associated 
values of an object, enclosed in curly braces ({}). You should not use an object 
literal at the beginning of a statement. This will lead to an error.

The following is an example of an object literal. The first element of the car 
object defines a property, myCar; the second element, the getCar property, 
invokes a function (Cars("honda")); the third element, the special 
property, uses an existing variable (Sales).
Chapter 4, Values, Variables, and Literals 83



Literals
var Sales = "Toyota";

function CarTypes(name) {
if(name == "Honda")

return name;
else

return "Sorry, we don’t sell " + name + ".";
}

car = {myCar: "Saturn", getCar: CarTypes("Honda"), special: Sales}

document.write(car.myCar); // Saturn
document.write(car.getCar); // Honda
document.write(car.special); // Toyota

Additionally, you can use an index for the object, the index property (for 
example, 7), or nest an object inside another. The following example uses these 
options. These features, however, may not be supported by other ECMA-
compliant browsers.

car = {manyCars: {a: "Saab", b: "Jeep"}, 7: "Mazda"}

document.write(car.manyCars.b); // Jeep
document.write(car[7]); // Mazda

String Literals

A string literal is zero or more characters enclosed in double (") or single (’) 
quotation marks. A string must be delimited by quotation marks of the same 
type; that is, either both single quotation marks or both double quotation 
marks. The following are examples of string literals:

• "blah"

• 'blah'

• "1234"

• "one line \n another line"

You can call any of the methods of the String object on a string literal value—
JavaScript automatically converts the string literal to a temporary String object, 
calls the method, then discards the temporary String object. You can also use 
the String.length property with a string literal.

You should use string literals unless you specifically need to use a String object. 
See “String Object” on page 159 for details on String objects.
84 Server-Side JavaScript Guide



Literals
Using Special Characters in Strings

In addition to ordinary characters, you can also include special characters in 
strings, as shown in the following example.

"one line \n another line"

The following table lists the special characters that you can use in JavaScript 
strings.

Table 4.1 JavaScript special characters 

Character Meaning

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Tab

\’ Apostrophe or single quote

\" Double quote

\\ Backslash character (\)

\XXX The character with the Latin-1 encoding specified by up to three 
octal digits XXX between 0 and 377. For example, \251 is the octal 
sequence for the copyright symbol.

\xXX The character with the Latin-1 encoding specified by the two 
hexadecimal digits XX between 00 and FF. For example, \xA9 is the 
hexadecimal sequence for the copyright symbol.
Chapter 4, Values, Variables, and Literals 85



Literals
Escaping Characters

For characters not listed in Table 4.1, a preceding backslash is ignored, with the 
exception of a quotation mark and the backslash character itself.

You can insert a quotation mark inside a string by preceding it with a 
backslash. This is known as escaping the quotation mark. For example,

var quote = "He read \"The Cremation of Sam McGee\" by R.W. Service."
document.write(quote)

The result of this would be

He read “The Cremation of Sam McGee” by R.W. Service.

To include a literal backslash inside a string, you must escape the backslash 
character. For example, to assign the file path c:\temp to a string, use the 
following:

var home = "c:\\temp"
86 Server-Side JavaScript Guide



C h a p t e r

5
Chapter 5Expressions and Operators
This chapter describes JavaScript expressions and operators, including 
assignment, comparison, arithmetic, bitwise, logical, string, and special 
operators.

This chapter contains the following sections:

• Expressions

• Operators

Expressions
An expression is any valid set of literals, variables, operators, and expressions 
that evaluates to a single value; the value can be a number, a string, or a logical 
value.

Conceptually, there are two types of expressions: those that assign a value to a 
variable, and those that simply have a value. For example, the expression 
x = 7 is an expression that assigns x the value seven. This expression itself 
evaluates to seven. Such expressions use assignment operators. On the other 
hand, the expression 3 + 4 simply evaluates to seven; it does not perform an 
assignment. The operators used in such expressions are referred to simply as 
operators.
Chapter 5, Expressions and Operators 87



Operators
JavaScript has the following types of expressions:

• Arithmetic: evaluates to a number, for example 3.14159

• String: evaluates to a character string, for example, “Fred” or “234”

• Logical: evaluates to true or false

Operators
JavaScript has the following types of operators. This section describes the 
operators and contains information about operator precedence.

• Assignment Operators

• Comparison Operators

• Arithmetic Operators

• Bitwise Operators

• Logical Operators

• String Operators

• Special Operators

JavaScript has both binary and unary operators. A binary operator requires two 
operands, one before the operator and one after the operator:

operand1 operator operand2

For example, 3+4 or x*y.

A unary operator requires a single operand, either before or after the operator:

operator operand

or

operand operator

For example, x++ or ++x.

In addition, JavaScript has one ternary operator, the conditional operator. A 
ternary operator requires three operands.
88 Server-Side JavaScript Guide



Operators
Assignment Operators

An assignment operator assigns a value to its left operand based on the value of 
its right operand. The basic assignment operator is equal (=), which assigns the 
value of its right operand to its left operand. That is, x = y assigns the value of 
y to x.

The other assignment operators are shorthand for standard operations, as 
shown in the following table.

Table 5.1 Assignment operators

Shorthand operator Meaning

x += y x = x + y

x -= y x = x - y

x *= y x = x * y

x /= y x = x / y

x %= y x = x % y

x <<= y x = x << y

x >>= y x = x >> y

x >>>= y x = x >>> y

x &= y x = x & y

x ^= y x = x ^ y

x |= y x = x | y
Chapter 5, Expressions and Operators 89



Operators
Comparison Operators

A comparison operator compares its operands and returns a logical value based 
on whether the comparison is true. The operands can be numerical or string 
values. Strings are compared based on standard lexicographical ordering. The 
following table describes the comparison operators.

Table 5.2 Comparison operators

Operator Description Examples returning truea

Equal (==) Returns true if the operands are equal. 3 == var1

Not equal (!=) Returns true if the operands are not equal. var1 != 4

Greater than (>) Returns true if the left operand is greater than the 
right operand.

var2 > var1

Greater than or equal 
(>=)

Returns true if the left operand is greater than or 
equal to the right operand.

var2 >= var1
var1 >= 3

Less than (<) Returns true if the left operand is less than the 
right operand.

var1 < var2

Less than or equal (<=) Returns true if the left operand is less than or 
equal to the right operand.

var1 <= var2
var2 <= 5

a. These examples assume that var1 has been assigned the value 3 and var2 has been assigned the value 4.
90 Server-Side JavaScript Guide



Operators
Arithmetic Operators

Arithmetic operators take numerical values (either literals or variables) as their 
operands and return a single numerical value. The standard arithmetic 
operators are addition (+), subtraction (-), multiplication (*), and division (/). 
These operators work as they do in most other programming languages, except 
the / operator returns a floating-point division in JavaScript, not a truncated 
division as it does in languages such as C or Java. For example:

1/2 //returns 0.5 in JavaScript
1/2 //returns 0 in Java

In addition, JavaScript provides the arithmetic operators listed in the following 
table.

Table 5.3 Arithmetic Operators

Operator Description Example

%
(Modulus)

Binary operator. Returns the integer remainder of 
dividing the two operands.

 12 % 5 returns 2.

++ 
(Increment)

Unary operator. Adds one to its operand. If used as a 
prefix operator (++x), returns the value of its 
operand after adding one; if used as a postfix 
operator (x++), returns the value of its operand 
before adding one.

If x is 3, then ++x sets x to 4 
and returns 4, whereas x++ 
sets x to 4 and returns 3.

-- 
(Decrement)

Unary operator. Subtracts one to its operand. The 
return value is analogous to that for the increment 
operator.

If x is 3, then --x sets x to 2 
and returns 2, whereas x++ 
sets x to 2 and returns 3.

- 
(Unary negation)

Unary operator. Returns the negation of its operand. If x is 3, then -x returns -3.
Chapter 5, Expressions and Operators 91



Operators
Bitwise Operators

Bitwise operators treat their operands as a set of 32 bits (zeros and ones), rather 
than as decimal, hexadecimal, or octal numbers. For example, the decimal 
number nine has a binary representation of 1001. Bitwise operators perform 
their operations on such binary representations, but they return standard 
JavaScript numerical values.

The following table summarizes JavaScript’s bitwise operators.

Table 5.4 Bitwise operators

Operator Usage Description

Bitwise AND a & b Returns a one in each bit position for which 
the corresponding bits of both operands are 
ones.

Bitwise OR a | b Returns a one in each bit position for which 
the corresponding bits of either or both 
operands are ones.

Bitwise XOR a ^ b Returns a one in each bit position for which 
the corresponding bits of either but not both 
operands are ones.

Bitwise NOT ~ a Inverts the bits of its operand.

Left shift a << b Shifts a in binary representation b bits to 
left, shifting in zeros from the right.

Sign-propagating right 
shift

a >> b Shifts a in binary representation b bits to 
right, discarding bits shifted off.

Zero-fill right shift a >>> b Shifts a in binary representation b bits to 
the right, discarding bits shifted off, and 
shifting in zeros from the left.
92 Server-Side JavaScript Guide



Operators
Bitwise Logical Operators

Conceptually, the bitwise logical operators work as follows:

• The operands are converted to thirty-two-bit integers and expressed by a 
series of bits (zeros and ones).

• Each bit in the first operand is paired with the corresponding bit in the 
second operand: first bit to first bit, second bit to second bit, and so on.

• The operator is applied to each pair of bits, and the result is constructed 
bitwise.

For example, the binary representation of nine is 1001, and the binary 
representation of fifteen is 1111. So, when the bitwise operators are applied to 
these values, the results are as follows:

• 15 & 9 yields 9 (1111 & 1001 = 1001)

• 15 | 9 yields 15 (1111 | 1001 = 1111)

• 15 ^ 9 yields 6 (1111 ^ 1001 = 0110)

Bitwise Shift Operators

The bitwise shift operators take two operands: the first is a quantity to be 
shifted, and the second specifies the number of bit positions by which the first 
operand is to be shifted. The direction of the shift operation is controlled by the 
operator used.

Shift operators convert their operands to thirty-two-bit integers and return a 
result of the same type as the left operator.

The shift operators are listed in the following table.
Chapter 5, Expressions and Operators 93



Operators
Table 5.5 Bitwise shift operators

Operator Description Example

<< 
(Left shift)

This operator shifts the first operand the 
specified number of bits to the left. Excess bits 
shifted off to the left are discarded. Zero bits 
are shifted in from the right.

9<<2 yields 36, because 1001 
shifted 2 bits to the left becomes 
100100, which is 36.

>> 
(Sign-propagating 
right shift)

This operator shifts the first operand the 
specified number of bits to the right. Excess 
bits shifted off to the right are discarded. 
Copies of the leftmost bit are shifted in from 
the left.

9>>2 yields 2, because 1001 
shifted 2 bits to the right becomes 
10, which is 2. Likewise, -9>>2 
yields -3, because the sign is 
preserved.

>>> 
(Zero-fill right shift)

This operator shifts the first operand the 
specified number of bits to the right. Excess 
bits shifted off to the right are discarded. Zero 
bits are shifted in from the left.

19>>>2 yields 4, because 10011 
shifted 2 bits to the right becomes 
100, which is 4. For non-negative 
numbers, zero-fill right shift and 
sign-propagating right shift yield 
the same result.
94 Server-Side JavaScript Guide



Operators
Logical Operators

Logical operators are typically used with Boolean (logical) values; when they 
are, they return a Boolean value. However, the && and || operators actually 
return the value of one of the specified operands, so if these operators are used 
with non-Boolean values, they may return a non-Boolean value. The logical 
operators are described in the following table.

Examples of expressions that can be converted to false are those that evaluate 
to null, 0, the empty string (“”), or undefined.

The following code shows examples of the && (logical AND) operator.

a1=true && true // t && t returns true
a2=true && false // t && f returns false
a3=false && true // f && t returns false
a4=false && (3 == 4) // f && f returns false
a5="Cat" && "Dog" // t && t returns Dog
a6=false && "Cat" // f && t returns false
a7="Cat" && false // t && f returns false

Table 5.6 Logical operators

Operator Usage Description

&& expr1 && expr2 (Logical AND) Returns expr1 if it can be 
converted to false; otherwise, returns expr2. 
Thus, when used with Boolean values, && returns 
true if both operands are true; otherwise, returns 
false.

|| expr1 || expr2 (Logical OR) Returns expr1 if it can be converted 
to true; otherwise, returns expr2. Thus, when 
used with Boolean values, || returns true if either 
operand is true; if both are false, returns false.

! !expr (Logical NOT) Returns false if its single operand 
can be converted to true; otherwise, returns true.
Chapter 5, Expressions and Operators 95



Operators
The following code shows examples of the || (logical OR) operator.

o1=true || true // t || t returns true
o2=false || true // f || t returns true
o3=true || false // t || f returns true
o4=false || (3 == 4) // f || f returns false
o5="Cat" || "Dog" // t || t returns Cat
o6=false || "Cat" // f || t returns Cat
o7="Cat" || false // t || f returns Cat

The following code shows examples of the ! (logical NOT) operator.

n1=!true // !t returns false
n2=!false // !f returns true
n3=!"Cat" // !t returns false

Short-Circuit Evaluation

As logical expressions are evaluated left to right, they are tested for possible 
“short-circuit” evaluation using the following rules:

• false && anything is short-circuit evaluated to false.

• true || anything is short-circuit evaluated to true.

The rules of logic guarantee that these evaluations are always correct. Note that 
the anything part of the above expressions is not evaluated, so any side effects 
of doing so do not take effect.

String Operators

In addition to the comparison operators, which can be used on string values, 
the concatenation operator (+) concatenates two string values together, 
returning another string that is the union of the two operand strings. For 
example, "my " + "string" returns the string "my string".

The shorthand assignment operator += can also be used to concatenate strings. 
For example, if the variable mystring has the value “alpha,” then the 
expression mystring += "bet" evaluates to “alphabet” and assigns this value 
to mystring.
96 Server-Side JavaScript Guide



Operators
Special Operators

JavaScript provides the following special operators:

• conditional operator

• comma operator

• delete

• new

• this

• typeof

• void

conditional operator

The conditional operator is the only JavaScript operator that takes three 
operands. The operator can have one of two values based on a condition. The 
syntax is:

condition ? val1 : val2

If condition is true, the operator has the value of val1. Otherwise it has the 
value of val2. You can use the conditional operator anywhere you would use 
a standard operator.

For example,

status = (age >= 18) ? "adult" : "minor"

This statement assigns the value “adult” to the variable status if age is 
eighteen or more. Otherwise, it assigns the value “minor” to status.

comma operator

The comma operator (,) simply evaluates both of its operands and returns the 
value of the second operand. This operator is primarily used inside a for loop, 
to allow multiple variables to be updated each time through the loop.

For example, if a is a 2-dimensional array with 10 elements on a side, the 
following code uses the comma operator to increment two variables at once. 
The code prints the values of the diagonal elements in the array:

for (var i=0, j=9; i <= 9; i++, j--)
document.writeln("a["+i+","+j+"]= " + a[i,j])
Chapter 5, Expressions and Operators 97



Operators
delete

The delete operator deletes an object, an object’s property, or an element at a 
specified index in an array. Its syntax is:

delete objectName
delete objectName.property
delete objectName[index]
delete property // legal only within a with statement

where objectName is the name of an object, property is an existing property, 
and index is an integer representing the location of an element in an array.

The fourth form is legal only within a with statement, to delete a property from 
an object.

You can use the delete operator to delete variables declared implicitly but not 
those declared with the var statement.

If the delete operator succeeds, it sets the property or element to undefined. 
The delete operator returns true if the operation is possible; it returns false if 
the operation is not possible.

x=42
var y= 43
myobj=new Number()
myobj.h=4 // create property h
delete x // returns true (can delete if declared implicitly)
delete y // returns false (cannot delete if declared with var)
delete Math.PI // returns false (cannot delete predefined properties)
delete myobj.h // returns true (can delete user-defined properties)
delete myobj // returns true (can delete user-defined object)

Deleting array elements

When you delete an array element, the array length is not affected. For 
example, if you delete a[3], a[4] is still a[4] and a[3] is undefined.

When the delete operator removes an array element, that element is no 
longer in the array. In the following example, trees[3] is removed with delete.

trees=new Array("redwood","bay","cedar","oak","maple")
delete trees[3]
if (3 in trees) {

// this does not get executed
}

98 Server-Side JavaScript Guide



Operators
If you want an array element to exist but have an undefined value, use the 
undefined keyword instead of the delete operator. In the following 
example, trees[3] is assigned the value undefined, but the array element still 
exists:

trees=new Array("redwood","bay","cedar","oak","maple")
trees[3]=undefined
if (3 in trees) {

// this gets executed
}

new

You can use the new operator to create an instance of a user-defined object 
type or of one of the predefined object types Array, Boolean, Date, 
Function, Image, Number, Object, Option, RegExp, or String. On the 
server, you can also use it with DbPool, Lock, File, or SendMail. Use new as 
follows:

objectName = new objectType ( param1 [,param2] ...[,paramN] )

You can also create objects using object initializers, as described in “Using 
Object Initializers” on page 141.

See new in the Server-Side JavaScript Reference for more information.

this

Use the this keyword to refer to the current object. In general, this refers to 
the calling object in a method. Use this as follows:

this[.propertyName]

Example 1. Suppose a function called validate validates an object’s value 
property, given the object and the high and low values:

function validate(obj, lowval, hival) {
if ((obj.value < lowval) || (obj.value > hival))

alert("Invalid Value!")
}

You could call validate in each form element’s onChange event handler, 
using this to pass it the form element, as in the following example:

<B>Enter a number between 18 and 99:</B>
<INPUT TYPE = "text" NAME = "age" SIZE = 3

onChange="validate(this, 18, 99)">
Chapter 5, Expressions and Operators 99



Operators
Example 2. When combined with the form property, this can refer to the 
current object’s parent form. In the following example, the form myForm 
contains a Text object and a button. When the user clicks the button, the value 
of the Text object is set to the form’s name. The button’s onClick event 
handler uses this.form to refer to the parent form, myForm.

<FORM NAME="myForm">
Form name:<INPUT TYPE="text" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"

onClick="this.form.text1.value=this.form.name">
</FORM>

typeof

The typeof operator is used in either of the following ways:

1. typeof operand
2. typeof (operand)

The typeof operator returns a string indicating the type of the unevaluated 
operand. operand is the string, variable, keyword, or object for which the type 
is to be returned. The parentheses are optional.

Suppose you define the following variables:

var myFun = new Function("5+2")
var shape="round"
var size=1
var today=new Date()

The typeof operator returns the following results for these variables:

typeof myFun is object
typeof shape is string
typeof size is number
typeof today is object
typeof dontExist is undefined

For the keywords true and null, the typeof operator returns the following 
results:

typeof true is boolean
typeof null is object

For a number or string, the typeof operator returns the following results:

typeof 62 is number
typeof ’Hello world’ is string
100 Server-Side JavaScript Guide



Operators
For property values, the typeof operator returns the type of value the property 
contains:

typeof document.lastModified is string
typeof window.length is number
typeof Math.LN2 is number

For methods and functions, the typeof operator returns results as follows:

typeof blur is function
typeof eval is function
typeof parseInt is function
typeof shape.split is function

For predefined objects, the typeof operator returns results as follows:

typeof Date is function
typeof Function is function
typeof Math is function
typeof Option is function
typeof String is function

void

The void operator is used in either of the following ways:

1. void (expression)
2. void expression

The void operator specifies an expression to be evaluated without returning a 
value. expression is a JavaScript expression to evaluate. The parentheses 
surrounding the expression are optional, but it is good style to use them.

You can use the void operator to specify an expression as a hypertext link. 
The expression is evaluated but is not loaded in place of the current document.

The following code creates a hypertext link that does nothing when the user 
clicks it. When the user clicks the link, void(0) evaluates to 0, but that has no 
effect in JavaScript.

<A HREF="javascript:void(0)">Click here to do nothing</A>

The following code creates a hypertext link that submits a form when the user 
clicks it.

<A HREF="javascript:void(document.form.submit())">
Click here to submit</A>
Chapter 5, Expressions and Operators 101



Operators
Operator Precedence

The precedence of operators determines the order they are applied when 
evaluating an expression. You can override operator precedence by using 
parentheses.

The following table describes the precedence of operators, from lowest to 
highest.

Table 5.7 Operator precedence 

Operator type Individual operators

comma ,

assignment = += -= *= /= %= <<= >>= >>>= &= ^= |=

conditional ?:

logical-or ||

logical-and &&

bitwise-or |

bitwise-xor ^

bitwise-and &

equality == !=

relational < <= > >=

bitwise shift << >> >>>

addition/subtraction + -

multiply/divide * / %

negation/increment ! ~ - + ++ -- typeof void delete

call ()

create instance new

member . []
102 Server-Side JavaScript Guide



C h a p t e r

6
Chapter 6Regular Expressions
Regular expressions are patterns used to match character combinations in 
strings. In JavaScript, regular expressions are also objects. These patterns are 
used with the exec and test methods of RegExp, and with the match, replace, 
search, and split methods of String. This chapter describes JavaScript regular 
expressions.

JavaScript 1.1 and earlier. Regular expressions are not available in 
JavaScript 1.1 and earlier.

This chapter contains the following sections:

• Creating a Regular Expression

• Writing a Regular Expression Pattern

• Working with Regular Expressions

• Examples
Chapter 6, Regular Expressions 103



Creating a Regular Expression
Creating a Regular Expression
You construct a regular expression in one of two ways:

• Using an object initializer, as follows:

re = /ab+c/

Object initializers provide compilation of the regular expression when the 
script is evaluated. When the regular expression will remain constant, use 
this for better performance. Object initializers are discussed in “Using 
Object Initializers” on page 141.

• Calling the constructor function of the RegExp object, as follows:

re = new RegExp("ab+c")

Using the constructor function provides runtime compilation of the regular 
expression. Use the constructor function when you know the regular 
expression pattern will be changing, or you don’t know the pattern and are 
getting it from another source, such as user input. Once you have a defined 
regular expression, if the regular expression is used throughout the script, 
and if its source changes, you can use the compile method to compile a 
new regular expression for efficient reuse.

Writing a Regular Expression Pattern
A regular expression pattern is composed of simple characters, such as /abc/, 
or a combination of simple and special characters, such as /ab*c/ or /
Chapter (\d+)\.\d*/. The last example includes parentheses which are used 
as a memory device. The match made with this part of the pattern is 
remembered for later use, as described in “Using Parenthesized Substring 
Matches” on page 113.
104 Server-Side JavaScript Guide



Writing a Regular Expression Pattern
Using Simple Patterns

Simple patterns are constructed of characters for which you want to find a 
direct match. For example, the pattern /abc/ matches character combinations 
in strings only when exactly the characters ’abc’ occur together and in that 
order. Such a match would succeed in the strings "Hi, do you know your abc’s?" 
and "The latest airplane designs evolved from slabcraft." In both cases the 
match is with the substring ’abc’. There is no match in the string "Grab crab" 
because it does not contain the substring ’abc’.

Using Special Characters

When the search for a match requires something more than a direct match, 
such as finding one or more b’s, or finding whitespace, the pattern includes 
special characters. For example, the pattern /ab*c/ matches any character 
combination in which a single 'a' is followed by zero or more 'b's (* means 0 or 
more occurrences of the preceding character) and then immediately followed 
by 'c'. In the string "cbbabbbbcdebc," the pattern matches the substring 
'abbbbc'.
Chapter 6, Regular Expressions 105



Writing a Regular Expression Pattern
The following table provides a complete list and description of the special 
characters that can be used in regular expressions.

Table 6.1 Special characters in regular expressions. 

Character Meaning

\ Either of the following:

• For characters that are usually treated literally, indicates that the 
next character is special and not to be interpreted literally.

For example, /b/ matches the character 'b'. By placing a backslash 
in front of b, that is by using /\b/, the character becomes special 
to mean match a word boundary.

• For characters that are usually treated specially, indicates that the 
next character is not special and should be interpreted literally.

For example, * is a special character that means 0 or more 
occurrences of the preceding character should be matched; for 
example, /a*/ means match 0 or more a’s. To match * literally, 
precede the it with a backslash; for example, /a\*/ matches 'a*'.

^ Matches beginning of input or line.

For example, /^A/ does not match the 'A' in "an A," but does match it 
in "An A."

$ Matches end of input or line.

For example, /t$/ does not match the 't' in "eater", but does match it 
in "eat"

* Matches the preceding character 0 or more times.

For example, /bo*/ matches 'boooo' in "A ghost booooed" and 'b' in 
"A bird warbled", but nothing in "A goat grunted".

+ Matches the preceding character 1 or more times. Equivalent to {1,}.

For example, /a+/ matches the 'a' in "candy" and all the a’s in 
"caaaaaaandy."

? Matches the preceding character 0 or 1 time.

For example, /e?le?/ matches the 'el' in "angel" and the 'le' in 
"angle."
106 Server-Side JavaScript Guide



Writing a Regular Expression Pattern
. (The decimal point) matches any single character except the newline 
character.

For example, /.n/ matches ’an’ and ’on’ in "nay, an apple is on the 
tree", but not ’nay’.

(x) Matches ’x’ and remembers the match.

For example, /(foo)/ matches and remembers ’foo’ in "foo bar." The 
matched substring can be recalled from the resulting array’s elements 
[1], ..., [n], or from the predefined RegExp object’s properties $1, 
..., $9.

x|y Matches either 'x' or 'y'.

For example, /green|red/ matches 'green' in "green apple" and 'red' 
in "red apple."

{n} Where n is a positive integer. Matches exactly n occurrences of the 
preceding character.

For example, /a{2}/ doesn’t match the 'a' in "candy," but it matches 
all of the a’s in "caandy," and the first two a’s in "caaandy."

{n,} Where n is a positive integer. Matches at least n occurrences of the 
preceding character.

For example, /a{2,} doesn’t match the 'a' in "candy", but matches all 
of the a’s in "caandy" and in "caaaaaaandy."

{n,m} Where n and m are positive integers. Matches at least n and at most m 
occurrences of the preceding character.

For example, /a{1,3}/ matches nothing in "cndy", the 'a' in "candy," 
the first two a’s in "caandy," and the first three a’s in "caaaaaaandy" 
Notice that when matching "caaaaaaandy", the match is "aaa", even 
though the original string had more a’s in it.

[xyz] A character set. Matches any one of the enclosed characters. You can 
specify a range of characters by using a hyphen.

For example, [abcd] is the same as [a-d]. They match the 'b' in 
"brisket" and the 'c' in "ache".

Table 6.1 Special characters in regular expressions.  (Continued)

Character Meaning
Chapter 6, Regular Expressions 107



Writing a Regular Expression Pattern
[^xyz] A negated or complemented character set. That is, it matches anything 
that is not enclosed in the brackets. You can specify a range of 
characters by using a hyphen.

For example, [^abc] is the same as [^a-c]. They initially match ’r’ 
in "brisket" and ’h’ in "chop."

[\b] Matches a backspace. (Not to be confused with \b.)

\b Matches a word boundary, such as a space or a newline character. (Not 
to be confused with [\b].)

For example, /\bn\w/ matches the ’no’ in "noonday";/\wy\b/ 
matches the ’ly’ in "possibly yesterday."

\B Matches a non-word boundary.

For example, /\w\Bn/ matches ’on’ in "noonday", and /y\B\w/ 
matches ’ye’ in "possibly yesterday."

\cX Where X is a control character. Matches a control character in a string.

For example, /\cM/ matches control-M in a string.

\d Matches a digit character. Equivalent to [0-9].

For example, /\d/ or /[0-9]/ matches ’2’ in "B2 is the suite 
number."

\D Matches any non-digit character. Equivalent to [^0-9].

For example, /\D/ or /[^0-9]/ matches ’B’ in "B2 is the suite 
number."

\f Matches a form-feed.

\n Matches a linefeed.

\r Matches a carriage return.

\s Matches a single white space character, including space, tab, form feed, 
line feed. Equivalent to [ \f\n\r\t\v].

For example, /\s\w*/ matches ’ bar’ in "foo bar."

Table 6.1 Special characters in regular expressions.  (Continued)

Character Meaning
108 Server-Side JavaScript Guide



Writing a Regular Expression Pattern
\S Matches a single character other than white space. Equivalent to [^ 
\f\n\r\t\v].

For example, /\S\w*/ matches ’foo’ in "foo bar."

\t Matches a tab

\v Matches a vertical tab.

\w Matches any alphanumeric character including the underscore. 
Equivalent to [A-Za-z0-9_].

For example, /\w/ matches ’a’ in "apple," ’5’ in "$5.28," and ’3’ in "3D."

\W Matches any non-word character. Equivalent to [^A-Za-z0-9_].

For example, /\W/ or /[^$A-Za-z0-9_]/ matches ’%’ in "50%."

\n Where n is a positive integer. A back reference to the last substring 
matching the n parenthetical in the regular expression (counting left 
parentheses).

For example, /apple(,)\sorange\1/ matches ’apple, orange,’ in 
"apple, orange, cherry, peach." A more complete example follows this 
table.

Note: If the number of left parentheses is less than the number 
specified in \n, the \n is taken as an octal escape as described in the 
next row.

\ooctal
\xhex

Where \ooctal is an octal escape value or \xhex is a hexadecimal 
escape value. Allows you to embed ASCII codes into regular 
expressions.

Table 6.1 Special characters in regular expressions.  (Continued)

Character Meaning
Chapter 6, Regular Expressions 109



Working with Regular Expressions
Using Parentheses

Parentheses around any part of the regular expression pattern cause that part of 
the matched substring to be remembered. Once remembered, the substring can 
be recalled for other use, as described in “Using Parenthesized Substring 
Matches” on page 113.

For example, the pattern /Chapter (\d+)\.\d*/ illustrates additional escaped 
and special characters and indicates that part of the pattern should be 
remembered. It matches precisely the characters 'Chapter ' followed by one or 
more numeric characters (\d means any numeric character and + means 1 or 
more times), followed by a decimal point (which in itself is a special character; 
preceding the decimal point with \ means the pattern must look for the literal 
character '.'), followed by any numeric character 0 or more times (\d means 
numeric character, * means 0 or more times). In addition, parentheses are used 
to remember the first matched numeric characters.

This pattern is found in "Open Chapter 4.3, paragraph 6" and '4' is remembered. 
The pattern is not found in "Chapter 3 and 4", because that string does not have 
a period after the '3'.

Working with Regular Expressions
Regular expressions are used with the RegExp methods test and exec and 
with the String methods match, replace, search, and split.These methods 
are explained in detail in the Server-Side JavaScript Reference.

Table 6.2 Methods that use regular expressions

Method Description

exec A RegExp method that executes a search for a match in a string. It 
returns an array of information. 

test A RegExp method that tests for a match in a string. It returns true or 
false.

match A String method that executes a search for a match in a string. It 
returns an array of information or null on a mismatch.

search A String method that tests for a match in a string. It returns the index 
of the match, or -1 if the search fails.
110 Server-Side JavaScript Guide



Working with Regular Expressions
When you want to know whether a pattern is found in a string, use the test or 
search method; for more information (but slower execution) use the exec or 
match methods. If you use exec or match and if the match succeeds, these 
methods return an array and update properties of the associated regular 
expression object and also of the predefined regular expression object, RegExp. 
If the match fails, the exec method returns null (which converts to false).

In the following example, the script uses the exec method to find a match in a 
string.

<SCRIPT LANGUAGE="JavaScript1.2">
myRe=/d(b+)d/g;
myArray = myRe.exec("cdbbdbsbz");
</SCRIPT>

If you do not need to access the properties of the regular expression, an 
alternative way of creating myArray is with this script:

<SCRIPT LANGUAGE="JavaScript1.2">
myArray = /d(b+)d/g.exec("cdbbdbsbz");
</SCRIPT>

If you want to be able to recompile the regular expression, yet another 
alternative is this script:

<SCRIPT LANGUAGE="JavaScript1.2">
myRe= new RegExp ("d(b+)d", "g:);
myArray = myRe.exec("cdbbdbsbz");
</SCRIPT>

replace A String method that executes a search for a match in a string, and 
replaces the matched substring with a replacement substring.

split A String method that uses a regular expression or a fixed string to 
break a string into an array of substrings.

Table 6.2 Methods that use regular expressions

Method Description
Chapter 6, Regular Expressions 111



Working with Regular Expressions
With these scripts, the match succeeds and returns the array and updates the 
properties shown in the following table.

RegExp.leftContext and RegExp.rightContext can be computed from the 
other values. RegExp.leftContext is equivalent to:

myArray.input.substring(0, myArray.index)

and RegExp.rightContext is equivalent to:

myArray.input.substring(myArray.index + myArray[0].length)

As shown in the second form of this example, you can use the a regular 
expression created with an object initializer without assigning it to a variable. If 
you do, however, every occurrence is a new regular expression. For this 
reason, if you use this form without assigning it to a variable, you cannot 
subsequently access the properties of that regular expression. For example, 
assume you have this script:

<SCRIPT LANGUAGE="JavaScript1.2">
myRe=/d(b+)d/g;
myArray = myRe.exec("cdbbdbsbz");
document.writeln("The value of lastIndex is " + myRe.lastIndex);
</SCRIPT>

Table 6.3 Results of regular expression execution. 

Object Property or 
index

Description In this example

myArray The matched string and all remembered substrings ["dbbd", "bb"]

index The 0-based index of the match in the input string 1

input The original string "cdbbdbsbz"

[0] The last matched characters "dbbd"

myRe lastIndex The index at which to start the next match. (This 
property is set only if the regular expression uses the 
g option, described in “Executing a Global Search 
and Ignoring Case” on page 115.)

5

source The text of the pattern "d(b+)d"

RegExp lastMatch The last matched characters "dbbd"

leftContext The substring preceding the most recent match "c"

rightContext The substring following the most recent match "bsbz"
112 Server-Side JavaScript Guide



Working with Regular Expressions
This script displays:

The value of lastIndex is 5

However, if you have this script:

<SCRIPT LANGUAGE="JavaScript1.2">
myArray = /d(b+)d/g.exec("cdbbdbsbz");
document.writeln("The value of lastIndex is " + /d(b+)d/g.lastIndex);
</SCRIPT>

It displays:

The value of lastIndex is 0

The occurrences of /d(b+)d/g in the two statements are different regular 
expression objects and hence have different values for their lastIndex 
property. If you need to access the properties of a regular expression created 
with an object initializer, you should first assign it to a variable.

Using Parenthesized Substring Matches

Including parentheses in a regular expression pattern causes the corresponding 
submatch to be remembered. For example, /a(b)c/ matches the characters 
’abc’ and remembers ’b’. To recall these parenthesized substring matches, use 
the RegExp properties $1, ..., $9 or the Array elements [1], ..., [n].

The number of possible parenthesized substrings is unlimited. The predefined 
RegExp object holds up to the last nine and the returned array holds all that 
were found. The following examples illustrate how to use parenthesized 
substring matches.

Example 1. The following script uses the replace method to switch the words 
in the string. For the replacement text, the script uses the values of the $1 and 
$2 properties.

<SCRIPT LANGUAGE="JavaScript1.2">
re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr = str.replace(re, "$2, $1");
document.write(newstr)
</SCRIPT>

This prints "Smith, John".
Chapter 6, Regular Expressions 113



Working with Regular Expressions
Example 2. In the following example, RegExp.input is set by the Change 
event. In the getInfo function, the exec method uses the value of 
RegExp.input as its argument. Note that RegExp must be prepended to its $ 
properties (because they appear outside the replacement string). (Example 3 is 
a more efficient, though possibly more cryptic, way to accomplish the same 
thing.)

<HTML>

<SCRIPT LANGUAGE="JavaScript1.2">
function getInfo(){

re = /(\w+)\s(\d+)/
re.exec();
window.alert(RegExp.$1 + ", your age is " + RegExp.$2);

}
</SCRIPT>

Enter your first name and your age, and then press Enter.

<FORM>
<INPUT TYPE="text" NAME="NameAge" onChange="getInfo(this);">
</FORM>

</HTML>

Example 3. The following example is similar to Example 2. Instead of using 
the RegExp.$1 and RegExp.$2, this example creates an array and uses a[1] 
and a[2]. It also uses the shortcut notation for using the exec method.

<HTML>

<SCRIPT LANGUAGE="JavaScript1.2">
function getInfo(){

a = /(\w+)\s(\d+)/();
window.alert(a[1] + ", your age is " + a[2]);

}
</SCRIPT>

Enter your first name and your age, and then press Enter.

<FORM>
<INPUT TYPE="text" NAME="NameAge" onChange="getInfo(this);">
</FORM>

</HTML>
114 Server-Side JavaScript Guide



Working with Regular Expressions
Executing a Global Search and Ignoring 
Case

Regular expressions have two optional flags that allow for global and case 
insensitive searching. To indicate a global search, use the g flag. To indicate a 
case insensitive search, use the i flag. These flags can be used separately or 
together in either order, and are included as part of the regular expression.

To include a flag with the regular expression, use this syntax:

re = /pattern/[g|i|gi]
re = new RegExp("pattern", [’g’|’i’|’gi’])

Note that the flags, i and g, are an integral part of a regular expression. They 
cannot be added or removed later.

For example, re = /\w+\s/g creates a regular expression that looks for one or 
more characters followed by a space, and it looks for this combination 
throughout the string.

<SCRIPT LANGUAGE="JavaScript1.2">
re = /\w+\s/g;
str = "fee fi fo fum";
myArray = str.match(re);
document.write(myArray);
</SCRIPT>

This displays ["fee ", "fi ", "fo "]. In this example, you could replace the line:

re = /\w+\s/g;

with:

re = new RegExp("\\w+\\s", "g");

and get the same result.
Chapter 6, Regular Expressions 115



Examples
Examples
The following examples show some uses of regular expressions.

Changing the Order in an Input String

The following example illustrates the formation of regular expressions and the 
use of string.split() and string.replace(). It cleans a roughly formatted 
input string containing names (first name first) separated by blanks, tabs and 
exactly one semicolon. Finally, it reverses the name order (last name first) and 
sorts the list.

<SCRIPT LANGUAGE="JavaScript1.2">

// The name string contains multiple spaces and tabs,
// and may have multiple spaces between first and last names.
names = new String ( "Harry Trump ;Fred Barney; Helen Rigby ;\

 Bill Abel ;Chris Hand ")

document.write ("---------- Original String" + "<BR>" + "<BR>")
document.write (names + "<BR>" + "<BR>")

// Prepare two regular expression patterns and array storage.
// Split the string into array elements.

// pattern: possible white space then semicolon then possible white space
pattern = /\s*;\s*/

// Break the string into pieces separated by the pattern above and
// and store the pieces in an array called nameList
nameList = names.split (pattern)

// new pattern: one or more characters then spaces then characters.
// Use parentheses to "memorize" portions of the pattern.
// The memorized portions are referred to later.
pattern = /(\w+)\s+(\w+)/

// New array for holding names being processed.
bySurnameList = new Array;

// Display the name array and populate the new array
// with comma-separated names, last first.
//
// The replace method removes anything matching the pattern
// and replaces it with the memorized string—second memorized portion
// followed by comma space followed by first memorized portion.
// 
// The variables $1 and $2 refer to the portions
// memorized while matching the pattern.
116 Server-Side JavaScript Guide



Examples
document.write ("---------- After Split by Regular Expression" + "<BR>")
for ( i = 0; i < nameList.length; i++) {

document.write (nameList[i] + "<BR>")
bySurnameList[i] = nameList[i].replace (pattern, "$2, $1")

}

// Display the new array.
document.write ("---------- Names Reversed" + "<BR>")
for ( i = 0; i < bySurnameList.length; i++) {

document.write (bySurnameList[i] + "<BR>")
}

// Sort by last name, then display the sorted array.
bySurnameList.sort()
document.write ("---------- Sorted" + "<BR>")
for ( i = 0; i < bySurnameList.length; i++) {

document.write (bySurnameList[i] + "<BR>")
}

document.write ("---------- End" + "<BR>")

</SCRIPT>

Using Special Characters to Verify Input

In the following example, a user enters a phone number. When the user 
presses Enter, the script checks the validity of the number. If the number is 
valid (matches the character sequence specified by the regular expression), the 
script posts a window thanking the user and confirming the number. If the 
number is invalid, the script posts a window informing the user that the phone 
number is not valid.

The regular expression looks for zero or one open parenthesis \(?, followed 
by three digits \d{3}, followed by zero or one close parenthesis \)?, followed 
by one dash, forward slash, or decimal point and when found, remember the 
character ([-\/\.]), followed by three digits \d{3}, followed by the 
remembered match of a dash, forward slash, or decimal point \1, followed by 
four digits \d{4}.
Chapter 6, Regular Expressions 117



Examples
The Change event activated when the user presses Enter sets the value of 
RegExp.input.

<HTML>
<SCRIPT LANGUAGE = "JavaScript1.2">

re = /\(?\d{3}\)?([-\/\.])\d{3}\1\d{4}/

function testInfo() {
OK = re.exec()
if (!OK)

window.alert (RegExp.input + 
" isn’t a phone number with area code!")

else
window.alert ("Thanks, your phone number is " + OK[0])

}

</SCRIPT>

Enter your phone number (with area code) and then press Enter.
<FORM> 
<INPUT TYPE="text" NAME="Phone" onChange="testInfo(this);">
</FORM>

</HTML>
118 Server-Side JavaScript Guide



C h a p t e r

7
Chapter 7Statements
JavaScript supports a compact set of statements that you can use to incorporate 
a great deal of interactivity in Web pages. This chapter provides an overview of 
these statements.

This chapter contains the following sections, which provide a brief overview of 
each statement:

• Conditional Statements: if...else and switch

• Loop Statements: for, while, do while, label, break, and continue 
(label is not itself a looping statement, but is frequently used with these 
statements)

• Object Manipulation Statements: for...in and with

• Comments

Any expression is also a statement. See Chapter 5, “Expressions and 
Operators,” for complete information about statements.

Use the semicolon (;) character to separate statements in JavaScript code.

See the Server-Side JavaScript Reference for details about the statements in this 
chapter.
Chapter 7, Statements 119



Conditional Statements
Conditional Statements
A conditional statement is a set of commands that executes if a specified 
condition is true. JavaScript supports two conditional statements: if...else 
and switch.

if...else Statement

Use the if statement to perform certain statements if a logical condition is true; 
use the optional else clause to perform other statements if the condition is 
false. An if statement looks as follows:

if (condition) {
statements1 

}
[else {

statements2 
} ]

The condition can be any JavaScript expression that evaluates to true or false. 
The statements to be executed can be any JavaScript statements, including 
further nested if statements. If you want to use more than one statement after 
an if or else statement, you must enclose the statements in curly braces, {}.

Example. In the following example, the function checkData returns true if the 
number of characters in a Text object is three; otherwise, it displays an alert 
and returns false.

function checkData () {
if (document.form1.threeChar.value.length == 3) {

return true
} else {

alert("Enter exactly three characters. " + 
document.form1.threeChar.value + " is not valid.")
return false

}
}

120 Server-Side JavaScript Guide



Conditional Statements
switch Statement

A switch statement allows a program to evaluate an expression and attempt to 
match the expression’s value to a case label. If a match is found, the program 
executes the associated statement. A switch statement looks as follows:

switch (expression){
case label : 

statement;
break;

case label : 
statement;
break;

...
default : statement;

}

The program first looks for a label matching the value of expression and then 
executes the associated statement. If no matching label is found, the program 
looks for the optional default statement, and if found, executes the associated 
statement. If no default statement is found, the program continues execution at 
the statement following the end of switch.

The optional break statement associated with each case label ensures that the 
program breaks out of switch once the matched statement is executed and 
continues execution at the statement following switch. If break is omitted, the 
program continues execution at the next statement in the switch statement.

Example. In the following example, if expr evaluates to "Bananas", the 
program matches the value with case "Bananas" and executes the associated 
statement. When break is encountered, the program terminates switch and 
executes the statement following switch. If break were omitted, the statement 
for case "Cherries" would also be executed.

switch (expr) {
case "Oranges" : 

document.write("Oranges are $0.59 a pound.<BR>"); 
break; 

case "Apples" :
document.write("Apples are $0.32 a pound.<BR>");
break;

case "Bananas" : 
document.write("Bananas are $0.48 a pound.<BR>"); 
break; 

case "Cherries" :
document.write("Cherries are $3.00 a pound.<BR>");
break; 
Chapter 7, Statements 121



Loop Statements
default :
document.write("Sorry, we are out of " + i + ".<BR>"); 

}

document.write("Is there anything else you’d like?<BR>");

Loop Statements
A loop is a set of commands that executes repeatedly until a specified condition 
is met. JavaScript supports the for, do while, while, and label loop 
statements (label is not itself a looping statement, but is frequently used with 
these statements). In addition, you can use the break and continue statements 
within loop statements.

Another statement, for...in, executes statements repeatedly but is used for 
object manipulation. See “Object Manipulation Statements” on page 128.

for Statement

A for loop repeats until a specified condition evaluates to false. The JavaScript 
for loop is similar to the Java and C for loop. A for statement looks as 
follows:

for ([initialExpression]; [condition]; [incrementExpression]) {
statements

}

When a for loop executes, the following occurs:

1. The initializing expression initial-expression, if any, is executed. This 
expression usually initializes one or more loop counters, but the syntax 
allows an expression of any degree of complexity.

2. The condition expression is evaluated. If the value of condition is true, 
the loop statements execute. If the value of condition is false, the for 
loop terminates.

3. The statements execute.

4. The update expression incrementExpression executes, and control 
returns to Step 2.
122 Server-Side JavaScript Guide



Loop Statements
Example. The following function contains a for statement that counts the 
number of selected options in a scrolling list (a Select object that allows 
multiple selections). The for statement declares the variable i and initializes it 
to zero. It checks that i is less than the number of options in the Select object, 
performs the succeeding if statement, and increments i by one after each pass 
through the loop.

<SCRIPT>
function howMany(selectObject) {

var numberSelected=0
for (var i=0; i < selectObject.options.length; i++) {

if (selectObject.options[i].selected==true)
numberSelected++

}
return numberSelected

}
</SCRIPT>

<FORM NAME="selectForm">
<P><B>Choose some music types, then click the button below:</B>
<BR><SELECT NAME="musicTypes" MULTIPLE>
<OPTION SELECTED> R&B
<OPTION> Jazz
<OPTION> Blues
<OPTION> New Age
<OPTION> Classical
<OPTION> Opera
</SELECT>
<P><INPUT TYPE="button" VALUE="How many are selected?"
onClick="alert (’Number of options selected: ’ + 
howMany(document.selectForm.musicTypes))">
</FORM>
Chapter 7, Statements 123



Loop Statements
do...while Statement

The do...while statement repeats until a specified condition evaluates to 
false. A do...while statement looks as follows:

do {
statement

} while (condition)

statement executes once before the condition is checked. If condition 
returns true, the statement executes again. At the end of every execution, the 
condition is checked. When the condition returns false, execution stops and 
control passes to the statement following do...while.

Example. In the following example, the do loop iterates at least once and 
reiterates until i is no longer less than 5.

do {
i+=1;
document.write(i);

} while (i<5);

while Statement

A while statement executes its statements as long as a specified condition 
evaluates to true. A while statement looks as follows:

while (condition) {
statements

}

If the condition becomes false, the statements within the loop stop executing 
and control passes to the statement following the loop.

The condition test occurs before the statements in the loop are executed. If the 
condition returns true, the statements are executed and the condition is tested 
again. If the condition returns false, execution stops and control is passed to the 
statement following while.
124 Server-Side JavaScript Guide



Loop Statements
Example 1. The following while loop iterates as long as n is less than three:

n = 0
x = 0
while( n < 3 ) {

n ++
x += n

}

With each iteration, the loop increments n and adds that value to x. Therefore, 
x and n take on the following values:

• After the first pass: n = 1 and x = 1

• After the second pass: n = 2 and x = 3

• After the third pass: n = 3 and x = 6

After completing the third pass, the condition n < 3 is no longer true, so the 
loop terminates.

Example 2: infinite loop. Make sure the condition in a loop eventually 
becomes false; otherwise, the loop will never terminate. The statements in the 
following while loop execute forever because the condition never becomes 
false:

while (true) {
alert("Hello, world") }

label Statement

A label provides a statement with an identifier that lets you refer to it elsewhere 
in your program. For example, you can use a label to identify a loop, and then 
use the break or continue statements to indicate whether a program should 
interrupt the loop or continue its execution.

The syntax of the label statement looks like the following:

label : 
statement

The value of label may be any JavaScript identifier that is not a reserved 
word. The statement that you identify with a label may be any type.
Chapter 7, Statements 125



Loop Statements
Example. In this example, the label markLoop identifies a while loop.

markLoop:
while (theMark == true)

doSomething();
}

break Statement

Use the break statement to terminate a loop, switch, or label statement.

• When you use break with a while, do-while, for, or switch statement, 
break terminates the innermost enclosing loop or switch immediately 
and transfers control to the following statement.

• When you use break within an enclosing label statement, it terminates the 
statement and transfers control to the following statement. If you specify a 
label when you issue the break, the break statement terminates the 
specified statement.

The syntax of the break statement looks like the following:

1. break
2. break [label]

The first form of the syntax terminates the innermost enclosing loop, switch, 
or label; the second form of the syntax terminates the specified enclosing label 
statement.

Example. The following example iterates through the elements in an array 
until it finds the index of an element whose value is theValue:

for (i = 0; i < a.length; i++) {
if (a[i] = theValue);

break;
}

126 Server-Side JavaScript Guide



Loop Statements
continue Statement

The continue statement can be used to restart a while, do-while, for, or 
label statement.

• In a while or for statement, continue terminates the current loop and 
continues execution of the loop with the next iteration. In contrast to the 
break statement, continue does not terminate the execution of the loop 
entirely. In a while loop, it jumps back to the condition. In a for loop, it 
jumps to the increment-expression.

• In a label statement, continue is followed by a label that identifies a 
label statement. This type of continue restarts a label statement or 
continues execution of a labelled loop with the next iteration. continue 
must be in a looping statement identified by the label used by continue.

The syntax of the continue statement looks like the following:

1. continue
2. continue [label]

Example 1. The following example shows a while loop with a continue 
statement that executes when the value of i is three. Thus, n takes on the 
values one, three, seven, and twelve.

i = 0
n = 0
while (i < 5) {

i++
if (i == 3)

continue
n += i

}

Example 2. A statement labeled checkiandj contains a statement labeled 
checkj. If continue is encountered, the program terminates the current 
iteration of checkj and begins the next iteration. Each time continue is 
encountered, checkj reiterates until its condition returns false. When false 
is returned, the remainder of the checkiandj statement is completed, and 
checkiandj reiterates until its condition returns false. When false is 
returned, the program continues at the statement following checkiandj.
Chapter 7, Statements 127



Object Manipulation Statements
If continue had a label of checkiandj, the program would continue at the top 
of the checkiandj statement.

checkiandj : 
while (i<4) {

document.write(i + "<BR>"); 
i+=1; 
checkj : 

while (j>4) {
document.write(j + "<BR>"); 
j-=1; 
if ((j%2)==0);

continue checkj;
document.write(j + " is odd.<BR>");

} 
document.write("i = " + i + "<br>");
document.write("j = " + j + "<br>");  

}

Object Manipulation Statements
JavaScript uses the for...in and with statements to manipulate objects.

for...in Statement

The for...in statement iterates a specified variable over all the properties of 
an object. For each distinct property, JavaScript executes the specified 
statements. A for...in statement looks as follows:

for (variable in object) {
statements }

Example. The following function takes as its argument an object and the 
object’s name. It then iterates over all the object’s properties and returns a string 
that lists the property names and their values.

function dump_props(obj, obj_name) {
var result = ""
for (var i in obj) {

result += obj_name + "." + i + " = " + obj[i] + "<BR>"
}
result += "<HR>"
return result

}

128 Server-Side JavaScript Guide



Object Manipulation Statements
For an object car with properties make and model, result would be:

car.make = Ford
car.model = Mustang

with Statement

The with statement establishes the default object for a set of statements. 
JavaScript looks up any unqualified names within the set of statements to 
determine if the names are properties of the default object. If an unqualified 
name matches a property, then the property is used in the statement; otherwise, 
a local or global variable is used.

A with statement looks as follows:

with (object){
statements

}

Example. The following with statement specifies that the Math object is the 
default object. The statements following the with statement refer to the PI 
property and the cos and sin methods, without specifying an object. JavaScript 
assumes the Math object for these references.

var a, x, y
var r=10
with (Math) {

a = PI * r * r
x = r * cos(PI)
y = r * sin(PI/2)

}

Chapter 7, Statements 129



Comments
Comments
Comments are author notations that explain what a script does. Comments are 
ignored by the interpreter. JavaScript supports Java-style comments:

• Comments on a single line are preceded by a double-slash (//).

• Comments that span multiple lines are preceded by /* and followed by */:

Example. The following example shows two comments:

// This is a single-line comment.

/* This is a multiple-line comment. It can be of any length, and
you can put whatever you want here. */
130 Server-Side JavaScript Guide



C h a p t e r

8
Chapter 8Functions
Functions are one of the fundamental building blocks in JavaScript. A function 
is a JavaScript procedure—a set of statements that performs a specific task. To 
use a function, you must first define it; then your script can call it.

This chapter contains the following sections:

• Defining Functions

• Calling Functions

• Using the arguments Array

• Predefined Functions

Defining Functions
A function definition consists of the function keyword, followed by

• The name of the function.

• A list of arguments to the function, enclosed in parentheses and separated 
by commas.

• The JavaScript statements that define the function, enclosed in curly braces, 
{ }. The statements in a function can include calls to other functions defined 
in the current application.
Chapter 8, Functions 131



Calling Functions
For example, the following code defines a simple function named square:

function square(number) {
return number * number;

}

The function square takes one argument, called number. The function consists 
of one statement that indicates to return the argument of the function multiplied 
by itself. The return statement specifies the value returned by the function.

return number * number

All parameters are passed to functions by value; the value is passed to the 
function, but if the function changes the value of the parameter, this change is 
not reflected globally or in the calling function. However, if you pass an object 
as a parameter to a function and the function changes the object’s properties, 
that change is visible outside the function, as shown in the following example:

function myFunc(theObject) {
theObject.make="Toyota"

}

mycar = {make:"Honda", model:"Accord", year:1998}
x=mycar.make // returns Honda
myFunc(mycar) // pass object mycar to the function
y=mycar.make // returns Toyota (prop was changed by the function)

In addition to defining functions as described here, you can also define 
Function objects, as described in “Function Object” on page 155.

A method is a function associated with an object. You’ll learn more about 
objects and methods in Chapter 9, “Working with Objects.”

Calling Functions
In a server-side JavaScript application, you can use any function compiled with 
the application.

Defining a function does not execute it. Defining the function simply names the 
function and specifies what to do when the function is called. Calling the 
function actually performs the specified actions with the indicated parameters. 
For example, if you define the function square, you could call it as follows.

square(5)
132 Server-Side JavaScript Guide



Using the arguments Array
The preceding statement calls the function with an argument of five. The 
function executes its statements and returns the value twenty-five.

The arguments of a function are not limited to strings and numbers. You can 
pass whole objects to a function, too. The show_props function (defined in 
“Objects and Properties” on page 140) is an example of a function that takes an 
object as an argument.

A function can even be recursive, that is, it can call itself. For example, here is a 
function that computes factorials:

function factorial(n) {
if ((n == 0) || (n == 1))

return 1
else {

result = (n * factorial(n-1) )
return result
}

}

You could then compute the factorials of one through five as follows:

a=factorial(1) // returns 1
b=factorial(2) // returns 2
c=factorial(3) // returns 6
d=factorial(4) // returns 24
e=factorial(5) // returns 120

Using the arguments Array
The arguments of a function are maintained in an array. Within a function, you 
can address the parameters passed to it as follows:

arguments[i]
functionName.arguments[i]

where i is the ordinal number of the argument, starting at zero. So, the first 
argument passed to a function would be arguments[0]. The total number of 
arguments is indicated by arguments.length.

Using the arguments array, you can call a function with more arguments than 
it is formally declared to accept. This is often useful if you don’t know in 
advance how many arguments will be passed to the function. You can use 
arguments.length to determine the number of arguments actually passed to 
the function, and then treat each argument using the arguments array.
Chapter 8, Functions 133



Predefined Functions
For example, consider a function that concatenates several strings. The only 
formal argument for the function is a string that specifies the characters that 
separate the items to concatenate. The function is defined as follows:

function myConcat(separator) {
result="" // initialize list
// iterate through arguments
for (var i=1; i<arguments.length; i++) {

result += arguments[i] + separator
}
return result

}

You can pass any number of arguments to this function, and it creates a list 
using each argument as an item in the list.

// returns "red, orange, blue, "
myConcat(", ","red","orange","blue")

// returns "elephant; giraffe; lion; cheetah;"
myConcat("; ","elephant","giraffe","lion", "cheetah")

// returns "sage. basil. oregano. pepper. parsley. "
myConcat(". ","sage","basil","oregano", "pepper", "parsley")

See the Function object in the Server-Side JavaScript Reference for more 
information.

Predefined Functions
JavaScript has several top-level predefined functions:

• eval

• isFinite

• isNaN

• parseInt and parseFloat

• Number and String

• escape and unescape

The following sections introduce these functions. See the Server-Side JavaScript 
Reference for detailed information on all of these functions.
134 Server-Side JavaScript Guide



Predefined Functions
eval Function

The eval function evaluates a string of JavaScript code without reference to a 
particular object. The syntax of eval is:

eval(expr)

where expr is a string to be evaluated.

If the string represents an expression, eval evaluates the expression. If the 
argument represents one or more JavaScript statements, eval performs the 
statements. Do not call eval to evaluate an arithmetic expression; JavaScript 
evaluates arithmetic expressions automatically.

isFinite Function

The isFinite function evaluates an argument to determine whether it is a finite 
number. The syntax of isFinite is:

isFinite(number)

where number is the number to evaluate.

If the argument is NaN, positive infinity or negative infinity, this method returns 
false, otherwise it returns true.

The following code checks client input to determine whether it is a finite 
number.

if(isFinite(ClientInput) == true)
{

/* take specific steps */
}

Chapter 8, Functions 135



Predefined Functions
isNaN Function

The isNaN function evaluates an argument to determine if it is “NaN” (not a 
number). The syntax of isNaN is:

isNaN(testValue)

where testValue is the value you want to evaluate.

The parseFloat and parseInt functions return “NaN” when they evaluate a 
value that is not a number. isNaN returns true if passed “NaN,” and false 
otherwise.

The following code evaluates floatValue to determine if it is a number and 
then calls a procedure accordingly:

floatValue=parseFloat(toFloat)

if (isNaN(floatValue)) {
notFloat()

} else {
isFloat()

}

parseInt and parseFloat Functions

The two “parse” functions, parseInt and parseFloat, return a numeric value 
when given a string as an argument.

The syntax of parseFloat is

parseFloat(str)

where parseFloat parses its argument, the string str, and attempts to return a 
floating-point number. If it encounters a character other than a sign (+ or -), a 
numeral (0-9), a decimal point, or an exponent, then it returns the value up to 
that point and ignores that character and all succeeding characters. If the first 
character cannot be converted to a number, it returns “NaN” (not a number).

The syntax of parseInt is

parseInt(str [, radix])
136 Server-Side JavaScript Guide



Predefined Functions
parseInt parses its first argument, the string str, and attempts to return an 
integer of the specified radix (base), indicated by the second, optional 
argument, radix. For example, a radix of ten indicates to convert to a decimal 
number, eight octal, sixteen hexadecimal, and so on. For radixes above ten, the 
letters of the alphabet indicate numerals greater than nine. For example, for 
hexadecimal numbers (base 16), A through F are used.

If parseInt encounters a character that is not a numeral in the specified radix, 
it ignores it and all succeeding characters and returns the integer value parsed 
up to that point. If the first character cannot be converted to a number in the 
specified radix, it returns “NaN.” The parseInt function truncates the string to 
integer values.

Number and String Functions

The Number and String functions let you convert an object to a number or a 
string. The syntax of these functions is:

Number(objRef)
String(objRef)

where objRef is an object reference.

The following example converts the Date object to a readable string.

D = new Date (430054663215)
// The following returns
// "Thu Aug 18 04:37:43 GMT-0700 (Pacific Daylight Time) 1983"
x = String(D)
Chapter 8, Functions 137



Predefined Functions
escape and unescape Functions

The escape and unescape functions let you encode and decode strings. The 
escape function returns the hexadecimal encoding of an argument in the ISO 
Latin character set. The unescape function returns the ASCII string for the 
specified hexadecimal encoding value.

The syntax of these functions is:

escape(string)
unescape(string)

These functions are used primarily with server-side JavaScript to encode and 
decode name/value pairs in URLs.
138 Server-Side JavaScript Guide



C h a p t e r

9
Chapter 9Working with Objects
JavaScript is designed on a simple object-based paradigm. An object is a 
construct with properties that are JavaScript variables or other objects. An 
object also has functions associated with it that are known as the object’s 
methods. In addition to objects that are predefined in the Navigator client and 
the server, you can define your own objects.

This chapter describes how to use objects, properties, functions, and methods, 
and how to create your own objects. 

This chapter contains the following sections:

• Objects and Properties

• Creating New Objects

• Predefined Core Objects
Chapter 9, Working with Objects 139



Objects and Properties
Objects and Properties
A JavaScript object has properties associated with it. You access the properties 
of an object with a simple notation:

objectName.propertyName

Both the object name and property name are case sensitive. You define a 
property by assigning it a value. For example, suppose there is an object 
named myCar (for now, just assume the object already exists). You can give it 
properties named make, model, and year as follows:

myCar.make = "Ford"
myCar.model = "Mustang"
myCar.year = 1969;

An array is an ordered set of values associated with a single variable name. 
Properties and arrays in JavaScript are intimately related; in fact, they are 
different interfaces to the same data structure. So, for example, you could 
access the properties of the myCar object as follows:

myCar["make"] = "Ford"
myCar["model"] = "Mustang"
myCar["year"] = 1967

This type of array is known as an associative array, because each index 
element is also associated with a string value. To illustrate how this works, the 
following function displays the properties of the object when you pass the 
object and the object’s name as arguments to the function:

function show_props(obj, obj_name) {
var result = ""
for (var i in obj)

result += obj_name + "." + i + " = " + obj[i] + "\n"
return result

}

So, the function call show_props(myCar, "myCar") would return the 
following:

myCar.make = Ford
myCar.model = Mustang
myCar.year = 1967
140 Server-Side JavaScript Guide



Creating New Objects
Creating New Objects
JavaScript has a number of predefined objects. In addition, you can create your 
own objects. In JavaScript 1.2, you can create an object using an object 
initializer. Alternatively, you can first create a constructor function and then 
instantiate an object using that function and the new operator.

Using Object Initializers

In addition to creating objects using a constructor function, you can create 
objects using an object initializer. Using object initializers is sometimes referred 
to as creating objects with literal notation. “Object initializer” is consistent with 
the terminology used by C++.

The syntax for an object using an object initializer is:

objectName = {property1:value1, property2:value2,..., propertyN:valueN}

where objectName is the name of the new object, each propertyI is an 
identifier (either a name, a number, or a string literal), and each valueI is an 
expression whose value is assigned to the propertyI. The objectName and 
assignment is optional. If you do not need to refer to this object elsewhere, you 
do not need to assign it to a variable.

If an object is created with an object initializer in a top-level script, JavaScript 
interprets the object each time it evaluates the expression containing the object 
literal. In addition, an initializer used in a function is created each time the 
function is called.

The following statement creates an object and assigns it to the variable x if and 
only if the expression cond is true.

if (cond) x = {hi:"there"}

The following example creates myHonda with three properties. Note that the 
engine property is also an object with its own properties. 

myHonda = {color:"red",wheels:4,engine:{cylinders:4,size:2.2}}

You can also use object initializers to create arrays. See “Array Literals” on 
page 81.
Chapter 9, Working with Objects 141



Creating New Objects
JavaScript 1.1 and earlier. You cannot use object initializers. You can create 
objects only using their constructor functions or using a function supplied by 
some other object for that purpose. See “Using a Constructor Function” on 
page 142.

Using a Constructor Function

Alternatively, you can create an object with these two steps:

1. Define the object type by writing a constructor function.

2. Create an instance of the object with new.

To define an object type, create a function for the object type that specifies its 
name, properties, and methods. For example, suppose you want to create an 
object type for cars. You want this type of object to be called car, and you 
want it to have properties for make, model, year, and color. To do this, you 
would write the following function:

function car(make, model, year) {
this.make = make
this.model = model
this.year = year

}

Notice the use of this to assign values to the object’s properties based on the 
values passed to the function.

Now you can create an object called mycar as follows:

mycar = new car("Eagle", "Talon TSi", 1993)

This statement creates mycar and assigns it the specified values for its 
properties. Then the value of mycar.make is the string “Eagle”, mycar.year is 
the integer 1993, and so on.

You can create any number of car objects by calls to new. For example,

kenscar = new car("Nissan", "300ZX", 1992)
vpgscar = new car("Mazda", "Miata", 1990)
142 Server-Side JavaScript Guide



Creating New Objects
An object can have a property that is itself another object. For example, 
suppose you define an object called person as follows:

function person(name, age, sex) {
this.name = name
this.age = age
this.sex = sex

}

and then instantiate two new person objects as follows:

rand = new person("Rand McKinnon", 33, "M")
ken = new person("Ken Jones", 39, "M")

Then you can rewrite the definition of car to include an owner property that 
takes a person object, as follows:

function car(make, model, year, owner) {
this.make = make
this.model = model
this.year = year
this.owner = owner

}

To instantiate the new objects, you then use the following:

car1 = new car("Eagle", "Talon TSi", 1993, rand)
car2 = new car("Nissan", "300ZX", 1992, ken)

Notice that instead of passing a literal string or integer value when creating the 
new objects, the above statements pass the objects rand and ken as the 
arguments for the owners. Then if you want to find out the name of the owner 
of car2, you can access the following property:

car2.owner.name

Note that you can always add a property to a previously defined object. For 
example, the statement

car1.color = "black"

adds a property color to car1, and assigns it a value of “black.” However, this 
does not affect any other objects. To add the new property to all objects of the 
same type, you have to add the property to the definition of the car object 
type.
Chapter 9, Working with Objects 143



Creating New Objects
Indexing Object Properties

In JavaScript 1.0, you can refer to an object’s properties by their property name 
or by their ordinal index. In JavaScript 1.1 or later, however, if you initially 
define a property by its name, you must always refer to it by its name, and if 
you initially define a property by an index, you must always refer to it by its 
index.

This applies when you create an object and its properties with a constructor 
function, as in the above example of the Car object type, and when you define 
individual properties explicitly (for example, myCar.color = "red"). So if you 
define object properties initially with an index, such as myCar[5] = "25 mpg", 
you can subsequently refer to the property as myCar[5].

The exception to this rule is objects reflected from HTML, such as the forms 
array. You can always refer to objects in these arrays by either their ordinal 
number (based on where they appear in the document) or their name (if 
defined). For example, if the second <FORM> tag in a document has a NAME 
attribute of “myForm”, you can refer to the form as document.forms[1] or 
document.forms["myForm"] or document.myForm.

Defining Properties for an Object Type

You can add a property to a previously defined object type by using the 
prototype property. This defines a property that is shared by all objects of the 
specified type, rather than by just one instance of the object. The following 
code adds a color property to all objects of type car, and then assigns a value 
to the color property of the object car1.

Car.prototype.color=null
car1.color="black"

See the prototype property of the Function object in the Server-Side 
JavaScript Reference for more information.
144 Server-Side JavaScript Guide



Creating New Objects
Defining Methods

A method is a function associated with an object. You define a method the 
same way you define a standard function. Then you use the following syntax to 
associate the function with an existing object:

object.methodname = function_name

where object is an existing object, methodname is the name you are assigning 
to the method, and function_name is the name of the function.

You can then call the method in the context of the object as follows:

object.methodname(params);

You can define methods for an object type by including a method definition in 
the object constructor function. For example, you could define a function that 
would format and display the properties of the previously-defined car objects; 
for example,

function displayCar() {
var result = "A Beautiful " + this.year + " " + this.make 

+ " " + this.model
pretty_print(result)

}

where pretty_print is function to display a horizontal rule and a string. 
Notice the use of this to refer to the object to which the method belongs.

You can make this function a method of car by adding the statement

this.displayCar = displayCar;

to the object definition. So, the full definition of car would now look like

function car(make, model, year, owner) {
this.make = make
this.model = model
this.year = year
this.owner = owner
this.displayCar = displayCar

}

Then you can call the displayCar method for each of the objects as follows:

car1.displayCar()
car2.displayCar()
Chapter 9, Working with Objects 145



Creating New Objects
This produces the output shown in the following figure.

Figure 9.1 Displaying method output 

Using this for Object References

JavaScript has a special keyword, this, that you can use within a method to 
refer to the current object. For example, suppose you have a function called 
validate that validates an object’s value property, given the object and the 
high and low values:

function validate(obj, lowval, hival) {
if ((obj.value < lowval) || (obj.value > hival))

alert("Invalid Value!")
}

Then, you could call validate in each form element’s onChange event 
handler, using this to pass it the form element, as in the following example:

<INPUT TYPE="text" NAME="age" SIZE=3 
onChange="validate(this, 18, 99)">

In general, this refers to the calling object in a method.

When combined with the form property, this can refer to the current object’s 
parent form. In the following example, the form myForm contains a Text object 
and a button. When the user clicks the button, the value of the Text object is 
set to the form’s name. The button’s onClick event handler uses this.form to 
refer to the parent form, myForm.

<FORM NAME="myForm">
Form name:<INPUT TYPE="text" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"

onClick="this.form.text1.value=this.form.name">
</FORM>
146 Server-Side JavaScript Guide



Predefined Core Objects
Deleting Objects

You can remove an object by using the delete operator. The following code 
shows how to remove an object.

myobj=new Number()
delete myobj // removes the object and returns true

See “delete” on page 98 for more information.

JavaScript 1.1. You can remove an object by setting its object reference to null 
(if that is the last reference to the object). JavaScript finalizes the object 
immediately, as part of the assignment expression.

JavaScript 1.0. You cannot remove objects—they exist until you leave the 
page containing the object.

Predefined Core Objects
This section describes the predefined objects in core JavaScript: Array, 
Boolean, Date, Function, Math, Number, RegExp, and String. The 
predefined server-side objects are described in Chapter 13, “Session 
Management Service.”

Array Object

JavaScript does not have an explicit array data type. However, you can use the 
predefined Array object and its methods to work with arrays in your 
applications. The Array object has methods for manipulating arrays in various 
ways, such as joining, reversing, and sorting them. It has a property for 
determining the array length and other properties for use with regular 
expressions.

An array is an ordered set of values that you refer to with a name and an 
index. For example, you could have an array called emp that contains 
employees’ names indexed by their employee number. So emp[1] would be 
employee number one, emp[2] employee number two, and so on.
Chapter 9, Working with Objects 147



Predefined Core Objects
Creating an Array

To create an Array object:

1. arrayObjectName = new Array(element0, element1, ..., elementN)
2. arrayObjectName = new Array(arrayLength)

arrayObjectName is either the name of a new object or a property of an 
existing object. When using Array properties and methods, arrayObjectName 
is either the name of an existing Array object or a property of an existing 
object.

element0, element1, ..., elementN is a list of values for the array’s 
elements. When this form is specified, the array is initialized with the specified 
values as its elements, and the array’s length property is set to the number of 
arguments.

arrayLength is the initial length of the array. The following code creates an 
array of five elements:

billingMethod = new Array(5)

Array literals are also Array objects; for example, the following literal is an 
Array object. See “Array Literals” on page 81 for details on array literals.

coffees = ["French Roast", "Columbian", "Kona"]

Populating an Array

You can populate an array by assigning values to its elements. For example,

emp[1] = "Casey Jones"
emp[2] = "Phil Lesh"
emp[3] = "August West"

You can also populate an array when you create it:

myArray = new Array("Hello", myVar, 3.14159)
148 Server-Side JavaScript Guide



Predefined Core Objects
Referring to Array Elements

You refer to an array’s elements by using the element’s ordinal number. For 
example, suppose you define the following array:

myArray = new Array("Wind","Rain","Fire")

You then refer to the first element of the array as myArray[0] and the second 
element of the array as myArray[1].

The index of the elements begins with zero (0), but the length of array (for 
example, myArray.length) reflects the number of elements in the array.

Array Methods

The Array object has the following methods:

• concat joins two arrays and returns a new array. 

• join joins all elements of an array into a string.

• pop removes the last element from an array and returns that element.

• push adds one or more elements to the end of an array and returns that last 
element added.

• reverse transposes the elements of an array: the first array element 
becomes the last and the last becomes the first.

• shift removes the first element from an array and returns that element

• slice extracts a section of an array and returns a new array.

• splice adds and/or removes elements from an array.

• sort sorts the elements of an array.

• unshift adds one or more elements to the front of an array and returns the 
new length of the array.
Chapter 9, Working with Objects 149



Predefined Core Objects
For example, suppose you define the following array:

myArray = new Array("Wind","Rain","Fire")

myArray.join() returns “Wind,Rain,Fire”; myArray.reverse transposes the 
array so that myArray[0] is “Fire”, myArray[1] is “Rain”, and myArray[2] is 
“Wind”. myArray.sort sorts the array so that myArray[0] is “Fire”, 
myArray[1] is “Rain”, and myArray[2] is “Wind”.

Two-Dimensional Arrays

The following code creates a two-dimensional array.

a = new Array(4)
for (i=0; i < 4; i++) {

a[i] = new Array(4)
for (j=0; j < 4; j++) {

a[i][j] = "["+i+","+j+"]"
}

}

The following code displays the array:

for (i=0; i < 4; i++) {
str = "Row "+i+":"
for (j=0; j < 4; j++) {

str += a[i][j]
}
document.write(str,"<p>")

}

This example displays the following results:

Row 0:[0,0][0,1][0,2][0,3]
Row 1:[1,0][1,1][1,2][1,3]
Row 2:[2,0][2,1][2,2][2,3]
Row 3:[3,0][3,1][3,2][3,3]

In server-side JavaScript, you can display the same output by calling the write 
function instead of using document.write.
150 Server-Side JavaScript Guide



Predefined Core Objects
Arrays and Regular Expressions

When an array is the result of a match between a regular expression and a 
string, the array returns properties and elements that provide information about 
the match. An array is the return value of regexp.exec, string.match, and 
string.replace. For information on using arrays with regular expressions, 
see Chapter 6, “Regular Expressions.”

Boolean Object

The Boolean object is a wrapper around the primitive Boolean data type. Use 
the following syntax to create a Boolean object:

booleanObjectName = new Boolean(value)

Date Object

JavaScript does not have a date data type. However, you can use the Date 
object and its methods to work with dates and times in your applications. The 
Date object has a large number of methods for setting, getting, and 
manipulating dates. It does not have any properties.

JavaScript handles dates similarly to Java. The two languages have many of the 
same date methods, and both languages store dates as the number of 
milliseconds since January 1, 1970, 00:00:00.

Note Dates prior to 1970 are not allowed.

To create a Date object:

dateObjectName = new Date([parameters])

where dateObjectName is the name of the Date object being created; it can be 
a new object or a property of an existing object.
Chapter 9, Working with Objects 151



Predefined Core Objects
The parameters in the preceding syntax can be any of the following:

• Nothing: creates today’s date and time. For example, today = new Date().

• A string representing a date in the following form: “Month day, year 
hours:minutes:seconds.” For example, Xmas95 = new Date("December 
25, 1995 13:30:00"). If you omit hours, minutes, or seconds, the value 
will be set to zero.

• A set of integer values for year, month, and day. For example, Xmas95 = 
new Date(1995,11,25). A set of values for year, month, day, hour, 
minute, and seconds. For example, Xmas95 = new 
Date(1995,11,25,9,30,0).

Methods of the Date Object

The Date object methods for handling dates and times fall into these broad 
categories:

• “set” methods, for setting date and time values in Date objects.

• “get” methods, for getting date and time values from Date objects.

• “to” methods, for returning string values from Date objects.

• parse and UTC methods, for parsing Date strings.
152 Server-Side JavaScript Guide



Predefined Core Objects
With the “get” and “set” methods you can get and set seconds, minutes, hours, 
day of the month, day of the week, months, and years separately. There is a 
getDay method that returns the day of the week, but no corresponding setDay 
method, because the day of the week is set automatically. These methods use 
integers to represent these values as follows:

• Seconds and minutes: 0 to 59

• Hours: 0 to 23

• Day: 0 (Sunday) to 6 (Saturday)

• Date: 1 to 31 (day of the month)

• Months: 0 (January) to 11 (December)

• Year: years since 1900

For example, suppose you define the following date:

Xmas95 = new Date("December 25, 1995")

Then Xmas95.getMonth() returns 11, and Xmas95.getFullYear() returns 95.

The getTime and setTime methods are useful for comparing dates. The 
getTime method returns the number of milliseconds since January 1, 1970, 
00:00:00 for a Date object.

For example, the following code displays the number of days left in the current 
year:

today = new Date()
endYear = new Date(1995,11,31,23,59,59) // Set day and month
endYear.setYear(today.getYear()) // Set year to this year
msPerDay = 24 * 60 * 60 * 1000 // Number of milliseconds per day
daysLeft = (endYear.getTime() - today.getTime()) / msPerDay
daysLeft = Math.round(daysLeft) //returns days left in the year

This example creates a Date object named today that contains today’s date. It 
then creates a Date object named endYear and sets the year to the current 
year. Then, using the number of milliseconds per day, it computes the number 
of days between today and endYear, using getTime and rounding to a whole 
number of days.
Chapter 9, Working with Objects 153



Predefined Core Objects
The parse method is useful for assigning values from date strings to existing 
Date objects. For example, the following code uses parse and setTime to 
assign a date value to the IPOdate object:

IPOdate = new Date()
IPOdate.setTime(Date.parse("Aug 9, 1995"))

Using the Date Object: an Example

In the following example, the function JSClock() returns the time in the 
format of a digital clock.

function JSClock() {
var time = new Date()
var hour = time.getHours()
var minute = time.getMinutes()
var second = time.getSeconds()
var temp = "" + ((hour > 12) ? hour - 12 : hour)
temp += ((minute < 10) ? ":0" : ":") + minute
temp += ((second < 10) ? ":0" : ":") + second
temp += (hour >= 12) ? " P.M." : " A.M."
return temp

}

The JSClock function first creates a new Date object called time; since no 
arguments are given, time is created with the current date and time. Then calls 
to the getHours, getMinutes, and getSeconds methods assign the value of 
the current hour, minute and seconds to hour, minute, and second. 

The next four statements build a string value based on the time. The first 
statement creates a variable temp, assigning it a value using a conditional 
expression; if hour is greater than 12, (hour - 13), otherwise simply hour.

The next statement appends a minute value to temp. If the value of minute is 
less than 10, the conditional expression adds a string with a preceding zero; 
otherwise it adds a string with a demarcating colon. Then a statement appends 
a seconds value to temp in the same way.

Finally, a conditional expression appends “PM” to temp if hour is 12 or greater; 
otherwise, it appends “AM” to temp.
154 Server-Side JavaScript Guide



Predefined Core Objects
Function Object

The predefined Function object specifies a string of JavaScript code to be 
compiled as a function.

To create a Function object:

functionObjectName = new Function ([arg1, arg2, ... argn], functionBody)

functionObjectName is the name of a variable or a property of an existing 
object. It can also be an object followed by a lowercase event handler name, 
such as window.onerror. 

arg1, arg2, ... argn are arguments to be used by the function as formal 
argument names. Each must be a string that corresponds to a valid JavaScript 
identifier; for example “x” or “theForm”.

functionBody is a string specifying the JavaScript code to be compiled as the 
function body.

Function objects are evaluated each time they are used. This is less efficient 
than declaring a function and calling it within your code, because declared 
functions are compiled.

In addition to defining functions as described here, you can also use the 
function statement. See the Server-Side JavaScript Reference for more 
information.

The following code assigns a function to the variable setBGColor. This 
function sets the current document’s background color.

var setBGColor = new Function("document.bgColor=’antiquewhite’")

To call the Function object, you can specify the variable name as if it were a 
function. The following code executes the function specified by the 
setBGColor variable:

var colorChoice="antiquewhite"
if (colorChoice=="antiquewhite") {setBGColor()}

You can assign the function to an event handler in either of the following ways:

1. document.form1.colorButton.onclick=setBGColor

2. <INPUT NAME="colorButton" TYPE="button"
VALUE="Change background color"
onClick="setBGColor()">
Chapter 9, Working with Objects 155



Predefined Core Objects
Creating the variable setBGColor shown above is similar to declaring the 
following function:

function setBGColor() {
document.bgColor=’antiquewhite’

}

You can nest a function within a function. The nested (inner) function is private 
to its containing (outer) function:

• The inner function can be accessed only from statements in the outer 
function.

• The inner function can use the arguments and variables of the outer 
function. The outer function cannot use the arguments and variables of the 
inner function.

Math Object

The predefined Math object has properties and methods for mathematical 
constants and functions. For example, the Math object’s PI property has the 
value of pi (3.141...), which you would use in an application as

Math.PI

Similarly, standard mathematical functions are methods of Math. These include 
trigonometric, logarithmic, exponential, and other functions. For example, if 
you want to use the trigonometric function sine, you would write

Math.sin(1.56)

Note that all trigonometric methods of Math take arguments in radians.
156 Server-Side JavaScript Guide



Predefined Core Objects
The following table summarizes the Math object’s methods.

Unlike many other objects, you never create a Math object of your own. You 
always use the predefined Math object.

It is often convenient to use the with statement when a section of code uses 
several math constants and methods, so you don’t have to type “Math” 
repeatedly. For example,

with (Math) {
a = PI * r*r
y = r*sin(theta)
x = r*cos(theta)

}

Table 9.1 Methods of Math

Method Description

abs Absolute value

sin, cos, tan Standard trigonometric functions; argument in radians

acos, asin, 
atan

Inverse trigonometric functions; return values in radians

exp, log Exponential and natural logarithm, base e

ceil Returns least integer greater than or equal to argument

floor Returns greatest integer less than or equal to argument

min, max Returns greater or lesser (respectively) of two arguments

pow Exponential; first argument is base, second is exponent

round Rounds argument to nearest integer

sqrt Square root
Chapter 9, Working with Objects 157



Predefined Core Objects
Number Object

The Number object has properties for numerical constants, such as maximum 
value, not-a-number, and infinity. You cannot change the values of these 
properties and you use them as follows:

biggestNum = Number.MAX_VALUE
smallestNum = Number.MIN_VALUE
infiniteNum = Number.POSITIVE_INFINITY
negInfiniteNum = Number.NEGATIVE_INFINITY
notANum = Number.NaN

You always refer to a property of the predefined Number object as shown 
above, and not as a property of a Number object you create yourself.

The following table summarizes the Number object’s properties.

RegExp Object

The RegExp object lets you work with regular expressions. It is described in 
Chapter 6, “Regular Expressions.”

Table 9.2 Properties of Number

Method Description

MAX_VALUE The largest representable number

MIN_VALUE The smallest representable number

NaN Special “not a number” value

NEGATIVE_INFINITY Special infinite value; returned on overflow

POSITIVE_INFINITY Special negative infinite value; returned on overflow
158 Server-Side JavaScript Guide



Predefined Core Objects
String Object

The String object is a wrapper around the string primitive data type. Do not 
confuse a string literal with the String object. For example, the following 
code creates the string literal s1 and also the String object s2:

s1 = "foo" //creates a string literal value
s2 = new String("foo") //creates a String object

You can call any of the methods of the String object on a string literal 
value—JavaScript automatically converts the string literal to a temporary 
String object, calls the method, then discards the temporary String object. 
You can also use the String.length property with a string literal.

You should use string literals unless you specifically need to use a String 
object, because String objects can have counterintuitive behavior. For 
example:

s1 = "2 + 2" //creates a string literal value
s2 = new String("2 + 2")//creates a String object
eval(s1) //returns the number 4
eval(s2) //returns the string "2 + 2"

A String object has one property, length, that indicates the number of 
characters in the string. For example, the following code assigns x the value 13, 
because “Hello, World!” has 13 characters:

myString = "Hello, World!"
x = mystring.length

A String object has two types of methods: those that return a variation on the 
string itself, such as substring and toUpperCase, and those that return an 
HTML-formatted version of the string, such as bold and link.

For example, using the previous example, both mystring.toUpperCase() 
and "hello, world!".toUpperCase() return the string “HELLO, WORLD!”.

The substring method takes two arguments and returns a subset of the string 
between the two arguments. Using the previous example, 
mystring.substring(4, 9) returns the string “o, Wo.” See the substring 
method of the String object in the Server-Side JavaScript Reference for more 
information.
Chapter 9, Working with Objects 159



Predefined Core Objects
The String object also has a number of methods for automatic HTML 
formatting, such as bold to create boldface text and link to create a hyperlink. 
For example, you could create a hyperlink to a hypothetical URL with the link 
method as follows:

mystring.link(“http://www.helloworld.com”)

The following table summarizes the methods of String objects.

Table 9.3 Methods of String

Method Description

anchor Creates HTML named anchor

big, blink, bold,
fixed, italics, small,
strike, sub, sup

Creates HTML formatted string

charAt, charCodeAt Returns the character or character code at the specified 
position in string

indexOf, lastIndexOf Returns the position of specified substring in the string 
or last position of specified substring, respectively

link Creates HTML hyperlink

concat Combines the text of two strings and returns a new 
string

fromCharCode Constructs a string from the specified sequence of 
ISO-Latin-1 codeset values

split Splits a String object into an array of strings by 
separating the string into substrings 

slice Extracts a section of an string and returns a new string. 

substring, substr Returns the specified subset of the string, either by 
specifying the start and end indexes or the start index 
and a length

match, replace, search Used to work with regular expressions

toLowerCase, 
toUpperCase

Returns the string in all lowercase or all uppercase, 
respectively
160 Server-Side JavaScript Guide



C h a p t e r

10
Chapter 10Details of the Object Model
JavaScript is an object-based language based on prototypes, rather than being 
class-based. Because of this different basis, it can be less apparent how 
JavaScript allows you to create hierarchies of objects and to have inheritance of 
properties and their values. This chapter attempts to clarify the situation.

This chapter assumes that you are already somewhat familiar with JavaScript 
and that you have used JavaScript functions to create simple objects.

This chapter contains the following sections:

• Class-Based vs. Prototype-Based Languages

• The Employee Example

• Creating the Hierarchy

• Object Properties

• More Flexible Constructors

• Property Inheritance Revisited
Chapter 10, Details of the Object Model 161



Class-Based vs. Prototype-Based Languages
Class-Based vs. Prototype-Based Languages
Class-based object-oriented languages, such as Java and C++, are founded on 
the concept of two distinct entities: classes and instances.

• A class defines all of the properties (considering methods and fields in Java, 
or members in C++, to be properties) that characterize a certain set of 
objects. A class is an abstract thing, rather than any particular member of 
the set of objects it describes. For example, the Employee class could 
represent the set of all employees.

• An instance, on the other hand, is the instantiation of a class; that is, one of 
its members. For example, Victoria could be an instance of the Employee 
class, representing a particular individual as an employee. An instance has 
exactly the properties of its parent class (no more, no less).

A prototype-based language, such as JavaScript, does not make this distinction: 
it simply has objects. A prototype-based language has the notion of a 
prototypical object, an object used as a template from which to get the initial 
properties for a new object. Any object can specify its own properties, either 
when you create it or at run time. In addition, any object can be associated as 
the prototype for another object, allowing the second object to share the first 
object’s properties.

Defining a Class

In class-based languages, you define a class in a separate class definition. In 
that definition you can specify special methods, called constructors, to create 
instances of the class. A constructor method can specify initial values for the 
instance’s properties and perform other processing appropriate at creation time. 
You use the new operator in association with the constructor method to create 
class instances.

JavaScript follows a similar model, but does not have a class definition separate 
from the constructor. Instead, you define a constructor function to create 
objects with a particular initial set of properties and values. Any JavaScript 
function can be used as a constructor. You use the new operator with a 
constructor function to create a new object.
162 Server-Side JavaScript Guide



Class-Based vs. Prototype-Based Languages
Subclasses and Inheritance

In a class-based language, you create a hierarchy of classes through the class 
definitions. In a class definition, you can specify that the new class is a subclass 
of an already existing class. The subclass inherits all the properties of the 
superclass and additionally can add new properties or modify the inherited 
ones. For example, assume the Employee class includes only the name and 
dept properties, and Manager is a subclass of Employee that adds the reports 
property. In this case, an instance of the Manager class would have all three 
properties: name, dept, and reports.

JavaScript implements inheritance by allowing you to associate a prototypical 
object with any constructor function. So, you can create exactly the Employee-
Manager example, but you use slightly different terminology. First you define 
the Employee constructor function, specifying the name and dept properties. 
Next, you define the Manager constructor function, specifying the reports 
property. Finally, you assign a new Employee object as the prototype for the 
Manager constructor function. Then, when you create a new Manager, it 
inherits the name and dept properties from the Employee object.

Adding and Removing Properties

In class-based languages, you typically create a class at compile time and then 
you instantiate instances of the class either at compile time or at run time. You 
cannot change the number or the type of properties of a class after you define 
the class. In JavaScript, however, at run time you can add or remove properties 
from any object. If you add a property to an object that is used as the prototype 
for a set of objects, the objects for which it is the prototype also get the new 
property.

Summary of Differences

The following table gives a short summary of some of these differences. The 
rest of this chapter describes the details of using JavaScript constructors and 
prototypes to create an object hierarchy and compares this to how you would 
do it in Java.
Chapter 10, Details of the Object Model 163



Class-Based vs. Prototype-Based Languages
Table 10.1 Comparison of class-based (Java) and prototype-based (JavaScript) object systems

Class-based (Java) Prototype-based (JavaScript)

Class and instance are distinct entities. All objects are instances.

Define a class with a class definition; instantiate a 
class with constructor methods.

Define and create a set of objects with constructor 
functions.

Create a single object with the new operator. Same.

Construct an object hierarchy by using class 
definitions to define subclasses of existing classes.

Construct an object hierarchy by assigning an object 
as the prototype associated with a constructor 
function.

Inherit properties by following the class chain. Inherit properties by following the prototype chain.

Class definition specifies all properties of all 
instances of a class. Cannot add properties 
dynamically at run time.

Constructor function or prototype specifies an initial 
set of properties. Can add or remove properties 
dynamically to individual objects or to the entire set 
of objects.
164 Server-Side JavaScript Guide



The Employee Example
The Employee Example
The remainder of this chapter uses the employee hierarchy shown in the 
following figure.

Figure 10.1A simple object hierarchy

This example uses the following objects:

• Employee has the properties name (whose value defaults to the empty 
string) and dept (whose value defaults to “general”).

• Manager is based on Employee. It adds the reports property (whose value 
defaults to an empty array, intended to have an array of Employee objects 
as its value).

• WorkerBee is also based on Employee. It adds the projects property 
(whose value defaults to an empty array, intended to have an array of 
strings as its value).

• SalesPerson is based on WorkerBee. It adds the quota property (whose 
value defaults to 100). It also overrides the dept property with the value 
“sales”, indicating that all salespersons are in the same department.

• Engineer is based on WorkerBee. It adds the machine property (whose 
value defaults to the empty string) and also overrides the dept property 
with the value “engineering”.

SalesPerson Engineer

Employee

Manager WorkerBee
Chapter 10, Details of the Object Model 165



Creating the Hierarchy
Creating the Hierarchy
There are several ways to define appropriate constructor functions to 
implement the Employee hierarchy. How you choose to define them depends 
largely on what you want to be able to do in your application.

This section shows how to use very simple (and comparatively inflexible) 
definitions to demonstrate how to get the inheritance to work. In these 
definitions, you cannot specify any property values when you create an object. 
The newly-created object simply gets the default values, which you can change 
at a later time. Figure 10.2 illustrates the hierarchy with these simple definitions.

In a real application, you would probably define constructors that allow you to 
provide property values at object creation time (see “More Flexible 
Constructors” on page 173 for information). For now, these simple definitions 
demonstrate how the inheritance occurs.

Figure 10.2The Employee object definitions

WorkerBee
function WorkerBee() {
  this.projects = [];
}
WorkerBee.prototype=new Employee;

Manager
function Manager () {
  this.reports = [];
}
Manager.prototype=new Employee;

SalesPerson
function SalesPerson () {
  this.dept = "sales";
  this.quota = 100;
}
SalesPerson.prototype=new WorkerBee;

Engineer
function Engineer () {
  this.dept = "engineering";
  this.machine = ""; 
}
Engineer.prototype=new WorkerBee;

Employee
function Employee () {
  this.name = "";
  this.dept = "general";
}

166 Server-Side JavaScript Guide



Creating the Hierarchy
The following Java and JavaScript Employee definitions are similar. The only 
differences are that you need to specify the type for each property in Java but 
not in JavaScript, and you need to create an explicit constructor method for the 
Java class.

The Manager and WorkerBee definitions show the difference in how to specify 
the next object higher in the inheritance chain. In JavaScript, you add a 
prototypical instance as the value of the prototype property of the constructor 
function. You can do so at any time after you define the constructor. In Java, 
you specify the superclass within the class definition. You cannot change the 
superclass outside the class definition.

JavaScript Java

function Employee () {
    this.name = "";
    this.dept = "general";
}

public class Employee {
public String name;
public String dept;
public Employee () {

this.name = "";
this.dept = "general";

}
}

JavaScript Java

function Manager () {
    this.reports = [];
}
Manager.prototype = new Employee;

function WorkerBee () {
    this.projects = [];
}
WorkerBee.prototype = new Employee;

public class Manager extends Employee {
public Employee[] reports;
public Manager () {

this.reports = new Employee[0];
}

}

public class WorkerBee extends Employee {
public String[] projects;
public WorkerBee () {

this.projects = new String[0];
}

}

Chapter 10, Details of the Object Model 167



Creating the Hierarchy
The Engineer and SalesPerson definitions create objects that descend from 
WorkerBee and hence from Employee. An object of these types has properties 
of all the objects above it in the chain. In addition, these definitions override 
the inherited value of the dept property with new values specific to these 
objects.

Using these definitions, you can create instances of these objects that get the 
default values for their properties. Figure 10.3 illustrates using these JavaScript 
definitions to create new objects and shows the property values for the new 
objects.

Note The term instance has a specific technical meaning in class-based languages. In 
these languages, an instance is an individual member of a class and is 
fundamentally different from a class. In JavaScript, “instance” does not have this 
technical meaning because JavaScript does not have this difference between 
classes and instances. However, in talking about JavaScript, “instance” can be 
used informally to mean an object created using a particular constructor 
function. So, in this example, you could informally say that jane is an instance 
of Engineer. Similarly, although the terms parent, child, ancestor, and 
descendant do not have formal meanings in JavaScript; you can use them 
informally to refer to objects higher or lower in the prototype chain.

JavaScript Java

function SalesPerson () {
this.dept = "sales";
this.quota = 100;

}
SalesPerson.prototype = new WorkerBee;

function Engineer () {
this.dept = "engineering";
this.machine = "";

}
Engineer.prototype = new WorkerBee;

public class SalesPerson extends WorkerBee 
{

public double quota;
public SalesPerson () {

this.dept = "sales";
this.quota = 100.0;

}
}

public class Engineer extends WorkerBee {
public String machine;
public Engineer () {

this.dept = "engineering";
this.machine = "";

}
}

168 Server-Side JavaScript Guide



Object Properties
Figure 10.3Creating objects with simple definitions

Object Properties
This section discusses how objects inherit properties from other objects in the 
prototype chain and what happens when you add a property at run time.

Inheriting Properties

Suppose you create the mark object as a WorkerBee as shown in Figure 10.3 
with the following statement:

mark = new WorkerBee;

When JavaScript sees the new operator, it creates a new generic object and 
passes this new object as the value of the this keyword to the WorkerBee 
constructor function. The constructor function explicitly sets the value of the 
projects property. It also sets the value of the internal __proto__ property to 

jim = new Employee
jim.name is ""
jim.dept is "general"

sally = new Manager
sally.name is ""
sally.dept is "general"
sally.reports is [ ]

mark = new WorkerBee
mark.name is ""
mark.dept is "general"
mark.projects is [ ]

fred = new SalesPerson
fred.name is ""
fred.dept is "sales"
fred.projects is [ ]
fred.quota is 100

jane = new Engineer
jane.name is ""
jane.dept is "engineering"
jane.projects is [ ]
jane.machine is ""

SalesPerson Engineer

Employee

Object hierarchy Individual objects

Manager WorkerBee
Chapter 10, Details of the Object Model 169



Object Properties
the value of WorkerBee.prototype. (That property name has two underscore 
characters at the front and two at the end.) The __proto__ property 
determines the prototype chain used to return property values. Once these 
properties are set, JavaScript returns the new object and the assignment 
statement sets the variable mark to that object.

This process does not explicitly put values in the mark object (local values) for 
the properties mark inherits from the prototype chain. When you ask for the 
value of a property, JavaScript first checks to see if the value exists in that 
object. If it does, that value is returned. If the value is not there locally, 
JavaScript checks the prototype chain (using the __proto__ property). If an 
object in the prototype chain has a value for the property, that value is 
returned. If no such property is found, JavaScript says the object does not have 
the property. In this way, the mark object has the following properties and 
values:

mark.name = "";
mark.dept = "general";
mark.projects = [];

The mark object inherits values for the name and dept properties from the 
prototypical object in mark.__proto__. It is assigned a local value for the 
projects property by the WorkerBee constructor. This gives you inheritance 
of properties and their values in JavaScript. Some subtleties of this process are 
discussed in “Property Inheritance Revisited” on page 178.

Because these constructors do not let you supply instance-specific values, this 
information is generic. The property values are the default ones shared by all 
new objects created from WorkerBee. You can, of course, change the values of 
any of these properties. So, you could give specific information for mark as 
follows:

mark.name = "Doe, Mark";
mark.dept = "admin";
mark.projects = ["navigator"];
170 Server-Side JavaScript Guide



Object Properties
Adding Properties

In JavaScript, you can add properties to any object at run time. You are not 
constrained to use only the properties provided by the constructor function. To 
add a property that is specific to a single object, you assign a value to the 
object, as follows:

mark.bonus = 3000;

Now, the mark object has a bonus property, but no other WorkerBee has this 
property.

If you add a new property to an object that is being used as the prototype for a 
constructor function, you add that property to all objects that inherit properties 
from the prototype. For example, you can add a specialty property to all 
employees with the following statement:

Employee.prototype.specialty = "none";

As soon as JavaScript executes this statement, the mark object also has the 
specialty property with the value of "none". The following figure shows the 
effect of adding this property to the Employee prototype and then overriding it 
for the Engineer prototype.
Chapter 10, Details of the Object Model 171



Object Properties
Figure 10.4Adding properties

Object hierarchy Individual objects

WorkerBee
function WorkerBee() {
  this.projects = [];
}
WorkerBee.prototype=new Employee;

Engineer

Employee

Manager

SalesPerson

function Employee () {
  this.name = "";
  this.dept = "general";
}
Employee.prototype.specialty = "none"

jim = new Employee
jim.specialty is "none"

mark = new WorkerBee
mark.specialty is "none"

jane = new Engineer
jane.specialty is "code"

function Engineer () {
  this.dept = "engineering";
  this.machine = ""; 
}
Engineer.prototype = new WorkerBee;
Engineer.prototype.specialty = "code"
172 Server-Side JavaScript Guide



More Flexible Constructors
More Flexible Constructors
The constructor functions shown so far do not let you specify property values 
when you create an instance. As with Java, you can provide arguments to 
constructors to initialize property values for instances. The following figure 
shows one way to do this.

Figure 10.5Specifying properties in a constructor, take 1

Object hierarchy Individual objects

WorkerBee

Engineer

Employee

Manager

SalesPerson

function Employee (name, dept) {
  this.name = name || "";
  this.dept = dept || "general";
}

function WorkerBee(projs) {
  this.projects = projs || [];
}
WorkerBee.prototype=new Employee;

function Engineer (mach) {
  this.dept = "engineering";
  this.machine = mach ||"";
}
Engineer.prototype=new WorkerBee;

jane = new Engineer ("belau")
jane.name is ""
jane.dept is "engineering"
jane.projects is [ ] 
jane.machine is "belau"

mark = new WorkerBee (["javascript"])
mark.name is "" 
mark.dept is "general"
mark.projects is ["javascript"]

jim = new Employee("Jones, Jim", "marketing")
jim.name is "Jones, Jim"
jim.dept is "marketing"
Chapter 10, Details of the Object Model 173



More Flexible Constructors
The following table shows the Java and JavaScript definitions for these objects.

These JavaScript definitions use a special idiom for setting default values:

this.name = name || "";

The JavaScript logical OR operator (||) evaluates its first argument. If that 
argument converts to true, the operator returns it. Otherwise, the operator 
returns the value of the second argument. Therefore, this line of code tests to 

JavaScript Java 

function Employee (name, dept) {
    this.name = name || "";
    this.dept = dept || "general";
}

public class Employee {
public String name;
public String dept;
public Employee () {

this("", "general");
}
public Employee (name) {

this(name, "general");
}
public Employee (name, dept) {

this.name = name;
this.dept = dept;

}
}

function WorkerBee (projs) {
    this.projects = projs || [];
}
WorkerBee.prototype = new Employee;

public class WorkerBee extends Employee {
public String[] projects;
public WorkerBee () {

this(new String[0]);
}
public WorkerBee (String[] projs) {

this.projects = projs;
}

}

function Engineer (mach) {
this.dept = "engineering";
this.machine = mach || "";

}
Engineer.prototype = new WorkerBee;

public class Engineer extends WorkerBee {
public String machine;
public WorkerBee () {

this.dept = "engineering";
this.machine = "";

}
public WorkerBee (mach) {

this.dept = "engineering";
this.machine = mach;

}
}

174 Server-Side JavaScript Guide



More Flexible Constructors
see if name has a useful value for the name property. If it does, it sets 
this.name to that value. Otherwise, it sets this.name to the empty string. This 
chapter uses this idiom for brevity; however, it can be puzzling at first glance.

With these definitions, when you create an instance of an object, you can 
specify values for the locally defined properties. As shown in Figure 10.5, you 
can use the following statement to create a new Engineer:

jane = new Engineer("belau");

Jane’s properties are now:

jane.name == "";
jane.dept == "general";
jane.projects == [];
jane.machine == "belau"

Notice that with these definitions, you cannot specify an initial value for an 
inherited property such as name. If you want to specify an initial value for 
inherited properties in JavaScript, you need to add more code to the 
constructor function.
Chapter 10, Details of the Object Model 175



More Flexible Constructors
So far, the constructor function has created a generic object and then specified 
local properties and values for the new object. You can have the constructor 
add more properties by directly calling the constructor function for an object 
higher in the prototype chain. The following figure shows these new 
definitions.

Figure 10.6Specifying properties in a constructor, take 2 

Let’s look at one of these definitions in detail. Here’s the new definition for the 
Engineer constructor:

function Engineer (name, projs, mach) {
    this.base = WorkerBee;
    this.base(name, "engineering", projs);
    this.machine = mach || "";
}

Suppose you create a new Engineer object as follows:

jane = new Engineer("Doe, Jane", ["navigator", "javascript"], "belau");

jim = new Employee("Jones, Jim", "marketing");
jim.name is "Jones, Jim"
jim.dept is "marketing"

Object hierarchy Individual objects

WorkerBee

Engineer

Employee
function Employee (name, dept) {
  this.name = name || "";
  this.dept = dept || "general";
}

Manager

SalesPerson
function Engineer (name, projs, mach){
  this.base = WorkerBee;
  this.base(name, "engineering", projs);
  this.machine = mach ||"";
}
Engineer.prototype=new WorkerBee;

function WorkerBee(name, dept, projs){
  this.base = Employee;
  this.base(name, dept);
  this.projects = projs || [];
}
WorkerBee.prototype=new Employee;

mark = new WorkerBee("Smith, Mark","training",
     ["javascript"]);
mark.name is "Smith, Mark" 
mark.dept is "training"
mark.projects is ["javascript"]

jane = new Engineer ("Doe, Jane",
     ["navigator","javascript"],"belau");
jane.name is "Doe, Jane"
jane.dept is "engineering"
jane.projects is ["navigator","javascript"] 
jane.machine is "belau"
176 Server-Side JavaScript Guide



More Flexible Constructors
JavaScript follows these steps:

1. The new operator creates a generic object and sets its __proto__ property 
to Engineer.prototype.

2. The new operator passes the new object to the Engineer constructor as the 
value of the this keyword.

3. The constructor creates a new property called base for that object and 
assigns the value of the WorkerBee constructor to the base property. This 
makes the WorkerBee constructor a method of the Engineer object.

The name of the base property is not special. You can use any legal 
property name; base is simply evocative of its purpose.

4. The constructor calls the base method, passing as its arguments two of the 
arguments passed to the constructor ("Doe, Jane" and ["navigator", 
"javascript"]) and also the string “engineering”. Explicitly using 
“engineering” in the constructor indicates that all Engineer objects have the 
same value for the inherited dept property, and this value overrides the 
value inherited from Employee.

5. Because base is a method of Engineer, within the call to base, JavaScript 
binds the this keyword to the object created in Step 1. Thus, the 
WorkerBee function in turn passes the "Doe, Jane" and ["navigator", 
"javascript"] arguments to the Employee constructor function. Upon 
return from the Employee constructor function, the WorkerBee function 
uses the remaining argument to set the projects property.

6. Upon return from the base method, the Engineer constructor initializes the 
object’s machine property to "belau".

7. Upon return from the constructor, JavaScript assigns the new object to the 
jane variable.

You might think that, having called the WorkerBee constructor from inside the 
Engineer constructor, you have set up inheritance appropriately for Engineer 
objects. This is not the case. Calling the WorkerBee constructor ensures that an 
Engineer object starts out with the properties specified in all constructor 
Chapter 10, Details of the Object Model 177



Property Inheritance Revisited
functions that are called. However, if you later add properties to the Employee 
or WorkerBee prototypes, those properties are not inherited by the Engineer 
object. For example, assume you have the following statements:

function Engineer (name, projs, mach) {
    this.base = WorkerBee;
    this.base(name, "engineering", projs);
    this.machine = mach || "";
}
jane = new Engineer("Doe, Jane", ["navigator", "javascript"], "belau");
Employee.prototype.specialty = "none";

The jane object does not inherit the specialty property. You still need to 
explicitly set up the prototype to ensure dynamic inheritance. Assume instead 
you have these statements:

function Engineer (name, projs, mach) {
    this.base = WorkerBee;
    this.base(name, "engineering", projs);
    this.machine = mach || "";
}
Engineer.prototype = new WorkerBee;
jane = new Engineer("Doe, Jane", ["navigator", "javascript"], "belau");
Employee.prototype.specialty = "none";

Now the value of the jane object’s specialty property is “none”.

Property Inheritance Revisited
The preceding sections described how JavaScript constructors and prototypes 
provide hierarchies and inheritance. This section discusses some subtleties that 
were not necessarily apparent in the earlier discussions.

Local versus Inherited Values

When you access an object property, JavaScript performs these steps, as 
described earlier in this chapter:

1. Check to see if the value exists locally. If it does, return that value.

2. If there is not a local value, check the prototype chain (using the 
__proto__ property).
178 Server-Side JavaScript Guide



Property Inheritance Revisited
3. If an object in the prototype chain has a value for the specified property, 
return that value.

4. If no such property is found, the object does not have the property.

The outcome of these steps depends on how you define things along the way. 
The original example had these definitions:

function Employee () {
    this.name = "";
    this.dept = "general";
}

function WorkerBee () {
    this.projects = [];
}
WorkerBee.prototype = new Employee;

With these definitions, suppose you create amy as an instance of WorkerBee 
with the following statement:

amy = new WorkerBee;

The amy object has one local property, projects. The values for the name and 
dept properties are not local to amy and so are gotten from the amy object’s 
__proto__ property. Thus, amy has these property values:

amy.name == "";
amy.dept = "general";
amy.projects == [];

Now suppose you change the value of the name property in the prototype 
associated with Employee:

Employee.prototype.name = "Unknown"

At first glance, you might expect that new value to propagate down to all the 
instances of Employee. However, it does not.

When you create any instance of the Employee object, that instance gets a local 
value for the name property (the empty string). This means that when you set 
the WorkerBee prototype by creating a new Employee object, 
WorkerBee.prototype has a local value for the name property. Therefore, 
when JavaScript looks up the name property of the amy object (an instance of 
WorkerBee), JavaScript finds the local value for that property in 
WorkerBee.prototype. It therefore does not look farther up the chain to 
Employee.prototype.
Chapter 10, Details of the Object Model 179



Property Inheritance Revisited
If you want to change the value of an object property at run time and have the 
new value be inherited by all descendants of the object, you cannot define the 
property in the object’s constructor function. Instead, you add it to the 
constructor’s associated prototype. For example, assume you change the 
preceding code to the following:

function Employee () {
this.dept = "general";

}
Employee.prototype.name = "";

function WorkerBee () {
    this.projects = [];
}
WorkerBee.prototype = new Employee;

amy = new WorkerBee;

Employee.prototype.name = "Unknown";

In this case, the name property of amy becomes “Unknown”.

As these examples show, if you want to have default values for object 
properties and you want to be able to change the default values at run time, 
you should set the properties in the constructor’s prototype, not in the 
constructor function itself.

Determining Instance Relationships

You may want to know what objects are in the prototype chain for an object, 
so that you can tell from what objects this object inherits properties. In a class-
based language, you might have an instanceof operator for this purpose. 
JavaScript does not provide instanceof, but you can write such a function 
yourself.

As discussed in “Inheriting Properties” on page 169, when you use the new 
operator with a constructor function to create a new object, JavaScript sets the 
__proto__ property of the new object to the value of the prototype property 
of the constructor function. You can use this to test the prototype chain.

For example, suppose you have the same set of definitions already shown, with 
the prototypes set appropriately. Create a __proto__ object as follows:

chris = new Engineer("Pigman, Chris", ["jsd"], "fiji");
180 Server-Side JavaScript Guide



Property Inheritance Revisited
With this object, the following statements are all true:

chris.__proto__ == Engineer.prototype;
chris.__proto__.__proto__ == WorkerBee.prototype;
chris.__proto__.__proto__.__proto__ == Employee.prototype;
chris.__proto__.__proto__.__proto__.__proto__ == Object.prototype;
chris.__proto__.__proto__.__proto__.__proto__.__proto__ == null;

Given this, you could write an instanceOf function as follows:

function instanceOf(object, constructor) { 
while (object != null) { 

if (object == constructor.prototype) 
return true; 

object = object.__proto__; 
} 
return false; 

}

With this definition, the following expressions are all true:

instanceOf (chris, Engineer)
instanceOf (chris, WorkerBee)
instanceOf (chris, Employee)
instanceOf (chris, Object)

But the following expression is false:

instanceOf (chris, SalesPerson)

Global Information in Constructors

When you create constructors, you need to be careful if you set global 
information in the constructor. For example, assume that you want a unique ID 
to be automatically assigned to each new employee. You could use the 
following definition for Employee:

var idCounter = 1;

function Employee (name, dept) {
this.name = name || "";
this.dept = dept || "general";
this.id = idCounter++;

}

Chapter 10, Details of the Object Model 181



Property Inheritance Revisited
With this definition, when you create a new Employee, the constructor assigns 
it the next ID in sequence and then increments the global ID counter. So, if 
your next statement is the following, victoria.id is 1 and harry.id is 2:

victoria = new Employee("Pigbert, Victoria", "pubs")
harry = new Employee("Tschopik, Harry", "sales")

At first glance that seems fine. However, idCounter gets incremented every 
time an Employee object is created, for whatever purpose. If you create the 
entire Employee hierarchy shown in this chapter, the Employee constructor is 
called every time you set up a prototype. Suppose you have the following 
code:

var idCounter = 1;

function Employee (name, dept) {
this.name = name || "";
this.dept = dept || "general";
this.id = idCounter++;

}

function Manager (name, dept, reports) {...}
Manager.prototype = new Employee;

function WorkerBee (name, dept, projs) {...}
WorkerBee.prototype = new Employee;

function Engineer (name, projs, mach) {...}
Engineer.prototype = new WorkerBee;

function SalesPerson (name, projs, quota) {...}
SalesPerson.prototype = new WorkerBee;

mac = new Engineer("Wood, Mac");

Further assume that the definitions omitted here have the base property and 
call the constructor above them in the prototype chain. In this case, by the time 
the mac object is created, mac.id is 5.

Depending on the application, it may or may not matter that the counter has 
been incremented these extra times. If you care about the exact value of this 
counter, one possible solution involves instead using the following constructor:

function Employee (name, dept) {
this.name = name || "";
this.dept = dept || "general";
if (name)

this.id = idCounter++;
}

182 Server-Side JavaScript Guide



Property Inheritance Revisited
When you create an instance of Employee to use as a prototype, you do not 
supply arguments to the constructor. Using this definition of the constructor, 
when you do not supply arguments, the constructor does not assign a value to 
the id and does not update the counter. Therefore, for an Employee to get an 
assigned id, you must specify a name for the employee. In this example, 
mac.id would be 1.

No Multiple Inheritance

Some object-oriented languages allow multiple inheritance. That is, an object 
can inherit the properties and values from unrelated parent objects. JavaScript 
does not support multiple inheritance.

Inheritance of property values occurs at run time by JavaScript searching the 
prototype chain of an object to find a value. Because an object has a single 
associated prototype, JavaScript cannot dynamically inherit from more than one 
prototype chain.

In JavaScript, you can have a constructor function call more than one other 
constructor function within it. This gives the illusion of multiple inheritance. For 
example, consider the following statements:

function Hobbyist (hobby) {
this.hobby = hobby || "scuba";

}

function Engineer (name, projs, mach, hobby) {
this.base1 = WorkerBee;
this.base1(name, "engineering", projs);
this.base2 = Hobbyist;
this.base2(hobby);
this.machine = mach || "";

}
Engineer.prototype = new WorkerBee;

dennis = new Engineer("Doe, Dennis", ["collabra"], "hugo")

Further assume that the definition of WorkerBee is as used earlier in this 
chapter. In this case, the dennis object has these properties:

dennis.name == "Doe, Dennis"
dennis.dept == "engineering"
dennis.projects == ["collabra"]
dennis.machine == "hugo"
dennis.hobby == "scuba"
Chapter 10, Details of the Object Model 183



Property Inheritance Revisited
So dennis does get the hobby property from the Hobbyist constructor. 
However, assume you then add a property to the Hobbyist constructor’s 
prototype:

Hobbyist.prototype.equipment = ["mask", "fins", "regulator", "bcd"]

The dennis object does not inherit this new property.
184 Server-Side JavaScript Guide



3
Server-Side JavaScript Features
• Quick Start with the Sample 
Applications

• Basics of Server-Side JavaScript

• Session Management Service

• Other JavaScript Functionality



186 Server-Side JavaScript Guide



C h a p t e r

11
Chapter 11Quick Start with the Sample

Applications
This chapter describes the sample server-side JavaScript applications that ship 
with Netscape web servers. It introduces using server-side JavaScript by 
working with two of the simpler sample applications. 

This chapter contains the following sections:

• Hello World

• Hangman

When you install a Netscape web server, several sample JavaScript applications 
are also installed. For an introduction to the full capabilities of JavaScript 
applications, run them and browse their source code. You can also modify 
these applications as you learn about JavaScript’s capabilities. Both the source 
files and the application executables for these applications are installed in the 
$NSHOME\js\samples directory, where $NSHOME is the directory in which you 
installed the server.
Chapter 11, Quick Start with the Sample Applications 187



The following table lists the sample applications.

Table 11.1 Sample JavaScript applications 

Basic concepts

world “Hello World” application.

hangman The word-guessing game.

cipher Word game that has the player guess a cipher.

LiveWire Database Servicea

dbadmin Simple interactive SQL access using LiveWire.
If you have restricted access to the Application Manager, this 
sample is also protected with the server administrator’s user 
name and password.

videoapp Complete video store application using a relational database 
of videos.

oldvideo An alternative version of the video store application.

LiveConnectb

bugbase Simple bug entry sample using LiveConnect.

flexi Accessing remote services running on an IIOP-enabled ORB 
through LiveConnect.
This sample is not automatically added to the list of 
applications in the Application Manager; you must add it 
before you can use it.

bank Another IIOP sample. 
This sample is not automatically added to the list of 
applications in the Application Manager; you must add it 
before you can use it.

Other sample applications

sendmail Demonstrates the ability to send email messages from your 
JavaScript application.
188 Server-Side JavaScript Guide



Note In addition to sample applications, the $NSHOME\js\samples directory also 
contains an application named metadata. This application is used by Visual 
JavaScript. While you are welcome to browse its source code, do not modify 
the executable.

For more advanced sample applications, you can visit the Netscape 
AppFoundry Online home page at http://home.netscape.com/one_stop/
intranet_apps/index.html.

The rest of this chapter walks you through two of the simpler samples, giving 
you a feel for working with JavaScript applications. For now, don’t worry about 
any of the details. This discussion is intended only to give you a rough idea of 
the capabilities of JavaScript applications. Details are discussed in later 
chapters. 

Chapter 20, “Videoapp and Oldvideo Sample Applications,” discusses the 
videoapp application in detail. You should read that chapter when you’re 
ready to start working with the LiveWire Database Service.

viewer Allows you to view files on the server, using JavaScript’s 
File class.
For security reasons this application is not automatically 
installed with the Netscape server. If you install it, be sure to 
restrict access. Otherwise, unauthorized persons may be able 
to read and write files on your server. For information on 
restricting access to an application, see the administrator’s 
guide for your web server.

jsaccall Sample using external native libraries and providing access to 
CGI variables.

a. These sample applications work only if you have a supported database server installed on your network and 
have configured the client software correctly. For more information, see Chapter 17, “Configuring Your Database.” 
These applications are discussed in Chapter 20, “Videoapp and Oldvideo Sample Applications.” Before using 
videoapp or oldvideo, follow the instructions to set them up found in that chapter.

b. These applications are discussed in Chapter 22, “Accessing CORBA Services.”

Table 11.1 Sample JavaScript applications  (Continued)
Chapter 11, Quick Start with the Sample Applications 189



Hello World
Hello World
In this section, you run Hello World, the simplest sample application, and get 
an introduction to

• Reading JavaScript source files

• Embedding JavaScript in HTML

• Building and restarting an application

To get started with the sample applications, you need to access the JavaScript 
Application Manager. You can do so by loading the following URL in Navigator:

http://server.domain/appmgr

In this and other URLs throughout this manual, server represents the name of 
the server on which you run your application, such as research1 or www, and 
domain represents your Internet domain name, such as netscape.com or 
uiuc.edu. If your server has Secure Sockets Layer (SSL) enabled, use https 
instead of http in the URL.

In the Application Manager, select world in the left frame and click the Run 
button. Alternatively, you can enter the application URL in the Navigator 
Location field:

http://server.domain/world
190 Server-Side JavaScript Guide



Hello World
In response, the Application Manager displays the page shown in Figure 11.1. 

Figure 11.1Hello World 

For more information on the Application Manager, see Chapter 3, “How to 
Develop Server Applications.”

What Hello World Does

This application illustrates two important capabilities: maintaining a distinct 
client state for multiple clients and maintaining a persistent application state. 
Specifically, it performs these functions:

• Displays the IP address of the client accessing it

• Displays the names entered previously and provides a simple form for the 
user to enter a name

• Displays the number of times the user has previously accessed the page and 
the total number of times the page has been accessed by anyone
Chapter 11, Quick Start with the Sample Applications 191



Hello World
The first time a user accesses this page, the values for both names are not 
defined. The number of times the user has previously accessed the page is 0; 
the total number of times it has been accessed is 0.

Type your name and click Enter. The page now shows the name you entered 
following the text “This time you are.” Both numbers of accesses have been 
incremented. This action illustrates simple form processing. Enter another name 
and click Enter. The page now shows the new name following the text “This 
time you are” and the previous name following the text “Last time you were.” 
Again, both numbers of accesses have been incremented.

If you access the application from another instance of the Navigator (or from 
another computer), the page displays the total number of accesses and the 
number of accesses by each instance of Navigator, not just by that particular 
instance.

Looking at the Source Script

Now take a look at the JavaScript source script for this application. Using your 
favorite text editor, open the file $NSHOME\js\samples\world\hello.html, 
where $NSHOME is the directory in which you installed the Netscape server. The 
file begins with some typical HTML:

<html>
<head> 
<title> Hello World </title>

</head>
<body>
<h1> Hello World </h1>
<p>Your IP address is <server>write(request.ip);</server>

The SERVER tags in the bottom line enclose JavaScript code that is executed on 
the server. In this case, the statement write(request.ip) displays the ip 
property of the request object (the IP address of the client accessing the 
page). The write function is very important in server-side JavaScript 
applications, because you use it to add the values of JavaScript expressions to 
the HTML page sent to the client.
192 Server-Side JavaScript Guide



Hello World
The request object is part of the JavaScript Session Management Service. For a 
full description of it, see Chapter 13, “Session Management Service.” The write 
function is one of the functions JavaScript defines that is not associated with a 
specific object. For information on the write function, see “Constructing the 
HTML Page” on page 225.

Then come some statements you shouldn’t worry about quite yet. These are the 
next statements of interest:

<server> client.oldname = request.newname;</server>

This statement assigns the value of the newname property of the request object 
to the oldname property of the client object. The client object is also part 
of the JavaScript Session Management Service. For a full description of it, see 
Chapter 13, “Session Management Service.” For now, just realize that client 
can hold information about an application specific to a particular browser 
running that application.

The value of request.newname is set when a user enters a value in the form. 
Later in the file you’ll find these form statements:

<form method="post" action="hello.html">
<input type="text" name="newname" size="20">

The value of the form’s ACTION attribute is hello.html (the current filename). 
This means that when the user submits the form by clicking Enter or pressing 
the Enter key, Navigator reloads the current page. In general, ACTION can be 
any page in a JavaScript application.

The value of the NAME attribute of the text field is newname. When the page is 
submitted, this statement assigns whatever the user has entered in the text field 
to the newname property of the request object, referred to in JavaScript as 
request.newname. The values of form elements always correspond to 
properties of the request object. Properties of the request object last only for 
a single client request.

A few lines down, there is another SERVER tag, indicating that the following 
lines are server-side JavaScript statements. Here is the first group of statements:

if (client.number == null)
client.number = 0

else
client.number = 1 + parseInt (client.number, 10)
Chapter 11, Quick Start with the Sample Applications 193



Hello World
This conditional statement checks whether the number property of the client 
object has been initialized. If not, then the code initializes it to 0; otherwise, it 
increments number by 1 using the JavaScript parseInt function, which 
converts the string value to a number. Because the predefined client object 
converts all property values to strings, you must use parseInt or parseFloat 
to convert these values to numbers.

Because number is a property of the client object, it is distinct for each 
different client that accesses the application. This value indicates the number of 
times “you have been here.”

To track the total number of accesses, you use the project object, because it is 
shared by all clients accessing the application. Properties of the project object 
persist until the application is stopped. The next group of statements tracks 
accesses:

project.lock() 
if (project.number == null)

project.number = 0
else

project.number = 1 + project.number
project.unlock()

The first statement uses the lock method of the project object. This gives the 
client temporary exclusive access to the project object. Another if statement 
checks whether project.number has been defined. If not, then the code 
initializes it to 0; otherwise, the code increments it by 1. Finally, the unlock 
method releases the project object so that other clients can access it.

The final statements in the file display the values of client.number and 
project.number.

<p>You have been here <server>write(client.number);</server> times.
<br>This page has been accessed <server>write(project.number);
</server> times.
194 Server-Side JavaScript Guide



Hello World
Modifying Hello World

In this section, you modify, recompile, and restart this sample application. To 
edit the source file, you must first determine where it is. In case you don’t 
remember, the Application Manager shows the directory path of the application 
executable (the file that has the suffix .web). The source file, hello.html, 
should be in the same directory. Edit the file with your favorite text editor. The 
HTML file starts with these statements:

<html>
<head> <title> Hello World </title> </head>

<body>
<h1> Hello World </h1>
<p>Your IP address is <server>write(request.ip);</server>

<server>
write ("<P>Last time you were " + client.oldname + ".");
</server>
<p>This time you are <server>write(request.newname);</server>

<server>client.oldname = request.newname; </server>

Add a line that displays the type of browser the user has:

<p>You are using <server>write(request.agent)</server>

If you want, you can also personalize the heading of the page; for example, 
you could make the title “Fred’s Hello World.”

When you’ve finished modifying the file, run the JavaScript application 
compiler. At the command prompt, change to the directory containing the 
source code. Type this line at the command prompt to compile the application:

jsac -v -o hello.web hello.html

Alternatively, from that directory you can run the build script (for Unix) or 
build.bat script (for NT). In either case, the compiler starts and displays 
messages. The final message should be “Compiled and linked successfully.”

Publish the application’s files on your development server. To restart, access 
the Application Manager, select Hello World, then choose Restart. This loads 
the newly compiled version of the application into the server. You can then run 
the application by choosing Run. A window opens with Hello World. You see 
the changes you made to the application.
Chapter 11, Quick Start with the Sample Applications 195



Hangman
Hangman
In this section, you run and modify the Hangman sample application and get 
an introduction to:

• Using a JavaScript-only source file

• Correcting compile-time errors

• Using the trace utility for runtime debugging

Hangman is a classic word game in which the players try to guess a secret 
word. The unknown letters in the word are displayed on the screen as 
asterisks; the asterisks are replaced as a player guesses the correct letters. When 
the guess is incorrect, one more part of the hanged man is drawn. The game 
also shows the incorrect letters you have guessed.

When the hanged man is completely drawn, the player loses the game. The 
player wins by guessing all the letters in the word before the man is hanged. In 
this simple version of the game, there are only three possible secret words. 
After a game, the player can choose to play again (and use the next secret 
word) or quit.

Run the Hangman application by selecting Hangman in the Application 
Manager and clicking Run. Alternatively, you can load the application URL in 
Navigator:

http://server.domain/hangman
196 Server-Side JavaScript Guide



Hangman
In response, the Application Manager displays the page shown in the following 
figure.

Figure 11.2Hangman 

Play the game to get a feel for it.
Chapter 11, Quick Start with the Sample Applications 197



Hangman
Looking at the Source Files

The following table shows the sources files for Hangman.

Most of the application logic is in hangman.html. The basic logic is simple:

1. For a new game, initialize the secret word and other variables.

2. If the player correctly guessed a letter, substitute it into the answer.

3. If the guess was wrong, increment the number of wrong (missed) guesses.

4. Check whether the user has won or lost.

5. Draw the current version of the hanged man, using a GIF image based on 
the number of wrong guesses.

Table 11.2 Hangman source files 

hangman.html The main page for the application. This page is installed as 
the default page for Hangman in the Application Manager. 
It is displayed if the user enters just the hangman URL, with 
no specific page.

hangman.js A file containing only server-side JavaScript functions used 
in hangman.html.

youwon.html
youlost.html
thanks.html

The pages displayed when a player wins, loses, and 
finishes playing the game, respectively.

images directory Contains the Hangman images, hang0.gif, hang1.gif, 
and so on.

rules.html Contains text explaining the game. This file is not compiled 
with the application; it is included as an example of an 
uncompiled application page that is part of the same site.
198 Server-Side JavaScript Guide



Hangman
The body of the HTML file hangman.html starts with some JavaScript code 
inside a SERVER tag. First comes code to initialize a new game:

if (client.gameno == null) {
client.gameno = 1;
client.newgame = "true";

}

if (client.newgame == "true") {
if (client.gameno % 3 == 1)

client.word = "LIVEWIRE";
if (client.gameno % 3 == 2)

client.word = "NETSCAPE";
if (client.gameno % 3 == 0)

client.word = "JAVASCRIPT";
client.answer = InitAnswer(client.word);
client.used = "";
client.num_misses = 0;

}

client.newgame = "false";

This code makes extensive use of the client object to store information about 
this client playing the game. Because there is no state that needs to be saved 
between uses of this same application by different clients, the code doesn’t use 
the project or server objects.

The first statement determines whether the player has played before, by 
checking if client.gameno exists; if not, the code initializes it to 1 and sets 
client.newgame to true. Then, some simple logic assigns the “secret word” to 
client.word; there are just three secret words that players cycle through as 
they play the game. The client.gameno property keeps track of how many 
times a particular player has played. The final part of initialization uses 
InitAnswer, a function defined in hangman.js, to initialize client.answer to 
a string of asterisks.

Then comes a block of statements to process the player’s guess:

if (request.guess != null) {
request.guess = request.guess.toUpperCase().substring(0,1);
client.used = client.used + request.guess + " ";
request.old_answer = client.answer;
client.answer = Substitute (request.guess, client.word,

client.answer);
if (request.old_answer == client.answer)

client.num_misses = parseInt(client.num_misses) + 1;
}

Chapter 11, Quick Start with the Sample Applications 199



Hangman
The if statement determines whether the player has made a guess (entered a 
letter in the form field). If so, the code calls Substitute (another function 
defined in hangman.js) to substitute the guessed letter into client.answer. 
This makes client.answer the answer so far (for example, “N*T**AP*”).

The second if statement checks whether client.answer has changed since 
the last guess; if not, then the code increments client.num_misses to keep 
track of the number of incorrect guesses. You must always use parseInt to 
work with integer property values of the predefined client object.

As shown in the following code, the final if statement in the JavaScript code 
checks whether the player has won or lost, and redirects the client accordingly. 
The redirect function opens the specified HTML file and passes control to it.

if (client.answer == client.word)
redirect(addClient("youwon.html")); 

else if (client.num_misses > 6)
redirect(addClient("youlost.html"));

This is the end of the initial SERVER tag. HTML, augmented with more 
JavaScript expressions, begins. The hanged man is drawn by using a 
backquoted JavaScript expression inside an HTML IMG tag:

<IMG SRC=‘"images\hang" + client.num_misses + ".gif"‘>

The entire expression between the two backquotes (‘ ) is a JavaScript string. It 
consists of the string literal "images\hang " concatenated with the value of 
client.num_misses  (which represents an integer but is stored as a string), 
concatenated with the string literal ".gif" . There are six GIF files containing 
the hanged man in different stages of completion: image0.gif , image1.gif , 
and so on. The backquoted JavaScript generates HTML of the form:

<IMG SRC="images\hang0.gif">

These lines follow:

<PRE><SERVER>write(client.answer)</SERVER></PRE>
You have used the following letters so far: 
<SERVER>write(client.used)</SERVER>

They display the value of client.answer  (the word containing all the 
correctly guessed letters) and all the guessed letters.

The remainder of the file consists of standard HTML. One important thing to 
notice is that the ACTION attribute of the FORM tag specifies hangman.html  as 
the URL to which to submit the form. That means when you submit the form, 
the page is reloaded with the specified form values.
200 Server-Side JavaScript Guide



Hangman
Examine hangman.js, an example of a server-side JavaScript-only source file. It 
defines two functions, InitAnswer and Substitute, used in the application. 
Notice that you do not use SERVER tags in a JavaScript-only file.

Debugging Hangman

You can experiment more with JavaScript to get a feel for developing 
applications. One important task to master is debugging. In the Application 
Manager, select Hangman and choose Debug. The Application Manager opens 
a window with the application in one frame and debugging information in a 
narrow frame along the left side of the window, as shown in Figure 11.3.

Figure 11.3Debugging Hangman 

Notice that the URL is

http://server.domain/appmgr/debug.html?name=hangman
Chapter 11, Quick Start with the Sample Applications 201



Hangman
You can add a bookmark for this URL as a convenience while you work on 
Hangman. Then you don’t have to go through the Application Manager.

Try adding a function to Hangman verifying that a player’s guess is a letter (not 
a number or punctuation mark). You can use the function InitAnswer defined 
in hangman.js as a starting point. After compiling and restarting the 
application, use your bookmark to run the application in debug mode.
202 Server-Side JavaScript Guide



C h a p t e r

12
Chapter 12Basics of Server-Side JavaScript
This chapter describes the basics of server-side JavaScript. It introduces server-
side functionality and the differences between client-side and server-side 
JavaScript. The chapter describes how to embed server-side JavaScript in HTML 
files. It discusses what happens at runtime on the client and on the server, so 
that you can understand what to do when. The chapter describes how you use 
JavaScript to change the HTML page sent to the client and, finally, how to share 
information between the client and server processes.

This chapter contains the following sections:

• What to Do Where

• Overview of Runtime Processing

• Server-Side Language Overview

• Embedding JavaScript in HTML

• Runtime Processing on the Server

• Constructing the HTML Page

• Accessing CGI Variables

• Communicating Between Server and Client

• Garbage Collection

Server-side JavaScript contains the same core language as the client-side 
JavaScript with which you may already be familiar. The tasks you perform 
when running JavaScript on a server are quite different from those you perform 
when running JavaScript on a client. The different environments and tasks call 
for different objects. 
Chapter 12, Basics of Server-Side JavaScript 203



What to Do Where
What to Do Where
The client (browser) environment provides the front end to an application. In 
this environment, for example, you display HTML pages in windows and 
maintain browser session histories of HTML pages displayed during a session. 
The objects in this environment, therefore, must be able to manipulate pages, 
windows, and histories.

By contrast, in the server environment you work with the resources on the 
server. For example, you can connect to relational databases, share information 
across users of an application, or manipulate the server’s file system. The 
objects in this environment must be able to manipulate relational databases and 
server file systems.

In addition, an HTML page is not displayed on the server. It is retrieved from 
the server to be displayed on the client. The page retrieved can contain client-
side JavaScript. If the requested page is part of a JavaScript application, the 
server may generate this page on the fly.

In developing a JavaScript application, keep in mind the differences between 
client and server platforms. They are compared in the following table.

Table 12.1 Client and server comparison 

Servers Clients

Servers are usually (though not always) 
high-performance workstations with fast 
processors and large storage capacities.

Clients are often (though not always) 
desktop systems with less processor 
power and storage capacity.

Servers can become overloaded when 
accessed by thousands of clients.

Clients are often single-user machines, so 
it can be advantageous to offload 
processing to the client.

Preprocessing data on the client can also 
reduce bandwidth requirements, if the 
client application can aggregate data.
204 Server-Side JavaScript Guide



What to Do Where
There are usually a variety of ways to partition an application between client 
and server. Some tasks can be performed only on the client or on the server; 
others can be performed on either. Although there is no definitive way to know 
what to do where, you can follow these general guidelines:

As a rule of thumb, use client processing (the SCRIPT tag) for these tasks: 

• Validating user input; that is, checking that values entered in forms are valid

• Prompting a user for confirmation and displaying error or informational 
dialog boxes

• Performing aggregate calculations (such as sums or averages) or other 
processing on data retrieved from the server

• Conditionalizing HTML

• Performing other functions that do not require information from the server

Use server processing (the SERVER tag) for these tasks: 

• Maintaining information through a series of client accesses

• Maintaining data shared among several clients or applications

• Accessing a database or files on the server

• Calling external libraries on the server

• Dynamically customizing Java applets; for example, visualizing data using a 
Java applet

JavaScript’s Session Management Service provides objects to preserve 
information over time, but client-side JavaScript is more ephemeral. Client-side 
objects exist only as the user accesses a page. Also, servers can aggregate 
information from many clients and many applications and can store large 
amounts of data in databases. It is important to keep these characteristics in 
mind when partitioning functionality between client and server.
Chapter 12, Basics of Server-Side JavaScript 205



Overview of Runtime Processing
Overview of Runtime Processing
Once you’ve installed and started a JavaScript application, users can access it. 
The basic procedure is as follows:

1. A user accesses the application URL with a web browser, such as Netscape 
Communicator. The web browser sends a client request to the server for a 
page in the application.

2. If the request is to a page under the application URL, the JavaScript runtime 
engine running on the server finds information in the web file 
corresponding to that URL. For details on what happens in this and the next 
two steps, see “Runtime Processing on the Server” on page 220.

3. The runtime engine constructs an HTML page to send to the client in 
response. It runs the bytecodes associated with SERVER tags from the 
original source code HTML, creating an HTML page based on those 
bytecodes and any other HTML found in the original. For information on 
how you can influence that page that is constructed, see “Constructing the 
HTML Page” on page 225.

4. The runtime engine sends the new HTML page (which may contain client-
side JavaScript statements) to the client.

5. The JavaScript runtime engine inside the web browser interprets any client-
side JavaScript statements, formats HTML output, and displays results to the 
user.

Figure 12.1 illustrates this process.
206 Server-Side JavaScript Guide



Overview of Runtime Processing
Figure 12.1Processing a JavaScript page request 

Of course, the user must have Netscape Navigator (or some other JavaScript-
capable web browser), for the client to be able to interpret client-side JavaScript 
statements. Likewise, if you create a page containing server-side JavaScript, it 
must be installed on a Netscape server to operate properly.

For example, assume the client requests a page with this source:

<html>
<head> <title> Add New Customer </title> </head>

<body text="#FFFF00" bgcolor="#C0C0C0" background="blue_marble.gif">
<img src="billlog2.gif">
<br>

<server>
if ( project.lock() ) {

project.lastID = 1 + project.lastID;
client.customerID = project.lastID;
project.unlock();

}
</server>

<h1>Add a New Customer </h1>
<p>Note: <b>All</b> fields are required for the new customer
<form method="post" action="add.htm"></p>
<p>ID:
<br><server>write("<STRONG><FONT COLOR=\"#00FF00\">" + 

project.lastID + "</FONT></STRONG>");</server>

<!-- other html statements -->

</body>
</html>

User requests
page

Step 1:

Client interprets
and displays HTML
page, executing
client-side JavaScript
statements

Step 5:

Runtime engine finds
source page in the
web file

Runtime engine sends
page to client

Step 2:

Runtime engine 
produces HTML page;
runs all server code
while creating page

Step 3:

Step 4:
CLIENT SERVER
Chapter 12, Basics of Server-Side JavaScript 207



Server-Side Language Overview
When this page is accessed, the runtime engine on the server executes the code 
associated with the SERVER tags. (The code shown in bold.) If the new 
customer ID is 42, the server sends this HTML page to the client to be 
displayed:

<html>
<head> <title> Add New Customer </title> </head>

<body text="#FFFF00" bgcolor="#C0C0C0" background="blue_marble.gif">
<img src="billlog2.gif">
<br>

<h1>Add a New Customer </h1>
<p>Note: <b>All</b> fields are required for the new customer
<form method="post" action="add.htm"></p>
<p>ID:
<br><STRONG><FONT COLOR="#00FF00">42</FONT></STRONG>

<!-- other html statements -->

</body>
</html>

Server-Side Language Overview
Client-side and server-side JavaScript both implement the JavaScript 1.2 
language. In addition, each adds objects and functions specific to working in 
the client or the server environment. For example, client-side JavaScript 
includes the form object to represent a form on an HTML page, whereas server-
side JavaScript includes the database object for connecting to an external 
relational database.

The Client-Side JavaScript Guide discusses in detail the core JavaScript 
language and the additions specific to client-side JavaScript.

ECMA, the European standards organization for standardizing information and 
communication systems, derived its ECMA-262 standard from the JavaScript 
language. You can download the standard specification from ECMA’s web site 
at http://www.ecma.ch. 
208 Server-Side JavaScript Guide



Server-Side Language Overview
Core Language

For the most part, server-side JavaScript implements the JavaScript 1.2 language 
completely, as does client-side JavaScript. By default, however, server-side 
JavaScript differs from the JavaScript 1.2 specification in its treatment of 
comparison operators. Also, server-side JavaScript implements prototypes as 
defined in the specification, but the implications are somewhat different in the 
server environment than in the client environment. This section discusses these 
differences.

Comparison Operators

The behavior of comparison operators changed between JavaScript 1.1 and 
JavaScript 1.2. JavaScript 1.1 provided automatic conversion of operands for 
comparison operators. In particular:

• If both operands are objects, JavaScript 1.1 compares object references. 

• If either operand is null, JavaScript 1.1 converts the other operand to an 
object and compares references. 

• If one operand is a string and the other is an object, JavaScript 1.1 converts 
the object to a string and compares string characters. 

• Otherwise, JavaScript 1.1 converts both operands to numbers and compares 
numeric identity. 

JavaScript 1.2 does not provide automatic conversion. In particular: 

• JavaScript 1.2 never attempts to convert operands from one type to another.

• JavaScript 1.2 always compares the identity of operands of like type. If the 
operands are not of like type, they are not equal. 

Server-side JavaScript can provide either behavior. By default, server-side 
JavaScript provides the automatic conversion of operands as was done in 
JavaScript 1.1. If you want to have server-side JavaScript have the JavaScript 1.2 
behavior, you can specify the -a 1.2 option to jsac, the JavaScript compiler. 
The compiler is described in “Compiling an Application” on page 59.
Chapter 12, Basics of Server-Side JavaScript 209



Server-Side Language Overview
Prototypes

As described in the Server-Side JavaScript Reference, you can use the 
prototype property of many classes to add new properties to a class and to all 
of its instances. As described in “Classes and Objects” on page 213, server-side 
JavaScript adds several classes and predefined objects. For the new classes that 
have the prototype property, it works for server-side JavaScript exactly as for 
client-side JavaScript. 

You can use the prototype property to add new properties to the Blob, 
Connection, Cursor, DbPool, File, Lock, Resultset, SendMail, and 
Stproc classes. In addition, you can use the prototype property of the 
DbBuiltin class to add properties to the predefined database object. Note 
that you cannot create an instance of the DbBuiltin class; instead, you use the 
database object provided by the JavaScript runtime engine. 

You cannot use prototype with the client, project, request, and server 
objects.

Also, as for client-side JavaScript, you can use the prototype property for any 
class that you define for your application.

Remember that all JavaScript applications on a server run in the same 
environment. This is why you can share information between clients and 
applications. One consequence of this, however, is that if you use the 
prototype property to add a new property to any of the server-side classes 
added by JavaScript, the new property is available to all applications running 
on the server, not just the application in which the property was added. This 
provides you with an easy mechanism for adding functionality to all JavaScript 
applications on your server. 

By contrast, if you add a property to a class you define in your application, that 
property is available only to the application in which it was created.
210 Server-Side JavaScript Guide



Server-Side Language Overview
Usage

You need to be aware of how the JavaScript application compiler recognizes 
client-side and server-side JavaScript in an HTML file.

Client-side JavaScript statements can occur in several situations:

• By including them as statements and functions within a SCRIPT tag

• By specifying a file as JavaScript source to the SCRIPT tag

• By specifying a JavaScript expression as the value of an HTML attribute

• By including statements as event handlers within certain other HTML tags

For detailed information, see the Client-Side JavaScript Guide.

Server-side JavaScript statements can occur in these situations:

• By including them as statements and functions within a SERVER tag

• By specifying a file as JavaScript source to the JavaScript application 
compiler

• By specifying a JavaScript expression as the value or name of an HTML 
attribute

Notice that you cannot specify a server-side JavaScript statement as an event 
handler. For more information, see “Embedding JavaScript in HTML” on 
page 216.

Environment

The LiveConnect feature of the core JavaScript language works differently on 
the server than it does on the client. For more information, see Chapter 21, 
“LiveConnect Overview.”

JavaScript provides additional functionality without the use of objects. You 
access this functionality through functions not associated with any object 
(global functions). The core JavaScript language provides the global functions 
described in the following table.
Chapter 12, Basics of Server-Side JavaScript 211



Server-Side Language Overview
Server-side JavaScript adds the global functions described in the following 
table.

Table 12.2 Core JavaScript global functions 

Function Description

escape Returns the hexadecimal encoding of an argument in the ISO Latin-1 
character set; used to create strings to add to a URL.

unescape Returns the ASCII string for the specified value; used in parsing a 
string added to a URL.

isNaN Evaluates an argument to determine if it is not a number.

parseFloat Parses a string argument and returns a floating-point number.

parseInt Parses a string argument and returns an integer.

Table 12.3 JavaScript server-side global functions 

Function Description

write Adds statements to the client-side HTML page being 
generated. (See “Generating HTML” on page 226.)

flush Flushes the output buffer. (See “Flushing the Output 
Buffer” on page 226.)

redirect Redirects the client to the specified URL. (See 
“Changing to a New Client Request” on page 227.)

getOptionValue Gets values of individual options in an HTML 
SELECT form element. (See “Using Select Lists” on 
page 234.)

getOptionValueCount Gets the number of options in an HTML SELECT 
form element. (See “Using Select Lists” on page 234.)

debug Displays values of expressions in the trace window 
or frame. (See “Using the debug Function” on 
page 70.)

addClient Appends client information to URLs. (See “Manually 
Appending client Properties to URLs” on page 277.)

registerCFunction Registers a native function for use in server-side 
JavaScript. (See “Registering Native Functions” on 
page 300.)
212 Server-Side JavaScript Guide



Server-Side Language Overview
Classes and Objects

To support the different tasks you perform on each side, JavaScript has classes 
and predefined objects that work on the client but not on the server and other 
classes and predefined objects that work on the server but not on the client. 

Important These names of these objects are reserved for JavaScript. Do not create your 
own objects using any of these names.

The core JavaScript language provides the classes described in the following 
table. For details of all of these objects, see the Server-Side JavaScript Reference.

callC Calls a native function. (See “Using Native Functions 
in JavaScript” on page 300.)

deleteResponseHeader Removes information from the s sent to the client. 
(See “Request and Response Manipulation” on 
page 302.)

addResponseHeader Adds new information to the response header sent 
to the client. (See “Request and Response 
Manipulation” on page 302.)

ssjs_getClientID Returns the identifier for the client object used by 
some of JavaScript’s client-maintenance techniques. 
(See “Uniquely Referring to the client Object” on 
page 255.)

ssjs_generateClientID Returns an identifier you can use to uniquely specify 
the client object. (See “Uniquely Referring to the 
client Object” on page 255.)

ssjs_getCGIVariable Returns the value of the specified CGI environment 
variable. (See “Accessing CGI Variables” on 
page 228.)

Table 12.3 JavaScript server-side global functions  (Continued)

Function Description
Chapter 12, Basics of Server-Side JavaScript 213



Server-Side Language Overview
Server-side JavaScript includes the core classes, but not classes added by client-
side JavaScript. Server-side JavaScript has its own set of additional classes to 
support needed functionality, as described in the following table.

Table 12.4 Core JavaScript classes 

Class Description

Array Represents an array.

Boolean Represents a Boolean value.

Date Represents a date.

Function Specifies a string of JavaScript code to be compiled as a function.

Math Provides basic math constants and functions; for example, its PI 
property contains the value of pi.

Number Represents primitive numeric values.

Object Contains the base functionality shared by all JavaScript objects.

Packages Represents a Java package in JavaScript. Used with LiveConnect.

String Represents a JavaScript string.

Table 12.5 Server-side JavaScript classes 

Class Description

Connection Represents a single database connection from a pool of connections. 
(See “Individual Database Connections” on page 323.)

Cursor Represents a database cursor. (See “Manipulating Query Results with 
Cursors” on page 338.)

DbPool Represents a pool of database connections. (See “Database 
Connection Pools” on page 314.)

Stproc Represents a database stored procedure. (See “Calling Stored 
Procedures” on page 354.)

Resultset Represents the information returned by a database stored procedure. 
(See “Calling Stored Procedures” on page 354.)

File Provides access to the server’s file system. (See “File System Service” 
on page 290.)
214 Server-Side JavaScript Guide



Server-Side Language Overview
In addition, server-side JavaScript has the predefined objects described in the 
following table. These objects are all available for each HTTP request. You 
cannot create additional instances of any of these objects.

Lock Provides functionality for safely sharing data among requests, clients, 
and applications. (See “Sharing Objects Safely with Locking” on 
page 279.)

SendMail Provides functionality for sending electronic mail from your 
JavaScript application. (See “Mail Service” on page 287.)

Table 12.6 Server-side JavaScript singleton objects 

Object Description

database Represents a database connection. (See “Approaches to 
Connecting” on page 311.)

client Encapsulates information about a client/application pair, allowing 
that information to last longer than a single HTTP request. (See 
“The client Object” on page 252.)

project Encapsulates information about an application that lasts until the 
application is stopped on the server. (See “The project Object” on 
page 260.)

request Encapsulates information about a single HTTP request. (See “The 
request Object” on page 249.)

server Encapsulates global information about the server that lasts until 
the server is stopped. (See “The server Object” on page 261.)

Table 12.5 Server-side JavaScript classes  (Continued)

Class Description
Chapter 12, Basics of Server-Side JavaScript 215



Embedding JavaScript in HTML
Embedding JavaScript in HTML
There are two ways to embed server-side JavaScript statements in an HTML 
page:

• With the SERVER tag

Use this tag to enclose a single JavaScript statement or several statements. 
You precede the JavaScript statements with <SERVER> and follow them with 
</SERVER>. 

You can intermix the SERVER tag with complete HTML statements. Never 
put the SERVER tag between the open bracket (<) and close bracket (>) of a 
single HTML tag. (See “The SERVER tag” on page 217.) Also, do not use the 
<SCRIPT> tag between <SERVER> and </SERVER>.

• With a backquote (‘ ), also known as a tick

Use this character to enclose a JavaScript expressions inside an HTML tag, 
typically to generate an HTML attribute or attribute value based on 
JavaScript values. This technique is useful inside tags such as anchors, 
images, or form element tags, for example, to provide the value of an 
anchor’s HREF attribute. 

Do not use backquotes to enclose JavaScript expressions outside HTML 
tags. (See “Backquotes” on page 218.)

When you embed server-side JavaScript in an HTML page, the JavaScript 
runtime engine on the server executes the statements it encounters while 
processing the page. Most statements perform some action on the server, such 
as opening a database connection or locking a shared object. However, when 
you use the write function in a SERVER tag or enclose statements in 
backquotes, the runtime engine dynamically generates new HTML to modify 
the page it sends to the client.
216 Server-Side JavaScript Guide



Embedding JavaScript in HTML
The SERVER tag

The SERVER tag is the most common way to embed server-side JavaScript in an 
HTML page. You can use the SERVER tag in any situation; typically, however, 
you use backquotes instead if you’re generating attributes names or values for 
the HTML page.

Most statements between the <SERVER> and </SERVER> tags do not appear on 
the HTML page sent to the client. Instead, the statements are executed on the 
server. However, the output from any calls to the write function do appear in 
the resulting HTML.

The following excerpt from the Hello World sample application illustrates these 
uses:

<P>This time you are 
<SERVER>
write(request.newname);
client.oldname = request.newname;
</SERVER>
<h3>Enter your name</h3>

When given this code snippet, the runtime engine on the server generates 
HTML based on the value of request.newname in the write statement. In the 
second statement, it simply performs a JavaScript operation, assigning the value 
of request.newname to client.oldname. It does not generate any HTML. So, 
if request.newname is “Mr. Ed,” the runtime engine generates the following 
HTML for the previous snippet:

<P>This time you are 
Mr. Ed
<h3>Enter your name</h3>
Chapter 12, Basics of Server-Side JavaScript 217



Embedding JavaScript in HTML
Backquotes

Use backquotes (‘ ) to enclose server-side JavaScript expressions as substitutes 
for HTML attribute names or attribute values. JavaScript embedded in HTML 
with backquotes automatically generates HTML; you do not need to use write .

In general, HTML tags are of the form

<TAG ATTRIB="value" [...ATTRIB="value"]>

where ATTRIB is an attribute and " value"  is its value. The bracketed 
expression indicates that any number of attribute/value pairs is possible.

When you enclose a JavaScript expression in backquotes to be used as an 
attribute value, the JavaScript runtime engine automatically adds quotation 
marks for you around the entire value. You do not provide quotation marks 
yourself for this purpose, although you may need them to delimit string literals 
in the expression, as in the example that follows. The runtime engine does not 
do this for attribute names, because attribute names are not supposed to be 
enclosed in quotation marks.

For example, consider the following line from the Hangman sample 
application:

<IMG SRC=‘"images\hang" + client.num_misses + ".gif"‘>

This line dynamically generates the name of the image to use based on the 
value of client.num_misses. The backquotes enclose a JavaScript expression 
that concatenates the string "images\hang" with the integer value of 
client.num_misses and the string ".gif", producing a string such as 
"images\hang0.gif". The result is HTML such as

<IMG SRC="images\hang0.gif">

The order of the quotation marks is critical. The backquote comes first, 
indicating that the following value is a JavaScript expression, consisting of a 
string ("images\hang"), concatenated with an integer (client.num_misses), 
concatenated with another string (".gif"). JavaScript converts the entire 
expression to a string and adds the necessary quotation marks around the 
attribute value.
218 Server-Side JavaScript Guide



Embedding JavaScript in HTML
You need to be careful about using double quotation marks inside backquotes, 
because the value they enclose is interpreted as a literal value. For this reason, 
do not surround JavaScript expressions you want evaluated with quotation 
marks. For example, if the value of client.val is NetHead, then this 
statement:

<A NAME=‘client.val‘>

generates this HTML:

<A NAME="NetHead">

But this statement:

<A NAME=‘"client.val"‘>

generates this HTML:

<A NAME="client.val">

As another example, two of the ANCHOR tag’s attributes are HREF and NAME. 
HREF makes the tag a hyperlink, and NAME makes it a named anchor. The 
following statements use the choice variable to set the attrib and val 
properties of the client object and then create either a hyperlink or a target, 
depending on those values:

<SERVER>
if (choice == "link") {

client.attrib = "HREF";
client.val = "http://www.netscape.com";

}
if (choice == "target") {

client.attrib = "NAME";
client.val = "NetHead";

}
</SERVER>

<A ‘client.attrib‘=‘client.val‘>Netscape Communications</A>

If the value of choice is "link", the result is

<A HREF="http://home.netscape.com">Netscape Communications</A>

If the value of choice is "target", the result is 

<A NAME="NetHead">Netscape Communications</A>
Chapter 12, Basics of Server-Side JavaScript 219



Runtime Processing on the Server
When to Use Each Technique 

In most cases, it is clear when to use the SERVER tag and when to use 
backquotes. However, sometimes you can achieve the same result either way. 
In general, it is best to use backquotes to embed JavaScript values inside HTML 
tags, and to use the SERVER tag elsewhere.

For example, in Hangman, instead of writing

<IMG SRC=‘"images\hang" + client.num_misses + ".gif"‘>

you could write

<SERVER>
write("<IMG SRC=\"images\hang");
write(client.num_misses);
write(".gif\">");
</SERVER>

Notice the backslash that lets you use a quotation mark inside a literal string. 
Although the resulting HTML is the same, in this case backquotes are preferable 
because the source is easier to read and edit.

Runtime Processing on the Server
“Overview of Runtime Processing” on page 206 gives an overview of what 
happens at runtime when a single user accesses a page in a JavaScript 
application. This section provides more details about steps 2 through 4 of this 
process, so you can better see what happens at each stage. This description 
provides a context for understanding what you can do on the client and on the 
server.

One of the most important things to remember when thinking about JavaScript 
applications is the asynchronous nature of processing on the Web. JavaScript 
applications are designed to be used by many people at the same time. The 
JavaScript runtime engine on the server handles requests from many different 
users as they come in and processes them in the order received. 
220 Server-Side JavaScript Guide



Runtime Processing on the Server
Unlike a traditional application that is run by a single user on a single machine, 
your application must support the interleaving of multiple simultaneous users. 
In fact, since each frame in an HTML document with multiple frames generates 
its own request, what might seem to be a single request to the end user can 
appear as several requests to the runtime engine.

HTTP (Hypertext Transfer Protocol) is the protocol by which an HTML page is 
sent to a client. This protocol is stateless, that is, information is not preserved 
between requests. In general, any information needed to process an HTTP 
request needs to be sent with the request. This poses problems for many 
applications. How do you share information between different users of an 
application or even between different requests by the same user? JavaScript’s 
Session Management Service was designed to help with this problem. This 
service is discussed in detail in Chapter 13, “Session Management Service.” For 
now simply remember that the runtime engine automatically maintains the 
client, server, project, and request objects for you.

When the Netscape server receives a client request for an application page, it 
first performs authorization. This step is part of the basic server administration 
functions. If the request fails server authorization, then no subsequent steps are 
performed. If the request receives server authorization, then the JavaScript 
runtime engine continues. The runtime engine performs these steps, described 
in the following sections:

1. Constructs a new request object and constructs or restores the client object.

2. Finds the page for the request and starts constructing an HTML page to 
send to the client.

3. For each piece of the source HTML page, adds to the buffer or executes 
code.

4. Saves the client object properties.

5. Sends HTML to the client.

6. Destroys the request object and saves or destroys the client object.
Chapter 12, Basics of Server-Side JavaScript 221



Runtime Processing on the Server
Step 1. Construct request object and construct or 
restore client object

It initializes the built-in properties of the request object, such as the request’s 
IP address and any form input elements associated with the request. If the URL 
for the request specifies other properties, those are initialized for the request 
object, as described in “Encoding Information in a URL” on page 235.

If the client object already exists, the runtime engine retrieves it based on the 
specified client-maintenance technique. (See “Techniques for Maintaining the 
client Object” on page 263.) If no client object exists, the runtime engine 
constructs a new object with no properties.

You cannot count on the order in which these objects are constructed.

Step 2. Find source page and start constructing 
HTML page

When you compiled your JavaScript application, the source included HTML 
pages containing server-side JavaScript statements. The main goal of the 
runtime engine is to construct, from one of those source pages, an HTML page 
containing only HTML and client-side JavaScript statements. As it creates this 
HTML page, the runtime engine stores the partially created page in a special 
area of memory called a buffer until it is time to send the buffered contents to 
the client. 

Step 3. Add to output buffer or execute code

This step is performed for each piece of code on the source page. The details 
of the effects of various server-side statements are covered in other sections of 
this manual. For more information, see “Constructing the HTML Page” on 
page 225.

For a given request, the runtime engine keeps performing this step until one of 
these things happens:

• The buffer contains 64KB of HTML.

In this situation, the runtime engine performs steps 4 and 5 and then returns 
to step 3 with a newly emptied buffer and continues processing the same 
request. (Step 4 is only executed once, even if steps 3 and 5 are repeated.)
222 Server-Side JavaScript Guide



Runtime Processing on the Server
• The server executes the flush function.

In this situation, the runtime engine performs steps 4 and 5 and then returns 
to step 3 with a newly emptied buffer and continues processing the same 
request. (Step 4 is only executed once, even if steps 3 and 5 are repeated.)

• The server executes the redirect function.

In this situation, the runtime engine finishes this request by performing 
steps 4 through 6. It ignores anything occurring after the redirect function 
in the source file and starts a new request for the page specified in the call 
to redirect.

• It reaches the end of the page.

In this situation, the runtime engine finishes this request by performing 
steps 4 through 6.

Step 4. Save client object properties

The runtime engine saves the client object’s properties immediately before 
the first time it sends part of the HTML page to the client. It only saves these 
properties once. The runtime engine can repeat steps 3 and 5, but it cannot 
repeat this step.

The runtime engine saves the properties at this point to support some of the 
maintenance techniques for the client object. For example, the client URL 
encoding scheme sends the client properties in the header of the HTML file. 
Because the header is sent as the first part of the file, the client properties 
must be sent then.

As a consequence, you should be careful of where in your source file you set 
client properties. You should always change client properties in the file 
before any call to redirect or flush and before generating 64KB of HTML 
output.
Chapter 12, Basics of Server-Side JavaScript 223



Runtime Processing on the Server
If you change property values for the client object in the code after HTML has 
been sent to the client, those changes remain in effect for the rest of that client 
request, but they are then discarded. Hence, the next client request does not 
get those values for the properties; it gets the values that were in effect when 
content was first sent to the client. For example, assume your code contains 
these statements:

<HTML>
<P>The current customer is 
<SERVER>
client.customerName = "Mr. Ed";
write(client.customerName);
client.customerName = "Mr. Bill";
</SERVER>

<P>The current customer really is 
<SERVER>
write(client.customerName);
</SERVER>
</HTML>

This series of statements results in this HTML being sent to the client:

<P>The current customer is Mr. Ed
<P>The current customer really is Mr. Bill

And when the next client request occurs, the value of client.customerName 
is “Mr. Bill”. This very similar set of statements results in the same HTML:

<HTML>
<P>The current customer is 
<SERVER>
client.customerName = "Mr. Ed";
write(client.customerName);
flush();
client.customerName = "Mr. Bill";
</SERVER>
<P>The current customer really is 
<SERVER>
write(client.customerName);
</SERVER>
</HTML>

However, when the next client request occurs, the value of 
client.customerName is “Mr. Ed”; it is not “Mr. Bill”.

For more information, see “Techniques for Maintaining the client Object” on 
page 263. 
224 Server-Side JavaScript Guide



Constructing the HTML Page
Step 5. Send HTML to client

The server sends the page content to the client. For pages with no server-side 
JavaScript statements, the server simply transfers HTML to the client. For other 
pages, the runtime engine performs the application logic to construct HTML 
and then sends the generated page to the client.

Step 6. Destroy request object and save or destroy 
client object

The runtime engine destroys the request object constructed for this client 
request. It saves the values of the client object and then destroys the physical 
JavaScript object. It does not destroy either the project or the server object.

Constructing the HTML Page
When you compile your JavaScript application, the source includes HTML 
pages that contain server-side JavaScript statements and perhaps also HTML 
pages that do not contain server-side JavaScript statements. When a user 
accesses a page in an application that does not contain server-side JavaScript 
statements, the server sends the page back as it would any other HTML page. 
When a user accesses a page that does contain server-side JavaScript 
statements, the runtime engine on the server constructs an HTML page to send 
in response, using one of the source pages of your application.

The runtime engine scans the source page. As it encounters HTML statements 
or client-side JavaScript statements, it appends them to the page being created. 
As it encounters server-side JavaScript statements, it executes them. Although 
most server-side JavaScript statements perform processing on the server, some 
affect the page being constructed. The following sections discuss three 
functions—write, flush, and redirect—that affect the HTML page served.
Chapter 12, Basics of Server-Side JavaScript 225



Constructing the HTML Page
Generating HTML

As discussed earlier in this chapter, the write function generates HTML based 
on the value of JavaScript expression given as its argument. For example, 
consider this statement

write("<P>Customer Name is:" + project.custname + ".");

In response to this statement, JavaScript generates HTML including a paragraph 
tag and some text, concatenated with the value of the custname property of 
the project object. For example, if this property is “Fred’s software company”, 
the client would receive the following HTML:

<P>Customer Name is: Fred’s software company.

As far as the client is concerned, this is normal HTML on the page. However, it 
is actually generated dynamically by the JavaScript runtime engine.

Flushing the Output Buffer

To improve performance, JavaScript buffers the HTML page it constructs. The 
flush function immediately sends data from the internal buffer to the client. If 
you do not explicitly call the flush function, JavaScript sends data to the client 
after each 64KB of content in the constructed HTML page. 

Don’t confuse the flush function with the flush method of the File class. 
(For information on using the File class to perform file input and output, see 
“File System Service” on page 290.)

You can use flush to control the timing of data transfer to the client. For 
example, you might choose to flush the buffer before an operation that creates 
a delay, such as a database query. Also, if a database query retrieves a large 
number of rows, flushing the buffer every few rows prevents long delays in 
displaying data.

Note If you use the client cookie technique to maintain the properties of the client 
object, you must make all changes to the client object before flushing the 
buffer. For more information, see “Techniques for Maintaining the client 
Object” on page 263.
226 Server-Side JavaScript Guide



Constructing the HTML Page
The following code fragment shows how flush is used. Assume that your 
application needs to perform some action on every customer in your customer 
database. If you have a lot of customers, this could result in a lengthy delay. So 
that the user doesn’t have to wait in front of an unchanging screen, your 
application could send output to the client before starting the processing and 
then again after processing each row. To do so, you could use code similar to 
the following:

flush();
conn.beginTransaction();
cursor = conn.cursor ("SELECT * FROM CUSTOMER", true);
while ( cursor.next() ) {

// ... process the row ...
flush();

}
conn.commitTransaction();
cursor.close();

Changing to a New Client Request

The redirect function terminates the current client request and starts another 
for the specified URL. For example, assume you have this statement:

redirect("http://www.royalairways.com/apps/page2.html");

When the runtime engine executes this statement, it terminates the current 
request. The runtime engine does not continue to process the original page. 
Therefore any HTML or JavaScript statements that follow the call to redirect 
on the original page are lost. The client immediately loads the indicated page, 
discarding any previous content.

The parameter to redirect can be any server-side JavaScript statement that 
evaluates to a URL. In this way, you can dynamically generate the URL used in 
redirect. For example, if a page defines a variable choice, you can redirect 
the client to a page based on the value of choice, as follows:

redirect ("http://www.royalairways.com/apps/page" 
+ choice + ".html");

If you want to be certain that the current client properties are available in the 
new request, and you’re using one of the URL-based maintenance techniques 
for the client object, you should encode the properties in the URL you pass to 
redirect. For information on doing so, see “Manually Appending client 
Properties to URLs” on page 277.
Chapter 12, Basics of Server-Side JavaScript 227



Accessing CGI Variables
In general, properties of the request object and top-level JavaScript variables 
last only for a single client request. When you redirect to a new page, you may 
want to maintain some of this information for multiple requests. You can do so 
by appending the property names and values to the URL, as described in 
“Encoding Information in a URL” on page 235.

Accessing CGI Variables
Like most web servers, Netscape servers set values for a particular set of 
environment variables, called CGI variables, when setting up the context for 
running a CGI script. Writers of CGI scripts expect to be able to use these 
variables in their scripts.

By contrast, Netscape web servers do not set up a separate environment for 
server-side JavaScript applications. Nevertheless, some of the information 
typically set in CGI variables can also be useful in JavaScript applications. The 
runtime engine provides several mechanisms for accessing this information:

• By accessing properties of the predefined request object

• By using the ssjs_getCGIVariable function to access some CGI variables 
and other environment variables

• By using the httpHeader method of request to access properties of the 
client request header

The following table lists properties of the request object that correspond to 
CGI variables. For more information on these properties and on the request 
object in general, see “The request Object” on page 249.
228 Server-Side JavaScript Guide



Accessing CGI Variables
The server-side function ssjs_getCGIVariable lets you access the 
environment variables set in the server process, including the CGI variables 
listed in the following table.

Table 12.7 CGI variables accessible as properties of the request object 

CGI variable Property Description

AUTH_TYPE auth_type The authorization type, if the request is 
protected by any type of authorization. 
Netscape web servers support HTTP basic 
access authorization. Example value: basic

REMOTE_USER auth_user The name of the local HTTP user of the web 
browser, if HTTP access authorization has been 
activated for this URL. Note that this is not a 
way to determine the user name of any person 
accessing your program. Example value: 
ksmith

REQUEST_METHOD method The HTTP method associated with the request. 
An application can use this to determine the 
proper response to a request. Example value: 
GET

SERVER_PROTOCOL protocol The HTTP protocol level supported by the 
client’s software. Example value: HTTP/1.0

QUERY_STRING query Information from the requesting HTML page; if 
“?” is present, the information in the URL that 
comes after the “?”. Example value: x=42

Table 12.8 CGI variables accessible through ssjs_getCGIVariable 

Variable Description

AUTH_TYPE The authorization type, if the request is protected by any 
type of authorization. Netscape web servers support HTTP 
basic access authorization. Example value: basic

HTTPS If security is active on the server, the value of this variable 
is ON; otherwise, it is OFF. Example value: ON

HTTPS_KEYSIZE The number of bits in the session key used to encrypt the 
session, if security is on. Example value: 128
Chapter 12, Basics of Server-Side JavaScript 229



Accessing CGI Variables
HTTPS_SECRETKEYSIZE The number of bits used to generate the server’s private 
key. Example value: 128

PATH_INFO Path information, as sent by the browser. Example value: 
/cgivars/cgivars.html

PATH_TRANSLATED The actual system-specific pathname of the path contained 
in PATH_INFO. Example value: /usr/ns-home/
myhttpd/js/samples/cgivars/cgivars.html

QUERY_STRING Information from the requesting HTML page; if “?” is 
present, the information in the URL that comes after the 
“?”. Example value: x=42

REMOTE_ADDR The IP address of the host that submitted the request. 
Example value: 198.93.95.47

REMOTE_HOST If DNS is turned on for the server, the name of the host 
that submitted the request; otherwise, its IP address. 
Example value: www.netscape.com

REMOTE_USER The name of the local HTTP user of the web browser, if 
HTTP access authorization has been activated for this URL. 
Note that this is not a way to determine the user name of 
any person accessing your program. Example value: 
ksmith

REQUEST_METHOD The HTTP method associated with the request. An 
application can use this to determine the proper response 
to a request. Example value: GET

SCRIPT_NAME The pathname to this page, as it appears in the URL. 
Example value: cgivars.html

SERVER_NAME The hostname or IP address on which the JavaScript 
application is running, as it appears in the URL. Example 
value: piccolo.mcom.com

SERVER_PORT The TCP port on which the server is running. Example 
value: 2020

SERVER_PROTOCOL The HTTP protocol level supported by the client’s 
software. Example value: HTTP/1.0

SERVER_URL The URL that the user typed to access this server. Example 
value: https://piccolo:2020

Table 12.8 CGI variables accessible through ssjs_getCGIVariable  (Continued)

Variable Description
230 Server-Side JavaScript Guide



Accessing CGI Variables
The syntax of ssjs_getCGIVariable is shown here:

value = ssjs_getCGIVariable("name");

This statement sets the variable value to the value of the name CGI variable. If 
you supply an argument that isn’t one of the CGI variables listed in Table 12.8, 
the runtime engine looks for an environment variable by that name in the 
server environment. If found, the runtime engine returns the value; otherwise, it 
returns null. For example, the following code assigns the value of the standard 
CLASSPATH environment variable to the JavaScript variable classpath:

classpath = ssjs_getCGIVariable("CLASSPATH");

The httpHeader method of request returns the header of the current client 
request. For a CGI script, Netscape web servers set CGI variables for some of 
the information in the header. For JavaScript applications, you get that 
information directly from the header. Table 12.9 shows information available as 
CGI variables in the CGI environment, but as header properties in server-side 
JavaScript. In header properties, the underlines in the CGI-variable name (_) are 
replaced with dashes (-); for example, the CGI variable CONTENT_LENGTH 
corresponds to the header property content-length.

For more information on manipulating the client header, see “Request and 
Response Manipulation” on page 302.

Table 12.9 CGI variables accessible through the client header 

CGI variable Description

CONTENT_LENGTH The number of bytes being sent by the client. 

CONTENT_TYPE The type of data being sent by the client, if a form is 
submitted with the POST method.

HTTP_ACCEPT Enumerates the types of data the client can accept.

HTTP_USER_AGENT Identifies the browser software being used to access 
your program. 

HTTP_IF_MODIFIED_SINCE A date, set according to GMT standard time, allowing 
the client to request a response be sent only if the data 
has been modified since the given date. 
Chapter 12, Basics of Server-Side JavaScript 231



Communicating Between Server and Client
The following table shows the CGI variables that are not supported by server-
side JavaScript, because they are not applicable when running JavaScript 
applications.

Communicating Between Server and Client
Frequently your JavaScript application needs to communicate information 
either from the server to the client or from the client to the server. For example, 
when a user first accesses the videoapp application, the application 
dynamically generates the list of movie categories from the current database 
contents. That information, generated on the server, needs to be communicated 
back to the client. Conversely, when the user picks a category from that list, the 
user’s choice must be communicated back to the server so that it can generate 
the set of movies.

Sending Values from Client to Server

Here are several ways to send information from the client to the server:

• The runtime engine automatically creates properties of the request object 
for each value in an HTML form. (See “Accessing Form Values” on 
page 233.)

• If you’re using a URL-based maintenance technique for properties of the 
client object, you can modify the URL sent to the server to include 
property values for the client and request objects. (See “Encoding 
Information in a URL” on page 235.)

• You can use cookies to set property values for the client and request 
objects. (See “Using Cookies” on page 239.)

Table 12.10 CGI variables not supported by server-side JavaScript 

Variable Description

GATEWAY_INTERFACE The version of CGI running on the server. Not applicable to 
JavaScript applications.

SERVER_SOFTWARE The type of server you are running. Not available to 
JavaScript applications.
232 Server-Side JavaScript Guide



Communicating Between Server and Client
• On the client, you can modify the header of the client request. You can then 
use the httpHeader method of the request object to manipulate the 
header and possibly the body of the request. (See “Request and Response 
Manipulation” on page 302.)

• You can use LiveConnect with CORBA services to communicate between 
client and server. (See Chapter 22, “Accessing CORBA Services.”)

Accessing Form Values

Forms are the bread and butter of a JavaScript application. You use form 
elements such as text fields and radio buttons as the primary mechanism for 
transferring data from the client to the server. When the user clicks a Submit 
button, the browser submits the values entered in the form to the server for 
processing.

The ACTION attribute of the FORM tag determines the application to which the 
values are submitted. To send information to the application on the server, use 
an application URL as the value of the ACTION attribute.

If the document containing the form is a compiled part of the same application, 
you can simply supply the name of the page instead of a complete URL. For 
example, here is the FORM tag from the Hangman sample application:

<FORM METHOD="post" ACTION="hangman.html">

Forms sent to server-side JavaScript applications can use either get or post as 
the value of the METHOD attribute.

Note Server-side JavaScript applications do not automatically support file upload. 
That is, if the action specified is a page in a JavaScript application and you 
submit an INPUT element of TYPE="file", your application must manually 
handle the file, as described in “Request and Response Manipulation” on 
page 302.

Each input element in an HTML form corresponds to a property of the request 
object. The property name is specified by the NAME attribute of the form 
element. For example, the following HTML creates a request property called 
guess that accepts a single character in a text field. You refer to this property in 
server-side JavaScript as request.guess.

<FORM METHOD="post" ACTION="hangman.html"> 
<P> 
What is your guess? 
<INPUT TYPE="text" NAME="guess" SIZE="1">
Chapter 12, Basics of Server-Side JavaScript 233



Communicating Between Server and Client
A SELECT form element that allows multiple selections requires special 
treatment, because it is a single property that can have multiple values. You can 
use the getOptionValue function to retrieve the values of selected options in a 
multiple select list. For more information, see “Using Select Lists” on page 234.

For more information on the request object, see “The request Object” on 
page 249.

If you want to process data on the client first, you have to create a client-side 
JavaScript function to perform processing on the form-element values and then 
assign the output of the client function to a form element. You can hide the 
element, so that it is not displayed to the user, if you want to perform client 
preprocessing. 

For example, suppose you have a client-side JavaScript function named calc 
that performs calculations based on the user’s input. You want to pass the 
result of this function to your application for further processing. You first need 
to define a hidden form element for the result, as follows:

<INPUT TYPE="hidden" NAME="result" SIZE=5>

Then you need to create an onClick event handler for the Submit button that 
assigns the output of the function to the hidden element:

<INPUT TYPE="submit" VALUE="Submit"
onClick="this.form.result.value=calc(this.form)">

The value of result is submitted along with any other form-element values. 
This value can be referenced as request.result in the application.

Using Select Lists

The HTML SELECT tag, used with the MULTIPLE attribute, allows you to 
associate multiple values with a single form element. If your application 
requires select lists that allow multiple selected options, you use the 
getOptionValue function to get the values in JavaScript. The syntax of 
getOptionValue is

itemValue = getOptionValue(name, index)

Here, name is the string specified as the NAME attribute of the SELECT tag, and 
index is the zero-based ordinal index of the selected option. The 
getOptionValue function returns the value of the selected item, as specified 
by the associated OPTION tag.
234 Server-Side JavaScript Guide



Communicating Between Server and Client
The function getOptionValueCount returns the number of options (specified 
by OPTION tags) in the select list. It requires only one argument, the string 
containing the name of the SELECT tag.

For example, suppose you have the following element in a form:

<SELECT NAME="what-to-wear" MULTIPLE SIZE=8>
<OPTION SELECTED>Jeans
<OPTION>Wool Sweater
<OPTION SELECTED>Sweatshirt
<OPTION SELECTED>Socks
<OPTION>Leather Jacket
<OPTION>Boots
<OPTION>Running Shoes
<OPTION>Cape

</SELECT>

You could process the input from this select list as follows:

<SERVER>
var i = 0;
var howmany = getOptionValueCount("what-to-wear");
while ( i < howmany ) {

var optionValue = 
getOptionValue("what-to-wear", i);

write ("<br>Item #" + i + ": " + optionValue + "\n");
i++;

}
</SERVER>

If the user kept the default selections, this script would return:

Item #0: Jeans
Item #1: Sweatshirt
Item #2: Socks

Encoding Information in a URL

You can manually encode properties of the request object into a URL that 
accesses a page of your application. In creating the URL, you use the following 
syntax:

URL?varName1=value1[&varName2=value2...]

Here, URL is the base URL, each varNameN is a property name, and each 
valueN is the corresponding property value (with special characters escaped). 
In this scheme, the base URL is followed by a question mark (?) which is in 
turn followed by pairs of property names and their values. Separate each pair 
Chapter 12, Basics of Server-Side JavaScript 235



Communicating Between Server and Client
with an ampersand (&). When the runtime engine on the server receives the 
resultant URL as a client request, it creates a request property named 
varNameN for each listed variable.

For example, the following HTML defines a hyperlink to a page that instantiates 
the request properties i and j to 1 and 2, respectively. JavaScript statements 
in refpage.html can then refer to these variables as request.i and 
request.j.

<A HREF="refpage.html?i=1&j=2">Click Here</A>

Instead of using a static URL string, as in the preceding example, you can use 
server-side or client-side JavaScript statements to dynamically generate the URL 
that encodes the property values. For example, your application could include 
a page such as the following:

<HTML>
<HEAD>
<SCRIPT>
function compute () {

// ...replace with an appropriate computation 
// that returns a search string ...
return "?num=25";

}
</SCRIPT>
</HEAD>

<BODY>
<a HREF="refpage.htm" onClick="this.search=compute()">
Click here to submit a value.</a></p>

</BODY>
</HTML>

In this case, when the user clicks the link, the runtime engine on the client runs 
the onClick event handler. This event handler sets the search portion of the 
URL in the link to whatever string is returned by the compute function. When 
the runtime engine on the server gets this request, it creates a num property for 
the request object and sets the value to 25.

As a second example, you might want to add request properties to a URL 
created in a server-side script. This is most likely to be useful if you’ll be 
redirecting the client request to a new page. To add request properties in a 
server-side script, you could instead use this statement:

<A HREF=‘"refpage.html?i=" + escape(i) + "&j=" + escape(j)‘>
Click Here</A>
236 Server-Side JavaScript Guide



Communicating Between Server and Client
If you create a URL in a server-side JavaScript statement, the client object’s 
properties are not automatically added. If you’re using a URL-based 
maintenance technique for the client object, use the addClient function to 
generate the final URL. In this example, the statement would be:

<A HREF=‘addClient("refpage.html?i=" + escape(i)
+ "&j=" + escape(j))‘>Click Here</A>

For information on using addClient, see “Manually Appending client 
Properties to URLs” on page 277.

The core JavaScript escape function allows you to encode names or values 
appended to a URL that may include special characters. In general, if an 
application needs to generate its own property names and values in a URL 
request, you should use escape, to ensure that all values are interpreted 
properly. For more information, see the Server-Side JavaScript Reference.

Remember that a URL does not change when a user reloads it, although the 
page’s contents may change. Any properties sent in the original URL are 
restored to their values in the URL as it was first sent, regardless of any changes 
that may have been made during processing. For example, if the user clicks the 
Reload button to reload the URL in the previous example, i and j are again set 
to 1 and 2, respectively.

Sending Values from Server to Client

A JavaScript application communicates with the client through HTML and 
client-side JavaScript. If you simply want to display information to the user, 
there is no subtlety: you create the HTML to format the information as you want 
it displayed.

However, you may want to send values to client scripts directly. You can do 
this in a variety of ways, including these three:

• You can set default form values and values for hidden form elements. (See 
“Default Form Values and Hidden Form Elements” on page 238.)

• You can directly substitute information in client-side SCRIPT statements or 
event handlers. (See “Direct Substitution” on page 239.)

• You can use cookies to send client property values or other values to the 
client. (See “Using Cookies” on page 239.)
Chapter 12, Basics of Server-Side JavaScript 237



Communicating Between Server and Client
• You can modify the header of the response sent to the client, using the 
deleteResponseHeader and addResponseHeader functions. (See 
“Request and Response Manipulation” on page 302.)

• You can use LiveConnect with CORBA services to communicate between 
client and server. (See Chapter 22, “Accessing CORBA Services.”)

Default Form Values and Hidden Form Elements

To display an HTML form with default values set in the form elements, use the 
INPUT tag to create the desired form element, substituting a server-side 
JavaScript expression for the VALUE attribute. For example, you can use the 
following statement to display a text element and set the default value based on 
the value of client.custname:

<INPUT TYPE="text" NAME="customerName" SIZE="30"
VALUE=‘client.custname‘>

The initial value of this text field is set to the value of the variable 
client.custname. So, if the value of client.custname is Victoria, this 
statement is sent to the client:

<INPUT TYPE="text" NAME="customerName" SIZE="30" VALUE="Victoria">

You can use a similar technique with hidden form elements if you do not want 
to display the value to the user, as in this example:

<INPUT TYPE="hidden" NAME="custID" SIZE=5 VALUE=‘client.custID‘>

In both cases, you can use these values in client-side JavaScript in property 
values of objects available on the client. If these two elements are in a form 
named entryForm, then these values become the JavaScript properties 
document.entryForm.customerName and document.entryForm.custID, 
respectively. You can then perform client processing on these values in client-
side scripts. For more information, see the Client-Side JavaScript Guide.
238 Server-Side JavaScript Guide



Communicating Between Server and Client
Direct Substitution

You can also use server-side JavaScript to generate client-side scripts. These 
values can be used in subsequent statements on the client. As a simple 
example, you could initialize a client-side variable named budget based on the 
value of client.amount as follows:

<p>The budget is:
<SCRIPT>
<SERVER>
write("var budget = " + client.amount);
</SERVER>
document.write(budget);
</SCRIPT>

If the value of client.amount is 50, this would generate the following 
JavaScript:

<p>The budget is:
<SCRIPT>
var budget = 50
document.write(budget);
</SCRIPT>

When run on the client, this appears as follows:

The budget is: 50

Using Cookies

Cookies are a mechanism you can use on the client to maintain information 
between requests. This information resides in a file called cookie.txt (the 
cookie file) stored on the client machine. The Netscape cookie protocol is 
described in detail in the Client-Side JavaScript Guide.

You can use cookies to send information in both directions, from the client to 
the server and from the server to the client. Cookies you send from the client 
become properties of either the client object or of the request object. 
Although you can send any string value to the client from the server as a 
cookie, the simplest method involves sending client object properties.
Chapter 12, Basics of Server-Side JavaScript 239



Communicating Between Server and Client
Properties of the client Object as Cookies

If an application uses the client cookie technique to maintain the client 
object, the runtime engine on the server stores the names and values of 
properties of the client object as cookies on the client. For information on 
using cookies to maintain the client object, see “Techniques for Maintaining 
the client Object” on page 263.

For a client property called propName, the runtime engine automatically 
creates a cookie named NETSCAPE_LIVEWIRE.propName, assuming the 
application uses the client cookie maintenance technique. The runtime engine 
encodes property values as required by the Netscape cookie protocol. 

To access these cookies in a client-side JavaScript script, you can extract the 
information using the document.cookie property and a function such as the 
getSSCookie function shown here:

function getSSCookie(name) {
var search = "NETSCAPE_LIVEWIRE." + name + "=";
var retstr = "";
var offset = 0;
var end = 0;
if (document.cookie.length > 0) {

offset = document.cookie.indexOf(search);
if (offset != -1) {

offset += search.length;
end = document.cookie.indexOf(";", offset);
if (end == -1) 

end = document.cookie.length;
retstr = unescape(document.cookie.substring(offset, end));

}
}
return(retstr)

}

The getSSCookie function is not a predefined JavaScript function. If you need 
similar functionality, you must define it for your application.

To send information to the server to become a property of the client object, 
add a cookie whose name is of the form NETSCAPE_LIVEWIRE.propName. 
Assuming your application uses the client cookie maintenance technique, the 
runtime engine on the server creates a client property named propName for 
this cookie. 
240 Server-Side JavaScript Guide



Communicating Between Server and Client
To do so, you can use a function such as the following:

function setSSCookie (name, value, expire) {
document.cookie = 

"NETSCAPE_LIVEWIRE." + name + "=" 
+ escape(value)
+ ((expire == null) ? "" : ("; expires=" + expire.toGMTString()));

}

Here, too, the setSSCookie function is not a predefined JavaScript function. If 
you need similar functionality, you must define it for your application.

You can call these functions in client-side JavaScript to get and set property 
values for the client object, as in the following example:

var value = getSSCookie ("answer"); 
if (value == "") {

var expires = new Date();
expires.setDate(expires.getDate() + 7);
setSSCookie ("answer", "42", Expires);

}
else 

document.write ("The answer is ", value);

This group of statements checks whether there is a client property called 
answer. If not, the code creates it and sets its value to 42; if so, it displays its 
value.

Other Cookies

When a request is sent to the server for a page in a JavaScript application, the 
header of the request includes all cookies currently set for the application. You 
can use the request.httpHeader method to access these cookies from server-
side JavaScript and assign them to server-side variables. Conversely, you can 
use the addResponseHeader function to add new cookies to the response sent 
back to the client. This functionality is described in “Request and Response 
Manipulation” on page 302.

On the client, you can use a function such as the following to access a 
particular cookie:

function GetCookie (name) {
var arg = name + "=";
var alen = arg.length;
var clen = document.cookie.length;
var i = 0;
while (i < clen) {
Chapter 12, Basics of Server-Side JavaScript 241



Garbage Collection
var j = i + alen; 
if (document.cookie.substring(i, j) == arg) {

var end = document.cookie.indexOf (";", j); 
if (end == -1) 

end = document.cookie.length; 
return unescape(document.cookie.substring(j, end));

}
i = document.cookie.indexOf(" ", i) + 1; 
if (i == 0) break; 

} 
return null; 

} 

And you can use a function such as the following to set a cookie on the client:

function setCookie (name, value, expires, path, domain, secure) {
document.cookie = 

name + "="
+ escape(value)
+ ((expires) ? "; expires=" + expires.toGMTString() : "")
+ ((path) ? "; path=" + path : "")
+ ((domain) ? "; domain=" + domain : "")
+ ((secure) ? "; secure" : ""); 

} 

If the path you specify for a cookie is in your JavaScript application, then that 
cookie will be sent in any request sent to the application.

You can use this technique for passing cookie information between the client 
and the server regardless of the client object maintenance technique you use.

Garbage Collection
Server-side JavaScript contains a garbage collector that automatically frees 
memory allocated to objects no longer in use. Most users do not need to 
understand the details of the garbage collector. This section gives an overview 
of the garbage collector and information on when it is invoked.

Important This section provides advanced users with a peek into the internal workings of 
server-side JavaScript. Netscape does not guarantee that these algorithms will 
remain the same in future releases.

The JavaScript object space consists of arenas. That is, the JavaScript runtime 
engine allocates a set of arenas from which it allocates objects. When the 
runtime engine receives a request for a new object, it first looks on the free list. 
242 Server-Side JavaScript Guide



Garbage Collection
If the free list has available space, the engine allocates that space. Otherwise, 
the runtime engine allocates space from the arena currently in use. If all arenas 
are in use, the runtime engine allocates a new arena. When all the objects from 
an arena are garbage, the garbage collector frees the arena. 

A JavaScript string is typically allocated as a GC object. The string has a 
reference to the bytes of the string which are also allocated in the process heap. 
When a string object is garbage collected, the string’s bytes are freed.

The JavaScript garbage collector is a based on mark and sweep. It does not 
relocate objects. The garbage collector maintains a root set of objects at all 
times. This root set includes the JavaScript stack, the global object for the 
JavaScript context, and any JavaScript objects which have been explicitly added 
to the root set. During the mark phase, the garbage collector marks all objects 
that are reachable from the root set. At the end of this phase, all unmarked 
objects are garbage. All garbage objects are collected into a free list.

A garbage collection is considered necessary if the number of bytes currently in 
use is 1.5 times the number of bytes that were in use at the end of the last 
garbage collection. The runtime engine checks for this condition at the 
following points and starts the garbage collector if it needs to:

• At the end of every request.

• During a long JavaScript computation after a predetermined number of 
JavaScript bytecode operations have executed, and only when a branch 
operation is executed. If you have code with no branch operations, garbage 
collection won’t occur simply because a predetermined number of 
operations have executed. (A branch operation can be an if statement, 
while statement, function call, and so on.)

• When an attempt is made to allocate a new JavaScript object but JavaScript 
has no available memory and no additional memory can be obtained from 
the operation system.

• When the lw_ForceGarbageCollection function is called.
Chapter 12, Basics of Server-Side JavaScript 243



Garbage Collection
244 Server-Side JavaScript Guide



C h a p t e r

13
Chapter 13Session Management Service
This chapter describes the Session Management Service objects available in 
server-side JavaScript for sharing data among multiple client requests to an 
application, among multiple users of a single application, or even among 
multiple applications on a server.

This chapter contains the following sections:

• Overview of the Predefined Objects

• The request Object

• The client Object

• The project Object

• The server Object

• Techniques for Maintaining the client Object

• Sharing Objects Safely with Locking

The Session Management Service is a set of capabilities that control the 
construction and destruction of various predefined objects during any server 
session. These capabilities are provided in the predefined objects request, 
client, project, and server. 

In addition, you can construct instances of Lock to control access during the 
sharing of information. Lock instances provide you with fine-grained control 
over information sharing by getting exclusive access to specified objects.
Chapter 13, Session Management Service 245



Overview of the Predefined Objects
Overview of the Predefined Objects
The predefined request, client, project, and server objects contain data 
that persists for different periods and is available to different clients and 
applications. There is one server object shared by all running applications on 
the server. There is a separate project object for each running application. 
There is one client object for each browser (client) accessing a particular 
application. Finally, there is a separate request object for each client request 
from a particular client to a particular application. Figure 13.1 illustrates the 
relative availability of the different objects.

Figure 13.1Relative availability of session-management objects 

The JavaScript runtime engine on the server constructs session-management 
objects at different times. These objects are useful for storing a variety of data. 
You can define application-specific properties for any of these objects. 

• request object

Contains data available only to the current client request. Nothing else 
shares this object. The request object has predefined properties you can 
access.

Treat the request object almost as a read-only object. The runtime engine 
stores the current value of all form elements as properties of the request 
object. You can use it to store information specific to a single request, but it 
is more efficient to use JavaScript variables for this purpose.

The runtime engine constructs a request object each time the server 
responds to a client request from the web browser. It destroys the object at 
the end of the client request. The runtime engine does not save request 
data at all.
246 Server-Side JavaScript Guide



Overview of the Predefined Objects
For more details, see “The request Object” on page 249.

• client object

Contains data available only to an individual client/application pair. If a 
single client is connected to two different applications at the same time, the 
JavaScript runtime engine constructs a separate client object for each 
client/application pair. All requests from a single client to the same 
application share the same client object. The client object has no 
predefined properties.

In general, use the client object for data that should be shared across 
multiple requests from the same client (user) but that should not be shared 
across multiple clients of the application. For example, you can store a 
user’s customer ID as a property of the client object. 

The runtime engine physically constructs the client object for each client 
request, but properties persist across the lifetime of the client’s connection 
to the application. Therefore, although the physical client object exists 
only for a single client request, conceptually you can think of it as being 
constructed when the client is first connected to the application, and not 
destroyed until the client stops accessing the application. There are several 
approaches to maintaining the properties of the client object across 
multiple requests. For more information, see “Techniques for Maintaining 
the client Object” on page 263. 

The runtime engine destroys the client object when the client has finished 
using the application. In practice, it is tricky for the JavaScript runtime 
engine to determine when the client object and its properties should be 
destroyed. For information on how it makes this determination, see “The 
Lifetime of the client Object” on page 275. Also, see “The client Object” on 
page 252.

• project object

Contains data that is available to all clients accessing any part of the 
application. All clients accessing the same application share the same 
project object. The project object has no predefined properties.

In general, use the project object to share data among multiple clients 
accessing the same application. For example, you can store the next 
available customer ID as a property of the project object. When you use 
the project object to share data, you need to be careful about 
simultaneous access to that data; see “Sharing Objects Safely with Locking” 
on page 279. Because of limitations on the client object’s properties, you 
sometimes use the project object to store data for a single client.
Chapter 13, Session Management Service 247



Overview of the Predefined Objects
The runtime engine constructs the project object when the application is 
started by the Application Manager or when the server is started. It destroys 
the object when the application or the server is stopped.

For more details, see “The project Object” on page 260.

• server object

Contains data available to all clients and all applications for the entire 
server. All applications and all client/application pairs share the same 
server object. The server object has predefined properties you can 
access.

Use the server object to share data among multiple applications on the 
server. For example, you might use the server object to track usage of all 
of the applications on your server. When you use the server object to 
share data, you need to be careful about simultaneous access to that data; 
see “Sharing Objects Safely with Locking” on page 279.

The runtime engine constructs the server object when the server is started 
and destroys the object when the server is stopped. 

For more details, see “The server Object” on page 261.

It may help to think about how these objects correspond to a URL for a page in 
your application. Consider Figure 13.2. 

Figure 13.2Predefined objects in a URL 

Joe

Server

Client

Project

http://www.royalairways.com/videoapp/category.htm

Request

JavaScript for
category.html
248 Server-Side JavaScript Guide



The request Object
In this illustration, Joe requests the URL http://www.royalairways.com/
videoapp/category.html, corresponding to a page in the videoapp sample 
application. When the runtime engine receives the request, it uses the already-
existing server object corresponding to www.royalairways.com and the 
already-existing project object corresponding to the videoapp application. 
The engine creates a client object corresponding to the combination of Joe 
and the videoapp application. If Joe has already accessed other pages of this 
application, this new client object uses any stored properties. Finally, the 
engine creates a new request object for the specific request for the 
category.html page.

The request Object
The request object contains data specific to the current client request. It has 
the shortest lifetime of any of the objects. JavaScript constructs a new request 
object for each client request it receives; for example, it creates an object when

• A user manually requests a URL by typing it in or choosing a bookmark.

• A user clicks a hyperlink or otherwise requests a document that refers to 
another page.

• Client-side JavaScript sets the property document.location or navigates to 
the page using the history method.

• Server-side JavaScript calls the redirect function.

The JavaScript runtime engine on the server destroys the request object when 
it finishes responding to the request (typically by providing the requested 
page). Therefore, the typical lifetime of a request object can be less than one 
second.

Note You cannot use the request object on your application’s initial page. This 
page is run when the application is started on the server. At this time, there is 
no client request, and so there is no available request object. For more 
information on initial pages, see “Installing a New Application” on page 61.

For summary information on the request object, see “Overview of the 
Predefined Objects” on page 246.
Chapter 13, Session Management Service 249



The request Object
Properties

The following table lists the predefined properties of the request object. 
Several of these predefined properties correspond to CGI environment 
variables. You can also access these and other CGI environment variables using 
the ssjs_getCGIVariable function described in “Accessing CGI Variables” on 
page 228. 

Table 13.1 Properties of the request object 

Property Description Example value

agent Name and version of the client software. Use 
this information to conditionally employ 
advanced features of certain browsers.

Mozilla/1.1N (Windows; I; 32bit)

auth_type The authorization type, if this request is 
protected by any type of authorization. Netscape 
web servers support HTTP basic access 
authorization. Corresponds to the CGI 
AUTH_TYPE environment variable.

basic

auth_user The name of the local HTTP user of the web 
browser, if HTTP access authorization has been 
activated for this URL. Note that this is not a way 
to determine the user name of any person 
accessing your program. Corresponds to the CGI 
REMOTE_USER environment variable.

vpg

ip The IP address of the client. May be useful to 
authorize or record access.

198.95.251.30

method The HTTP method associated with the request. 
An application can use this to determine the 
proper response to a request. Corresponds to 
the CGI REQUEST_METHOD environment 
variable.

GETa 

protocol The HTTP protocol level supported by the 
client’s software. Corresponds to the CGI 
SERVER_PROTOCOL environment variable.

HTTP/1.0

query Information from the requesting HTML page; 
this is information in the URL that comes after 
the “?”. Corresponds to the CGI QUERY_STRING 
environment variable.

button1=on&button2=off
250 Server-Side JavaScript Guide



The request Object
When you declare top-level variables in server-side JavaScript, they have the 
same lifetime as request properties. For example, this declaration persists 
during the current request only:

var number = 42;

In addition to the predefined properties, you can, in your client code, have 
information that will become properties of the request object. You do so by 
using form elements and by encoding properties into the request URL, as 
described “Sending Values from Client to Server” on page 232. 

Although you can also create additional properties for request directly in 
server-side JavaScript statements, performance may be better if you instead use 
JavaScript variables. The properties of the request object you create can be of 
any legal JavaScript type, including references to other JavaScript objects. 

Remember that the lifetime of the request object and hence of its properties is 
the duration of the request. If you store a reference to another object in the 
request object, the referenced object is destroyed at the end of the request 
along with the request object, unless the referenced object has other live 
references to it, directly or indirectly from the server or project object.

imageX The horizontal position of the cursor when the 
user clicked over an image map. Described in 
“Working with Image Maps” on page 252.

45

imageY The vertical position of the cursor when the user 
clicked over an image map. Described in 
“Working with Image Maps” on page 252.

132

uri The request’s partial URL, with the protocol, host 
name, and the optional port number stripped 
out.

videoapp/add.html

a. For HTTP 1.0, method is one of GET, POST, or HEAD.

Table 13.1 Properties of the request object  (Continued)

Property Description Example value
Chapter 13, Session Management Service 251



The client Object
Working with Image Maps

The ISMAP attribute of the IMG tag indicates a server-based image map. If the 
user clicks on an image map, the horizontal and vertical positions of the cursor 
are sent to the server. The imageX and imageY properties return these 
horizontal and vertical positions. Consider this HTML:

<A HREF="mapchoice.html">
<IMG SRC="images\map.gif" HEIGHT=599 WIDTH=424 BORDER=0 

ISMAP ALT="SANTA CRUZ COUNTY">
</A>

The page mapchoice.html has properties request.imageX and 
request.imageY based on the cursor position at the time the user clicked.

The client Object
Many browser clients can access a JavaScript application simultaneously. The 
client object provides a method for dealing with each browser client 
individually. It also provides a technique for tracking each browser client’s 
progress through an application across multiple requests.

The JavaScript runtime engine on the server constructs a client object for 
every client/application pair. A browser client connected to one application has 
a different client object from the same browser client connected to a different 
application. The runtime engine constructs a new client object each time a 
user accesses an application; there can be hundreds or thousands of client 
objects active at the same time. 

Note You cannot use the client object on your application’s initial page. This page 
is run when the application is started on the server. At this time, there is no 
client request, and so there is no available client object. For more information 
on initial pages, see “Installing a New Application” on page 61.

The runtime engine constructs and destroys the client object for each client 
request. However, while processing a request, the runtime engine saves the 
names and values of the client object’s properties. In this way, the runtime 
engine can construct a new client object from the saved data when the same 
user returns to the application with a subsequent request. Thus, conceptually 
you can think of the client object as remaining for the duration of a client’s 
session with the application.
252 Server-Side JavaScript Guide



The client Object
JavaScript does not save client objects that have no property values. 
Therefore, if an application does not need client objects and does not assign 
any client object property values, it incurs no additional overhead.

You have several options for how and where the runtime engine saves client 
object properties. These options are discussed in “Techniques for Maintaining 
the client Object” on page 263.

For summary information on the client object, see “Overview of the 
Predefined Objects” on page 246.

Properties

There are no predefined property values in the client object, because it is 
intended to contain data specific to the application. JavaScript statements can 
assign application-specific properties and values to the client object. A good 
example of a client object property is a customer ID number. When the user 
first accesses the application, the application might assign a customer ID, as in 
the following example:

client.custID = getNextCustID();

This example uses the application-defined getNextCustID function to 
compute a customer ID. The runtime engine then assigns this ID to the client 
object’s custID property.

Once the customer ID has been established, it would be inconvenient to 
require the user to reenter the ID on each page of the application. However, 
without the client object, there would be no way to associate the correct 
customer ID with subsequent requests from a client.

Because of the techniques used to maintain client properties across multiple 
client requests, there is one major restriction on client property values. The 
JavaScript runtime engine on the server converts the values of all of the client 
object’s properties to strings. 

Do not assign an object as the value of a client property. If you do so, the 
runtime engine converts that object to a string; once this happens, you won’t be 
able to work with it as an object anymore. If a client property value represents 
Chapter 13, Session Management Service 253



The client Object
another data type, such as a number, you must convert the value from a string 
before using it. For example, you can create an integer client property as 
follows:

client.totalNumber = 17;

You could then use parseInt to increment the value of totalNumber as 
follows:

client.totalNumber = parseInt(client.totalNumber) + 1;

Similarly, you can create a Boolean client property as follows:

client.bool = true;

Then you can check it as follows:

if (client.bool == "true")
write("It’s true!");

else
write("It’s false!");

Notice that the conditional expression compares client.bool to the string 
"true". You can use other techniques to handle Boolean expressions. For 
example, to negate a Boolean property, you can use code like this:

client.bool = (client.bool == "true") ? false : true;

Although you can work with client properties directly, you incur some 
overhead doing so. If you repeatedly use the value of a client property, 
consider using top-level JavaScript variables. Before using the client property, 
assign it to a variable. When you have finished working with that variable, 
assign the resulting value back to the appropriate client property. This 
technique can result in a substantial performance improvement.

As noted previously, you cannot store references to other objects in the client 
object. You can, however, store object references in either the project or the 
server object. If you want a property associated with the client to have object 
values, create an array indexed by client ID and store a reference to the array in 
the project or server object. You can use that array to store object values 
associated with the client. Consider the following code:

if client.id == null
client.id = ssjs_generateClientID();

project.clientDates[client.id] = new Date();
254 Server-Side JavaScript Guide



The client Object
This code uses the ssjs_generateClientID function, described next, to 
create a unique ID for this client object. It uses that ID as an index into the 
clientDates array on the project object and stores a new Date object in that 
array associated with the current client object.

Uniquely Referring to the client Object

For some applications, you may want to store information specific to a client/
application pair in the project or server objects. Two common cases are 
storing a database connection between client requests (described in Chapter 15, 
“Connecting to a Database”) or storing a custom object that has the same 
lifetime as the predefined client object and that contains object values 
(described in “Creating a Custom client Object” on page 256).

In these situations, you need a way to refer uniquely to the client/application 
pair. JavaScript provides two functions for this purpose, ssjs_getClientID 
and ssjs_generateClientID. Neither function takes any arguments; both 
return a unique string you can use to identify the pair.

Each time you call ssjs_generateClientID, the runtime engine returns a 
new identifier. For this reason, if you use this function and want the identifier 
to last longer than a single client request, you need to store the identifier, 
possibly as a property of the client object. For an example of using this 
function, see “Sharing an Array of Connection Pools” on page 321. 

If you use this function and store the ID in the client object, you may need to 
be careful that an intruder cannot get access to that ID and hence to sensitive 
information.

An alternative approach is to use the ssjs_getClientID function. If you use 
one of the server-side maintenance techniques for the client object, the 
JavaScript runtime engine generates and uses a identifier to access the 
information for a particular client/application pair. (For information on 
maintaining the client object, see “Techniques for Maintaining the client 
Object” on page 263.)

When you use these maintenance techniques, ssjs_getClientID returns the 
identifier used by the runtime engine. Every time you call this function from a 
particular client/application pair, you get the same identifier. Therefore, you do 
not need to store the identifier returned by ssjs_getClientID. However, if 
Chapter 13, Session Management Service 255



The client Object
you use any of the other maintenance techniques, this function returns 
“undefined”; if you use those techniques you must instead use the 
ssjs_generateClientID function.

If you need an identifier and you’re using a server-side maintenance technique, 
you probably should use the ssjs_getClientID function. If you use this 
function, you do not need to store and track the identifier yourself; the runtime 
engine does it for you. However, if you use a client-side maintenance 
technique, you cannot use the ssjs_getClientID function; you must use the 
ssjs_generateClientID function.

Creating a Custom client Object

As discussed in earlier sections, properties of the predefined client object can 
have only string values. This restriction can be problematic for some 
applications. For instance, your application may require an object that persists 
for the same lifetime as the predefined client object, but that can have objects 
or other data types as property values. In this case, you can create your own 
object and store it as a property of the client object.

This section provides an example of creating such an object. You can include 
the code in this section as a JavaScript file in your application. Then, at the 
beginning of pages that need to use this object, include the following 
statement:

var customClient = getCustomClient()

(Of course, you can use a different variable name.) If this is the first page that 
requests the object, getCustomClient creates a new object. On other pages, it 
returns the existing object. 

This code stores an array of all the custom client objects defined for an 
application as the value of the customClients property of the predefined 
project object. It stores the index in this array as a string value of the 
customClientID property of the predefined client object. In addition, the 
code uses a lock stored in the customClientLock property of project to 
ensure safe access to that array. For information on locking, see “Sharing 
Objects Safely with Locking” on page 279.

The timeout variable in the getCustomClient function hard-codes the 
expiration period for this object. If you want a different expiration time, specify 
a different value for that variable. Whatever expiration time you use, you 
256 Server-Side JavaScript Guide



The client Object
should call the predefined client object’s expiration method to set its 
expiration to the same time as specified for your custom object. For information 
on this method, see “The Lifetime of the client Object” on page 275.

To remove all expired custom client objects for the application, call the 
following function:

expireCustomClients()

That’s all there is to it! If you use this code, the predefined client and 
project objects have these additional properties that you should not change:

• client.customClientID 

• project.customClients 

• project.customClientLock 

You can customize the custom class by changing its onInit and onDestroy 
methods. As shown here, those methods are just stubs. You can add code to 
modify what happens when the object is created or destroyed. 

Here’s the code:

// This function creates a new custom client object or retrieves 
// an existing one.
function getCustomClient()
{

// ==========> Change the hardcoded hold period <==========
// Note: Be sure to set the client state maintenance 
// expiration to the same value you use below by calling
// client.expiration. That allows the index held in the predefined
// client object to expire about the same time as the state held in
// the project object.
var timeout = 600;
var customClient = null;
var deathRow = null;
var newObjectWasCreated = false;

var customClientLock = getCustomClientLock();
customClientLock.lock();
var customClientID = client.customClientID;
if ( customClientID == null ) {

customClient = new CustomClient(timeout);
newObjectWasCreated = true;

}

else {
var customClients = getCustomClients();
customClient = customClients[customClientID];
if ( customClient == null ) {

customClient = new CustomClient(timeout);
Chapter 13, Session Management Service 257



The client Object
newObjectWasCreated = true;
}
else  {

var now = (new Date()).getTime();
if ( customClient.expiration <= now ) {

delete customClients[customClientID];
deathRow = customClient;

customClient = new CustomClient(timeout);
newObjectWasCreated = true;

}
else {

customClient.expiration = (new Date()).getTime() + 
timeout*1000;

}
}

}
if ( newObjectWasCreated )

customClient.onInit();
customClientLock.unlock();

if ( deathRow != null )
deathRow.onDestroy();

return customClient;
}

// Function to remove old custom client objects.
function expireCustomClients()
{

var customClients = getCustomClients();
var now = (new Date()).getTime();
for ( var i in customClients ) {

var clientObj = customClients[i];
if ( clientObj.expiration <= now ) {

var customClientLock = getCustomClientLock();
customClientLock.lock();
if ( clientObj.expiration <= now ) {

delete customClients[i];
}
else {

clientObj = null;
}
customClientLock.unlock()
if ( clientObj != null )

clientObj.onDestroy();
} } }

// Don’t call this function directly. 
// It’s used by getCustomClient and expireCustomClients.
function getCustomClientLock()
{

if ( project.customClientLock == null ) {
258 Server-Side JavaScript Guide



The client Object
project.lock()
if ( project.customClientLock == null )

project.customClientLock = new Lock()
project.unlock()

}
return project.customClientLock

}

// Don’t call this function directly. 
// It’s used by getCustomClient and expireCustomClients.
function getCustomClients()
{

if ( project.customClients == null ) {
project.lock()
if ( project.customClients == null )

project.customClients = new Object()
project.unlock()

}
return project.customClients

}

// The constructor for the CustomClient class. Don’t call this directly.
// Instead use the getCustomClient function.
function CustomClient(seconds)
{

var customClients = getCustomClients();
var customClientID = ssjs_generateClientID();

this.onInit = CustomClientMethod_onInit;
this.onDestroy = CustomClientMethod_onDestroy;
this.expiration = (new Date()).getTime() + seconds*1000;

client.customClientID = customClientID;

customClients[customClientID] = this;
}

// If you want to customize, do so by redefining the next 2 functions.
function CustomClientMethod_onInit()
{

// ==========> Add your object initialization code <==========
// This method is called while in a lock, so keep it quick!

}

function CustomClientMethod_onDestroy()
{

// ==========> Add your object cleanup code <==========
// This method is not called from within a lock.

}

Chapter 13, Session Management Service 259



The project Object
The project Object
The project object contains global data for an application and provides a 
method for sharing information among the clients accessing the application. 
JavaScript constructs a new project object when an application is started 
using the Application Manager. Each client accessing the application shares the 
same project object. For summary information on the project object, see 
“Overview of the Predefined Objects” on page 246.

In this release the JavaScript runtime engine does not, as in previous releases, 
create or destroy the project object for each request. When you stop an 
application, that application’s project object is destroyed. A new project 
object is created for it when the application is started again. A typical project 
object lifetime is days or weeks.

JavaScript constructs a set of project objects for each Netscape HTTP process 
running on the server. JavaScript constructs a project object for each 
application running on each distinct server. For example, if one server is 
running on port 80 and another is running on port 142 on the same machine, 
JavaScript constructs a distinct set of project objects for each process.

Properties

There are no predefined properties for the project object, because it is 
intended to contain application-specific data accessible by multiple clients. You 
can create properties of any legal JavaScript type, including references to other 
JavaScript objects. If you store a reference to another object in the project 
object, the runtime engine does not destroy the referenced object at the end of 
the client request during which it is created. The object is available during 
subsequent requests.

A good example of a project object property is the next available customer 
ID. An application could use this property to track sequentially assigned 
customer IDs. Any client that accesses the application without a customer ID 
would be assigned an ID, and the value would be incremented for each initial 
access.

Remember that the project object exists only as long as the application is 
running on the server. When the application is stopped, the project object is 
destroyed, along with all of its property values. For this reason, if you have 
260 Server-Side JavaScript Guide



The server Object
application data that needs to be stored permanently, you should store it either 
in a database (see Part 4, “LiveWire Database Service”) or in a file on the server 
(see “File System Service” on page 290).

Sharing the project Object

There is one project object for each application. Thus, code executing in any 
request for a given application can access the same project object. Because 
the server is multithreaded, there can be multiple requests active at any given 
time, either from the same client or from several clients.

To maintain data integrity, you must make sure that you have exclusive access 
to a property of the project object when you change the property’s value. 
There is no implicit locking as in previous releases; you must request exclusive 
access. The simplest way to do this is to use the project object’s lock and 
unlock methods. For details, see “Sharing Objects Safely with Locking” on 
page 279.

The server Object
The server object contains global data for the entire server and provides a 
method for sharing information between several applications running on a 
server. The server object is also automatically initialized with information 
about the server. For summary information on the server object, see 
“Overview of the Predefined Objects” on page 246.

The JavaScript runtime engine constructs a new server object when the server 
is started and destroys the server object when the server is stopped. Every 
application that runs on the server shares the same server object.

JavaScript constructs a server object for each Netscape HTTPD process 
(server) running on a machine. For example, there might be a server process 
running for port 80 and another for port 8080. These are entirely distinct server 
processes, and JavaScript constructs a server object for each.
Chapter 13, Session Management Service 261



The server Object
Properties

The following table describes the properties of the server object.

For example, your can use the jsVersion property to conditionalize features 
based on the server platform (or version) on which the application is running, 
as demonstrated here:

if (server.jsVersion == "3.0 WindowsNT")
write ("Application is running on a Windows NT server.");

In addition to these automatically initialized properties, you can create 
properties to store data to be shared by multiple applications. Properties may 
be of any legal JavaScript type, including references to other JavaScript objects. 
If you store a reference to another object in the server object, the runtime 
engine does not destroy the referenced object at the end of the request during 
which it is created. The object is available during subsequent requests.

Like the project object, the server object has a limited lifetime. When the 
web server is stopped, the server object is destroyed, along with all of its 
property values. For this reason, if you have application data that needs to be 
stored permanently, you should store it either in a database (see Part 4, 
“LiveWire Database Service”) or in a file on the server (see “File System Service” 
on page 290).

Table 13.2 Properties of the server object 

Property Description Example

hostname Full host name of the server, including 
the port number

www.netscape.com:85

host Server name, subdomain, and domain 
name

www.netscape.com

protocol Communications protocol being used http:

port Server port number being used; default 
is 80 for HTTP

85

jsVersion Server version and platform 3.0 WindowsNT
262 Server-Side JavaScript Guide



Techniques for Maintaining the client Object
Sharing the server Object

There is one server object for the entire server. Thus, code executing in any 
request, in any application, can access the same server object. Because the 
server is multithreaded, there can be multiple requests active at any given time. 
To maintain data integrity, you must make sure that you have exclusive access 
to the server object when you make changes to it.

Also, you must make sure that you have exclusive access to a property of the 
server object when you change the property’s value. There is no implicit 
locking as in previous releases; you must request exclusive access. The simplest 
way to do this is to use the server object’s lock and unlock methods. For 
details, see “Sharing Objects Safely with Locking” on page 279.

Techniques for Maintaining the client Object
The client object is associated with both a particular application and a 
particular client. As discussed in “The client Object” on page 252, the runtime 
engine creates a new client object each time a new request comes from the 
client to the server. However, the intent is to preserve client object properties 
from one request to the next. In order to do so, the runtime engine needs to 
store client properties between requests.

There are two basic approaches for maintaining the properties of the client 
object; you can maintain them either on the client or on the server. The two 
client-side techniques either store the property names and their values as 
cookies on the client or store the names and values directly in URLs on the 
generated HTML page. The three server-side techniques all store the property 
names and their values in a data structure in server memory, but they differ in 
the scheme used to index that data structure.

You select the technique to use when you use the JavaScript Application 
Manager to install or modify the application, as explained in “Installing a New 
Application” on page 61. This allows you (or the site manager) to change the 
maintenance technique without recompiling the application. However, the 
behavior of your application may change depending on the client-maintenance 
technique in effect, as described in the following sections. Be sure to make 
clear to your site manager if your application depends on using a particular 
technique. Otherwise, the manager can change this setting and break your 
application.
Chapter 13, Session Management Service 263



Techniques for Maintaining the client Object
Because some of these techniques involve storing information either in a data 
structure in server memory or in the cookie file on the client, the JavaScript 
runtime engine additionally needs to decide when to get rid of those 
properties. “The Lifetime of the client Object” on page 275 discusses how the 
runtime engine makes this decision and describes methods you can use to 
modify its behavior.

Comparing Client-Maintenance 
Techniques

Each maintenance technique has its own set of advantages and disadvantages 
and what is a disadvantage in one situation may be an advantage in another. 
You should select the technique most appropriate for your application. The 
individual techniques are described in more detail in subsequent sections; this 
section gives some general comparisons. 

The following table provides a general comparison of the client-side and 
server-side techniques.

Table 13.3 Comparison of server-side and client-side maintenance techniques 

Server-Side Client-Side

1. No limit on number of properties 
stored or the space they use.

Limits on properties.

2. Consumes extra server memory 
between client requests.

Does not consume extra server 
memory between client requests.

These differences are related. The lack of a limit on the number and size of 
properties can be either a disadvantage or an advantage. In general, you want to limit 
the quantity of data for a consumer application available on the Internet so that the 
memory of your server is not swamped. In this case, you could use a client 
technique. However, if you have an Intranet application for which you want to store 
a lot of data, doing so on the server may be acceptable, as the number of expected 
clients is limited.

3. Properties are stored in server memory 
and so are lost when server or 
application is restarted.

Properties are not stored in server 
memory and so aren’t lost when server 
is restarted.

If the properties are user preferences, you may want them to remain between server 
restarts; if they are particular to a single session, you may want them to disappear.
264 Server-Side JavaScript Guide



Techniques for Maintaining the client Object
Figure 13.3 and Figure 13.4 show what information is stored for each 
technique, where it is stored, and what information goes across the network. 
Figure 13.3 shows this information for the client-side techniques.

Figure 13.3Client-side techniques 

4. Either no increase or a modest 
increase in network traffic.

Larger increases in network traffic.

Client-side techniques transmit every property name and corresponding value to the 
client one or more times. This causes a significant increase in network traffic.
Because the server-side techniques all store the property names and values on the 
server, at most they send a generated name to the client to use in identifying the 
appropriate entry in the server data structure. 

Table 13.3 Comparison of server-side and client-side maintenance techniques  (Continued)

Server-Side Client-Side

Client cookie
Server runtime

Client runtime Client disk

Client URL encoding
Server runtime

Client runtime

Property
names and values

Property
names and values

Property
names and values

Cookie file
Chapter 13, Session Management Service 265



Techniques for Maintaining the client Object
Figure 13.4 shows this information for the server-side techniques.

Figure 13.4Server-side techniques 

There are some other general considerations. For both techniques that use 
cookies, the browser must support the Netscape cookie protocol. In both cases, 
when you close your browser on the client machine, information is stored in 
the client machine’s cookie file. The other techniques do not have this 
restriction. 

The server cookie technique creates a single cookie to identify the appropriate 
client object. By contrast, the client cookie technique creates a separate 
cookie for each property of the client object. The client cookie technique is 
therefore more likely to be affected by the limit of 20 cookies per application.

Index into
data structure

Server cookie
Server runtime

Client runtime Client diskData structure
in memory

contains
property names

and values

Data structure
in memory

contains
property names

and values

Client URL encoding
Server runtime

Client runtime

Data structure
in memory

contains
property names

and values

Server IP address
Server runtime

Client runtime

Cookie
file

Index into
data structure

Index into
data structure
266 Server-Side JavaScript Guide



Techniques for Maintaining the client Object
With the client cookie technique, the client object properties are sent to the 
client when the first piece of the HTML page is sent. If you change client 
property values later in the execution of that page, those changes are not sent 
to the client and so are lost. This restriction does not apply to any other 
maintenance technique.

For both techniques that use URL encoding, if your application constructs a 
URL at runtime or uses the redirect function, it must either manually append 
any client properties that need to be saved or use addClient to have the 
runtime engine append the properties. Although appending properties is not 
required for other techniques, you might want to do it anyway, so that 
changing the maintenance technique does not break your application.

In addition, for the URL encoding techniques, as soon as the browser accesses 
any page outside the application, or even submits a form to the application 
using the GET method, all client properties are lost. Properties are not lost this 
way for the other techniques. Your choice of technique should be partially 
guided by whether or not you want client properties to be persist in these 
situations.

Your choice of maintenance technique rests with the requirements of your 
application. The client cookie technique does not use extra server memory (as 
do the server-side techniques) and sends information only once per page (in 
contrast to the client URL encoding technique). These facts may make the client 
cookie technique appropriate for high-volume Internet applications. However, 
there are circumstances under which another technique is more suitable. For 
example, server IP address is the fastest technique, causing no increase in 
network traffic. You may use it for a speed-critical application running on your 
intranet.
Chapter 13, Session Management Service 267



Techniques for Maintaining the client Object
Client-Side Techniques

There are two client-side maintenance techniques:

• Client cookie

• Client URL encoding

For a comparison of all of the maintenance techniques, see “Comparing Client-
Maintenance Techniques” on page 264.

When an application uses client-side maintenance techniques, the runtime 
engine encodes properties of the client object into its response to a client 
request, either in the header of the response (for client cookie) or in URLs in 
the body of the response (for client URL encoding).

Because the actual property names and values are sent between the client and 
the server, restarting the server does not cause the client information to be lost. 
However, sending this information causes an increase of network traffic.

Using Client Cookie

In the client cookie technique, the JavaScript runtime engine on the server uses 
the Netscape cookie protocol to transfer the properties of the client object 
and their values to the client. It creates one cookie per client property. The 
properties are sent to the client once, in the response header of the generated 
HTML page. The Netscape cookie protocol is described in the Client-Side 
JavaScript Guide.

To avoid conflicts with other cookies you might create for your application, the 
runtime engine creates a cookie name by adding NETSCAPE_LIVEWIRE. to the 
front of the name of a client property. For example, if client has a property 
called custID, the runtime engine creates a cookie named 
NETSCAPE_LIVEWIRE.custID. When it sends the cookie information to the 
client, the runtime engine performs any needed encoding of special characters 
in a property value, as described in the Client-Side JavaScript Guide.

Sometimes your application needs to communicate information between its 
JavaScript statements running on the client and those running on the server. 
Because this maintenance technique sends client object properties as cookies 
to the client, you can use it as a way to facilitate this communication. For more 
information, see “Communicating Between Server and Client” on page 232.
268 Server-Side JavaScript Guide



Techniques for Maintaining the client Object
With this technique, the runtime engine stores client properties the first time 
it flushes the internal buffer containing the generated HTML page. For this 
reason, to prevent losing any information, you should assign all client 
property values early in the scripts on each page. In particular, you should 
ensure that client properties are set before (1) the runtime engine generates 
64KB of content for the HTML page (it automatically flushes the output buffer 
at this point), (2) you call the flush function to clear the output buffer, or (3) 
you call the redirect function to change client requests. For more 
information, see “Flushing the Output Buffer” on page 226 and “Runtime 
Processing on the Server” on page 220.

By default, when you use the client cookie technique, the runtime engine does 
not explicitly set the expiration of the cookies. In this case, the cookies expire 
when the user exits the browser. (This is the default behavior for all cookies.) 
As described in “The Lifetime of the client Object” on page 275, you can use 
the client object’s expiration method to change this expiration period. If 
you use client.expiration, the runtime engine sets the cookie expiration 
appropriately in the cookie file.

When using the client cookie technique, client.destroy eliminates all 
client property values but does not affect what is stored in the cookie file on 
the client machine. To remove the cookies from the cookie file or browser 
memory, do not use client.destroy; instead, use client.expiration with 
an argument of 0 seconds.

In general, Netscape cookies have the following limitations. These limitations 
apply when you use cookies to store client properties:

• 4KB for each cookie (including both the cookie’s name and its value). If a 
single cookie is longer than 4KB, the cookie entry is truncated to 4KB. This 
may result in an invalid client property value.

• 20 cookies for each application. If you create more than 20 cookies for an 
application, the oldest (first created) cookies are eliminated. Because the 
client cookie technique creates a separate cookie for each client property, 
the client object can store at most 20 properties. If you want to use other 
cookies in your application as well, the total number of cookies is still 
limited to 20.

• 300 total cookies in the cookie file. If you create more than 300 cookies, the 
oldest (first created) cookies are eliminated. 
Chapter 13, Session Management Service 269



Techniques for Maintaining the client Object
Using Client URL Encoding

In the client URL encoding technique, the runtime engine on the server 
transmits the properties of the client object and their values to the client by 
appending them to each URL in the generated HTML page. Consequently, the 
properties and their values are sent as many times as there are links on the 
generated HTML page, resulting in the largest increase in network traffic of all 
of the maintenance techniques.

The size of a URL string is limited to 4KB. Therefore, when you use client URL 
encoding, the total size of all the property names and their values is somewhat 
less than 4KB. Any information beyond the 4KB limit is truncated.

If you generate URLs dynamically or use the redirect function, you can add 
client properties or other properties to the URL. For this reason, whenever 
you call redirect or generate your own URL, the compiler does not 
automatically append the client properties for you. If you want client 
properties appended, use the addClient function. For more information, see 
“Manually Appending client Properties to URLs” on page 277.

In the client URL encoding technique, property values are added to URLs as 
those URLs are processed. You need to be careful if you expect your URLs to 
have the same properties and values. For example, consider the following 
code:

<SERVER>
...
client.numwrites = 2;
write (addClient(

"<A HREF=’page2.htm’>Some link</A>"));
client.numwrites = 3;
write (addClient(

"<A HREF=’page3.htm’>Another link</A>"));
...
</SERVER>

When the runtime engine processes the first write statement, it uses 2 as the 
value of the numwrites property, but when it processes the second write 
statement, it uses 3 as the value. 

Also, if you use the client.destroy method in the middle of a page, only 
those links that come before the method call have property values appended to 
their URLs. Those that come after the method call do not have any values 
appended. Therefore, client property values are propagated to some pages 
but not to others. This may be undesirable.
270 Server-Side JavaScript Guide



Techniques for Maintaining the client Object
If your page has a link to a URL outside of your application, you may not want 
the client state appended. In this situation, do not use a static string as the HREF 
value. Instead, compute the value. This prevents the runtime engine from 
automatically appending the client state to the URL. For example, assume you 
have this link:

<A HREF="mailto:me@royalairways.com">

In this case, the runtime engine appends the client object properties. To 
instead have it not do so, use this very similar link:

<A HREF=‘"mailto:me@royalairways.com"‘>

In this technique, the client object does not expire, because it exists solely in 
the URL string residing on the client. Therefore, the client.expiration 
method does nothing.

In client URL encoding, you lose all client properties when you submit a form 
using the GET method and when you access another application,. Once again, 
you may or may not want to lose these properties, depending on your 
application’s needs.

In contrast to the client cookie technique, client URL encoding does not require 
the web browser support the Netscape cookie protocol, nor does it require 
writing information on the client machine.

Server-Side Techniques

There are three server-side maintenance techniques:

• IP addresses

• Server cookie

• Server URL encoding

For a comparison of all of the maintenance techniques, see “Comparing Client-
Maintenance Techniques” on page 264.

In all of these techniques, the runtime engine on the server stores the 
properties of the client object and their values in a data structure in server 
memory. A single data structure, preserved between client requests, is used for 
all applications running on the server. These techniques differ only in the index 
Chapter 13, Session Management Service 271



Techniques for Maintaining the client Object
used to access the information in that data structure, ensuring that each client/
application pair gets the appropriate properties and values for the client 
object. 

None of these techniques writes information to the server disk. Only the server 
cookie technique can cause information to be written to the client machine’s 
disk, when the browser is exited.

Because these techniques store client object information in server memory 
between client requests, there is little or no network traffic increase. The 
property names and values are never sent to the client. Additionally, there are 
no restrictions on the number of properties a client object can have nor on 
the size of the individual properties. 

The trade-off, of course, is that these techniques consume server memory 
between client requests. For applications that are accessed by a large number 
of clients, this memory consumption could become significant. Of course, this 
can be considered an advantage as well, in that you can store as much 
information as you need.

Using IP Address

The IP address technique indexes the data structure based on the application 
and the client’s IP address. This simple technique is also the fastest, because it 
doesn’t require sending any information to the client at all. Since the index is 
based on both the application and the IP address, this technique does still 
create a separate index for every application/client pair running on the server.

This technique works well when all clients have fixed IP addresses. It does not 
work reliably if the client is not guaranteed to have a fixed IP address, for 
example, if the client uses the Dynamic Host Configuration Protocol (DHCP) or 
an Internet service provider that dynamically allocates IP addresses. This 
technique also does not work for clients that use a proxy server, because all 
users of the proxy report the same IP address. For this reason, this technique is 
probably useful only for intranet applications.
272 Server-Side JavaScript Guide



Techniques for Maintaining the client Object
Using Server Cookie

The server cookie technique uses a long unique name, generated by the 
runtime engine, to index the data structure on the server. The runtime engine 
uses the Netscape cookie protocol to store the generated name as a cookie on 
the client. It does not store the property names and values as cookies. For this 
reason, this technique creates a single cookie, whereas the client cookie 
technique creates a separate cookie for each property of the client object.

The generated name is sent to the client once, in the header of the HTML page. 
You can access this generated name with the ssjs_getClientID function, 
described in “Uniquely Referring to the client Object” on page 255. This 
technique uses the same cookie file as the client cookie technique; these 
techniques differ in what information is stored in the cookie file. The Netscape 
cookie protocol is described in the Client-Side JavaScript Guide.

Also, because only the generated name is sent to the client, and not the actual 
property names and values, it does not matter where in your page you make 
changes to the client object properties. This contrasts with the client cookie 
technique.

By default, the runtime engine sets the expiration of the server data structure to 
ten minutes and does not set the expiration of the cookie sent to the client. As 
described in “The Lifetime of the client Object” on page 275, you can use the 
client object’s expiration method to change this expiration period and to 
set the cookie’s expiration.

When using server cookie, client.destroy eliminates all client property 
values.

In general, Netscape cookies have the limitations listed in “Using Client Cookie” 
on page 268. When you use server cookies, however, these limits are unlikely 
to be reached because only a single cookie (containing the index) is created. 

This technique is fast and has no built-in restrictions on the number and size of 
properties and their values. You are limited more by how much space you’re 
willing to use on your server for saving this information.
Chapter 13, Session Management Service 273



Techniques for Maintaining the client Object
Using Server URL Encoding

The server URL encoding technique uses a long unique name, generated by the 
runtime engine, to index the data structure on the server. In this case, rather 
than making that generated name be a cookie on the client, the server appends 
the name to each URL in the generated HTML page. Consequently, the name is 
sent as many times as there are links on the generated HTML page. (Property 
names and values are not appended to URLs, just the generated name.) Once 
again, you can access this generated name with the ssjs_getClientID 
function, described in “Uniquely Referring to the client Object” on page 255.

If you generate URLs dynamically or use the redirect function, you can add 
properties to the URL. For this reason, whenever you call redirect or generate 
your own URL, the compiler does not automatically append the index for you. 
If you want to retain the index for the client properties, use the addClient 
function. For more information, see “Manually Appending client Properties to 
URLs” on page 277.

If your page has a link to a URL outside of your application, you may not want 
the client index appended. In this situation, do not use a static string for the 
HREF value. Instead, compute the value. This prevents the runtime engine from 
automatically appending the client index to the URL. For example, assume you 
have this link:

<A HREF="mailto:me@royalairways.com">

In this case, the runtime engine appends the client index. To instead have it 
not do so, use this very similar link:

<A HREF=‘"mailto:me@royalairways.com"‘>

In server URL encoding, you lose the client identifier (and hence its 
properties and values) when you submit a form using the GET method. You 
may or may not want to lose these properties, depending on your application’s 
needs.
274 Server-Side JavaScript Guide



Techniques for Maintaining the client Object
The Lifetime of the client Object

Once a client accesses an application, there is no guarantee that it will request 
further processing or will continue to a logical end point. For this reason, the 
client object has a built-in expiration mechanism. This mechanism allows 
JavaScript to occasionally “clean up” old client objects that are no longer 
necessary. Each time the server receives a request for a page in an application, 
JavaScript resets the lifetime of the client object.

Causing client Object Properties to Expire

The default behavior of the expiration mechanism varies, depending on the 
client object maintenance technique you use, as shown in the following 
table.

An application can control the length of time JavaScript waits before cleaning 
up client object properties. To change the length of this period, use the 
expiration method, as in the following example:

client.expiration(30);

Table 13.4 Default expiration of client properties based on the maintenance technique 

For this maintenance technique... The properties of the client object...

client cookie Expire when the browser is exited.

client URL encoding Never expire.

server cookie Are removed from the data structure on the server 
after 10 minutes. The cookie on the client expires 
when the browser is exited. The client object 
properties are no longer accessible as soon the 
data structure is removed or the browser exited.

server URL encoding Are removed from the data structure on the server 
after 10 minutes.

server IP address Are removed from the data structure on the server 
after 10 minutes.
Chapter 13, Session Management Service 275



Techniques for Maintaining the client Object
In response to this call, the runtime engine causes client object properties to 
expire after 30 seconds. For server-side maintenance techniques, this call 
causes the server to remove the object properties from its data structures after 
30 seconds. For the two cookie techniques, the call sets the expiration of the 
cookie to 30 seconds.

If the client object expires while there is an active client request using that 
object, the runtime engine waits until the end of the request before destroying 
the client object.

You must call expiration on each application page whose expiration 
behavior you want to specify. Any page that does not specify an expiration 
uses the default behavior. 

Destroying the client Object

An application can explicitly destroy a client object with the destroy 
method, as follows:

client.destroy();

When an application calls destroy, JavaScript removes all properties from the 
client object.

If you use the client cookie technique to maintain the client object, destroy 
eliminates all client property values but has no effect on what is stored in the 
client cookie file. To also eliminate property values from the cookie file, do not 
use destroy; instead, use expiration with an argument of 0 seconds.

When you use client URL encoding to maintain the client object, the destroy 
method removes all client properties. Links on the page before the call to 
destroy retain the client properties in their URLs, but links after the call have 
no properties. Because it is unlikely that you will want only some of the URLs 
from the page to contain client properties, you probably should call destroy 
either at the top or bottom of the page when using client URL maintenance. For 
more information, see “Using Client URL Encoding” on page 270.
276 Server-Side JavaScript Guide



Techniques for Maintaining the client Object
Manually Appending client Properties to 
URLs

When using URL encoding either on the client or on the server to maintain the 
client object, in general the runtime engine should store the appropriate 
information (client property names and values or the server data structure’s 
index) in all URLs sent to the client, whether those URLs were presented as 
static HTML or were generated by server-side JavaScript statements. 

The runtime engine automatically appends the appropriate information to 
HTML hyperlinks that do not occur inside the SERVER tag. So, for example, 
assume your HTML page contains the following statements:

<HTML>
For more information, contact
<A HREF="http://royalairways.com/contact_info.html">
Royal Airways</a>
...
</HTML>

If the application uses URL encoding for the client object, the runtime engine 
automatically appends the client information to the end of the URL. You do 
not have to do anything special to support this behavior.

However, your application may use the write function to dynamically generate 
an HTML statement containing a URL. You can also use the redirect function 
to start a new request. Whenever you use server-side JavaScript statements to 
add a URL to the HTML page being generated, the runtime engine assumes that 
you have specified the complete URL as you want it sent. It does not 
automatically append client information, even when using URL encoding to 
maintain the client object. If you want client information appended, you must 
do so yourself. 

You use the addClient function to manually add the appropriate client 
information. This function takes a URL and returns a new URL with the 
information appended. For example, suppose the appropriate contact URL 
varies based on the value of the client.contact property. Instead of the 
HTML above, you might have the following:

<HTML>
For more information, contact
<server>
if (client.contact == "VIP") {

write ("<A HREF=’http://royalairways.com/vip_contact_info.html’>");
Chapter 13, Session Management Service 277



Techniques for Maintaining the client Object
write ("Royal Airways VIP Contact</a>");
}
else {

write ("<A HREF=’http://royalairways.com/contact_info.html’>");
write ("Royal Airways</a>");

}
</server>
...
</HTML>

In this case, the runtime engine does not append client properties to the 
URLs. If you use one of the URL-encoding client maintenance techniques, this 
may be a problem. If you want the client properties sent with this URL, 
instead use this code:

<HTML>
For more information, contact
<server>
if (client.contact == "VIP") {

write (addClient(
"<A HREF=’http://royalairways.com/vip_contact_info.html’>"));

write ("Royal Airways VIP Contact</a>");
}
else {

write (addClient(
"<A HREF=’http://royalairways.com/contact_info.html’>"));

write ("Royal Airways</a>");
}
</server>
...
</HTML>

Similarly, any time you use the redirect function to change the client request, 
you should use addClient to append the information, as in this example:

redirect(addClient("mypage.html"));

Conversely, if your page has a link to a URL outside of your application, you 
may not want client information appended. In this situation, do not use a static 
string for the HREF value. Instead, compute the value. This prevents the runtime 
engine from automatically appending the client index or properties to the URL. 
For example, assume you have this link:

<A HREF="mailto:me@royalairways.com">

In this case, the runtime engine appends client information. To instead have it 
not do so, use this very similar link:

<A HREF=‘"mailto:me@royalairways.com"‘>
278 Server-Side JavaScript Guide



Sharing Objects Safely with Locking
Even though an application is initially installed to use a technique that does not 
use URL encoding to maintain client, it may be modified later to use a URL 
encoding technique. Therefore, if your application generates dynamic URLs or 
uses redirect, you may always want to use addClient.

Sharing Objects Safely with Locking
The execution environment for a 3.x version of a Netscape server is 
multithreaded; this is, it processes more than one request at the same time. 
Because these requests could require JavaScript execution, more than one 
thread of JavaScript execution can be active at the same time.

If multiple threads simultaneously attempt to change a property of the same 
JavaScript object, they could leave the object in an inconsistent state. A section 
of code in which you want one and only one thread executing at any time is 
called a critical section. 

One server object is shared by all clients and all applications running on the 
server. One project object is shared by all clients accessing the same 
application on the server. In addition, your application may create other objects 
it shares among client requests, or it may even share objects with other 
applications. To maintain data integrity within any of these shared objects, you 
must get exclusive access to the object before changing any of its properties.

Important There is no implicit locking for the project and server objects as there was in 
previous releases.

To better understand what can happen, consider the following example. 
Assume you create a shared object project.orders to keep track of customer 
orders. You update project.orders.count every time there is a new order, 
using the following code:

var x = project.orders.count; 
x = x + 1; 
project.orders.count = x; 
Chapter 13, Session Management Service 279



Sharing Objects Safely with Locking
Assume that project.orders.count is initially set to 1 and two new orders 
come in, in two separate threads. The following events occur:

1. The first thread stores project.orders.count into x.

2. Before it can continue, the second thread runs and stores the same value in 
its copy of x. 

3. At this point, both threads have a value of 1 in x. 

4. The second thread completes its execution and sets 
project.orders.count to 2. 

5. The first thread continues, unaware that the value of 
project.orders.count has changed, and also sets it to 2. 

So, the end value of project.orders.count is 2 rather than the correct 
value, 3. 

To prevent problems of this kind, you need to obtain exclusive access to the 
properties of shared objects when writing to them. You can construct your own 
instances of Lock for this purpose that work with any shared object. In 
addition, the server and project objects have lock and unlock methods you 
can use to restrict access to those objects.

Using Instances of Lock

Think of a lock as a named flag that you must hold before you gain access to a 
critical section. If you ask for the named flag and somebody else is already 
holding it, you wait in line until that person releases the flag. While waiting, 
you won’t change anything you shouldn’t. Once you get the flag, anybody else 
who’s waiting for it won’t change anything either. If an error occurs or a 
timeout period elapses before you get the flag, you can either get back in line 
to wait some more or do something else, such as letting your user know the 
application is too busy to perform that operation right now. You should not 
decide to break into the line (by changing shared information)! Figure 13.5 
illustrates this process.
280 Server-Side JavaScript Guide



Sharing Objects Safely with Locking
Figure 13.5Thread 2 waits while thread 1 has the lock 

In programming terms, a lock is represented by an instance of the Lock class. 
You can use an instance of Lock to gain exclusive access to any shared object, 
providing all code that accesses the shared object honors the lock. Typically, 
you create your Lock instances on the initial page of your application (for 
reasons that explained later).

In your other pages, before a critical section for the shared object (for example, 
sections that retrieve and change a property value), you call the Lock instance’s 
lock method. If that method returns true, you have the lock and can proceed. 
At the end of the critical section, you call the Lock instance’s unlock method.

When a client request in a single execution thread calls the lock method, any 
other request that calls lock for the same Lock instance waits until the original 
thread calls the unlock method, until some timeout period elapses, or until an 
error occurs. This is true whether the second request is in a different thread for 
the same client or in a thread for a different client.

If all threads call the lock method before trying to change the shared object, 
only one thread can enter the critical section at one time. 

Important The use of locks is completely under the developer’s control and requires 
cooperation. The runtime engine does not force you to call lock, nor does it 
force you to respect a lock obtained by someone else. If you don’t ask, you can 
change anything you want. For this reason, it’s very important to get into the 
habit of always calling lock and unlock when entering any critical section of 
code and to check the return value of lock to ensure you have the lock. You 
can think of it in terms of holding a flag: if you don’t ask for the flag, you won’t 
be told to wait in line. If you don’t wait in line, you might change something 
you shouldn’t.

You can create as many locks as you need. The same lock may be used to 
control access to multiple objects, or each object (or even object property) can 
have its own lock.

Thread1

project.orders.count

project.ordersLock

42

Thread 2
Chapter 13, Session Management Service 281



Sharing Objects Safely with Locking
A lock is just a JavaScript object itself; you can store a reference to it in any 
other JavaScript object. Thus, for example, it is common practice to construct a 
Lock instance and store it in the project object. 

Note Because using a lock blocks other users from accessing the named flag, 
potentially delaying execution of their tasks, it is good practice to use locks for 
as short a period as possible.

The following code illustrates how to keep track of customer orders in the 
shared project.orders object discussed earlier and to update 
project.orders.count every time there is a new order. In the application’s 
initial page, you include this code:

// Construct a new Lock and save in project 
project.ordersLock = new Lock(); 
if (! project.ordersLock.isValid()) {

// Unable to create a Lock. Redirect to error page
redirect ("sysfailure.htm");

}

This code creates the Lock instance and verifies (in the call to isValid) that 
nothing went wrong creating it. Only in very rare cases is your Lock instance 
improperly constructed. This happens only if the runtime engine runs out of 
system resources while creating the object.

You typically create your Lock instances on the initial page so that you don’t 
have to get a lock before you create the Lock instances. The initial page is run 
exactly once during the running of the application, when the application is 
started on the server. For this reason, you’re guaranteed that only one instance 
of each lock is created.

If, however, your application creates a lock on another of its pages, multiple 
requests could be invoking that page at the same time. One request could 
check for the existence of the lock and find it not there. While that request 
creates the lock, another request might create a second lock. In the meantime, 
the first request calls the lock method of its object. Then the second request 
calls the lock method of its object. Both requests now think they have safe 
access to the critical section and proceed to corrupt each other’s work.

Once it has a valid lock, your application can continue. On a page that requires 
access to a critical section, you can use this code:

// Begin critical section -- obtain lock 
if ( project.ordersLock.lock() ) {

var x = project.orders.count; 
282 Server-Side JavaScript Guide



Sharing Objects Safely with Locking
x = x + 1; 
project.orders.count = x; 

// End critical section -- release lock 
project.ordersLock.unlock();

}
else 

redirect("combacklater.htm");

This code requests the lock. If it gets the lock (that is, if the lock method 
returns true), then it enters the critical section, makes the changes, and finally 
releases the lock. If the lock method returns false, then this code did not get 
the lock. In this case, it redirects the application to a page that indicates the 
application is currently unable to satisfy the request.

Special Locks for project and server 
Objects

The project and server objects each have lock and unlock methods. You 
can use these methods to obtain exclusive access to properties of those objects. 

There is nothing special about these methods. You still need cooperation from 
other sections of code. You can think of these methods as already having one 
flag named “project” and another named “server.” If another section of code 
does not call project.lock, it can change any of the project object’s 
properties.

Unlike the lock method of the Lock class, however, you cannot specify a 
timeout period for the lock method of the project and server objects. That 
is, when you call project.lock, the system waits indefinitely for the lock to 
be free. If you want to wait for only a specified amount of time, instead use an 
instance of the Lock class.

The following example uses lock and unlock to get exclusive access to the 
project object while modifying the customer ID property:

project.lock()
project.next_id = 1 + project.next_id;
client.id = project.next_id;
project.unlock();
Chapter 13, Session Management Service 283



Sharing Objects Safely with Locking
Avoiding Deadlock

You use locks to protect a critical section of your code. In practice, this means 
one request waits while another executes in the critical section. You must be 
careful in using locks to protect critical sections. If one request is waiting for a 
lock that is held by a second request, and that second request is waiting for a 
lock held by the first request, neither request can ever continue. This situation 
is called deadlock.

Consider the earlier example of processing customer orders. Assume that the 
application allows two interactions. In one, a user enters a new customer; in 
the other, the user enters a new order. As part of entering a new customer, the 
application also creates a new customer order. This interaction is done in one 
page of the application that could have code similar to the following:

// Create a new customer.
if ( project.customersLock.lock() ) {

var id = project.customers.ID; 
id = id + 1; 
project.customers.ID = id;

// Start a new order for this new customer.
if ( project.ordersLock.lock() ) {

var c = project.orders.count; 
c = c + 1; 
project.orders.count = c; 
project.ordersLock.unlock();

}

project.customersLock.unlock();
}

In the second type of interaction, a user enters a new customer order. As part 
of entering the order, if the customer is not already a registered customer, the 
application creates a new customer. This interaction is done in a different page 
of the application that could have code similar to the following:

// Start a new order.
if ( project.ordersLock.lock() ) {

var c = project.orders.count; 
c = c + 1; 
project.orders.count = c; 

if (...code to establish unknown customer...) {

// Create a new customer.
// This internal lock is going to cause trouble!
284 Server-Side JavaScript Guide



Sharing Objects Safely with Locking
if ( project.customersLock.lock() ) {

var id = project.customers.ID; 
id = id + 1; 
project.customers.ID = id;

project.customersLock.unlock();
}

}

project.ordersLock.unlock();
}

Notice that each of these code fragments tries to get a second lock while 
already holding a lock. That can cause trouble. Assume that one thread starts to 
create a new customer; it obtains the customersLock lock. At the same time, 
another thread starts to create a new order; it obtains the ordersLock lock. 
Now, the first thread requests the ordersLock lock. Since the second thread 
has this lock, the first thread must wait. However, assume the second thread 
now asks for the customersLock lock. The first thread holds that lock, so the 
second thread must wait. The threads are now waiting for each other. Because 
neither specified a timeout period, they will both wait indefinitely. 

In this case, it is easy to avoid the problem. Since the values of the customer ID 
and the order number do not depend on each other, there is no real reason to 
nest the locks. You could avoid potential deadlock by rewriting both code 
fragments. Rewrite the first fragment as follows:

// Create a new customer.
if ( project.customersLock.lock() ) {

var id = project.customers.ID; 
id = id + 1; 
project.customers.ID = id;

project.customersLock.unlock();
}

// Start a new order for this new customer.
if ( project.ordersLock.lock() ) {

var c = project.orders.count; 
c = c + 1; 
project.orders.count = c; 

project.ordersLock.unlock();
}

The second fragment looks like this:

// Start a new order.
if ( project.ordersLock.lock() ) {
Chapter 13, Session Management Service 285



Sharing Objects Safely with Locking
var c = project.orders.count; 
c = c + 1; 
project.orders.count = c; 

project.ordersLock.unlock();
}

if (...code to establish unknown customer...) {

// Create a new customer.
if ( project.customersLock.lock() ) {

var id = project.customers.ID; 
id = id + 1; 
project.customers.ID = id;

project.customersLock.unlock();
}

}

Although this situation is clearly contrived, deadlock is a very real problem and 
can happen in many ways. It does not even require that you have more than 
one lock or even more than one request. Consider code in which two functions 
each ask for the same lock:

function fn1 () {
if ( project.lock() ) {

// ... do some stuff ...
project.unlock();

}
}

function fn2 () {
if ( project.lock() ) {

// ... do some other stuff ...
project.unlock();

}
}

By itself, that is not a problem. Later, you change the code slightly, so that fn1 
calls fn2 while holding the lock, as shown here:

function fn1 () {
if ( project.lock() ) {

// ... do some stuff ...
fn2();
project.unlock();

}
}

Now you have deadlock. This is particularly ironic, in that a single request 
waits forever for itself to release a flag!
286 Server-Side JavaScript Guide



C h a p t e r

14
Chapter 14Other JavaScript Functionality
This chapter describes additional server-side JavaScript functionality you can 
use to send email messages from you application, access the server file system, 
include external libraries in your application, or directly manipulate client 
requests and client responses.

This chapter contains the following sections:

• Mail Service

• File System Service

• Working with External Libraries

• Request and Response Manipulation

Mail Service
Your application may need to send an email message. You use an instance of 
the SendMail class for this purpose. The only methods of SendMail are send, 
to send the message, and errorCode and errorMessage, to interpret an error. 

For example, the following script sends mail to vpg with the specified subject 
and body for the message:

<server>
SMName = new SendMail();
SMName.To = "vpg@royalairways.com";
SMName.From = "thisapp@netscape.com";
Chapter 14, Other JavaScript Functionality 287



Mail Service
SMName.Subject = "Here’s the information you wanted";
SMName.Body = "sharm, maldives, phuket, coral sea, taveuni, maui, 

cocos island, marathon cay, san salvador";
SMName.send();
</server>

The following table describes the properties of the SendMail class. The To and 
From properties are required; all other properties are optional.

In addition to these properties, you can add any other properties you wish. All 
properties of the SendMail class are included in the header of the message 
when it is actually sent. For example, the following code sends a message to 
bill from vpg, setting vpg’s organization field to Royal Airways. Replies to the 
message go to vpgboss.

mailObj["Reply-to"] = "vpgboss";
mailObj.Organization = "Royal Airways";
mailObj.From = "vpg";
mailObj.To = "bill";
mailObj.send();

For more information on predefined header fields, refer to RFC 822, the 
standard for the format of internet text messages.

The SendMail class allows you to send either simple text-only mail messages 
or complex MIME-compliant mail. You can also add attachments to your 
message. To send a MIME message, add a Content-type property to the 
SendMail object and set its value to the MIME type of the message.

Table 14.1 Properties of the SendMail class 

To A comma-delimited list of primary recipients of the message.

From The user name of the person sending the message.

Cc A comma-delimited list of additional recipients of the message.

Bcc A comma-delimited list of recipients of the message whose 
names should not be visible in the message.

Smtpserver The mail (SMTP) server name. This property defaults to the 
value specified through the setting in the administration server.

Subject The subject of the message.

Body The text of the message.
288 Server-Side JavaScript Guide



Mail Service
For example, the following code segment sends a GIF image: 

<server>
SMName = new SendMail();
SMName.To = "vpg@royalairways.com";
SMName.From = "thisapp@netscape.com";
SMName.Subject = "Here’s the image file you wanted";
SMName["Content-type"] = "image/gif"; 
SMName["Content-Transfer-Encoding"] = "base64"; 

// In this next statement, image2.gif must be base 64 encoded.
// If you use uuencode to encode the GIF file, delete the header
// (for example, "begin 644 image2.gif") and the trailer ("end").
fileObj = new File("/usr/somebody/image2.gif"); 

openFlag = fileObj.open("r"); 
if ( openFlag ) { 

len = fileObj.getLength(); 
SMName.Body = fileObj.read(len); 
SMName.send(); 
}

</server> 

Some MIME types may need more information. For example, if the content type 
is multipart/mixed, you must also specify a boundary separator for one or 
more different sets of data in the body. For example, the following code sends 
a multipart message containing two parts, both of which are plain text:

<server>
SMName = new SendMail();
SMName.To = "vpg@royalairways.com";
SMName.From = "thisapp@netscape.com";
SMName.Subject = "Here’s the information you wanted";
SMName["Content-type"] 

= "multipart/mixed; boundary=\"simple boundary\""; 
fileObj = new File("/usr/vpg/multi.txt"); 
openFlag = fileObj.open("r"); 
if ( openFlag ) { 

len = fileObj.getLength(); 
SMName.Body = fileObj.read(len); 
SMName.send(); 
}

</server> 

Here the file multi.txt contains the following multipart message:

This is the place for preamble. 
It is to be ignored.
It is a handy place for an explanatory note to non-MIME compliant 
readers. 
--simple boundary 
Chapter 14, Other JavaScript Functionality 289



File System Service
This is the first part of the body. 
This does NOT end with a line break. 

--simple boundary 
Content-Type: text/plain; charset=us-ascii 

This is the second part of the body. 
It DOES end with a line break 

--simple boundary-- 
This is the epilogue. It is also to be ignored. 

You can nest multipart messages. That is, if you have a message whose content 
type is multipart, you can include another multipart message in its body. In 
such cases, be careful to ensure that each nested multipart entity uses a 
different boundary delimiter. 

For details on MIME types, refer to RFC 13411, the MIME standard. For more 
information on sending mail messages with JavaScript, see the description of 
this class in the Server-Side JavaScript Reference. 

File System Service
JavaScript provides a File class that enables applications to write to the 
server’s file system. This is useful for generating persistent HTML files and for 
storing information without using a database server. One of the main 
advantages of storing information in a file instead of in JavaScript objects is that 
the information is preserved even if the server goes down.

Security Considerations

Exercise caution when using the File class. A JavaScript application can read 
or write files anywhere the operating system allows, potentially including 
sensitive system files. You should be sure your application does not allow an 
intruder to read password files or other sensitive information or to write files at 
will. Take care that the filenames you pass to its methods cannot be modified 
by an intruder.

1. http://info.internet.isi.edu:80/in-notes/rfc/files/rfc1341.txt
290 Server-Side JavaScript Guide



File System Service
For example, do not use client or request properties as filenames, because 
the values may be accessible to an intruder through cookies or URLs. In such 
cases, the intruder can modify cookie or URL values to gain access to sensitive 
files. 

For similar security reasons, Navigator does not provide automatic access to the 
file system of client machines. If needed, the user can save information directly 
to the client file system by making appropriate menu choices in Navigator.

Creating a File Object

To create an instance of the File class, use the standard JavaScript syntax for 
object creation:

fileObjectName = new File("path");

Here, fileObjectName is the name by which you refer to the file, and path is 
the complete file path. The path should be in the format of the server’s file 
system, not a URL path.

You can display the name of a file by using the write function, with the File 
object as its argument. For example, the following statement displays the 
filename: 

x = new File("\path\file.txt");
write(x);

Opening and Closing a File

Once you have created a File object, you use the open method to open the 
file so that you can read from it or write to it. The open method has the 
following syntax:

result = fileObjectName.open("mode");

This method returns true if the operation is a success and false otherwise. If 
the file is already open, the operation fails and the original file remains open.
Chapter 14, Other JavaScript Functionality 291



File System Service
The parameter mode is a string that specifies the mode in which to open the 
file. The following table describes how the file is opened for each mode.

When an application has finished using a file, it can close the file by calling the 
close method. If the file is not open, close fails. This method returns true if 
successful and false otherwise.

Locking Files

Most applications can be accessed by many users simultaneously. In general, 
however, different users should not try to make simultaneous changes to the 
same file, because unexpected errors may result. 

To prevent multiple users from modifying a file at the same time, use one of the 
locking mechanisms provided by the Session Management Service, as described 
in “Sharing Objects Safely with Locking” on page 279. If one user has the file 

Table 14.2 File-access modes 

Mode Description

r Opens the file, if it exists, as a text file for reading and returns true. If the 
file does not exist, returns false.

w Opens the file as a text file for writing. Creates a new (initially empty) text 
file whether or not the file exists.

a Opens the file as a text file for appending (writing at the end of the file). If 
the file does not already exist, creates it.

r+ Opens the file as a text file for reading and writing. Reading and writing 
commence at the beginning of the file. If the file exists, returns true. If the 
file does not exist, returns false.

w+ Opens the file as a text file for reading and writing. Creates a new (initially 
empty) file whether or not the file already exists.

a+ Opens the file as a text file for reading and writing. Reading and writing 
commence at the end of the file. If the file does not exist, creates it.

b When appended to any of the preceding modes, opens the file as a binary 
file rather than a text file. Applicable only on Windows operating systems.
292 Server-Side JavaScript Guide



File System Service
locked, other users of the application wait until the file becomes unlocked. In 
general, this means you should precede all file operations with lock and follow 
them with unlock. 

If only one application can modify the same file, you can obtain the lock within 
the project object. If more than one application can access the same file, 
however, obtain the lock within the server object. 

For example, suppose you have created a file called myFile. Then you could 
use it as follows:

if ( project.lock() ) {
myFile.open("r");
// ... use the file as needed ...
myFile.close();
project.unlock();

}

In this way, only one user of the application has modify to the file at one time. 
Alternatively, for finer locking control you could create your own instance of 
the Lock class to control access to a file. This is described in “Using Instances 
of Lock” on page 280.

Working with Files

The File class has a number of methods that you can use once a file is open:

• Positioning: setPosition, getPosition, eof. Use these methods to set 
and get the current pointer position in the file and determine whether the 
pointer is at the end of the file.

• Reading from a file: read, readln, readByte.

• Writing to a file: write, writeln, writeByte, flush.

• Converting between binary and text formats: byteToString, 
stringToByte. Use these methods to convert a single number to a 
character and vice versa.

• Informational methods: getLength, exists, error, clearError. Use 
these methods to get information about a file and to get and clear error 
status.

The following sections describe these methods.
Chapter 14, Other JavaScript Functionality 293



File System Service
Positioning Within a File

The physical file associated with a File object has a pointer that indicates the 
current position in the file. When you open a file, the pointer is either at the 
beginning or at the end of the file, depending on the mode you used to open it. 
In an empty file, the beginning and end of the file are the same.

The setPosition method positions the pointer within the file, returning true 
if successful and false otherwise. 

fileObj.setPosition(position);
fileObj.setPosition(position, reference);

Here, fileObj is a File object, position is an integer indicating where to 
position the pointer, and reference indicates the reference point for 
position, as follows:

• 0: relative to beginning of file

• 1: relative to current position

• 2: relative to end of file

• Other (or unspecified): relative to beginning of file

The getPosition method returns the current position in the file, where the 
first byte in the file is always byte 0. This method returns -1 if there is an error. 

fileObj.getPosition();

The eof method returns true if the pointer is at the end of the file and false 
otherwise. This method returns true after the first read operation that attempts 
to read past the end of the file. 

fileObj.eof();

Reading from a File

Use the read, readln, and readByte methods to read from a file.

The read method reads the specified number of bytes from a file and returns a 
string. 

fileObj.read(count);

Here, fileObj is a File object, and count is an integer specifying the number 
of bytes to read. If count specifies more bytes than are left in the file, then the 
method reads to the end of the file.
294 Server-Side JavaScript Guide



File System Service
The readln method reads the next line from the file and returns it as a string. 

fileObj.readln();

Here, fileObj is a File object. The line-separator characters (either \r\n on 
Windows or just \n on Unix or Macintosh) are not included in the string. The 
character \r is skipped; \n determines the actual end of the line. This 
compromise gets reasonable behavior on all platforms.

The readByte method reads the next byte from the file and returns the 
numeric value of the next byte, or -1. 

fileObj.readByte();

Writing to a File

The methods for writing to a file are write, writeln, writeByte, and flush.

The write method writes a string to the file. It returns true if successful and 
false otherwise. 

fileObj.write(string);

Here, fileObj is a File object, and string is a JavaScript string.

The writeln method writes a string to the file, followed by \n (\r\n in text 
mode on Windows). It returns true if the write was successful and false 
otherwise. 

fileObj.writeln(string);

The writeByte method writes a byte to the file. It returns true if successful 
and false otherwise.

fileObj.writeByte(number);

Here, fileObj is a File object and number is a number.

When you use any of these methods, the file contents are buffered internally. 
The flush method writes the buffer to the file on disk. This method returns 
true if successful and false otherwise. 

fileObj.flush();
Chapter 14, Other JavaScript Functionality 295



File System Service
Converting Data

There are two primary file formats: ASCII text and binary. The byteToString 
and stringToByte methods of the File class convert data between these 
formats.

The byteToString method converts a number into a one-character string. This 
method is static. You can use the File class object itself, and not an instance, 
to call this method. 

File.byteToString(number);

If the argument is not a number, the method returns the empty string.

The stringToByte method converts the first character of its argument, a string, 
into a number. This method is also static. 

File.stringToByte(string);

The method returns the numeric value of the first character, or 0.

Getting File Information

You can use several File methods to get information on files and to work with 
the error status.

The getLength method returns the number characters in a text file or the 
number of bytes in any other file. It returns -1 if there is an error. 

fileObj.getLength();

The exists method returns true if the file exists and false otherwise. 

fileObj.exists();

The error method returns the error status, or -1 if the file is not open or cannot 
be opened. The error status is a nonzero value if an error occurred and 0 
otherwise (no error). Error status codes are platform dependent; refer to your 
operating system documentation. 

fileObj.error();

The clearError method clears both the error status (the value of error) and 
the value of eof.

fileObj.clearError();
296 Server-Side JavaScript Guide



Working with External Libraries
Example

Netscape servers include the Viewer sample application in its directory 
structure. Because this application allows you to view any files on the server, it 
is not automatically installed. 

Viewer gives a good example of how to use the File class. If you install it, be 
sure to restrict access so that unauthorized persons cannot view files on your 
server. For information on restricting access to an application, see “Deploying 
an Application” on page 70.

The following code from the viewer sample application creates a File class, 
opens it for reading, and generates HTML that echoes the lines in the file, with 
a hard line break after each line.

x = new File("\tmp\names.txt");
fileIsOpen = x.open("r");
if (fileIsOpen) {

write("file name: " + x + "<BR>");
while (!x.eof()) {

line = x.readln();
if (!x.eof())

write(line+"<br>");
}
if (x.error() != 0)

write("error reading file" + "<BR>");
x.close();

}

Working with External Libraries
The recommended way to communicate with external applications is using 
LiveConnect, as described in Chapter 21, “LiveConnect Overview.” However, 
you can also call functions written in languages such as C, C++, or Pascal and 
compiled into libraries on the server. Such functions are called native functions 
or external functions. Libraries of native functions, called external libraries, are 
dynamic link libraries on Windows operating systems and shared objects on 
Unix operating systems.

Important Be careful when using native functions with your application. Native functions 
can compromise security if the native program processes a command-line entry 
from the user (for example, a program that allows users to enter operating 
Chapter 14, Other JavaScript Functionality 297



Working with External Libraries
system or shell commands). This functionality is dangerous because an intruder 
can attach additional commands using semicolons to append multiple 
statements. It is best to avoid command-line input, unless you strictly check it.

Using native functions in an application is useful in these cases: 

• If you already have complex functions written in native code that you can 
use in your application.

• If the application requires computation-intensive functions. In general, 
functions written in native code run faster than those written in JavaScript.

• If the application requires some other task you cannot do in JavaScript.

The sample directory jsaccall contains source and header files illustrating 
how to call functions in external libraries from a JavaScript application.

In the Application Manager, you associate an external library with a particular 
application. However, once associated with any installed application, an 
external library can be used by all installed applications.

Follow these steps to use a native function library in a JavaScript application: 

1. Write and compile an external library of native functions in a form 
compatible with JavaScript. (See “Guidelines for Writing Native Functions” 
on page 299.)

2. With the Application Manager, identify the library to be used by installing a 
new application or modifying installation parameters for an existing 
application. Once you identify an external library using the Application 
Manager, all applications on the server can call external functions in that 
library. (See “Identifying Library Files” on page 299.)

3. Restart the server to load the library with your application. The functions in 
the external library are now available to all applications on the server.

4. In your application, use the JavaScript functions registerCFunction to 
identify the library functions to be called and callC to call those functions. 
(See “Registering Native Functions” on page 300 and “Using Native 
Functions in JavaScript” on page 300.)

5. Recompile and restart your application for the changes to take effect.
298 Server-Side JavaScript Guide



Working with External Libraries
Important You must restart your server to install a library to use with an application. You 
must restart the server any time you add new library files or change the names 
of the library files used by an application.

Guidelines for Writing Native Functions

Although you can write external libraries in any language, JavaScript uses C 
calling conventions. Your code must include the header file jsaccall.h 
provided in js\samples\jsaccall\. 

This directory also includes the source code for a sample application that calls a 
C function defined in jsaccall.c. Refer to these files for more specific 
guidelines on writing C functions for use with JavaScript.

Functions to be called from JavaScript must be exported and must conform to 
this type definition:

typedef void (*LivewireUserCFunction)
(int argc, struct LivewireCCallData argv[], 
 struct LivewireCCallData* result, pblock* pb,
 Session* sn, Request* rq);

Identifying Library Files

Before you can run an application that uses native functions in external 
libraries, you must identify the library files. Using the Application Manager, you 
can identify libraries when you initially install an application (by clicking Add) 
or when you modify an application’s installation parameters (by clicking 
Modify). For more information on identifying library files with the Application 
Manager, see “Installing a New Application” on page 61.

Important After you enter the paths of library files in the Application Manager, you must 
restart your server for the changes to take effect. You must then be sure to 
compile and restart your application.

Once you have identified an external library using the Application Manager, all 
applications running on the server can call functions in the library (by using 
registerCFunction and callC).
Chapter 14, Other JavaScript Functionality 299



Working with External Libraries
Registering Native Functions

Use the JavaScript function registerCFunction to register a native function 
for use with a JavaScript application. This function has the following syntax:

registerCFunction(JSFunctionName, libraryPath, CFunctionName);

Here, JSFunctionName is the name of the function as it will be called in 
JavaScript with the callC function. The libraryPath parameter is the full 
pathname of the library, using the conventions of your operating system and 
the CFunctionName parameter is the name of the C function as it is defined in 
the library. In this method call, you must use the exact case shown in the 
Application Manager, even on NT.

Note Backslash (\) is a special character in JavaScript, so you must use either 
forward slash (/) or a double backslash (\\) to separate Windows directory and 
filenames in libraryPath. 

This function returns true if it registers the function successfully and false 
otherwise. The function might fail if JavaScript cannot find the library at the 
specified location or the specified function inside the library.

An application must use registerCFunction to register a function before it 
can use callC to call it. Once the application registers the function, it can call 
the function any number of times. A good place to register functions is in an 
application’s initial page.

Using Native Functions in JavaScript

Once your application has registered a function, it can use callC to call it. This 
function has the following syntax:

callC(JSFunctionName, arguments);

Here, JSFunctionName is the name of the function as it was identified with 
registerCFunction and arguments is a comma-delimited list of arguments to 
the native function. The arguments can be any JavaScript values: strings, 
numbers, Boolean values, objects, or null. The number of arguments must 
match the number of arguments required by the external function. Although 
you can specify a JavaScript object as an argument, doing so is rarely useful, 
because the object is converted to a string before being passed to the external 
function.
300 Server-Side JavaScript Guide



Working with External Libraries
This function returns a string value returned by the external function. The 
callC function can return only string values.

The jsaccall sample JavaScript application illustrates the use of native 
functions. The jsaccall directory includes C source code (in jsaccall.c) 
that defines a C function named mystuff_EchoCCallArguments. This function 
accepts any number of arguments and then returns a string containing HTML 
listing the arguments. This sample illustrates calling C functions from a 
JavaScript application and returning values.

To run jsaccall, you must compile jsaccall.c with your C compiler. 
Command lines for several common compilers are provided in the comments in 
the file.

The following JavaScript statements (taken from jsaccall.html) register the C 
function as echoCCallArguments in JavaScript, call the function 
echoCCallArguments, and then generate HTML based on the value returned 
by the function.

var isRegistered = registerCFunction("echoCCallArguments",
"c:\\mycode\\mystuff.dll", "mystuff_EchoCCallArguments");

if (isRegistered == true) {
var returnValue = callC("echoCCallArguments", 

"first arg", 
42,
true, 
"last arg");

write(returnValue);
}
else {

write("registerCFunction() returned false, " 
+ "check server error log for details")

}

The echoCCallArguments function creates a string result containing HTML 
that reports both the type and the value of each of the JavaScript arguments 
passed to it. If the registerCFunction returns true, the code above generates 
this HTML:

argc = 4<BR>
argv[0].tag: string; value = first arg<BR>
argv[1].tag: double; value = 42<BR>
argv[2].tag: boolean; value = true<BR>
argv[3].tag: string; value = last arg<BR>
Chapter 14, Other JavaScript Functionality 301



Request and Response Manipulation
Request and Response Manipulation
A typical request sent by the client to the server has no content type. The 
JavaScript runtime engine automatically handles such requests. However, if the 
user submits a form, then the client automatically puts a content type into the 
header to tell the server how to interpret the extra form data. That content type 
is usually application/x-www-form-urlencoded. The runtime engine also 
automatically handles requests with this content type. In these situations, you 
rarely need direct access to the request or response header. If, however, your 
application uses a different content type, it must be able to manipulate the 
request header itself.

Conversely, the typical response sent from the server to the client has the 
text/html content type. The runtime engine automatically adds that content 
type to its responses. If you want a different content type in the response, you 
must provide it yourself. 

To support these needs, the JavaScript runtime engine on the server allows 
your application to access (1) the header of any request and (2) the raw body 
of a request that has a nonstandard content type. You already control the body 
of the response through the SERVER tag and your HTML tags. The functionality 
described in this section also allows you to control the header of the response.

You can use this functionality for various purposes. For example, as described 
in “Using Cookies” on page 239, you can communicate between the client and 
server processes using cookies. Also, you can use this functionality to support a 
file upload.

The World Wide Web Consortium publishes online information about the 
HTTP protocol and information that can be sent using that protocol. See, for 
example, HTTP Specifications and Drafts.
302 Server-Side JavaScript Guide



Request and Response Manipulation
Request Header

To access the name/value pairs of the header of the client request, use the 
httpHeader method of the request object. This method returns an object 
whose properties and values correspond to the name/value pairs of the header.

For example, if the request contains a cookie, header["cookie"] or 
header.cookie is its value. The cookie property, containing all of the 
cookie’s name/value pairs (with the values encoded as described in “Using 
Cookies” on page 239), must be parsed by your application. 

The following code prints the properties and values of the header: 

var header = request.httpHeader();
var count = 0;
var i;

for (i in header ) {
write(count + ". " + i + " " + header[i] + "<br>\n");
count++;

} 

If you submitted a form using the GET method, your output might look like this:

0. connection Keep-Alive 
1. user-agent Mozilla/4.0b1 (WinNT; I) 
2. host piccolo:2020 
3. accept image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */* 

If you used the POST method to submit your form, your output might look like 
this:

0. referer http://piccolo:2020/world/hello.html 
1. connection Keep-Alive 
2. user-agent Mozilla/4.0b1 (WinNT; I) 
3. host piccolo:2020 
4. accept image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */* 
5. cookie NETSCAPE_LIVEWIRE.oldname=undefined; 
NETSCAPE_LIVEWIRE.number=0 
6. content-type multipart/form-data; boundary=-------------------------
--79741602416605 
7. content-length 208 
Chapter 14, Other JavaScript Functionality 303



Request and Response Manipulation
Request Body

For normal HTML requests, the content type of the request is application/
x-www-form-urlencoded. Upon receiving a request with this content type, the 
JavaScript runtime engine on the server processes the request using the data in 
the body of the request. In this situation, you cannot directly access the raw 
data of the request body. (Of course, you can access its content through the 
request and client objects constructed by the runtime engine.)

If, however, the request has any other content type, the runtime engine does 
not automatically process the request body. In this situation, it is up to your 
application to decide what to do with the content.

Presumably, another page of your application posted the request for this page. 
Therefore, your application must expect to receive unusual content types and 
should know how to handle them.

To access the body of a request, you use the getPostData method of the 
request object. This method takes as its parameter the number of characters of 
the body to return. If you specify 0, it returns the entire body. The return value 
is a string containing the requested characters. If there is no available data, the 
method returns the empty string.

You can use this method to get all of the characters at once, or you can read 
chunks of data. Think of the body of the request as a stream of characters. As 
you read them, you can only go forward; you can’t read the same characters 
multiple times.

To assign the entire request body to the postData variable, you can use the 
following statement:

postData = request.getPostData(0);

If you specify 0 as the parameter, the method gets the entire request. You can 
explicitly find out how many characters are in the information using the 
header’s content-length property, as follows:

length = parseInt(header["content-length"], 10);

To get the request body in smaller chunks, you can specify a different 
parameter. For example, the following code processes the request body in 
chunks of 20 characters:

var length = parseInt(header["content-length"], 10);
var i = 0;
304 Server-Side JavaScript Guide



Request and Response Manipulation
while (i < length) {
postData = request.getPostData(20);
// ...process postData...
i = i + 20;

} 

Of course, this would be a sensible approach only if you knew that chunks 
consisting of 20 characters of information were meaningful in the request body.

Response Header

If the response you send to the client uses a custom content type, you should 
encode this content type in the response header. The JavaScript runtime engine 
automatically adds the default content type (text/html) to the response 
header. If you want a custom header, you must first remove the old default 
content type from the header and then add the new one. You do so with the 
addResponseHeader and deleteResponseHeader functions.

For example, if your response uses royalairways-format as a custom 
content type, you would specify it this way:

deleteResponseHeader("content-type");
addResponseHeader("content-type","royalairways-format");

You can use the addResponseHeader function to add any other information 
you want to the response header.

Important Remember that the header is sent with the first part of the response. Therefore, 
you should call these functions early in the script on each page. In particular, 
you should ensure that the response header is set before any of these happen:

• The runtime engine generates 64KB of content for the HTML page (it 
automatically flushes the output buffer at this point).

• You call the flush function to clear the output buffer.

• You call the redirect function to change client requests.

For more information, see “Flushing the Output Buffer” on page 226 and 
“Runtime Processing on the Server” on page 220.
Chapter 14, Other JavaScript Functionality 305



Request and Response Manipulation
306 Server-Side JavaScript Guide



4
LiveWire Database Service
• Connecting to a Database

• Working with a Database

• Configuring Your Database

• Data Type Conversion

• Error Handling for LiveWire

• Videoapp and Oldvideo Sample 
Applications



308 Server-Side JavaScript Guide



C h a p t e r

15
Chapter 15Connecting to a Database
This chapter discusses how to use the LiveWire Database Service to connect 
your application to DB2, Informix, ODBC, Oracle, or Sybase relational 
databases. It describes how to choose the best connection methodology for 
your application.

This chapter contains the following sections:

• Interactions with Databases

• Approaches to Connecting

• Database Connection Pools

• Single-Threaded and Multithreaded Databases

• Managing Connection Pools

• Individual Database Connections
Chapter 15, Connecting to a Database 309



Interactions with Databases
Interactions with Databases
Your JavaScript applications running on Netscape Enterprise Server can use the 
LiveWire Database Service to access databases on Informix, Oracle, Sybase, and 
DB2 servers and on servers using the Open Database Connectivity (ODBC) 
standard. Your applications running on Netscape FastTrack Server can access 
only databases on servers using the ODBC standard.

The following discussions assume you are familiar with relational databases and 
Structured Query Language (SQL).

Before you create a JavaScript application that uses LiveWire, the database or 
databases you plan to connect to should already exist on the database server. 
Also, you should be familiar with their structure. If you create an entirely new 
application, including the database, you should design, create, and populate 
the database (at least in prototype form) before creating the application to 
access it. 

Before you try to use LiveWire, be sure your environment is properly 
configured. For information on how to configure it, see Chapter 17, 
“Configuring Your Database.” Also, you can use the videoapp sample 
application, described in Chapter 20, “Videoapp and Oldvideo Sample 
Applications,” to explore some of LiveWire’s capabilities.

Typically, to interact with a database, you follow these general steps:

1. Use the database object or create a DbPool object to establish a pool of 
database connections. This is typically done on the initial page of the 
application, unless your application requires that users have a special 
database connection. 

2. Connect the pool to the database. Again, this is typically done on the 
application’s initial page.

3. Retrieve a connection from the pool. This is done implicitly when you use 
the database object or explicitly when you use the connection method of 
a DbPool object.

4. If you’re going to change information in the database, begin a transaction. 
Database transactions are discussed in “Managing Transactions” on 
page 348.
310 Server-Side JavaScript Guide



Approaches to Connecting
5. Either create a cursor or call a database stored procedure to work with 
information from the database. This could involve, for example, displaying 
results from a query or updating database contents. Close any open cursors, 
results sets, and stored procedures when you have finished using them. 
Cursors are discussed in “Manipulating Query Results with Cursors” on 
page 338; Stored procedures are discussed in “Calling Stored Procedures” 
on page 354.

6. Commit or rollback an open transaction.

7. Release the database connection (if you’re using Connection objects).

This chapter discusses the first three of these steps. Chapter 16, “Working with 
a Database,” discusses the remaining steps.

Approaches to Connecting
There are two basic ways to connect to a database with the LiveWire Database 
Service. You can use DbPool and Connection objects, or you can use the 
database object.

Connecting with DbPool and Connection objects. In this approach, you 
create a pool of database connections for working with a relational database. 
You create an instance of the DbPool class and then access Connection 
objects through that DbPool object. DbPool and Connection objects separate 
the activities of connecting to a database and managing a set of connections 
from the activities of accessing the database through a connection.

This approach offers a lot of flexibility. Your application can have several 
database pools, each with its own configuration of database and user. Each 
pool can have multiple connections for that configuration. This allows 
simultaneous access to multiple databases or to the same database from 
multiple accounts. You can also associate the connection pool with the 
application itself instead of with a single client request and thus have 
transactions that span multiple client requests. You make this association by 
assigning the pool to a property of the project object and then removing the 
assignment when you’re finished with the pool.
Chapter 15, Connecting to a Database 311



Approaches to Connecting
Connecting with the database object. In this approach, you use the 
predefined database object for connecting to a database with a single 
connection configuration of database and user. The database object performs 
all activities related to working with a database. You can think of the database 
object as a single pool of database connections.

This approach is somewhat simpler, as it involves using only the single 
database object and not multiple DbPool and Connection objects. However, 
it lacks the flexibility of the first approach. If you use only the database object 
and want to connect to different databases or to different accounts, you must 
disconnect from one configuration before connecting to another. Also, when 
you use the database object, a single transaction cannot span multiple client 
requests, and connections to multiple database sources cannot be 
simultaneously open.

As described in the following sections, you need to consider two main 
questions when deciding how to set up your database connections:

• How many configurations of database and user do you need?

• Does a single database connection need to span multiple client requests?
312 Server-Side JavaScript Guide



Approaches to Connecting
The following table summarizes how the answers to these questions affect how 
you set up and manage your pool of database connections and the individual 
connections. The following sections discuss the details of these possibilities.

Table 15.1 Considerations for creating the database pools 

Number of 
database 
configurations?

Where is the 
pool 
connected?

Where is 
the pool
disconnected?

What 
object(s) hold 
the pool?

Does your code 
need to store 
the pool and 
connection?

How does your code 
store the pool and 
connections in the 
project object?

1, shared by 
all clients

Application’s 
initial page

Nowhere database No --

1, shared by 
all clients

Application’s 
initial page

Nowhere 1 DbPool 
object

Yes DbPool: Named 
property;
Connection: 1 array 

Fixed set, 
shared by all 
clients

Application’s 
initial page

Nowhere N DbPool 
objects

Yes DbPool: Named 
property;
Connection: N 
arrays

Separate pool 
for each client

Client 
request page

Dependsa Many 
DbPool 
objects

Only if a 
connection 
spans client 
requests

DbPool: 1 array;
Connection: 1 array

a. If an individual connection does not span client requests, you can connect and disconnect the pool on each page that needs a connection. 
In this case, the pool is not stored between requests. If individual connections do span requests, connect on the first client page that needs the 
connection and disconnect on the last such page. This can result in idle connections, so your application will need to handle that possibility.
Chapter 15, Connecting to a Database 313



Database Connection Pools
Database Connection Pools
If you want to use the database object, you do not have to create it. It is a 
predefined object provided for you by the JavaScript runtime engine. 
Alternatively, if you want the additional capabilities of the DbPool class, you 
create an instance of the DbPool class and connect that object to a particular 
database which creates a pool of connections.

You can either create a generic DbPool object and later specify the connection 
information (using its connect method) or you can specify the connection 
information when you create the pool. A generic DbPool object doesn’t have 
any available connections at the time it is created. For this reason, you may 
want to connect when you create the object. If you use the database object, 
you must always make the connection by calling database.connect.

connect (dbtype, serverName, userName, password, 
databaseName, maxConnections, commitFlag);

You can specify the following information when you make a connection, either 
when creating a DbPool object or when calling the connect method of DbPool 
or database:

• dbtype: The database type. This must be either "DB2", "INFORMIX", 
"ODBC", "ORACLE", or "SYBASE". (For applications running on Netscape 
FastTrack Server, it must be "ODBC".)

• serverName: The name of the database server to which to connect. The 
server name typically is established when the database is installed. If in 
doubt, see your database or system administrator. For more information on 
this parameter, see the description of the connect method or the DbPool 
constructor in the Server-Side JavaScript Reference.

• username: The name of the user to connect to the database. 

• password: The user’s password.

• databaseName: The name of the database to connect to for the given 
server. If your database server supports the notion of multiple databases on 
a single server, supply the name of the database to use. If you provide an 
empty string, the default database is connected. For Oracle, ODBC, and 
DB2, you must always provide an empty string.
314 Server-Side JavaScript Guide



Database Connection Pools
• maxConnections: (Optional) The number of connections to have available 
in the database pool. Remember that your database client license probably 
specifies a maximum number of connections. Do not set this parameter to a 
number higher than your license allows. If you do not supply this 
parameter for the DbPool object, its value is 1. If you do not supply this 
parameter for the database object, its value is whatever you specify in the 
Application Manager as the value for Built-in Maximum Database 
Connections when you install the application. (See “Installing a New 
Application” on page 61 for more information on this parameter.) See 
“Single-Threaded and Multithreaded Databases” on page 316 for things you 
should consider before setting this parameter.

• commitflag: (Optional) A Boolean value indicating whether to commit or 
to roll back open transactions when the connection is finalized. Specify 
true to commit open transactions and false to roll them back. If you do 
not supply this parameter for the DbPool object, its value is false. If you 
do not supply this parameter for the database object, its value is true. 

For example, the following statement creates a new database pool of five 
connections to an Oracle database. With this pool, uncommitted transactions 
are rolled back:

pool = new DbPool ("ORACLE", "myserver1", "ENG", "pwd1", "", 5);

The dbadmin sample application lets you experiment with connecting to 
different databases as different users.

For many applications, you want to share the set of connections among clients 
or have a connection span multiple client requests. In these situations, you 
should make the connection on your application’s initial page. This avoids 
potential problems that can occur when individual clients make shared 
database connections.

However, for some applications each client needs to make its own connection. 
As discussed in “Sharing an Array of Connection Pools” on page 321, the clients 
may still be sharing objects. If so, be sure to use locks to control the data 
sharing, as discussed in “Sharing Objects Safely with Locking” on page 279.
Chapter 15, Connecting to a Database 315



Single-Threaded and Multithreaded Databases
The following table shows DbPool and database methods for managing the 
pool of connections. (The database object uses other methods, discussed later, 
for working with a database connection.) For a full description of these 
methods, see the Server-Side JavaScript Reference.

Single-Threaded and Multithreaded Databases
LiveWire supports multithreaded access to your database. That is, it supports 
having more than one thread of execution access a single database at the same 
time. This support explains why it makes sense to have a connection pool with 
more than one connection in it. However, some vendor database libraries are 
not multithreaded. For those databases, it does not matter how many 
connections are in your connection pool; only one connection can access the 
database at a time. For information on which database libraries are single-
threaded, see Enterprise Server 3.x Release Notes.

Note The guidelines below are crucial for single-threaded access. However, you 
should think about these points even for databases with multithreaded access.

Table 15.2 DbPool and database methods for managing connection pools 

connect Connects the pool to a particular configuration of 
database and user.

connected Tests whether the database pool and all of its 
connections are connected to a database.

connection (DbPool only) Retrieves an available Connection 
object from the pool.

disconnect Disconnects all connections in the pool from the 
database.

majorErrorCode Major error code returned by the database server or 
ODBC.

majorErrorMessage Major error message returned by the database server or 
ODBC.

minorErrorCode Secondary error code returned by vendor library.

minorErrorMessage Secondary error message returned by vendor library.
316 Server-Side JavaScript Guide



Single-Threaded and Multithreaded Databases
A single-threaded database library has possible serious performance 
ramifications. Because only one thread can access the database at a time, all 
other threads must wait for the first thread to stop using the connection before 
they can access the database. If many threads want to access the database, each 
could be in for a long wait. You should consider the following when designing 
your database access:

• Keep your database interactions very short.

Every thread must wait for every other thread. The shorter your interaction, 
the shorter the wait.

• Always release connections and close open cursors and stored procedures.

You should do this anyway. In the case of a single-threaded database, 
however, it becomes absolutely essential to prevent needless waiting.

• Always use explicit transaction control.

With explicit transaction control, it is clearer when you’re done with a 
connection.

• Do not keep a connection open while waiting for input from the user.

Users don’t always complete what they start. If a user browses away from 
your application while it has an open connection, the system won’t know 
when to release the connection. Unless you’ve implemented a scheme for 
retrieving idle connections (as discussed in “Retrieving an Idle Connection” 
on page 328), that connection could be tied up for a very long time, thus 
restricting other users from accessing the database.

• Do not keep a cursor or transaction open across multiple pages of your 
application.

Any time a database interaction spans multiple pages of an application, the 
risk of a user not completing the transaction becomes even greater.
Chapter 15, Connecting to a Database 317



Managing Connection Pools
Managing Connection Pools
At any given time, a connected DbPool or database object and all the 
connections in the pool are associated with a particular database configuration. 
That is, everything in a pool is connected to a particular database server, as a 
particular user, with a particular password, and to a particular database. 

If your application always uses the same configuration, then you can easily use 
a single DbPool object or use the database object and connect exactly once. 
In this case, you should make the connection on your application’s initial page.

If your application requires multiple configurations, either because it must 
connect to different databases, or to the same database as different users, or 
both, you need to decide how to manage those configurations. 

If you use the database object and have multiple configurations, you have no 
choice. You must connect, disconnect, and reconnect the database object 
each time you need to change something about the configuration. You do so 
under the control of the client requests. In this situation, be sure you use locks, 
as discussed in “Sharing Objects Safely with Locking” on page 279, to gain 
exclusive access to the database object. Otherwise, another client request can 
disconnect the object before this client request is finished with it. Although you 
can use the database object this way, you’re probably better off using DbPool 
objects.

If you use DbPool objects and have multiple configurations, you could still 
connect, disconnect, and reconnect the same DbPool object. However, with 
DbPool objects you have more flexibility. You can create as many pools as you 
need and place them under the control of the project object. (See Chapter 13, 
“Session Management Service,” for information on the project object.) Using 
multiple database pools is more efficient and is generally safer than reusing a 
single pool (either with the database object or with a single DbPool object).

In deciding how to manage your pools, you must consider two factors: how 
many different configurations you want your pools to be able to access, and 
whether a single connection needs to span multiple client requests. If you have 
a small number of possible configurations, you can create a separate pool for 
each configuration. “Sharing a Fixed Set of Connection Pools” on page 320 
discusses this approach.
318 Server-Side JavaScript Guide



Managing Connection Pools
If you have a very large or unknown number of configurations (for example, if 
all users get their own database user ID), there are two situations to consider. If 
each connection needs to last for only one client request, then you can create 
individual database pools on a client page.

However, sometimes a connection must span multiple client requests (for 
example, if a single database transaction spans multiple client requests). Also, 
you may just not want to reconnect to the database on each page of the 
application. If so, you can create an array of pools that is shared. “Sharing an 
Array of Connection Pools” on page 321 discusses this approach.

Whichever approach you use, when you no longer need an individual 
connection in a pool, clean up the resources used by the connection so that it 
is available for another user. To do so, close all open cursors, stored 
procedures, and result sets. Release the connection back to the pool. (You 
don’t have to release the connection if you’re using the database object.)

If you do not release the connection, when you try to disconnect the pool, the 
system waits before actually disconnecting for one of two conditions to occur:

• You do release all connections

• The connections go out of scope and get collected by the garbage collector

If you create individual database pools for each user, be sure to disconnect the 
pool when you’re finished with it. For information on cursors, see 
“Manipulating Query Results with Cursors” on page 338. For information on 
stored procedures and result sets, see “Calling Stored Procedures” on page 354.
Chapter 15, Connecting to a Database 319



Managing Connection Pools
Sharing a Fixed Set of Connection Pools

Frequently, an application shares a small set of connection pools among all 
users of the application. For example, your application might need to connect 
to three different databases, or it might need to connect to a single database 
using four different user IDs corresponding to four different departments. If you 
have a small set of possible connection configurations, you can create separate 
pools for each configuration. You use DbPool objects for this purpose.

In this case, you want the pool of connections to exist for the entire life of the 
application, not just the life of a client or an individual client request. You can 
accomplish this by creating each database pool as a property of the project 
object. For example, the application’s initial page could contain these 
statements:

project.engpool = new DbPool ("ORACLE", "myserver1", "ENG", 
"pwd1", "", 5, true);

project.salespool = new DbPool ("INFORMIX", "myserver2", "SALES",
"pwd2", "salsmktg", 2);

project.supppool = new DbPool ("SYBASE","myserver3","SUPPORT", 
"pwd3", "suppdb", 3, false);

These statements create three pools for different groups who use the 
application. The project.eng pool has five Oracle connections and commits 
any uncommitted transactions when a connection is released back to the pool. 
The project.sales pool has two Informix connections and rolls back any 
uncommitted transactions at the end of a connection. The project.supp pool 
has three Sybase connections and rolls back any uncommitted transactions at 
the end of a connection.

You should create this pool as part of the application’s initial page. That page is 
run only when the application starts. On user-accessible pages, you don’t create 
a pool, and you don’t change the connection. Instead, these pages determine 
which group the current user belongs to and uses an already established 
connection from the appropriate pool. For example, the following code 
determines which database to use (based on the value of the userGroup 
property of the request object), looks up some information in the database 
and displays it to the user, and then releases the connection:

if (request.userGroup == "SALES") {
salesconn = project.salespool.connection("A sales connection");
salesconn.SQLTable ("select * from dept");
salesconn.release();

}

320 Server-Side JavaScript Guide



Managing Connection Pools
Alternatively, you can choose to create the pool and change the connection on 
a user-accessible page. If you do so, you’ll have to be careful that multiple 
users accessing that page at the same time do not interfere with each other. For 
example, only one user should be able to create the pool that will be shared by 
all users. For information on safe sharing of information, see “Sharing Objects 
Safely with Locking” on page 279.

Sharing an Array of Connection Pools

“Sharing a Fixed Set of Connection Pools” on page 320 describes how you can 
use properties of the project object to share a fixed set of connection pools. 
This approach is useful if you know how many connection pools you will need 
at the time you develop the application and furthermore you need only a small 
number of connections.

For some applications, you cannot predict in advance how many connection 
pools you will need. For others, you can predict, but the number is 
prohibitively large. For example, assume that, for each customer who accesses 
your application, the application consults a user profile to determine what 
information to display from the database. You might give each customer a 
unique user ID for the database. Such an application requires each user to have 
a different set of connection parameters (corresponding to the different 
database user IDs) and hence a different connection pool. 

You could create the DbPool object and connect and disconnect it on every 
page of the application. This works only if a single connection does not need to 
span multiple client requests. Otherwise, you can handle this situation 
differently.

For this application, instead of creating a fixed set of connection pools during 
the application’s initial page or a pool on each client page, you create a single 
property of the project object that will contain an array of connection pools. 
The elements of that array are accessed by a key based on the particular user. 
At initialization time, you create the array but do not put any elements in the 
array (since nobody has yet tried to use the application), as shown here:

project.sharedPools = new Object();

The first time a customer starts the application, the application obtains a key 
identifying that customer. Based on the key, the application creates a DbPool 
pool object and stores it in the array of pools. With this connection pool, it can 
either reconnect on each page or set up the connection as described in 
Chapter 15, Connecting to a Database 321



Managing Connection Pools
“Maintaining a Connection Across Requests” on page 325. The following code 
either creates the pool and or obtains the already created pool, makes sure it is 
connected, and then works with the database:

// Generate a unique index to refer to this client, if that 
// hasn’t already been done on another page. For information
// on the ssjs_generateClientID function, see
// “Uniquely Referring to the client Object” on page 255
if client.id == null {

client.id = ssjs_generateClientID();
}

// If there isn't already a pool for this client, create one and
// connect it to the database. 
project.lock();
if (project.sharedPools[client.id] == null) {

project.sharedPools[client.id] = new DbPool ("ORACLE",
"myserver", user, password, "", 5, false);

}
project.unlock(); 

// Set a variable to this pool, for convenience.
var clientPool = project.sharedPools[client.id];

// You've got a pool: see if it's connected. If not, try to 
// connect it. If that fails, redirect to a special page to
// inform the user.
project.lock();
if (!clientPool.connected()) {

clientPool.connect("ORACLE", "myserver", user, password, 
"", 5, false);

if (!clientPool.connected()) {
delete project.sharedPools[client.id];
project.unlock(); 
redirect("noconnection.htm");

}
}
project.unlock();

// If you've got this far, you're successfully connected and 
// can work with the database.
clientConn = clientPool.connection();
clientConn.SQLTable("select * from customers");
// ... more database operations ...

// Always release a connection when you no longer need it.
clientConn.release();
}

322 Server-Side JavaScript Guide



Individual Database Connections
The next time the customer accesses the application (for example, from another 
page in the application), it uses the same code and obtains the stored 
connection pool and (possibly a stored Connection object) from the project 
object.

If you use ssjs_generateClientID and store the ID on the client object, 
you may need to protect against an intruder getting access to that ID and hence 
to sensitive information.

Note The sharedConns object used in this sample code is not a predefined 
JavaScript object. It is simply created by this sample and could be called 
anything you choose.

Individual Database Connections
Once you’ve created a pool of connections, a client page can access an 
individual connection from the pool. If you’re using the database object, the 
connection is implicit in that object; that is, you use methods of the database 
object to access the connection. If, however, you’re using DbPool objects, a 
connection is encapsulated in a Connection object, which you get by calling a 
method of the DbPool object. For example, suppose you have this pool:

project.eng = new DbPool ("ORACLE", "myserver", "ENG", "pwd1", "", 5);

You can get a connection from the pool with this method call:

myconn = project.eng.connection ("My Connection", 60);

The parameters to this method are both optional. The first is a name for the 
connection (used for debugging); the second is an integer indicating a timeout 
period, in seconds. In this example, if the pool has an available connection, or 
if one becomes available within 60 seconds, that connection is assigned to the 
variable myconn. If no connection becomes available during this period, the 
method returns without a connection. For more information on waiting to get a 
connection from a pool, see “Waiting for a Connection” on page 327. For 
information on what to do if you don’t get one, see “Retrieving an Idle 
Connection” on page 328.

When you have finished using a connection, return it to the pool by calling the 
Connection object’s release method. (If you’re using the database object, 
you do not have to release the connection yourself.) Before calling the 
release method, close all open cursors, stored procedures, and result sets. 
Chapter 15, Connecting to a Database 323



Individual Database Connections
When you call the release method, the system waits for these to be closed 
and then returns the connection to the database pool. The connection is then 
available to the next user. (For information on cursors, see “Manipulating Query 
Results with Cursors” on page 338. For information on stored procedures and 
result sets, see “Calling Stored Procedures” on page 354.)

Once you have a connection (either through the database object or a 
Connection object), you can interact with the database. The following table 
summarizes the database and connection methods for working with a single 
connection. The database object has other methods for managing a 
connection pool, discussed in “Managing Connection Pools” on page 318.

Table 15.3 database and Connection methods for working with a single connection 

Method Description

cursor Creates a database cursor for the specified SQL 
SELECT statement.

SQLTable Displays query results. Creates an HTML table for 
results of an SQL SELECT statement.

execute Performs the specified SQL statement. Use for SQL 
statements other than queries.

connected Returns true if the database pool (and hence this 
connection) is connected to a database.

release (Connection only) Releases the connection back to 
its database pool.

beginTransaction Begins an SQL transaction.

commitTransaction Commits the current SQL transaction.

rollbackTransaction Rolls back the current SQL transaction.

storedProc Creates a stored-procedure object and runs the 
specified database stored procedure.

majorErrorCode Major error code returned by the database server or 
ODBC.

majorErrorMessage Major error message returned by the database server or 
ODBC.

minorErrorCode Secondary error code returned by vendor library.

minorErrorMessage Secondary error message returned by vendor library.
324 Server-Side JavaScript Guide



Individual Database Connections
Maintaining a Connection Across 
Requests

In some situations, you may want a single connection to span multiple client 
requests. That is, you might want to use the same connection on multiple 
HTML pages. 

Typically, you use properties of the client object for information that spans 
client requests. However, the value of a client property cannot be an object. 
For that reason, you cannot store a pool of database connections in the client 
object. Instead, you use a pool of connections stored with the project object, 
managing them as described in this section. If you use this approach, you may 
want to encrypt user information for security reasons.

Warning Take special care with this approach because storing the connection in this way 
makes it unavailable for other users. If all the connections are unavailable, new 
requests wait until someone explicitly releases a connection or until a 
connection times out. This is especially problematic for single-threaded 
database libraries. (For information setting up connections so that they are 
retrieved when idle for a long time, see “Retrieving an Idle Connection” on 
page 328.)

In the following example, a connection and a transaction span multiple client 
requests. The code saves the connection as a property of the sharedConns 
object, which is itself a property of the project object. The sharedConns 
object is not a predefined JavaScript object. It is simply created by this sample 
and could have any name you choose.

Because the same pool is used by all clients, you should create the 
sharedConns object and create and connect the pool itself on the application’s 
initial page, with code similar to this:

project.sharedConns = new Object();
project.sharedConns.conns = new Object();
project.sharedConns.pool = new DbPool ("SYBASE", "sybaseserver",

"user", "password", "sybdb", 10, false);
Chapter 15, Connecting to a Database 325



Individual Database Connections
Then, on the first client page that accesses the pool, follow this strategy:

// Generate a unique index to refer to this client, if that hasn’t
// already been done on another page.
if client.id == null {

client.id = ssjs_generateClientID();
}

// Set a variable to this pool, for convenience. 
var clientPool = project.sharedConns.pool;

// See whether the pool is connected. If not, redirect to a 
// special page to inform the user.
project.lock();
if (!clientPool.connected()) {

delete project.sharedConns.pool;
project.unlock();
redirect("noconnection.htm");

}
project.unlock();

// Get a connection from the pool and store it in the project object
project.sharedConns.conns[client.id] = clientPool.connection();
var clientConn = project.sharedConns.conns[client.id];

clientConn.beginTransaction();
cursor = clientConn.cursor("select * from customers", true");
// ... more database statements ... 
cursor.close();

}

Notice that this page does not roll back or commit the transaction. The 
connection remains open and the transaction continues. (Transactions are 
discussed in “Managing Transactions” on page 348.) The second HTML page 
retrieves the connection, based on the value of client.id and continues 
working with the database as follows:

// Retrieve the connection. 
var clientConn = project.sharedConns.conns[client.id];

// ... Do some more database operations ...
// In here, if the database operations succeed, set okay to 1.
// If there was a database error, set okay to 0. At the end,
// either commit or roll back the transaction on the basis of 
// its value.
if (okay) 

clientConn.commitTransaction();
else

clientConn.rollbackTransaction();

// Return the connection to the pool.
clientConn.release();
326 Server-Side JavaScript Guide



Individual Database Connections
// Get rid of the object property value. You no longer need it. 
delete project.sharedConns.conns[client.id];

In this sample, the sharedConns object stores a single DbPool object and the 
connections for that pool that are currently in use. Your situation could be 
significantly more complex. If you have a fixed set of database pools, you 
might predefine a separate object to store the connections for each pool. 
Alternatively, if you have an array of pools and each pool needs connections 
that span multiple requests, you need to create an array of objects, each of 
which stores a pool and an array of its connections. As another wrinkle, instead 
of immediately redirecting if the pool isn’t connected, a client page might try to 
reestablish the connection.

If you use ssjs_generateClientID and store the ID in the client object, 
you may need to protect against an intruder getting access to that ID and hence 
to sensitive information.

Waiting for a Connection

There are a fixed number of connections in a connection pool created with 
DbPool. If all connections are in use during an access attempt, then your 
application waits a specified timeout period for a connection to become free. 
You can control how long your application waits.

Assume that you’ve defined the following pool containing three connections:

pool = new DbPool ("ORACLE", "myserv", "user", "password", "", 3);

Further assume that three clients access the application at the same time, each 
using one of these connections. Now, a fourth client requests a connection with 
the following call: 

myconnection = pool.connection();

This client must wait for one of the other clients to release a connection. In this 
case, because the call to connection does not specify a timeout period, the 
client waits indefinitely until a connection is freed, and then returns that 
connection.
Chapter 15, Connecting to a Database 327



Individual Database Connections
You can specify a different timeout period by supplying arguments to the 
connection method. The second argument to the connection method is a 
timeout period, expressed in seconds. If you specify 0 as the timeout, the 
system waits indefinitely. For example, the following code has the connection 
wait only 30 seconds before timing out: 

myconnection = pool.connection ("Name of Connection", 30);

If no connection becomes available within the specified timeout period, the 
method returns null, and an error message is set in the minor error message. 
You can obtain this message by calling the minorErrorMessage method of 
pool. If your call to connection times out, you may want to free one by 
disconnecting an existing connection. For more information, see “Retrieving an 
Idle Connection” on page 328.

Retrieving an Idle Connection

When your application requests a connection from a DbPool object, it may not 
get one. Your options at this point depend on the architecture of your 
application. 

If each connection lasts only for the lifetime of a single client request, the 
unavailability of connections cannot be due to a user’s leaving an application 
idle for a significant period of time. It can only be because all the code on a 
single page of JavaScript has not finished executing. In this situation, you 
should not try to terminate connection that is in use and reuse it. If you 
terminate the connection at this time, you run a significant risk of leaving that 
thread of execution in an inconsistent state. Instead, you should make sure that 
your application releases each connection as soon as it is finished using it. If 
you don’t want to wait for a connection, you’ll have to present your user with 
another choice.

If, by contrast, a connection spans multiple client requests, you may want to 
retrieve idle connections. In this situation, a connection can become idle 
because the user did not finish a transaction. For example, assume that a user 
submits data on the first page of an application and that the data starts a 
multipage database transaction. Instead of submitting data for the continuation 
of the transaction on the next page, the user visits another site and never 
returns to this application. By default, the connection remains open and cannot 
be used by other clients that access the application.
328 Server-Side JavaScript Guide



Individual Database Connections
You can manually retrieve the connection by cleaning up after it and releasing 
it to the database pool. To do so, write functions such as the following to 
perform these activities:

• Bucket: Define an object type (called bucket in this example) to hold a 
connection and a timestamp. 

• MarkBucket: Mark a bucket object with the current timestamp. 

• RetrieveConnections: Traverse an array of connections looking for 
Connection objects that haven’t been accessed within a certain time limit 
and use CleanBucket (described next) to retrieve the object.

• CleanBucket: Close cursors (and possibly stored procedures and result 
sets), roll back or commit any open transaction, and return the connection 
back to the pool. 

Your application could use these functions as follows:

1. When you get a new connection, call Bucket to create a bucket object.

2. On any page that accesses the connection, call MarkBucket to update the 
timestamp. 

3. If the application times out trying to get a connection from the pool, call 
RetrieveConnection to look for idle connections, close any open cursors, 
commit or rollback pending transactions, and release idle connections back 
to the pool. 

4. If a connection was returned to the pool, then try and get the connection 
from the pool. 

Also, on each page where your application uses a connection, it needs to be 
aware that another thread may have disconnected the connection before this 
page was reached by this client.

Creating a Bucket. The bucket holds a connection and a timestamp. This 
sample constructor function takes a connection as its only parameter:

// Constructor for Bucket 
function Bucket(c)
{

this.connection = c;
this.lastModified = new Date();

}

Chapter 15, Connecting to a Database 329



Individual Database Connections
You call this function to create a bucket for the connection as soon as you get 
the connection from the connection pool. You might add other properties to 
the connection bucket. For instance, your application may contain a cursor that 
spans client requests. In this case, you could use a property to add the cursor to 
the bucket, so that you can close an open cursor when retrieving the 
connection. You store the cursor in the bucket at the time you create it, as 
shown in the following statement:

myBucket.openCursor = 
myBucket.connection.cursor("select * from customer", true);

Marking the Bucket. The MarkBucket function takes a Bucket object as a 
parameter and sets the lastModified field to the current time. 

function MarkBucket(bucket) 
{

bucket.lastModified = new Date();
}

Call MarkBucket on each page of the application that uses the connection 
contained in the bucket. This resets lastModified to the current date and 
prevents the connection from appearing idle and hence ripe for retrieval. 

Retrieving Old Connections. RetrieveConnections scans an array of 
Bucket objects, searching for connection buckets whose timestamp predates a 
certain time. If one is found, then the function calls CleanBucket (described 
next) to return the connection to the database pool. 

// Retrieve connections idle for the specified number of minutes. 
function RetrieveConnections(BucketArray, timeout) 
{

var i;
var count = 0;
var now;

now = new Date();

// Do this loop for each bucket in the array. 
for (i in BucketArray) {

// Compute the time difference between now and the last
// modified date. This difference is expressed in milliseconds.
// If it is greater than the timeout value, then call the clean
// out function.

if ((now - i.lastModified)/60000) > timeout) {
CleanBucket(i);

// Get rid of the bucket, because it’s no longer being used. 
delete i;
330 Server-Side JavaScript Guide



Individual Database Connections
count = count + 1;
}

}
return count;

}

Cleaning Up a Bucket. Once it has been determined that a connection should 
be retrieved (with the RetrieveConnections function), you need a function to 
clean up the details of the connection and then release it back to the database 
pool. This sample function closes open cursors, rolls back open transactions, 
and then releases the connection.

function CleanBucket(bucket)
{

bucket.openCursor.close();
bucket.connection.rollbackTransaction();
bucket.connection.release();

}

CleanBucket assumes that this bucket contains an open cursor and its 
connection has an open transaction. It also assumes no stored procedures or 
result sets exist. In your application, you may want to do some other checking.

Pulling It All Together. The following sample code uses the functions just 
defined to retrieve connections that haven’t been referenced within 10 minutes. 
First, create a shared connections array and a database pool with five 
connections:

if ( project.sharedConns == null ) {
project.sharedConns = new Object(); 
project.sharedConns.pool = new DbPool ("ORACLE", "mydb",

"user", "password", "", 5, false);
if ( project.sharedConns.pool.connected() ) {

project.sharedConns.connections = new Object();
}

else {
delete project.sharedConns;

}
}

Now use the following code to try to get a connection. After creating the pool, 
generate a client ID and use that as an index into the connection array. Next, 
try to get a connection. If a timeout occurs, then call RetrieveConnections to 
return old connections to the pool. If RetrieveConnections returns a 
connection to the pool, try to get the connection again. If you still can’t get a 
Chapter 15, Connecting to a Database 331



Individual Database Connections
connection, redirect to another page saying there are no more free connections. 
If a connection is retrieved, store it in a new connection bucket and store that 
connection bucket in the shared connections array. 

if ( project.sharedConns != null ) {
var pool = project.sharedConns.pool;

// This code is run only if the pool is already connected. 
// If it is not, presumably you’d have code to connect. 
if ( pool.connected() == true ) {

// Generate the client ID. 
client.id = ssjs_generateClientID();

// Try to get a connection. 
var connection = pool.connection("my connection", 30);

// If the connection is null, then none was available within
// the specified time limit. Try and retrieve old connections. 
if (connection == null) {

// Retrieve connections not used for the last 10 minutes.
var count = RetrieveConnections(project.sharedConns, 10);

// If count is nonzero, you made some connections available.
if (count != 0){

connection = pool.connection("my connection", 30);
// If connection is still null, give up. 
if (connection == null)

redirect("nofreeconnections.htm");
}
else {

// Give up. 
redirect("nofreeconnections.htm");

}}

// If you got this far, you have a connection and can proceed.
// Put this connection in a new bucket, start a transaction,
// get a cursor, store that in the bucket, and continue. 
project.sharedConns.connections[client.id] = 

new Bucket(connection);
connection.beginTransaction();
project.sharedConns.connections[client.id].cursor =

connection.cursor("select * from customer", true);

// Mark the connection bucket as used. 
MarkBucket(project.sharedConns.connections[client.id]);

// Database statements. 
...

}

332 Server-Side JavaScript Guide



Individual Database Connections
In the next page of the multipage transaction, perform more database 
operations on the connection. After the last database operation to the 
connection, mark the connection bucket:

var Bucket = project.sharedConns.connections[client.id];

if ( Bucket == null) {
// Reconnect 

}

else {

// Interact with the database. 
...

// The last database operation on the page. 
row = Bucket.cursor.next();
row.customerid = 666;
Bucket.openCursor.insertRow("customer");

// Mark the connection bucket as having been used on this page. 
MarkBucket(Bucket);

}

Chapter 15, Connecting to a Database 333



Individual Database Connections
334 Server-Side JavaScript Guide



C h a p t e r

16
Chapter 16Working with a Database
This chapter discusses working with DB2, Informix, ODBC, Oracle, or Sybase 
relational databases. It describes how to retrieve information from the database 
and use it in your application, how to work with database transactions, and 
how to execute database stored procedures.

Remember that if your application runs on Netscape FastTrack Server instead 
of Netscape Enterprise Server, it can access only databases on servers using the 
ODBC standard. 

This chapter contains the following sections:

• Automatically Displaying Query Results

• Executing Arbitrary SQL Statements

• Manipulating Query Results with Cursors

• Managing Transactions

• Working with Binary Data

• Calling Stored Procedures
Chapter 16, Working with a Database 335



Automatically Displaying Query Results
The LiveWire Database Service allows you to interact with a relational database 
in many ways. You can do all of the following:

• Perform database queries and have the runtime engine automatically format 
the results for you. 

• Use cursors to perform database queries and present the results in an 
application-specific way or use the results in performing calculations.

• Use cursors to change information in your database.

• Use transactions to manage your database interactions.

• Perform SQL processing not involving cursors. 

• Run database stored procedures. 

For information on how to set up and manage your database connections, see 
Chapter 15, “Connecting to a Database.”

Automatically Displaying Query Results
The simplest and quickest way to display the results of database queries is to 
use the SQLTable method of the database object or a Connection object. The 
SQLTable method takes an SQL SELECT statement and returns an HTML table. 
Each row and column in the query is a row and column of the table. The HTML 
table also has column headings for each column in the database table.

The SQLTable method does not give you control over formatting of the output. 
Furthermore, if that output contains a Blob object, that object does not display 
as an image. (For information on blobs, see “Working with Binary Data” on 
page 351.) If you want to customize the appearance of the output, use a 
database cursor to create your own display function. For more information, see 
“Manipulating Query Results with Cursors” on page 338.

As an example, if myconn is a Connection object, the following JavaScript 
statement displays the results of the database query in a table:

myconn.SQLTable("select * from videos");
336 Server-Side JavaScript Guide



Executing Arbitrary SQL Statements
The following is the first part of the table that could be generated by these 
statements:

Executing Arbitrary SQL Statements
The execute method of the database object or a Connection object enables 
an application to execute an arbitrary SQL statement. Using execute is referred 
to as performing passthrough SQL, because it passes SQL directly to the 
server.

You can use execute for any data definition language (DDL) or data 
manipulation language (DML) SQL statement supported by the database server. 
Examples include CREATE, ALTER, and DROP. While you can use it to execute 
any SQL statement, you cannot return data with the execute method. 

Notice that execute is for performing standard SQL statements, not for 
performing extensions to SQL provided by a particular database vendor. For 
example, you cannot call the Oracle describe function or the Informix load 
function from the execute method.

To perform passthrough SQL statements, simply provide the SQL statement as 
the parameter to the execute method. For example, you might want to remove 
a table from the database that is referred to by the project object’s oldtable 
property. To do so, you can use this method call:

connobj.execute("DROP TABLE " + project.oldtable);

Important When using execute, your SQL statement must strictly conform to the SQL 
syntax requirements of the database server. For example, some servers require 
each SQL statement to be terminated by a semicolon. For more information, see 
your database server documentation.

Title ID Year Category Quantity On 
Hand

Synopsis

A Clockwork Orange 1 1975 Science 
Fiction

5 3 Little Alex and his droogies stop by 
the Miloko bar for a refreshing libation 
before a wild night on the town. 

Philadelphia Story 1 1940 Romantic 
Comedy

Katherine Hepburn and Cary Grant are 
reunited on the eve of her remarriage, 
with Jimmy Stewart for complications.
Chapter 16, Working with a Database 337



Manipulating Query Results with Cursors
If you have not explicitly started a transaction, the single statement is 
committed automatically. For more information on transaction control, see 
“Managing Transactions” on page 348.

To perform some actions, such as creating or deleting a table, you may need to 
have privileges granted by your database administrator. Refer to your database 
server documentation for more information, or ask your database administrator.

Manipulating Query Results with Cursors
In many situations, you do not simply want to display a table of query results. 
You may want to change the formatting of the result or even do arbitrary 
processing, rather than displaying it at all. To manipulate query results, you 
work with a database cursor returned by a database query. To create an 
instance of the Cursor class, call the database object’s or a Connection 
object’s cursor method, passing an SQL SELECT statement as its parameter. 

You can think of a cursor as a virtual table, with rows and columns specified by 
the query. A cursor also implies the notion of a current row, which is 
essentially a pointer to a row in the virtual table. When you perform operations 
with a cursor, they usually affect the current row.

When finished, close the database cursor by calling its close method. A 
database connection cannot be released until all associated cursors have been 
closed. For example, if you call a Connection object’s release method and 
that connection has an associated cursor that has not been closed, the 
connection is not actually released until you close the cursor. 

The following table summarizes the methods and properties of the Cursor 
class.

Table 16.1 Cursor properties and methods 

Method or Property Description

colName Properties corresponding to each column in the cursor. 
The name of each colName property is the name of a 
column in the database.

close Disposes of the cursor.

columns Returns the number of columns in the cursor.
338 Server-Side JavaScript Guide



Manipulating Query Results with Cursors
For complete information on these methods, see the description of the Cursor 
class in the Server-Side JavaScript Reference.

Creating a Cursor

Once an application is connected to a database, you can create a cursor by 
calling the cursor method of the associated database or Connection object. 
Creating the Cursor object also opens the cursor in the database. You do not 
need a separate open command. You can supply the following information 
when creating a Cursor object: 

• An SQL SELECT statement supported by the database server. To ensure 
database independence, use SQL 89/92-compliant syntax. The cursor is 
created as a virtual table of the results of this SQL statement.

• An optional Boolean parameter indicating whether you want an updatable 
cursor. Use this parameter only if you want to change the content of the 
database, as described in “Changing Database Information” on page 346. It 
is not always possible to create an updatable cursor for every SQL 
statement; this is controlled by the database. For example, if the SELECT 
statement is "select count(*) from videos", you cannot create an 
updatable cursor.

For example, the following statement creates a cursor for records from the 
CUSTOMER table. The records contain the columns id, name, and city and are 
ordered by the value of the id column.

custs = connobj.cursor ("select id, name, city
from customer order by id");

columnName Returns the name of a column in the cursor.

next Makes the next row in the cursor the current row.

insertRow Inserts a new row into the specified table.

updateRow Updates records in the current row of the specified table.

deleteRow Deletes the current row of the specified table.

Table 16.1 Cursor properties and methods  (Continued)

Method or Property Description
Chapter 16, Working with a Database 339



Manipulating Query Results with Cursors
This statement sets the variable custs to a Cursor object. The SQL query 
might return the following rows: 

1 Sally Smith Suva
2 Jane Doe Cupertino
3 John Brown Harper’s Ferry

You can then access this information using methods of the custs Cursor 
object. This object has id, name, and city properties, corresponding to the 
columns in the virtual table.

When you initially create a Cursor object, the pointer is positioned just before 
the first row in the virtual table. The following sections describe how you can 
get information from the virtual table.

You can also use the string concatenation operator (+) and string variables 
(such as client or request property values) when constructing a SELECT 
statement. For example, the following call uses a previously stored customer ID 
to further constrain the query:

custs = connobj.cursor ("select * from customer where id = "
+ client.customerID);

You can encounter various problems when you try to create a Cursor object. 
For example, if the SELECT statement in your call to the cursor method refers 
to a nonexistent table, the database returns an error and the cursor method 
returns null instead of a Cursor object. In this situation, you should use the 
majorErrorCode and majorErrorMessage methods to determine what error 
has occurred.

As a second example, suppose the SELECT statement refers to a table that exists 
but has no rows. In this case, the database may not return an error, and the 
cursor method returns a valid Cursor object. However, since that object has 
no rows, the first time you use the next method on the object, it returns false. 
Your application should check for this possibility.
340 Server-Side JavaScript Guide



Manipulating Query Results with Cursors
Displaying Record Values

When you create a cursor, it acquires a colName property for each named 
column in the virtual table (other than those corresponding to aggregate 
functions), as determined by the SELECT statement. You can access the values 
for the current row using these properties. In the example above, the cursor 
has properties for the columns id, name, and city. You could display the 
values of the first returned row using the following statements: 

// Create the Cursor object.
custs = connobj.cursor ("select id, name, city 

from customer order by id");

// Before continuing, make sure a real cursor was returned
// and there was no database error.
if ( custs && (connobj.majorErrorCode() == 0) ) {

// Get the first row
custs.next();

// Display the values
write ("<B>Customer Name:</B> " + custs.name + "<BR>");
write ("<B>City:</B> " + custs.city + "<BR>");
write ("<B>Customer ID:</B> " + custs.id);

//Close the cursor
custs.close();

}

Initially, the current row is positioned before the first row in the table. The 
execution of the next method moves the current row to the first row. For 
example, suppose this is the first row of the cursor:

1 Sally Smith Suva

In this case, the preceding code displays the following:

Customer Name: Sally Smith 
City: Suva
Customer ID: 1 

You can also refer to properties of a Cursor object (or indeed any JavaScript 
object) as elements of an array. The zero-index array element corresponds to 
the first column, the one-index array element corresponds to the second 
column, and so on.
Chapter 16, Working with a Database 341



Manipulating Query Results with Cursors
For example, you could use an index to display the same column values 
retrieved in the previous example:

write ("<B>Customer Name:</B> " + custs[1] + "<BR>");
write ("<B>City:</B> " + custs[2] + "<BR>");
write ("<B>Customer ID:</B> " + custs[0]);

This technique is particularly useful inside a loop. For example, you can create 
a Cursor object named custs and display its query results in an HTML table 
with the following code:

// Create the Cursor object.
custs = connobj.cursor ("select id, name, city 

from customer order by id");

// Before continuing, make sure a real cursor was returned
// and there was no database error.
if ( custs && (connobj.majorErrorCode() == 0) ) {

write ("<TABLE BORDER=1>");
// Display column names as headers.
write("<TR>");
i = 0;
while ( i < custs.columns() ) {

write("<TH>", custs.columnName(i), "</TH>");
i++;

}
write("</TR>");

// Display each row in the virtual table.
while(custs.next()) {

write("<TR>");
i = 0;
while ( i < custs.columns() ) {

write("<TD>", custs[i], "</TD>");
i++;

}
write("</TR>");
}
write ("</TABLE>");

// Close the cursor.
custs.close();

}

342 Server-Side JavaScript Guide



Manipulating Query Results with Cursors
This code would display the following table:

This example uses methods discussed in the following sections.

Displaying Expressions and Aggregate 
Functions

SELECT statements can retrieve values that are not columns in the database, 
such as aggregate values and SQL expressions. For such values, the Cursor 
object does not have a named property. You can access these values only by 
using the Cursor object’s property array index for the value.

The following example creates a cursor named empData, navigates to the row 
in that cursor, and then displays the value retrieved by the aggregate function 
MAX. It also checks to make sure the results from the database are valid before 
using them:

empData = connobj.cursor ("select min(salary), avg(salary),
max(salary) from employees");

if ( empData && (connobj.majorErrorCode() == 0) ) {
rowexists = empData.next();
if (rowexists) { write("Highest salary is ", empData[2]); }

}

This second example creates a cursor named empRows to count the number of 
rows in the table, navigates to the row in that cursor, and then displays the 
number of rows, once again checking validity of the data:

empRows = connobj.cursor ("select count(*) from employees");
if ( empRows && (connobj.majorErrorCode() == 0) ) {

rowexists = empRows.next();
if (rowexists) { write ("Number of rows in table: ", empRows[0]); }

}

ID NAME CITY

1 Sally Smith Suva

2 Jane Doe Cupertino

3 John Brown Harper’s Ferry
Chapter 16, Working with a Database 343



Manipulating Query Results with Cursors
Navigating with Cursors

Initially, the pointer for a cursor is positioned before the first row in the virtual 
table. Use the next method to move the pointer through the records in the 
virtual table. This method moves the pointer to the next row and returns true 
as long it found another row in the virtual table. If there is not another row, 
next returns false. 

For example, suppose a virtual table has columns named title, rentalDate, 
and dueDate. The following code uses next to iterate through the rows and 
display the column values in a table:

// Create the cursor.
custs = connobj.cursor ("select * from customer");

// Check for validity of the cursor and no database errors.
if ( custs && (connobj.majorErrorCode() == 0) ) {

write ("<TABLE>");

// Iterate through rows, displaying values.
while (custs.next()) {

write ("<TR><TD>" + custs.title + "</TD>" + 
"<TD>" + custs.rentalDate + "</TD>" + 
"<TD>" + custs.dueDate + "</TD></TR>");

}

write ("</TABLE>");

// Always close your cursors when finished!
custs.close();

}

This code could produce output such as the following:

You cannot necessarily depend on your place in the cursor. For example, 
suppose you create a cursor and, while you’re working with it, someone else 
adds a row to the table. Depending on the settings of the database, that row 
may appear in your cursor. For this reason, when appropriate (such as when 
updating rows) you may want your code to have tests to ensure it’s working on 
the appropriate row.

Clockwork Orange 6/3/97 9/3/97

Philadelphia Story 8/1/97 8/5/97
344 Server-Side JavaScript Guide



Manipulating Query Results with Cursors
Working with Columns

The columns method of the Cursor class returns the number of columns in a 
cursor. This method takes no parameters:

custs.columns()

You might use this method if you need to iterate over each column in a cursor.

The columnName method of the Cursor class returns the name of a column in 
the virtual table. This method takes an integer as a parameter, where the integer 
specifies the ordinal number of the column, starting with 0. The first column in 
the virtual table is 0, the second is 1, and so on.

For example, the following expression assigns the name of the first column in 
the custs cursor to the variable header:

header = custs.columnName(0)

If your SELECT statement uses a wildcard (*) to select all the columns in a table, 
the columnName method does not guarantee the order in which it assigns 
numbers to the columns. That is, suppose you have this statement:

custs = connobj.cursor ("select * from customer");

If the customer table has 3 columns, ID, NAME, and CITY, you cannot tell 
ahead of time which of these columns corresponds to custs.columnName(0). 
(Of course, you are guaranteed that successive calls to columnName have the 
same result.) If the order matters to you, you can instead hard-code the column 
names in the select statement, as in the following statement:

custs = connobj.cursor ("select ID, NAME, CITY from customer");

With this statement, custs.columnName(0) is ID, custs.columnName(1) is 
NAME, and custs.columnName(2) is CITY.
Chapter 16, Working with a Database 345



Manipulating Query Results with Cursors
Changing Database Information

You can use an updatable cursor to modify a table based on the cursor’s 
current row. To request an updatable cursor, add an additional parameter of 
true when creating the cursor, as in the following example:

custs = connobj.cursor ("select id, name, city from customer", true)

For a cursor to be updatable, the SELECT statement must be an updatable query 
(one that allows updating). For example, the statement cannot retrieve rows 
from more than one table or contain a GROUP BY clause, and generally it must 
retrieve key values from a table. For more information on constructing 
updatable queries, consult your database vendor’s documentation.

When you use cursors to make changes to your database, you should always 
work inside an explicit transaction. You do so using the beginTransaction, 
commitTransaction, and rollbackTransaction methods, as described in 
“Managing Transactions” on page 348. If you do not use explicit transactions in 
these situations, you may get errors from your database. 

For example, Informix and Oracle both return error messages if you use a 
cursor without an explicit transaction. Oracle returns Error ORA-01002: fetch 
out of sequence; Informix returns Error -206: There is no current row 
for UPDATE/DELETE cursor. 

As mentioned in “Navigating with Cursors” on page 344, you cannot necessarily 
depend on your position in the cursor. For this reason, when making changes 
to the database, be sure to test that you’re working on the correct row before 
changing it. 

Also, remember that when you create a cursor, the pointer is positioned before 
any of the rows in the cursor. So, to update a row, you must call the next 
method at least once to establish the first row of the table as the current row. 
Once you have a row, you can assign values to columns in the cursor.
346 Server-Side JavaScript Guide



Manipulating Query Results with Cursors
The following example uses an updatable cursor to compute the bonus for 
salespeople who met their quota. It then updates the database with this 
information:

connobj.beginTransaction ();

emps = connobj.cursor(
"select * from employees where dept=’sales’", true);

// Before proceeding make sure the cursor was created and
// there was no database error.
if ( emps && (connobj.majorErrorCode() == 0) ) {

// Iterate over the rows of the cursor, updating information
// based on the return value of the metQuota function.
while ( emps.next()  ) {

if (metQuota (request.quota, emps.sold)) {
emps.bonus = computeBonus (emps.sold);

}
else emps.bonus = 0;
emps.updateRow ("employees");

}

// When done, close the cursor and commit the transaction.
emps.close();
connobj.commitTransaction();

}
else {

// If there wasn’t a cursor to work with, roll back the transaction.
connobj.rollbackTransaction();

}

This example creates an updatable cursor of all employees in the Sales 
department. It iterates over the rows of that cursor, using the user-defined 
JavaScript function metQuota to determine whether or not the employee met 
quota. This function uses the value of quota property of the request object 
(possibly set in a form on a client page) and the sold column of the cursor to 
make this determination. The code then sets the bonus appropriately and calls 
updateRow to modify the employees table. Once all rows in the cursor have 
been accessed, the code commits the transaction. If no cursor was returned by 
the call to the cursor method, the code rolls back the transaction.

In addition to the updateRow method, you can use the insertRow and 
deleteRow methods to insert a new row or delete the current row. You do not 
need to assign values when you use deleteRow, because it simply deletes an 
entire row.
Chapter 16, Working with a Database 347



Managing Transactions
When you use insertRow, the values you assign to columns are used for the 
new row. If you have previously called the cursor’s next method, then the 
values of the current row are used for any columns without assigned values; 
otherwise, the unassigned columns are null. Also, if some columns in the table 
are not in the cursor, then insertRow inserts null in these columns. The 
location of the inserted row depends on the database vendor library. If you 
need to access the row after you call the insertRow method, you must first 
close the existing cursor and then open a new cursor.

Note DB2 has a Time data type. JavaScript does not have a corresponding data type. 
For this reason, you cannot update rows with values that use the DB2 Time 
data type

Managing Transactions
A transaction is a group of database actions that are performed together. 
Either all the actions succeed together or all fail together. When you apply all 
actions, making permanent changes to the database, you are said to commit a 
transaction. You can also roll back a transaction that you have not committed; 
this cancels all the actions.

Transactions are important for maintaining data integrity and consistency. 
Although the various database servers implement transactions slightly 
differently, the LiveWire Database Service provides the same methods for 
transaction management with all databases. Refer to the database vendor 
documentation for information on data consistency and isolation levels in 
transactions.

You can use explicit transaction control for any set of actions. For example, 
actions that modify a database should come under transaction control. These 
actions correspond to SQL INSERT, UPDATE, and DELETE statements. 
Transactions can also be used to control the consistency of the data you refer to 
in your application. 

For most databases, if you do not control transactions explicitly, the runtime 
engine uses the underlying database’s autocommit feature to treat each 
database statement as a separate transaction. Each statement is either 
committed or rolled back immediately, based on the success or failure of the 
individual statement. Explicitly managing transactions overrides this default 
behavior.
348 Server-Side JavaScript Guide



Managing Transactions
In some databases, such as Oracle, autocommit is an explicit feature that 
LiveWire turns on for individual statements. In others, such as Informix, 
autocommit is the default behavior when you do not create a transaction. In 
general, LiveWire hides these differences and puts an application in 
autocommit mode whenever the application does not use beginTransaction 
to explicitly start a transaction.

For Informix ANSI databases, LiveWire does not use autocommit. For these 
databases, an application always uses transactions even if it never explicitly 
calls beginTransaction. The application must use commitTransaction or 
rollbackTransaction to finish the transaction.

Note You are strongly encouraged to use explicit transaction control any time you 
make changes to a database. This ensures that the changes succeed or fail 
together. In addition, any time you use updatable cursors, you should use 
explicit transactions to control the consistency of your data between the time 
you read the data (with next) and the time you change it (with insertRow, 
updateRow, or deleteRow). As described in “Changing Database Information” 
on page 346, using explicit transaction control with updatable cursors is 
necessary to avoid errors in some databases such as Oracle and Informix.

Using the Transaction-Control Methods

Use the following methods of the database object or a Connection object to 
explicitly manage transactions:

• beginTransaction starts a new transaction. All actions that modify the 
database are grouped with this transaction, known as the current 
transaction.

• commitTransaction commits the current transaction. This method 
attempts to commit all the actions since the last call to beginTransaction.

• rollbackTransaction rolls back the current transaction. This method 
undoes all modifications since the last call to beginTransaction.

Of course, if your database does not support transactions, you cannot use them. 
For example, an Informix database created using the NO LOG option does not 
support transactions, and you will get an error if you use these methods.
Chapter 16, Working with a Database 349



Managing Transactions
The LiveWire Database Service does not support nested transactions. If you call 
beginTransaction multiple times before committing or rolling back the first 
transaction you opened, you’ll get an error.

For the database object, the maximum scope of a transaction is limited to the 
current client request (HTML page) in the application. If the application exits 
the page before calling the commitTransaction or rollbackTransaction 
method, then the transaction is automatically either committed or rolled back, 
based on the setting of the commitflag parameter provided when you 
connected to the database.

For Connection objects, the scope of a transaction is limited to the lifetime of 
that object. If you release the connection or close the pool of connections 
before calling the commitTransaction or rollbackTransaction method, 
then the transaction is automatically either committed or rolled back, based on 
the setting of the commitflag parameter provided when you made the 
connection, either with the connect method or in the DbPool constructor.

If there is no current transaction (that is, if the application has not called 
beginTransaction), calls to commitTransaction and 
rollbackTransaction can result in an error from the database.

You can set your transaction to work at different levels of granularity. The 
example described in “Changing Database Information” on page 346 creates a 
single transaction for modifying all rows of the cursor. If your cursor has a small 
number of rows, this approach is sensible. 

If, however, your cursor returns thousands of rows, you may want to process 
the cursor in multiple transactions. This approach can both cut down the 
transaction size and improve the concurrency of access to that information.

If you do break down your processing into multiple transactions, be certain that 
a call to next and an associated call to updateRow or deleteRow happen 
within the same transaction. If you get a row in one transaction, finish that 
transaction, and then attempt to either update or delete the row, you may get 
an error from your database.

How you choose to handle transactions depends on the goals of your 
application. You should refer to your database vendor documentation for more 
information on how to use transactions appropriately for that database type.
350 Server-Side JavaScript Guide



Working with Binary Data
Working with Binary Data
Binary data for multimedia content such as an image or sound is stored in a 
database as a binary large object (BLOb). You can use one of two techniques to 
handle binary data in JavaScript applications: 

• Store filenames in the database and keep the data in separate files.

• Store the data in the database as BLObs and access it with Blob class 
methods.

If you do not need to keep BLOb data in a database, you can store the 
filenames in the database and access them in your application with standard 
HTML tags. For example, if you want to display an image for each row in a 
database table, you could have a column in the table called imageFileName 
containing the name of the desired image file. You could then use this HTML 
expression to display the image for each row:

<IMG SRC=‘mycursor.imageFileName‘>

As the cursor navigates through the table, the name of the file in the IMG tag 
changes to refer to the appropriate file.

If you need to manipulate actual binary data in your database, the JavaScript 
runtime engine recognizes when the value in a column is BLOb data. That is, 
when the software creates a Cursor object, if one of the database columns 
contains BLOb data, the software creates a Blob object for the corresponding 
value in the Cursor object. You can then use the Blob object’s methods to 
display that data. Also, if you want to insert BLOb data into a database, the 
software provides a global function for you to use.
Chapter 16, Working with a Database 351



Working with Binary Data
The following table outlines the methods and functions for working with BLOb 
data. 

The blobImage method fetches a BLOb from the database, creates a temporary 
file of the specified format, and generates an HTML IMG tag that refers to the 
temporary file. The runtime engine removes the temporary file after the page is 
generated and sent to the client.

The blobLink method fetches BLOb data from the database, creates a 
temporary file, and generates an HTML hypertext link to the temporary file. The 
runtime engine removes the temporary file after the user clicks the link or 60 
seconds after the request has been processed.

The following example illustrates using blobImage and blobLink to create 
temporary files. In this case, the FISHTBL table has four columns: an ID, a 
name, and two images. One of these is a small thumbnail image; the other is a 
larger image. The example code writes HTML for displaying the name, the 
thumbnail, and a link to the larger image.

cursor = connobj.cursor ("select * from fishtbl");

if ( cursor && (connobj.majorErrorCode() == 0) ) {
while (cursor.next()) {

write (cursor.name);
write (cursor.picture.blobImage("gif"));
write (cursor.picture.blobLink("image\gif", "Link" + cursor.id));
write ("<BR>");

}
cursor.close();

}

Table 16.2  Methods and functions for working with Blobs 

Method or Function Description

blobImage Method to use when displaying BLOb data stored in a 
database. Returns an HTML IMG tag for the specified image 
type (GIF, JPEG, and so on).

blobLink Method to use when creating a link that refers to BLOb 
data with a hyperlink. Returns an HTML hyperlink to the 
BLOb.

blob Global function to use to insert or update a row containing 
BLOb data. Assigns BLOb data to a column in a cursor.
352 Server-Side JavaScript Guide



Working with Binary Data
If FISHTBL contains rows for four fish, the example could produce the 
following HTML:

Cod <IMG SRC="LIVEWIRE_TEMP9"> 
<A HREF="LIVEWIRE_TEMP10">Link1 </A> <BR>

Anthia <IMG SRC="LIVEWIRE_TEMP11">
<A HREF="LIVEWIRE_TEMP12">Link2 </A> <BR>

Scorpion <IMG SRC="LIVEWIRE_TEMP13">
<A HREF="LIVEWIRE_TEMP14">Link3 </A> <BR>

Surgeon <IMG SRC="LIVEWIRE_TEMP15">
<A HREF="LIVEWIRE_TEMP16">Link4 </A> <BR>

If you want to add BLOb data to a database, use the blob global function. This 
function assigns BLOb data to a column in an updatable cursor. As opposed to 
blobImage and blobLink, blob is a top-level function, not a method. 

The following statements assign BLOb data to one of the columns in a row and 
then update that row in the FISHTBL table of the database. The cursor contains 
a single row.

// Begin a transaction.
database.beginTransaction();

// Create a cursor.
fishCursor = database.cursor ("select * from fishtbl where 

name=’Harlequin Ghost Pipefish’", true);

// Make sure cursor was created.
if ( fishCursor && (database.majorErrorCode() == 0) ) {

// Position the pointer on the row.
rowexists = fishCursor.next();

if ( rowexists ) {

// Assign the blob data.
fishCursor.picture = blob ("c:\\data\\fish\\photo\\pipe.gif");

// Update the row.
fishCursor.updateRow ("fishtbl");

// Close the cursor and commit the changes.
fishCursor.close();
database.commitTransaction();

}
else {

// Close the cursor and roll back the transaction.
fishCursor.close();
database.rollbackTransaction();

}
}
else {
Chapter 16, Working with a Database 353



Calling Stored Procedures
// Never got a cursor; rollback the transaction.
database.rollbackTransaction();

}

Remember that the backslash (\) is the escape character in JavaScript. For this 
reason, you must use two backslashes in NT filenames, as shown in the 
example.

Calling Stored Procedures
Stored procedures are an integral part of operating and maintaining a relational 
database. They offer convenience by giving you a way to automate processes 
that you do often, but they offer other benefits as well:

• Limited access. You can limit access to a sensitive database by giving users 
access only through a stored procedure. A user has access to the data, but 
only within the stored procedure. Any other access is denied.

• Data integrity. Stored procedures help you make sure that information is 
provided and entered in a consistent way. By automating complicated 
transactions, you can reduce the possibility of user error. 

• Efficiency. A stored procedure is compiled once, when executed for the 
first time. Later executions run faster because they skip the compilation 
step. This also helps lighten the load on your network, because the stored 
procedure code is downloaded only once. 

The LiveWire Database Service provides two classes for working with stored 
procedures, Stproc and Resultset. With the methods of these classes you 
can call a stored procedure and manipulate the results of that procedure.

Exchanging Information

Stored procedures work differently for the various databases supported by the 
LiveWire Database Service. The most important distinction for LiveWire is how 
you pass information to and from the stored procedure in a JavaScript 
application. You always use input parameters to the stored procedure to pass 
information into a stored procedure.
354 Server-Side JavaScript Guide



Calling Stored Procedures
However, conceptually there are several distinct ways you might want to 
retrieve information from a stored procedure. Not every database vendor lets 
you retrieve information in all of these ways.

Result Sets

A stored procedure can execute one or more SELECT statements, retrieving 
information from the database. You can think of this information as a virtual 
table, very similar to a read-only cursor. (For information on cursors, see 
“Manipulating Query Results with Cursors” on page 338.) 

LiveWire uses an instance of the Resultset class to contain the rows returned 
by a single SELECT statement of a stored procedure. If the stored procedure 
allows multiple SELECT statements, you get a separate Resultset object for 
each SELECT statement. You use the resultSet method of the Stproc class to 
obtain a result set object and then you use that object’s methods to manipulate 
the result set.

Different database vendors return a result set in these varying ways:

• Sybase stored procedures can directly return the result of executing one or 
more SELECT statements.

• Informix stored procedures can have multiple return values. Multiple return 
values are like the columns in a single row of a table, except that these 
columns are not named. In addition, if you use the RESUME feature, the 
stored procedure can have a set of these multiple return values. This set is 
like the rows of a table. LiveWire creates a single result set to contain this 
virtual table.

• Oracle stored procedures use ref cursors to contain the rows returned by a 
SELECT statement. You can open multiple ref cursors in an Oracle stored 
procedure to contain rows returned by several SELECT statements. LiveWire 
creates a separate Resultset object for each ref cursor.

• DB2 stored procedures use open cursors to return result sets.

Output and Input/Output Parameters

In addition to standard input parameters, some database vendors allow other 
types of parameters for their stored procedures. Output parameters store 
information on return from the procedure and input/output parameters both 
pass in information and return information. 
Chapter 16, Working with a Database 355



Calling Stored Procedures
For most databases, you use the outParamCount and outParameters methods 
of the Stproc class to access output and input/output parameters. However, 
Informix does not allow output or input/output parameters. Therefore, you 
should not use the outParamCount and outParameters methods with 
Informix stored procedures.

Return Values

Seen as a simple function call, a stored procedure can have a return value. For 
Oracle and Sybase, this return value is in addition to any result sets it returns. 

You use the returnValue method of the Stproc class to access the return 
value. However, the return values for Informix stored procedures are used to 
generate its result set. For this reason, returnValue always returns null for 
Informix stored procedures. In addition, return values are not available for 
ODBC and DB2 stored procedures.

Steps for Using Stored Procedures

Once you have a database connection, the steps for using a stored procedure in 
your application vary slightly for the different databases:

1. (DB2 only) Register the stored procedure in the appropriate system tables. 
(You do this outside of JavaScript.)

2. (DB2, ODBC, and Sybase) Define a prototype for your stored procedure. 

3. (All databases) Execute the stored procedure.

4. (All databases) Create a resultSet object and get the data from that object.

5. (DB2, ODBC, and Sybase) Complete the execution by accessing the return 
value.

6. (DB2, ODBC, Oracle, and Sybase) Complete the execution by getting the 
output parameters.
356 Server-Side JavaScript Guide



Calling Stored Procedures
Notice that for several databases you can complete execution of your stored 
procedure either by getting the return value or by accessing the output 
parameters. Once you have done either of these things, you can no longer 
work with any result sets created by execution of the stored procedure.

The following sections describe each of these steps in more detail.

Registering the Stored Procedure

This step applies only to DB2.

DB2 has various system tables in which you can record your stored procedure. 
In general, entering a stored procedure in these tables is optional. However, to 
use your stored procedure with LiveWire, you must make entries in these 
tables. You perform this step outside of the JavaScript application.

For DB2 common server, you must create the DB2CLI.PROCEDURES system 
table and enter your DB2 stored procedures in it. DB2CLI.PROCEDURES is a 
pseudo-catalog table.

If your DB2 is for IBM MVS/EA version 4.1 or later, you must define the name 
of your stored procedures in the SYSIBM.SYSPROCEDURES catalog table.

Remember you use C, C++, or another source language to write a DB2 stored 
procedure. The data types you use with those languages do not match the data 
types available in DB2. Therefore, when you add the stored procedure to 
DB2CLI.PROCEDURES or SYSIBM.SYSPROCEDURES, be sure to record the 
corresponding DB2 data type for the stored procedure parameters and not the 
data types of the source language.

For information on DB2 data types and on how to make entries in these tables, 
see your DB2 documentation.
Chapter 16, Working with a Database 357



Calling Stored Procedures
Defining a Prototype for a Stored 
Procedure

This step is relevant only for DB2, ODBC, and Sybase stored procedures, both 
user-defined and system stored procedures. You do not need to define a 
prototype for stored procedures for Oracle or Informix databases.

For DB2, ODBC, and Sybase, the software cannot determine at runtime 
whether a particular parameter is for input, for output, or for both. 
Consequently, after you connect to the database, you must create a prototype 
providing information about the stored procedure you want to use, using the 
storedProcArgs method of the database or DbPool object.

You need exactly one prototype for each stored procedure in your application. 
The software ignores additional prototypes for the same stored procedure.

In the prototype, you provide the name of the stored procedure and the type of 
each of its parameters. A parameter must be for input (IN), output (OUT), or 
input and output (INOUT). For example, to create a prototype for a stored 
procedure called newhire that has two input parameters and one output 
parameter, you could use this method call:

poolobj.storedProcArgs("newhire", "IN", "IN", "OUT");

Executing the Stored Procedure

This step is relevant to all stored procedures.

To execute a stored procedure, you create a Stproc object using the database 
or Connection object’s storedProc method. Creating the object automatically 
invokes the stored procedure. When creating a stored-procedure object, you 
specify the name of the procedure and any parameters to the procedure. 

For example, assume you have a stored procedure called newhire that takes 
one string and one integer parameter. The following method call creates the 
spObj stored-procedure object and invokes the newhire stored procedure:

spObj = connobj.storedProc("newhire", "Fred Jones", 1996);
358 Server-Side JavaScript Guide



Calling Stored Procedures
In general, you must provide values for all input and input/output parameters 
to the stored procedure. If a stored procedure has a default value defined for 
one of its parameters, you can use the "/Default/" directive to specify that 
default value. Similarly, if a stored procedure can take a null value for one of its 
parameters, you can specify the null value either with the "/Null/" directive 
or by passing in the null value itself.

For example, assume the demosp stored procedure takes two string parameters 
and one integer parameter. You could supply all the parameters as follows:

spobj = connobj.storedProc("demosp", "Param_1", "Param_2", 1);

Alternatively, to pass null for the second parameter and to use the default value 
for third parameter, you could use either of these statements:

spobj = connobj.storedProc("demosp", "Param_1", "/Null/", "/Default/");
spobj = connobj.storedProc("demosp", "Param_1", null, "/Default/");

Note On Informix, default values must occur only after all specified values. For 
example, you cannot use /Default/ for the second parameter of a stored 
procedure and then specify a value for the third parameter.

You can also use the "/Default/" and "/Null/" directives for input/output 
parameters.

An Oracle stored procedure can take ref cursors as input/output or output 
parameters. For example, assume you have an Oracle stored procedure named 
proc1 that takes four parameters: a ref cursor, an integer value, another ref 
cursor, and another integer value. The call to that stored procedure from SQL 
Plus might look as follows:

execute proc1 (refcursor1, 3, refcursor2, 5);

When you call this stored procedure from within a JavaScript application, 
however, you do not supply the ref cursor parameters. Instead, the equivalent 
call would be:

spobj = connobj.storedProc("proc1", 3, 5);

For information on output parameters, see “Working with Output Parameters” 
on page 367. Output parameters cannot be null; however, you can assign a null 
value to input or input/output parameters.
Chapter 16, Working with a Database 359



Calling Stored Procedures
The following table summarizes the methods of a stored-procedure object.

Working with Result Sets

This step is relevant for all stored procedures.

As described in “Result Sets” on page 355, different databases returns result sets 
in different ways. For example, assume you have the CUSTINFO table with the 
columns id, city, and name. In Sybase, you could use this stored procedure to 
get the first 200 rows of the table:

create proc getcusts as
begin

select id, name, city from custinfo where custno < 200
end

If CUSTINFO were an Informix table, the equivalent Informix stored procedure 
would be this:

create procedure getcusts returning int, char(15), char(15);
define rcity, rname char (15);
define i int;

foreach
select id, name, city into i, rname, rcity 

from custinfo
where id < 200;

Table 16.3 Stproc methods 

Method Description

resultSet Returns the next result set for the stored procedure. 
For Informix, you can have zero or one result set. For other 
databases, you can have zero, one, or more result sets. 

returnValue Retrieves the return value of the stored procedure.
For Informix, DB2, and ODBC, this method always returns 
null.

outParameters Returns the specified output parameter. 
Because Informix stored procedures do not use output 
parameters, do not use this method with Informix.

outParamCount Returns the number of output parameters.
For Informix, this method always returns 0, because Informix 
stored procedures do not use output parameters.
360 Server-Side JavaScript Guide



Calling Stored Procedures
return i, rname, rcity with resume;
end foreach;
end procedure;

If CUSTINFO were an Oracle table, the equivalent Oracle stored procedure 
would be:

create or replace package orapack as
type custcurtype is ref cursor return custinfo%rowtype

end orapack;

create or replace custresultset (custcursor inout orapack.custcurtype)
as begin

open custcursor for select id, name, city from custinfo 
where id < 200

end custresultset;

In all cases, you create a resultSet object to retrieve the information from the 
stored procedure. You do so by using the stored-procedure object’s resultSet 
method, as follows:

resObj = spObj.resultSet();

As for Cursor objects, resultSet objects have a current row, which is simply 
the row being pointed to in the result set. Initially, the pointer is positioned 
before the first row of the result set. To see the values in the rows of the result 
set, you use the next method to move the pointer through the rows in the 
result set, as shown in the following example:

spobj = connobj.storedProc("getcusts");

if ( spobj && (connobj.majorErrorCode() == 0) ) {

// Creates a new resultSet object.
resobj = spobj.resultSet();

// Make sure you got a result set before continuing.
if ( resobj && (connobj.majorErrorCode() == 0) ) {

// Initially moves the resultSet object pointer to the first 
// result set row and then loops through the rows.
while (resObj.next())
{

write("<TR><TD>" + resObj.name + "</TD>");
write("<TD>" + resObj.city + "</TD>");
write("<TD>" + resObj.id + "</TD></TR>");

}
resobj.close();

}
}

Chapter 16, Working with a Database 361



Calling Stored Procedures
As long as there is another row in the result set, the next method returns true 
and moves the pointer to the next row. When the pointer reaches the last row 
in the result set, the next method returns false.

The preceding example works for a Sybase stored procedure. In that case, the 
resultSet object contains a named property for each column in the result set. 
For Informix and DB2 stored procedures, by contrast, the object does not 
contain named columns. In this case, you can get the values by referencing the 
column position. So, for Informix and DB2, you would use this code to display 
the same information:

spobj = connobj.storedProc("getcusts");

if ( spobj && (connobj.majorErrorCode() == 0) ) {

// Creates a new resultSet object.
resobj = spobj.resultSet();

// Make sure you got a result set before continuing.
if ( resobj && (connobj.majorErrorCode() == 0) ) {

// Initially moves the resultSet object pointer to the first 
// result set row and then loops through the rows.
while (resObj.next())
{

write("<TR><TD>" + resObj[1] + "</TD>");
write("<TD>" + resObj[2] + "</TD>");
write("<TD>" + resObj[0] + "</TD></TR>");

}
resobj.close();

}
}

You can use the column position for result sets with any database, not just with 
Informix and DB2. You can use the column name for stored procedures for all 
database types other than Informix or DB2.

Multiple Result Sets

A Sybase, Oracle, DB2, or ODBC stored procedure can create multiple result 
sets. If it does, the stored procedure provides one resultSet object for each. 
Suppose your stored procedure executes these SQL statements:

select name from customers where id = 6767
select * from orders where id = 6767
362 Server-Side JavaScript Guide



Calling Stored Procedures
You could use the multiple resultSet objects generated by these statements 
as follows:

// This statement is needed for DB2, ODBC, and Sybase. 
poolobj.storedProcArgs("GetCustOrderInfo","IN");

spobj = connobj.storedProc("GetCustOrderInfo",6767);

if ( spobj && (connobj.majorErrorCode() == 0) ) {

resobj1 = spobj.resultSet();
// Make sure result set exists before continuing.
if ( resobj1 && (connobj.majorErrorCode() == 0) ) {

// This first result set returns only one row. 
// Make sure that row contains data.
rowexists = resobj1.next();
if ( rowexists )

write("<P>Customer " + resobj1.name + 
" has the following orders:</P>");

resobj1.close();

// The second result set returns one row for each order placed 
// by the customer. Make sure the rows have data.
resobj2 = spobj.resultSet();
var i = 0;

if ( resobj2 && (connobj.majorErrorCode() == 0) ) {
write("\nOrder# Quantity Total</P>");
while(resobj2.next()) {

write(resobj2.orderno + " " + resobj2.quantity 
+ " " + resobj2.Totalamount + "</P>");

i++;
}
resobj2.close();
write("Customer has " + i + " orders.</P>");

}
else write("Customer has no orders.</P>");

}
}

spobj.close();

For an example of using multiple Oracle ref cursors in a stored procedure, see 
the description of the Resultset class in the Server-Side JavaScript Reference.
Chapter 16, Working with a Database 363



Calling Stored Procedures
Result Set Methods and Properties

The following table summarizes the methods and properties of the Resultset 
class.

A resultSet object is a read-only, sequential-style object. For this reason, the 
class does not have the insertRow, deleteRow, and updateRow methods 
defined for Cursor objects.

Table 16.4 Resultset methods and properties 

Method or Property Description

colName Properties corresponding to each of the columns in the result 
set. The name of each property is the name of the column in 
the database.
Since Informix and DB2 stored procedures do not return 
named columns, these properties are not created for Informix 
or DB2 stored procedures.

columns Returns the number of columns in the result set.
For Informix, this method returns the number of return values 
for a single row.

columnName Returns the name of a column in the result set.
Because Informix and DB2 stored procedures do not have 
associated column names, do not use this method for stored 
procedures for those databases.

close Disposes of the Resultset object.

next Makes the next row in the result set the current row. Returns 
false if the current row is the last row in the result set; 
otherwise, returns true.
364 Server-Side JavaScript Guide



Calling Stored Procedures
When You Can Use Result Sets

A resultSet object is not valid indefinitely. In general, once a stored 
procedure starts, no interactions are allowed between the database client and 
the database server until the stored procedure has completed. In particular, 
there are three circumstances that cause a result set to be invalid.

1. If you create a result set as part of a transaction, you must finish using the 
result set during that transaction. Once you either commit or roll back the 
transaction, you can’t get any more data from a result set, and you can’t get 
any additional result sets. For example, the following code is illegal:

database.beginTransaction();
spobj = database.storedProc("getcusts");
resobj = spobj.resultSet();
database.commitTransaction();
// Illegal! Result set no longer valid! 
col1 = resobj[0];

2. For Sybase, ODBC, and DB2, you must retrieve resultSet objects before 
you call a stored-procedure object’s returnValue or outParameters 
methods. Once you call either of these methods, you can’t get any more 
data from a result set, and you can’t get any additional result sets. See 
“Working with Return Values” on page 366, for more information about 
these methods.

spobj = database.storedProc("getcusts");
resobj = spobj.resultSet();
retval = spobj.returnValue();
// Illegal! Result set no longer valid! 
col1 = resobj[0];

3. For Sybase, you must retrieve resultSet objects before you call the 
cursor or SQLTable method of the associated connection. Once you call 
cursor or SQLTable, the result set is no longer available. For example, the 
following code is illegal:

spobj = database.storedProc("getcusts");
resobj = spobj.resultSet();
curobj = database.cursor ("select * from orders");
// Illegal! The result set is no longer available! 
col1 = resobj[0];
Chapter 16, Working with a Database 365



Calling Stored Procedures
4. For ODBC, a slightly different restriction holds. Again, you must work with 
the resultSet objects before you call the associated connection’s cursor 
or SQLTable method. For ODBC, if you get a cursor, then access the result 
set, and then use the cursor, the Cursor object is no longer available. For 
example, the following code is illegal:

spbobj = database.storedProc("getcusts");
resobj = spobj.resulSet();
curobj = database.cursor ("select * from orders");
col1 = resobj[0];
// Illegal! The cursor is no longer available.
curobj.next();

Working with Return Values

This step is relevant to Sybase and Oracle stored procedures. For Informix, 
ODBC, and DB2 stored procedures, the returnValue method always returns 
null.

If your stored procedure has a return value, you can access that value with the 
returnValue method.

On DB2, ODBC, and Sybase, you must use stored procedures and cursors 
sequentially. You cannot intermix them. For this reason, you must let the 
system know that you have finished using the stored procedure before you can 
work with a cursor. You do this by calling the returnValue method of the 
stored procedure object. This method provides the stored procedure’s return 
value (if it has one) and completes the execution of the stored procedure. You 
should also close all objects related to stored procedures when you have 
finished using them.

Note For DB2, ODBC, and Sybase, you must retrieve resultSet objects before you 
call the returnValue method. Once you call returnValue, you can’t get any 
more data from a result set, and you can’t get any additional result sets. You 
should call returnValue after you have processed the result set and before 
you retrieve the output parameters.
366 Server-Side JavaScript Guide



Calling Stored Procedures
Working with Output Parameters

This step is relevant to Sybase, Oracle, DB2, or ODBC stored procedures. For 
Informix stored procedures, the methods discussed here are not applicable.

To determine how many output parameters the procedure has (including both 
output and input/output parameters), you use the outParamCount method. 
You can work with the output parameters of a stored procedure by using the 
object’s outParameters method. If outParamCount returns 0, the stored 
procedure has no output parameters. In this situation, do not call 
outParameters.

For example, suppose you created a stored procedure that finds the name of an 
employee when given an ID. If there is an employee name associated with the 
given ID, the stored procedure returns 1, and its output parameter contains the 
employee name. Otherwise, the output parameter is empty. The following code 
either displays the employee name or a message indicating the name wasn’t 
found:

id = 100;
getNameProc = connobj.storedProc("getName", id);
returnValue = getNameProc.returnValue();
if (returnValue == 1)

write ("Name of employee is " + getNameProc.outParameters(0));
else

write ("No employee with id = " + id);

Assume a stored procedure has one input parameter, one input/output 
parameter, and one output parameter. Further, assume the call to the stored 
procedure sends a value for the input parameter and the input/output 
parameter as shown here:

spobj = connobj.storedProc("myinout", 34, 56);

The outParameters method returns any input/output parameters before it 
returns the first output parameter. 

In the preceding example, if you call outParameters(1), it returns the value 
returned from the stored procedure. By contrast, if you call 
outParameters(0), the method returns 56. This is the value passed to the 
stored procedure in the input/output parameter position. 

Note Output parameters cannot be null; however, you can assign a null value to 
input or input/output parameters.
Chapter 16, Working with a Database 367



Calling Stored Procedures
For DB2, ODBC, and Sybase, you must retrieve resultSet objects and use the 
returnValue method before you call outParameters. Once you call 
returnValue or outParameters, you can’t get any more data from a result 
set, and you can’t get any additional result sets. You should call 
outParameters after you have processed the result set and any return values.

Informix and Sybase Exceptions

Informix and Sybase stored procedures can return error codes using 
exceptions. After you run the stored procedure, you can retrieve these error 
codes and error messages using the majorErrorCode and 
majorErrorMessage methods of the associated database or Connection 
object.

For example, assume you have the following Informix stored procedure:

create procedure usercheck (user varchar(20))
if user = ’LiveWire’ then
raise exception -746, 0, ’User not Allowed’;
endif
end procedure

When you run this stored procedure, you could check whether an error 
occurred and then access the error code and message as follows:

spobj = connobj.storedProc("usercheck");

if ( connobj.majorErrorCode() ) {
write("The procedure returned this error code: " +

connobj.majorErrorCode());
write("The procedure returned this error message: " +

connobj.majorErrorMessage());
}

368 Server-Side JavaScript Guide



C h a p t e r

17
Chapter 17Configuring Your Database
This chapter describes how to set up your database to run with the LiveWire 
Database Service. You should read this chapter and “Configuration 
Information” on page 49 before you try to use LiveWire with your JavaScript 
applications.

Note There may have been changes to the database clients that are supported. For 
the latest information, see the Enterprise Server 3.x Release Notes.

This chapter contains the following sections:

• Checking Your Database Configuration

• Supported Database Clients and ODBC Drivers

• DB2

• Informix

• ODBC

• Oracle

• Sybase

Unlike in earlier releases, 3.x versions of Netscape servers require that you 
install a database client library (and a particular version of that library) if you 
wish to use the LiveWire Database Service. You must also configure the client 
library for use with LiveWire.

Netscape servers do not ship with any database client libraries. You must 
contact your database vendor for the appropriate library. You need only install 
and configure the database client libraries for the databases you will use.
Chapter 17, Configuring Your Database 369



Checking Your Database Configuration
If you install your database on a machine other than the one on which the web 
server is installed, you must have a client database library installed on the 
machine that has the web server. You must obtain the proper license 
arrangements directly from your database vendor. Netscape does not make 
these arrangements for you.

The requirements for configuring your database may differ if your database and 
your web server are installed on the same machine or on different machines. If 
they are on the same machine, the following information refers to it as a local 
configuration; if on different machines, as a remote configuration.

This chapter describes only those aspects of installing the database client that 
are specific to installing it for use with LiveWire. For general information on 
installing a database client, refer to the appropriate database vendor 
documentation.

Checking Your Database Configuration
After you’ve done the setup described in this chapter, you can use the dbadmin 
sample application to verify that your database connection works properly. You 
use this JavaScript sample application to connect to your database server and 
perform various simple tasks such as executing a SELECT statement and 
displaying the results or sending an arbitrary SQL command to the server. 

Because you can use dbadmin to modify and delete database tables, access to it 
is automatically restricted if you choose to protect the Application Manager. For 
more information on restricting the Application Manager, see “Controlling 
Access to an Application” on page 65.

The first thing you must do when using dbadmin is to connect to a database. 
Choose Connect to Database. A form, shown in Figure 17.1, appears in which 
you can enter connection information. Enter the parameters, and click Connect 
to attempt to connect to the server. For information on the parameters you use 
to connect, see “Database Connection Pools” on page 314; for further 
information, see the description of the connect method in the Server-Side 
JavaScript Reference.
370 Server-Side JavaScript Guide



Checking Your Database Configuration
Figure 17.1The dbadmin connection page 

If this connection succeeds, the Execute Query page appears. In this case, your 
database is properly configured for working with the LiveWire Database 
Service. If the connection fails, the Database Connect Error page appears. In 
this case, make sure you’ve followed the instructions for your particular 
database and hardware configuration.
Chapter 17, Configuring Your Database 371



Supported Database Clients and ODBC Drivers
Supported Database Clients and ODBC 
Drivers

The following table summarizes the specific database vendors supported on 
each platform for Netscape Enterprise Server. These database vendors are not 
supported for Netscape FastTrack Server.

Table 17.1 Database vendor client libraries supported on each platform by Netscape Enterprise Server 

Database 
Vendor

AIX DEC Irix 6.2 & 6.4 HP-UX Solaris 2.5/
2.5.1

Windows NT 
3.51/4.0

DB2 CAE 2.1.2 Not 
supported

CAE 2.1.2 CAE 2.1.2 CAE 2.1.2 
with APAR 
#JR10150

CAE 2.1.2

Informix Informix 
Client 7.22

Informix 
Client 7.22

Informix 
Client 7.22

Informix 
Client 7.22

Informix 
Client 7.22

Informix 
Client 7.20

Oraclea Oracle Client 
7.3.x

Oracle Client 
7.3.x

Oracle Client 
7.3.x

Oracle Client 
7.3.x

Oracle Client 
7.3.x

Oracle Client 
7.3.2

Sybase OpenClient/
C 11.1

OpenClient/
C 11.1

OpenClient/
C 10.0.3sC

OpenClient/
C 11.1

OpenClient/
C 11.1

OpenClient/
C 10.0.3 and 
11.1

a. Oracle SQL*Net version 1.1 is no longer supported. 
372 Server-Side JavaScript Guide



Supported Database Clients and ODBC Drivers
The following table summarizes support for ODBC on Windows NT for both 
Netscape Enterprise Server and Netscape FastTrack Server.

Table 17.2 Windows NT ODBC Support 

ODBC Component Windows NT 3.51/4.0

ODBC Manager MS ODBC Manager 2.5

ODBC Drivers

MS SQL Server 6.5 MS SQL Server Driver 2.65 (sqlsrv32.dll)

MS SQL Server 6.0 MS SQL Server Driver 2.50.0121 (sqlsrv32.dll)

MS Access 7.0 MS Access Driver 3.5 (odbcjt32.dll) with patch WX1350 from Microsoft

Sybase SQL Anywhere 5.0 Sybase SQL Anywhere Driver 5.5.01 (wod50t.dll)

MS FoxPro x.0 MS FoxPro Driver 3.5 (odbcjt32.dll) with patch WX1350 from Microsoft

MS Excel 7.0 MS Excel Driver 3.5 (odbcjt32.dll) with patch WX1350 from Microsoft
Chapter 17, Configuring Your Database 373



Supported Database Clients and ODBC Drivers
The following table summarizes support for ODBC on each Unix platform for 
both Netscape Enterprise Server and Netscape FastTrack Server. ODBC is not 
supported on DEC or AIX.

Table 17.3 Unix ODBC Support 

ODBC Component AIX and HP-UX Irix 6.2 & 6.4 Solaris 2.5/2.5.1

ODBC Manager Visigenic 2.0 Visigenic 2.0 Visigenic 2.0

ODBC Drivers

MS SQL Server 6.5 Visigenic MS SQL 
Server Driver 
version 2.00.100 
(vsmsssql.so.1)

Visigenic MS SQL 
Server Driver 
version  2.00.1200 
(vsmsssql.so.1)

Visigenic MS SQL Server Driver 
version 2.00.0600 (vsmsssql.so.1) and 
version  2.00.1200
or 
OpenLink Generic ODBC client 
version 1.5 (using this client requires the 
request broker from the OpenLink 
Workgroup Edition ODBC Driver on the 
NT server)

MS SQL Server 6.0 Visigenic MS SQL 
Server Driver 
version 2.00.100 
(vsmsssql.so.1)

Visigenic MS SQL 
Server Driver 
2.00.0200 
(vsmsssql.so.1)

Visigenic MS SQL Server Driver 2.00.0600 
(vsmsssql.so.1)
or 
OpenLink Generic ODBC client 
version 1.5 (using this client requires the 
request broker from the OpenLink 
Workgroup Edition ODBC Driver on the 
NT server)
374 Server-Side JavaScript Guide



Supported Database Clients and ODBC Drivers
The following table lists the capabilities of the supported ODBC drivers on NT.

The following table lists the capabilities of the supported ODBC drivers on 
Unix platforms.

Table 17.4 ODBC driver capabilities on NT 

SQL Database Connect SQL 
passthrough

Read-only 
cursor

Updatable 
cursor

Stored 
procedures

MS-SQL Server 6.0/6.5 Yes Yes Yes Yes Yes

Sybase SQL Anywhere Yes Yes Yes Yes Not tested

Access Yes Yes Yes No N/A

Foxpro Yes Yes Yes No N/A

Excel Yes Yes Yes No N/A

Table 17.5 ODBC driver capabilities on Unix 

Unix Connect SQL 
passthrough

Read-only 
cursor

Updatable 
cursor

Stored 
procedures

AIX Yes Yes Yes Yes Yes

HP-UX Yes Yes Yes Yes Yes

Irix Yes Yes Yes Yes Yes

Solaris (Visigenics) Yes Yes Yes Yes Yes

Solaris (OpenLink) Yes Yes Yes No No
Chapter 17, Configuring Your Database 375



DB2
DB2
To use a DB2 server, you must have Netscape Enterprise Server. You cannot 
access DB2 from Netscape FastTrack Server.

If the database and the web server are on different machines, follow the 
instructions in “DB2 Remote” on page 376.

If the database and the web server are on the same machine, follow the 
instructions in “DB2 Local” on page 377.

DB2 Remote

All platforms: Install the DB2 client, version 2.1.2. For Solaris, you need APAR 
#JR10150. For information, see the DB2 documentation at http://
www.software.ibm.com/data/db2/.

To determine if you can connect to the DB2 server, you can issue the following 
command from the DB2 command line: 

DB2 TERMINATE # this command allows the catalog command to take effect
DB2 CONNECT TO databasename USERID userid USING password

If you use the BLOB or CLOB data types in your application, you must set the 
longdatacompat option in your $DB2PATH/db2cli.ini file to 1. For example:

[Database name]
longdatacompat=1

If you make changes to the db2cli.ini file, you must restart your web server 
for them to take effect.
376 Server-Side JavaScript Guide



DB2
Unix only: You must set the following environment variables:

DB2 Local

All platforms: Install the DB2 client, version 2.1.2. For Solaris, you need APAR 
#JR10150. For more detailed information, see the DB2 documentation at 
http://www.software.ibm.com/data/db2.

If you use the BLOB or CLOB data types in your application, you must set the 
longdatacompat option in your $DB2PATH/db2cli.ini file to 1. For example:

[Database name]
longdatacompat=1

If you make changes to the db2cli.ini file, you must restart your web server 
for them to take effect.

Unix only: You must set the same environment variables as for a remote 
connection.

DB2INSTANCE Specifies the name of the connection port defined on both the 
server and client. This name is also in the dbm configuration file for 
the SVCENAME configuration parameter.

DB2PATH Specifies the top-level directory in which DB2 is installed.
For example: /home/$DB2INSTANCE/sqllib

DB2COMM Verify that this variable specifies the protocol that will be used. For 
example:
DB2COMM=TCPIP

PATH Must include $DB2PATH/misc:$DB2PATH/adm:$DB2PATH/
bin

LD_LIBRARY_PATH (Solaris and Irix) Must include the DB2 lib directory. For 
example, on Solaris it must include /opt/IBMdb2/v2.1/lib.

SHLIB_PATH (HP-UX) Must include the DB2 lib directory.

LIBPATH (AIX) Must include the DB2 lib directory.
Chapter 17, Configuring Your Database 377



Informix
Informix
To use an Informix server, you must have Netscape Enterprise Server. You 
cannot access Informix from Netscape FastTrack Server.

If the database and the web server are on different machines, follow the 
instructions in “Informix Remote” on page 378.

If the database and the web server are on the same machine, follow the 
instructions in “Informix Local” on page 379.

Informix Remote

Unix only: Install an Informix ESQL/C Runtime Client 7.22 (also called Informix 
I-Connect) and then set the following environment variables:

You must also modify $INFORMIXDIR/etc/sqlhosts to match the service 
name in the /etc/services file. For information on how to do so, see your 
Informix documentation.

NT only: Install an Informix ESQL/C Runtime Client 7.20 (also called Informix 
I-Connect.) During installation all necessary environment variables are set. You 
use the appropriate Informix utility to enter the necessary information about the 
remote server you wish to connect to. 

If you run your web Server as a System, be sure that you have run 
regcopy.exe. 

All platforms: Depending on your name service, you may also need to edit the 
appropriate file to add the IP address of the remote host machine you are 
connecting to. On NT, this file is winnt\system32\drivers\etc\hosts file 
under the NT SystemRoot. On Unix, this file is /etc/hosts.

INFORMIXDIR Specifies the top-level directory in which Informix is installed.

INFORMIXSERVER Specifies the name of your default Informix server.

INFORMIXSQLHOSTS Specifies the path of the sqlhosts file if you move it somewhere 
other than $INFORMIXDIR/etc/sqlhosts. You do not need to 
set this variable if you leave the sqlhosts file in this directory.

SHLIB_PATH (HP-UX) Must include $INFORMIXDIR/lib and 
$INFORMIXDIR/lib/esql.
378 Server-Side JavaScript Guide



ODBC
In the same directory, add the following line to the services file:

ifmx_srvc port/tcp # Informix Online Server

where ifmx_srvc is the name of your service and port is its port number. The 
port number must match the port on the remote machine that the Informix 
server listens to. To make this line valid, you must either insert at least one 
space after tcp or place a comment at the end of the line. For example, if your 
Informix service is named ifmx1 and the port number is 1321, you add this line:

ifmx1 1321/tcp # Informix Online Server

Informix Local

If you install Informix locally, you must install the Informix client before you 
install the Informix server.

Unix only: If you use 7.22 Online Server for Unix, the installation process 
creates the appropriate directory structure and sqlhosts file. You must set the 
environment variables as for a remote server.

NT only: You should install the Online Server 7.20. This installs the client; no 
additional steps are necessary. If you run your web Server as a System, be sure 
that you have run regcopy.exe. 

ODBC
All platforms: For information on the capabilities of the supported ODBC 
drivers, see “Supported Database Clients and ODBC Drivers” on page 372.

You need to have the appropriate ODBC drivers for the database you are 
connecting to. You also need to have additional ODBC connectivity files. 

Most software products that provide (or advertise) ODBC connectivity supply 
an ODBC driver or drivers and ODBC connectivity.

NT only: Currently Netscape has certified with ODBC Manager version 2.5. If 
you have access to an ODBC driver, but not to the ODBC connectivity files, 
you can obtain them from the MS ODBC SDK. To get updated files for Access, 
Foxpro, and Excel, you may need patch WX1350 from Microsoft.
Chapter 17, Configuring Your Database 379



ODBC
Unix only: For ODBC on Unix, you can use either the driver from Visigenic or 
from OpenLink. If you’re using the Visigenic driver, follow the instructions in 
“Visigenic ODBC Driver (Unix only)” on page 381. If you’re using the 
OpenLink driver, follow the instructions in “OpenLink ODBC Driver (Solaris 
only)” on page 380.

ODBC Data Source Names (NT only)

Two types of data sources can be created:

• System DSN: If you’re using a system DSN, the web server must be started 
using the System account.

• User DSN: If you’re using a user DSN, the web server must be started using 
an appropriate NT user account.

The data source describes the connection parameter for each database needing 
ODBC connectivity. The data source is defined using the ODBC administrator. 
When ODBC is installed, an administrator is also installed. Each ODBC driver 
requires different pieces of information to set up the data source. 

OpenLink ODBC Driver (Solaris only)

Install the request broker, OpenLink Workgroup Edition ODBC Driver, on the 
database server. This must be running before you can connect to the database 
using the OpenLink request agent.

Install the request agent, in OpenLink Generic ODBC client version 1.5, on the 
database client machine. 

Rename or copy the request agent’s driver manager file from libiodbc.so to 
libodbc.so in the $ODBCDIR/lib directory, where $ODBCDIR is the directory 
in which ODBC is installed.

When you installed your server, you installed it to run as some user, either root, 
nobody, or a particular server user. The user you pick must have a real home 
directory, which you may have to create. For example, the default home 
directory for the nobody user on Irix is /dev/null. If you install your server on 
Irix as nobody, you must give the nobody user a different home directory.
380 Server-Side JavaScript Guide



Oracle
In that home directory, you must have an .odbc.ini file. For example, if you 
run the server as root, this file is under the root (/) directory. 

Set the following environment variables:

Visigenic ODBC Driver (Unix only)

When you installed your server, you installed it to run as some user, either root, 
nobody, or a particular server user. The user you pick must have a real home 
directory, which you may have to create. For example, the default home 
directory for the nobody user on Irix is /dev/null. If you install your server on 
Irix as nobody, you must give the nobody user a different home directory.

In that home directory, you must have an .odbc.ini file. For example, if you 
run the server as root, this file is under the root (/) directory. 

Set the following environment variable:

Oracle
To use an Oracle server, you must have Netscape Enterprise Server. You cannot 
access Oracle from Netscape FastTrack Server.

If the database and the web server are on different machines, follow the 
instructions in “Oracle Remote” on page 382.

If the database and the web server are on the same machine, follow the 
instructions in “Oracle Local” on page 383.

LD_LIBRARY_PATH (Solaris and Irix) Add the location of the ODBC libraries to this 
variable.

UDBCINI Specifies the location of the .odbc.ini file.

LD_LIBRARY_PATH (Solaris and Irix) Add the location of the ODBC libraries to this 
variable. In the preceding example, this would be /u/my-
user/odbcsdk/lib.

SHLIB_PATH (HP-UX) Add the location of the ODBC libraries to this variable.

LIBPATH (AIX) Add the location of the ODBC libraries to this variable.
Chapter 17, Configuring Your Database 381



Oracle
Unix only: Make sure you can connect to your Oracle database via SQL*Net. 
When you have finished installation, you can use a loopback test to verify that 
you connected correctly. For example, from within sqlplus, you can try to 
connect to your database with the following command: 

connect username/password@service_name

Or, from the Unix command line, you could use this command:

sqlplus username/password@service_name

In these commands, you use the service_name from your tnsnames.ora file.

Oracle Remote

NT only: You must install the Oracle 7.3.2 client software for NT. Oracle 7.1 
and 7.2 clients are not supported. You must also create the Oracle 
configuration files using the appropriate Oracle configuration utility. 

Unix only: Before you can connect to Oracle under Irix, you must have the 
appropriate Irix patches. See Enterprise Server 3.x Release Notes for information 
on the patches you need.

You must install the Oracle 7.3.x client software for Unix. Oracle 7.1 and 7.2 
clients are not supported. 

You must set the following environment variables:

If you do not set these environment variables properly, Oracle returns the 
ORA-1019 error code the first time you attempt to connect. For information on 
error handling, see Chapter 19, “Error Handling for LiveWire.”

ORACLE_HOME Specifies the top-level directory in which Oracle is installed.

TNS_ADMIN Specifies the location of configuration files, for example, 
$ORACLE_HOME/network/admin. After installation Oracle 
creates the configuration files under /var/opt/oracle. If 
listener.ora and tnsnames.ora are in this directory, you 
might not need to set TNS_ADMIN, because by default Oracle uses 
/var/opt/oracle.
382 Server-Side JavaScript Guide



Sybase
Oracle Local

Unix only: Before you can connect to Oracle under Irix, you must have the 
appropriate Irix patches. See Enterprise Server 3.x Release Notes for information 
on the patches you need.

All platforms: You must install an Oracle Workgroup, Enterprise Server 7.3.2 
(NT), or Enterprise Server 7.3.x (Unix). Oracle 7.1 and 7.2 clients are not 
supported. Check with your server vendor to verify that the Oracle server 
version is compatible with the Oracle client.

You must set the following environment variables:

When your Oracle database server is local, you must pass the empty string as 
the second argument to the connect method of the database or DbPool 
object or to the DbPool constructor. This way, those methods use the value of 
the ORACLE_SID environment variable. For example:

database.connect ("ORACLE", "" "user", "password", "");

For more information on Oracle installation, see Oracle’s documentation.

Sybase
To use a Sybase server, you must have Netscape Enterprise Server. You cannot 
access Sybase from Netscape FastTrack Server.

If the database and the web server are on different machines, follow the 
instructions in “Sybase Remote” on page 384.

If the database and the web server are on the same machine, follow the 
instructions in “Sybase Local” on page 384.

In addition, if you’re using a Unix platform and Sybase has a multithreaded 
driver for that platform, follow the instructions in “Sybase (Unix only)” on 
page 385. See Enterprise Server 3.x Release Notes for a list of the Unix platforms 
on which Sybase has a multithreaded driver.

ORACLE_HOME Specifies the top-level directory in which Oracle is installed.

ORACLE_SID Specifies the Oracle System Identifier.
Chapter 17, Configuring Your Database 383



Sybase
Sybase Remote

Unix only: Set the following environment variable:

For Solaris, you must also follow the instructions in “Sybase (Unix only)” on 
page 385.

All platforms: You must install SYBASE Open Client/C. Supported versions are 
listed in “Supported Database Clients and ODBC Drivers” on page 372.

You can use the appropriate Sybase utility to enter, in the sql.ini file (NT) 
and the interfaces file (all platforms), the information about the remote 
server you want to connect to. For more information, see your Sybase 
documentation.

Sybase Local

Unix only: Set the following environment variable:

For Solaris, you must also follow the instructions in “Sybase (Unix only)” on 
page 385.

All platforms: Install a Sybase SQL Server, version 11.1; the client portion is 
installed with the server. Supported versions are listed in “Supported Database 
Clients and ODBC Drivers” on page 372.

You can use the appropriate Sybase utility to enter the information about the 
remote server you want to connect to in the sql.ini file (NT) and the 
interfaces file (all platforms). For more information, see your Sybase 
documentation.

SYBASE The top-level directory in which Sybase is installed

LD_LIBRARY_PATH (DEC) Must include $SYBASE/lib.

SYBASE The top-level directory in which Sybase is installed

LD_LIBRARY_PATH (DEC) Must include $SYBASE/lib.
384 Server-Side JavaScript Guide



Sybase
Sybase (Unix only)

On some Unix platforms, Sybase has both a single-threaded driver and a 
multithreaded driver. If Sybase has a multithreaded driver for a particular Unix 
machine, you must use the multithreaded driver with LiveWire. On these 
platforms, your web server will behave unpredictably with the single-threaded 
driver. This requirement applies for both a local and a remote connection. It 
does not apply to Windows platforms.

See Enterprise Server 3.x Release Notes for a list of the Unix platforms on which 
Sybase has a multithreaded driver.

To ensure that you use the multithreaded driver, you must edit your $SYBASE/
config/libtcl.cfg file. This file contains a pair of lines that enable either the 
single-threaded or the multithreaded driver. You must have one of these lines 
commented out and the other active. For example, on Solaris locate these lines:

[DRIVERS]
;libtli.so=tcp unused ; This is the nonthreaded tli driver.
libtli_r.so=tcp unused ; This is the threaded tli driver.

Make sure that the line for the single-threaded driver is commented out and 
that the line for the multithreaded driver is not commented out. The filename 
differs on each platform, but the lines are always in the DRIVERS section and 
are always commented to indicate which is the single-threaded and which the 
multithreaded driver.

Note If you wish to use the Sybase isql utility, you must use the nonthreaded tli 
driver. In this case, the line for libtli_r.so must be commented out. For 
information on using this driver, see your Sybase documentation.
Chapter 17, Configuring Your Database 385



Sybase
386 Server-Side JavaScript Guide



C h a p t e r

18
Chapter 18Data Type Conversion
This chapter describes how the JavaScript runtime engine on the server 
converts between the more complex data types used in relational databases 
and the simpler ones defined for JavaScript.

This chapter contains the following sections:

• Working with Dates and Databases

• Data-Type Conversion by Database

Databases have a rich set of data types. The JavaScript runtime engine on the 
server converts these data types to JavaScript values, primarily either strings or 
numbers. A JavaScript number is stored as a double-precision floating-point 
value. In general, the runtime engine converts character data types to strings, 
numeric data types to numbers, and dates to JavaScript Date objects. It 
converts null values to JavaScript null.

Note Because JavaScript does not support fixed or packed decimal notation, some 
precision may be lost when reading and writing packed decimal data types. Be 
sure to check results before inserting values back into a database, and use 
appropriate mathematical functions to correct for any loss of precision.
Chapter 18, Data Type Conversion 387



Working with Dates and Databases
Working with Dates and Databases
Date values retrieved from databases are converted to JavaScript Date objects. 
To insert a date value in a database, use a JavaScript Date object, as follows: 

cursorName.dateColumn = dateObj

Here, cursorName is a cursor, dateColumn is a column corresponding to a 
date, and dateObj is a JavaScript Date object. You create a Date object using 
the new operator and the Date constructor, as follows:

dateObj = new Date(dateString)

where dateString is a string representing a date. If dateString is the empty 
string, it creates a Date object for the current date. For example:

custs.orderDate = new Date("Jan 27, 1997")

Note DB2 databases have time and timestamp data types. These data types both 
convert to the Date type in JavaScript.

Warning The LiveWire Database Service cannot handle dates after February 5, 2037.

For more information on working with dates in JavaScript, see the Client-Side 
JavaScript Guide.

Data-Type Conversion by Database
The following table shows the conversions made by the JavaScript runtime 
engine for DB2 databases.

Table 18.1 DB2 data-type conversions 

DB2 Data Type JavaScript Data Type

char(n), varchar(n), long varchar, 
clob(n)

string

integer, smallint integer

decimal, double double

date, time, timestamp Date

blob Blob
388 Server-Side JavaScript Guide



Data-Type Conversion by Database
The following table shows the conversions made by the JavaScript runtime 
engine for Informix databases.

ODBC translates a vendor’s data types to ODBC data types. For example, the 
Microsoft SQL Server varchar data type is converted to the ODBC 
SQL_VARCHAR data type. For more information, see the ODBC SDK 
documentation. The following table shows the conversions made by the 
JavaScript runtime engine for ODBC databases.

Table 18.2 Informix data-type conversions 

Informix Data Type JavaScript Data Type

char, nchar, text, varchar, nvarchar string

decimal(p,s), double precision, float, 
integer, money(p,s), serial, smallfloat, 
smallint

number

date, datetimea

a. The Informix datetime data type has variable precision defined by the user. Server-side 
JavaScript displays datetime data with the format of YEAR to SECOND. If a datetime variable 
has been defined with another precision, such as MONTH to DAY, it may display incorrectly. In this 
situation, the data is not corrupted by the incorrect display.

Date

byte Blob

interval Not supported

Table 18.3 ODBC data-type conversions 

ODBC Data Type JavaScript Data Type

SQL_LONGVARCHAR, SQL_VARCHAR, SQL_CHAR string

SQL_SMALLINT, SQL_INTEGER, SQL_DOUBLE, 
SQL_FLOAT, SQL_REAL, SQL_BIGINT, 
SQL_NUMERIC, SQL_DECIMAL

number

SQL_DATE, SQL_TIME, SQL_TIMESTAMP Date

SQL_BINARY, SQL_VARBINARY, 
SQL_LONGBINARY

Blob
Chapter 18, Data Type Conversion 389



Data-Type Conversion by Database
The following table shows the conversions made by the JavaScript runtime 
engine for Oracle databases.

The following table shows the conversions made by the JavaScript runtime 
engine for Sybase databases.

Table 18.4 Oracle data-type conversions 

Oracle Data Type JavaScript Data Type

long, char(n), varchar2(n), rowid string

number(p,s), number(p,0), float(p) number

date Date

raw(n), long raw Blob

Table 18.5 Sybase data-type conversions 

Sybase Data Type JavaScript Data Type

char(n), varchar(n), nchar(n), 
nvarchar(n), text

string

bit, tinyint, smallint, int, float(p), 
double precision, real, decimal(p,s), 
numeric(p,s), money, smallmoney

numbera

a. The Sybase client restricts numeric data types to 33 digits. If you insert a JavaScript number with 
more digits into a Sybase database, you’ll get an error.

datetime, smalldatetime Date

binary(n), varbinary(n), image Blob
390 Server-Side JavaScript Guide



C h a p t e r

19
Chapter 19Error Handling for LiveWire
This chapter describes the types of errors you can encounter when working 
with relational databases.

This chapter contains the following sections:

• Return Values

• Error Methods

• Status Codes

When writing a JavaScript application, you should be aware of the various 
error conditions that can occur. In particular, when you use the LiveWire 
Database Service to interact with a relational database, errors can occur for a 
variety of reasons. For example, SQL statements can fail because of referential 
integrity constraints, lack of user privileges, record or table locking in a 
multiuser database, and so on. When an action fails, the database server returns 
an error message indicating the reason for failure.

Your code should check for error conditions and handle them appropriately.
Chapter 19, Error Handling for LiveWire 391



Return Values
Return Values
The return value of the methods of the LiveWire objects may indicate whether 
or not an error occurred. Methods can return values of various types. 
Depending on the type, you can infer different information about possible 
errors. 

Number

When a method returns a number, the return value can either represent an 
actual numeric value or a status code. For example, Cursor.columns returns 
the number of columns in a cursor, but Cursor.updateRow returns a number 
indicating whether or not an error occurred.

The Cursor.columns and Resultset.columns methods return an actual 
numeric value. The following methods return a numeric value that indicates a 
status code:

Connection.beginTransaction
Connection.commitTransaction
Connection.execute
Connection.majorErrorCode
Connection.minorErrorCode
Connection.release
Connection.rollbackTransaction
Connection.SQLTable

Cursor.close
Cursor.deleteRow
Cursor.insertRow
Cursor.updateRow

database.beginTransaction
database.connect
database.commitTransaction
database.disconnect
database.execute
database.majorErrorCode
database.minorErrorCode
database.rollbackTransaction
database.SQLTable
database.storedProcArgs
392 Server-Side JavaScript Guide



Return Values
DbPool.connect
DbPool.disconnect
DbPool.majorErrorCode
DbPool.minorErrorCode
DbPool.storedProcArgs

Resultset.close

Stproc.close

If the numeric return value of a method indicates a status code, 0 indicates 
successful completion and a nonzero number indicates an error. If the status 
code is nonzero, you can use the majorErrorCode and majorErrorMessage 
methods of the associated Connection, database, or DbPool object to find out 
information about the error. In some cases, the minorErrorCode and 
minorErrorMessage methods provide additional information about the error. 
For information on the return values of these error methods, see “Error 
Methods” on page 396.

Object

When a method returns an object, it can either be a real object or it can be null. 
If the method returns null, a JavaScript error probably occurred. In most cases, 
if an error occurred in the database, the method returns a valid object, but the 
software sets an error code. 

The blob global function returns an object. In addition, the following methods 
return an object:

Connection.cursor
Connection.storedProc
database.cursor
database.storedProc
DbPool (constructor)
DbPool.connection
Stproc.resultSet

Whenever you create a cursor, result set, or stored procedure, you should 
check for both the existence of the created object and for a possible return 
code. You can use the majorErrorCode and majorErrorMessage methods to 
examine an error. 
Chapter 19, Error Handling for LiveWire 393



Return Values
For example, you might create a cursor and verify its correctness with code 
similar to the following:

// Create the Cursor object.
custs = connobj.cursor ("select id, name, city 

from customer order by id");

// Before continuing, make sure a real cursor was returned
// and there was no database error.
if ( custs && (connobj.majorErrorCode() == 0) ) {

// Get the first row
custs.next();

// ... process the cursor rows ...

//Close the cursor
custs.close();

}

else 
// ... handle the error condition ...

Boolean

The following methods return Boolean values:

Connection.connected
Cursor.next
database.connected
DbPool.connected
Resultset.next

When a method returns a Boolean value, true usually indicates successful 
completion, whereas false indicates some other condition. A return value of 
false does not indicate an actual error; it may indicate a successful termination 
condition.

For example, Connection.connected returns false to indicate the 
Connection object is not currently connected. This can mean that an error 
occurred when the Connection object was created, or it can indicate that a 
previously used connection was intentionally disconnected. Neither of these is 
an error of the connected method. If an error occurred when the connection 
was created, your code should catch the error with that method. If the 
connection was terminated, you can reconnect.
394 Server-Side JavaScript Guide



Return Values
As a second example, Cursor.next returns false when you get to the end of 
the rows in the cursor. If the SELECT statement used to create the Cursor 
object finds the table but no rows match the conditions of the SELECT 
statement, then an empty cursor is created. The first time you call the next 
method for that cursor, it returns false. Your code should anticipate this 
possibility.

String

When a method returns a string, you usually do not get any error information. 
If, however, the method returns null, check the associated error method. 

The following methods return a string:

Connection.majorErrorMessage
Connection.minorErrorMessage
Cursor.columnName
database.majorErrorMessage
database.minorErrorMessage
DbPool.majorErrorMessage
DbPool.minorErrorMessage
Resultset.columnName

Void

Some methods do not return a value. You cannot tell anything about possible 
errors from such methods. The following methods do not return a value:

Connection.release
Cursor.close
database.disconnect
DbPool.disconnect
Resulset.close
Chapter 19, Error Handling for LiveWire 395



Error Methods
Error Methods
As discussed earlier, many methods return a numeric status code. When a 
method returns a status code, there may be a corresponding error code and 
message from the database server. LiveWire provides four methods for the 
Connection, DbPool, and database objects to access database error codes 
and messages. The methods are:

• majorErrorMessage: major error message returned by the database.

• minorErrorMessage: secondary message returned by the database.

• majorErrorCode: major error code returned by the database. This typically 
corresponds to the server’s SQLCODE.

• minorErrorCode: secondary error code returned by the database.

The results returned by these methods depend on the database server being 
used and the database status code. Most of the time you need to consider only 
the major error code or error message to understand a particular error. The 
minor error code and minor error message are used in only a small number of 
situations.

Note Calling another method of Connection, DbPool, or database can reset the 
error codes and messages. To avoid losing error information, be sure to check 
these methods before proceeding.

After receiving an error message, your application may want to display a 
message to the user. Your message may include the string returned by 
majorErrorMessage or minorErrorMessage or the number returned by 
majorErrorCode or minorErrorCode. Additionally, you may want to process 
the string or number before displaying it. 

In computing the string returned by majorErrorMessage and 
minorErrorMessage, LiveWire returns the database vendor string, with 
additional text prepended. For details on the returned text, see the descriptions 
of these methods in the Server-Side JavaScript Reference.
396 Server-Side JavaScript Guide



Status Codes
Status Codes
The following table lists the status codes returned by various methods. 
Netscape recommends that you do not use these values directly. Instead, if a 
method returns a nonzero value, use the associated majorErrorCode and 
majorErrorMessage methods to determine the particular error.

Table 19.1 Status codes for LiveWire methods 

Status 
Code

Explanation Status 
Code

Explanation

0 No error 14 Null reference parameter

1 Out of memory 15 database object not found

2 Object never initialized 16 Required information is missing

3 Type conversion error 17 Object cannot support multiple 
readers

4 Database not registered 18 Object cannot support deletions

5 Error reported by server 19 Object cannot support insertions

6 Message from server 20 Object cannot support updates

7 Error from vendor’s library 21 Object cannot support updates

8 Lost connection 22 Object cannot support indices

9 End of fetch 23 Object cannot be dropped

10 Invalid use of object 24 Incorrect connection supplied

11 Column does not exist 25 Object cannot support privileges

12 Invalid positioning within 
object (bounds error)

26 Object cannot support cursors

13 Unsupported feature 27 Unable to open
Chapter 19, Error Handling for LiveWire 397



Status Codes
398 Server-Side JavaScript Guide



C h a p t e r

20
Chapter 20Videoapp and Oldvideo Sample

Applications
This chapter describes the videoapp sample application, which illustrates the 
use of the LiveWire Database Service. It describes how to configure your 
environment to run the videoapp and oldvideo sample applications.

This chapter contains the following sections:

• Configuring Your Environment

• Running Videoapp

• Looking at the Source Files

Netscape servers come with two sample database applications, videoapp and 
oldvideo, that illustrate the LiveWire Database Service. These applications are 
quite similar; they track video rentals at a fictional video store. The videoapp 
application demonstrates the use of the DbPool and Connection objects. The 
oldvideo application demonstrates the use of the predefined database object. 

There are a small number of restrictions on the use of these applications:

• The videoapp application cannot currently be used with the Informix 
database. The oldvideo application, however, can be used with Informix.

• While these sample applications can be used with ODBC and SQL Server, if 
the driver on your platform does not support updatable cursors, the 
applications will not work. For information on which drivers support 
updatable cursors, see “Supported Database Clients and ODBC Drivers” on 
page 372.
Chapter 20, Videoapp and Oldvideo Sample Applications 399



Configuring Your Environment
• The videoapp application uses cursors that span multiple HTML pages. If 
your database driver is single-threaded, these cursors may hold locks on the 
database and prevent other users from accessing it. For information on 
which database drivers are single-threaded, see the Enterprise Server 3.x 
Release Notes.

Configuring Your Environment
Before you can run these applications, you must make minor changes to the 
source files and create a database of videos. This section tells you which files 
you must change and which procedures you use to make these changes and to 
create the database for each of the supported database servers. See the section 
for your database server for specific information.

Note Your database server must be up and running before you can create your video 
database, and you must configure your database server and client as described 
in Chapter 17, “Configuring Your Database.” 

In addition, the database-creation scripts use database utilities provided by your 
database vendor. You should be familiar with how to use these utilities.

Connecting to the Database and 
Recompiling

The videoapp application is in the $NSHOME\js\samples\videoapp directory, 
where $NSHOME is the directory in which you installed the Netscape server. The 
oldvideo application is in the $NSHOME\js\samples\oldvideo directory.

For each application, you must change the connect string in the HTML source 
file, start.htm, to match your database environment. For information on the 
parameters you use to connect, see “Database Connection Pools” on page 314; 
for even more information, see the description of the connect method in the 
Server-Side JavaScript Reference.

For the videoapp application, change this line:

project.sharedConnections.pool = 
new DbPool ("<Server Type>", "<Server Identifier>", 

"<User>", "<Password>", "<Database>", 2, false)
400 Server-Side JavaScript Guide



Configuring Your Environment
For the oldvideo application, change this line:

database.connect ("INFORMIX", "yourserver", "informix",
"informix", "lw_video")

Save your changes and recompile the application. To recompile one of the 
applications from the command line, run its build file, located in the 
application’s directory. Be sure your PATH environment variable includes the 
path to the compiler (usually $NSHOME\bin\https).

Restart the application in the JavaScript Application Manager.

Creating the Database

There are two sets of creation scripts for videoapp and oldvideo, in their 
respective application directories. The sets of scripts are identical. If you run 
one set, both applications will be able to use the database. 

The first time you run the scripts you might see errors about dropping 
databases or tables that do not exist. These error messages are normal; you can 
safely ignore them.

Informix

Before using the following instructions, you must configure your Informix client 
as described in “Informix” on page 378. In addition, make sure your PATH 
environment variable includes $INFORMIXDIR\bin and that your client is 
configured to use the Informix utilities.

The SQL files for creating the video database (lw_video) on Informix are in 
these two directories:

$NSHOME\js\samples\videoapp\ifx 
$NSHOME\js\samples\oldvideo\ifx 
Chapter 20, Videoapp and Oldvideo Sample Applications 401



Configuring Your Environment
Note Remember that path names in this manual are given in NT format if they are for 
both NT and Unix. On Unix, you would use $NSHOME/js/samples/videoapp/
ifx.

1. On Unix, log in as “informix” user and run the ifx_load.csh shell script 
for videoapp and for oldvideo.

On NT, in the Informix Server program group, double-click the Command-
Line Utilities icon to open a DOS window, and then run the following 
commands:

cd c:\netscape\server\js\samples\videoapp\ifx
ifx_load.bat

You can also run the commands from the oldvideo\ifx directory:

2. You can now run the application by making the changes described in 
“Connecting to the Database and Recompiling” on page 400.

Oracle

Before using the following instructions, you must configure your Oracle client 
as described in “Oracle” on page 381. In addition, your client must be 
configured to run the Oracle utilities. To run SQLPlus, you may need to set the 
ORACLE_SID environment variable.

The SQL files for creating the video database on Oracle are in these two 
directories:

$NSHOME\js\samples\videoapp\ora
$NSHOME\js\samples\oldvideo\ora

1. On both Unix and NT, start SQL Plus. From the SQL> prompt, enter this 
command:

Start $NSHOME\js\samples\videoapp\ora\ora_video.sql

You can also run the script from the oldvideo directory. This SQL script 
does not create a new database. Instead, it creates the Oracle tables in the 
current instance.

2. On Unix, run the ora_load script file to load the video tables with data. On 
NT, run the ora_load.bat batch file to load the video tables with data. You 
must edit the appropriate file to connect to your server; the instructions for 
doing so are in the file.
402 Server-Side JavaScript Guide



Configuring Your Environment
3. You can now run the application by making the changes described in 
“Connecting to the Database and Recompiling” on page 400.

Sybase

Before using the following instructions, you must configure your Sybase client 
as described in “Sybase” on page 383. In addition, on Unix be sure your PATH 
environment variable includes $SYBASE\bin and set DSQUERY to point to your 
server.

The SQL files for creating the video database on Sybase are in these two 
directories:

$NSHOME\js\samples\videoapp\syb
$NSHOME\js\samples\oldvideo\syb

1. Run the appropriate script from the command line. On Unix, the script is:

syb_video.csh userid password

For example:

$NSHOME\js\samples\videoapp\syb\syb_load.csh sa

On NT, the script is:

syb_load userid password

For example:

c:\netscape\server\js\samples\videoapp\syb\syb_load sa

Alternatively, you can run the script from the oldvideo directory.

2. You can now run the application by making the changes described in 
“Connecting to the Database and Recompiling” on page 400.

Note If you have both Sybase and MS SQL Server or DB2 installed on your machine, 
there is a potential naming confusion. These vendors have utilities with the 
same name (bcp and isql). When running this script, be certain that your 
environment variables are set so that you run the correct utility.
Chapter 20, Videoapp and Oldvideo Sample Applications 403



Configuring Your Environment
Microsoft SQL Server (NT only)

Before using the following instructions, you must configure your Sybase client 
as described in “ODBC” on page 379. In addition on Unix, set DSQUERY to point 
to your server.

The SQL files for creating the video database on MS SQL Server are in these two 
directories:

$NSHOME\js\samples\videoapp\mss
$NSHOME\js\samples\oldvideo\mss

1. From a DOS prompt, run this batch file:

mss_load userid password

For example:

c:\netscape\server\js\samples\videoapp\mss\mss_load sa

2. You can now run the application by making the changes described in 
“Connecting to the Database and Recompiling” on page 400.

Note If you have both MS SQL Server and Sybase or DB2 installed on your machine, 
there is a potential naming confusion. These vendors have utilities with the 
same name (bcp and isql). When running this script, be certain that your 
environment variables are set so that you run the correct utility.

DB2

The SQL files for creating the video database on DB2 are in these two 
directories:

$NSHOME\js\samples\videoapp\db2
$NSHOME\js\samples\oldvideo\db2

1. (Unix only) Your PATH environment variable must include the $DB2PATH/
bin, $DB2PATH/misc, and $DB2PATH/adm directories.

2. Before you can run these scripts, you must have installed the DB2 Software 
Developer’s Kit (DB2 SDK).
404 Server-Side JavaScript Guide



Configuring Your Environment
3. Also, before you can run the script to create the tables, you must edit it to 
modify some parameters. On Unix, the script is in db2_load.csh; on NT, it 
is in db2_load.bat. Edit the appropriate db2_load file and modify the 
following parameters to reflect your environment:

— <nodename>: node name alias

— <hostname>: host name of the node where the target database resides

— <service-name>: service name or instance name from the services file

— <database-name>: database name

— <user>: authorized user

— <password>: user’s password

4. Make sure your /etc/services file has entries for your instance or service 
name if you are creating the database in a remote DB2 server.

5. Run the appropriate version of the script from the DB2 command window. 
The db2_load script runs the db2_video.sql and import.sql scripts. 
These subsidiary scripts create the video tables and load them with data 
from the *.del files. They do not create a new database. Instead, they 
create the DB2 tables in the local database alias specified in the db2_load 
script.

Note If you have both DB2 and Sybase or MS SQL Server installed on your machine, 
there is a potential naming confusion. These vendors have utilities with the 
same name (bcp and isql). When running this script, be certain that your 
environment variables are set so that you run the correct utility.
Chapter 20, Videoapp and Oldvideo Sample Applications 405



Running Videoapp
Running Videoapp
In this section, you get the videoapp sample application up and running. This 
sample is significantly more complex than the samples discussed in Chapter 11, 
“Quick Start with the Sample Applications.” This chapter only gives an 
overview of it. You should look at some of the files to start familiarizing 
yourself with it.

Once you have created the video database and changed the database 
connection parameters, you can access the application here:

http://server.domain/videoapp

After connecting to the database, the Application Manager displays the 
videoapp home page, as shown in Figure 20.1.

Figure 20.1Videoapp home page 

If you cannot connect to the database, you see an error message. Make sure 
you have entered the correct database connection parameters, as described in 
“Connecting to the Database and Recompiling” on page 400, recompiled, and 
restarted the application. 
406 Server-Side JavaScript Guide



Looking at the Source Files
The first thing you must do when you’re connected is to add a new customer. 
Until you have done this, there are no customers to use for any of the other 
activities.

You can use videoapp as a customer or as an administrator. As a customer, 
you can:

• Rent a movie

• Show all the movies you currently have rented

As an administrator, you can:

• Show all movies and who has them rented

• Return a video for a customer

• Add a new customer entry

• Delete a customer entry

• Modify a customer entry

Run the application and make a few choices to perform different actions.

Looking at the Source Files
The source HTML files for videoapp, listed in the following table, are copiously 
commented.

Table 20.1 Primary videoapp source files 

home.htm The application default page. Has links to pick.htm, 
status.htm, rentals.htm, customer.htm, and 
delete.htm. If not connected to the database, this page redirects 
the client to start.htm.

start.htm Connects the application to the database, starts a transaction, and 
then redirects back to home.htm.

abort.htm Cancels a transaction and begins a new transaction.

save.htm Commits a transaction and begins a new transaction.
Chapter 20, Videoapp and Oldvideo Sample Applications 407



Looking at the Source Files
Application Architecture

This section orients you to the implementation of some of the functionality in 
videoapp. It describes only how the application works with the database and 
details the procedure for renting a movie. Other tasks are similar. 

Connection and Workflow

When a user initiates a session with videoapp by accessing its default page 
(home.htm), videoapp checks whether it is already connected to the database. 
If so, videoapp assumes not only that the application is connected, but also 
that this user is already connected, and it proceeds from there. 

pick.htm Allows the customer to rent a movie. It contains frames for 
category.htm, videos.htm, and pickmenu.htm.
The category.htm file displays video categories.
The videos.htm file displays all videos in selected category, 
linked to rent.htm to rent a particular video.
The pickmenu.htm file displays choices of other pages to visit.

status.htm Displays the videos the customer currently has rented. If the 
customer has not selected an ID, redirects to client.htm, which 
lets the customer select the ID.

rentals.htm Displays a list of all rented videos. When the administrator clicks 
on one, it submits the choice to return.htm, which performs the 
logic to return the video, then redirects back to rentals.htm.

customer.htm Allows the administrator to add a new customer. Submits form 
input to add.htm, which performs logic to add a customer, then 
redirects back to customer.htm.

delete.htm Allows the administrator to delete a customer. Displays a list of 
customers with links to remove.htm, which deletes the specified 
row from the customer table, then redirects back to delete.htm.

modify.htm Allows the administrator to modify a customer entry. Displays a list 
of the first five customers with links to modify1.htm and 
modify2.htm. Those pages update a specific row in the 
customer table and then redirect back to modify.htm. The 
modify3.htm file displays additional customers five at a time.

Table 20.1 Primary videoapp source files  (Continued)
408 Server-Side JavaScript Guide



Looking at the Source Files
If not connected, videoapp redirects to start.htm. On this page, it creates a 
single pool of database connections to be used by all customers, gets a 
connection for the user, and starts a database transaction for that connection. It 
then redirects back to home.htm to continue. The user never sees the 
redirection.

The database transaction started on start.htm stays open until the user 
explicitly chooses either to save or discard changes, by clicking the Save 
Changes or Abort Changes button. When the user clicks one of those buttons, 
save.htm or abort.htm is run. These pages commit or roll back the open 
transaction and then immediately start another transaction. In this way, the 
customer’s connection always stays open.

Once it has a database connection, videoapp presents the main page to the 
user. From that page, the user makes various choices, such as renting a movie 
or adding a new customer. Each of those options involves displaying various 
pages that contain server-side JavaScript statements. Many of those pages 
include statements that use the connection to interact with the database, 
displaying information or making changes to the database.

The first thing you must do when you’re connected is to add a new customer. 
Until you have done this, there are no customers to use for any of the other 
activities.

Renting a Movie

The pick.htm page contains a frameset for allowing a customer to rent a 
movie. The frameset consists of the pages category.htm, videos.htm, and 
pickmenu.htm.

The category.htm page queries the database for a list of the known categories 
of movie. It then displays those categories as links in a table in the left frame. If 
the user clicks one of those links, videoapp displays video.htm in the right 
frame. There are a few interesting things about the server-side code that 
accomplishes these tasks. If you look at this page early on, you see these lines:

var userId = unscramble(client.userId)
var bucket = project.sharedConnections.connections[userId]
var connection = bucket.connection
Chapter 20, Videoapp and Oldvideo Sample Applications 409



Looking at the Source Files
These statements occur in most of videoapp’s pages. They retrieve the 
connection from where it is stored in the project object. The next line then 
gets a new cursor applicable for this task:

cursor = connection.cursor("select * from categories");

A variant of this statement occurs at the beginning of most tasks.

Here is the next interesting set of statements:

<SERVER>
...
while (cursor.next()) {

catstr = escape(cursor.category)
</SERVER>

<TR><TD><A HREF=‘"videos.htm?category=" + catstr‘ TARGET="myright">
<SERVER>write(cursor.category);</SERVER></A>
</TD>
</TR>
<SERVER>

} // bottom of while loop

This loop creates a link for every category in the cursor. Notice this statement in 
particular:

<A HREF=‘"videos.htm?category=" + catstr‘ TARGET="myright">

This line creates the link to videos.htm. It includes the name of the category 
in the URL. Assume the category is Comedy. This statement produces the 
following link:

<A HREF="videos.htm?category=Comedy" TARGET="myright">

When the user clicks this link, the server goes to videos.htm and sets the 
value of the request object’s category property to Comedy.

The videos.htm page can be served either from pick.htm or from 
category.htm. In the first case, the category property is not set, so the page 
displays a message requesting the user choose a category. If the category 
property is set, videos.htm accesses the database to display information about 
all the movies in that category. This page uses the same technique as 
category.htm to construct that information and create links to the rent.htm 
page.
410 Server-Side JavaScript Guide



Looking at the Source Files
The rent.htm page actually records the rental for the customer. It gets 
information from the request and then updates a table in the database to reflect 
the new rental. This page performs the update, but does not commit the 
change. That doesn’t happen until the user chooses Save Changes or Abort 
Changes.

The pickmenu.htm page simply displays buttons that let you either return to 
the home page or to the page for adding a new customer.

Modifying videoapp

As way of getting used to the LiveWire functionality, consider modifying 
videoapp. Here are some features you might add:

• Change the assumption that the existence of the sharedConnections array 
implies that this particular user is connected. You can change start.htm to 
check whether there is an ID for this user in that array and whether the 
connection stored in that location is currently valid. See “Sharing an Array 
of Connection Pools” on page 321.

• This application never releases connections back to the pool. Consequently, 
once a small number of users have connected, nobody else can connect. 
You can modify this in a couple of ways: add a new command that lets the 
user indicate completion or implement a scheme to cleanup unused 
connections. See “Retrieving an Idle Connection” on page 328.
Chapter 20, Videoapp and Oldvideo Sample Applications 411



Looking at the Source Files
412 Server-Side JavaScript Guide



5
Working with LiveConnect
• LiveConnect Overview

• Accessing CORBA Services



414 Server-Side JavaScript Guide



C h a p t e r

21
Chapter 21LiveConnect Overview
This chapter describes using LiveConnect technology to let Java and JavaScript 
code communicate with each other. The chapter assumes you are familiar with 
Java programming.

This chapter contains the following sections:

• What Is LiveConnect?

• Working with Wrappers

• JavaScript to Java Communication

• Java to JavaScript Communication

• Data Type Conversions

For additional information on using LiveConnect, see the JavaScript technical 
notes on the DevEdge site.
Chapter 21, LiveConnect Overview 415



What Is LiveConnect?
What Is LiveConnect?
LiveConnect lets you connect server-side JavaScript applications to Java 
components or classes on the server. Through Java, you can connect to 
CORBA-compliant distributed objects using Netscape Internet Service Broker 
for Java.

Your JavaScript application may want to communicate with code written in 
other languages, such as Java or C. To communicate with Java code, you use 
JavaScript’s LiveConnect functionality. To communicate with code written in 
other languages, you have several choices:

• You can wrap your code as a Java object and use LiveConnect directly.

• You can wrap your code as a CORBA-compliant distributed object and use 
LiveConnect in association with an object request broker.

• You can directly include external libraries in your application.

This chapter discusses using LiveConnect to access non-JavaScript code from 
JavaScript applications.

Ultimately, LiveConnect allows the JavaScript objects in your application to 
interact with Java objects. These Java objects are instances of classes on the 
server’s CLASSPATH. See “Setting Up for LiveConnect” on page 50 for 
information on setting CLASSPATH appropriately. LiveConnect works for both 
client-side and server-side JavaScript but has different capabilities appropriate 
to each environment.

If you have a CORBA service and you have the IDL for it, you can generate Java 
stubs. The Java stubs can then be accessed from JavaScript using LiveConnect, 
thus giving you access to your service from JavaScript. For the most part, 
connecting to CORBA services in this way is just like accessing any other Java 
code. For this reason, this chapter first talks about using LiveConnect to 
communicate between Java and JavaScript. Later, it describes what you need to 
do to access CORBA services.

This chapter assumes you are familiar with Java programming. For information 
on using Java with Netscape servers, see Enterprise Server 3.0: Notes for Java 
Programmers1. For other information on LiveConnect, see the DevEdge 
Library2.

1. http://developer.netscape.com/docs/manuals/enterprise/javanote/index.html
416 Server-Side JavaScript Guide



Working with Wrappers
For all available Java classes, you can access static public properties or methods 
of the class, or create instances of the class and access public properties and 
methods of those instances. Unlike on the client, however, you can access only 
those Java objects that were created by your application or created by another 
JavaScript application and then stored as a property of the server object.

If a Java object was created by a server application other than a server-side 
JavaScript application, you cannot access that Java object. For example, you 
cannot access a Java object created by a WAI plug-in, NSAPI extension, or an 
HTTP applet.

When you call a method of a Java object, you can pass JavaScript objects to that 
method. Java code can set properties and call methods of those JavaScript 
objects. In this way, you can have both JavaScript code that calls Java code and 
Java code that calls JavaScript code.

Java code can access a JavaScript application only in this fashion. That is, a Java 
object cannot invoke a JavaScript application unless that JavaScript application 
(or another JavaScript application) has itself accessed an appropriate Java object 
and invoked one of its methods.

Working with Wrappers
In JavaScript, a wrapper is an object of the target language data type that 
encloses an object of the source language. On the JavaScript side, you can use 
a wrapper object to access methods and fields of the Java object; calling a 
method or accessing a property on the wrapper results in a call on the Java 
object. On the Java side, JavaScript objects are wrapped in an instance of the 
class netscape.javascript.JSObject and passed to Java.

When a JavaScript object is sent to Java, the runtime engine creates a Java 
wrapper of type JSObject; when a JSObject is sent from Java to JavaScript, 
the runtime engine unwraps it to its original JavaScript object type. The 
JSObject class provides an interface for invoking JavaScript methods and 
examining JavaScript properties.

2. http://developer.netscape.com/docs/manuals/index.html?content=javascript.html
Chapter 21, LiveConnect Overview 417



JavaScript to Java Communication
JavaScript to Java Communication
When you refer to a Java package or class, or work with a Java object or array, 
you use one of the special LiveConnect objects. All JavaScript access to Java 
takes place with these objects, which are summarized in the following table.

Note Because Java is a strongly typed language and JavaScript is weakly typed, the 
JavaScript runtime engine converts argument values into the appropriate data 
types for the other language when you use LiveConnect. See “Data Type 
Conversions” on page 429 for complete information.

In some ways, the existence of the LiveConnect objects is transparent, because 
you interact with Java in a fairly intuitive way. For example, you can create a 
Java String object and assign it to the JavaScript variable myString by using 
the new operator with the Java constructor, as follows:

var myString = new java.lang.String("Hello world")

In the previous example, the variable myString is a JavaObject because it 
holds an instance of the Java object String. As a JavaObject, myString 
has access to the public instance methods of java.lang.String and its 
superclass, java.lang.Object. These Java methods are available in 
JavaScript as methods of the JavaObject, and you can call them as follows:

myString.length() // returns 11

You access constructors, fields, and methods in a class with the same syntax 
that you use in Java. For example, the following JavaScript code uses properties 
of the request object to create a new instance of the Bug class and then 

Table 21.1 The LiveConnect Objects

Object Description

JavaArray A wrapped Java array, accessed from within JavaScript 
code.

JavaClass A JavaScript reference to a Java class.

JavaObject A wrapped Java object, accessed from within JavaScript 
code.

JavaPackage A JavaScript reference to a Java package.
418 Server-Side JavaScript Guide



JavaScript to Java Communication
assigns that new instance to the JavaScript variable bug. Because the Java class 
requires an integer for its first field, this code first converts the request string 
property to an integer before passing it to the constructor.

var bug = new Packages.bugbase.Bug(
parseInt(request.bugId),
request.bugPriority,
request);

The Packages Object

If a Java class is not part of the java, sun, or netscape packages, you access 
it with the Packages object. For example, suppose the Redwood corporation 
uses a Java package called redwood to contain various Java classes that it 
implements. To create an instance of the HelloWorld class in redwood, you 
access the constructor of the class as follows:

var red = new Packages.redwood.HelloWorld()

You can also access classes in the default package (that is, classes that don’t 
explicitly name a package). For example, if the HelloWorld class is directly in 
the CLASSPATH and not in a package, you can access it as follows:

var red = new Packages.HelloWorld()

The LiveConnect java, sun, and netscape objects provide shortcuts for 
commonly used Java packages. For example, you can use the following:

var myString = new java.lang.String("Hello world")

instead of the longer version:

var myString = new Packages.java.lang.String("Hello world")

By default, $NSHOME\js\samples directory, where $NSHOME is the directory in 
which the server was installed, is on the server’s CLASSPATH. You can put your 
packages in this directory. Alternatively, you can choose to put your Java 
packages and classes in any other directory. If you do so, make sure the 
directory is on your CLASSPATH.
Chapter 21, LiveConnect Overview 419



JavaScript to Java Communication
Working with Java Arrays

When any Java method creates an array and you reference that array in 
JavaScript, you are working with a JavaArray. For example, the following 
code creates the JavaArray x with ten elements of type int:

theInt = java.lang.Class.forName("java.lang.Integer")
x = java.lang.reflect.Array.newInstance(theInt, 10)

Like the JavaScript Array object, JavaArray has a length property which 
returns the number of elements in the array. Unlike Array.length, 
JavaArray.length is a read-only property, because the number of elements 
in a Java array are fixed at the time of creation.

Package and Class References

Simple references to Java packages and classes from JavaScript create the 
JavaPackage and JavaClass objects. In the earlier example about the 
Redwood corporation, for example, the reference Packages.redwood is a 
JavaPackage object. Similarly, a reference such as java.lang.String is a 
JavaClass object.

Most of the time, you don’t have to worry about the JavaPackage and 
JavaClass objects—you just work with Java packages and classes, and 
LiveConnect creates these objects transparently.

JavaClass objects are not automatically converted to instances of 
java.lang.Class when you pass them as parameters to Java methods—you 
must create a wrapper around an instance of java.lang.Class. In the 
following example, the forName method creates a wrapper object theClass, 
which is then passed to the newInstance method to create an array.

theClass = java.lang.Class.forName("java.lang.String")
theArray = java.lang.reflect.Array.newInstance(theClass, 5)
420 Server-Side JavaScript Guide



JavaScript to Java Communication
Arguments of Type char

You cannot pass a one-character string to a Java method which requires an 
argument of type char. You must pass such methods an integer which 
corresponds to the Unicode value of the character. For example, the following 
code assigns the value “H” to the variable c:

c = new java.lang.Character(72)

Example of JavaScript Calling Java

The $NSHOME\js\samples\bugbase directory includes a simple application 
illustrating the use of LiveConnect. This section describes the JavaScript code in 
that sample application. See “Example of Calling Server-Side JavaScript” on 
page 427 for a description of this application’s Java code.

The bugbase application represents a simple bug database. You enter a bug by 
filling in a client-side form with the bug number, priority, affected product, and 
a short description. Another form allows you to view an existing bug.

The following JavaScript processes the enter action:

// Step 1. Verify that ID was entered.
if (request.bugId != "") {

// Step 2. Create Bug instance and assign to variable.
var bug = new Packages.bugbase.Bug(parseInt(request.bugId),

request.bugPriority, request);

// Step 3. Get access to shared array and store instance there.
project.bugsLock.lock();
project.bugs[parseInt(request.bugId)] = bug;
project.bugsLock.unlock();

// Step 4. Display information.
write("<P><b><I>====>Committed bug: </I></b>");
write(bug, "<BR>");

}
// Step 5. If no ID was entered, alert user.
else {

write("<P><b><I>====>Couldn’t commit bug: please complete 
all fields.</I></b>");

}

Chapter 21, LiveConnect Overview 421



Java to JavaScript Communication
The steps in this code are:

1. Verify that the user entered an ID for the bug. Enter the bug only in this 
case.

2. Create an instance of the Java class Bug, and assign that instance to the bug 
variable. The Bug class constructor takes three parameters: two of them are 
properties of the request object; the third is the JavaScript request object 
itself. Because they are form elements, these request properties are both 
JavaScript strings. The code changes the ID to an integer before passing it 
to the Java constructor. Having passed the request object to the Java 
constructor, that constructor can then call its methods. This process is 
discussed in “Example of Calling Server-Side JavaScript” on page 427.

3. Use project.bugsLock to get exclusive access to the shared 
project.bugs array and then store the new Bug instance in that array, 
indexed by the bug number specified in the form. Notice that this code 
stores a Java object reference as the value of a property of a JavaScript 
object. For information on locking, see “Sharing Objects Safely with 
Locking” on page 279.

4. Display information to the client about the bug you have just stored.

5. If no bug ID was entered, display a message indicating that the bug 
couldn’t be entered in the database.

Java to JavaScript Communication
If you want to use JavaScript objects in Java, you must import the 
netscape.javascript package into your Java file. This package defines the 
following classes:

• netscape.javascript.JSObject allows Java code to access 
JavaScript methods and properties.

• netscape.javascript.JSException allows Java code to handle 
JavaScript errors.

These classes are delivered in either a .jar or a .zip file. See the Server-Side 
JavaScript Reference for more information about these classes.
422 Server-Side JavaScript Guide



Java to JavaScript Communication
To access the LiveConnect classes, place the .jar or .zip file in the CLASSPATH of 
the JDK compiler in either of the following ways:

• Create a CLASSPATH environment variable to specify the path and name of 
.jar or .zip file.

• Specify the location of .jar or .zip file when you compile by using the 
-classpath command line parameter.

For example, in Navigator 4. 0 for Windows NT, the classes are delivered in the 
java40.jar file in the Program\Java\Classes directory beneath the 
Navigator directory. You can specify an environment variable in Windows NT 
by double-clicking the System icon in the Control Panel and creating a user 
environment variable called CLASSPATH with a value similar to the following:

D:\Navigator\Program\Java\Classes\java40.jar

See the Sun JDK documentation for more information about CLASSPATH.

Note Because Java is a strongly typed language and JavaScript is weakly typed, the 
JavaScript runtime engine converts argument values into the appropriate data 
types for the other language when you use LiveConnect. See “Data Type 
Conversions” on page 429 for complete information.

Using the LiveConnect Classes

All JavaScript objects appear within Java code as instances of 
netscape.javascript.JSObject. When you call a method in your Java 
code, you can pass it a JavaScript object as one of its argument. To do so, you 
must define the corresponding formal parameter of the method to be of type 
JSObject.

Also, any time you use JavaScript objects in your Java code, you should put the 
call to the JavaScript object inside a try...catch statement which handles 
exceptions of type netscape.javascript.JSException. This allows 
your Java code to handle errors in JavaScript code execution which appear in 
Java as exceptions of type JSException.
Chapter 21, LiveConnect Overview 423



Java to JavaScript Communication
Accessing JavaScript with JSObject

For example, suppose you are working with the Java class called JavaDog. As 
shown in the following code, the JavaDog constructor takes the JavaScript 
object jsDog, which is defined as type JSObject, as an argument:

import netscape.javascript.*;

public class JavaDog
{

public String dogBreed;
public String dogColor;
public String dogSex;

// define the class constructor
public JavaDog(JSObject jsDog)
{

// use try...catch to handle JSExceptions here
this.dogBreed = (String)jsDog.getMember("breed");
this.dogColor = (String)jsDog.getMember("color");
this.dogSex = (String)jsDog.getMember("sex");

}
}

Notice that the getMember method of JSObject is used to access the 
properties of the JavaScript object. The previous example uses getMember to 
assign the value of the JavaScript property jsDog.breed to the Java data 
member JavaDog.dogBreed.

Note A more realistic example would place the call to getMember inside a 
try...catch statement to handle errors of type JSException. See 
“Handling JavaScript Exceptions in Java” on page 425 for more information.

To get a better sense of how getMember works, look at the definition of the 
custom JavaScript object Dog:

function Dog(breed,color,sex) {
this.breed = breed
this.color = color
this.sex = sex

}

You can create a JavaScript instance of Dog called gabby as follows:

gabby = new Dog("lab","chocolate","female")
424 Server-Side JavaScript Guide



Java to JavaScript Communication
If you evaluate gabby.color, you can see that it has the value “chocolate”. 
Now suppose you create an instance of JavaDog in your JavaScript code by 
passing the gabby object to the constructor as follows:

javaDog = new Packages.JavaDog(gabby)

If you evaluate javaDog.dogColor, you can see that it also has the value 
“chocolate”, because the getMember method in the Java constructor assigns 
dogColor the value of gabby.color.

Handling JavaScript Exceptions in Java

When JavaScript code called from Java fails at run time, it throws an exception. 
If you are calling the JavaScript code from Java, you can catch this exception in 
a try...catch statement. The JavaScript exception is available to your Java 
code as an instance of netscape.javascript.JSException. 
JSException is a Java wrapper around any exception type thrown by 
JavaScript, similar to the way that instances of JSObject are wrappers for 
JavaScript objects.

Use JSException when you are evaluating JavaScript code in Java. If the 
JavaScript code is not evaluated, either due to a JavaScript compilation error or 
to some other error that occurs at run time, the JavaScript interpreter generates 
an error message that is converted into an instance of JSException.

For example, you can use a try...catch statement such as the following to 
handle LiveConnect exceptions:

try {
global.eval("foo.bar = 999;");

} catch (Exception e) {
if (e instanceof JSException) {

jsCodeFailed()”;
} else {

otherCodeFailed();
}

}

In this example, the eval statement fails if foo is not defined. The catch 
block executes the jsCodeFailed method if the eval statement in the try 
block throws a JSException; the otherCodeFailed method executes if 
the try block throws any other error.
Chapter 21, LiveConnect Overview 425



Java to JavaScript Communication
Accessing Server-Side JavaScript

Now let’s look specifically at using Java to access server-side JavaScript. For a 
Java method to access server-side JavaScript objects, it must have been called 
from a server-side JavaScript application. In client-side JavaScript, Java can 
initiate an interaction with JavaScript. On the server, Java cannot initiate this 
interaction.

Note When you recompile a Java class that is used in a JavaScript application, the 
new definition may not take effect immediately. If any JavaScript application 
running on the web server has a live reference to an object created from the 
old class definition, all applications continue to use the old definition. For this 
reason, when you recompile a Java class, you should restart any JavaScript 
applications that access that class.

Threading

Java allows you to create separate threads of execution. You need to be careful 
using this feature when your Java code interacts with JavaScript code.

Every server-side JavaScript request is processed in a thread known as the 
request thread. This request thread is associated with state information such 
as the JavaScript context being used to process the request, the HTTP request 
information, and the HTTP response buffer.

When you call Java code from a JavaScript application, that Java code runs in 
the same request thread as the original JavaScript application. The Java code in 
that thread can interact with the JavaScript application and be guaranteed that 
the environment is as it expects. In particular, it can rely on the associated state 
information.

However, you can create a new thread from your Java code. If you do, that 
new thread cannot interact with the JavaScript application and cannot rely on 
the state information associated with the original request thread. If it attempts to 
do so, the behavior is undefined. For example, a Java thread you create cannot 
initiate any execution of JavaScript code using JSObject, nor can it use 
writeHttpOutput, because this method requires access to the HTTP response 
buffer.
426 Server-Side JavaScript Guide



Java to JavaScript Communication
Example of Calling Server-Side JavaScript

The $NSHOME\js\samples\bugbase directory includes a simple application 
that illustrates the use of LiveConnect. This section describes the sample 
application’s Java code. See “Example of JavaScript Calling Java” on page 421 
for a description of the basic workings of this application and of its JavaScript 
code.

// Step 1. Import the needed Java objects.
package Bugbase;
import netscape.javascript.*;
import netscape.server.serverenv.*;

// Step 2. Create the Bug class.
public class Bug {

int id;
String priority;
String product;
String description; 
String submitter;

// Step 3. Define the class constructor.
public Bug(int id, String priority, JSObject req) 
throws java.io.IOException
{

// write part of http response
NetscapeServerEnv.writeHttpOutput("Java constructor: Creating 

a new bug.<br>");
this.id = id;
this.priority = priority;
this.product = (String)req.getMember("bugProduct");
this.description = (String)req.getMember("bugDesc");

}

// Step 4. Return a string representation of the object.
public String toString()
{

StringBuffer result = new StringBuffer();
result.append("\r\nId = " + this.id 

+ "; \r\nPriority = " + this.priority 
+ "; \r\nProduct = " + this.product
+ "; \r\nDescription = " + this.description);

return result.toString();
} }
Chapter 21, LiveConnect Overview 427



Java to JavaScript Communication
Many of the steps in this code are not specific to communicating with 
JavaScript. It is only in steps 1 and 3 that JavaScript is relevant.

1. Specify the package being used in this file and import the 
netscape.javascript and netscape.server.serverenv packages. If 
you omit this step, you cannot use JavaScript objects.

2. Create the Java Bug class, specifying its fields.

3. Define the constructor for this class. This constructor takes three 
parameters: an integer, a string, and an object of type JSObject. This final 
parameter is the representation of a JavaScript object in Java. Through the 
methods of this object, the constructor can access properties and call 
methods of the JavaScript object. In this case, it uses the getMember method 
of JSObject to get property values from the JavaScript object. Also, this 
method uses the writeHttpOutput method of the predefined 
NetscapeServerEnv object (from the netscape.server.serverenv 
package) to print information during object construction. This method 
writes a byte array to the same output stream used by the JavaScript write 
function.

4. Define the toString method. This is a standard method for a Java object 
that returns a string representation of the fields of the object.
428 Server-Side JavaScript Guide



Data Type Conversions
Data Type Conversions
Because Java is a strongly typed language and JavaScript is weakly typed, the 
JavaScript runtime engine converts argument values into the appropriate data 
types for the other language when you use LiveConnect. These conversions are 
described in the following sections:

• JavaScript to Java Conversions

• Java to JavaScript Conversions

JavaScript to Java Conversions

When you call a Java method and pass it parameters from JavaScript, the data 
types of the parameters you pass in are converted according to the rules 
described in the following sections:

• Number Values

• Boolean Values

• String Values

• Null Values

• JavaArray and JavaObject Objects

• JavaClass Objects

• Other JavaScript Objects

The return values of methods of netscape.javascript.JSObject are 
always converted to instances of java.lang.Object. The rules for 
converting these return values are also described in these sections.

For example, if JSObject.eval returns a JavaScript number, you can find the 
rules for converting this number to an instance of java.lang.Object in 
“Number Values” on page 430.
Chapter 21, LiveConnect Overview 429



Data Type Conversions
Number Values

When you pass JavaScript number types as parameters to Java methods, Java 
converts the values according to the rules described in the following table:

When a JavaScript number is passed as a parameter to a Java method which 
expects an instance of java.lang.String, the number is converted to a 
string. Use the == operator to compare the result of this conversion with other 
string values.

Java parameter type Conversion rules

double The exact value is transferred to Java without rounding 
and without a loss of magnitude or sign.

lava.lang.Double
java.lang.Object

A new instance of java.lang.Double is created, and the 
exact value is transferred to Java without rounding and 
without a loss of magnitude or sign.

float • Values are rounded to float precision.

• Values which are unrepresentably large or small are 
rounded to +infinity or -infinity.

byte
char
int
long
short

• Values are rounded using round-to-negative-infinity 
mode.

• Values which are unrepresentably large or small 
result in a run-time error.

• NaN values are converted to zero.

java.lang.String Values are converted to strings. For example,

• 237 becomes “237”

boolean • 0 and NaN values are converted to false.

• Other values are converted to true.
430 Server-Side JavaScript Guide



Data Type Conversions
Boolean Values

When you pass JavaScript Boolean types as parameters to Java methods, Java 
converts the values according to the rules described in the following table:

When a JavaScript Boolean is passed as a parameter to a Java method which 
expects an instance of java.lang.String, the Boolean is converted to a 
string. Use the == operator to compare the result of this conversion with other 
string values.

Java parameter type Conversion rules

boolean All values are converted directly to the Java equivalents.

lava.lang.Boolean
java.lang.Object

A new instance of java.lang.Boolean is created. Each 
parameter creates a new instance, not one instance with 
the same primitive value.

java.lang.String Values are converted to strings. For example:

• true becomes “true”

• false becomes “false”

byte
char
double
float
int
long
short

• true becomes 1

• false becomes 0
Chapter 21, LiveConnect Overview 431



Data Type Conversions
String Values

When you pass JavaScript string types as parameters to Java methods, Java 
converts the values according to the rules described in the following table:

Null Values

When you pass null JavaScript values as parameters to Java methods, Java 
converts the values according to the rules described in the following table:

Java parameter type Conversion rules

lava.lang.String
java.lang.Object

A JavaScript string is converted to an instance of 
java.lang.String with an ASCII value.

byte
double
float
int
long
short

All values are converted to numbers as described in 
ECMA-262.

char All values are converted to numbers.

boolean • The empty string becomes false.

• All other values become true.

Java parameter type Conversion rules

Any class
Any interface type

The value becomes null.

byte
char
double
float
int
long
short

The value becomes 0.

boolean The value becomes false.
432 Server-Side JavaScript Guide



Data Type Conversions
JavaArray and JavaObject Objects

In most situations, when you pass a JavaScript JavaArray or JavaObject as 
a parameter to a Java method, Java simply unwraps the object; in a few 
situations, the object is coerced into another data type according to the rules 
described in the following table:

An interface or class is assignment-compatible with an unwrapped object if the 
unwrapped object is an instance of the Java parameter type. That is, the 
following statement must return true:

unwrappedObject instanceof parameterType

Java parameter type Conversion rules

Any interface or class 
that is assignment-
compatible with the 
unwrapped object.

The object is unwrapped.

java.lang.String The object is unwrapped, the toString method of the 
unwrapped Java object is called, and the result is 
returned as a new instance of java.lang.String.

byte
char
double
float
int
long
short

The object is unwrapped, and either of the following 
situations occur:

• If the unwrapped Java object has a doubleValue 
method, the JavaArray or JavaObject is 
converted to the value returned by this method.

• If the unwrapped Java object does not have a 
doubleValue method, an error occurs.

boolean The object is unwrapped and either of the following 
situations occur:

• If the unwrapped object has a booleanValue 
method, the source object is converted to the return 
value.

• If the object does not have a booleanValue method, 
the conversion fails.
Chapter 21, LiveConnect Overview 433



Data Type Conversions
JavaClass Objects

When you pass a JavaScript JavaClass object as a parameter to a Java 
method, Java converts the object according to the rules described in the 
following table:

Other JavaScript Objects

When you pass any other JavaScript object as a parameter to a Java method, 
Java converts the object according to the rules described in the following table:

Java parameter type Conversion rules

java.lang.Class The object is unwrapped.

java.lang.JSObject
java.lang.Object

The JavaClass object is wrapped in a new instance of 
java.lang.JSObject.

java.lang.String The object is unwrapped, the toString method of the 
unwrapped Java object is called, and the result is 
returned as a new instance of java.lang.String.

boolean The object is unwrapped and either of the following 
situations occur:

• If the unwrapped object has a booleanValue 
method, the source object is converted to the return 
value.

• If the object does not have a booleanValue method, 
the conversion fails.

Java parameter type Conversion rules

java.lang.JSObject
java.lang.Object

The object is wrapped in a new instance of 
java.lang.JSObject.

java.lang.String The object is unwrapped, the toString method of the 
unwrapped Java object is called, and the result is 
returned as a new instance of java.lang.String.
434 Server-Side JavaScript Guide



Data Type Conversions
Java to JavaScript Conversions

Values passed from Java to JavaScript are converted as follows:

• Java byte, char, short, int, long, float, and double are converted to JavaScript 
numbers.

• A Java boolean is converted to a JavaScript boolean.

• An object of class netscape.javascript.JSObject is converted to the 
original JavaScript object.

• Java arrays are converted to a JavaScript pseudo-Array object; this object 
behaves just like a JavaScript Array object: you can access it with the 
syntax arrayName[index] (where index is an integer), and determine its 
length with arrayName.length.

byte
char
double
float
int
long
short

The object is converted to a value using the logic of the 
ToPrimitive operator described in ECMA-262. The 
PreferredType hint used with this operator is Number.

boolean The object is unwrapped and either of the following 
situations occur:

• If the unwrapped object has a booleanValue 
method, the source object is converted to the return 
value.

• If the object does not have a booleanValue method, 
the conversion fails.

Java parameter type Conversion rules
Chapter 21, LiveConnect Overview 435



Data Type Conversions
• A Java object of any other class is converted to a JavaScript wrapper, which 
can be used to access methods and fields of the Java object:

• Converting this wrapper to a string calls the toString method on the 
original object.

• Converting to a number calls the doubleValue method, if possible, and 
fails otherwise.

• Converting to a boolean calls the booleanValue method, if possible, 
and fails otherwise.

Note that instances of java.lang.Double and java.lang.Integer are converted 
to JavaScript objects, not to JavaScript numbers. Similarly, instances of 
java.lang.String are also converted to JavaScript objects, not to JavaScript 
strings.

Java String objects also correspond to JavaScript wrappers. If you call a 
JavaScript method that requires a JavaScript string and pass it this wrapper, 
you’ll get an error. Instead, convert the wrapper to a JavaScript string by 
appending the empty string to it, as shown here:

var JavaString = JavaObj.methodThatReturnsAString();
var JavaScriptString = JavaString + "";
436 Server-Side JavaScript Guide



C h a p t e r

22
Chapter 22Accessing CORBA Services
This chapter describes using LiveConnect to access CORBA-compliant 
distributed objects. Through LiveConnect, you can access Java; through Java, 
you can connect to CORBA objects using Netscape Internet Service Broker for 
Java.

This chapter contains the following sections:

• About CORBA Services

• Flexi Sample Application

• Deployment Alternatives

About CORBA Services
Netscape Internet Service Broker for Java (ISB for Java) is Netscape’s object 
request broker. ISB for Java communicates with itself and with other object 
request brokers (ORBs) using the Internet InterORB Protocol (IIOP).

ISB for Java enables your JavaScript application to access CORBA-compliant 
distributed objects deployed in an IIOP-capable ORB (including ISB for Java 
itself). These objects may be part of a distributed application. To access such a 
distributed object, you must have a Java stub, and that stub class must be on 
your CLASSPATH. Conversely, you can use Java and LiveConnect to expose 
parts of your server-side JavaScript application as CORBA-compliant distributed 
objects.
Chapter 22, Accessing CORBA Services 437



About CORBA Services
It is beyond the scope of this manual to tell you how to create CORBA-
compliant distributed objects using ISB for Java or how to make Java stubs for 
such objects. For this information, see the Netscape Internet Service Broker for 
Java Programmer’s Guide.

Server-side JavaScript applications can access a distributed object regardless of 
how it is deployed. The simplest alternative to consider is that the distributed 
object is created and run as a separate process, as illustrated in the following 
figure.

Figure 22.1A JavaScript application as a CORBA client 

As shown in this illustration, the Java and JavaScript runtime environments are 
together in the same web server. They communicate using LiveConnect in the 
standard way described earlier in this chapter. Methods called on the stub 
wrapper in JavaScript result in method calls on the Java stub object in Java. The 
stub uses the Java ORB to communicate with the remote service. With this 
architecture, the object server process can be on any machine that has an ORB 
and can be written in any language.

CORBA client
application process

(web server)

JavaScript runtime

Java stub
wrappers

Java runtime

Java stubs

LiveConnect

ORB
(ISB for Java) IIOP

CORBA object
server process

Object
implementations

ORB
438 Server-Side JavaScript Guide



Flexi Sample Application
The flexi sample application illustrates this. In this sample, FlexiServer is a 
stand-alone Java application that has implementations of a number of 
distributed objects. This example is discussed in “Flexi Sample Application” on 
page 439.

After you have worked with flexi, read “Deployment Alternatives” on 
page 447 for a discussion of more complicated deployment alternatives. 

Flexi Sample Application
The flexi sample application illustrates using server-side JavaScript to access 
remote services running on an IIOP-enabled ORB and also illustrates a remote 
service written entirely in Java using ISB for Java. Both the source files and the 
application executables for the flexi sample application are installed in the 
$NSHOME\js\samples\flexi directory. 

A flexible spending account (FSA) is an account in which employees may 
deposit pretax dollars to be used for medical expenses. Employees typically 
elect to sign up for this plan with the administrator of the plan and select a 
dollar amount that they want deposited into their account. When an employee 
incurs a medical expense, the employee submits a claim which, if approved, 
results in a withdrawal from the account and the remittance of the approved 
amount to the employee. 

The flexi sample application provides support for managing flexible spending 
accounts. With this application, an administrator has these options:

• Create a new account with a given balance. 

• Select an existing account by providing the employee’s name. 

• Deposit more funds into a selected account.

• Close a selected account.

• Accept or reject a pending claim submitted by the employee.

The employee has these options:

• View the status of the account, including the status of any pending claim. 

• Submit a new claim by filling out the provided form.
Chapter 22, Accessing CORBA Services 439



Flexi Sample Application
CORBA Client and Server Processes

Figure 22.2 shows the two primary parts of flexi. These implement the 
CORBA client and service.

Figure 22.2The flexi sample application 

The CORBA client is the server-side JavaScript application known as flexi. 
This application implements the administrator and employee user interfaces 
described earlier. This application connects with the FSA-Admin object 
(described next) in a separate process or even on a separate machine. The 
application then uses that object, and other objects returned by FSA-Admin, to 
perform most of its operations. 

The CORBA server is a stand-alone Java application run from the shell. It 
contains implementations for all the interfaces defined in the IDL file 
Flexi.idl. This stand-alone application, called FlexiServer, implements the 
primary functionality of the FSA system. Upon startup, this application creates 
an instance of an object implementing the interface ::FSA::Admin and 
registers it with the name “FSA-Admin.” Clients of this service (such as the 

LiveConnect

Account stub
wrapper

IIOP

JavaScript runtime
flexi application

Account stub

ORB

Java runtime

Account, Admin, Claim
implementations

ORB

FlexiServer process (Java)
(CORBA server)

CORBA client
application process

(web server)
440 Server-Side JavaScript Guide



Flexi Sample Application
flexi JavaScript application) obtain access to this object first by resolving its 
name. Clients use this object to create other objects and to get remote 
references to them. 

Starting FlexiServer

FlexiServer is a stand-alone Java application. You can run it on any machine 
that has JDK 1.0.2. In Enterprise Server 3.01 and FastTrack Server 3.01, you can 
also run it on a machine that has JDK 1.1.2. Before running FlexiServer, you 
need to ensure that your environment is correct.

From the shell where you’re going to start FlexiServer, make sure that your 
PATH environment variable includes $JDK\bin and that CLASSPATH includes 
the following:

... 
$NSHOME\js\samples\flexi 
$NSHOME\wai\java\nisb.zip 
$JDK\lib\classes.zip 

In these variables, $JDK is the directory in which the JDK is installed and 
$NSHOME is the directory in which your web server is installed.

Once the environment is correct, you can start FlexiServer as follows: 

cd $NSHOME\js\samples\flexi\impl 
java FlexiServer 

You should see a message such as the following: 

Started FSA Admin: Admin[Server,oid=PersistentId[repId=IDL:Flexi/
Admin:1.0,objectName=FSA-Admin]]

At this point, FlexiServer has started as a CORBA service and registered with 
the ORB an object with interface ::FSA::Admin and name FSA-Admin. 
FlexiServer runs in the background, waiting for service requests.
Chapter 22, Accessing CORBA Services 441



Flexi Sample Application
Starting Flexi

You must start FlexiServer before you start flexi, because flexi’s start 
page attempts to connect to FlexiServer.

Add $NSHOME\js\samples\flexi to the CLASSPATH for your web server. For 
information on how to do so, see “Setting Up for LiveConnect” on page 15.

Using the Application Manager, install the flexi JavaScript application as 
described in “Installing a New Application” on page 39. The parameters you set 
for flexi are shown in the following table.

Using Flexi

To start flexi, you can run it from the Application Manager or enter the 
following URL:

http://server-name/flexi

The default page lets the user be identified as an administrator or an employee. 
To get a quick feel for the application, follow this scenario:

1. Administrator creates an account for a user with a certain balance. 

2. Employee selects the account. 

3. Employee submits a claim. 

4. Administrator selects employee’s account. 

Table 22.1 Flexi application settings 

Setting Value

Name flexi

Web File Path $NSHOME\js\samples\flexi\flexi.web

Default Page fsa.html

Initial Page start.html

Client Object Maintenance client-cookie
442 Server-Side JavaScript Guide



Flexi Sample Application
5. Administrator accepts claim, which results in a reduction in the employee’s 
account balance and a remittance of a check for the claim amount.

6. Employee selects the account. 

7. Employee views the status of the account. 

8. Administrator selects employee’s account. 

9. Administrator deletes claim. 

The system can handle only one claim per employee at any time. Once the 
claim has been deleted, a new claim may be submitted. 

Looking at the Source Files

The following table shows the primary files and directories for flexi.

Browse through these files to get a clear understanding of this application. Only 
a few highlights are discussed here.

Table 22.2 Flexi files and directories 

flexi.idl File defining the interface to the remote service, including Admin, 
Account, Claim. 

Flexi\ Directory containing code generated from Flexi.idl by the 
idl2java program. This directory includes the skeletons and stubs 
for the interfaces.

impl\ Directory containing implementations in Java for all the interfaces 
defined in Flexi.idl. It also contains the class FlexiServer 
which implements the main program for the Java application that 
runs the service. 

*.html Files implementing the server-side JavaScript application. It also 
includes the application’s web file, flexi.web. 
Chapter 22, Accessing CORBA Services 443



Flexi Sample Application
Setting Up FlexiServer as a CORBA Server

The main routine of the stand-alone Java application is implemented in 
flexi\impl\FlexiServer.java. Its code is as follows:

import org.omg.CORBA.*;

class FlexiServer {
public static void main(String[] args) {
try {

// Initialize the orb and boa.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init();
org.omg.CORBA.BOA boa = orb.BOA_init();

// Create the server object.
Admin __admin = new Admin();

// Inform boa that the server object is ready.
boa.obj_is_ready(__admin);

// Register the name of the object with the name service.
// First, determine the name service host;
// by default use <localhost>:80.
String _nameServiceHost = null;
if (args.length > 0) {

// Assume the first arg is the hostname of the name 
// service host. Expected format: <hostname>:<port>
_nameServiceHost = args[0];

}

else {
String _localHostName = null;
try {

_localHostName= 
java.net.InetAddress.getLocalHost().getHostName();

_nameServiceHost = _localHostName + ":80";
}
catch (java.net.UnknownHostException e) {

System.out.println("Couldn’t determine local host; 
can’t register name.");

}
}

String _regURL = "http://" + _nameServiceHost + "/FSA-Admin";
System.out.println("Registering Admin object at URL: " + _regURL);

// Register the server object.
netscape.WAI.Naming.register(_regURL, __admin);
System.out.println("Started FSA Admin: " + __admin);

boa.impl_is_ready();
}

444 Server-Side JavaScript Guide



Flexi Sample Application
catch (org.omg.CORBA.SystemException e) {
System.err.println(e);
}

}
}

This code initializes the ORB and creates an instance of the Admin class. It then 
registers the instance as a distributed object, with a URL of the form http://
host:port/FSA-Admin. By default, host is the name of the host on which 
FlexiServer is run and port is 80. You can supply your own value for 
host:port by passing it as an argument to FlexiServer when you start it. To 
use the local host but a different port number, you need to change the sample 
code and recompile. Once the code has an appropriate name, it registers the 
object using the register method of the netscape.WAI.Naming object. For 
more information, see Netscape Internet Service Broker for Java Reference 
Guide.

Finally, if successful the code prints a message to the console and then waits for 
requests from CORBA clients. In this case, the only CORBA client that knows 
about it is the flexi JavaScript application.

Setting up flexi as a CORBA client

The file start.html is the initial page of the JavaScript flexi application. This 
page uses LiveConnect to initialize ISB for Java and establish the connection to 
FSA-Admin.

<server>
// Initialize the orb.
project.orb = Packages.org.omg.CORBA.ORB.init();

// Establish connection to the "FSA-Admin" service.
// By default, assume name service is running on this server.
nameHost = "http://" + server.hostname;
serviceName = "/FSA-Admin";
serviceURL = nameHost + serviceName;

// Resolve name and obtain reference to Admin stub.
project.fsa_admin = Packages.Flexi.AdminHelper.narrow(

netscape.WAI.Naming.resolve(serviceURL));

</server>

The first statement initializes ISB for Java by calling the static init method of 
the Java class org.omg.CORBA.ORB. It stores the returned object as a property 
on the project object, so that it lasts for the entire application.
Chapter 22, Accessing CORBA Services 445



Flexi Sample Application
The second set of statements determine the URL that was used to register the 
FSA-Admin object. If you used a different URL when you registered this object 
(as described in the last section), you need to make appropriate changes to 
these statements. The URL used in the CORBA server must be exactly the same 
as the URL used in the CORBA client.

The code then calls the resolve method of the netscape.WAI.Naming object 
to establish the connection to the Admin object that was registered by 
FlexiServer as FSA-Admin. Finally, it calls the narrow method of 
AdminHelper to cast the returned object to the appropriate Java object type. 
That Java method returns a Java object corresponding to the distributed object. 
The JavaScript runtime engine wraps the Java object as a JavaScript object and 
then stores that object as a property on the project object. At this point, you 
can call methods and access properties of that returned object as you would 
any other Java object. The other pages in flexi work through this object. 

Once again, for more details on how the CORBA objects work, see Netscape 
Internet Service Broker for Java Reference Guide.

Using the Admin Object to Administer and View 
Accounts

Other code in flexi creates and then accesses objects in FlexiServer other 
than the Admin object. These other objects are created by calls to methods of 
the Admin object. For example, if the employee chooses to submit a claim, a 
new claim is created in the account-empl.html with the following statement:

__claim = __account.submitClaim(
parseFloat(request.claimAmount),
request.serviceDate,
request.providerName,
request.details);
446 Server-Side JavaScript Guide



Deployment Alternatives
This code calls the submitClaim method of the Account object to create a new 
employee claim. The implementation of that method, in the file 
impl\Account.java, creates a new Claim object, which the code registers 
with the ORB and then returns, as follows:

public Flexi.Claim submitClaim(float amount, String serviceDate,
String providerName, String details)

{
Claim __clm = new Claim(this, amount, serviceDate, 

providerName, details);
org.omg.CORBA.ORB.init().BOA_init().obj_is_ready(__clm);
_current_clm = __clm;
System.out.println("***Created a new claim: " + __clm);
return __clm;

};

Deployment Alternatives
There are two other alternatives for deployment of a CORBA-compliant 
distributed object that are of interest when working with server-side JavaScript:

• The object may be created by the web server (but not by a JavaScript 
application) and run in the web server.

• The object may be created by a JavaScript application and run in the web 
server.

In these alternatives, the CORBA client and the CORBA server both run in the 
same web server process. 

From the point of view of JavaScript, if the CORBA client is not a JavaScript 
application, the first alternative is for all practical purposes the same as having 
the CORBA server run as a separate process.
Chapter 22, Accessing CORBA Services 447



Deployment Alternatives
However, the second alternative, creating a distributed object in a JavaScript 
application, in effect makes that application the CORBA service. Figure 22.3 
illustrates this alternative.

Figure 22.3A JavaScript application as a CORBA server 

Once again, the Java and JavaScript runtime environments are together in the 
same web server. They communicate using LiveConnect in the standard way 
described earlier in this chapter. In this case, however, the Java and JavaScript 
processes act together to be the CORBA service. This service then 
communicates with a CORBA client through ISB for Java in its standard way. 
The bank sample application is an example of a JavaScript application 
implementing a CORBA service.

Here, the CORBA client can be on any machine that has an IIOP-capable ORB 
and can be written in any language. One interesting possibility is that the 
CORBA client can be a client-side Java application (and through LiveConnect 
on the client, a client-side JavaScript application). This provides a completely 
different way for a client-side JavaScript application to communicate with a 
server-side JavaScript application.

Objects
using stubs

Stubs

CORBA server
(web server)

JavaScript runtime

CORBA client

Client application process

JavaScript object
implementations

Java runtime

JavaScript object
wrappers

Java objects

LiveConnect

ORB
ORB

(ISB for Java)
IIOP
448 Server-Side JavaScript Guide



Glossary

This glossary defines terms useful in understanding JavaScript applications.

active application A JavaScript application that has been started, and can therefore be run, or 
accessed, by clients.

application URL A page in a JavaScript application, relative to the base application URL. Clients 
use the application URL to access a particular page in the application.

ASCII American Standard Code for Information Interchange. Defines the codes used 
to store characters in computers. 

base application 
URL

The name of a JavaScript application, as specified in Application Manager. 
Clients use the application URL to access the default page of an application.

BLOb Binary large object. The format of binary data stored in a relational database.

bytecodes Platform-independent object code, intermediate between source code and 
platform-specific machine code.

CGI Common Gateway Interface. A specification for communication between an 
HTTP server and gateway programs on the server. CGI is a popular interface 
used to create server-based web applications with languages such as Perl or C.

client A web browser, such as Netscape Navigator.

client cookie One of the methods that JavaScript uses to maintain properties of the client 
object. This method stores name/values pairs as cookies on the client machine.

client-side 
JavaScript

Core JavaScript plus extensions that control a browser (Navigator or another 
web browser) and its DOM. For example, client-side extensions allow an 
application to place elements on an HTML form and respond to user events 
such as mouse clicks, form input, and page navigation. See also core JavaScript, 
server-side JavaScript.

client URL 
encoding

One of the methods that JavaScript uses to maintain properties of the client 
object. This method appends name/value pairs to a URL string.

commit To perform all the database actions in a transaction; the attempt to commit may 
succeed or fail, depending on the actions and the state of the database.
Glossary 449



cookie A mechanism by which the Navigator client can store small items of information 
on the client machine. 

CORBA Common Object Request Broker Architecture. A standard endorsed by the 
OMG (Object Management Group), the Object Request Broker (ORB) software 
that handles the communication between objects in a distributed computing 
environment.

core JavaScript The elements common to both client-side and server-side JavaScript. Core 
JavaScript contains a core set of objects, such as Array, Date, and Math, and 
a core set of language elements such as operators, control structures, and 
statements. See also client-side JavaScript, server-side JavaScript.

critical section A section of code in which you need exclusive access to an object or property 
to ensure data consistency.

current row A row in a table referred to by a database cursor.

current 
transaction

In a database application, the active transaction under which all database 
actions are performed.

cursor A data structure returned by a database query, consisting of a virtual table and 
a pointer to a row in the virtual table; the JavaScript Cursor object has 
corresponding properties and methods.

DDL Data Definition Language. Database statements to create, alter, or delete 
database objects such as tables, keys, stored procedures, and so on.

deadlock The situation in which two processes each wait for the other to finish a task 
before continuing. If each waits for the other, neither can continue.

default page The page, specified in the Application Manager, that a client accesses if the user 
requests an application URL, but no specific page in the application. Compare 
to initial page.

deploy To transfer an application to a location where others can access it. The location 
can be on the local server’s file system or a remote server connected to the 
Internet.

deployment 
server

A server on which a JavaScript application is installed that is accessible to end 
users; also called a production server. Should be different from the 
development server.
450 Server-Side JavaScript Guide



deprecate To discourage use of a feature without removing the feature from the product. 
When a JavaScript feature is deprecated, an alternative is typically 
recommended; you should no longer use the deprecated feature because it 
might be removed in a future release.

development 
server

A server, typically inside a firewall, on which you develop and test JavaScript 
applications, not accessible to end users. Should be different from the 
deployment server.

DML Data Manipulation Language. Database statements to select, update, insert, or 
delete rows in tables.

ECMA European Computer Manufacturers Association. The international standards 
association for information and communication systems.

ECMAScript A standardized, international programming language based on core JavaScript. 
This standardization version of JavaScript behaves the same way in all 
applications that support the standard. Companies can use the open standard 
language to develop their implementation of JavaScript. See also core JavaScript.

external function A function defined in a native library that can be used in a JavaScript 
application.

HTML Hypertext Markup Language. A markup language used to define pages for the 
World Wide Web.

HTTP Hypertext Transfer Protocol. The communication protocol used to transfer 
information between web servers and clients.

initial page The page, specified in the Application Manager, that the Application Manager 
runs when the application is first started. Compare to default page.

IP address A set of four numbers between 0 and 255, separated by periods, that specifies a 
location for the TCP/IP protocol.

IP address 
technique

One of JavaScript’s techniques for maintaining the client object, in which the 
server uses the client’s IP address to refer to a data structure containing client 
property values.

LiveConnect Lets Java and JavaScript code communicate with each other. From JavaScript, 
you can instantiate Java objects and access their public methods and fields. 
From Java, you can access JavaScript objects, properties, and methods.

MIME Multipart Internet Mail Extension. A standard specifying the format of data 
transferred over the internet.
Glossary 451



Netscape cookie 
protocol

Netscape’s format for specifying the parameters of a cookie in the HTTP 
header.

ODBC Open Database Connectivity. Microsoft’s interface for relational database 
programming.

primitive value Data that is directly represented at the lowest level of the language. A JavaScript 
primitive value is a member of one of the following types: undefined, null, 
Boolean, number, or string. The following examples show some primitive 
values.

a=true // Boolean primitive value
b=42 // number primitive value
c="Hello world" // string primitive value
if (x==undefined) {} // undefined primitive value
if (x==null) {} // null primitive value

roll back To cancel all the database actions within one transaction.

server cookie One of JavaScript’s techniques for maintaining the client object, in which the 
server generates a unique name for a client, stored in the cookie file on the 
client, and later uses the stored name to refer to a data structure containing 
client property values.

server-side 
JavaScript

Core JavaScript plus extensions relevant only to running JavaScript on a server. 
For example, server-side extensions allow an application to communicate with 
a relational database, provide continuity of information from one invocation to 
another of the application, or perform file manipulations on a server. See also 
client-side JavaScript, core JavaScript.

server URL 
encoding

One of JavaScript’s techniques for maintaining the client object, in which the 
server generates a unique name for a client, appends it to URLs, and later uses 
the stored name to refer to a data structure containing client property values.

Session 
Management 
Service

JavaScript’s four predefined objects request, client, project, and server, 
and one class, Lock, that provide a foundation for sharing data among requests, 
clients, and applications.

SQL Structured Query Language. A standard language for defining, controlling, and 
querying relational databases.
452 Server-Side JavaScript Guide



static method or 
property

A method or property of a built-in object that cannot be a property of instances 
of the object. For example, you can instantiate new instances of the Date 
object. Some methods of Date, such as getHours and setDate, are also 
methods of instances of the Date object. Other methods of Date, such as 
parse and UTC, are static, so instances of Date do not have these methods.

stopped 
application

An application that has been stopped with the Application Manager and is not 
accessible to clients.

transaction A group of database actions that are performed together; all the actions 
succeed, or all fail.

updatable cursor A database cursor in which you can update tables based on the contents of the 
virtual table.

URL Universal Resource Locator. The addressing scheme used by the World Wide 
Web.

web file The compiled form of a JavaScript application; contains bytecodes. Must be 
installed in a Netscape web server to run.

WWW World Wide Web
Glossary 453



454 Server-Side JavaScript Guide



Index

Symbols
- (bitwise NOT) operator 92

- (unary negation) operator 91

-- (decrement) operator 91

! (logical NOT) operator 95

!= (not equal) operator 90

$NSHOME\js\samples
and CLASSPATH 419

% (modulus) operator 91

%= operator 89

&& (logical AND) operator 95

& (bitwise AND) operator 92

&, in URLs 236

&= operator 89

*/ comment 130

*= operator 89

+ (string concatenation) operator 96

++ (increment) operator 91

+= (string concatenation) operator 96

+= operator 89

.htm file extension 58

.html file extension 58

.js file extension 58

/* comment 130

// comment 130

/= operator 89

< (less than) operator 90

<< (left shift) operator 92, 94

<<= operator 89

<= (less than or equal) operator 90

== (equal) operator 90

-= operator 89

> (greater than) operator 90

>= (greater than or equal) operator 90

>> (sign-propagating right shift) operator 92, 
94

>>= operator 89

>>> (zero-fill right shift) operator 92, 94

>>>= operator 89

?, in URLs 235

?: (conditional) operator 97

\ 300

^ (bitwise XOR) operator 92

^= operator 89

| (bitwise OR) operator 92

|= operator 89

|| (logical OR) operator 95

‘ (backquote)
See backquotes

‚ (comma) operator 97

A
-a compiler directive 61, 209

ACTION attribute 233
in sample application 193

active application
glossary entry 449

addClient function 212, 237, 274, 277

addResponseHeader function 213, 238, 241, 
305

agent property 250

anchors, creating 219

AND (&&) logical operator 95
Index 455



AND (&) bitwise operator 92

application/x-www-form-urlencoded content 
type 302, 304

Application Manager
capabilities of 56
and client object 263
configuring default settings 71
debugging applications 68
details 71
figure of 56
identifying library files 299
installing applications 61–64
modifying installation parameters 66
overview 56–58
protecting 49
removing applications 66
running applications 67
specifying database connections 315
starting, stopping, and restarting 66
using 68

applications
architecture of 43–47
as CORBA clients 438, 447
as CORBA servers 447
bank sample application 188
bugbase sample application 188
building 54–55
cipher sample application 188
compiling 59–61
configuration 49–51
creating 54
creating source files 58–59
dbadmin sample application 188
debugging 68–70
deleting 66
deploying 47, 70–71
developing 53
and file upload 233
flexi sample application 188
hangman sample application 188
and HTML 46
installing 61–64
jsaccall sample application 189
metadata sample application 189
migrating 6

applications (continued)
modifying installation parameters 66
name 64

changing 66
specifying 63

oldvideo sample application 188
partitioning tasks 205
publishing 62
removing 66
restarting 66
restricting access to 65, 70
running 46, 67
at runtime 47
sample 187–202
sendmail sample application 188
sharing data 260, 261
starting 66
starting, stopping, and restarting 66
statement types 46
stopping 66
system requirements for 47
upgrading 6
URLs for 64
videoapp sample application 188
viewer sample application 189
world sample application 188

application status, defined 58

application URLs 64, 206
glossary entry 449

arenas, in garbage collection 242

arguments array 133

arithmetic operators 91
% (modulus) 91
-- (decrement) 91
- (unary negation) 91
++ (increment) 91

Array object 214
creating 148
overview 147
456 Server-Side JavaScript Guide



arrays
See also the individual arrays
associative 140
defined 147
deleting elements 98
indexing 149
Java 420
literals 81
populating 148
referring to elements 149
regular expressions and 151
two-dimensional 150
undefined elements 79

ASCII 296
glossary entry 449

assignment operators 89
%= 89
&= 89
*= 89
+= 89
/= 89
<<= 89
-= 89
>>= 89
>>>= 89
^= 89
|= 89
defined 87

AUTH_TYPE CGI variable 229, 250

auth_type property 229, 250

auth_user property 229, 250

authorization 221

B
backquotes 216, 218–220

enclosing JavaScript in 218
when to use 220

backward compatibility 8

bank application 188

base application URL
glossary entry 449

Bcc property 288

beginTransaction method 324, 349, 392

binary data type 390

binary format 296

binary large objects
See BLObs

bit data type 390

bitwise operators 92
& (AND) 92
- (NOT) 92
<< (left shift) 92, 94
>> (sign-propagating right shift) 92, 94
>>> (zero-fill right shift) 92, 94
^ (XOR) 92
| (OR) 92
logical 93
shift 93

blob data type 376, 388

blob function 352

blobImage method 352

blobLink method 352

Blob object 210, 388, 389, 390

BLObs
glossary entry 449
overview 351
working with 351–354

Body property 288

Boolean expressions 254

Boolean literals 82

Boolean object 151, 214
conditional tests and 82

Boolean type conversions (LiveConnect) 431

booleanValue method 436

break statement 126

bugbase application 188

Built-in Maximum Database Connections 315

bytecodes 47
building 54
glossary entry 449
Index 457



byte data type 389

byteToString method 293, 296

C
C++ libraries 297

callC function 213, 298, 300

case sensitivity 79
object names 140
property names 140
regular expressions and 115

case statement
See switch statement

-c compiler directive 60

Cc property 288

C functions
calling 213
registering 212

CGI, glossary entry 449

CGI variables
accessing 228–232
AUTH_TYPE 229, 250
CONTENT_LENGTH 231
CONTENT_TYPE 231
GATEWAY_INTERFACE 232
HTTP_ACCEPT 231
HTTP_IF_MODIFIED_SINCE 231
HTTPS 229
HTTPS_KEYSIZE 229
HTTPS_SECRETKEYSIZE 230
PATH_TRANSLATED 230
QUERY_STRING 229, 230, 250
REMOTE_ADDR 230
REMOTE_HOST 230
REMOTE_USER 229, 230, 250
REQUEST_METHOD 229, 230, 250
SCRIPT_NAME 230
SERVER_NAME 230
SERVER_PORT 230
SERVER_PROTOCOL 229, 230, 250
SERVER_SOFTWARE 232
SERVER_URL 230

char arguments 421

char data type 388, 389, 390

cipher application 188

class-based languages, defined 162

classes
defining 162
Java 420
LiveConnect 422, 423

CLASSPATH 50, 419, 437

clearError method 293, 296

C libraries 297
calling 205

client
characteristics of 204
communicating with server 232
glossary entry 449
maintaining client object on 268–271
preprocessing data on 204, 234, 238

client cookies 268–269
glossary entry 449
lifetime of properties 275
maintaining client object with 226, 240, 266, 

267, 268

client-mode field, of jsa.conf 73

client object 210, 215, 221, 225, 237, 252–259, 
266, 268

adding properties to URLs 277–279
creating custom 255
custom 256–259
description of 252
destroying 276
getting identifier 213
id for maintaining 255
in sample application 193
lifetime 252
lifetime of 247, 275–276
458 Server-Side JavaScript Guide



client object (continued)
maintaining 71, 212, 221, 223, 226, 232, 237, 

240, 263–279
comparing techniques 264–267
on the client 268–271
on the server 271–274
with client cookies 268–269
with client-URL encoding 270–271
with IP address 272
with server cookie 273
with server-URL encoding 274

maintenance, specifying 63
overview 247
in page processing 221, 222
properties 253–255
properties, expiring 275–276
properties, overhead from 254
properties, restrictions on 253
properties of 253
restrictions 256
storing properties on project or server 255–

256
uniquely referring to 255–256

client properties
assigning 269
Boolean 254
changing 223

client requests
See requests

client scripts
communicating with server 205
generating 239
sending values to 237
when to use 205

client-server communication 232–242
using cookies for 239–241

client-side JavaScript 30, 32, 206
glossary entry 449
illustrated 32
object lifetime 205
overview 32

client URL encoding 223, 227, 232, 237, 268, 
270–271

glossary entry 449
lifetime of properties 275

clob data type 376, 388

close method 292, 338, 364, 392, 393, 395

colName property 338, 364

columnName method 339, 345, 364, 395

column names, displaying 345

columns method 338, 345, 364

comma (‚) operator 97

comments, types of 130

comment statement 130

commit, glossary entry 449

commitTransaction method 324, 349, 392

communication between client and server 232–
242

comparison operators 90
!= (not equal) 90
< (less than) 90
<= (less than or equal) 90
== (equal) 90
> (greater than) 90
>= (greater than or equal) 90
on client and server 209

compiler 54, 209
options 60
and PATH environment variable 51
using 59–61

conditional (?:) operator 97

conditional expressions 97

conditional statements 120–122
if...else 120
switch 121

conditional tests, Boolean objects and 82

configuration styles 65, 71

confirmation prompts, configuring 72

connected method 324, 394
Index 459



connection method 393
of DbPool objects 323

Connection objects 210, 214, 311, 316, 323, 392, 
393, 394, 395, 396

creating 323
error methods of 396
methods 324
storedProc method 358

connection pools
See also DbPool objects
as property of project object 321
managing 318
sharing array of 321
sharing fixed set 320
storing with project object 318, 320

connections
approaches to 311–324
DbPool objects 314
disconnecting 316
establishing 311–324
retrieving 316, 328
spanning multiple client requests 325
specifying number of 63, 71
specifying the number of 315
storing 255
waiting for 327

connect method 392, 393

constructor functions 142
global information in 181
initializing property values with 173

containership
specifying default object 129
with statement and 129

CONTENT_LENGTH CGI variable 231

CONTENT_TYPE CGI variable 231

content-length property 304

content types, managing custom 302–305

continue statement 127

cookie.txt 239

cookie protocol 266, 268, 273
See also client cookies

cookies 232, 237
client, glossary entry 449
defined 239
glossary entry 450

CORBA 233, 238, 437–448
glossary entry 450

core JavaScript 32, 208
differences on client and server 209
glossary entry 450

critical section 279
glossary entry 450

current row 338
glossary entry 450

current transaction, glossary entry 450

cursor method 324, 393

Cursor objects 210, 214, 392, 394, 395
methods 338
overview 338
properties 338

cursors
creating 339
customizing display functions 336
determining number of columns 345
displaying aggregate functions 343
displaying column names 345
displaying expressions 343
displaying record values 341
glossary entry 450
navigating with 344
overview 338
updatable 339, 346–348, 353
using 338–348

D
data

converting between formats 296
sharing between client and server 232

database access 205

database client libraries, configuring 369–385

database clients, supported 372–375

database configuration, verifying 370–371
460 Server-Side JavaScript Guide



database connection pools
See connection pools

database connections
See connections

database name 314

database object 210, 215, 392, 393, 394, 395
restrictions 318
using 309–368

database pools
See DbPool objects

database queries
and flush function 226

databases 307–411
See also LiveWire Database Service
configuring 369–385
connecting to 316
converting data types 387–390
and dates 388
error handling 391–397
guidelines for managing connections and 

threads 317
multithreaded 316
single-threaded 316
typical interactions 310
verifying connection 316

database server name 314

database servers
in JavaScript application architecture 45

database transactions
See transactions

database type 314

data persistence 205

data sharing 205, 215, 221, 247, 261, 263, 279–
286, 292, 315, 318

data types
Boolean conversions 431
converting 78
converting for LiveWire 387–390
converting with LiveConnect 429–436
and Date object 78
Informix 390
JavaArray conversions 433

data types (continued)
JavaClass conversions 434
JavaObject conversions 433
in JavaScript 36, 77
JavaScript to Java conversion 429
Java to JavaScript conversion 435
null conversions 432
number conversions 430
ODBC 389
Oracle 389
other conversions 434
string conversions 432
Sybase 388, 390

date data type 388, 389, 390

Date object 214, 388, 389, 390
converting dates to 387, 388
creating 151
overview 151

dates
converting to Date objects 387
and databases 388
inserting in database 388

datetime data type 389, 390

DB2
configuring 376–377
data types 388
registering stored procedures in 357
stored procedure prototypes 358

DB2COMM environment variable 377

DB2INSTANCE environment variable 377

DB2PATH environment variable 377

dbadmin application 188, 370

DbBuiltin object 210

DbPool constructor 393

DbPool objects 214
See also connection pools, database pools
adding properties to 210
Boolean value returned by 394
connecting to a database with 311
connection method 323
connections with 314
creating 314
Index 461



DbPool objects (continued)
in connection pool arrays 321
no value returned by 395
numeric value returned by 393
object returned by 393
stored procedures and 358
string value returned by 395
using 309–368

-d compiler directive 60

DDL, glossary entry 450

deadlock 284–286
glossary entry 450

debug function 70, 212

Debugger 37

debugging applications 68

debugging functions 68

debug URLs, using 69

decimal data type 388, 389, 390

decrement (--) operator 91

default form values 237

default objects, specifying 129

default page
glossary entry 450
specifying 63, 71

default settings, Application Manager 71

delete operator 98, 147

deleteResponseHeader function 213, 238, 305

deleteRow method 339, 347, 348, 392

DELETE SQL statement 348

deleting
array elements 98
objects 98, 147
properties 98

deploy, glossary entry 450

deploying applications 70–71

deployment server
defined 47
glossary entry 450
updating files to 67

deprecate, glossary entry 451

destroy method 269, 270, 276

development environment, components of 47

development platform, defined 47

development server
defined 47
glossary entry 451
updating files from 67

DHCP 272

directories
conventions used 26

disconnect method 392, 393, 395

DML, glossary entry 451

DNS 230

do...while statement 124

document conventions 26

document root 64

double data type 388

double precision data type 389, 390

Dynamic Host Configuration Protocol 272

dynamic link libraries 297

E
ECMA, glossary entry 451

ECMA-262 208

ECMAScript, glossary entry 451

ECMA specification 38
JavaScript documentation and 40
JavaScript versions and 39
terminology 40

else statement
See if...else statement

email
See mail

environment variables, accessing 229

eof method 293, 294

equality on client and server 209

errorCode method 287
462 Server-Side JavaScript Guide



error handling for LiveWire 391–397

errorMessage method 287

error messages, retrieving 316

error method 293, 296

error status, for File object 296

escape function 138, 212, 237

escaping characters 86

eval function 135

event handlers 211
See also the individual event handlers
direct substitution 237
onClick 234

exceptions
handling in Java 425

exec method 110

execute method 324, 337, 392

exists method 293, 296

expiration method 269, 275

expressions
See also regular expressions
conditional 97
overview 87
that return no value 101
types of 88

external functions
calling 298
defined 297
example of use 301
glossary entry 451
guidelines for writing 299
registering 300
using in JavaScript 300
when to use 298

external libraries 297–301
calling 205
identifying files 299
security 297
specifying 63, 71

F
-f compiler directive 61

file access modes 292

File class 226, 290–297

file formats 296

file I/O 297

File object 210, 214
creating 291, 297
described 290
methods of 293
security considerations 290

files
accessing with JavaScript 290–297
closing 291
getting information for 296
locking 292
opening 291
positioning within 294
reading from 294
writing to 295

file upload 302

fixed decimal notation 387

flexi application 188, 439, 439–447

FlexiServer 439, 441

float data type 389, 390

floating-point literals 83

floatValue method 436

flush function 212, 223, 225, 269, 305
described 226

flush method 226, 295
example of use 227

for...in statement 128, 140

for loops
continuation of 127
sequence of execution 122
termination of 126

form elements
hidden 234, 237, 238
using as request properties 233

FORM HTML tag 233
Index 463



forms
and client maintenance 267
client scripts for 205
default values 237
GET method 303
hidden elements 237
POST method 303
processing 192
and the request object 246
statements 193
variables 251

for statement 122

From property 288

function keyword 131

Function object 155, 214

functions 131–138, 211
arguments array 133
calling 132
debugging 68
defining 131
Function object 155
predefined 134–138
recursive 133
redirect 227
using built-in 134–138
write 216, 218

G
garbage collection, in JavaScript 242–243

GATEWAY_INTERFACE CGI variable 232

getDay method 153

getHours method 154

getLength method 293, 296

getMember method 424

getMinutes method 154

getOptionValueCount function 212

getOptionValue function 212, 234

getPosition method 293, 294

getPostData method 304

getSeconds method 154

getTime method 153

get value of method attribute 233

global object 40

H
hangman application 188

-h compiler directive 60

headers 238, 241
request 231

Hello World application 188

hidden form elements 237

history method 249

home field, of jsa.conf 73

hostname 230

hostname property 262

host property 262

HREF attribute 219

HTML 204, 206
attributes 211, 218
conditionalizing 205
embedding JavaScript in 216–220
generating 212
glossary entry 451
and JavaScript 203, 216–220
sample source code 192

HTML page
constructing 206, 221, 222, 225–228
sending to client 225, 267

HTML tags
FORM 233
IMG 351, 352
INPUT 238

HTTP 215, 221
applets 417
glossary entry 451
protocol level 229, 230
request, See requests
request information 426
response buffer 426
user 229, 230
464 Server-Side JavaScript Guide



HTTP_ACCEPT CGI variable 231

HTTP_IF_MODIFIED_SINCE CGI variable 231

HTTPD processes, objects for 261

httpHeader method 231, 233, 241, 303

HTTP method 229, 230

HTTPS_KEYSIZE CGI variable 229

HTTPS_SECRETKEYSIZE CGI variable 230

HTTPS CGI variable 229

I
-i compiler directive 60

if...else statement 120
in sample application 194

IIOP 437–448

image data type 390

image maps 252
using 252

imageX property 251, 252

imageY property 251, 252

IMG HTML tag 351, 352

increment (++) operator 91

index.html and default page 63

Informix 310
configuring 378–379
data types 389, 390
stored procedure parameters 359

INFORMIXDIR environment variable 378

INFORMIXSERVER environment variable 378

INFORMIXSQLHOSTS environment 
variable 378

inheritance
class-based languages and 163
multiple 183
property 178

initializers for objects 141

initial page 252, 318
and request object 249
glossary entry 451
specifying 63, 71

INPUT HTML tag 238

input validation 205

insertRow method 339, 347, 348, 392

INSERT SQL statement 348

installation parameters
configuring 71
modifying 66

Installing an application 61

int data type 390

integer data type 388, 389

integers, in JavaScript 83

Internet InterORB Protocol 437

interval data type 389

IP address 267, 271, 272
glossary entry 451
lifetime of properties 275

IP address technique, glossary entry 451

ip property 250

ISB for Java 416, 437

isFinite function 135

ISMAP attribute, of IMG tag 252

isNaN function 136, 212

J
Java

See also LiveConnect
accessing JavaScript 422
accessing with LiveConnect 418
arrays in JavaScript 420
calling from JavaScript 418
classes 420
communication with JavaScript 415–436
compared to JavaScript 36, 161–184
example of calling from JavaScript 421
to JavaScript communication 422
JavaScript exceptions and 425
Index 465



Java (continued)
methods requiring char arguments 421
objects, naming in JavaScript 419
object wrappers 417
packages 420

Java applets, server scripts for 205

JavaArray object 418, 420

JavaArray type conversions 433

JavaClass object 418, 420

JavaClass type conversions (LiveConnect) 434

JavaObject object 418

JavaObject type conversions 433

java package 419

JavaPackage object 418, 420

JavaScript
accessing from Java 422
application executable files 47
background for using 23
basics 203–243
client-side 32
communication with Java 415–436
compared to Java 36, 161–184
components illustrated 31
core 32
debugging 212
differences between server and client 30
ECMA specification and 38
enabling 49
example of calling from Java 427
files 46, 211

compiling 47
garbage collection 242–243
and HTML 216–220
to Java Communication 418
Navigator 32–33
object wrappers 436
overview 30
runtime processing 206–208, 220–225
server-side 34–36
server-side overview 208–215
special characters 85
tasks on client 204–205
tasks on server 204–205

JavaScript (continued)
variables, and request properties 251
versions and Navigator 24
where it can occur 211

JavaScript files 211

Java virtual machine 46

jsa.conf file 73

jsac
See compiler

jsaccall.c 299

jsaccall.h 299

jsaccall application 189, 298

JSException class 422, 425

js files 46

JSObject, accessing JavaScript with 424

JSObject class 422

jsVersion property 262

L
labeled statements

with break 126
with continue 127

label statement 125

-l compiler directive 60

LD_LIBRARY_PATH environment variable 377, 
381, 384

left shift (<<) operator 92, 94

length property 159

LIBPATH environment variable 377, 381

libraries, external 297–301

library field, of jsa.conf 73

links
for BLOb data 352
creating 219
with no destination 101
466 Server-Side JavaScript Guide



literals 81
Array 81
Boolean 82
floating point 83
integers 83
object 83
string 84

LiveConnect 211, 214, 233, 238, 415–436
accessing Java directly 418
capabilities 417
configuration for 50
converting data types 429–436
glossary entry 451
and HTTP applets 417
Java to JavaScript communication 422
and NSAPI applications 417
objects 418
restrictions 417
and WAI plug-ins 417

LiveWire database access library 46

LiveWire Database Service 307–411
See also databases
system requirements for 48

locking 279–286

lock method 261, 279–286
in sample application 194

Lock object 210, 215, 279–286

logical operators 95
! (NOT) 95
&& (AND) 95
|| (OR) 95
short-circuit evaluation 96

longdatacompat 376

long data type 390

long raw data type 390

loops
continuation of 127
for...in 128
termination of 126

loop statements 122–128
break 126
continue 127
do...while 124
for 122
label 125
while 124

lowercase 79

M
mail

MIME-compliant 288
sending with JavaScript 215, 287–290

majorErrorCode method 316, 324, 392, 393, 396

majorErrorMessage method 316, 324, 395, 396, 
397

mark and sweep 243

matching patterns
See regular expressions

match method 110

mathematical constants and functions 387

Math object 156, 214

maxdbconnect field, of jsa.conf 73

metadata application 189

METHOD attribute 233

method property 229, 250

methods
close 292
defined 132
defining 145
destroy 276
expiration 275
flush 226
history 249
open 291
setPosition 294
static 453

migrating applications 6

MIME, glossary entry 451

MIME-compliant mail 288
Index 467



MIME types 290

minorErrorCode method 316, 324, 392, 393, 396

minorErrorMessage method 316, 324, 395, 396

modulus (%) operator 91

money data type 389, 390

multimedia
using BLObs 351

MULTIPLE attribute
of SELECT tag 234

multithreaded databases 316

multi-threading
and Sybase 385

N
NAME attribute 219, 233

in sample application 193
of SELECT tag 234

native functions 297–301

Navigator
in JavaScript application architecture 44
and JavaScript 32, 34
JavaScript versions supported 24

Navigator JavaScript
See client-side JavaScript

nchar data type 389, 390

NETSCAPE_LIVEWIRE 240, 268

Netscape cookie protocol 268, 273
glossary entry 452

Netscape Internet Service Broker for Java 416, 
437

netscape package 419

Netscape packages
See packages

Netscape web servers
configuration style support 65
in JavaScript application architecture 44
sample applications installed with 187

new operator 99, 142

next method 339, 341, 344, 362, 364, 394

NOT (!) logical operator 95

NOT (-) bitwise operator 92

NSAPI applications 417

NSHOME 50

null keyword 77

null value conversions (LiveConnect) 432

number data type 389, 390

Number function 137

Number object 158, 214

number property 194

numbers
converting to characters 293, 296
identifying 212
Number object 158
parsing from strings 136
storing 387
type conversions (LiveConnect) 430

numeric data type 390

nvarchar data type 389, 390

O
object field, of jsa.conf 73

object manipulation statements
for...in 128
this keyword 99
with statement 129

object model 161–184

Object object 214

object prototypes 210

object request brokers 437

objects 139–160
adding properties 143, 144
adding properties to 210
constructor function for 142
creating 141–143
creating new types 99
deleting 98, 147
establishing default 129
getting list of properties for 140
indexing properties 144
468 Server-Side JavaScript Guide



objects (continued)
inheritance 169
initializers for 141
iterating properties 140
JavaScript in Java 423
lifetimes of 246
literals 83
LiveConnect 418
model of 161–184
overview 140
predefined 147
single instances of 141

-o compiler directive 60

ODBC
configuring 379–381
data types 389
drivers supported 372–375
glossary entry 452
stored procedure prototypes 358

oldvideo application 188, 399–411
and Informix 399

onClick event handler 234

Open DataBase Connectivity standard
See ODBC

OpenLink
configuring 380–381

open method 291

operators
arithmetic 91
assignment 89
bitwise 92
comparison 90
defined 87
logical 95
order of 102
overview 88
precedence 102
special 97
string 96

OPTION tag 235

OR (|) bitwise operator 92

OR (||) logical operator 95

Oracle 310
configuring 381–383
data types 389, 390
stored procedure parameters 359

ORACLE_HOME environment variable 382, 383

ORACLE_SID environment variable 383

ORBs 437

outParamCount method 360, 367

outParameters method 356, 360, 365, 367

output buffer 222
flushing 212, 226–227

output parameters
of stored procedures 367

P
packages, Java 420

Packages object 214, 419

packed decimal notation 387

parameters for stored procedures 359

parentheses in regular expressions 110, 113

parseFloat function 136, 212

parseInt function 136, 212

parse method 154

Pascal functions 297

passthrough SQL, executing 337

PATH_INFO CGI variable 230

PATH_TRANSLATED CGI variable 230

PATH environment variable 377
for the compiler 51

pattern matching
See regular expressions

-p compiler directive 61

PI property 156

pointers 294

pools of database connections
See connection pools

popups, client scripts for 205
Index 469



port property 262

post value of method attribute 233

predefined objects 147

primitive value, glossary entry 452

project object 210, 215, 221, 260–261
description of 260
in sample application 194
lifetime 260
lifetime of 248, 260
locking 261, 279, 283, 292
overview 247–248
properties 260–261
properties of 260
sharing 261
storing connection pools on 318, 320, 321

properties
See also the individual properties
adding 144, 171
class-based languages and 163
creating 171
getting list of for an object 140
indexing 144
inheritance 169, 178
initializing with constructors 173
iterating for an object 140
overview 140
static 453

protocol property 229, 250, 262

prototype-based languages, defined 162

prototypes 169, 210
stored procedures and 358

Q
queries

customizing output 336
displaying 336–337

QUERY_STRING CGI variable 229, 230, 250

query property 229, 250

quotation marks
with backslash 220
order of 218
for string literals 84

R
raw data type 390

-r compiler directive 61

readByte method 293, 295

readln method 293, 295

read method 293, 294

real data type 390

record values, displaying 341

redirect function 212, 223, 225, 227–228, 249, 
267, 269, 270, 274, 277, 305

described 227

RegExp object 103–118

registerCFunction function 212, 298, 300

regular expressions 103–118
arrays and 151
creating 104
defined 103
examples of 116
global search with 115
ignoring case 115
parentheses in 110, 113
remembering substrings 110, 113
special characters in 105, 117
using 110
writing patterns 104

release method 323, 324, 392, 395

REMOTE_ADDR CGI variable 230

REMOTE_HOST CGI variable 230

REMOTE_USER CGI variable 229, 230, 250

replace method 110

REQUEST_METHOD CGI variable 229, 230, 250

request bodies, manipulating 304–305

request headers 231, 233, 241
manipulating 303
470 Server-Side JavaScript Guide



request object 210, 215, 221, 225, 232, 249–252, 
303, 304

creation 249
description of 249
example of property creation 233
and forms 251
in sample application 193
lifetime of 246, 249
overview 246–247
in page processing 221, 222
properties 229, 250–251
properties, and JavaScript variables 251
saving properties 228
setting properties with form elements 233

request properties encoding in URLs 236

requests
changing 212, 227–228
header 238
manipulating raw data 302–305
redirecting 236
sharing a connection 325
terminating 227

request thread 426

response headers, manipulating 213, 305

responses, manipulating raw data 302–305

resultSet method 355, 360, 361, 393

Resultset object 210, 214, 354, 393, 394, 395
See also result sets
methods of 364

result sets 360
See also Resultset object
creating 361
Resultset object 360

return statement 132

returnValue method 356, 360, 365, 366

return values of stored procedures 366

rollback, glossary entry 452

rollbackTransaction method 324, 349, 392

rowid data type 390

runtime environment components 46

runtime library 46

runtime processing 216, 220–225
example 207

S
sample applications 187–202

Hangman 196–202
Hello World 190–195

SCRIPT_NAME CGI variable 230

scripts, changing client properties 223

SCRIPT tag 46, 211
See also client scripts
direct substitution in 237
when to use

search method 110

security
external libraries and 297
File object and 290

select lists 234

SELECT SQL statement 339, 341, 343, 346

SELECT tag 212, 234

sendmail application 188

SendMail class 287–290

SendMail object 210, 215

send method 287

serial data type 389

server
administration functions 221
authorization 221
characteristics of 204
communicating with client 237
maintaining client object on 271–274
processes, objects for 261
restarting 299
routing 64

SERVER_NAME CGI variable 230

SERVER_PORT CGI variable 230

SERVER_PROTOCOL CGI variable 229, 230, 
250

SERVER_SOFTWARE CGI variable 232
Index 471



SERVER_URL CGI variable 230

server applications
developing 53

server-client communication 232–242

server cookies 266, 271, 273
glossary entry 452
lifetime of properties 275

server object 210, 215, 221, 261–263
description of 261
lifetime 262
lifetime of 248
locking 279, 283, 292
overview 248
properties 262
properties of 262
sharing data 263

server scripts
communicating with client 205
when to use 205

server-side JavaScript 30, 34–36
enabling 49
executing 225
glossary entry 452
illustrated 34, 35

server-side objects, lifetime of 205

SERVER tag 46, 205, 206, 211, 216, 217, 220
See also server scripts
in sample application 192, 193
when to use 220

server URL encoding 227, 232, 237, 271, 274
glossary entry 452
lifetime of properties 275

session key 229

Session Management Service 205, 221, 245–286
glossary entry 452
object overview 246–249

setDay method 153

setPosition method 293, 294

setTime method 153, 154

SHLIB_PATH environment variable 377, 378, 
381

short-circuit evaluation 96

sign-propagating right shift (>>) operator 92, 94

single-threaded databases 316

smalldatetime data type 390

smallfloat data type 389

smallint data type 388, 389, 390

smallmoney data type 390

Smtpserver property 288

source files 70
components of 58
creating 58–59

source script, example of 192

special characters in regular expressions 105, 
117

special characters in URLs 237

special operators 97

split method 110

SQL 310
See also the individual statements
error handling 391–397
executing 337
glossary entry 452

SQL_BIGINT data type 389

SQL_BINARY data type 389

SQL_CHAR data type 389

SQL_DATE data type 389

SQL_DECIMAL data type 389

SQL_DOUBLE data type 389

SQL_FLOAT data type 389

SQL_INTEGER data type 389

SQL_LONGBINARY data type 389

SQL_LONGVARCHAR data type 389

SQL_NUMERIC data type 389

SQL_REAL data type 389

SQL_SMALLINT data type 389

SQL_TIME data type 389

SQL_TIMESTAMP data type 389
472 Server-Side JavaScript Guide



SQL_VARBINARY data type 389

SQL_VARCHAR data type 389

SQLTable method 324, 336, 392

ssjs_generateClientID function 213, 255, 327

ssjs_getCGIVariable function 213, 228, 229, 250

ssjs_getClientID function 213, 255, 273, 274

start field, of jsa.conf 73

statements
break 126
conditional 120–122
continue 127
do...while 124
for 122
for...in 128
if...else 120
label 125
loop 122–128
object manipulation 128–129
overview 119–130
switch 121
while 124

static, glossary entry 453

stopped transaction, glossary entry 453

storedProcArgs method 358, 392, 393

stored procedures 354–368
See also Stproc object
arguments to 355
defining prototypes for 358
executing 358
in DB2 357
output parameters 367
parameters for 359
registering 357
result sets 355
return values 356, 366
steps for using 356
Stproc object 354, 356

storedProc method 324, 358, 393

Stproc object 210, 214, 354, 356, 393
See also stored procedures
creating 358
methods of 360

string data type 388, 389, 390

String function 137

string literals 84

String object 214
overview 159
regular expressions and 110

strings
changing order using regular expressions 116
concatenating 96
operators for 96
parsing 212
regular expressions and 103
searching for patterns 103
type conversions (LiveConnect) 432

stringToByte method 293, 296

stubs 438

styles, configuration 65, 71

subclasses 163

Subject property 288

sun package 419

switch statement 121

Sybase 310
configuring 383–385
data types 388, 390
stored procedure prototypes 358

SYBASE environment variable 384

T
targets, creating 219

TCP port 230

test method 110

text/html content type 302

text data type 389, 390

this keyword 142, 145
described 99
for object references 146

threads
and databases 316
and Java 426
Index 473



ticks
See backquotes

time data type 388

timestamp data type 388

tinyint data type 390

TNS_ADMIN environment variable 382

To property 288

toString method 436

trace utility 68, 69, 70
configuring 72

transactions
committing 315
controlling 349
glossary entry 453
managing 348–350
overview 348
rolling back 315
scope of 350

typeof operator 100

U
unary negation (-) operator 91

undefined property 77

undefined value 79

unescape function 138, 212

unique identifier 213

unlock method 261, 279–286
in sample application 194

updatable cursor
glossary entry 453

updateRow method 339, 347, 348, 392

UPDATE SQL statement 348

upgrading applications 6

uppercase 79

uri field, of jsa.conf 73

uri property 251

URL-encoded variables
and request object 251
resetting 237

URL encoding
See also client URL encoding, server URL 

encoding
maintaining client object with 268, 270, 271

URLs 64, 230
adding client properties to 277–279
adding information to 212
application 64
changing 227–228
and client maintenance 270–271, 274
conventions used 26
creating 267
debug 69
dynamically generating 235
encoding information in 235–242
escaping characters in 212
glossary entry 453
including special characters 237
modifying 232
and redirect function 227
redirecting to 212
and reloading a page 237
and Session Management objects 248
to start and stop applications 66

V
VALUE attribute 238

varbinary data type 390

varchar2 data type 390

varchar data type 388, 389, 390

variables
declaring 79
in JavaScript 79
naming 79
scope of 80
undefined 79

var statement 79

-v compiler directive 60

VDBCINI environment variable 381
474 Server-Side JavaScript Guide



versions of JavaScript 24

videoapp application 188, 399–411
and Informix 399
and ODBC 399
and SQL Server 399

video application
See videoapp application

viewer application 189

Visigenic, configuring 381

Visual JavaScript 38

void operator 101

W
WAI plug-ins 417

web files 47, 67
building 54
defined 59
glossary entry 453
moving 67
specifying path 63, 71

while loops
continuation of 127
termination of 126

while statement 124

with statement 157
described 129

wrappers
for Java objects 417
for JavaScript objects 436

writeByte method 293, 295

write function 192, 212, 217, 225, 277, 291
with backquotes 218
and client maintenance 270
described 226
and flush 226
with SERVER tag 216

writeln method 293, 295

write method 293, 295

WWW, glossary entry 453

X
XOR (^) operator 92

Z
zero-fill right shift (>>>) operator 92, 94
Index 475


	Server-Side JavaScript Guide
	New Features in this Release
	Changes to Server-Side JavaScript
	Changes to Core JavaScript 1.2
	Upgrading from an Earlier Release
	Backward Compatibility with Earlier Releases

	Contents
	About this Book
	New Features in this Release
	What You Should Already Know
	JavaScript Versions
	Where to Find JavaScript Information
	Document Conventions

	1. JavaScript Overview
	What Is JavaScript?
	Core, Client-Side, and Server-Side JavaScript
	Core JavaScript
	Client-Side JavaScript
	Server-Side JavaScript

	JavaScript and Java
	Debugging JavaScript
	Visual JavaScript
	JavaScript and the ECMA Specification
	Relationship Between JavaScript and ECMA Versions
	JavaScript Documentation vs. the ECMA Specification
	JavaScript and ECMA Terminology



	I. Developing Server Applications
	2. Getting Started
	Architecture of JavaScript Applications
	System Requirements
	Configuration Information
	Enabling Server-Side JavaScript
	Protecting the Application Manager
	Setting Up for LiveConnect
	Locating the Compiler


	3. How to Develop Server Applications
	Basic Steps in Building an Application
	JavaScript Application Manager Overview
	Creating Application Source Files
	Compiling an Application
	Installing a New Application
	Application URLs

	Controlling Access to an Application
	Modifying Installation Fields
	Removing an Application
	Starting, Stopping, and Restarting an Application
	Running an Application
	Debugging an Application
	Using the Application Manager
	Using Debug URLs
	Using the debug Function

	Deploying an Application
	Application Manager Details
	Configuring Default Settings
	Under the Hood



	II. Core Language Features
	4. Values, Variables, and Literals
	Values
	Data Type Conversion

	Variables
	Declaring Variables
	Evaluating Variables
	Variable Scope

	Literals
	Array Literals
	Boolean Literals
	Floating-Point Literals
	Integers
	Object Literals
	String Literals


	5. Expressions and Operators
	Expressions
	Operators
	Assignment Operators
	Comparison Operators
	Arithmetic Operators
	Bitwise Operators
	Logical Operators
	String Operators
	Special Operators
	Operator Precedence


	6. Regular Expressions
	Creating a Regular Expression
	Writing a Regular Expression Pattern
	Using Simple Patterns
	Using Special Characters
	Using Parentheses

	Working with Regular Expressions
	Using Parenthesized Substring Matches
	Executing a Global Search and Ignoring Case

	Examples
	Changing the Order in an Input String
	Using Special Characters to Verify Input


	7. Statements
	Conditional Statements
	if...else Statement
	switch Statement

	Loop Statements
	for Statement
	do...while Statement
	while Statement
	label Statement
	break Statement
	continue Statement

	Object Manipulation Statements
	for...in Statement
	with Statement

	Comments

	8. Functions
	Defining Functions
	Calling Functions
	Using the arguments Array
	Predefined Functions
	eval Function
	isFinite Function
	isNaN Function
	parseInt and parseFloat Functions
	Number and String Functions
	escape and unescape Functions


	9. Working with Objects
	Objects and Properties
	Creating New Objects
	Using Object Initializers
	Using a Constructor Function
	Indexing Object Properties
	Defining Properties for an Object Type
	Defining Methods
	Using this for Object References
	Deleting Objects

	Predefined Core Objects
	Array Object
	Boolean Object
	Date Object
	Function Object
	Math Object
	Number Object
	RegExp Object
	String Object


	10. Details of the Object Model
	Class-Based vs. Prototype-Based Languages
	Defining a Class
	Subclasses and Inheritance
	Adding and Removing Properties
	Summary of Differences

	The Employee Example
	Creating the Hierarchy
	Object Properties
	Inheriting Properties
	Adding Properties

	More Flexible Constructors
	Property Inheritance Revisited
	Local versus Inherited Values
	Determining Instance Relationships
	Global Information in Constructors
	No Multiple Inheritance



	III. Server-Side JavaScript Features
	11. Quick Start with the Sample Applications
	Hello World
	What Hello World Does
	Looking at the Source Script
	Modifying Hello World

	Hangman
	Looking at the Source Files
	Debugging Hangman


	12. Basics of Server-Side JavaScript
	What to Do Where
	Overview of Runtime Processing
	Server-Side Language Overview
	Core Language
	Usage
	Environment
	Classes and Objects

	Embedding JavaScript in HTML
	The SERVER tag
	Backquotes
	When to Use Each Technique

	Runtime Processing on the Server
	Constructing the HTML Page
	Generating HTML
	Flushing the Output Buffer
	Changing to a New Client Request

	Accessing CGI Variables
	Communicating Between Server and Client
	Sending Values from Client to Server
	Sending Values from Server to Client
	Using Cookies

	Garbage Collection

	13. Session Management Service
	Overview of the Predefined Objects
	The request Object
	Properties
	Working with Image Maps

	The client Object
	Properties
	Uniquely Referring to the client Object
	Creating a Custom client Object

	The project Object
	Properties
	Sharing the project Object

	The server Object
	Properties
	Sharing the server Object

	Techniques for Maintaining the client Object
	Comparing Client-Maintenance Techniques
	Client-Side Techniques
	Server-Side Techniques
	The Lifetime of the client Object
	Manually Appending client Properties to URLs

	Sharing Objects Safely with Locking
	Using Instances of Lock
	Special Locks for project and server Objects
	Avoiding Deadlock


	14. Other JavaScript Functionality
	Mail Service
	File System Service
	Security Considerations
	Creating a File Object
	Opening and Closing a File
	Locking Files
	Working with Files
	Example

	Working with External Libraries
	Guidelines for Writing Native Functions
	Identifying Library Files
	Registering Native Functions
	Using Native Functions in JavaScript

	Request and Response Manipulation
	Request Header
	Request Body
	Response Header



	IV. LiveWire Database Service
	15. Connecting to a Database
	Interactions with Databases
	Approaches to Connecting
	Database Connection Pools
	Single-Threaded and Multithreaded Databases
	Managing Connection Pools
	Sharing a Fixed Set of Connection Pools
	Sharing an Array of Connection Pools

	Individual Database Connections
	Maintaining a Connection Across Requests
	Waiting for a Connection
	Retrieving an Idle Connection


	16. Working with a Database
	Automatically Displaying Query Results
	Executing Arbitrary SQL Statements
	Manipulating Query Results with Cursors
	Creating a Cursor
	Displaying Record Values
	Displaying Expressions and Aggregate Functions
	Navigating with Cursors
	Working with Columns
	Changing Database Information

	Managing Transactions
	Using the Transaction-Control Methods

	Working with Binary Data
	Calling Stored Procedures
	Exchanging Information
	Steps for Using Stored Procedures
	Registering the Stored Procedure
	Defining a Prototype for a Stored Procedure
	Executing the Stored Procedure
	Working with Result Sets
	Working with Return Values
	Working with Output Parameters
	Informix and Sybase Exceptions


	17. Configuring Your Database
	Checking Your Database Configuration
	Supported Database Clients and ODBC Drivers
	DB2
	DB2 Remote
	DB2 Local

	Informix
	Informix Remote
	Informix Local

	ODBC
	ODBC Data Source Names (NT only)
	OpenLink ODBC Driver (Solaris only)
	Visigenic ODBC Driver (Unix only)

	Oracle
	Oracle Remote
	Oracle Local

	Sybase
	Sybase Remote
	Sybase Local
	Sybase (Unix only)


	18. Data Type Conversion
	Working with Dates and Databases
	Data-Type Conversion by Database

	19. Error Handling for LiveWire
	Return Values
	Number
	Object
	Boolean
	String
	Void

	Error Methods
	Status Codes

	20. Videoapp and Oldvideo Sample Applications
	Configuring Your Environment
	Connecting to the Database and Recompiling
	Creating the Database

	Running Videoapp
	Looking at the Source Files
	Application Architecture
	Modifying videoapp



	V. Working with LiveConnect
	21. LiveConnect Overview
	What Is LiveConnect?
	Working with Wrappers
	JavaScript to Java Communication
	The Packages Object
	Working with Java Arrays
	Package and Class References
	Arguments of Type char
	Example of JavaScript Calling Java

	Java to JavaScript Communication
	Using the LiveConnect Classes
	Accessing Server-Side JavaScript

	Data Type Conversions
	JavaScript to Java Conversions
	Java to JavaScript Conversions


	22. Accessing CORBA Services
	About CORBA Services
	Flexi Sample Application
	CORBA Client and Server Processes
	Starting FlexiServer
	Starting Flexi
	Using Flexi
	Looking at the Source Files

	Deployment Alternatives


	Glossary
	Index

