
Migrating and Redeploying
Server Applications Guide

Sun ONE Application Server

Version7

816-7148-10
October 2002

Copyright © 2002 Sun Microsystems, Inc. Some preexisting portions Copyright © 2002 Netscape Communications Corporation. All
rights reserved.

Sun, Sun Microsystems, and the Sun logo, iPlanet, and the iPlanet logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries. Netscape and the Netscape N logo are registered trademarks of Netscape
Communications Corporation in the U.S. and other countries. Other Netscape logos, product names, and service names are also
trademarks of Netscape Communications Corporation, which may be registered in other countries.

This product includes software developed by Apache Software Foundation (http://www.apache.org/). Copyright (c) 1999 The
Apache Software Foundation. All rights reserved.

This product includes software developed by the University of California, Berkeley and its contributors. Copyright (c) 1990, 1993,
1994 The Regents of the University of California. All rights reserved.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of the product or this document may be reproduced in any form by any means without prior written authorization of the
Sun-Netscape Alliance and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

__

Copyright © 2002 Sun Microsystems, Inc. Pour certaines parties préexistantes, Copyright © 2002 Netscape Communication Corp.
Tous droits réservés.

Sun, Sun Microsystems, et the Sun logo, iPlanet, and the iPlanet logo sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et d’autre pays. Netscape et the Netscape N logo sont des marques déposées de Netscape
Communications Corporation aux Etats-Unis et d’autre pays. Les autres logos, les noms de produit, et les noms de service de
Netscape sont des marques déposées de Netscape Communications Corporation dans certains autres pays.

Le produit décrit dans ce document est distribué selon des conditions de licence qui en restreignent l'utilisation, la copie, la
distribution et la décompilation. Aucune partie de ce produit ni de ce document ne peut être reproduite sous quelque forme ou par
quelque moyen que ce soit sans l’autorisation écrite préalable de l’Alliance Sun-Netscape et, le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE “EN L'ÉTAT”, ET TOUTES CONDITIONS EXPRESSES OU IMPLICITES, TOUTES
REPRÉSENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE À LA VENTE, OU À
UN BUT PARTICULIER OU DE NON CONTREFAÇON SONT EXCLUES, EXCEPTÉ DANS LA MESURE OÙ DE TELLES
EXCLUSIONS SERAIENT CONTRAIRES À LA LOI.

1

Contents

About This Guide . 5
What You Should Know . 5
How This Guide is Organized . 6
Documentation Conventions . 6

Chapter 1 About Sun ONE Application Server 7 . 9

Sun ONE Application Server 7 Architecture . 9
J2EE Component Standards . 12
Development Environments . 13

Sun ONE Application Server 6.0/6.5 Development Environment . 13
Sun ONE Application Server 7 Development Environment . 14

Administration Tools . 15
Sun ONE Application Server 6.0 Administration Tools . 15
Sun ONE Application Server 6.5 Administration Tools . 16
Sun ONE Application Server 7 Administration Tools . 17

Database Connectivity . 19
Database Support in Sun ONE Application Server 6.0 . 19
Database Support in Sun ONE Application Server 6.5 . 20
Database Support in Sun ONE Application Server 7 . 20

J2EE Application Components and Migration . 21
Migration and Redeployment . 22

Why is Migration Necessary . 23
What Needs to be Migrated . 23
What is Redeployment . 24

Chapter 2 Migration Considerations and Strategies . 27

2 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

About Sun ONE Application Server 6.0/6.5 . 27
Migration Issues From Sun ONE Application Server 6.x to 7 . 29

Migrating JDBC Code . 30
Establishing Connections Through the DriverManager Interface . 30
Using JDBC 2.0 Data Sources . 32

Migrating Java Server Pages and JSP Custom Tag Libraries . 36
Migrating Servlets . 37

Obtaining a Data Source from the JNDI Context . 38
Declaring EJBs in the JNDI Context . 38

EJB Migration . 39
EJB Changes Specific to Sun ONE Application Server 7 . 39
Migrating Web Applications . 40

Migrating Web Application Modules . 41
Particular setbacks when migrating servlets and JSPs . 42

Migrating Enterprise EJB Modules . 43
Migrating Enterprise Applications . 44

Application root context and access URL . 45
Migrating Proprietary Extensions . 46

Migrating Example: iBank . 46
Manual Migration of iBank Application . 47

Web application changes . 48
EJB Changes . 49
Assembling Application for Deployment . 68
Deploying iBank application on Sun ONE Application Server 7 using the asadmin utility . . 68

Migrating iBank using Sun ONE Studio for Java 4.0 . 69
Creating a Web application module in Sun ONE Studio for Java . 72
Converting CMP Entity EJBs from 1.1 to 2.0 . 78
Creating an EJB module in Sun ONE Studio for Java . 90
Creating an enterprise application in Sun ONE Studio for Java . 110
Deploying an application in Sun ONE Application Server 7 . 112

Migration from BEA WebLogic Server v6.1 and IBM WebSphere v4.0 . 113

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 . 115

Introduction . 115
Migration Preparation . 115

Migration Process Overview . 115
Preparing your Working Environment . 117
Preparing a Project for Automated Migration . 118
Preparing the GXR file . 119
Before Running the Extraction Tool . 119

Migrating OnlineBankSample . 120
Running the Migration Toolbox . 120

3

Create a Toolbox . 120

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 . 143

Introduction . 143
Migration Preparation . 144

Migration Process Overview . 144
Preparing your Working Environment . 145
Preparing a Project for Automated Migration . 146

Migrating ToolBox Sample Application . 148
Running the Migration Toolbox . 148
Create a Toolbox Builder . 148

Chapter 5 Automating Migration . 163

Sun ONE Migration Tool for Application Servers . 163
Sun ONE Migration Toolbox (formerly iPlanet Migration Toolbox) . 164
Redeploying Migrated Applications . 164

Appendix A . 165

iBank Application specification . 165
Tools used for the development of the application . 166
Database schema . 166
Application navigation and logic . 171
Application Components . 174
Fitness of design choices with regard to potential migration issues . 177

Appendix B . 181

Sun ONE Migration Toolbox . 181
Supported Platforms . 181
Migration . 181

Toolbox Builder . 182
Kiva Migration Toolbox Builder . 182
NetDynamics Migration Toolbox Builder . 186

Tools and Toolboxes . 192
Creating New Tools . 192
Cloning Tools . 192
Deleting Tools . 192
Importing & Exporting Tools . 193
Toolbox Merging . 193

Troubleshooting . 193
Toolbox Installation & Configuration . 193

4 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

Extraction . 194
Translation . 196
Post-Migration . 196

Appendix C . 199

Migrating from EJB 1.1 to EJB 2.0 . 199
EJB Query Language . 199
Local Interfaces . 200
EJB 2.0 Container-Managed Persistence (CMP) . 201
Defining Entity Bean Relationships . 202
Message-Driven Beans . 202

Migrating EJB Client Applications . 202
Declaring EJBs in the JNDI Context . 202
Recap on Using EJB JNDI References . 203

Migrating CMP Entity EJBs . 204
Migrating the Bean Class . 205
Migration of ejb-jar.xml . 208
Custom Finder Methods . 208

Index . 211

5

About This Guide

This Migrating and Redeploying Server Applications Guide describes how J2EE
applications are migrated from earlier versions of the Sun ONE Application Server
(formerly known as ‘iPlanet Application Server’) to Sun ONE Application Server 7.

In addition, this guide describes how NetDynamics applications and applications
from the Netscape Application Server (NAS) are migrated to the Sun ONE
Application Server 7.

This manual is intended for system administrators, network administrators,
application server administrators and web developers who have an interest in
migration issues.

What You Should Know
Before you begin, you should already be familiar with the following topics:

• HTML

• Application Servers

• Client/Server programming model

• Internet and World Wide Web

• Windows 2000 and/or Solaris™ operating systems

• Java programming

• Java APIs as defined in specifications for EJBs, Java Server Pages (JSP)

• Java Database Connectivity (JDBC)

• Structured database query languages such as SQL

• Relational database concepts

• Software development processes, including debugging and source code
control

How This Guide is Organized

6 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

How This Guide is Organized
This guide is organized as follows:

• About Sun ONE Application Server 7 - describes the architecture of the Sun ONE
Application Server 7 and the differences between J2EE standards and
application components implemented with this version of the Sun ONE
Application Server versus previous versions.

• Migration and Redeployment - describes those application components that need
to be migrated and why, as well as the redeployment process for migrated
applications.

• Migration Considerations and Strategies - describes considerations and strategies
for migrating applications from competing platforms and from previous
versions of the Sun ONE Application Server. There are also sample migration
applications included that provide an end-to-end description of the migration
process.

• Automating Migration - describes the available automation tools used to migrate
applications from competing platforms and earlier versions of the Sun ONE
Application Server.

• Redeploying Migrated Applications - describes how migrated applications are
redeployed to the Sun ONE Application Server.

Documentation Conventions
File and directory paths are given in Windows format (with backslashes separating
directory names). For Unix versions, the directory paths are the same, except
forward slashes are used instead of backslashes to separate directories.

This guide uses URLs of the form: http://server.domain/path/file.html,
where:

• server is the name of the server where you are running the application.

• domain is your internet domain name.

• path is the directory structure on the server.

• file is an individual filename.

The following table shows the typographic conventions used throughout Sun ONE
documentation

Documentation Conventions

About This Guide 7

Table 1 Typographic Conventions

Typeface Meaning Examples

Monospaced The names of files, directories, sample
code, and code listings; and HTML tags

Open Hello.html file.

<HEAD1> creates a top level heading.

Italics Book titles, variables, other code
placeholders, words to be emphasized,
and words used in the literal sense

See Chapter 2 of the Migrating and
Redeploying Server Applications Guide.

Enter your UserID.

Enter Login in the Name field.

Bold First appearance of a glossary term in
the text

Templates are page outlines.

Documentation Conventions

8 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

9

Chapter 1

About Sun ONE Application Server 7

This chapter describes the architecture of the Sun ONE Application Server 7 and
the J2EE components that are integral to the server environment. In addition, the
differences between the Sun ONE Application Server 7 environment and earlier
Sun ONE Application Server environments are described.

The following topics are addressed:

• Sun ONE Application Server 7 Architecture

• J2EE Component Standards

• Development Environments

• Administration Tools

• Database Connectivity

• J2EE Application Components and Migration

• Migration and Redeployment

Sun ONE Application Server 7 Architecture
Application servers provide the framework for a client to connect to a backend
source, execute the application logic, and return the result to the client. The
application server occupies the middle-tier in the three-tier computing model.

Sun ONE Application Server 7 Architecture

10 Sun ONE Application Server 7.0 Migrating and Redeploying Server Applications • October 2002

The Sun ONE Application Server 7 is a Java application server and is fully
compliant with the Java 2 Enterprise Edition (J2EE™) specifications. J2EE provides
a complete, secure foundation and describes a rich set of standards for security,
development, deployment, code re-use and portability that allows the enterprise to
create applications that are portable and vendor independent.

The Sun ONE Application Server 7 provides a robust J2EE platform for the
development, deployment, and management of e-commerce application services to
a broad range of servers, clients, and devices.

Sun ONE Application Server 7 is a J2EE 1.3 compliant application server.

The key goals of this architecture are horizontal and vertical scalability, high
availability, reliability, performance, and standards compliance. Sun ONE
Application Server 7 is also a significant architectural departure from the first
generation of Sun ONE application server products. By combining existing and
strong Sun ONE products and technologies with the J2EE 1.3 standards, Sun ONE
Application Server 7 architecture is built upon a proven framework of
technologies.

Sun ONE Application Server 7 Architecture

Sun ONE Application Server 7 Architecture

Chapter 1 About Sun ONE Application Server 7 11

The Sun ONE Application Server architecture is graphically represented in the
figure “Sun ONE Application Server 7 Architecture”. The architecture shows the
Sun ONE Application Server components, sub-systems, access paths and how
external entities interface with the core server.

Sun ONE Application Server 7 architecture, is highly componentised which results
in a very highly manageable architecture. All the services required by the J2EE
specification are present with well-defined standard interfaces to invoke them
from within applications.

The web user interface, new in Sun ONE Application Server 7, provides for easy
remote server management. In fact, the server is designed such that one
administration server could be used to administer multiple numbers of
administered servers. The task of creating a new administered server instance has
been greatly simplified in this new version.

Support for the type 2 JDBC drivers bundled along with the earlier versions of Sun
ONE Application Server has been withdrawn. As a result of this, the platform has
moved towards a more standardized approach to JDBC resource management.

By using the JDK 1.4 for the server operation, Sun ONE Application Server utilizes
the enhanced abilities of this newer version of JDK to its advantage.

A typical J2EE application is composed of an n-tier system in which a client obtains
processed information from a Web server or an application server. The servers in
turn access the information from enterprise systems such as RDBMS or ERP,
process them by using contained business logic, and deliver the processed
information to the client in an appropriate format. These layers can be designated
as client layer (Web browser or rich Java client), middle layer (Web servers and
application servers), and the back-end layer or data layer (enterprise systems such
as databases).

The J2EE application model within the Sun ONE Application Server allows
developers to focus on the business logic while J2EE components handle all the low
level details. Therefore, applications and services can be easily enhanced and
rapidly deployed, allowing business to quickly react to competitive changes. By
providing an open standard architecture through the J2EE Platform, Sun ONE
Application Server solves the problem of the cost and complexity in developing
multi-tiered services that are scalable, highly available, secure and reliable.

J2EE Component Standards

12 Sun ONE Application Server 7.0 Migrating and Redeploying Server Applications • October 2002

J2EE Component Standards
Sun ONE Application Server 7 is a J2EE v1.3 compliant server based on the
component standards developed by the Java community for Servlets, Java Server
Pages (JSPs), and Enterprise JavaBeans (EJBs).

In contrast to Sun ONE Application Server 7, Sun ONE Application Server 6.0/6.5
is a J2EE v1.2 compliant server. Between the two J2EE versions, there are
considerable differences with the J2EE application component APIs.

The following table characterizes the differences between the component APIs
used with the J2EE v1.3 compliant Sun ONE Application Server 7 and the J2EE v1.2
Sun ONE Application Server 6.0/6.5.

In addition, the two products support a number of technologies connected with
XML standards and Web Services which, while not part of the J2EE specification,
are mentioned in the following table due to the increasing usage of these standards
in enterprise applications.

Application Server Version Comparison of APIs for J2EE Components

Component API Sun ONE Application Server
6.0/6.5

Sun ONE Application Server 7

JDK 1.2.2 1.4

Servlet 2.2 2.3

JSP 1.1 1.2

JDBC 2.0 2.0

EJB 1.1 2.0

JNDI 1.2 1.2

JMS 1.0 2.0

JTA 1.0 1.01

Development Environments

Chapter 1 About Sun ONE Application Server 7 13

Development Environments
This section characterizes the differences between the development environments
for the Sun ONE Application Server 6.0/6.5 and the Sun ONE Application Server 7.
The following topics are described:

• Sun ONE Application Server 6.0/6.5 Development Environment

• Sun ONE Application Server 7 Development Environment

Sun ONE Application Server 6.0/6.5
Development Environment
Sun ONE Application Server 6.0/6.5 offers an evaluation version of Sun ONE
Studio for Java, which is especially geared towards application development for
this version of the Sun ONE Application Server.

It is a very complete development environment in Java, based on the NetBeans
platform. This IDE provides an extremely rich range of features for designing and
developing Java applications and EJB components. It also integrates through a
plug-in with Sun ONE Application Server for assembly, deployment, and
debugging of the various J2EE components of an application. It is available in both
Windows and Solaris.

Of the third-party vendor solutions available on the market, the recently released
Borland JBuilder 6 Enterprise is an extremely mature, comprehensive product, with
the added advantage of being available on several platforms (Windows, Solaris,
Linux, and MacOS X). In addition to its Java development features (servlets, JSP
pages, EJB components, graphic applications), JBuilder also caters for UML design,

Additional Application Server Supported Technologies

Technology Sun ONE Application
Server 6.0/6.5

Sun ONE Application
Server 7

XML document processing
(API and XML parser)

JAXP 1.0,Apache Xerces JAXP 1.1

SOAP/Java support for
Web Services

SOAP 1.1 (IBM SOAP4J
framework)

Apache SOAP 2.2,
JAX-RPC 1.0, JAXM 1.1,
JAXR 1.0

Development Environments

14 Sun ONE Application Server 7.0 Migrating and Redeploying Server Applications • October 2002

unit testing, collaborative development, and XML development. Moreover,
JBuilder integrates perfectly with mainstream application servers (including the
Sun ONE Application Server) for assembly, deployment and debugging of Web
applications and EJB components.

Sun ONE Application Server 7 Development
Environment
The availability of a fully integrated development solution is key to the success of
the Sun ONE Application Server 7. Sun ONE Studio for Java Enterprise Edition 4 is
the Sun ONE strategic tool for Sun ONE application development.

Sun ONE Studio for Java 4 is provided with Sun ONE Application Server.

Some of the key features of Sun ONE Studio for Java Enterprise Edition 4 are:

• Ability to build EJBs quickly and easily

• Ability to assemble applications from EJBs and package applications for
deployment

• Application server integration for deployment

• Ability to develop and publish web services

• Sun ONE studio for java enterprise service presentation toolkit

• Ability to integrate with the Sun ONE Application Server 7

As shown in the figure “Sun ONE Studio Enterprise Edition and Sun ONE
Application Server 7 Integration”, the Sun ONE Application Server 7 integration
module relies upon the NetBeans Open Source modules that are implemented
from the Sun ONE Studio Close Source.

Sun ONE Studio Enterprise Edition and Sun ONE Application Server 7 Integration

Administration Tools

Chapter 1 About Sun ONE Application Server 7 15

Administration Tools
This section characterizes the differences between the administration tools for the
Sun ONE Application Server 6.0, Sun ONE Application Server 6.5, and the Sun
ONE Application Server 7. The following topics are described:

• Sun ONE Application Server 6.0 Administration Tools

• Sun ONE Application Server 6.5 Administration Tools

• Sun ONE Application Server 7 Administration Tools

Sun ONE Application Server 6.0 Administration
Tools
Sun ONE Application Server 6.0 features a full set of graphical administration
tools, which cover all the aspects of server management and administration

• Sun ONE Console - the main administration control panel. Sun ONE console
gives fast access to the Administration Server Console, the Directory Server,
and the Administration Tool.

Administration Tools

16 Sun ONE Application Server 7.0 Migrating and Redeploying Server Applications • October 2002

• Administration Server Console - used to define event-logging options and to
create SSL security certificates.

• Sun ONE Directory Server Console - used for administration of the Sun ONE
Directory Server. The Directory Server is used to administer the two main
information directory trees, the user directory (user and organizational unit
administration), and the configuration directory (server configuration).

• Sun ONE Administration Tool - used to administer one or more instances of
Sun ONE Application Server 6.0, along with the applications deployed. It also
enables JDBC drivers and data sources to be configured.

• Sun ONE Registry Editor (kregedit) - is a graphical tool similar to the windows
registry editor (regedit). It is used to adjust certain parameters specific to the
Sun ONE Application Server, stored in a specific registry.

Sun ONE Application Server 6.5 Administration
Tools
Sun ONE Application Server 6.5 can be administered using integrated
Administration Tool, Sun ONE registry editor and command line tools, which are
described below:

• Sun ONE Application Server Administration Tool - a stand-alone java
application with a graphical user interface that allows you to administer one or
more instances of Sun ONE Application Server along with administering
application components.

• Command line tools - can be run from the command-line prompt on Windows
and the shell prompt on Solaris. You can perform a variety of tasks using the
command line tools, right from basic configuration to deploying an
application. To get a complete description of any command-line tool, type
[command] -help at the command prompt. For ease of use, most of the
command-line tools have been integrated with the Sun ONE Application
Server Administration Tool and the Sun ONE Application Server Deployment
Tool.

• Sun ONE Registry Editor (kregedit) - a stand-alone GUI tool similar to the
Windows Registry editor (regedit). It can display and edit registry information
for Sun ONE Application Server.

Administration Tools

Chapter 1 About Sun ONE Application Server 7 17

Sun ONE Application Server 7 Administration
Tools
The Administration Server in Sun ONE Application Server 7 is a special instance of
the Server that serves the Administrative interface and controls some global
settings common to all server instances. It is a web-based server that contains the
forms used to configure the Sun ONE Application Server.

This graphical tool allows you to manage your application server including
viewing error and access logs, monitoring server usage, creating and editing
virtual servers, apply configuration changes and start or stop server instances.

When you installed the Sun ONE Application Server, you chose a port number for
the Administration Server, or used the default port of 4848. To access the
Administrative interface, in a web browser type:

http://hostname:port/admin

You are prompted for the configured user name and password. Upon entering this
information and clicking the OK button, the home page of the Administrative
interface is displayed, as shown in the figure "Administrative Interface Home
Page".

The left pane is a tree view of all items you can configure in the Sun ONE
Application Server. To use the Administrative interface, click an item in the left
pane. The right pane displays the page associated with that item.

You can access help for any page in the Administrative interface by clicking the
Help button in the banner at the top of the Administrative interface. The online
help describes the use of the page you are accessing and gives information about
what to enter in the fields on the page.

Administration Tools

18 Sun ONE Application Server 7.0 Migrating and Redeploying Server Applications • October 2002

Administrative Interface Home Page

Sun ONE Application Server 7 contains a command line interface. You can use a
utility and commands to perform the same set of tasks as you can perform in the
Administrative interface. You can use these commands either from a command
prompt in the shell, or you can call them from other scripts and programs. Using
these commands you can automate administration tasks that otherwise might
become repetitive.

Sun ONE Application Server 7 has a command line utility asadmin, which can be
run from the command-line prompt on Windows and the shell prompt on Solaris.
The asadmin utility has a set of commands used to perform administrative tasks.
You can use these commands to perform all the same tasks that are performed
from the Administrative Interface, from basic configuration to deploying an
application. To get a complete description of any command, type help after entering
the asadmin utility.

You can run asadmin either in singlemode or multimode. In singlemode you run
one command at a time from the command prompt. In multimode you can run
multiple commands without needing to reenter environment-level information.

Database Connectivity

Chapter 1 About Sun ONE Application Server 7 19

Database Connectivity
This section describes type of drivers included in the Sun ONE Application Server
6.0, Sun ONE Application Server 6.5 and Sun ONE Application Server 7. This
section also describes the database(s) supported by each type of driver.

The following topics are included:

• "Database Support in Sun ONE Application Server 6.0"

• "Database Support in Sun ONE Application Server 6.5"

• "Database Support in Sun ONE Application Server 7"

Database Support in Sun ONE Application
Server 6.0
Sun ONE Application Server 6.0 includes a series of type 2 JDBC drivers (which
require installation of native client libraries for access to the corresponding
DBMSs), which provide connectivity to the following main market database
back-ends:

• DB2 6.1, 7.1

• Informix 7.3, 9.1.4, 9.2

• Oracle 8.0.5, 8i, 9i

• Sybase 11.9.2, 12

• Microsoft SQL Server 7

• PointBase 3.5

It is possible to use third-party Type 4 JDBC drivers, by declaring them via the Sun
ONE Application Server Administration Tool, or via a specific, separate utility:
db_setup.sh in Solaris, jdbcsetup in Windows.

JDBC data sources and connection pool properties can be added and configured
from the Sun ONE Application Server Administrative interface, or from the
iasdeploy command line utility. For the latter, an XML file is passed which defines
the properties of the data source to be defined.

Database Connectivity

20 Sun ONE Application Server 7.0 Migrating and Redeploying Server Applications • October 2002

Database Support in Sun ONE Application
Server 6.5
Sun ONE Application Server 6.5 provides a JDBC type 2 driver which supports a
variety of databases, including:

• DB2 5.1 and 6.1 and client version 7.1

• Informix 7.3, 9.1.4, 9.2 and client version SDK 2.40

• Oracle 8i, 9i

• Sybase 12

• Microsoft SQL Server 7

Configuration of native JDBC drivers on Solaris can be done via a specific utility,
db_setup.sh. On Windows, native drivers are automatically configured during
installation if the database client libraries are present in your machine. If you install
a database client library after Sun ONE Application Server installation, then restart
Sun ONE Application Server to automatically configure the native drivers.

It is possible to use third-party Type 4 JDBC drivers, by declaring them via the Sun
ONE Application Server Administration Tool, on Solaris as well as on Windows.

Sun ONE Application Server allows you to adjust database connectivity through
connection parameters via the Sun ONE Application Server Administrative
interface. The connection parameters are grouped in the following categories:

• Connection

• Threads, and

• Database cache

Database Support in Sun ONE Application
Server 7
Sun ONE Application Server 7 has Type 2 and Type 4 XA capable JDBC 2.0 style
drivers, which provide connectivity to the main market database back-ends:

• DB2 v7

• Oracle 8.1.7

• Sybase v11

J2EE Application Components and Migration

Chapter 1 About Sun ONE Application Server 7 21

• PointBase version 4.2RE

All external JDBC compliant drivers are supported by Sun ONE Application
Server.

JDBC data sources and connection pool properties can be added and configured
from the Sun ONE Application Server Administration interface, or from the
asadmin command line utility.

For details on configuring JDBC Data sources and connection pools, refer to the
section "Using JDBC 2.0 Data Sources".

J2EE Application Components and Migration
J2EE simplifies development of enterprise applications by basing them on
standardized, modular components, providing a complete set of services to those
components, and handling many details of application behavior automatically,
without complex programming. J2EE v1.3 architecture includes several component
APIs. Prominent J2EE components include:

• Servlets

• Java Server Pages (JSPs)

• EJBs, including Message Driven Beans (MDBs)

• Java Database Connectivity (JDBC)

• Java Transaction Service (JTS)

• Java Naming and Directory Interface (JNDI)

• Java Message Service (JMS)

J2EE components are packaged separately and bundled into a J2EE application for
deployment. Each component, its related files such as GIF and HTML files or
server-side utility classes, and a deployment descriptor are assembled into a
module and added to the J2EE application. A J2EE application is composed of one
or more enterprise bean(s), Web, or application client component modules. The
final enterprise solution can use one J2EE application or be made up of two or more
J2EE applications, depending on design requirements.

Migration and Redeployment

22 Sun ONE Application Server 7.0 Migrating and Redeploying Server Applications • October 2002

A J2EE application and each of its modules has its own deployment descriptor. A
deployment descriptor is an XML document with an .xml extension that describes a
component’s deployment settings. An enterprise bean module deployment
descriptor, for example, declares transaction attributes and security authorizations
for an enterprise bean. Because deployment descriptor information is declarative, it
can be changed without modifying the bean source code. At run time, the J2EE
server reads the deployment descriptor and acts upon the component accordingly.

A J2EE application with all of its modules is delivered in an Enterprise Archive
(EAR) file. An EAR file is a standard Java Archive (JAR) file with an .ear extension.
The EAR file contains EJB JAR files, application client JAR files and/or Web Archive
(WAR) files. The characteristics of these files are as follows:

• Each EJB JAR file contains a deployment descriptor, the enterprise bean files,
and related files

• Each application client JAR file contains a deployment descriptor, the class files
for the application client, and related files

• Each WAR file contains a deployment descriptor, the Web component files, and
related resources

Using modules and EAR files makes it possible to assemble a number of different
J2EE applications using some of the same components. No extra coding is needed;
it is just a matter of assembling various J2EE modules into J2EE EAR files.

The migration process is concerned with moving J2EE application components,
modules, and files.

For more information on migrating various J2EE components please refer to
Chapter 2, section “Migration Issues From Sun ONE Application Server 6.x to 7”.

For more background information on J2EE, see the following references:

• J2EE tutorial - http://java.sun.com/j2ee/tutorial/

• J2EE overview - http://java.sun.com/j2ee/overview.html

• J2EE topics - http://java.sun.com/j2ee

Migration and Redeployment
This section describes the need to migrate J2EE applications and the particular files
that will need to be migrated. Following successful migration, a J2EE application
can be redeployed to the Sun ONE Application Server. Redeployment is also
described within this section.

Migration and Redeployment

Chapter 1 About Sun ONE Application Server 7 23

The following topics are addressed:

• Why is Migration Necessary

• What Needs to be Migrated

• What is Redeployment

Why is Migration Necessary
Although J2EE specifications broadly cover requirements for applications, it is
nonetheless an evolving standard. It either does not cover some aspects of
applications or leaves implementation details as the responsibility of application
providers.

These product implementation-dependent aspects manifest as differences in the
way application servers are configured and also in the deployment of J2EE
components on application servers. The array of available configuration and
deployment tools for use with any particular application server product also
contribute to the product implementation differences.

The evolutionary nature of the specifications itself presents challenges to
application providers. Each of the component APIs in turn are separately evolving.
This leads to a varying degree of conformance by products. In particular, an
emerging product such as Sun ONE Application Server, has to contend with
differences in J2EE application components, modules, and files deployed on other
established application server platforms. Such differences require mappings
between earlier implementation details of the J2EE standard such as file naming
conventions, messaging syntax, and so forth.

Moreover, product providers usually bundle additional features and services with
their products. These features are available as custom JSP tags or proprietary Java
API libraries.

Usage of such proprietary features render these applications non-portable.

What Needs to be Migrated
For migration purposes, the J2EE application consists of the following file
categories:

• Deployment descriptors (XML files)

• JSP source files that contain Proprietary API’s

Migration and Redeployment

24 Sun ONE Application Server 7.0 Migrating and Redeploying Server Applications • October 2002

• Java source files that contain Proprietary API’s

Deployment descriptors (XML files)
Deployment is accomplished by specifying deployment descriptors (DDs) for EJBs
(ejb-jar), front-end web components (war) and enterprise applications (ear).
Deployment descriptors are used to resolve all external dependencies of the J2EE
components/applications. The J2EE specification for DDs is common across all
application server products. However, the specification leaves several deployment
aspects of components pertaining to an application dependent on
product-implementation.

JSP source files

J2EE specifies how to extend JSP by adding extra custom tags. Product vendors
include some custom JSP extensions in their products, simplifying some tasks for
developers. However, usage of these proprietary custom tags results in
non-portability of JSP files. Additionally, JSP can invoke methods defined in other
Java source files as well. The JSP’s containing proprietary API’s needs to be
rewritten before they can be migrated.

Java source files

The Java source files can be Servlets, EJBs or other helper classes. The Servlets and
EJBs can invoke standard J2EE services directly. They can also invoke methods
defined in helper classes. Java source files are used to encode the business layer of
applications such as EJBs.Vendors bundle several services and proprietary Java
API with their products. The usage of proprietary Java API is the major source of
non-portability in applications. Since J2EE is an evolving standard, different
products may support different versions of J2EE component APIs. This is another
aspect that migration will address.

Files within the above file categories need to be migrated to Sun ONE Application
Server. The details on how to migrate each of the indicated file categories are
provided in Migration Issues From Sun ONE Application Server 6.x to 7.

What is Redeployment
Redeployment refers to deploying a previously deployed application from an
earlier version of Sun ONE Application Server, or from applications that were
previously deployed, but migrated, from a competing application server platform.

Migration and Redeployment

Chapter 1 About Sun ONE Application Server 7 25

The act of redeploying an application typically refers to using the standard
deployment actions outlined in the Sun ONE Application Server Administrator’s
Guide. However, when migration activities are performed with automated tools,
such as the Sun ONE Migration Tool for Application Servers (for J2EE applications) or
the Sun ONE Migration Toolbox (for NetDynamics and Netscape Application
Servers), there might be post-migration or pre-deployment tasks that are needed
(and defined) prior to deploying the migrated application.

For more information about the available migration tools, refer to Automating
Migration.

Migration and Redeployment

26 Sun ONE Application Server 7.0 Migrating and Redeploying Server Applications • October 2002

27

Chapter 2

Migration Considerations and
Strategies

This chapter describes the considerations and strategies that are needed when
moving J2EE applications from Sun ONE Application Server 6.0 and 6.5 to Sun
ONE Application Server 7.

This section also describes specific migration tasks at the component level.

The following topics are addressed:

• About Sun ONE Application Server 6.0/6.5

• Migration Issues From Sun ONE Application Server 6.x to 7

• Migrating Example: iBank

About Sun ONE Application Server 6.0/6.5
Sun ONE Application Server version 6.0 is a multi-platform application server
based entirely on the J2EE 1.2 specification. Supported platforms include Windows
NT and 2000, Solaris, AIX, and HP-UX.

In addition, Sun ONE Application Server 6.0 integrates with many Web servers
through specific Web connector plug-ins that it ships with. These connectors enable
it to be coupled with Sun ONE Web Server, Microsoft IIS, or Apache.

The Sun ONE Application Server 6.0/6.5 architecture is shown in the following
figure.

About Sun ONE Application Server 6.0/6.5

28 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

Sun ONE Application Server 6.0/6.5 Architecture

As shown in the figure "Sun ONE Application Server 6.0/6.5 Architecture", there
are four internal servers, which are often called engines or processes. These
processes are responsible for all the processing in the Sun ONE Application Server.
The four internal servers of the Sun ONE Application Server 6.0/6.5 are:

Executive Server - provides most system services (some services are managed by
the Administrative Server).

Administrative Server - provides system services for Sun ONE Application Server
Administration and failure recovery.

Java Server - provides services to java applications.

C++ Server - components written in C++ are hosted in C++ server.

When a web server forwards requests to Sun ONE Application Server 6.0/6.5, the
requests are first received by the Executive Server process (KXS). The KXS process
forwards the request either to a Java Server process (KJS) or to a C++ Server
process (KCS). A KJS process runs Java programming logic, whereas a KCS process
runs C++ programming logic. Each KJS and KCS process maintains a specified
number of threads and runs the programming logic to completion on those
threads. The results are returned to the web server and sent on to the client
browser.

Migration Issues From Sun ONE Application Server 6.x to 7

Chapter 2 Migration Considerations and Strategies 29

Migration Issues From Sun ONE Application
Server 6.x to 7

This section describes the issues that will arise while migrating the main
components of a typical J2EE application from Sun ONE Application Server 6.0
and 6.5 to Sun ONE Application Server 7.

The migration issues described in this section are based on an actual migration that
was performed for a J2EE application called iBank, a simulated online banking
service, from Sun ONE Application Server 6.0 and 6.5 to Sun ONE Application
Server 7. This application reflects all aspects that comprise a traditional J2EE
application.

The following sensitive points of the J2EE specification covered by the iBank
application include:

• Servlets, especially with redirection to JSP pages (model-view-controller
architecture)

• JSP pages, especially with static and dynamic inclusion of pages

• JSP custom tag libraries

• Creation and management of HTTP sessions

• Database access through the JDBC API

• Enterprise JavaBeans: Stateful and Stateless session beans, CMP and BMP
entity beans.

• Assembly and deployment in line with the standard packaging methods of the
J2EE application

The iBank application is presented in detail in Appendix A - iBank Application
Specification.

The following migration processes are described:

• Migrating JDBC Code

• Migrating Servlets

• Migrating Java Server Pages and JSP Custom Tag Libraries

• Obtaining a Data Source from the JNDI Context

• EJB Migration

• EJB Changes Specific to Sun ONE Application Server 7

Migration Issues From Sun ONE Application Server 6.x to 7

30 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

• Migrating Web Applications

• Migrating Enterprise EJB Modules

• Migrating Enterprise Applications

Migrating JDBC Code
With the JDBC API, there are two methods of database access:

• Establishing Connections Through the DriverManager Interface

(JDBC 1.0 API), by loading a specific driver and providing a connection URL.
This method is used by other Application Servers, such as IBM’s WebSphere
4.0

• Using JDBC 2.0 Data Sources

The Data Source interface (JDBC 2.0 API) can be used via a configurable
connection pool. According to J2EE 1.2, a data source is accessed through the
JNDI naming service

Establishing Connections Through the DriverManager Interface
Although this means of accessing a database is not recommended, as it is obsolete
and is not very effective, there may be some applications that still use this
approach.

In this case, the access code will be similar to the following:

public static final String driver =
"oracle.jdbc.driver.OracleDriver";

public static final String url =
"jdbc:oracle:thin:tmb_user/tmb_user@iben:1521:tmbank";

Class.forName(driver).newInstance();

Properties props = new Properties();

props.setProperty("user", "tmb_user");

props.setProperty("password", "tmb_user");

Connection conn = DriverManager.getConnection(url, props);

Migration Issues From Sun ONE Application Server 6.x to 7

Chapter 2 Migration Considerations and Strategies 31

This code can be fully ported from Sun ONE Application Server 6.0/6.5 to Sun
ONE Application Server 7, as long as Sun ONE Application Server is able to locate
the classes needed to load the right JDBC driver. In order to make the required
classes accessible to the application deployed in Sun ONE Application Server 7,
you should:

• Place the archive (JAR or ZIP) for the driver implementation in the /lib
directory of the Sun ONE Application Server 7 installation directory.

• Modify the CLASSPATH by setting the path for the driver through the GUI of
the admin server. Click the server instance “server1” and then click the tab
“JVM Settings” from the right pane. Now click the option Path Settings and
add the path in the classpath suffix text entry box. Once you make the changes,
click “Save” and then apply the new settings. Restart the server to modify the
configuration file, server.xml.

The figure "Using the JVM Settings to Set the Classpath Suffix" shows adding the
path of the driver in the classpath suffix through GUI.

Migration Issues From Sun ONE Application Server 6.x to 7

32 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

Using the JVM Settings to Set the Classpath Suffix

Using JDBC 2.0 Data Sources
Using JDBC 2.0 data sources to access a database provides performance advantages
such as transparent connection pooling, enhances productivity by simplifying code
and implementation, and provides code portability.

Using a data source in an application requires an initial configuration phase
followed by a registration of the data source in the JNDI naming context of the
application server. Once the data source is registered, the application will easily be
able to obtain a connection to the database by retrieving the corresponding
DataSource object from the JNDI context. The actions are described in the following
topics:

• "Configuring a Data Source"

Migration Issues From Sun ONE Application Server 6.x to 7

Chapter 2 Migration Considerations and Strategies 33

• "Looking Up the Data Source Via JNDI To Obtain a Connection"

Configuring a Data Source
In Sun ONE Application Server 6.0 data sources and their corresponding JDBC
drivers are configured from the server's graphic administration console.
Connection pools are managed automatically by the application server, and the
administration tool can be used to configure their properties. With integrated type
2 JDBC drivers, the connection pooling properties are defined on a per-driver basis,
and common to all data sources using a given driver.

On the other hand, for third-party JDBC drivers, connection pool properties are
defined on a per-data source basis. Third-party JDBC drivers can be configured
either from the administration tool, or from a separate utility (db_setup.sh in Sun
Solaris, and jdbcsetup in Windows NT/2000). Moreover, the command line utility
iasdeploy can be used to configure a data source from an XML file describing its
properties. These utilities are all located in the /bin/ sub-directory of the Sun ONE
Application Server installation root directory.

In Sun ONE Application Server 7, data sources can be configured from the server's
graphic administration console or through the command line utility asadmin. The
command line utility asadmin can be invoked by executing asadmin.bat in
windows and asadmin file in Solaris kept at Sun ONE Application Server 7
installation’s bin directory. Then on the asadmin prompt, following commands
would create connection pool and JNDI resource.

The syntax for calling the asadmin utility to create a connection pool is as follows:

asadmin>create-jdbc-connection-pool -u username -w password -H
hostname -p adminport [-s] [--instance instancename]
--datasourceclassname classname [--steadypoolsize=8]
[--maxpoolsize=32] [--maxwait=60000] [--poolresize=2]
[--idletimeout=300] [--isconnectvalidatereq=false]
[--validationmethod=auto-commit] [--validationtable tablename]
[--failconnection=false] [--description text] [--property
(name=value)[:name=value]*] connectionpoolid

For example:

asadmin>create-jdbc-connection-pool -u admin -w password -H cl1
-p 4848 –instance server1 --datasourceclassname
oracle.jdbc.pool.OracleConnectionPoolDataSource --property
(user-name=ibank_user):(password=ibank_user) oraclepool

Here JDBC connection pool ‘oraclepool’ for oracle database is created using
database schema having the username ‘ibank_user’ and password ‘ibank_user’.

The syntax to create a JDBC resource is as follows:

Migration Issues From Sun ONE Application Server 6.x to 7

34 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

asadmin>create-jdbc-resource -u username -w password -H hostname
-p adminport [-s] [--instance instancename] --connectionpoolid id
[--enabled=true] [--description text] [--property
(name=value)[:name=value]*] jndiname

For example:

asadmin>create-jdbc-resource -u admin -w password -H cl1 -p 4848
--instance server1 --connectionpoolid oraclepool jdbc/IBANK

Here jdbc resource is created for the connection pool created above with the JNDI
name ‘jdbc/IBANK’.

Here is the procedure to follow when registering a data source in Sun ONE
Application Server 7 through graphical interface.

1. Register the data source classname

a. Place the archive (JAR or ZIP) for the data source class implementation in
the /lib directory of the Sun ONE Application Server 7 installation
directory.

b. Modify the CLASSPATH by setting the path for the driver through the
GUI of the admin server. Click at the server instance “server1” and then
click at tab “JVM Settings”, now click at path settings and add the path at
the classpath suffix column. Once you make the changes save it and then
apply these new settings. Restart the server, which would modify the
configuration file, server.xml.

2. Register the data source

In Sun ONE Application Server 7, data sources and their corresponding JDBC
drivers are configured from the server's graphic administration interface.

The left pane is a tree view of all items you can configure in the Sun ONE
Application Server. Click on the item Connection pool at the left pane, the right
pane would display the page associated with it where the relevant entries can be
made.

Migration Issues From Sun ONE Application Server 6.x to 7

Chapter 2 Migration Considerations and Strategies 35

Configuring Connection Pool through GUI

Similarly now click at the item Data source, right pane would show the entries
required for data source setup.

Sun ONE Application Server 7 specific deployment descriptor sun-web.xml has to
be modified accordingly.

For example if a new data source is configured for the iBank Application, the
sun-web.xml would have following entries.

<!DOCTYPE web-app PUBLIC '-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN' 'Http://localhost:8000/sun-web-app_2_3.dtd'>

<sun-web-app>

<resource-ref>

<res-ref-name>jdbc/iBank</res-ref-name>

<jndi-name>jdbc/iBank</jndi-name>

<default-resource-principal>

<name>ibank_user</name>

<password>ibank_user</password>

Migration Issues From Sun ONE Application Server 6.x to 7

36 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

</default-resource-principal>

</resource-ref>

</sun-web-app>

Looking Up the Data Source Via JNDI To Obtain a Connection
To obtain a connection from a data source, the process is as follows:

• Obtain an initial JNDI context

• Obtain a reference to the data source by using a JNDI lookup

• Obtain a connection using this referen

1. Obtaining the initial JNDI context

To guarantee portability between different environments, the code used to
retrieve an InitialContext object (in a servlet, in a JSP page, or an EJB), should
be simply, as follows:

InitialContext ctx = new InitialContext();

2. Obtaining a data source reference

To obtain a reference to a data source bound to the JNDI context, look up the
data source's JNDI name from the initial context object. The object retrieved in
this way should then be cast as a DataSource type object:

ds = (DataSource)ctx.lookup(JndiDataSourceName);

3. Obtaining the connection

This operation is very simple, and requires the following line of code:

conn = ds.getConnection();

Sun ONE Application Server 6.0/6.5 and 7 both follow the above technique for
obtaining a connection form data source. So to summarize migration does not
require any modification to be made to the code.

Migrating Java Server Pages and JSP Custom
Tag Libraries
Sun ONE Application Server 6.0/6.5 complies with the JSP 1.1 specification and
Sun ONE Application Server 7 complies with the JSP 1.2 specification.

Migration Issues From Sun ONE Application Server 6.x to 7

Chapter 2 Migration Considerations and Strategies 37

JSP 1.2 specification contains many new features as well as corrections and
clarifications of areas that were not quite right in JSP 1.1 specification.

The most significant changes are

• JSP 1.2 is based on Servlet 2.3 and Java 2. JSP 1.2 applications will not run on
platforms that only support JDK 1.1. JSP 1.2 is backward compatible with JSP
1.1, so JSP 1.1 application should run without any tweaking in a JSP 1.2
complaint container.

• The definition of XML syntax for a JSP page has been finalized. So a JSP 1.2
complaint container must accept files in both JSP 1.1 format and the new XML
format called as JSP Document.

• Tag libraries can make use of Servlet 2.3 event listeners.

• A new type of validation has been added, for the tag libraries, which validates
JSP pages.

• New options for tag library distribution and deployment have been added.

These changes are basically enhancements and are not required to be made, while
migrating JSP pages from JSP API 1.1 to 1.2.

The implementation of JSP custom tag libraries in Sun ONE Application Server 6.0
and 6.5 complies with the J2EE specification. Consequently, migration of JSP
custom tag libraries to Sun ONE Application Server 7 does not pose any particular
problem, nor require any modifications to be made.

Migrating Servlets
Sun ONE Application Server 6.0 and 6.5 support the Servlet 2.2 API whereas Sun
ONE Application Server 7, supports the Servlet 2.3 API.

Servlet API 2.3 actually leaves the core of servlets relatively untouched; most
changes are concerned with adding new features outside the core.

The most significant features are:

• Servlets now require JDK 1.2 or later

• A filter mechanism has been created

• Application lifecycle events have been added

• New internationalization support has been added

• New error and security attributes have been added

Migration Issues From Sun ONE Application Server 6.x to 7

38 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

• The HttpUtils class has been deprecated

• Several DTD behaviors have been expanded and clarified

These changes are basically enhancements and are not required to be made while
migrating servlets from Servlet API 2.2 to 2.3.

However, if the servlets in the application use JNDI to access resources of the J2EE
application (such as data sources, EJBs, and so forth), some modifications may be
needed in the source files or in the deployment descriptor.

These modifications are explained in detail in the following sections:

• "Obtaining a Data Source from the JNDI Context"

• "Declaring EJBs in the JNDI Context"

One last scenario may mean modifications are required in the servlet code, naming
conflicts may occur with Sun ONE Application Server if a JSP page has the same
name as an existing Java class. In this case, the conflict should be resolved by
modifying the name of the JSP page in question, which may then mean editing the
code of the servlets that call this JSP page. This issue is resolved in Sun ONE
Application Server 7 as it uses new class loader hierarchy as compared to Sun ONE
Application Server 6.0/6.5. In this new scheme, for a given application, one class
loader loads all EJB modules and another class loader loads web module. As these
two loaders do not talk with each other, there would be no naming conflict.

Obtaining a Data Source from the JNDI Context
To obtain a reference to a data source bound to the JNDI context, look up the data
source's JNDI name from the initial context object. The object retrieved in this way
should then be cast as a DataSource type object:

ds = (DataSource)ctx.lookup(JndiDataSourceName);

For detailed information, refer to section “Migrating JDBC Code” in the previous
pages.

Declaring EJBs in the JNDI Context
Please refer to section "Declaring EJBs in the JNDI Context" from Appendix C.

Migration Issues From Sun ONE Application Server 6.x to 7

Chapter 2 Migration Considerations and Strategies 39

EJB Migration
As mentioned in "About Sun ONE Application Server 7", while Sun ONE
Application Server 6.0 and 6.5 support the EJB 1.1 specification, Sun ONE
Application Server 7 also supports the EJB 2.0 specification. The EJB 2.0
specification introduces the following new features and functions to the
architecture:

• Message Driven Beans (MDBs)

• Improvements in Container-Managed Persistence (CMP)

• Container-managed relationships for entity beans with CMP

• Local interfaces

• EJB Query Language (EJB QL)

Although the EJB 1.1 specification will continue to be supported in Sun ONE
Application Server 7, the use of the EJB 2.0 architecture is recommended to
leverage its enhanced capabilities.

To migrate EJB 1.1 to EJB 2.0, please refer to "Appendix C".

EJB Changes Specific to Sun ONE Application
Server 7
Migrating EJB’s from Sun ONE Application server 6.0/6.5 to Sun ONE Application
Server 7 would not require any changes in the EJB code. The following DTD
changes are required.

Session Beans:

• The <!DOCTYPE definition should be modified to point to the latest DTD url
in case of J2EE standard DDs, like ejb-jar.xml.

• Replace the ias-ejb-jar.xml with modified version of this file, named
sun-ejb-jar.xml created manually according to the DDs. See url

<!DOCTYPE sun-ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Sun
ONE Application Server 7 EJB 2.0//EN'
'http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2
_0-0.dtd'>

for details.

Migration Issues From Sun ONE Application Server 6.x to 7

40 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

• In sun-ejb-jar.xml, the JNDI name for all the EJB’s, should prepend ‘ejb/’
in all the JNDI names. This is required as in Sun ONE Application Server 6.5,
the JNDI name of the EJB could only be “ejb/<ejb-name>” where <ejb-name>
is the name of the EJB as declared inside ejb-jar.xml. In Sun ONE
Application Server 7 this has changed as a new tag has been introduced in
sun-ejb-jar.xml inside which the JNDI name of the EJB can be declared. Because
of this flexibility provided by Sun ONE Application Server 7 we advice that the
JNDI name of the EJB should be declared as “ejb/<ejb-name>” inside the
<jndi-name> tag to avoid changing JNDI names throughout the application.

Entity Beans:

• The <!DOCTYPE definition should be modified to point to the latest DTD url in
case of J2EE standard DDs, like ejb-jar.xml.

• Insert <cmp-version> tag with value 1.1 for all CMPs in ejb-jar.xml.

• Replace all the <ejb-name>-ias-cmp.xml files with one
sun-cmp-mappings.xml file, which is created manually. See url

<!DOCTYPE sun-cmp-mappings PUBLIC '-//Sun Microsystems, Inc.//DTD
Sun ONE Application Server 7 OR Mapping //EN'
'http://www.sun.com/software/sunone/appserver/dtds/sun-cmp_mappi
ng_1_0.dtd'>

for details.

• Generate dbschema by using the capture-schema utility in the Sun ONE
Application Server 7 installation’s bin directory and place it above META-INF

folder for the Entity beans.

• ias-ejb-jar.xml should be replaced with its new version named
sun-ejb.jar.xml in Sun ONE Application Server 7.

• In Sun ONE Application Server 6.5, the finders sql was directly embedded
inside the <ejb-name>-ias-cmp.xml, in Sun ONE Application Server 7 this
has changed such that now mathematical expressions are used to declare the
<query-filter> for the various finder methods.

Migrating Web Applications
Sun ONE Application Server 6.0 and 6.5 support servlets (Servlet API 2.2), and JSPs
(JSP 1.1). Sun ONE Application Server 7 on the other hand supports servlets
(Servlet API 2.3) and JSPs (JSP 1.2).

Migration Issues From Sun ONE Application Server 6.x to 7

Chapter 2 Migration Considerations and Strategies 41

Within these environments it is essential to group the different components of an
application (servlets, JSP and HTML pages and other resources) together within an
archive file (J2EE-standard Web application module) before you can deploy it on
the application server.

According to the J2EE 1.3 specification, a Web application is an archive file (.WAR
file) with the following structure:

• a root directory containing the HTML pages, JSP pages, images and other
"static" resources of the application.

• a META-INF/ directory containing the archive manifest file (MANIFEST.MF)
containing the version information for the SDK used and, optionally, a list of
the files contained in the archive.

• a WEB-INF/ directory containing the application deployment descriptor
(web.xml file) and all the Java classes and libraries used by the application,
organized as follows:

• a classes/ sub-directory containing the tree-structure of the compiled
classes of the application (servlets, auxiliary classes...), organized into
packages.

• a lib/ directory containing any Java libraries (.jar files) used by the
application.

Migrating Web Application Modules
Migrating applications from Sun ONE Application server 6.0/6.5 to Sun ONE
Application Server 7 would not require any changes in the Java/JSP code. The
following changes are, however, still required.

• web.xml

Sun ONE Application Server 7 adheres to J2EE 1.3 standards, according to
which, the web.xml file inside a WAR should adhere to the revised DTD
available at http://java.sun.com/dtd/web-app_2_3.dtd. This DTD
fortunately, is a superset of the previous versions’ DTD, hence only the <!

DOCTYPE definition needs to be changed inside the web.xml, which is to be
migrated. The modified <! DOCTYPE declaration should look like:

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">

• ias-web.xml

In Sun ONE Application Server 7 the name of this file is changed to
sun-web.xml.

Migration Issues From Sun ONE Application Server 6.x to 7

42 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

This XML file is required to declare the Sun ONE Application Server 7 specific
properties/resources that will be required by the web application.

Note: See the next section for some important inclusions to this file.

If the ias-web.xml of the Sun ONE Application Server 6.5 application is
present and does declare Sun ONE Application Server 6.5 specific properties,
then this file needs to be migrated to Sun ONE Application Server 7 standards.
The file name has to be changed to sun-web.xml and other details are available
at

<!DOCTYPE sun-web-app PUBLIC '-//Sun Microsystems, Inc.//DTD Sun
ONE Application Server 7 Servlet 2.3//EN'
'http://www.sun.com/software/sunone/appserver/dtds/sun-web-app_2
_3-0.dtd'>

Once the web.xml and ias-web.xml are migrated in the above-mentioned fashion,
the Web application (.WAR archive) can be deployed from the Sun ONE
Application Server 7’s GUI interface of the admin server or from the command line
utility asadmin, where the deployment command should mention the type of
application as web.

The command line utility asadmin can be invoked by running asadmin.bat file
kept at Sun ONE Application Server 7 installation’s bin directory.

The command at asadmin prompt would be:

asadmin> deploy -u username -w password -H hostname -p adminport
--type web [--contextroot contextroot] [--force=true] [--name
component-name] [--upload=true] [--instance instancename]
filepath

Deployment can also be done from the Sun ONE Studio development environment
as explained in section "Deploying an application in Sun ONE Application Server
7".

Particular setbacks when migrating servlets and JSPs
The actual migration of the components of a Servlet / JSP application from Sun
ONE Application Server 6.0/6.5 to Sun ONE Application Server 7 will not require
any modifications to be made to the component code.

In case if the web-application is using a server resource, for example, a DataSource,
then Sun ONE Application Server 7 requires that this resource be declared inside
the web.xml and correspondingly inside sun-web.xml. For declaring a DataSource
called jdbc/iBank, the <resource-ref> tag as declared inside the web.xml would
look like this:

<resource-ref>

Migration Issues From Sun ONE Application Server 6.x to 7

Chapter 2 Migration Considerations and Strategies 43

<res-ref-name>jdbc/iBank</res-ref-name>

<res-type>javax.sql.XADataSource</res-type>

<res-auth>Container</res-auth>

<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

Corresponding declaration inside the sun-web.xml will look like this:

<?xml version="1.0" encoding="UTF-8"?>

<! DOCTYPE FIX ME: need confirmation on the DTD to be used for
this file

<sun-web-app>

<resource-ref>

<res-ref-name>jdbc/iBank</res-ref-name>

<jndi-name>jdbc/iBank</jndi-name>

</resource-ref> </sun-web-app>

Migrating Enterprise EJB Modules
Sun ONE Application Server 6.0 and 6.5 support the EJB 1.1 API whereas Sun ONE
Application Server 7 supports the EJB 2.0 API. Thereby, both can support:

• Stateful or Stateless Session Beans.

• Entity beans with bean managed persistence (BMP), or container managed
persistence (CMP).

EJB 2.0 API however, introduces a new type of enterprise bean, called a
message-driven bean in addition to the session and entity beans.

J2EE 1.3 specification dictates that the different components of an EJB must be
grouped together in a JAR file with the following structure:

• META-INF/ directory with an XML deployment descriptor named ejb-jar.xml

• The .class files corresponding to the home interface, remote interface, the
implementation class, and the auxiliary classes of the bean with their package.

Sun ONE application servers observe this archive structure. However, the EJB 1.1
specification leaves each EJB container vendor to implement certain aspects as they
see fit:

Migration Issues From Sun ONE Application Server 6.x to 7

44 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

• Database persistence of CMP EJBs (particularly the configuration of mapping
between the bean's CMP fields and columns in a database table).

• Implementation of the custom finder method logic for CMP beans.

As we might expect, Sun ONE Application Server 6.0 or 6.5 and Sun ONE
Application Server 7 diverge on certain points, which means that when migrating
an application certain aspects require particular attention. Some XML files have to
be modified:

• The <!DOCTYPE definition should be modified to point to the latest DTD url in
case of J2EE standard DDs, like ejb-jar.xml.

• Replace the ias-ejb-jar.xml with modified version of this file, i.e.,
sun-ejb-jar.xml created manually according to the DTDs. See url

<!DOCTYPE sun-ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Sun
ONE Application Server 7 EJB 2.0//EN'
'http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2
_0-0.dtd'>

• Replace all the <ejb-name>-ias-cmp.xml files with one
sun-cmp-mappings.xml file, which is created manually. See url

<!DOCTYPE sun-cmp-mappings PUBLIC '-//Sun Microsystems, Inc.//DTD
Sun ONE Application Server 7 OR Mapping //EN'
'http://www.sun.com/software/sunone/appserver/dtds/sun-cmp_mappi
ng_1_0.dtd'>

• Only for CMP entity beans: Generate dbschema by using the capture-schema
utility in the Sun ONE Application Server 7 installation’s bin directory and
place it above META-INF folder for the Entity beans.

Migrating Enterprise Applications
According to the J2EE specifications, an enterprise application is an EAR file,
which must have the following structure:

• a META-INF/ directory containing the XML deployment descriptor of the J2EE
application called application.xml

• the .JAR and .WAR archive files for the EJB modules and Web module of the
enterprise application, respectively.

In the application deployment descriptor, we define the modules that make up the
enterprise application, and the Web application's context root.

Migration Issues From Sun ONE Application Server 6.x to 7

Chapter 2 Migration Considerations and Strategies 45

Sun ONE Application server 6.0/6.5 and 7 primarily supports the J2EE model
wherein applications are packaged in the form of an enterprise archive (EAR) file
(extension .ear). The application is further subdivided into a collection of J2EE
modules, packaged into Java archives (JAR, extension .jar) for EJBs and web
archives (WAR, extension .war) for servlets and JSPs.

It is therefore essential to follow the steps listed here before deploying an
enterprise application:

• Package EJBs in one or more EJB modules,

• Package the components of the Web application in a Web module,

• Assemble the EJB modules and Web modules in an enterprise application
module

• Define the name of the enterprise application's root context, which will
determine the URL for accessing the application.

Note: Sun ONE Application Server 7 uses a new class loader hierarchy as
compared to Sun ONE Application Server 6.0/6.5. In the new scheme of things, for
a given application, one class loader loads all EJB modules and another class loader
loads web modules. These two are related in a parent child hierarchy where the
JAR module class loader is the parent module of the WAR module class loader.
Hence all classes loaded by the JAR class loader are available/ accessible to the
WAR module but the reverse is not true. Hence, suppose there is a certain class
which is required by the JAR as well as the WAR, then it should be packaged inside
the JAR module only. If this guideline is not followed it would lead to class
conflicts hence ClassCastException.

Application root context and access URL
There is one particular difference between Sun ONE Application Server 6.0/6.5
and Sun ONE Application Server 7, concerning the applications access URL (root
context of the application's Web module):

If AppName is the name of the root context of an application deployed on a server
called hostname, then the access URL for this application will differ depending on
the application server used:

• With Sun ONE Application Server 6.0 or 6.5, which is always used jointly with
a Web front-end, the access URL for the application will take the following
form (assuming the Web server is configured on the standard HTTP port, 80):

http://hostname/NASApp/AppName/

• With Sun ONE Application Server 7, the URL will take the form:

Migrating Example: iBank

46 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

http://hostname:port/AppName/

The TCP port used as default by Sun ONE Application Server 7 is port 80.

Although the difference in access URLs between Sun ONE Application Server
6.0/6.5 and Sun ONE Application Server 7 may appear minor, it can however be
problematical when migrating applications that make use of absolute URL
references. In such cases, it will be necessary to edit the code to update any
absolute URL references so that they are no longer prefixed with the specific
marker used by the Web Server plug-in for Sun ONE Application Server 6.0/6.5.

Migrating Proprietary Extensions
A number of classes proprietary to the Sun ONE Application Server 6.0/ 6.5
environment may have been used in applications. Some of the proprietary Sun
ONE packages used by Sun ONE Application Server 6.x are listed below:

• com.iplanet.server.servlet.extension

• com.kivasoft.dlm

• com.iplanetiplanet.server.jdbc

• com.kivasoft.util

• com.netscape.server.servlet.extension

• com.kivasoft

• com.netscape.server

These APIs are not supported in Sun ONE Application Server 7. Applications using
any classes belonging to the above package will have to be re written such that the
applications use standard J2EE APIs. Applications using Custom JSP tags and UIF
framework also needs to be rewritten to use standard J2EE API.

Migrating Example: iBank
In this section we describe the process for migrating the main components of a
typical J2EE application from Sun ONE Application Server 6.0 and 6.5 to Sun ONE
Application Server 7. For each aspect we highlight any problems posed by
migration, and suggest practical solutions to overcome these.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 47

For this migration process, the J2EE application presented is called ‘iBank’ and is
based on the actual migration of the iBank application from the Sun ONE
Application Server 6.0 and 6.5 versions to Sun ONE Application Server 7. iBank
simulates an online banking service and covers all of the aspects traditionally
associated with a J2EE application.

The sensitive points of the J2EE specification covered by the iBank application are
summarized below:

• Servlets, especially with redirection to JSP pages (model-view-controller
architecture)

• JSP pages, especially with static and dynamic inclusion of pages

• JSP custom tag libraries

• Creation and management of HTTP sessions

• Database access through the JDBC API

• Enterprise JavaBeans: Stateful and Stateless session beans, CMP and BMP
entity beans.

• Assembly and deployment in line with the standard packaging methods of the
J2EE application

The iBank application is presented in detail in Appendix A - iBank Application
specification.

The iBank Application can be migrated to Sun ONE Application Server 7 by
manually changing the deployment descriptors or using Sun ONE Studio or using
Sun ONE Migration Tool. The recommended process among the above three is the
Sun ONE Migration Tool. If the migration has to be carried out without converting
CMP’s to 2.0, then follow the section "Manual Migration of iBank Application" or
use Sun ONE Migration Tool.

In this guide the Manual Migration process and the migration using Sun ONE
Studio are discussed. The Automatic migration procedure, using Sun ONE
Migration Tool for iBank example, is discussed in the documentation provided
with the Migration Tool itself.

Manual Migration of iBank Application
The manual migration does not require any major changes in the source code as
Sun ONE Application Server 7 supports CMP 1.1. However manual migration of
the application would require a few changes to be made in the following aspects:

Migrating Example: iBank

48 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

Web application changes
Migrating iBank from Sun ONE Application server 6.0/6.5 to Sun ONE
Application Server 7 would not require any changes in the web application part of
the iBank application. Delete the ias-web.xml file from the source directory, as
there is no information in this file that can go inside its counterpart in the Sun ONE
Application Server 7 Deployment descriptor, the sun-web.xml file. The web.xml

requires no changes.

However, generically speaking, if there is some information inside the web.xml
that needs to be mapped to the Server specific resources, then a declaration in
sun-web.xml would have been required in that case. For example, if the web.xml
file had declared a javax.sql.Datasource type resource reference, it would be
mandatory to map it to the JNDI name of the actual DataSource on the Sever,
inside the sun-web.xml.

The migrator needs to create the new sun-web.xml. The creation process is outlined
below:

1. Create a new XML file which has the following DOCTYPE definition on top:

<!DOCTYPE sun-web-app PUBLIC '-//Sun Microsystems, Inc.//DTD Sun
ONE Application Server 7 Servlet 2.3//EN'
'http://www.sun.com/software/sunone/appserver/dtds/sun-web-app_2
_3-0.dtd'>

Save this file as “sun-web.xml”.

2. The root tag of this XML file, as evident from the DOCTYPE definition, is
sun-web. In the DTD, this element is defined as

<!ELEMENT sun-web-app (security-role-mapping*, servlet*,
session-config?, resource-env-ref*, resource-ref*, ejb-ref*,
cache?, class-loader?, jsp-config?, locale-charset-info?,
property*)>

From the above declaration it is clear that all tags are optional so a default
sun-web.xml would look something like:

<!DOCTYPE sun-web-app SYSTEM
"http://www.sun.com/software/sunone/appserver/dtds/sun-web-app_2
_3-0.dtd">

</sun-web-app>

3. For declaring any resource references, the element declaration would be:

<!ELEMENT resource-ref (res-ref-name, jndi-name, default-resource-principal?)>
where the sub elements are:

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 49

<!ELEMENT res-ref-name (#PCDATA)>

<!ELEMENT default-resource-principal (name, password)>

<!ELEMENT jndi-name (#PCDATA)>

In case of ibank, resource reference details, sun-web.xml would be:

<sun-web-app>

<resource-ref>

<res-ref-name>jdbc/IBank</res-ref-name>

<jndi-name>jdbc/IBank</jndi-name>

<default-resource-principal>

<name>ibank_user</name>

<password>ibank_user</password>

</default-resource-principal>

</resource-ref>

</sun-web-app>

EJB Changes
Migrating iBank from Sun ONE Application server 6.5 to Sun ONE Application
Server 7 would not require any changes in the EJB code.

Session Beans:
In ejb-jar.xml: The <!DOCTYPE definition should be modified to point to the
latest DTD url in case of ejb-jar.xml. This new definition should look like this:

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN' 'http://java.sun.com/dtd/ejb-jar_2_0.dtd'>

In ias-ejb-jar.xml: The ias-ejb-jar.xml in Sun ONE Application server 6.5
has been replaced by sun-ejb-jar.xml in Sun ONE Application server 7. Since
the DTDs for these two XML files are radically different, the migrator needs to
create the new sun-ejb-jar.xml by extracting relevant information from the
ejb-jar.xml and ias-ejb-jar.xml. The creation process is outlined below:

1. Create a new XML file which has the following DOCTYPE definition on top:

<!DOCTYPE sun-ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Sun
ONE Application Server 7 EJB 2.0//EN'
'http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2
_0-0.dtd'>

Save this file as “sun-ejb-jar.xml”, along with the modified ejb-jar.xml.

Migrating Example: iBank

50 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

2. The root tag of this XML file, as evident from the DOCTYPE definition, is
sun-ejb-jar. In the DTD, this element is defined as

<!ELEMENT sun-ejb-jar (security-role-mapping*,enterprise-beans)>

The security-role-mapping tag is meant for mapping the security roles
declared in the ejb-jar.xml. As in the iBank application, there is no security
declared in the ejb-jar.xml file, we will skip the security-role-mapping optional
tag and focus on the enterprise-beans tag. Right now, the sun-ejb-jar.xml
file should look like.

<sun-ejb-jar>

<enterprise-beans>

</enterprise-beans>

</sun-ejb-jar>

NOTE: We have not included the header part of the document, namely the
XML declaration and DOCTYPE definition, here for brevity.

3. The enterprise-beans element is defined in the DTD as

<!ELEMENT enterprise-beans (name?, unique-id?, ejb*,
pm-descriptors?, cmp-resource?)>

The optional name element should contain the canonical name of the
enterprise-beans. You may give it some name. We will skip this tag.

The unique-id element is used by the Sun ONE Application Server and is
inserted by the Application Server automatically at the time of application deployment.
We will skip this tag.

The EJB element is the tag in which we are interested. This is the element
describing runtime bindings for a single EJB. It is defined in the DTD as

<!ELEMENT ejb (ejb-name, jndi-name?, ejb-ref*, resource-ref*,
resource-env-ref*, pass-by-reference?, cmp?, principal?,
mdb-connection-factory?, jms-durable-subscription-name?,
jms-max-messages-load?, ior-security-config?,
is-read-only-bean?, refresh-period-in-seconds?, commit-option?,
gen-classes?, bean-pool?, bean-cache?)>

In our case, the ejb element will contain the ejb-name element. The ejb-name
element will contain the canonical name of the EJB. This name should be the
same as declared inside the ejb-name element of the ejb-jar.xml for that EJB.
It will also contain the jndi-name of the EJB. One of the differences between Sun

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 51

ONE Application Server 6.5 and 7 is the flexibility of the latter in providing
freedom to the bean developer to have different ejb-name and jndi-name of an
EJB. In Sun ONE Application Server 6.5, the jndi name of an EJB by default was
ejb/<ejb-name>.

To allow for smooth migration, we need to keep the jndi-names of the EJB and
all other resources to be same as they were on Sun ONE Application Server 6.5.
Hence, we declare the ejb-name of all the EJBs’ to be ejb/<ejb-name>.

Using the logic described above, the sun-ejb-jar.xml now should look like

<sun-ejb-jar>

<enterprise-beans>

<ejb>

<ejb-name>BankTeller</ejb-name>

<jndi-name>ejb/BankTeller</jndi-name>

</ejb>

<ejb>

<ejb-name>InterestCalculator</ejb-name>

<jndi-name>ejb/InterestCalculator</jndi-name>

</ejb>

</enterprise-beans>

</sun-ejb-jar>

4. For each <ejb-ref> element inside the ejb-jar.xml, there should be a
corresponding <ejb-ref> element inside the sun-ejb-jar.xml. The
<ejb-ref> element inside the ejb-jar.xml is used to declare all the EJBs
referenced from inside the bean class of that EJB. While the bean class code will
reference the EJB by using its <ejb-ref-name>, this <ejb-ref-name> has to be
mapped to the actual <jndi-name> of the bean on the Application Server.
Hence, this serves as a mechanism to add a layer of abstraction between the
name referenced by the EJB implementation and the actual JNDI name of the
bean.

Using the logic explained above, let us examine the BankTeller EJB. In the
ejb-jar.xml, there are two <ejb-ref> declarations inside this EJB. The first
one is for the Customer EJB (an entity bean in the Entity Bean module). As we
have explained in point #3 above, the JNDI names of all EJBs will be kept as
ejb/<ejb-name>, we will add this declaration inside the sun-ejb-jar.xml

Migrating Example: iBank

52 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

<sun-ejb-jar>

<enterprise-beans>

<ejb>

<ejb-name>BankTeller</ejb-name>

<jndi-name>ejb/BankTeller</jndi-name>

<ejb-ref>

<ejb-ref-name>Customer</ejb-ref-name>

<jndi-name>ejb/Customer</jndi-name>

</ejb-ref>

</ejb>

<ejb>

<ejb-name>InterestCalculator</ejb-name>

<jndi-name>ejb/InterestCalculator</jndi-name>

</ejb>

</enterprise-beans>

</sun-ejb-jar>

Similarly, we will add a similar <ejb-ref> tag for Account EJB. Since the
InterestCalculator bean does not have a <ejb-ref> tag inside the
ejb-jar.xml, it is not required inside the sun-ejb-jar.xml also. By now, the
sun-ejb-jar.xml should look like this

<sun-ejb-jar>

<enterprise-beans>

<ejb>

<ejb-name>BankTeller</ejb-name>

<jndi-name>ejb/BankTeller</jndi-name>

<ejb-ref>

<ejb-ref-name>Customer</ejb-ref-name>

<jndi-name>ejb/Customer</jndi-name>

</ejb-ref>

<ejb-ref>

<ejb-ref-name>Account</ejb-ref-name>

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 53

<jndi-name>ejb/Account</jndi-name>

</ejb-ref>

</ejb>

<ejb>

<ejb-name>InterestCalculator</ejb-name>

<jndi-name>ejb/InterestCalculator</jndi-name>

</ejb>

</enterprise-beans>

</sun-ejb-jar>

5. The ejb element would contain element pass-by-reference <!ELEMENT
pass-by-reference (#PCData).

pass-by-reference elements controls use of Pass by Reference semantics. The
EJB specification requires pass by value, which will be the default mode of
operation. This can be set to true for non-compliant operation and possibly
higher performance. It can apply to all the enclosed EJB modules. Allowed
values are true and false. Default will be false.

6. The ejb element would also have element bean-cache.

<!ELEMENT bean-cache (max-cache-size?,
is-cache-overflow-allowed?, cache-idle-timeout-in-seconds?,
removal-timeout-in-seconds?, victim-selection-policy?)>

This element is used only for stateful session beans and entity beans. In iBank,
only BankTeller session bean would have this entry.

In this tag, max-cache-size defines the maximum number of beans in the cache.
cache-idle-timeout-in-seconds specifies the maximum time that a stateful session
bean or entity bean is allowed to be idle in the cache. After this time, the bean is
passivated to backup store. This is a hint to server. Default value for
cache-idle-timeout-in-seconds is 10 minutes.

The amount of time that the bean remains passivated (i.e. idle in the backup
store) is controlled by removal-timeout-in-seconds parameter. Note that if a bean
was not accessed beyond removal-timeout-in-seconds, then it will be removed
from the backup store and hence will not be accessible to the client. The Default
value for removal-timeout-in-seconds is 60min.

With the above entries, sun-ejb-jar.xml should look like this:

<sun-ejb-jar>

<enterprise-beans>

Migrating Example: iBank

54 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

<ejb>

<ejb-name>BankTeller</ejb-name>

<jndi-name>ejb/BankTeller</jndi-name>

<ejb-ref>

<ejb-ref-name>Customer</ejb-ref-name>

<jndi-name>ejb/Customer</jndi-name>

</ejb-ref>

<ejb-ref>

<ejb-ref-name>Account</ejb-ref-name>

<jndi-name>ejb/Account</jndi-name>

</ejb-ref>

<pass-by-reference>false</pass-by-reference>

<bean-cache>

<cache-idle-timeout-in-seconds>

0

</cache-idle-timeout-in-seconds>

<removal-timeout-in-seconds>

0

</removal-timeout-in-seconds>

</bean-cache>

</ejb>

<ejb>

<ejb-name>InterestCalculator</ejb-name>

<jndi-name>ejb/InterestCalculator</jndi-name>

<pass-by-reference>false</pass-by-reference>

</ejb>

</enterprise-beans>

</sun-ejb-jar>

7. The element used only for Stateless session bean and message-driven bean
pools is bean-pool.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 55

<!ELEMENT bean-pool (steady-pool-size?, resize-quantity?,
max-pool-size?, pool-idle-timeout-in-seconds?,
max-wait-time-in-millis?)>

steady-pool-size specified the initial and minimum number of beans that must be
maintained in the pool.

resize-quantity specifies the number of beans to be created or deleted when the
pool is being serviced by the pool manager.

max-pool-size specifies the maximum pool size. Valid values are from 0 to
MAX_INTEGER.

max-pool-size spiffiest the maximum pool size.

pool-idle-timeout-in-seconds specifies the maximum time that a stateless session
bean or message-driven bean is allowed to be idle in the pool.

Finally the sun-ejb-jar.xml would having following shape:

<sun-ejb-jar>

<enterprise-beans>

<ejb>

<ejb-name>BankTeller</ejb-name>

<jndi-name>ejb/BankTeller</jndi-name>

<ejb-ref>

<ejb-ref-name>Customer</ejb-ref-name>

<jndi-name>ejb/Customer</jndi-name>

</ejb-ref>

<ejb-ref>

<ejb-ref-name>Account</ejb-ref-name>

<jndi-name>ejb/Account</jndi-name>

</ejb-ref>

<pass-by-reference>false</pass-by-reference>

<bean-cache>

<cache-idle-timeout-in-seconds>

0

</cache-idle-timeout-in-seconds>

Migrating Example: iBank

56 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

<removal-timeout-in-seconds>

0

</removal-timeout-in-seconds>

</bean-cache>

</ejb>

<ejb>

<ejb-name>InterestCalculator</ejb-name>

<jndi-name>ejb/InterestCalculator</jndi-name>

<pass-by-reference>false</pass-by-reference>

<bean-pool>

<pool-idle-timeout-in-seconds>

0

</pool-idle-timeout-in-seconds>

</bean-pool>

</ejb>

</enterprise-beans>

</sun-ejb-jar>

Entity Beans:

In ejb-jar.xml: The <!DOCTYPE definition should be modified to point to the
latest DTD url in case of ejb-jar.xml. This new definition should look like this:

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD
Enterprise JavaBeans 2.0//EN'
'http://java.sun.com/dtd/ejb-jar_2_0.dtd'>

Insert <cmp-version> tag with value 1.1 for all CMPs beans in ejb-jar.xml.

Entry for entity bean would look like:

<entity>

<description>Account CMP entity bean</description>

<ejb-name>Account</ejb-name>

<home>com.sun.bank.ejb.entity.AccountHome</home>

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 57

<remote>com.sun.bank.ejb.entity.Account</remote>

<ejb-class>com.sun.bank.ejb.entity.AccountEJB</ejb-class>

<persistence-type>Container</persistence-type>

<prim-key-class>

com.sun.bank.ejb.entity.AccountPK

</prim-key-class>

<reentrant>False</reentrant>

<cmp-version>1.x</cmp-version>

<cmp-field>

<field-name>branchCode</field-name></cmp-field>

<cmp-field>

<field-name>accTypeId</field-name></cmp-field>

<cmp-field>

<field-name>accBalance</field-name></cmp-field>

<cmp-field>

<field-name>custNo</field-name></cmp-field>

<cmp-field>

<field-name>accNo</field-name></cmp-field>

</entity>

similarly all the CMP beans would have this entry.

Similar to Session Beans, the ias-ejb-jar.xml in Sun ONE Application server 6.5
has been replaced by sun-ejb-jar.xml in Sun ONE Application server 7. Since the
DTDs for this two XML files are radically different, the migrator needs to create the
new sun-ejb-jar.xml by extracting relevant information from the ejb-jar.xml
and ias-ejb-jar.xml. The creation process is outlined below:

1. Create a new XML file which has the following DOCTYPE definition on top:

<!DOCTYPE sun-ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Sun
ONE Application Server 7 EJB 2.0//EN'
'http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2
_0-0.dtd'>

Save this file as “sun-ejb-jar.xml”, along with the modified ejb-jar.xml.

Migrating Example: iBank

58 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

2. The root tag of this XML file, as evident from the DOCTYPE definition, is
sun-ejb-jar. In the DTD, this element is defined as

<!ELEMENT sun-ejb-jar (security-role-mapping*, enterprise-beans)
>

The security-role-mapping tag is meant for mapping the security roles
declared in the ejb-jar.xml. As in the iBank application, there is no security
declared in the ejb-jar.xml file, we will skip the security-role-mapping
optional tag and focus on the enterprise-beans tag. Right now, the
sun-ejb-jar.xml file should look like.

<sun-ejb-jar>

<enterprise-beans>

</enterprise-beans>

</sun-ejb-jar>

NOTE: We have not included the header part of the document, namely the
XML declaration and DOCTYPE definition, here for brevity.

3. The enterprise-beans element is defined in the DTD as

<!ELEMENT enterprise-beans (name?, unique-id?, ejb*,
pm-descriptors?, cmp-resource?)>

The optional name element should contain the canonical name of the
enterprise-beans. You may give it some name. We will skip this tag.

The unique-id element is used by the Sun ONE Application Server and is
inserted by the Application Server automatically at the time of application
deployment. We will skip this tag.

The ejb element is the tag in which we are interested. This is the element
describing runtime bindings for a single EJB. It is defined in the DTD as

<!ELEMENT ejb (ejb-name, jndi-name?, ejb-ref*, resource-ref*,
resource-env-ref*, pass-by-reference?, cmp?, principal?,
mdb-connection-factory?, jms-durable-subscription-name?,
jms-max-messages-load?, ior-security-config?,
is-read-only-bean?, refresh-period-in-seconds?, commit-option?,
gen-classes?, bean-pool?, bean-cache?)>

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 59

In our case, the ejb element will contain the ejb-name element. The ejb-name
element will contain the canonical name of the EJB. This name should be the
same as declared inside the ejb-name element of the ejb-jar.xml for that EJB.
It will also contain the jndi-name of the EJB. One of the differences between Sun
ONE Application Server 6.5 and 7 is the flexibility of the latter in providing
freedom to the bean developer to have different ejb-name and jndi-name of an
EJB. In Sun ONE Application Server 6.5, the JNDI name of an EJB by default
was ejb/<ejb-name>.

To allow for smooth migration, we need to keep the jndi-names of the EJB and
all other resources to be same as they were on Sun ONE Application Server 6.5.
Hence, we declare the ejb-name of all the ejbs’ to be ejb/<ejb-name>.

Using the logic described above, the sun-ejb-jar.xml now should look like

<sun-ejb-jar>

<enterprise-beans>

<ejb>

<ejb-name> Account</ejb-name>

<jndi-name> ejb/Account</jndi-name>

</ejb>

<ejb> --- </ejb>

<ejb> --- </ejb>

other ejb’s

<ejb> --- </ejb>

<ejb> --- </ejb>

</enterprise-beans>

</sun-ejb-jar>

4. The ejb element would contain element pass-by-reference <!ELEMENT
pass-by-reference (#PCData).

pass-by-reference elements control use of Pass by Reference semantics. EJB spec
requires pass by value, which will be the default mode of operation. This can
be set to true for non-compliant operation and possibly higher performance. It
can apply to all the enclosedEJBmodules. Allowed values are true and false.
Default will be false.

Migrating Example: iBank

60 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

5. In case of CMP entity beans, element cmp is declared, which describes runtime
information for a CMP EntityBean object for EJB1.1 and EJB2.0 beans.

<!ELEMENT cmp (mapping-properties?, is-one-one-cmp?,
one-one-finders?)>

In this mapping-properties contains the location of the persistence vendor
specific O/R mapping file. is-one-one-cmp field is used to identify CMP 1.1 with
old descriptors. This contains the boolean true if it is CMP 1.1. one-one-finders
contains the finders for CMP 1.1.

This root element finder contains the finder for CMP 1.1 with a method-name
and query parameters.

<!ELEMENT finder (method-name, query-params?, query-filter?,
query-variables?)>

Element method-name contains the method name for the query field. Element
query-params contains the query parameters for CMP 1.1 finder.

query-filter is an optional element which contains the query filter for CMP 1.1
finder.

After making the above entries in iBank, sun-ejb-jar would look like:

<sun-ejb-jar>

<enterprise-beans>

<ejb>

<ejb-name> Account</ejb-name>

<jndi-name> ejb/Account</jndi-name>

<pass-by-reference>false</pass-by-reference>

<cmp>

<mapping-properties>

META-INF/sun-cmp-mappings.xml

</mapping-properties>

<is-one-one-cmp>true</is-one-one-cmp>

<one-one-finders>

<finder>

<method-name>

findOrderedAccountsForCustomer

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 61

</method-name>

<query-params>int custNo</query-params>

<query-filter>

custNo == custNo

</query-filter>

</finder>

</one-one-finders>

</cmp>

</ejb>

<ejb> --- </ejb>

<ejb> --- </ejb>

other ejb’s

<ejb> --- </ejb>

<ejb> --- </ejb>

</enterprise-beans>

</sun-ejb-jar>

Account is the only entity bean having a finder other than primary key. So the
finder entry shown above would only be in the case of Account bean.

6. The <!ELEMENT commit-option (#PCDATA)> specifies option for committing.

7. The ejb element would also have an element bean-cache.

<!ELEMENT bean-cache (max-cache-size?,
is-cache-overflow-allowed?, cache-idle-timeout-in-seconds?,
removal-timeout-in-seconds?, victim-selection-policy?)>

This element is used only for stateful session beans and entity beans. In this
tag, max-cache-size defines the maximum number of beans in the cache.
cache-idle-timeout-in-seconds specifies the maximum time that a stateful session
bean or an entity bean is allowed to be idle in the cache. After this time, the
bean is passivated to backup store. This is a hint to server. Default value for
cache-idle-timeout-in-seconds is 10 minutes.

Migrating Example: iBank

62 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

The amount of time that the bean remains passivated (i.e. idle in the backup
store) is controlled by removal-timeout-in-seconds parameter. Note that if a bean
was not accessed beyond removal-timeout-in-seconds, then it will be removed
from the backup store and hence will not be accessible to the client. The Default
value for removal-timeout-in-seconds is 60min.

With the above entries, sun-ejb-jar.xml should look like this:

<sun-ejb-jar>

<enterprise-beans>

<ejb>

<ejb-name> Account</ejb-name>

<jndi-name> ejb/Account</jndi-name>

<pass-by-reference>false</pass-by-reference>

<cmp>

<mapping-properties>

META-INF/sun-cmp-mappings.xml

</mapping-properties>

<is-one-one-cmp>true</is-one-one-cmp>

<one-one-finders>

<finder>

<method-name>

findOrderedAccountsForCustomer

</method-name>

<query-params>int custNo</query-params>

<query-filter>

custNo == custNo

</query-filter>

</finder>

</one-one-finders>

</cmp>

<commit-option>C</commit-option>

<bean-cache>

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 63

<max-cache-size>60</max-cache-size>

<cache-idle-timeout-in-seconds>

0

</cache-idle-timeout-in-seconds>

</bean-cache>

</ejb>

<ejb> --- </ejb>

<ejb> --- </ejb>

other ejb’s

<ejb> --- </ejb>

<ejb> --- </ejb>

</enterprise-beans>

</sun-ejb-jar>

8. In <!ELEMENT enterprise-beans (name?, unique-id?, ejb*,

pm-descriptors?, cmp-resource?)>

Element pm-descriptors would be <!ELEMENT pm-descriptors

(pm-descriptor+, pm-inuse)> Persistence Manager descriptors contain one
or more pm descriptors, but only of them must be in use at any given time.

pm-descriptor describes the properties for the persistence manager associated
with entity bean. pm-identifier element describes the vendor who provided the
PM implementation. pm-version further specifies which version of PM vendor
product to be used. pm-config specifies the vendor specific config file to be
used. pm-class-generator specifies the vendor specific concrete class generator.
This is the name of the class specific to a vendor. pm-mapping-factory specifies
the vendor specific mapping factory. This is the name of the class specific to a
vendor. pm-insue specifies whether this particular PM must be used or not.

Element cmp-resource contains the database to be used for storing CMP beans in
an ejb-jar. <!ELEMENT cmp-resource (jndi-name,

default-resource-principal?)>

Element jndi-name Specifies the JNDI name string. Element
default-resource-principal has element name and password to be used when
none are specified while accessing a resource.

Migrating Example: iBank

64 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

<!ELEMENT default-resource-principal (name, password)>

Finally sun-ejb-jar.xml would look like:

<sun-ejb-jar>

<enterprise-beans>

<ejb>

<ejb-name> Account</ejb-name>

<jndi-name> ejb/Account</jndi-name>

<pass-by-reference>false</pass-by-reference>

<cmp>

<mapping-properties>

META-INF/sun-cmp-mappings.xml

</mapping-properties>

<is-one-one-cmp>true</is-one-one-cmp>

<one-one-finders>

<finder>

<method-name>

findOrderedAccountsForCustomer

</method-name>

<query-params>int custNo</query-params>

<query-filter>

custNo == custNo

</query-filter>

</finder>

</one-one-finders>

</cmp>

<commit-option>C</commit-option>

<bean-cache>

<max-cache-size>60</max-cache-size>

<cache-idle-timeout-in-seconds>

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 65

0

</cache-idle-timeout-in-seconds>

</bean-cache>

</ejb>

<ejb> --- </ejb>

<ejb> --- </ejb>

other ejb’s

<ejb> --- </ejb>

<ejb> --- </ejb>

<pm-descriptors>

<pm-descriptor>

<pm-identifier>IPLANET</pm-identifier>

<pm-version>1.0</pm-version>

<pm-class-generator>

com.iplanet.ias.persistence.

internal.ejb.ejbc.JDOCodeGenerator

</pm-class-generator>

<pm-mapping-factory>

com.iplanet.ias.cmp.NullFactory

</pm-mapping-factory>

</pm-descriptor>

<pm-inuse>

<pm-identifier>IPLANET</pm-identifier>

<pm-version>1.0</pm-version></pm-inuse>

</pm-descriptors>

<cmp-resource>

<jndi-name>jdo/pmf</jndi-name>

</cmp-resource>

</enterprise-beans>

</sun-ejb-jar>

Migrating Example: iBank

66 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

Generate dbschema by using the capture-schema utility in the Sun ONE Application
Server 7 installation’s bin directory. Execute capture-schema.bat file kept in bin
directory and specify the valid inputs for the database URL, username, password
and specify the tables for which schema has to be generated. By default, schema
has to be generated for all the tables used by the application. In case of iBank, there
are five tables for which schema has to be generated. Name this schema file as
myschema.dbschema. The tables used in iBank are:

ACCOUNT

ACCOUNT_TYPE

BRANCH

CUSTOMER

TRANSACTION_HISTORY

TRANSACTION_TYPE

Place this file myschema.dbschema above META-INF folder for the
Entity beans.

In <ejb-name>-ias-cmp.xml: Replace all the <ejb-name>-ias-cmp.xml files in
Sun ONE Application Server 6.0/6.5 with one sun-cmp-mappings.xml file. This
file maps (at least one) set of beans to tables and columns in a specific db schema.
Since the DTDs for this two XML files are radically different, the migrator has to
actually create a new file following the steps given below:

1. Create a new XML file which has the following DOCTYPE definition on top:

<!DOCTYPE sun-cmp-mappings PUBLIC '-//Sun Microsystems, Inc.//DTD
Sun ONE Application Server 7 OR Mapping //EN'
'http://www.sun.com/software/sunone/appserver/dtds/sun-cmp_mappi
ng_1_0.dtd'>

Save this file as “sun-cmp-mappings.xml”.

2. The root tag of this XML file, as evident from the DOCTYPE definition, is
sun-cmp-mappings. In the DTD, this element is defined as:

<!ELEMENT sun-cmp-mappings (sun-cmp-mapping+) >

Element sun-cmp-mapping would be :

<!ELEMENT sun-cmp-mapping (schema, entity-mapping+) >

Here element schema is the path name to the schema file.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 67

A cmp bean has a name, a primary table, one or more fields, zero or more
relationships, and zero or more secondary tables, plus flags for consistency
checking. Element entity-mapping has following elements

<!ELEMENT entity-mapping (ejb-name, table-name,
cmp-field-mapping+, cmr-field-mapping*, secondary-table*,
consistency?)>

Element ejb-name is the EJB name from standard EJB-jar DTD. Element
table-name is the name of the database table. A cmp-field-mapping has a field, one
or more columns that it maps to cmr-field mapping. A cmr field has a name and
one or more column pairs that define the relationship. Element secondary-table
is for secondary table used. In case of iBank, no secondary table is used.

Right now, the sun-cmp-mappings.xml file with entries for Account entity
bean should look like:

<sun-cmp-mapping>

<schema>mySchema</schema>

<entity-mapping>

<ejb-name>Account</ejb-name>

<table-name>ACCOUNT</table-name>

<cmp-field-mapping>

<field-name>custNo</field-name>

<column-name>CUST_NO</column-name>

</cmp-field-mapping>

<cmp-field-mapping>

<field-name>branchCode</field-name>

<column-name>BRANCH_CODE</column-name>

</cmp-field-mapping>

<cmp-field-mapping>

<field-name>accTypeId</field-name>

<column-name>ACCTYPE_ID</column-name>

</cmp-field-mapping>

<cmp-field-mapping>

Migrating Example: iBank

68 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

<field-name>accNo</field-name>

<column-name>ACC_NO</column-name>

</cmp-field-mapping>

<cmp-field-mapping>

<field-name>accBalance</field-name>

<column-name>ACC_BALANCE</column-name>

</cmp-field-mapping>

</entity-mapping>

</sun-cmp-mapping>

NOTE: We have not included the header part of the document, namely the
XML declaration and DOCTYPE definition, here for brevity.

Entries for all the CMP entity beans have to be made.

The above changes can be referenced in file iBankWithCMP1.1.zip provided with
this guide.

Assembling Application for Deployment
Sun ONE Application server 7 primarily supports the J2EE model wherein
applications are packaged in the form of an enterprise archive (EAR) file (extension
.ear). The application is further subdivided into a collection of J2EE modules,
packaged into Java archives (JAR, extension .jar) for EJBs and web archives (WAR,
extension .war) for servlets and JSPs.

So all the JSPs and Servlets should be packaged into WAR file, all EJBs into the JAR
file and finally the WAR and the JAR file together with the deployment descriptors
in to the EAR file. This EAR file is a deployable component.

Deploying iBank application on Sun ONE Application Server 7 using
the asadmin utility
The last stage is to deploy the application on an instance of Sun ONE Application
Server 7. The process for deploying an application is described below:

The Sun ONE Application Server 7 asadmin includes a help section on deployment
that is accessible from the Help menu.

The command line utility asadmin can be invoked by executing asadmin.bat file in
windows and asadmin file in solaris kept at Sun ONE Application Server 7
installation's bin directory. i.e., <Install_dir>/AppServer7/appserv/bin.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 69

At asadmin prompt, the command for deployment would be:

asadmin> deploy -u username -w password -H hostname -p adminport [--type
application|ejb|web|client|connector] [--contextroot contextroot] [--force=true]
[--name component-name] [--upload=true] [--instance instancename] filepath

Restart the server instance and then test the application on the browser by typing
the url ‘http://<machine_name>:<port_number>/IBank’. Test by giving one of the available
user name and password, say username as 'jatkins' and password as 'Monday'.
This should show the main menu page of the ibank application.

Migrating iBank using Sun ONE Studio for Java
4.0
The sample application we defined is called 'iBank' and simulates a basic online
banking service with the following functionality:-

• log on to the online banking service

• view/edit personal details and branch details

• summary view of accounts showing cleared balances

• facility to drill down by account to view individual transaction history

• money transfer service, allowing online transfer of funds between accounts

• compound interest earnings projection over a number of years for a given
principal and annual yield rate.

The major steps to be followed for migrating the iBank application would be as
follows:

• The first and the foremost requirement of this migration is to install Sun ONE
Application Server 7 and Sun ONE Studio.

• Extract the application, which is in a zip format in a local directory.

The source for the iBank application (iBank65.zip) can be found at the
migration site http://www.sun.com/migration/sunonetools.html. Unzipping
the file “iBank65.zip” would create following directory structure:

It would have 4 sub directories ‘Docroot’, ‘SessionContent’,
‘EntityContent’ and ‘Scripts’.

http://www.sun.com/migration/sunonetools.html

Migrating Example: iBank

70 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

❍ ‘Docroot’ would contain Html, Jsp’s and Image files in its root. It would
also contain the source files for servlets, EJBs, etc in the sub-folder
WEB-INF\classes following the package structure com.sun.bank.*. War file
would be generated through the contents of this directory.

❍ ‘SessionContent’ would contain the source code for Session beans
following the package structure com.sun.bank.ejb.session. This directory
would form the EJB module for session beans.

I. ‘EntityContent’ would contain the Entity beans following the
package structure com.sun.bank.ejb.entity. This directory would form
the EJB module for Entity beans.

❍ ‘Scripts’ contain the sql scripts for the database setup.

• Setup the schema for iBank application by executing the sql scripts provided in
the ‘Scripts’ folder. These scripts are for oracle database. These scripts would
create user, create tables and insert data into the tables. Execute the scripts in
the following order

❍ 01_iBank_CreateUser.sql

❍ 02_iBank_CreateTables.sql

❍ 03_iBank_InsertData.sql

Manual migration would involve following steps:

a. Migrate Servlets, JSPs and JSP Custom tag libraries.

b. Migrate Session Beans.

c. Migrate Entity Beans.

d. Migrate JDBC code.

These steps have to be carried out manually and is explained as and when
required in the following sections. If migration tool is used as an option, it has
to be carried out at this point itself. If manual approach is followed then
changes have to be done as and when specified in following sections.

• Prepare Sun ONE Studio for assembling and deploying sample application
‘iBank’

Sun ONE Studio can be invoked through the runide.exe file (runide.sh in
case of Solaris) kept in the <Sun ONE App Server ROOT>/<AppServ>/<SUN

ONE STUDIO FOR JAVA_ROOT>/bin directory.

(Note: Sun ONE Application Server 7 should be up and running before
following the steps below)

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 71

❍ In the explorer window,

❍ Click at the Runtime tab

❍ Click ‘Server Registry’

❍ Click ‘installed servers’

❍ Choose Sun ONE Application Server.

❍ Setup admin server by right clicking at the Sun ONE Application Server
and then selecting ‘Add Admin Server’

❍ Enter details for host (local machine name), port number (by default its
4848), username and password.

❍ Once the admin server is setup, click on it to get the server instance
installed.

❍ Set the server instance as default server by right clicking on the server
instance and selecting option for setting it as default.

• Create web module by following the instructions given in "Creating a Web
application module in Sun ONE Studio for Java".

• Migrate EJBs manually if migration tool is not used as an option for migrating
the application. Follow the section on "EJB Migration", for the manual
migration. This step can be carried out by opening the source code for the EJB’s
in Sun ONE Studio and modifying it.

• Migrate the JDBC code if migration tool is not used as an option to migrate the
application by following the section on "Migrating JDBC Code".

• iBank application has Entity Beans with CMP 1.1, so they have to be converted
to CMP 2.0 by following the manual procedure explained in the section on
"Migrating CMP Entity EJBs" if the application is not migrated using the tool.

If application is migrated through the tool, all the entity beans are migrated
except one, i.e., ‘Account’ entity bean as it has Enumeration used in its code.
The code for this has to be changed manually following the instructions given
in section, "Migrating CMP Entity EJBs". Refer section, "Converting CMP
Entity EJBs from 1.1 to 2.0" for an example of changes to be carried out for
converting CMPs from 1.1 to 2.0.

• Create separate EJB modules for the Entity Beans and the Session Beans by
following the instructions given in section, "Creating an EJB module in Sun
ONE Studio for Java".

Migrating Example: iBank

72 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

• Create Enterprise application by following the instructions given in section,
"Creating an enterprise application in Sun ONE Studio for Java", which would
include the web module as well as the EJB modules. The final output of this
step would be .ear file, which can be deployed.

• Deploy .ear file on Sun ONE Application server 7 by following the instructions
given in section, "Deploying an application in Sun ONE Application Server 7".

Creating a Web application module in Sun ONE Studio for Java
To create a Web application module in Sun ONE Studio for Java, follow the
procedure below:

1. Mount the directory containing the source files i.e, ‘Docroot’ in the Sun ONE
Studio for Java “FileSystems Explorer” window by right clicking at the
Filesystem and choosing option for mount.

2. Create an empty directory, say ‘WarContent’ for the web module in the root
directory structure containing the source files.

3. Mount the newly created directory ‘WarContent’ in the Sun ONE Studio for
Java “FileSystems Explorer” window by right clicking at the Filesystem and
choosing option for mount.

4. Mount the other directories containing the EJBs in the source file directory
structure. i.e., ‘EntityContent’ and ‘SessionContent’.

5. Convert the FileSystem (WarContent) into a Web Module by right clicking at
the folder name and then selecting tools where there is an option for
converting it into WebModule.

6. Copy the source JSP, HTML and image files to the web application root. i.e., to
the directory ‘WarContent’ from the directory ‘Docroot’.

7. Copy servlets and auxiliary class sources to the WEB-INF/classes directory. i.e.,
copy the sub folder ‘com’ in the ‘Docroot’ directory to the WEB-INF/classes
directory of ‘WarContent’ directory.

8. Copy the tag library present in the WEB-INF of the ‘Docroot’ directory to the
WEB-INF of ‘WarContent’ directory.

9. Edit the source code wherever required to migrate it to Sun ONE Application
Server 7 (if it has not been modified through the migration tool), by following
the steps below:

❍ Figure out the JSPs that have to be changed.

❍ Figure out if any custom JSP tags are used in the application.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 73

❍ Open the selected JSP code in Sun ONE Studio by right clicking at the file
and selecting option to open.

❍ Follow the steps given in section "Migrating Java Server Pages and JSP
Custom Tag Libraries" to modify the source.

❍ Similarly migrate the servlets by following the details in section,
"Migrating Servlets".

10. Assemble the application and fill in the deployment descriptor web.xml (in the
WEB-INF/ directory). Click on the web.xml file and edit the properties of it, i.e,
During this assembly phase, configure each servlet, JSP page and JSP tag
library, as well as the EJB or data source references used in the Web
application.

The following screen shots illustrate how this assembly phase is carried out using
Sun ONE Studio for Java:

Configuring a Servlet
In the web module, click on web and then view the properties window.

Click at the deployment tab of the properties window of web.xml. Further click on
the servlets for configuring servlets.

A property editor is displayed, click at ‘Add’ button to add new servlet.

For each servlet in the Web application, you specify the name of the servlet, the full
name of its implementation class by clicking at the ‘Browse’ button, the mapping
elements for the servlet by clicking at ‘Mappings’, and any initialization
parameters.

Migrating Example: iBank

74 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

Configuring Servlet

The list of servlets and their mappings in iBank application are:

Servlets and Mappings

Servlet Name Display Name Mapping

LoginServlet LoginServlet /CheckLogin

CheckTransferServlet CheckTransferServlet /CheckTransfer

CustomerProfileServlet CustomerProfileServlet /CustomerProfile

DataSourceTestServlet DataSourceTestServlet /DataSourceTest

HelloWorldServlet HelloWorldServlet /HelloWorld

LookUpDataSourceTestServlet LookUpDataSourceTestServlet /LookUpDataSourceTest

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 75

All the above servlets have to be configured such that web.xml has entries for all of
them.

Finally the ‘deployment’ tab should show 11 servlets mappings and 11 servlets.

Configuring a JSP tag library
Click on the Deployment tab of the web.xml properties window. Click at the Tag
Libraries to set the Tag lib.

To define a JSP tag library in the Web application deployment descriptor, specify
the URI of the library (the identifier which the JSP pages will use to access it), and
the path to the library's deployment descriptor (.tld file).

In iBank, there is one JSP Tag library TMBHisto.tld. The deployment descriptor is
kept in WEB-INF. Following entries have to be made.

Configuring Tag lib

ProjectEarningsServlet ProjectEarningsServlet /ProjectEarnings

ShowAccountSummaryServlet ShowAccountSummaryServlet /ShowAccountSummary

TestContextServlet TestContextServlet /TestContext

TransferFundsServlet TransferFundsServlet /TransferFunds

UpdateCustomerDetailsServlet UpdateCustomerDetailsServlet /UpdateCustomerDetails

Servlets and Mappings

Servlet Name Display Name Mapping

Migrating Example: iBank

76 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

Add Resource Reference
Click at the references tab of the web.xml Properties window. Click at the Resource
Reference to add a new resource. Following screen shot shows adding a new
Resource for Data source in iBank i.e., jdbc/iBank

Adding Resource Reference

Click at the Sun ONE App Server tab and set the JNDI name as 'jdbc/IBank' and
also set the User name and Password depending on the database schema you are
using.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 77

Adding Resource Reference entry for Sun ONE Application Server

Add Context Param
Add entry for context parameter for the JNDI name to lookup iBank data source.

Following screen shot shows the entry for context param, which can be done by
clicking at the context param in the Properties window at the Deployment tab of
web.xml.

Adding Context Parameter

Migrating Example: iBank

78 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

Specify the Welcome File
Specify the welcome file in the properties window by clicking at the Welcome Files.

In case of iBank, index.jsp is the welcome file so that has to be mentioned.

Converting CMP Entity EJBs from 1.1 to 2.0
Referring to the manual process described in section, "Migrating CMP Entity EJBs",
Here is an example of Account Entity bean being converted from CMP 1.1 to CMP
2.0.

The related files for Account bean are:

Account.java

AccountEJB.java

AccountHome.java

AccountPK.java

The details of the changes done are described below:

• Account.java:

There are no major changes in the code except for commenting out the setters
for the primary key. The other setters are kept as it is.

Following is the code before modification:

public String getBranchCode()

throws RemoteException;

public void setBranchCode(String branchCode)

throws RemoteException;

public String getAccNo()

throws RemoteException;

public void setAccNo(String accNo)

throws RemoteException;

-----other getters and setters----

After commenting the setters for the primary keys, i.e., branchCode and accNo,
the same code would be:

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 79

public String getBranchCode()

throws RemoteException;

/* public void setBranchCode(String branchCode)

throws RemoteException; */

public String getAccNo()

throws RemoteException;

/* public void setAccNo(String accNo)

throws RemoteException; */

-----other getters and setters----

• AccountEJB.java :

The changes incorporated in the bean class are as follows:

❍ Prepend the bean class declaration with the key word abstract.

Before modification:

public class AccountEJB implements EntityBean

{

--

--

}

After modification:

Migrating Example: iBank

80 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

public abstract class AccountEJB implements EntityBean

{

--

--

}

❍ Comment all the cmp fields and Prefix the accessor methods with the
keyword abstract, thus the line of code in the methods would be
commented and postfix the methods with a semicolon. Thus replace the
given code below Before modification with the code given below After
modification.

Before modification:

public String branchCode;

public String accNo;

public int custNo;

public String accTypeId;

public double accBalance;

public String accTypeDesc;

public double accTypeInterestRate;

private EntityContext context;

public String getBranchCode() {

return(branchCode);

}

public void setBranchCode(String branchCode) {

this.branchCode = branchCode;

}

public String getAccNo() {

return(accNo);

}

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 81

public void setAccNo(String accNo) {

this.accNo = accNo;

}

public int getCustNo() {

return(custNo);

}

public void setCustNo(int custNo) {

this.custNo = custNo;

}

public String getAccTypeId() {

return(accTypeId);

}

public void setAccTypeId(String accTypeId) {

this.accTypeId = accTypeId;

}

public BigDecimal getAccBalance() {

return new BigDecimal(accBalance);

}

public void setAccBalance(BigDecimal accBalance) {

this.accBalance = accBalance.doubleValue();

}

After modification:

Migrating Example: iBank

82 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

private EntityContext context;

public abstract void setBranchCode(String branchCode);

public abstract String getBranchCode();

public abstract void setAccNo(String accNo);

public abstract String getAccNo();

public abstract void setCustNo(int custNo);

public abstract int getCustNo();

public abstract void setAccTypeId(String accTypeId);

public abstract String getAccTypeId();

public abstract void setAccBalance(BigDecimal accBalance);

public abstract BigDecimal getAccBalance();

❍ Read up all the ejbCreate() method bodies (there could be more than
one ejbCreate). Look for the pattern '<cmp-field>=some value or

local variable', and replace it with the expression 'abstract mutator

method name(same value or local variable)'. Hence the code
changes would be:

Before modification :

public void setEntityContext(EntityContext ec) {

context = ec;

}

public void unsetEntityContext() {

this.context = null;

}

public void ejbActivate() {

this.branchCode =
((com.sun.bank.ejb.entity.AccountPK)

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 83

context.getPrimaryKey()).branchCode;

this.accNo = ((com.sun.bank.ejb.entity.AccountPK)

context.getPrimaryKey()).accNo;

}

public void ejbPassivate() {

}

public void ejbLoad() {

}

public void ejbStore() {

}

public AccountPK ejbCreate(String branchCode,

String accNo, int custNo, String accTypeId,

BigDecimal accBalance) {

this.branchCode = branchCode;

this.accNo = accNo;

this.custNo = custNo;

this.accTypeId = accTypeId;

this.accBalance = accBalance.doubleValue();

return null;

}

public void ejbPostCreate(String branchCode,

String accNo, int custNo, String accTypeId,

BigDecimal accBalance) {

}

Migrating Example: iBank

84 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

public void ejbRemove() {

}

After modification:

public void setEntityContext(EntityContext ec) {

context = ec;

}

public void unsetEntityContext() {

this.context = null;

}

public void ejbActivate() {

}

public void ejbPassivate() {

}

public void ejbLoad() {

}

public void ejbStore() {

}

public AccountPK ejbCreate(String branchCode,

String accNo, int custNo, String accTypeId,

BigDecimal accBalance) {

setBranchCode(branchCode);

setAccNo(accNo);

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 85

setCustNo(custNo);

setAccTypeId(accTypeId);

setAccBalance(accBalance);

return null;

}

public void ejbPostCreate(String branchCode,

String accNo, int custNo, String accTypeId,

BigDecimal accBalance) {

}

public void ejbRemove() {

}

• AccountPK.java

No changes required in this file.

• AccountHome.java

In the home interface of the bean, changes are required to be made only if the
return type of any finder methods is of type java.util.Enumeration.In case of
Account bean, the home interface has a finder
findOrderedAccountsForCustomer which has a return type as Enumeration. In
such cases, the return type has to be changed to Collection and also the code
affected by this change, i.e, the code in the session bean which uses this finder
method has to be changed such that it has provision to accept the result of this
finder method in a Collection.

The changes done in the home interface is shown below:

Before Modification:

public interface AccountHome extends EJBHome

{

public Account findByPrimaryKey(AccountPK key)

throws FinderException, RemoteException;

Migrating Example: iBank

86 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

public Enumeration findOrderedAccountsForCustomer(int
custNo)

throws FinderException, RemoteException;

}

After Modification:

public interface AccountHome extends EJBHome

{

public Account findByPrimaryKey(AccountPK key)

throws FinderException, RemoteException;

public Collection findOrderedAccountsForCustomer(int
custNo)

throws FinderException, RemoteException;

}

Due to the above changes, Session bean BankTeller which accesses this finder
method also needs to incorporate changes to accept the result of the finder
method in a Collection.

Following code snippet shows the changes made to the BankTellerEJB.java

Consider method getAccountSummary which uses finder method
findOrderedAccountsForCustomer

Before modification:

public AccountSummary getAccountSummary()

throws EJBException

{

int custNo = 0;

Enumeration accEnum = null;

AccountSummary accSum = new AccountSummary();

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 87

try

{

AccountHome home=(AccountHome) PortableRemoteObject.

narrow(accHomeHandle.getEJBHome(),
AccountHome.class);

AccountTypeHome accTypeHome = (AccountTypeHome)

PortableRemoteObject.narrow(accTypeHomeHandle.getEJBHome(),

AccountTypeHome.class);

accEnum = (Enumeration) home.

findOrderedAccountsForCustomer(this.custNo);

AccountTypePK accTypePK = new AccountTypePK();

Account accRef = null;

AccountType accTypeRef = null;

String accTypeDesc = null;

int i = 0;

while(accEnum.hasMoreElements())

{

i++;

accRef = (Account) accEnum.nextElement();

accTypePK.accTypeId = accRef.getAccTypeId();

accTypeRef = (AccountType) PortableRemoteObject.

narrow(accTypeHome.findByPrimaryKey(accTypePK),

AccountType.class);

accTypeDesc = accTypeRef.getAccTypeDesc();

accSum.addElement(

accRef.getBranchCode(),

accRef.getAccNo(),

accRef.getAccBalance(),

accTypeDesc

Migrating Example: iBank

88 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

);

}

}

}

After Modification:

public AccountSummary getAccountSummary()

throws EJBException

{

int custNo = 0;

//Enumeration accEnum = null;

Collection accEnum = null;

AccountSummary accSum = new AccountSummary();

try

{

AccountHome home = (AccountHome) PortableRemoteObject.

narrow(accHomeHandle.getEJBHome(), AccountHome.class);

AccountTypeHome accTypeHome = (AccountTypeHome)

PortableRemoteObject.narrow(accTypeHomeHandle.

GetEJBHome(), AccountTypeHome.class);

// accEnum = (Enumeration) home.

// findOrderedAccountsForCustomer(this.custNo);

accEnum = (Collection) home.

findOrderedAccountsForCustomer(this.custNo);

AccountTypePK accTypePK = new AccountTypePK();

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 89

Account accRef = null;

AccountType accTypeRef = null;

String accTypeDesc = null;

int i = 0;

Iterator iterator = accEnum.iterator();

// while(accEnum.hasMoreElements())

while(iterator.hasNext())

{

i++;

// accRef = (Account) accEnum.nextElement();

accRef = (Account) PortableRemoteObject.

narrow(iterator.next(), Account.class);

accTypePK.accTypeId = accRef.getAccTypeId();

accTypeRef = (AccountType) PortableRemoteObject.

narrow(accTypeHome.findByPrimaryKey(accTypePK),

AccountType.class);

accTypeDesc = accTypeRef.getAccTypeDesc();

accSum.addElement(

accRef.getBranchCode(),

accRef.getAccNo(),

accRef.getAccBalance(),

accTypeDesc

);

}

}

}

Migrating Example: iBank

90 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

Creating an EJB module in Sun ONE Studio for Java
The procedure described below explains how to create an EJB module in Sun ONE
Studio for Java, using existing source files:

Creating Module for Session Beans
1. Directory for Session Beans 'SessionContent' has following in it.

There would be bean class and interfaces for the following Session Beans:

BankTeller

InterestCalculater

In addition to this, it will also contain Exception classes.

2. Create the new EJBs from existing source files.

In Sun ONE Studio for Java, it is possible to create an EJB from existing source
files.

Select mounted directory 'SessionContent', walk through the sub folders there
to finally reach the package 'session', right click here and select option for new
J2EE and finally click at 'Session EJB', which shows a new EJB wizard.

After specifying the main characteristics of the EJB (i.e., session, stateful or
stateless), and defining the name and package for the EJB, you match the
existing source files and the different components of the EJB: implementation
class, home and remote interfaces. In order to make the match with existing
source files, use the "Modify" button in the dialog box and select "Select an
existing source file."

All the session beans have to be created in similar fashion.

Following screen shot shows the creation of Session Bean BankTeller which is a
Stateful Session bean. So the State specified should be Stateful whereas
InterestCalculator session bean is Stateless, so while creating InterestCalculator
bean, the state specified should be stateless. Click at the browse button to
specify the package.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 91

Creation of new Session Bean

Following screen shot (click ‘Next>’ when you are done) shows specifying the
bean class, the home interface and the remote interface. Clicking on the modify
button and selecting option for using existing class would show up the existing
files, which can be selected.

Migrating Example: iBank

92 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

Specifying the Bean class, Home Interface and the Remote Interface

Create the InterestCalculator session bean in similar fashion.

3. Edit the properties of the EJBs

By editing the properties of an EJB, you can declare the EJB Resource
references; specify an EJB's environment entries.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 93

Properties window of the Session Bean BankTeller

The following screenshot shows the declaration of an environment entry for
the BankTeller session bean. InterestCalculator bean does not require this
entry.

Click at the Environment Entries in the 'References' tab and then click on Add
to add new entry for the DSN.

Adding Environment Entry to BankTeller Session Bean

Migrating Example: iBank

94 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

At the references tab of the Properties window for BankTeller Session bean,
click at the Resource Reference to add a new resource. Following screen shot
shows adding a new Resource for Data source in iBank i.e., jdbc/iBank.

Adding Resource Reference

Click at the Sun ONE App Server tab to set the JNDI name as 'jdbc/iBank' and
username and password depending on the database schema used.

InterestCalculator bean does not require this entry.

Adding Resource Reference for Sun ONE Application Server

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 95

At the references tab of the Properties window, click at the Ejb Reference to
addEJBreferences. Following screen shot shows adding EJB Reference for the
BankTeller session bean. BankTeller session bean has references to Entity bean
'Account' and 'Customer'. So entries have to be made for both the entity beans.

Home and Remote interfaces have to be specified by clicking at the modify
button and then selecting existing source for the beans.

Adding EJB Reference

Now click at the 'Sun ONE App Server' tab in the EJB Reference, to specify the
JNDI name. Following screen shot shows the JNDI entry to be made for the
Account entity bean i.e., 'ejb/Account'. Similarly whenEJBreference for
'Customer' bean is added the JNDI name specified at the Sun ONE App Server
tab would be 'jndi/Customer'.

Migrating Example: iBank

96 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

Adding EJB Reference entry for Sun ONE Application Server

4. Compile the source files

5. Create an EJB module and assemble the EJBs within it.

In accordance with the J2EE 1.2 specification, in Sun ONE Application Server 7
you must group EJBs together in an EJB module. Create new EJB Module i.e.,
SessionModule at the root directory i.e., 'SessionContent' by right clicking the
folder and selecting option for New and then selecting J2EE and then finally
selecting New EJB Module. After creation add the Session EJB's into it.

The screen shot below shows how the BankTeller and InterestCalculator EJBs
are added to an EJB module SessionModule.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 97

Adding Session Beans to EJB Module

Creating Module for Entity Beans
1. Directory for Entity Beans would contain following.

Bean class, Remote and Home interface for the following Entity Beans:

a. Account

b. AccountType

c. Branch

d. Customer

e. Transaction

Migrating Example: iBank

98 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

f. TransactionType

Customer entity bean is Bean managed and others are Container managed.

2. Configure the JDBC driver

In the Runtime view of the Explorer, in Databases / Drivers / Add Driver: specify
the driver name, implementation class, and the prefix of the relevant URL. The
corresponding JAR or ZIP for the driver must be accessible to Sun ONE Studio
for Java, and must therefore be copied into the <SUN ONE STUDIO FOR

JAVA_ROOT>/lib/ext directory.

To place the driver classes in the appropriate Sun ONE Studio for Java
directory in Solaris, run the following command from the shell (sh or ksh):

cp $ORACLE_HOME/jdbc/lib/classes12.zip <SUN ONE STUDIO FOR
JAVA_ROOT>/lib/ext

3. Define the database connection properties

In the Runtime view of the Explorer, in Databases / Add Connection... indicate
the driver used, the full connection URL, the user name, the related password,
and lastly the appropriate database schema:

Configuring a database connection (Oracle) in Sun ONE Studio for Java

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 99

4. Create the new EJBs from existing source files.

In Sun ONE Studio for Java, it is possible to create an EJB from existing source
files. Select the mounted directory 'EntityContent', walk through the
directory till you reach 'entity' sub-folder. Right click and select option for
new J2EE and finally click at 'Entity EJB(CMP/BMP)', which shows a new EJB
wizard.

After specifying the main characteristics of the EJB (entity, BMP or CMP), and
defining the name and package for the EJB, you match the existing source files
and the different components of the EJB: implementation class, home and
remote interfaces. In order to make the match with existing source files, use the
"Modify" button in the dialog box and select "Select an existing source file."
Entity beans require an extra step of specifying the mappings of the cmp fields
with the table. In the Explorer Filesystems view, after selecting the option New
CMP Entity Bean, Select option, table from Database connection in order to be
able to specify the database table to be used for persistence of the EJB fields:

Migrating Example: iBank

100 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

Creation of an Entity bean with container-managed persistence.

The following screen enables you to select the right connection from the list of
database connections defined.

Once the connection is selected, list of tables accessible from this connection are
shown, and select the appropriate table:

Choosing a table for mapping CMP bean fields.

The next screen is used to configure mapping between the columns of the table
selected and the CMP fields of the bean. Particular care should be taken to
correctly indicate the names of the bean fields and associated Java types.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 101

Mapping between table columns and CMP fields of the bean

The next screen shot shows, specifying the source files for the Entity Bean.

Migrating Example: iBank

102 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

Specifying the source files for the Entity Bean

The next step involves informing Sun ONE Studio for Java that you want to
create the EJB from existing source files, which can be specified by clicking at
the 'Modify Class' button.

If you get any error while pointing to the existing source files, it may have
caused because you made a mistake in the previous steps or the source is not
migrated properly. Such errors should be handled by making changes as and
when reported.

The next screen shot shows selecting existing source file for EJB bean class.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 103

Specifying EJB Bean class by selecting option for Existing Source files

The next stage involves editing the properties of the new EJB wherever
required.

All the entity beans have to be created in similar fashion.

(Note: This might give some errors giving option to select the existing class or
using another one, click on to 'using same class'. Sun ONE Studio might show
some unexpected results, in such condition, exit Sun ONE Studio and then
reload it again.)

5. Edit the properties of the EJBs.

Select the new EJB in the explorer window so that its properties are displayed
in the properties inspector.

Migrating Example: iBank

104 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

In the properties window, select the References tab, click on the text zone to
the right of the "Resource References" label, then on the button showing
suspension points ("…") on the right hand edge of this text zone.

Following properties have to be set for the entity bean Customer only.

Following screen shot shows adding Resource reference for the Entity Bean
Customer.

In the "Standard" tab, give the full name of the data source
("jdbc/DataSourceName"), the resource type (javax.sql.DataSource), and
select "Container" from the drop-down list of options for managing access to
this resource ("Authorization").

Adding Resource Reference

Once the declaration has been made, select the "Sun ONE App Server" tab, and
specify the JNDI name of the data source "jdbc/iBank" in the JNDI Name
column of the entry that corresponds to the resource reference defined
previously. Also specify the username and password.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 105

Editing Resource Reference

In the properties window select the 'Sun ONE AS' tab Click on the 'Reference
Resource Mapping' and choose the data source i.e, jdbc/IBank on the server
instance which has to be used. Following screen shot would dipict the same

Resource Reference Mapping for Sun ONE Application Server

6. Set EJB QL for finders other than findByPrimaryKey method.

EJB QL has to be specified for finders. As per the CMP 2.0 specification, the
finders will use EJB QL.

Migrating Example: iBank

106 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

In iBank application the entity bean that would require this type of editing is
Account bean. Select the AccountEJB node in the Sun ONE Studio explorer
window and expand the finder methods in it. Click on any finder method other
than the findByPrimaryKey to open its properties window:

Properties of Finder Method

Click at the EJBQL Query to enter the query. Following screen shot shows the
query entered:

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 107

Editing EJB QL for the Finder

7. Create an EJB module and assemble the EJBs within it.

Create new EJB module named EntityModule and add all Entity beans into this
module by right clicking on the EJB module and selecting the option to add
EJB's. As per the J2EE 1.2 specification, you must group EJBs together in a EJB
module.

8. Create new Database Schema

From the file menu click new and then select new Database Schema. Provide
the connection information for the database from which schema has to be
captured.

9. Map the database entries for Sun ONE Application Server 7.

Select a EJB node in the EJB module, right click the node to choose the
properties window and select Sun ONE AS tab. Specify the database schema
and primary table name for this particular entity bean. Repeat the process for
other Entity Beans in the EJB Module.

Following screen shot shows selection of primary table for the entity bean
Account

Migrating Example: iBank

108 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

Database Mapping

Click on ‘Next >” for specifying the mappings for the cmp fields of bean with
the table fields.

Now select the Sun ONE Mapping Tab from the properties window and
re-enter the mappings.

Following screen shot shows mappings for the Account EJB

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 109

Properties of entity bean ‘Account’

Similarly mappings for all the Entity beans have to be set.

See Appendix A for the details on the mapping of particular Entity bean to
corresponding database table field.

10. Add CMP resource

Select EntityModule and view its properties, click at Sun ONE AS tab, and now
click at CMP Resource to configure the Persistence manager factory.

Following screen shot shows the configuration:

Adding CMP Resource

Migrating Example: iBank

110 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

Creating an enterprise application in Sun ONE Studio for Java
After creating the Web application and EJB files, the next step is to create an
enterprise application, which groups all the modules together. The process for
creating an enterprise application is as follows:

1. Create a new enterprise application module in a new directory say 'IBank'
under the same package available for the source.

2. Add the Web module and EJB modules to the enterprise application module

The following screen shots show an enterprise application called iBank,
containing a Web module called WarContent and EJB module called
SessionModule and EntityModule.

Adding Modules to the Application

Following screen shot shows Application iBank having 3 modules in it.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 111

File System showing Application ‘iBank’ having different modules

3. Edit the enterprise application properties.

The property editor allows you to set the different properties of the enterprise
application module. In particular, this is where the root context name is
defined for the Web module of the enterprise application:

Migrating Example: iBank

112 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

Specifying the Web Context

4. Export EAR file.

Export EAR file by right clicking the Enterprise application and selecting
option for exporting EAR file. This EAR file would contain JAR files, WAR file
and XML files. This EAR file has all the Sun ONE specific XML files required
for the deployment on Sun ONE Application Server 7. This EAR file can now
be deployed.

Deploying an application in Sun ONE Application Server 7
The last stage is to deploy the application on an instance of Sun ONE Application
Server 7. The process for deploying an application is described below:

1. Deploying an application on Sun ONE server 7 instance from Sun ONE
Studio for Java

Right click on the EAR file and select option ‘Deploy’. This would deploy the
application on the default server instance. Restart the server instance and then
test the application.

Migration from BEA WebLogic Server v6.1 and IBM WebSphere v4.0

Chapter 2 Migration Considerations and Strategies 113

2. Deploying an application on an Sun ONE Application Server 7 instance
using Sun ONE Application Server 7 asadmin utility

An alternative to using Sun ONE Studio for Java to deploy enterprise
applications on an Sun ONE server instance is to use the Sun ONE Application
Server 7 asadmin utility, after creating and exporting the application EAR
archive from Sun ONE Studio for Java.

For instructions on deploying the iBank application using the asadmin
deployment utility, please refer to "Deploying iBank application on Sun ONE
Application Server 7 using the asadmin utility" section under "Manual
Migration of iBank Application" topic.

Migration from BEA WebLogic Server v6.1 and
IBM WebSphere v4.0

The detailed J2EE application migration process and the sample application
migration for BEA WebLogic v6.1 and IBM WebSphere v4.0 is part of another
guide which can be found at the Migration Site.

Migration from BEA WebLogic Server v6.1 and IBM WebSphere v4.0

114 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

115

Chapter 3

Migration from KIVA/NAS 4.1 to Sun
ONE AS 7

Kiva/NAS 4.1 Java AppLogic applications can be migrated to J2EE web modules
using iPlanet Migration Toolkit (iMT 1.2.3). The resulting web modules leverage
JATO and a thin KFC (Kiva Foundation Classes) adaption layer to support running
the AppLogic code on any J2EE web container.

Introduction
Before starting the migration process, be sure you have read the release notes so
that you are aware of the latest information and any issues that might be relevant
to you and your environment. Also refer to %MIGTBX_HOME%/bin/readme.txt file.
This file also describes proper installation and configuration of the Migration
Toolbox and its environment, which must be complete before beginning the
migration process described in later sections.

%MIGTBX_HOME% represents the directory in which you installed/unzipped the Sun
ONE Migration Toolbox (S1MT).

Migration Preparation

Migration Process Overview

116 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

There are two main phases to full migration of a proprietary AppLogics application to its
J2EE equivalent. These phases are the automated migration phase and the manual
migration phase. The automated migration itself consists of two steps called extraction and
translation.

Automated Migration Phase

This phase consists of preparing the AppLogic application source for migration
and then using the S1MT to perform automated extraction and translation. The
input to this phase is a user provided archive (JAR/ZIP) containing the original
application source files (AppLogic files, GXR, query files, templates, static content
and regular Java source and properties). This file is called the application extract
archive. Using a standard Java archive (JAR/ZIP) to package the existing
application and NOT requiring a NAS/iAS runtime environment allows the
migration environment to be more flexible; migration may even be performed
remote from the customer site since the runtime infrastructure (databases, web
servers, app servers) is only needed during manual migration for unit testing.
Essentially, this archive is just the targeted contents of the ./nas/APPS directory of
the application server and document root of the web server. The Extraction Tool for
KIVA AppLogics will read this archive and create the application descriptor. iMT
v1.2.3 now supports the automatic creation of the application extract archive (See
the Kiva Migration Toolbox Builder 'Addin' from the 'Addin' menu).

The application descriptor (an XML file) is used to guide the Translation Tool on
the disposition of each file in the archive. The migrator may need to adjust the
application descriptor. See Technote on editing the application descriptor. After
running the Translation Tool the result is a partially (or in some cases, fully)
migrated application consisting entirely of J2EE-compliant components based on
JATO and the KIVA Migration library composed in a web application archive
(deployment descriptor, servlets, JSPs, Command, query files).

The output from the translation process entirely transforms HTML templates to
JSPs and converts GX tags to new JSP tags used with the KIVA migration library.
AppLogic source files are adjusted to use the KIVA migration library (minimal
change mostly to import statements). The translation process also creates the web
application infrastructure including all the components of the JATO application
and direct command invocation module. However, the translation phase does not
automatically port code written to proprietary KFC APIs which are "non-targeted"
in the KIVA migration library. This porting will be the primary task during the
manual migration phase. iMT v1.2.3 now supports the automatic migration of
static documents specifically with help in fixing URLs.(See the Kiva Migration
Toolbox Builder 'Addin' from the 'Addin' menu) and the new Kiva Document
Translation Tool.

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 117

Manual Migration Phase
In general, the manual migration phase consists of reviewing the automatically
migrated application output and porting non-targeted KFC API code to
J2EE-specific code. Understand that this process does not typically require a
redesign of the application or its architecture. In many cases, code which needs
manual attention is clearly outlined in a deprecated compile using the
MIGRATION version of the KIVA Migration library [kivaMIGRATION.jar]

Preparing your Working Environment

Before going further, ensure you've done the following:

1. Make sure you've installed the iPlanet Migration Toolbox

• Unzip the distribution archive into the desired target directory. Follow
the directions in the readme.txt file.

• Test the installation by trying to start the Toolbox application. Run
toolbox.bat in the %MIGTBX_HOME%/bin directory. An empty
Toolbox should appear after a few moments. If nothing appears, check
that the Migration Toolbox was installed properly and that all
appropriate environment settings have been set in
%MIGTBX_HOME%/bin/setenv.bat.

2. To avoid class version issues, it is strongly recommended that you remove all
JAR files from your JDK's extension directory (%JAVA_HOME%/jre/lib/ext)
while running the Toolbox application. All the classes necessary for running
the Toolbox are included with the distribution. Please note that simply
renaming the JAR files in the extension directory is not sufficient; you must
move them to a different location.

3. Identify the AppLogic based application which is to be migrated.

4. Generate the application extract archive. In the simplest case, it is a ZIP or JAR
file containing all files and directories under ./nas/APPS which are related to
the application. The iMT for AppLogics DOES NOT actually load or run any
Java classes or libraries from your application. All extraction and translation is
done at the source level so it is not a problem if the archive does not contain all
dependent classes or libraries - these will only be needed while compiling after
automated migration.

5. At this point, you may also want to install Sun ONE Application Server 7
(known as S1AS), Forte for Java 4.0 EE or another J2EE-compliant servlet/JSP
container.

• Follow the installation instructions for the server or container

118 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

• Test the installation by starting the server or container and trying to
load the default home or index page. If an error occurs, troubleshoot
the installation process before continuing

Preparing a Project for Automated Migration

Because AppLogic and the KFC allowed developers immense latitude and
practically no prescription, there is no way for the iMT to account for all possible
permutations. For this reason, it is strongly recommended that customers engage
Sun Professional Services to assist in preparing projects for migration

iMT Kiva BETA customers discovered that during manual migration procedures
portions of the existing code caused obstacles in compiling the code in the JDK
1.3.1 an J2EE environment. The following is a list of considerations and activities
which should be performed before a migration is attempted.

You have to prepare the application code for J2EE environment before using the
iMT. The code should be compiled against JDK 1.3 (or at least JDK 1.2.2) and the
J2EE APIs. For instance, the iMT comes with the kfcjdk11.jar library for the KFC.
This is provided so that customers may compile their existing application in an
advanced J2EE capable IDE like Forte for Java (FFJ). A standard AppLogic
application should be able to compile in FFJ by simply adding the kfcjdk11.jar to
the classpath (FileSystems). Prior to compiling, the deprecate flag should be set
(TRUE) to expose deprecated code.

When customers are already using JDBC it is highly recommended that the
database services be re-factored for the latest third party drivers (JDBC, Oracle, and
Sybase) as recommended by the vendors for the new JDK.

In order for exact migration tasks to be identified and sourced, all special
considerations would need to be assessed first. In simpler terms, we need to
identify anything “out of the ordinary” which may be in the code. This includes
code patterns or use of Java services which conflict with a concurrent server
pattern of the J2EE container contract with the developer. For instance, if the code
used java.lang.Thread directly or shared resources, this code will need to be
inspected for suitability in J2EE.

Some customers use other third party Java services which may themselves may not
be ready for J2EE even though the customers code is. For instance, an old version of
CORBA (e.g. Visibroker for Java, or Iona) may need to be upgraded.

J2EE has the requirement that logical applications shall be deployed into separate
web applications as WARs. It is easier to isolate logical applications and common
libraries before migration proceeds.

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 119

Customers need to prepare for the change of external URLs. No matter what
technique is used to migrate to J2EE, URLs will change and therefore a strategy is
required for bookmarks and previously published URLs. The iMT v1.2.3 release
provides some support for automated migration of static documents URLs.
Nevertheless, customers will need to survey the existing system to account for all
the changes which will need to be managed.

Preparing the GXR file

In order for the extraction phase to perform accurately when generating the
application descriptor, a GXR file is needed to identify the AppLogic files and the
AppLogic names used during NameTrans and URLs. Most applications use at least
one GXR file or at least one for each package in the application. The extraction
phase requires one (1) single GXR file in the application extract archive. If you have
more than one GXR file, combine them. If you do not have a GXR file you will need
to compose one using proper GXR syntax; the source data can be acquired by
dumping the KIVA registry (./nas/bin/kreg -save temp.out SOFTWARE). In
short, the extraction tool uses the GXR file to determine which files in the
application extract archive are AppLogic source files and also develops a mapping
of GUID to AppLogic name to AppLogic class name.

Before Running the Extraction Tool

If your AppLogic application is entirely based on app server side Java and material
(query files, HTML templates, AppLogic source, support Java source, etc.) then
you can usually create the application extract archive by zipping up the relevant
contents of the ./nas/APPS directory. However, if the application also contains
static content then you have some additional work to do. It is common and more
efficient to have static content located on the Netscape Enterprise web server and
leave the dynamic content on the application server side (AppLogics and
templates). Depending upon your J2EE server vendor, you may benefit from this
separation or it may be helpful to combine the static content and dynamic
application resources. The static content may be added to the WAR during or after
automated migration - this is usually the easiest.

There is one important consideration when migrating from original AppLogics
application to J2EE JATO using the iMT. URLs which invoke AppLogics
(POST/GET) are absolute URLs (e.g.
http://host/cgi-bin/gx.cgi/AppLogic+HelloWorld) After migration, the
URLs become relative to a context defined by the ServletContext and therefore
absolute URLs should be avoided. The transformation of URLs is different for
static content and dynamic content (HTML templates). The iMT maps all

120 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

AppLogics to JATO Command implementations in a special JATO module called
the direct command invocation module. Since all translated AppLogics are
invoked from the same path within the ServletContext, the intra-AppLogic
invocations (URLs) in the resulting HTML markup are the most predictable.
Therefore, all AppLogic invocation URLs are translated as if intra-AppLogic is in
order. When there is static content among the HTML templates in the application
extract archive, the AppLogic URLs will need to be adjusted since the context of the
static content will most likely NOT match the path in the ServletContext for the
direct command invocation module (ModuleServlet). The OnlineBankSample
application migration demonstrates the need to make this adjustment and utilizes
the automatic translation of static documents using the Kiva Document Translation
Tool.

Migrating OnlineBankSample
This section describes the automated and manual migration procedures of the
onlineBankSample to J2EE.

Running the Migration Toolbox
Install iMT 1.2.3, if you have not installed it already and refer to "Migration
Preparation" section for details on installing and starting iMT. Make sure that you
edit the %MIGTBX_HOME%\bin\setenv.bat to account for the installation location of
the iMT and the JDK home dir.

Create a Toolbox

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 121

1. Select the Kiva Migration Toolbox Builder from the Addin:Migration menu.

A modal dialog wizard will appear.

Select OK to proceed to the first step of the wizard.

122 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

2. Automated iMT migration will produce some J2EE infrastructure including
new Java JATO files. These new files must be assigned a package. Although
existing Java source in the original application will retain packaging, we still
need to assign a package for these new files. There is no restriction on the
package name. The default value is provided for the OnlineBankSample
application.

Enter a package and select OK to display the next step in the wizard.

3. Enter the directory where all materials generated by the iMT will be stored.
The default is usually satisfactory and is used in this example. Select OK to
display the next step in the wizard.

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 123

4. The Automatic Application Extract Archive wizard will help create tools to
automatically build the archive. If you choose OK then proceed to Step (5)
otherwise Cancel will show the Extract Archive selection dialog (see below)

which allows you to specify the manually created archive. This is useful if you
already have invested time in the extract archive and you are just building a
new Toolbox.

If you choose OK to the Automatic Application Extract Archive wizard you
will see the following dialog:

124 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

5. Select OK to accept the default and display the next step.

6. Select OK to accept the default BLANK list and display the next step in the
wizard.

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 125

7. Select OK to accept the default, generate three new tools for the toolbox and
display the next step in the wizard.

126 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

8. The OnlineBankSample only contains Java source which is ASCII encoded so
accept the default. When you are migrating your own application, if you have
Java source using another character encoding (e.g. Japanese Shift_JIS) then be
sure to specify the encoding used. Select OK to display the next step in the
wizard.

9. The OnlineBankSample only contains Query files which are ASCII encoded so
accept the default. When you are migrating your own application, if you have
Query files using another character encoding (e.g. Japanese Shift_JIS) then be
sure to specify the encoding used. Select OK to create the Kiva Extraction and
Translation tools in the toolbox and display the next step in the wizard.

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 127

10. iMT v1.2.3 now provides assistance automatically translating static HTML
documents and combining them with the WAR file. If you choose the skip this
feature the wizard exits and the toolbox is complete. For the
OnlineBankSample, we will Select OK and use the automated feature.

11. Select OK to accept the default location of the document directory for the
OnlineBankSample and proceed to add four (4) new tools to the toolbox and
exit the wizard.

128 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

Click ‘OK’ to complete the generation of the necessary tools. The result of the
Addin is a complete Toolbox consisting of an Extraction and Translation tool
and the optional tools to automatically create the application extract archive
and translate the documents. Please remember to select the 'branch' for each
tool to display the detailed Help for each tool in the right frame. The Help
explains each property in the tool. Click on each 'instance' of the tools to
display the bean property panel in the right frame. Both the basic and expert
properties may be edited.

The Task Tools simply cause a list of other tools to be executed in order. It is
usually more informative to run the tools separately so that you can carefully
watch the console output.

The Extraction tool properties are shown here:

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 129

The Translation tool properties are shown here:

130 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

12. Invoke the CreateAppExtractArchive-onlinebank Task tool. This tool runs the
CopySrcAll-onlinebank and JarExtract-onlinebank tools one after the other to
produce the application extract archive

%MIGTBX_HOME%\work\onlinebank\archive\onlinebankApps.jar

13. Invoke the Extract-onlinebank. This tool runs very quickly. The trace of the tool
execution is shown in the Console frame. It will introspect the application
extract archive, concentrating on GXR files to produce the application
descriptor XML file. You must review the application descriptor and
sometimes edit it so that the files are organized properly so that the Translation
tool clearly understand the disposition of each file (including the proper
encoding) in the archive. For iMT 1.2.3 the Extraction tool will automatically
discern the encoding of the HTML templates. Please review the application
descriptor to ensure that the proper encoding was selected for each template.
The location of the application descriptor is

%MIGTBX_HOME%\work\onlinebank\appdesc\onlinebank.xml

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 131

and it is helpful to use an XML editor to navigate and edit this file carefully.
Here is a view of a portion of this file in XML Spy.

14. Invoke the Translate-onlinebank tool. It takes a little longer than extraction and
the time will depend on the number of AppLogic source files, Java files and
Html templates you have in the archive. ALWAYS review the Console output
when Translating to see if errors are reached. The Translation tool will usually

132 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

skip past errors and continue to translate the rest of the application. It is easy to
miss a WARNING or ERROR in the large trace output. You may change the
expert properties to enable debugging and verbose tracing to see the real detail
of the translation including use of the internal calls to Regular Expression
mapping rules and element processing. The results of translation are placed in
the 'migrated' directory under output directory

A complete J2EE JATO Web Application is created under 'migrated/war'.

15. Invoke the FixStaticDocs-onlinebank Task tool. This task will call in order the
JarDocs-onlinebank, TranslateDocs-onlinebank and
CopyDocs2War-onlinebank so that the static content URLs for AppLogics are
fixed and the content is copied to the document root of the WAR.

At this point, automated migration is complete and manual migration starts.

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 133

The easiest way to proceed in manual migration is to load the web application
into a J2EE IDE. Forte for Java EE (FFJ) is used in this example.

16. Start FFJ 4.0 and create a new Project called OnlineBank. Make sure there are
no existing file systems in the new project. Select [Project] from menu and click
[Project Manager].

17. On the Project Manager window, click New and put a project name
(OnlineBank).

134 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

18. Right click [Filesystem] icon and select [Mount Directory] on the Explorer
panel. Select ${migtbox_home}\work\output\onlinebank\migrated\war
and click OK. Forte should recognize this directory as a standard WAR
directory and create a WAR view in the Explorer.

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 135

FFJ uses the term FILESYSTEM to refer to an entry in the CLASSPATH for a
project. Upon mounting the WAR directory not only will the
./war/WEB-INF/classes directory be AUTOMATICALLY part of the
CLASSPATH because its a 'war' file, but each library under
./war/WEB-INF/lib will also be added (ZIPs and JARs). See the Filesystems
for the OnlineBank project below

Here is the document root of the new web application (see below). Notice that
some static content has been translated to JSPs and the HTML templates have
been translated to JSPs.

136 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 137

Here is the new layout of Java classes in the web application (see below).
Notice that the original Java source retains original packaging. The AppLogics
are translated to JATO commands and very little code is affected. The new
JATO source files are placed in the new package specified as a property in the
Translation tool.

The Java source will need to be compiled. It is very important to enable
'deprecation' flag in the compiler. The Translation tool automatically placed
the debug or 'migration' version of the KFC adaption library in the WAR.
When you compile your translated application using this library and the

138 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

'deprecation' flag is enabled, the compile will produce a report of each line of
code which uses a 'non-targeted' API. The intention here is to reach a complete
compilation as quickly as possible and produce a report on the tasks required
for manual migration. Even if the application uses 'non-targeted' APIs, as long
as it compiles it will run; although it may not function properly since
non-targeted API are non-functional (e.g. return null or GXE.FAILURE). This is
valuable because the migrator may incrementally migrate portions of the
application and test these portions without being burdened with having to
totally migrate the application. In other words, the migrated AppLogic JATO
Commands may be tested one at a time. Another value proposition is that the
deprecation report is a nice way to determine how much work there is to do.

19. Edit Project properties (Compiler: External Compiler:) and set deprecation to
TRUE. Select [Tools] from menu and click [Options]. Expand the ‘Building’ and
then ‘Compiler Types’ nodes and set [deprecation] as True for External
Compilation on Options window as shown below:

20. In the project view in the Explorer, select the Classes branch and right click to
menu and choose Compile ALL. All the migrated code (AppLogics, etc.) in

${migtbox_home}\work\output\onlinebank\migrated\war\WEB-INF\clas
ses\

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 139

and the new generated JATO infrastructure in

${migtbox_home}\work\output\onlinebank\migrated\war\WEB-INF\clas
ses\com

Everything should compile immediately.

140 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

There are six uses of NON-TARGETED SESSION KFC API's in the
OnlineBankSample and three uses of the NON-TARGETED "commit"
method of ITrans in the version of the iMT.

The 'session' APIs are the most commonly found non-targeted APIs. In the
KIVA Application Server and KFC, developers could optionally supply an
ISessionIDGen reference to any of the 'session' APIs. This interface allowed the
developer to control the Session ID and related behavior. There is no such
capability in J2EE. Applications which used ISessionIDGen will need to
manually redesign that portion of the application. Most developers chose not
to use this feature by providing a 'null' object reference to the APIs.
Nevertheless, since ALL the KFC 'session' APIs required this parameter and
the ISessionIDGen type is non-targeted, ALL the KFC 'session' APIs are
non-targeted too. There are alternative APIs provided for most of the
non-targeted methods which do NOT require the ISessionIDGen parameter.
The migrator will need to revise each case of non-targeted 'session' APIs so that
the alternative APIs are used instead. Usually, these 'session' APIs are located
in one or few places in the application so it should not be a costly manual
change. Please note that there are two special cases in the 'session' APIs. The
IAppLogic.saveSession(ISessionIDGen) does not provide an alternative
method because there is no concept of 'saving or flushing' HttpSession in J2EE.
This API is eliminated. The IAppLogic.createSession(int, int, String, String,
ISessionIDGen) API provides an alternative API which takes zero parameters.
Again, in J2EE, the Servlet API does not provide any control for the developer
like the KFC API did; although the container vendor may provide value-added
configuration or the HttpSession via deployment descriptor and app server
configuration.

The single argument to the ITrans.commit method was never used by KIVA.
We have eliminated this API for an Adapted API which takes zero arguments.
You will need to remove the '0' value in the three commit methods in
CreateCust.java Transfer.java and UpdateCust.java

21. In the OnlineBankSample application the 'session' APIs are used in
BaseAppLogic.java, OBLogin.java, and OBLogout.java. The changes are shown
below and are required to proceed.

BaseAppLogic.java LINE 38

ISession2 currentSession = getSession(); // getSession(0,
appName, null);

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 141

BaseAppLogic.java LINE 44

currentSession = createSession();
//createSession(GXSESSION.GXSESSION_DISTRIB, 0, appName,
null, null);

OBSession.java LINE 52

// result = m_logic.saveSession(null);

OBLogin.java LINE 123

int rc = GXE.SUCCESS; // saveSession(null);

OBLogout.java LINE 27

destroySession(); // destroySession(null);

There will usually be manual modifications needed on the HTML source or
even the HTML Template source (now JSPs). The modifications will be
different for every application. The iMT alleviates most of the manual work for
systematic tasks. Customers may find repeatable patterns and leverage the
Regular Expression mapping tool to help automate their efforts. In most cases,
the maintenance on the markup is in the area of URL paths. Links to static
content from the dynamics content may suffer from invalid absolute paths
caused by the addition of the web application context.

22. edit both parallel versions of the ExitMessage.jsp. The absolute reference to
static content from the dynamic content are broken because we have moved
the static content into the WAR file. These references would be correct if the
content was deployed outside of the WAR file. Notice the [..] characters added
to the beginning of the absolute URL. Because the ExitMessage.jsp is rendered
from the context of the [/cmd] servlet mapping within the servlet context, we
can get back to the document root of the servlet context by just moving one
segment up in the path.

/GXApp/OnlineBankSample/templates/en/ExitMessage.jsp

/GXApp/OnlineBankSample/templates/ja/ExitMessage.jsp

LINE 15 (html -> jsp links and path) (see snippet below for English version)

href="../GXApp/OnlineBankSample/en/OBLogin.html"> Back to Login

Page

23. Optional edit /WEB-INF/web.xml to allow for automatic startup when the root
context is requested (see snippet below) You need to add welcome file
elements between the servlet mappings and the taglib elements

142 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

</servlet-mapping>
<welcome-file-list>
<welcome-file>
GXApp/OnlineBankSample/index.html
</welcome-file>
</welcome-file-list>
<taglib>

A major effort required during manual migration will be to verify URLs within
the application. Links between static and dynamic content will usually need to
be updated for the relative paths required for portable J2EE deployment. Also,
JavaScript may need to be revised.

The manual migration effort is completed and the final web application may be
deployed on any J2EE web container. In FFJ you may export a WAR file and
deploy on iAS 6.5. You may also run the web application directly in FFJ using
the built-in TomCat server.

24. Add a Server Module Group in FFJ. Right click on WEB-INF branch in
Explorer, select [New]->[JSP&Servlet]->[Web Module Group] and add a server
group. Accept the default on the wizard screen and simply chose 'Finish'. A
new element under WEB-INF in the Explorer appears called
'ServerConfiguration'. Add the current web application by right clicking on
[Server Configuration] branch in Explorer and select [Add Web Module].
Provide a servlet context name on [Add Web Module] window. For example
"Demo".

25. Execute in FORTE by right clicking on [Server Configuration] branch in
Explorer and select [Execute].

143

Chapter 4

Migration from NetDynamics to Sun
ONE AS 7

NetDynamics applications can be migrated to J2EE web modules using iPlanet
Migration Toolkit (iMT 1.2.3). The resulting web modules can be deployed and
executed on any J2EE web container.

Introduction
Before continuing, be sure you have read the %MIGTBX_HOME%/bin/readme.txt file
so that you are aware of the latest information and any issues that might be
relevant to you and your environment. The readme file also describes proper
installation and configuration of the Migration Toolbox and its environment,
which must be complete before beginning the migration process described in this
document.

[%MIGTBX_HOME% represents the directory in which you installed/unzipped the
iPlanet Migration Toolbox (iMT)].

This document covers the minimal process of migrating a NetDynamics
application to J2EE. It is not intended to be an exhaustive reference for the
migration process, in large part because there are only a few common aspects
between any two migrations. Instead, this document provides the information
necessary to understand the basic migration process using the iPlanet Migration
Toolbox (iMT).

144 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

Migration Preparation

Migration Process Overview

There are two main phases to full migration of a NetDynamics proprietary project
to its J2EE equivalent. These phases are the automated migration phase and the
manual migration phase. The automated migration itself consists of two steps called
extraction and translation.

Automated Migration Phase
This phase consists of manually preparing a NetDynamics project for migration
and then using the iMT to perform automated extraction and translation. The input
to this phase is a proprietary NetDynamics project or set of projects, and the result
is a partially (or in some cases, fully) migrated application consisting entirely of
non-proprietary J2EE-compliant components (servlets and JSPs).

The output from the translation process entirely replicates the component structure
present in the original NetDynamics project. This process also uses the declarative
property information present in the project's INTRP files to generate equivalent
features in the migration application. However, the translation phase does not
(currently) automatically port code written to the NetDynamics Spider API to its
J2EE equivalent. This porting will be the primary task during the manual migration
phase. The process does, however, place the original source code in the appropriate
location in the new output. For example, code from the NetDynamics
onBeforeDisplay event handlers is placed in the analogous event handler
methods in the migrated application.

Manual Migration Phase
The degree of application migration accomplished in the automated phase is
directly related to the amount of declarative versus API features used in the
original application. In those rare cases where a project used entirely declarative
features, that project can frequently be automatically migrated fully and be
immediately deployable and runnable in a J2EE container without any manual
work. Consequently, projects that use fewer declarative features will require more
manual work to become functional as J2EE applications.

In general, the manual migration phase consists of reviewing the automatically
migrated application output and porting Spider-API-specific code to J2EE-specific
code. Understand that this process does not typically require a redesign of the
application or its architecture; rather, it is largely a straightforward 1-to-1 mapping
of API calls. This is possible because of the use of JATO, a powerful J2EE-compliant
web application foundation targeted by the automated translation process.

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 145

Preparing your Working Environment
Before going further, ensure you've done the following:

1. Make sure you've installed the iPlanet Migration Toolbox.

• Unzip the distribution archive into the desired target directory. Follow
the directions in the readme.txt file.

• Test the installation by trying to start the Toolbox application. Run
toolbox.bat in the %MIGTBX_HOME%/bin directory. An empty
Toolbox should appear after a few moments. If nothing appears, check
that the Migration Toolbox was installed properly and that all
appropriate environment settings have been set in
%MIGTBX_HOME%/bin/setenv.bat.

2. To avoid class version issues, we strongly recommend that you remove all JAR
files from your JDK's extension directory (%JAVA_HOME%/jre/lib/ext) while
running the Toolbox application. We have included all the classes necessary for
running the Toolbox with the distribution. Please note that simply renaming
the JAR files in the extension directory is not sufficent; you must move them to
a different location.

3. Copy the NetDynamics project(s) you wish to migrate into the
%MIGTBX_HOME%/work/NDProjects directory (or any other convenient
directory). This directory will be referred to as the NetDynamics projects
directory below. This directory is not necessarily the actual project directory
used by a NetDynamics installation on the same machine (although it could
be). Instead, it is the directory in which you will place the NetDynamics
projects to be migrated. Note that NetDynamics need not be installed on the
machine running the Migration Toolbox. However, if NetDynamics is installed
on the machine that will be used to run iMT, you must be sure that the installed
NetDynamics does not interfere with the iMT. This will happen if the installed
ND's classpath is referenced in the system environment variable called
CLASSPATH. When iMT is started, it appends its own necessary classpaths to the
end of the system classpath. If the installed ND's classpath is part of the system
classpath, then the iMT will not operate properly.

4. At this point, you may also want to install Sun ONE Application Server 7 or
another J2EE-compliant servlet/JSP container

• Follow the installation instructions for the server or container

• Test the installation by starting the server or container and trying to
load the default home or index page. If an error occurs, troubleshoot
the installation process before continuing

146 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

Preparing a Project for Automated Migration
Because NetDynamics allowed developers immense latitude (with both positive
and negative consequences), there is no way for iMT to account for all possible
project permutations. This is particularly true of projects that use non-standard
portions of the NetDynamics Spider API, or use this API in an unorthodox or
undocumented way. Therefore, some applications will require manual preparation
before being migrated by the iMT. In some cases, this preparation may be
significant if a particular problematic feature is widespread throughout a project or
set of projects.

Of the two automated phases, you are more likely to encounter initial difficulties
during project extraction. This is normal, and is simply a consequence of the issues
noted above. The good news is that many projects will not encounter any
difficulties during extraction, and once an application description has been
extracted from a project, it should be translatable with little or no difficulty.

Differences Between the Project Extraction Runtime and NetDynamics
Runtime Environments

The iMT uses an embedded NetDynamics Connection Processor (CP) to instantiate
and then extract information from a project. From the project's perspective, it is
being instantiated inside a normal NetDynamics 5.x server environment. However,
the extraction runtime environment differs substantially from that present in a
NetDynamics server. Specifically, the JDBC Service, the PE Service, and PACs are
not available to applications instantiated within the iMT's embedded runtime, nor
are they necessary to extract the necessary information.

We have found that some project objects perform tasks that depend on these
runtime features in their constructors, static initializers, initialization events, or
non-Spider threads. The iMT automatically suppresses the firing of the
NetDynamics 4/5.x-style onBeforeInit and onAfterInit events so that customer
code in those events will not execute during the initialization. However, other
initialization-time methods, such as static initializers, overridden init() methods,
and NetDynamics 3.x-style onBeforeInit and onAfterInit events may still
execute. You may need to comment out code in these methods if that code attempts
to perform behaviors that cannot complete successfully within the iMT runtime.
(You may leave the code in the original location and it will be automatically moved
to the correct target location during translation). One can normally identify these
problematic cases most easily from error messages and exceptions generated by the
Extraction Tool.

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 147

Before Running the NetDynamics Extraction Tool

For the reasons given above, we generally advocate running the Extraction Tool on
your project with only minimal preparation. Although it is more likely that the
extraction will fail with an error, doing so will typically save you time in the overall
migration process, it is usually easier and faster to detect and rectify problems
using the diagnostic error information than trying to find and fix potential
problems preemptively (unless potential problems are well-known).

However, to avoid several other common sources of extraction difficulties, we
recommend you perform the following tasks before running the NetDynamics
Extraction Tool:

• We have found instances of NetDynamics projects that appeared normal when
opened with the Studio or run in the NetDynamics server, but in reality
contained corrupted references and project objects that were only detected
upon closer inspection. In other cases, we have found corrupted class files that
prevented the embedded NetDynamics runtime from loading the
corresponding project object and caused it to throw seemingly unrelated
exceptions. Therefore, we strongly recommend you follow these steps to
prevent trouble before beginning migration:

❍ If the project came from another source (such as a client or colleague),
ensure the projects links directory is present and contains a number of
.sid files. You may open several of these files in a text editor and ensure
that the objects named in the file correspond to the names of the project
objects. Also ensure that all necessary external classes were included with
the project.

❍ The project must have been converted to NetDynamics 5 using the Studio's
automated conversion process. This process entails opening the project in
the NetDynamics 5 Studio and following the upgrade prompts. During
conversion, the Studio upgrades object properties and converts
DataObjects to NetDynamics 5.x-compatible versions. IMPORTANT:
Note that the project need not actually run under NetDynamics 5.xósimply
using the Studio to convert the project is sufficient.

❍ Open the projects you will be migrating in the NetDynamics 5.x Studio
and inspect them for completeness and validity. Also inspect the project
directory itself. For example, you should have one <project>.spj (or
<project>Project.spj) and <project>.class file, one <page>.spg,
<page>.class, and <page>.html file per NetDynamics page, and one
<dataobject>.sdo and <dataobject>.class file per DataObject.

148 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

❍ Delete all .class and .ser files from the project directory and fully
recompile the project. The project must be compiled against the
NetDynamics 5.x binaries. The easiest way to do this is to use the "Compile
All" command in the Studio. You may also be able to use the Java
Compilation Tool in the Migration Toolbox application to compile a
project using the NetDynamics 5 binaries, though this is not recommended
and may require substantially more configuration.

• If possible, test run the project in NetDynamics 5.x. A project that runs
successfully in the server is more likely to be migratable without trouble. If you
have a running copy of NetDynamics, configure the CP to preload the projects
you will be migrating. Use the Command Center to stop or remove the JDBC
Service, the PE Service, and all PACs from the current configuration. Restart
the CP. After the CP starts successfully, check the NetDynamics log and the
Service Manager (SM) log to determine if any exceptions were thrown. Projects
that throw exceptions at this point are likely to throw exceptions during
extraction.

Migrating ToolBox Sample Application
This section describes the automated and manual migration procedures of the
ToolBox sample application.

Running the Migration Toolbox
If you don't have the Toolbox application currently running, please follow the
instructions given in section “Preparing your Working Environment” to setup your
toolbox.

Create a Toolbox Builder
1. Start the toolbox and choose "Migrate an application" option in the Welcome

dialog and press OK. With the Toolbox running, be sure that you have an
empty (New) toolbox. Select the menu option Add-In -> Migration ->

NetDynamics Migration Toolbox Builder.

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 149

A modal dialog wizard will appear.

Select OK to proceed to the first step of the wizard.

150 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

2. Enter the name of the application you will be migrating in the “Input
Application Name” dialog box, for e.g. ‘MigtoolboxSample’. Select OK to
proceed to the next step.

3. Enter the directory where all materials generated by the iMT will be stored.
The default is usually satisfactory and is used in this example. Select OK to
display the next step in the wizard

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 151

4. Automated iMT migration will produce some J2EE infrastructure including
new Java JATO files. These new files must be assigned a package. Although
existing Java source in the original application will retain packaging, we still
need to assign a package for these new files. There is no restriction on the
package name. The default value is provided for the MigtoolboxSample
application.

Enter a package and select OK to display the next step in the wizard.

5. Enter the project name you want to migrate. This project should be located in
‘{MIGTBX_HOME}\work\NDProjects\’ folder.

152 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

6. Enter the name of the web application archive (WAR) file into while you want
to package to your application. The default value is provided for this
application. Select OK to proceed to the next step.

7. Enter the output directory name where iMT will generate the WAR file. When
you select OK on the dialog box, the toolbox builder will generate a set of tools
necessary for the automated portion of the application migration process.

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 153

8. Select OK to exit the NetDynamics Migration Toolbox Builder wizard. The
result of the Addin is a complete Toolbox consisting of an Extraction and
Translation tool and the optional tools to automatically create the application
extract archive and translate the documents. When you select the ‘branch’ for
each tool on the left frame, it will display the detailed help for each tool in the
right frame. The help explains each property in the tool. Click on each
‘instance’ of the tools to display the bean property panel in the right frame.
Both the basic and expert properties may be edited.

The Task Tools simply cause a list of other tools to be executed in order. It is
usually more informative to run the tools separately so that you can carefully
watch the console output. The extraction tool properties are shown here:

154 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

The Translation tool properties are shown here:

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 155

9. Invoke the Migrate MigtoolboxSample Application Task tool. This tool will
inturn invoke Extract-MigtoolboxSample, Translate-MigtoolboxSample and
MapSpider2JATO-MigtoolboxSample tools one after the other to produce the
migrated code and the application description file(MigtoolboxSample.xml).

10. Invoke the Create MigtoolboxSample War File Task tool. This tool will invoke
the following tools to produce a Web Application Archive(WAR) file to enable
automatic deployment of the application to a J2EE container. This WAR file
will be the only file you will need to deploy your application to the J2EE
container.

CopyDeplDesc-MigtoolboxSample, CopyJatoJar-MigtoolboxSample,
CopyJatoTLD-MigtoolboxSample, CopyJSP-MigtoolboxSample,
CopyClasses-MigtoolboxSample, CopySource-MigtoolboxSample,
JarWarFile-MigtoolboxSample

11. Invoke the Compile-MigtoolboxSample tool to compile the JATO Foundation
classes and the new J2EE application components. This tool simply invokes the
javac command line tool provided with the JDK.

156 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

At this point, automated migration is complete and manual migration if any
starts.

The easiest way to proceed in manual migration is to load the web application
into a J2EE IDE. Forte for Java EE (FFJ) is used in this example.

12. Start FFJ 4.0 and create a new Project called OnlineBank. Make sure there are
no existing file systems in the new project. Select [Project] from menu and click
[Project Manager].

13. On the Project Manager window, click New and put a project name
(MigtoolboxSample).

14. Right click [Filesystem] icon and select [Mount Directory] on the Explorer
panel. Select ${migtbox_home}\work\output\MigtoolboxSample\war and
click OK. Forte should recognize this directory as a standard WAR directory
and create a WAR view in the Explorer.

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 157

FFJ uses the term FILESYSTEM to refer to an entry in the CLASSPATH for a
project. Upon mounting the WAR directory not only will the
./war/WEB-INF/classes directory be AUTOMATICALLY part of the
CLASSPATH because its a 'war' file, but each library under ./war/WEB-INF/lib

will also be added (ZIPs and JARs).

The Java source will need to be compiled. It is very important to enable
'deprecation' flag in the compiler.When you compile your translated
application and the 'deprecation' flag is enabled, the compile will produce a
report of each line of code which uses a 'non-targeted' API. The intention here
is to reach a complete compilation as quickly as possible and produce a report
on the tasks required for manual migration.

15. Edit Project properties (Compiler: External Compiler:) and set deprecation to
TRUE. Select [Tools] from menu and click [Options]. Expand the ‘Building’ and
then ‘Compiler Types’ nodes and set [deprecation] as True for External
Compilation on Options window as shown below:

158 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

16. In the project view in the Explorer, select the Classes branch and right click to
menu and choose Compile ALL. All the migrated code in

${migtbox_home}\work\output\MigtoolboxSample\war\WEB-INF\classes
\

and the new generated JATO infrastructure in

${migtbox_home}\work\output\MigtoolboxSample\war\WEB-INF\classes
\

Everything should compile immediately.

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 159

The compiler generates some warnings, they are shown here:

160 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

17. These warnings should be fixed to complete the manual migration of the
application. The final web application may be deployed on any J2EE web
container. In FFJ you may export a WAR file and deploy on Sun ONE
Application Server 7. You may also run the web application directly in FFJ
using the built-in TomCat server.

18. Add a Server Module Group in FFJ. Right click on WEB-INF branch in
Explorer, select [New]->[JSP&Servlet]->[Web Module Group] and add a server
group. Accept the default on the wizard screen and simply chose 'Finish'. A
new element under WEB-INF in the Explorer appears called
'ServerConfiguration'. Add the current web application by right clicking on
[Server Configuration] branch in Explorer and select [Add Web Module].
Provide a servlet context name on [Add Web Module] window. For example
"Demo".

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 161

19. Execute in FORTE by right clicking on [Server Configuration] branch in
Explorer and select [Execute].

162 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

163

Chapter 5

Automating Migration

This chapter describes the use of available migration tools that can be used to
automate the migration process from both earlier versions of Sun ONE Application
Server and from other application server providers.

The following migration tools are available:

• Sun ONE Migration Tool for Application Servers

• Sun ONE Migration Toolbox (formerly iPlanet Migration Toolbox)

Sun ONE Migration Tool for Application Servers
The Sun ONE Migration Tool for Application Servers migrates J2EE[tm]
applications from other server platforms to Sun ONE Application Server (version
6.5 / 7).

For Sun ONE Application Server 6.5 the following source platforms are supported:

• WebSphere Application Server (WAS) 4.0

• WebLogic Application Server (WLS) 5.1

For Sun ONE Application Server 7 the following source platforms are supported:

• WebLogic Application Server (WLS) 5.1, 6.0, 6.1

• WebSphere Application Server (WAS) 4.0

• J2EE Reference Implementation Application Server (RI) 1.3

Sun ONE Migration Toolbox (formerly iPlanet Migration Toolbox)

164 Sun ONE Application Server 7.0 - Migrating and Redeploying Server Applications • October 2002

• Sun ONE Application Server 6.x

• Sun ONE Web Server 6.0

The Migration Tool specifications and migration process change from time to time,
so the sample migration using the tool is not included in this guide. The migration
process of a sample application is discussed in the docuemntation for this tool. The
latest version of the Sun ONE Migration Tool for Application Servers can be
downloaded from Sun Download center. For the latest on Sun ONE Migration Tool
please visit, http://www.sun.com/migration/sunonetools.html.

Sun ONE Migration Toolbox (formerly iPlanet
Migration Toolbox)

For information on Sun ONE Migration Toolbox, please refer to “Appendix B”

Redeploying Migrated Applications
Most of the applications that are migrated automatically through the use of the
available migration tools will utilize the standard deployment tasks described in
the Sun ONE Application Server Administrator’s Guide.

In some cases, the automatic migration will not be able to migrate particular
methods or syntaxes from the source application. When this occurs in the case of
the Sun ONE Migration Tool for Application Servers, you are notified of the steps
that will be needed to complete the migration. Once you complete the
post-migration manual steps, you will be able to deploy the application in the
standard manner described in the Sun ONE Application Server Administrator’s
Guide.

http://www.sun.com/migration/sunonetools.html
http://www.sun.com/migration/sunonetools.html

165

Appendix A

iBank Application specification
The sample application we defined is called 'iBank' and simulates a basic online
banking service with the following functionality:

• log on to the online banking service

• view/edit personal details and branch details

• summary view of accounts showing cleared balances

• facility to drill down by account to view individual transaction history

• money transfer service, allowing online transfer of funds between accounts

• compound interest earnings projection over a number of years for a given
principal and annual yield rate.

The application is designed after the MVC (Model-View-Controller) model where:

• EJBs are used to define the business and data model components of the
application

• Java Server Pages handle the presentation logic and represent the View.

• Servlets play the role of Controllers and handle application logic, taking charge
of calling the business logic components and accessing business data via EJBs
(the Model), and dispatching processed data for display to Java Server Pages
(the View).

For packaging and deployment of application components, standard J2EE methods
are used, and include definition of deployment descriptors, and packaging of
application components within archive files:

• a WAR archive file for the Web application including HTML pages, images,
Servlets, JSPs and custom tag libraries, and ancillary server-side Java classes.

iBank Application specification

166 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

• EJB-JAR archive files for the packaging of one or more EJBs, including
deployment descriptor, bean class and interfaces, stub and skeleton classes,
and other helper classes as required.

• an EAR archive file for the packaging of the enterprise application module that
includes the Web application module and the EJB modules used by the
application.

The use of standard J2EE packaging methods will be useful in pointing out any
differences between Sun ONE Application Server 6.0/6.5 and Sun ONE
Application Server 7, and any issues arising thereof.

Tools used for the development of the application

Sun ONE Studio Enterprise Edition for Java, Release 4.0
As Sun ONE Application Server 7 supports both the EJB 1.0 and EJB 1.1
standard, the other EJBs in the iBank application (2 session EJBs and the BMP
entity bean) were developed with Sun ONE Studio for Java, and then packaged
and deployed in Sun ONE Application Server 7 using the supplied Application
Assembly Tool. This approach enabled us to test usage of a third-party IDE for
developing 1.1 EJBs in Sun ONE Application Server 7. Moreover, the approach
also gave us the chance to experiment with migrating 1.1 EJBs developed for
Sun ONE Application Server 6.5 to Sun ONE Application Server 7.

The Sun ONE Studio for Java development environment was also used to
migrate EJB components in the iBank application to Sun ONE Application
Server (code adapted from EJB 1.0 standard to EJB 1.1, O/R mapping for CMP
entity beans, configuration of deployment properties and packaging of the
application's different modules).

Oracle 8i 8.1.6
The database was developed with Oracle 8i (version 8.1.6) and the JDBC driver
used to access the database was the thin Oracle driver (type 4).

Database schema
• The iBank database schema is derived from the following business rules:

• The iBank company has local Branches in major cities

• A Branch manages all customers within its regional area.

• A Customer has one or more accounts held at their regional branch.

iBank Application specification

Appendix A 167

• A customer Account is uniquely identified by the branch code and account no.,
and also holds the no. of the customer to which it belongs. The current cleared
balance available is also stored with the account.

• Accounts are of a particular Account Type that is used to distinguish between
several kinds of accounts (checking account, savings account, etc.)

• Each Account Type stores a number of particulars that apply to all accounts of
this type (regardless of branch or customer) such as interest rate and allowed
overdraft limit.

• Every time a customer receives or pays money into/from one of their accounts,
the transaction is recorded in a global transaction log, the Transaction History.

• The Transaction History stores details about individual transactions, such as
the relevant branch code and account no., the date the transaction was posted
(recorded), a code identifying the type of transaction and a complementary
description of the particular transaction, and the amount for the transaction.

• Transaction types allow different types of transactions to be distinguished,
such as cash deposit, credit card payment, fund transfer between accounts, and
so on.

These business rules are illustrated in the entity-relationship diagram below:

iBank Application specification

168 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

Figure 1 Database Schema

The database model translates as the series of table definitions below, where
primary key columns are printed in bold type, while foreign key columns are
shown in italics.

BRANCH

BRANCH_CODE CHAR(4) NOT NULL 4-digit code identifying the branch

BRANCH_NAME VARCHAR(40) NOT NULL Name of the branch

cust_No
branch_Code
cust_Usernam e
cust_Password
cust_Em ail
cust_Title
cust_GivenNam es
cust_Surnam e
cust_Address1
cust_Address2
cust_City
cust_Zip
cust_State

Customer Account

branch_Code
acc_No
cust_No
accType_Id
acc_Balance

Branch

branch_Code
branch_Name
branch_Address1
branch_Address2
branch_City
branch_Zip
branch_State

Account_Type

accType_Id
accType_Desc
accType_InterestRate

trans_Id
branch_Code
acc_No
transType_Id
trans_PostDate
trans_Desc
trans_Amount

TransactionHistory Transaction_Type

transType_Id
transType_Desc

cust_No = cust_No
accType_Id =
accType_Id

branch_Code = branch_Code
acc_No = acc_No

trans_TypeId =
trans_TypeId

branch_Code = branch_Code

TMBank -- Database schema

iBank Application specification

Appendix A 169

BRANCH_ADDRESS1 VARCHAR(60) NOT NULL Branch postal address, street address, 1st
line

BRANCH_ADDRESS2 VARCHAR(60) Branch postal address, street address, 2nd
line

BRANCH_CITY VARCHAR(30
)

NOT NULL Branch postal address, City

BRANCH_ZIP VARCHAR(10
)

NOT NULL Branch postal address, Zip code

BRANCH_STATE CHAR(2) NOT NULL Branch postal address, State
abbreviation

CUSTOMER

CUST_NO INT NOT NULL iBank customer number (global)

BRANCH_CODE CHAR(4) NOT NULL References this customer's branch

CUST_USERNAME VARCHAR(16) NOT NULL Customer's login username

CUST_PASSWORD VARCHAR(10) NOT NULL Customer's login password

CUST_EMAIL VARCHAR(40) Customer's e-mail address

CUST_TITLE VARCHAR(3) NOT NULL Customer's courtesy title

CUST_GIVENNAMES VARCHAR(40) NOT NULL Customer's given names

CUST_SURNAME VARCHAR(40) NOT NULL Customer's family name

CUST_ADDRESS1 VARCHAR(60) NOT NULL Customer postal address, street address, 1st
line

CUST_ADDRESS2 VARCHAR(60) Customer postal address, street address,
2nd line

CUST_CITY VARCHAR(30) NOT NULL Customer postal address, City

CUST_ZIP VARCHAR(10) NOT NULL Customer postal address, Zip code

CUST_STATE CHAR(2) NOT NULL Customer postal address, State abbreviation

ACCOUNT_TYPE

iBank Application specification

170 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

ACCTYPE_ID CHAR(3) NOT NULL 3-letter account type code

ACCTYPE_DESC VARCHAR(30) NOT NULL Account type description

ACCTYPE_INTERESTR
ATE

DECIMAL(4,2) DEFAULT
0.0

Annual interest rate

ACCOUNT

BRANCH_CODE CHAR(4) NOT NULL branch code (primary-key part 1)

ACC_NO CHAR(8) NOT NULL account no. (primary-key part 2)

CUST_NO INT NOT NULL Customer to whom accounts belongs

ACCTYPE_ID CHAR(3) NOT NULL Account type, references ACCOUNT_TYPE

ACC_BALANCE DECIMAL(10,2) DEFAULT
0.0

Cleared balance available

TRANSACTION_TYPE

TRANSTYPE_ID CHAR(4) NOT NULL A 4-letter transaction type code

TRANSTYPE_DESC VARCHAR(40) NOT NULL Human-readable description of code

TRANSACTION_HISTORY

TRANS_ID LONGINT NOT NULL Global transaction serial no

BRANCH_CODE CHAR(4) NOT NULL key referencing ACCOUNT part 1

ACC_NO CHAR(8) NOT NULL key referencing ACCOUNT part 2

TRANSTYPE_ID CHAR(4) NOT NULL References TRANSACTION_TYPE

TRANS_POSTDATE TIMESTAMP NOT NULL Date & time transaction was posted

TRANS_DESC VARCHAR(40) Additional details for the transaction

TRANS_AMOUNT DECIMAL(10,2) NOT NULL Money amount for this transaction

iBank Application specification

Appendix A 171

Application navigation and logic
High-level view of application navigation

Detailed application logic

• Login Process

• View / edit details

View/Edit profile

Transaction History

Account Summary Transfer funds Interest calculation Logout

User Menu page

Login page

index.jsp

Login page.
Form with username &
password fields and
submit button

LoginError.jsp

Prints indication of
login failure, with link
back to login page

LoginServlet

Attempts to authenticate
the user with the
BankTeller EJB

BankTeller

authCheck() -- attempts
to authenticate the user
by finding a Customer
with matching username
and password

Customer

Customer BMP entity
bean

UserMenu.jsp

Main Menu displaying
all available options

Failed
authentication Successful

authentication Call fi nder method:
findByCustUsername()

authCheck()

iBank Application specification

172 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

• Account summary and Transaction history

CustomerProfile.jsp

* Form displaying:
- editable user details
- non-editable branch
details.
* Submit button to update
user details.

UpdatedDetails.jsp

Prints indication of
successful update of details
and link back to menu page

CustomerProfileServlet

Retrieve user & branch
details

Customer

Customer BMP
entity bean

UserMenu.jsp

Main Menu displaying
all available options

« View/Edit my
details » Branch

Branch CMP
entity bean

Get
customer
details

Get branch details

UpdateCustomerDetailsServlet

Checks user entry and attempt
to update CustomerEJB with
new details

Return to main menu

Update my
details

Update
customer
details

DetailsUpdateFailed.jsp

Prints indication of reason
for failure, with links back to
the details update form and
main menu page

Invalid user
entry or errorTry again

Successful
update

AccountSummary.jsp

Table displaying:-
- clickable account # for
drilling down transaction
history
- account type
- current balance

ShowAccountSummaryServlet

Retrieve list of customer accounts

Account

Account CMP
entity bean

UserMenu.jsp

Main Menu displaying
all available options

« Summary view of my
accounts » getAccountSummary()

Return to main menu

Click on
account #
link

Call finder method:

finder method

findOrderedAccountsForCustomer()

ShowTransactionHistory.jsp

Uses a custom tag library to
print a table showing individual
transactions for the selected
account

BankTeller

getAccountSummary():

TMBTransactionHistory

JSP tag library
Accesses the TMBank database through a JDBC
data source to print in tabular form the details for
all transactions for a particular branch code and
account no.

Builds a list of accounts
that belong to the
current customer

iBank Application specification

Appendix A 173

• Fund Transfer

• Interest Calculation

TransferFunds.jsp

Transfer selection formwith:-
- list to choose ‘from’ account
- list to choose ‘to’ account
- field to enter amount

TransferFundsServlet

Retrieve list of customer accounts

Account

Account CMP
entity bean

UserMenu.jsp

Main Menu
displaying all
available options

« transfer funds
between my accounts »

getAccountSummary()

Return to main menu

Call finder method:
findOrderedAccountsForCustomer()

TransferCheckFailed.jsp

Print an indication as to why
fund transfer settings are
incorrect, or why the
operation failed

BankTeller

getAccountSummary():
Builds list of accounts
details for the current
customer

transferFunds():
attempts to transfer
funds between two
accounts

CheckTransferServlet

Check transfer settings and
proceed if OK

transferFunds()

TransferSuccess.jsp

Print a conf irmation message
showing the details for the
transact ion that was
successfully carried out

success

Input er ror or
process ing
failure

In terestCalc.jsp

Form displaying fields to enter:
- start principal
- interest rate
- year period
and submit button

UserMenu.jsp

Main Menu
displaying all
available options

« per form capital growth
projections »

BadIntCalcInput.jsp

Print an indication as to
why input is incorrect

InterestCalculator

projectEarnings() :
calculate earnings on a
year-by-year basis for a
given star t principal and
year period

ProjectEarningsServlet

Check input parameters, and if
correct, perform projection and
retrieve results

projectEarnings ()

ShowProjectionResults.jsp

Print projection result s in
tabular form

success
Inval id input
parameters

iBank Application specification

174 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

Application Components
• Data Components

Each table in the database schema is encapsulated as an entity bean:

All entity beans use container-managed persistence (CMP), except Customer, which
uses bean-managed persistence (BMP).

Currently, the application only makes use of the Account, AccountType, Branch, and
Customer beans.

• Business components

Business components of the application are encapsulated by session beans-

The BankTeller bean is a stateful session bean that encapsulates all interaction
between the customer and the system. BankTeller is notably in charge of:

• authenticating a customer through the authCheck() method

• giving the list of accounts for the customer through the
getAccountSummary() method

• transferring funds between accounts on behalf of the customer
through the transferFunds() method.

Entity Bean Database Table

Account ACCOUNT table

AccountType ACCOUNT_TYPE table

Branch BRANCH table

Customer CUSTOMER table

Transaction TRANSACTION_HISTORY table

TransactionType TRANSACTION_TYPE table

iBank Application specification

Appendix A 175

The InterestCalculator bean is a stateless session bean that encapsulates financial
calculations. It is responsible for providing the compound interest projection
calculations, through the projectEarnings() method.

• Application logic components (servlets)

Component name Purpose

LoginServlet Authenticates the user with the BankTeller session bean
(authCheck() method), creates the HTTP session and saves
information pertaining to the user in the session.Upon
successful authentication, forwards request to the main menu
page (UserMenu.jsp)

CustomerProfileServl
et

Retrieves customer and branch details from the Customer and
Branch entity beans and forwards request to the view/edit
details page (CustomerProfile.jsp)

UpdateCustomerDeta
ilsServlet

Attempts to effect customer details changes amended in
CustomerProfile.jsp by updating the Customer entity bean
after checking validity of changes.Redirects to
UpdatedDetails.jsp if success, or to DetailsUpdateFailed.jsp in
case of incorrect input.

ShowAccountSumma
ryServlet

Retrieves the list of customer accounts from the BankTeller
session bean (getAccountSummary() method) and forwards
request to AccountSummary.jsp for display

TransferFundsServlet Retrieves the list of customer accounts from the BankTeller
session bean (getAccountSummary() method) and forwards
request to TransferFunds.jsp allowing the user to set up the
transfer operation.

CheckTransferServlet Checks the validity of source and destination accounts selected
by the user for transfer and the amount entered. Calls the
transferFunds() method of the BankTeller session bean to
perform the transfer operation. Redirects the user to
CheckTransferFailed.jsp in case of input error or processing
error, or to TransferSuccess.jsp if the operation was
successfully carried out

iBank Application specification

176 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

• Presentation logic components (JSP Pages)

ProjectEarningsServle
t

Retrieves the interest calculation parameters defined by the
user in InterestCalc.jsp and calls the projectEarnings() method
of the InterestCalculator stateless session bean to perform the
calculation, and forwards results to the
ShowProjectionResults.jsp page for display. In case of invalid
input, redirects to BadIntCalcInput.jsp

Component name Purpose

index.jsp Index page to the application that also serves as the login page.

LoginError.jsp Login error page displayed in case of invalid user credentials
supplied. Prints an indication as to why login was
unsuccessful.

Header.jsp Page header that is dynamically included in every HTML page
of the application

CheckSession.jsp This page is statically included in every page in the application
and serves to verify whether the user is logged in (i.e. has a
valid HTTP session). If no valid session is active, the user is
redirected to the NotLoggedIn.jsp page

NotLoggedIn.jsp Page that the user gets redirected to when they try to access an
application page without having gone through the login
process first.

UserMenu.jsp Main application menu page that the user gets redirected to
after successfully logging in. This page provides links to all
available actions.

CustomerProfile.jsp Page displaying editable customer details and static branch
details. This page allows the customer to amend their
correspondence address

UpdatedDetails.jsp Page where the user gets redirected to after successfully
updating their details.

DetailsUpdateFailed.j
sp

Page where the user gets redirected if an input error prevents
their details to be updated.

iBank Application specification

Appendix A 177

Fitness of design choices with regard to potential migration
issues
While many of application design choices made are certainly debatable especially
in a "real-world" context, care was taken to ensure that these choices enabled the
sample application to encompass as many potential issues as possible as one would
face in the process of migrating a typical J2EE application.

AccountSummaryPag
e.jsp

This page displays the list of accounts belonging to the
customer in tabular form listing the account no, account type
and current balance. Clicking on an account no. in the table
causes the application to present a detailed transaction history
for the selected account

ShowTransactionHist
ory.jsp

This page prints the detailed transaction history for a particular
account no. The transaction history is printed using a custom
tag library.

TransferFunds.jsp This page allows the user to set up a transfer from one account
to another for a specific amount of money.

TransferCheckFailed.j
sp

When the user chooses incorrect settings for fund transfer, they
get redirected to this page.

TransferSuccess.jsp When the fund transfer set-up by the user can successfully be
carried out, this page will be displayed, showing a
confirmation message.

InterestCalc.jsp This page allows the user to enter parameters for a compound
interest calculation.

BadIntCalcInput.jsp If the parameters for compound interest calculation are
incorrect, the user gets redirected to this page.

ShowProjectionResult
s.jsp

When an interest calculation is successfully carried out, the
user is redirected to this page that displays the projection
results in tabular form.

Logout.jsp Exit page of the application. This page removes the stateful
session bean associated with the user and invalidates the HTTP
session.

Error.jsp In case of unexpected application error, the user will be
redirected to this page that will print details about the
exception that occurred.

iBank Application specification

178 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

This section will go through the potential issues that one can face when migrating a
J2EE application, and the corresponding component of iBank that was included to
check for this issue during the migration process:-

With respect to the selected migration areas to address, the white paper specifically
looks at the following technologies:

Servlets
• iBank includes a number of servlets, that enable us to detect potential issues

with:

• The use of generic functionality of the Servlet API.

• Storage/retrieval of attributes in the HTTP session and HTTP request.

• Retrieval of servlet context initialisation parameters.

• Page redirection.

Java Server Pages
With respect to the JSP specification, the following aspects have been
addressed:

• Use of JSP declarations, scriptlets, expressions, and comments.

• Static includes (<%@ include file="…" %>): notably tested with the
inclusion of the CheckSession.jsp file in every page).

• Dynamic includes (<jsp:include page=… />): this is catered for by
the dynamic inclusion of Header.jsp in every page.

• Use of custom tag libraries: a custom tag library is used in
ShowTransactionHistory.jsp.

• Error pages for JSP exception handling: the Error.jsp page is the
application error redirection page.

JDBC
The iBank application accesses a database via a connection pool and data
source, both programmatically (BMP entity bean, BankTeller session bean,
custom tag library) and declaratively (with the CMP entity beans).

Enterprise Java Beans
iBank uses a variety of Enterprise Java Beans:

iBank Application specification

Appendix A 179

Entity beans:

Bean-managed persistance ("Customer" bean): that allows us to test:

• JNDI lookup of initial context

• pooled data source access via JDBC

• definition of a BMP custom finder ("findByCustUsername()")

Container-managed persistence ("Account" and "Branch" beans): that allow us
to test:

• Object/Relational mapping with the development tool and within the
deployment descriptor

• Use of composite primary keys ("Account")

• Definition of custom CMP finders (with the "Account" bean, and its
"findOrderedAccountsForCustomer()" method). This is the occasion
to look at differences in declaring the query logic in the deployment
descriptor, and also to have a complex example returning a collection
of objects.

Session beans:

Stateless session beans: InterestCalculator allows us to test:

• using and deploying a stateless session bean

• calling a business method for calculations

Stateful session beans: BankTeller allows us to test:

• looking up various interfaces using JNDI and initial contexts

• using JDBC to perform database queries

• using various transactional attributes on bean methods

• using container-demarcated transactions

• maintaining conversational state between calls

iBank Application specification

180 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

• business methods acting as front-ends to entity beans (e.g., the
"getAccountSummary()" method)

Application Packaging
iBank is packaged following J2EE standard procedures, using:-

• a Web application archive file for the Web application module, and
EJB-JAR archives for EJBs.

• an Enterprise application archive file (EAR file) for the final packaging
of the Web application and EJB modules.

181

Appendix B

Sun ONE Migration Toolbox
Sun ONE Migration Toolbox (S1MT) is used primarily to migrate applications built
on NetDynamics or Kiva/NAS platforms to Sun ONE Application Server or any
J2EE compatible containers. The main interface for the Sun ONE Migration
Toolbox is what we call the Toolbox application, or the Toolbox GUI. This application
can be invoked by running the %MIGTBX_HOME%/bin/toolbox.bat script
(provided the setenv.bat file has been customized appropriately, see README.txt
for more information).

Supported Platforms
Microsoft Windows NT 4.0 and Windows 2000 currently support S1MT. Although
it is expected that the application can be run on other Win32 platforms (Windows
95/98/Me), these platforms have not been tested and may require additional
configuration beyond that specified in the S1MT installation documentation.

The Toolbox require atleast JavaSoft JDK 1.2.2 (JDK 1.3.1 has been tested) to run
successfully.

Migration
The toolbox is set of tools which perform different aspects of migration. S1MT 1.2.3
support migration from NetDynamics and Kiva/NAS platforms. Each platform
has its own Toolbox Builder which when executed will create a set of tools used to
migrate a application. Kiva Migration Toolbox Builder creates tools for Kiva/NAS
application migration and similarly NetDynamics Migration Toolbox Builder is used
for migrating NetDynamics applications. The following figure shows you how to
invoke a toolbox builder.

Sun ONE Migration Toolbox

182 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

Toolbox Builder

You will use the same basic set of tools for each migration you perform, but each
tool will need to be customized to that particular migration. Creating each of these
tools can be a tedious task and prone to inconsistencies in naming conventions and
layout of directory structures. Therefore, we've created a toolbox add-in (a
pre-configured, ready-to-run tool) to simplify the process of creating these tools
and setting their properties appropriately. Many of the tools have similar or even
the same properties where consistency is important to the success of your
migration.

Kiva Migration Toolbox Builder
The following are the steps for creating a new toolbox using the Kiva Migration
Toolbox Builder add-in:

1. If you don't have the Toolbox application currently running, start the Toolbox
and select the menu option Add-In|Migration|Kiva Migration Toolbox

Builder.

Sun ONE Migration Toolbox

Appendix B 183

2. After a few moments, you will be prompted by a series of dialog boxes that
will request some information. This information will be used by the Toolbox
Builder to fill property values for the tools it generates. Some of the properties
that you are not prompted for will contain defaults that may or may not need
to be modified after the tools are created by the Toolbox Builder.

3. First, you are prompted for the package which the new JATO Application will
be placed in. The best way to understand what this means is to run the
OnlineBankSample migration and learn how a new package is created under
./war/WEB-INF/classes to contain the JATO material. Although all the existing
Java code is left in the same package, there is a need to create some new Java
code for the JATO Application infrastructure. The new package is for this code.
Please note that ALL Java source from the original application may remain in
the same package. It is only the new Java source for the JATO resources which
need a new package defined. No matter what package you choose (e.g.
com.iplanet.migration.samples.onlinebank), the last name in the package will
be used as the default directory name for the migration results. You can
override this directory location in the next panel; we recommend taking all the
default values.

4. Next, you are provided the choice of using the Automatic Application Extract
Archive Wizard. This wizard will help create tools for creating the application
extract archive. If you choose Cancel then you are simply asked for the
application extract archive (ZIP/JAR) path name. This is the name of
the zip or JAR file which contains all the source for the application. In this case
the archive must have been created manually beforehand and the wizard
continues with encoding specifications.

5. If you choose OK for the Automatic Application Extract Archive Wizard then
you are asked to enter the root directory to the application source (this is
normally the ./nas/APPS directory).

6. Next, you are asked to provide a list of top level packages in the application
source directory pertinent to this migration. If all the source in the directory is
included then you can skip specifying a value.

7. Next, you are asked to provide a list of file extensions which will be included in
the Application Extract Archive.

8. If you choose OK for the Automatic Application Extract Archive Wizard then
you will see a Task tool and Copy Directory tool and Java tool added to the
toolbox.

Sun ONE Migration Toolbox

184 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

9. There are two (2) panels which ask for the character encodings for Java source
and query files. There are many customers who have Java source in an
alternate character encoding (not ASCII). For instance, it is common for Asian
developers/customers to use double-byte character source files. In a change
from the S1MT BETA, only one (1) encoding value is allowed for file type. It is
assumed that there is a common encoding standard within an application. If
there are varying encodings then the application descriptor XML file may be
edited accordingly after Extraction. Please note that S1MT 1.2.3 attempts to
automatically discover character encoding of HTML templates by inspecting
the <meta> tags in the source files. However, the migrator should carefully
review the application descriptor XML file for encoding dispositions to ensure
proper translation.

10. At this point the Kiva Extraction and Translation Tools are added to the
toolbox.

11. Lastly, you are provided the choice of using the Automatic Static Document
Translation Wizard. This wizard will help create tools for assembling the static
document content and translating appropriate documents fixing the URLs for
AppLogic invocation and copying the documents to the result WAR directory
structure.

12. If you choose CANCEL then the builder exits. If you choose OK, you are asked
to enter the location of the document root for the application and another Task
tool, JAR tool, Document Translation tool and Copy Directory tool are added
to the toolbox.

13. Save the toolbox to disk by selecting the menu option File|Save and give it a
name.

Tools generated by Kiva Toolbox Builder are shown here:

Sun ONE Migration Toolbox

Appendix B 185

Invoking the Tools

You are now ready to migrate your application by invoking the generated tools;
extraction first and then translation. Before invoking each tool, inspect its
properties first and make adjustments as needed. In general, if you've provided
desirable initial values to the Toolbox Builder, none of the properties will need to
be adjusted. (note: The Toolbox Builder created one Task Tool in your toolbox
which you can use to invoke all of the other generated tools at once. However, we
recommend invoking each tool individually until you have migrated one or two
applications and become familiar with each tool's output.)

Tools Created by Kiva Migration Toolbox Builder
1. KIVA Application Extraction Tool

Sun ONE Migration Toolbox

186 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

This tool reads a zip or JAR file called the application extract archive
containing Kiva application files and creates an XML document called an
application description file. The application description file contains high level
information describing the application including disposition of each file found
in the application extract archive.

This tool assumes, as input, the pre-existence of a zip file containing all of the
original NAS/KIVA application source (i.e. templates, applogic java files,
other application specific resources). The zip file need not contain the actual
original class files since the migration effort will be altering the source files.

Creation of the application description file is the first step in the automated
migration process. Although this file may be useful for other purposes, its
main use is as input to the application translation process using the Kiva
Application Translation Tool (com.iplanet.moko.nas.tools.KivaTranslateTool).

2. KIVA Application Translation Tool

This tool reads both a zip or JAR file called the application extract archive
containing Kiva application files and also an XML document called an
application description file. This tool takes as input an application description
file and uses it to generate a set of equivalent J2EE components and files. The
application description file (an XML document) is produced as the result of
using the Kiva Extraction Tool (com.iplanet.moko.nas.tools.KivaExtractTool)
to extract information from a set of source Kiva projects. Use of the translation
tool is the second step in performing the automated migration of a Kiva
application.

3. Copy Directory Tool

Copies the contents of a source directory to a target directory

4. JAR Tool

JARs all files in the source directory and all subdirectories

NetDynamics Migration Toolbox Builder

The following are the steps for creating a new toolbox using the NetDynamics
Migration Toolbox Builder add-in:

1. If you don't have the Toolbox application currently running, start the Toolbox
and choose the "Migrate an application" option in the Welcome dialog and
press OK. With the Toolbox running, be sure that you have an empty (New)
toolbox. Select the menu option Add-In|Migration|NetDynamics Migration

Toolbox Builder.

Sun ONE Migration Toolbox

Appendix B 187

2. After a few moments, you will be prompted by a series of dialog boxes that
will request some information. This information will be used by the Toolbox
Builder to fill property values for the tools it generates. Some of the properties
that you are not prompted for will contain defaults that may or may not need
to be modified after the tools are created by the Toolbox Builder.

3. First prompt: Enter the logical application name. This is the name of the
entire application, which may include more than one NetDynamics project. If
the application is only one project, then it is not recommended to use the
project name as the application name. For example, if your project is called foo,
then call your application fooapp rather than just plain foo. This will prevent
confusion with other similar properties and avoid difficulties later during
deployment.

4. After you've entered an application name, the Toolbox Builder will prompt
you for more information, providing default values when possible. We
recommend taking all the default values.

5. Once you have finished entering information, The Toolbox Builder will create
several tools in your current toolbox. Save the toolbox to disk by selecting the
menu option File|Save and give it a name. Using the application name (the
value from the first promptófooapp in our example here) as the name of the
toolbox is recommended.

Tools generated by NetDynamics Toolbox Builder are shown here:

Sun ONE Migration Toolbox

188 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

Invoking the Tools

You are now ready to migrate your NetDynamics application by invoking several
of the generated tools. Before invoking each tool, inspect its properties first and
make adjustments as needed. In general, if you've provided desirable initial values
to the Toolbox Builder, none of the properties will need to be adjusted. (NOTE: The
Toolbox Builder created one or more Task Tools in your toolbox which you can use
to invoke several of the other generated tools at once. However, we recommend
invoking each tool individually until you have migrated one or two applications
and become familiar with each tool's output.)

Sun ONE Migration Toolbox

Appendix B 189

Tools Created by Kiva Migration Toolbox Builder
1. NetDynamics Extraction Tool

This tool gathers as much information as possible from the source
NetDynamics project or projects and then writes this information to an XML
file called the application description file. This application description will serve
as the input to the Application Translation Tool.

Before invoking this tool, check the following properties for accuracy:

ProjectsDirectory is the path to the NetDynamics projects directory
used during extraction. The default value is
%MIGTBX_HOME%/work/NDProjects. We recommend placing all the
NetDynamics projects you intend to migrate in this directory.

All other properties should be fine with their current values unless you made
an error during the prompting stages of the Toolbox Builder add-in. The other
properties will be discussed in detail later in this document.

Save the toolbox if you made any changes and invoke the tool. The XML
output file (the application description) will be written to the location specified
by the OutputDirectory property.

You may open and browse the application description file if you wish to
understand the details of the project extraction. Using an XML browser like
XML Spy is recommended. We highly discourage editing this file as mistakes
introduced here may significantly affect the translation phase, causing it to fail
completely or generate faulty output

2. Application Translation Tool

This tool uses the application description file generated by the NetDynamics
Extraction Tool to output a set of J2EE-compliant components that accurately
reflect the structure of the behavior of the original NetDynamics application.

All other properties should be fine with the current values unless you made an
error during the prompting stages of the Toolbox Builder add-in. The other
properties will be discussed in detail later in this document.

Save the toolbox if you made any changes and invoke the tool. The new J2EE
components will be written to the location specified by the OutputDirectory

property.

Additionally, this tool places a migration log file (MigrationLog.csv) in the
translation output directory. This file indicates various items that were
identified during translation as requiring additional or special migration
attention. Our reason for generating this file is to alert migration developers to

Sun ONE Migration Toolbox

190 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

those items that were not automatically handled by the translation, and to
record information that was otherwise not carried forward during translation.
This file generally serves as a minimal task list for the manual portion of the
migration (there will likely be other tasks as well not related directly to the
translation).

3. Regular Expression Mapping Tool

This tool, also known as the Regexp Tool, uses a set of XML-specified match and
replace specifications to effect changes within files (note, this tool uses the Perl
5 regular expression syntax). The Toolbox Builder generates a Regexp Tool that
is preconfigured to replace common Spider API Java constructs with
equivalent JATO constructs in your migrated Java source files.

Before invoking this tool, check the following properties for accuracy:

SourceDirectory is the location of your migrated application code. Please
make sure that this directory does not also contain the JATO source files, as the
processing of those files may cause unexpected problems.

All other properties should be fine with the current values unless you made an
error during the prompting stages of the Toolbox Builder add-in.

Save the toolbox if you made any changes and invoke the tool. The migrated
source files will be processed and any changes that occur will be written to the
console. Before any file is modified, the tool will backup the original file in its
original location with a .orig file extension.

IMPORTANT: At this point, you have completed the automated migration
phase, and must now port the Java code in the migrated application to use the
J2EE/JATO API instead of the NetDynamics Spider API. The remaining tools
described below will be useful for packaging and deploying your application
once manual migration has been completed, with one exception: the migrated
application should compile successfully at this point and minimally run if
deployed (pages can be invoked); however, the application may not be
functional if you've used any of the NetDynamics Spider API. Therefore,
unless you want to simply make a sanity check or check the migration of
non-Spider dependent features, we recommend porting at least part of the
migrated application before continuing.

4. Java Compiler Tool

This tool is a convenient way to compile the JATO Foundation Classes and the
new J2EE application components with one click. This tool simply invokes the
javac command line tool provided with the JDK.

Sun ONE Migration Toolbox

Appendix B 191

There should be no properties that need adjusting in this tool unless changes
were made to the output directory properties of the previous tools. All of the
properties will be discussed in detail later in this document.

Save the toolbox if you made any changes and invoke the tool. All of the java
class source files (.java) under the directory specified by the SourceDirectory
will be compiled.

5. Copy Directory Tools (Create WAR File Directory Structure)

This tool copies directories/files from one location to another with a file filter
capability. The goal of the generated tools of this type is to create a "WAR file
ready" directory structure. Running the first four Copy Directory Tools will copy
the deployment descriptor, tag lib definition, JSPs, and Java classes into the
appropriate directories so that the Jar Tool can be used to create a WAR file to
be deployed in your J2EE container.

The instance of the Copy Directory Tool labeled CopySource is optional. The
source files are not needed in your production WAR file, but you may find it
helpful to keep a copy of the source files with your deployed application to
ensure proper version control (these may also come in handy if a quick fix is
necessary at the deployment site). These source files will not be visible to any
application clients, and will therefore remain safe on your deployment server.

All of the properties should be fine with the current values unless you made
changes to the output directory properties of the previous tools. All of the
properties will be discussed in detail later in this document.

Save the toolbox if you made any changes and invoke the first four copy
directory tools (CopyDeplDesc, CopyTLD, CopyJSP, CopyClasses). Invoke
the fifth copy directory tool (CopySource) if this makes sense for your
environment. Once these tools have been invoked, the appropriatly filtered
files will be written to the directory specified by each of the tools' respective
OutputDirectory property. The application is now ready to be "WAR'ed".

6. Jar Tool

This tool uses the JAR command line tool from the JDK to create a WAR file
using the directory structure created by the previous copy directory tools. This
WAR file will be the only file you will need to deploy your application to the
J2EE container. (The iAS deployment procedure is discussed in the JATO
Deployment Guide). Each container generally has its own deployment
procedure; please follow the instructions for your container.

Sun ONE Migration Toolbox

192 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

All of the properties should be fine with the current values unless you made
changes to the output directory properties of the previous tools. All of the
properties will be discussed in detail later in this document.

Save the toolbox if you made any changes and invoke the tool. The WAR file
will be created and written to the location specified by the OutputDirectory

property. The application is ready to be deployed.

Tools and Toolboxes
Toolboxes are persisted to disk in the format of a toolbox file (.toolbox).
Individual tools of the toolbox are contained in the toolbox file in a serialized object
format. These individual tools can exist outside of the toolbox file as a tools file
(.tools) in a similar format. There are several menu commands that allow you to
create, copy, delete, and merge two toolboxes together, as well as import and
export individual or groups of tools.

Creating New Tools
To create a new instance of any tool, use the Tool|New menu option and select the
type of tool you would like to create (Extraction, Translation, Compilation, etc.).
You will notice the new tool will be added to currently opened toolbox in the
toolbox tree. It will be grouped with other tools of its type and will have a default
name of the form <ToolType><##>, like CopyDirectoryTool7. You can triple-click
the tool name or press F2 to rename it as you wish. Spaces are allowed in tool
names.

Cloning Tools
To create a copy of a current tool, use the Tool|Clone menu option and a new tool
of the same type will be created with the same properties as the original. Rename
and adjust properties as needed.

Deleting Tools
To delete a tool, use the Tool|Delete menu option and the tool will be removed
from the toolbox. You will be prompted verify your delete tool command, but there
is no undo action. You may select several tools to delete at once by holding down
the Ctrl or Shift keys while selecting additional tools.

Sun ONE Migration Toolbox

Appendix B 193

Importing & Exporting Tools
You may have many different toolboxes (.toolbox files) that are focused on
different NetDynamics application migrations. With the import and export
commands, you can export a tool to a .tools file and then import it into another
toolbox (.toolbox file).

To export a tool, open the toolbox with the tool you wish to export, select the tool
or tools in the toolbox tree, then use the File|Export menu option and name the
.tools file to export the tool. The tool will not be removed from the current
toolbox.

To import the tool into another toolbox, open the toolbox you wish to be imported,
then use the File|Import menu option, browse to the location of the .tools file
you wish to import, then save the toolbox.

Toolbox Merging
If you have two separate toolboxes and would like to merge them into single
toolbox you use the merge toolbox feature of the Open Toolbox menu option. To
merge two toolboxes into one toolbox, open one of the toolboxes, and while it is
open, open the other toolbox. You will be prompted to replace the existing toolbox,
merge the new toolbox with the already-open toolbox, or cancel the operation.

Troubleshooting
IMPORTANT: Before continuing, make sure you have the latest S1MT patches
available from the Sun ONE Migration Website. We will be releasing patches
regularly as we discover and diagnose difficulties. We will release most of these
patches to address problems found by users of the S1MT. Please submit any
problems you encounter to the S1MT team so that we can diagnose the problem
and issue a patch if necessary.

Toolbox Installation & Configuration
If you have difficulty running the Toolbox application, consult the following:

• Ensure that all the %MIGTBX_HOME%/bin/setenv.bat script is customized for
your environment. Because of limitations of the JDK, you may not install the
S1MT in a path containing directory names with spaces. For example, do not
unpack the archive in your C:\Program Files directory. We recommend
unpacking the archive either in c:\iPlanet or c:\.

Sun ONE Migration Toolbox

194 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

• There are known problems using older versions of WinZip to unpack archives
created with the JDK's zip/jar tools. Doing so will cause files to be truncated
during unpacking, resulting in file lengths of zero bytes. Therefore, please
ensure that you are using the latest version of WinZip when unpacking the
S1MT archive (http://www.winzip.com).

• To avoid class version issues, we strongly recommend that you remove all JAR
files from your JDK's extension directory (%JAVA_HOME%/jre/lib/ext) while
running the Toolbox application. We have included all the classes necessary for
running the Toolbox with the distribution. Please note that simply renaming
the JAR files in the extension directory is not sufficent; you must move them to
a different location.

• Because many development machines have several installed copies and/or
versions of the JDK, be sure you know which copy of the JDK you are using.
Set the JAVA_HOME environment variable in the
%MIGTBX_HOME%/bin/setenv.bat file to ensure you are running the preferred
copy with the Toolbox application.

Extraction
For the most part, as we've mentioned above, extraction of an application
description is the most likely step in which you will encounter errors or difficulties.
Also as we've already mentioned, this is frequently a normal part of the migration
process and shouldn't discourage you if you are following the steps in previous
sections. If you are having difficulties not covered above, consult the following
tips.

General Issues
• During extraction, ensure that all external classes (non-NetDynamics project

classes) are present on the Toolbox's classpath. The easiest way to make these
classes available is to place JAR files or unpackaged classes in the
%MIGTBX_HOME%/lib/ext directory. Classes and JARs in this directory will
automatically be added to the Toolbox classpath upon startup. If this solution
is unsatisfactory, you may either add the classes to your classpath or edit the
%MIGTBX_HOME%/bin/setclasspath.bat file.

• Note the summary at the end of the output from the extraction and translation
tools to determine if any project objects failed the automated process.

• Because of a limitation inherent in using the embedded NetDynamics runtime,
exceptions thrown during extraction may not impact the reported tool status,
and therefore the tool may report success when in fact the extraction failed.
Therefore, we caution users to note and investigate all exceptions thrown
during extraction. In some cases, we have seen seemingly innocuous

http://www.winzip.com

Sun ONE Migration Toolbox

Appendix B 195

exceptions cause side effects which significantly impacted the fidelity of
extracted project information. For example, during one extraction, we
encountered a ClassNotFoundException from the NetDynamics runtime
looking for a (seemingly) non-critical class. This exception later prevented
certain DataObject properties from being extracted, resulting in a
non-functional migrated application. Therefore, to ensure the best possible
migration, always be sure to eliminate all sources of exceptions during the
extraction phase before continuing.

• Note that because of a feature of the embedded NetDynamics CP, two copies of
a project are instantiated during project extraction, one before extraction and
one after. This is generally harmless, but if the project throws exceptions
during instantiation, you will see two sets of stack traces in the Toolbox's
console log.

Non-Fatal Error During Extraction
If only part of the automated migration succeeds (or fails), we recommend the
following:

• Find and correct the cause of the failure using the tips in the above Sections
and re-run the extraction or translation

• If a problem occurs with NetDynamics migration, create a new project in the
NetDynamics Studio and import the problematic objects. Simplify them until
you can get this project to run through the appropriate tool(s). Introduce these
files back into the original, now-migrated project.

• Migrate the failed objects by hand. This is not as hard as it may sound. The
JATO framework was also designed for manual application authoring. Using
the templates in the application package, follow the example of a migrated
object of the same type. Documentation has been created to assist in creating
new JATO objects manually. Check the "Files" location of the JATO eGroups
forum.

• Diagnose the problem as thoroughly as possible and consult the discussion
forums or the S1MT team.

Fatal Error During Extraction
Ensure the following items are not factors in the failure (in approximate order of
likelihood):

1. Incorrect environment settings. Check the settings of your
%MIGTBX_HOME%/bin/setenv.bat file and ensure they are appropriate for
your machine.

2. Missing external classes

Sun ONE Migration Toolbox

196 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

3. Incorrect tool property settings. Ensure that the Extraction Tool has valid
property settings

4. Use of non-existent runtime feature in a critical location (such as a class
initializer or initialization of non-Spider threads to perform background tasks)

5. Non-present links directory or corrupted class files

6. Use of incorrect JDK version or platform

7. Conflicting class file versions in boot classpath (such as those present in the
JDK's extension directory)

If none of the above items are discernable factors in the problem, you may have
encountered a bug in the S1MT. We reiterate that because of the latitude
NetDynamics allowed during project development, Sun ONE cannot anticipate all
possibilities and thus ensure a trouble-free migration for all customers. However,
the S1MT is committed to making the migration process as painless as possible.
Please report any problems to the S1MT team and/or the discussion forums so that
we may address them and issue patches as necessary.

Translation
If you encounter an error during application translation, do the following first:

• Ensure that your application description file looks complete and is valid XML.
Use a tool like XMLSpy or Internet Explorer to open the document and view it.

• Ensure that the Translation Tool settings are correct

• Verify your environment settings in the %MIGTBX_HOME%/bin/setenv.bat file
and ensure they are appropriate for your machine

• Ensure that you have a complete Toolbox installation

If none of the above items are discernable factors in the problem, you may have
encountered a bug in the S1MT. We reiterate that because of the latitude
NetDynamics allowed during project development, Sun ONE cannot anticipate all
possibilities and thus ensure a trouble-free migration for all customers. However,
the S1MT is committed to making the migration process as painless as possible.
Please report any problems to the S1MT team and/or the discussion forums so that
we may address them and issue patches as necessary.

Post-Migration
Some problems may arise after migration or during testing. In general, such
problems will need to be posted to the discussion forums or discussed with the
S1MT team. However, before contacting others, note the following:

Sun ONE Migration Toolbox

Appendix B 197

• The module URLs for each servlet and display URLs for each view bean are set
to certain defaults during project translation. These defaults will likely be
correct for your deployment environment, but may not be in some cases.
Please consult the JATO Deployment Guide or the discussion forums for
information on how to configure these URLs differently for deployment.

• There are inconsistencies in the way JDBC drivers treat certain column types.
JATO contains a number of options that may need to be modified in order for
your application to work against your specific database. If you are having
difficulty running the migrated application against your target database,
please consult the Sun ONE Migration website and discussion forums for
information on specific database-related tweaks.

Sun ONE Migration Toolbox

198 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

199

Appendix C

Migrating from EJB 1.1 to EJB 2.0
Although the EJB 1.1 specification will continue to be supported in Sun ONE
Application Server 7, the use of the EJB 2.0 architecture is recommended to
leverage its enhanced capabilities.

To migrate EJB 1.1 to EJB 2.0 a number of modifications will be required, including
within the source code of components.

Essentially, the required modifications relate to the differences between EJB 1.1 and
EJB 2.0, all of which are described in the following topics.

• "EJB Query Language"

• "Local Interfaces"

• "EJB 2.0 Container-Managed Persistence (CMP)"

• "Defining Persistent Fields"

• "Defining Entity Bean Relationships"

• "Message-Driven Beans"

EJB Query Language
The EJB 1.1 specification left the manner and language for forming and expressing
queries for finder methods to each individual application server. While many
application server vendors let developers form queries using SQL, others use their
own proprietary language specific to their particular application server product.
This mixture of query implementations causes inconsistencies between application
servers.

Migrating from EJB 1.1 to EJB 2.0

200 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

The EJB 2.0 specification introduces a query language called EJB Query Language, or
EJB QL to correct many of these inconsistencies and shortcomings. EJB QL is based
on SQL92. It defines query methods, in the form of both finder and select methods,
specifically for entity beans with container-managed persistence. EJB QL's
principal advantage over SQL is its portability across EJB containers and its ability
to navigate entity bean relationships.

Local Interfaces
In the EJB 1.1 architecture, session and entity beans have one type of interface, a
remote interface, through which they can be accessed by clients and other
application components. The remote interface is designed such that a bean instance
has remote capabilities; the bean inherits from RMI and can interact with
distributed clients across the network.

With EJB 2.0, session beans and entity beans can expose their methods to clients
through two types of interfaces: a remote interface and a local interface. The 2.0
remote interface is identical to the remote interface used in the 1.1 architecture,
whereby, the bean inherits from RMI, exposes its methods across the network tier,
and has the same capability to interact with distributed clients.

However, the local interfaces for session and entity beans provide support for
lightweight access from EJBs that are local clients; that is, clients co-located in the
same EJB container. The EJB 2.0 specification further requires that EJBs that use
local interfaces be within the same application. That is, the deployment descriptors
for an application's EJBs using local interfaces must be contained within one
ejb-jar file.

The local interface is a standard Java interface. It does not inherit from RMI. An
enterprise bean uses the local interface to expose its methods to other beans that
reside within the same container. By using a local interface, a bean may be more
tightly coupled with its clients and may be directly accessed without the overhead
of a remote method call.

In addition, local interfaces permit values to be passed between beans with pass by
reference semantics. Because you are now passing a reference to an object, rather
than the object itself, this reduces the overhead incurred when passing objects with
large amounts of data, resulting in a performance gain.

Setting up a session or entity bean to use a local interface rather than a remote
interface is simple. The local interface through which the bean's methods are
exposed to clients extends EJBLocalObject rather than EJBObject. Similarly, the
bean's home interface extends EJBLocalHome rather than EJBHome. The
implementation class extends the same EntityBean or SessionBean interface.

Migrating from EJB 1.1 to EJB 2.0

Appendix C 201

EJB 2.0 Container-Managed Persistence (CMP)
The EJB 2.0 specification has expanded CMP to allow multiple entity beans to have
relationships among themselves. This is referred to as Container-Managed
Relationships (CMR). The container manages the relationships and the referential
integrity of the relationships.

The EJB 1.1 specification presented a more limited CMP model. The 1.1 architecture
limited CMP to data access that is independent of the database or resource
manager type. It allowed you to expose only an entity bean's instance state through
its remote interface; there is no means to expose bean relationships. The 1.1 version
of CMP depends on mapping the instance variables of an entity bean class to the
data items representing their state in the database or resource manager. The CMP
instance fields are specified in the deployment descriptor, and when the bean is
deployed, the deployer uses tools to generate code that implements the mapping of
the instance fields to the data items.

You must also change the way you code the bean's implementation class.
According to the 2.0 specification, the implementation class for an entity bean that
uses CMP is now defined as an abstract class.

Defining Persistent Fields
The EJB 2.0 specification lets you designate an entity bean's instance variables as
CMP fields or CMR fields. You define these fields in the deployment descriptor.
CMP fields are marked with the element cmp-field, while container-managed
relationship fields are marked with the element cmr-field.

In the implementation class, note that you do not declare the CMP and CMR fields
as public variables. Instead, you define get and set methods in the entity bean to
retrieve and set the values of these CMP and CMR fields. In this sense, beans using
the 2.0 CMP follow the JavaBeans model: instead of accessing instance variables
directly, clients use the entity bean's get and set methods to retrieve and set these
instance variables. Keep in mind that the get and set methods only pertain to
variables that have been designated as CMP or CMR fields.

NOTE A bean destined to be remote in EJB 2.0 extends EJBObject in its
remote interface and EJBHome in its home interface, just as it did in
EJB 1.1.

Migrating from EJB 1.1 to EJB 2.0

202 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

Defining Entity Bean Relationships
As noted previously, the EJB 1.1 architecture does not support CMRs between
entity beans. The EJB 2.0 architecture does support both one-to-one and
one-to-many CMRs. Relationships are expressed using CMR fields, and these fields
are marked as such in the deployment descriptor. You set up the CMR fields in the
deployment descriptor using the appropriate deployment tool for your application
server.

Similar to CMP fields, the bean does not declare the CMR fields as instance
variables. Instead, the bean provides get and set methods for these fields.

Message-Driven Beans
Message-driven beans are another new feature introduced by the EJB 2.0
architecture. Message-driven beans are transaction-aware components that process
asynchronous messages delivered through the Java Message Service (JMS). The
JMS API is an integral part of the J2EE 1.3 platform.

Asynchronous messaging allows applications to communicate by exchanging
messages so that senders are independent of receivers. The sender sends its
message and does not have to wait for the receiver to receive or process that
message. This differs from synchronous communication, which requires the
component that is invoking a method on another component to wait or block until
the processing completes and control returns to the caller component.

Migrating EJB Client Applications
This section includes the following topics:

• "Declaring EJBs in the JNDI Context"

• "Recap on Using EJB JNDI References"

Declaring EJBs in the JNDI Context
In Sun ONE Application Server 7, EJBs are systematically mapped to the JNDI
sub-context "ejb/". If we attribute the JNDI name "Account" to an EJB, then Sun ONE
Application Server 7 will automatically create the reference "ejb/Account" in the
global JNDI context. The clients of this EJB will therefore have to look up
"ejb/Account" to retrieve the corresponding home interface.

Let us examine the code for a servlet method deployed in Sun ONE Application
Server 6.0/6.5,

Migrating from EJB 1.1 to EJB 2.0

Appendix C 203

The servlet presented here calls on a stateful session bean, BankTeller, mapped to
the root of the JNDI context. The method whose code we are considering is
responsible for retrieving the home interface of the EJB, so as to enable a BankTeller
object to be instantiated and a remote interface for this object to be retrieved, in
order to make business method calls to this component.

/**

* Look up the BankTellerHome interface using JNDI.

*/

private BankTellerHome lookupBankTellerHome(Context ctx)

throws NamingException

{

try

{

Object home = (BankTellerHome) ctx.lookup("ejb/BankTeller");

return (BankTellerHome) PortableRemoteObject.narrow(home,
BankTellerHome.class);

}

catch (NamingException ne)

{

log("lookupBankTellerHome: unable to lookup BankTellerHome" +

"with JNDI name 'BankTeller': " + ne.getMessage());

throw ne;

}

}

As the code already uses ejb/BankTeller as an argument for the lookup, there is no
need for modifying the code to be deployed on Sun ONE Application Server 7.

Recap on Using EJB JNDI References
This section summarizes the considerations when using EJB JNDI references.
Where noted, the consideration details are specific to a particular source
application server platform.

Migrating from EJB 1.1 to EJB 2.0

204 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

Placing EJB References in the JNDI Context
It is only necessary to modify the name of the EJB references in the JNDI context
mentioned above (moving these references from the JNDI context root to the
sub-context "ejb/") when the EJBs are mapped to the root of the JNDI context in the
existing WebLogic application.

If these EJBs are already mapped to the JNDI sub-context ejb/ in the existing
application, no modification is required.

However, when configuring the JNDI names of EJBs in the deployment descriptor
within the Forté for Java IDE, it is important to avoid including the prefix ejb/ in
the JNDI name of an EJB. Remember that these EJB references are automatically
placed in the JNDI ejb/ sub-context with Sun ONE Application Server 7. So, if an
EJB is given to the JNDI name "BankTeller" in its deployment descriptor, the
reference to this EJB will be "translated" by Sun ONE Application Server into
ejb/BankTeller, and this is the JNDI name that client components of this EJB
must use when carrying out a lookup.

Global JNDI context versus local JNDI context
Using the global JNDI context to obtain EJB references is a perfectly valid, feasible
approach with Sun ONE Application Server 7. Nonetheless, it is preferable to stay
as close as possible to the J2EE specification, and retrieve EJB references through
the local JNDI context of EJB client applications. When using the local JNDI
context, you must first declare EJB resource references in the deployment
descriptor of the client part (web.xml for a Web application, ejb-jar.xml for an
EJB component).

Migrating CMP Entity EJBs
This section describes the steps to migrate your application components from the
EJB 1.1 architecture to the EJB 2.0 architecture.

In order to migrate a CMP 1.1 bean to CMP 2.0, we first need to verify if a
particular bean can be migrated. The steps to perform this verification are as
follows.

Migrating from EJB 1.1 to EJB 2.0

Appendix C 205

1. From the ejb-jar.xml file, go to the <cmp-fields> names and check if the
optional tag <prim-key-field> is present in the ejb-jar.xml and has an
indicated value, if yes, go to next step.

Look for the <prim-key-class> field name in the ejb-jar.xml, get the class
name and get the public instance variables declared in the class. Now see
if the signature (name and case) of these variables matches with the
<cmp-field> names above. Segregate the ones that are found. In these
segregated fields, check if some of them start with an upper case letter. If any of
them do, then migration cannot be performed.

2. Look into the bean class source code and obtain the java types of all the
<cmp-field> variables.

3. Changeall the<cmp-field>namesto lowercaseand construct accessorsfrom
them. For example if the original field name is Name and its java type is
String, the accessor method signature will be:

Public void setName(String name)

Public String getName()

4. Compare these accessor method signatures with the method signatures in the
bean class. If there is an exact match found, migration is not possible.

5. Get the custom finder methods signatures and their corresponding SQLs.
Check if there is a ‘Join’ or ‘Outer join’ or an ‘OrderBy’ in the SQL, if yes, we
cannot migrate, as EJB QL does not support ‘joins’, ‘Outer join’ and ‘OrderBy’.

6. Any CMP 1.1 finder, which used java.util.Enumeration, should now use
java.util.Collection. Change your code to reflect this. CMP2.0 finders
cannot return java.util.Enumeration.

The next topic, "Migrating the Bean Class", performs to migration process.

Migrating the Bean Class
This section describes the steps required to migrate the bean class to Sun ONE
Application Server.

1. Prepend the bean class declaration with the keyword abstract. For example if
the bean class declaration was:

Public class CabinBean implements EntityBean // before
modification

abstract Public class CabinBean implements EntityBean // after
modification

2. Prefix the accessors with the keyword abstract.

Migrating from EJB 1.1 to EJB 2.0

206 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

3. Insert all the accessors after modification into the source(.java) file of the bean
class at class level.

4. Comment out all the cmp fields in the source file of the bean class.

5. Construct protected instance variable declarations from the cmp-field names
in lowercase and insert them at the class level.

6. Read up all the ejbCreate() method bodies (there could be more than one
ejbCreate). Look for the pattern ‘<cmp-field>=some value or local variable’,
and replace it with the expression ‘abstract mutator method name (same value
or local variable)’. For example, if the ejbCreate body (before migration) is like
this:

public MyPK ejbCreate(int id, String name)

{

this.id = 10*id;

Name = name;//1

return null;

}

The changed method body (after migration) should be:

public MyPK ejbCreate(int id, String name)

{

setId(10*id);

setName(name);//1

return null;

}

NOTE The method signature of the abstract accessor in //1 is as per the
Camel Case convention mandated by the EJB 2.0 spec. Also, the
keyword ‘this’ may or may not be present in the original source, but
it has to be removed from the modified source file.

Migrating from EJB 1.1 to EJB 2.0

Appendix C 207

7. All the protected variables declared in the ejbPostCreate()methods in Step 5
have to be initialized. The protected variables will be equal in number with the
ejbCreate() methods. This initialization will be done by inserting the
initialization code in the following manner:

protected String name;//from step 5

protected int id;//from step 5

public void ejbPostCreate(int id, String name)

{

name /*protected variable*/ = getName();/*abstract accessor*/
//inserted in this step

id /*protected variable*/ = getId();/*abstract accessor*/
//inserted in this step

}

8. Inside the ejbLoad method, you have to set the protected variables to the
beans database state. So insert the following lines of code:

public void ejbLoad()

{

name = getName();//inserted in this step

id = getId(); //inserted in this step

……….. //already present code

}

9. Similarly, you will have to update the beans’ state inside ejbStore()so that
its database state gets updated. But remember, you are not allowed to update
the setters that correspond to the primary key outside the ejbCreate(), so do
not include them inside this method. Insert the following lines of code:

public void ejbStore()

{

setName(name);//inserted in this step

// setId(id);//Do not insert this if it is a part of the
primary key

………………..//already present code

}

Migrating from EJB 1.1 to EJB 2.0

208 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

10. As a last change to the bean class source (.java) file, examine the whole code
and replace all occurrences of any <cmp-field> variable name with the
equivalent protected variable name (as declared in Step 5).

If you do not migrate the bean, at the minimum you need to insert the
<cmp-version>1.x</cmp-version> tag inside the ejb-jar.xml at the
appropriate place, so that the unmigrated bean still works on Sun ONE
Application Server.

Migration of ejb-jar.xml
To migrate the file ejb-jar.xml to Sun ONE Application Server perform the
following steps:

1. In the ejb-jar.xml, convert all <cmp-fields> to become lowercase.

2. In the ejb-jar.xml file, insert the tag <abstract-schema-name> after the
<reentrant> tag. The schema name will be the name of the bean as in the
< ejb-name> tag, prefixed with “ias_”.

3. Insert the following tags after the <primkey-field> tag:

<security-identity><use-caller-identity/></security-identity>

4. Use the SQL’s obtained above to construct the EJB QL from SQL.

5. Insert the <query> tag and all its nested child tags with all the required
information in the ejb-jar.xml, just after the <security-identity> tag.

Custom Finder Methods
The custom finder methods are the findBy... methods (other than the default
findByPrimaryKey method) which can be defined in the home interface of an
entity bean. As the EJB 1.1 specification does not stipulate a standard for defining
the logic of these finder methods, EJB server vendors are free to choose their
implementations. As a result, the procedures used to define the methods vary
considerably between the different implementations chosen by vendors.

Sun ONE Application Server 6.0 and 6.5 use standard SQL to specify the finder
logic.

Information concerning the definition of this finder method is stored in the EJB's
persistence descriptor (Account-ias-cmp.xml) as follows:

<bean-property>

<property>

<name>findOrderedAccountsForCustomerSQL</name>

Migrating from EJB 1.1 to EJB 2.0

Appendix C 209

<type>java.lang.String</type>

<value>

SELECT BRANCH_CODE,ACC_NO FROM ACCOUNT where CUST_NO = ?

</value>

<delimiter>,</delimiter>

</property>

</bean-property>

<bean-property>

<property>

<name>findOrderedAccountsForCustomerParms</name>

<type>java.lang.Vector</type>

<value>CustNo</value>

<delimiter>,</delimiter>

</property>

</bean-property>

Each findXXX finder method therefore has two corresponding entries in the
deployment descriptor (SQL code for the query, and the associated parameters).

In Sun ONE Application Server the custom finder method logic is also declarative,
but is based on the EJB query language EJB QL.

The EJB-QL language cannot be used on its own. It has to be specified inside the
file ejb-jar.xml, in the <ejb-ql> tag. This tag is inside the <query> tag, which
defines a query (finder or select method) inside an EJB. The EJB container can
transform each query into the implementation of the finder or select method.
Here's an example of an <ejb-ql> tag:

<ejb-jar>
<enterprise-beans>

<entity>
<ejb-name>hotelEJB</ejb-name>

...
<abstract-schema-name>TMBankSchemaName</abstract-schema-name>
<cmp-field>...
...
<query>

<query-method>
<method-name>findByCity</method-name>

Migrating from EJB 1.1 to EJB 2.0

210 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

<method-params>
<method-param>java.lang.String</method-param>

</method-params>
</query-method>
<ejb-ql>
<![CDATA[SELECT OBJECT(t) FROM TMBankSchemaName AS t WHERE

t.city = ?1]]>
</ejb-ql>

</query>
</entity>

...
</enterprise-beans>

...
</ejb-jar>

Index 211

Index

A
About Sun ONE Application Server 6.0/6.5 27
About Sun ONE Application Server 7 9
About This Guide 5

How This Guide is Organized 6
What you should know 5

Administration Server 17
Administration Tool 16
Administration Tools 15

Sun ONE Application Server 6.0 15
Sun ONE Application Server 7 17

application client JAR 22
AppLogic 115
Architecture 9, 10

Sun ONE Application Server 6.0/6.5 architecture
27

Sun ONE Application Server 7 Architecture 9
asadmin 18, 42, 68, 113
Automated Migration Phase 116, 144
automated tools 25
Automating Migration 6, 163

B
BEA WebLogic Server v6.1 113
BMP 43

C
CMP 39, 43
CORBA 118

D
data sources 32
Database Connectivity 19

Database Support in Sun ONE Application Server
6.0 19

Database Support in Sun ONE Application Server
7 20

db_setup.sh 19
DB2 19
Deploy 112
Deployment descriptors 22, 23
Development Environments 13

Sun ONE Application Server 6.0/6.5 13
Sun ONE Application Server 7 14

DriverManager 30

E
EAR files 22

212 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

EJB 39
EJB 1.1 to EJB 2.0

Defining Entity Bean Relationships 202
EJB 2.0 Container-Managed Persistence (CMP)

201
EJB Query Language 199
Message-Driven Beans 202
Migrating CMP Entity EJBs

Custom Finder Methods 208
Migrating the Bean Class 205
Migration of ejb-jar.xml 208

Migrating EJB Client Applications 202
Declaring EJBs in the JNDI Context 202

Migration of ejb-jar.xml 208
EJB Changes Specific to S1AS 7 39
EJB JAR 22
EJB Migration 39
EJB QL 39
ejbCreate 82
enterprise application 110
Enterprise Applications 44

Application root context and access URL 45
Migrating Proprietary Extensions 46

Enterprise EJB Modules 43
Enterprise JavaBeans 12
Entity Beans 40
Extraction Tool 147
Extraction tool 128

F
format

URLs, in manual 6
Forte for Java (FFJ) 118

G
GXR 119

H
home interface 91

I
iasdeploy 19
iBank 29, 46

Migrating iBank using Sun ONE Studio for Java
4.0 69
Converting CMP Entity EJBs from 1.1 to 2.0 78
Creating a Web application module 72
Creating an EJB module 90
Creating an enterprise application 110
Deploying the application 112

iBank Application specification
Application Components 174
Application navigation and logic 171
Database schema 166
Fitness of design choices with regard to potential

migration issues 177
Tools used for the development of the application

166
IBM WebSphere v4.0 113
Informix 19
Iona 118

J
J2EE 12
J2EE Application Components and Migration 21
J2EE applications

components 21
J2EE Component Standards 12
J2EE JATO 132
JATO 122, 137
JavaServer Pages 12
JDBC Code 30

Using JDBC 2.0 Data Sources 32
Configuring a Data Source 33
Looking Up the Data Source Via JNDI 36

Index 213

JDBC drivers 19
jdbcsetup 19
JNDI context 36
JSP 1.2 specification 37
JSP’s and JSP Custom Tag Libraries 36

K
KFC (Kiva Foundation Classes) 115
Kiva 115

automated migration phase 116
extraction 116
translation 116

manual migration phase 116
Kiva Migration Toolbox Builder 181
Kiva/NAS 4.1

Migration Preparation 115
Before Running the Extraction Tool 119
Migration Process Overview 115
Preparing a Project for Automated Migration

118
Preparing the GXR file 119
Preparing your Working Environment 117

KIVA/NAS 4.1 to Sun ONE AS 7 115

M
Manual Migration of iBank Application 47

Assembling Application for Deployment 68
EJB Changes 49
Web application changes 48

Manual Migration Phase 117, 144
MDB 39
Migrating From S1AS 6.x to S1AS 7 29
Migration and Redeployment 22

What is Redeployment 24
What Needs to be Migrated 23
Why is Migration Necessary 23

Migration Considerations and Strategies 27

N
NAS 4.1 115
NetDynamics 144

automated migration phase 144
extraction 144
translation 144

Create a Toolbox Builder 148
Extraction Tool 146, 147
manual migration phase 144
Migrating ToolBox Sample Application 148
Migration Preparation 144

igration Process Overview 144
Preparing a Project for Automated Migration

146
Preparing your Working Environment 145

Running the Migration Toolbox 148
NetDynamics Migration Toolbox Builder 181
NetDynamics to Sun ONE AS 7 143

O
Obtaining a Data Source from the JNDI Context 38
onAfterInit 146
onBeforeInit 146
OnlineBankSample 120

Create a Toolbox 120
Running the Migration Toolbox 120

Oracle 19

P
PointBase 19
Project Manager 133

R
Registry Editor 16
remote interface 91

214 Sun ONE Application Server Migrating and Redeploying Server Applications Guide • October 2002

S
S1MT 115, 116
Servlets 12, 37
Session Beans 39
setenv.bat 145
SQL Server 19
Sun ONE Console 15
Sun ONE Migration Tool 25
Sun ONE Migration Tool for Application Servers 163
Sun ONE Migration Toolbox 25, 115, 181

Migration 181
Kiva Migration Toolbox Builder 182
NetDynamics Migration Toolbox Builder 186
Toolbox Builder 182

Supported Platforms 181
Tools and Toolboxes 192

Cloning Tools 192
Creating New Tools 192
Deleting Tools 192
Importing & Exporting Tools 193
Toolbox Merging 193

Troubleshooting 193
Extraction 194
Post-Migration 196
Toolbox Installation & Configuration 193
Translation 196

Sun ONE Studio 14, 69
Sybase 19

T
Task Tools 128
toolbox 125
Toolbox application 181
Toolbox GUI 181
Translation tool 129
type 2 19
Type 4 19

U
URLs

format, in manual 6

V
Visibroker for Java 118

W
WAR 22, 118
Web Applications 40

Migrating Web Application Modules 41
Particular setbacks when migrating servlets and

JSPs 42
Web module 110
web.xml 73
WEB-INF 72, 73
Welcome File 78

	Contents
	About This Guide
	What You Should Know
	How This Guide is Organized
	Documentation Conventions

	About Sun ONE Application Server 7
	Sun ONE Application Server 7 Architecture
	J2EE Component Standards
	Development Environments
	Sun ONE Application Server 6.0/6.5 Development Environment
	Sun ONE Application Server 7 Development Environment

	Administration Tools
	Sun ONE Application Server 6.0 Administration Tools
	Sun ONE Application Server 6.5 Administration Tools
	Sun ONE Application Server 7 Administration Tools

	Database Connectivity
	Database Support in Sun ONE Application Server 6.0
	Database Support in Sun ONE Application Server 6.5
	Database Support in Sun ONE Application Server 7

	J2EE Application Components and Migration
	Migration and Redeployment
	Why is Migration Necessary
	What Needs to be Migrated
	Deployment descriptors (XML files)
	JSP source files
	Java source files

	What is Redeployment

	Migration Considerations and Strategies
	About Sun ONE Application Server 6.0/6.5
	Migration Issues From Sun ONE Application Server 6.x to 7
	Migrating JDBC Code
	Establishing Connections Through the DriverManager Interface
	Using JDBC 2.0 Data Sources
	Configuring a Data Source
	Looking Up the Data Source Via JNDI To Obtain a Connection

	Migrating Java Server Pages and JSP Custom Tag Libraries
	Migrating Servlets
	Obtaining a Data Source from the JNDI Context
	Declaring EJBs in the JNDI Context

	EJB Migration
	EJB Changes Specific to Sun ONE Application Server 7
	Migrating Web Applications
	Migrating Web Application Modules
	Particular setbacks when migrating servlets and JSPs

	Migrating Enterprise EJB Modules
	Migrating Enterprise Applications
	Application root context and access URL
	Migrating Proprietary Extensions

	Migrating Example: iBank
	Manual Migration of iBank Application
	Web application changes
	EJB Changes
	Session Beans:
	Entity Beans:

	Assembling Application for Deployment
	Deploying iBank application on Sun ONE Application Server 7 using the asadmin utility

	Migrating iBank using Sun ONE Studio for Java 4.0
	Creating a Web application module in Sun ONE Studio for Java
	Configuring a Servlet
	Configuring a JSP tag library
	Add Resource Reference
	Add Context Param
	Specify the Welcome File

	Converting CMP Entity EJBs from 1.1 to 2.0
	Creating an EJB module in Sun ONE Studio for Java
	Creating Module for Session Beans
	Creating Module for Entity Beans

	Creating an enterprise application in Sun ONE Studio for Java
	Deploying an application in Sun ONE Application Server 7

	Migration from BEA WebLogic Server v6.1 and IBM WebSphere v4.0

	Migration from KIVA/NAS 4.1 to Sun ONE AS 7
	Introduction
	Migration Preparation
	Migration Process Overview
	Automated Migration Phase
	Manual Migration Phase

	Preparing your Working Environment
	Preparing a Project for Automated Migration
	Preparing the GXR file
	Before Running the Extraction Tool

	Migrating OnlineBankSample
	Running the Migration Toolbox
	Create a Toolbox

	Migration from NetDynamics to Sun ONE AS 7
	Introduction
	Migration Preparation
	Migration Process Overview
	Automated Migration Phase
	Manual Migration Phase

	Preparing your Working Environment
	Preparing a Project for Automated Migration
	Differences Between the Project Extraction Runtime and NetDynamics Runtime Environments
	Before Running the NetDynamics Extraction Tool

	Migrating ToolBox Sample Application
	Running the Migration Toolbox
	Create a Toolbox Builder

	Automating Migration
	Sun ONE Migration Tool for Application Servers
	Sun ONE Migration Toolbox (formerly iPlanet Migration Toolbox)
	Redeploying Migrated Applications

	Appendix A
	iBank Application specification
	Tools used for the development of the application
	Sun ONE Studio Enterprise Edition for Java, Release 4.0
	Oracle 8i 8.1.6

	Database schema
	Application navigation and logic
	Application Components
	Fitness of design choices with regard to potential migration issues
	Servlets
	Java Server Pages
	JDBC
	Enterprise Java Beans
	Application Packaging

	Appendix B
	Sun ONE Migration Toolbox
	Supported Platforms
	Migration
	Toolbox Builder
	Kiva Migration Toolbox Builder
	Invoking the Tools
	Tools Created by Kiva Migration Toolbox Builder

	NetDynamics Migration Toolbox Builder
	Invoking the Tools
	Tools Created by Kiva Migration Toolbox Builder

	Tools and Toolboxes
	Creating New Tools
	Cloning Tools
	Deleting Tools
	Importing & Exporting Tools
	Toolbox Merging

	Troubleshooting
	Toolbox Installation & Configuration
	Extraction
	General Issues
	Non-Fatal Error During Extraction
	Fatal Error During Extraction

	Translation
	Post-Migration

	Appendix C
	Migrating from EJB 1.1 to EJB 2.0
	EJB Query Language
	Local Interfaces
	EJB 2.0 Container-Managed Persistence (CMP)
	Defining Persistent Fields

	Defining Entity Bean Relationships
	Message-Driven Beans
	Migrating EJB Client Applications
	Declaring EJBs in the JNDI Context
	Recap on Using EJB JNDI References
	Placing EJB References in the JNDI Context
	Global JNDI context versus local JNDI context

	Migrating CMP Entity EJBs
	Migrating the Bean Class
	Migration of ejb-jar.xml
	Custom Finder Methods

	Index

