
Process Development Guide
iPlanet™ Integration Server

Version 3.0

August 2001



Copyright (c) 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this 
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed 
at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other 
countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and 
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written 
authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Java, iPlanet and the iPlanet logo are trademarks or registered trademarks of Sun 
Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. 
and other countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

This product includes software developed by Apache Software Foundation (http://www.apache.org/). Copyright (c) 1999 The 
Apache Software Foundation. All rights reserved. 

Federal Acquisitions: Commercial Software – Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND 
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE 
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE 
LEGALLY INVALID.

Copyright (c) 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans 
ce document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets 
américains énumérés à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en 
attente dans les Etats - Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la 
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque 
moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et 
licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Java, iPlanet et le logo iPlanet sont des marques de fabrique ou des marques déposées de Sun 
Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC 
International, Inc. aux Etats-Unis et dans d'autres pays. Les produits protant les marques SPARC sont basés sur une architecture 
développée par Sun Microsystems, Inc.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

Ce produit inclut des logiciels développés par Apache Software Foundation (http://www.apache.org/). Copyright (c) 1999 The 
Apache Software Foundation. Tous droits réservés. 

Acquisitions Fédérales: progiciel – Les organisations gouvernementales sont sujettes aux conditions et termes standards d'utilisation.

LA DOCUMENTATION EST FOURNIE “EN L'ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES 
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y 
COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE 
UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFAÇON.



3

Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

List of Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Product Name Change  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
Audience for This Guide  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
Organization of This Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
Text Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

Syntax Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
Other Documentation Resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

iPlanet Integration Server Documentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
Online Help  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
Documentation Roadmap  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

iIS Example Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24
Viewing and Searching PDF Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

Chapter 1  Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Enterprise Process Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

The iIS Solution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28
iIS Application Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

Traditional Monolithic Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
Process Controller Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

iIS System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34
System Implementation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37

Creating and Using Process-Based Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38
The Project Team . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38
Design, Develop, Execute, and Manage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39



4 iPlanet Integration Server • Process Development Guide • August 2001

Application and Process Logic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
Process Logic Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42
Process Logic Concepts and Design Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42

Routing Between Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45
Who Performs Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47

User Profile Design Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48
Application Dictionary Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50

Work Definition of an Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51
Activity Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53

Design Element Dependencies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54
Modifying Process Logic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56

Modifying an Assignment Rule Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57
Modifying a User Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57
Modifying an Application Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58

Summary of Process Design Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58
Working with the Process Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60

Engine Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61
About Registration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61

What Does Registration Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62
Registration Sequence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63
Engine Registration Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63

Chapter 2  Getting Started: the Process Development Workshops . . . . . . . . . . . . . . . . . . . .  65
Introduction to the Process Development Workshops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65

Workshop Road Map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69
Workshop Products: Plans, Projects, Library Distributions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70

Entering and Leaving Workshops  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72
Before Using iIS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72
Starting the Process Development Environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72
The Repository Workshop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75

Starting the Remaining Process Development Workshops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76
Leaving the Process Development Workshops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76

Process Development Workshops Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77
Cut, Copy, and Paste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78
Undoing Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79
Online Help  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79
Printing Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79

Creating a Title Page  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82



5

Chapter 3  The Repository Workshop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Using the Repository Workshop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86

Creating and Opening Workspaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86
Updating a Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87
Creating and Opening iIS Plans  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

Creating New Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87
Opening an Existing Plan  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

Saving Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88
Checking out and Branching Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88

Checking out a Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89
Branching a Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89
Undoing Changes to a Plan  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90

Importing and Exporting Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90
Compiling Plans  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91

Compile Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92

Chapter 4  Defining a User Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
About User Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93

Extended vs. Standard User Profile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94
Extended User Profile as Supplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95

Multiple User Profiles: Rolling Upgrades  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95
Working with a User Profile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96

Opening the User Profile Workshop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96
Creating and Editing a User Profile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98

Specifying User Profile Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99
Specifying User Profile Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100
Specifying User Profile Object Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101
Overriding Default User Profile Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102

Saving and Compiling User Profiles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102
Saving Changes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102
Compiling a User Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102

Making and Registering User Profile Library Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103
Including a User Profile as a Supplier Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104

Creating New Versions of a User Profile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105
UserProfile Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106

Method Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106
Using UserProfile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108



6 iPlanet Integration Server • Process Development Guide • August 2001

UserProfile Class (continued)
Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108

CompareRoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108
GetOtherInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109
GetRoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110
GetUserName  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110
GetSessionType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110
IsEqualRoles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111
IsEqualUser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111
IsIntersectRoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112
IsSubsetRoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112
SetRoles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112
SetOtherInfo  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113
SetUserName  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113

Chapter 5  Defining Assignment Rule Dictionaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115
About Assignment Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115

Adding Complexity to an Assignment Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117
Assignment Rules and Activities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118
Assignment Rules During Process Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119

Multiple versus Single Instance Assignment Rules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119
Process Instance Creation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119
Offered Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120
Queued Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120
Performance Issues with Assignment Rules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121

Working with Assignment Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121
Opening the Workshop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121
Creating and Editing an Assignment Rule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123

Specifying Assignment Rule Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124
Specifying Roles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125
Specifying Object Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127

Defining an Evaluate Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127
Using the Method Definition Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127
Specifying Process Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128
Understanding the Evaluate Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  130
Using the Evaluate Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132
Evaluate Method Example: Checking Process Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133
Evaluate Method Example: Linked Activity (linkedUser) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134
Evaluate Method Example: Linked Activity (otherInfo)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134

Saving and Compiling an Assignment Rule Dictionary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135
Saving Changes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135
Compiling an Assignment Rule Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  136

Making and Registering an Assignment Rule Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  136



7

Creating New Versions of an Assignment Rule Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137
How to Modify an Assignment Rule Dictionary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  139

Modifying an Existing Assignment Rule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  139
Adding a New Assignment Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140
Deleting an Existing Assignment Rule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142

Registering a New Version of an Assignment Rule Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142
Offered Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142
Queued Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143

Chapter 6  Defining Application Dictionaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
About Application Dictionaries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145
Working with Application Dictionaries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147

Opening the Application Dictionary Workshop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147
Creating and Editing an Application Dictionary Item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  149

Specifying Application Dictionary Item Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  150
Specifying a List of Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  150
Specifying an Activity Description and Application Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153
Specifying Service Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  154
Saving and Using an Application Dictionary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  156

Creating New Versions of an Application Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157
How to Modify an Application Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157

Modifying an Existing Application Dictionary Item  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157
Adding a New Application Dictionary Item  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  158
Deleting an Existing Application Dictionary Item  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  158

Chapter 7  Creating Process Definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
About Process Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159

Activities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162
Timer Controls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163
Routers   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163
Activity Links  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163
Process Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163
Suppliers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  164

About Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  164
Activity States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  164
Activity Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165
Activity Links  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167
Offered and Queued Activities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167
Subprocess Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169
Automatic Activities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  170
Junction Activities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  171



8 iPlanet Integration Server • Process Development Guide • August 2001

About Activities (continued)
First Activity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  172
Last Activity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173

About Timers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174
Timer Controls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  175
Types of Timers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  176

About Routers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178
Abort Router Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179

Creating a Process Definition Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179
Reference Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  181

Working with Process Definition Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  182
Working with Process Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184

Opening the Process Definition Workshop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184
Workshop Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185

Adding Objects to the Layout Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  186
Menu Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187
Undoing Work  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  188
Working with Property Inspectors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  188

Adding Supplier Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189
Working with Process Definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  192

Specifying Process Definition Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  192
Specifying Assignment Rules for Process Creation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  194
Defining Process Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  194
Process Attributes List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  196

Working with Offered Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  197
Setting the “Based on” Property  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  199
Setting the Session Suspend Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  199
Setting an Activity Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  199
Associating an Application Dictionary Item  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200
Adding Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200
Associating Assignment Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  201
Defining a Trigger Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  202
Defining a Ready Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  205
Defining an OnActive Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  206
Defining an OnComplete Method   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  207
Defining an OnAbort Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  210

Working with Queued Activities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  212
Setting the “Based on” Property  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  214
Setting the Session Suspend Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  214
Setting Queue Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  214



9

Working with Subprocess Activities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215
Specifying the Subprocess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217
Setting the Subprocess Activity Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218
Specifying Input and Output Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218

Working with Automatic Activities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220
Working with Timers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222

Working with an Elapsed Timer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222
Working with a Deadline Timer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  228

Working with Timer Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  230
Working with Routers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231

Specifying Router Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  233
Defining Router Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  233

Saving and Compiling Process Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  235
Saving Changes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  235
Compiling a Process Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  236

Making and Registering Process Definition Library Distributions  . . . . . . . . . . . . . . . . . . . . . . . . .  236
Registering a New Version of a Process Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  237

Chapter 8  Defining Validations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
About Validations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  239

Validation Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  240
Working with a Validation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  241

Opening the Validation Workshop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  241
Creating and Editing a Validation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  242

Specifying Validation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  244
Specifying Validation Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  244
Specifying Validation Object Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  246

Writing a ValidateUser Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  246
Understanding the ValidateUser Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  247

ValidateUser Example: Internal Validation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  249
ValidateUser Example: External Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250

Saving and Compiling a Validation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250
Saving Changes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250
Compiling a Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  251

Making and Registering a Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  251
Creating New Versions of a Validation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252
Validation Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  253

Method Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  253
Using the Validation Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  254



10 iPlanet Integration Server • Process Development Guide • August 2001

Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  254
Cleanup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  254
Initialize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255
SessionClose  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255
SessionOpen  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  256
ValidateUser  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  257

Chapter 9  Writing iIS 
Process Definition Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  259
Writing Code in Process Definition Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  259

Basic Language Syntax for Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  261
Method Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  262
The return Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  263

Accessing and Using Process Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  265
Specifying an Attribute Access List  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  265

Specifying Lock Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  268
Working with Process Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  269

Accessing Process Attributes by Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  269
AttribAccessor Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  270
Process Attribute Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  270

Interacting with Activities from an Activity Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  272
GetManager Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  273
GetPreviousState Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  274
AbortActivity Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  275

activityName parameter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  275
expectedState parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  276

Writing Code that Accesses iPlanet UDS Service Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  276
Implementing Access to Service Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  278

Explicitly Registering a Service Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  278
Referencing an Explicitly Registered Service Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  281

Implementation and Access Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  284
Replicated Service Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  284
Saving a Handle to a Service Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  285

WFObjectWrapper Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  287
RegisterWrapperObj  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  287
FindObject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  287

An Introduction to The TOOL Language  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  288
TOOL Language Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  288
TOOL Statements and Comments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  289

Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  289
Statement Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  289
Comments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  290



11

Names  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  291
Restrictions on Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  291

Scope  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  291
Simple Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  292

String Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  293
Boolean Data Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  295
Numeric Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  299
Numeric Constants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  301
Numeric Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  302

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  305
Declaring a Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  305
Assigning a Value to a Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  307

Named Constants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  307
Declaring a Local Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  307
Referencing a Named Constant  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  308
Using Named Constants in Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  308

Fixed Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  309
TOOL Statements for Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  311

case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  311
Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  311
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  311
Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  312

constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  313
Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  313
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  313
Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  313

for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  313
Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  313
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  314
Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  314

if  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  315
Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  315
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  315
Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  315
Boolean Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  316
Statement Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  316

return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  317
while  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  317

Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  317
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  317
Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  317
Boolean Expression  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  318
Statement Block  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  318



12 iPlanet Integration Server • Process Development Guide • August 2001

TOOL and SQL Reserved Words  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  319
TOOL Reserved Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  319
SQL Reserved Words  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  320

Appendix A  iIS Process Management Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  321
Installing iIS Example Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  322

Configuring and Starting an Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  322
Importing, Distributing, and Registering Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  324

Using Alternate Engines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  324
Overview of iIS Process Management Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  325

iIS Process Management Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  325
Organization Database Access  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  326

Application Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  326
Expense Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  328
Advanced Expense Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  334

Resource Manager  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  336
Organization Database  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  336
Environment Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  336
Import the Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  337
Import Organization Database Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  337
Expense Report Data Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  338

JExpense  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  339
JExpenseNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  344
JExpenseSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  347
JExpenseNB  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  353
C++ ExpenseReporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  359
ActiveX Expense Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  364
OrganizationDatabase  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  367

Employee Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  368
Department Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  368
Roles Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  369
EmployeeRoles Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  369
Control Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  369
OrganizationDatabase Application Details  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  370

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  375



13

List of Figures

Figure 1-1  Traditional Process Automation Application Architecture: 
Process Logic Throughout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

Figure 1-2  iIS Application Architecture: Process Logic Localized in Engine  . . . . . . . . . . . . . . . . .  33

Figure 1-3  iIS System Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

Figure 1-4  Business Process Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

Figure 1-5  Activity States for Process Logic Execution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44

Figure 1-6  Process Attributes for Specifying Routing Logic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46

Figure 1-7  Design Elements for Specifying Assignment Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48

Figure 1-8  User Profile and Validation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49

Figure 1-9  Application Dictionary Design Element Represents 
Work of Client Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53

Figure 1-10  Design Element Dependencies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55

Figure 2-1  Relationships Between Process Development Workshops (and Engine) . . . . . . . . . . .  70

Figure 2-2  Process Definition Workshop Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71

Figure 2-3  Repository Workshop Toolbar Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76

Figure 2-4  Sample Workshop User Interface Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77

Figure 3-1  iIS Plans in the Repository Workshop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88

Figure 4-1  Opening a User Profile in the Repository Workshop  . . . . . . . . . . . . . . . . . . . . . . . . . . .  97

Figure 5-1  Assignment Rules in an Expense Report Reimbursement Process  . . . . . . . . . . . . . . .  117

Figure 5-2  Opening an Assignment Rule Dictionary in the Repository Workshop . . . . . . . . . . .  122

Figure 5-3  Evaluate Method Definition Dialog  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128

Figure 6-1  Opening an Application Dictionary in the Repository Workshop  . . . . . . . . . . . . . . .  147

Figure 7-1  Elements of a Process Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161

Figure 7-2  Activity States and Associated Methods for Offered and Queued Activities  . . . . . .  168

Figure 7-3  Offered and Queued Activity Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169

Figure 7-4  Subprocess Activity Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  170

Figure 7-5  Automatic Activity Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  171



14 iPlanet Integration Server • Process Development Guide • August 2001

Figure 7-6  Use of a Junction Activity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  172

Figure 7-7  First Activity Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173

Figure 7-8  Last Activity Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174

Figure 7-9  An Elapsed Timer in a Expense Report Reimbursement Process Definition . . . . . . .  175

Figure 7-10  OnExpiration Method of a Timer and Router Methods of its Timers . . . . . . . . . . . . .  175

Figure 7-11  Timer Controls and Activity States  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  176

Figure 7-12  Opening a Process Definition in the Repository Workshop . . . . . . . . . . . . . . . . . . . . .  184

Figure 7-13  Process Definition Workshop   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  186

Figure 7-14  Process Definition Add Assignment Rules Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  194

Figure 7-15  Offered Activity Assignment Rules Tab Page  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  201

Figure 7-16  Offered Activity OnAbort tab page  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  210

Figure 7-17  Subprocess Activity Property Inspector  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215

Figure 8-1  Opening a Validation in the Repository Workshop . . . . . . . . . . . . . . . . . . . . . . . . . . . .  241

Figure 8-2  Validate User Method Panel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  247

Figure 9-1  Editing a Method on the Trigger/Ready Tab Page  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  261

Figure 9-2  Trigger/Ready Tab Page  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  267

Figure 9-3  Select Process Attributes Dialog  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  267

Figure 9-4  Scheme for Registering Service Object with Name Service  . . . . . . . . . . . . . . . . . . . . .  279

Figure 9-5  Scheme for Accessing Explicitly Registered Service Object  . . . . . . . . . . . . . . . . . . . . .  282

Figure A-1  Valid Users in Expense Reporting System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  330



15

List of Procedures

To copy the documentation to a client or server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

To view and search the documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

To use the iIS development system  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40

Registration consists of two steps, both transparent to the user  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63

To print a report  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80

To add and define a title page to a report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82

To open an existing iIS plan in its associated workshop, use any of the following methods . . . . . . .  87

To check out an iIS plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89

To branch a process development plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90

To revert a plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90

To include the missing library in your workspace  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92

To import the missing library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92

To open the User Profile Workshop to create a new user profile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97

To open the User Profile Workshop for an existing user profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97

To make the user profile a supplier library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104

To modify a user profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105

To open the Assignment Rule Workshop to create a new plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122

To open the Assignment Rule Workshop for an existing plan  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122

To specify roles for an assignment rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126

To delete roles from an assignment rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126

To use the Evaluate Method Definition Dialog  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127

To modify an assignment rule that does not require changes in the user 
profile or process attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  139

To modify an assignment rule that requires a change in process attributes  . . . . . . . . . . . . . . . . . . . .  139

To modify an assignment rule that requires an extended user profile or a 
change in an extended user profile (see Chapter 7, “Creating Process Definitions”)  . . . . . . . .  140



16 iPlanet Integration Server • Process Development Guide • August 2001

To add a new assignment rule that does not require a modification 
in the user profile or process attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140

To add a new assignment rule that requires a change in process attributes . . . . . . . . . . . . . . . . . . . .  141

To add a new assignment rule that requires an extended user profile 
or a change in an extended user profile (see Chapter 7, “Creating Process Definitions”) . . . . .  141

To delete an assignment rule that is not used by any process definitions  . . . . . . . . . . . . . . . . . . . . . .  142

To delete an assignment rule that is used by process definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142

To open the Application Dictionary Workshop to create a new plan . . . . . . . . . . . . . . . . . . . . . . . . . .  148

To open the Application Dictionary Workshop for an existing plan  . . . . . . . . . . . . . . . . . . . . . . . . . .  148

If the modification does not require a change in process attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . .  157

If the modification requires a change in process attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157

If the new application dictionary item does not require a change in process attributes  . . . . . . . . . .  158

If the new application dictionary item requires a change in process attributes  . . . . . . . . . . . . . . . . .  158

If the application dictionary item is not used by any process definitions  . . . . . . . . . . . . . . . . . . . . . .  158

If the application dictionary item is used by process definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  158

To create a process definition library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  182

To supply a process definition library to another process definition . . . . . . . . . . . . . . . . . . . . . . . . . .  182

To add an activity or timer reference to a process definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  183

To convert a reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  183

To change or remove references for an activity or timer using the Based-on property . . . . . . . . . . .  183

To open the Process Definition Workshop and create a new plan  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185

To open the Process Definition Workshop for an existing plan  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185

To include supplier plans  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191

To add process attributes to the Input or Output attribute list  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  219

To delete an attribute from the list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220

To open the Validation Workshop and create a new plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  242

To open the Validation Workshop for an existing plan  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  242

To write a ValidateUser method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  246

To override an activity’s default Trigger method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  260

To add process attributes to the attribute access list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  267

To delete an attribute from the list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  268

To specify a lock type for an attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  268

To explicitly register a service object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  280

To access an explicitly registered service object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  283

To configure an iIS process engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  322

To install the ExpenseReporting application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  329

To run the Expense Reporting application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  331



List of Procedures 17

To define a resource manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  336

To import the Advanced Expense Report example into a workspace  . . . . . . . . . . . . . . . . . . . . . . . . .  337

To load the Organization Database data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  337

To run the AdvancedExpenseReporting application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  339

To install the JExpense application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  340

To start the IIOP server for the JExpense application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  341

To run the JExpense client application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  342

To view the engine partition log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  343

To install the JExpenseNS application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  345

To start a naming service and the IIOP server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  346

To run the JExpenseNS application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  347

To install the JExpenseSO application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  349

To start a naming service and the IIOP server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  352

To run the JExpenseSO application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  352

To install the JExpenseNB application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  355

To start a naming service and the IIOP server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  358

To run the JExpenseNB application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  359

To install the C++ ExpenseReporting application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  360

To run the C++ ExpenseReporting application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  362

To install the ActiveX Expense Reporting application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  365

To run the ActiveX Expense Reporting application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  366

To run the OrganizationDatabase application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  370



18 iPlanet Integration Server • Process Development Guide • August 2001



19

Preface

The iIS Process Development Guide starts with a general introduction to iPlanet 
Integration Server (iIS). iIS allows you to integrate enterprise applications within a 
single system, and also allows you to create and manage business processes within 
the system. iIS provides a process engine and associated interactive tools for 
designing, automating, and managing the flow of business processes (workflow) in 
an iIS system.

This manual provides information on how to visually design business process 
definitions with the process development workshops. It also provides some 
overview information on iIS system management and client programming. For 
information on those parts of the design process, refer to the iIS Process System 
Guide and the iIS Process Client Programming Guide.

This preface contains the following sections:

• “Product Name Change” on page 19

• “Audience for This Guide” on page 20

• “Organization of This Guide” on page 20

• “Text Conventions” on page 21

• “Other Documentation Resources” on page 23

• “iIS Example Programs” on page 24

• “Viewing and Searching PDF Files” on page 25

Product Name Change
Forte Fusion has been renamed the iPlanet Integration Server. You will see full 
references to the new name, as well as the abbreviation iIS.



Audience for This Guide

20 iPlanet Integration Server • Process Development Guide • August 2001

Audience for This Guide
The first chapter of this manual is intended for anyone using iIS. The rest of the 
manual concentrates on the process development workshops. It is intended for 
application system designers (who design the flow of business processes in iIS 
applications) and process developers (who create process definitions).

If you are new to iIS or want to familarize yourself with the components of iIS and 
how they interact in an iIS system, refer to the iIS Conceptual Overview.

Organization of This Guide
The following table briefly describes the contents of each chapter:

Chapter Description

Chapter 1, “Fundamentals” Begins with general iIS application concepts, explains 
the iIS application architecture, describes an iIS system 
and how to use it, and discusses a number of 
application design topics. 

Chapter 2, “Getting Started: 
the Process Development 
Workshops”

Describes how to start iIS and how to exit the program, 
and provides an overview of the workshops.

Chapter 3, “The Repository 
Workshop”

Describes how to use the iIS-specific features of the 
Repository Workshop.

Chapter 4, “Defining a User 
Profile”

Describes user profiles and how to use the User Profile 
Workshop to create, modify, and distribute them.

Chapter 5, “Defining 
Assignment Rule Dictionaries”

Describes assignment rule dictionaries and how to use 
the Assignment Rule Workshop to create, modify, and 
distribute them.

Chapter 6, “Defining 
Application Dictionaries”

Describes application dictionaries and how to use the 
Application Dictionary Workshop to create and modify 
them.

Chapter 7, “Creating Process 
Definitions”

Describes process definitions, gives a detailed 
description of the components of a process definition, 
and explains how to use the Process Definition 
Workshop to create, modify, and distribute process 
definitions.



Text Conventions

Preface 21

Text Conventions
This section provides information about the conventions used in this document.

Chapter 8, “Defining 
Validations”

Describes session and user validations and how to use 
the Validation Workshop to create, modify, and 
distribute them.

Chapter 9, “Writing iIS Process 
Definition Methods”

Provides information that is useful in writing methods 
in any of the process development workshops.

Appendix A, “iIS Process 
Management Examples”

Describes the example applications shipped with iIS, 
and how to install and use them.

Format Description

italics Italicized text is used to designate a document title, for 
emphasis, or for a word or phrase being introduced.

monospace Monospace text represents example code, commands that you 
enter on the command line, directory, file, or path names, 
error message text, class names, method names (including all 
elements in the signature), package names, reserved words, 
and URLs.

ALL CAPS Text in all capitals represents environment variables 
(FORTE_ROOT) or acronyms (iIS, JSP, iMQ).

Uppercase text can also represent a constant. Type uppercase 
text exactly as shown.

Key+Key Simultaneous keystrokes are joined with a plus sign: Ctrl+A 
means press both keys simultaneously.

Key-Key Consecutive keystrokes are joined with a hyphen: Esc-S 
means press the Esc key, release it, then press the S key.

Chapter Description



Text Conventions

22 iPlanet Integration Server • Process Development Guide • August 2001

Syntax Statements
Syntax statements that describe usage of TOOL methods and script commands use 
the following conventions:

Format Description

parentheses ( ) Parentheses enclose a parameter list.

comma , Commas separate items in a parameter list. 

vertical bars | Vertical bars indicate a mutually exclusive choice between items. See 
braces and brackets, below.

brackets[] Square brackets to indicate optional values in a syntax statement.

braces { } Braces indicate a required clause. When a list of items separated by 
vertical bars is enclosed in braces, you must enter one of the items from 
the list. Do not enter the braces or vertical bars.

ellipsis … The item preceding an ellipsis may be repeated one or more times. 
When a clause in braces is followed by an ellipsis, you can use the clause 
one or more times. When a clause in brackets is followed by an ellipsis, 
you can use the clause zero or more times. 



Other Documentation Resources

Preface 23

Other Documentation Resources
In addition to this guide, there are additional documentation resources, which are 
listed in the following sections. The documentation for all iIS products can be 
found on the iIS CD. Be sure to read “Viewing and Searching PDF Files” on page 25 
to learn how to view and search the documentation on the iIS CD.

iIS documentation can also be found online at 
http://docs.iplanet.com/docs/manuals/iis.html. 

The titles of the iIS documentation are listed in the following section.

iPlanet Integration Server Documentation
iIS Adapter Development Guide

iIS Backbone Integration Guide

iIS Backbone System Guide

iIS Conceptual Overview

iIS Installation Guide

iIS Process Client Programming Guide

iIS Process Development Guide

iIS Process System Guide

Online Help
When you are using an iIS development application, press the F1 key or use the 
Help menu to display online help. The help files are also available at the following 
location in your iIS distribution: FORTE_ROOT/userapp/forte/cln/*.hlp.

When you are using a script utility, such as FNscript or Cscript, type help from the 
script shell for a description of all commands, or help <command> for help on a 
specific command.



iIS Example Programs

24 iPlanet Integration Server • Process Development Guide • August 2001

Documentation Roadmap
A roadmap to the iIS documentation can be found in the iIS Conceptual Overview 
manual.

iIS Example Programs
iIS example programs are shipped with the iIS product and installed in two 
locations, one for process development (using the process engine) and one for 
application integration (using the iIS backbone).

Process Development Examples Process development examples are installed at 
the following location:

FORTE_ROOT/install/examples/conductr

The PDF file, c_examp.pdf, describes how to install and run the examples in this 
directory. The Appendix to the iIS Process Development Guide also describes how to 
install and run the examples.

Application Integration Examples Process integration examples are installed at 
the following location:

FORTE_ROOT/install/examples/fusion

Each example has its own sub-directory, which contains a README file that 
explains how to install and run the example.



Viewing and Searching PDF Files

Preface 25

Viewing and Searching PDF Files
You can view and search iIS documentation PDF files directly from the 
documentation CD-ROM, store them locally on your computer, or store them on a 
server for multiuser network access.

➤ To copy the documentation to a client or server

1. Copy the doc directory and its contents from the CD-ROM to the client or 
server hard disk.

You can specify any convenient location for the doc directory; the location is 
not dependent on the iIS distribution. You may want to consolidate your iIS 
documentation with the documentation for your iPlanet UDS distribution.

2. Set up a directory structure that keeps the iisdoc.pdf and the iis directory in 
the same relative location.

The directory structure must be preserved to use the Acrobat search feature.

➤ To view and search the documentation

1. Open the file iisdoc.pdf, located in the doc directory.

2. Click the Search button at the bottom of the page or select Edit > Search > 
Query.

NOTE You need Acrobat Reader 4.0+ to view and print the files. Acrobat 
Reader with Search is recommended and is available as a free 
download from http://www.adobe.com. If you do not use Acrobat 
Reader with Search, you can only view and print files; you cannot 
search across the collection of files.

NOTE To uninstall the documentation, delete the doc directory.



Viewing and Searching PDF Files

26 iPlanet Integration Server • Process Development Guide • August 2001

3. Enter the word or text string you are looking for in the Find Results Containing 
Text field of the Adobe Acrobat Search dialog box, and click Search.

A Search Results window displays the documents that contain the desired text. 
If more than one document from the collection contains the desired text, they 
are ranked for relevancy.

4. Click the document title with the highest relevance (usually the first one in the 
list or with a solid-filled icon) to display the document.

All occurrences of the word or phrase on a page are highlighted. 

5. Click the buttons on the Acrobat Reader toolbar or use shortcut keys to 
navigate through the search results, as shown in the following table:

To return to the iisdoc.pdf file, click the Homepage bookmark at the top of 
the bookmarks list.

6. To revisit the query results, click the Results button at the bottom of the 
iisdoc.pdf home page or select Edit > Search > Results.

NOTE For details on how to expand or limit a search query using 
wild-card characters and operators, see the Adobe Acrobat 
Help.

Toolbar Button Keyboard Command

Next Highlight Ctrl+]

Previous Highlight Ctrl+[

Next Document Ctrl+Shift+]



27

Chapter 1

Fundamentals

This chapter explains some of the key concepts involved in designing, automating, 
and managing the flow of business processes in an iIS enterprise application. 

The chapter begins with general process management concepts, explains the iIS 
system architecture, describes how to use the process engine to manage business 
processes, and discusses a number of design topics.

The chapter covers the following topics:

• introduction to enterprise process management

• system architecture

• system components

• how to automate business processes

• application design

• working with a process engine

Enterprise Process Management
In today’s increasingly competitive business environment, companies must 
innovate at an ever-faster pace to retain customers and capture market share. Such 
innovation is largely driven by information systems, which deliver a growing 
percentage of the competitive differentiation perceived by customers. These issues 
are highlighted by the proliferation of B2B (business-to-business) and B2C 
(business-to-customer) electronic commerce, the success of which depends upon a 
flexible, scalable and reliable infrastructure. 



Enterprise Process Management

28 iPlanet Integration Server • Process Development Guide • August 2001

Although it is critical for today’s information systems to evolve in step with the 
business, the systems environments in many companies include multiple, 
disparate packaged implementations and legacy applications. To rapidly deploy 
new functionality, a company’s systems require a flexible communications 
infrastructure and a standard means to translate shared data between applications. 
In addition, there must be a way to ensure the coordination of the activities of the 
multiple systems that participate in a business process. 

Enterprise process management is the end-to-end control and automation of the set 
of procedures and processes that constitute an enterprise’s business. These 
business processes are typically well-defined, multi-step processes, and can extend 
beyond the company firewalls. Enterprise business processes often involve the 
exchange of many kinds of data, transactions with high rates of throughput, 
multiple participating resources that are both human and mechanical, timed 
activities, complex subprocesses, and parallel streams of work. Processes can also 
have long durations. A typical example of a complex, end-to-end business process 
is order fulfillment, in which customers place orders on the Web and the orders are 
sequentially routed to and processed by other applications that perform discrete 
functions to fulfill the order, such as credit verification, inventory management, 
shipping and billing. 

The iIS Solution
The iIS product family provides a comprehensive solution to the need for rapid 
deployment and integration of new functionality across disparate systems with its 
suite of enterprise application integration and process management tools and 
infrastructure. Any new or legacy application or package can be integrated into the 
iIS Backbone, which allows applications to directly exchange XML messages, as 
well as participate in a business process managed by the iIS process engine. The 
process engine, built with iPlanet UDS’s proven technology and supported on 
various platforms, including OS/390, is highly scalable, reliable, and fault-tolerant, 
making it an excellent choice for supporting mission-critical business processes.

Applications that participate in an iIS-managed business process may be 
tightly-coupled or loosely-coupled to the process engine. Tightly-coupled 
applications, called iIS process client applications, can be rapidly developed using 
one of the process client APIs provided with iIS. (For details, see the iIS Process 
Client Programming Guide.) Loosely-coupled applications can be quickly integrated 
using a native or adapter-supplied XML interface. These applications are 
represented on the iIS backbone by application proxies that use XSL stylesheets for 
data transformation. For details on integrating applications using XML and XSLT, 
see the iIS Backbone System Guide, the iIS Backbone Integration Guide, and the iIS 
Adapter Development Guide.



iIS Application Architecture

Chapter 1 Fundamentals 29

Regardless of whether an application is tightly or loosely coupled, when the iIS 
process engine is used to manage a business process, you separately develop and 
maintain the process logic independently of the application logic, making it easy to 
implement dynamic changes in the business process. With loosely-coupled 
applications, there is a further separation of integration logic, in which XSL 
stylesheets specify the actions to be taken and provide the means to transform 
exchanged data.

This manual explains the design concepts and elements involved in creating a 
process definition and how to use the graphical process development workshops 
for this purpose. It also includes relevant information for those designing iIS 
process client applications.

iIS Application Architecture
A business process automation application includes process logic that determines 
both the routing between the various activities in a process and the users who can 
perform the various activities. 

There are two general approaches—two application architectures—for 
incorporating process logic into a process management application: the traditional 
monolithic architecture and the process controller architecture employed in iIS 
applications.

Traditional Monolithic Architecture
Consider the application architecture illustrated in Figure 1-1.



iIS Application Architecture

30 iPlanet Integration Server • Process Development Guide • August 2001

Figure 1-1 Traditional Process Automation Application Architecture: 
Process Logic Throughout

In this application, a number of client applications perform the various activities 
involved in an enterprise business process. These client applications interact with 
several shared application services, some of which access enterprise databases. 
Suppose the normal business process involves the process flow indicated by the 
arrows in the illustration: Activity1 is first performed, and depending on the result, 
either Activity2 or Activity3 or both are performed, followed by Activity4.

In the traditional process automation architecture, Activity1 would need logic that 
determines whether to pass the result of Activity1 to Activity2 or to Activity3 or to 
both. It would make this decision by consulting an internal routing table, which 
specifies the routing based on the value of some selected process data. It might set 
a status variable or place an entry in a queue for users of Activity2 or Activity3. The 
queue might reside on a queue manager service in the application, and the queue 
manager service might post an event to notify any Activity2 or Activity3 
application users of an addition to the corresponding queue.

Application
Service A

Application
Service B

Queue Mgmt
Service

Enterprise
Database A

process
logic

process
status

Activity 4

process
logic

   Activity 2

process
logic

Activity 3

process
logic

Activity 1

process
logic

Enterprise
Database B

Organization
Database



iIS Application Architecture

Chapter 1 Fundamentals 31

In the meantime, Activity1 would write information concerning the status of its 
work to a database and free any locks it had on enterprise data. A user of the next 
activity, say Activity2, would need to log in to the queue manager service, which 
would establish the user’s permission to perform Activity2 (this would normally 
involve validation against organizational data). Once validated, a user would 
either respond to events indicating the arrival of work items on a queue or poll the 
queue manager for the arrival of work items.

Even the acceptance of work could involve significant process logic. For example, 
Activity4 would need to consult status fields in a database and check whether the 
conditions that trigger Activity4 have been met, namely if Activity2 or Activity3 or 
both (depending on the process logic) have been completed. 

In short, in a monolithic architecture, process logic is embedded in application 
logic, and process data is stored in enterprise databases. This application 
architecture is not very well suited to production process automation for the 
following reasons:

• All changes to the business process require a change to the application. Even 
the slightest modification to the business process requires that the entire 
application be changed and tested before it can be deployed. Database schemas 
might also have to change. This greatly increases the overhead for developing 
and maintaining production workflow applications.

• The business has little or no overview of its business processes. Since the 
process logic is embedded within an application, there is no simple mechanism 
for the detailed tracking of process status. Business analysts have no easy way 
to analyze how work is flowing or where process bottlenecks might exist.

Process Controller Architecture
The example application in Figure 1-1 on page 30 would be implemented very 
differently using a process controller application architecture, as shown in 
Figure 1-2 on page 33. 

In this architecture, application and process logic are completely separate. All 
process logic and all process status are isolated in a unique application service—the 
process engine—and its corresponding database. 



iIS Application Architecture

32 iPlanet Integration Server • Process Development Guide • August 2001

The applications that perform the various activities in a business process do not 
include any embedded process logic. Instead, they interact with the engine (either 
directly or through a backbone proxy), which controls and manages the flow of 
business processes, coordinating the work of the different users (human or 
machine) that perform the various activities that make up a process. In addition no 
process status data is stored in enterprise databases.

This architecture—used in iIS enterprise applications—has a number of powerful 
advantages over the traditional monolithic architecture: 

• Business processes can be redefined without impacting the application logic 
that supports the business activity; both the logic for routing between activities 
and the rules for assigning activities to users are handled in the process 
controller engine.

• The engine is programmable. It can perform concurrent execution of any 
number of process definitions, programs containing all the process logic of a 
business process automation application. 

• Process definitions are defined using graphical tools that provide a visual 
representation of the process. Process definitions make use of reusable 
components and are, themselves, reusable.

• The engine takes active control of process execution. It notifies users of 
pending work, assigns work as users log on, notifies users of changes in 
process data, determines when to trigger activities, and so on.

• The engine database facilitates process tracking and analysis. It provides the 
information to determine the status of any individual item of work, to obtain 
historical data on process execution, and to uncover bottlenecks within a 
business process.

The engine supports high-end production systems by providing failover support 
and replicated access to the engine database. In addition, configurations using 
multiple engines provide scalability and system growth. One or more engines can 
support thousands of process executions and can be distributed across different 
computers.



iIS Application Architecture

Chapter 1 Fundamentals 33

Figure 1-2 iIS Application Architecture: Process Logic Localized in Engine

Application
Service A

Application
Service B

Process
Controller
Engine

Enterprise
Database A

process
logic

process
status

Activity 4

   Activity 2

Activity 3

Activity 1

Enterprise
Database B

Organization
Database

Engine
Database

process
status

Process logic no longer
built into applications

Process logic and status
data are separated from
application logic and
data



iIS System Components

34 iPlanet Integration Server • Process Development Guide • August 2001

iIS System Components
The iIS architecture described in the previous section provides a powerful 
superstructure for managing enterprise business processes. This architecture 
contains the set of tools and software components that support the integration, 
development, execution, and management of applications. 

iIS is a flexible, open integration and development environment. It is not restricted 
to specific business process domains, such as document management, financial 
transactions, or human resources management, as are some EAI products. With iIS 
you can produce process management systems for the broad range of business 
processes that exist at most companies.

Some of the components of an iIS process management system have already been 
mentioned in the previous section—the process controller engine, its database, and 
a graphical tool for programming process definitions. This section describes these 
and other components in more detail. Figure 1-3 illustrates the complete set of 
components:



iIS System Components

Chapter 1 Fundamentals 35

Figure 1-3 iIS System Components

XML

Engine
Database

Central
Development

Repository

Application
Services

Organization
Database

Process Engines

Process Logic
Registration

System Management
Tools

Process Development
Workshops

Enterprise
Databases

XML/XSL Workshops
XSL Stylesheet
Registration

 url

XSL

 url

XSL

Backbone Manager

XML

Application
Proxy

Application
Proxy

Application
Proxy

Applications

iIS Backbones

Java, DCOM,
Corba,C++, TOOL

Credit
Check

Shipping

Web Order
Entry

XML



iIS System Components

36 iPlanet Integration Server • Process Development Guide • August 2001

iIS provides the following integration, development and runtime components:

Process engine The system includes one or more business process engines. The 
engine is the heart of the system. It controls and manages the flow of business 
processes, coordinating the work of the applications that let users perform the 
various process activities. The engine does this by executing “programs” called 
process definitions; the engine can be thought of as a programmable, shared 
application service. Process definitions are dynamically registered with the engine, 
allowing them to be loaded and executed without shutting down the engine. In 
addition to executing process definitions, the engine validates user logins, interacts 
with other engines, writes current state and history information to the engine 
database, and makes performance information available to system management 
tools.

Process development workshops The workshops are a set of graphical 
programming tools used for creating process definitions. The workshops store 
information in a central development repository. When development of a process 
definition is complete, it is registered with an engine, which then executes the 
process on behalf of client applications in the system.

XML/XSL workshops These two workshops make it easy to develop, test, debug, 
store and manage the XSL stylesheets used to integrate loosely-coupled 
applications into an iIS backbone. For details, see the iIS Backbone online Help.

iIS process client application interfaces iIS process client applications provide 
one way for users to perform the activities that make up a process. The client 
application can perform this work either directly, or by invoking other application 
services within a distributed application. Process client applications establish 
sessions with the engine, start instances of processes, obtain appropriate activities, 
perform these activities, and notify the engine of completion. The client 
applications are developed with iPlanet UDS or with another development 
environment available at the site. They access the engine through an API supplied 
with the iIS product. iIS supports client application implementations in JavaBeans, 
CORBA/IIOP (Internet Inter-ORB Protocol), ActiveX, TOOL, and C++.

System management tools iIS Console and its command line counterpart, 
Conductor Script (Cscript), are used to manage engines (including registration) 
and to monitor and manage process execution within an engine. For the iIS 
backbone, Fusion Script (FNscript) is used to configure and manage backbones and 
proxies, including the configuring of XSL stylesheets. 

Engine database The engine database provides persistent storage for current 
engine state information. It can also be used to store historical state information for 
tracking process execution over time. (A status report tool that accesses the engine 
database will be developed by most sites.) The engine database system is not 



iIS System Components

Chapter 1 Fundamentals 37

supplied with the product, but must be provided on site; however, the engine 
creates all required database tables at startup time. The iIS process engine can use 
any relational database system supported by iPlanet UDS, such as Oracle and 
Informix.

Central development repository The central development repository supports 
team development of process definitions. The repository provides all the base 
classes needed for the process development workshops. It also supports the 
development of iIS process client applications in TOOL.

Organization database The organization database is not supplied with the 
product—it must be provided on site. (A functional sample database, however, is 
supplied with the product.) The organization database is an important component 
of an iIS-managed system. The engine must validate users against this database, 
which provides the user information required by the engine to assign activities to 
users of client applications. For loosely-coupled applications, the FNscript utility 
provides other means of authenticating sessions.

System Implementation
The components of an iIS development system through a number of software 
modules running on various nodes in your computing environment. Some of the 
components are provided by iIS system software (engine components, process 
development workshops, and system management tools), some must be developed 
on site and require iIS system software (process definitions and process client 
applications), and some must be developed on site using other software products 
(organization database). 

The iIS development system provides a tremendous amount of flexibility and 
power. Just as iPlanet UDS application architecture isolates application logic from 
the underlying technical infrastructure, iIS enterprise application architecture 
isolates application logic from the underlying business process logic. It lets you 
implement the application logic (the user interface components and shared 
application services) of your applications while independently defining the process 
logic with iIS development tools. The application logic and process logic are then 
brought together at runtime by the process engine, which, by executing the process 
logic, controls and manages the execution of the application logic.

The remainder of this chapter focuses on concepts and design elements needed to 
implement process logic. It has a wider scope than the rest of this manual, which 
focuses on how to develop the process logic components. 



Creating and Using Process-Based Applications

38 iPlanet Integration Server • Process Development Guide • August 2001

Creating and Using Process-Based Applications
As described in “iIS System Components” on page 34, an iIS development system 
contains a number of components, some used for development, some used for 
runtime execution, and some used for both. In most cases different individuals 
work with different components of the system. 

This section describes in very general terms how different individuals can use 
various components to design, integrate, develop, execute, and manage an 
application.

The Project Team
The following roles are generally needed on an iIS project, whether performed by 
the same or different individuals:

Role Tasks

Application system 
designer

• Design the overall enterprise application. 

• Coordinate the work of developers and integrators.

Process developer • Create process definitions, following guidelines provided by 
the application system designer.

Application 
integrators

• Integrate packages and legacy applications for use with an 
iIS backbone, including development of XSL stylesheets and 
integration of adapters, if needed. One person may be an iIS 
specialist, and another is familiar with the APIs of the 
applications being integrated. For more information, see the 
iIS Backbone System Guide, the iIS Backbone Integration Guide, 
and the iIS Adapter Development Guide.

Application developer • Create iIS process client applications, if needed, following 
guidelines provided by the application system designer.

System manager • Install the iIS system

• Use system management tools to manage engines, the iIS 
backbone, and process execution.



Creating and Using Process-Based Applications

Chapter 1 Fundamentals 39

Design, Develop, Execute, and Manage
Before using any of the development system components, the application system 
designer must design the overall application. This requires an understanding of the 
work the application must perform and the processes by which that work takes 
place. The development system provides the tools for implementing the process 
logic of the application—the application logic must either exist already or be 
developed using other tools. 

Following the high level design phase, the system manager can install iIS software 
by using the product’s installation program. The system manager decides in 
advance which nodes in the environment host engines, which are used for process 
development, which are used to develop process client applications, which host 
system management tools, and which host the iIS Backbone. For more information, 
see the iIS Installation Guide and the iIS Backbone System Guide.

Following installation, the application system designer normally uses a subset of the 
process development workshops to create important design elements—user profiles, 
assignment rule dictionaries, application dictionaries, and a validation. For a discussion 
of design elements and concepts, see “Application and Process Logic” on page 41.

Process developers can now begin implementing the process logic of the application 
using the iIS Process Definition Workshop, where the process definitions executed 
by the engine are created. For more information on this workshop, see Chapter 7, 
“Creating Process Definitions.”

If applications or packages are being integrated using the iIS Backbone, application 
integrators must specify the integration logic and advise the system manager how to 
configure application proxies.

If new process client applications are being written to perform the activities 
specified in the process definition, application developers can begin developing 
them. Process client applications use an iIS process client API to establish sessions 
with the engine, start instances of a process, obtain appropriate activities, perform 
the activities, and notify the engine of completion. For more information, see the iIS 
Process Client Programming Guide.

To test the development work, you must have a running engine. The system 
manager must configure a test engine and start it. For more information, see the iIS 
Process System Guide. 

Once the engine is started, the application system designer can register design 
elements (the user profile, validation, and assignment rule dictionaries) and process 
developers can register their process definitions with the engine. The system 
manager can also perform registrations using the system management tools.



Creating and Using Process-Based Applications

40 iPlanet Integration Server • Process Development Guide • August 2001

To test newly developed or integrated applications, application developers or 
application integrators must start the applications (and all supporting application 
services), log on to the test engine, and create instances of the registered process 
definitions. Once a process instance is started, the engine controls the routing and 
assignment of activities in accordance with the process definition, and the 
applications let users perform those activities. The system manager can use system 
management tools to monitor the state of processes being executed by the engine 
and perform process management tasks, if necessary. 

If execution does not proceed as expected, fixes in the process definition or in the 
applications are required. Process developers can modify process definitions and 
register the modified versions, while application developers modify client 
applications, start new process instances, and so on, until testing proves successful. 

At this point, the system manager deploys the client applications (and any required 
shared application services), starts a production engine, registers the completed 
process definitions, and places the required shared application services on line.

To summarize, the following tasks are typically part of an iIS project.

➤ To use the iIS development system

1. Designer creates high level design of the enterprise application.

2. System manager installs the engine and runtime components.

3. Designer creates important design elements (user profile, assignment rule 
dictionaries, application dictionary, and validation).

4. Process developers use design elements to create process definitions.

5. If existing applications or packages are being integrated, application integrators 
develop the XSL stylesheets to integrate them.

6. If new process client applications are being written, application developers create 
them.

7. System manager configures and starts up a test engine. If an iIS backbone is 
being implemented, the application integrator should assist in configuring 
proxies with XSL stylesheets and other information.

NOTE If you are using the iPlanet UDS iIS backbone to integrate legacy 
applications or packages, see the iIS Backbone System Guide and the 
iIS Backbone Integration Guide.



Application and Process Logic

Chapter 1 Fundamentals 41

8. Designer registers a user profile, validation, and assignment rule dictionaries, 
and process developers register process definitions with test engine.

9. Application developers or application integrators start applications and all 
supporting application services, and log on to the test engine.

10. Testing takes place followed by modifications in process definitions and client 
applications.

11. System manager deploys application, starts a production engine, and registers 
process definitions (as well as a user profile, validation, and assignment rule 
dictionaries) with a production engine. 

12. Maintenance cycle begins. 

Application and Process Logic
The flexibility that iIS provides means you must pay careful attention to the overall 
architecture of your application. An application system designer needs to develop 
a “big picture” of the process automation application and formulate guidelines that 
process developers and client application developers follow. 

The designer needs to understand the basics of the business processes being 
automated. Ideally, during the design phase, the application system designer is 
part of the team doing the business process analysis. Participating in the business 
analysis allows the designer to make effective decisions on issues ranging from the 
work capacity of the overall system to the level of graphical user interface (GUI) 
interaction for the end users. 

Business object model For the application logic, the designer ideally starts from 
an object model of the business. The designer needs to determine the business 
objects (data needed by the application and stored in enterprise databases), as well 
as the shared application services required to manage the business objects, apply 
business rules, or perform other services. In some cases, many of the application 
components may already exist, and need to be tied together.

Business process model Process logic flows from a related but different 
model—a business process model. This model, normally created by business process 
analysts, specifies relationships between the many individual work activities in a 
business process. It describes the sequencing, coordination, and routing among 
activities, and specifies who performs different activities. It is a visual model of the 
dynamic flows within a business process. In an iIS application, the business process 
model is implemented as a process definition executed by a process engine.



Application and Process Logic

42 iPlanet Integration Server • Process Development Guide • August 2001

User interface model Activities within a process are often performed by users. If 
you are developing a new interactive process client, its user interface must 
communicate with the process engine as well as with other shared application 
services. Nevertheless, design of the client interface components of an application 
mainly falls within the application logic domain. 

A user interface model specifies the relationships among the different client windows 
used to perform various application tasks. In the case of process client applications, 
this model must also take into account how the client applications interact with the 
process engine. This consideration could affect the packaging or grouping of client 
software components.

Process Logic Domain
While a designer typically deals with both application and process logic, the 
following sections focus on the process logic domain. They present high-level 
concepts and structural elements that the designer must consider in providing a 
framework for application development or integration. This section covers the 
following three design topics:

• process logic concepts and design elements

• user profile design concepts

• client application design concepts

Process Logic Concepts and Design Elements
In an iIS system, process logic is encapsulated in code—a process 
definition—which, when registered with and executed by the process engine, 
implements a business process. A business process model is normally represented 
graphically, as illustrated in Figure 1-4. 



Application and Process Logic

Chapter 1 Fundamentals 43

Figure 1-4 Business Process Model

The basic unit of a process model is the activity. An activity represents a unit of 
work in a process. The process logic involves, principally, answering the following 
questions in the order shown:

1. What is the general sequencing (or routing) of activities in the process?

2. What conditions must be met before an activity can be performed (trigger 
conditions)?

3. Which user or users can perform each activity?

4. What activities should be performed subsequent to the completion of each 
activity?

To execute process logic, the process engine creates an instance of a process 
definition, and, at the appropriate time, creates an instance of each activity defined 
in the process definition. The engine takes each activity instance through a series of 
states. The states are shown in Figure 1-5 on page 44, a magnified view of Activity3 
in Figure 1-4.

Each instance of an activity progresses through the following states:

PENDING Once created, an activity is placed in a PENDING state. In this state a 
Trigger method is executed to determine if all the conditions needed for the activity 
have been met. When its trigger method returns TRUE, a Ready method is evaluated 
to perform any desired processing before placing an activity in a READY state.

Activity1

Activity2

Activity3

Activity5

Activity4
User1 User3

User2

User4

User5

Routers



Application and Process Logic

44 iPlanet Integration Server • Process Development Guide • August 2001

READY In this state assignment rules are evaluated to determine which users are 
permitted to perform the activity. An activity remains in the READY state until a 
user (or possibly the engine) places it in an ACTIVE state.

ACTIVE In this state, the activity is performed, generally by a user (some 
activities can be performed automatically by the engine). 

COMPLETED (or ABORTED) In this state, a set of routers is activated if the 
activity completes successfully (or is aborted). In each activated router, a Router 
method is executed to determine if the conditions needed to route process flow to a 
successive activity have been met.

Some activity types skip one or more of the above states, but in general Figure 1-5 
represents the progression of states through which an activity passes. For a more 
complete discussion of activity states and the methods that apply to them, see 
Chapter 7, “Creating Process Definitions” or the iIS Process System Guide. 

Figure 1-5 Activity States for Process Logic Execution

Activity

Outgoing Routers

Router Methods

PENDING

READY

ACTIVE

ABORTED

Assignment Rule
 Evaluate Methods

OnActive Method

OnComplete
 Method

OnAbort Method

COMPLETED

Ready Method
Trigger MethodIncoming

Routers



Application and Process Logic

Chapter 1 Fundamentals 45

Activities and activity states play a crucial role in process logic. In addition, a 
number of system design elements are needed to specify both the routing between 
activities and who performs activity work. These design elements, created by an 
application system designer, are:

• process attributes

• assignment rule dictionaries

• user profiles

These elements are introduced below, and illustrated in Figure 1-6 on page 46 and 
Figure 1-7 on page 48.

Routing Between Activities
Each activity in a process (except for the first and last activity) is normally preceded 
and succeeded by one or more other activities. In general, routing from one activity 
to another depends on any number of conditions: whether the first activity was 
completed successfully (or within a specified time period) or aborted, whether 
activities are to be performed sequentially or in parallel, and whether routing 
decisions depend upon specific process attribute values. 

A process attribute is a data value associated with each instance of a process. Process 
attributes have many uses, one of the main ones being for routing logic. As an 
application system designer, you specify process attributes needed for routing. 
These attributes might represent the state of a process, a condition set by an 
activity, or a business data value— such as the dollar amount of an invoice—which 
would be used for making routing decisions.

You should specify one process attribute as a process identifier. This attribute 
would be assigned a value as each instance of a process is created. For example, 
you might specify an invoice number, a job number, an order number, a batch ID, 
or another identifier. This primary process attribute would not normally be used for 
routing purposes, but rather for identifying data corresponding to a particular 
process instance. 



Application and Process Logic

46 iPlanet Integration Server • Process Development Guide • August 2001

Figure 1-6 Process Attributes for Specifying Routing Logic

Routers
Most activities in a process (except for the last one) are normally succeeded by one 
or more activities. A router is a pointer from an activity (or a timer) to a successive 
activity. Associated with each router is a method (a router method) that specifies 
the conditions under which process flow will be routed to a successive activity. 
These router methods normally test for certain values of process attributes (for 
example, whether a batch production sample tests at a Ph value greater than 7.0).

Any number of routers can be defined for an activity. One set of routers can be 
activated if the activity reaches a COMPLETED state and another set of routers 
activated if it reaches an ABORTED state. Routers can also be specified for a timer, 
indicating the routing of process flow if the timer expires.

Triggers
Each activity instance in a process is created when one of its incoming routers is 
activated. The activity is placed in a PENDING state until all conditions needed to 
place it in a READY state—that is, to trigger it—are met. Trigger conditions can 
include the completion of one or more predecessor activities, the aborting of an 
activity, or the expiration of a timer. These conditions are indicated by activation of 
the corresponding routers.

Process Definition

Activity

Router Methods

PENDING

READY

ACTIVE

ABORTED

COMPLETED

Trigger Method

Process
Attributes



Application and Process Logic

Chapter 1 Fundamentals 47

A trigger (that is, a trigger method) can also depend upon the values of one or 
more process attributes. For example, a trigger might require that a customer’s 
order has been verified—a completed activity—and that the customer has passed a 
credit check—a boolean process attribute value—before the order can be shipped.

Routers and triggers work together to provide general sequencing of activities in a 
process. When a router method returns TRUE, an instance of the activity the router 
points to is created and placed in a PENDING state. If the activity is already in a 
PENDING state, the trigger method specifies the remaining routers, which must be 
activated before an activity is ready to be performed.

Who Performs Activities
A process developer specifies which users can perform each activity by using one 
or more assignment rules created by an application system designer. An assignment 
rule specifies a user role in the organization or any other factors that might 
determine work responsibilities or access to information. For example, an 
assignment rule might specify that a loan transaction (activity) must be approved 
by a bank officer at a particular location who has sufficient sign-off authority and 
who is not currently on vacation.

Each assignment rule contains an Evaluate method that can define almost any kind 
of rule. Normally the user profile of each client application user is checked against 
the rule. The user profile is a template that you, as a designer, build for specifying 
all the important attributes or characteristics of users of your workflow system. 
(See “User Profile Design Concepts” on page 48.) If a user’s profile matches the 
conditions specified in the Evaluate method of an assignment rule associated with 
an activity, then that user is permitted to perform the activity.

Assignment rules can also specify assignments based on the value of process 
attributes, or can specify, for example, that only the same person—or the manager 
of the person—who performed a previous activity can perform a current activity. 



Application and Process Logic

48 iPlanet Integration Server • Process Development Guide • August 2001

Figure 1-7 Design Elements for Specifying Assignment Logic

As a designer, you build a dictionary of assignment rules that can be applied to 
user-performed activities —the assignment rule dictionary. Process developers can 
then associate any rule or rules in the dictionary with an activity. The Evaluate 
method of each assignment rule is executed by the process engine when an activity 
reaches the READY state. All users whose profiles match the conditions specified 
in the Evaluate method are permitted to perform the activity.

The assignment rule dictionary provides a very flexible approach to specifying who 
can perform activities. Instead of hard-coding an assignment rule for each activity 
in a process definition, one or more assignment rules are referenced by name. 
These references lets you dynamically change the content of assignment rules 
without having to modify the process definitions that use them. For more 
information on assignment rules, see Chapter 5, “Defining Assignment Rule 
Dictionaries.”

User Profile Design Concepts
As described in “Process Logic Concepts and Design Elements” on page 42, the 
user profile is a template that you, as a designer, build for specifying all the 
important user characteristics in your workflow system. You can build an 
enhanced or extended user profile template from a default template provided with 
the iIS product. 

Process Definition

Activity

PENDING

READY

ACTIVE

ABORTED

COMPLETED

Process
Attributes

Associate assignment
rule with activity

Evaluate assignment
rule against
user profiles

Assignment rule
Dictionary

User
Profiles

state handling



Application and Process Logic

Chapter 1 Fundamentals 49

The user profile is used to evaluate assignment rules. It is also used to authenticate 
users when they open a session with a process engine. These two functions are 
closely related; the information about each individual user needed to evaluate 
assignment rules is extracted from (or validated with) an organization database 
when the user opens a session with an engine.

You, as a designer, must create a ValidateUser method that performs the 
authentication and validation operations. You write this method in a validation that 
you create and register with the engine. The ValidateUser method is executed 
whenever a user attempts to open a session from a client application.

The user profile and validation scheme is illustrated in Figure 1-8. 

Figure 1-8 User Profile and Validation Scheme

The user profile template and validation definition are first registered with a 
process engine. When the user of a client application attempts to establish a session 
with an engine, the client application passes the user’s login information to the 
engine, which creates a user profile object and executes the ValidateUser method. 
The ValidateUser method authenticates the user, verifies any user-supplied 
information against the database, and optionally extracts information from the 
database to fully populate the user profile object. The engine thus serves as a 
central security clearinghouse.

Process Engine

Application

Organization
Database

Evaluate
assignment rule

Open a session

Validate User
method

Optionally fill in
user’s profile and retain copy

Register
with engine

Assignment
Rule

User
Profile

Validation



Application and Process Logic

50 iPlanet Integration Server • Process Development Guide • August 2001

When the engine creates a session for the user, it retains a copy of that user’s 
profile. This user profile is used when the engine evaluates an assignment rule to 
decide which sessions are permitted to perform a given activity.

The default user profile template can be used for simple role-based assignment 
rules. If you need assignment rules that are more sophisticated than checking for 
roles, you must extend the user profile template to include additional user profile 
attributes. You must also write a ValidateUser method to extract such information 
from the database, and provide a database (and schema) that includes all the 
information you need.

In short, your assignment rules, user profile, validation, and organization database 
need to be designed together and must be consistent with one another. Your 
assignment rules check for user attributes that are contained in a user profile, and 
your validation provides information to a user profile that is contained in your 
organization database.

Assignment rule dictionaries, consisting of one or more assignment rules, are 
registered with the process engine. If, in the future, you need to make 
modifications to your assignment rules that require changes to your user profile 
(such as adding new user profile attributes), you must modify your user profile 
and validation accordingly, and then register all three (user profile, validation, and 
assignment rule dictionary) with the engine. The engine will dynamically load and 
use the new versions. 

If the new user profile requires changes in the organization database, then the 
database should be changed and updated before registering the new user profile 
and validation.

Application Dictionary Concepts
Within an iIS-managed business process applications can act as service requestors or 
service providers. An application acting as a service requestor establishes a session 
with the process engine and creates a new process instance. A service provider 
application generally supports the following operations, in the order shown:

1. Establish a session with an engine.

2. Maintain a list of activities offered by the engine to the session (a worklist).

3. Select an item in a worklist (“heads-up” approach) or take an item from the top 
of a queue (“heads-down” approach).

4. Invoke the correct application to perform the activity.

5. Inform the engine when work on an item has been completed.



Application and Process Logic

Chapter 1 Fundamentals 51

For applications that perform activities, the application system designer needs to 
provide guidance to application developers and integrators regarding design and 
implementation choices. To this end, an application design element—the application 
dictionary—is used to develop work definitions that can be assigned to each 
activity.

In addition to the information contained in the application dictionary itself, a 
system designer needs to provide application integrators and developers with 
other design and implementation information, most of which is normally 
contained in process definitions:

• where each activity fits in an overall process definition

• the activity type of each activity

• which activities are available to each type of end user

• which process attributes need to be updated for each activity

Work Definition of an Activity 
The work represented by each activity is defined by three properties: 

• an activity description

• an identification string, called an application code, that specifies the window, 
applet, or application that is used to perform the activity

• a set of process attributes needed to perform the activity (and the locks that 
should be applied to the attributes when the activity is being performed)

As a designer, you build a dictionary of work definitions—called an application 
dictionary—that corresponds to the activities in one or more process definitions. 
Each item in the dictionary (consisting of the three properties listed above) 
represents a high level description of the work to be done and the resources needed 
to accomplish it.

NOTE If you are integrating applications using the iIS Backbone, you 
configure the application proxy as a service provider or service 
requestor, to match its application. When the process definition is 
registered and the proxy is properly configured, it can automatically 
perform the appropriate interactions with the engine. For details on 
configuring proxies, see the iIS Backbone System Guide. If you are 
writing a process client application, you use an iIS process client API 
to enable the operations described above; for details, see the iIS 
Process Client Programming Guide.



Application and Process Logic

52 iPlanet Integration Server • Process Development Guide • August 2001

A process developer assigns one item in the dictionary to each activity in a process 
definition, as shown in Figure 1-9. The dictionary items are used by the process 
engine to pass work definition information to the client applications and to lock the 
appropriate process attributes when an activity is being performed. For example, a 
dictionary item would be used by the client application to display a description of 
work in a worklist (activity description), launch the appropriate data entry screen 
to perform the activity (application code), and find the data needed to perform the 
work (process attributes).

The process designer uses the application dictionary items by name, without 
requiring detailed knowledge of their content. Often, the application dictionary 
items are referenced by more than one activity. The application system designer 
can make changes to application dictionary items with only limited impact on the 
process definitions that use them. The application dictionary thus provides 
important reusability and results in simplified maintenance of the application 
system.

The application dictionary is the way an application system designer provides both 
the process developer and client application developer with a consistent definition 
of the work associated with each activity. It is also a mechanism for communication 
between developers. The process developer needs to know which application 
dictionary item to associate with each activity, and the client application developer 
needs to understand the details of each item, such as the meaning of application 
codes, in order to successfully write client applications. 



Application and Process Logic

Chapter 1 Fundamentals 53

Figure 1-9 Application Dictionary Design Element Represents Work of Client 
Applications

Activity Type
The process engine does not impose any particular structure on client applications. 
Some implementation options are:

• Display a worklist allowing the user to select which item to work on, and, in a 
separate window, launch an existing software program to perform a selected 
activity.

• Integrate the worklist and application processing for several activities into a 
single client, thereby allowing the process engine to invoke the next window 
transparently in the application. For example, if a credit check fails (activity A), 
bring up a window alerting the operator and go to a loan approval screen 
(activity B).

• Implement a “heads-down” client in which the user is automatically assigned 
the first item in a queue. An example would be an inbound telephone sales 
application where each incoming call is automatically assigned to the next 
available operator.

application dictionary
information passed to

applications

Process Definition

Activity

PENDING

READY

ACTIVE

ABORTED

COMPLETED

Process
Attributes

Application
Dictionary

Application
Associate application dictionary

item with activity



Application and Process Logic

54 iPlanet Integration Server • Process Development Guide • August 2001

The implementation options available depend on the activity type specified for each 
activity. Two activity types are of particular interest in this regard:

Offered activity Activities that are offered to all end users whose user profiles 
match the assignment rules specified for the activity. Users can normally select 
from amongst all activities offered them by choosing items from a worklist 
displayed by the client application.

Queued activity Activities that the engine places in a queue based on a priority 
established by the process designer. The “heads-down” client application requests 
the activity at the top of the queue and gives it to the user.

Since the activity type determines how a user can interact with the activity, it has a 
big impact on the type of client application that performs the activity. For example, 
if the user is going to be performing queued activities, then the client application 
would be a “heads-down” implementation that would not display a list, but would 
merely select the next activity off the top of a queue.

As a designer, you need to communicate design decisions regarding activity type 
so that the work of process developers and application integrators or developers 
will be coordinated.

There are additional activity types that do not directly impact the client 
application, but are used for more specialized purposes:

Automatic activity Performed by the engine itself, not by users.

Subprocess activity Represents a separate process, and therefore is not directly 
associated with a client application or the work of a single activity.

Junction activity Used to improve the screen layout of activities in designing a 
process definition and to economize the use of router and trigger methods.

Design Element Dependencies
The previous sections describe the roles played by each design element in the 
design of an iIS application system. These elements are used—directly or 
indirectly—by both process developers and client application developers. 

NOTE The queued activity type is not applicable for applications 
participating on an iIS backbone.



Application and Process Logic

Chapter 1 Fundamentals 55

Process developers directly use process attributes, assignment rules, and 
application dictionaries to create process definitions. Process client application 
developers directly use application dictionary items to write client applications, 
and indirectly use the user profile and validation to log in to an engine and open a 
session.

Despite the unique role played by each of these design elements and the flexibility 
and power that derives from this modular design structure, the various design 
elements are not strictly independent of one another: they have a number of 
inter-dependencies. For example, both assignment rule dictionaries and 
validations point to (depend upon), and must be consistent with the user profile. In 
addition, both assignment rules and application dictionary items might depend on 
some number of process attributes. 

Figure 1-10 Design Element Dependencies

Figure 1-10 shows dependencies between the various design elements (as well as 
the dependence of process definitions on process attributes, assignment rules, and 
application dictionary items).

Process Engine

Activity

Process
Attributes

Application
Dictionary

User
Profile Validation

Assignment Rule
Dictionary

Process Definition



Application and Process Logic

56 iPlanet Integration Server • Process Development Guide • August 2001

The designer of an iIS application system puts information about the application 
domain (the work or applications required to perform the activities in business 
processes) into an application dictionary, and information about the user domain 
(the criteria for deciding who performs the various activities in those processes) 
into the user profile. This information, in turn, helps define the assignment rule 
dictionary, which represents general rules that match various user profile roles or 
characteristics with the various application dictionary items. 

Each of these elements should be specified in the preliminary design of your 
application system. Changes are likely, however, as design proceeds. An 
assignment rule, for example, might require a user role or attribute not already 
included in the initial user profile. Or a new application dictionary item may 
require an assignment rule not already included in the assignment rule dictionary. 
Refinements of both application dictionary items and individual assignment rules 
might depend upon the values of certain process attributes.

While Figure 1-10 shows the direct dependencies that must be taken into account 
in the creation of application design elements, all design elements are ultimately 
related to one another in the implementation of process definitions and client 
applications. 

Modifying Process Logic
While the early stages of application system design are likely to be iterative, the 
goal is to create design elements that are relatively stable: so they can be used over 
an extended period of time to create (and modify) a range of process definitions 
and workflow applications.

In general, the process logic domain is likely to be much more dynamic than the 
application logic domain. Process definitions normally undergo significant 
modifications as an enterprise implements new business processes, while business 
functions and shared application services remain relatively unchanged. Process 
logic is also likely to change much more rapidly than organizational structure.

iIS makes it easy to modify process definitions and dynamically register them with 
an engine without changing design elements, such as the user profile, validation, 
application dictionary, and assignment rule dictionaries. If your system is properly 
designed, you should be able to modify process definitions without changing these 
design elements.



Application and Process Logic

Chapter 1 Fundamentals 57

However, there might be times when you need to modify design elements to 
achieve particular changes in process logic. The difficulty of modifying design 
elements depends on two factors:

• how extensive the modifications are 

• whether your production engine can be shut down to move from old design to 
new, or whether it must support both old and new in a smooth transition

This section lays out some general guidelines for making changes in the various 
design elements, based largely on the dependencies illustrated in Figure 1-10 on 
page 55.

Modifying an Assignment Rule Dictionary
Assignment rules are the most likely candidates for change. You may want to add 
new conditions to an existing rule or rules, or to add completely new assignment 
rules. Normally, these modifications are straightforward.

However, if your changes require new process attributes or an extension to the 
user profile, the impact of the change can be far reaching and more difficult to 
achieve. 

For example, if your changes require new process attributes, then all process 
definitions using the new assignment rules have to be modified to include the new 
process attributes and re-registered with your engine. (It is also possible that client 
applications that create new process instances may have to be revised and 
redeployed.)

If your changes require modifying the user profile, then almost all your design 
elements are likely to be affected. The validation, and assignment rule dictionaries, 
which depend upon the user profile, may have to be modified and re-registered 
with your engine. (It is also possible that the login code of all client applications has 
to be modified and the client applications redeployed.)

For more information, see Chapter 5, “Defining Assignment Rule Dictionaries.”

Modifying a User Profile
The most likely reason to modify the user profile is to extend the user profile to 
include user characteristics needed by one or more assignment rules. (The 
information needed to provide the extended user characteristics must be stored in 
the organization database.) Another reason to modify the user profile is to 
accommodate changes to the organizational structure.



Summary of Process Design Elements

58 iPlanet Integration Server • Process Development Guide • August 2001

In any case, a change to the user profile is far reaching and should only be 
undertaken when absolutely necessary. For more information, see Chapter 4, 
“Defining a User Profile.”

Modifying an Application Dictionary
Generally speaking, you modify application dictionaries to add new application 
dictionary items in response to an expansion of the application logic domain—that 
is, to include new application functionality within existing processes or for new 
processes. It is also possible, however, that you would modify dictionary items to 
accommodate changes in process attributes. For more information, see Chapter 6, 
“Defining Application Dictionaries.”

Summary of Process Design Elements
The following table summarizes the main design elements discussed in the 
previous section and provides additional information about each.

Element Description Other Information

Template used to specify characteristics of 
a user. Engine compares assignment rules 
with each user’s profile when deciding 
who can perform an activity. Also used to 
validate user logins.

User profile must be consistent with 
organization database. Validation and 
assignment rules must be consistent with 
user profile.

Created in User Profile Workshop.

User profile must be registered with a 
process engine. In some situations, more 
than one user profile can be concurrently 
registered.

For more information, see Chapter 4, 
“Defining a User Profile.”

A set of one or more assignment rules that 
process developers can associate with 
activities in one or more process 
definitions. 

Assignment rules are used to determine 
who can perform an activity or create a 
process instance. Each assignment rule 
must be consistent with the user profile. 

One or more assignment rules can be 
associated with each user-performed 
activity or process definition.

Created in Assignment Rule Workshop.

Assignment Rule dictionaries must be 
registered with a process engine; any 
number of dictionaries can be concurrently 
registered.

For more information, see Chapter 5, 
“Defining Assignment Rule Dictionaries.”

User Profile

Assignment Rule
Dictionary



Summary of Process Design Elements

Chapter 1 Fundamentals 59

A set of one or more application dictionary 
items that process developers can associate 
with activities in one or more process 
definitions.

Application dictionary items are used to 
specify both the work a service provider 
application must do in performing an 
activity and the resources required to do it.

The process attributes used in a dictionary 
item must be a subset of the process 
attributes defined for the process 
definition in which the dictionary item is 
used.

Created in Application Dictionary 
Workshop.

Application developers and integrators 
must know the meaning of all application 
dictionary items and communicate 
requirements back to the designer.

For more information, see Chapter 6, 
“Defining Application Dictionaries.”

Set of attributes assigned to a process 
definition. Process attributes are used to 
identify an instance of a process and to 
perform process logic, such as in router 
methods, trigger methods, and assignment 
rules.

Created in Process Definition Workshop.

Process attributes are specified for each 
process definition. The process definition 
must be registered with a process engine. 
Process definitions can also be included as 
suppliers to other process definitions.

For more information, see Appendix A, 
“iIS Process Management Examples.”

Used to validate user logins and extract 
user information for user profile from 
organization database.

Validation must be consistent with user 
profile and organization database.

Created in Validation Workshop.

Validation must be registered with a 
process engine; only one validation can be 
concurrently registered.

For more information, see Chapter 8, 
“Defining Validations.”

Element Description Other Information

Application
Dictionary

Process
Attributes

Validation



Working with the Process Engine

60 iPlanet Integration Server • Process Development Guide • August 2001

Working with the Process Engine
The process engine is the heart of an iIS development system, shown in Figure 1-2 
on page 33. The engine controls and manages the flow of business processes from 
beginning to end, coordinating the work of the different client applications that 
perform the various activities that make up each process instance. 

At each stage of a process, the engine evaluates whether an activity is ready to be 
performed and if so, assigns that activity to the appropriate resources. When an 
activity is completed, the engine routes the work to the next activity or set of 
activities. 

The engine knows how to manage the flow of a process because it is programmed 
to control and track that process: the engine executes a process definition, which is 
created in the development environment and then registered with the engine.

Once a process definition has been registered with the engine, a client application 
can open a session with the engine and create an instance of the process. The client 
application provides any data required to start the process instance, and then the 
engine takes over, assigning activities directly to client application sessions or to 
queues where they can be accessed. The client applications perform the work 
required for each activity by using whatever shared application services or desktop 
applications necessary, and then notify the engine that the activity has been 
completed.

The relationship of the engine to client applications, on the one hand, and to the 
process development workshops, on the other, is illustrated in Figure 1-2 on 
page 33. Client applications maintain sessions with a process engine in order to 
initiate a business process or perform activities within it. As process definitions (as 
well as assignment rule dictionaries, user profiles, and validations) are created or 
modified, they can be registered with the engine and become the basis for further 
process execution. 

The engine is thus the centerpiece of a process management system, implementing 
business processes that require many activities to be performed by many users.



Working with the Process Engine

Chapter 1 Fundamentals 61

Engine Functions
A process engine performs a number of different functions, including:

• managing client sessions

The engine opens, suspends, and closes client sessions. When opening a 
session, the engine first validates a user’s login against an organizational 
database.

• executing business processes

The engine creates instances of a process, and manages their execution from 
start to finish. During each process, successions of activities are performed by 
client applications that have opened sessions with the engine. The engine 
manages and tracks these activities to their final completion.

• registering distributions

Process definitions, access rule dictionaries, user profiles, and a validation 
together constitute the process logic components executed by the engine 
during process execution. Registration lets you change these components 
dynamically as business processes and organizational structures change. 

• maintaining an engine history database 

The engine can maintain a history of each process execution, writing all state 
changes to an engine history database. The recorded information can include 
changes of state in activities, process attributes, timers, and so on.

About Registration
Most businesses are not static—they typically create new processes or modify 
existing ones. Their organizational structures may also change, impacting the rules 
by which work gets assigned. To provide the business flexibility required, the 
process engine is able to dynamically load and execute new and revised process 
definitions, assignment rules, and other programmatic information. 

Registration is the procedure by which process logic created in the process 
development workshops is made available to a running engine.



Working with the Process Engine

62 iPlanet Integration Server • Process Development Guide • August 2001

The entities that get registered with a process engine include the following:

• user profile 

• validation 

• assignment rule dictionaries

• process definitions

Registration capability is provided by the process development workshops. It lets 
application system designers and process developers test their work by registering 
it with a test engine. 

Registration capability is also provided by system management tools (iIS Console 
and Conductor Script), letting system managers register process definitions, 
assignment rules, a user profiles, and a validation with production engines in 
production environments. (For more information, see the iIS Process System Guide.)

What Does Registration Do?
The entity actually registered when you register a process definition, assignment 
rule, user profile, or validation is a library distribution.

A library (often referred to as a shared library) is code that can be loaded into 
memory at runtime, and then referenced by any number of executing programs. A 
library distribution is the set of distribution files used to install one or more 
libraries on any particular node. To be loaded, a library must be registered with the 
program that needs to reference the code it contains.

Library distributions are installed on nodes hosting process engines and registered 
with the engines. The engines can then dynamically load and execute the libraries.

Your library distributions are generated automatically by designers or developers 
using commands in the process development workshops. For a description of the 
workshops, see Chapter 2, “Getting Started: the Process Development 
Workshops.” Code in the central development repository is extracted and made 
into library distribution files, which are then placed in a standard location on the 
central server node.

The same commands can also be used to register library distributions with a test 
engine. Registration of at least one user profile, validation, and assignment rule 
dictionary is needed to test a process definition, and to test any corresponding 
client applications.



Working with the Process Engine

Chapter 1 Fundamentals 63

➤ Registration consists of two steps, both transparent to the user

1. installation of library distribution files on the node hosting the target engine

2. placing an entry in the registration table of the target engine’s database

Registration Sequence
The distributions you register with an engine can be registered in any order with 
one exception: user profiles should be registered before the validations or 
assignment rule dictionaries that depend upon them. (See “Extended vs. Standard 
User Profile” on page 94, for the conditions under which this exception holds.)

Since design elements are created before the process definitions that use them, it is 
normal for a user profile, validation, and assignment rule dictionary to be 
registered in that order before process definitions are registered. However, in the 
course of development, assignment rules may change, or new ones may be 
developed, and these can generally be registered at any time.

Engine Registration Manager
Each engine has a registration manager that tracks library distributions registered 
with the engine. The manager ensures that all engine references to a library are 
references to the most current registered version of the library. 

For example, if you register a new version of a process definition with an engine, 
all subsequent instances of that process definition created by that engine are based 
on the new version. Process instances based on the older version, however, 
continue to execute to completion (process termination). When instances of the 
older version no longer exist, the engine registration manager automatically 
unregisters the old process definition.

When you register a new version of an assignment rule dictionary with an engine 
that has an older version already registered, the new versions of assignment rules 
are retroactively applied to all existing offered and queued activities. Offered 
activities are re-offered to sessions based on the new rules, and access to activities 
in queues is also governed by the new rules. The engine registration manager 
automatically unregisters the old versions of any assignment rules included in the 
new assignment rule dictionary.

Unregistering a library distribution removes the corresponding entry from the 
registration database table, but does not delete the library files from the engine 
unit’s host server node.



Working with the Process Engine

64 iPlanet Integration Server • Process Development Guide • August 2001



65

Chapter 2

Getting Started: the Process
Development Workshops

This chapter introduces the iIS process development workshops and explains how 
they relate to one another. It also describes how to enter, exit and perform basic 
tasks in the workshops—the iIS development environment.

The process development workshops include the following:

• Repository Workshop

• User Profile Workshop

• Validation Workshop

• Assignment Rule Workshop

• Application Dictionary Workshop

• Process Definition Workshop

Introduction to the Process 
Development Workshops

The iIS process development environment consists of graphical tools—the process 
development workshops—for implementing the process logic required for an iIS 
enterprise application. These workshops are briefly described below:

Repository Workshop This workshop is the central point of access for the 
remaining workshops: to perform work in any other workshop, you must first 
launch the Repository Workshop. By providing access to the central development 
repository, this workshop lets you manage all iIS components, including exporting 
them from the repository or importing them back into the repository.



Introduction to the Process Development Workshops

66 iPlanet Integration Server • Process Development Guide • August 2001

User Profile Workshop This workshop is used primarily by application system 
designers to enhance the user profile supplied with iIS. The workshop is used to 
specify the important user information needed by assignment rules to determine 
who should be permitted to perform process activities.

Assignment Rule Workshop This workshop is used primarily by application 
system designers to create assignment rules and group them into dictionaries. The 
workshop is used to specify simple role-based rules as well as more sophisticated 
rules. More sophisticated rules—that depend on user profile attributes, process 
attribute values, or any condition that might determine user access to one or more 
activities—are implemented in the workshop by writing an Evaluate method. The 
assignment rule dictionaries are needed by process developers to specify activity 
properties.

Application Dictionary Workshop This workshop is used primarily by 
application system designers to create application dictionaries. The workshop is 
used to create items that define the work associated with activities, including the 
process attributes needed to perform the work. Application dictionaries are needed 
by process developers to specify activity properties.

Process Definition Workshop This workshop is used primarily by process 
developers to create process definitions. It is a tool in which the developer creates a 
visual model of a process and specifies the properties of each of the components of 
the model: activities, routers, timers, and so on. The workshop is also used to write 
methods that specify process logic, such as trigger methods and router methods. 
This is also where process attributes, an important design element, are specified.

Validation Workshop This workshop is used primarily by application system 
designers to write validation methods that authenticate users when they open a 
session with the iIS process engine, and which may also populate users’ profiles by 
extracting data from an organization database.

XML/XSL Workshop This workshop is an interactive tool for creating, editing, 
testing, and debugging the XSLT rules that you register with the iIS process engine. 
XML rules are supplied to an iIS Backbone for use in iIS application proxies. You 
can create XML and XSLT documents in the workshop, or import the documents 
from files. The XML documents you use to test your XSLT rules can be actual proxy 
documents or sample documents that you create just for test processing purposes. 

The XML/XSL Workshop is only available to systems that have installed an iIS 
Backbone. For more information on this workshop, refer to the XML/XSL 
Workshop section of the iIS Backbone online help.



Introduction to the Process Development Workshops

Chapter 2 Getting Started: the Process Development Workshops 67

The workshops, their main purpose, and the relationships between them are 
summarized in the following table.

Workshop Purpose Relationships

Repository Workshop Manage iIS components in 
a central development 
repository.

Provides access to the remaining five 
workshops and lets you 
export/import components 
developed in other workshops 
from/into the central development 
repository.

For more information, see Chapter 3, 
“The Repository Workshop.”

User Profile Workshop Create a user profile. User profile attributes and methods 
are used in defining assignment rules 
and the validation.

User profiles must be registered with 
an iIS process engine: any number of 
user profiles can be concurrently 
registered.

For more information, see Chapter 4, 
“Defining a User Profile.”

Assignment Rule Workshop Create assignment rule 
dictionaries.

Assignment rule dictionaries depend 
upon the user profile; extended user 
profiles must be included as suppliers 
to assignment rule dictionaries.

Assignment rules are used in creating 
process definitions. 

Assignment Rule dictionaries must be 
registered with an iIS engine: any 
number of dictionaries can be 
concurrently registered.

For more information, see Chapter 5, 
“Defining Assignment Rule 
Dictionaries.”

Central Repository

User Profile

Assignment Rule
Dictionary



Introduction to the Process Development Workshops

68 iPlanet Integration Server • Process Development Guide • August 2001

Application Dictionary Workshop Create application 
dictionaries.

Application dictionary items are used 
in creating process definitions.

Application dictionaries are not 
registered with an iIS process engine. 
Instead they are compiled directly 
into the process definition in which 
they are used.

For more information, see Chapter 6, 
“Defining Application Dictionaries.”

Process Definition Workshop Create process definitions. Process definitions reference 
assignment rules and application 
dictionary items; assignment rule 
dictionaries and application 
dictionaries must be included as 
suppliers to process definitions.

Process definition components can be 
used in other process definitions; they 
should be included as suppliers to 
those process definitions.

Process attributes are defined in the 
Process Definition Workshop, but are 
also used in defining application 
dictionary items and assignment rules 
(and are redefined in those contexts.)

Process definitions must be registered 
with an iIS process engine: any 
number of process definitions can be 
concurrently registered.

For more information, see Chapter 7, 
“Creating Process Definitions.”

Validation Workshop Create a validation. The validation’s ValidateUser method 
depends upon the user profile; 
extended user profiles must be 
included as suppliers to a validation. 

A validation must be registered with 
an iIS process engine; only one 
validation can be concurrently 
registered.

For more information, see Chapter 8, 
“Defining Validations.”

Workshop Purpose Relationships

Application
Dictionary

Process
Attributes

Process
Definition

Validation



Introduction to the Process Development Workshops

Chapter 2 Getting Started: the Process Development Workshops 69

Workshop Road Map
The process development workshops as a whole support the various tasks needed 
to implement the process logic required for an iIS enterprise application: design, 
development, and repository management. The workshops also support important 
runtime operations required for testing or production-level execution—namely, 
the registration of user profiles, validation, assignment rule dictionaries, and 
process definitions with an iIS process engine. 

The relationships between the workshops and the different functions they support 
are shown in Figure 2-1. The illustration highlights the following points:

• The Repository Workshop is the point from which you access the remaining 
five workshops.

• An extended user profile is a supplier to the Assignment Rule and Validation 
workshops. The assignment rule’s Evaluate method and the validation’s 
ValidateUser method depend upon user profile attributes and methods. (For 
information on extended user profiles, see “Extended vs. Standard User 
Profile” on page 94.

• Assignment rule dictionaries and application dictionaries are suppliers to 
process definitions.

• Registrations of user profiles, validation, assignment rule dictionaries, and 
process definitions can be performed from the workshop in which each is 
created. 



Introduction to the Process Development Workshops

70 iPlanet Integration Server • Process Development Guide • August 2001

Figure 2-1 Relationships Between Process Development Workshops (and Engine)

Workshop Products: Plans, Projects, Library 
Distributions
Most of the process development workshops have, as their end product, a library 
distribution that is registered with one or more engines. Along the way, however, a 
couple of other, intermediate products are created, as shown in Figure 2-2. 

The type of plan you create depends on the workshop: the User Profile Workshop 
creates user profiles, the Assignment Rule Workshop creates assignment rule 
dictionaries, and so on. The plan is stored in the development repository.

Development Runtime

Engine

User Profile
Workshop

Repository
Workshop

Application Dictionary
Workshop

Process Definition
Workshop

Assignment Rule
Workshop

Register with Engine

Validation
Workshop



Introduction to the Process Development Workshops

Chapter 2 Getting Started: the Process Development Workshops 71

When you compile a plan in the workshops (File > Compile command) the 
workshop creates a TOOL project and compiles it. The project is named after the 
plan, with a suffix appended depending on the plan type (user profile, validation, 
process definition, and so forth). The project is also stored in the development 
repository.

Figure 2-2 Process Definition Workshop Products

When you distribute a model in the workshops (File > Distribute command) the 
workshop first performs the File > Compile command described above, and then 
creates a library distribution from the project. The library distribution is stored in 
the following location on the central server node in your iIS environment: 
FORTE_ROOT/appdist/environment_ID/distribution_id/

The File > Distribute command also gives you the option of registering the 
distribution with one or more engines. When you choose to register the library 
distribution with an engine, it is installed on the nodes hosting the target engine 
and an entry is placed in the registration table of the target engine’s database (see 
“About Registration” on page 61).

Compile to TOOL code

Process

Library 

TOOL

Distribution

Make library distribution

Register with engine

plan_name

plan_name_XX

distribution_ID

Development

Project

Plan



Entering and Leaving Workshops

72 iPlanet Integration Server • Process Development Guide • August 2001

Entering and Leaving Workshops

Before Using iIS
Before you can use iIS for process development, you must have a fully functional 
iPlanet UDS environment in which iIS process management system software has 
been installed by your iIS system manager.

The node on which you are working should be installed, minimally, as an iIS 
development client node. (If your node is an engine server node or a central server 
node, then development client software should also be installed.) See the iIS Process 
System Guide for a list of distributions required by the process development 
workshops.

In addition, you must have access to a development repository containing the iIS 
plans and libraries needed for iIS process development. In most cases, your system 
manager sets up an iIS central development repository in your environment and 
sets an iPlanet UDS environment variable to point to that repository. 

Starting the Process Development Environment
When iIS is properly installed, you access the iIS process development workshops 
by starting up your iPlanet UDS development environment. iPlanet UDS detects 
the presence of iIS components, and modifies the development environment 
accordingly. For information on installing and setting up iIS, refer to the iIS 
Installation Guide and the iIS Process System Guide.

Depending on your installation and platform, you can enter the iIS process 
development environment from the Windows Start menu or by using the 
command line. For UNIX and OpenVMS platforms, only the command line 
method is available.

The following command line starts the iIS development environment:

forte [-fs] [-fr repository] [-fw workspace] [-fnd node_name] 
[-fmn model_node_name] [-fm memory_flags] [-fl logger_flags]
[-fcons]



Entering and Leaving Workshops

Chapter 2 Getting Started: the Process Development Workshops 73

On OpenVMS systems, use the following syntax: 

VFORTE FORTE
[/STANDALONE]
repository_name]
[/WORKSPACE=workspace_name]
[/NODE=node_name]
[/MODEL_NODE=model_node_name]
[/MEMORY=memory_flags]
[/LOGGER=logger_flags]
[/FCONS]

The following table explains each of the command line flags:

This Flag Specifies

-fs
/STANDALONE

Run the development session in stand-alone 
mode. In stand-alone mode, the node is not 
connected to the distributed development 
environment, and you cannot use a central 
repository. The default mode is distributed, which 
connects you to the name server and environment 
manager (see the iPlanet UDS System Management 
Guide for information about the distributed 
development environment). 

-fr repository
/REPOSITORY=repository_name

The repository to be used for the development 
session. Information on specifying a repository 
follows this table.

-fw workspace
/WORKSPACE=workspace_name

The workspace for the development session. 
Information on specifying a workspace follows 
this table.

-fnd node_name
/NODE=node_name

Specifies the node name to use for this session. If 
you do not specify the node name in the forte 
command, the default node name depends on the 
operating system. On Windows, the default node 
name is set by the FORTE_NODENAME 
environment variable. On all other platforms, the 
actual node name is used. 

-fmn model _node_ name
/MODEL_NODE=model_node_name

Specifies the model node name to use for this 
session. If you do not specify a model node name 
in the forte command, iPlanet UDS uses the 
value of the FORTE_MODELNODE environment 
variable. If the environment variable is not set, the 
node is not treated as a model node.



Entering and Leaving Workshops

74 iPlanet Integration Server • Process Development Guide • August 2001

Following are examples of the forte command:

Selecting a repository 
To specify the repository in the forte command:

• For a central repository, specify a repository service name. See your system 
manager for information about your central repository.

• For a private B-tree repository, specify the repository name using the following 
format: bt:private_repository_name.

• For a shadow repository, specify the repository name using the following 
format: 
bt:shadow_repository_name.

See A Guide to the iPlanet UDS Workshops for information about the different kinds 
of repositories. 

-fm memory _flags
/MEMORY=memory_flags

Specifies the space to use for the memory 
manager. See Appendix B in A Guide to the iPlanet 
UDS Workshops for details. 

-fl logger_flags
/LOGGER=logger_flags

Specifies the logger flags to use for the session. See 
Appendix B in A Guide to the iPlanet UDS 
Workshops for details. If you do not set the logger 
flags in the forte command, iPlanet UDS uses 
the value of the FORTE_LOGGER_SETUP 
environment variable. Note that you can change 
the logger settings from the Repository 
Workshop. 

-fcons
/FCONS

Displays the trace window. By default, the trace 
window is iconified on Windows. Use this flag to 
display the trace window on startup.

forte -fs
forte -fr bt:$FORTE_ROOT/repos/examples
forte -fl "%stdout(trc:os:1:1 trc:err)" -fm "(n:4000,x:8000)"

This Flag Specifies



Entering and Leaving Workshops

Chapter 2 Getting Started: the Process Development Workshops 75

Default repository
If you do not specify a repository with the forte command, the default repository 
depends on the operating system. For all platforms, iPlanet UDS uses the setting of 
the FORTE_REPOSNAME environment variable. If the environment variable is not 
set, iPlanet UDS uses the default distributed repository called CentralRepository. For 
Windows platforms, iPlanet UDS uses the last repository you opened in the 
Repository Workshop. 

Default workspace 
If you do not specify a workspace with the forte command, the default workspace 
depends on the operating system. For all platforms, iPlanet UDS uses the setting of 
the FORTE_WORKSPACE environment variable, and if the environment variable 
is not set, iPlanet UDS opens the Repository Workshop without a workspace. For 
Windows platforms, iPlanet UDS uses the last workspace you opened in the 
Repository Workshop.

The Repository Workshop
If the iIS development environment started successfully, the Repository Workshop 
displays on your screen.



Entering and Leaving Workshops

76 iPlanet Integration Server • Process Development Guide • August 2001

Your iIS installation provides additional functionality to the iPlanet UDS 
Repository Workshop that allows you to do iIS process development. For general 
information about using the iPlanet UDS Repository Workshop (and other iPlanet 
UDS Workshops), see A Guide to the iPlanet UDS Workshops. If you have Express 
installed, see A Guide to Express for information on the Express workshops.

Starting the Remaining Process Development Workshops
For process development plans that have been previously defined, you can 
double-click a plan (in the list of plans) to launch the associated process 
development workshop.

To open a workshop to create a new plan, you can either choose the type of plan 
from the Plan menu or click its corresponding tool button in the toolbar. 

Figure 2-3 Repository Workshop Toolbar Buttons

For example, to create a new process definition plan, open the Process Definition 
Workshop either by choosing Plan > New Process Definition or by clicking the 
New Process Definition button in the toolbar. 

Before the workshop opens, a dialog prompts you for a name for the new process 
definition. Enter a name and click OK.

For more information on using the Repository Workshop, see Chapter 3, “The 
Repository Workshop.”

Leaving the Process Development Workshops
You can leave the workshops individually by choosing File > Close. If you want to 
leave the workshops altogether, in the Repository Workshop, choose File > Exit. If 
any of your workshops have unsaved changes, you are asked if you want to save 
them first.

New User
Profile

New Assignment
Rule Dictionary

New 
Process 

New Application
Dictionary

New User 
Validation 

New XML/XSLT 
Plan



Process Development Workshops Overview

Chapter 2 Getting Started: the Process Development Workshops 77

Process Development Workshops Overview
The process development workshops for creating iIS design elements—the User 
Profile, Assignment Rule, Application Dictionary, and Validation Workshops—all 
have a common user interface appearance and screen elements, described in the 
following paragraphs. The other iIS process development workshops—the 
Repository Workshop and the Process Definition Workshop are described in their 
respective chapters.

An example design workshop—the Assignment Rule Workshop—is shown below:

Figure 2-4 Sample Workshop User Interface Elements

Toolbar

List view
Dialog area

elements

Status bar

Slider bar

element

box

Attribute access list Method edit field

Menu bar

List view

Expansion

Selected



Process Development Workshops Overview

78 iPlanet Integration Server • Process Development Guide • August 2001

The workshop window has two main areas:

List View The list view on the left side of the workshop is a hierarchical view of 
all the elements that can be created and modified in the workshop. The root level of 
the list view represents the plan defined in the workshop (in this case, an 
assignment rule dictionary). At the next indented level are the various elements 
that comprise the plan (in this case, the suppliers and the individual assignment 
rules that are defined for the assignment rule dictionary). At the next indented 
level are the individual elements defined for each assignment rule (in this case 
Roles, Object attributes, and an Evaluate method). To view the sub-elements 
comprising an element, click on the expansion box for the element. The expansion 
box changes from a + to a – to indicate that it has been opened.

Dialog Area The dialog area on the right side of the workshop displays a dialog 
corresponding to the element selected in the list view. The dialog can be a property 
inspector or other screen needed to define the selected element. In the case of 
Figure 2-4, for example, the Evaluate method corresponding to a LinkedUser 
assignment rule has been selected; the dialog area displays the fields needed to 
define that method. In this case, the dialog consists of a field for specifying the 
method’s attribute access list and a field for entering or editing method text. 

In Figure 2-4, the Evaluate method element selected in the list view is designated as 
“Custom” to differentiate it from default method implementations in the list view.

The relative size of the list view and dialog areas can be changed using the slider 
bar positioned between them.

The workshop also contains a toolbar for performing common operations in the 
workshop. The buttons in the toolbar represent commands found in the menus at 
the top of the workshop.

The User Profile, Assignment Rule, Application Dictionary, and Validation 
Workshops all contain the user interface elements shown in Figure 2-4. Each 
workshop, and how to use it, is described in more detail in its respective chapter of 
this book.

Cut, Copy, and Paste
You can cut, copy, and paste list view elements from one iIS plan to another. For 
example, you can copy an assignment rule from one assignment rule dictionary to 
another, or an application dictionary item from one application dictionary to 
another. You can also copy text. For example, you can copy the Evaluate method 
text from one assignment rule to another.



Process Development Workshops Overview

Chapter 2 Getting Started: the Process Development Workshops 79

Undoing Work
All the process development workshops let you undo work you have performed, 
but do not want to save, using either the Undo/Redo or the Cancel commands.

Undo/Redo You can undo one or more sequential operations by selecting the 
Edit > Undo command one or more times. Similarly you can restore the same 
operations by selecting the Edit > Redo command.

Cancel You can undo all operations since the last save command using the File > 
Cancel command. This discards all changes since the last save operation.

Online Help
Online help is available for iIS from any of the process development workshops. 

• To display the Contents tab dialog for iIS process development help, choose 
Help > Help Topics.

• To display help for the current window, press the F1 or Help key (depending 
on your operating system platform).

Printing Reports
You can print reports that present details of plans developed in the process 
development workshops. For example, in the Process Definition Workshop, you 
can print a process diagram and list the elements of a process definition, including 
all element properties. In addition, you can customize any report before printing it. 

NOTE The Undo/Redo commands do not apply when you drag and drop 
assignment rules or application dictionary items from the Supplier 
Component list to the layout area of the Process Definition 
Workshop. To undo a drag and drop operation, you must use the 
Cancel command.



Process Development Workshops Overview

80 iPlanet Integration Server • Process Development Guide • August 2001

➤ To print a report

1. In any iIS development workshop, choose File > Print. 

The Print Options window displays:

2. Set the appropriate options according to the descriptions in the following table:

Option Description

Title page Enable this option to add a title page to your report. Then click 
the TItle Page button (see “Creating a Title Page” on page 82).

Page header Enable this option to print the report title and the current date 
and time on all but the first page of the report.

Page number Enable this option to print page numbers on all but the first page 
of the report.

Title Page button Click this button to display the Title Page dialog, where you add 
and define a title page for the report.



Process Development Workshops Overview

Chapter 2 Getting Started: the Process Development Workshops 81

3. (Optional) To view the report before printing it, click Preview.

4. Click Print to print the report.

Report Type Select the report type from the following:

Complete—include all the items available for the report

Custom— select individual items from the Include in Report 
droplist for inclusion in the report

Summary—produce a report that includes the following items: 
Process Model, Comments, Process Model Diagram, First/Last 
Activities, Offered Activities, Queued Activities, Subprocess 
Activities, Junctions, Timers, Method/Expressions, Routers, 
Timers Links.

Technical—produce a report that includes Suppliers and 
Properties in addition to items included in the Summary report.

Default button Set the report’s options back to the default options for the 
currently selected report type.

Include in report Display available items for inclusion in a report. You can 
customize any report by enabling or disabling report options. If 
you select a Custom report no options are included; you must 
select the items you want to print.

Preview button Display the report online before printing.

Print Setup 
button

Displays the windowing system’s Print Setup dialog.

Option Description



Process Development Workshops Overview

82 iPlanet Integration Server • Process Development Guide • August 2001

Creating a Title Page

➤ To add and define a title page to a report

1. Choose File > Print.

The Print Options dialog appears.



Process Development Workshops Overview

Chapter 2 Getting Started: the Process Development Workshops 83

2. In the Print Options dialog, enable the Title Page option and click the Title Page 
button.

The Title Page dialog appears.

3. In the Title field, enter the title of the report.

4. In the Comments field, enter any information comments about the report.

5. Click OK.

6. To see how the report will look when you print it, click Preview.

7. To print the report, click Print.



Process Development Workshops Overview

84 iPlanet Integration Server • Process Development Guide • August 2001



85

Chapter 3

The Repository Workshop

iIS design elements—user profiles, validations, assignment rule dictionaries, and 
application dictionaries—and iIS process definitions are all stored in your 
development repository.

This chapter provides information about using the Repository Workshop to 
manage the iIS plans in your development repository. Specifically, this chapter 
covers the following topics:

• perform standard repository, workspace, and plan tasks

• open process development plans

• check out and branch process development plans

• import and export process development plans

• compile all out-of-date plans

The complete description of this workshop, including how to work with 
repositories and workshops, is in A Guide to the iPlanet UDS Workshops.



Using the Repository Workshop

86 iPlanet Integration Server • Process Development Guide • August 2001

Using the Repository Workshop
When you start the iIS process development environment (as described in 
“Entering and Leaving Workshops” on page 72), the Repository Workshop opens.

In this workshop, you manage the various process development plans (as well as 
any other iPlanet UDS plans and projects) in your development repository. The 
Repository Workshop also provides access to the remaining process development 
workshops—the User Profile, Validation, Assignment Rule, Application 
Dictionary, and Process Definition workshops. From this workshop, you can 
perform the following tasks:

• create a workspace

• update a workspace

• open process development plans

• save all your work

• check out and branch plans to get write access to them

• import and export plans

• compile plans

This chapter describes briefly how to perform each of these tasks. It does not 
explain what repositories and workspaces are, nor does it go into detail about how 
to use the workshop. See A Guide to the iPlanet UDS Workshops for complete 
information on this workshop and on repositories and workspaces.

Creating and Opening Workspaces
When you start the Repository Workshop, it opens the current workspace. You can 
use the iPlanet UDS Control Panel to designate which workspace to open when 
you start the workshop. By default, this workspace is called FirstWorkspace.

New Workspace command 
You can create a new workspace by choosing File > New Workspace and naming 
your workspace. When your new workspace opens, you can immediately begin 
working with the process development workshops. 

Open Workspace command 
You can open an existing workspace by choosing File > Open Workspace and 
picking a workspace from the list that is displayed. 



Using the Repository Workshop

Chapter 3 The Repository Workshop 87

Updating a Workspace
As with any iPlanet UDS plan, if someone else has changed and checked in a 
process development plan that you use for development (and that you have 
therefore included in your workspace), you must update your workspace to be 
able to use the changed plan. (For example, someone working in another 
workspace but in the same repository is developing the application dictionary that 
you use as a supplier to a process definition.)

Update Workspace command
To update your workspace, choose File > Update Workspace. All the plans in your 
workspace are updated and optionally compiled. Recompiling is a good idea, just 
to ensure that the changes received from the repository work with your plans and 
projects.

Creating and Opening iIS Plans
When you create a new process development plan or open an existing plan the 
appropriate process development workshop is opened.

Creating New Plans
You can create new process development plans by selecting commands in the Plan 
menu or by clicking the appropriate button in the toolbar at the top of the 
workshop. The toolbar selections for creating new plans are shown in Figure 2-3 on 
page 76.

When creating a new plan, a dialog first prompts you to name the plan. After 
providing a name, the appropriate workshop for the plan opens.

Opening an Existing Plan

➤ To open an existing iIS plan in its associated workshop, use any of the following 
methods

• double-click the plan name in the list of plans

• select the name of the plan in the list of plans and choose Plan > Open

• select the name of the plan in the list of plans and press Enter



Using the Repository Workshop

88 iPlanet Integration Server • Process Development Guide • August 2001

Figure 3-1 iIS Plans in the Repository Workshop

Saving Plans
You can save all the plans you have changed in the current workspace by choosing 
File > Save All. It is a good idea to save your work often—there is no automatic 
save in the workshops. (You can also save the contents of all workshops by 
choosing File > Save All from any workshop.)

If you attempt to exit the Repository Workshop with unsaved changes, a dialog 
asks you if you want to save your workspace before exiting.

Checking out and Branching Plans
To get write access to an existing process development plan, you must either check 
out or branch the entire plan. You check out a plan to make permanent changes. 
You branch a plan to make temporary changes or if the plan is already checked out 
by another user. 

NOTE Be sure to select the process development plan and not its compiled 
project—the compiled project is read-only generated TOOL code. To 
ensure that only the plans are listed, choose Process Development 
Plans from the filter list as shown in Figure 3-1.

Plan
list

Filter
list



Using the Repository Workshop

Chapter 3 The Repository Workshop 89

The Repository Workshop provides these capabilities with the Plan > Checkout 
and Plan > Branch commands. The Repository Workshop also provides commands 
(described in “Undoing Changes to a Plan” on page 90) that let you: 

• revert changes you have made to a plan that you checked out or branched 

• undelete a plan that you deleted after checking it out

Checking out a Plan
The Checkout command in the Repository Workshop gives you an exclusive write 
lock on an iIS plan. Before you can check out a plan, the workspace must be open 
for modifying. Only one workspace can check out a plan at a time. After you have 
finished your modifications, you do not have to check the plan back in. It is 
automatically checked in when you integrate your workspace (File > Integrate 
Workspace).

➤ To check out an iIS plan

1. In the plan browser, select the process development plan you want to check 
out.

2. Choose Plan > Checkout.

When the plan is checked out, the plan browser displays a checkout icon by the 
plan name.

The Checkout command fails if the plan is already checked out by another 
workspace. The error message gives the name of the workspace that has checked 
out the plan. Checkout also fails if the workspace does not have the latest version 
of the plan. In this case, use the File > Update Workspace command to bring the 
latest version of the plan into your workspace.

If you want to undo the changes you have made since the Checkout command, and 
revert the plan to the state it was in after your last File > Update Workspace 
command, you can use the Plan > Undo Checkout/Branch command as described 
under “Undoing Changes to a Plan” on page 90.

Branching a Plan
The Branch command gives you temporary write access to a process development 
plan so you can test a change while someone else has the plan checked out. You 
cannot integrate a changed, branched plan into the system baseline. 

Before you can branch a plan, the workspace must be open for modifying. Any 
number of workspaces can branch a plan at the same time. 



Using the Repository Workshop

90 iPlanet Integration Server • Process Development Guide • August 2001

➤ To branch a process development plan

1. In the plan browser, select the process development plan you want to branch.

2. Choose Plan > Branch.

When the plan is branched, the browser displays a branch icon by the plan name.

If you have already checked out the plan you branch, the checkout is converted to a 
branch. When a checkout is converted to a branch, your changes to the plan are 
retained in the workspace, but the plan is free to be checked out by another 
workspace after the next File > Save All command. 

If you want to undo changes you have made since a Branch command, reverting 
the plan to the state it was in before your last Branch command, you can use the 
Undo Checkout/Branch command described in the next section.

Undoing Changes to a Plan
Choosing Plan > Undo > Checkout/Branch erases all changes you made to a plan 
since the last Checkout or Branch command. The plan reverts to the state it was in 
before the Checkout or Branch command, and the plan is freed for checkout by 
another workspace.

➤ To revert a plan

1. In the Plan browser, select the plan you want to revert.

2. Choose Plan > Undo > Checkout/Branch.

Importing and Exporting Plans
To move a plan from one repository to another, you must export it from your 
current repository to a text file (.pex file) and then import the .pex file into the other 
repository. This may be necessary, for example, when an application dictionary 
and an assignment rule dictionary are developed using one repository and an 
associated process definition is developed using another repository (not 
recommended, but sometimes unavoidable).

Export command
To export a plan to a .pex file, select the plan you want to export, then choose Plan 
> Export. Enter the name of the file without an extension and take the default file 
type, “Exported Project Files.” The file will be saved with a .pex extension.



Using the Repository Workshop

Chapter 3 The Repository Workshop 91

Import command
To import a plan from a text file, first check that the file is available to your system, 
then choose Plan > Import. If you get an error saying that a required library cannot 
be found, try including the library explicitly in your workspace (choose Plan > 
Include Public) and then do another import.

Compiling Plans

Compile All Plans command
The File > Compile All Plans command compiles all plans that have changed since 
your last compilation. The plans are compiled into TOOL projects (see “Workshop 
Products: Plans, Projects, Library Distributions” on page 70). 

This command generates TOOL code for each plan, compiles the TOOL code, and 
saves the code in a read-only project. The TOOL project name has an extension, 
depending on the type of iIS model being compiled, as shown in the following 
table.

Force Compile command
If you want to compile all your plans, regardless of whether they have changed, 
choose Utility > Force Compile. The submenu for the Force Compile command lets 
you choose either All Plans, to force compilation of all plans in the workspace, or 
Selected Plan, to force compilation of the currently selected plan.

Extension Model type

UP User profile

UV Validation

AR Assignment rule dictionary

AD Application dictionary

PD Process definition



Using the Repository Workshop

92 iPlanet Integration Server • Process Development Guide • August 2001

Compile Error
If you try to compile a plan and you receive an error message similar to the 
following, it means that the library referred to could not be found in your 
workspace. 

There are many reasons why the library could not be found: the library might have 
been deleted from your repository, you might be using an old repository that does 
not contain the library, or the library simply has never been included in your 
workspace.

If you see this prompt, first try to include the missing library in your workspace.

➤ To include the missing library in your workspace

1. Go to the Repository Workshop.

2. Choose Plan > Include Public.

3. In the Include Public Plan dialog, select the library you want to include, and 
click OK.

If you cannot find the library in the Include Public Plan dialog, you have to import 
it into your repository. 

➤ To import the missing library

1. Exit the error dialog.

2. Go to the Repository Workshop.

3. Choose Plan > Import. 

4. Navigate to the FORTE_ROOT\userapp\library_name\cl0 directory and 
import library_name.pex.

After the library has been imported, you can include it in your workspace, return to 
the workshop you were previously working in and compile the plan again.



93

Chapter 4

Defining a User Profile

This chapter describes what a user profile is and how to define one with the User 
Profile Workshop. In particular, the chapter covers the following topics:

• description of a user profile

• using the User Profile Workshop

• creating new versions of a user profile

• UserProfile class reference

About User Profiles
A user profile provides a template that is used in the following ways: 

• to hold a user’s name, roles, and other important user characteristics

• to pass user information around within an iIS process management system

• to evaluate user information (the template carries a set of methods for that 
purpose)

A user profile plays a key role in two operations within an iIS process management 
system:

• Authentication of users who are opening sessions with an iIS process engine 
(by using the ValidateUser method of a validation)

• Determining who is permitted to perform the various activities in an executing 
process (by using assignment rules)

For an overview of user profiles and how they fit into an iIS process management 
system, see “User Profile Design Concepts” on page 48.



About User Profiles

94 iPlanet Integration Server • Process Development Guide • August 2001

Extended vs. Standard User Profile
The user profile you create in the User Profile Workshop is derived from a base 
UserProfile class —it is a subclass of the UserProfile class. Your user profile 
embodies all the attributes and methods of the UserProfile class, plus any 
enhancements that you make to it.

You do not have to make enhancements to the UserProfile class; you can use it 
as is.

The UserProfile class defines a number of methods. These methods are used by 
assignment rules (described in Chapter 5, “Defining Assignment Rule 
Dictionaries”) to check if a user’s profile matches a given assignment rule. These 
methods are also used by a validation to check a user login against an organization 
database and populate the user’s user profile. The methods are described in detail 
under “UserProfile Class” on page 106. You do not need to customize these 
methods; the default implementation can be used without modification in defining 
assignment rules and a validation.

Standard user profile A user profile also has a built-in array that can handle a set 
of roles. Therefore, if your user information consists simply of a user name and a 
number of roles, you can use this standard user profile without alteration. If you 
want to add other user characteristics, such as signing authority or manager name, 
you can use the User Profile Workshop to extend the user profile attributes.

Extended user profile If you enhance a user profile by adding user profile 
attributes, then you are creating an extended user profile. You must treat extended 
user profiles differently from standard user profiles (those which at most have 
customized UserProfile methods): You must explicitly include an extended user profile 
as a supplier library to assignment rule dictionaries and validations that reference the user 
profile.

If you create an extended user profile, you have to perform the procedures outlined 
below to make it a supplier library to assignment rules and validations. If you 
create a standard user profile (at most you customize UserProfile methods), you do 
not have to perform these procedures.

In any case—whether or not your user profile is extended—your user profile must 
be registered with the iIS process engine. Even if you are using a standard user 
profile with default methods, you need to open the User Profile Workshop, create a 
user profile of a unique name, and use the workshop commands to register it with 
your engine (see “Making and Registering User Profile Library Distributions” on 
page 103).



About User Profiles

Chapter 4 Defining a User Profile 95

Extended User Profile as Supplier
As described in “Design Element Dependencies” on page 54, extended user 
profiles created in the User Profile Workshop are needed by both assignment rules 
and validations.

Because of this dependency, and because the assignment rules and validations 
(and the user profiles they depend on) are dynamically loaded and executed by the 
iIS process engine, it is necessary that an extended user profile be a supplier library 
to assignment rule dictionaries and validations (as shown in Figure 1-10 on 
page 55). 

The requirement that the user profile be a supplier library carries with it increased 
procedural overhead. In particular, to include the user profile as a supplier, you 
have to first create it, compile it into a TOOL project, and generate a user profile 
library distribution (see Figure 2-2 on page 71). Then you have to import the user 
profile library back into your development repository. This procedure is described 
in more detail in “Including a User Profile as a Supplier Library” on page 104.

Multiple User Profiles: Rolling Upgrades
Normally there is only one registered user profile per engine. This is less a matter 
of principle than it is of recommended design. You want to design a user profile 
that is consistent with your organization database, which can be used by all client 
applications to open sessions with the engine, and by all assignment rules to decide 
which users are permitted to perform activities in executing processes.

Nevertheless, sometimes more than one user profile must be supported. For 
example, in the course of an application’s life cycle, you may need to enhance a 
user profile, say, to include additional user characteristics (user profile attributes) 
required by some new assignment rules. In this case, you can maintain two user 
profiles for some period of time: one that supports the old design of your workflow 
applications and one that supports the new one.

In this scenario, both user profiles are registered with the engine as you 
incrementally upgrade your applications from the old version to the new one. In 
this type of rolling upgrade you do not have to shut down your production system. 
The old user profile is used by old client applications and the new user profile is 
used by new client applications. 



Working with a User Profile

96 iPlanet Integration Server • Process Development Guide • August 2001

In a rolling upgrade, you also have to modify your assignment rules and your 
validation to support both the old and new user profiles, and then register the 
modified assignment rule dictionaries.

Working with a User Profile
This section describes the series of tasks you are likely to perform when you create 
or modify a user profile. It is followed on page 106 by a reference section on the 
UserProfile class. 

This section covers the following topics:

• opening the User Profile Workshop

• editing a user profile

• saving, compiling, and registering a user profile

Opening the User Profile Workshop
This section contains procedures for creating a new user profile and opening an 
existing user profile from the Repository Workshop (illustrated in the following 
figure).

NOTE To register more than one user profile with an engine, each user 
profile must have a unique name. Therefore, when you modify or 
upgrade a user profile with the intent of performing a rolling 
upgrade, you should give it a unique name. Otherwise you can only 
perform a monolithic upgrade, in which all client sessions are shut 
down and iIS distributions are unregistered.



Working with a User Profile

Chapter 4 Defining a User Profile 97

Figure 4-1 Opening a User Profile in the Repository Workshop

➤ To open the User Profile Workshop to create a new user profile

1. In the Repository Workshop, click the New User Profile toolbar button, or 
choose Plan > New Process Development Plans > User Profile. (See Figure 4-1, 
above.)

A dialog opens prompting you to name the user profile. 

2. Name the user profile, and click OK.

A new user profile plan opens in the User Profile Workshop.

➤ To open the User Profile Workshop for an existing user profile

1. Double-click the name of an existing user profile in the plan list, or select the 
name of an existing user profile in the plan list and press Enter, or select the 
name of an existing user profile in the plan list and choose Plan > Open. (See 
Figure 4-1, above.)

See Chapter 3, “The Repository Workshop” for more information on the 
Repository Workshop.

 New 
User Profile 

Existing 
User 
Profile 



Working with a User Profile

98 iPlanet Integration Server • Process Development Guide • August 2001

Creating and Editing a User Profile
When creating a new user profile, the User Profile Workshop opens with a new 
user profile plan, as shown in the following figure.

If you are creating a standard user profile, you do not have to define anything new 
for the UserProfile to be functional. By default, it can store and retrieve an array of 
roles as TextData, and all the methods have default functionality, as described in 
“UserProfile Class” on page 106. For a standard user profile, you can simply 
choose File > Distribute, as described in “Making and Registering User Profile 
Library Distributions” on page 103, to compile and register the plan.



Working with a User Profile

Chapter 4 Defining a User Profile 99

If you are creating an extended user profile, or modifying a default method, then 
you have to do some work in the workshop. First, you create a user profile class by 
clicking the New User Profile button at the top left of the toolbar or choose File > 
New User Profile. The list view changes to display the new elements:

The list view now displays a new user profile class and the elements of that class: 
scalar attributes, object attributes, and a number of user profile methods. 
Depending on the element you select in the list view, the dialog area changes.

As you edit the user profile, be sure to save your changes periodically, as described 
in “Saving Changes” on page 102.

You can also add new user profile attributes (other than roles) to the class, and you 
can alter any of the methods using the appropriate dialog. If you want to upgrade a 
user profile that is currently registered with an engine and in production, copy the 
current user profile elements to a new user profile plan of a different name, and 
make the appropriate changes.

Specifying User Profile Properties
To specify user profile properties, select the user profile class element. The 
corresponding dialog is displayed on the right. It enables you to enter some 
comments about the user profile and to change the name of the user profile class.

Properties
dialog



Working with a User Profile

100 iPlanet Integration Server • Process Development Guide • August 2001

In general, you do not need to change the user profile class name. However, if you 
are creating more than one user profile, or creating a new user profile with the 
intent of performing a rolling upgrade (as described in “Multiple User Profiles: 
Rolling Upgrades” on page 95), then each user profile class name should be 
unique. This is because you need to distinguish between multiple user profile 
classes in your assignment rules and validations, as described in “Creating New 
Versions of a User Profile” on page 105.

Specifying User Profile Attributes 
To specify user profile attributes, select the Attributes element in the list view. The 
corresponding dialog is displayed on the right. It allows you to add user profile 
attributes other than roles to the class. Clicking the New button opens a dialog that 
prompts you for the name and type of the new user profile attribute.

Attributes dialog

 New attribute
 dialog



Working with a User Profile

Chapter 4 Defining a User Profile 101

You can create user profile attributes with simple types: boolean, double, float, 
integer, long, and string. The following table describes these TOOL data types (also 
described in “An Introduction to The TOOL Language” on page 288):

You can access user profile attributes through simple TOOL object.attribute syntax. 
For example, use the following expression to set a string attribute called 
ManagerName to the string constant ‘Aix’:

UserProfile.ManagerName = ‘Aix’;

Specifying User Profile Object Attributes 
If you need to reference a service object in any of your user profile methods, you 
can define an object attribute which references the service object and serves as a 
handle to it. To define such an attribute, click the New button. A dialog opens, 
prompting you for the name and class type of the new object attribute. The class 
type should be the same as the service object you are referencing—its definition 
must be included as a supplier library to your user profile plan.

For information on accessing service objects from process definition methods, see 
“Writing Code that Accesses iPlanet UDS Service Objects” on page 276. For more 
information on object attributes, see “Saving a Handle to a Service Object” on 
page 285.

Data Type Description

boolean A variable that can take one of two logical values, TRUE or FALSE.

double Approximately 10E-308 to 10+308 with about 15 digits of precision, 
depending on your platform.

float Approximately 10E-38 to 10+38 with about 7 digits of precision, 
depending on your platform.

integer A signed, 4-byte integer ranging from -2,147,483,648 to 2,147,483,647 on 
all platforms.

long At least -2,147,483,648 to 2,147,483,647--perhaps greater depending on 
your platform.

string A simple data type that stores a string constant. There are no string 
expressions, and although you can compare strings in boolean 
expressions, there is no way to manipulate the string other than to copy 
it to a TextData object, manipulate it, and copy it back.



Working with a User Profile

102 iPlanet Integration Server • Process Development Guide • August 2001

Overriding Default User Profile Methods
You can redefine a process definition method in the list view by selecting it and 
entering TOOL code in the method edit field in the dialog area on the right. The 
default method implementations are not shown. The signature of each method is 
listed at the top of the method edit field. See “UserProfile Class” on page 106 for a 
description of the methods.

Saving and Compiling User Profiles 
As you work on your user profile, it is a good idea to save your work regularly. As 
you make changes to the UserProfile class, you can periodically compile your user 
profile plan into a TOOL project to ensure that the syntax is correct.

Saving Changes
As you edit the user profile, be sure to save your changes periodically (choose File 
> Save All). When you save changes, the current user profile plan in your 
workspace is updated.

Compiling a User Profile
As you modify a user profile by adding user profile attributes and possibly 
modifying default UserProfile methods, you might want to compile to ensure that 
your code is syntactically correct. To compile, choose File > Compile. iIS generates 
TOOL code from the user profile plan and compiles it, saving the result in a 
read-only TOOL project that has the extension _UP. (This file is a by-product of the 
compile process; you do not use it.)

If there are compilation errors, iIS displays them for you. You can then go back to 
the workshop, fix the errors in your method code, and recompile.

NOTE If you have any other workshops open for editing, they are saved at 
the same time. 

TIP If too many of these generated files begin to clutter your list of plans 
in the Repository Workshop, you can filter them out by setting the 
Filter drop list to Process Development Plans. (Figure 4-1 on page 97 
shows the Repository Workshop with the filter set this way.) 



Working with a User Profile

Chapter 4 Defining a User Profile 103

Making and Registering User Profile 
Library Distributions
Finally, when you have completed all work on a user profile and are ready for it to 
be used by an engine, you make it into a library distribution and register it with 
one or more engines.

To perform these operations, choose File > Distribute. You see the Distribute 
Options dialog box: 

The File > Distribute command performs a compile operation if this option is 
enabled, then uses the resulting TOOL project to make a library distribution. The 
Generate Project field shows you the name of the generated TOOL project. You can 
enter another name if you like. 

To register the resulting library distribution with an engine, enable the Register 
option. If the Register option is enabled, you are prompted with a list of engines. 
Choose the engines you want to register with, then click OK. The library 
distribution is saved in the FORTE_ROOT/appdist directory on the central server 
node in your iIS system.

If the engine you want to register with is not available in your environment, copy 
the generated library from your FORTE_ROOT/appdist directory to the remote 
environment. Then use the iIS Console to register the distribution. Refer to the iIS 
Process System Guide for more information.

NOTE The node hosting an iIS process engine must be online and the 
engine running in your environment before you can perform a 
registration with that engine.



Working with a User Profile

104 iPlanet Integration Server • Process Development Guide • August 2001

Including a User Profile as a Supplier Library
Once you have made a user profile library distribution and registered it with an 
engine, you must make the user profile available as a supplier library to the 
assignment rules and validations. 

➤ To make the user profile a supplier library

1. Generate a user profile library distribution.

In the User Profile Workshop, generate a user profile library distribution and 
register it with your iIS engine (see “Making and Registering User Profile 
Library Distributions” on page 103, for more information).

The user profile library distribution contains a .pex file, which can be found in 
the following location on the node hosting the engine you used to register the 
user profile: 

FORTE_ROOT/userapp/distribution_ID/clN/UserProfileName.pex

N is the compatibility level number of your user profile distribution.

2. Import the user profile library back into your development repository.

In the Repository Workshop, import (Plan > Import) the .pex file contained in 
the user profile library distribution into the development repository). See 
Chapter 3, “The Repository Workshop” for more information.

The .pex file is imported into your repository and saved as a library, 
UserProfileName_UP, overwriting the corresponding TOOL project.

3. In the Validation Workshop, include the user profile library as a supplier 
library to your validation model (see Chapter 8, “Defining Validations.””). 

4. In the Assignment Rule Workshop, include the user profile library as a 
supplier library to your assignment rule dictionary (see Chapter 5, “Defining 
Assignment Rule Dictionaries”).

CAUTION If you integrate your workspace, be sure to do it after compiling 
your user profile plan, but before importing the library back into 
your repository. Otherwise you could lose access to your TOOL 
source code.



Creating New Versions of a User Profile

Chapter 4 Defining a User Profile 105

Creating New Versions of a User Profile
There are two general reasons to modify a user profile:

• alter the default method implementations 

• change the user profile attributes

For altering default method implementations, no special considerations or 
procedures are needed—iIS already provides the necessary support. However, 
changing user profile attributes could affect assignment rules and validations. This 
change can be far reaching and should only be undertaken when absolutely 
necessary. 

The most likely reason to modify the user profile is to extend the user profile to 
include user characteristics needed by one or more assignment rules. (Of course, 
the information needed to provide the extended user characteristics must be stored 
in the organization database.) However, there could also be changes to the 
organizational structure that require changing the user profile.

If you extend or make changes to an already extended user profile, such as adding 
a new user profile attribute, you should use the following general procedure.

➤ To modify a user profile

1. Create a new extended user profile with a different name (and different User 
Profile class name) and with the required changes in the User Profile 
Workshop.

2. Register the new user profile with the engine.

3. Make the modified user profile a supplier library to assignment rules and 
validation.

4. Modify all assignment rules based on the old user profile to accommodate the 
new user profile, and register the modified assignment rule dictionaries with 
the engine. (Normally the assignment rules are modified to be able to use both 
the new and old user profile—for more information see “Creating New 
Versions of an Assignment Rule Dictionary” on page 137.)

5. Modify the validation to accommodate the new user profile and register it with 
the engine. (Normally the validation is modified to be able to use both the new 
and old user profile—for more information see “Creating New Versions of a 
Validation” on page 252.)



UserProfile Class

106 iPlanet Integration Server • Process Development Guide • August 2001

6. For each client application, modify the login code to invoke the new user 
profile and deploy the modified client applications.

UserProfile Class

Method Summary

NOTE If you can perform a monolithic upgrade, that is, close all 
sessions with the engine and unregister your assignment rule 
dictionaries and current user profile—or if you can shut down 
your engine to perform the changeover from old to new—then 
you do not need to rename the new user profile, nor 
accommodate the old user profile (as well as the new one) in 
either assignment rules or the validation. You just register—or 
restart your engine and register—the new user profile, new 
validation, new assignment rule dictionaries, and all needed 
process definitions.

Table 4-1 Method Summary for UserProfile Class

Method Parameters Returns Source 
Class

Purpose

CompareRoles objectRoles=Array of 
TextData

integer ● Tests the relationship between a 
role or list of roles associated with 
the userprofile object and the role 
or list of roles in the objectRoles 
parameter. The return value is 
used to indicate whether the user 
profile’s roles are subordinate to, 
superior to, or have some other 
relationship to the objectRoles 
array of roles.

GetOtherInfo* none string ● Gets the value of any auxiliary 
(otherInfo) information stored for 
this user profile object, such as the 
name of the user’s manager. 

GetRoles none Array of 
TextData

● Returns the roles associated with 
the user profile object.



UserProfile Class

Chapter 4 Defining a User Profile 107

GetUserName none string ● Returns the name of the user 
associated with the user profile 
object.

GetSessionType* none integer ● Returns a value (ADMIN or 
STANDARD) indicating that the 
user profile is to be validated, or 
has been validated, for an 
administrative or standard 
(non-administrative) session.

IsEqualRoles objectRoles=Array of 
TextData

boolean ● Tests to see if a role or list of roles 
associated with the user profile 
object is equal to the role or list of 
roles in the objectRoles parameter.

IsEqualUser otherUser=UserProfileIFace boolean ● Tests to see if the user profile of 
one user is equal to the user 
profile object.

IsIntersectRoles objectRoles=Array of 
TextData

boolean ● Tests to see if a role or list of roles 
associated with the user profile 
object is equal to at least one of 
the roles in the objectRoles 
parameter.

IsSubsetRoles objectRoles=Array of 
TextData

boolean ● Tests to see if a role or list of roles 
associated with the user profile 
object are a subset of the roles in 
the objectRoles parameter.

SetRoles newRoles=Array of 
TextData

none ● Sets the roles associated with the 
user profile. object.

SetOtherInfo* otherInfo=string none ● Sets the value of auxiliary 
(otherInfo) information stored for 
this user profile object, such as the 
name of the user’s manager, to the 
value of the parameter.

SetUserName newUserName=string none ● Sets the user name of the user 
profile object to the name of the 
parameter.

Table 4-1 Method Summary for UserProfile Class (Continued)

Method Parameters Returns Source 
Class

Purpose



UserProfile Class

108 iPlanet Integration Server • Process Development Guide • August 2001

Using UserProfile
User profile objects, whether standard or extended, are used by the engine to 
identify the user associated with the current session and to determine access to 
activities and processes.

The engine passes a user profile object through to your site-defined ValidateUser 
method, which uses the object to authenticate a user’s login and populate the user 
profile with information from the site’s organization database. For more 
information, see Chapter 8, “Defining Validations.”

The engine also passes a user profile object to assignment rules, where user profile 
methods are used to determine which users can perform an activity. For more 
information, see “Understanding the Evaluate Method” on page 130.

If your UserProfile methods need to access service objects, you must follow a 
special technique described in “Writing Code that Accesses iPlanet UDS Service 
Objects” on page 276.

Methods

CompareRoles
The CompareRoles method tests the relationship between a role or list of roles 
associated with the user profile object and the role or list of roles in the objectRoles 
parameter. The return value indicates whether the user profile’s roles are 
subordinate to, superior to, or have some other relationship to the objectRoles 
array of roles. 

CompareRoles (objectRoles=Array of TextData)

Returns integer

Parameters Required? Input Output

objectRoles ● ●



UserProfile Class

Chapter 4 Defining a User Profile 109

You can use the CompareRoles method when you want to design a set of 
assignment rules that do not depend on the hierarchy of roles in your organization. 
Instead, you can use this method to look at a hierarchy of roles and provide a 
meaningful relationship between sets of roles. You override the default 
implementation and create a CompareRoles method based on your organization’s 
role hierarchy and assignment rule needs.

For example, an assignment rule’s Evaluate method could test if a user’s roles are 
superior (or subordinate) to those specified in the assignment rule’s role list. If the 
user’s roles are superior to those in the role list, then you could offer an activity to 
the user. If the user’s roles are subordinate to those in the role list, then you 
probably do not want to offer the activity to the user.

When you write a CompareRoles method, you determine the meaning of the return 
values, and use them appropriately in your assignment rules. The default 
implementation has the following return values:

GetOtherInfo
The GetOtherInfo method gets the value of any auxiliary (otherInfo) information 
stored for this user profile object, such as the name of the user’s manager. The 
method is normally used in assignment rule Evaluate methods, where the return 
value is compared with the otherInfo parameter. (For more information see 
“Understanding the Evaluate Method” on page 130.) 

Integer value Meaning

0 IsEqual() is TRUE

1 IsSubset() is TRUE)

-1 No relationship (that is, neither IsSubset() or ISEqual() is TRUE)

GetOtherInfo ( )

Returns string



UserProfile Class

110 iPlanet Integration Server • Process Development Guide • August 2001

GetRoles
The GetRoles method returns the roles of the user associated with the user profile 
object.

GetUserName
The GetUserName method returns the name of the user associated with the user 
profile object.

GetSessionType
The GetSessionType method returns a value—ADMIN or 
STANDARD—indicating that the user profile is to be validated, or has been 
validated, for an administrative or standard (non-administrative) session.

GetRoles ( )

Returns Array of TextData

GetUserName ( )

Returns string

GetUserName ( )

Returns integer



UserProfile Class

Chapter 4 Defining a User Profile 111

IsEqualRoles
The IsEqualRoles method tests to see if a role or list of roles associated with the 
user profile object is equal to the role or list of roles in the objectRoles parameter.

IsEqualUser
The IsEqualUser method is used by the engine to test if the user associated with a 
session object in the engine (say, a suspended session) is the same as a user 
requesting that the session be opened (or reactivated). The implementation of the 
method represents the algorithm for reconnecting OpenSession requests to 
currently suspended sessions.

If you are using an extended user profile, you might want to customize this method 
to test for the added attributes.

IsEqualRoles (objectRoles=Array of TextData)

Returns boolean

Parameters Required? Input Output

objectRoles ● ●

IsEqualUser (otherUser=UserProfileIFace)

Returns boolean

Parameters Required? Input Output

otherUser ● ●



UserProfile Class

112 iPlanet Integration Server • Process Development Guide • August 2001

IsIntersectRoles
The IsIntersectRoles method tests to see if at least one role in the list of roles of the 
user profile object is equal to at least one role in the list of roles in the objectRoles 
parameter.

IsSubsetRoles
The IsSubsetRoles method tests to see if a role or list of roles of the user profile 
object is equal to or a subset of the role or list of roles in the objectRoles parameter.

SetRoles
The SetRoles method replaces the role list for the user profile object with the roles 
of the parameter.

IsIntersectRoles (objectroles=Array of TextData)

Returns boolean

Parameters Required? Input Output

objectRoles ● ●

IsSubsetRoles (objectroles=Array of TextData)

Returns boolean

Parameters Required? Input Output

objectRoles ● ●

SetRoles (newRoles=Array of TextData)

Returns none

Parameters Required? Input Output

newRoles ● ●



UserProfile Class

Chapter 4 Defining a User Profile 113

SetOtherInfo
The SetOtherInfo method sets the value of auxiliary (otherInfo) information stored 
for this user profile object, such as the name of the user’s manager, to the value of 
the parameter. 

The otherInfo parameter is auxiliary information placed in the user profile by the 
ValidateUser method at session login time. For an example, see “Understanding 
the ValidateUser Method” on page 247.

SetUserName
The SetUserName method sets the user name of the user profile object to the name 
of the parameter.

SetOtherInfo (otherInfo=string)

Returns none

Parameters Required? Input Output

otherInfo ● ●

SetUserName (newUserName=string)

Returns none

Parameters Required? Input Output

newUserName ● ●



UserProfile Class

114 iPlanet Integration Server • Process Development Guide • August 2001



115

Chapter 5

Defining Assignment Rule
Dictionaries

This chapter discusses assignment rule dictionaries and describes how to use the 
Assignment Rule Workshop.

For a general description on using assignment rules as part of an iIS process 
management system, refer to “Application and Process Logic” on page 41.

For a description of how to add an assignment rule to an activity, refer to “Working 
with Offered Activities” on page 197.

This chapter covers the following topics:

• description of assignment rules

• using the Assignment Rule Workshop

• creating new versions of an assignment rule dictionary

About Assignment Rules
An assignment rule dictionary is a container for a set of assignment rules. The iIS 
process engine uses assignment rules to control the following:

• who can perform an activity (start an activity in client applications)

• who can create a new instance of a process definition

If an activity has no assignment rule associated with it, anyone who logs in with a 
client application can see it in a worklist and start it (offered activity) or retrieve it 
from a queue (queued activity). If a process has no assignment rule associated with 
it, anyone can start an instance of the process. However, it is likely that you want to 
restrict who can perform activities and who can start process instances.



About Assignment Rules

116 iPlanet Integration Server • Process Development Guide • August 2001

In their simplest form, assignment rules support a straightforward role-based 
system of setting such restrictions. Typically, the roles have meaning in your 
organization—the engine uses a registered user profile and registered validation to 
retrieve the roles from your organization database. By appropriately modifying 
and enhancing assignment rules in tandem with the user profile, you can 
implement a custom work assignment system of arbitrary power and complexity. 
However, see the note on page 118 regarding performance issues when using 
complex assignment rules.

In the role-based expense report reimbursement process (introduced in Chapter 1, 
“Fundamentals”), there is no restriction on who can start a process instance: any 
employee can submit an expense report, starting a new process instance of the 
Expense Report process for each expense report submitted. Once submitted, an 
expense report goes to the employee’s manager for review. If it is not approved, it 
goes back to the employee for more work. If the expense report requests 
reimbursement of over $1,000, the request has to be submitted to the manager’s 
manager for approval. Once approved, the report is forwarded to an accountant 
and an auditor, who perform activities required before a reimbursement check can 
be processed.

To ensure that the right people get offered the right activities, each activity has an 
assignment rule associated with it. The assignment rule tests that a given user is in 
the correct role to perform the activity. In this example, the Review Expense 
activity has an assignment rule that requires that the user performing the review be 
a manager of the employees who submitted the expense report (see the assignment 
rule attached to the Review Expense activity in Figure 5-1). For information on how 
to associate assignment rules with activities and process instances, see “Working 
with Offered Activities” on page 197 and “Working with Process Definitions” on 
page 184, respectively. 



About Assignment Rules

Chapter 5 Defining Assignment Rule Dictionaries 117

Figure 5-1 Assignment Rules in an Expense Report Reimbursement Process

It is likely that all the assignment rules for this process definition are in a single 
assignment rule dictionary. There is no requirement that associated rules be in the 
same dictionary, but keeping assignment rules in the same dictionary makes it 
simpler to work with them.

Adding Complexity to an Assignment Rule
By default, an assignment rule is role-based—it performs simple role checking, 
making sure that at least one role in a user’s profile matches at least one role 
specified in the assignment rule. You only need to specify one or more roles for 
each assignment rule, and associate that assignment rule with an activity.

employee

submitted

rejected

approved approved

approved

resubmitted

rejected

employee

Do
Accounting

accountant

Do
Auditing

auditor

Process
Check

automatic

Review
Expense 2
department

manager

Review
Expense
manager

Revise
Expense
employee

Role=ManagerOf

Role=ManagerOf

Role=Employee

Role=Accountant

Role=Auditor



About Assignment Rules

118 iPlanet Integration Server • Process Development Guide • August 2001

You can also define custom assignment rules that do more than simple role checking. 
To define a custom assignment rule, modify the rule’s Evaluate method (using the 
Assignment Rule Workshop) to implement your own logic for determining 
assignment. Some examples of custom behavior you might implement are:

• test a list of roles in a specific order

• test the value of one or more process attributes

For example, determine if a user has sufficient authority to approve a purchase 
order of a certain amount.

• compare the user’s username to a linked user (the username of the person who 
completed another activity)

For example, ensure that the person who reviews an expense report is the 
manager of the person who submits it.

• access a database

For example, retrieve data that helps determine the assignment.

These are just a few of the things you can do with assignment rules. See 
“Understanding the Evaluate Method” on page 130 for more information on 
writing an Evaluate method.

Assignment Rules and Activities
The previous section’s discussion of how to extend assignment rule behavior 
applies only to assignment rules associated with offered activities, where the 
assignment rule determines who is permitted to perform a given activity. These 
assignment rules can be arbitrarily complex (although there is a performance cost 
associated with increased complexity). 

NOTE Applications that typically use a large number of sessions (user 
logons) and process instances may encounter performance issues 
when implementing complex assignment rules. The evaluation of 
complex rules by the iIS engine cannot take advantage of the 
optimizations typically used for role-based assignments. 
Additionally, if a complex rule requires database access or calls to an 
external iPlanet UDS object, engine performance can be slowed even 
further. Refer to “Assignment Rules During Process Execution” for 
more information about how assignment rules are used in the iIS 
engine.



About Assignment Rules

Chapter 5 Defining Assignment Rule Dictionaries 119

Assignment rules that are associated with queued activities, where the assignment 
rule determines who is permitted to access a queue, would not have the same level 
of complexity as rules associated with offered activities. Users who access a queue 
can perform any activity in the queue. The activities in the queue belong to many 
process instances. You typically do not employ a queued activity (where a pool of 
users is available to perform the activity) when you want complex assignment 
rules to apply.

You can associate more than one assignment rule with an offered or a queued 
activity. Assignment rules, however, cannot be associated with automatic 
activities, subprocess activities, the First activity, or the Last activity, because none 
of these activities are performed by a user.

Assignment Rules During Process Execution
During development, you use the Process Definition Workshop to an associate 
assignment rule with a process, or with offered or queued activities. At runtime, 
the engine invokes the assignment rule’s Evaluate method to check each user’s 
profile against the rule. (The user profile is constructed when a user opens a session 
with the engine from a client application.) 

Multiple versus Single Instance Assignment Rules
The iIS engine allows for two implementations of assignment rules: single instance 
and multiple instance. 

Single instance An assignment rule is shared among all activities and process 
definitions that refer to it. Single instance assignment rules have the advantage of 
requiring less engine memory, and any service objects accessed need only be 
referenced once. To provide effective sharing, the engine ensures that there is only 
one concurrent execution of the Evaluate method. Depending on your process 
design and load conditions, this may improve or degrade your engine’s overall 
performance, as compared to a multiple instance implementation.

Multiple instance An assignment rule has a separate instance created for each 
activity that refers to it. Because each activity has a private instance of the rule, 
there can be multiple concurrent executions of the Evaluate method. However, this 
will consume more memory, as compared to a single instance implementation.

Process Instance Creation
The engine verifies that a user is authorized to create an instance of a process by 
checking the process assignment rule (or rules) against the user’s profile, much the 
same way as it does for activities, as explained in the following sections.



About Assignment Rules

120 iPlanet Integration Server • Process Development Guide • August 2001

Offered Activities
When a process instance is created, its First activity completes automatically. This 
activity typically routes to one or more activities in the process definition that 
require work to be done by a user. For example, in the insurance claim example 
described on page 117, the First activity routes directly to the initial processing 
activity performed by the receiving clerk. This activity is an offered activity. 

When an offered activity reaches a READY state, the engine uses the activity’s 
assignment rule or rules to evaluate the user profile of each active session. 
(Specifically, the engine invokes each assignment rule’s Evaluate method for each 
session’s user profile, and if it returns TRUE, there is a match.) The engine offers 
the activity to the sessions that match any of the assignment rules for the activity. 
When an activity is offered to a session, it is placed on the session’s activity list.

Assignment rules are also evaluated for each new session. When a new user profile 
is validated (when a user opens a new session), the engine checks the user profile 
against every assignment rule of every offered activity that is in a READY state. If 
there is a match, the engine adds the activity to the new session’s activity list.

The associated client application can either retrieve the session activity list to build 
a worklist and display it to the user or respond to activity list update events sent by 
the engine. Typically, both approaches are used.

Queued Activities
When a queued activity reaches a READY state, the engine adds it to a queue of 
READY activities of the same activity name but from many instances of the same 
process definition. The queued activity’s assignment rule or rules are associated 
with the queue, not with an individual instance of the activity.

When a client application requests a queued activity, the engine applies the 
queue’s assignment rules to the session’s user profile to determine if the user is 
permitted to access the queue. Because the queue contains activities from many 
process instances, an assignment rule would not test the value of a process 
attribute or use the name of the person who performed a prior activity in a process 
instance. Therefore, assignment rules associated with queued activities do not 
check process attribute values or linked user information.



Working with Assignment Rules

Chapter 5 Defining Assignment Rule Dictionaries 121

Performance Issues with Assignment Rules
When a system demands high-powered work assignment, you should provide the 
appropriate CPU, network, and database system resources. There might be many 
instances of many process definitions active in the engine at any one time. In a 
large system, many assignment rules might be simultaneously evaluated against 
hundreds of user profiles for thousands of activity instances. Complex assignment 
rules have additional performance impact, as discussed on page 118.

Thus, the performance of the Evaluate method is a prime consideration in a large 
system. References to local user profile and assignment rule objects should be 
favored over references to external services and database queries. 

Working with Assignment Rules
This section describes the series of tasks you are likely to perform when you create 
or update an assignment rule dictionary. It covers the following topics:

• opening the workshop

• creating and editing an assignment rule

• specifying roles

• specifying a list of attributes

• writing Evaluate methods

• saving, compiling, and registering an assignment rule dictionary

Opening the Workshop
This section contains procedures for creating a new assignment rule and opening 
an existing assignment rule from the Repository Workshop (illustrated in the 
following figure).



Working with Assignment Rules

122 iPlanet Integration Server • Process Development Guide • August 2001

Figure 5-2 Opening an Assignment Rule Dictionary in the Repository Workshop

➤ To open the Assignment Rule Workshop to create a new plan

1. From the Repository Workshop, click the New Assignment Rule toolbar 
button, or choose Plan > New iIS Plans > Assignment Rule.

A dialog displays prompting you to name the assignment rule. 

2. Name the assignment rule, and click OK.

A new assignment rule plan opens.

➤ To open the Assignment Rule Workshop for an existing plan

1. From the Repository Workshop, double-click the name of an existing 
assignment rule in the plan list, or select the name of an existing assignment 
rule in the plan list and press Enter, or select the name of an existing 
assignment rule in the plan list and choose Plan > Open.

See Chapter 3, “The Repository Workshop” for more information on the 
Repository Workshop.

New
Assignment Rule 
Dictionary

Existing
Assignment Rule
Dictionary 



Working with Assignment Rules

Chapter 5 Defining Assignment Rule Dictionaries 123

Creating and Editing an Assignment Rule
If you are creating a new assignment rule dictionary, the Assignment Rule 
Workshop opens with a new assignment rule dictionary plan, as shown in the 
following figure: 



Working with Assignment Rules

124 iPlanet Integration Server • Process Development Guide • August 2001

To create a new assignment rule in the dictionary, click the New Assignment Rule 
button at the top left of the toolbar or choose File > New Assignment Rule. The list 
view changes to display the new elements.

As you edit the assignment rule dictionary, be sure to save your changes 
periodically, as described in “Saving Changes” on page 135.

Specifying Assignment Rule Properties
To specify assignment rule properties, select the assignment rule element in the list 
view. The corresponding dialog is displayed on the right. It enables you to enter an 
assignment rule name, specify the number of runtime instances, and write 
comments about the assignment rule.

NOTE If your assignment rules depend upon an extended (rather than 
standard) user profile, you must include the user profile as a 
supplier library to your assignment rule dictionary. This requires 
that the user profile library first be imported into your process 
development library as described in “Including a User Profile as a 
Supplier Library” on page 104. To include the user profile as a 
supplier, click on the Suppliers element in the list view, click the 
Edit Supplier List button (or choose File > Supplier Plans), select the 
library, and click OK.

Properties
dialog



Working with Assignment Rules

Chapter 5 Defining Assignment Rule Dictionaries 125

Name Specifies a name for the assignment rule. 

Instances Indicates whether you want single or multiple instances of the 
assignment rule at execution time. The default is multiple. For more information, 
see “Multiple versus Single Instance Assignment Rules” on page 119.

Comments Allows you enter internal comments about the assignment rule, 
which may be useful to other developers. 

Specifying Roles
The roles your users can assume are defined in your organization database, which 
must be set up or already exist at your site. Your application system designer 
defines a ValidateUser method in the Validation Workshop that retrieves and 
verifies roles from this database for a user. (For more information on validations, 
see Chapter 8, “Defining Validations.”)

The default behavior of an assignment rule’s Evaluate method is to compare the 
role or list of roles you specify for an assignment rule in this workshop to the role 
or list of roles in a user’s profile. If there is at least one match between the 
assignment rule’s roles and the user’s profile roles, the result is TRUE, and the 
activity is placed on the corresponding session’s activity list. If you only specify 
roles and do not write your own Evaluate method, you get this default Evaluate 
behavior.

Role names used in this default behavior are not case sensitive. For example, the 
following role names are equivalent: AreaManager, AREAMANAGER, 
areamanager. Spaces are not allowed.

You can specify a single role or a list of roles. What you specify depends on how 
you expect this assignment rule to be applied. There are a number of ways you can 
specify that the engine check a user profile against a list of roles:

• Create multiple assignment rules in this dictionary, each specifying a single 
role. Then in the Process Definition Workshop, the process developer picks 
from this list of assignment rules, associating several with a given activity.

• Specify multiple roles for each assignment rule in the dictionary, tailoring the 
rule to be used for a given activity or set of activities. The process developer 
associates the appropriate assignment rule with a given activity. This approach 
provides a clearer display in the Process Definition Workshop and results in 
better engine performance.



Working with Assignment Rules

126 iPlanet Integration Server • Process Development Guide • August 2001

➤ To specify roles for an assignment rule

1. Choose the Roles element of the assignment rule in the list view.

The Roles dialog is displayed on the right: 

2. Click Add add a new role. 

3. In the New Role dialog, enter the name of a role. 

Be sure to enter the name correctly—it must match the name in your 
organization database.

4. Click OK.

5. Repeat 2 through 4 for each role you want to add.

➤ To delete roles from an assignment rule

1. Choose the Roles element of the assignment rule in the list view.

2. In the Role list dialog, if there is more than one role in the list, highlight the role 
you want to delete. 

3. Click Delete (or choose Edit > Delete).

Roles dialog

New Role 
dialog



Working with Assignment Rules

Chapter 5 Defining Assignment Rule Dictionaries 127

Specifying Object Attributes 
If you need to reference a service object in an Evaluate method, you can define an 
object attribute which references the service object and serves as a handle to it. To 
define such an attribute, click the New button. A dialog opens, prompting you for 
the name and class type of the new object attribute. The class type should be the 
same as the service object you are referencing, and it’s definition must be included 
as a supplier library to your assignment rule dictionary plan. 

For information on accessing service objects from process definition methods, see 
“Writing Code that Accesses iPlanet UDS Service Objects” on page 276. For more 
information on object attributes, see “Saving a Handle to a Service Object” on 
page 285.

Defining an Evaluate Method
As mentioned in “Specifying Roles” on page 125, an Evaluate method has the 
default behavior of finding the intersection of a user profile’s list of roles and an 
assignment rule’s list of roles. If there is at least one role in the user profile that 
corresponds to a role in the assignment rule, the method returns TRUE, indicating 
that the engine can place the activity on the corresponding session activity list. If 
there is no match, the method returns FALSE. (See “Understanding the Evaluate 
Method” on page 130 for a fuller description of the method.)

If you want an assignment rule to behave differently, you must write a custom 
Evaluate method. As with all methods in the process definition workshops, you 
write this method in iPlanet UDS’s TOOL language. (For a description of TOOL, 
see the “An Introduction to The TOOL Language” on page 288.)

Using the Method Definition Dialog

➤ To use the Evaluate Method Definition Dialog

1. Choose the Evaluate method element in the list view.

The Method definition dialog is displayed: 



Working with Assignment Rules

128 iPlanet Integration Server • Process Development Guide • August 2001

Figure 5-3 Evaluate Method Definition Dialog

2. If you want your Evaluate method to access process attributes, click the 
Attributes button to display the attribute access list, then see the next section, 
“Specifying Process Attributes.”

3. Enter your TOOL code in the method edit field below the Evaluate method 
declaration.

Specifying Process Attributes
You can specify one or more process attributes to use in your Evaluate method. The 
process attributes you specify here must be defined in each process definition 
which uses this assignment rule. (For more information on defining process 
attributes, see “Defining Process Attributes” on page 194.)

For example, an alternative to the routing used in the expense report 
reimbursement process, illustrated in Figure 5-1 on page 117, would be to employ 
process attributes to determine who reviews an expense report. Suppose, in the 
Review Expense activity, that if the expense amount is under $1,000, the user 
performing this activity can be a Manager, but if it is over $1,000, the user must be a 
Director. The process definition stores the expense report amount in the 
TotalAmount process attribute. To determine the amount claimed in the expense 
report, the Evaluate method must be able to read the TotalAmount process 
attribute and test for the appropriate roles.

Method 

Attribute 

Method 

dialog
definition 

access

edit field

list



Working with Assignment Rules

Chapter 5 Defining Assignment Rule Dictionaries 129

If you want your Evaluate method to access one or more process attributes, click 
the Attributes button to display the attribute access list.

To add a process attribute, click the Add button. A dialog opens, prompting you 
for the name of the attribute, its type, and the type of lock request when the 
Evaluate method accesses the attribute.

Name Enter the name of a process attribute that is defined in every process 
definition that uses this assignment rule. Process attribute names are case sensitive; 
the attribute must exactly match the definitions of the process attribute in the 
process definitions.

Type Choose a data type that matches that of the defined process attribute. You 
can choose from the drop list. The data types for process attributes are described in 
“Process Attribute Data Types” on page 270.

Lock type Choose the type of lock request that is sent to the engine when the 
Evaluate method is executed. You can choose from the drop list. The lock types for 
process attributes are described in “Specifying Lock Types” on page 268.

NOTE If this assignment rule is applied to a queued activity, any process 
attributes you specify are ignored by the engine because the 
assignment rule is attached to the queue and cannot read process 
attribute values for an individual process instance.



Working with Assignment Rules

130 iPlanet Integration Server • Process Development Guide • August 2001

Understanding the Evaluate Method
In the Evaluate method definition dialog shown in Figure 5-3 on page 128, you can 
see the declaration for the Evaluate method. The method syntax is:

This method is executed by the engine, which passes in all the parameters when it 
invokes the method. For more information on how the engine uses this method, 
refer to “Assignment Rules During Process Execution” on page 119.

The method returns TRUE or FALSE, indicating whether the user profile matched 
the criteria being checked by the method.

subject parameter
The subject parameter is the user profile object of the session being evaluated. The 
UserProfileIFace type represents the user profile defined in the User Profile 
Workshop and registered with the iIS engine. 

The following user profile methods are some of the more useful ones to use in 
writing an Evaluate method. These methods are described in more detail in 
“UserProfile Class” on page 106.

Evaluate (subject=UserProfileIFace, attribAccessor=AccessAttribIFace, linkedUser=string, 
otherInfo=string)

Returns boolean

Parameters Required? Input Output

subject ● ●

attribAccessor ● ●

linkedUser ● ●

otherInfo ● ●

Method Parameters Returns Purpose

GetRoles none Array of 
TextData

Returns the roles associated with the 
user profile.

GetUserName none string Returns the name of the user 
associated with the user profile.



Working with Assignment Rules

Chapter 5 Defining Assignment Rule Dictionaries 131

attribAccessor parameter
The attribAccessor parameter is an attribute accessor for the Evaluate method’s 
attribute access list specified in the method edit dialog, described under 
“Specifying Process Attributes” on page 128. For information on how to use this 
parameter see “Working with Process Attributes” on page 269.

linkedUser parameter 
The linkedUser parameter is the user name of the user who completed another 
activity that has been linked to this one. Activities are linked in the Process 
Definition Workshop, and described in “Activity Links” on page 167. It is the 
Evaluate method that gives meaning to the link: the process developer must not 
only link the two activities, but must also associate an assignment rule with the 
activity containing the link. (See “Evaluate Method Example: Linked Activity 
(linkedUser)” on page 134.) 

GetOtherInfo none string Gets the value of any auxiliary 
(otherInfo) information stored for this 
user profile object, such as the name 
of the user’s manager. 

CompareRoles objectRoles=Array 
of TextData

integer Tests the relationship between a role 
or list of roles associated with the 
current user and the role or list of 
roles in the objectRoles array of roles. 
The return value is used to indicate 
whether the current user’s roles are 
subordinate to, superior to, or have 
some other relationship to the 
objectRoles array of roles.

IsEqualRoles objectRoles=
Array of TextData

boolean Tests to see if a role or list of roles 
associated with the current user is 
equal to the role or list of roles in the 
objectRoles array of roles.

IsIntersectRole
s

objectRoles=
Array of TextData

boolean Tests to see if at least one of the roles 
of the current user is equal to at least 
one of the roles in the objectRoles 
array of roles.

IsSubsetRoles objectRoles=
Array of TextData

boolean Tests to see if all the roles of the 
current user are in the objectRoles 
array of roles.

Method Parameters Returns Purpose



Working with Assignment Rules

132 iPlanet Integration Server • Process Development Guide • August 2001

otherInfo parameter 
The otherInfo parameter is information that is passed, along with the linkedUser 
parameter, to the Evaluate method from a linked activity. The information passed 
in the otherInfo parameter is provided by the user profile of the user who 
performed the linked activity, in the same way as is the user name. For this 
information to be available, however, it must be placed in the user profile (see 
“SetOtherInfo” on page 113), by the ValidateUser method executed when the user 
logs in to the engine to open a session. The interpretation of otherInfo is 
determined by the system design—the interaction of the Evaluate method, the user 
profile, and the process definition—hence, the rather vague name. (See “Evaluate 
Method Example: Linked Activity (otherInfo)” on page 134.) 

Using the Evaluate Method
When you write an Evaluate method you override the default Evaluate 
implementation. However, if you want to write logic that adds to the default 
implementation, rather than replace it, you can invoke the default implementation 
first. For example you can write the following code:

In this case the method first checks the subject against the roles specified for the 
assignment rule (the default implementation), and only continue if the default 
returns TRUE.

Accessing the role list
In writing your Evaluate method, you may need to access the assignment rule’s list 
of roles, described in “Specifying Roles” on page 125. The role list is a TextData 
array attribute named “roles” that can be referenced in code either as “self.roles” or 
by using the internal GetRoles method, which returns an array of “roles.” For 
example:

return user.IsEqualRoles(self.GetRoles());

if super.Evaluate(subject, attribAccessor, linkedUser, otherInfo)
then 
. . . ; --put additional code in here.

end if;



Working with Assignment Rules

Chapter 5 Defining Assignment Rule Dictionaries 133

Extended user profile
If you have an extended user profile, and you want your Evaluate method code to 
access extended user profile attributes, you have to cast the subject parameter to 
your extended user profile type. For example, if your extended user profile class 
type is ExtendedUserProfile, you would write code similar to the following:

Evaluate Method Example: Checking Process Attributes
The section “Specifying Process Attributes” on page 128 describes an employee 
expense report process in which there is a Review Expense activity for approving 
an expense. Its Evaluate method checks the total amount of the expense. If it is 
under $1,000, the user performing this activity must be a Manager. If it is over 
$1,000, the user must be a Director. 

The process definition stores the claim amount in the TotalAmount process 
attribute. To determine the amount claimed in the expense report, the Evaluate 
method must be able to read the TotalAmount process attribute and check for the 
appropriate roles.

You can enter the following code in the method edit dialog to implement the 
Evaluate method: 

This example accesses the TotalAmount process attribute directly using a virtual 
attribute. For more information on using process attributes in process definition 
methods, see “Working with Process Attributes” on page 269.

MySubject : ExtendedUserProfile;
MySubject = (ExtendedUserProfile)(subject);
return (MySubject.attribute = ImportantAssignmentRuleCriteria);

checkRoles : Array of TextData = new();
if TotalAmount < 1000 then
  checkRoles.AppendRow(TextData(Value = ’Manager’));
else
  checkRoles.AppendRow(TextData(Value = ’Director’)); 
end if;
return subject.IsIntersectRoles(checkRoles);



Working with Assignment Rules

134 iPlanet Integration Server • Process Development Guide • August 2001

Evaluate Method Example: Linked Activity (linkedUser)
The section “About Assignment Rules” on page 115 discusses an example in which 
a user in the role of Employee started the Expense Report process by submitting an 
expense report to his or her manager. If the manager rejects the expense report, 
then the Revise Expense activity should be performed by the employee who 
originally submitted the expense report.

To implement this scenario, link the Revise Expense activity to the user who 
started the process. By definition, the user who completed the First activity is the 
user who started this process instance. Therefore, the process developer links the 
Revise Expense activity to the First activity (see “Activity Links” on page 167 and 
“Setting an Activity Link” on page 199).

For the link to have the intended meaning, the process developer must also attach 
to Revise Expense an assignment rule whose Evaluate method checks to see if the 
user who completed First (passed in as the linkedUser parameter), has the same 
user name as the user profile object associated with the session currently being 
evaluated. If so, the user of that session gets the Revise Expense activity.

The code you enter in the method definition dialog is: 

return subject.GetUserName() = linkedUser;

Notice that this code is generic. You can use this assignment rule for any activity 
that needs to link in the same way.

Evaluate Method Example: Linked Activity (otherInfo)
A case that is a bit more complicated than the preceding example is when the user 
who performs an activity is not the same user who performed a linked activity, but, 
say, the manager of that user.

It would be possible for an Evaluate method to perform a lookup in the 
organization database to find the manager of linkedUser. However, this lookup 
would have to be performed and compared to the user profile of each session being 
evaluated. A more efficient approach is to perform that lookup only once, when 
authenticating each user, and adding the manager’s name to the user profile using 
a user profile method called SetOtherInfo.

When you link one activity to another, both the linkedUser and otherInfo 
parameters are passed to the Evaluate method of the successor activity. 



Working with Assignment Rules

Chapter 5 Defining Assignment Rule Dictionaries 135

In the example discussed in “About Assignment Rules” on page 115, if you want 
the Review Expense activity to be performed by the manager of the person who 
completed the First activity, you first set otherInfo to the user’s manager in the 
ValidateUser method (see “Writing a ValidateUser Method” on page 246), and 
then enter the following code in the method definition dialog:

You can use this type of assignment rule for any condition you represent by the 
otherInfo parameter.

Saving and Compiling an Assignment Rule 
Dictionary
As you work on assignment rules, it is a good idea to save the dictionary regularly. 
If you write your own Evaluate method, you can compile it to see if the code is 
correct. 

Saving Changes
As you edit an assignment rule, be sure to save your changes periodically (choose 
File > Save All). When you save changes, the current assignment rule dictionary is 
updated in your workspace.

if super.Evaluate(subject, attribAccessor, linkedUser, otherInfo)
then return subject.GetOtherInfo() = otherInfo;

else
return FALSE;

end if;

Plan: ERAR • Class: MgrOfLinkedUser • Method: Evaluate

NOTE If you have any other workshops open for editing, they are saved at 
the same time. 



Working with Assignment Rules

136 iPlanet Integration Server • Process Development Guide • August 2001

Compiling an Assignment Rule Dictionary
If you write custom Evaluate methods, you may want to compile the dictionary 
each time you finish a method to ensure that your code is correct. To compile, 
choose File > Compile. iIS generates TOOL code from the assignment rule 
dictionary and compiles it, saving the resulting TOOL code in a read-only file that 
has the extension _AR. (This file is a by-product of the compile process: you do not 
use it.)

If there are compilation errors, iIS displays them for you. You can then return to the 
workshop, fix the errors in your TOOL code, and recompile.

Making and Registering an Assignment Rule 
Dictionary
When you have completed all the assignment rules for a dictionary and are ready 
to use the rules in an engine, you make the dictionary into a library distribution 
and register it with one or more engines.

To perform these operations, choose File > Distribute to open the Distribute 
Options dialog:

The File > Distribute command performs a compile operation if this option is 
enabled, then uses the resulting TOOL project to make a library distribution. The 
Generate Project field shows you the name of the generated TOOL project. You can 
enter another name if you like. 

TIP If too many of these generated files clutter your list of plans in the 
Repository Workshop, you can filter them by setting the Filter drop 
list to iIS Plans. (Figure 5-2 on page 122 shows the Repository 
Workshop with the filter set this way.)



Creating New Versions of an Assignment Rule Dictionary

Chapter 5 Defining Assignment Rule Dictionaries 137

To register the resulting library distribution with an engine, enable the Register 
option. If the Register option is enabled, you are prompted with a list of engines. 
Choose the engines you want to register with, then click OK. The library 
distribution is saved in the FORTE_ROOT/appdist directory on the central server 
node in your iIS system.

If the engine you want to register with is not available in your environment, copy 
the generated library from your FORTE_ROOT/appdist directory to the remote 
environment. Then use the iIS Console to register the distribution. Refer to the iIS 
Process System Guide for more information.

Creating New Versions of an Assignment Rule 
Dictionary 

Assignment rules are the design elements you are most likely to change. You may 
want to add new conditions to an existing rule or rules, or add completely new 
assignment rules. If your changes require new process attributes or an extension to 
the user profile, the impact of the change can be far reaching. 

For example, if your changes require new, currently undefined process attributes, 
then all process definitions using the new assignment rules have to be modified to 
include the attribute definitions and registered again with your engine. Possibly, 
some client applications creating instances of the process definitions have to be 
revised and redeployed as well.

If the modification in assignment rules requires an extension to the user profile or 
a change in an extended user profile (see “Extended vs. Standard User Profile” on 
page 94), then almost all your design elements are affected. The user profile, 
validation, and assignment rule dictionaries have to be modified and reregistered 
with your engine. In addition, the login code of client applications may need to be 
modified and the client applications redeployed.

NOTE The node hosting an iIS process engine must be online and the 
engine running in your environment before you can perform a 
registration with that engine.



Creating New Versions of an Assignment Rule Dictionary

138 iPlanet Integration Server • Process Development Guide • August 2001

If these changes can be implemented in a monolithic upgrade of your iIS enterprise 
application, then your assignment rules need support only the current user profile. 
In a monolithic upgrade you shut down all sessions and unregister the old versions 
of user profile and assignment rule dictionaries—or shut down your engine to 
perform the changeover—and then reregister the new versions of iIS distributions.

However, if you need to perform a rolling upgrade of your iIS enterprise 
application, as described in “Multiple User Profiles: Rolling Upgrades” on page 95, 
it might be necessary for your assignment rules to support more than one user 
profile. If this is the case, then your Evaluate methods must include a “case” 
statement or an “if” statement that references more than one user profile. 

For example, if two user profiles of class type UserProfile1 and UserProfile2 have 
been registered with an engine, you might have code similar to the following code 
fragment:

profile1 : UserProfile1 = new;
profile2 : UserProfile2 = new;
if user.IsA(UserProfile1) then
profile1 = (UserProfile1)(user); --cast to UserProfile1
. . .  --perform evaluation on profile1

else
profile2 = (UserProfile2)(user); --cast to UserProfile2
. . .  --perform evaluation on profile2

end if;

NOTE All user profiles referenced should be included as supplier libraries 
to your assignment rule dictionary (see “Creating and Editing an 
Assignment Rule” on page 123).



Creating New Versions of an Assignment Rule Dictionary

Chapter 5 Defining Assignment Rule Dictionaries 139

How to Modify an Assignment Rule Dictionary
The following guidelines describe how to modify, add, or delete assignment rules 
under a number of scenarios:

Modifying an Existing Assignment Rule

➤ To modify an assignment rule that does not require changes in the user profile 
or process attributes

1. Modify the rule.

2. Register the modified assignment rule dictionary with the engine. 

3. Make no change in process definitions. 

➤ To modify an assignment rule that requires a change in process attributes

1. Create a newly named assignment rule in addition to the old one and register 
the modified assignment rule dictionary with the engine (so that both the old 
and the modified assignment rule dictionaries are registered).

2. For each process definition that uses the old assignment rule, create a newly 
named process definition that has the new process attribute list and activities 
that use the new assignment rule, and register each new process definition 
with the engine (so that both the old and new process definitions are 
registered).

3. For client applications that create instances of the old process definitions, 
modify the code to create instances of the new process definitions and deploy 
the modified client applications.

NOTE If you can perform a monolithic upgrade, then you do not need to 
rename anything in the above steps, and you do not need to modify 
the client applications.



Creating New Versions of an Assignment Rule Dictionary

140 iPlanet Integration Server • Process Development Guide • August 2001

➤ To modify an assignment rule that requires an extended user profile or a change 
in an extended user profile (see Chapter 7, “Creating Process Definitions”)

1. Create a newly named user profile with the required changes and register the 
new user profile with the engine.

2. Modify the assignment rule (and all other assignment rules) to accommodate 
the new user profile and register the modified assignment rule dictionary with 
the engine. (Normally the assignment rules are modified to be able to use both 
the new and old user profile.)

3. Modify the validation to accommodate the new user profile and register it with 
the engine. (Normally the validation is modified to be able to use both the new 
and old user profile.)

4. For each client application that performs activities associated with the 
modified assignment rule dictionary, modify the login code to invoke the new 
user profile and deploy the modified client applications.

Adding a New Assignment Rule

➤ To add a new assignment rule that does not require a modification in the user 
profile or process attributes

1. Add the new assignment rule to the assignment rule dictionary.

2. Register the modified assignment rule dictionary with the engine. 

3. Make no change in process definitions. 

NOTE If you can perform a monolithic upgrade, then you do not need to 
accommodate the old user profile (as well as the new one) in either 
assignment rules or validation.



Creating New Versions of an Assignment Rule Dictionary

Chapter 5 Defining Assignment Rule Dictionaries 141

➤ To add a new assignment rule that requires a change in process attributes

1. Add the new assignment rule to any assignment rule dictionary and register 
the modified assignment rule dictionary with the engine (so that both the old 
and modified assignment rule dictionaries are registered).

2. For each process definition that requires the new assignment rule, create a 
newly named process definition that has the new process attribute list and 
activities that use the new assignment rule, and register each new process 
definition with the engine (so that both the old and the new process definitions 
are registered).

3. For client applications that create instances of the old process definitions, 
modify the code to create instances of the new process definitions and deploy 
the modified client applications.

➤ To add a new assignment rule that requires an extended user profile or a change 
in an extended user profile (see Chapter 7, “Creating Process Definitions”)

1. Create a newly named user profile with the required changes, and register the 
new user profile with the engine.

2. Add the new assignment rule to the assignment rule dictionary, modify all 
other assignment rules to accommodate the new user profile, and register the 
modified assignment rule dictionary with the engine. (Normally the 
assignment rules are modified to be able to use both the new and old user 
profile.)

3. Modify the user validation to accommodate the new user profile and register it 
with the engine. (Normally the user validation is modified to be able to use 
both the new and old user profile.)

4. For each client application that performs activities associated with the 
modified assignment rule dictionary, modify the login code to invoke the new 
user profile and deploy the modified client applications.

NOTE If you can perform a monolithic upgrade, then you do not need to 
rename anything in the previous steps, and you do not need to 
modify the client applications.

NOTE If you can perform a monolithic upgrade, then you do not need to 
accommodate the old user profile (as well as the new one) in either 
assignment rules or user validation.



Creating New Versions of an Assignment Rule Dictionary

142 iPlanet Integration Server • Process Development Guide • August 2001

Deleting an Existing Assignment Rule

➤ To delete an assignment rule that is not used by any process definitions

1. Delete the assignment rule and register the modified assignment rule 
dictionary with the engine.

2. Make no change in process definitions. 

➤ To delete an assignment rule that is used by process definitions

1. Delete the assignment rule and register the modified assignment rule 
dictionary with the engine (so that both the old and modified assignment rule 
dictionaries are registered).

2. Modify each process definition that uses the old assignment rule (so that it uses 
a different assignment rule) and register the modified process definitions with 
the engine.

Registering a New Version of an 
Assignment Rule Dictionary
When you register a new version of an assignment rule dictionary with an engine 
that has an older version already registered, the new version is retroactively 
applied to all existing offered and queued activities, as described in the following 
sections. 

Offered Activities
The new version of assignment rules take effect immediately. In addition, offered 
activities that became READY prior to registering the new version are re-evaluated, 
and offered to sessions once again, based on the new assignment rules. The old 
versions of any assignment rules included in the new assignment rule dictionary 
are automatically unregistered.



Creating New Versions of an Assignment Rule Dictionary

Chapter 5 Defining Assignment Rule Dictionaries 143

Queued Activities
Queued activities work differently from offered activities because their assignment 
rules apply to the queue and not to individual activities:

• An activity queue is first created because an instance of a queued activity 
becomes READY. That activity’s assignment rules become the queue’s 
assignment rules.

A queue will also be created if a client application requests an activity from a 
queue which has not yet been created.

• If a new version of an assignment rule dictionary is registered that has one or 
more of an existing queue’s assignment rules in it, the queue’s assignment 
rules are updated. Sessions which accessed activities in the queue prior to 
registering the new version might no longer have access to the queue.

The old versions of any assignment rules included in the new assignment rule 
dictionary are automatically unregistered.

There is an additional, related consideration for queued activities in the case where 
a new version of a process definition containing the same queued activity, but with 
different assignment rules, is registered. When the new queued activity becomes 
READY, the new assignment rules are attached to the existing queue, replacing the 
previous assignment rules.

Even if there are activities in the queue that used the old assignment rules, the 
queue is now accessed with the new set. For example, if the old queued activity 
had an assignment rule that made it accessible to managers, and the new activity 
has that rule replaced with one for vice presidents, once the queued activity from 
the newly registered process definition becomes READY, only vice presidents 
would be permitted to get activities in the queue. 

NOTE If you are making a radical change in access to a queued activity 
when you modify a process definition, you may want to rename the 
activity in the revised process definition and change the client 
applications that access the activity to use the new activity name.



Creating New Versions of an Assignment Rule Dictionary

144 iPlanet Integration Server • Process Development Guide • August 2001



145

Chapter 6

Defining Application Dictionaries

This chapter discusses application dictionaries and describes how to use the 
Application Dictionary Workshop to define them.

For a general description of how application dictionary entries are used in an iIS 
process management system, see “Application and Process Logic” on page 41.

For a description of how to add an application dictionary entry to an activity, see 
“Working with Offered Activities” on page 197.

This chapter covers the following topics:

• description of application dictionaries

• using the Application Dictionary Workshop

• creating new versions of an application dictionary

About Application Dictionaries
An application dictionary is a container for a set of application dictionary items. Each 
application dictionary item is a work definition containing information about an 
activity that the iIS process engine sends to a process client application—both 
when the client application first gets its list of available activities (if it is a heads-up 
client application) and when it accepts an activity for a client user to perform. 

The client application uses this work definition to display a description of the 
activity for the user, to automatically start up software programs for the user, and 
to query and update process attributes associated with the activity.



About Application Dictionaries

146 iPlanet Integration Server • Process Development Guide • August 2001

An application dictionary item has the following components:

• activity description—a text description of the activity that the client application 
can display to the user (normally in a “to-do” worklist)

• application code—an arbitrary text string used by the client application, usually 
to start software on the client needed by the user to do the work

• attribute accessor—access to a list of process attributes that the client application 
reads information from or updates as the user works on the activity

• service information—information that allows process activities, with the help of 
an iIS backbone, to access methods on remote applications using SOAP

For example, if the activity is the step in an expense report reimbursement process 
in which a manager has to approve or reject an expense report, the activity 
description might be something like “expense review.” The application code might 
cause the client application to start a program that displays the expense report on a 
database form. The list of process attributes (attribute accessor) might include 
read-only access to an ExpenseReportID attribute and write access to a Status 
attribute. If the application service is being accessed through a proxy in an iIS 
backbone, and that proxy uses SOAP to invoke that service, then the service 
information is needed to access the remote service.

The client application programmer is the person most likely to use application 
dictionary items, since it is the client application that needs this information. The 
application system designer creates an application dictionary to specify high level 
descriptions of client applications that are used in a process management system. 
The application dictionary documents communication between an activity in a 
process definition and the client application used to perform the activity.

Application dictionary items are often associated with more than one activity, 
either in the same or across multiple process definitions. For example, an item that 
describes an Expense Review application might be used for an activity offered to a 
manager and for another activity offered to a departmental director.

When you have defined the set of items for an application dictionary, you save it, 
which writes a copy of it to the repository. Then, in the Process Definition 
Workshop, the process designer adds the application dictionary as a supplier plan 
to the process definition. At that point, the application dictionary items show up in 
the Process Definition Workshop’s Supplier Components list, and the process 
developer can associate the items with the appropriate activities in the process 
definition. See “Working with Offered Activities” on page 197 for more 
information on using application dictionary items in process definitions.



Working with Application Dictionaries

Chapter 6 Defining Application Dictionaries 147

Working with Application Dictionaries
This section describes the series of tasks you are likely to perform when you create 
or update an application dictionary. It covers the following topics:

• opening the workshop

• creating and editing an entry

• specifying an activity description and an application code 

• specifying a list of attributes

• saving and using an application dictionary

Opening the Application Dictionary Workshop
This section contains procedures for creating a new application dictionary and 
opening an existing application dictionary from the Repository Workshop 
(illustrated in the following figure).

Figure 6-1 Opening an Application Dictionary in the Repository Workshop

New 
Application

Existing 
Application

Dictionary

Dictionary



Working with Application Dictionaries

148 iPlanet Integration Server • Process Development Guide • August 2001

➤ To open the Application Dictionary Workshop to create a new plan

1. Click the New Application Dictionary toolbar button, or choose Plan > New 
Process Development Plans > Application Dictionary.

A dialog opens prompting you to name the application dictionary.

2. Name the application dictionary, and click OK.

A new application dictionary plan opens in the Application Dictionary 
Workshop.

➤ To open the Application Dictionary Workshop for an existing plan

1. Double-click the name of an existing application dictionary in the plan list, or 
select the name of an existing application dictionary in the plan list and press 
Enter, or select the name of an existing application dictionary in the plan list 
and choose Plan > Open.

See Chapter 3, “The Repository Workshop” for more information on the 
Repository Workshop.



Working with Application Dictionaries

Chapter 6 Defining Application Dictionaries 149

Creating and Editing an Application 
Dictionary Item
When creating a new application dictionary, the Application Dictionary Workshop 
opens with a new application dictionary plan, as shown in the following figure: 



Working with Application Dictionaries

150 iPlanet Integration Server • Process Development Guide • August 2001

To create a new dictionary item in the application dictionary, click the New 
Dictionary Item button at the top left of the toolbar or choose File > New 
Application Entry. The list view changes to display the new elements.

As you edit the application dictionary, be sure to save your changes periodically, as 
described in “Saving and Using an Application Dictionary” on page 156.

Specifying Application Dictionary Item Properties
To specify application dictionary item properties, select the application dictionary 
element in the list view. The corresponding dialog is displayed on the right. It 
enables you to enter a dictionary item name and write comments about the 
dictionary item.

Specifying a List of Attributes
As described at the beginning of this chapter, along with the activity description 
and the application code, you can specify a set of process attributes to be made 
available to the client application when it gets this activity. This list of attributes is 
sent as a list in an attribute accessor, an object that groups attributes for the client 
application. (For more information on attribute accessors, see the description of 
WFAttributeAccessor in the iIS Process Client Programming Guide.)

Properties
dialog



Working with Application Dictionaries

Chapter 6 Defining Application Dictionaries 151

If the process definition already exists, you can see which attributes are available 
by opening the Process Definition Workshop and looking at the Process Attributes 
list. You can also print a report that lists the attributes and their types from the 
Process Definition Workshop. You can also coordinate with the process developer 
to obtain the names and types of the attributes.

To specify a list of attributes, select the Attributes element in the list view. The 
Attributes dialog displays on the right: 

To add a process attribute, click New. You see a properties dialog that lets you 
enter the name of the attribute, its data type, and the type of lock that is requested 
when the corresponding activity is placed in an ACTIVE state: 

Properties
dialog



Working with Application Dictionaries

152 iPlanet Integration Server • Process Development Guide • August 2001

Name Enter the name of a process attribute that is defined in every process 
definition that uses this application dictionary. Process attribute names are not case 
sensitive—otherwise the attribute name must exactly match the definitions of the 
process attribute in the process definitions.

Type Choose a data type that matches that of the defined process attribute. You 
can choose from the drop list. The data types for process attributes are described in 
“Process Attribute Data Types” on page 270.

Lock type Choose from the drop list the type of lock request that is sent to the 
engine when the Evaluate method is executed. The lock types for process attributes 
are described in “Specifying Lock Types” on page 268.

The accessors associated with the READY state does not lock attributes. This is 
because many client applications might be offered this activity and place it on their 
work lists. Instead, the engine sets a NO_LOCK lock type. When the activity is 
made ACTIVE, the engine sets the locks specified in the dictionary entry. In this 
case, only one client application is getting access to the activity and it needs to be 
able to get and set attribute values accordingly.

A client application gets the accessor associated with a queued activity only once: 
when the activity is taken off the queue and made ACTIVE.

NOTE A client application gets the accessor associated with an offered 
activity twice: once, when the client application is notified that the 
activity has been offered to the user (is in a READY state and placed 
on the session’s activity list) and is available to be added to the 
worklist, and again, when the client application accepts the activity 
to perform it (is made ACTIVE). 



Working with Application Dictionaries

Chapter 6 Defining Application Dictionaries 153

Specifying an Activity Description 
and Application Code
As described at the beginning of this chapter, the activity description is descriptive 
text that the client application can use when it displays the activity to a user.

The application code is a string of characters meaningful to the client application 
that tells the application what program to launch so the user can perform the 
activity. For example, the client application could start a commercial application 
for the user. Another possibility would be to open a data entry screen that is part of 
the client application. In any case, this code is arbitrary and is meaningful only to 
the client application programmer.

The activity description and application code are fixed strings defined in the 
Application Dictionary Workshop; any variable data that must be passed to a client 
application from the engine must be specified as process attributes and passed in 
the list of attributes, as described in “Specifying a List of Attributes” on page 150.

To specify an activity description and an application code for an application 
dictionary item, select the Application Information element in the list view. The 
Application Information panel displays on the right: 

Application 
Information
dialog



Working with Application Dictionaries

154 iPlanet Integration Server • Process Development Guide • August 2001

Application code Enter a code in the appropriately labeled top text entry field. 
The client application must be programmed to understand the meaning of this 
code.

Activity description Enter an activity description that might appear in a client’s 
worklist. Note that even though this edit field is large, it is not a comment field; the 
client application is likely to display all the text you enter.

Specifying Service Information
The Service Information dialog lets you specify information to access remote 
methods available from service applications that implement the Simple Object 
Access Protocol (SOAP). Access to remote services can only be accomplished using 
an iIS backbone containing a proxy configured to use SOAP for messaging. For 
more information on configuring backbone proxies, refer to the iIS Backbone System 
Guide.



Working with Application Dictionaries

Chapter 6 Defining Application Dictionaries 155

To specify service information, select the Service Information element in the list 
view. The Service Information panel displays on the right:

Input and Output Parameters Allows you to add or delete parameters to 
methods available from remote services, and also to change parameter properties. 
Each parameter is associated with a process attribute. If the process attribute has 
not been previously defined in the application dictionary, a new process attribute 
is created for the parameter. If the method returns a value, then the first output 
parameter holds the return value.

Destination The URI for the remote service.

Method Name The name of the method available from the remote service.

Action Specifies the SOAPAction HTTP request header field, which can be used 
to indicate the intent of the SOAP HTTP request.



Working with Application Dictionaries

156 iPlanet Integration Server • Process Development Guide • August 2001

Name Space The URI for the namespace of the method.

Name Space Prefix Any prefix to the namespace. This prefix is used in XML 
message construction. Typically, you do not need to specify a namespace prefix.

Use Type Specification Specifies whether the remote service requires (or is 
tolerant of) the inclusion of parameter type information. Some SOAP 
implementations require this information (or ignore it, if specified), other 
implementations disallow it.

Saving and Using an Application Dictionary
When you have completed work on the application dictionary, you can save it to 
the repository by choosing File > Save All. When you save changes, the current 
application dictionary is updated in your workspace.

You do not need to compile or generate an application dictionary, and you do not 
register it with the engine. To use an application dictionary in a process definition, 
you only have to include it as a supplier plan to the process definition. Any 
application dictionary entries used in the process definition are automatically 
bound into that process definition when it is compiled.

As with any supplier plan, the application dictionary must be in your repository 
and you must have included it as a plan in your workspace. In addition, as with 
any other plan that is being changed at your site, every time an application 
dictionary you use in a process definition is changed and saved to the 
repository—if this change is made outside your workspace—you must update 
your workspace to get the changes. 

If an application dictionary changes, you must go into the Process Definition 
Workshop, recompile the process definition, and register it again with the iIS 
engine. Otherwise the changes do not propagate into the process definition.

NOTE If you have any other workshops open for editing, they are saved at 
the same time. 



Creating New Versions of an Application Dictionary

Chapter 6 Defining Application Dictionaries 157

Creating New Versions of an 
Application Dictionary

Generally speaking, you modify application dictionaries to add new application 
dictionary items in response to an expansion of the application logic domain—that 
is, to include new application functionality within existing processes or for new 
processes. It is also possible, however, that you would modify dictionary items to 
accommodate changes in process attributes.

How to Modify an Application Dictionary
The following guidelines show you how to modify, add, and delete application 
dictionary items under a number of scenarios:

Modifying an Existing Application Dictionary Item

➤ If the modification does not require a change in process attributes

1. Modify the application dictionary item.

2. Make no change in process definitions.

3. Recompile and register with the engine each process definition that uses the 
old application dictionary item.

➤ If the modification requires a change in process attributes

1. Modify the application dictionary item.

2. Modify each process definition that uses the old application dictionary item to 
include the new process attribute list. 

3. Recompile and register each such process definition with the engine.



Creating New Versions of an Application Dictionary

158 iPlanet Integration Server • Process Development Guide • August 2001

Adding a New Application Dictionary Item

➤ If the new application dictionary item does not require a change in process 
attributes

1. Add the new application dictionary item.

2. Make no change in process definitions.

3. Recompile and register with the engine each process definition that uses the 
old application dictionary item.

➤ If the new application dictionary item requires a change in process attributes

1. Add the new application dictionary item.

2. Modify each process definition that uses the new application dictionary item to 
include the new process attribute list. 

3. Recompile and register each such process definition with the engine.

Deleting an Existing Application Dictionary Item

➤ If the application dictionary item is not used by any process definitions

1. Delete the application dictionary item.

2. Make no change in process definitions. 

➤ If the application dictionary item is used by process definitions

1. Delete the application dictionary item.

2. Modify each process definition that uses the old application dictionary item (so 
that it uses a different application dictionary item)

3. Recompile and register each modified process definition with the engine.



159

Chapter 7

Creating Process Definitions

This chapter is an introduction to working with the Process Definition Workshop. 
It picks up where “Application and Process Logic” (Chapter 1, “Fundamentals”) 
stops in its overview of process definitions and their components. This chapter 
describes how to:

• create a process definition

• create the various kinds of activities

• associate an application dictionary item and assignment rules with an activity

• write activity methods and router methods

• connect an activity to other activities and to timers

• save, compile, and register a process definition

The descriptions in this chapter assume that you have read Chapter 1, 
“Fundamentals” and Chapter 2, “Getting Started: the Process Development 
Workshops,” in this manual and have a general understanding of iIS process 
management, the process definition workshops, what a process definition is, and 
how the plans produced by the other workshops are used in a process definition.

About Process Definitions
A process definition is a representation of a business process. You create process 
definitions in the Process Definition Workshop, laying them out graphically as a 
series of connected activity definitions. 



About Process Definitions

160 iPlanet Integration Server • Process Development Guide • August 2001

To these activities you assign application dictionary entries (to connect them to the 
client applications) and assignment rules (that determine which users perform 
them). You connect the activities with routers, optionally writing short methods 
that direct the flow of control—depending, possibly, on the values of process 
attributes that you define. You might also include timers to control the flow of 
process execution.

When you are done, you save the process definition, and compile it into a project. 
You then make a process definition distribution and register it with one or more iIS 
process engines. An engine creates instances of the process definition and tracks 
the work defined by it.

Process definitions are composed of activities and timers that are linked in 
meaningful ways by routers. A process definition looks something like a flow 
diagram, as shown in Figure 7-1. A process definition also has a set of properties, 
which you set in its property inspector. For a discussion of how to set process 
definition properties and what they mean, see “Working with Process Definitions” 
on page 192.

The following discussion briefly describes the elements of a process definition. 
These are discussed in further detail later in this chapter.



About Process Definitions

Chapter 7 Creating Process Definitions 161

Figure 7-1 Elements of a Process Definition

Activities
A typical process definition is composed primarily of activities that represent 
sequenced units of work performed by the process. There are two primary kinds of 
activities—offered activities and queued activities—and a number of other special 
purpose activities:

• offered activity (described on page 167)

An activity that the engine offers to all users who, according to the assignment 
rules associated with the activity, are qualified to perform the activity. 

ProcessApplication dictionary
items

Assignment rules

Subprocess

Queued Automatic

Offered

Timer

Router

Timer control

activity

activity

activity activity attributes



About Process Definitions

162 iPlanet Integration Server • Process Development Guide • August 2001

• queued activity (described on page 167)

An activity that the engine stores in a queue. The queue can be accessed by all 
users who are qualified to perform the activity by the assignment rules 
associated with the activity.

• subprocess activity (described on page 169)

An activity that represents a process definition. It passes control to another 
process definition to perform a complex set of activities, much like a method 
call. Subprocesses are either performed synchronously or in parallel with the 
invoking (parent) process.

• automatic activity (described on page 170)

An activity performed by the engine rather than a user. The engine executes a 
method—and might invoke a service object—depending on how you define 
the activity.

• junction activity (described on page 171)

An activity used to improve the layout of activities in the Process Definition 
Workshop by representing a joining or splitting of routers. A junction activity 
is not performed by a user.

• First activity (described on page 172)

The first activity in a process definition. The First activity represents the 
starting point of a process instance. 

• Last activity (described on page 173)

The last activity in a process definition. The Last activity causes the termination 
of a process instance.

A process definition must contain a First activity, required as the initial activity in a 
process and a Last activity, required as the final activity. The Process Definition 
Workshop automatically inserts a First activity and a Last activity when it creates a 
new process definition.

Timers
A process definition can also contain timers, objects that can be set for a duration of 
time (elapsed timer) or with a deadline (deadline timer), usually to ensure that 
activities are completed on time. For example, in the Expense Report process 
definition shown in Figure 7-1, if expense reports reimbursements must be handled 



About Process Definitions

Chapter 7 Creating Process Definitions 163

by an auditor within a set time limit, an elapsed timer could be started when that 
activity becomes ACTIVE. If the timer expires (for example, after 2 days), it can 
trigger an activity that specifies a corrective action, or it can raise the priority of 
that expense report.

Timer Controls
Activities that control timers are connected to the corresponding timers through 
timer controls. These controls let an activity turn a timer on or off or reset it, 
depending on the state of the activity. Unlike routers, a timer control does not route 
process control to an activity. 

Routers 
Activities are connected with routers, lines that represent where control passes 
when the current activity completes. Control can pass to any number of activities 
simultaneously or to certain activities depending upon process conditions 
specified in router methods. A timer, when it expires, can also pass control to an 
activity through a router. Although you draw routers between activities separately 
from defining the activities themselves, you should regard routers as an extension 
of the activity or timer from which they emerge, since they represent the last 
processing elements of the activity or timer.

Activity Links
Activities can be linked to other activities through activity links. Information about 
the user of another activity is captured and passed to the referencing activity. For 
example, an activity link lets an assignment rule specify that one activity is 
performed by the same user who performed the linked activity, or by a user related 
in some specified way to the user who performed the linked activity.

Process Attributes
A process definition contains process attributes, which are variables that are global 
to a process instance and contain data that is meaningful to the process definition 
and to the activities in the process. Process attribute values are typically used in 
routing logic. For example, in an Expense Report process definition, you can define 
a process attribute to store the expense report reimbursement amount, which 
might affect who has to approve an expense report reimbursement request. 



About Process Definitions

164 iPlanet Integration Server • Process Development Guide • August 2001

Suppliers
A process definition requires assignment rules and application dictionary items 
supplied from the corresponding supplier plans. These design elements are 
normally created by an application system designer before you create a process 
definition that uses them. When used in a process definition, the system 
automatically checks that any process attributes referenced by the supplier are also 
defined in the process definition.

About Activities
An activity definition is the specification of an activity in a process definition. 
Because the different types of activities (offered, queued, automatic, and 
subprocess) perform such varied tasks, they have different properties, different 
methods associated with them, and different assignment rules and application 
dictionary items associated with them.

“Application and Process Logic” on page 41 has an overview of how assignment 
rules and application dictionary items are used with activities. In general, these 
elements are used with activities that are performed by users of client applications 
(offered and queued activities). An assignment rule specifies who can perform the 
activity, and an application dictionary item sends information to the client 
application about what the activity is and the program used to perform it. An 
application dictionary item can also optionally send a set of process attributes that 
the client application can view and use. For more information on assignment rules, 
see Chapter 5, “Defining Assignment Rule Dictionaries.” For application 
dictionaries, see Chapter 6, “Defining Application Dictionaries.”

Activity States
As an activity is reached in a process instance’s flow of control, the engine takes it 
through a series of states, as shown in Figure 1-5 on page 44. The states an activity 
can go through are described in the following table:

State Description

PENDING In this state a Trigger method is executed to determine if all the 
conditions needed for the activity to be performed have been met. If 
there are multiple routers coming into an activity, the Trigger method 
might let the first activated router make the activity READY, or it might 
hold the activity in PENDING state until all the routers are activated 
(until all required activities are complete). When the Trigger method 
returns TRUE, any Ready method defined for the activity is executed.



About Process Definitions

Chapter 7 Creating Process Definitions 165

Activity Methods
An activity can contain various methods that control when the activity becomes 
READY and what to do internally when an activity changes state—for example 
when the associated work is completed, if the activity is aborted, and so on. You 
create these methods in iPlanet UDS’s TOOL language, using the editors or code 
generators provided in the Process Definition Workshop.

An important purpose of these methods is to control routing. A Trigger method 
controls the conditions under which an activity leaves the PENDING state. The 
OnActive, OnComplete, and On Abort methods control what happens when their 
respective states are reached. In addition, there are router methods, that control 
which activated routers pass control to successor activities. It is not necessary for 
you to write any of these methods to get basic routing functionality. If you draw 
routers coming into an activity and going out of one, default router and trigger 
methods are executed automatically.

Some of the methods use common sets of process attributes. For example, the 
Trigger and Ready methods share the same set of process attributes, and the 
OnComplete method and the OnComplete router methods share another set. 
Changing the process attributes for one method changes the set of attributes for the 

READY If the activity is an offered or a queued activity, assignment rules are 
evaluated to determine which users should be permitted to perform the 
activity. 

ACTIVE In this state, an offered or queued activity’s work is performed by the 
user of a client application. An automatic activity calls its OnActive 
method, which often executes a program. A subprocess activity calls a 
subprocess. 

COMPLETED If an activity completes successfully, it goes to COMPLETED state and 
executes its OnComplete method, and then activates one or more 
OnComplete routers, indicating the next activity (or activities) to be 
performed. Each activated router executes a corresponding router 
method that determines if the conditions have been met for its successor 
activity to be performed.

ABORTED If an activity fails, it goes to ABORTED state and executes its OnAbort 
method, then activates one or more OnAbort routers, indicating the next 
activity (or activities) to be performed. Each activated router executes a 
corresponding router method that determines if the conditions have 
been met for its successor activity to be performed.

State Description



About Process Definitions

166 iPlanet Integration Server • Process Development Guide • August 2001

associated method or methods. The Process Definition Workshop limits where and 
how you can set process attributes for these kinds of methods to ensure that as you 
are setting the attributes of one method, you do not unknowingly change the 
attributes of another.

The following table summarizes the activity methods:

The router methods determine whether a router is used and shares process 
attributes with the associated OnComplete or OnAbort activity method (see 
previous table). For more information on router methods, see “About Routers” on 
page 178.

Method Description

Trigger Defines when the activity can leave a PENDING state and become 
READY (available to a client). For example, this method can test if several 
other activities have completed before executing the activity’s Ready 
method, if any. The default Trigger method returns TRUE when any 
router arrives. This method shares a set of process attributes with the 
Ready method.

Ready If necessary, this method initializes process attributes or performs other 
work before the activity is made READY. This method shares a set of 
process attributes with the Trigger method.

OnActive Performed in the ACTIVE state, this method initializes process attributes 
or performs other work before the engine passes control to a client 
application. In automatic activities, the OnActive method performs the 
work represented by the activity. By default the OnActive method returns 
TRUE.

OnComplete Performs cleanup work necessary after the activity completes 
successfully, but before control is passed to any OnComplete routers. This 
method has a router list that specifies all the associated OnComplete 
routers, and shares a set of process attributes with the router methods of 
these OnComplete routers.

OnAbort Performs cleanup work necessary after the activity is aborted (terminated 
abnormally), but before control is passed to any OnAbort routers. This 
method has a router list that specifies all the associated OnAbort routers, 
and shares a set of process attributes with the router methods of these 
OnAbort routers. This method and the OnAbort routers can be used to 
prevent the process from aborting, which is the default behavior in their 
absence. 



About Process Definitions

Chapter 7 Creating Process Definitions 167

Activity Links
An assignment rule evaluates characteristics of a generic user, such as the user’s 
role. However, what if you need to specify that an activity be performed by the 
same user who performed another activity in the process instance, or by the 
manager of the user who performed the last activity? If you only had assignment 
rules at your disposal, you would have to use a process attribute to store the name 
of the user who performed another activity, then test that process attribute in an 
assignment rule’s Evaluate method. (For more information on the Evaluate 
method, see “Understanding the Evaluate Method” on page 130.)

This situation is handled automatically with activity links. When you specify an 
activity link to another activity, you specify that user information from the other 
activity can be passed to the current activity. When the other activity is completed 
or aborted, the engine saves the user name and other specified information. When 
the engine offers the current activity, it passes the information to the Evaluate 
method of the current activity’s assignment rules. For this mechanism to be of any 
use, at least one of the assignment rules must have an Evaluate method that 
handles the linked user name or other information, and applies it as you want for 
the current activity.

For example, in the Expense Report reimbursement process, there is a Review 
Expense activity that is offered only to the manager of the employee who files an 
expense report. To ensure that the correct manager performs the review, the 
Review Expense activity has an activity link that specifies the First activity (that is, 
the creator of the process instance—in this case, the user who submitted the 
expense report). It also has an assignment rule with an Evaluate method that takes 
the employee’s manager’s name in its otherInfo parameter. When the Review 
Expense activity becomes READY, the engine uses this assignment rule to evaluate 
all users and offers this activity instance only to this particular manager. (For an 
example of this Evaluate method, see “Evaluate Method Example: Linked Activity 
(otherInfo)” on page 134.)

Activity links have special behavior regarding the passing of linked activity 
information between activities in a parent process and a subprocess. See “Setting 
the Subprocess Activity Link” on page 218 for more information and an example.)

Offered and Queued Activities
Offered and queued activities are performed by users of client applications. 

The engine offers an offered activity to all users who are qualified to perform the 
activity by the assignment rules associated with the activity. An offered activity 
is typically displayed by the client application on a work list from which the user 
picks an activity to perform. The first user to pick an activity gets it. Offered 



About Process Definitions

168 iPlanet Integration Server • Process Development Guide • August 2001

activities are typically performed by users of heads-up client applications (see the 
iIS Process Client Programming Guide for a description of heads-up applications), 
but can also be performed by automated clients or services that create sessions 
with an iIS engine.

The engine stores a queued activity in a queue, which is ordered according to 
criteria you specify. The queue can be accessed by all users who are qualified to 
perform the activity by the assignment rules associated with the activity. Each 
defined queued activity has its own queue in the engine (identified by the name of 
the activity and process definition), and activity instances are added to the queue 
from the various process instances executing in an engine. A queued activity is 
pulled from the top of the queue and performed by a client application. Queued 
activities are typically performed by users of heads-down client applications (see 
the iIS Process Client Programming Guide for a description heads-down 
applications), but can also be performed by automated clients or services that 
create sessions with an iIS engine.

Queued and offered activities go through four states: PENDING, READY, 
ACTIVE, and COMPLETED/ABORTED. The following figure shows the states of 
an offered activity and the associated methods: 

Figure 7-2 Activity States and Associated Methods for Offered and Queued Activities

Activity

Outgoing Routers

Router Methods

PENDING

READY

ACTIVE

ABORTED

Assignment Rule
 Evaluate Methods

OnActive Method

OnComplete
 Method

OnAbort Method

COMPLETED

Ready Method
Trigger MethodIncoming

Routers



About Process Definitions

Chapter 7 Creating Process Definitions 169

Both an offered activity and a queued activity can have assignment rules associated 
with them that tell the engine who can perform the activity. Both these types of 
activities also have an application dictionary item associated with them. The 
application dictionary item tells the client applications what information to display 
for the activity and what operation or program to invoke to perform the activity. It 
can also supply a list of locked process attributes for the activity.

Figure 7-3 represents the contents of an offered or a queued activity. 

Figure 7-3 Offered and Queued Activity Elements

Subprocess Activities
A subprocess activity represents a process definition. It passes control to another 
process definition to perform a complex set of activities, much like a method call.

A subprocess activity does not directly interact with a client application and 
therefore does not have assignment rules or an application dictionary item 
associated with it. Since it represents a subprocess, it passes directly from a 
PENDING state to an ACTIVE state, and does not have associated Ready or 
OnActive methods.

Automatic Activity

OnComplete Router Methods

PENDING

READY

ACTIVE

ABORTED

OnActive Method

OnComplete
Method

OnAbort Method

COMPLETED

Ready Method
Trigger Method

OnAbort Router Methods

Client
Application



About Process Definitions

170 iPlanet Integration Server • Process Development Guide • August 2001

Figure 7-4 represents the contents of a subprocess activity: 

Figure 7-4 Subprocess Activity Elements

Subprocess activities are the only activities that have input and output attributes. 
Just as with a method, input attributes are attributes passed from the subprocess 
activity to the subprocess itself and are used by the subprocess in doing its work. 
Output attributes are passed back from the subprocess to the calling subprocess 
activity. The handling of these attributes also depends on whether the subprocess 
is performed synchronously or in parallel with the invoking (parent) process. For 
more information on subprocess activities, see “Working with Subprocess 
Activities” on page 215.

Automatic Activities
An automatic activity executes a program or invokes a service object to perform the 
activity, calling it directly from the engine without requiring interaction with the 
user of a client application. Because it does not interact with client applications, an 
automatic activity does not have assignment rules or an application dictionary item 
associated with it. However, because it is performed by the engine, an automatic 
activity can hold up process execution.

An automatic activity has the same states and associated methods as offered and 
queued activities, shown in Figure 7-2 on page 168.

Subprocess Activity

OnComplete Router Methods

PENDING

READY

ACTIVE

ABORTED

OnComplete
Method

OnAbort Method

COMPLETED

Ready Method
Trigger Method

OnAbort Router Methods

Subprocess
Execution



About Process Definitions

Chapter 7 Creating Process Definitions 171

Figure 7-5 represents the contents of an automatic activity. 

Figure 7-5 Automatic Activity Elements

For more information on automatic activities, see “Working with Automatic 
Activities” on page 220.

Junction Activities
A junction activity can improve the layout of activities in the Process Definition 
Workshop by representing a joining or splitting of routers. It can also economize 
the use of router and trigger methods in complex routing situations, as shown in 
Figure 7-6. 

Automatic Activity

OnComplete Router Methods

PENDING

READY

ACTIVE

ABORTED

OnActive Method

OnComplete
Method

OnAbort Method

COMPLETED

Ready Method
Trigger Method

OnAbort Router Methods

Engine
Executes
Program



About Process Definitions

172 iPlanet Integration Server • Process Development Guide • August 2001

Figure 7-6 Use of a Junction Activity

A junction activity is not performed by a user. It simply serves as a convenient way 
to improve your process definition layouts.

First Activity
The First activity is a required activity that represents the beginning of a process. 
There is only one in a process definition. The First activity goes automatically 
through PENDING, READY, and ACTIVE states and always completes 
successfully. The only method associated with a state is the OnComplete method, 
which can have multiple OnComplete routers associated with it, just like any other 
activity. Timer controls are processed normally and can refer to any state. (See 
“Timer Controls” on page 175 for more information.)

The First activity is not performed by a user in the usual sense, and therefore does 
not have assignment rules or an application dictionary item. However, because it 
represents the creation of a process instance, the First activity does have an 
associated user: the user who created the process instance through a client 
application. Therefore, an activity that needs to designate the user who started a 
process instance as a linked user can do so by creating an activity link to the First 
activity. (See “Activity Links” on page 167 for more information on linked users.)

For information on how linked activities apply to subprocess activities, see “Setting 
the Subprocess Activity Link” on page 218.

Without Junction

a

a

a

b

b

b

With Junction

a

b



About Process Definitions

Chapter 7 Creating Process Definitions 173

Figure 7-7 represents the contents of a First activity. 

Figure 7-7 First Activity Elements

Last Activity
The Last activity is a required activity that represents the end of a process. There 
can be only one in a process definition. The Last activity goes through normal 
PENDING and READY states, passes automatically through the ACTIVE state, and 
then ends the process instance by entering a COMPLETED state. It never enters the 
ABORTED state. Because routers come into it, the Last activity has a Trigger 
expression, which controls when the process can end. It also has a Ready method, 
which does any final cleanup required before the process is ended.

The Last activity does not get performed by a user and therefore does not have 
assignment rules or an application dictionary item; however, in the case of a 
subprocess, it can link to another activity. For more information on this case, see 
“Setting the Subprocess Activity Link” on page 218.

Because the Last activity does not route to other activities, it has no OnAbort or 
OnComplete method and does not connect to any routers.

First Activity

OnComplete Router Methods

PENDING

READY

ACTIVE

ABORTED

OnComplete
Method

COMPLETED



About Process Definitions

174 iPlanet Integration Server • Process Development Guide • August 2001

Figure 7-8 represents the contents of a Last activity. 

Figure 7-8 Last Activity Elements

About Timers
A timer is an object that can be set for a period of time, like a kitchen timer (an 
elapsed timer), or to a date and time, like an alarm clock (a deadline timer). If the time 
period expires or the date and time is reached, the timer performs an appropriate 
expiration action, usually routing to an activity to handle the timeout condition.

For example, in the expense report reimbursement process shown in Figure 7-9, 
expense reports are submitted to a manager, who has to approve or reject the 
expense report request. When an expense report is created (a process instance is 
created), it starts a timer and routes to the Review Expense activity. The Review 
Expense activity is where a manager checks the information entered in the expense 
report, and there is a time limit of three days for this work to begin. If the work 
does not begin in three days, the timer expires. When the timer expires, an 
automatic activity can notify the manager and restart the timer.

Last Activity

PENDING

READY

ACTIVE

ABORTED

COMPLETED

Trigger Method
Ready Method

Process
Termination



About Process Definitions

Chapter 7 Creating Process Definitions 175

Figure 7-9 An Elapsed Timer in a Expense Report Reimbursement Process Definition

A timer has an OnExpiration method (similar to an activity’s OnComplete method) 
and one or more associated Expiration routers that share a common set of process 
attributes, as shown in the following diagram.

Figure 7-10 OnExpiration Method of a Timer and Router Methods of its Timers

Timer Controls 
The connector from an activity to a timer is called a timer control. It is not 
considered a router because starting a timer does not affect the flow of control or 
cause work to be done. (For example, an activity can start a timer when it becomes 
READY, then stop the timer when it becomes COMPLETED.) 

submitted approved

approved

approved

employee

Review
Expense

manager

Automatic activity:
Notifies the manager
and resets the time

to three days.reset timerstart timer

stop timer

3-Day Timer

Timer Control
Expiration Router Methods

OnExpiration
Method

Shared Process
Attributes



About Process Definitions

176 iPlanet Integration Server • Process Development Guide • August 2001

A timer control is activated by a transition to a specific activity state. For example, 
if there were a requirement that an activity be performed within two hours from 
the time a user picked it, you could define an elapsed timer that runs for two hours, 
and then have one timer control turn the timer on when the activity becomes 
ACTIVE, and another timer control turn the timer off when the activity becomes 
COMPLETED.

Figure 7-11 Timer Controls and Activity States

Although the connector from an activity to a timer is a control, the connector from 
a timer to an activity is a router. If the timer expires, an activity must be started to 
handle the expiration.

In the previous example, in Figure 7-9 on page 175, the timer starts when the 
process is created. The flow of control goes to the Review Expense activity, which 
is waiting in READY state for someone to perform it. The flow of control does not 
go to the timer. However, if the timer expires, it creates another activity, affecting 
the flow of control.

Types of Timers
There are two types of timers:

• elapsed timer—a timer that is set for a duration of time (as illustrated in 
Figure 7-9)

• deadline timer—a timer that is set to expire on a date and time

Activity

timer on

timer off

2-Hour Timer

Expiration Router

PENDING

READY

ACTIVE

ABORTED

COMPLETED



About Process Definitions

Chapter 7 Creating Process Definitions 177

Elapsed Timers
In its simplest form, an elapsed timer is set for a period of seconds, minutes, hours, 
days, or greater increments, and it expires when that amount of time has passed. 
This behavior is set by the timer’s ElapsedOn method, which is called by the engine 
every time an elapsed timer is turned on. By default this method simply calculates 
how much time is left by adding the block of time indicated in the timer to the 
current date and time indicated by the computer system, yielding an expiration 
time. 

Whenever an elapsed timer is turned off, the engine calls its ElapsedOff method, 
which calculates how much time is left from the current date and time to the 
expiration time of the timer.

You have the option of specifying more complex behavior with these two methods, 
such as calculating by business days (skipping two days for each weekend). For 
example, a business day timer that is set for three business days might be started 
on a Thursday at 9 am. Its ElapsedOn method calculates its expiration time as the 
same time on the following Tuesday. If it is subsequently stopped on Friday at 9 
am, the timer’s ElapsedOff method indicates that two business days are left on the 
timer. If it is then started up on Monday at 9 am, the timer’s ElapsedOn method 
calculates the expiration time as Wednesday at 9 am.

Deadline Timers
The simplest type of deadline timer is one that is set to expire on a specific date at a 
specific time. This behavior is set by the timer’s DeadlineInit method, which is 
called by the engine every time a deadline timer is initialized or reset. By default 
this method simply returns a set date and time. 

For example, Brunhilda’s husband, Trog, has a birthday on February 29, 2004. In 
1997, she sets a deadline timer for 10:00 am on February 26, 2004, to remind her to 
get a card and a present. She subsequently stops the timer for a year, and then 
restarts it in 1999. The timer is still set for the same date and time because its 
DeadlineInit method simply returns that setting.

However, Brunhilda wearies of having to set the timer to a new value every leap 
year, especially after forgetting once and having to deal with a moping Trog for the 
subsequent two years, so she writes her own DeadlineInit method that calculates 
the birthday from the current date and time. Now when the timer expires, she can 
reset it, and it determines when the next leap year is and sets the date and time 
itself.



About Process Definitions

178 iPlanet Integration Server • Process Development Guide • August 2001

About Routers
To indicate process flow in the Process Definition Workshop, an activity is 
graphically connected to another with a router. Although you draw routers 
between activities separately from specifying the activities themselves, you should 
regard a router that leaves an activity as an element of that activity, because it 
represents the last processing elements of the activity. An activity designates in its 
OnComplete and OnAbort router lists which routers are activated when the 
activity completes or is aborted. Each router has a router method that determines 
whether the router actually transfers process control to the activity to which it 
points. The router transfers process control if the router method evaluates TRUE.

An activity can be connected by routers to more than one successive activity. When 
the current activity completes or is aborted, the engine calls its OnComplete or 
OnAbort method, and then evaluates the router methods of all its OnComplete or 
OnAbort routers, respectively, to determine where the flow of control is to go next. 
You can specify the order in which the router methods are executed. Control can go 
to more than one activity, in which case the successor activities execute in parallel. 
In addition, an activity can route back to itself when an activity needs to be 
performed multiple times.

Router methods typically use process attributes to determine where to transfer 
process control. For example, in the Expense Report process definition, when a 
manager approves an expense report, the Review Expense activity’s OnComplete 
method passes control to two routers. One routes control to the manager’s manager 
for approval (for expense report amounts over $1,000), and another routes control 
directly to accounting and auditing for further processing (for amounts under 
$1,000). 

To determine which of these routers transfers process control when the activity 
completes successfully, each router has a router method that compares the value of 
the process attribute TotalAmount to the value $1,000. The method that evaluates 
TRUE is the one which transfers control.

The set of process attributes used in a router method are specified in the 
corresponding OnComplete or OnAbort method. For example, the TotalAmount 
process attribute is designated in the Review Expense OnComplete method and 
applies to both OnComplete router methods.

Routers are also used to transfer process control from an expired timer to an 
activity. Like activities, timers can have multiple Expiration routers, each with a 
corresponding router method that can use process attributes to determine whether 
to transfer process control.



About Process Definitions

Chapter 7 Creating Process Definitions 179

Abort Router Handling
The engine handles abort routers as follows:

If a READY or PENDING activity is aborted and either has no routers or all return 
FALSE, the engine takes no action.

If the activity is ACTIVE when aborted and there are no routers or all return 
FALSE, the process instance is aborted.

If any router expression returns TRUE, no matter what state the activity is in when 
aborted, those routes are taken.

Creating a Process Definition Library
At times, you may want to use the same activity or timer in various process 
definitions of your workflow application. For example, you may have a timer 
definition that is used throughout your application with the same settings. You can 
place multiple copies of the timer in various process definitions, but if you later 
want to modify the behavior of the timer, you need to update each copy.

However, you can create a process definition library that contain a set activities and 
timers that you intend to reuse. You supply this library to your process definitions, 
and then place references to the activities and timers in your process definitions. If 
you want to modify the behavior of a referenced activity or timer, you make the 
changes in the library. The changes are then automatically propagated to each 
process definition containing a reference to the activity or timer.



About Process Definitions

180 iPlanet Integration Server • Process Development Guide • August 2001

Only offered activities, queued activities, automatic activities, and timers can be 
supplied by a process definition library to another process definition. Also, a 
process definition supplier plan does not necessarily have to be a library—you can 
use any process definition in your workflow application to supply activities or 
timers. However, you typically keep all reused components in libraries to simplify 
maintenance.

NOTE A process definition library must contain a first and last activity 
even though these activities are not used in the library and cannot be 
supplied to another process definition.

Supplier Plan
Process Definition Library as 



About Process Definitions

Chapter 7 Creating Process Definitions 181

Reference Properties
Some properties of activities or timers supplied by a library are maintained in the 
library and propagated to all references. Others are set and maintained in the 
reference. For example, in a supplied timer, the Timer Type and Timer Value are 
maintained in the library because you want the behavior of each reference to be the 
same. But the OnExpiration Router for a supplied timer is maintained in each 
reference because each reference uses the timer in a different area of the workflow 
application.

The following table lists the properties that are maintained in the library and those 
that are maintained in the reference.

Activity/Timer Properties Maintained in the 
Library

Properties Maintained in the 
Reference

Offered Activity
Queued Activity
Automatic 
Activity

Application Dictionary Item
Assignment Rules
Comments
OnActive Method/Attributes

Action On removal
Activity Link
Name
OnComplete 
Method/Attributes/Routers
On Session Suspend
Priority Attribute
Ready Method/Attributes
Trigger Type
Trigger Method/Attributes

Timer Comments
ElapsedOn Method/Attributes
Elapsed Off Method/Attributes
Timer Type
Timer Value

Name
Timer on at process start
OnExpiration 
Method/Attributes/Routers

NOTE Properties of an activity or timer in a process definition library that 
are not referenced are set to standard default values.



About Process Definitions

182 iPlanet Integration Server • Process Development Guide • August 2001

Working with Process Definition Libraries
A process definition library is created by setting the Supplier Library property for a 
process definition.

➤ To create a process definition library

1. From a Repository Workshop, choose Plans > New Process Development Plans 
> Process Definition to create a new Process Definition plan.

2. In the Process Definition Workshop that opens, choose File > Properties to 
open the Property Inspector.

3. In the Name tab of the Property Inspector, select the Supplier library toggle 
and click OK.

4. Within the Process Definition Workshop, create the activities and timers that 
you intend to supply to other process definitions.

Do not specify routers or timer controls in the process definition library. Properties 
for routers and timer controls are not propagated. Activities and timers in a library 
should only be used by process definitions that specify the library as a supplier 
plan.

➤ To supply a process definition library to another process definition

1. In the workshop for the process definition that you want to supply the library 
to, choose File > Supplier Plans.

2. In the Supplier Plans dialog that opens, drag the process definition library 
from the Available Plans to the Supplier Plans.

3. Click OK.

After supplying a process definition library to another process definition, the 
activities and timers in the plan are listed in the Supplier Components list of the 
Process Definition Workshop. You can use the drop down list for Supplier 
Components to filter the display of components. For example, select Timers to list 
all the supplied timers.

NOTE If you do not enable the Supplier library option, compiling the 
process definition may fail.



About Process Definitions

Chapter 7 Creating Process Definitions 183

➤ To add an activity or timer reference to a process definition

1. In the Supplier Components list, click and drag a supplied activity or timer to 
the Layout Area.

The referenced activity or timer appears in the layout area. The icon for the 
referenced activity or timer indicates that it is a reference:

You can change an activity or timer reference in a process definition so it loses the 
reference and behaves as if it were created directly within the process definition. It 
becomes a copy of the referenced activity (or timer), with all properties now being 
maintained within the process definition. Because it is now a copy, changes made 
to it no longer propagate to the original reference.

➤ To convert a reference

1. In the Layout Area, select the activity or timer reference.

2. Choose Tools > Remove Reference.

You can also use the Based-on property of an activity or timer to change the 
behavior or activities or timers in your process definition.

➤ To change or remove references for an activity or timer using the Based-on 
property

1. In the Layout Area, right-click on the activity or timer and select Properties to 
open its Property Inspector.

2. In the Property Inspector, open the Based-on drop down list (from the Name 
tab) to view the available choices.

Selecting None removes any reference to the activity or timer. You can also 
select from any of the imported components displayed in the drop down list to 
change the reference to another supplied activity or timer.

3. Close the Property Inspector.

Reference indicator



Working with Process Definitions

184 iPlanet Integration Server • Process Development Guide • August 2001

Working with Process Definitions
This section describes the series of tasks you are likely to perform when you create 
or update a process definition. It covers the following topics:

• opening the workshop

• workshop overview

• working with the various kinds of activities and writing their methods

• working with routers

• working with timers

• saving, compiling, and registering a process definition

Opening the Process Definition Workshop
This section contains procedures for creating a new process definition and opening 
an existing process definition from the Repository Workshop (illustrated in the 
following figure).

Figure 7-12 Opening a Process Definition in the Repository Workshop

New

Existing
Process

Process
Definition

Definitions



Working with Process Definitions

Chapter 7 Creating Process Definitions 185

➤ To open the Process Definition Workshop and create a new plan

1. From the Repository Workshop, click the New Process Definition toolbar 
button, or choose Plan > New Process Development Plans > Process Definition.

A dialog opens prompting you to name the process definition.

2. Name the process definition, and click OK.

A new user profile plan opens in the Process Definition Workshop.

➤ To open the Process Definition Workshop for an existing plan

1. From the Repository Workshop, double-click an existing process definition in 
the plan list, or select a process definition in the plan list and press Enter, or 
select a process definition in the plan list and choose Plan > Open.

See Chapter 3, “The Repository Workshop” for more information on the 
Repository Workshop.

Workshop Overview
The Process Definition Workshop has three main areas, illustrated in Figure 7-13:

• The layout area

An area for arranging and defining the components of the process definition, 
such as activities, timers, and routers.

• The Supplier Components list (to the right of the layout area) 

This list shows predefined components that you can add to the process 
definition, such as assignment rules, application dictionary entries, and 
subprocesses. The contents of this list are defined in other workshops, such as 
the Assignment Rule Workshop. The plans produced from these other 
workshops must be specifically included in your current process plan as 
supplier plans. (For a description of how to include a supplier plan see 
“Adding Supplier Components” on page 189.)



Working with Process Definitions

186 iPlanet Integration Server • Process Development Guide • August 2001

• The Process Attributes list (below the Supplier Components list) 

This list shows process attributes that you add to the process definition and use 
in methods, application dictionary entries, activity methods, and so on.

Figure 7-13 Process Definition Workshop

Adding Objects to the Layout Area
The simplest way to add objects, such as activities and timers, to the layout area is 
to click the tool you want in the tool palette, then click the spot on the layout area 
where you want to add the object. (You can also click the Tools menu to choose 
from a list of tools.) If you want to use the same tool repeatedly, choose Tool > 
Repeat, and you won’t have to select the tool each time you want to add an 
additional object of the same type.

Tool Palette

Timer

Junction
Subprocess Activity

Automatic Activity

Queued Activity

Offered Activity

Toolbar

Pointer

Connector
Add
Vertices to Connector

Slider Bar Supplier Components List

Layout Area Process Attributes List



Working with Process Definitions

Chapter 7 Creating Process Definitions 187

You can add preexisting objects from another process definition in two ways:

• Open the source process definition and use the Edit > Copy and Paste 
commands to copy the activity or timer from the source process definition. The 
iIS engine checks the consistency of process attributes between the two process 
definitions.

• Include the source process definition as a supplier and then drag the activity or 
timer from the Supplier Components list and drop them in the layout area.

To remove vertices in a router or linker, select the vertex, then click the Straighten 
Connector button on the toolbar.

Menu Bar
The Process Definition Workshop menubar provides all the commands you can 
execute in the workshop. The menus are summarized below. The main window 
menus are:

File menu Provides commands relevant to the process definition as a whole: 
setting properties, including supplier plans, saving, distributing (registering with 
an engine), printing, and so on.

Edit menu Provides commands relevant to a selected item in the layout: setting 
properties, cutting, copying, pasting, deleting, and so on.

View menu Provides commands for altering the appearance of the workshop 
window: displaying the tool palette, Supplier Components list, Process Attributes 
list, toolbar, status bar, and so on.

Tools menu Provides commands for selecting the tools that appear on the tool 
palette.

Help menu Provides online help for iIS.

NOTE Everything on the tool palette has been described previously in this 
chapter except the Pointer, which is the default selection tool, and 
the Add Vertices tool. Use the Add Vertices tool to move line 
segments of routers and controls. For example, in Figure 7-13, the 
router coming out of the timer at the top of the figure has had three 
vertices added to it with this tool. 



Working with Process Definitions

188 iPlanet Integration Server • Process Development Guide • August 2001

Right Mouse Button
The Process Definition Workshop supports a popup menu activated by the right 
hand mouse button. The commands on the popup menu depend upon the item 
selected in the layout area and represent a subset of the commands you can access 
from the menu bar:

Undoing Work
The Process Definition Workshop has the following mechanisms for undoing work 
you have performed but don’t want to save:

Undo/Redo You can undo one or more sequential operations by selecting the 
Edit > Undo command one or more times. Similarly you can restore these 
operations by selecting the Edit > Redo command.

Cancel You can undo all operations since the last File > Save All command using 
the File > Cancel command. This discards all changes since the last save operation.

Working with Property Inspectors
To customize the objects you add to the layout area, use the object’s property 
inspector. To display an object’s property inspector, double-click the object (or 
select the object, then choose Edit > Properties). For example, if you double-click an 
offered activity, the following property inspector opens:



Working with Process Definitions

Chapter 7 Creating Process Definitions 189

A property inspector is a tab folder. Clicking each tab gives you a separate tab page 
for editing information on the object. This particular property inspector is 
displaying the Name tab page. From this page, you can change the name of the 
activity, add activity links and application dictionary entries, and enter comments 
about the activity. 

Other tab pages for this property inspector allow you to add assignment rules to 
the activity and edit the activity’s methods. (Editing properties for an offered 
activity is discussed in detail in “Working with Offered Activities” on page 197).

A property inspector always stays on top of other windows on your display. It 
displays the properties of only one object at a time. If you select other objects in the 
layout area while a property inspector is open, the property inspector changes to 
show you the properties of the new object.

The process definition itself has properties, which you can modify by choosing 
File > Properties. These properties are described later in “Working with Process 
Definitions” on page 192.

Adding Supplier Components
The objects in the Supplier Components list, such as assignment rule dictionaries, 
application dictionaries, and other process definitions, are from plans created in 
their corresponding workshops. In these workshops, you can save and compile the 
corresponding plan, and (in some cases) make a distribution and register it with an 
engine, as described in the individual workshop chapters. 

NOTE Before opening a property inspector to specify an object’s 
properties, it is useful to have previously added activities, process 
attributes, and other elements of the process definition, and to have 
connected objects with routers. Then when you open the property 
inspector for activities and timers, routers are already connected, 
process attributes already exist, and if you are linking to any 
activities, they are already there.



Working with Process Definitions

190 iPlanet Integration Server • Process Development Guide • August 2001

Supplier components are needed to create a process definition. In order to specify 
the activities in a process definition, you need to associate assignment rules and 
application dictionary items from the Supplier Components with each activity. In 
addition, if you want to use activities and timers specified in another process 
definition in your current process definition (as described in “Creating a Process 
Definition Library” on page 179), the source process definition must be included in 
the Supplier Components list.

If you are working in the Application Dictionary Workshop or the Assignment 
Rule Workshop in your own workspace, all you need to do is save the plan to have 
access to it from the Process Definition Workshop. If someone else is working on 
one of these plans in their own workspace, they must integrate their workspace so 
you can get access to it.

When a plan you want to include in your process definition is available in your 
repository, you include it in your process definition by using the Supplier Plan 
command.

NOTE If you only plan on referring to another process definition using a 
subprocess activity in the subprocess definition, the source process 
definition does not need to be included in the Supplier Components 
list.



Working with Process Definitions

Chapter 7 Creating Process Definitions 191

➤ To include supplier plans

1. In the Process Definition Workshop, choose File > Supplier Plan. You see the 
Supplier Plans dialog.

2. Select a plan from the Available Plans list on the right.

3. Click the left arrow between the lists to move the plan to the Supplier Plans list. 
(You can also double-click on the plan or drag and drop it.)

4. Add the other supplier plans you need.

5. Click OK.

You see the contents of the supplier plans appear in the Supplier Components 
list (see Figure 7-1 on page 161).

If these supplier plans are updated, for example, if new assignment rules are added 
to an assignment rule dictionary, you do not have to make any changes in your 
supplier plans. You might have to update your workspace to get the latest versions 
of the plans from the repository, and you might have to close and reopen your 
Process Definition Workshop to see any new elements.



Working with Process Definitions

192 iPlanet Integration Server • Process Development Guide • August 2001

Working with Process Definitions
The process definition itself is an object, just as its elements are, and it has 
properties: a name, a comment field, and assignment rules for determining who 
can create a new process instance. 

You set a process definition’s properties by choosing File > Properties, which 
displays the following property inspector:

Specifying Process Definition Properties
To specify process definition properties, select the Name tab page in the process 
definition property inspector. The Name tab page gives you access to the following 
properties:

Name Displays the process definition name. You cannot rename the process 
definition. To change its name, you have to create a new process definition and 
copy all the elements from the old process definition to the new one.

NOTE Technically speaking, process attributes are also properties of the 
process definition, but because they are used extensively by activity 
methods, assignment rules, application dictionary entries, and so 
on, there is a separate, more visible list for them. How to add 
process attributes to a process definition is described later in 
“Defining Process Attributes” on page 194.



Working with Process Definitions

Chapter 7 Creating Process Definitions 193

Supplier library Only enable this option if the process definition is being used as 
a supplier library. Supplier libraries allow you to reuse activities and timers in 
other process definitions. For more information on supplier libraries, refer to 
“Creating a Process Definition Library” on page 179. 

Recovery level Indicates the level at which you want to recover this process in 
the event of a failure. Lowering the recovery level is useful if full recovery is not 
needed for the process in the event of engine or system failure, and you want to 
conserve system resources. The recovery level options are Full (the default), 
Process Only, and None. If full recovery is not needed, choose Process Only or 
None. 

• Process Only restarts the process instance; there is no recovery of process state 
information.

• Selecting None specifies that no recovery is to be performed for this process.

• Specifying Full (Recovery) for the process means during recovery, all current 
state information for the process is recovered from the iIS engine database. 
This includes the state of each process, activity, timer, and process attribute 
lock that is created in the course of process execution. The Full Recovery 
default automatically applies to any processes previously defined in earlier 
versions of iIS.

Local Scope Indicates whether the process definition, at runtime, can be accessed 
from a remote engine. Normally a process definition is accessed from a remote 
engine if it is being used as a subprocess of a process definition executing on the 
remote engine. If you enable Local scope, the process definition can only be 
accessed by a parent process definition executing on the same engine.

Comments TAllows you to enter internal comments about the process definition. 
Comments are a way to document information that may be useful to other 
developers. 

NOTE If you specify full recovery, state information for the process is 
recovered only if the engine is also configured for state recovery. If 
logging options for the engine are turned off, however, the process 
definition recovery level setting do not override the engine setting. 
For more information, refer to iIS Process System Guide.



Working with Process Definitions

194 iPlanet Integration Server • Process Development Guide • August 2001

Specifying Assignment Rules for Process Creation
Assignment rules for a process definition control which users of client applications 
can create a new instance of the process definition. As described in “Adding 
Supplier Components” on page 189, you must have already added the 
corresponding assignment rule dictionary as a supplier plan before you can use the 
individual assignment rules in the process definition. (See Chapter 5, “Defining 
Assignment Rule Dictionaries” for a complete description.)

To add assignment rules for process instance creation, click the Assignment Rules 
tab to display the tab page, then click the Add button to display the Add 
Assignment Rules dialog. shown in Figure 7-14.

All the assignment rules in your supplier list appear in the Add Assignment Rules 
dialog. Choose the rules you want to add, then click OK to add them. The names of 
the added rules appear in the Assignment Rules tab page.

Figure 7-14 Process Definition Add Assignment Rules Dialog

To delete an assignment rule you added, choose the rule you want to delete in the 
Assignment Rules tab page, then click Delete.

Defining Process Attributes
Process attributes are variables of simple types that hold data important to the 
process. Each instance of a process has values assigned to each process 
attribute—sometimes at process creation time and sometimes as a result of process 
execution. 

One of the main purposes of process attributes is for routing logic. They are used as 
process data in router methods, trigger methods, and possibly in assignment rules.



Working with Process Definitions

Chapter 7 Creating Process Definitions 195

Primary process attribute 
One special case is the primary process attribute. A primary process attribute is one 
that identifies the current process instance and possibly serves as a key value to 
associated database entries. For example, the InvoiceNum attribute of a Customer 
Order process would identify each customer order by invoice number and allow 
the client application to look up the order in a database. The primary process 
attribute is the only process attribute the system administrator can see when 
monitoring processes.

An example of process attributes used for process logic is a process that handles 
employee expense reports that include an activity for approval of the report. If the 
expense total is under $500, the user performing the activity can be a Manager. If it 
is over $500, the user must be a Director. The process definition stores the claim 
amount in the ExpenseAmt process attribute. To determine the amount claimed in 
the expense report, the activity’s assignment rule Evaluate method must be able to 
read the ExpenseAmt process attribute and test for the appropriate roles. (For 
information on the Evaluate method, see “Evaluate Method Example: Checking 
Process Attributes” on page 133.)

XmlData
A process attribute can be of type XmlData. Attributes of this type are typically 
used to hold XML data that can be supplied to applications that integrate with an 
iIS Backbone. The XML data must be well formed, otherwise the Process Attribute 
property inspector rejects it. For more information on using XmlData, refer to iIS 
Backbone Integration Guide and the iPlanet UDS iIS Backbone online Help.

System attributes
In addition to process attributes that you define explicitly, there are four process 
attributes defined automatically by iIS and assigned values when a process 
instance is first created. The system attributes represent the process id, process 
name, creation time, and creator, as listed in the following table. System attributes 
show up automatically in the Process Attributes list and can be used as you would 
other process attributes, except they cannot be deleted.

System Attribute Description

_CreatedBy The creator of the process

_CreationTime Time the process was created

_Name Name of the process

_ProcessID Unique ID assigned by the iIS Engine for the process



Working with Process Definitions

196 iPlanet Integration Server • Process Development Guide • August 2001

Process Attributes List
You work with process attributes in the Process Attributes list, displayed in the 
main workshop to the right of the layout area and below the Supplier Components 
list (see Figure 7-13 on page 186).

To add a process attribute, click the New button in the Process Attributes list to 
open the Process Attribute property inspector: 

You can set the following properties for a process attribute:

Name Enter a name for the process attribute. Do not use an underscore (“_”) as 
the first character of a process attribute name.

Type Choose a data type from the drop list. The allowed data types for process 
attributes are described in “Process Attribute Data Types” on page 270.

Initial value You can optionally choose an initial value for the process attribute, 
or you can leave it set to the default value displayed in this field. Primary process 
attributes would typically be set by the client application that creates new process 
instances.

Primary attribute Use this option to designate the attribute as a primary process 
attribute—an attribute that identifies the process instance, rather than one used for 
coding process logic. There can only be one primary process attribute.

Is required Use this option to indicate that a process attribute must be initialized. 
If this option is enabled, then process instance creation fails unless the creator 
provides an initial value for the attribute. This is critical for process definitions that 
might be referenced as subprocess activities in another process definition. The 
option also serves as a check on client applications that create process instances.



Working with Process Definitions

Chapter 7 Creating Process Definitions 197

To delete a process attribute, select it in the Process Attributes list, then click 
Delete.

To change the properties of a process attribute that is already defined, you can 
double-click it in the Process Attributes list or you can select it, then click the 
Properties button. Either choice displays the Process Attribute property inspector.

Working with Offered Activities
As described in “Offered and Queued Activities” on page 167, an offered activity is 
an activity that the engine offers to all users who have the roles and other 
qualifications to perform the activity, as determined by the activity’s assignment 
rules.

To add an offered activity to the layout area, click its icon in the toolbar (or choose 
Tools > Offered Activity), then click the location in the layout area where you want 
to place the activity.

NOTE You can also reuse an activity specified in another process definition 
by including the source process definition as a supplier to your 
current process definition. You then drag the activity from the 
Supplier Components list to the layout area. The workshop checks 
that the activity is consistent with your current process definition.



Working with Process Definitions

198 iPlanet Integration Server • Process Development Guide • August 2001

To see what properties you can set for an offered activity, double-click it to display 
its property inspector (or select it, then choose Edit > Properties):

As you can see from the property inspector, you can add and modify the following 
properties of an offered activity:

• name

• “based on” property

• session suspend action

• activity link

• application dictionary item

• comments

• assignment rules

• Trigger method

• Ready method

• OnActive method

• OnComplete method

• OnAbort method



Working with Process Definitions

Chapter 7 Creating Process Definitions 199

See “Offered and Queued Activities” on page 167 for a description of offered 
activities that shows the relationships between methods, routers, and the states of 
the activity, and also shows how methods share sets of process attributes.

The rest of this section describes the activity’s properties and how to work with 
them.

Setting the “Based on” Property
This field indicates inheritance of like components from other process definitions 
that supply the current process definition.

Setting the Session Suspend Action
You can specify the action that the engine takes if the session that makes an offered 
activity ACTIVE is suspended. The session might be suspended because of a 
network or engine failure, or because a user or system manager explicitly 
suspended it. You can specify two kinds of action if the session is suspended: 

• Remove the activity from the session’s activity list. If this action is taken, the 
activity is no longer ACTIVE, even if the session is re-established. You can 
specify whether the activity is aborted or rolled back to a READY state (so 
another user session can make it ACTIVE).

• Retain the activity in the session’s activity list. If this action is taken, the activity 
remains in the ACTIVE state, and is available for continued work if and when 
the session is re-established

Setting an Activity Link
You set the activity link on the Name tab page of the offered activity property 
inspector by selecting an activity in the Activity link drop list. The list shows all 
activities currently defined in the process definition. Once set, the name of the 
linked activity appears near the current activity in the layout area.

As described in “Activity Links” on page 167, an activity link specifies a 
relationship between the current activity and the user of another activity in the 
process definition. What the link itself does is to ensure that the name of the user 
that completed the other activity, plus other specified user profile information, is 
saved by the engine, and that the engine passes that information to the current 
activity’s assignment rules.



Working with Process Definitions

200 iPlanet Integration Server • Process Development Guide • August 2001

You can link to only one other activity, and the activity must already exist in your 
process definition. You can only link to First, Last, offered, queued, and subprocess 
activities. In the case where the link is to a First activity the user name and related 
information is obtained from the creator of the process definition. The creator can 
be an individual user or, in the case of a subprocess, it can be a parent process. For 
information on the latter case, see “Setting the Subprocess Activity Link” on 
page 218.

To make the link meaningful, you must add at least one assignment rule to the 
current activity that makes use of the user name or the specified user profile 
information in its Evaluate method.

For example, if the current activity must be performed by the same user that 
performed a previous activity, choose the name of that activity from the drop list in 
the Activity Link field. Next, add an assignment rule whose Evaluate method 
compares its linkedUser parameter to the user name of its subject parameter. (See 
“Understanding the Evaluate Method” on page 130 for more information.)

Associating an Application Dictionary Item
You associate an application dictionary item with an offered activity by dragging 
the application dictionary item from the Supplier Components list and dropping it 
on the activity.

Alternatively, you can select the dictionary item from the drop list on the Name tab 
page of the offered activity property inspector. The drop list contains all the 
application dictionary items listed in the process definition’s Supplier Components 
list. (For information on adding supplier components to a process definition, see 
“Adding Supplier Components” on page 189.)

When using elements in the Supplier Components list, the workshop checks for 
consistency. For example, when you associate an application dictionary item with 
an activity, any new process attributes referenced by the application dictionary 
item are added to the process definition’s Process Attribute list. If the referenced 
attributes already exist in the attribute list, the data types are compared.

For a complete description of application dictionaries, see Chapter 6, “Defining 
Application Dictionaries.”

Adding Comments
You can provide internal documentation about the activity in the Comments field 
of the Name tab page of the offered activity property inspector. This field is a good 
place to document how you expect the activity to be used and any unusual 
characteristics of the activity that are not immediately obvious. Information you 
include here can be useful to developers writing iIS process client applications.



Working with Process Definitions

Chapter 7 Creating Process Definitions 201

Associating Assignment Rules
You associate an assignment rule with an offered activity by dragging the 
assignment rule from the Supplier Components list and dropping it on the activity. 

Alternatively, you can click the Assignment Rule tab in the offered activity 
property inspector to bring up the Assignment Rule tab page. To associate an 
assignment rule with an activity, click the Add button to display the Add 
Assignment Rules dialog shown in Figure 7-15 on page 201.

The dialog contains all the assignment rules listed in the process definition’s 
Supplier Components list. You can associate any number of assignment rules with 
an activity. Before you can add them in the dialog, you must have included the 
assignment rule dictionary as a supplier to your process definition (its assignment 
rules must be in the Supplier Components list). Pick one or more assignment rules 
from the list, then click OK. (For information on adding supplier components to a 
process definition, see “Adding Supplier Components” on page 189.)

Figure 7-15 Offered Activity Assignment Rules Tab Page

When using elements in the Supplier Components list, the workshop checks for 
consistency. For example, when you associate an assignment rule with an activity, 
any new process attributes referenced by the assignment rule will be added to the 
process definition’s Process Attribute list. If the referenced attributes already exist 
in the attribute list, the data types will be compared.



Working with Process Definitions

202 iPlanet Integration Server • Process Development Guide • August 2001

To delete an assignment rule, select it from the list in the Assignment Rule tab 
page, then click the Delete button.

For a complete description of assignment rule dictionaries, see Chapter 5, 
“Defining Assignment Rule Dictionaries.”

Defining a Trigger Method
Click the Trigger/Ready tab to define a Trigger method.

When this tab page initially displays, it contains a Trigger method drop list, which 
offers several trigger method. If you select Custom Trigger from the list, a text field 
opens where you can write code for a custom trigger method. If you click the 
Attributes button, the attribute list displays.The following figure shows the 
Trigger/Ready tab:

Specifying the Attribute Access List
The attribute access list allows you to add, delete, and view the set of process 
attributes that can be accessed by both the Trigger and Ready methods. You can 
hide the attribute list by clicking the Hide button. Click the Attributes button, to 
display the list again.

Attribute access List

Trigger method text

Ready method text



Working with Process Definitions

Chapter 7 Creating Process Definitions 203

Both the Trigger and the Ready method are listed on the same tab page to indicate 
that they share the same process attribute access list. You can designate one or 
more process attributes for your Trigger and Ready methods to access. The process 
attributes you designate here must already have been defined for the process 
definition, as described in “Defining Process Attributes” on page 194.

The procedure for specifying the attribute access list is common for all process 
definition activity methods and is described in “Specifying an Attribute Access 
List” on page 265.

Specifying the Trigger Type
An activity remains in a PENDING state until its Trigger method returns TRUE. At 
that time, the activity executes a Ready method, if any is defined, before placing the 
activity in a READY state. 

The Trigger method can respond to a number of conditions: 

• a router arriving from a predecessor activity

• a router arriving from a timer

• a process attribute changing value

Any of these conditions alone or in any combination can cause a Trigger method to 
return TRUE, depending on the logic in the Trigger method. If the Trigger method 
returns FALSE, the triggering conditions have not yet been met and the activity 
remains in the PENDING state.

You can write Trigger methods to implement quite complex triggering logic. 
However, the following two cases are the most common: 

Trigger when any router arrives If more than one router points to the current 
activity, the first one to arrive causes the Trigger method return TRUE. This case, 
which is the default, handles a single incoming router pointing to an activity.

Trigger when all routers arrive If there is more than one incoming router 
pointing to an activity, all must arrive for the Trigger method to return TRUE. This 
case is a common one: All activities that are predecessors to this one must be 
COMPLETED (or ABORTED) before the current activity can be performed.

In these two standard cases, you do not have to write a trigger method—both these 
methods are already provided—you simply choose one from the Trigger Type 
drop list.



Working with Process Definitions

204 iPlanet Integration Server • Process Development Guide • August 2001

Writing a Custom Trigger Method
If your triggering logic is more complex than these two cases—for example, if it 
depends on process attribute values—you must write your own custom Trigger 
method. To write a custom Trigger method, choose Custom Trigger from the 
Trigger Type drop list. The method item field becomes enabled.

On the Trigger/Ready tab page shown in Figure 7-15 on page 201, you can see the 
declaration for the Trigger method. The method declaration is:

This method evaluates all the incoming routers according to criteria that you 
specify in the method. The method returns TRUE or FALSE, indicating whether the 
incoming router conditions match the criteria being checked by the method.

attribAccessor parameter
The attribAccessor parameter is an attribute accessor for the method’s attribute 
access list specified on the Trigger/Ready tab page, described under “Specifying 
the Attribute Access List” on page 202. For information on how to use this 
parameter see “Working with Process Attributes” on page 269.

You can write custom Trigger methods using one of the two following virtual 
attributes to represent the number of times a router arrives from an activity or an 
expired timer:

• _CountActivity_Name

• _CountTimer_Name

Suppose you want to write a Trigger method that implements the following trigger 
condition: both Activity1 and Activity2 complete successfully, and in addition, 
Activity1 must complete three times (it has some kind of loop back router). The 
Trigger method code for this condition is the following:

Trigger (tokens=TriggerAccessIface, attribAccessor=AccessAttribIFace)

Returns boolean

Parameters Required? Input Output

attribAccessor ● ●



Working with Process Definitions

Chapter 7 Creating Process Definitions 205

Return ((_CountActivity1 = 3) and (_CountActivity2 = 1));

For general information on how to write process definition methods, see “Writing 
Code in Process Definition Methods” on page 259.

Defining a Ready Method
The Ready method is defined in the same Trigger/Ready tab page as the Trigger 
method. See the previous section “Defining a Trigger Method” on page 202 for 
more information about using this tab page and specifying the attribute access list.

The engine executes the Ready method when the activity’s Trigger method returns 
TRUE and the activity is about to be placed in a READY state. You can use this 
method for internal housekeeping chores, like setting attribute values prior to their 
being used by assignment rules. For an overview of what this method is doing, see 
“Offered and Queued Activities” on page 167.

The Ready method declaration is:

NOTE The virtual attributes _CountActivity_Name and 
_CountTimer_Name can only be referenced by the activity or 
junction immediately following the activity or timer whose count is 
being referenced. Attempts to access these attributes further down 
the process definition results in a compiler error.

NOTE The Ready method accesses the same attribute access list as the 
Trigger method (see “Defining a Trigger Method” on page 202).

Ready (attribAccessor=AccessAttribIFace)

Returns none

Parameter Required? Input Output

attribAccessor ● ●



Working with Process Definitions

206 iPlanet Integration Server • Process Development Guide • August 2001

attribAccessor parameter
The attribAccessor parameter is an attribute accessor for the method’s attribute 
access list specified on the Trigger/Ready tab page, described previously under 
“Specifying the Attribute Access List” on page 202. For information on how to use 
this parameter see “Working with Process Attributes” on page 269.

For general information on writing process definition methods, see “Writing Code 
in Process Definition Methods” on page 259.

Defining an OnActive Method
You define the OnActive method on the OnActive tab page: 

The engine executes the OnActive method when an offered activity reaches an 
ACTIVE state, before the activity is performed by a user. You can use this method 
for internal housekeeping chores, such as setting attribute values prior to their 
being used by a client application. 

As with all process definition methods, you have to set an attribute access list if 
you want to access process attributes from your OnActive method. The attribute 
access list is displayed at the top of the tab page, allowing you to add, delete, and 
view the set of process attributes that can be accessed by the OnActive method. 
You can hide the attribute list by clicking the Hide button. If you do so, you see in 
its place an Attributes button, which you can click to display the list again. To 
create an attribute access list, see “Specifying an Attribute Access List” on page 265.

Attribute access List

OnActive method text



Working with Process Definitions

Chapter 7 Creating Process Definitions 207

The OnActive method declaration is:

The OnActive method returns a boolean, TRUE or FALSE. If it returns TRUE, then 
activity execution continues, and the activity is performed by a user. If the method 
returns FALSE, the activity is placed in an ABORTED state.

attribAccessor parameter
The attribAccessor parameter is an attribute accessor for the method’s attribute 
access list specified on the OnActive tab page. For information on how to use this 
parameter see “Working with Process Attributes” on page 269.

For general information on how to write process definition methods, see “Writing 
Code in Process Definition Methods” on page 259.

Defining an OnComplete Method 
The engine executes the OnComplete method when an offered activity reaches a 
COMPLETED state, after it is performed by a user. You can use this method for 
internal housekeeping chores, such as setting attribute values prior to OnComplete 
routing. 

OnActive (attribAccessor=AccessAttribIFace)

Returns boolean

Parameter Required? Input Output

attribAccessor ● ●



Working with Process Definitions

208 iPlanet Integration Server • Process Development Guide • August 2001

To specify the OnComplete attribute access list and define the OnComplete 
method choose the OnComplete tab page: 

As with all process definition methods, you have to set an attribute access list if 
you want to access process attributes from your OnComplete method. The 
attribute access list is displayed at the top of the tab page, allowing you to add, 
delete, and view the set of process attributes that can be accessed by the 
OnComplete method. You can hide the attribute list by clicking the Hide button. If 
you do so, you see in its place an Attributes button, which you can click to display 
the list again. To create an attribute access list, see “Specifying an Attribute Access 
List” on page 265.

OnComplete router methods use the same attribute access list as the OnComplete 
method. If you change this attribute access list, it can affect all OnComplete router 
methods.



Working with Process Definitions

Chapter 7 Creating Process Definitions 209

The OnComplete method declaration is:

attribAccessor parameter
The attribAccessor parameter is an attribute accessor for the method’s attribute 
access list specified on the OnComplete tab page. For information on how to use 
this parameter see “Working with Process Attributes” on page 269.

For general information on how to write process definition methods, see “Writing 
Code in Process Definition Methods” on page 259.

Specifying OnComplete Router Execution
The OnComplete Routers list at the bottom of the tab page shows the routers that 
are activated when the activity reaches a COMPLETED state. (To specify the 
routers in the list, see “Working with Routers” on page 231.) Each router contains a 
router method that is executed after the OnComplete method executes. If the router 
method returns TRUE, the router transfers process control to its successor activity 
(the activity to which it points). If the router method returns FALSE, that router 
does not transfer control.

Ordering routers By default, any router you draw in the layout area from the 
current activity to another is an OnComplete router, and displayed in the 
OnComplete router list. Also by default, the order of execution of router methods 
is the order in which you draw the routers in the layout area. To change the order 
in which the router methods are executed, select a router and click the Up or Down 
buttons.

Else router In some cases, you might choose to have a router method executed 
only if all other router methods return FALSE. You can designate such a router as 
an else router by selecting it and clicking the Else button. There can only be one else 
router in a router list. By default, if there is only one router in the list, it is an else 
router. Like all routers, the else router can return TRUE or FALSE.

OnComplete (attribAccessor=AccessAttribIFace)

Returns none

Parameter Required? Input Output

attribAccessor ● ●



Working with Process Definitions

210 iPlanet Integration Server • Process Development Guide • August 2001

Evaluate all By default, the methods of all routers in the OnComplete router list 
are executed sequentially. However, you can specify that once any router method 
returns TRUE, subsequent routers in the list are ignored—their router methods are 
not executed. The first router to return TRUE transfers control. You specify this 
routing behavior by disabling the Evaluate All option.

Defining an OnAbort Method
The engine executes the OnAbort method when the activity is placed in an 
ABORTED state. You can use this method for internal housekeeping chores, like 
resetting attribute values prior to OnAbort routing. 

To specify the OnAbort attribute access list and define the OnAbort method choose 
the OnAbort tab page, shown in Figure 7-16 on page 210.

As with all process definition methods, you have to set an attribute access list if 
you want to access process attributes from your OnAbort method. The attribute 
access list is displayed at the top of the tab page, allowing you to add, delete, and 
view the set of process attributes that can be accessed by the OnAbort method. You 
can hide the attribute list by clicking the Hide button. If you do so, you see in its 
place an Attributes button, which you can click to display the list again. To create 
an attribute access list, see “Specifying an Attribute Access List” on page 265.

Figure 7-16 Offered Activity OnAbort tab page



Working with Process Definitions

Chapter 7 Creating Process Definitions 211

OnAbort router methods use the same attribute access list as the OnAbort method. 
If you change this attribute access list, it can affect all OnAbort router methods.

The OnAbort method declaration is:

attribAccessor parameter
The attribAccessor parameter is an attribute accessor for the method’s attribute 
access list specified on the OnAbort tab page. For information on how to use this 
parameter see “Working with Process Attributes” on page 269.

For general information on how to write process definition methods, see “Writing 
Code in Process Definition Methods” on page 259.

Specifying OnAbort Router Execution
The OnAbort Routers list at the bottom of the tab page shows all the routers that 
are activated when the activity reaches an ABORTED state. (To specify the routers 
in the list, see “Working with Routers” on page 231.) Each router contains a router 
method that is executed after the OnAbort method executes. If the router method 
returns TRUE, then the router transfers process control to its successive activity 
(the activity to which it points). If the router method returns FALSE, then that 
router does not transfer control.

OnAbort router execution is specified in the same way as OnComplete routers. See 
“Specifying OnComplete Router Execution” on page 209.

OnAbort (attribAccessor=AccessAttribIFace)

Returns none

Parameter Required? Input Output

attribAccessor ● ●



Working with Process Definitions

212 iPlanet Integration Server • Process Development Guide • August 2001

Working with Queued Activities
As described under “Offered and Queued Activities” on page 167, a queued 
activity is not offered to users, but is stored by the engine in a queue. Access to the 
queue is available to all users whose profiles match the activity’s assignment rules.

From a process development point of view, the fact that a queued activity is put in 
a queue by the engine is the most significant difference between a queued activity 
and an offered activity. Queued activities are placed in a queue containing 
activities from many process instances. Ordering of the queue can depend on 
criteria based on individual process instances, however access to the queue cannot. 
This distinction has the following implications:

• Activities can be ordered in a queue based either on the order in which they are 
placed in the queue or on the value of a specified process attribute. In the latter 
case, as process attribute values change, activities are reordered in the queue.

• Assignment rules for queued activities cannot depend upon process attribute 
values, since users with access to a queue can perform all activities in the 
queue.

• Queued activities cannot be linked to other activities. The user who performed 
a previous activity in one instance is not the same as in other process instances, 
so an assignment rule could not use that kind of criteria. However, other 
activities in a process definition can be linked to a queued activity.

To add a queued activity to the layout area, click the queued activity icon in the 
toolbar (or choose Tools > Queued Activity), then click the location in the layout 
area where you want to place the activity.



Working with Process Definitions

Chapter 7 Creating Process Definitions 213

To view the properties of a queued activity, double-click the activity in the layout 
area (or select it, then choose Edit > Properties) to open the property inspector:

From the property inspector, you can add and modify the following properties of a 
queued activity:

• name

• “based on” property

• session suspend action

• queue prioritizing process attribute

• application dictionary item

• comments

• assignment rules

• Trigger method

• Ready method

• OnActive method

• OnComplete method

• OnAbort method



Working with Process Definitions

214 iPlanet Integration Server • Process Development Guide • August 2001

Except for queue priority, these properties are the same as for offered activities and 
are discussed in “Working with Offered Activities” on page 197. Setting queue 
priority is discussed in the following section, “Setting Queue Priority” on page 214

Setting the “Based on” Property
This field indicates inheritance of like components from other process definitions 
that supply the current process definition.

Setting the Session Suspend Action
You can specify the action that the engine takes if the session that makes a queued 
activity ACTIVE is suspended. The session might be suspended because of a 
network or engine failure, or because a user or system manager explicitly 
suspended it. You can specify two kinds of action if the session is suspended: 

• Remove the activity from the session’s activity list. If this action is taken, the 
activity is no longer ACTIVE, even if the session is re-established. You can 
specify whether the activity is aborted or rolled back to a READY state (so 
another user session can make it ACTIVE).

• Retain the activity in the session’s activity list. If this action is taken, the activity 
remains in the ACTIVE state and is available for continued work if and when 
the session is re-established

Setting Queue Priority
You can control the way activities are prioritized (ordered) in a queue. By default, 
activities are added to the bottom of the queue as they are placed in the READY 
state. However, you can order the activities in a queue by using any IntegerData 
process attribute. Each activity in the queue is prioritized based on the value of its 
associated process attribute: the activity whose process attribute has the highest 
value becomes first in the list, and the one with the smallest value becomes last.

To set a prioritizing mechanism, choose a process attribute from the Queue 
prioritize attribute drop list. The list displays all IntegerData process attributes 
defined in the process definition, as well as the default priority, First In First Out.

If you select a process attribute to be used to prioritize the queue, the queue is 
reordered whenever an activity is placed in the queue and whenever the queue 
prioritizing attribute changes value for any activity in the queue.



Working with Process Definitions

Chapter 7 Creating Process Definitions 215

Working with Subprocess Activities
As described in “Subprocess Activities” on page 169, a subprocess activity 
represents another process definition, which must be registered with some engine. 
The process definition a subprocess activity references is treated much like a 
method or subroutine: it is a regular process, but is instantiated by the subprocess 
activity. 

To add a subprocess activity to the layout area, click the subprocess activity icon in 
the toolbar (or choose Tools > Subprocess Activity), then click the location in the 
layout area where you want to place the activity. 

To see the properties of a subprocess activity, double-click the activity in the layout 
area (or select it, then choose Edit > Properties) to open the property inspector:

Figure 7-17 Subprocess Activity Property Inspector



Working with Process Definitions

216 iPlanet Integration Server • Process Development Guide • August 2001

From the subprocess activity property inspector, you can add and modify the 
following properties of a subprocess activity:

• name

• based on

• recovery level

• activity link

• application dictionary item

• subprocess name

• synchronous/asynchronous property

• comments

• input/output attributes

• Trigger method

• Ready method

• OnActive method

• OnComplete method

• OnAbort method

Because a subprocess activity does not interact directly with a client application (it 
creates an instance of another process), it does not have assignment rules or an 
application dictionary item associated with it. However, it does go through a 
READY state and has a Ready method, which allows you to set attributes and 
perform other necessary tasks before invoking the subprocess definition.

A subprocess activity can be synchronous (wait for the subprocess to complete) or 
asynchronous (continue to completion without waiting for the subprocess to 
complete). 



Working with Process Definitions

Chapter 7 Creating Process Definitions 217

A unique feature of a subprocess activity is its input and output attributes. Just as 
with method calls, input attributes are attributes passed from the subprocess 
activity (the parent process) to the subprocess and are used by the subprocess in 
doing its work. Output attributes are passed back from the subprocess to the 
subprocess activity (the parent process). These attributes must be defined both in 
the parent process definition and in the subprocess definition.

The unique properties of subprocess activities are discussed in the following 
sections. For information about activity methods (Trigger, Ready, OnActive, 
OnComplete, and OnAbort) see “Working with Offered Activities” on page 197.

Specifying the Subprocess
To specify the name of the subprocess represented by a subprocess activity and 
indicate whether the subprocess activity is synchronous or asynchronous, 
double-click the subprocess activity to display its property inspector, and, if 
necessary, click the Name tab to display the Name tab page, shown in Figure 7-17 
on page 215.

Synchronous/asynchronous property
To indicate whether a subprocess activity is synchronous or asynchronous, use the 
Synchronous option. The two choices are:

Synchronous By default, a subprocess executes synchronously. The subprocess 
activity cannot continue to a COMPLETED state unless the subprocess goes to 
completion. Thus, the parent process is dependent on successful completion of the 
subprocess. If the subprocess cannot be created or fails to complete normally for 
any reason, the subprocess activity is placed in an ABORTED state.

Asynchronous The subprocess activity continues to a COMPLETED state 
without waiting for the subprocess to complete. Thus the parent process continues 
to execute independently of the subprocess. In this context, output attributes for 
the subprocess activity have no meaning. If the subprocess is not successfully 
created, the subprocess activity is placed in an ABORTED state.

NOTE If the subprocess activity is asynchronous, it does not need to wait 
for the subprocess to complete and does not need to receive values 
from the completed subprocess; therefore, it is not possible to set 
output attributes for an asynchronous subprocess activity.



Working with Process Definitions

218 iPlanet Integration Server • Process Development Guide • August 2001

Subprocess name
In the Subprocess field, enter the name of the process to be called. By default, it is 
assumed that the subprocess is executed on the same engine as the parent process, 
however this is not always the case. Your system manager can indicate the engine 
on which the subprocess definition is executed by registering an alias with the 
engine of the parent process.

Setting the Subprocess Activity Link
Activity links for subprocess activities work basically the same as for offered 
activities (see “Setting an Activity Link” on page 199) with a few additional 
subtleties.

The activity link you specify for a subprocess activity does not apply directly to the 
subprocess activity, because a subprocess activity is not performed by a single user. 
Instead the user who completed the linked activity is considered to be the creator of 
the subprocess, meaning the user associated with the First activity of the 
subprocess. 

Any activity in the subprocess definition that links to the First activity gets this 
linked user. If the subprocess activity lacks an activity link, then the First activity in 
the subprocess has no user information—no activity in the subprocess definition 
should link to it.

As a further subtlety, if any activity in the parent process definition has an activity 
link to the subprocess activity, the linked user for the subprocess activity is the 
“user” of the Last activity in the subprocess definition. Since there is no direct user 
associated with a Last activity, this information is only available if the Last activity 
is itself linked to some other activity in the subprocess.

Specifying Input and Output Attributes
You can define attributes that pass values into the subprocess and attributes that 
pass values back out. Input attributes are similar to a method’s Input parameters: 
they pass values into the subprocess to be used there. Output attributes are similar 
to a method’s output parameters: they pass values back out of the subprocess to be 
used in the parent process. Input and output attributes must exist as process 
attributes both in the parent process (the one with the subprocess activity) and the 
subprocess.



Working with Process Definitions

Chapter 7 Creating Process Definitions 219

To set input and output attributes, click the In/Out attributes tab in the property 
inspector to open the In/Out tab page:

➤ To add process attributes to the Input or Output attribute list

1. Click the Add button. 

The Select Process Attributes dialog appears. The dialog displays the list of 
process attributes defined in the process definition: 

2. Choose one or more process attributes.



Working with Process Definitions

220 iPlanet Integration Server • Process Development Guide • August 2001

3. Click OK to add them to the attribute access list.

➤ To delete an attribute from the list

1. Select the attribute from the list

2. Click the Delete button.

Working with Automatic Activities
As described under “Automatic Activities” on page 170, an automatic activity is 
performed by the engine, not by a user of a process client application.

To add an automatic activity to the layout area, click its icon in the toolbar (or 
choose Tools > Automatic Activity), then click the location in the layout area where 
you want to place the activity. 

To see the properties of an automatic activity, open the property inspector by 
double-clicking the activity in the layout area (or select the activity, then choose 
Edit > Properties):

NOTE Input attributes automatically have No_lock lock type. Output 
attributes only have meaning and can only be specified for 
synchronous subprocess activities; they automatically have Write 
lock type.



Working with Process Definitions

Chapter 7 Creating Process Definitions 221

From the property inspector, you can add and modify the following properties of 
an automatic activity:

• name

• “based on” property

• comments

• Trigger method

• Ready method

• OnActive method

• OnComplete method

• OnAbort method

An automatic activity specifically does not have assignment rules, an activity link, 
or an application dictionary item associated with it.

The most important aspect of an automatic activity is its OnActive method. This 
method, performed by the engine, represents work that can be performed 
automatically rather than by a user of a client activity. In general, this work should 
be simple (from the engine’s point of view) so it does not impact process execution 
performance. As a general rule, you write this method to invoke some service 
external to the engine.

Often, fully automated work can be satisfactorily performed using either an 
automatic activity or by creating a service that opens a session with an iIS engine to 
perform the automated work, much like a client application user. In the latter case, 
the tasks performing the activity execute outside and in parallel with the engine, 
while in the former case, they are executed by the engine itself.

The mechanics of writing an OnActive method for an automatic activity are the 
same as for an offered activity and are described in “Defining an OnActive 
Method” on page 206. The only significant distinction for an automatic activity’s 
OnActive method is that when it returns TRUE, the activity is placed directly in a 
COMPLETED state.

Typically, you code your OnActive method to invoke an iPlanet UDS service 
object. For more information, refer to “Writing Code that Accesses iPlanet UDS 
Service Objects” on page 276.

For information about other automatic activity methods (Trigger, Ready, 
OnComplete, and OnAbort) refer to “Working with Offered Activities” on 
page 197.



Working with Process Definitions

222 iPlanet Integration Server • Process Development Guide • August 2001

Working with Timers
Timers are introduced in “About Timers” on page 174. To summarize, there are 
two types of timers: Elapsed (works like a kitchen timer, with a duration of time 
whose expiration depends on when the timer starts) and Deadline (works like a 
deadline in a schedule, with a set date and time that it expires). Each type of timer 
has its own default behavior, which can be modified by changing its properties and 
rewriting its associated methods. Each type of timer also has its own set of 
methods.

As you can with an activity, you can use a router to connect a timer to an activity, 
and you can have multiple routers connecting to multiple activities. Also, as with 
an activity, the attribute access list for a timer’s router methods is shared with the 
OnExpiration method of the timer.

See “Working with Timer Controls” on page 230 for information on changes in 
activity states can be used to control a timer.

To add a timer to the layout area, click its icon in the toolbar (or choose Tools > 
Timer), then click the location in the layout area where you want to place the timer.

Working with an Elapsed Timer
When you first create an elapsed timer its default duration (timer value) is set to 
zero and it’s default initial state (when a process instance starts) is off. 



Working with Process Definitions

Chapter 7 Creating Process Definitions 223

To set the timer’s properties, double-click the timer to display its property 
inspector:

The property inspector has tabs for setting the name of the timer and other 
properties, and tabs for defining its ElapsedOn, ElapsedOff, and OnExpiration 
methods. The OnExpiration tab page is where timer expiration routers are 
specified.

Specifying Timer Properties
In the Name tab page of an elapsed timer’s property inspector, you can set the 
following properties:

Name Enter a name for the timer.

Based on Indicates inheritance of like components from other process definitions 
that supply the current process definition.

Timer On at Process Start Lets you set the initial state of the timer when the 
process instance is first created (started up). By default the initial state is OFF.

Timer Type Choose between Elapsed or Deadline. Set this value early because it 
determines the other properties you can set.



Working with Process Definitions

224 iPlanet Integration Server • Process Development Guide • August 2001

Timer Value and Units You can set an elapsed timer for any duration of time. 
The value has meaning only when you specify the units, in the drop list. Note, 
however, that setting units to milliseconds might not work on all platforms. The 
practical minimum unit is seconds.

Comments Enter an internal comment that describes the timer. Comments can be 
useful to developers writing process client applications.

Defining the ElapsedOn Method
The ElapsedOn method is executed when the timer is turned on. By default, it 
calculates the expiration time of the timer by adding the block of time indicated in 
the timer’s Timer Value setting (passed to it in the onTime parameter) to the 
current date and time indicated by the computer system, yielding an expiration 
time. 

You have the option of specifying more complex behavior using the ElapsedOn 
and ElapsedOff methods, such as calculating by business days, skipping two days 
for each weekend. For example, a business day timer that is set for three business 
days might be started on a Thursday at 9 am. Its ElapsedOn method calculates its 
expiration time as the same time on the following Tuesday. If it is subsequently 
stopped on Friday at 9 am, the timer’s ElapsedOff method indicates that two 
business days are left on the timer. If it is then started up on Monday at 9 am, the 
timer’s ElapsedOn method calculates the expiration time as Wednesday at 9 am.

To specify the ElapsedOn attribute access list and define the ElapsedOn method 
choose the ElapsedOn tab page.

As with all process definition methods, you have to set an attribute access list if 
you want to access process attributes from your ElapsedOn method. The attribute 
access list is displayed at the top of the tab page, allowing you to add, delete, and 
view the set of process attributes that can be accessed by the ElapsedOn method. 
You can hide the attribute list by clicking the Hide button. If you do so, you see in 
its place an Attributes button, which you can click to display the list again. To 
create an attribute access list, see “Specifying an Attribute Access List” on page 265.

The ElapsedOn method declaration is:

ElapsedOn (onTime=IntervalData, attribAccessor=AccessAttribIFace)

Returns DateTimeData

Parameter Required? Input Output

onTime ● ●

attribAccessor ● ●



Working with Process Definitions

Chapter 7 Creating Process Definitions 225

onTime parameter
The onTime parameter is the internally known time period until expiration. It is 
passed into the method, and the method manipulates it as necessary to produce an 
expiration time as the return value. Initially the value is taken from the Timer value 
field in the property inspector; however on subsequent restarts, it is supplied by 
the engine (from the return value of the ElapsedOff method).

attribAccessor parameter
The attribAccessor parameter is an attribute accessor for the method’s attribute 
access list specified on the ElapsedOn tab page. For information on how to use this 
parameter see “Working with Process Attributes” on page 269.

For general information on how to write process definition methods, see “Writing 
Code in Process Definition Methods” on page 259.

Defining the ElapsedOff Method
The ElapsedOff method is executed when the timer is turned off. By default, it 
calculates how much time is left from the current date and time to the expiration 
time of the timer (as calculated by the ElapsedOn method).

To specify the ElapsedOff attribute access list and define the ElapsedOff method 
choose the ElapsedOff tab page.

As with all process definition methods, you have to set an attribute access list if 
you want to access process attributes from your ElapsedOff method. The attribute 
access list is displayed at the top of the tab page, allowing you to add, delete, and 
view the set of process attributes that can be accessed by the ElapsedOff method. 
You can hide the attribute list by clicking the Hide button. If you do so, you see in 
its place an Attributes button, which you can click to display the list again. To 
create an attribute access list, see “Specifying an Attribute Access List” on page 265.

The ElapsedOff method declaration is:

ElapsedOff (offTime=DateTimeData, attribAccessor=AccessAttribIFace)

Returns IntervalData

Parameter Required? Input Output

offTime ● ●

attribAccessor ● ●



Working with Process Definitions

226 iPlanet Integration Server • Process Development Guide • August 2001

offTime parameter
The offTime parameter is the internally known expiration time of the elapsed timer 
(as returned by the ElapsedOn method). It is passed into the method, and the 
method manipulates it as necessary to produce the time interval until expiration.

attribAccessor parameter
The attribAccessor parameter is an attribute accessor for the method’s attribute 
access list specified on the specified on the ElapsedOff tab page. For information on 
how to use this parameter see “Working with Process Attributes” on page 269.

For general information on how to write process definition methods, see “Writing 
Code in Process Definition Methods” on page 259.

Defining the OnExpiration Method
The engine executes the OnExpiration method when the timer expires. You can use 
this method for internal housekeeping chores, like setting attribute values prior to 
Expiration routing. 

To specify the OnExpiration attribute access list and define the OnExpiration 
method choose the OnExpiration tab page.

Attribute access List

OnExpiration method text

Expiration router list



Working with Process Definitions

Chapter 7 Creating Process Definitions 227

As with all process definition methods, you have to set an attribute access list if 
you want to access process attributes from your OnExpiration method. The 
attribute access list is displayed at the top of the tab page, allowing you to add, 
delete, and view the set of process attributes that can be accessed by the 
OnExpiration method. You can hide the attribute list by clicking the Hide button. If 
you do so, you see in its place an Attributes button, which you can click to display 
the list again. To create an attribute access list, see the procedure in “Specifying an 
Attribute Access List” on page 265.

Timer expiration router methods use the same attribute access list as the 
OnExpiration method. If you change this attribute access list, it can affect all 
Expiration router methods. 

The OnExpiration method declaration is:

attribAccessor parameter
The attribAccessor parameter is an attribute accessor for the method’s attribute 
access list specified on the OnExpiration tab page. For information on how to use 
this parameter see “Working with Process Attributes” on page 269.

For general information on how to write process definition methods, see “Writing 
Code in Process Definition Methods” on page 259.

Specifying Expiration Router Execution
The Expiration Routers list at the bottom of the tab page shows all the routers that 
are activated when the timer expires. (To specify the routers in the list, see 
“Working with Routers” on page 231.) Each router contains a router method that is 
executed after the OnExpiration method executes. If the router method returns 
TRUE, then the router transfers process control to its successive activity (the 
activity it points to). If the router method returns FALSE, then that router does not 
transfer control.

Expiration routers are specified in the same way as OnComplete routers. See 
“Specifying OnComplete Router Execution” on page 209.

OnExpiration (attribAccessor=AccessAttribIFace)

Returns none

Parameter Required? Input Output

attribAccessor ● ●



Working with Process Definitions

228 iPlanet Integration Server • Process Development Guide • August 2001

Working with a Deadline Timer
When you first create an elapsed timer its default expiration time (timer value) is 
set to the current date and time and it’s default initial state (when a process 
instance starts) is off. 

To set the timer’s properties, double-click the timer to display its property 
inspector:

The property inspector has tabs for setting the name of the timer and other 
properties, and tabs for defining its DeadlineInit and OnExpiration methods. The 
OnExpiration tab page is where timer expiration routers are specified.

Specifying Timer Properties
In an elapsed timer’s Name tab page, you can set the following properties:

Name Enter a name for the timer.

Timer On at Process Start Sets the initial state of the timer when the process 
instance is first created (started up). By default the initial state is OFF.

Timer Type Select Elapsed or Deadline. Set this value early because it determines 
the other properties you can set.



Working with Process Definitions

Chapter 7 Creating Process Definitions 229

Timer Value Enter the date and time the timer expires. The format required in 
this field is the MM/DD/YY hh:mm format—Month/Day/Year Hours:Minutes, 
with the year not showing the century and the hours using a 24-hour clock. If you 
have not entered a value in this field, you see the current date and time.

Comments Enter an internal comment that describes the timer. Comments can 
provide useful information to developers writing process client applications.

Defining the DeadlineInit Method
The DeadlineInit method calculates an expiration date and time whenever the 
deadline timer is turned on. By default, it returns the date and time entered in the 
Timer value field of the property inspector. As discussed in “About Timers” on 
page 174, a deadline timer can be defined to handle custom deadlines such as the 
end of a business quarter. This calculation would be performed by the DeadlineInit 
method, which would round up an initial date to the end of a business quarter.

To specify the DeadlineInit attribute access list and define the DeadlineInit method, 
choose the DeadlineInit tab page.

As with all process definition methods, you have to set an attribute access list if 
you want to access process attributes from your DeadlineInit method. The attribute 
access list is displayed at the top of the tab page, allowing you to add, delete, and 
view the set of process attributes that can be accessed by the DeadlineInit method. 
You can hide the attribute list by clicking the Hide button. If you do so, you see in 
its place an Attributes button, which you can click to display the list again. To 
create an attribute access list, see “Specifying an Attribute Access List” on page 265.

The DeadlineInit method declaration is:

initTime parameter
The initTime parameter is the initial deadline time—set in the Timer value field of 
the property inspector. It is passed into the method, and the method manipulates it 
if necessary to produce an actual expiration time as the return value.

DeadlineInit (initTime=DateTimeData, attribAccessor=AccessAttribIFace)

Returns DateTimeData

Parameter Required? Input Output

initTime ● ●

attribAccessor ● ●



Working with Process Definitions

230 iPlanet Integration Server • Process Development Guide • August 2001

attribAccessor parameter
The attribAccessor parameter is an attribute accessor for the method’s attribute 
access list defined in the DeadlineInit tab page. For information on how to use this 
parameter see “Working with Process Attributes” on page 269.

For general information on how to write process definition methods, see “Writing 
Code in Process Definition Methods” on page 259.

Defining the OnExpiration Method
The procedure for defining the OnExpiration method for a deadline timer is the 
same as for an elapsed timer. See “Defining the OnExpiration Method” on 
page 226.

Specifying Expiration Router Execution 
The procedure for specifying the Expiration routers for a deadline timer is the same 
as for an elapsed timer. See “Specifying Expiration Router Execution” on page 227.

Working with Timer Controls
To have an activity control the behavior of a timer, click the Connect tool in the tool 
palette, then in the layout area click in the originating activity and drag to the 
destination timer, dropping it there. This creates a timer control.

To set the properties of a timer control, double-click the timer control to display its 
property inspector:



Working with Process Definitions

Chapter 7 Creating Process Definitions 231

In the Timer Control property inspector, you can enter a name for the timer control, 
provide internal, descriptive comments about the timer, and set its activity state 
and its effect on the timer.

On Activity State A timer control is connected to a specific state of the 
originating activity. By default, the timer control becomes active (affects the timer) 
when the activity becomes ACTIVE. However, you can designate that the timer 
control become active in any state of the activity, and you can have multiple timer 
controls from an activity to a timer, making it possible, for example, to start a timer 
when the activity becomes READY and stop it when the activity completes 
(reaches COMPLETED state). See “Activity States” on page 164 for more 
information on activity states.

SetTimer This setting designates whether the timer is automatically set ON or 
OFF when the timer control activates.

Reset Timer Value A timer control can reset the timer when it activates, or it can 
leave it at its current value. The effect of a reset depends on the type of timer:

• Elapsed timer—resetting causes it to recalculate the expiration time 
(ElapsedOn method). For example, assuming a default ElapsedOn method, if 
the Time Value is ten minutes and the timer has run for five, a reset causes it to 
expire in ten minutes again. If you have redefined its ElapsedOn method, 
resetting it affects its behavior as you define in this method.

• Deadline timer—resetting causes it to recalculate the expiration time 
(DeadlineInit method). For example, assuming a default DeadlineInit method, 
the reset causes the deadline time to remain the same. If you have defined your 
own DeadlineInit method for a deadline timer, resetting the timer might cause 
the deadline to change, depending on your definition of this method.

See “Working with Timers” on page 222 for more information on timer methods.

Working with Routers
To route process control from one activity to another or from a timer to an activity, 
click the Connect tool in the tool palette, then in the layout area click and drag from 
the originating object to the destination object. This creates a Router.



Working with Process Definitions

232 iPlanet Integration Server • Process Development Guide • August 2001

There are three types of routers:

• OnComplete—routers that are activated when an activity completes 
successfully (reaches a COMPLETED state)

• OnAbort—routers that are activated when an activity fails to complete 
successfully (reaches an ABORTED state)

• Expiration—routers that are activated when a timer expires

When you draw a router from one activity to another, it is by default an 
OnComplete router. The router is automatically added to the activity’s 
OnComplete router list. You can turn an OnComplete router into an OnAbort 
router by displaying the router’s property inspector and, in the Condition tab page, 
choosing OnAbort from the Router Type drop list (unless the router originates 
from a First activity).

When you draw a router from a timer to an activity, it is always an Expiration 
router. The router is automatically added to the timer’s Expiration router list.

To display a router’s property inspector, double-click the router (or select the 
router and choose Edit > Properties). 



Working with Process Definitions

Chapter 7 Creating Process Definitions 233

Specifying Router Properties
In the router’s Name tab page, you can set the following properties:

Name Enter a name for the router.

Hide name Choose to not display the router name in the layout area by enabling 
the Hide name option. Router names can sometimes clutter the layout area.

Comments Enter an internal comment that describes the router. Internal 
comments can be useful to developers writing process client applications.

Above the Comments field there is a statement indicating the router’s origin and its 
destination.

Defining Router Methods
In the router property inspector, click the Condition tab to display the Condition 
tab page: 

In this tab page, you can set the router type, OnComplete or OnAbort. You can also 
view the attributes access list for the Router method, and can write a Router 
method.



Working with Process Definitions

234 iPlanet Integration Server • Process Development Guide • August 2001

The router method by default returns TRUE, meaning that by default the router 
always transfers control to its destination activity. If you want to evaluate criteria 
for the router, such as testing a process attribute to see if its value is appropriate for 
transferring control to the destination activity, you can write a method of either a 
simple router type or a custom router type, as described in the following sections. 

As with all process definition methods, you have to set an attribute access list if 
you want to access process attributes from your Router method. However, Router 
methods use the attribute access lists of their corresponding parent methods:

• If the router is an OnComplete router, its attribute access list is set in the 
originating activity’s OnComplete tab page (see “Defining an OnComplete 
Method” on page 207). 

• If the router is an OnAbort router, its attribute access list is set in the 
originating activity’s OnAbort tab page (see “Defining an OnAbort Method” 
on page 210). 

• If the router is an Expiration router, its attribute access list is set in the 
originating timer’s OnExpiration tab page (see “Defining the OnExpiration 
Method” on page 226). 

You can only see the attributes, not edit them in a router’s Condition tab page. To 
change the attribute access list you need to change them in the corresponding 
OnComplete, OnAbort, or OnExpiration tab pages.

You can hide the attribute list by clicking the Hide button. If you do so, you see in 
its place an Attributes button, which you can click to display the list again. 

Simple Router Type Methods
You can construct router methods that express the desired router conditions using 
a method generator that does not require knowledge of TOOL language syntax. To 
use this method generator, choose Simple Router from the Router expression type 
drop list.

In the Router expression field you can now enter a simple algebraic 
expression—using process attributes in the router method’s attribute access list 
and standard algebraic operators—that describes the condition under which the 
router will transfer control to its destination activity. As you type the expression, 
the Validation results field will dynamically change to reflect the status of your 
expression, reporting errors in syntax.

A simple router expression would be the following:

Status = 3 and TotalAmount > 1000



Working with Process Definitions

Chapter 7 Creating Process Definitions 235

Custom Router Type Methods
You can write router methods that express the desired router conditions using 
TOOL code, by choosing Custom Router from the Router expression type drop list. 
The Router method declaration is:

attribAccessor parameter
The attribAccessor parameter is an attribute accessor for the method’s attribute 
access list shown on the Condition tab page. For information on how to use this 
parameter see “Working with Process Attributes” on page 269.

The router method corresponding to the simple expression illustrated in “Simple 
Router Type Methods” would be the following:

return (Status = 3 and TotalAmount > 1000);

Of course, you can write considerably more complicated router methods as 
needed. For general information on how to write process definition methods, see 
“Writing Code in Process Definition Methods” on page 259.

Saving and Compiling Process Definitions
As you work on your process definitions, it is a good idea to save them regularly. 
As you write your own activity, router, or timer methods, you can periodically 
compile your process definition plan into a TOOL project to ensure that the syntax 
is correct.

Saving Changes
As you edit the process definition, be sure to save your changes periodically 
(choose File > Save All). When you save changes, the current process definition is 
updated in your workspace.

Router (attribAccessor=AccessAttribIFace)

Returns boolean

Parameter Required? Input Output

attribAccessor ● ●

NOTE If you have any other workshops open for editing, they are saved at 
the same time. 



Working with Process Definitions

236 iPlanet Integration Server • Process Development Guide • August 2001

Compiling a Process Definition
If you write your activity, router, or timer methods, you might want to compile the 
process definition each time you finish a method to ensure that your code is 
syntactically correct. To compile, choose File > Compile. iIS generates TOOL code 
from the process definition and compiles it, saving the resulting TOOL code in a 
read-only TOOL project that has the extension _PD. (This file is a by-product of the 
compile process: you do not use it.)

If there are compilation errors, iIS displays them for you. You can find the source of 
compilation errors by double-clicking on a compile error item. The corresponding 
method text item field will be displayed with the code that contains the error 
highlighted. You can fix the errors in your TOOL code, and recompile.

Making and Registering Process Definition 
Library Distributions
Finally, when you have completed all work on a process definition and are ready 
for it to be used by an engine, you make it into a library distribution and register it 
with one or more engines.

To perform these operations, choose File > Distribute. You see the Distribute 
Options dialog box: 

The File > Distribute command performs a compile operation if this option is 
checked, then uses the resulting TOOL project to make a library distribution. The 
Generate Project field shows you the name of the generated TOOL project. You can 
enter another name if you like. 

TIP If too many of these generated files clutter your list of plans in the 
Repository Workshop, you can filter them by choosing iIS Plans 
from the Filter drop list. (Figure 7-12 on page 184 shows the 
Repository Workshop with the filter set this way.)



Working with Process Definitions

Chapter 7 Creating Process Definitions 237

Register option
To register the resulting library distribution with an engine, click the Register 
option. If the Register option is enabled, you are prompted with a list of engines. 
Choose the engines you want to register with, then click OK. The library 
distribution is saved in the FORTE_ROOT/appdist directory on the central server 
node in your iIS system.

If an engine you want to register the process definition with is not in your 
environment, you must copy the library distribution to the remote environment, 
then use the iIS Console to register the distribution. See the iIS Process System Guide 
for more information.

Registering a New Version of a Process Definition
When you register a new version of a process definition with an engine that has an 
older version already registered, the new version of the process definition is the 
one that is used as users create new process instances. If there are any instances of 
the old process definition executing, they continue to execute until they are done.

NOTE The node hosting an iIS process engine must be online and the 
engine running in your environment before you can perform a 
registration with that engine.



Working with Process Definitions

238 iPlanet Integration Server • Process Development Guide • August 2001



239

Chapter 8

Defining Validations

This chapter describes how to use the Validation Workshop to write the methods 
that validate users and sessions against the site’s organization database. The most 
important of these methods is ValidateUser, which authenticates a user at login 
time and then constructs a user profile object for that user.

The chapter covers the following topics:

• descriptions of user and session validations

• using the Validation Workshop

• creating new versions of a validation

• class reference for the Validation class

About Validations
A validation is a method invoked by an iIS engine to authenticate an operation 
based on information in a site’s organization database. The validation methods 
consist of two general types: user validation and session validation.

User validation Verifies a user’s request to open an engine session. The engine 
invokes a ValidateUser method, which checks a user profile object and login 
password against information in the organization database. The method can also 
add information it finds in the database to the user profile object. When the engine 
has fully authenticated a user profile object, it can pass it to assignment rules that 
determine the activities (and possibly processes) a user can access. For an overview 
of user profiles and user validations and how they fit into an iIS enterprise 
application, see “User Profile Design Concepts” on page 48.



About Validations

240 iPlanet Integration Server • Process Development Guide • August 2001

Session validation Implement a site’s session control policy, which generally 
regulates the number of concurrent sessions a user can open. Two methods, 
SessionOpen and SessionClose, are invoked to write session control information 
into the organization database and use that information to decide when a session 
can be opened.

The user validation and session validation work in tandem. The iIS engine first 
performs the user validation, then the session validation. Both user validation and 
the session control criteria must be satisfied for a new session to be opened, or for a 
suspended session to be restored to an ACTIVE state. The authenticated user 
profile object is then associated with the ACTIVE session.

The validation methods access the site-defined organization database that holds all 
employee information pertinent to performing work in an enterprise application. 
They retrieve or write information for a specific user. Validation methods can also 
access information available from an LDAP directory service.

Validation Class
The Validation class defines a number of methods that are executed by the iIS 
engine. You write these methods to gain access to your organization database, 
verify a user profile object against that database, implement a session control 
policy, and exit the database. Because these methods access your organization 
database and perform actions that depend on site policies, you should define these 
methods yourself. The methods have default implementations that are used if you 
do not provide your own. For more information on these methods, refer to 
“Validation Class” on page 253.

Validation methods are dependent on the user profile. Therefore, any extended 
user profile must be supplied to the validation plan, as discussed in “Extended 
User Profile as Supplier” on page 95.

NOTE A validation must always be defined at your site and registered with 
the engine. You can only register one validation with an engine. An 
extended user profile must be registered before registering any 
validation that references it.



Working with a Validation

Chapter 8 Defining Validations 241

Working with a Validation
This section describes the tasks you are likely to perform when you create or 
modify a user validation. It is followed by a reference section on the Validation 
class. 

This section covers the following topics:

• opening the Validation Workshop

• editing a validation class

• saving, compiling, and registering a validation

Opening the Validation Workshop
This section contains procedures for creating a new validation and opening an 
existing validation from the Repository Workshop (illustrated in the following 
figure).

Figure 8-1 Opening a Validation in the Repository Workshop

New 
Validation 

Existing 
Validation



Working with a Validation

242 iPlanet Integration Server • Process Development Guide • August 2001

➤ To open the Validation Workshop and create a new plan

1. From the Repository Workshop, click the New Validation toolbar button, or 
choose Plan > New Process Development Plan > Validation.

A dialog opens prompting you to name the new validation. 

2. Name the validation, and click OK.

A new user profile plan opens in the Validation Workshop.

➤ To open the Validation Workshop for an existing plan

1. From the Repository Workshop, double-click the name of an existing 
validation in the plan list, or select the name of an existing validation in the 
plan list and press Enter, or select the name of an existing validation in the plan 
list and choose Plan > Open.

See Chapter 3, “The Repository Workshop” for more information on the 
Repository Workshop.

Creating and Editing a Validation 
You have to define a custom Validation for your iIS process management 
system—in particular you have to write a ValidateUser method that validates users 
who are opening a session with an engine. 



Working with a Validation

Chapter 8 Defining Validations 243

When you create a new validation, the Validation Workshop opens with a new 
validation plan: 

To create a validation class, click the New Validation button at the top left of the 
toolbar or choose File > New Validation: 

Properties
dialog



Working with a Validation

244 iPlanet Integration Server • Process Development Guide • August 2001

The list view now displays a new validation class and the elements of that class: 
attributes, object attributes, and a number of validation methods, the most 
important of which is the ValidateUser method. Depending on the element you 
select in the list view, the dialog area changes accordingly.

As you edit the validation, be sure to save your changes periodically, as described 
in “Saving Changes” on page 250.

Specifying Validation Properties
To specify user validation properties, select the validation class element. The 
corresponding panel is displayed on the right. It enables you to enter the name of 
the validation class and comments about it. 

Specifying Validation Attributes 
There may be situations when you want to store simple, validation-related 
information. For example, you might store the name of the engine invoking a 
validation method, the number of times the method is invoked, information that is 
passed to an external validation service, or information about the identity of a 
database accessed by an external validation service. You can store such information 
as a validation attribute.

NOTE If your validation depends upon an extended (rather than standard) 
user profile, you must include the user profile as a supplier library 
to your validation. This requires that the user profile library first be 
imported into your process development library as described in 
“Including a User Profile as a Supplier Library” on page 104. To 
include the user profile as a supplier, click on the Suppliers element 
in the list view, click the Edit Supplier List button (or choose File > 
Supplier Plans…), select the library, and click OK.



Working with a Validation

Chapter 8 Defining Validations 245

To specify an attribute, select the Attributes element in the list view. The 
corresponding dialog is displayed on the right. It allows you to add validation 
attributes to the class. If you click the New button, you see a dialog prompting you 
for the name and type of the new validation attribute: 

You can create validation attributes with simple types: boolean, double, float, 
integer, long, and string. The following table describes these TOOL data types (also 
described in “An Introduction to The TOOL Language” on page 288):

Data Type Description

boolean A variable that can take one of two logical values, TRUE or FALSE.

double Approximately 10E-308 to 10+308 with about 15 digits of precision, 
depending on your platform.

float Approximately 10E-38 to 10+38 with about 7 digits of precision, depending 
on your platform.

integer A signed, 4-byte integer ranging from -2,147,483,648 to 2,147,483,647 on all 
platforms.

long At least -2,147,483,648 to 2,147,483,647--perhaps greater depending on your 
platform.

Attributes

New

dialog

dialog

attribute



Working with a Validation

246 iPlanet Integration Server • Process Development Guide • August 2001

You access these validation attributes through simple TOOL object.attribute syntax. 
For example, use the following expression to set a string attribute called 
DatabaseVersion to the string constant ‘A42’:

Validation.DatabaseVersion = ‘A42’;

Specifying Validation Object Attributes 
If you need to reference a service object in any of your validation methods, you can 
define an object attribute which references the service object and serves as a handle 
to it. To define such an attribute, click the New button. A dialog opens, prompting 
you for the name and class type of the new object attribute. The class type should 
be the same as the service object you are referencing, and it’s definition must be 
included as a supplier library to your validation plan.

For information on accessing service objects from process definition methods, see 
“Writing Code that Accesses iPlanet UDS Service Objects” on page 276. For more 
information on object attributes, see “Saving a Handle to a Service Object” on 
page 285.

Writing a ValidateUser Method
You write a ValidateUser method in the ValidateUser method panel. As with all 
methods in the process development workshops, you write this method in iPlanet 
UDS’s TOOL language. (For a brief description of TOOL, see “An Introduction to 
The TOOL Language” on page 288.)

➤ To write a ValidateUser method

1. Select the ValidateUser method element in the list view.

The method panel is displayed on the right: 

string A simple data type that stores a string constant. There are no string 
expressions, and although you can compare strings in boolean expressions, 
there is no way to manipulate the string other than to copy it to a TextData 
object, manipulate it, and copy it back.

Data Type Description



Working with a Validation

Chapter 8 Defining Validations 247

Figure 8-2 Validate User Method Panel

2. Type your TOOL code in the method edit field below the ValidateUser method 
declaration. The ValidateUser method is described in the following section.

Understanding the ValidateUser Method
In the ValidateUser method dialog, shown in Figure 8-2, you can see the 
ValidateUser method declaration.

The method returns TRUE or FALSE, indicating whether the user is validated or 
not. For more information about the method parameters, see “ValidateUser” on 
page 257 in the Validation class reference section.

ValidateUser (user=UserProfileIFace, password=string)

Returns boolean

Parameters Required? Input Output

user ● ● ●

password ● ●



Working with a Validation

248 iPlanet Integration Server • Process Development Guide • August 2001

There is no default implementation for ValidateUser—you have to write it 
yourself. The ValidateUser method should verify a user’s request to open an 
engine session. It normally checks a user’s name, roles, and login password against 
information in an organization database. The method can also add information it 
finds in the database to the user profile object.

To perform these tasks ValidateUser typically employs a number of methods 
defined on the UserProfile class. The following are some of the more useful 
methods. (These methods are described in more detail in Chapter 4, “Defining a 
User Profile.”)

Method Parameters Returns Purpose

GetRoles none Array of 
TextData

Returns all the roles this user is using.

GetUserName none string Returns the name of the user.

GetSessionType none integer Returns a value (ADMIN or 
STANDARD) indicating that the user 
profile is to be validated, or has been 
validated, for an administrative or 
standard (non-administrative) 
session.

SetOtherInfo otherInfo=string none Sets the value of any linked user 
information stored for this user, such 
as the name of the user’s manager. 
The information is passed as a linked 
activity parameter (otherInfo) to be 
used in assignment rule Evaluate 
methods.

IsEqualRoles objectRoles=
Array of TextData

boolean Tests to see if the role or list of roles of 
the subject is equal the role or list of 
roles in the objectRoles array of roles.

IsIntersectRoles objectRoles=
Array of TextData

boolean Tests to see if at least one of the roles 
of the subject is equal to at least one of 
the roles in the objectRoles array of 
roles.

IsSubsetRoles objectRoles=
Array of TextData

boolean Tests to see if all the roles of the 
subject are in the objectRoles array of 
roles.



Working with a Validation

Chapter 8 Defining Validations 249

In most cases user information is stored in an organization database external to the 
iIS engine. The recommended way to perform user validation is by using an 
external service that access the organization database and performs the validation 
tasks using the data stored there. The external service is typically an iPlanet UDS 
service object.

Two example ValidateUser methods, taken from iIS example applications, are 
presented below: one method performs all the user validation internally, using 
hard coded user information. The other method calls a service object that provides 
validation by accessing an external organization database.

You can also validate a user against information available from an LDAP directory 
service. The examples provided with your iIS distribution include an example of 
writing a ValidateUser method that accesses an LDAP directory service. The LDAP 
example is at the following location in your iIS distribution:

FORTE_ROOT/install/examples/conductr/ldap/

ValidateUser Example: Internal Validation
The Expense Report example application uses a ValidateUser method that 
performs three operations:

• checks if the user/password combination submitted by the user is valid

• checks if the role under which the user is logging in is valid for this user

• if the user has a manager, places the manager’s name in the otherInfo attribute 
of the user’s profile (for use by assignment rule Evaluate methods).

tmpRoles : array of TextData = user.GetRoles();
...
if(user.GetUsername() = ’Charlotte’) and

password = ’Charlotte’) then
if (tmpRoles[1].IsEqual(’Employee’)) or 
 (tmpRoles[1].IsEqual(’Manager’)) then

user.SetOtherInfo(’Alice’); -- Alice is Charlotte’s manager
return TRUE;

end if;
...
return FALSE;

Plan: ERUV • Class: UserValidation • Method: ValidateUser



Working with a Validation

250 iPlanet Integration Server • Process Development Guide • August 2001

ValidateUser Example: External Validation
In the Advanced Expense Report example application, the ValidateUser method 
calls a service object to perform the user validations. (For information on using 
service objects in process definition methods, see “Writing Code that Accesses 
iPlanet UDS Service Objects” on page 276.) The “OrgDB” service object performs 
the same validation as in the basic Expense Report example (see “ValidateUser 
Example: Internal Validation” on page 249) by accessing data stored in an 
organization database.

Saving and Compiling a Validation
As you work on your validation, it is a good idea to save your work regularly. As 
you make changes to the Validation class, you can periodically compile your 
validation plan into a TOOL project to ensure that the syntax is correct.

Saving Changes
As you edit the validation, be sure to save your changes periodically (choose File > 
Save All). When you save changes, the current validation plan is updated in your 
workspace.

anyObject : ObjectWrapper = new;
thisOrgDBSO : OrgDB;
thisOrgDBSO = (OrgDB)(anyObject.FindObject(‘ODBSO’));
if thisOrgDBSO.VerifyUser(user.GetUserName(),

password,
user.GetRoles()) then

user.SetOtherInfo(thisOrgDBSO.GetManagerOfUser(
user.GetUserName()));

return TRUE;
else
return FALSE;
end if;

Plan: AERUV • Class: UserValidation • Method: ValidateUser

NOTE If you have any other workshops open for editing, they are saved at 
the same time. 



Working with a Validation

Chapter 8 Defining Validations 251

Compiling a Validation
As you write your own validation methods, you might want to compile to ensure 
that your code is syntactically correct. To compile, choose File > Compile. iIS 
generates TOOL code from the validation plan and compiles it, saving the result in 
a read-only TOOL project that has the extension _UV. (This file is a by-product of 
the compile process; you do not use it.)

If there are compilation errors, iIS displays them for you. You can then go back to 
the workshop, fix the errors in your method code, and recompile.

Making and Registering a Validation 
When you have completed all work on a validation and are ready for it to be used 
by an engine, you make it into a library distribution and register it with one or 
more engines.

To perform these operations, choose File > Distribute to open to open the 
Distribute Options dialog: 

The File > Distribute command performs a compile operation if this option is 
selected, then uses the resulting TOOL project to make a library distribution. The 
Generate Project field displays the name of the generated TOOL project. You can 
enter another name if you like.

TIP If too many of these generated files begin to clutter your list of plans 
in the Repository Workshop, you can filter them by choosing iIS 
Plans from the plan list filter drop list. (Figure 8-1 on page 241 shows 
the Repository Workshop with the filter set this way.)



Creating New Versions of a Validation

252 iPlanet Integration Server • Process Development Guide • August 2001

To register the resulting library distribution with an engine, enable the Register 
option. If the Register option is enabled, you are prompted with a list of engines. 
Choose the engines you want to register with, then click OK. The library 
distribution is saved in the FORTE_ROOT/appdist directory on the central server 
node in your iIS system.

If the engine you want to register with is not available in your environment, copy 
the generated library from your FORTE_ROOT/appdist directory to the remote 
environment. Then use the iIS Console to register the distribution. Refer to the iIS 
Process System Guide for more information.

Creating New Versions of a Validation
Typically, you modify the validation so it can support an extended user 
profile—for example, to include user profile attributes needed by one or more 
assignment rules. (The information needed to provide the attribute values must be 
available in the organization database.) However, there may also be changes to the 
organizational structure that require changing the validation.

If these changes can be implemented in a monolithic upgrade of your iIS process 
management system, then your assignment rules only need to support the current 
user profile. In a monolithic upgrade you shut down all sessions and unregister the 
old versions of user profile and assignment rule dictionaries—or shut down your 
engine to perform the changeover—and then reregister the new versions of iIS 
distributions.

However, if you need to perform a rolling upgrade of your iIS system, as described 
in “Multiple User Profiles: Rolling Upgrades” on page 95, it might be necessary for 
your validation to support more than one user profile. If this is the case, then your 
ValidateUser method must include a “case” statement or an “if” statement that 
references more than one user profile. 

NOTE The node hosting an iIS process engine must be online and the 
engine running in your environment before you can perform a 
registration with that engine.



Validation Class

Chapter 8 Defining Validations 253

For example, if two user profiles of class type UserProfile1 and UserProfile2 have 
been registered with an engine, you might have code similar to the following:.

Validation Class

Method Summary
 

profile1 : UserProfile1 = new;
profile2 : UserProfile2 = new;
if user.IsA(UserProfile1) then
profile1 = (UserProfile1)(user); --cast to UserProfile1
. . .  --perform validation on profile1

else
profile2 = (UserProfile2)(user); --cast to UserProfile2
. . .  --perform validation on profile2

end if;

NOTE All user profiles referenced should be included as supplier libraries 
to your validation plan (see “Creating and Editing a Validation” on 
page 242).

Table 8-1 Method Summary for Validation Class

Method Parameters Returns Source 
Class

Purpose

Cleanup none none ● Performs general cleanup operations such 
as closing a session with the organization 
database.

Initialize engineName=string,
environment=string

boolean ● Performs general initialization operations 
such as opening a session with the 
organization database.

SessionClose sessionName=string,
user=UserProfileIFace,
state=integer

none ● Implements session control policies in 
conjunction with the SessionOpen 
method. Normally deletes session 
information from the organization 
database that was inserted by the 
SessionOpen method.



Validation Class

254 iPlanet Integration Server • Process Development Guide • August 2001

Using the Validation Class
The engine uses the Validation class to verify that the user of a session is valid. It 
accesses the database, verifies any information already in the user profile object, 
and optionally transfers information from the database to the user profile object. 

For your methods to access service objects, you must follow a special technique 
described in “Writing Code that Accesses iPlanet UDS Service Objects” on 
page 276.

Methods

Cleanup
The Cleanup method has an empty default implementation—supply your own 
implementation only if needed. This method defines operations that are performed 
whenever a validation object is destroyed. The most common operation is to close a 
session with the organization database. (The Cleanup method is invoked whenever 
the engine shuts down or whenever a new validation is registered with the engine.)

SessionOpen sessionName=string,
user=UserProfileIFace,
connectionType=integer

boolean ● Implements session control policies in 
conjunction with the SessionClose 
method. Normally validates that a session 
can be opened in accordance with policy 
and inserts session information into the 
organization database for future use.

ValidateUser user=UserProfileIFace,
password=string

boolean ● Validates user information against an 
organization database. Typically verifies 
that the password and the user profile 
information in the user object are valid. It 
can also insert user information from the 
database into the user object.

Cleanup ( )

Returns none

Table 8-1 Method Summary for Validation Class (Continued)

Method Parameters Returns Source 
Class

Purpose



Validation Class

Chapter 8 Defining Validations 255

Initialize
The Initialize method has an empty default implementation—supply your own 
implementation only if needed. It defines operations that are performed whenever 
a new validation object is created. The most common operation is to open a session 
with the organization database. This database session can then be used by the other 
validation methods to access the organization database. (The Initialize method is 
invoked whenever the engine starts up or whenever a new validation is registered 
with the engine.)

SessionClose
The SessionClose method has an empty default implementation—supply your 
own implementation only if needed. It is an adjunct to the SessionOpen method for 
implementing session control policy, and is invoked whenever a session is 
suspended or terminated. The SessionClose method typically deletes session 
information from the organization database that was inserted by the SessionOpen 
method. 

Initialize (engineName=string, environment=string)

Returns boolean

Parameters Required? Input Output

engineName ● ● ●

environment ● ●

SessionClose (sessionName=string, user=UserProfileIFace, state=integer)

Returns none

Parameters Required? Input Output

sessionName ● ● ●

user ● ● ●

state ● ●



Validation Class

256 iPlanet Integration Server • Process Development Guide • August 2001

state parameter 
The state parameter indicates the new state requested for the session, letting the 
SessionClose method adjust its behavior depending on whether the session is being 
suspended or terminated. The values of the parameter are as follows:

SessionOpen
The SessionOpen method returns TRUE by default. It is invoked if the 
ValidateUser method returns TRUE. It typically checks session information in the 
organization database to confirm that a session can be opened in accordance with a 
site’s session control policy. For example, a policy might restrict a user to a single 
engine session. If the method confirms the open request, it typically writes session 
information into the database for use by future session open requests.

The method returns TRUE or FALSE, indicating whether the user’s OpenSession 
request is accepted or denied.

State Value

WFSession.SUSPENDED The close session request specifies that the session is to be 
suspended.

WFSession.TERMINATED The close session request specifies that the session is to be 
terminated.

SessionOpen (sessionName=string, user=UserProfileIFace, connectionType=integer)

Returns boolean

Parameters Required? Input Output

sessionName ● ● ●

user ● ● ●

connectionType ● ●



Validation Class

Chapter 8 Defining Validations 257

connectionType parameter
The connectionType parameter indicates whether a request to open a session 
creates a new session object in the engine or reconnect to an existing, suspended 
session object. The parameter lets the SessionOpen method adjust its behavior 
depending on whether the session to be opened reconnects to a suspended session 
or creates a new one. The values of the parameter are as follows:

ValidateUser
The ValidateUser method returns FALSE by default. It typically accesses the 
organization database using the user name from the user object and the user’s 
password (passed in by the client application) and verifies that the information in 
the user object is consistent with information in the organization database. It can 
also insert user information from the database into the user object.

ValidateUser is executed by the engine, which passes in all the parameters when it 
calls the method.

The method returns TRUE or FALSE, indicating whether the user is authenticated 
against the organization database.

State Value

WFSession.NEW_SESSION A new session is being created.

WFSession.RECONNECTED_SESSION A session is being reconnected to a previously 
suspended session.

ValidateUser (user=UserProfileIFace, password=string)

Returns boolean

Parameters Required? Input Output

user ● ● ●

password ● ●



Validation Class

258 iPlanet Integration Server • Process Development Guide • August 2001

user parameter 
The user parameter is the user profile object of the session being evaluated. The 
UserProfileIFace type represents the user profile class that has been defined at your 
site in the User Profile Workshop and registered with the engine. (If your user 
profile has not been extended, it represents the default user profile class provided 
with iIS process management system.)

If you have an extended user profile, and you want your ValidateUser method 
code to access the extended user profile attributes, you have to cast the user 
parameter to your extended user profile type. For example, if your extended user 
profile class type is ExtendedUserProfile, you would write code similar to the 
following:

password parameter 
The password parameter is the password used when the user started the client 
session.

MyUser : ExtendedUserProfile;
MyUser = (ExtendedUserProfile)(subject);
MyUser.attribute = DatabaseValue);



259

Chapter 9

Writing iIS
Process Definition Methods

This chapter provides background information useful in writing methods in any of 
the process development workshops. It covers the following topics:

• using the TOOL language to write code in process definition methods

• accessing and using process attributes in process definition methods

• methods you can call from process definition methods

• calling service objects from process definition methods

Writing Code in Process Definition Methods
The process development workshops enable you to do much of the work of 
designing process definitions without having to write code. However, to 
implement behavior that is different from the default functionality built into the 
product, you have to write at least some method code. This customization occurs in 
process definition methods, which are defined in the process development workshops 
and are executed by the iIS process engine.

For example, in the Process Definition Workshop, if you create two activities, Act1 
and Act2, and connect them with a router, by default the second activity becomes 
READY as soon as the first one completes. This behavior is controlled by several 
methods, each of which has default behavior:

• Act1’s OnComplete method by default activates the router.

• The router method by default transfers control to Act2.



Writing Code in Process Definition Methods

260 iPlanet Integration Server • Process Development Guide • August 2001

• Act2’s Trigger method by default returns TRUE and Act2’s Ready method 
executes.

• Act2’s Ready method by default transitions the activity to the READY state.

If you wanted Act2 to wait until a process attribute changed before the activity 
could be triggered, you have to alter one of the methods (probably Act2’s Trigger 
method) to test the value of the process attribute and allow the activity to trigger 
only if that test condition is met.

To alter the method this way, you add the process attribute to the method’s 
attribute access list and then write a single line of code. (For a full description of 
how to use attributes in a method, see “Process Attribute Data Types” on 
page 270.) 

For example, if the process attribute is TotalAmt and your method triggers only if 
TotalAmt is greater than $1,000, the following code would work:

return (TotalAmt > 1,000);

➤ To override an activity’s default Trigger method

1. Choose the activity and display its property inspector.

2. Click the Trigger/Ready tab. 

In the Trigger/Ready tab page, the default Trigger method is set to Trigger 
When Any Router Arrives.

3. Change the trigger type to Custom Trigger. 

4. Click the Attributes button to specify an attribute access list.



Writing Code in Process Definition Methods

Chapter 9 Writing iIS Process Definition Methods 261

Figure 9-1 Editing a Method on the Trigger/Ready Tab Page

5. Specify process attributes in the attribute access list.

See “Specifying an Attribute Access List” on page 265 for more information.

6. Enter code in the Trigger method edit field.

Basic Language Syntax for Methods
The language used in process definition methods is TOOL (Transactional Object 
Oriented Language). This language, described completely in the TOOL Reference 
Guide, is a complete, fourth-generation language with capabilities that extend well 
beyond the typical requirements of a process definition method. For most of your 
iIS work, you need to understand only a simple subset of TOOL: 

• the syntax of method calls and how to use the return statement

• variables and how to use them

• some simple data types

• the operators that let you do comparisons

• possibly some statements like if and while that let you control the flow of your 
code

Set trigger type to 

Click Trigger/Ready

Add process

Custom Trigger.

attributes.

tab.



Writing Code in Process Definition Methods

262 iPlanet Integration Server • Process Development Guide • August 2001

This section covers some basic information about method syntax and describes the 
return statement in some detail. For information on TOOL variables, data types, 
operators, and flow control statements, see “An Introduction to The TOOL 
Language” on page 288.

Method Syntax
When you edit a method in the process development workshops, you see the 
method’s declaration at the top of the edit field. For example, the method 
declaration for the Trigger method is:

Trigger(attribAccessor:AccessAttribIFace):boolean

This method has 

• a name, Trigger

• a parameter, attribAccessor, that provides information to the method (in this 
case, the process attributes that have been associated with this method)

• a return value, which is of type boolean (TRUE or FALSE)

You should be aware of the following before customizing a method: 

• What is the method’s purpose? 

For example, the Trigger method is used to move the activity from a PENDING 
state to a READY state (after its Ready method, if any, is executed).

• What is its return type?

The Trigger methods’s return type is boolean, which is also the case for all 
activity and router methods. If the method returns TRUE, execution continues.

• Which process attributes does it need to access? 

For a process definition method, your code can reference by name any 
attributes in the Process Attributes list, as long as they are in the method’s 
attribute access list. (See “Specifying an Attribute Access List” on page 265 for 
more information.)

When you write code in the method edit field you are writing the body of the 
method—the code that the engine executes. This code overrides the default method 
code originally supplied. You set the return value with the return statement, which 
is described next.



Writing Code in Process Definition Methods

Chapter 9 Writing iIS Process Definition Methods 263

The return Statement
Every activity and router method must return a boolean value, a value of TRUE or 
FALSE. Use the return statement in a method to return a value:

return (expression);

The expression inside the parentheses evaluates to TRUE or FALSE, such as a 
comparison of two or more elements (two variables, a variable and a value, and so 
on) or the constants TRUE or FALSE themselves. This kind of expression is called a 
boolean expression, such as:

You can use a return statement anywhere in your method. However, when a return 
statement is encountered, the method ends, and any remaining statements in the 
method are ignored. Therefore, be careful to set up the return statement so that it is 
the last statement evaluated in the method. 

(a = 3)          //Is the variable a equal to 3?
(TotalAmt > 500) //Is process attrib. TotalAmt greater than 500?
(TRUE)           //The boolean value TRUE is always true.   



Writing Code in Process Definition Methods

264 iPlanet Integration Server • Process Development Guide • August 2001

For example, the following three samples of code test if the process attribute age is 
equal to the value 18. If it is, the method returns TRUE. If it is not (age is something 
other than 18) the method returns FALSE. The code can be written in several ways: 
one that stores the value to be returned and returns it at the end, another that 
returns the value when it is determined, and another, even more economical way, 
that returns the value of the test itself:

Code Example 9-1 Return statement at end of method

mustReg : boolean;
if (age = 18) then
mustReg = TRUE;

else 
mustReg = FALSE;

return mustReg;

Code Example 9-2 Return when value is determined

if (age = 18) then
return TRUE;

else 
return FALSE;

Code Example 9-3 Return value of a test

return (age = 18); // TRUE if age is 18, FALSE otherwise



Accessing and Using Process Attributes

Chapter 9 Writing iIS Process Definition Methods 265

Accessing and Using Process Attributes
Many process definition methods use process attributes as a basis for making 
process logic decisions. Foremost among these are Trigger methods, Router 
methods, and the Evaluate method of assignment rules. 

When a process instance changes state, you might also change some process 
attribute values. Methods you typically use for this purpose are an activity’s 
Ready, OnActive, OnComplete, and OnAbort methods, and a timer’s OnExpiration 
method.

All these methods access process attributes through attribute accessors. An 
attribute accessor is an object that provides an attribute access list: a set of process 
attributes with a lock type specified for each. You must specify an attribute access 
list for each method that uses process attributes (see “Specifying an Attribute 
Access List”). The lock controls access to the process attribute by other activities in 
the process. (There is a full description of locks and how to set them later under 
“Specifying Lock Types” on page 268.)

Each method that uses process attributes has an attribAccessor input parameter. 
The engine passes the attribute accessor object to the method through this 
parameter. You can read a process attribute, and change its value if you have set 
the appropriate lock on the attribute. Each activity method can use a set of methods 
defined for the attribute accessor object to get an attribute’s value, set its value, and 
get its lock type.

Specifying an Attribute Access List
When you want to access process attributes from a method, you must specify an 
attribute access list for that method. For each attribute in the list, you can specify 
the lock type applied to the attribute during execution of the method. (As 
explained earlier, the attributes in your attribute access list are made available to 
the method through an attribute accessor object that is passed to the method as an 
attribAccessor input parameter.) 

In some cases two methods share a common access list to make attribute locking 
more efficient. The following table documents these cases:

Methods Sharing an Access List Attribute Locking Behavior

Activity: Trigger and Ready 
method

Attribute locks are released when Trigger returns 
FALSE. When Trigger returns TRUE, locks are held 
until Ready method completes execution.



Accessing and Using Process Attributes

266 iPlanet Integration Server • Process Development Guide • August 2001

All process definition method entry dialogs provide the same mechanism for 
specifying the method’s attribute access list. For example, Figure 9-2 on page 267, 
illustrates the Trigger/Ready tab page used to write both the Trigger and Ready 
methods of an activity. 

The top of the tab page contains the user interface for constructing the attribute 
access list, which is shared by the Trigger and Ready methods. The bottom of the 
page contains the method entry fields.

You can hide the attribute list by clicking the Hide button. All the buttons are 
replaced by an Attributes button, which you can click to display the list again.

You can click the Add button to specify one or more process attributes to access 
from the corresponding methods. The process attributes you specify must have 
been previously defined in the process definition, as described in “Defining 
Process Attributes” on page 194.

The following figure shows the Trigger/Ready tab page used to write the Trigger 
and Ready methods of an activity.

Activity: OnComplete and 
OnComplete router methods

Attribute locks are held during execution of 
OnComplete method and until all OnComplete 
router methods complete execution.

Activity: OnAbort and OnAbort 
router methods

Attribute locks are held during execution of OnAbort 
method and until all OnAbort router methods 
complete execution.

Timer: OnExpiration and 
Expiration router methods

Attribute locks are held during execution of 
OnExpiration method and until all Expiration router 
methods complete execution.

NOTE In addition to the procedure described in the following paragraphs, 
you can also construct attribute access lists for a method by 
dragging process attributes from the Process Attributes list in the 
Process Definition Workshop and dropping them on the 
corresponding method’s attribute access list.

Methods Sharing an Access List Attribute Locking Behavior



Accessing and Using Process Attributes

Chapter 9 Writing iIS Process Definition Methods 267

Figure 9-2 Trigger/Ready Tab Page

➤ To add process attributes to the attribute access list

1. Click the Add button. 

The Select Process Attributes dialog appears. The dialog displays the list of 
process attributes defined in the process definition.

Figure 9-3 Select Process Attributes Dialog

Attribute 

Trigger 

Ready 

Access List

method text

method text



Accessing and Using Process Attributes

268 iPlanet Integration Server • Process Development Guide • August 2001

2. Choose one or more process attributes.

3. Click OK to add them to the attribute access list.

➤ To delete an attribute from the list

1. Select the attribute. 

2. Click Delete.

Specifying Lock Types
When your method accesses a process attribute, a lock request corresponding to 
the attribute’s lock type is sent to the engine. By default, when you add an attribute 
to your method’s attribute list, it gets a lock type of NO_LOCK. You can specify a 
lock to ensure that the value the method reads from or writes to the attribute is 
accurate and is not overwritten while the method is accessing the attribute.

➤ To specify a lock type for an attribute

1. Select the attribute in the attribute list. 

2. Click the LockType button to display the Expression Data properties dialog. 

3. Choose a lock type from the drop list.

4. Click OK to update the attribute lock type.

The following table describes the lock request types:

Lock Request Description

READ The attribute is to be locked for reading, preventing others from gaining a 
WRITE lock to it, but allowing others to read it. If the attribute is 
currently WRITE locked, this request fails.

READQ This request is the same as READ, except that the request waits—is 
queued—if the attribute is currently WRITE locked.

WRITE The attribute is to be locked in preparation for getting or changing its 
value or both. This lock prevents others from obtaining a READ or 
WRITE lock (but an accessor using NO_LOCK can still read it). If the 
attribute currently has a either a READ or WRITE lock, this request fails.

WRITEQ This request is the same as WRITE, except that the request waits—is 
queued—if the attribute is currently locked.



Accessing and Using Process Attributes

Chapter 9 Writing iIS Process Definition Methods 269

Working with Process Attributes
Process definition methods available from within the Process Development 
Workshop contain an attribAccessor parameter, which provides access to the 
process attributes defined for the process definition. Using the methods available 
with the attribAccessor parameter, you can get and set the values of process 
attributes, get the lock type of an attribute, and also get a list of the attributes in the 
process definition.

Accessing Process Attributes by Name
The attribAccessor parameter, available to most methods in the Process Definition 
Workshops, provides generic methods to get and set attribute values. However, 
you can also access process attributes directly by name. 

Most process attributes can be accessed by name using a simple data type, which 
simplifies the code you write in your methods.

For example, if you want a router method to return TRUE if the IntegerData 
process attribute status has the value 1, you can access the attribute by name as 
indicated below:

return (status = 1);

However, you can accomplish the same thing using the GetValue method of the 
attribAccessor parameter to the router method.

return (attribAccessor.GetValue(’status’) = 1);

For process attributes accessible as simple data types, you can use operators to 
build numeric expressions, as explained in “Numeric Expressions” on page 302. 
Refer to Table 9-2 on page 271 for a list of process attribute data types and their 
corresponding data types when you access the attribute by name.

NO_LOCK This lock request type is the default type. The attribute is not locked, and 
a copy is made of its value, regardless of any locks that might currently 
be set on this attribute. The purpose is to obtain its current value, with the 
understanding that the value might change at any time.

Lock Request Description



Accessing and Using Process Attributes

270 iPlanet Integration Server • Process Development Guide • August 2001

AttribAccessor Parameter
The following table shows the generic AttributeAccessor methods available from 
the attribAccessor parameter.

For example, suppose your process definition has a process attribute of type 
BooleanData named priority. In your method (such as the OnActive method), the 
following line of code sets the value of priority.

SetValue(’priority’, FALSE);

In this example, if you want to determine the type of lock for the process attribute 
before setting its value, you can use the following code in your method:

Process Attribute Data Types
A process attribute can be of one of the data types shown in the table that follows. 
All these data types are described in detail as data structure classes in the iPlanet 
UDS Framework Library online Help. Most of them can be accessed by name using 
a corresponding simple data type, which simplifies the coding needed to get and 
set process attribute values (see “Simple Data Types” on page 292). 

Table 9-1 Methods Available from AttribAccessor Parameter

Method Parameters Returns Purpose

GetLockType name=string integer Returns the lock type of the 
specified process attribute.

GetNames none Array of 
TextData

Returns the names of the 
attributes accessible from 
this accessor.

GetValue name=string DataValue Returns the value of the 
specified attribute.

SetValue name=string, 
newValue=DataValue

none Sets the value of the 
specified attribute. (A 
WRITE lock should have 
been set on the attribute.)

integer priorityLockType;
priorityLockType = attribAccessor.GetLockType(’priority’);



Accessing and Using Process Attributes

Chapter 9 Writing iIS Process Definition Methods 271

The following table shows the process attribute types and the corresponding 
simple data types (see “Simple Data Types” on page 292 for more information on 
using these data types). If the simple data type is none, then you can access the 
attribute by name using its attribute data type.

Table 9-2 Process Attribute Data Types

Attribute Data Type Simple Data Type Process Data Type Description

BooleanData boolean An object that is equivalent to a TOOL boolean 
data type.

DateTimeData none An object that represents any date, timestamp, 
or time. This type is based on the SQL standard 
and represents a combination of the SQL DATE, 
TIME, and TIMESTAMP data types. A 
DateTimeData object typically starts at the 
beginning of the Gregorian calendar—Friday, 
October 15, 1582—and extends into the 
indefinite future. It contains attributes that 
allow specification of year, month, day, hour, 
minute, second, and millisecond, although 
accuracy of DateTimeData is guaranteed only to 
the second across all platforms.

DecimalData none An object that represents floating point data 
scaled to a specified decimal precision of as 
many as thirty decimal places. DecimalData is 
often used to represent monetary values in 
greater precision than possible with 
DoubleData.

DoubleData double An object that is equivalent to a TOOL double 
precision scalar data type, approximately 
10E-308 to 10+308 with about 15 digits of 
precision, depending on your platform.

IntegerData integer An object that is equivalent to a TOOL 4-byte 
integer scalar data type, a signed, 4-byte integer 
ranging from -2,147,483,648 to 2,147,483,647 on 
all platforms.



Interacting with Activities from an Activity Method

272 iPlanet Integration Server • Process Development Guide • August 2001

Interacting with Activities from an Activity Method
This section describes three methods available to activity and timer methods that 
let you interact with the running instances of activities. The methods are:

• GetManager

Provides access to the process management system.

• GetPreviousState

Gives you information about the previous state of the current activity. For 
information about activity states, see “Activity States” on page 164.

• AbortActivity

Forces an activity instance to terminate abnormally (to abort).

IntervalData none An interval of time based on the SQL Interval 
data type, this object is made up of a set number 
of years, months, days, hours, minutes, seconds, 
and milliseconds. You can use the SetUnit 
method to set the value of an IntervalData object 
and you can use the GetUnit method to extract 
each type of unit (such as day, year, minutes, 
and so on) from an IntervalData object.

TextData string An object that is equivalent to a TOOL string 
data type, but with the addition of TextData 
conversion functions and automatic memory 
allocation.

XmlData none XML data that is typically supplied to an iIS 
Backbone for use in iIS application proxies. The 
XML data must be “well-formed”—an 
exception is generated if syntax errors are found 
during compilation. For more information on 
using XmlData, refer to the proxy document 
section of the iIS Backbone online help.

Table 9-2 Process Attribute Data Types (Continued)

Attribute Data Type Simple Data Type Process Data Type Description



Interacting with Activities from an Activity Method

Chapter 9 Writing iIS Process Definition Methods 273

Activity methods can make GetPreviousState and AbortActivity requests to the 
process management system for activity instances in the current process instance. 
The first step in making these requests is to obtain access to the process 
management system by calling the GetManager method, which returns a Manager 
object.

Having obtained this object, you can call GetPreviousState or AbortActivity. 
Typically, you combine the call to GetManager with the call to the requesting 
method. For example:

See the descriptions that follow for more information on these methods and on 
how to use them.

GetManager Method
Provides the AbortActivity method and the GetPreviousState method with access 
to the process management system, which is necessary before calling either of 
those methods. 

GetManager().AbortActivity(
‘AnotherActivity’, ActivityConstants.READY);

CAUTION AbortActivity should be used with care,—aborting a method can 
cause work to be lost and the process instance to abort. The activity 
being aborted should have an OnAbort router that provides the 
appropriate behavior when the activity is aborted. 

GetManager ( )

Returns Manager



Interacting with Activities from an Activity Method

274 iPlanet Integration Server • Process Development Guide • August 2001

GetPreviousState Method
Returns the previous state of the current activity instance (the activity from which 
this method call is made). 

GetPreviousState returns one of the following values: 

This method requests the previous state of the current activity. Before calling 
GetPreviousState, you must first obtain the interface to the process execution 
manager by calling the GetManager method, as shown in the following code 
sample:

Your activity methods can use the return value to determine how the activity got to 
the current state. 

For example, if GetPreviousState is called from an activity’s OnAbort method, the 
return value can be ACTIVE or READY. If the previous state was ACTIVE, then the 
OnAbort method may have to perform some cleanup in an enterprise database, 
whereas if the previous state was READY, this is not necessary.

GetPreviousState ( )

Returns integer

Activity State Description

ActivityConstants.PENDING The activity was previously in the PENDING state.

ActivityConstants.READY The activity was previously in the READY state.

ActivityConstants.ACTIVE The activity was previously in the ACTIVE state.

activityState : integer;
activityState = GetManager().GetPreviousState();



Interacting with Activities from an Activity Method

Chapter 9 Writing iIS Process Definition Methods 275

AbortActivity Method
Requests that all activity instances in the current process instance with the 
specified name and state be aborted. The method is available in any activity 
method or timer method written in the Process Definition Workshop.

The return value is TRUE if an activity was found that was in the specified state or 
FALSE if none of the activities by that name were in the specified state. A return 
value of TRUE means that at least one activity by that name was aborted. If no 
activities are found that have the specified name, the method throws an exception.

This method makes a synchronous request to abort the named activity instance if it 
is in the specified state. If an activity instance of the correct name is found, but it is 
not in the expected state, it is ignored.

AbortActivity requires that you obtain the interface to the process execution 
manager by calling the GetManager method. For example, the following code 
sample aborts an instance of the activity named AnotherActivity that is in the 
READY state:

activityName parameter
The activityName parameter is the name of the activity in single quotes. If the 
name is not defined in the process, you get a compile error for the process. In 
addition, the engine checks for the activity name when the process runs and raises 
an exception if the activity does not exist. 

AbortActivity (activityName=string, expectedState=integer)

Returns boolean

Parameters Required? Input Output

activityName ● ●

expectedState ● ●

GetManager().AbortActivity(
‘AnotherActivity‘, ActivityConstants.READY);



Writing Code that Accesses iPlanet UDS Service Objects

276 iPlanet Integration Server • Process Development Guide • August 2001

expectedState parameter
The expectedState parameter indicates the state the activity must be in to be 
aborted. The following table shows the values you can use:

Writing Code that Accesses iPlanet 
UDS Service Objects

There are a number of situations where you may want to access iPlanet UDS 
service objects (shared services) from process definition methods—methods that 
are executed by the iIS engine. Whenever such a method requires a computation 
that uses external data or which is intensive enough to negatively impact engine 
performance, it’s best to let an iPlanet UDS service object perform the computation. 
The most typical scenarios are the following:

• You need to authenticate users opening engine sessions against an 
organization database and provide information for populating user profile 
objects, so you write a ValidateUser method that calls out to a user validation 
service.

• Your process definitions contain one or more automatic activities with 
OnActive methods that are computation intensive or perform work in the 
application domain. You call out to an application domain service to perform 
these computations.

• Your process definitions have process attributes that also serve as application 
data. If activity methods or router methods change the values of these process 
attributes, you want these methods to also update the database that stores your 
application data. You call out to a data management service that maintains a 
session with your application database.

• You’ve defined assignment rules that need to perform sophisticated 
calculations or access external data sources. Your assignment rule’s Evaluate 
method calls an external service to perform the calculation.

Activity State Description

ActivityConstants.PENDING The activity is in the PENDING state.

ActivityConstants.READY The activity is in the READY state.

ActivityConstants.ACTIVE The activity is in the ACTIVE state.



Writing Code that Accesses iPlanet UDS Service Objects

Chapter 9 Writing iIS Process Definition Methods 277

In each of these cases, methods should access an iPlanet UDS service object. 
However, the iIS engine unit is an iPlanet UDS partition built without knowledge 
of service objects in your iPlanet UDS application environment. This means the 
engine cannot directly access service objects. Consequently, you must use the 
approach described in this section if you want to access service objects from 
process definition methods.

The approach is two-sided. 

• To access a service object, you must first explicitly register it with the iPlanet 
UDS name service—as opposed to the implicit registration normally performed 
by the runtime system. Explicit registration involves choosing a name to 
register a service object with and writing code that performs the registration 
when the service object is initialized at start-up time.

• Secondly, the method code that accesses the service object must request a 
reference to it from the name service using the name the service object was 
registered with at start-up time. 

To facilitate explicit registering and referencing of service objects, the iIS process 
management system software includes a library distribution named 
WFAccessServiceObj. This library defines an ObjectWrapper class that provides 
methods for “wrappering” the service object: explicitly registering it, and 
subsequently referencing it, from the name service.

While in concept this approach is straightforward, there are a few complicating 
details that arise from the way iPlanet UDS partitions (iIS engine units) 
dynamically load libraries (iIS distributions and their supplier libraries). The 
following conditions must be met for methods in an iIS plan to be able to access 
service objects:

• Suppliers to the iIS plan must be supplier libraries.

• Supplier libraries to the iIS plan (which must be dynamically loaded) cannot 
contain service object definitions.

• To be dynamically loaded, a supplier library to the iIS plan must be installed 
on the node (or nodes) hosting the iIS engine unit.

These conditions frame the following description of how to implement access to 
service objects from process definition methods.



Writing Code that Accesses iPlanet UDS Service Objects

278 iPlanet Integration Server • Process Development Guide • August 2001

Implementing Access to Service Objects
There are two sides to accessing service objects: explicitly registering them with the 
name service, on one side, and referencing them using the name service 
registrations, on the other. Each of these operations is described separately in the 
sections that follow. 

In these descriptions, it is assumed that you are using two development 
repositories: one for developing code in the application logic domain (persistent 
business objects, shared services, and client UI windows) and another for the code 
in the process logic domain (iIS process development). Since iIS process client 
applications bridge the two domains, they can be developed in either 
repository—or even a third—as long as the repository contains all the supplier 
projects and libraries needed to write client code. Refer to “Process Controller 
Architecture” on page 31 for a fuller discussion of the overall domain architecture 
of an iIS enterprise application.

While it is not a strict requirement that you use separate repositories, doing so 
makes it easier to modify and maintain library source code.

Explicitly Registering a Service Object
To explicitly register a service object with the name service, you have to write code 
in the init method of the service object class. The conceptual scheme is illustrated in 
Figure 9-4. 



Writing Code that Accesses iPlanet UDS Service Objects

Chapter 9 Writing iIS Process Definition Methods 279

Figure 9-4 Scheme for Registering Service Object with Name Service

Figure 9-4 shows the iPlanet UDS projects you need and how to structure them 
within your application domain repository.

Application
Domain
Repository

WFAccessServiceObj Library

DBSession
Service Object

definition

Project C

DBSession
Service Object

definition

Library C

ServiceObject
definition

Project B

Library A

RegisterWrapperObj method
FindObject method

ObjectWrapper Class

Project A

Service methods
Init method

RegisterWrapperObj method

ServiceObjectClass

Service methods

ServiceObjectClass

Supplier

SupplierSupplier

Make library
distribution

Make library
distribution

Make
distribution

Deploy



Writing Code that Accesses iPlanet UDS Service Objects

280 iPlanet Integration Server • Process Development Guide • August 2001

The service object you want to access from a process definition method is defined 
in Project B. The methods that can be invoked on the service object are defined in 
the ServiceObjectClass in a separate project, Project A. Project A is a supplier to 
Project B. If methods of the service object class in Project A invoke other service 
objects (for example, a DBSession service object, in order to access a database), then 
those service objects should be defined in one or more separate projects, 
represented as Project C. Project C is a supplier to project A.

➤ To explicitly register a service object

1. In your application domain repository, create a project (Project A) that defines 
the class (ServiceObjectClass) of the service object.

2. Create another project (Project B), with Project A as a supplier, and define the 
service object in Project B.

3. Include the iIS WFAccessServiceObj library in your workspace and make it a 
supplier to Project A.

4. Create an Init method for ServiceObjectClass that performs an explicit 
registration. This method:

a. instantiates an ObjectWrapper object

b. invokes the RegisterWrapperObj method, supplying a name for explicit 
registration (see “WFObjectWrapper Methods” on page 287).

As an example of this step, the Advanced Expense Reporting sample 
application contains a CheckProcessingMgrSO service object that is 
accessed from an OnActive method. To register this service object, the Init 
method of the CheckProcessingMgr class contains the following code, 
which registers the service object under the name “CheckProcessingSO.”

NOTE The arrangement of projects in Figure 9-4 is due to the fact that 
Library A, generated from Project A, is dynamically loaded into the 
iIS engine, and dynamically loaded libraries cannot contain service 
objects. 

 tmpReg : ObjectWrapper = new;
 tmpReg.RegisterWrapperObj(‘CheckProcessingSO’,self);



Writing Code that Accesses iPlanet UDS Service Objects

Chapter 9 Writing iIS Process Definition Methods 281

5. In the Partition Workshop, configure Project A (and Project C, if any) as a 
library.

6. Make a distribution for Library A (and Project C, if any).

A library distribution contains .pex files for importing the library into a 
development repository, as well as shared library files that must be installed on 
any node executing the code. In this case, the library must be installed on the 
node hosting the iIS engine unit—where the library will be dynamically 
loaded.

7. In the Partition Workshop, make an application distribution for Project B and 
install it in your deployment environment. Once installed, start up the service 
object partition.

As an alternative to this step, depending on the function of the service object, 
you can make Project B a supplier of a client application that invokes the 
service object, and start up the client—which autostarts the service object. 
There are a number of scenarios possible, but the point is to get the service 
object up and running in your iIS application environment before the engine 
tries to access it.

Referencing an Explicitly Registered Service Object
To access an explicitly registered service object, your process definition method 
must reference the service object using its registered name. The conceptual scheme 
is illustrated in Figure 9-5. 



Writing Code that Accesses iPlanet UDS Service Objects

282 iPlanet Integration Server • Process Development Guide • August 2001

Figure 9-5 Scheme for Accessing Explicitly Registered Service Object

Figure 9-5 shows the iPlanet UDS projects you need and how to structure them 
within your development repository.

In Figure 9-5, Library A, defining the methods invoked on the service object, is 
imported into the development repository (as are any supplier libraries of Library 
A, shown as Library C). Library A is supplied to the iIS plan defining the method 
accessing the service object. The WFAccessServiceObj library is also supplied to the 
iIS plan. 

In the method, the FindObject method, defined in WFAccessServiceObj library, is 
used to reference the service object. The methods defined in Library A on the 
ServiceObjectClass can then be invoked on the service object.

Conductor
Repository

WFAccessServiceObj Library

DBSession
Service Object

definition

Library C

Conductor methods
FindObject method

Conductor
Plan

Library A

RegisterWrapperObj method
FindObject method

ObjectWrapper Class

Service methods

ServiceObjectClass

Supplier

Supplier

Supplier

Import
library

Import
library

Register with engine
(automatically makes library)



Writing Code that Accesses iPlanet UDS Service Objects

Chapter 9 Writing iIS Process Definition Methods 283

When development of the iIS plan is completed, the plan is registered as a library 
with the iIS engine and dynamically loaded. At execution time, the engine also 
dynamically loads Library A (as well as the WFAccessServiceObj library) so it can 
invoke the methods defined in Library A. The methods can invoke any of the 
methods and attributes defined in Library A, but cannot instantiate any classes 
defined in a supplier to Library A.

➤ To access an explicitly registered service object

1. In your development repository, import Library A, which contains the 
ServiceObjectClass definition, and Library C, if any, which supplies Library A.

2. Include WFAccessServiceObj library in your workspace.

3. Make Library A and WFAccessServiceObj library suppliers to the iIS plan 
containing the method that you want to access the service object:

In the Process Development Workshop, choose File > Supplier Plans and add 
these two libraries.

4. In the method code, reference the service object:

a. Instantiate an ObjectWrapper object.

b. Declare an object of type ServiceObjectClass.

c. Call the FindObject method, specifying the name registered by the service 
object class (see “WFObjectWrapper Methods” on page 287).

d. Cast the object returned by FindObject to the ServiceObjectClass.

NOTE iIS process client applications may also need code contained in 
projects and libraries in the application logic domain, such as 
Library A and Library C. In that case these libraries need to be 
imported into whatever repository is used to develop process client 
applications.



Writing Code that Accesses iPlanet UDS Service Objects

284 iPlanet Integration Server • Process Development Guide • August 2001

5. Invoke any of the service object methods on the ServiceObjectClass object.

As an example of steps 4 and 5, the Advanced Expense Reporting sample 
application contains an OnActive method that invokes a method on a 
CheckProcessingMgrSO service object. The OnActive method contains code 
that references the service object under the name “CheckProcessingSO” and 
then invokes a GenerateStatement method defined in the CheckProcessingMgr 
class, as shown in the following code:

6. Register the iIS plan’s library distribution with your iIS engine.

7. Make sure Library A is installed on the node hosting your iIS engine.

Implementation and Access Issues
In accessing service objects as described in the previous sections, there are two 
additional issues that you need to take into consideration: 

• How do you access replicated service objects?

• How can you save a handle to a service object in order to boost engine 
performance?

These issues are discussed in the following sections.

Replicated Service Objects
When service objects have been marked as replicated for failover or load balancing, 
the approach described in “Implementing Access to Service Objects” on page 278 
still works, but because registration with the name service is explicit rather than 
implicit, some of the failover and load balancing mechanisms built into the iPlanet 
UDS runtime system are not available. Depending on the situation, you might have 
to add some additional code. 

myWrapper : ObjectWrapper = new;
myCheckProcessingSO : CheckProcessingMgr;

// cast object returned by FindObject
myCheckProcessingSO = 
(CheckProcessingMgr)(myWrapper.FindObject(’CheckProcessingSO’));

myCheckProcessingSO.GenerateStatement(ExpenseReportID);
return TRUE;



Writing Code that Accesses iPlanet UDS Service Objects

Chapter 9 Writing iIS Process Definition Methods 285

If a service object is replicated for load balancing, it gets explicitly registered 
multiple times in the name service. When you reference the service object using the 
FindObject method, one of the registrations is selected at random. There is no 
router mechanism that balances requests for the service among the available 
replicates.

If a service object is replicated for failover, it also gets explicitly registered multiple 
times in the name service. When you access the service object using the FindObject 
method, one of the registrations is selected at random. If that service fails for some 
reason, the iPlanet UDS system cannot automatically reroute your reference to 
another available replicate of the service object. Instead, the system raises a 
DistributedAccessException. Your code must handle this exception by retrying the 
FindObject method. When a replicate of the service is available, FindObject returns 
this object and you can proceed as normal.

Saving a Handle to a Service Object
It is not unusual for process definition methods (activity methods, router methods, 
assignment rule Evaluate methods, and ValidateUser methods) to be executed 
thousands of times within a short time interval—depending on the number of 
process instances being concurrently executed and the number of current active 
sessions. If such methods need to access a service object, there can be a 
considerable performance hit taken from having to reference the service object 
every time the method is executed. Where possible, it is much more efficient to 
reference the service object once and save a handle to it for subsequent executions 
of the method.

For the ValidateUser and Evaluate methods, which commonly access a service 
object, you can save the service object reference as an object attribute of the 
Validation and assignment rule classes, respectively. 

ValidateUser example
For example, if your ValidateUser method needs to access a service object of type 
OrgDB, registered as “ODBSO,” you can define an object attribute in your 
validation named OrgDBSOHandle of type OrgDB. You can then reference the 
“ODBSO” service object once in the Initialize method of your validation class (see 
“Initialize” on page 255 for information on this method) and save the reference as 
OrgDBSOHandle, as shown in the following code: 

anyObject : ObjectWrapper = new;
self.OrgDBSOHandle = (OrgDB)(anyObject.FindObject(‘ODBSO’));



Writing Code that Accesses iPlanet UDS Service Objects

286 iPlanet Integration Server • Process Development Guide • August 2001

In your ValidateUser method, you no longer have to reference the service object. 
You simply use OrgDBSOHandle (see “ValidateUser” on page 257 for information 
on this method), as shown in the following code: 

Assignment rule example
In the case of assignment rule Evaluate methods, there is no Initialize method to 
use for setting the service object handle, so you need to do it the first time the 
Evaluate method is executed. For example, if your Evaluate method needs to access 
a service object of type ARCalc, registered as “ARCalcSO,” and you define an 
object attribute in your assignment rule named ARCalcSOHandle of type ARCalc, 
you can use code like the following: 

if self.OrgDBSOHandle.VerifyUser(user.GetUserName(),
password, user.GetRoles()) then

return TRUE;
else
return FALSE;

end if;

if self.ARCalcSOHandle = NIL then
anyObject : ObjectWrapper = new;
self.ARCalcSOHandle =

(ARCalc)(anyObject.FindObject(’ARCalcSO’));
end if;
self.ARCalcSOHandle.DoSomething();



Writing Code that Accesses iPlanet UDS Service Objects

Chapter 9 Writing iIS Process Definition Methods 287

WFObjectWrapper Methods

RegisterWrapperObj
The RegisterWrapperObj method is used to explicitly register service objects with 
the iPlanet UDS name service.

name parameter
The name parameter is the name you use to register the service object with the 
iPlanet UDS name service. 

serviceObj parameter
The serviceObj parameter is the service object to be registered with the iPlanet UDS 
name service. 

FindObject
The FindObject method is used to locate a service object that has been explicitly 
registered with the iPlanet UDS name service.

The method returns the service object which has been registered with the iPlanet 
UDS name service.

RegisterWrapperObj (name=string, serviceObj=Object)

Returns

Parameters Required? Input Output

name ● ●

serviceObj ● ●

FindObject (name=string)

Returns Object

Parameters Required? Input Output

name ● ●



An Introduction to The TOOL Language

288 iPlanet Integration Server • Process Development Guide • August 2001

name parameter
The name parameter is the name under which the service object is registered in the 
iPlanet UDS name service. 

An Introduction to The TOOL Language
The sections that follow introduce TOOL (Transactional Object-oriented Language) 
and describe the features that are useful in iIS process definition methods. For a 
complete description of the TOOL language, see the TOOL Reference Guide.

TOOL Language Elements
The language elements of TOOL that are immediately useful in process definition 
methods are:

• statements

• comments

• names

• data types

• comparison, logical, and arithmetic operators

• variables

• named constants

• fixed arrays



An Introduction to The TOOL Language

Chapter 9 Writing iIS Process Definition Methods 289

TOOL Statements and Comments
iPlanet UDS methods are composed of TOOL statements and comments. 

TOOL is not case sensitive. You can enter statements, comments, and other 
language elements in uppercase, lowercase, or any combination of the two. 

Statements
A TOOL statement must end with a semicolon. You can start TOOL statements 
anywhere on a line. Although you can put multiple statements on one line, your 
code will be more readable if you begin each statement on a new line.

You can use newline characters (line breaks) almost anywhere in TOOL code, but 
you must avoid line breaks in the middle of identifiers, constants, or operators. 

For example, the following code has two statements in it:

Statement Blocks 
There are TOOL statements that are not simple single statements like those in the 
previous example, but rather start a statement block with one or more statements in 
it (for example, an if statement). Statement blocks are significant because they 
determine the scope for any variables or constants that are declared in them.

The statement that starts a statement block is not in that statement block. (It is not 
at the same level of scope.)

The following example shows a method statement block with a simple statement, a 
statement block that starts with a for statement, and a statement that is in the 
statement block.

myAge : integer = 104;
return (age > myAge);

-- A for loop to calculate factorial
j : integer = procAttr; -- 1st statement
for i in 1 to 10 do -- 2nd statement (starts a block)

j = j  * i; -- 3rd statment (in the block)
end for;



An Introduction to The TOOL Language

290 iPlanet Integration Server • Process Development Guide • August 2001

Comments
You can use two types of comments in methods: single-line comments and block 
comments. Comments are ignored when the code is compiled and executed. 

Single-Line Comments
Single-line comments begin with the characters “--” or “//” and end with the 
end-of-line character. The system ignores all characters between these two 
delimiters

Block Comments
Block comments begin with “/*” and end with “*/”. The system ignores all 
characters between these two delimiters. Block comments can span any number of 
lines.

A block comment can contain a single-line comment or another block comment, 
allowing you to nest block comments. If you nest a block comment in another block 
comment, be sure to add the final “*/” characters to end the main comment— 
otherwise you comment out more than you intend to. The following example 
shows nested block comments:

// Here is a comment
-- Here is another style comment.
x = 10;         // Comment at end of line 
j : integer;    -- Another comment at end of line

/*  The start of a long multi-line comment that
goes for several lines.  The next statement:

x = 10;
is not executed because it is part of the comment  */

/*  Start first block comment
/* Start second block comment
End second block comment */ 

End first block comment */ 



An Introduction to The TOOL Language

Chapter 9 Writing iIS Process Definition Methods 291

Names
A name contains alphanumeric characters and underscores. The first character 
must be an alphabetic character or an underscore. Case is not significant, so 
myName, MyName, and myname are all the same name. The name can be any length. 
When you create a new name, it must be unique for the current scope (see the next 
section for a description of scopes).

Restrictions on Names
A name can have no spaces or symbols except the underscore. You cannot use 
TOOL reserved words (see “TOOL and SQL Reserved Words” on page 319) and 
you should avoid using SQL reserved words (see “SQL Reserved Words” on 
page 320). Also, you cannot start any name with “forte” and you cannot end any 
name with “proxy”.

In most TOOL statements, when you want to reference a component, you simply 
type its name. However, when you are using SQL statements, you may need to 
preface an iPlanet UDS name with a colon in order to distinguish it from a column 
name. 

If you must create a name whose name is the same as a reserved word, you must 
enclose the name in double quotes. 

Scope
The scope of variables is determined by statement block. A variable declared in a 
statement block is in scope from the point at which it is declared to the end of the 
statement block. It stays in scope as long as TOOL is still in that statement block or 
is in another statement block that is embedded in that statement block.

TOOL searches for a name starting in the current scope and moving out to the 
enclosing scopes. A name declared in an inner scope can hide the same name 
declared in an outer scope. Furthermore, a name declared in an inner scope is not 
available in the outer scope.

In the following code example, there are two scope errors: 

• The code attempts to use the variable i outside the for loop. Its scope is only the 
for loop’s statement list, so trying to use it in the main method body produces a 
compilation error.



An Introduction to The TOOL Language

292 iPlanet Integration Server • Process Development Guide • August 2001

• It mistakenly redeclares the variable saveit in an inner statement block. It masks 
the variable saveit in the outer block, so setting it to TRUE does not affect that 
variable. When the for loop exits., the outer variable saveit is always FALSE.

Simple Data Types
The simple data types described in the next few sections handle string, boolean, 
and numeric data. The numeric data types are discussed together because they can 
be combined in numeric expressions.

iPlanet UDS provides an “object” version of each simple data type. The advantage 
of using an object to store data is that the class provides methods for manipulating 
the data. iPlanet UDS also provides classes specifically for storing and 
manipulating dates and times, time spans, and images. See the Framework Library 
online Help for general information about using the class data types and reference 
information on the subclasses of the DataValue and DataFormat classes.

CountLoop (maxAllowed:integer): integer
saveit : boolean = FALSE;
count : array [maxAllowed] of integer;

-- new scope
for i in 1 to maxAllowed do

count[i] = maxAllowed + i;

-- new embedded scope
if (count[i] > 50) then

saveit : boolean = TRUE; -- saveit is redeclared
exit; 
exit; 

end if;
end for;

-- back in outer (method) scope
if (saveit) then -- Error: saveit always FALSE in outer scope

return count[i]; -- Error: i not recognized in outer scope
else

return count[maxAllowed]; // Never gets executed



An Introduction to The TOOL Language

Chapter 9 Writing iIS Process Definition Methods 293

String Data Types
The string data type stores a character string. This data type is very simple. You use 
a string constant to specify a string value, but there are no string expressions. 
Although you can compare strings in boolean expressions (see “Boolean Data 
Type” on page 295), you cannot manipulate strings. If you need to manipulate 
strings, use the TextData class, which provides many text handling methods and a 
text string of unlimited size.

To declare a data item with the string data type, use the string key word. For 
example:

The default value of a string data item is NIL, which means that it contains no 
string.

Also see the “Char Data Type” on page 294.

String Constants
A string constant is any series of characters enclosed by single quotes. 

s : string;
name : string = ’Jones’;

s : string;
s = ’Jones’;
if s = ’Smith’ then

... will not execute ...
end if;



An Introduction to The TOOL Language

294 iPlanet Integration Server • Process Development Guide • August 2001

To specify an empty string, use two single quotes with no characters between 
them. The following table specifies how to enter special characters in a string:

Char Data Type
The char data type contains a single byte of data. TOOL provides this data type so 
that you can create a C-like character string––an array of char data items.

You use a string constant to set the value of a char variable. Be careful not to use a 
string constant that contains a string: char variables can be only to single-byte 
strings. The following example shows how to set a char variable:

Special Character How to Enter It

’ \’

\ \\

new line \n

carriage return \r

tab \t

alert (bell) \a

backspace \b

formfeed \f

vertical tab \v

octal value \000, where 0 is 0-7

hexadecimal 
value

\xhh, where h is 0-9, A-F, or a-f (the character with the hex value)

-- Assigning a string constant to char variable

myCharValue : char = ’a’;
myCharEscapeSequence : char = ’\n’;
-- ’\n’ is new line escape sequence, a single-byte constant

-- the following assignment is invalid: ’ab’ contains two bytes
myCharValue = ’ab’; -- causes compile time error



An Introduction to The TOOL Language

Chapter 9 Writing iIS Process Definition Methods 295

TOOL automatically converts char data to integer data when a char value is 
assigned to an integer variable, but it does not allow you to assign string constants 
larger than one byte (more than one character) to integer values. TOOL also 
automatically converts integer data to char data when an integer value is assigned 
to char variable, as shown in the following example:

Boolean Data Type
The boolean data type contains two logical values, the boolean constants TRUE and 
FALSE. Use the boolean data type when a data item has only two values (such as 
true and false, yes and no, on and off). To declare a data item with the boolean data 
type, use the boolean key word, as in the following example:

The default value for a boolean data item is FALSE.

Boolean Expressions
Boolean expressions are expressions that resolve to a logical value of TRUE or 
FALSE. You use boolean expressions to specify the conditions for several TOOL 
programming statements.

The following types of boolean expressions are described in the next sections:

Comparison expression Uses a comparison operator to compare two values 
(numeric, string, pointer, or object) and produce a value of TRUE or FALSE.

-- Converting char to integer

c : char;
i : integer;
-- ’a’ is a char constant
c = ’a’;
-- Convert char to integer value 97 (ASCII equivalent of ’a’)
i = c;
-- Convert integer to char value ’a’ (ASCII equivalent of 97)
c = i;

test : boolean;
test = FALSE;
test2 : boolean = TRUE;



An Introduction to The TOOL Language

296 iPlanet Integration Server • Process Development Guide • August 2001

Logical expression Uses a logical operator with one or two boolean values and 
returns a value of TRUE or FALSE.

Comparison Expressions
A comparison expression uses a comparison operator to compare two numeric, 
two string, or two object values and produce a value of TRUE or FALSE. The 
numeric or string values can be constants, variables, attributes, named constants, 
expressions, and methods that return an appropriate value. The following table 
describes the comparison operators.

The following code fragment uses comparison expressions: 

Operator Meaning Description

= Equals Result is TRUE if left side is equal to right side. Defined 
for numeric data types, strings, pointers, and objects. Two 
pointer values are equal if they contain the same address. 
Two object values are equal if they reference the same 
object. 

<> Not equals Result is TRUE if left side is not equal to the right side. 
Defined for numeric data types, strings, pointers, and 
objects. 

< Less than Result is TRUE if left side is less than the right side. 
Defined for numeric data types and strings.

> Greater than Result is TRUE if left side is greater than right side. 
Defined for numeric data types and strings.

<= Less than or 
equal to

Result is TRUE if left side is less than or equal to right 
side. Defined for numeric data types and strings.

>= Greater than or 
equal to

Result is TRUE if left side is greater than or equal to right 
side. Defined for numeric data types and strings.

x : integer = 10;
if x < 100 then
--... this will be executed ...

end if;
test : boolean;
test = x < 100; -- comparison expression produces a boolean value
if test then
--... this will be executed ...

end if;



An Introduction to The TOOL Language

Chapter 9 Writing iIS Process Definition Methods 297

Logical Expressions
A logical expression uses a logical operator either to negate a boolean value or to 
compare two boolean values and produce one boolean value, TRUE or FALSE. The 
boolean values you can use in the expression include comparison expressions, 
logical expressions, boolean constants, boolean variables, boolean attributes, and 
methods that return a boolean value. 

The following table describes the logical operators.

The following code fragment uses logical expressions:

The and and or operators evaluate both operands only if necessary. In the 
following example, if foundIt is FALSE, then x > maxCount is not evaluated:

if foundIt and x > maxCount

Operator Description

not Negates one boolean value. If the value is TRUE, not produces FALSE. If the 
value is FALSE, not produces TRUE.

and Result is TRUE if both values are TRUE. If one or both values are FALSE, the 
result of the expression is FALSE.

or Result is TRUE if either value is TRUE. The expression is FALSE only if both 
values are FALSE.

if not x > 10 then
...

end if;
if (x > 10) or (x < 0) then
end if;
...

if (x > 10) and (y < 100) then
...

end if;



An Introduction to The TOOL Language

298 iPlanet Integration Server • Process Development Guide • August 2001

Operator precedence
The logical expression is evaluated with the following operator precedence (see 
“Numeric Expressions” on page 302):

The following sample code shows operator precedence:

Parentheses in expressions
Use parentheses to guarantee the order of evaluation. TOOL evaluates the 
expressions in the innermost parentheses first. 

Precedence Operator

1 arithmetic and address operators

2 comparison operators

3 bitwise operators (see “Numeric Expressions” on page 302)

4 not

5 and

6 or

x : integer = 1;
y : integer = 0;
if  x + y > y - x or not x > y then
...same as...

if  ((1+0) > (0-1)) or (not (1>0)) then
... or ...

if (1 > -1) or (not (TRUE)) then
... or ...

if (TRUE) or (FALSE) then
... or ...

if TRUE then

if (((x > y) or (y < 2)) and (x > 2)) then
...

end if;



An Introduction to The TOOL Language

Chapter 9 Writing iIS Process Definition Methods 299

You can also use parentheses with the not operator. Doing so negates the entire 
expression in parentheses. The following code negates the entire expression from 
the previous example:

Numeric Data Types 
The numeric data types allow you to store integers and floating point numbers of 
different sizes. This section describes the integer and float data types and provides 
general information on numeric constants and numeric expressions.

Integer Data Types
Of the integer data types, only some are guaranteed to be portable because they 
have the same range on every platform. The non-portable types use different 
representations on different machines. Keep this in mind when you declare integer 
data items. The following table lists the integer data types and indicates whether or 
not they are portable:

if  not (((x > y) or (y < 2)) and (x > 2)) then
...

end if;

Key Word Description Portable

int At least -32,768 to +32,767. no

long At least -2,147,483,648 to +2,147,483,647. no

short At least -32,768 to +32,767. no

i2 Signed two byte integer. Exactly -32,768 to +32,767 all 
platforms.

yes

ui2 Unsigned two byte integer, 0 to +65,535. yes

integer or i4 Signed four byte integer.  Exactly -2,147,483,648 to 
+2,147,483,647 on all platforms.

yes

ui4 Unsigned four byte integer, 0 to +4,294,967,295. yes

i1 Signed one byte integer, -128 to +127. yes

ui1 Unsigned one byte integer, 0 to +255. yes



An Introduction to The TOOL Language

300 iPlanet Integration Server • Process Development Guide • August 2001

To declare a data item of an integer data type, use the appropriate key word. For 
example:

The default value for an integer data item is 0.

Float Data Types
TOOL supports two float data types whose exact precision depends on your 
particular machine. The float data types are:

If you want to ensure that your code is completely portable, you should only use 
the precision that is available on all the machines you plan to use. For precise 
decimal behavior, you can use the DecimalData class (see the Framework Library 
online Help for information). 

To declare a data item with the float data type, use the appropriate key word.

The default value for a float data item is 0.0.

i : integer;
j : short = 32;

Key Word Description

float Approximately 10E-38 to 10E+38, with about 7 digits of decimal precision.

double Approximately 10E-308 to 10+308, with about 15 digits of decimal precision.

i : float;
j : double = 10;
pi : double = 3.14159268;



An Introduction to The TOOL Language

Chapter 9 Writing iIS Process Definition Methods 301

Numeric Constants

Integer constants
An integer constant is a sequence of digits between 0-9. No other characters are 
allowed. To indicate a negative number, use a minus sign. A number without a 
sign is considered positive but you can use a plus sign if you wish. The syntax is:

[+|-]digits

Hexadecimal and octal integers
You can use hexadecimal or octal constants to specify an integer. The syntax for 
hexadecimal integers is:

0xhexdigit

where hexdigit is:

0-9, A-F, or a-f (the character with the hex value)

The syntax for octal integers is:

0octaldigit

where octaldigit is any digit from 0-7. The first non-octal digit terminates the 
number.

x : integer;
x = 10;
x = -23;
x = +43;

x = 0x20;
x = 0xff04;
x: integer = 011; -- returns a value of 9
x: integer = 08; -- returns a value of 0



An Introduction to The TOOL Language

302 iPlanet Integration Server • Process Development Guide • August 2001

Float or double constant
A float constant is a sequence of digits 0-9 with a single decimal point (.). You can 
also include an exponent. To indicate a negative number, use a minus sign. A 
number without a sign is considered positive but you can use a plus sign if you 
wish. The syntax is:

[+|-]digits.digits[e|E[+|-] integer]

Numeric Expressions
A numeric expression combines two numeric values with an arithmetic operator to 
produce one numeric value. The numeric values you can use include numeric 
constants, numeric variables, numeric attributes, methods that return a numeric 
value, and numeric expressions.

-- Numeric constant example

y : double;
y = 10;
y = -123.456;
y = -1.3e+12;

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division (integer results are truncated, not rounded)

- (unary) Negative

+ (unary) Positive

% Mod

& bitwise and

| bitwise or

^ bitwise exclusive or

~ bitwise (unary)



An Introduction to The TOOL Language

Chapter 9 Writing iIS Process Definition Methods 303

Order of evaluation
Numeric expressions are evaluated from left to right, with the following operator 
precedence (from highest to lowest):

The following example illustrates the order of evaluation in a numeric expression:

Use parentheses to guarantee the order of evaluation. TOOL evaluates the 
expressions in the innermost parentheses first.

Precedence Operator

1 [ ] ->

2 * (pointer dereference) & (address of)

3 - (unary) + (unary) ~

4 * / %

5 + -

6 <  >  =  >=  <=  < >

7 & (bitwise)

8 ^ (bitwise xor)

9 | (bitwise or)

10 not

11 and

12 or

x : integer = 1;
y : integer = 2;
z : integer;
z = x + y * y;   -- Evaluates to 5

x : integer = 1;
y : integer = 2;
z : integer = (x + y) * y;
-- Evaluates to 6



An Introduction to The TOOL Language

304 iPlanet Integration Server • Process Development Guide • August 2001

Expression data type
The data type of a numeric expression’s result is determined by the data type of 
both operands (left and right). The following table shows the data type for each 
possible pair of operands. Since the table is symmetric, the rows and columns can 
correspond to either the left or right operand:

TOOL automatically converts the value whose data type is different than the result 
type. This takes effect before the operation is executed. 

Casting numeric types
Because TOOL automatically performs conversions for the numeric values in 
expressions, you normally do not need to cast numeric types. However, if you need 
more control, you can cast the numeric types to the correct type. The syntax is:

numeric_type (expression); 

or 

(numeric_type) (expression);

double float ui4 long integer/i4 int i2 i1 ui2 ui1

double double double double double double double double double double double

float double float float float float float float float float float

ui4 double float ui4 ui4 ui4 ui4 ui4 ui4 ui4 ui4

long double float ui4 long long long long long long long

integer/i4 double float ui4 long integer integer integer integer integer integer

int double float ui4 long integer integer integer integer integer integer

i2 double float ui4 long integer integer integer integer integer integer

i1 double float ui4 long integer integer integer integer integer integer

ui2 double float ui4 long integer integer integer integer integer integer

ui1 double float ui4 long integer integer integer integer integer integer



An Introduction to The TOOL Language

Chapter 9 Writing iIS Process Definition Methods 305

For example, normally the result of adding a float and an integer is a float. 
However, if your code requires that the result be an integer, you can cast the 
expression, forcing it to be rounded to the nearest integer. For example:

Variables
A variable is a name used to refer to a single data item. Every variable has a data 
type. It can have a simple data type or a class type. If the variable has a numeric, 
boolean, or string data type, the variable itself contains the data. If the variable has 
a class type, the variable points to the object or objects that contain the data. (See 
the TOOL Reference Guide for more information on classes, variables, and objects.)

You must declare a variable before you can reference it. After you have declared 
the variable, you can assign a value to it and include it in expressions. 

Declaring a Variable
You can declare a variable anywhere within your TOOL code. You must specify 
the variable name and type. Optionally, you can specify an expression that sets the 
initial value of the variable. 

variable_name [, variable_name]… : type [= expression]

The scope of the variable is from the point where you declare it until the end of the 
current statement block. If you declare it at the start of a method, its scope is for the 
entire method.

Variable name
The variable name identifies the variable for use within the current statement 
block. It can be any legal TOOL name and must be unique for the current block. If 
the variable name is the same as the name of a variable declared in an enclosing 
statement block, the new variable will “hide” the existing variable. (See “Scope” on 
page 291 for more information.)

-- Casting a numeric expression example

x : integer = 1;
y : float = 2.14159;
z : integer = integer (x + y);
-- Evaluates to 3



An Introduction to The TOOL Language

306 iPlanet Integration Server • Process Development Guide • August 2001

You can declare multiple variables in a single definition, simply by specifying more 
than one variable name. TOOL creates a separate variable for each name, using the 
same type and initial value. For example:

Variable type
The variable type can be any simple type, any class (or interface), or any array. A 
variable declared to be of a class type is also called an object or an instantiation of the 
class. If you are using classes in your methods other than the objects supplied by 
iIS, see the TOOL Reference Guide for more information on using classes and objects 
in TOOL.

Initial value (expression)
The expression part of the previous variable declaration is the initial value of the 
variable. When you declare a variable, it is often a good idea to also give it an initial 
value, which can be any value that is compatible with the data type of the variable. 
If the variable is a simple data type and you do not specify the initial value, it has 
the default value for the data type. If the variable is a class type and you do not 
specify the initial value, it has a default value of NIL.

Default values for simple variables are shown in the following table:

-- Declaring two variables example

i, j : integer = 0;
-- Three new objects
t, u, v : TextData = new(value = ‘x’);

Type Default Initial Value

boolean FALSE

char NIL

double 0.0

integer (all types) 0

float 0.0

string NIL



An Introduction to The TOOL Language

Chapter 9 Writing iIS Process Definition Methods 307

Assigning a Value to a Variable
To assign a value to a variable, use the following syntax:

variable = expression

The expression can be any value that is compatible with the data type of the 
variable. For example:

Named Constants
A named constant (as opposed to a literal constant, such as a string constant like 
‘This a string’ or a numeric constant like 3.14159) is a literal string or numeric value 
that has a name. To declare a named constant, you specify a constant name and a 
value. You can then use the name in place of the value in your TOOL code. TOOL 
uses three kinds of named constants: project constants, class constants, and local 
constants. (For information on project constants and class constants, see the TOOL 
Reference Guide.

A local constant is a named constant that can be accessed only within the current 
statement block. You must declare a local constant in your TOOL code before you 
can reference it. After you have declared the local constant, you use it in the current 
statement block. 

Declaring a Local Constant
You can declare a local constant anywhere in your TOOL code with the constant 
statement. You must specify the constant name and value. The syntax is:

constant constant_name = value

As with a variable, the scope of the constant is from the point where you declare it 
until the end of the current statement block. If you declare it at the start of your 
method, its scope is for the entire method. The following example illustrates 
declaring a local constant:

i : integer = 0;
j : integer = 10;
j = j + i;

constant pi = 3.14159268;
constant SECONDS_PER_HOUR = 3600;



An Introduction to The TOOL Language

308 iPlanet Integration Server • Process Development Guide • August 2001

Constant name
The constant name identifies the constant for use within the current statement 
block. It can be any legal TOOL name and must be unique for the current block. If 
the constant name is the same as the name of a global constant, global variable, or a 
data item declared in an enclosing statement block, the new named constant will 
“hide” the existing data item.

Constant value
You declare either a numeric or string value for the named constant. The data type 
of the value determines the data type of the constant. After you specify the value 
for a constant, you cannot change it.

Referencing a Named Constant
To reference a named constant, use the constant name. For example:

You can use a named constant to specify a value anywhere in the TOOL code as 
long as the data type meets the requirements of the expression.

If the named constant is a class constant that is not in the current class, other classes 
must reference the constant with the following syntax:

class_name.constant_name

Using Named Constants in Expressions
Because named constants represent literal values, you can use them in any 
expression where a literal value is appropriate. 

However, because named constants are read-only values, you cannot assign a 
value to them. This means you cannot pass a named constant to a method as an 
output parameter or use it on the left side of any assignment statement. 

circumference, radius : double;
radius = 2.0;
constant PI = 3.14159268;
circumference = 2 * pi * radius; 



An Introduction to The TOOL Language

Chapter 9 Writing iIS Process Definition Methods 309

The following example illustrates the use of named constants in an expression:

Fixed Arrays
A fixed array in TOOL is an array of a predetermined size that contains values of 
the same simple data type. (“Simple Data Types” on page 292 describes these data 
types.) For example, the following code sample declares an array with ten elements 
of type integer and sets the first element to 1:

Usually a fixed array of simple data types is all you need in a process definition 
method.

The following table shows two varieties of syntax for declaring a fixed array. The 
brackets “[” and “]” represent characters that are part of the syntax, and the “. . .” 
characters indicate that more dimensions can be added to the array.

perimeter, radius : double;
radius = 2.0;
constant PI = 3.14159268;
perimeter = 2 * pi * radius; 
-- following line is ERROR: CANNOT ASSIGN CONSTANT.
PI = 3.14159268;

myIntArray [10] of integer;
myIntArray [0] = 1;

NOTE TOOL also supports arrays of objects. If you plan to use this type of 
array, you must know more about using TOOL. See the TOOL 
Reference Guide for information on using arrays of objects.

name : array [lower..upper ] … of data_type;
name : array [lower..upper, … ] of data_type;



An Introduction to The TOOL Language

310 iPlanet Integration Server • Process Development Guide • August 2001

• name is the variable name for the array.

• lower and upper define the lower and upper bounds of the array. Their values 
must be integer constants. A value for the lower bound is not required, but if 
you specify it, the value must be lower than the value of the corresponding 
upper bound.

• data_type is the name of the simple data type for all the elements of the array

Using the first variation of the syntax, you can specify arrays as shown in the 
following examples:

Using the second variation of the syntax, you can specify multidimensional arrays 
as shown in the following example:

NOTE Unless you specify the lower bound of the array, the numbering of 
the array elements starts at 0. 

-- Declare a one-dimensional array with 10 integer 
-- elements numbered 0 to 9:
myArray1 : array [10] of int;
-- Declare a one-dimensional array with 10 char 
-- elements numbered 1 to 10:
myArray2 : array [1..10] of char;
-- Declare a two-dimensional array containing 5 arrays, each with
-- 8 float elements whose element numbering starts at 3.
myArray3 : array [5][3..10] of float;

-- Declare a two-dimensional array containing 6 arrays of 8 
integer
-- elements whose element numbering starts at 0
myArrayA : array [6, 8] of int
-- Declare a two-dimensional array containing 5 arrays, each with
-- 8 elements whose element numbering starts at 3
myArrayB : array [5, 3..10] of float



TOOL Statements for Methods

Chapter 9 Writing iIS Process Definition Methods 311

TOOL Statements for Methods
The previous section covered basic elements of the TOOL language, but did not 
describe specific TOOL statements for flow control, looping, and so on. This 
reference describes the TOOL statements that are useful in process definition 
methods. For a complete TOOL reference, see the TOOL Reference Guide.

case
The case statement is similar to a set of if…then…elseif statements. Instead of if 
and elseif statements, it has a set of statement blocks, each identified by a different 
integer. The case statement evaluates an integer expression, then executes the 
statement block that matches that number, if any.

Syntax
case integer_expression [is]

[when value do statement_block]…
[else [do] statement_block]

end [case];

Example

t : string;
case GetState() -- GetState returns an integer value

when ACTIVE do
t = ’I\’m busy.’;

when READY do
t = ’I\’m ready if you are.’;

else do
t = ’I\’m finished.’;

end case;



TOOL Statements for Methods

312 iPlanet Integration Server • Process Development Guide • August 2001

Description

When the case statement starts, its case expression is evaluated, then each when 
clause is evaluated to see if its value is equal to the case expression. If there is a 
match, the corresponding statement block is executed, then the case statement 
exits. If there is no match and there is an else clause, that statement block is 
executed, then the case statement exits. If there is no else clause, the case statement 
simply exits. 

Expression
The case expression must be an integer expression. The data type of the 
corresponding values in the when clauses must also be integer.

when clause
The when clause specifies one integer value that is a possible result of the 
expression and provides a statement block to be executed for that particular value. 
The value for each when clause must be an integer constant.

If you specify the same value in more than one when clause, you get a compile time 
error. 

statement block
The statement block for a when clause can include any TOOL statements. You can 
use an exit statement in the statement block to exit from the case statement.

NOTE This description covers only functionality that is generally useful in 
iIS process definition methods. For a complete description of the 
case statement, see the TOOL Reference Guide.

-- Using an exit statement within a case statement

case ...
when 1 do

if ...condition... then
exit;
-- Exits case statement.

end if;
when 2 do

...
end case;



TOOL Statements for Methods

Chapter 9 Writing iIS Process Definition Methods 313

constant
The constant statement declares a named constant with a scope from the point you 
declare it to the end of the block. 

Syntax
constant name = value ;

Example

Description
The constant name can be any legal TOOL name and must be unique for the 
current statement block. Because constants share the same name scope as several 
other components, if the constant has the same name as a component in an 
enclosing scope, the new named constant will “hide” the existing component. See 
“Scope” on page 291 for information on name resolution.

The constant value can be any numeric or string value. The data type of the value 
determines the data type of the constant. After you specify the value for a constant, 
you cannot change it.

for
The for statement is a loop that repeats a statement block for each number in a 
range of numbers. 

Syntax
for variable_name in first_value to second_value 

[by step_expression]
do statement_block

end [for];

constant PI = 3.14159268;
constant seconds_per_hour = 3600;
constant COMPANY_NAME = ’Sun Microsystems, Inc.’;



TOOL Statements for Methods

314 iPlanet Integration Server • Process Development Guide • August 2001

Example

Description

The for statement uses a numeric variable to loop through its statement block a set 
number of times. At the start of each loop iteration, the variable is incremented (or 
decremented) and is compared to the second value in the range. When the variable 
is no longer in the range, the for statement exits.

Loop Control Variable
Use a new variable name for the loop control variable. (You cannot use an existing 
variable.) TOOL automatically declares a new variable whose scope is limited to 
the for statement. The variable’s type is automatically set to the same type as the 
numbers in the range.

Range
To specify a range, you must use either integers or floating point numbers and 
enter a first value and a second value. By default, the numbers are incremented by 
1 (one) each time through the loop. The optional by clause allows you to specify a 
step value to be used for calculating the loop control value each time through the 
loop. The step value can be a positive or negative number. If the step value is 
positive, the first value must be lower than the second value. If the step value is 
negative, the first value must be higher than the second value.

Statement Block
The statement block can include any TOOL statements. You can use the exit 
statement to transfer control to the statement after the end for. You can use the 
continue statement to force a new iteration of the statement block and assign the 
loop control variable the next value in the range.

j : array [10] of integer;
for i in 0 to 9 do
j[i] = i;

end for;

NOTE This description covers only functionality that is generally useful in 
iIS process definition methods. For a complete description of the for 
statement, see the TOOL Reference Guide.



TOOL Statements for Methods

Chapter 9 Writing iIS Process Definition Methods 315

if
The if statement executes a statement block when the specified boolean condition 
is true. 

Syntax
if boolean_expression then

statement_block
[elseif boolean_expression then

statement_block]…
[else [do]

statement_block]
end [if];

Example

Description

At most, only one of the statement blocks in the if statement can be executed. Each 
boolean condition is evaluated in order, starting with the if condition and 
continuing if necessary with any elseif conditions. Evaluation stops when a true 
condition is found; that statement block is executed, and the if statement exits. 

if (amount <= 0) then
ErrorCondition = TRUE;

elseif (amount < 500) then
return TRUE;

else // amount is >= 500
return FALSE;

end if;

NOTE This description covers only functionality that is generally useful in 
iIS process definition methods. For a complete description of the if 
statement, see the TOOL Reference Guide.



TOOL Statements for Methods

316 iPlanet Integration Server • Process Development Guide • August 2001

If no conditions are true and there is an else condition, its statement block is 
executed and the if statement exits. (The else clause specifies a statement block to 
be executed when all the conditions are false.) If there is no else condition, the if 
statement exits without executing any statement block.

The simplest version of the if statement specifies one condition to be tested and one 
statement block to be executed if the expression is true. For example:

Boolean Expressions
The expressions in the if statement must be boolean expressions (see “Boolean 
Expressions” on page 295). These expressions can include boolean variables, 
constants, attributes, and methods that produce a boolean return value. For 
example.

Statement Blocks
The statement blocks in an if statement can include any TOOL statements. Note, 
however, that you cannot use exit or continue in an if statement to close or repeat 
the if statement blocks. Including exit or continue in an if statement block causes 
control to pass to the closest enclosing loop statement. If there is none, you get an 
error when you compile the method. 

NOTE There is no space in the elseif keyword.

i : integer = 10;
if i > 5 then
return TRUE;

end if;

if ((i > 10) and (i < 100)) or not (j > 4) then
rtnVal = TRUE;

end if;



TOOL Statements for Methods

Chapter 9 Writing iIS Process Definition Methods 317

return
See “The return Statement” on page 263.

while
The while statement loops through its statement block as long as its boolean 
expression is true.

Syntax
while boolean_expression

do statement_block
end [while];

Example

Description

At the start of the while loop, its expression is evaluated. If the expression is true, 
the statement block executes. After the last statement in the block executes, control 
returns to the beginning of the while loop, where the expression is evaluated again. 
This process continues until either the expression is false or the loop is exited with 
an exit statement or a return statement.

To ensure that the while statement exits, you must do one of the following:

• use a boolean condition that will eventually be false

• use an exit statement to exit the loop

• use the return statement to exit the method

i : integer = 1;
while i < maxValue do
...
i = i + 1;

end while;

NOTE This description covers only functionality that is generally useful in 
iIS process definition methods. For a complete description of the 
while statement, see the TOOL Reference Guide.



TOOL Statements for Methods

318 iPlanet Integration Server • Process Development Guide • August 2001

If you do none of these things, the while statement will loop infinitely. 

If you are using a boolean condition to loop through a range of numbers, be sure to 
increment or decrement your counter. For example:

Boolean Expression
The boolean expression specifies a logical condition that has a value of TRUE or 
FALSE. It can include boolean variables, constants, attributes, and methods that 
return boolean values. See “Boolean Expressions” on page 295 for information on 
boolean expressions. Here is an example:

Statement Block
The statement block can include any TOOL statements. You can use the continue 
statement to return to the first statement of the statement block and force another 
iteration of the loop. You can use the exit statement to pass control to the statement 
following the end while.

x = array [maxLength] of integer;
... fill in x ...
i : integer = 1;
while i <= maxLength do
...process x[i]...
i = i + 1;

end while;

while ((i < 10) and (j > 4)) and not (k = 3) do
...

end while;

-- Using continue and exit in a statement block

while TRUE do
...processing...
if continueOK = TRUE then

continue;
else

exit;
end if;

end while;



TOOL and SQL Reserved Words

Chapter 9 Writing iIS Process Definition Methods 319

TOOL and SQL Reserved Words

TOOL Reserved Words

and exception loop return

attribute exit method service

begin false new sl

case for nil start

changed forward not struct

class from of super

constant handler output task

continue has post then

copy if postregister to

cursor implements preregister transaction

do in private true

else includes property typedef

elseif inherits public union

end input raise virtual

enum interface register when

event is method ‘where



TOOL and SQL Reserved Words

320 iPlanet Integration Server • Process Development Guide • August 2001

SQL Reserved Words

all desc group procedure

any distinct having raise

as escape immediate revoke

asc execute insert select

between exists into session

by extend like set

close extent minus some

connect fetch null unique

current fragment on update

default from open values

delete grant order where



321

Appendix A

iIS Process
Management Examples

This appendix describes the iIS process management example applications and the 
sample Organizational Database Access application, which are provided with your 
iIS installation. The examples are in the following location of your iIS installation:

$FORTE_ROOT/install/examples/conductr

Typically, you run an example application, then examine it in various process 
development workshops to see how the process definitions are implemented. You 
can then examine the application source files to see how the application is 
implemented. You can modify the examples to experiment with iIS features or to 
create your own applications based on the examples. It is recommended that you 
modify private copies of the example files, keeping the original examples intact.

The iIS examples provide process definitions for both a basic and advanced 
expense reporting application. Each example illustrates how to use one of the iIS 
process client APIs (TOOL, CORBA/IIOP, C++, and ActiveX).

The instructions to the examples assume familiarity with iPlanet UDS, and also, 
some familiarity with the iIS process development workshops and the iIS Console. 
The iIS Process Development Guide provides information on the process 
development workshops. For information on the iIS Console, refer to the iIS Process 
System Guide. For information on the iIS process client APIs, refer to the iIS Process 
Client Programming Guide. Online help is also available for iIS.

This appendix provides:

• instructions on how to install the examples

• a brief overview of the example applications

• a section describing each example in detail



Installing iIS Example Applications

322 iPlanet Integration Server • Process Development Guide • August 2001

Installing iIS Example Applications
Before running the iIS examples, you must first configure and start an iIS process 
engine, import the example .pex files into your repository, and register the example 
iIS plans with the iIS engine.

The procedure for creating and starting an engine is described in the following 
section, “Configuring and Starting an Engine.” Each example comes with a script 
which automatically imports the .pex files and registers the iIS plans with the 
engine. The section for each example provides instructions on using the script and 
running the example.

Configuring and Starting an Engine
The example applications communicate with an iIS process engine called 
“ceengine.” The procedure for configuring and starting this engine is described 
below. For additional information on iIS process engines, refer to the iIS Process 
System Guide and iIS online help.

➤ To configure an iIS process engine

1. Start iIS Console.

2. Select the Engine > New command to open the Configure New Engine dialog.

3. In the Name tab page, enter ceengine in the Engine Name field.

4. In the Database tab page, fill in the database information fields. 

You must have a valid database connection to configure an iIS engine.

5. In the Logging tab page, select the History Log categories you want to record.

If you enable all logging, a significant amount of data can be written to your 
engine database. For a minimal configuration, disable the current state and 
history logs. If you want to enable failover or specifically look at the history, 
you can always enable logging later.

NOTE If you do not have access to an iIS engine named ceengine, refer to 
“Using Alternate Engines” on page 324 for information on how to 
modify the examples to communicate with another engine.



Installing iIS Example Applications

Appendix A iIS Process Management Examples 323

6. In the Components tab page, insert at least two components: an engine unit, 
and a database service.

You can name these components whatever you like.

7. Click Create to create the engine configuration file.

8. In the iIS Console main window, select ceengine, and then select the 
Engine > Start command.

The Start Engine window appears.

9. Select Cold in the Startup Options field, then click Start.

It takes a few moments for all the engine components to start. The state column 
indicates when each component is online. You can close the Start Engine 
window after both components are online.

10. Verify that the engine started successfully, as follows.

In the iIS Console main window, select ceengine, and then choose the 
Engine > Status command. Examine the information in each node in the 
treeview to make sure the engine startup succeeded.

You can now exit iIS Console. However, you may find it useful to have iIS Console 
running while you run the examples. The iIS Console allows you to monitor 
sessions and processes and also provides other useful information.

CAUTION Cold starting an engine initializes the logging, state, and 
registration information for the engine. After shutting down the 
engine, you typically use a warm start to restart the engine. 
Otherwise you lose all of the engine’s logging, state, and 
registration information.

NOTE If the engine startup fails, check the Engine Partition Log for 
each component (available from the Engine Status window) for 
problem descriptions. You can also check any recent files in the 
log directory, located at $FORTE_ROOT/log.



Installing iIS Example Applications

324 iPlanet Integration Server • Process Development Guide • August 2001

Importing, Distributing, and 
Registering Examples
Each example contains a Conductor Script (Cscript) file. Cscript files are identified 
by the filename extension .csc. Executing an example Cscript imports the .pex files 
for the example, makes library distributions, and registers iIS plans with the engine 
named ceengine.

The sections for each example provide specific instructions on how to load and run 
the example. You can load all the examples into the same development repository, 
and in any order. The Cscript file provided with each example attempts to create 
the workspace FusionExamples. It then attempts to load the iIS libraries into the 
FusionExamples workspace.

After you run the Cscript file provided for an example, you can run the example 
without making any manual registrations. However, if you have more than one 
example loaded, and want to switch back and forth between them, you must 
reregister the User Validation plan for the example you are about to run. This is 
because you can only register a single User Validation plan with an iIS engine at 
one time.

Using Alternate Engines
If an iIS engine named ceengine is not available to you, you can use another iIS 
engine. However, you must edit the example Cscript file so it refers to the correct 
iIS engine. In the Cscript file, search for “ceengine” and replace it with the name of 
the engine you are using. Additionally, you need to set the environment variable 
FORTE_EP_ENGINE_NAME to the name of this engine. The client code for the 
examples checks this environment variable when it attempts to connect to an 
engine. If FORTE_EP_ENGINE_NAME is not set, it defaults to ceengine.

NOTE If the FusionExamples workspace has been previously created by 
one of the example scripts, error messages inform you that the 
workspace and the libraries already exist. You can ignore these 
messages.



Overview of iIS Process Management Examples

Appendix A iIS Process Management Examples 325

Overview of iIS Process Management Examples
The following tables provide an overview of the example applications, organized 
by general topic. The first column in each table shows the name of the example 
subdirectory under $FORTE_ROOT/install/examples/conductr. For the complete 
description of each example application, refer to “Application Descriptions” on 
page 326.

iIS Process Management Examples

Example Description

er/ ExpenseReporting Illustrates how to use basic iIS features in an 
expense reporting system. The client in this 
example is implemented with the TOOL client 
API.

adver/ AdvancedExpenseReporting Builds on the basic features shown in 
ExpenseReporting. It illustrates how to 
reference service objects in iIS process 
definition methods. Its user validation plan 
makes use of database tables created by the 
Organization Database example. It also stores 
its own application data in database tables. The 
client in this example is implemented with the 
TOOL client API.

jer/ JExpense Illustrates the iIS CORBA/IIOP client API. The 
client in this example is implemented in Java.

jer/ JExpenseNS Illustrates the iIS CORBA/IIOP client API. The 
client in this example is implemented in Java. It 
is similar to JExpense, except it uses the 
CORBA Name Service to communicate with 
the iIS engine.

jer/ JExpenseSO Illustrates the iIS CORBA/IIOP client API. The 
client in this example is implemented in Java. It 
is similar to JExpenseNS—it uses the CORBA 
Name Service to communicate with the iIS 
engine. In addition, the JExpenseSO client 
communicates with the service object in the 
expense report application through an ior file.



Application Descriptions

326 iPlanet Integration Server • Process Development Guide • August 2001

Organization Database Access

Application Descriptions
This section provides detailed descriptions for each example application. The 
section for each example provides the following information about the examples:

Description Describes the purpose of the example, the problems it solves, and 
the iIS features it illustrates.

jer/ JExpenseNB Illustrates the use of a NetBeans client using the 
iIS CORBA/IIOP client API. This example uses 
the same communication mechanisms as 
JExpenseSO. The NetBeans client provides a 
browser based GUI client, using JSPs and a 
servlet controller.

cer/ C++ ExpenseReporting Illustrates the iIS C++ client API. A C++ client 
communicates with an engine that has 
registrations for the Expense Reporting 
definitions.

vber/ ActiveX ExpenseReporting Illustrates the iIS ActiveX client API. A Visual 
Basic client communicates with an engine that 
has registrations for the Expense Reporting 
definitions.

Example Description

orgdb/ OrganizationDatabase This application provides a GUI for maintaining a 
user organization database. An iIS process client 
application typically references this database using 
the ValidateUser method developed in the Validation 
Workshop. This example does not require an iIS 
engine or process development workshops to run.

Example Description



Application Descriptions

Appendix A iIS Process Management Examples 327

Pex Files Provides the directory and file names of the .pex project files. The 
examples come with a Conductor Script (Cscript) file. The Cscript file for each 
example does the following:

• imports the .pex files into your repository

• compiles the plans

• makes the library distributions

• registers the distributions with the engine

The following naming scheme is used to identify the .pex files for an example:

The Conductor Script files import plans into your workspace. The script compiles 
the plans, creating projects. The imported plans and resulting projects use the 
following naming convention:

.pex File Description

name_ad.pex application dictionary

name_ar.pex assignment rule dictionary

name_pd.pex process definition

name_up.pex user profile

name_uv.pex user validation

Plan Description

AppNameAD application dictionary plan

AppNameAD_AT compiled application dictionary TOOL project

AppNameAR assignment rule dictionary plan

AppNameAR_AR compiled assignment rule dictionary TOOL project

AppNamePD process definition plan

AppNamePD_PD compiled process definition TOOL project

AppNameUP user profile plan

AppNameUP_UP compiled user profile TOOL project

AppNameUV user validation plan

AppNameUV_UV compiled user validation TOOL project



Application Descriptions

328 iPlanet Integration Server • Process Development Guide • August 2001

In your workspace, double-click a plan to examine it in the corresponding iIS 
process development workshop. You can also examine the compiled, read-only, 
TOOL projects by double-clicking a project.

Additional files in an example directory are client and server files for the iPlanet 
UDS application.

Special Requirements Identifies any special setup procedures you may need to 
follow. 

Running the Example Explains how to step through the application’s functions.

Expense Reporting
Description This basic Expense Reporting example illustrates how to use iIS to 
build a simplified expense reporting system. Expense Reporting allows different 
users to log on as employees, managers, auditors, and accountants. In these roles, 
the different users can create expense reports, review them, revise them if 
necessary, and perform accounting and auditing procedures on them. 

This example provides iIS plans that are used by other examples. The iIS project, 
ExpenseReportClient, illustrates how to write an iIS process client using the TOOL 
API.

ExpenseReporting illustrates the following iIS process management features:

• offered activities

• queued activities

• automatic activities

• routers

• subprocesses

• client API programming in TOOL

• customized user validation

• access rules

NOTE All the examples require access to a running iIS engine. See 
“Configuring and Starting an Engine” on page 322 for information 
about how to start an iIS engine.



Application Descriptions

Appendix A iIS Process Management Examples 329

• application dictionary items

• timers

• triggers

• linked users

ExpenseReporting does not illustrate the following iIS process management 
features:

• organization database access

• persistent storage of application data in database

• customized user profile 

• junction activity

Pex Files This example uses the following .pex files, located at 
$FORTE_ROOT/install/examples/conductr/er:

Special Requirements An iIS engine called “ceengine” must be running. Refer to 
“Configuring and Starting an Engine” on page 322 for more information.

The er directory contains a Conductor Script file: er.csc. This script imports the iIS 
and iPlanet UDS plans into a new workspace called ConductorExamples. It then 
compiles, distributes, and registers the iIS plans.

➤ To install the ExpenseReporting application

1. If the iIS engine named ceengine is not already running, start it.

2. From a command window, navigate to the 
FORTE_ROOT/install/examples/conductr/er directory and issue the 
following command:

cscript -i er.csc -o er.out

erad.pex ercso.pex.

erar.pex erpd.pex

erbc.pex errevpd.pex

erclient.pex erup.pex

ercsc.pex eruv.pex



Application Descriptions

330 iPlanet Integration Server • Process Development Guide • August 2001

3. Examine er.out to make sure all the commands completed successfully.

Running the Expense Reporting Example This section describes the Expense 
Reporting application and shows how to run it, taking a process instance to 
completion. 

Figure A-1 shows valid users (and their roles) for the Expense Reporting 
application. All users are employees. Some are managers, some are accountants or 
auditors. Only managers can log on as reviewers. For all users, the password is the 
same as the user name. Case is significant.

Figure A-1 Valid Users in Expense Reporting System

To see processes go to completion, log on with at least the following roles: 

• an employee

• the employee’s manager (George or Charlotte)

• the second level manager (Alice)

• an accountant

• an auditor

Users can log on more than once in different roles For example, Charlotte could log 
on as an employee, then log on again as a reviewer. Nick could log on as an 
accountant, then log on again as an employee.

Wilbur

Winnie Stuart
Ernie

(Auditor)
Nick

(Accountant)
Celeste

(Accountant)

Alice
(Manager)

Charlotte
(Manager)

George
(Manager)



Application Descriptions

Appendix A iIS Process Management Examples 331

An additional logon option allows you to open a Monitor Window that lets you 
examine expense reports as they are created in the system. To open the Monitor 
Window, use “Forte” as the password with no user name. Any role can be selected.

After completing the procedure, you are encouraged to experiment with various 
processes within the application. You should also examine the iIS plans created by 
the example in the iIS process development workshops to further understand how 
the example works. The ExpenseReportClient project shows how the client was 
implemented using the TOOL API.

➤ To run the Expense Reporting application

1. Start iPlanet UDS Distributed, and set your workspace to ConductorExamples. 
Select ExpenseReportClient, and click the Run icon. 

The Expense Reporting logon opens.

2. Open a number of windows:

❍ Log on Winnie and Wilbur as employees

❍ Log on Charlotte, Alice, and George as reviewers

❍ Log on Nick as an accountant

❍ Log on Ernie as an auditor

❍ Log on with the password iPlanet UDS to bring up the Monitor Window

3. In Winnie’s Employee Expense Report Information window, click Create New 
Expense Report. 

The CreateExpense Report window opens. Expense Report IDs are assigned 
automatically, starting at 1001.

4. Enter a description for the expense and an amount greater than $1,000. Then 
click Submit.

The expense report appears in the inbox of Charlotte’s Expense Report Review 
window. This is an example of a heads up window associated with an offered 
activity.

The item does not appear in George’s inbox. Although George is a manager, he 
is not Winnie’s manager. It also does not appear in Alice’s inbox because she is 
not a direct manager of Winnie.

Look at the columns for this item in Charlotte’s inbox. The status is listed as 
Submitted and the priority is initially set to false. If the item remains in 
Charlotte’s inbox for more than one minute, the priority is set to true.



Application Descriptions

332 iPlanet Integration Server • Process Development Guide • August 2001

5. In Charlotte’s Expense Report Review window, select the expense report item 
Winnie just submitted, then click Review. Enter something in the comments 
field, and click Approve.

After approval the item is no longer in Charlotte’s inbox. It arrives in the inbox 
of Alice’s Review Expense Report window. In this example application, 
expenses exceeding $1,000 must be approved by a second level manager. The 
status of the expense report has now changed from Submitted to Accepted.

6. In Alice’s Review Expense Report window, select the newly arrived item and 
click Review. Add a remark to the comment field and then click Decline.

The item disappears from Alice’s inbox, reappearing in Charlotte’s inbox with 
the status Rejected. In Charlotte’s window, review this expense again, but this 
time reject it. The item disappears from Charlotte’s inbox, reappearing in the 
inbox of Winnie’s Employee Expense Report Information window. Only 
Winnie, and no other employee, receives this rejected expense.

7. In Winnie’s window, select the expense and click the Revise Expense Report. 
Change the amount to less than $1,000 and click Submit Revision.

8. Charlotte receives the item again. Review the item and accept the report.

This time Alice does not receive it in her inbox. Expense reports under $1,000 
do not require second level manager approval.

9. In Nick’s Accounting Window, click Get Report.

This is an example of a heads down window, which is associated with a queued 
activity. Nick cannot choose which report to work on next. He receives 
whatever is next in the queue.

In this case, Winnie’s expense report appears in Nick’s window. 

10. In Nick’s Accounting Window, click Work on Report. 

Here, a real accountant would do some work. To keep the example simple, a 
message dialog comes up indicating that real work usually occurs at this point.

Click Get Report again. A message dialog informs you that no work is 
available.

11. In Ernie’s Auditing Window, follow the same steps Nick just used to get work 
and complete it.



Application Descriptions

Appendix A iIS Process Management Examples 333

12. Now examine the Monitor Expense Reports window.

The Monitor Expense Reports window automatically places the value 1001 in 
the ID field. Click the Fetch button to retrieve expense report information.

In this example application, each time an activity is performed on the expense 
report, a tagline is written to the WorkHistory attribute on the ExpenseReport 
object. The Work History field of the Monitor Expense Reports window 
displays the contents of the WorkHistory attribute, thus listing all (but one) of 
the activities performed on this expense report. The exception is the automatic 
activity (ProcessCheck) that issues a check for the expense. This automatic 
activity writes to the engine partition log file rather than to the WorkHistory 
attribute. It waits until both the accountant and the auditor have completed 
their work before it triggers. The following step shows how to view the engine 
partition log.

As you send more expense reports through the system, you can examine the 
expense report object in the monitor window by changing the value in the ID 
field and clicking Fetch.

13. Use the iIS Console to view the engine partition log, which includes any entries 
for the automatic activity.

If it is not open, open the iIS Console, select your engine, and then select 
Engine > Status. In the Engine Status window, select the unit under Engine 
Components, then click View Partition Log.

If you completed the example up to this point, the log contains the following 
line:

“Check processed for expense report 1001”

14. Exit the application as follows:

Complete all the processes you start and exit all the user windows before 
exiting the logon window, which shuts down the application. This prevents 
process instances from a subsequent run from colliding with the current run. 
(The Advanced Expense Reporting example provides a more elegant way to 
shut down the application.)

Alternatively, you can use the iIS Console to terminate processes and sessions.

In the iIS Console, select your engine and then do either of the following:

❍ To terminate all processes, select Monitor > Processes to open the Process 
Instances window. Then select Process > Abort All.

❍ To terminate all sessions, select Monitor > Sessions to open the Sessions 
window. Then select Session > Terminate All.



Application Descriptions

334 iPlanet Integration Server • Process Development Guide • August 2001

You have now seen one process instance go to completion. Experiment with other 
scenarios. Log on other users in different roles. Also, examine the iIS process 
development workshops for the application and the client TOOL code to see how 
the application is implemented.

Advanced Expense Reporting
Description Advanced Expense Reporting builds on the Expense Reporting 
example, showing how to call service objects from iIS process definition methods 
and how to provide persistent data between sessions of the application.

In the process definition for Advanced Expense Reporting, the automatic activity 
ProcessCheck now calls a service object to perform this activity (rather than simply 
write to a log). Additionally, in the Validation plan, the ValidateUser method calls 
a service object to verify users based on data in a database. This data is created by 
the OrganizationDatabase example, which is described in detail in the section 
“OrganizationDatabase” on page 367.

The Advanced Expense Reporting example now stores application data in a 
database, providing persistence of data between sessions of the application. In the 
basic Expense Reporting example, application data is stored in an array that is 
initialized each time the application runs. This means the process attribute data, 
which is stored both in the array and in the iIS engine, can get out of synch. 
However, in the Advanced Expense Reporting example, activities for any 
incomplete process instances from a previous session are displayed in the 
appropriate work lists in subsequent sessions.

NOTE Because of the basic nature of the Expense Report example, it does 
not write application data, such as ExpenseReport IDs, to a 
database, but to an array. The Expense Report ID is also stored by 
the iIS engine as a process attribute. If you exit the Expense Report 
application and subsequently restart it, the application data array is 
cleared and Expense Report IDs restart at 1001. However, if process 
instances from an earlier run had not been completed, the engine 
database still has old Expense Report ID entries. The Advanced 
Expense Report example shows how to use a database to avoid this 
situation.



Application Descriptions

Appendix A iIS Process Management Examples 335

The Advanced Expense Reporting example provides iIS plans and the iIS project, 
AdvancedExpenseReportClient, that illustrates how the application is 
implemented. In addition to features from the previous example, Advanced 
ExpenseReporting illustrates the following:

• service object access

• organization database access

• persistent storage of application data in database

Advanced ExpenseReporting does not illustrate the following iIS process 
management features:

• customized user profile 

• junction activity

Pex Files This example uses the following .pex files:

Special Requirements An iIS engine called “ceengine” must be running. Refer to 
“Configuring and Starting an Engine” on page 322 for more information. In the iIS 
engine, all process instances and sessions from previous example runs must be 
terminated. Use the iIS Console to terminate any lingering process or sessions.

You must also do the following, as described in the following procedures:

• Define a resource manager for a database (if not previously defined)

• Set up an organization database for user validation

• Set environment variables for access to the organization database

• Create database tables for persistent storage of application data

aerso.pex aerbc.pex

aerrv_pd.pex aer_uv.pex

aercso.pex aer_up.pex

aercsc.pex aer_pd.pex

aerclnt.pex aer_ar.pex

aerc.pex aer_ad.pex



Application Descriptions

336 iPlanet Integration Server • Process Development Guide • August 2001

Resource Manager
Although iIS does not require a resource manager, the iPlanet UDS part of this 
example needs one to perform database access. If a resource manager is not already 
defined for your node, use the following procedure to define one.

➤ To define a resource manager

1. From your iPlanet UDS installation, run the Environment Console.

2. In the Environment Console, select your node and then lock it.

3. Select Component > Properties, and define a resource manager for your 
database. For this example, this database can be the same database that is 
running your iIS engine.

Organization Database
The Advanced Expense Reporting example validates users based on information in 
an organization database, and stores application data in an application database. 
(Actually, these databases are different tables in the same physical database, 
however they are logically distinct.) This database activity is distinct from the 
writing of state information to the engine database by the iIS engine. However, for 
this example, the application database you set up for this application should be the 
same database system as your iIS engine database. Typically, the application 
database would be set up as a separate database.

Environment Variables
You must set four environment variables that define access to the application 
database. These environment variables are read by the Advanced Expense 
Reporting application before it dynamically creates a DBSession object. Set the 
following four environment variables:

FORTE_EP_DB_TYPE  (Oracle, Sybase, etc)
FORTE_EP_DB_NAME  (Resource name, for example @HILLARY_ORACLE)
FORTE_EP_DB_USER_NAME (user name)
FORTE_EP_DB_USER_PASSWORD (password)



Application Descriptions

Appendix A iIS Process Management Examples 337

Import the Example
The Advanced Expense Reporting example contains the Conductor Script file 
aer.csc. This script imports the iIS and iPlanet UDS plans into a new workspace 
called ConductorExamples, and then compiles, distributes, and registers the iIS 
plans. It also creates libraries from some of the iPlanet UDS projects—iIS needs to 
dynamically load those libraries. 

➤ To import the Advanced Expense Report example into a workspace

1. If the iIS engine named ceengine is not already running, start it.

2. From a command window, navigate to the 
$FORTE_ROOT/install/examples/conductr/adver directory and issue the 
following command:

cscript -i aer.csc -o aer.out

Examine aer.out to make sure all the commands completed successfully.

Import Organization Database Data
Before you can run the example, you must load the data from the orgdb.sql file into 
a database using the Organization Database example. 

➤ To load the Organization Database data

1. Import the Organization Database example into your development repository, 
as follows: 

From the FusionExamples workspace, select Plan > Import. Then navigate to 
the $FORTE_ROOT/install/examples/conductr/orgdb example directory and 
select orgdbacc.pex.

2. In your workspace, select the newly imported OrganizationDatabase project 
and click the Run icon.

In the Login to Database window that opens, provide valid access information 
to the database you are using for this example.

3. In the Organization Database window that opens, select Database > Import.

In the chooser that opens, navigate to the adver directory and select the file 
orgdb.sql.

This creates the database tables and inserts the data needed by the Advanced 
Expense Reporting example. The employees and roles displayed in the 
window are the same as those described directly in the ValidateUser method 
for the basic Expense Reporting example. 



Application Descriptions

338 iPlanet Integration Server • Process Development Guide • August 2001

4. Exit the Organization Database application.

For more information about using the Organization Database example, refer to 
“Organization Database Access” on page 326.

Expense Report Data Tables
Finally, you need to create two tables in your database that store expense reporting 
data. To keep this example simple, continue to use the same database from the 
previous procedures. (Typically, you would use a separate database to store this 
data.) 

From a command window, navigate to the adver directory and execute the script 
corresponding to the database vendor you are using. The scripts use the naming 
convention er_databasetype.sql, where databasetype refers to the vendor of your 
database.

Running the Advanced Expense Reporting Example The behavior of Advanced 
Expense Reporting is very similar to Expense Reporting. Follow the steps 
described in “Running the Expense Reporting Example” on page 330. Note the 
following differences in the behavior of the application: 

• The tag line for the ProcessCheck automatic activity now appears in the Work 
History field in the Monitor Expense Reports window, rather than being 
written to a separate log.

• The application data is now stored in a database. This means that when you 
exit the application with incomplete processes, you do not have to terminate 
them before starting the application again. (In the basic Expense Reporting 
example you had to make sure all processes terminated before exiting the 
application.) When restarting the application, activities for incomplete 
processes appear in the appropriate work lists and activity queues.

NOTE This example has been tested running on Oracle and Sybase, but not 
on the other databases. If you are using Sybase, edit the er_syb.sql 
script to point to a valid database. If you are using Informix, Ingress, 
or ODBC, you may need to edit the matching er_databasetype.sql 
script before running it.



Application Descriptions

Appendix A iIS Process Management Examples 339

➤ To run the AdvancedExpenseReporting application

1. Start iPlanet UDS Distributed, and set your workspace to ConductorExamples. 
Select AdvExpenseReportClient, and click the Run icon.

2. Follow the steps in the basic Expense Reporting example on page 331 and 
observe the new behavior introduced with this example.

As with the basic Expense Reporting example, experiment with other scenarios. 
Also, examine the iIS plans and projects for the application to see how it is 
implemented.

JExpense
Description JExpense illustrates how to use the iIS CORBA/IIOP process client 
API. The client application in this example is written in Java. JExpense uses the 
process logic defined in the basic Expense Reporting example—it does not rely on 
iPlanet UDS service objects or use the TOOL client code from the Expense 
Reporting example.

The JExpense client application simply starts a process instance, automatically logs 
in appropriate users, and takes the process instance to completion. It is not 
intended to be a complete client, but to illustrate the following:

• the CORBA/IIOP interface

• the appropriate Java syntax for referencing classes generated by the IDL to Java 
conversion

In this example, the Java client reads from an IOR file to locate objects. In the next 
example, JExpenseNS, the Java client uses a CORBA naming service. Run both 
examples to compare the two techniques. You do not need to restart the iIS engine 
between runs of the two examples, but you do need to restart the IIOP server.

Pex Files Same as Expense Reporting example.

NOTE You should be familiar with the basic Expense Reporting example 
before running JExpense.



Application Descriptions

340 iPlanet Integration Server • Process Development Guide • August 2001

Special Requirements An iIS engine called “ceengine” must be running before 
you run the example. Refer to “Configuring and Starting an Engine” on page 322 
for more information. In the iIS engine, all process instances and sessions from 
previous example runs must be terminated. Use the iIS Console to terminate any 
lingering process or sessions.

You must have JDK 1.2.2 installed on the client machine, with your CLASSPATH 
environment variable properly set.

The example contains both a client and server installation. You can install both the 
client and server sides on a single machine, or you can install them on separate 
machines as indicated in the instructions. If you are using a single machine, you 
may want to open separate command windows for the server side and client side 
of the example.

The basic Expense Reporting Example (described on page 328) must be installed on 
the server machine. If you previously installed the Expense Reporting Example, 
you do not need to reinstall it. If you also installed the Advanced Expense 
Reporting example, you need to register the UserValidation from the basic 
example, as described in Step 2 of the following procedure.

➤ To install the JExpense application

Server side
1. If you have not installed the basic Expense Reporting example, install it on the 

server machine, following the instructions on page 329.

2. If you installed the Advanced Expense Reporting example, you need to register 
the UserValidation from the basic example as follows:

a. If the iIS engine named ceengine is not already running on the server side 
for this example, start it.

b. From the Repository Workshop, double-click the plan ERUV to open the 
Validation Workshop.

NOTE JExpense uses only the Expense Reporting iIS plans installed by 
the Expense Reporting script er.csc. This script automatically 
registers these plans with the iIS engine named ceengine.



Application Descriptions

Appendix A iIS Process Management Examples 341

c. From the Validation Workshop, select File > Distribute.

d. In the Distribute Options window that opens, specify Register (you do not 
have to specify compile) and click OK.

e. Close the Validation Workshop.

Client side
3. On the machine you are using for the client side of the installation, create a 

working directory. Then copy the files jexpense.java and conductor.jar from 
the $FORTE_ROOT/install/examples/conductr/jer example directory to the 
working directory.

4. On the client machine, modify your CLASSPATH environment variable to 
include the path to the conductor.jar file you copied in Step 3.

5. In a command window on the client machine, navigate to the working 
directory and compile jexpense.java by issuing the following command:

javac jexpense.java

Ignore the compiler message about using a deprecated API.

Running the JExpense Example The following procedures show how to start an 
IIOP server and run the JExpense application from both client and server machines. 
Unlike the earlier examples, the steps that take a process to completion are 
automated. Messages printed to standard out (plus an additional message written 
to a log file) indicate completion of steps in the process. You should examine the 
file jexpense.java to further understand how the example works.

For information on process automation and workflow in the application, refer to 
“Expense Reporting” on page 328. 

➤ To start the IIOP server for the JExpense application

Server side
1. On the server machine, open a command window and issue the following 

command to start Conductor Script:

cscript



Application Descriptions

342 iPlanet Integration Server • Process Development Guide • August 2001

2. From the Cscript prompt, issue the following command to start the IIOP 
server:

cscript > iiopserver start

Starting the IIOP server creates the file conductr.ior, which contains an initial 
object reference, at the following location:

$FORTE_ROOT/etc/iiopior/conductr.ior

Every time the IIOP server is restarted, the conductr.ior file is re-created.

The conductr.ior file provides a node name, TCP/IP port, and other 
information required to find an object. The client side of the JExpense example 
uses this file to obtain access information to objects on the server side.

➤ To run the JExpense client application

Server side
1. If the iIS engine named ceengine is not already running on the server side for 

this example, start it.

Client side
2. If you are using a separate client machine, on the client machine, mount the 

drive on the server machine containing the conductr.ior file.

3. In a command window, navigate to the working directory on the client 
machine and start the client application by issuing the following command:

java jexpense [Drive:]%FORTE_ROOT%\etc\iiopior\conductr.ior

Drive indicates any drive letter needed to specify the server machine.

The JExpense client application does not require user input. It simply prints out 
messages describing its actions. The JExpense client displays the following 
messages as it takes a process to completion:

Starting Java Expense Report Client
Attempting to connect with ceengine.
Our engine’s name: ceengine

Signing on as employee Winnie...
Session Name = Employee
Building the attribute descriptor array...
Creating the process instance...
Closing employee session...

Signing on as manager Charlotte...



Application Descriptions

Appendix A iIS Process Management Examples 343

In this example, the automatic activity ProcessCheck does not print to standard 
out, but instead writes to a log file. This automatic activity is triggered only after 
both the accountant and the auditor have completed their work. The following 
procedure shows you how to use the iIS Console to view the engine partition log, 
which includes any entries for this automatic activity.

➤ To view the engine partition log

1. If it is not open, open the iIS Console.

2. Select your engine, and then select Engine > Status. 

3. In the Engine Status window that opens, under Engine Components, select the 
engine component and then click View Partition Log.

If you completed the example, the log contains the following line:

“Check processed for expense report 1001”

One process instance has now been created and driven to completion by the Java 
client application. You can run this application as many times as you like. Review 
the implementation in the jexpense.java file to understand how to write a Java 
client that uses the iIS CORBA/IIOP process client API.

Session Name = Manager
Getting the activity list...
Number of current activities = 1
Getting the attributes...
ExpenseReportID =1001
Priority =false
Status =1
Change status attribute value to 3 - Accepted.
Getting the attributes...
ExpenseReportID =1001
Priority =false
Status =3
Ending the activity...
Closing the manager session...

Opening session for accountant Nick...
Session Name = Accountant
Working on Expense Report #1001
Completing the accounting activity...
Closing the accountant session...

Opening session for auditor Ernie...
Session Name = Auditor
Working on Expense Report #1001
Completing the auditing activity...
Closing the auditor session...



Application Descriptions

344 iPlanet Integration Server • Process Development Guide • August 2001

JExpenseNS
Description Like the JExpense example, JExpenseNS is a Java client that uses the 
iIS CORBA/IIOP client API. In JExpenseNS, the Java client uses the CORBA 
naming service to obtain access information to server objects. (In JExpense, the Java 
client reads from an IOR file generated by the IIOP server.) You can run both 
examples to compare the two techniques. You do not need to restart the iIS engine 
between runs, but you do need to restart the IIOP server.

JExpenseNS uses the process logic defined in the basic Expense Reporting 
example—it does not rely on iPlanet UDS service objects or use the TOOL client 
code from the Expense Reporting example. The JExpenseNS client application 
simply starts a process instance, automatically logs in appropriate users, and takes 
the process instance to completion. It is not intended to be a complete client, but to 
illustrate how to use the CORBA naming service with the CORBA/IIOP client API.

Pex Files Same as Expense Reporting example.

Special Requirements An iIS engine called “ceengine” must be running before 
you run the example. Refer to “Configuring and Starting an Engine” on page 322 
for more information. In the iIS engine, all process instances and sessions from 
previous example runs must be terminated. Use the iIS Console to terminate any 
lingering process or sessions.

You must have JDK 1.2.2 installed on the client machine, with your CLASSPATH 
environment variable properly set.

The example contains both a client and server installation. You can install both the 
client and server sides on a single machine, or you can install them on separate 
machines as indicated in the instructions. If you are using a single machine, you 
may want to open separate command windows for the server side and client side 
of the example.

NOTE You should be familiar with the basic Expense Reporting example 
and the JExpense example before installing and running the 
JExpenseNS example.



Application Descriptions

Appendix A iIS Process Management Examples 345

The instructions assume that you have installed the basic Expense Reporting 
example (described on page 328) and the JExpense example (described on 
page 339).

The installation procedure for JExpenseNS is similar to the JExpense installation 
procedure.

➤ To install the JExpenseNS application

Server side
1. If you have not installed the basic Expense Reporting example, install it on the 

server machine, following the instructions on page 329.

Also, if you need to register the UserValidation from the basic example, follow 
the instructions from Step 2 of the JExpense installation procedure on page 340.

Client side
2. On the client machine, copy jexpensens.java and nsclient.java from 

$FORTE_ROOT/install/examples/conductr/jer example directory to the 
working directory you created for the JExpense example.

This directory should already contain the conductor.jar file used in the 
previous example.

3. Make sure your CLASSPATH environment variable includes the path to the 
conductor.jar file in the working directory.

4. In a command window on the client machine, navigate to the working 
directory and compile jexpensens.java:

javac jexpensens.java

5. In the same command window, compile nsclient.java:

javac nsclient.java

NOTE If you also installed the Advanced Expense Reporting example 
(page 334), you may need to register the UserValidation from the 
basic example. This is because the iIS engine can have only one 
UserValidation registration. Refer to Step 2 of the JExpense 
installation procedure on page 340 for information on how to 
register the UserValidation.



Application Descriptions

346 iPlanet Integration Server • Process Development Guide • August 2001

Running the JExpenseNS Example The following procedures show how to start 
a naming service and an IIOP server. It then shows how to run the JExpense 
application from both client and server machines. The behavior of this example is 
similar to the JExpense example, except that it uses a CORBA naming service to 
locate objects. (JExpense reads from an IOR file generated by the IIOP server.) To 
further understand how the example works, compare the jexpensens.java to the 
jexpense.java file, and also examine the nsclient.java file.

For information on process automation and workflow in the application, refer to 
“Expense Reporting” on page 328.

➤ To start a naming service and the IIOP server

Server side
1. If the IIOP server is running on the server machine, issue the following Cscript 

command to stop it:

cscript > iiopserver stop

Client side
2. On the client machine, run the Java tnameserv executable in the background. 

This file should be located in your JDK bin directory.

3. From the working directory on the client machine, run your nsclient 
application:

java nsclient

When you run nsclient, it creates a file called ns.ior in the current directory. 
This file has a node name, TCP/IP port, and other information required to find 
an object.

Server side
4. Copy the newly created ns.ior file to the following directory on the server 

machine:

$FORTE_ROOT/etc/iiopior

The iIS process uses this file to locate the CORBA naming service.



Application Descriptions

Appendix A iIS Process Management Examples 347

5. On the server machine, issue the following Cscript command to start the IIOP 
server:

cscript > iiopserver start

The IIOP server obtains information from the ns.ior file in 
$FORTE_ROOT/etc/iiopior.

Every time the IIOP server is restarted, it reads from the ns.ior file.

➤ To run the JExpenseNS application

1. If the iIS engine named ceengine is not already running on the server side for 
this example, start it.

2. From the working directory on the client machine, run the Java client 
application:

java jexpensens

The behavior of this example is similar to the JExpense example described on 
page 339. The only difference is that this example uses a CORBA naming service to 
locate objects.

JExpenseSO
Description Like the JExpense and JExpenseNS examples, JExpenseSO is a Java 
client that uses the iIS CORBA/IIOP client API. In JExpenseSO, the Java client uses 
the CORBA naming service to communicate with the iIS engine. JExpenseSO also 
uses an IOR file to communicate with the ExpenseReporting application’s service 
object. Additional techniques are required to generate this IOR file and the Java 
files to communicate with the service object. You do not need to restart the iIS 
engine between runs, but you do need to restart the IIOP server.

NOTE You should be familiar with the basic Expense Reporting example 
and the JExpense and JExpenseNS examples before installing and 
running the JExpenseSO example.



Application Descriptions

348 iPlanet Integration Server • Process Development Guide • August 2001

JExpenseSO uses the process logic defined in the basic Expense Reporting example. 
It also calls an iPlanet UDS service object to get the next expense report number. 
JExpenseSO does not use the TOOL client code from the Expense Reporting 
example. The JExpenseSO client application simply starts a process instance, 
automatically logs in appropriate users, and takes the process instance to 
completion. It is not intended to be a complete client, but to illustrate how to use 
the CORBA naming service with the CORBA/IIOP client API, in conjunction with 
accessing an iPlanet UDS service object.

Pex Files Same as Expense Reporting example.

Special Requirements An iIS engine called “ceengine” must be running before 
you run the example. Refer to “Configuring and Starting an Engine” on page 322 
for more information. In the iIS engine, all process instances and sessions from 
previous example runs must be terminated. Use the iIS Console to terminate any 
lingering process or sessions.

You must have JDK 1.2.2 installed on the client machine, with your CLASSPATH 
environment variable properly set.

The example contains both a client and server installation. You can install both the 
client and server sides on a single machine, or you can install them on separate 
machines as indicated in the instructions. If you are using a single machine, you 
may want to open separate command windows for the server side and client side 
of the example.

The instructions assume that you have installed the basic Expense Reporting 
example (described on page 328) and the JExpense example (described on 
page 339).

The base example, Expense Report, has CorbaFlat added as an extended property 
on the ExpenseReportBusinessClasses project. This property is not used by any 
other example, and has no adverse effect on the examples. Setting the CorbaFlat 
extended property adds data to the idl file so that, when idltojava is run on it, it 
produces an ExpenseReport_struct.java file. It is often convenient to use structs 
based on objects in your Java client code.

NOTE If you also installed the Advanced Expense Reporting example 
(page 334), you may need to register the UserValidation from the 
basic example. This is because the iIS engine can have only one 
UserValidation registration. Refer to Step 2 of the JExpense 
installation procedure on page 340 for information on how to 
register the UserValidation.



Application Descriptions

Appendix A iIS Process Management Examples 349

You do not have to make any changes to ExpenseReporting (CorbaFlat is already 
included in that example). To add the CorbaFlat property to your own application, 
in the Repository Workshop, select your project. Then select Plan > Extended 
Properties. Select New, then and add CorbaFlat with a value of 1.

The installation procedure for JExpenseSO is similar to the JExpenseNS installation 
procedure, but there are some additional steps.

➤ To install the JExpenseSO application

Server side
1. If you have not installed the basic Expense Reporting example, install it on the 

server machine, following the instructions on page 329. You must have a 
current version of the Expense Reporting example. If you have one from an 
earlier release it will not work.

Also, if you need to register the UserValidation from the basic example, follow 
the instructions from Step 2 of the JExpense installation procedure on page 340.

2. Define the ior file that will be used to connect with the iPlanet UDS service 
object.

a. Start Forte Distributed and select ExpenseReportClient. Open the Partition 
Workshop.

b. In the Partition Workshop, click the arrow next to ExpenseReportClient.

c. Double-click ExpenseReportMgrSO_cl0_Part1 to open it in the Service 
Object Properties window.

d. Select the Export tab page.

e. Select IIOP for External Type to open the IIOP Configuration window.

f. Enter ercon.ior in the Name field, and make sure it is set to create at 
runtime.

g. Since you did not provide a path in the Name field, the file is created in 
FORTE_ROOT/etc/iiopior.

h. Click OK in both windows.

This example uses ercon.ior to connect with the ExpenseReporting 
application’s service object. It uses ns.ior to connect with the iIS engine. The 
conductor.ior file is not used.



Application Descriptions

350 iPlanet Integration Server • Process Development Guide • August 2001

3. Now distribute, install, and run the ExpenseReporting application, as 
described below.

This step creates the ercon.ior file, and provides a running executable of the 
service object, which the Java client later needs.

a. Still in the Partition Workshop, select File > Make Distribution. 

b. Turn on Full Make and Install in Current Environment. Then click Make.

c. Exit from the Partition Workshop, and exit from the Forte Distributed IDE.

d. Start the ExpenseReporting application from the Forte Applications 
window (not from Forte Distributed).

e. Logon as Winnie and click the Create New Expense Report button.

f. When you see the value 1001 appear, you know the service object has been 
started. Click Cancel rather than starting this process, then exit from 
Winnie’s employee window. (If you do not exit from Winnie’s window, the 
Java client complains about it later.)

g. Check the FORTE_ROOT/etc/iiopior directory to confirm that a new 
ercon.ior file has been created.

Client side
4. On the client machine, copy jexpenseso.java from 

$FORTE_ROOT/install/examples/conductr/jer example directory to the 
working directory you created for the JExpense example.

This directory should already contain the conductor.jar and nsclient.java files 
used in the previous examples. If it does not have these files, copy them from 
$FORTE_ROOT/install/examples/conductr/jer to your work directory.

5. Make sure your CLASSPATH environment variable includes the path to the 
conductor.jar file in the working directory.

6. Copy the Expense Report idl file (at the location below) from the server 
machine to the working directory on your client machine.

The idl file that you need from the server machine is located at 
$FORTE_ROOT/appdist/centrale/expenser/cl0/generic/expens1/corba.idl



Application Descriptions

Appendix A iIS Process Management Examples 351

7. In a command window, issue the following command to convert the idl file to 
java files.

idltojava corba1.idl

The idl to java conversion produces a number of subdirectories.

8. Compile all the .java files in the ExpenseReportBusinessClasses and the 
ExpenseReportCacheServiceClasses with the following commands:

9. In a command window on the client machine, still in the working directory, 
compile jexpenseso.java:

javac jexpenseso.java

10. In the same command window, compile nsclient.java:

javac nsclient.java

Running the JExpenseSO Example The following procedures show how to start 
a naming service and an IIOP server. It then shows how to run the JExpenseSO 
application from both client and server machines. The behavior of this example is 
similar to the JExpenseNS example, except that it additionally connects with an 
iPlanet UDS service object using an IOR file. To further understand how the 
example works, compare the implementation in the jexpenseso.java and 
jexpensens.java files.

For information on process automation and workflow in the application, refer to 
“Expense Reporting” on page 328.

NOTE If you do not have the idl compiler, download idltojava.exe 
from http://www.javasoft.com/products/jdk/idl/index.html.

javac ExpenseReportBusinessClasses/*.java
javac ExpenseReportCacheServiceClasses/*.java



Application Descriptions

352 iPlanet Integration Server • Process Development Guide • August 2001

➤ To start a naming service and the IIOP server

Server side
1. If the IIOP server is running on the server machine, issue the following cscript 

command to stop it:

cscript > iiopserver stop

Client side
2. On the client machine, run the Java tnameserv executable in the background. 

This file should be located in your JDK bin directory.

3. From the working directory on the client machine, run your nsclient 
application:

java nsclient

When you run nsclient, it creates a file called ns.ior in the current directory. 
This file has a node name, TCP/IP port, and other information required to find 
an object.

Server side
4. Copy the newly created ns.ior file to the following directory on the server 

machine:

$FORTE_ROOT/etc/iiopior

The iIS process uses this file to locate the CORBA naming service.

5. On the server machine, issue the following Cscript command to start the IIOP 
server:

cscript > iiopserver start

The IIOP server obtains information from the ns.ior file in 
$FORTE_ROOT/etc/iiopior.

Every time the IIOP server is restarted, it reads from the ns.ior file.

➤ To run the JExpenseSO application

1. If the iIS engine named ceengine is not already running on the server side for 
this example, start it.

2. From the working directory on the client machine, run the Java client 
application:

java jexpenseso [Drive:]%FORTE_ROOT%\etc\iiopior\ercon.ior

Drive indicates any drive letter needed to specify the server machine.



Application Descriptions

Appendix A iIS Process Management Examples 353

The behavior of this example is similar to the JExpenseNS example described on 
page 344. The only difference is that this example is also connected to the iPlanet 
UDS service object. 

To prove the connection was made, the client calls the GetNewExpenseReport 
method on the ExpenseReportMgrSO. In the output, note that the report is 1002. 
Because you already created expense report 1001 earlier (when you ran the 
application to start the service object), you are now getting the next available 
expense report number. If you run jexpenseso again, you get expense report 1003.

JExpenseNB
Description JExpenseNB uses a Java client developed in NetBeans, and uses the 
communication techniques described in JExpenseSO. Like the JExpenseSO 
example, JExpenseNB is a Java client that uses the iIS CORBA/IIOP client API. In 
JExpenseNB, the Java client uses the CORBA naming service to communicate with 
the iIS engine. JExpenseNB also uses an IOR file to communicate with the 
ExpenseReporting application’s service object. Additional techniques are required 
to generate this IOR file and the Java files to communicate with the service object. 
You do not need to restart the iIS engine between runs, but you do need to restart 
the IIOP server.

JExpenseNB uses the process logic defined in the basic Expense Reporting 
example. It also calls an iPlanet UDS service object to get the next expense report 
number.

NOTE You should be familiar with the basic Expense Reporting example 
and the JExpense, JExpenseNS, and JExpenseSO examples before 
installing and running the JExpenseNB example.

NOTE If you have already installed and run JExpenseSO, you do not need 
to redo the idltojava conversion. You can reuse the 
ExpenseReportBusinessClasses and 
ExpenseReportCacheServiceClasses file that you created. The full 
installation instructions are provided here for completeness.



Application Descriptions

354 iPlanet Integration Server • Process Development Guide • August 2001

The GUI client in this example runs in a browser. The interaction is similar to the 
ExpenseReporting TOOL client. Some functionality is eliminated to limit the size of 
the application. But you can sign on as the familiar users, in each of the four roles, 
create processes and drive them to completion.

Pex Files Same as Expense Reporting example.

Special Requirements An iIS engine called “ceengine” must be running before 
you run the example. Refer to “Configuring and Starting an Engine” on page 322 
for more information. In the iIS engine, all process instances and sessions from 
previous example runs must be terminated. Use the iIS Console to terminate any 
lingering process or sessions.

You must have JDK 1.2.2 installed on the client machine, with your CLASSPATH 
environment variable properly set.

You must have NetBeans 3.0 installed on the client machine. This example was 
tested against Build 2000. If you do not have NetBeans, download it from 
NetBean’s Open Source website: http://www.netbeans.org. Click Download. 
Ignore alarming messages and download the Java Build. You only need the build 
file. You do not need the source, the additional binaries, or the other downloads. 
Follow their instructions to install the downloaded files on your client machine.

The example contains both a client and server installation. You can install both the 
client and server sides on a single machine, or you can install them on separate 
machines as indicated in the instructions. If you are using a single machine, you 
may want to open separate command windows for the server side and client side 
of the example.

The instructions assume that you have installed the basic Expense Reporting 
example (described on page 328) and the JExpense example (described on 
page 339).

NOTE If you also installed the Advanced Expense Reporting example 
(page 334), you may need to register the UserValidation from the 
basic example. This is because the iIS engine can have only one 
UserValidation registration. Refer to Step 2 of the JExpense 
installation procedure on page 340 for information on how to 
register the UserValidation.



Application Descriptions

Appendix A iIS Process Management Examples 355

The base example, Expense Report, has CorbaFlat added as an extended property 
on the ExpenseReportBusinessClasses project. This property is not used by any 
other example, and has no adverse effect on the examples. Setting the CorbaFlat 
extended property adds data to the idl file so that, when idltojava is run on it, it 
produces an ExpenseReport_struct.java file. It is often convenient to use structs 
based on objects in your Java client code.

You do not have to make any changes to ExpenseReporting (CorbaFlat is already 
included in that example). To add the CorbaFlat property to your own application, 
in the Repository Workshop, select your project. Then select Plan > Extended 
Properties. Select New, then and add CorbaFlat with a value of 1.

The installation procedure for JExpenseNB is similar to the JExpenseSO installation 
procedure, but there are some additional steps related to running the NetBeans 
GUI client. All steps are provided here for completeness.

➤ To install the JExpenseNB application

Server side
1. If you have not installed the basic Expense Reporting example, install it on the 

server machine, following the instructions on page 329. You must have a 
current version of the Expense Reporting example. If you have one from an 
earlier release it will not work.

Also, if you need to register the UserValidation from the basic example, follow 
the instructions from Step 2 of the JExpense installation procedure on page 340.

2. Define the ior file that will be used to connect with the iPlanet UDS service 
object.

a. Start Forte Distributed and select ExpenseReportClient. Open the Partition 
Workshop.

b. In the Partition Workshop, click the arrow next to ExpenseReportClient.

c. Double-click ExpenseReportMgrSO_cl0_Part1 to open it in the Service 
Object Properties window.

d. Select the Export tab page.

e. Select IIOP for External Type to open the IIOP Configuration window.

f. Enter ercon.ior in the Name field, and make sure it is set to create at 
runtime.



Application Descriptions

356 iPlanet Integration Server • Process Development Guide • August 2001

g. Since you did not provide a path in the Name field, the file is created in 
FORTE_ROOT/etc/iiopior.

h. Click OK in both windows.

This example uses ercon.ior to connect with the ExpenseReporting 
application’s service object. It uses ns.ior to connect with the iIS engine. The 
conductor.ior file is not used.

3. Now distribute, install, and run the ExpenseReporting application, as 
described below.

This step creates the ercon.ior file, and provides a running executable of the 
service object, which the Java client later needs.

a. Still in the Partition Workshop, select File > Make Distribution. 

b. Turn on Full Make and Install in Current Environment. Then click Make.

c. Exit from the Partition Workshop, and exit from the Forte Distributed IDE.

d. Start the ExpenseReporting application from the Forte Applications 
window (not from Forte Distributed).

e. Logon as Winnie and click the Create New Expense Report button.

f. When you see the value 1001 appear, you know the service object has been 
started. Click Cancel rather than starting this process, then exit from 
Winnie’s employee window. (If you do not exit from Winnie’s window, the 
Java client complains about it later.)

g. Check the FORTE_ROOT/etc/iiopior directory to confirm that a new 
ercon.ior file has been created.

Client side
4. On the client machine, copy jexpenseso.java from 

$FORTE_ROOT/install/examples/conductr/jer example directory to the 
working directory you created for the JExpense example.

This directory should already contain the conductor.jar and nsclient.java files 
used in the previous examples. If it does not have these files, copy them from 
$FORTE_ROOT/install/examples/conductr/jer to your work directory.

5. Make sure your CLASSPATH environment variable includes the path to the 
conductor.jar file in the working directory.



Application Descriptions

Appendix A iIS Process Management Examples 357

6. Copy the Expense Report idl file (at the location below) from the server 
machine to the working directory on your client machine.

The idl file that you need from the server machine is located at 
$FORTE_ROOT/appdist/centrale/expenser/cl0/generic/expens1/corba.idl

7. In a command window, issue the following command to convert the idl file to 
java files.

idltojava corba1.idl

The idl to java conversion produces a number of subdirectories.

8. Compile all the .java files in the ExpenseReportBusinessClasses and the 
ExpenseReportCacheServiceClasses with the following commands:

9. In a command window on the client machine, compile nsclient.java:

javac nsclient.java

10. Copy the following files and directories to your NetBeans Development 
directory:

11. Unzip the nber.zip file, placing the JExpenseNB directory directly under your 
NetBeans Development directory:

JExpenseNB/*.*

12. Run NetBeans. In the NetBeans explorer window, you should see conductor.jar 
and the directories you just copied under Development.

NOTE If you do not have the idl compiler, download idltojava.exe 
from http://www.javasoft.com/products/jdk/idl/index.html.

javac ExpenseReportBusinessClasses/*.java
javac ExpenseReportCacheServiceClasses/*.java

conductor.jar
ExpenseReportBusinessClasses/*.*
ExpenseReportCacheServiceClasses/*.*



Application Descriptions

358 iPlanet Integration Server • Process Development Guide • August 2001

13. In the NetBeans Explorer window, expand JExpenseNB. Expand the 
jexpenseso class under JExpenseNB. Double-click the method 
initializeConnections, to open it in the NetBeans editor. In the editor window, 
modify the String variable ourargs to point to the proper drive and path for the 
ior file on your server machine.

14. In the NetBeans explorer window, select JExpenseNB and click Build > Build 
All. (You can ignore the warning about a deprecated API.)

Running the JExpenseNB Example The following procedures show how to start 
a naming service and an IIOP server. It then shows how to run the JExpenseNB 
application from both client and server machines. The behavior of this example is 
similar to the JExpenseSO example, except that it has a GUI client, developed in 
NetBeans. To further understand how the example works, examine the Java and 
JSP files in NetBeans. The controller servlet’s processRequest method is where the 
flow of client activity is controlled. The class jexpenseso is where most of the calls 
to the service objects and the engine are made.

For information on process automation and workflow in the application, refer to 
“Expense Reporting” on page 328.

➤ To start a naming service and the IIOP server

Server side
1. If the IIOP server is running on the server machine, issue the following Cscript 

command to stop it:

cscript > iiopserver stop

Client side
2. On the client machine, run the Java tnameserv executable in the background. 

This file should be located in your JDK bin directory.

3. From the working directory on the client machine, run your nsclient 
application:

java nsclient

When you run nsclient, it creates a file called ns.ior in the current directory. 
This file has a node name, TCP/IP port, and other information required to find 
an object.



Application Descriptions

Appendix A iIS Process Management Examples 359

Server side
4. Copy the newly created ns.ior file to the following directory on the server 

machine:

$FORTE_ROOT/etc/iiopior

The iIS process uses this file to locate the CORBA naming service.

5. On the server machine, issue the following Cscript command to start the IIOP 
server:

cscript > iiopserver start

The IIOP server obtains information from the ns.ior file in 
$FORTE_ROOT/etc/iiopior.

Every time the IIOP server is restarted, it reads from the ns.ior file.

➤ To run the JExpenseNB application

1. If the iIS engine named ceengine is not already running on the server side for 
this example, start it.

2. In the NetBeans explorer window, select logon.jsp under JExpenseNB. Right 
click and select Execute.

3. A browser window opens, providing familiar logon options. Refer to 
“Running the Expense Reporting Example” on page 330 for appropriate 
user/password/role combinations. You need to execute logon.jsp each time 
you want to logon as a different user.

The functionality provided is a subset of the ExpenseReporting TOOL client 
example, so it should be familiar. You can track sessions, processes, and 
activities in the engine. You can mix using TOOL and Java applications for 
various roles.

C++ ExpenseReporting
Description C++ ExpenseReporting illustrates how to use the iIS C++ client API. 
The client application in this example is written in C++. C++ ExpenseReporting 
makes use of the process logic defined in the Expense Reporting example, but does 
not rely on the iPlanet UDS service objects nor does it use the TOOL client code 
from the Expense Reporting example.



Application Descriptions

360 iPlanet Integration Server • Process Development Guide • August 2001

The C++ ExpenseReporting client application lets you select the engine, then log in 
any of the four roles defined for the Expense Reporting example. You can enter 
expense reports as an employee, review and approve them as a manager, and 
perform auditing and accounting tasks on them when signed on as an auditor or 
accountant. A simple command line interface guides you through the process.

C++ ExpenseReporting is not intended to be a complete client, but to illustrate the 
following:

• the iIS C++ client interface

• the appropriate syntax for referencing classes in the C++ API

For examples of more realistic clients, refer to the Expense Reporting and 
Advanced Expense Reporting examples.

Pex Files Same as Expense Reporting example.

Special Requirements An iIS engine called “ceengine” must be running before 
you run the example. Refer to “Configuring and Starting an Engine” on page 322 
for more information. In the iIS engine, all process instances and sessions from 
previous example runs must be terminated. Use the iIS Console to terminate any 
lingering process or sessions.

You must have a C++ compiler installed and properly included in your path.

The instructions assume that you have installed the basic Expense Reporting 
example, described on page 328.

➤ To install the C++ ExpenseReporting application

1. If you have not installed the basic Expense Reporting example, install it 
following the instructions on page 329.

NOTE If you also installed the Advanced Expense Reporting example 
(page 334), you may need to register the UserValidation from the 
basic example. This is because the iIS engine can have only one 
UserValidation registration. Refer to Step 2 of the JExpense 
installation procedure on page 340 for information on how to 
register the UserValidation.

NOTE C++ ExpenseReporting uses only the Expense Reporting iIS 
plans installed by the Expense Reporting script er.csc. This 
script automatically registers these plans with the iIS engine 
named ceengine.



Application Descriptions

Appendix A iIS Process Management Examples 361

2. Create a working directory for compiling and linking the C++ client. 

3. Copy the following files from 
$FORTE_ROOT/install/examples/conductr/cer to your working directory:

4. Examine ermain.mak (if you are running on NT), ermain.h, and ermain.cpp to 
make sure they properly reflect your environment.

ermain.mak assumes your FORTE_ROOT directory is c:\forte. Make a global 
edit if your FORTE_ROOT is set to something else.

5. Navigate to your working directory and build the example as follows:

On Windows NT:

nmake -f ermain.mak

ermain.mak creates a debug directory, which contains the ERClient.exe file.

On UNIX:

bldclnt.csh ermain.cpp erclient

6. If you are working on NT, copy the following files into the debug directory 
created in Step 5:

Alternatively, you could include the above directories in your path. However, 
it is usually easier to copy the files to your working directory.

ermain.cpp 
ermain.h 
ermain.mak (make file for NT)
bldclnt.csh (build script for Unix platforms)

$FORTE_ROOT/userapp/ofcustom/cl1/libofcus.dll
$FORTE_ROOT/userapp/wfclien1/cl1/wfclie0.dll
$FORTE_ROOT/userapp/wfclient/cl1/libwfcli.dll



Application Descriptions

362 iPlanet Integration Server • Process Development Guide • August 2001

7. If you are working on a UNIX platform, copy the equivalent libraries to those 
listed in Step 6 to your working directory. The libraries have the following 
extensions:

Running the C++ ExpenseReporting Example The following procedure shows 
how to run the C++ ExpenseReporting application. The behavior of the C++ client 
is similar to the behavior of the TOOL client created in the basic Expense Reporting 
example. It allows you to interactively take a process, (which was defined in the 
Process Definition Workshop) to completion. However, the C++ example does not 
provide a graphical user interface. Instead, it provides a command line interface for 
taking the process to completion.

For information on process automation and workflow in the application, refer to 
“Expense Reporting” on page 328. For information on how the C++ client API is 
implemented in the example, refer to the source files for the example.

➤ To run the C++ ExpenseReporting application

1. If the iIS engine named ceengine is not already running, start it.

If you have been running other iIS example applications, make sure there are 
no lingering process instances or sessions. If there are any, terminate them in 
iIS Console before running this example. ERClient is expecting a clean slate in 
the engine. For the same reason, do not attempt to run the Expense Report 
client simultaneously with this example.

Also, if you need to register the UserValidation from the basic example, follow 
the instructions from Step 2 of the JExpense installation procedure on page 340.

Unix Platform Library Extension

HP9000 .sl

RS6000 .a

AlphaOSF .so

Solsparc .so



Application Descriptions

Appendix A iIS Process Management Examples 363

2. In your working directory (on Unix) or the Debug subdirectory (on NT) start 
the executable:

erclient

The client prompts you for input and also prints messages describing its 
actions. It displays the following messages: 

3. Select the engine that has the Expense Reporting example definitions 
registered.

4. Follow the guidelines below to take a process in the example to completion.

The client prompts you to log in one of the four roles. If you are not already 
familiar with how to run the Expense Reporting example, refer to the 
instructions in “Running the Expense Reporting Example” on page 330. Follow 
the same sequence recommended for the Expense Reporting example: 

❍ Log in as an employee and enter an expense report

❍ Log in as a manager and approve the expense

❍ Log in as an accountant and as an auditor to process the expense

As you complete the process, the client application prints messages describing 
its actions. However, as with the basic Expense Reporting example, the 
automatic activity ProcessCheck writes to a log file when it is completed. This 
automatic activity is triggered only after both the accountant and the auditor 
have completed their work. To view the results in the log file, refer to the 
procedure on page 343.

After taking one process instance to completion, feel free to experiment with other 
scenarios. You can monitor the processes, sessions, and activities you create with 
this client in the iIS Console.

Starting the C++ client for the Expense Reporting process.
...
Running Conductor engines:
1 ceengine

Select engine #(1...1)(0 to quit):



Application Descriptions

364 iPlanet Integration Server • Process Development Guide • August 2001

ActiveX Expense Reporting
Description ActiveX Expense Reporting illustrates how to use the iIS ActiveX 
client API. The client application in this example is written in Visual Basic. ActiveX 
Expense Reporting uses the process logic defined in the Expense Reporting 
example—it does not rely on iPlanet UDS service objects or use the TOOL client 
code from the Expense Reporting example. The Visual Basic client application 
provides a GUI. The user can connect to an engine, log in as appropriate users, and 
take the process instances to completion.

ActiveX Expense Reporting is not intended to be a complete client, but to illustrate 
the following:

• the ActiveX client interface

• the appropriate Visual Basic syntax for referencing the ActiveX API

For examples of more realistic iIS clients, refer to the Expense Reporting and 
Advanced Expense Reporting examples.

Pex Files Same as Expense Reporting example.

Special Requirements An iIS engine called “ceengine” must be running. For 
more information, refer to “Configuring and Starting an Engine” on page 322. 

You must have Microsoft Visual Basic 5.0 installed.

The instructions assume that you have installed the basic Expense Reporting 
example, described on page 328.

NOTE If you also installed the Advanced Expense Reporting example 
(page 334), you may need to register the UserValidation from the 
basic example. This is because the iIS engine can have only one 
UserValidation registration. Refer to Step 2 of the JExpense 
installation procedure on page 340 for information on how to 
register the UserValidation.



Application Descriptions

Appendix A iIS Process Management Examples 365

➤ To install the ActiveX Expense Reporting application

1. If you have not installed the basic Expense Reporting example, install it 
following the instructions on page 329.

2. In Windows Explorer, navigate to the following example directory, which 
contains the Visual Basic files for the ActiveX Expense Reporting example:

%FORTE_ROOT%\install\examples\conductr\vber

3. Double-click the file er.vbp, which invokes the Microsoft Visual Basic 
development environment with er.vbp as its current project.

Alternately, you could start Visual Basic from the Start Programs menu, choose 
File > Open Project, and then navigate to er.vbp in the example directory.

4. At this point, you may want to examine the forms and modules that comprise 
this example.

Running the ActiveX Expense Reporting Example The following procedure 
shows how to run the ActiveX Expense Reporting application in the VisualBasic 
interpreter. The behavior of the ActiveX client is similar to the behavior of the 
TOOL client created in the basic Expense Reporting example. It allows you to 
interactively take a process, (which was defined in the Process Definition 
Workshop) to completion. However, the ActiveX example provides a graphical 
user interface built with VisualBasic.

For information on process automation and workflow in the application, refer to 
“Expense Reporting” on page 328. For information on how the ActiveX client API 
is implemented in the example, refer to the source files for the example.

NOTE ActiveX Expense Reporting uses only the Expense Reporting iIS 
plans installed by the Expense Reporting script er.csc. This 
script automatically registers these plans with the iIS engine 
named ceengine.



Application Descriptions

366 iPlanet Integration Server • Process Development Guide • August 2001

➤ To run the ActiveX Expense Reporting application

1. If the iIS engine named ceengine is not already running, start it.

If you have been running other iIS example applications, make sure there are 
no lingering process instances or sessions. If there are any, terminate them in 
the iIS Console before running this example. The Visual Basic client Expense 
Report expects a clean slate in the engine. For the same reason, do not attempt 
to run the Expense Report client simultaneously with this example.

Also, if you need to register the UserValidation from the basic 
ExpenseReporting example, follow the instructions from Step 2 of the JExpense 
installation procedure on page 340.

2. In the Microsoft Visual Basic development environment, click the run icon to 
start the example. 

The Get Engine window opens. If you have followed the normal setup 
procedures for the Expense Reporting example, the iIS engine named ceengine 
appears in the Engine List. 

3. In the Get Engine window, select the engine ceengine and click the Open 
Engine button.

The Expense Reporting logon window opens.

4. Follow the guidelines below to take a process in the example to completion.

The client prompts you to log in one of the four roles. If you are not already 
familiar with how to run the Expense Reporting example, refer to the 
instructions in “Running the Expense Reporting Example” on page 330. Follow 
the same sequence recommended for the Expense Reporting example: 

❍ Log in as an employee and enter an expense report

❍ Log in as a manager and approve the expense

❍ Log in as an accountant and as an auditor to process the expense

As you complete the process, the client application prints messages describing 
its actions. Fewer details are provided for each expense, since this client 
communicates with the engine only, and not with the iPlanet UDS service 
objects.



Application Descriptions

Appendix A iIS Process Management Examples 367

As with the basic Expense Reporting example, the automatic activity 
ProcessCheck writes to a log file when it is completed. This automatic activity 
is triggered only after both the accountant and the auditor have completed 
their work. To view the results in the log file, refer to the procedure on 
page 343.

After taking one process instance to completion, feel free to experiment with other 
scenarios. You can monitor the processes, sessions, and activities you create with 
this client in the iIS Console.

OrganizationDatabase
Description OrganizationDatabase provides a GUI for maintaining a user 
organization database, which can be any relational database supported by iPlanet 
UDS. This example creates tables for a simplified corporate organization. An iIS 
process client application typically references this database using the ValidateUser 
method developed in the Validation Workshop. 

The OrganizationDatabase application is intended as a starting point in the 
creation of an organization database that you can use with iIS client applications. 
Typically, you adapt it to your business organization. Alternatively, if you are an 
Express customer, you can use Express to build an application to create a database 
schema and populate tables.

In the OrganizationDatabase application, the organization consists of a set of 
employees and departments arranged in a typical corporation hierarchy. An 
employee is a person who belongs to a department. An employee can also be a 
manager of other employees. Each employee has a set of attributes such as name, 

NOTE There is one significant difference between this Visual Basic 
client and the TOOL client. Due to the lack of event support in 
the ActiveX API, the display of the activity list is handled 
differently from how it is handled in the TOOL client. Two 
windows display the activity list: the Employee Expense Report 
Information window and the Expense Report Review window. 
In the Visual Basic client, you must click the Update List button to 
see the current activity list. Always click Update List before 
selecting an activity and performing work on it.



Application Descriptions

368 iPlanet Integration Server • Process Development Guide • August 2001

badge number, database user name and password. The employees also have a set 
of roles assigned to them. A role is a text value that describes the employee’s job. 
For example, there may be roles for a Manager, Clerk, or Programmer. An 
employee can have multiple roles.

Departments are divisions within the organization. They are arranged into a 
hierarchical structure where a department can be the parent of a set of 
departments. Employees who are members of a department are also members of all 
the departments that are direct or indirect parents of the department. Each 
department has a manager, who is the head of the department.

When you run OrganizationDatabase, it creates the following tables in your 
database (described here in Oracle’s SQL):

Employee Table

Department Table

Name Type

NAME VARCHAR2(32)

BADGENO NUMBER(38)

MANAGER NUMBER(38)

DEPARTMENT NUMBER(38)

USERNAME VARCHAR2(32)

PASSWORD VARCHAR2(32)

Name Type

CODE NUMBER(38)

NAME VARCHAR2(32)

HEAD NUMBER(38)

PARENT NUMBER(38)

DESCRIPTION VARCHAR2(100)



Application Descriptions

Appendix A iIS Process Management Examples 369

Roles Table

EmployeeRoles Table

The EmployeeRoles table contains the many to many relationship between 
employees and roles. EMPLOYEE is an employee identifier, and ROLEID is a role 
identifier.

Control Table

The Control table provides persistent storage for the allocation of the next available 
role and department identifiers. Because the number stored is always the current 
maximum, it is incremented and then allocated.

Pex Files orgdb/orgdbacc.pex.

Special Requirements Database connection.

Name Type

ID NUMBER(38)

NAME VARCHAR2(32)

DESCRIPTION VARCHAR2(100)

Name Type

EMPLOYEE NUMBER(38)

ROLEID NUMBER(38)

Name Type

ROLEID NUMBER(38)

DEPARTMENTI
D

NUMBER(38)



Application Descriptions

370 iPlanet Integration Server • Process Development Guide • August 2001

➤ To run the OrganizationDatabase application

1. In the Repository Workshop, import the following file into your repository:

%FORTE_ROOT%\install\examples\conductr\orgdb\orgdbacc.pex

2. Select the newly imported OrganizationDatabase plan, and click the Run icon 
to run the application.

3. The first window prompts you for database information. Fill in the fields with 
valid information, and click Logon.

4. Insert, update, and delete data, and import and export your records as 
described below in the following section, “OrganizationDatabase Application 
Details.”

OrganizationDatabase Application Details
The OrganizationDatabase application consists of a main window containing a 
menu bar and the following three tab pages:

• Employees

• Departments

• Roles

Each tab page contains a list of entries of the appropriate type. For example, the 
Employees tab page contains employee entries. Double-clicking the first column in 
any of the lists opens a dialog containing the details of the record. You can edit any 
field in the details dialog to change the record. Click OK to write your changes to 
the database.

The following sections provide detailed information about the commands on the 
menu bar and the individual tab pages.

Menu Bar The menu bar on the main window contains the following commands:

File >
Print
Print setup
Exit

Database >
Empty 
Import
Export



Application Descriptions

Appendix A iIS Process Management Examples 371

The File > Print and File > Print setup commands allow standard printing of the 
contents of the window. The File > Exit command exits the program. The Database 
> Empty command allows you to delete all the records in the database tables. As 
this is a destructive operation, a confirmation dialog allows you to change your 
mind.

The Database > Export and Database > Import commands allow you to save the 
database to a text file and to reload it. The Import command also allows you to 
import a foreign database, provided it is in the appropriate text format. 

The text file format consists of a series of lines. Each line represents one entity in the 
database (employee, department, and role). The line starts with a string followed 
by a colon. The string specifies the entity type, and can be either EMPLOYEE, 
DEPARTMENT or ROLE.

Depending on the type string, the rest of the line contains the attributes for that 
entity. For an EMPLOYEE record, the fields are:

• Employee name (enclosed in double quotes if it contains spaces)

• Badge number (integer)

• Badge number of manager (integer)

• Department number (integer)

• A set of integers separated by commas representing the identifiers for the roles 
assigned to the employee

For a DEPARTMENT record, the fields are as follows. Each department has a 
unique code.

• Department name (enclosed in double quotes if it contains spaces)

• Department description (enclosed in double quotes if it contains spaces)

• Badge number of department head (integer)

• Number for parent department (integer)

• Number for this department (integer)

For roles, the fields are as follows. Each role has a unique, integral ID.

• Role name (enclosed in double quotes if it contains spaces)

• Role description (enclosed in double quotes if it contains spaces)

• Role identifier (integer)



Application Descriptions

372 iPlanet Integration Server • Process Development Guide • August 2001

Each line is terminated by a newline character. The set of roles must come before 
the employees in the file, as the employee records refer to them by their IDs. The 
departments and employees can appear in any order.

When such a file is imported, the IDs and codes are reset to the next in sequence in 
the current database. This is necessary because some codes may already be used, 
and there would be a conflict if the same codes were stored.

The following example is an example of an exported text file, which represents the 
data used by the Advanced Expense Reporting application:

Employees Tab Page The Employees tab page shows a list of all the employees 
stored in the database. To create a new employee, invoke the popup menu on the 
list and select New. Fill in the details of the employee and click OK. The new 
employee details are validated, the new record is written to the database, and then 
it is added to the list of existing employees.

All employees must have unique names and badge numbers. The department and 
manager may be selected from drop lists. If there are no departments available, 
then you must create them using the Departments tab. The first employee added to 
the database does not have a manager available. The manager can be added later if 
necessary.

The list of roles in the New Employee dialog allows the roles allocated to the 
employee to be assigned. The roles available are shown in a drop list. If there are no 
roles available, you need to add some of them using the Roles tab page.

#
# Organization database exported on 29-Jul-1997 12:35:23
#
ROLE: "Manager" "Manages employees" 2
ROLE: "Accountant" "Performs accounting tasks" 3
ROLE: "Auditor" "Performs auditing tasks." 4
ROLE: "Employee" "Works in a full time permanent position.” 1
DEPARTMENT: "General" "This company doesn't have departments" 0 0 1
EMPLOYEE: "Charlotte" "Charlotte" "Charlotte" 3 1 1 1,2
EMPLOYEE: "Wilbur" "Wilbur" "Wilbur" 4 2 1 1
EMPLOYEE: "Winnie" "Winnie" "Winnie" 5 3 1 1
EMPLOYEE: "Stuart" "Stuart" "Stuart" 6 3 1 1
EMPLOYEE: "Ernie" "Ernie" "Ernie" 7 3 1 1,4
EMPLOYEE: "Nick" "Nick" "Nick" 8 3 1 1,3
EMPLOYEE: "Celeste" "Celeste" "Celeste" 9 3 1 1,3
EMPLOYEE: "Alice" "Alice" "Alice" 1 1 1 1,2
EMPLOYEE: "George" "George" "George" 2 1 1 1,2



Application Descriptions

Appendix A iIS Process Management Examples 373

The popup menu in the employees list contains menu entries named for each 
employee. Each employee menu contains a submenu with two options: Delete and 
Open. Selecting Open is equivalent to double-clicking on the first column, 
providing another way to edit the employee details. Choosing Delete allows the 
employee to be deleted from the database. Deleting an employee may affect other 
employees (for example, the employee may be a manager of a set of subordinates). 
The Delete command presents a dialog allowing you to reassign the subordinates 
to another manager or delete them.

Departments Tab Page The Departments tab page presents a list of the 
departments stored in the database. The same menus available for the 
manipulation employees are available for the employees. Double-clicking an 
existing department allows the department details to be edited. 

To create a new department, invoke the popup menu and choose New. To delete a 
department, invoke the popup menu and choose Delete. Deleting a department 
affects any child departments and any employees who are members of the 
department. You can delete the child departments or reassign them to another 
department. Similarly, you can delete any affected employees or reassign them to 
another department.

Roles Tab Page The Roles tab page shows the available roles. Each role has a 
name and description. Roles are assigned to employees. The manipulation of roles 
is similar to the other tabs. Invoke the popup menu to create new roles and to 
delete existing roles. Deleting a role requires removing it from the employees who 
have the role.



Application Descriptions

374 iPlanet Integration Server • Process Development Guide • August 2001



375

Index

A
abort router handling 179
AbortActivity method 275
ABORTED activity state 165
access rules, See assignment rules
ACTIVE activity state 165
ActiveX Expense Reporting example

description 364
using 365

activities
See also offered activities; queued activities; 

subprocess activities
aborting within methods 275
about 164–174
application dictionary items and 51, 200
assignment rules and 47, 118
automatic 170, 221
Comments property 200
defined 43, 161
first 172, 173
junction 54, 171
last 173
linking 200
Name property 198
timer links and 163
types 161

activity description
defined 146
specifying 153

activity link properties
offered activities 199
subprocess activities 218

activity links
defined 163
Evaluate method, assignment rules and 167, 200
Evaluate method, assignment rules example 134
GetOtherInfo method, UserProfile class, and 109
information from other activities 167
linked users 167
SetOtherInfo method, UserProfile class, and 113
setting 200
subprocess activities 218
ValidateUser method, Validation class, and 249

activity methods
diagram 168
Evaluate 130
OnAbort 210
OnActive 206
OnComplete 207
overview 165
Ready 205
Trigger 202

activity states
ABORTED 165
ACTIVE 165
COMPLETED 165
defined 164
diagram 168
PENDING 164
READY 165
summary 43

AD, application dictionary project extension 91
Advanced Expense Reporting example

described 334
using 339



Section A

376 iPlanet Integration Server • Process Development Guide • August 2001

application and process logic concepts 41
application code

defined 146
specifying 153

application developer, project team 38
application dictionary

about 145
as design element 51
modifying 58
saving 156
using 156

application dictionary items
activities and 51
activity description 146
application code 146
associating with activities 200
attribute accessor 146
creating 149
defined 51
editing 149
offered activities 200
queued activities 213
service information 146

Application Dictionary workshop
opening 147

application integrator, project team 38
application logic 41
application system designer, project team 39
application, See iIS application
AR, assignment rule dictionary project extension 91
architecture

iIS application 29
process controller 31
traditional monolithic 29

arithmetic operators, TOOL 302
arrays, TOOL 309
assignment rule dictionary

about 115
compiling 136
defined 48
modifying and upgrading 57, 137
registration, order of 63
saving 135

Assignment Rule property
offered activities 201
queued activities 213

assignment rule role list, accessing 132
Assignment Rule workshop

Compile command 136
Distribute command 136, 156
Method Definition dialog 127
opening 121

assignment rules
about 115
activities and 118
Assignment Rule property 201, 213
associating with activities 201
Comments property 125
complexity, adding 117
creating 123
cut/copy/paste 78
as design element 47
editing 123
Evaluate method 127
Instances property 125
Name property 125
object attributes 127
offered activities and 120
permissions 47
properties 124
queued activities and 120
registration overview 62
roles, specifying 125
service objects, accessing 127
specifying, for process creation 194
user profile supplier 124
user profiles and 47, 93

Asynchronous/Synchronous property, subprocess 
activities 217

attribute access list, specifying 265
attribute accessors

application dictionary item, specifying 150
definition 146



Section B

Index 377

B
boolean

attribute data type, simple 271
constant, TOOL 295
data type, TOOL 295
expression, TOOL 295

BooleanData attribute data type 271
Branch command, Repository workshop 89
business object model 41
business process model 41

See also process definitions

C
C++ ExpenseReporting example

description 359
using 362

case statement, TOOL 311
casting

numeric types, TOOL 304
to UserProfile class type 133, 138, 253

central development repository 37
char data type, TOOL 294
Checkout command, Repository workshop 89
Cleanup method, Validation class 254
client application, See iIS application
Close command, Repository workshop 76
code, generating 91
comment statement, TOOL 290
Comments property

activities 200
assignment rules 125
process definitions 193
routers 233
timers 224, 229

CompareRoles method, UserProfile class 108
comparison expressions, TOOL 296
comparison operators, TOOL 296
Compile All Plans command, Repository 

workshop 91

Compile command
Assignment Rule workshop 136
Process Definition workshop 236
Validation workshop 250

compiling 91
COMPLETED activity state 165
Conductor engine, See process engine
constant statement, TOOL 313
constants, TOOL

boolean 295
naming 308

D
Data Type property, process attribute 129, 152, 196
data types, process attribute 270, 271
data types, TOOL

boolean 295
float 300
integers 299
numeric 299
numeric constants 301
numeric expressions 304
string 293

databases 36
DateTimeData attribute data type 271
deadline timers

DeadlineInit method 177
described 177
properties 228
using 228

DeadlineInit method, deadline timers
described 229
example 177

DecimalData attribute data type 271
design elements

about 42
dependencies 54
iIS application 58
summary of 58



Section E

378 iPlanet Integration Server • Process Development Guide • August 2001

design workshops
cut/copy/paste 78
dialog area 78
elements, illustrated 77
list view 78
online help 79
user interface overview 77
work, undoing 79

Distribute command
Assignment Rule workshop 136, 156
Process Definition workshop 236
Validation workshop 251

double simple attribute data types 271
DoubleData attribute data type 271

E
elapsed timers

ElapsedOff method 177, 225
ElapsedOn method 177, 224
OnExpiration method 226
properties 223
using 222

ElapsedOff method
defining 225
described 177
syntax 225

ElapsedOn method
defining 224
described 177
syntax 224

else statement, TOOL 316
engine database 36
engine, See process engine
enterprise process management

defined 28
iIS approach 28

Evaluate method
about 130–135
activity links and 167, 200
assignment rules and 127
defining 127

example, linked user 134
example, otherInfo 134
example, process attribute checking 133
process attributes, specifying 128
syntax 130
user profile methods, useful 130

evaluation order, numeric expressions, TOOL 303
example applications

ActiveX Expense Reporting 364
Advanced Expense Reporting 334
C++ ExpenseReporting 359
customized installation 324
Expense Reporting 328
installing 322
JExpense 339
JExpenseNB 353
JExpenseNS 344
JExpenseSO 347
OrganizationDatabase 367
overview 325
script file, installation 324
starting engine for 322

Exit command, Repository workshop 76
Expense Reporting example

description 328
using 331

expiration router 232
Export command, Repository workshop 90
expressions

boolean, TOOL 295
comparison, TOOL 296
logical, TOOL 297
numeric, TOOL 302

extended user profiles 94, 133

F
FindObject method, WFObjectWrapper class 287
float constant, TOOL 302
float data type, TOOL 300
for statement, TOOL 313
Force Compile command, Repository workshop 91



Section G

Index 379

Forte command
development repository, selecting 74
workspace, selecting 75

G
GetManager method 273
GetOtherInfo method, UserProfile class 109
GetPreviousState method 274
GetRoles method

assignment rules 132
UserProfile class 110

Getting attribute values 269
GetUserName method, UserProfile class 110

H
hexadecimal constant, TOOL 301
Hide Name property, router 233

I
icons, launching Process Development 

workshops 76
if statement, TOOL

boolean expressions 316
statement blocks 316

iIS application
architecture 29
coupling to the process engine 28
design elements 42, 58
development 34–37
process logic, concepts 42

iIS application architecture 29
iIS plans

branching/checking out 89
compiling 91
creating 70, 87

cut/copy/paste 78
editing 90
exporting/importing 90
saving 88

iIS process client application
application dictionary and 51
defined 36
design concepts 50–54

iIS process client application upgrades
monolithic 106, 138
rolling 95, 138, 252

iIS system
components, illustrated 34
creating and using 38–41
implementation 37
overview 34–37
software 37

Import command, Repository workshop 90
individual workshops, launching 76
Initial Value property, process attribute 196
Initialize method, Validation class 255
Input/Output Attributes property, subprocess 

activities 218
installing iIS examples 324
Instances property, assignment rules 125
integer constants, TOOL 301
integer data types, TOOL 299
integer simple attribute data types 271
IntegerData attribute data type 271
IntervalData attribute data type 272
Is Required property, process attribute 196
IsEqualRoles method, UserProfile class 111
IsEqualUser method, UserProfile class 111
IsIntersectRoles method, UserProfile class 112
IsSubsetRoles method, UserProfile class 112

J
JExpense example

description 339
using 342



Section L

380 iPlanet Integration Server • Process Development Guide • August 2001

JExpenseNB example
description 353
using 358

JExpenseNS example
description 344
using 347

JExpenseSO example
description 347
using 352

L
library distribution

registering 71
registration 62

linkedUser parameter, Evaluate method 167
linking activities 167, 200
list view, design workshops 78
local constants, TOOL 307
Lock Type property, process attribute 129, 152, 268
logical expressions, TOOL 297
logical operators, TOOL 297

M
methods

See also activity methods; specific method names
attribute access list, specifying 265
attributes, accessing 269
compiling 236
default method implementation, invoking 132
service objects, accessing 276
UserProfile class 106, 108
Validation class 254

monolithic architecture
description 30
limitations 31

monolithic upgrades 106, 138
multiple instance assignment rules 119

N
Name property

assignment rules 125
offered activity 198
process attribute 129, 196
process definition 192
timers 223

name service, service object access 277
named constants, TOOL 307, 308
names, TOOL 291
New Workspace command, Repository 

workshop 86
numeric data types, TOOL

casting numeric types 304
evaluation order 303
expressions 302
float 300
integer constants 301
integers 299

O
octal constants, TOOL 301
offered activities

activity link properties 199
Application Dictionary Item property 200
Assignment Rule property 201
assignment rules and 120
defined 54
described 167
elements, diagrammed 169
properties 198
Session Suspend Action property 199
using 197

On Activity State property, timer control 231
OnAbort method

about 166
defining 210
syntax 211

OnAbort router 232



Section P

Index 381

OnActive method
about 166, 206
defining 206
return value 207, 221
syntax 207

OnComplete method
about 166, 207
attribute access list 208
syntax 209

OnComplete methods
defining 207

OnComplete router 232
OnExpiration method, timer

attribute access list 227
defining 226
syntax 227

online help 79
Open Workspace command, Repository 

workshop 86
operators

arithmetic, TOOL 302
comparison, TOOL 296
logical, TOOL 297

organization database 37
Organization Database example 367
otherInfo parameter, Evaluate method 167
otherInfo, Evaluate method, example 134

P
password parameter, ValidateUser method 258
PD, process definition project extension 91
PDF files, viewing and searching 25
PENDING activity state 164
permission, See assignment rules
plans, See iIS plans
Primary Attribute property, process attribute 196
primary process attributes

about 196
defined 195

process attributes
accessing from methods 269
application dictionary item, specifying 150
assignment rule, adding to 129
attribute access list 265
Data Type property 129, 152, 196
data types 270, 271
defined 163
defining 194
deleting 197
Initial Value property 196
initialization, requiring 196
Is Required property 196
Lock Type property 129, 152, 268
lock type, specifying 268
locking behavior 152, 265
Name property 129, 196
primary 195
Primary Attribute property 196
properties 151
properties, changing 197
properties, setting 196
system 195
using 269

process controller architecture 31
process controller, See process engine
Process Definition workshop

Compile command 236
Distribute command 236
illustrated 186
layout area 185
menu bar 187
objects, adding to layout 186
opening 184
overview 185–189
Process Attributes list 186, 196
property inspectors 188
Save All command 235
Supplier Components list 185
work, undoing 188

process definitions
about 161–164
assignment rules, specifying 194
business process model as 41
Comments property 193
compiling 236



Section Q

382 iPlanet Integration Server • Process Development Guide • August 2001

process definitions (continued)
defined 36, 159
elements, described 164–183
elements, illustrated 161
library distributions 236
Name property 192
process attributes, defining 194
properties, setting 192
registering a new version 237
registering library distributions 236
registration order 63
registration overview 62
saving 235
Scope property 193
supplier plans, adding 189
using 184–237

process developer, project team 39
process development workshops

before using 72
closing 76
defined 36
function and relationship table 67
iIS plans and 70
library distributions and 71
overview 65
Repository workshop and 76
road map to 69
starting 72
TOOL projects and 71
workshop icons 76
workshop products 70

process engine
database for 36
defined 36
functions 61
overview 60–63
registration overview 61
starting up for example applications 322

process execution
assignment rules 119
offered activities 120
queued activities 120

process logic
about 41
modifying and upgrading 56

process management 27
See also iIS application; process definitions

process model 41
See also process definitions

process step, See activities
profile attributes, See user profile attributes
project team roles 38
properties

assignment rules 124
automatic activities 220
deadline timers 228
elapsed timers 223
offered activities 198
process attributes 151, 196
process definitions 192
queued activities 213
routers 232
subprocess activities 215
timer controls 230
validation 244

Q
Queue Prioritizing property, queued activities 213
queued activities

about 168
Application Dictionary Item property 213
Assignment Rule property 213
assignment rules and 120
defined 54
elements, diagrammed 169
properties, viewing 213
Queue Prioritizing property 213
Session Suspend Action property 214
using 212



Section R

Index 383

R
READY activity state 165
Ready method

about 166, 205
attribute access list 202
defining 205
syntax 205

RegisterWrapperObj method, WFObjectWrapper 
class 287

registration
library distributions, and 62
overview 61–63
registration manager 63
registration sequence 63

reports
options 80
previewing 83
printing 80
title pages 82

Repository workshop
Branch command 89
Checkout command 89
Compile All Plans command 91
Export command 90
Force Compile command 91
iIS plans 87
Import command 90
launchpad for other workshops 75
New Workspace command 86
Open Workspace command 86
Save All command 88
Undo Checkout/Branch command 90
Update Workspace command 87

repository, central development 37
Reset Timer Value property, timer control 231
return statement 263
roles

assignment rules, and 117
iIS project team 38
specifying 125

rolling upgrades 95, 138, 252
Router methods

about 178
attribute access list 234
custom 235

defined 46
defining 233
simple 234

routers
about 178
Comments property 233
defined 46, 163
Hide Name property 233
OnComplete execution, specifying 209
properties, displaying 232
timer controls 175
types 232
using 231

S
Save All command, Repository workshop 88
Scope property, process definition 193
scope, TOOL 289, 291, 305
service objects

access to, implementing 278
accessing from assignment rules 127
accessing from Conductor methods 276
accessing from validation 246
explicit name service registration 277, 278
handle to, saving 285
referencing 277, 281
replicated 284

session
suspended 199
validation 240

Session Suspend Action property
offered activities 199
queued activities 214

SessionClose method, Validation class 255
SessionOpen method, Validation class 256
Set Timer property, timer control 231
SetOtherInfo method, UserProfile class 113
SetRoles method, UserProfile class 112
Setting attribute values 269
SetUserName method, UserProfile class 113
simple data types, TOOL 292
single instance assignment rules 119



Section T

384 iPlanet Integration Server • Process Development Guide • August 2001

SOAP
service information in application 

dictionaries 146
standard user profiles 94
startup, process development workshops 72
statement block, TOOL 289
statement, TOOL

case 311
constant 313
else 316
elseif 315
for 313
if 315
return 263
syntax of 289
while 317

states, activity 43, 164
string data types

simple attribute 272
TOOL 293

subprocess activities
activity links, setting 218
defined 54, 169
elements, diagrammed 170
In/Out Attribute property 218
properties 218
properties, viewing 215
Subprocess Name property 218
Synchronous/Asynchronous property 217
using 215

Subprocess Name property, subprocess activity 218
suppliers

adding to process definition 189
defined 164

suspending sessions 199
Synchronous/Asynchronous property, subprocess 

activities 217
system manager, project team 39
system process attributes 195

T
TextData attribute data type 272
timer controls

activity states and 176
defined 163
properties, setting 230
relation to activities 175
relation to timers 175
using 230

Timer methods
DeadlineInit 229
ElapsedOff 225
ElapsedOn 224
OnExpiration 226

Timer on at Start property
deadline timers 228
elapsed timers 223

Timer Type property
deadline timer 228
elapsed timer 223

Timer Value property
deadline timer 229
elapsed timer 224

timers
about 174
Comments property 224, 229
deadline 177
defined 162
elapsed 177
Name property 223
resetting, impact of 231
types 176
using 222

title pages in reports, creating 82
TOOL

elements 288
fixed arrays 309
generating TOOL code 91
named constants 307
names 291
projects 71
simple data types 292
statements and comments 289
statements for Conductor methods 311
variables 305



Section U

Index 385

tools, system management 36
Trigger method

about 166, 203
attribAccessor parameter 204
attribute access list 202
custom 204
defined 47
defining 202
triggering logic, common cases 203
type, specifying 203

trigger, defined 46

U
Undo Checkout/Branch command, Repository 

workshop 90
UP, user profile project extension 91
Update Workspace command, Repository 

workshop 87
upgrading

assignment rule dictionaries 57, 137
monolithic 138
rolling 138
user profiles 57
validations 252

user interface elements, design workshops 77
user interface model 42
user parameter, ValidateUser method 258
User Profile workshop

opening 96
user profiles

about 93–96
assignment rules and 93
attributes 100
compiling 102
creating 98
as design element 47
design concepts 48
distributing 103
editing 98

extended 94
extended, as supplier 95
methods 106
methods, customizing 102
modifying/upgrading 57
properties 99
registering 103
registration overview 62
registration, order of 63
saving 102
standard 94
as supplier 124
suppliers as 244
upgrading 105
validation and 49, 93

user validation 239
UserProfile class

CompareRoles method 108
GetOtherInfo method 109
GetRoles method 110
GetUserName method 110
IsEqualRoles method 111
IsEqualUser method 111
IsIntersectRoles method 112
IsSubsetRoles method 112
SetOtherInfo method 113
SetRoles method 112
SetUserName method 113
using methods 108

UV, validation project extension 91

V
ValidateUser method, Validation class

description 246
example, external validation 250
example, internal validation 249
password parameter 258
profile methods, useful 248
return value 247
syntax 247
user parameter 258



Section W

386 iPlanet Integration Server • Process Development Guide • August 2001

validation
about 239
attributes 244
compiling 251
creating 242
as design element 49
editing 242
methods 240, 254
modifying/upgrading 252
object attributes 246
properties 244
registering 251
registration overview 62
registration, order of 63
saving 250
service objects, accessing 246
session 240
user 239
user profile supplier 244
user profiles and 93

Validation class
Cleanup method 254
Initialize method 255
method summary 253
SessionClose method 255
SessionOpen method 256
using methods 254
ValidateUser method 257

Validation workshop
Compile command 250
Distribute command 251
opening 241

variables, TOOL
described 305
value, assigning 307

W
WFObjectWrapper class 287
WFObjectWrapper methods 287
while statement, TOOL

about 317
boolean expressions 318
statement block 318

work definition, See application dictionary item
work item, See activities
work rules, See assignment rules
work unit, See activities
work, undoing in design workshops 79
workshop products 70
workspaces 86

X
XML/XSLT Workshop

See also the XML/XSL Workshop section of the iIS 
Backbone online help

XmlData
attribute data type 272
described 195


	Contents
	List of Figures
	List of Procedures
	Preface
	Product Name Change
	Audience for This Guide
	Organization of This Guide
	Text Conventions
	Syntax Statements

	Other Documentation Resources
	iPlanet Integration Server Documentation
	Online Help
	Documentation Roadmap

	iIS Example Programs
	Viewing and Searching PDF Files
	To copy the documentation to a client or server
	To view and search the documentation


	1    Fundamentals
	Enterprise Process Management
	The iIS Solution

	iIS Application Architecture
	Traditional Monolithic Architecture
	Process Controller Architecture

	iIS System Components
	System Implementation

	Creating and Using Process-Based Applications
	The Project Team
	Design, Develop, Execute, and Manage
	To use the iIS development system


	Application and Process Logic
	Process Logic Domain
	Process Logic Concepts and Design Elements
	Routing Between Activities
	Who Performs Activities

	User Profile Design Concepts
	Application Dictionary Concepts
	Work Definition of an Activity
	Activity Type

	Design Element Dependencies
	Modifying Process Logic
	Modifying an Assignment Rule Dictionary
	Modifying a User Profile
	Modifying an Application Dictionary


	Summary of Process Design Elements
	Working with the Process Engine
	Engine Functions
	About Registration
	What Does Registration Do?
	Registration consists of two steps, both transparent to the user
	Registration Sequence
	Engine Registration Manager



	2    Getting Started: the Process Development Workshops
	Introduction to the Process Development Workshops
	Workshop Road Map
	Workshop Products: Plans, Projects, Library Distributions

	Entering and Leaving Workshops
	Before Using iIS
	Starting the Process Development Environment
	The Repository Workshop
	Starting the Remaining Process Development Workshops

	Leaving the Process Development Workshops

	Process Development Workshops Overview
	Cut, Copy, and Paste
	Undoing Work
	Online Help
	Printing Reports
	To print a report
	Creating a Title Page
	To add and define a title page to a report



	3    The Repository Workshop
	Using the Repository Workshop
	Creating and Opening Workspaces
	Updating a Workspace
	Creating and Opening iIS Plans
	Creating New Plans
	Opening an Existing Plan
	To open an existing iIS plan in its associated workshop, use any of the following methods

	Saving Plans
	Checking out and Branching Plans
	Checking out a Plan
	To check out an iIS plan
	Branching a Plan
	To branch a process development plan
	Undoing Changes to a Plan
	To revert a plan

	Importing and Exporting Plans
	Compiling Plans
	Compile Error
	To include the missing library in your workspace
	To import the missing library



	4    Defining a User Profile
	About User Profiles
	Extended vs. Standard User Profile
	Extended User Profile as Supplier

	Multiple User Profiles: Rolling Upgrades

	Working with a User Profile
	Opening the User Profile Workshop
	To open the User Profile Workshop to create a new user profile
	To open the User Profile Workshop for an existing user profile

	Creating and Editing a User Profile
	Specifying User Profile Properties
	Specifying User Profile Attributes
	Specifying User Profile Object Attributes
	Overriding Default User Profile Methods

	Saving and Compiling User Profiles
	Saving Changes
	Compiling a User Profile

	Making and Registering User Profile Library Distributions
	Including a User Profile as a Supplier Library
	To make the user profile a supplier library


	Creating New Versions of a User Profile
	To modify a user profile

	UserProfile Class
	Method Summary
	Using UserProfile
	Methods
	CompareRoles
	GetOtherInfo
	GetRoles
	GetUserName
	GetSessionType
	IsEqualRoles
	IsEqualUser
	IsIntersectRoles
	IsSubsetRoles
	SetRoles
	SetOtherInfo
	SetUserName



	5    Defining Assignment Rule Dictionaries
	About Assignment Rules
	Adding Complexity to an Assignment Rule
	Assignment Rules and Activities
	Assignment Rules During Process Execution
	Multiple versus Single Instance Assignment Rules
	Process Instance Creation
	Offered Activities
	Queued Activities
	Performance Issues with Assignment Rules


	Working with Assignment Rules
	Opening the Workshop
	To open the Assignment Rule Workshop to create a new plan
	To open the Assignment Rule Workshop for an existing plan

	Creating and Editing an Assignment Rule
	Specifying Assignment Rule Properties
	Specifying Roles
	To specify roles for an assignment rule
	To delete roles from an assignment rule
	Specifying Object Attributes

	Defining an Evaluate Method
	Using the Method Definition Dialog
	To use the Evaluate Method Definition Dialog
	Specifying Process Attributes
	Understanding the Evaluate Method
	Using the Evaluate Method
	Evaluate Method Example: Checking Process Attributes
	Evaluate Method Example: Linked Activity (linkedUser)
	Evaluate Method Example: Linked Activity (otherInfo)

	Saving and Compiling an Assignment Rule Dictionary
	Saving Changes
	Compiling an Assignment Rule Dictionary

	Making and Registering an Assignment Rule Dictionary

	Creating New Versions of an Assignment Rule Dictionary
	How to Modify an Assignment Rule Dictionary
	Modifying an Existing Assignment Rule
	To modify an assignment rule that does not require changes in the user profile or process attributes
	To modify an assignment rule that requires a change in process attributes
	To modify an assignment rule that requires an extended user profile or a change in an extended us...
	Adding a New Assignment Rule
	To add a new assignment rule that does not require a modification in the user profile or process ...
	To add a new assignment rule that requires a change in process attributes
	To add a new assignment rule that requires an extended user profile or a change in an extended us...
	Deleting an Existing Assignment Rule
	To delete an assignment rule that is not used by any process definitions
	To delete an assignment rule that is used by process definitions

	Registering a New Version of an Assignment Rule Dictionary
	Offered Activities
	Queued Activities



	6    Defining Application Dictionaries
	About Application Dictionaries
	Working with Application Dictionaries
	Opening the Application Dictionary Workshop
	To open the Application Dictionary Workshop to create a new plan
	To open the Application Dictionary Workshop for an existing plan

	Creating and Editing an Application Dictionary Item
	Specifying Application Dictionary Item Properties

	Specifying a List of Attributes
	Specifying an Activity Description and Application Code
	Specifying Service Information
	Saving and Using an Application Dictionary

	Creating New Versions of an Application Dictionary
	How to Modify an Application Dictionary
	Modifying an Existing Application Dictionary Item
	If the modification does not require a change in process attributes
	If the modification requires a change in process attributes
	Adding a New Application Dictionary Item
	If the new application dictionary item does not require a change in process attributes
	If the new application dictionary item requires a change in process attributes
	Deleting an Existing Application Dictionary Item
	If the application dictionary item is not used by any process definitions
	If the application dictionary item is used by process definitions



	7    Creating Process Definitions
	About Process Definitions
	Activities
	Timers
	Timer Controls
	Routers
	Activity Links
	Process Attributes
	Suppliers
	About Activities
	Activity States
	Activity Methods
	Activity Links
	Offered and Queued Activities
	Subprocess Activities
	Automatic Activities
	Junction Activities
	First Activity
	Last Activity

	About Timers
	Timer Controls
	Types of Timers

	About Routers
	Abort Router Handling

	Creating a Process Definition Library
	Reference Properties

	Working with Process Definition Libraries
	To create a process definition library
	To supply a process definition library to another process definition
	To add an activity or timer reference to a process definition
	To convert a reference
	To change or remove references for an activity or timer using the Based-on property


	Working with Process Definitions
	Opening the Process Definition Workshop
	To open the Process Definition Workshop and create a new plan
	To open the Process Definition Workshop for an existing plan

	Workshop Overview
	Adding Objects to the Layout Area
	Menu Bar
	Undoing Work
	Working with Property Inspectors

	Adding Supplier Components
	To include supplier plans

	Working with Process Definitions
	Specifying Process Definition Properties
	Specifying Assignment Rules for Process Creation
	Defining Process Attributes
	Process Attributes List

	Working with Offered Activities
	Setting the “Based on” Property
	Setting the Session Suspend Action
	Setting an Activity Link
	Associating an Application Dictionary Item
	Adding Comments
	Associating Assignment Rules
	Defining a Trigger Method
	Defining a Ready Method
	Defining an OnActive Method
	Defining an OnComplete Method
	Defining an OnAbort Method

	Working with Queued Activities
	Setting the “Based on” Property
	Setting the Session Suspend Action
	Setting Queue Priority

	Working with Subprocess Activities
	Specifying the Subprocess
	Setting the Subprocess Activity Link
	Specifying Input and Output Attributes
	To add process attributes to the Input or Output attribute list
	To delete an attribute from the list

	Working with Automatic Activities
	Working with Timers
	Working with an Elapsed Timer
	Working with a Deadline Timer

	Working with Timer Controls
	Working with Routers
	Specifying Router Properties
	Defining Router Methods

	Saving and Compiling Process Definitions
	Saving Changes
	Compiling a Process Definition

	Making and Registering Process Definition Library Distributions
	Registering a New Version of a Process Definition



	8    Defining Validations
	About Validations
	Validation Class

	Working with a Validation
	Opening the Validation Workshop
	To open the Validation Workshop and create a new plan
	To open the Validation Workshop for an existing plan

	Creating and Editing a Validation
	Specifying Validation Properties
	Specifying Validation Attributes
	Specifying Validation Object Attributes

	Writing a ValidateUser Method
	To write a ValidateUser method

	Understanding the ValidateUser Method
	ValidateUser Example: Internal Validation
	ValidateUser Example: External Validation

	Saving and Compiling a Validation
	Saving Changes
	Compiling a Validation

	Making and Registering a Validation

	Creating New Versions of a Validation
	Validation Class
	Method Summary
	Using the Validation Class
	Methods
	Cleanup
	Initialize
	SessionClose
	SessionOpen
	ValidateUser



	9    Writing iIS Process Definition Methods
	Writing Code in Process Definition Methods
	To override an activity’s default Trigger method
	Basic Language Syntax for Methods
	Method Syntax
	The return Statement


	Accessing and Using Process Attributes
	Specifying an Attribute Access List
	To add process attributes to the attribute access list
	To delete an attribute from the list
	Specifying Lock Types
	To specify a lock type for an attribute

	Working with Process Attributes
	Accessing Process Attributes by Name
	AttribAccessor Parameter
	Process Attribute Data Types


	Interacting with Activities from an Activity Method
	GetManager Method
	GetPreviousState Method
	AbortActivity Method
	activityName parameter
	expectedState parameter


	Writing Code that Accesses iPlanet UDS Service Objects
	Implementing Access to Service Objects
	Explicitly Registering a Service Object
	To explicitly register a service object
	Referencing an Explicitly Registered Service Object
	To access an explicitly registered service object

	Implementation and Access Issues
	Replicated Service Objects
	Saving a Handle to a Service Object

	WFObjectWrapper Methods
	RegisterWrapperObj
	FindObject


	An Introduction to The TOOL Language
	TOOL Language Elements
	TOOL Statements and Comments
	Statements
	Statement Blocks
	Comments

	Names
	Restrictions on Names

	Scope
	Simple Data Types
	String Data Types
	Boolean Data Type
	Numeric Data Types
	Numeric Constants
	Numeric Expressions

	Variables
	Declaring a Variable
	Assigning a Value to a Variable

	Named Constants
	Declaring a Local Constant
	Referencing a Named Constant
	Using Named Constants in Expressions

	Fixed Arrays

	TOOL Statements for Methods
	case
	Syntax
	Example
	Description

	constant
	Syntax
	Example
	Description

	for
	Syntax
	Example
	Description

	if
	Syntax
	Example
	Description
	Boolean Expressions
	Statement Blocks

	return
	while
	Syntax
	Example
	Description
	Boolean Expression
	Statement Block


	TOOL and SQL Reserved Words
	TOOL Reserved Words
	SQL Reserved Words


	A    iIS Process Management Examples
	Installing iIS Example Applications
	Configuring and Starting an Engine
	To configure an iIS process engine

	Importing, Distributing, and Registering Examples
	Using Alternate Engines


	Overview of iIS Process Management Examples
	iIS Process Management Examples
	Organization Database Access

	Application Descriptions
	Expense Reporting
	To install the ExpenseReporting application
	To run the Expense Reporting application

	Advanced Expense Reporting
	Resource Manager
	To define a resource manager
	Organization Database
	Environment Variables
	Import the Example
	To import the Advanced Expense Report example into a workspace
	Import Organization Database Data
	To load the Organization Database data
	Expense Report Data Tables
	To run the AdvancedExpenseReporting application

	JExpense
	To install the JExpense application
	To start the IIOP server for the JExpense application
	To run the JExpense client application
	To view the engine partition log

	JExpenseNS
	To install the JExpenseNS application
	To start a naming service and the IIOP server
	To run the JExpenseNS application

	JExpenseSO
	To install the JExpenseSO application
	To start a naming service and the IIOP server
	To run the JExpenseSO application

	JExpenseNB
	To install the JExpenseNB application
	To start a naming service and the IIOP server
	To run the JExpenseNB application

	C++ ExpenseReporting
	To install the C++ ExpenseReporting application
	To run the C++ ExpenseReporting application

	ActiveX Expense Reporting
	To install the ActiveX Expense Reporting application
	To run the ActiveX Expense Reporting application

	OrganizationDatabase
	Employee Table
	Department Table
	Roles Table
	EmployeeRoles Table
	Control Table
	To run the OrganizationDatabase application
	OrganizationDatabase Application Details



	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X


