
Developer’s Guide to Enterprise
JavaBeans Technology

Sun ONE Application Server

Version 7

816-7151-10
September 2002

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

THIS SOFTWARE CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE,
DISCLOSURE OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN
MICROSYSTEMS, INC.U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc.
standard license agreement and applicable provisions of the FAR and its supplements. Use is subject to license terms.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java and the Sun ONE logo are trademarks or registered trademarks of Sun Microsystems, Inc.
in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other
countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are
strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists,
including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

__

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

CE LOGICIEL CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN
MICROSYSTEMS, INC. SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS
L’AUTORISATION EXPRESSE, ÉCRITE ET PRÉALABLE DE SUN MICROSYSTEMS, INC. Droits du gouvernement américain,
utlisateurs gouvernmentaux - logiciel commercial. Les utilisateurs gouvernmentaux sont soumis au contrat de licence standard de
Sun Microsystems, Inc., ainsi qu aux dispositions en vigueur de la FAR [(Federal Acquisition Regulations) et des suppléments à
celles-ci. Distribué par des licences qui en restreignent l’utilisation.

Cette distribution peut comprendre des composants développés pardes tierces parties.

Sun, Sun Microsystems, le logo Sun, Java et le logo Sun ONE sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et licenciée exlusivement par X/Open Company, Ltd.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont régis par la législation américaine en
matière de contrôle des exportations et peuvent être soumis au droit d’autres pays dans le domaine des exportations et importations.
Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires, des missiles, des armes biologiques et chimiques ou du
nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous
embargo des États-Unis, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe ou indirecte, aux exportations
des produits ou des services qui sont régi par la législation américaine en matière de contrôle des exportations ("U.S. Commerce
Department’s Table of Denial Orders") et la liste de ressortissants spécifiquement désignés ("U.S. Treasury Department of Specially
Designated Nationals and Blocked Persons"), sont rigoureusement interdites.

3

Contents

About This Guide . 11

Who Should Use This Guide . 11
Using the Documentation . 12
How This Guide Is Organized . 14
Related Information . 15
Documentation Conventions . 15

General Conventions . 15
Conventions Referring to Directories . 17

Product Support . 18

Chapter 1 Introducing the Sun ONE Application Server Enterprise JavaBeans Technology .
19
Summary of EJB 2.0 Changes . 20
EJB Architecture . 21
Value Added Features . 23

Read-Only Beans . 23
pass-by-reference . 23
Pooling and Caching Features . 24
Monitoring . 24
Integration with Sun ONE Studio 4 . 24
Dynamic Deployment and Reloading . 24

About Enterprise JavaBeans . 25
What Is an Enterprise JavaBean? . 25
Types of Beans . 26
EJB Flow . 27
The EJB Container . 28
Interfaces . 29

4 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Home Interface . 29
Remote Interface . 29
Local Interface . 30

Pooling and Caching . 31
Pooling Parameters . 31
Caching Parameters . 32

How Enterprise Beans Access Resources . 32
JNDI Connection . 32
Database Connection . 33
URL Connections . 33

Transaction Management . 33
How Application Security Works . 34

About Developing an Effective Application . 34
General Process for Creating Enterprise Beans . 35
Bean Usage Guidelines . 36
Client View Guidelines . 37
Remote or Local Interface Guidelines . 37
Accessing Sun ONE Application Server Functionality . 38

About EJB Assembly and Deployment . 38

Chapter 2 Using Session Beans . 41
About Session Beans . 42

Session Bean Characteristics . 42
The Container . 43

Stateless Container . 43
Stateful Container . 44

Developing Session Beans . 44
Development Requirements . 45
Determining Session Bean Usage . 45

Stateful Session Bean Considerations . 45
Stateless Session Bean Considerations . 46

Providing Interfaces . 47
Creating a Remote Interface . 47
Creating a Local Interface . 48
Creating the Local Home Interface . 48
Creating the Remote Home Interface . 49

Creating the Bean Class Definition . 50
Session Synchronization . 51
Abstract Methods . 52

Restrictions and Optimizations . 52
Optimizing Session Bean Performance . 52
Restricting Transactions . 53

5

Chapter 3 Using Entity Beans . 55
About Entity Beans . 56

Entity Bean Characteristics . 56
The Container . 57
Persistence . 57

Bean-Managed Persistence . 58
Container-Managed Persistence . 59

Read-Only Beans . 59
Developing Entity Beans . 59

Determining Entity Bean Usage . 60
Responsibilities of the Bean Developer . 60
Defining the Primary Key Class . 61
Defining Remote Interfaces . 61

Creating the Remote Home Interface . 61
findByPrimaryKey Method . 63
Example of a Remote Home interface . 63

Defining Local Interfaces . 64
Creating the Local Home Interface . 64
Creating a Local Interface . 65
Creating a Remote Interface . 67

Creating the Bean Class Definition (for Bean-Managed Persistence) . 68
Using ejbCreate . 69
Using ejbActivate and ejbPassivate . 71
Using ejbLoad and ejbStore . 71
Using setEntityContext and unsetEntityContext . 73
Using ejbRemove . 73
Using Finder Methods . 73

Using Read-Only Beans . 74
Read-Only Bean Characteristics and Life Cycle . 75
Read-Only Bean Good Practices . 75
Refreshing Read-Only Beans . 76

Invoking a Transactional Method . 76
Refreshing Periodically . 76
Refreshing Programmatically . 76

Deploying Read Only Beans . 77
Handling Synchronization of Concurrent Access . 78

Chapter 4 Using Container-Managed Persistence for Entity Beans . 79
Sun ONE Application Server Support . 80
About Container-Managed Persistence . 81

CMP Components . 81
Relationships . 82

One-to-One Relationships . 83

6 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

One-to-Many Relationships . 84
Many-to-Many Relationships . 84

Abstract Schema . 84
Deployment Descriptors . 86
Persistence Manager . 86

Using Container-Managed Persistence . 87
Process Overview . 88

Phase 1. Creating the mapping deployment descriptor file . 88
Phase 2. Generating and compiling concrete beans and delegates . 89
Phase 3. Running in the Sun ONE Application Server runtime . 89

Mapping Capabilities . 90
Mapping Features . 90
Mapping Tool . 90
Mapping Techniques . 91

Supported Data Types for Mapping . 91
BLOB Support . 93
Using the capture-schema Utility . 94
Mapping Fields and Relationships . 95

Specifying the Beans to Be Mapped . 96
Specifying the Mapping Components . 97
Specifying Field Mappings . 100
Specifying Relationships . 102

Configuring the Resource Manager . 104
Using EJB QL . 106
Configuring Queries for 1.1 Finders . 106

Query Filter Expression . 107
Query Parameter . 109
Query Variables . 109

Third-Party Pluggable Persistence Manager API . 110
Restrictions and Optimizations . 111

Unique Database Schema Names in EAR File . 111
Limitations on Container-Managed Persistence Protocol . 112
Restrictions on Remote Interfaces . 112

Elements in the sun-cmp-mappings.xml File . 112
Examples . 122

Sample Schema Definition . 122
Sample CMP Mapping XML File . 123
Sample EJB QL Queries . 125

Chapter 5 Using Message-Driven Beans . 131
About Message-Driven Beans . 132

Message-Driven Beans Differences . 132
Message-Driven Bean Characteristics . 133

7

Transaction Management . 133
Concurrent Message Processing . 134

Developing Message-Driven Beans . 134
Creating the Bean Class Definition . 134

Using ejbCreate . 135
Using setMessageDrivenContext . 135
Using onMessage . 135
Using ejbRemove . 136

Configuration . 137
Connection Factory and Destination . 137
Message-Driven Bean Pool . 138
Server instance-wide Attributes . 138
Automatic Reconnection to JMS Provider . 139

Restrictions and Optimizations . 139
JMS Limitation . 140
Pool Tuning and Monitoring . 140
onMessage Runtime Exception . 141

Sample Message-Driven Bean XML Files . 142
Sample ejb-jar.xml File . 142
Sample sun-ejb-jar.xml File . 143

Chapter 6 Handling Transactions with Enterprise Beans . 145
JTA and JTS Transaction Support . 146
About Transaction Handling . 146

Flat Transactions . 147
Global and Local Transactions . 147
Demarcation Models . 148

Container-Managed Transactions . 148
Bean-Managed Transactions . 149

Commit Options . 149
Administration and Monitoring . 150

Using Container-Managed Transactions . 151
Specifying Transaction Attributes . 152

Differing Attribute Requirements . 153
Attribute Values . 153

Rolling Back a Container-Managed Transaction . 156
Synchronizing a Session Bean’s Instance Variables . 156
Methods Not Allowed in Container-Managed Transactions . 157

Using Bean-Managed Transactions . 158
Choosing the Type of Transactions . 158

JDBC Transactions . 158
JTA Transactions . 159

Returning Without Committing . 159

8 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Methods Not Allowed in Bean-Managed Transactions . 159
Setting Transaction Timeouts . 160
Handling Isolation Levels . 160

Chapter 7 Developing Secure Enterprise Beans . 163
About Secure Enterprise Beans . 164

Authorization and Authentication . 164
Security Roles . 164
Deployment . 165

Defining Security Roles . 165
Declaring Method Permissions . 166
Declaring Security Role References . 167
Specifying Security Identities . 168

The run-as Identity . 169
Using Programmatic Security . 169
Handling Unprotected EJB-Tier Resources . 170

Chapter 8 Assembling and Deploying Enterprise Beans . 171
EJB Structure . 172
Creating Deployment Descriptors . 172
Deploying Enterprise Beans . 173

Using the Administration Interface . 174
Using the Command-Line Interface . 174
Using the Sun ONE Studio 4 IDE . 174
Reloading Enterprise Beans . 175

The sun-ejb-jar_2_0-0.dtd File Structure . 176
Subelements . 176
Data . 177
Attributes . 177

Elements in the sun-ejb-jar.xml File . 178
General Elements . 178
Role Mapping Elements . 185
Reference Elements . 187
Messaging Elements . 192
Security Elements . 193
Persistence Elements . 198
Pooling and Caching Elements . 205
Class Elements . 212

Sample EJB XML Files . 215
Sample ejb-jar.xml File . 215
Sample sun-ejb-jar.xml File . 216

9

Appendix A CMP Mapping with the Sun ONE Studio 4 Interface . 219
Mapping CMP Beans . 219

Capturing a Schema . 219
Mapping Existing Enterprise Beans to a Schema . 221
Mapping Relationship Fields . 225

EJB Persistence Properties . 227

Appendix B Elements Listings . 231
sun-ejb-jar_2_0-0.dtd File Elements . 231
sun-cmp-mapping_1_0.dtd File Elements . 234

Index . 235

10 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

11

About This Guide

This Developer’s Guide to Enterprise Java Beans Technology describes how to create
and implement Java 2 Platform, Enterprise Edition (J2EE) applications that follow
the Enterprise JavaBeans™ (EJB™) specification in the Sun™ Open Network
Environment (ONE) Application Server 7 environment. In addition to briefly
describing EJB programming concepts and tasks, this guide offers sample code,
implementation tips, and reference material.

This preface addresses the following topics:

• Who Should Use This Guide

• Using the Documentation

• How This Guide Is Organized

• Related Information

• Documentation Conventions

• Product Support

Who Should Use This Guide
The intended audience for this guide is the person who develops, assembles, and
deploys beans in a corporate enterprise.

This guide assumes you are familiar with the following topics:

• Java programming

• Java APIs as defined in the EJB, Java Server Page (JSP), and Java Database
Connectivity (JDBC) specifications

• The SQL structured database query languages

Using the Documentation

12 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

• Relational database concepts

• Software development processes, including debugging and source code
control

Using the Documentation
The Sun ONE Application Server manuals are available as online files in Portable
Document Format (PDF) and Hypertext Markup Language (HTML) formats, at:

http://docs.sun.com/

The following table lists tasks and concepts described in the Sun ONE Application
Server manuals. The left column lists the tasks and concepts, and the right column
lists the corresponding manuals.

Sun ONE Application Server Documentation Roadmap

For information about See the following

Late-breaking information about the software and the
documentation

Release Notes

Supported platforms and environments Platform Summary

Introduction to the application server, including new
features, evaluation installation information, and
architectural overview.

Getting Started Guide

Installing Sun ONE Application Server and its various
components (sample applications, Administration interface, Sun
ONE Message Queue).

Installation Guide

Creating and implementing J2EE applications that follow
the open Java standards model on the Sun ONE
Application Server 7. Includes general information about
application design, developer tools, security, assembly,
deployment, debugging, and creating lifecycle modules.

Developer’s Guide

Creating and implementing J2EE applications that follow
the open Java standards model for web applications on the
Sun ONE Application Server 7. Discusses web application
programming concepts and tasks, and provides sample
code, implementation tips, and reference material.

Developer’s Guide to Web
Applications

Using the Documentation

About This Guide 13

Creating and implementing J2EE applications that follow
the open Java standards model for enterprise beans on the
Sun ONE Application Server 7. Discusses EJB
programming concepts and tasks, and provides sample
code, implementation tips, and reference material.

Developer’s Guide to
Enterprise JavaBeans
Technology

Creating Web Services, RMI-IIOP, or other clients that
access J2EE applications on the Sun ONE Application
Server 7

Developer’s Guide to Clients

J2EE features such as JDBC, JNDI, JTS, JMS, JavaMail,
resources, and connectors

Developer’s Guide to J2EE
Features and Services

Creating custom NSAPI plugins Developer’s Guide to NSAPI

Performing the following administration tasks:

• Using the Administration interface and the command line
interface

• Configuring server preferences

• Using administrative domains

• Using server instances

• Monitoring and logging server activity

• Configuring the web server plugin

• Configuring the Java Messaging Service

• Using J2EE features

• Configuring support for CORBA-based clients

• Configuring database connectivity

• Configuring transaction management

• Configuring the web container

• Deploying applications

• Managing virtual servers

Administrator’s Guide

Editing server configuration files Administrator’s Configuration
File Reference

Configuring and administering security for the Sun ONE
Application Server 7 operational environment. Includes
information on general security, certificates, and SSL/TLS
encryption. Web-core-based security is also addressed.

Administrator’s Guide to
Security

Sun ONE Application Server Documentation Roadmap (Continued)

For information about See the following

How This Guide Is Organized

14 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

How This Guide Is Organized
This guide contains the following documentation components:

• “Introducing the Sun ONE Application Server Enterprise JavaBeans
Technology”

• “Using Session Beans”

• “Using Entity Beans”

• “Using Container-Managed Persistence for Entity Beans”

• “Using Message-Driven Beans”

• “Handling Transactions with Enterprise Beans”

• “Developing Secure Enterprise Beans”

• “Assembling and Deploying Enterprise Beans”

• “CMP Mapping with the Sun ONE Studio 4 Interface”

• “Elements Listings”

Configuring and administering service provider
implementation for J2EE CA connectors for the Sun ONE
Application Server 7. Includes information about the
Administration Tool, DTDs and provides sample XML
files.

J2EE CA Service Provider
Implementation
Administrator’s Guide

Migrating your applications to the new Sun ONE Application
Server 7 programming model from the Netscape Application
Server version 2.1, including a sample migration of an Online
Bank application provided with Sun ONE Application Server

Migration Guide

Using Sun ONE Message Queue. The Sun ONE Message
Queue documentation at:

http://docs.sun.com/?p=/
coll/S1_MessageQueue_30

Sun ONE Application Server Documentation Roadmap (Continued)

For information about See the following

Related Information

About This Guide 15

Related Information
In addition to the information in the Sun ONE Application Server documentation
collection listed in “Using the Documentation,” on page 12, the following resources
may be helpful:

• J2EE Specifications

http://java.sun.com/products/

• Enterprise JavaBeans Specification, Version 2.0

http://java.sun.com/products/ejb/docs.html#specs

• General EJB product information:

http://java.sun.com/products/ejb

• Java Software tutorials:

http://java.sun.com/j2ee/docs.html

• Enterprise JavaBeans, by Richard Monson-Haefel, O’Reilly Publishing,
ISBN 0-596-00226-2

http://www.oreilly.com/catalog/entjbeans3/

• Enterprise Beans Technology book index

http://developer.java.sun.com/developer/Books/ejbtechnology.html

• Enterprise JavaBeans Design Patterns, ISBN 0-471-20831-0

• Core J2EE Patterns, ISBN 0-13-064884-1

Documentation Conventions
This section describes the types of conventions used throughout this guide:

• General Conventions

• Conventions Referring to Directories

General Conventions
The following general conventions are used in this guide:

Documentation Conventions

16 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

• File and directory paths are given in UNIX® format (with forward slashes
separating directory names). For Windows versions, the directory paths are the
same, except that backslashes are used to separate directories.

• URLs are given in the format:

http://server.domain/path/file.html

In these URLs, server is the server name where applications are run; domain is
your Internet domain name; path is the server’s directory structure; and file is
an individual filename. Italic items in URLs are placeholders.

• Font conventions include:

❍ The monospace font is used for sample code and code listings, API and
language elements (such as function names and class names), file names,
pathnames, directory names, and HTML tags.

❍ Italic type is used for code variables.

❍ Italic type is also used for book titles, emphasis, variables and placeholders,
and words used in the literal sense.

❍ Bold type is used as either a paragraph lead-in or to indicate words used in
the literal sense.

• Installation root directories for most platforms are indicated by install_dir in
this document. Exceptions are noted in “Conventions Referring to Directories.”
on page 17.

By default, the location of install_dir on most platforms is:

❍ Solaris 8 non-package-based Evaluation installations:

user’s home directory/sun/appserver7

❍ Solaris unbundled, non-evaluation installations:

/opt/SUNWappserver7

❍ Windows, all installations:

C:\Sun\AppServer7

For the platforms listed above, default_config_dir and install_config_dir are
identical to install_dir. See “Conventions Referring to Directories” on page 17
for exceptions and additional information.

• Instance root directories are indicated by instance_dir in this document, which
is an abbreviation for the following:

default_config_dir/domains/domain/instance

Documentation Conventions

About This Guide 17

• UNIX-specific descriptions throughout this manual apply to the Linux
operating system as well, except where Linux is specifically mentioned.

Conventions Referring to Directories
By default, when using the Solaris 8 and 9 package-based installation and the
Solaris 9 bundled installation, the application server files are spread across several
root directories. These directories are described in this section.

• For Solaris 9 bundled installations, this guide uses the following document
conventions to correspond to the various default installation directories
provided:

❍ install_dir refers to /usr/appserver/, which contains the static portion of
the installation image. All utilities, executables, and libraries that make up
the application server reside in this location.

❍ default_config_dir refers to /var/appserver/domains, which is the default
location for any domains that are created.

❍ install_config_dir refers to /etc/appserver/config, which contains
installation-wide configuration information such as licenses and the
master list of administrative domains configured for this installation.

• For Solaris 8 and 9 package-based, non-evaluation, unbundled installations,
this guide uses the following document conventions to correspond to the
various default installation directories provided:

❍ install_dir refers to /opt/SUNWappserver7, which contains the static
portion of the installation image. All utilities, executables, and libraries
that make up the application server reside in this location.

❍ default_config_dir refers to /var/opt/SUNWappserver7/domainswhich is
the default location for any domains that are created.

❍ install_config_dir refers to /etc/opt/SUNWappserver7/config, which
contains installation-wide configuration information such as licenses and
the master list of administrative domains configured for this installation.

NOTE Forte for Java 4.0 has been renamed to Sun ONE Studio 4
throughout this manual.

Product Support

18 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Product Support
If you have problems with your system, contact customer support using one of the
following mechanisms:

• The online support web site at:

http://www.sun.com/supportraining/

• The telephone dispatch number associated with your maintenance contract

Please have the following information available prior to contacting support. This
helps to ensure that our support staff can best assist you in resolving problems:

• Description of the problem, including the situation where the problem occurs
and its impact on your operation

• Machine type, operating system version, and product version, including any
patches and other software that might be affecting the problem

• Detailed steps on the methods you have used to reproduce the problem

• Any error logs or core dumps

19

Chapter 1

Introducing the Sun ONE Application
Server Enterprise JavaBeans

Technology

This section provides an overview of how the Java Enterprise Edition (J2EE)
Enterprise JavaBeans™ (EJB™) technology works in the application programming
model of the Sun™ ONE Application Server 7.

This section addresses the following topics:

• Summary of EJB 2.0 Changes

• EJB Architecture

• Value Added Features

• About Enterprise JavaBeans

• About Developing an Effective Application

• About EJB Assembly and Deployment

NOTE If you are unfamiliar with the EJB technology, refer to the Java
Software tutorials:

http://java.sun.com/j2ee/docs.html

and the J2EE specifications:

http://java.sun.com/products/

Overview material on the Sun ONE Application Server is contained
in the Sun ONE Application Server Product Introduction.

Summary of EJB 2.0 Changes

20 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Relevant files supplied with the Sun ONE Application Server are contained in the
following locations:

• Sun ONE Application Server DTD files:

install_dir/apperv/lib/dtds

• Sun ONE Application Server sample applications:

install_dir/apperv/samples

Summary of EJB 2.0 Changes
Sun ONE Application Server supports the Sun Microsystems Enterprise JavaBeans
(EJBs) architecture as defined by the Enterprise JavaBeans Specification, v2.0 and is
compliant with the Enterprise JavaBeans Specification, v1.1.

This section summarizes the changes in the Enterprise JavaBeans Specification,
v2.0 that impact enterprise beans in the Sun ONE Application Server environment:

• Container-managed persistence—Provides a new way of handling
container-managed persistence. See “Using Container-Managed Persistence
for Entity Beans,” on page 79.”

• Container-managed relationships—Allows you to define relationships
between entity beans. See “Assembling and Deploying Enterprise Beans,” on
page 169.

• Message-driven beans—This new type of enterprise bean is a Java Message
Service consumer. “Using Message-Driven Beans,” on page 129.

• Local interfaces—Session and entity beans can implement a local interface.
Container-managed EJB relationships are now based on the local interface. See
“Creating a Local Interface,” on page 65.

• Additional methods on the home interface—Allow you to implement business
logic that is independent of a specific entity bean instance. See “Creating the
Remote Home Interface,” on page 61.

NOTE You can deploy existing 1.1 beans in the Sun ONE Application
Server, but we recommend that new beans be developed as 2.0
enterprise bean.

EJB Architecture

Chapter 1 Introducing the Sun ONE Application Server Enterprise JavaBeans Technology 21

• New query language (EJB QL)—The new EJB Query Language (EJB QL)
provides for navigation across a network of entity beans defined by
container-managed relationships. See “Using EJB QL,” on page 105.

EJB Architecture
The Sun ONE Application Server reduces the complexity of developing
middleware by providing automatic support for middleware services such as
transactions, security, database connectivity, and more.

The following figure illustrates where enterprise beans fit in the J2EE environment.
In this figure the client machine is running a web browser or application client, the
J2EE server machine is running (or hosting) the Sun ONE Application Server, and
the database server machine hosts the databases, such as Oracle and LDAP.
Enterprise beans reside in the business tier, with JSPs (and servlets) providing the
interface to the client tier, and the Sun ONE Application Server managing the
relationships between the client and database machines.

The Sun ONE Application Server is responsible for providing the base of the EJB
execution systems, which include:

• A standard set of EJB services

EJB Architecture

22 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

• Distributed transaction management services

• A means of data store access or backend system connection

• An EJB container to implement the management and control services for the
EJB classes

The following figure illustrates further details of the J2EE environment. The
business logic layer shows the EJB flow.

RDBMS

Client
layer

Client Server EIS

Presentation
layer

Web container

JMS provider

EJB container

Business
Logic layer

Data
Access layer

Data
layer

Web
Service
client

JMS
client

Browser

Browser

Legacy
application

JSP

JSP

Servlet

Servlet

HTML

EJB

EJB

EJB Connector

Connector

MDB Connector

Application
Client container

RMI/IIOP
client

Servlet

JDBC

Value Added Features

Chapter 1 Introducing the Sun ONE Application Server Enterprise JavaBeans Technology 23

Value Added Features
The Sun ONE Application Server provides a number of value additions that relate
to EJB development. These capabilities are discussed in the following sections
(references to more in-depth material are included):

• Read-Only Beans

• pass-by-reference

• Pooling and Caching Features

• Monitoring

• Integration with Sun ONE Studio 4

• Dynamic Deployment and Reloading

Read-Only Beans
Another feature that the Sun ONE Application Server provides is the read-only bean,
an entity bean that is never modified by an EJB client. Read-0nly beans avoid
database updates completely.

A read-only bean can be used to cache a database entry that is frequently accessed
but rarely updated (externally by other beans). When the data that is cached by a
read-only bean is updated by another bean, the read-only bean can be notified to
refresh its cached data.

The Sun ONE Application Server provides a number of ways by which a read-only
bean’s state can be refreshed. By setting the refresh-period-in-seconds element
and the transaction attribute of the bean, it is easy to configure a read-only bean
that is (a) always refreshed, (b) periodically refreshed, (c) never refreshed, or (d)
programatically refreshed.

Read-only beans are best suited for situations where the underlying data never
changes, or changes infrequently. For further information and usage guidelines,
see “Read-Only Beans,” on page 59.

pass-by-reference
The pass-by-reference element in the sun-ejb-jar.xml file allows you to
specify the passing method/argument type used by enterprise beans. This is an
opportunity to improve performance. See “pass-by-reference,” on page 186.

Value Added Features

24 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Pooling and Caching Features
The Sun ONE Application Server provides a highly configurable bean pooling
mechanism that allows the deployer to configure bean pools according to the needs
of the enterprise.

In addition, the Sun ONE Application Server supports a number of tunable
parameters that can be used to control the number of beans cached as well as the
duration they are cached. Multiple bean instances that refer to the same database
row in a table can be cached.

Refer to “Pooling and Caching,” on page 31 for information on this functionality.

Monitoring
The Sun ONE Application Server supports monitoring of many aspects of the
runtime environment, including various elements of the EJB container which can
be useful for debugging your application's correctness as well as tuning its
performance.

See the Sun ONE Application Server Administrator’s Guide (Monitoring and
Managing Sun One Application Server section) and the Performance, Tuning, and
Sizing Guide for more information on monitoring.

Integration with Sun ONE Studio 4
Sun ONE Studio 4, Enterprise Edition for Java (formerly Forte for Java (FFJ),
Enterprise Edition), is an integrated development environment (IDE) that allows
you to create, assemble, deploy, and debug code in the Sun ONE Application
Server from a single, easy-to-use interface. Behind the scenes, a plugin integrates
the Sun ONE Studio 4 IDE with the Sun ONE Application Server.

For more information about using the Sun ONE Studio 4, see the Sun ONE Studio
4, Enterprise Edition tutorial and “CMP Mapping with the Sun ONE Studio 4
Interface,” on page 217.

Dynamic Deployment and Reloading
You can deploy, redeploy, and undeploy an application or standalone module. If
this is done while the server is running, it is considered dynamic. The following
dynamic processes are available in Sun ONE Application Server:

About Enterprise JavaBeans

Chapter 1 Introducing the Sun ONE Application Server Enterprise JavaBeans Technology 25

• Dynamic reloading—Enables reloading the classes that constitute an
application when they change on disk.

• Dynamic redeployment (for the developer community)—Enables redeploying
an existing application without restarting the server. You can ALSO disable
and enable an application or module without undeploying it.

For more information on dynamic deployment, refer to the Sun ONE Application
Server Developer’s Guide and Administrator’s Guide.

About Enterprise JavaBeans
If you are already familiar with enterprise beans and how they work, you may
prefer to proceed to “About Developing an Effective Application,” on page 34

The following topics are discussed in this section:

• What Is an Enterprise JavaBean?

• Types of Beans

• EJB Flow

• The EJB Container

• Interfaces

• Pooling and Caching

• How Enterprise Beans Access Resources

• Transaction Management

• How Application Security Works

What Is an Enterprise JavaBean?
An enterprise bean, or Enterprise JavaBean (EJB), is a self-contained, reusable
component that has data members, properties, and methods. Each enterprise bean
encapsulates one or more application tasks or objects, including data structures
and operation methods.

• Enterprise bean methods can take parameters and send back return values.

• Enterprise bean creation and management is handled at runtime by the
container.

About Enterprise JavaBeans

26 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

• Client access mediation is handled by the container and the server where the
bean is deployed.

• Enterprise beans are restricted to using standard container services defined by
the Enterprise JavaBeans Specification, v2.0. This guarantees that the bean is
portable and deployable in any EJB-compliant container.

• Enterprise beans are components that can be assembled, without recompiling,
into a composite application.

• A client’s bean definition view is controlled entirely by the bean developer. The
view is not affected by the container in which the bean runs or the server where
the bean is deployed.

For several reasons, enterprise beans simplify the development of large,
distributed applications.

• Container-provided services—Because the EJB container provides system-level
services to enterprise beans, the bean developer can concentrate on solving
business problems. The EJB container—not the bean developer—is responsible
for system-level services such as transaction management and security
authorization.

• Remote clients—Because the enterprise beans, not the clients, contain the
application's business logic, the client developer can focus on the presentation
of the client. The client developer does not have to code the routines that
implement business rules or access databases. As a result, the clients are
thinner, a benefit that is particularly important for clients that run on small
devices.

• Bean reusability—Because enterprise beans are portable components, the
application assembler can build new applications from existing beans. These
applications can run on any compliant J2EE server.

Types of Beans
There are three distinct types of enterprise beans:

• Session bean, stateful or stateless

❍ A stateful session bean is intended to represent objects and processes that
maintain state across invocations, such as a document copy for editing, or
specialized business objects for individual clients.

About Enterprise JavaBeans

Chapter 1 Introducing the Sun ONE Application Server Enterprise JavaBeans Technology 27

❍ A stateless session bean encapsulates a transient or temporary piece of
business logic needed by a specific client that does not maintain state
across invocations.

❍ Refer to “Using Session Beans,” on page 41,” for information on
developing session beans.

• Entity bean—An entity bean commonly represents persistent data which is
maintained directly in a database or accessed through an Enterprise
Information System (EIS) application as an object.

❍ Bean-managed persistence—The bean is responsible for its own persistence.
The entity bean code that you write contains the calls that access the
database. For information on developing entity beans in general and
bean-managed persistence in particular, refer to “Using Entity Beans,” on
page 55.

❍ Container-managed persistence—The enterprise bean container handles all
database access required by the entity bean by interacting through the
persistence manager. For information on container-managed persistence,
refer to “Using Container-Managed Persistence for Entity Beans,” on
page 79.

• Message-driven bean—A message-driven bean represents a stateless service; it is
essentially an asynchronous message consumer, invoked by JMS, that is
completely anonymous and has no client-visible identity.

Refer to “Using Message-Driven Beans,” on page 129, for information on
developing message-driven beans.

EJB Flow
When a user invokes a Sun ONE Application Server servlet from a browser, the
servlet may invoke one or more enterprise beans. For example, the servlet may
load a JavaServer Page (JSP) to the user’s browser to request a user name and
password, then pass the user input to a session bean to validate the input.

Servlet/JSP

User Interface

EJB

Business Logic DB

App Client

About Enterprise JavaBeans

28 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

After a valid user name and password combination is accepted, the servlet might
instantiate one or more entity and session beans to run the application’s business
logic, then terminate. The beans themselves might instantiate other entity or
session beans to do further business logic and data processing.

Sample Scenario
A servlet invokes a session bean that gives a customer service representative access
to an order database. This access might include the ability to:

• Browse the database

• Queue items for purchase

• Place customer orders

• Permanently reduce number of parts in the database

• Bill the customer

• Reorder parts when the stock is low or depleted.

As part of the customer order process, a servlet creates a session bean that manages
a shopping cart to keep temporary track of items as a customer selects them. When
the order completes, the shopping cart data transfers to the order database and the
shopping cart session bean is freed.

The EJB Container
Enterprise beans always work within the context of a container. The container
serves as a link between the enterprise beans and the hosting server. The EJB
container enables distributed application building using your own components
and components from other suppliers.

Through the container, the Sun ONE Application Server provides high-level
transaction management, security management, state management (persistence),
multithreading, and resource pooling wrappers, thereby shielding you from
having to know the low-level API details. By handling concurrency, the container
shields you from worry about entities (hence, threads) simultaneously accessing an
enterprise bean. This container provides all standard container services denoted by
the Enterprise JavaBeans Specification, v2.0, and also provides additional services
specific to the Sun ONE Application Server.

The Sun ONE Application Server services include remote access, naming service,
security service, concurrency, transaction control, and database access. The
following figure illustrates the EJB container provided by the Sun ONE
Application Server.

About Enterprise JavaBeans

Chapter 1 Introducing the Sun ONE Application Server Enterprise JavaBeans Technology 29

Interfaces
A client never accesses session or entity EJB instances directly. Instead, a client uses
the bean’s remote interface to access a bean instance. The EJB object class that
implements a bean’s remote interface is provided by the container.

Home Interface
The home interface provides a mechanism for clients to create and destroy and find
EJBs. The EJB supplies a home interface for the container that extends the
javax.ejb.EJBHome interface defined in the EJB specification. At its most basic,
the home interface defines zero or more create methods for each way to create a
bean.

Entity beans must define finder methods for each way that can be used to look up a
bean or a collection of beans.

Remote Interface
A remote interface (and remote home interface) provides a mechanism for remote
clients to access session or entity beans. A remote client can be another EJB
deployed in the same or a different container, or a Java program, such as an
application, applet, or servlet. The remote client view of an EJB is location
independent and can be mapped to non-Java client environments.

TransactionsTransactions Naming

EJB EJBEJB EJB

EJB Container

EJB

Sun ONE Application Server

ConcurrencySecurityRemote Access

DB Persistence

About Enterprise JavaBeans

30 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

The remote home interface is defined by the EJB developer and implemented by
the EJB container.

Local Interface
A local interface (and local home interface) provides a mechanism for a client that is
located in the same Java Virtual Machine (JVM) with the session or entity bean to
access that bean.This provides the local client view. A local client may be tightly
coupled to the associated bean; session and entity beans can have many local
clients.

The container provides the class that implements the local home interface and local
interface. The objects that implement these interfaces are local Java objects. The
local client view of an EJB is not location independent.

The following diagram shows a local client connecting through the local interfaces
within the two enterprise beans in the container.

The local interface may be defined for a bean during development, to allow
streamlined calls to the bean if a caller is in the same container.

EJB object

EJB home

EJB local object

EJB local home

Container

EJB local object
Client

Java Virtual Machine

About Enterprise JavaBeans

Chapter 1 Introducing the Sun ONE Application Server Enterprise JavaBeans Technology 31

Pooling and Caching
The EJB container of the Sun ONE Application Server pools anonymous instances
(message-driven beans, stateless session beans, and entity beans) to reduce the
overhead of creating and destroying objects. The EJB container maintains the free
pool for each bean that is deployed. Bean instances in the free pool have no identity
(that is, no primary key associated) and are used to serve the method calls of the
home interface. The free beans are also used to serve all methods for stateless
session beans.

Bean instances in the free pool transition from a Pooled state to a Cached state after
ejbCreate and the business methods run. The size and behavior of each pool can
be controlled using the pool-related properties in the server.xml and
sun-ejb-jar.xml files.

The EJB container caches "stateful" instances (stateful session beans and entity
beans) in memory to improve performance. The EJB container maintains a cache
for each bean that is deployed.

To achieve scalability, the container will selectively evicts some bean instances
from the cache, usually when cache overflows. These evicted bean instances return
to the free bean pool. The size and behavior of each cache can be controlled using
the cache-related properties in the server.xml and sun-ejb-jar.xml files.

Pooling and caching parameters for the sun-ejb-jar.xml file are discussed in
“Pooling and Caching Elements,” on page 203.

Pooling Parameters
One of the most important parameters of Sun ONE Application Server pooling is
steady-pool-size. When steady-pool-size is set to greater than 0, the
container not only pre-populates the bean pool with the specified number of beans,
but also attempts to ensure that there is always this many beans in the free pool.
This ensures that there are enough beans in the ready to serve state to process user
requests.

Another parameter, pool-idle-timeout-in-seconds, allows the administrator to
specify, through the amount of time a bean instance can be idle in the pool. When
pool-idle-timeout-in-seconds is set to greater than 0, the container
removes/destroys any bean instance that is idle for this specified duration.

About Enterprise JavaBeans

32 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Caching Parameters
Sun ONE Application Server provides a way that completely avoids caching of
entity beans, using commit-c option. Commit-c option is particularly useful if
beans are accessed in large number but very rarely reused. For additional
information, refer to “Commit Options,” on page 147.

The Sun ONE Application Server caches can be either bounded or unbounded.
Bounded caches have limits on the number of beans that they can hold beyond which
beans are passivated. For stateful session beans, there are three ways (LRU, NRU
and FIFO) of picking victim beans when cache overflow occurs. Caches can also be
configured to passivate beans that were idle (not accessed for a specified duration)
to be passivated.

How Enterprise Beans Access Resources
Enterprise beans can access a wide variety of resources, including databases,
JavaMail sessions, JMS objects, and URLs. The J2EE platform provides mechanisms
that allow you to access all of these resources in a similar manner.

This section discusses the following:

• JNDI Connection

• Database Connection

• URL Connections

JNDI Connection
J2EE components locate the objects they need to access by invoking the lookup
method of the Java Naming and Directory Interface (JNDI) API. The value returned
by this call represents the object that the caller wants to access. In the case of an
enterprise beans, the lookup call returns an object reference to the home interface
of the bean. This reference may be used for all future invocations on the EJB home
interface.

Context initial = new InitialContext();
Object objref

initial.lookup("java:comp/env/ejb/CompString");

A J2EE component on the server (a JSP, servlet, or enterprise bean) that wants to
access a deployed enterprise bean, uses an EJB reference element in its deployment
descriptor to specify this access. The EJB reference is mapped at deployment time
to the JNDI name corresponding to the enterprise bean that the component wishes

About Enterprise JavaBeans

Chapter 1 Introducing the Sun ONE Application Server Enterprise JavaBeans Technology 33

to access. This mapping serves to decouple components accessing enterprise beans
from the JNDI names of the beans being accessed. Thus, the JNDI name to which
an EJB’s home is bound may be changed at deployment time without requiring the
caller’s code to change.

Database Connection
The persistence type of an enterprise bean determines whether or not you will code
the connection routine for accessing a database.

• For beans that access a database and do not use container-managed
persistence—You are responsible for writing persistence code. Such beans
include entity beans that use bean-managed persistence and session beans.

• For beans that use container-managed persistence—Connection routines are
generated for you at deployment. Applies only to entity beans.

URL Connections
A Uniform Resource Locator (URL) specifies the location of a resource on the web,
such as web pages. These URLs then can be mapped to JNDI names so that
developers can lookup the URLs.

Transaction Management
By dividing the application’s work into units called transactions, you are freed
from dealing with the complex issues of database failure recovery and maintaining
database integrity.

As a developer, you can choose between using programmatic transaction
demarcation in the EJB code (bean-managed) or declarative demarcation
(container-managed). Regardless of whether an enterprise bean uses
bean-managed or container-managed transaction demarcation, the burden of
implementing transaction management is on the EJB container and theSun ONE
Application Server. The container and the server implement the necessary
low-level transaction protocols, such as the two-phase commit protocol, between a
transaction manager and a database system or Sun ONE Message Queue provider.

For information on transaction handling, refer to “Handling Transactions with
Enterprise Beans,” on page 143.

About Developing an Effective Application

34 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

How Application Security Works
The J2EE application programming model insulates developers from
mechanism-specific implementation details of application security. For the most
part, the container provides the implementation of the security infrastructure. J2EE
provides this insulation in a way that enhances the portability of applications,
allowing them to be deployed in diverse security environments with no additional
coding.

The declarative security mechanisms used in an application are expressed in the
deployment descriptor. The deployer then uses specific Sun ONE Application
Server tools to map the application requirements that are in a deployment
descriptor to the security mechanisms that are implemented by the container.

Refer to “Developing Secure Enterprise Beans,” on page 161 for further
information. For information on security realms, refer to the Sun ONE Application
Server Developer’s Guide.

About Developing an Effective Application
Partitioning a Sun ONE Application Server application’s business logic and data
processing into the most effective set of servlets, JSPs, session beans, entity beans,
and message-driven beans is the crux of your job as a developer. There are no
specific rules for object-oriented design with enterprise beans, other than that
entity bean instances tend to be long lived, persistent, and shared among clients,
while session bean instances tend to be short lived and used only by a single client;
message-driven beans are in their own category as the only asynchronous receivers
of JMS messages.

In general, your goal is to create a Sun ONE Application Server application that
effectively balances the need for execution speed with the need for sharing
enterprise beans (among applications and clients) and easily deploying
applications across servers.

High-level information and guidelines which can help you develop enterprise
beans in the Sun ONE Application Server environment are addressed in the
following sections:

• General Process for Creating Enterprise Beans

• Bean Usage Guidelines

• Client View Guidelines

• Remote or Local Interface Guidelines

About Developing an Effective Application

Chapter 1 Introducing the Sun ONE Application Server Enterprise JavaBeans Technology 35

• Accessing Sun ONE Application Server Functionality

General Process for Creating Enterprise Beans
The procedure in this section outlines the general process of creating an enterprise
bean. Specific instructions on creating the various types of enterprise beans are
contained in the sections referenced in the following steps.

To create an enterprise bean:

1. Create a directory for all the enterprise bean’s files.

2. Decide on the type of enterprise bean you are creating:

❍ Session bean (Refer to “Developing Session Beans,” on page 44.)

• Stateful

• Stateless

❍ Entity bean (Refer to “Developing Entity Beans,” on page 59.)

• With bean-managed persistence

• With container-managed persistence (Refer to “Using
Container-Managed Persistence,” on page 86.)

❍ Message-driven bean (Refer to “Developing Message-Driven Beans,” on
page 132.)

3. Write the code for the enterprise bean according to the EJB specification,
including:

❍ A local and/or remote home interface

❍ A local and/or remote interface

❍ An implementation class (for a message-driven bean, this is all you need)

4. Compile the interfaces and classes.

5. Create the META-INF directory and the other structural requirements of an
enterprise bean.

About Developing an Effective Application

36 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

6. Create the deployment descriptor files, ejb-jar.xml and sun-ejb-jar.xml.
(Refer to “Assembling and Deploying Enterprise Beans,” on page 169.)

If the bean is an entity bean with container-managed persistence, you must
also create a sun-cmp-mappings.xml file and a .dbschema file. (Refer to “Using
Container-Managed Persistence,” on page 86.)

7. Package the class and the XML files to a JAR file, if desired. If you are using
directory deployment, this is optional.

8. Deploy the bean by itself or include it in a J2EE application. (Refer to the Sun
ONE Application Server Developer’s Guide.)

It’s a good idea to verify the structure of these files using the verifier tool as
described in the Sun ONE Application Server Developer’s Guide.

Bean Usage Guidelines
Deciding which parts of an application are candidates for entity beans and which
are candidates for session beans (stateful or stateless) or message-driven beans will
have a significant impact on the effectiveness of your application. In general:

• Use a stateful bean to store non-shared data that corresponds to the user
conversational state, that is, a state specific to a single user.

• Use a stateless session bean to access data or perform transactional operations.

• Create session beans that are small, generic, and narrowly task focused.
Ideally, these enterprise beans encapsulate behavior that is used in many
applications.

• Ask the application assembler to co-locate enterprise beans with your
presentation logic (servlets and JSPs) on the same server. This reduces the
number of Remote Procedure Calls (RPCs) when the application runs.

• The applications should explicitly remove the beans using the ejbRemove
method when they are no longer required, thereby reducing the overhead on
the container (by eliminating the passivation process).

• Unique naming is optional across enterprise beans in different applications,
although applications do need to be named uniquely within the context of a
single application server instance. That is, enterprise beans within an
application cannot have the same name.

For further information on EJB developer guidelines, refer to “Using Session
Beans,” on page 41, “Using Entity Beans,” on page 55, and “Using Message-Driven
Beans,” on page 129.

About Developing an Effective Application

Chapter 1 Introducing the Sun ONE Application Server Enterprise JavaBeans Technology 37

Client View Guidelines
The choice between the use of local and remote interfaces is a design decision that
you, the developer, make when developing an enterprise bean. The following facts
should be taken into account in determining whether the local or remote
programming model should be used:

• The remote programming model provides location independence and
flexibility with regard to deployment. The client and enterprise bean are
loosely coupled.

• Remote calls involve pass-by-value, providing a layer of isolation between
caller and callee. This protects against inadvertent modification of data.

• For local objects, pass-by-reference is optional and is not mandated by the J2EE
specification

• Remote calls are potentially expensive.

• Remote calls require that objects that are passed as parameters be serializable.

• Narrowing remote types requires the use of
javax.rmi.PortableRemote.Object.narrow rather than Java language casts.

• Remote calls involve error cases that are not expected in local calls. The client
has to explicitly program handlers for these remote exceptions.

• Because of the overhead of remote programming, it is typically used for
relatively coarse-grained component access.

• Local calls can optionally involve pass-by-reference. The client and the bean
may be programmed to rely on pass-by-reference semantics. Locals calls imply
that the local client and the enterprise bean must be co-located.

• Because local programming provides lighter-weight access to a component, it
better supports more fine-grained component access.

• Be aware of the potential sharing of objects passed through the local interface.

For additional information, refer to the Enterprise JavaBeans Specification, v2.0.

Remote or Local Interface Guidelines
With all object-oriented development, you must determine the granularity level
needed for your business logic and data processing. Granularity level refers to how
many pieces to divide an application into.

About EJB Assembly and Deployment

38 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

• A low level of granularity (a low number of beans and bean method
invocations)—A more monolithic application is developed, creating an
application that is not as likely to promote sharing and reuse, but usually
executes more quickly.

• A high level of granularity (a high number of beans and bean method
invocations)—An application is divided into many, smaller, more narrowly
defined enterprise beans. This creates an application that may promote greater
sharing and reuse of enterprise beans among different applications at your site.

• Dividing a distributed application into a moderate to large number of separate
beans degrade performance degradation and more overhead. Enterprise beans
are not simply Java objects; they are higher-level entities with remote call
interface semantics, security semantics, transaction semantics, and properties.
This complexity creates overhead.

Accessing Sun ONE Application Server
Functionality
You can develop entity beans that adhere strictly to the Enterprise JavaBeans
Specification, v2.0, or you can develop entity beans that take advantage of both the
specification and additional, value-added Sun ONE Application Server features.

The Sun ONE Application Server offers several features available only in the Sun
ONE Application Server container. The Sun ONE Application Server APIs enable
applications to take programmatic advantage of specific Sun ONE Application
Server environment features.

About EJB Assembly and Deployment
The process of assembling modules and applications in Sun ONE Application
Server conforms to all the customary J2EE-defined specifications, however, you
can include the Sun ONE Application Server-specific deployment descriptors that
enhance the functionality of the Sun ONE Application Server beyond the J2EE
specifications.

NOTE Use these APIs only if you plan on using those beans exclusively in a
Sun ONE Application Server environment.

About EJB Assembly and Deployment

Chapter 1 Introducing the Sun ONE Application Server Enterprise JavaBeans Technology 39

A J2EE module is a collection of one or more J2EE components with two
deployment descriptors of that type. One descriptor is J2EE standard, the other is
specific to Sun ONE Application Server. For enterprise beans, the following
deployment descriptor files apply:

• ejb-jar.xml—J2EE standard file

• sun-ejb-jar.xml—Sun ONE Application Server-specific file

• sun-cmp-mappings.xml—Sun ONE Application Server-specific file used for
container-managed persistence mapping

Information on the EJB DTDs and XML files is contained in “Assembling and
Deploying Enterprise Beans,” on page 169.

An alphabetical list of all EJB-related elements is contained in “Elements Listings,”
on page 229.

General information on assembly and deployment is contained in the Sun ONE
Application Server Developer’s Guide.

Deployment procedures are contained in the Sun ONE Application Server
Administrator’s Guide and the Administration interface online help.

About EJB Assembly and Deployment

40 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

41

Chapter 2

Using Session Beans

This section provides guidelines for creating session beans in the Sun ONE
Application Server 7 environment.

This section addresses the following topics:

• About Session Beans

• Developing Session Beans

• Restrictions and Optimizations

Extensive information on session beans is contained in the chapters 6, 7, and 8 of
the Enterprise JavaBeans Specification, v2.0.

NOTE If you are unfamiliar with session beans or the EJB technology, refer
to the Java Software tutorials:

http://java.sun.com/j2ee/docs.html

Extensive information on session beans is contained in chapters 6, 7,
and 8 of the Enterprise JavaBeans Specification, v2.0.

Overview material on the Sun ONE Application Server is contained
in “Introducing the Sun ONE Application Server Enterprise
JavaBeans Technology,” on page 19 and the Sun ONE Application
Server Product Introduction.

About Session Beans

42 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

About Session Beans
This section provides an overview of what you need to be aware of about session
beans in order to develop effective models for your business processes.

This section addresses the following topics:

• Session Bean Characteristics

• The Container

Session Bean Characteristics
The defining characteristics of a session bean have to do with its non-persistent,
independent status within an application. One way to think of a session bean is as a
temporary, logical extension of a client application that runs on the Sun ONE
Application Server. Generally, a session bean does not represent shared data in a
database, but obtains a data snapshot. However, a session bean can update data.

Session beans have the following characteristics:

• Execute for a single client.

• Can be transaction aware.

• Do not represent directly shared data in an underlying database, although they
may access and update this data.

• Are short lived.

• Are not persisted in a database.

• Are removed if the container crashes; the client has to establish a new session.

Much of a standard, distributed application consists of logical code units that
perform repetitive, time-bound, and user-dependent tasks. These tasks can be
simple or complex, and are often needed in different applications. For example,
banking applications must verify a user’s account ID and balances before
performing any transaction. Such discrete tasks, transient by nature, are candidates
for session beans.

About Session Beans

Chapter 2 Using Session Beans 43

Sample Scenario
The shopping cart employed by many web-based, online shopping applications is
a typical use for a session bean. It is created by the online shopping application
only when an item is selected by the user. When selection is completed, the item
prices in the cart are calculated, the order is placed, and the shopping cart object is
released, or freed. A user can continue browsing merchandise in the online catalog,
and if the user decides to place another order, a new shopping cart is created.

Often, a session bean has no dependencies on or connections to other application
objects. For example, a shopping cart bean might have a data list member for
storing item information, a data member for storing the total cost of items currently
in the cart, and methods for adding, subtracting, reporting, and totaling items. On
the other hand, the shopping cart might not have a live connection to the database
at all.

The Container
Like an entity bean, a session bean can access a database through JDBC calls. A
session bean can also provide transaction settings. These transaction settings and
JDBC calls are referenced by the session bean’s container, allowing it to participate
in transaction managed by the container.

A container managing stateless session beans has a different charter from a
container managing stateful session beans.

Stateless Container
The stateless container manages the stateless session beans, which, by definition, do
not carry client-specific states. Therefore, all session beans (of a particular type) are
considered equal.

A stateless session bean container uses a bean pool to service requests. The Sun
ONE Application Server-specific XML file contains the properties that define the
pool:

• steady-pool-size

• resize-quantity

• max-pool-size

• pool-idle-timeout-in-seconds

These properties are defined for the deployment descriptor in “Elements in the
sun-ejb-jar.xml File,” on page 176.”

Developing Session Beans

44 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Stateful Container
The stateful container manages the stateful session beans, which, by definition, carry
the client-specific state. There is a one-to-one relationship between the client and
the stateful session beans. At creation, each stateful session bean is given a unique
session ID that is used to access the session bean so that an instance of a stateful
session bean is accessed by a single client only.

Stateful session beans are managed using cache. The size and behavior of stateful
session beans cache can be controlled by specifying the following parameters:

• max-cache-size

• resize-quantity

• cache-idle-timeout-in-seconds

• removal-timeout-in-seconds

• victim-selection-policy

The max-cache-size element specifies the maximum number of session beans that
are held in cache. If the cache overflows (when the number of beans exceeds
max-cache-size), the container then passivates some beans or writes out the
serialized state of the bean into a file. The directory in which the file is created is
obtained from the server.xml file using the configuration APIs.

These properties are defined in the deployment descriptor. See “Elements in the
sun-ejb-jar.xml File,” on page 176 for more information.

The passivated beans are stored on the file system.The session-store attribute in
the server element in the server.xml file allows the administrator to specify the
directory where passivated beans are stored. By default, passivated stateful session
beans are stored in application-specific subdirectories created under
instance_dir/session-store.

Developing Session Beans
When a client is done with the session bean, it is released, or freed. When designing
an application, you should designate each temporary, single client object as a
potential session bean.

The following sections discuss how to develop effective session beans:

• Development Requirements

• Determining Session Bean Usage

Developing Session Beans

Chapter 2 Using Session Beans 45

• Providing Interfaces

• Creating the Bean Class Definition

Development Requirements
When developing a session bean, you must provide the following:

• Session bean’s remote interface and remote home interface, if the session bean
provides a remote client view

• Session bean’s local interface and local home interface, if the session bean
provides a local client view

• Bean class implementation

• Assembly and deployment data

Requirements of a session bean implementation class:

• Implements the javax.ejb SessionBean interface.

• The class is defined as public, and cannot be defined as abstract or final.

• Implements one ejbCreate method that takes no arguments.

• Implements the business methods.

• Contains a public constructor with no parameters.

• Must not define the finalize method.

Determining Session Bean Usage
This section provides some guidelines for determining whether to implement
stateful or stateless session beans.

• Stateful Session Bean Considerations

• Stateless Session Bean Considerations

Stateful Session Bean Considerations
Stateful session beans are appropriate if any of the following conditions are true:

• The bean's state represents the interaction between the bean and a specific
client.

Developing Session Beans

46 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

• The bean needs to hold information about, or on behalf of, the client user
conversational state across method invocations.

• The bean mediates between the client and the other components of the
application, presenting a simplified view to the client.

• Behind the scenes, the bean manages the work flow of several enterprise beans.

Because stateful session beans are private to a client, their demand on server
resources increases as the number of users accessing an application increases. The
beans remain in the container until they are explicitly removed by the client, or are
removed by the container when they timeout.

The container needs to passivate stateful session beans to secondary storage as its
cache fills up and the beans in the cache timeout. If the client subsequently accesses
the bean, the container is responsible for activating the bean. This
passivation/activation process imposes a performance overhead on the server.

Stateless Session Bean Considerations
You might choose a stateless session bean if any of these conditions exist:

• The bean's state has no data for a specific client, that is, user conversational
state does not have to be retained across method invocations on the bean.

• In a single method invocation, the bean performs a generic task for all clients.

• The bean fetches a set of read-only data (from a database) that is often used by
clients. Such a bean, for example, could retrieve the table rows that represent
the products that are on sale this month.

Use a stateless session bean to access data or perform transactional operations.
Stateless session beans provide high scalability because a small number of such
beans managed by the container in a stateless bean pool) can help serve a large
number of clients. This is possible because stateless beans have no association with
the clients. When a request for a service provided by a stateless session bean is
received, the container is free to dispatch the request to any bean instance in the
pool.

• The create method of the remote home interface must return the session
bean’s remote interface.

• The create method of the local interface must return the session bean’s local
interface.

• There can be no other create methods in the home interface.

• A stateless session bean must not implement the
javax.ejb.SessionSynchronization interface.

Developing Session Beans

Chapter 2 Using Session Beans 47

Providing Interfaces
As the developer, you are responsible for providing interfaces for the bean. If you
implement a remote view for your bean, provide a remote component interface
and a remote home interface. If you implement a local view, provide a local
component interface and a local home interface.

To use interfaces safely, you need to carefully consider potential deployment
scenarios, then decide which interfaces can be local and which remote, and finally,
develop the application code with these choices in mind.

The following sections discuss creating interfaces:

• Creating a Remote Interface

• Creating a Local Interface

• Creating the Local Home Interface

• Creating the Remote Home Interface

Creating a Remote Interface
A session bean’s remote interface defines a user’s access to a bean’s methods. All
remote interfaces extend javax.ejb.EJBObject. For example:

import javax.ejb.*;
import java.rmi.*;
public interface MySession extends EJBObject {
// define business method methods here....
public String getACcountname() throws RemoteException;
}

The remote interface defines the session bean’s business methods that a client calls.
For each method you define in the remote interface, you must supply a
corresponding method in the bean class itself. The corresponding method in the
bean class must have the same signature, the same parameter types and return
type. The name of the method has ejb preprended to it. For example, the
implementation class for MySession includes the method:

String ejbgetAccountname() throws RemoteException
{
method implementation
}

Developing Session Beans

48 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Creating a Local Interface
The local interface may be defined for a bean during development to allow
streamlined calls to the bean if a caller is in the same container, that is, running in
the same address space or Java Virtual Machine (JVM). This improves the
performance of applications in which co-location is planned.

However, the calling semantics of local interfaces are different from those of
remote interfaces. For example, remote interfaces pass parameters using
pass-by-value semantics, while local interfaces use pass-by-reference. As a
developer, you must be aware of the potential sharing of objects passed through
the local interface. In particular, be careful that the state of one enterprise bean is
not assigned to the state of another. You must also exercise caution in determining
which objects to pass across the local interface, particularly in the case where there
is a change in transaction or security content.

The local interface extends the javax.ejb.EJBLocalObject interface, and is
allowed to have super interfaces. The throws clause of a method defined in the
local interface must not include java.rmi.RemoteException. For example:

import javax.ejb.*;
public interface MyLocalSession extends EJBLocalObject {

// define business method methods here....
}

For each method defined in the local interface, there must be a matching method in
the session bean’s class. The matching method must have the same name, the same
number and types of arguments, and the same return type. All exceptions defined
in the throws clause of the matching method of the session bean class must be
defined in the throws clause of the method of the local interface. The methods
should not throw java.rmi.RemoteException.

Creating the Local Home Interface
The home interface defines the methods that enable a client using the application to
create and remove session beans. An enterprise bean’s local home interface defines
the methods that allow local clients to create, find, and remove EJB objects, as well
as home business methods that are not specific to a bean instance (session beans do
not have finders and home business methods). The local home interface is defined
by you and implemented by the container. A client locates a session bean’s home
interface using JNDI.

The local home interface allows a local client to:

• Create a new session object

• Remove a session object

Developing Session Beans

Chapter 2 Using Session Beans 49

A local home interface always extends javax.ejb.EJBLocalHome. For example:

import javax.ejb.*;
import java.rmi.*;

public interface MySessionLocalBeanHome extends EJBLocalHome {
MySessionLocalBean create() throws CreateException;

}

Create Methods
As this example illustrates, a session bean’s home interface defines one or more
create methods. Each method must be named create, and must correspond in
number and argument types to an ejbCreate method defined in the session bean
class. The return type for each create method, however, does not match its
corresponding ejbCreate method’s return type. Instead, it must return the session
bean’s local interface type.

All exceptions defined in the throws clause of an ejbCreate method must be
defined in the throws clause of the matching create method in the remote
interface. In addition, the throws clause in the home interface must always include
javax.ejb.CreateException.

Remove Methods
A remote client may remove a session object using the remove method on the
javax.ejb.EJBObject interface, or the remove(Handle handle) method of the
javax.ejb.EJBHome interface.

Because session objects do not have primary keys that are accessible to clients,
invoking the javax.ejb.EBJHome.remove(Object primaryKey) method on a
session results in javax.ejbRemoveException.

Creating the Remote Home Interface
The container provides the implementation of the remote home interface for each
session bean that defines a remote home interface that is deployed in the container.
The object that implements this is called a session EJBHome object. The remote
home interface allows a client to do the following:

• Create a new session object

• Remove a session object

• Get the javax.ejb.EJBMetaData interface for the session bean

• Obtain a handle for the remote home interface

Developing Session Beans

50 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

The remote home interface must extend the javax.ejb.EJBHome interface, and is
allowed to have super interfaces. The methods defined in the interface must follow
the rules for RMI/IIOP.

The remote home interface must define one or more create<METHOD>(...)
methods.

A remote home interface always extends javax.ejb.EJBHome. For example:

import javax.ejb.*;
import java.rmi.*;

public interface MySessionHome extends EJBHome {
MySession create() throws CreateException, RemoteException;

}

As this example illustrates, a session bean’s home interface defines one or more
create methods. The return type for each create method, however, does not
match its corresponding ejbCreate method’s return type. Instead, it must return
the session bean’s remote interface type.

All exceptions defined in the throws clause of an ejbCreate method must be
defined in the throws clause of the matching create method in the remote
interface. In addition, the throws clause in the home interface must always include
javax.ejb.CreateException and java.rmi.RemoteException.

Creating the Bean Class Definition
For a session bean, the bean class must be defined as public, must not be final,
and cannot be abstract. The bean class must implement the
javax.ejb.SessionBean interface.

import java.rmi.*;
import java.util.*;
import javax.ejb.*;
public class MySessionBean implements SessionBean {

// Session Bean implementation. These methods must always
included.

public void ejbActivate() {
}
public void ejbPassivate() {

NOTE For stateless session beans, the home interface must have exactly
one create method and the bean must have exactly one ejbCreate
method. Both methods take no arguments.

Developing Session Beans

Chapter 2 Using Session Beans 51

}
public void ejbRemove() {
}
public void setSessionContext(SessionContext ctx) {
}

// other code omitted here....
}

The session bean must implement one or more ejbCreate(...) methods. There
must be one method for each way a client invokes the bean. For example:

public void ejbCreate() {
string[] userinfo = {"User Name", "Encrypted Password"} ;

}

Each ejbCreate(...) method must be declared as public, return void, and be
named ejbCreate. Arguments must be legal Java RMI types. The throws clause
may define application specific exceptions and java.ejb.CreateException.

Session beans also implement one or more business methods. These methods are
usually unique to each bean and represent its particular functionality. For example,
if a session bean manages user logins, it might include a unique function called
validateLogin.

Business method names can be anything, but must not conflict with the method
names defined in the EJB interfaces. Business methods must be declared as public.
Method arguments and return value types must be legal for Java RMI. The throws
clause may define application specific exceptions.

Session Synchronization
There is one interface implementation permitted in a stateful session bean class
definition, particularly javax.ejb.SessionSynchronization, that enables a
session bean instance to be notified of transaction boundaries and synchronize its
state with those transactions.

The javax.ejb.SessionSynchronization interface allows a stateful session bean
instance to be notified by its container of transaction boundaries. A session bean
class is optional to implement this interface. A session bean class should implement
this interface only if you want to synchronize its state with the transactions. For
example, a stateful session bean that implements this interface will get callbacks
after a new transaction begins, but before a transaction commits, and after
commitment.

For more information about this interface, see the Enterprise JavaBeans
Specification, v2.0.

Restrictions and Optimizations

52 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Abstract Methods
Besides the business methods you define in the remote interface, the EJBObject
interface defines several abstract methods that enable you to:

• Retrieve the bean’s home interface

• Retrieve the bean’s handle (a unique identifier)

• Compare the bean to another bean to see if it is identical

• Free or remove the bean when it is no longer needed.

For more information about these built-in methods and how they can be used, see
the Enterprise JavaBeans Specification, v2.0.

The deployment tools provided by the container are responsible for the generation
of additional classes when the session bean is deployed.

Restrictions and Optimizations
This section discusses restrictions on developing session beans and provides some
optimization guidelines:

• Optimizing Session Bean Performance

• Restricting Transactions

Optimizing Session Bean Performance
For stateful session beans, co-locating the stateful beans with their clients so that
the client and bean are executing in the same process address space will improve
performance.

NOTE The container will only invoke the session synchronization interface
methods for stateful session beans that use container-managed
transactions.

Restrictions and Optimizations

Chapter 2 Using Session Beans 53

Restricting Transactions
The following restrictions on transactions are enforced by the container and must
be observed as you develop session beans:

• A session bean can participate in, at most, a single transaction at a time.

• If a session bean is participating in a transaction, a client cannot invoke a
method on the bean such that the transaction attribute in the deployment
descriptor would cause the container to execute the method in a different or
unspecified transaction context or an exception is thrown.

• If a session bean instance is participating in a transaction, a client cannot
invoke the remove method on the session object’s home or component interface
object or an exception is thrown.

Restrictions and Optimizations

54 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

55

Chapter 3

Using Entity Beans

This section describes entity beans and explains the requirements for creating them
in the Sun ONE Application Server 7 environment.

This section addresses the following topics:

• About Entity Beans

• Developing Entity Beans

• Using Read-Only Beans

• Handling Synchronization of Concurrent Access

NOTE If you are unfamiliar with entity beans or the EJB technology, refer
to the Java Software tutorials:

http://java.sun.com/j2ee/docs.html

Extensive information on entity beans is contained in chapters 9, 10,
12, 13, and 14 of the Enterprise JavaBeans Specification, v2.0.

Overview material on the Sun ONE Application Server is contained
in “Introducing the Sun ONE Application Server Enterprise
JavaBeans Technology,” on page 19 and the Sun ONE Application
Server Product Introduction.

NOTE If you are already familiar with entity beans and are only concerned
with container-managed persistence, go to “Using
Container-Managed Persistence for Entity Beans,” on page 79.

About Entity Beans

56 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

About Entity Beans
An entity bean implements an object view of an entity stored in an underlying
database, or an entity implemented by an existing enterprise application (for
example, by a mainframe program or by an ERP application). Some examples of
business objects are customers, orders, and products. The data access protocol for
transferring the state of the entity between the entity bean instances and the
underlying database is referred to as object persistence.

The following topics are discussed in this section:

• Entity Bean Characteristics

• The Container

• Persistence

• Read-Only Beans

Entity Bean Characteristics
Entity beans differ from session beans in several ways. Entity beans are persistent,
can be accessed simultaneously by multiple clients, have primary keys, and may
participate in relationships with other entity beans.

Entity beans have the following characteristics:

• Provide an object view of data in a database.

• Allow shared access by multiple users.

• Persist for as long as needed by all clients, using either bean-managed
persistence or container-managed persistence.

• Transparently survive server crashes.

• Represent shared data in a database.

A good situation for using entity beans includes a well encapsulated, transactional,
and persistent interaction with databases, documents, and other business objects.

About Entity Beans

Chapter 3 Using Entity Beans 57

The Container
Entity beans rely on the enterprise bean container to manage security, concurrency,
transactions, and other container-specific services for the entity objects it manages.
Multiple clients can access an entity object at the same time, while the container
transparently handles simultaneous accesses through transactions.

Each entity has a unique object identifier. A customer entity bean, for example,
might be identified by a customer number. This unique identifier, or primary key,
enables the client to locate a particular entity bean.

Like a session bean, an entity bean can access a database through JDBC calls inside
methods whose transaction attributes can be set using deployment descriptors.The
container supports both bean-managed and container-managed persistence as
described in the following section.

Persistence
Because the state of an entity bean is saved in a some durable storage, it is
persistent. Persistence means that the entity bean’s state exists beyond the lifetime of
the application or the server process.

Persistence of entity beans may done explicitly by the bean and programmed by
the bean developer. This is known as bean-managed persistence (BMP).

Persistence management can also be delegated to the container, leveraging the Sun
ONE Application Server and the persistence management APIs of the enterprise
beans. This approach is called container-managed persistence (CMP). In the CMP
mechanism, a persistence manager, integrated with the Sun ONE Application
Server, is required to ensure reliable persistence. Refer to “Using
Container-Managed Persistence for Entity Beans,” on page 79 for additional
information on container-managed persistence.

The following figure illustrates how persistence works in the Sun ONE Application
Server environment.

About Entity Beans

58 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Guidelines for selecting the most appropriate persistence method for your
applications are contained in “Determining Entity Bean Usage,” on page 60.

The following topics are addressed in this section:

• Bean-Managed Persistence

• Container-Managed Persistence

Bean-Managed Persistence
In bean-managed persistence, the bean is responsible for its own persistence. The
entity bean code that you write contains the calls that access the database.

You code a bean-managed entity bean by providing database access calls—through
JDBC and SQL—directly in the bean class methods. Database access calls must be
in the ejbCreate, ejbRemove, ejbFindXXX, ejbLoad, and ejbStore methods. The
advantage of this approach is that these beans can be deployed to the application
server without requiring much effort. The disadvantage is that database access is
expensive and, in some cases, the application server can do a better job of
optimizing database access than the application programmer can. Also,
bean-managed persistence requires the developer to write JDBC code.

For details about using JDBC to work with data, see the Sun ONE Application
Server Developer’s Guide to J2EE Features and Services.

Persistence

Transaction Manager

Entity Bean Flow

Manager

Sun ONE Application Server

Database

EJB with BMP

EJB with CMP

Developing Entity Beans

Chapter 3 Using Entity Beans 59

Container-Managed Persistence
In container-managed persistence, the enterprise bean container handles all database
access required by the entity bean by interacting through the persistence manager.
The bean’s code contains no database access (JCBC) calls. As a result, the bean’s
code is not tied to a specific persistent storage mechanism (database). Because of
this flexibility, even if you redeploy the same entity bean on a different database,
you won’t need to modify the bean’s code. In short, your entity beans are more
portable.

The bean developer provides abstract bean classes. Typically, the
container-managed persistence runtime generates concrete implementation classes
that know how to load and save the bean state (in the ejbLoad and ejbStore
methods).

To generate the data access calls, the container needs information that you provide
in the entity bean’s abstract schema. Additional information on the abstract schema
is contained in “Abstract Schema,” on page 84.

Read-Only Beans
A read-only bean is an entity bean that is never modified by an EJB client. The data
that a read-only bean represents may be updated externally by other enterprise
beans, or by other means, such as direct database updates.

Read-only beans are best suited for situations where the underlying data never
changes, or changes infrequently. Instructions for creating read-only beans are
contained in “Using Read-Only Beans,” on page 74.

Developing Entity Beans
When creating an entity bean, you must provide a number of class files. The tasks
required are discussed in the following topics:

• Determining Entity Bean Usage

• Responsibilities of the Bean Developer

NOTE For this release of the Sun ONE Application Server, only entity
beans that use bean-managed persistence can be designated as
read-only.

Developing Entity Beans

60 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

• Defining the Primary Key Class

• Defining Remote Interfaces

• Defining Local Interfaces

• Creating the Bean Class Definition (for Bean-Managed Persistence)

Determining Entity Bean Usage
You should probably use an entity bean when the bean represents a business
entity, not a procedure, and/or the bean’s state must be persistent (the bean’s state
still exists in the database if the server is shut down).

Unlike session beans, entity bean instances can be accessed simultaneously by
multiple clients. The container is responsible for synchronizing the instance state
using transactions. Because this responsibility is delegated to the container, you do
not need to consider concurrent access methods from multiple transactions.

Your choice of persistence method also has an impact:

• Bean-managed persistence—When you implement an entity bean to manage
its own persistence, you implement persistence code (such as JDBC calls)
directly in the EJB class methods. The downside is portability loss (that is, the
risk of associating the bean with a specific database).

• Container-managed persistence—When entity bean persistence is managed by
the container, the container transparently manages the persistence state. You
do not need to implement any data access code in the bean methods. Not only
is this method simpler to implement, but it makes the bean portable to
different databases. Refer to “Using Container-Managed Persistence for Entity
Beans,” on page 79” for on implementation guidelines.

Responsibilities of the Bean Developer
This section describes what you need to do to ensure that an entity bean with
bean-managed persistence can be deployed on the Sun One Application Server.

The entity bean developer is responsible for providing the following class files:

• Primary key class

• Entity bean remote interface and remote home interface, if the entity bean
provides a remote client view

Developing Entity Beans

Chapter 3 Using Entity Beans 61

• Entity bean local interface and local home interface, if the entity bean provides
a local client view

• Entity bean class

Defining the Primary Key Class
The EJB architecture allows a primary key class to be any class that is a legal Value
Type in RMI-IIOP. The class must provide suitable implementation of the
hashCode and equals (Object other) methods. The primary key class may be
specific to an entity bean class, that is, each entity bean class may define a different
class for its primary key, but it is possible for multiple entity beans to use the same
primary key class.

You must specify a primary key class in the deployment descriptor.

Defining Remote Interfaces
This section discusses the following topics:

• Creating the Remote Home Interface

• Creating a Remote Interface

Creating the Remote Home Interface
As a bean developer, you must provide the bean's remote home interface (if it is
applicable). The home interface defines the methods that enable a client accessing
an application to create, find, and remove entity objects. You must create a remote
home interface that meets the following requirements:

• The interface must extend the javax.ejb.EJBHome interface.

• The methods defined in this interface must follow the rules for RMI-IIOP. This
means that their argument and return types are of valid types for RMI-IIOP,
and that their throws clauses include java.rmi.RemoteException.

• Each method defined in the remote home interface must be one of the
following:

❍ A create method.

❍ The remote home interface must always include the findByPrimaryKey
method, which is always a single-object finder. The method must declare
the primary key class as the method argument.

Developing Entity Beans

62 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

❍ A finder method.

❍ A home method. Home methods can have arbitrary names, provided they
do not clash with the create, find, and remove method names. The
matching ejbHome method specified in the entity bean class must have the
same number and types of arguments, and must return the same type as
the home method specified in the remote home interface of the bean.

Remote Create Methods
• Each create method must be named createXXX, where XXX is a unique method

name continuation that matches one of the ejbCreateXXX methods defined in
the enterprise bean class. For example, createEmployee(...),
createLargeOrder(....).

• The matching ejbCreateXXX in the bean must have the same number and
types of its arguments. However, the return type is different.

• The return type for a createXXX method must be the entity bean remote
interface type.

• All the exceptions defined in the throws clause of the matching ejbCreateXXX
and ejbPostCreateXXX methods of the enterprise bean class must be included
in the throws clause of the matching create method of the remote home
interface (that is, the set of exceptions defined for the create method must be a
superset of the union of exceptions defined for the ejbCreateXXX and
ejbPostCreateXXX methods).

• The throws clause of a create method must include
javax.ejb.CreateException.

Remote Find Methods
• A home interface can define one or more find methods. Each method must be

named findXXX, where XXX is a unique method name continuation. For
example, findApplesAndOranges.

• Each finder method must correspond to one of the finder methods defined in
the entity bean class definition.

• The number and argument types must also correspond to the finder method
definitions in the bean class.

• The return type for a find <METHOD> method must be the entity bean’s remote
interface type (for a single-object finder), or a collection thereof (for a
multi-object finder).

Developing Entity Beans

Chapter 3 Using Entity Beans 63

• All the exceptions defined in the throws clause of an ejbFind method of the
entity bean class must be included in the throws clause of the matching find
method of the remote home interface.

• The throws clause of a finder method must include
javax.ejb.FinderException.

findByPrimaryKey Method
• Every remote home interface must always include the findByPrimaryKey

method, which is always a single-object finder.

• The method must declare the primary key class as the method argument.

• All the exceptions defined in the throws clause of an ejbFindByPrimaryKey
method of the entity bean class must be included in the throws clause of the
matching find method of the remote home interface.

• The throws clause of a findByPrimaryKey method must include
javax.ejb.FinderException.

Remote Remove Methods
All home interfaces automatically (by extending javax.ejb.EJBHome) define two
remove methods for destroying an enterprise bean when it is no longer needed:

public void remove(java.lang.Object primaryKey)
throws java.rmi.RemoteException, RemoveException

public void remove(Handle handle)
throws java.rmi.RemoteException, RemoveException

Example of a Remote Home interface

import javax.ejb.*;
import java.rmi.*;

public interface MyEntityBeanLocalHome
extends EJBHome

{
/**

* Create an Employee
* @param empName Employee name
* @exception CreateException If the employee cannot be

NOTE Do not override these remove methods.

Developing Entity Beans

64 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

created
* @return The remote interface of the bean

*/
public MyEntity create(String empName)

throws CreateException;
/**

* Find an Employee
* @param empName Employee name
* @exception FinderException if the empName is not found
* @return The remote interface of the bean
*/

public MyEntity findByPrimaryKey(String empName)
throws FinderException;

}

Defining Local Interfaces
To build an enterprise bean that allows local access, you must code the local
interface and the local home interface. The local interface defines the bean’s
business methods; the local home interface defines its life cycle (create/remove)
and finder methods.

This section addresses the following topics:

• Creating the Local Home Interface

• Creating a Local Interface

Creating the Local Home Interface
The home interface defines the methods that enable a client using the application to
create and remove entity beans. A bean’s local home interface defines the methods
that allow local clients to create, find, and remove EJB objects, as well as home
business methods that are not specific to a bean instance (session beans do not have
finders and home business methods). The local home interface is defined by you
and implemented by the container. A client locates a bean’s home using JNDI.

The local home interface allows a local client to:

• Create new entity objects within the home

• find existing entity objects within the home

• Remove an entity object from the home

• Execute a home business method

Developing Entity Beans

Chapter 3 Using Entity Beans 65

A local home interface always extends javax.ejb.EJBLocalHome. For example:

import javax.ejb.*;
public interface MyEntityLocalBeanHome extends EJBLocalHome {

MyEntityLocalBean create() throws CreateException;
}

Creating a Local Interface
If an entity bean is the target of a container-managed relationship, it must have
local interfaces. The direction of the relationship determines whether or not a bean
is a target. Because they require local access, entity beans that participate in a
container-managed relationship must reside in the same EJB JAR file. The primary
benefit of this locality is improved performance—local calls are faster than remote
calls.

Since local interfaces follow pass by reference semantics, you must be aware of the
potential sharing of objects passed through the local interface. In particular, be
careful that the state of one enterprise bean is not assigned as the state of another.
You must also exercise caution in determining which objects to pass across the
local interface, particularly in the case where there is a change in transaction or
security content.

• The interface must extend the javax.ejb.EJBLocalHome interface.

• The throws clause of a method on the local home interface must not include the
java.rmi.RemoteException.

• Each method defined in the local home interface must be one of the following:

❍ A create method

❍ A finder method

❍ A home method

(Local) Create Methods
• Each create method must be named createXXX, where XXX is a unique method

name continuation, and it must match one of the ejbCreateXXX methods
defined in the enterprise bean class. For example, createEmployee(...),
createLargeOrder(....).

• The matching ejbCreateXXX in the bean must have the same number and
types of its arguments. (Note that the return type is different.)

• The return type for a createXXX method must be the entity bean's local
interface type.

Developing Entity Beans

66 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

• All the exceptions defined in the throws clause of the matching ejbCreateXXX
and ejbPostCreateXXX methods of the enterprise bean class must be included
in the throws clause of the matching create method of the remote home
interface (that is, the set of exceptions defined for the create method must be a
superset of the union of exceptions defined for the ejbCreateXXX and
ejbPostCreateXXX methods).

• The throws clause of a create method must include
javax.ejb.CreateException.

(Local) Find Methods
• A home interface can define one or more find methods. Each method must be

named findXXX, where XXX is a unique method name continuation. For
example, findApplesAndOranges.

• Each finder method must correspond to one of the finder methods defined in
the entity bean class definition.

• The number and argument types must also correspond to the finder method
definitions in the bean class.

• The return type for a find <METHOD> method must be the entity bean's local
interface type (for a single-object finder), or a collection thereof (for a
multi-object finder).

• All the exceptions defined in the throws clause of an ejbFind method of the
entity bean class must be included in the throws clause of the matching find
method of the remote home interface.

• The throws clause of a finder method must include the
javax.ejb.FinderException.

findByPrimaryKey Method
• Every local home interface must always include the findByPrimaryKey

method, which is always a single-object finder.

• The method must declare the primary key class as the method argument.

• All the exceptions defined in the throws clause of an ejbFindByPrimaryKey
method of the entity bean class must be included in the throws clause of the
matching find method of the remote home interface.

• The throws clause of a findByPrimaryKey method must include
javax.ejb.FinderException.

Developing Entity Beans

Chapter 3 Using Entity Beans 67

(Local) home Methods
• Home methods can have arbitrary names, provided that they do not clash with

create, find, and remove method names.

• The matching ejbHome method specified in the entity bean class must have the
same number and types of arguments and must return the same type as the
home method as specified in the local home interface of the bean.

Creating a Remote Interface
Besides the business methods you define in the remote interface, the EJBObject
interface defines several abstract methods that enable you to:

• Retrieve the bean's home interface

• Retrieve the bean's handle-to retrieve the bean's primary key which uniquely
identifies the bean's instance

• Compare the bean to another bean to see if it is identical

• Remove the bean when it is no longer needed

For more information about these built-in methods and how they are used, see the
Enterprise JavaBeans Specification, v2.0.

• An entity bean's remote interface defines a user's access to a bean's methods.

• The interface must extend the javax.ejb.EJBObject interface.

• The methods defined in the remote interface must follow the rules for
RMI-IIOP.

• This means that their argument and return value types must be valid types for
RMI-IIOP, and their throws clauses must include the
java.rmi.RemoteException.

• For each method defined in the remote interface, there must be a matching
method in the entity bean s class. The matching method must have The same
name. The same number and types of its arguments, and the same return type.

NOTE The Enterprise JavaBeans Specification, v2.0 permits the bean class
to implement the remote interface's methods, but recommends
against this practice to avoid inadvertently passing a direct
reference (through this) to a client in violation of the
client-container-EJB protocol intended by the Enterprise JavaBeans
Specification, v2.0.

Developing Entity Beans

68 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

• All the exceptions defined in the throws clause of the matching method of the
enterprise bean class must be defined in the throws clause of the method of the
remote interface.

• The remote interface methods must not expose local interface types, local home
interface types, or the managed collection classes that are used for entity beans
with container-managed persistence as arguments or results.

Example of a Remote Interface
The following fragment is an example of a remote interface

import javax.ejb.*;
import java.rmi.*;

public interface MyEntity
extends EJBObject
{
public String getAddress() throws RemoteException;
public void setAddress(String addr) throws RemoteException;

}

Creating the Bean Class Definition (for
Bean-Managed Persistence)
For an entity bean that uses bean-managed persistence, the bean class must be
defined as public and cannot be abstract. The bean class must implement the
javax.ejb.EntityBean interface. For example:

import java.rmi.*;
import java.util.*;
import javax.ejb.*;
public class MyEntityBean implements EntityBean {

// Entity Bean implementation. These methods must always be
included.
public void ejbActivate() {
}
public void ejbLoad() {
}
public void ejbPassivate() {
}
public void ejbRemove() {
}
public void ejbStore() t{
}
public void setEntityContext(EntityContext ctx) {

Developing Entity Beans

Chapter 3 Using Entity Beans 69

}
public void unsetEntityContext() {
}
// other code omitted here....
}

In addition to these methods, the entity bean class must also define one or more
ejbCreate methods and the ejbFindByPrimaryKey finder method. Optionally, it
may define one ejbPostCreate method for each ejbCreate method. It may
provide additional, developer-defined finder methods that take the form
ejbFindXXX, where XXX represents a unique method name continuation (for
example, ejbFindApplesAndOranges) that does not duplicate any other method
names.

Entity beans typically implement one or more business methods. These methods
are usually unique to each bean and represent its particular functionality. Business
method names can be anything, but must not conflict with the method names used
in the EJB architecture. Business methods must be declared as public. Method
arguments and return value types must be Java RMI legal. The throws clause may
define application-specific exceptions and may include
java.rmi.RemoteException.

There are two business method types to implement in an entity bean:

• Internal methods—Used by other business methods in the bean, but never
accessed outside the bean itself.

• External methods—referenced by the entity bean’s remote interface.

The following sections address the various methods in an entity bean’s class
definition:

• Using ejbCreate

• Using ejbActivate and ejbPassivate

• Using ejbLoad and ejbStore

• Using setEntityContext and unsetEntityContext

• Using ejbRemove

• Using Finder Methods

Using ejbCreate
The entity bean must implement one or more ejbCreate methods. There must be
one method for each way a client is allowed to invoke the bean. For example:

Developing Entity Beans

70 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

public String ejbCreate(String orderId, String customerId,
String status, double totalPrice)
throws CreateException {

try {
InitialContext ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup(dbName);
con = ds.getConnection();
String insertStatement =

"insert into orders values (? , ? , ? , ?)";
PreparedStatement prepStmt =

con.prepareStatement(insertStatement);
prepStmt.setString(1, orderId);
prepStmt.setString(2, customerId);
prepStmt.setDouble(3, totalPrice);
prepStmt.setString(4, status);
prepStmt.executeUpdate();
prepStmt.close();

} catch (Exception ex) {
throw new CreateException("ejbCreate: "

+ex.getMessage());
}

}

public String ejbPostCreate(String orderId, String customerId,String
status, double totalPrice)

throws CreateException

{
......
......
}

Each ejbCreate method must be declared as public, return the primary key type,
and be named ejbCreate. The return type can be any legal Java RMI type that
converts to a number for key purposes. All arguments must be legal Java RMI
types. The throws clause may define application-specific exceptions, and may
include java.ejb.CreateException.

This is the method in which relationships are established. For each ejbCreate
method, the entity bean class may define a corresponding ejbPostCreate method
to handle entity services immediately following creation. Each ejbPostCreate
method must be declared as public, must return void, and be named
ejbPostCreate. The method arguments, if any, must match in number and
argument type its corresponding ejbCreate method. The throws clause may
define application-specific exceptions, and may include
java.ejb.CreateException.

Developing Entity Beans

Chapter 3 Using Entity Beans 71

Using ejbActivate and ejbPassivate
When an entity bean instance is needed by a server application, the bean’s
container invokes ejbActivate to ready a bean instance for use. Similarly, when
an instance is no longer needed, the bean’s container invokes ejbPassivate to
disassociate the bean from the application.

If specific application tasks need to be performed when a bean is first made ready
for an application, or when a bean is no longer needed, you should program those
operations within the ejbActivate and ejbPassivate methods. For example, you
may release references to database and backend resources during ejbPassivate
and regain them during ejbActivate.

Using ejbLoad and ejbStore
An entity bean can collaborate with the container to store the bean state
information in a database, for synchronization purposes. In the case of
bean-managed persistence, you are responsible for coding ejbLoad and ejbStore.
The container ensures that the state of the bean is synchronized with the database
by calling ejbLoad at the beginning of a transaction and calling ejbStore when the
transaction completes successfully.

Use your implementation of ejbStore to store state information in the database,
and use your implementation of ejbLoad to retrieve state information from the
database.

The following example shows ejbLoad and ejbStore method definitions that
store and retrieve active data.

public void ejbLoad()
throws java.rmi.RemoteException

{
String itemId;
javax.sql.Connection dc = null;
java.sql.Statement stmt = null;
java.sql.ResultSet rs = null;

itemId = (String) m_ctx.getPrimaryKey();

System.out.println("myBean: Loading state for item " + itemId);

String query =
"SELECT s.totalSold, s.quantity " +
" FROM Item s " +
" WHERE s.item_id = " + itemId;

dc = new DatabaseConnection();

Developing Entity Beans

72 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

dc.createConnection(DatabaseConnection.GLOBALTX);
stmt = dc.createStatement();
rs = stmt.executeQuery(query);

if (rs != null) {
rs.next();
m_totalSold = rs.getInt(1);
m_quantity = rs.getInt(2);

}
}

public void ejbStore()
throws java.rmi.RemoteException

{
String itemId;
itemId = (String) m_ctx.getPrimaryKey();
DatabaseConnection dc = null;
java.sql.Statement stmt1 = null;
java.sql.Statement stmt2 = null;

System.out.println("myBean: Saving state for item = " + itemId);

String upd1 =
"UPDATE Item " +
" SET quantity = " + m_quantity +
" WHERE item_id = " + itemId;

String upd2 =
"UPDATE Item " +
" SET totalSold = " + m_totalSold +
" WHERE item_id = " + itemId;

dc = new DatabaseConnection();
dc.createConnection(DatabaseConnection.GLOBALTX);
stmt1 = dc.createStatement();
stmt1.executeUpdate(upd1);
stmt1.close();
stmt2 = dc.createStatement();

stmt2.executeUpdate(upd2);
stmt2.close();

}

For more information about bean isolation levels that access transactions
concurrently with other beans, see “Handling Synchronization of Concurrent
Access,” on page 78.

Developing Entity Beans

Chapter 3 Using Entity Beans 73

Using setEntityContext and unsetEntityContext
A container calls setEntityContext after it creates an entity bean instance to
provide the bean with an interface to the container. Implement this method to store
the entity context passed by the container. You can later use this reference to get
the primary key of the instance, and so on.

public void setEntityContext(javax.ejb.EntityContext ctx)
{
m_ctx = ctx;
}

Similarly, a container calls unsetEntityContext to remove the container reference
from the instance. This is the last bean class method a container calls before the
bean instance becomes a candidate for removal. After this call, the Java garbage
collection mechanism eventually calls finalize on the instance to clean it up and
dispose of it.

public void unsetEntityContext()
{
m_ctx = null;
}

Using ejbRemove
The client can invoke the remove methods on the entity bean’s home or component
interface to remove the associated record from the database. The container invokes
the ejbRemove method on an entity bean instance in response to a client invocation
on the entity bean’s home or component interface, or as the result of a
cascade-delete operation.

Using Finder Methods
Because entity beans are persistent, shared among clients, and may have more than
one instance instantiated at the same time, an entity bean must implement at least
one ejbFindByPrimaryKey method. This enables the client and the container to
locate a specific bean instance. All entity beans must provide a unique primary key
as an identifying signature. Implement the ejbFindByPrimaryKey method in the
bean’s class to enable a bean to return its primary key to the container.

The following example shows a definition for FindByPrimaryKey:

public String ejbFindByPrimaryKey(String key)
throws java.rmi.RemoteException,

javax.ejb.FinderException

Using Read-Only Beans

74 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

In some cases, you find a specific entity bean instance based on what the enterprise
bean does, based on certain values the instance is working with, or based on other
criteria. These implementation-specific finder method names take the form
ejbFindXXX, where XXX represents a unique continuation of a method name (for
example, ejbFindApplesAndOranges) that does not duplicate any other method
names.

Finder methods must be declared as public, and their arguments, and return
values must be legal Java RMI types. Each finder method return type must be the
entity bean’s primary key type or a collection of objects of the same primary key
type. If the return type is a collection, the return type must be one of the following:

• JDK 1.1 java.util.Enumeration interface

• Java 2 java.util.Collection interface

The throws clause of a finder method is an application-specific exception, and may
include java.rmi.RemoteException and/or java.ejb.FinderException.

Using Read-Only Beans
A read-only bean is an entity bean that is never modified by an EJB client. The data
that a read-only bean represents may be updated externally by other enterprise
beans, or by other means, such as direct database updates.

The following topics are addressed in this section:

• Read-Only Bean Characteristics and Life Cycle

• Read-Only Bean Good Practices

• Refreshing Read-Only Beans

• Deploying Read Only Beans

NOTE For this release of Sun ONE Application Server, only entity beans
that use bean-managed persistence can be designated as read-only.

Read-only beans are specific to Sun ONE application server and are
not part of the Enterprise JavaBeans Specification, v2.0.

Using Read-Only Beans

Chapter 3 Using Entity Beans 75

Read-Only Bean Characteristics and Life Cycle
Read-only beans are best suited for situations where the underlying data never
changes, or changes infrequently. For example, a read-only bean can be used to
represent a stock quote for a particular company, which is updated externally. In
such a case, using a regular entity bean may incur the burden of calling ejbStore,
which can be avoided by using a read-only bean.

Read-only beans have the following characteristics:

• Only entity beans can be read-only beans.

• Only bean-managed persistence is allowed.

• Only container-managed transactions are allowed; read-only beans cannot
start their own transactions.

• Read-only beans don’t update any bean state.

• ejbStore is never called by the container.

• ejbLoad will be called only when a transactional method is called or when the
bean is initially created (in the cache), or at regular intervals controlled by the
bean's refresh-period-in-seconds.

• The home interface can have any number of find methods. The return type of
the find methods must be the primary key for the same bean type (or a
collection of primary keys).

• If the data that the bean represents can change, then
refresh-period-in-seconds must be set to refresh the beans at regular
intervals. ejbLoad is called at this regular interval.

A read-only bean comes into existence using the appropriate find methods.

Read-only beans are cached and have the same cache properties as entity beans.
When a read-only bean is selected as a victim to make room in the cache,
ejbPassivate is called and the bean is returned to the free pool. When in the free
pool, the bean has no identity and will be used only to serve any finder requests.

Read-only beans are bound to the naming service like regular read-write entity
beans, and clients can look up read-only beans the same way read-write entity
beans are looked up.

Read-Only Bean Good Practices
• Avoid having any create or remove methods in the home interface

Using Read-Only Beans

76 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

• Use any of the valid EJB 2.0 transaction attributes for the transaction attribute
for methods

The reason for having TX_SUPPORTED is to allow reading uncommitted data in
the same transaction. Also, the TX attributes can be used to force ejbLoad.

Refreshing Read-Only Beans
There are several ways of refreshing read-only beans as addressed in the following
sections:

• Invoking a Transactional Method

• Refreshing Periodically

• Refreshing Programmatically

Invoking a Transactional Method
Invoking any transactional method will invoke ejbLoad.

Refreshing Periodically
Read-only beans can be refreshed periodically by specifying the
refresh-period-in-seconds element in the Sun ONE Application Server-specific
XML file.

• If the value specified in refresh-period-in-seconds is zero, the bean is
never refreshed (unless a transactional method is accessed).

• If the value is greater than zero, the bean is refreshed at the rate specified.

Refreshing Programmatically
Typically, beans that update any data that is cached by read-only beans need to
notify the read-only beans to refresh their state. You can use
ReadOnlyBeanNotifier to force the refresh of read-only beans. To do this, invoke
the following methods on the ReadOnlyBeanNotifier bean:

NOTE This is the only way to refresh the bean state if the data can be
modified external to the Sun ONE Application Server.

Using Read-Only Beans

Chapter 3 Using Entity Beans 77

public interface ReadOnlyBeanNotifier
extends java.rmi.Remote

{
refresh(Object PrimaryKey)

throws RemoteException;
}

The implementation of the ReadOnlyBeanNotifier interface is provided by the
container. The user can look up ReadOnlyBeanNotifier using the following
fragment of code:

com.sun.ejb.ReadOnlyBeanNotifier notifier =
com.sun.ejb.containers.ReadOnlyBeanHelper.getReadOnlyBeanNotifier

(<ejb-name-of -the-target>);
notifier.refresh(<PrimaryKey>);

Beans that update any data that is cached by read-only beans need to call the
refresh methods. The next (non-transactional) call to the read-only bean will
invoke ejbLoad.

Deploying Read Only Beans
Read-only beans are deployed in the same manner as other entity beans. However,
in the entry for the bean in the Sun ONE Application Server-specific XML file, the
is-read-only-bean element must be set to true. That is:

<is-read-only-bean>true</is-read-only-bean>

Also, the refresh-period-in-seconds element may be set to some value that
specifies the rate at which the bean is refreshed. If this element is missing, a default
of 600 (seconds) is assumed.

All requests with the same transaction context are routed to the same read-only
bean instance. The deployer can specify if such multiple requests have to be
serialized by setting the allow-concurrent-access element to either true (to
allow concurrent accesses) or false (to serialize concurrent access to the same
read-only bean). The default is false.

For further information on these elements, refer to the Sun ONE Application Server
Administrator’s Configuration File Reference.

Handling Synchronization of Concurrent Access

78 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Handling Synchronization of Concurrent Access
As an entity bean developer, you generally do not have to be concerned about
concurrent access to an entity bean from multiple transactions. The bean’s
container automatically provides synchronization in these cases. In the Sun ONE
Application Server, the container activates one entity bean instance for each
simultaneously occurring transaction that uses the bean.

Transaction synchronization is performed automatically by the underlying
database during database access calls. You typically perform this synchronization
in conjunction with the underlying database or resource. One approach would be
to acquire the corresponding database locks in the ejbLoad method, for example
by choosing an appropriate isolation level or by using a select for update
clause. The specifics vary depending on the database being used.

For more information, see the Enterprise JavaBeans Specification, v2.0 as it relates
to concurrent access.

79

Chapter 4

Using Container-Managed
Persistence for Entity Beans

This section contains information on how container-managed persistence works in
the Sun ONE Application Server 7 environment. Implementation procedures are
included.

This section addresses the following topics:

• Sun ONE Application Server Support

• About Container-Managed Persistence

• Using Container-Managed Persistence

• Third-Party Pluggable Persistence Manager API

• Restrictions and Optimizations

• Elements in the sun-cmp-mappings.xml File

• Examples

Extensive information on container-managed persistence is contained in chapters
10, 11, and 14 of the Enterprise JavaBeans Specification, v2.0.

NOTE To implement container-managed persistence, you should already
be familiar with entity beans, which are discussed in “Using Entity
Beans,” on page 55.

Sun ONE Application Server Support

80 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Sun ONE Application Server Support
Sun ONE Application Server support for container-managed persistence includes:

• Full support for the J2EE v 1.3 specification’s container-managed persistence
model.

❍ Support for commit options B and C for transactions as defined in the
Enterprise JavaBeans Specification, v2.0. Refer to “Commit Options,” on
page 147 for further information.

❍ The primary key class must be a subclass of java.lang.Object. This
ensures portability, and is noted because some vendors allow primitive
types (such as int) to be listed as the primary key class.

• The Sun ONE Application Server container-managed persistence
implementation which provides:

❍ An Object/Relational (O/R) mapping tool (part of the Sun ONE
Application Server Assembly Tool) that creates XML deployment
descriptors for EJB JAR files that contain beans that use container-managed
persistence

❍ Support for compound (multi-column) primary keys

❍ Support for sophisticated custom finder methods

❍ Standards-based query language (EJB QL)

❍ Container-managed persistence runtime, which supports the following
JDBC drivers/databases:

• Oracle 8i, Oracle 9

• Sybase 12

• Microsoft SQLServer 2000

• Pointbase 4.2 (not available in the pre-installed version of the Sun ONE
Application Server with Solaris)

• Support for third-party object-to-relational (O/R) mapping tools. An
explanation of the third-party API is contained in “Third-Party Pluggable
Persistence Manager API,” on page 110.

About Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 81

About Container-Managed Persistence
An entity bean using container-managed persistence delegates the management of
its state (or persistence) to the Sun ONE Application Server container. Rather than
write the JDBC code that is needed to implement bean-managed persistence, a
developer implementing container-managed persistence uses tools to create the
bean’s deployment descriptors. The deployment descriptors then provide the
information that the container uses to map bean fields to columns in a relational
database.

An EJB container needs two things to support container-managed persistence:

• Mapping—Information on how to map an entity bean to a resource, such as a
table in a relational database

• Runtime environment—A container-managed persistence runtime
environment that uses the mapping information to perform persistence
operations on each bean

This section addresses the following container-managed persistence topics:

• CMP Components

• Relationships

• Abstract Schema

• Deployment Descriptors

• Persistence Manager

CMP Components
Unlike bean-managed persistence, container-managed persistence does not require
you to write database access calls in the methods of the entity bean class. Because
persistence is handled by the container at runtime, you must specify in the
deployment descriptor those persistence fields and relationships for which the
container must handle data access. You access persistent data using the accessor
methods that are defined for the abstract persistence schema.

An entity bean that uses container-managed persistence consists of several
components that interoperate:

• The abstract bean class, written by you.

• The remote interface, written by you.

About Container-Managed Persistence

82 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

• The local interface, written by you.

• The deployment descriptor, written by you.

• An optional primary key class, written by you.

• The concrete bean class, generated by the container-managed persistence
implementation.

This class inherits from the abstract bean class and uses information from the
deployment descriptor. Accessor (read) and mutator (write) methods in the
bean class are implemented here to the concrete state class.

• The concrete remote bean implementation class, generated by the
container-managed persistence implementation.

• The EJBObject (skeleton), generated by the container-managed persistence
implementation.

• The remote stub, generated by the container-managed persistence
implementation.

The following classes are used for container-managed persistence:

• Generation class—Called from the ejbc compile utility; generates the concrete
classes.

• Generated classes—Use container-managed persistence to effect persistence
behavior at server runtime.

• Management classes—Collect and report statistics at server runtime.

Relationships

A relationship allows you to navigate from an object to its related objects.
Relationships can be either bidirectional or unidirectional.

• Bidirectional—Each entity bean has a relationship field that refers to the other
bean. Through the relationship field, an entity bean's code can access its related
object. If an entity bean has a relationship field, we often say it "knows" about
its related object.

NOTE This section applies only if you are using container-managed
persistence 2.0 beans.

About Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 83

• Unidirectional—Only one entity bean has a relationship field that refers to the
other.

A container-managed relationship (CMR) between fields in a pair of classes allows
operations on one side of the relationship to affect the other side. At runtime, if a
field in one instance is modified to refer to another instance, the referred instance
will have its relationship field modified to reflect the change in relationship.

In the Java code, relationships are represented by object reference (either
collections or fields that are typed to an EJB local interface), depending on the
relationship cardinality. A relationship can be one-to-one, one-to-many, or
many-to-many, depending on the number of instances of each class in the
relationship. In the database, this might be represented by foreign key columns
and, in the case of many-to-many relationships, join tables.

The following sections describe the various types of relationships:

• One-to-One Relationships

• One-to-Many Relationships

• Many-to-Many Relationships

One-to-One Relationships
With one-to-one relationships, there is a single-valued field in each class whose
type is the local interface of the other bean type. Any change to the field on either
side of the relationship is handled as a relationship change. If the field on one side
is changed from null to non-null, then the field on the other side is changed to refer
to this instance. If the field on the other side had been non-null, that other
relationship is made null before the change is made.

NOTE Even if a relationship is unidirectional, if you make a change to that
relationship, other enterprise beans will be affected if they are
associated with that relationship.

NOTE No warning is given if you delete one object in a managed
relationship. Container-managed persistence automatically nullifies
the relationship on the foreign key side and deletes the object
without asking for confirmation.

About Container-Managed Persistence

84 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

One-to-Many Relationships
With one-to-many relationships, there is a single-valued field on the many side and
a multi-valued field (collection) on the one side.

If an instance is added to the collection field, the field in the new instance is
updated to reference the instance containing the collection field. If an instance is
deleted from the collection, the field on the instance is nullified.

Any change, addition or removal of a field on the many side is handled as a
relationship change. If the field on the many side is changed from null to non-null,
this instance is added to the collection-valued field on the one side. If the field on
the many side is changed from non-null to null, then this instance is removed from
the collection-valued field on the one side.

Many-to-Many Relationships
With many-to-many relationships, there are multi-valued, or collection, fields on
both sides of the relationship. Any change to the contents of the collection on either
side of the relationship is handled as a relationship change. If an instance is added
to the collection on this side, then this instance is added to the collection on the
other side. If an instance is removed from a collection on this side, then this
instance is removed from the collection on the other side.

Abstract Schema
Part of an entity bean’s deployment descriptor, the abstract schema defines the
bean’s persistent fields and relationships. The term abstract distinguishes this
schema from the physical schema of the underlying data store.

You specify the name of an abstract schema in the deployment descriptor. This
name is referenced by queries written in the EJB Query Language (EJB QL). For an
entity bean using container-managed persistence, you must define an EJB-QL
query for every finder method (except findByPrimaryKey). The EJB-QL query
determines the query that is executed by the EJB container when the finder method
is invoked.

Example
<ejb-relation>

<ejb-relation-name>OrderLineItem</ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>
OrderHasLineItems

</ejb-relationship-role-name>
<multiplicity>One</multiplicity>

About Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 85

<relationship-role-source>
<ejb-name>Order</ejb-name>

</relationship-role-source>
<cmr-field>

<cmr-field-name>lineItems</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>

 </cmr-field>
</ejb-relationship-role>

<ejb-relationship-role>
<ejb-relationship-role-name>

LineItemInOrder
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>

<ejb-name>LineItemEJB</ejb-name>
</relationship-role-source>

</ejb-relationship-role>
</ejb-relation>

Deployment Descriptors
If your container-managed fields are to be mapped to database fields, you must
provide mapping information to the deployer. Each module with
container-managed persistence beans must have the following files for the
deployment process

• ejb-jar.xml—Contains information such as the transactional attributes of the
beans and the fields of a bean that are going to be container-managed.

• sun-ejb-jar.xml—The standard file for assembling enterprise beans. Refer to
“Elements in the sun-ejb-jar.xml File,” on page 176 and “Sample EJB XML
Files,” on page 213 for information.

• sun-cmp-mappings.xml—The file for mapping container-managed
persistence. Refer to “Elements in the sun-cmp-mappings.xml File,” on
page 112 and “Sample Schema Definition,” on page 121 for information.

Persistence Manager
In the Sun ONE Application Server, the container-managed persistence model is
based on the Pluggable Persistence Manager API which provides the role of the
persistence manager in defining and supporting the mapping between an entity
bean and the persistence store.

Using Container-Managed Persistence

86 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

The persistence manager is the component responsible for the persistence of the
entity beans installed in the container. The classes provided by the persistence
manager vendor are responsible for managing the relationships between the entity
beans, and for managing access to their persistent state. The persistence manager
vendor is also responsible for providing the implementation of the Java classes that
are used in maintaining the container-managed relationships. The persistence
manager uses the data source registry provided by the container to access data
sources.

The following figure illustrates how persistence works in the Sun ONE Application
Server environment.

It is also possible to write custom persistence managers to support legacy systems,
or to implement caching strategies that improve performance for your
container-managed persistence solution.

Using Container-Managed Persistence
Implementation for entity beans that use container-managed persistence is mostly
a matter of mapping and assembly/deployment.

This section addresses the following topics:

• Process Overview

NOTE Java types assigned to the container-managed fields must be
restricted to the following: Java primitive types, Java serializable
types, and references to EJB remote or remote home interfaces.

Persistence

Transaction Manager

Entity Bean Flow

Manager

Sun ONE Application Server

Database

EJB with BMP

EJB with CMP

Using Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 87

• Mapping Capabilities

• Supported Data Types for Mapping

• BLOB Support

• Using the capture-schema Utility

• Mapping Fields and Relationships

• Configuring the Resource Manager

• Using EJB QL

• Configuring Queries for 1.1 Finders

Process Overview
The container-managed persistence process consists of three operations: mapping,
deploying, and running. These operations are accomplished as described in the
following phases:

• Phase 1. Creating the mapping deployment descriptor file

• Phase 2. Generating and compiling concrete beans and delegates

• Phase 3. Running in the Sun ONE Application Server runtime

Phase 1. Creating the mapping deployment descriptor file

This phase can be done concurrent with development of the container-managed
persistence beans in the Sun ONE Studio 4 IDE, or after development while
preparing for deployment.

During this phase, you map CMP fields and CMR fields (relationships) to the
database. A primary table is selected for each container-managed persistence bean,
and optionally, multiple secondary tables. CMP fields are mapped to columns in
either the primary or secondary table(s). CMR fields are mapped to pairs of column
lists (normally, column lists are the list of columns associated with pairs of primary
and foreign keys).

NOTE The Sun ONE Studio IDE will create this descriptor automatically
for deployment.

Using Container-Managed Persistence

88 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

• The mapping is saved in a file which conforms to the
sun-cmp-mapping_1_0.dtd. The resulting XML file is packaged with the
user-defined bean classes in an EJB JAR file and must be named
META-INF/sun-cmp-mappings.xml.

• Errors are reported during the deployment process. Errors may be triggered
from within the Sun ONE Studio 4 environment or at the command line.

• The mapping information is developed in conjunction with the database
schema file. This file must be captured using the Sun ONE Studio 4 IDE
(“Capturing a Schema,” on page 217) or the capture-schema utility (“Using the
capture-schema Utility,” on page 93).

• If the database table structure is changed, you first capture the schema of the
updated tables after the database administrator updates the tables. You then
remap the CMP fields and relationships.

Phase 2. Generating and compiling concrete beans and delegates
This phase is done during deployment of an EJB application to the Sun ONE
Application Server. During this phase, deployment information is combined with
the mapping information created during Phase 1.

The following files are generated:

• The concrete bean file, which extends the abstract bean written by you

The concrete bean implements the EJB life cycle methods
ejbSetEntityContext, ejbUnsetEntityContext, ejbCreate, ejbRemove,
ejbLoad, ejbStore. It also contains implementation of getXXX and setXXX for
each CMP field and the CMR field, ejbFindByPrimaryKey, other finder
methods, and any selector methods defined by the user.

• The compiled EJB-QL for finder and selector methods, stored as a properties
file

This file contains the container-managed persistence query parameter list, the
query filter, the query ordering expression, the query candidate class name,
and the query result type.

• A generation log file that reports errors to you, including EJB-QL syntax and
usage errors

NOTE There is no automatic procedure for performing this remapping;
you must do it manually.

Using Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 89

• State and helper classes

Phase 3. Running in the Sun ONE Application Server runtime
At runtime, the information provided at deployment is used to service requests on
entities implemented as enterprise beans.

Mapping Capabilities
Mapping refers to the ability to tie an object-oriented model to a relational model of
data, usually the schema of a relational database. The container-managed
persistence implementation provides the ability to tie a set of interrelated classes
containing data and associated behaviors to the interrelated meta-data of the
schema. You can then use this object representation of the database to form the
basis of a Java application. You can also customize this mapping to optimize these
underlying classes for the particular needs of an application.

The result is a single data model through which you can access both persistent
database information and regular transient program data. You only need to
understand the Java programming language objects; you do not need to know or
understand the underlying database schema.

Information on the container-managed persistence DTD and XML file elements is
contained in “Elements in the sun-cmp-mappings.xml File,” on page 112.

Mapping Features
The mapping capabilities provided by the Sun ONE Application Server include:

• Mapping a container-managed persistence bean to a single table

• Mapping a container-managed persistence bean to multiple tables

• Mapping container-managed persistence fields to columns

• Mapping container-managed persistence fields to different column types

• Mapping tables with compound primary keys

• Mapping container-managed persistence relationships to foreign key columns

• Mapping tables with overlapping primary and foreign keys

Using Container-Managed Persistence

90 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Mapping Tool
The mapping tool generates information that maps the entity bean’s
container-managed fields to a data source, such as a column in a relational
database table. This mapping information is stored in an XML file.

The meet-in-the-middle mapping of the container-managed persistence
implementation creates a custom mapping between an existing schema and
existing Java classes, using the Mapping Tool.

Mapping Techniques
A container-managed persistence class should represent a data entity, such as an
employee or a department. To model a specific data entity, you add persistent
fields to the class that correspond to the columns in the data store.

The simplest kind of modeling is to have a persistence-capable class represent a
single table in the data store, with a persistent field for each of the table’s columns.
An Employee class, for example, would have persistent fields for all the columns
found in the EMPLOYEE table of the data store, such as lastname, firstname,
department, and salary.

Information on how to use Sun ONE Studio 4 to map container-managed
persistence for enterprise beans is contained in the Sun ONE Application Server
Integration Module for the Sun ONE Studio 4 online help.

Supported Data Types for Mapping
Container-managed persistence supports a set of JDBC 1.0 SQL data types that are
used in mapping Java data fields to SQL types. Supported JDBC 1.0 SQL data types
are listed in the following table.

NOTE You can choose to have only a subset of the data store columns used
as persistent fields, but if a field is persistent, it must be mapped.

Supported JDBC 1.0 SQL Data Types

BIGINT DOUBLE SMALLINT

BIT FLOAT TIME

BLOB INTEGER TIMESTAMP

CHAR LONGVARCHAR TINYINT

Using Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 91

The following table contains suggested mappings.

DATE NUMERIC VARCHAR

DECIMAL REAL

Suggested Data Type Mappings

Java Type JDBC Type Nullability

boolean BIT NON NULL

java.lang.Boolean BIT NULL

byte TINYINT NON NULL

java.lang.Byte TINYINT NULL

double FLOAT NON NULL

java.lang.Double FLOAT NULL

double DOUBLE NON NULL

java.lang.Double DOUBLE NULL

float REAL NON NULL

java.lang.Float REAL NULL

int INTEGER NON NULL

java.lang.Integer INTEGER NULL

long BIGINT NON NULL

java.lang.Long BIGINT NULL

long DECIMAL (scale==0) NON NULL

java.lang.Long DECIMAL (scale==0) NULL

long NUMERIC (scale==0) NON NULL

java.lang.Long NUMERIC (scale==0) NULL

short SMALLINT NON NULL

java.lang.Short SMALLINT NULL

java.math.BigDecimal DECIMAL (scale!=0) NON NULL

java.math.BigDecimal DECIMAL (scale!=0) NULL

Supported JDBC 1.0 SQL Data Types

Using Container-Managed Persistence

92 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

BLOB Support
Binary Large Object (BLOB) is a data type used to store and retrieve complex object
fields. BLOBs are binary or serializable objects, such as pictures, that translate into
large byte arrays which are then serialized into CMP fields.

To enable BLOB support in the Sun ONE Application Server environment:

1. Declare the variable in the bean class with a serializable type.

2. Edit the XML file by declaring the CMP mapping deployment descriptor in the
sun-cmp-mappings.xml file.

3. Create the BLOB in the database.

Example
<cmp-field-mapping>

<field-name>syllabus</field-name>
<column-name>COURSE.SYLLABUS</column-name>

</cmp-field-mapping>

java.math.BigDecimal NUMERIC NULL

java.math.BigDecimal NUMERIC NON NULL

java.lang.String CHAR NON NULL

java.lang.String CHAR NULL

java.lang.String VARCHAR NON NULL

serializable BLOB NULL

NOTE On Oracle, using the Oracle thin driver (JDBC type 4), it is not
possible to insert more than 2000 bytes of data into a column. To
circumvent this problem, use the OCI driver (JDBC type 2).

NOTE Performance may be negatively impacted due to the size of the
BLOB object.

Suggested Data Type Mappings (Continued)

Java Type JDBC Type Nullability

Using Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 93

Example
/**
Serializable class Syllabus : BLOB Testing
**/

package collegeinfo
public class Syllabus implements java.io.Serializable
{

public String author;
public String syllabi;

}

Schema for Course:

table course

courseId Number
deptId Number
courseName Varchar
syllabus BLOB

Using the capture-schema Utility
Mapping information is developed by first capturing the database schema. Use the
capture-schema command to store the database metadata (schema) in a file for
use in mapping and execution. You can also use the Sun ONE Studio (formerly
Forte for Java) IDE to capture the database schema; refer to “Capturing a Schema,”
on page 217.

Syntax
capture-schema -dburl url -username name -password password -driver
ajdbcdriver [-schemaname name] [-table TableName]* [-out filename]

Where:

-dburl url: Specifies the JDBC URL expected by the driver for accessing a database.

-username name: Specifies the user name for authenticating access to a database.

-password password: Specifies the password for accessing the selected database.

-driver ajdbcdriver: Specifies the JDBC driver class name. This class must be in your
CLASSPATH.

-schemaname name: Specifies the name of the user schema being captured. If not
specified, the default will capture metadata for all tables from all the schemas
accessible to this user.

Using Container-Managed Persistence

94 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

-table TableName: Specifies a table name. Multiple table names can be specified. If
not specified, all the tables in the database schema will be captured.

-out: Specifies the output target. Defaults to stdout. To be able to use the output
for the CMP mapping, the output file name must have the .dbschema suffix.

For container-managed persistence mapping, the -out parameter correlates to
the schema subelement of the sun-cmp-mapping element in the
sun-cmp-mapping_1_0.dtd file:

<!ELEMENT sun-cmp-mapping (schema, entity-mapping+) >

In the sun-cmp-mappings.xml file, this element must be represented without
the .dbschema suffix. For example:

<schema>RosterSchema</schema>

Example
capture-schema -dburl jdbc:pointbase:server://localhost:9092/sample
-username public -password public -driver
com.pointbase.jdbc.jdbcUniversalDriver -out RosterSchema.dbschema

Mapping Fields and Relationships
This section discusses how to map the fields and relationships of your entity beans
by editing the sun-cmp-mappings.xml deployment descriptor. This can be done
either manually (provided you are proficient in editing XML) or using the Sun
ONE Application Server assembly and deployment tools.

NOTE Specifying this parameter is highly recommended. If more than one
schema is accessible for this user, more than one table with the same
name might be captured, which will cause problems.

NOTE If no table flags are given, all the tables in the database are captured
in the schema.

Using Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 95

A container-managed persistence bean has a name, a primary table, one or more
fields, zero or more relationships, and zero or more secondary tables, plus flags for
consistency checking. You will need to map the CMP fields and CMR fields to the
database using the elements in the sun-cmp-mappings.xml file. CMP fields are
mapped to columns in either the primary or secondary database table(s); CMR
fields are mapped to pairs of column lists.

An alphabetic listing of the mapping elements in the container-managed
persistence deployment descriptors is contained in “Elements in the
sun-cmp-mappings.xml File,” on page 112. A sample XML file is contained in
“Sample Schema Definition,” on page 121.

This section contains instructions for accomplishing the following mapping tasks:

• Specifying the Beans to Be Mapped

• Specifying the Mapping Components

• Specifying Field Mappings

• Specifying Relationships

Specifying the Beans to Be Mapped
You must start by using the following elements to specify the database schema and
the container-managed persistence beans being mapped:

• sun-cmp-mappings

• sun-cmp-mapping

• schema

• entity-mapping

sun-cmp-mappings
Specifies the collection of subelements for all the beans that will be mapped in an
EJB JAR collection.

Subelement is sun-cmp-mapping.

Example
Refer to “Sample Schema Definition,” on page 121.

sun-cmp-mapping
Specifies beans mapped to a particular schema.

Using Container-Managed Persistence

96 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Subelements are schema, entity-mapping.

schema
Specifies the path to the schema file. Only one is required. For further information,
refer to “Sample EJB QL Queries,” on page 124 and “Capturing a Schema,” on
page 217.

Example
<schema>RosterSchema</schema>

entity-mapping
Specifies the mapping of beans to database columns.

Subelements are ejb-name, table-name, cmp-field-mapping,
cmr-field-mapping, secondary-table, consistency.

Example
For an example, see “entity-mapping,” on page 96.

Specifying the Mapping Components
The next step is to use the following elements to specify components that are part
of the mapping, and to indicate how consistency checking will occur.

• entity-mapping

• ejb-name

• table-name

• secondary-table

• consistency

entity-mapping
Specifies the mapping of beans to database columns.

Subelements are ejb-name, table-name, cmp-field-mapping,
cmr-field-mapping, secondary-table, consistency.

Using Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 97

Example
<entity-mapping>

<ejb-name>Player</ejb-name>
<table-name>PLAYER</table-name>
<cmp-field-mapping>

<field-name>salary</field-name>
<column-name>PLAYER.SALARY</column-name>

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>playerId</field-name>
<column-name>PLAYER.PLAYER_ID</column-name>

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>position</field-name>
<column-name>PLAYER.POSITION</column-name>

</cmp-field-mapping>
<field-name>name</field-name>
<column-name>PLAYER.NAME</column-name>

</cmp-field-mapping>
<cmr-field-mapping>

<cmr-field-name>teamId</cmr-field-name>
<column-pair>

<column-name>PLAYER.PLAYER_ID</column-name>
<column-name>TEAMPLAYER.PLAYER_ID</column-name>

</column-pair>
<column-pair>

<column-name>TEAMPLAYER.TEAM_ID</column-name>
<column-name>TEAM.TEAM_ID</column-name>

</column-pair>
</cmr-field-mapping>

</entity-mapping>

ejb-name
Specifies the name of the entity bean in the ejb-jar.xml file to which the
container-managed persistence beans relates. One is required.

Example
<ejb-name>Player</ejb-name>

table-name
Specifies the name of a database table. The table must be present in the database
schema file. One is required.

Using Container-Managed Persistence

98 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Example
<table-name>PLAYER</table-name>

secondary-table
Specifies a bean’s secondary table(s). Optional.

Subelements are table-name, column-pair.

Example
This secondary table example adds an email field in the StudentEjb class.

public abstract class StudentEJB implements EntityBean {

/***
Write ur set,get methods for Entity bean variables and
business methods here
***/
//Access methods for CMP fields
public abstract Integer getStudentId();
public abstract void setStudentId(Integer studentId);
public abstract String getStudentName();
public abstract void setStudentName(String studentName);

public abstract void setEmail(String Email); <-----Column from
Secondary Table

The Student and the Email table should be related by a foreign key. The schema for
the Email table may look like this:

Table Email:

Student_id Number
email varchar

Table Student:

StudentId Number
StudentName varchar
deptId Number
AddressId Number
AccountId Varchar

When adding the secondary table, the tables will both apply to the same enterprise
bean.

Using Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 99

consistency
Specifies container behavior in guaranteeing transactional consistency of the data
in the bean. Optional. If the consistency checking flag element is not present, none
is assumed.

The following table describes the elements used for consistency checking.

Specifying Field Mappings
Field mapping is done using the following elements:

• cmp-field-mapping

• field-name

• column-name

• read-only

• fetched-with

• level

• named-group

• none

Consistency Flags

Flag Element Description

check-all-at-commit This flag is not implemented for Sun ONE
Application Server 7.

check-modified-at-commit Checks modified instances at commit time.

lock-when-loaded A lock is implemented when the data is loaded.

lock-when-modified This flag is not implemented for Sun ONE
Application Server 7.

none No consistency checking occurs.

Using Container-Managed Persistence

100 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

cmp-field-mapping
The cmp-field-mapping element associates a field with one or more columns that
it maps to. The column can be from a bean’s primary table or any defined
secondary table. If a field is mapped to multiple columns, the column listed first is
used as a SOURCE for getting the value from the database. The columns are
updated in the order they appear. There is one cmp-field-mapping element for
each cmp-field element defined in the EJB JAR file.

A field can be marked as read-only.

Subelements are field-name, column-name, read-only, and fetched-with.

Example
<cmp-field-mapping>

<field-name>name</field-name>
<column-name>LEAGUE.NAME</column-name>

</cmp-field-mapping>

field-name
Specifies the Java identifier of a field. This identifier must match the value of the
field-name subelement of the cmp-field that is being mapped. One is required.

Example
<field-name>name</field-name>

column-name
Specifies the name of a column from the primary table, or the table qualified name
(TABLE.COLUMN) of a column from a secondary or related table. One or more is
required.

Example
<column-name>PLAYER.NAME</column-name>

Example
Use this with non-normalized tables where the same information appears in
multiple places, and the information needs to be kept synchronized if it is updated.

NOTE When mapping multiple columns, any JAVA type can be used.

Using Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 101

public abstract class StudentEJB implements EntityBean {
.
.
.

public abstract String getInstallments();

The three columns from the student table can be mapped to a single installments
column in the Student enterprise bean.

Table student:
.
.
.
installment1 Number
installment2 Number
installment3 Number

The same value will be written to all the columns in the database.

read-only
The read-only flag indicates that a field is read-only.

Example
<read-only>name</read-only>

fetched-with
Specifies the fetch group configuration for fields and relationships. A field may
participate in a hierarchical or independent fetch group. Optional.

The fetched-with element has different default values based on its context.

• If there is no fetched-with sub-element of a cmp-field-mapping, the default
value is assumed to be:

<fetched-with><level>0</level></fetched-with>

• If there is no fetched-with sub-element of a cmr-field-mapping, the default
value is assumed to be:

<fetched-with><none/></fetched-with>

Subelements are level, named-group, or none.

Using Container-Managed Persistence

102 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

level
Specifies the name of a hierarchical fetch group. The value must be an integer.
Fields and relationships that belong to a hierarchical fetch group of equal (or lesser)
value are fetched at the same time. The value of level must be greater than zero.
Only one is allowed.

named-group
Specifies the name of an independent fetch group. All the fields and relationships
that are part of a named group are fetched at the same time. Only one is allowed.

none
A consistency level flag that indicates that this field or relationship is fetched by
itself.

Specifying Relationships
The following elements are used to specify the mapping for container-managed
relationships:

• cmr-field-mapping

• cmr-field-name

• column-pair

• fetched-with

cmr-field-mapping
A container-managed relationship field has a name and one or more column pairs
that define the relationship. There is one cmr-field-mapping element for each
cmr-field. A relationship can also participate in a fetch group.

Subelements are cmr-field-name, column-pair, fetched-with.

Example
<cmr-field-mapping>

<cmr-field-name>teamId</cmr-field-name>
<column-pair>

<column-name>PLAYER.PLAYER_ID</column-name>
<column-name>TEAMPLAYER.PLAYER_ID</column-name>

</column-pair>
<column-pair>

<column-name>TEAM.TEAM_ID</column-name>

Using Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 103

<column-name>TEAMPLAYER.TEAM_ID</column-name>
</column-pair>
<fetched-with>

<none/>
</fetched-with>

</cmr-field-mapping>

cmr-field-name
Specifies the Java identifier of a field. This must match the value of the
cmr-field-name subelement of the cmr-field that is being mapped. One is
required.

Example
<cmr-field-name>team</cmr-field-name>

column-pair
Specifies the pair of related columns in two database tables. One or more is
required.

The columns names are specified in the column-name element.

Example
<column-pair>

<column-name>PLAYER.PLAYER_ID</column-name>
<column-name>TEAMPLAYER.PLAYER_ID</column-name>

</column-pair>

column-name
Specifies the name of a column from the primary table, or the table qualified name
(TABLE.COLUMN) of a column from a secondary or related table. Two are
required as subelements of a column-pair.

Example
<column-name>PLAYER.NAME</column-name>

fetched-with
Specifies the fetch group configuration for fields and relationships. A field may
participate in a hierarchical or independent fetch group. Optional.

The fetched-with element has different default values based on its context.

Using Container-Managed Persistence

104 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

• If there is no fetched-with sub-element of a cmp-field-mapping, the default
value is assumed to be:

<fetched-with><level>0</level></fetched-with>

• If there is no fetched-with sub-element of a cmr-field-mapping, the default
value is assumed to be:

<fetched-with><none/></fetched-with>

Subelements are level, named-group, or none.

Configuring the Resource Manager
The resource manager used by the container-managed persistence implementation
is PersistenceManagerFactory, which is configured using the Sun ONE
Application Server DTD file, sun-server_7_0-0.dtd.

Refer to the Sun ONE Application Server Administrator’s Guide for information on
creating a new persistence manager.

To deploy an EJB module that contains container-managed persistence beans, you
need to add the following information to the sun-ejb-jar.xml deployment
descriptor.

1. Specify the Persistence Manager to be used for the deployment:

<pm-descriptors>
<pm-descriptor>

<pm-identifier>SunONE</pm-identifier>
<pm-version>1.0</pm-version>

<pm-class-generator>com.iplanet.ias.persistence.internal.ejb.ejbc.J
DOCodeGenerator
</pm-class-generator>

<pm-mapping-factory>com.iplanet.ias.cmp.
NullFactory</pm-mapping-factory>

</pm-descriptor
<pm-inuse>

<pm-identifier>SunONE</pm-identifier>
<pm-version>1.0</pm-version>

</pm-inuse>
</pm-descriptors>

2. Specify the JNDI name of the Persistence Manager’s resource (listed under
persistence-manager-factory-resource entry in the server.xml file) and
the JNDI name for cmp-resource. This name will be used at run time to
manage persistent resources.

Using Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 105

For example, if you have the following entry in the server.xml file:

<persistence-manager-factory-resource
factory-class="com.sun.jdo.spi.persistence.support.

sqlstore.impl.PersistenceMan
gerFactoryImpl"
enabled="true"
jndi-name="jdo/pmf"
jdbc-resource-jndi-name="jdo/pmfPM"

</persistence-manager-factory-resource>

Set the CMP resource as:

<cmp-resource>
<jndi-name>jdo/pmf</jndi-name

</cmp-resource>

Using EJB QL
The Enterprise JavaBeans Specification, v2.0 specifies a new query language (EJB
QL) that can be used to define portable queries for the finder and select methods of
CMP beans. These queries use a SQL-like syntax to select entity objects or field
values based on the abstract schema types and relationships of CMP beans.

Finder methods are defined in the home and/or local home interfaces of the bean,
and return instances of the same bean. Select methods are defined only in the
abstract bean class, and can be used for selecting entity objects of any local or
remote type as well as field values for beans from the same schema.

For more information, refer to the Chapter 11, "EJB QL: EJB Query Language for
Container-Managed Persistence Query Methods" in the Enterprise JavaBeans
Specification, v2.0.

Some EJB QL sample queries are contained in “Sample EJB QL Queries,” on
page 124.

NOTE The Sun ONE Studio IDE will create pm-descriptors as part of this
descriptor automatically for deployment. Information on how to set
up the container-managed persistence resources is contained in the
Sun ONE Application Server Integration Module for the Sun ONE
Studio 4 online help.

Using Container-Managed Persistence

106 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Configuring Queries for 1.1 Finders
The Enterprise JavaBeans Specification, v1.1 spec does not specify the format of the
finder method description. The Sun ONE Application Server uses Java Data
Objects Query Language (JDOQL) queries to implement finder and selector
methods. For EJB 2.0, the container automatically maps an EJB QL query to JDOQL.
For EJB 1.1, this mapping is partially done by the developer. You can specify the
following elements of the underlying JDOQL query:

• Filter expression—A Java-like expression that specifies a condition that each
object returned by the query must satisfy. Corresponds to the WHERE clause
in EJB QL.

• Query parameter declaration—Specifies the name and the type of one or more
query input parameters. Follows the syntax for formal parameters in the Java
language.

• Query variable declaration—Specifies the name and type of one or more query
variables. Follows the syntax for local variables in the Java language. Query
variables might be used in the filter to implement joins.

The Sun ONE Application Server-specific deployment descriptor
(sun-ejb-jar.xml) provides the following elements to store the EJB 1.1 finder
method settings:

query-filter

query-params

query-variables

The Sun ONE Application Server constructs a JDOQL query using the persistence
capable class of the EJB 1.1 entity bean as the candidate class. It adds the filter,
parameter declarations, and variable declarations as specified by the developer to
the JDOQL query. It executes the query and passes the parameters of the finder
method to the execute call. The objects from the JDOQL query result set are
converted into primary key instances to be returned by the EJB 1.1 ejbFind
method.

The JDO specification (see JSR 12) provides a comprehensive description of
JDOQL. The following information summarizes the elements used to define EJB 1.1
finders.

Using Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 107

Query Filter Expression
The filter expression is a String containing a boolean expression evaluated for each
instance of the candidate class. If the filter is not specified, it defaults to true. Rules
for constructing valid expressions follow the Java language, with the following
differences:

• Equality and ordering comparisons between primitives and instances of
wrapper classes are valid.

• Equality and ordering comparisons of Date fields and Date parameters are
valid.

• Equality and ordering comparisons of String fields and String parameters are
valid.

• White space (non-printing characters space, tab, carriage return, and line feed)
is a separator and is otherwise ignored.

• The following assignment operators are not supported:

❍ =, +=, etc.

❍ pre- and post-increment

❍ pre- and post-decrement

• Methods, including object construction, are not supported, except for:

Collection.contains(Object o)

Collection.isEmpty()

String.startsWith(String s)

String.endsWith(String e)

In addition, the Sun ONE Application Server supports the following
non-standard JDOQL methods:

String.like(String pattern)

String.like(String pattern, char escape)

String.substring(int start, int length)

String.indexOf(String str), String.indexOf(String str, int

start)

String.length()

Math.abs(numeric n), and Math.sqrt(double d)

• Navigation through a null-valued field, which would throw
NullPointerException, is treated as if the subexpression returned false.

Using Container-Managed Persistence

108 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

The following expressions are supported:

• Operators applied to all types where they are defined in the Java language:

❍ relational operators (==, !=, >, <, >=, <=)

❍ boolean operators (&, &&, |, ||, ~, !)

❍ arithmetic operators (+, -, *, /)

String concatenation is supported only for String + String.

• Parentheses to explicitly mark operator precedence

• Cast operator

• Promotion of numeric operands for comparisons and arithmetic operations.
The rules for promotion follow the Java rules (see the numeric promotions of
the Java language specification) extended by BigDecimal, BigInteger, and
numeric wrapper classes.

Query Parameter
The parameter declaration is a String containing one or more parameter type
declarations separated by commas. This follows the Java syntax for method
signatures.

Query Variables
The type declarations follow the Java syntax for local variable declarations.

Example1
The following query returns all players called Michael. It defines a filter that
compares the name field with a string literal:

"name == \"Michael\""

The finder element of the sun-ejb-jar.xml file would look like this:

NOTE Comparisons between floating point values are by nature inexact.
Therefore, equality comparisons (== and !=) with floating point
values should be used with caution. Identifiers in the expression are
considered to be in the name space of the candidate class, with the
addition of declared parameters and variables. As in the Java
language, this is a reserved word, and refers to the current instance
being evaluated.

Using Container-Managed Persistence

Chapter 4 Using Container-Managed Persistence for Entity Beans 109

<finder>
<method-name>findPlayerByName</method-name>
<query-filter>name == "Michael"</query-filter>

</finder>

Example 2
This query returns all products in a specified price range. It defines two query
parameters which are the lower and upper bound for the price: double low, double
high. The filter compares the query parameters with the price field:

"low < price && price < high"

The finder element of the sun-ejb-jar.xml file would look like this:

<finder>
<method-name>findInRange</method-name>
<query-params>double low, double high</query-params>
<query-filter>low < price && price <
high</query-filter

</finder>

Example 3
This query returns all players having a higher salary than the player with the
specified name. It defines a query parameter for the name java.lang.String
name. Furthermore, it defines a variable for the player to compare with. It has the
type of the persistence capable class that corresponds to the bean:

mypackage.PlayerEJB_170160966_JDOState p

The filter compares the salary of the current player denoted by this keyword with
the salary of the player with the specified name:

(this.salary > p.salary) && (p.name == name)

The finder element of the sun-ejb-jar.xml file would look like:

<finder>
<method-name>findByHigherSalary</method-name>
<query-params>java.lang.String name</query-params>
<query-filter>

(this.salary > p.salary) &&
(p.name ==name)

</query-filter>
<query-variables></query-variables

</finder>

Third-Party Pluggable Persistence Manager API

110 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Third-Party Pluggable Persistence Manager API

Container-managed persistence in the EJB container can support persistence
vendors integrating their runtimes into the Sun ONE Application Server using the
Sun ONE Application Server Pluggable Persistence Manager API. The API
describes integration requirements at deployment, at code-generation, and at
runtime. It supports callouts to implement the concrete bean implementations
when EJBs are compiled.

The Sun ONE Application Server enables the container-managed persistence
implementation to use its startup framework to load classes and to register the
persistence manager. The Pluggable Persistence Manager API also supports
integration requirements with regard to transactions and dynamic deployment.

In general, the objective is that any third-party container-managed persistence
solution that fully supports the Enterprise JavaBeans Specification, v2.0 can be
made to work with the Sun ONE Application Server.

To use a third-party tool:

1. Build your enterprise beans using the third-party O/R mapping tool.

2. Deploy the beans using the Assembly Tool or the command-line interface.

Third-party persistence tools must use Java Database Connectivity (JDBC)
resources or Java Connector API (JCA) resources at runtime to access relational
data sources. This allows the pluggable persistence managers to automatically use
the Connection Pooling, transaction handling, and security management features
of the container. Third-party vendors will be able to plug in their concrete class
generators and their mapping factory to generate a valid vendor-specific mapping
object model.

The configuration requirements specify a number of properties which must be
defined for a bean, including:

• The persistence mechanism

• The persistence vendor/version

• Additional information required by the persistence mechanism

Restrictions and Optimizations
This section discusses any restrictions and performance optimizations you should
be aware of in implementing container-managed persistence for entity beans.

Restrictions and Optimizations

Chapter 4 Using Container-Managed Persistence for Entity Beans 111

• Unique Database Schema Names in EAR File

• Limitations on Container-Managed Persistence Protocol

• Restrictions on Remote Interfaces

Unique Database Schema Names in EAR File
In a situation where there are multiple JAR files within an EAR file, for example
jar1 and jar2, any corresponding database schema files for jar1 and jar2 must
have unique fully qualified names.

In other words, the database schema file names must be unique in a given EAR file.

Limitations on Container-Managed Persistence
Protocol
• Data aliasing problems—If container-managed fields of multiple entity beans

map to the same data item in the underlying database, the entity beans may see
an inconsistent view of the data item if the multiple entity beans are invoked in
the same transaction.

• Eager loading of state—The container loads the entire entity object state into
the container-managed fields before invoking the ejbLoad method of the
abstract bean. This approach may not be optimal for entity objects with large
state if most business methods require access to only parts of the state. If this is
an issue, use the <fetched-with> element for fields that are used infrequently.

Restrictions on Remote Interfaces
The following restrictions apply to the remote interface of an entity bean that uses
container-managed persistence:

• Do not expose the get and set methods for container-managed relationship
fields or the persistence Collection classes that are used in container-managed
relationships through the remote interface of the bean.

However, you are free to expose the get and set methods that correspond to
the CMP fields of the entity bean through the bean’s remote interface.

• Do not expose local interface types or local home interface types through the
remote interface or remote home interface of the bean.

Elements in the sun-cmp-mappings.xml File

112 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

• Do not expose the container-managed collection classes that are used for
relationships through the remote interface of the bean.

Dependent value classes can be exposed in the remote interface or remote home
interface, and can be included in the client EJB JAR file.

Elements in the sun-cmp-mappings.xml File
“Assembling and Deploying Enterprise Beans,” on page 169, provides general
information and guidelines on assembling your enterprise beans for deployment.
Additional deployment information and instructions are contained in the Sun ONE
Application Server Developer’s Guide.

“Persistence Elements,” on page 196 provides information on the information on
persistence-related elements in the sun-ejb-jar.xml file.

A sample XML file is contained in “Sample Schema Definition,” on page 121.

This section describes the elements in the sun-cmp-mappings.xml file:

• check-all-at-commit

• check-modified-at-commit

• cmr-field-mapping

• cmr-field-name

• column-name

• column-pair

• consistency

• ejb-name

• entity-mapping

• fetched-with

• field-name

• level

• lock-when-loaded

• lock-when-modified

• named-group

• none

Elements in the sun-cmp-mappings.xml File

Chapter 4 Using Container-Managed Persistence for Entity Beans 113

• read-only

• schema

• sun-cmp-mapping

• sun-cmp-mappings

• table-name

check-all-at-commit
This flag is not implemented for Sun ONE Application Server 7.

Subelements
none

check-modified-at-commit
A consistency level flag that indicates to check modified bean instances at commit
time.

Subelements
none

cmp-field-mapping
The cmp-field-mapping element associates a field with one or more columns that
it maps to. The column can be from a bean’s primary table or any defined
secondary table. If a field is mapped to multiple columns, the column listed first is
used as a SOURCE for getting the value from the database. The columns are
updated in the order they appear. There is one cmp-field-mapping element for
each cmp-field element defined in the EJB JAR file.

A field can be marked as read-only.

A field may participate in a fetch group if the fetched-with element is not
specified. The following is assumed:

<fetched-with><level>0</level></fetched-with>

Subelements
The following table describes subelements for the cmp-field-mapping element.

Elements in the sun-cmp-mappings.xml File

114 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

cmr-field-mapping
A container-managed relationship field has a name and one or more column pairs
that define the relationship. There is one cmr-field-mapping element for each
cmr-field. A relationship can also participate in a fetch group.

If the fetched-with element is not present, the following value is assumed:
<fetched-with><none/></fetched-with>.

Subelements
The following table describes subelements for the cmr-field-mapping element.

cmp-field-mapping Subelements

Subelement Required Description

field-name only one Specifies the Java identifier of a field. This
identifier must match the value of the
field-name subelement of the
cmp-field that is being mapped. One is
required.

column-name one or more Specifies the name of a column from the
primary table, or the table qualified name
(TABLE.COLUMN) of a column from a
secondary or related table. One is required.

read-only zero or one Flag that indicates a field is read-only.
Optional.

fetched-with zero or one Specifies the fetch group configuration for
fields and relationships. Optional.

cmr-field-mapping Subelements

Subelement Required Description

cmr-field-name only one Specifies the Java identifier of a field. Must
match the value of the cmr-field-name
subelement of the cmr-field that is
being mapped.

column-pair one or more The name of the pair of columns in a
database table.

fetched-with zero or one Specifies the fetch group configuration for
fields and relationships. Optional.

Elements in the sun-cmp-mappings.xml File

Chapter 4 Using Container-Managed Persistence for Entity Beans 115

cmr-field-name
Specifies the Java identifier of a field. Must match the value of the cmr-field-name
subelement of the cmr-field that is being mapped.

Subelements
none

column-name
Specifies the name of a column from the primary table, or the table qualified name
(TABLE.COLUMN) of a column from a secondary or related table. One is required.

Subelements
none

column-pair
The name of the pair of related columns in two database tables. One is required.

Subelements
The following table describes subelements for the column-pair element.

consistency
Specifies container behavior in guaranteeing transactional consistency of the data
in the bean. Optional. If the consistency checking flag element is not present, none
is assumed.

Subelements

The following table describes the elements used for consistency checking.

column-pair Subelements

Subelement Required Description

column-name two Specifies the name of a column from the
primary table, or the table qualified name
(TABLE.COLUMN) of a column from a
secondary or related table.

Elements in the sun-cmp-mappings.xml File

116 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

ejb-name
Specifies the name of the entity bean in the ejb-jar.xml file to which the
container-managed persistence beans relates. One is required.

Subelements
none

entity-mapping
Specifies the mapping a bean to database columns.

Subelements
The following table describes subelements for the entity-mapping element.

Consistency Flags

Flag Element Description

check-all-at-commit Checks modified instances at commit time.

check-modified-at-commit This flag is not implemented for Sun ONE
Application Server 7.

lock-when-loaded An exclusive lock is obtained when the data is
loaded.

lock-when-modified This flag is not implemented for Sun ONE
Application Server 7.

none No consistency checking occurs.

entity-mapping Subelements

Subelement Required Description

ejb-name only one Specifies the name of the entity bean in the
ejb-jar.xml file to which the
container-managed persistence beans
relates. One is required.

table-name only one Specifies the name of a database table. The
table must be present in the database
schema file.

Elements in the sun-cmp-mappings.xml File

Chapter 4 Using Container-Managed Persistence for Entity Beans 117

fetched-with
Specifies the fetch group configuration for fields and relationships. Optional.

A field may participate in a hierarchical or independent fetch group. If the
fetched-with element is not present, the following value is assumed:
<fetched-with><none/></fetched-with>.

Subelements
The following table describes subelements for the fetched-with element.

cmp-field-mapping one or more Associates a field with one or more
columns that it maps to. The column can
be from a bean’s primary table or any
defined secondary table. If a field is
mapped to multiple columns, the column
listed first is used as a SOURCE for getting
the value from the database. The columns
are updated in the order they appear.
There is one cmp-field-mapping
element for each cmp-field element
defined in the EJB JAR file.

A field can be marked as read-only.

cmr-field-mapping zero or more A container-managed relationship field
has a name and one or more column pairs
that define the relationship. There is one
cmr-field-mapping element for each
cmr-field. A relationship can also
participate in a fetch group.

secondary-table zero or more Describes the relationship between a
bean’s primary and secondary table.
Column pairs are used to describe this
relationship.

consistency zero or one Specifies container behavior in
guaranteeing transactional consistency of
the data in the bean. If the consistency
checking flag element is not present, none
is assumed.

entity-mapping Subelements (Continued)

Subelement Required Description

Elements in the sun-cmp-mappings.xml File

118 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

field-name
Specifies the Java identifier of a field. This identifier must match the value of the
field-name subelement of the cmp-field that is being mapped. One is required.

Subelements
none

level
Specifies a hierarchical fetch group. The value of this element must be an integer.
Fields and relationships that belong to a hierarchical fetch group of equal (or lesser)
value are fetched at the same time. The value of level must be greater than zero.
Only one is allowed.

Subelements
none

lock-when-loaded
A consistency level flag that indicates a lock will be implemented when the data is
loaded.

Subelements
none

fetched-with Subelements

Subelement Required Description

level exactly one
of these
elements is
required

Specifies the name of a hierarchical fetch
group. The value must be an integer. Fields
and relationships that belong to a
hierarchical fetch group of equal (or lesser)
value are fetched at the same time. The
value of level must be greater than zero.

named-group Specifies the name of an independent fetch
group. All the fields and relationships that
are part of a named group are fetched at
the same time.

none A consistency level flag that indicates that
this field or relationship is fetched by itself.

Elements in the sun-cmp-mappings.xml File

Chapter 4 Using Container-Managed Persistence for Entity Beans 119

lock-when-modified
This flag is not implemented for Sun ONE Application Server 7.

Subelements
none

named-group
Specifies the name of an independent fetch group. All the fields and relationships
that are part of a named group are fetched at the same time. One is allowed.

Subelements
none

none
A consistency level flag that indicates that this field or relationship is fetched with
no other fields or relationships, or it specifies the fetched-with semantics.

Subelements
none

read-only
Flag that indicates a field is read-only.

Subelements
none

schema
Specifies the path to the schema file. Only one is required. For further information,
refer to “Capturing a Schema,” on page 217

Subelements

none

secondary-table
Specifies a bean’s secondary table(s).

Subelements
The following table describes subelements for the secondary-table element.

Elements in the sun-cmp-mappings.xml File

120 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

sun-cmp-mapping
Specifies beans mapped to a particular schema.

Subelements
The following table describes subelements for the sun-cmp-mapping element.

sun-cmp-mappings
Specifies the collection of subelements for all the beans that will be mapped in an
EJB JAR collection.

Subelements
The following table describes subelements for the sun-cmp-mappings element.

secondary table Subelements

Subelement Required Description

table-name only one Specifies the name of a database table. The
table must be present in the database
schema file.

column-pair one or more The name of the pair of related columns in
two database tables.

NOTE A bean cannot be related to a bean that maps to a different schema,
even if the beans are deployed in the same EJB JAR file.

sun-cmp-mapping Subelements

Subelement Required Description

schema only one Specifies the path to the schema file.

entity-mapping one or more Specifies the mapping of beans to database
columns.

Examples

Chapter 4 Using Container-Managed Persistence for Entity Beans 121

table-name
Specifies the name of a database table. The table must be present in the database
schema file. One is required.

Subelements
none

Examples
The following examples are contained in this section:

• Sample Schema Definition

• Sample CMP Mapping XML File

• Sample EJB QL Queries

Sample Schema Definition
CREATE TABLE Player
(

player_Id VARCHAR(255) PRIMARY KEY,
name VARCHAR(255) ,
position VARCHAR(255) ,
salary DOUBLE PRECISION NOT NULL ,
picture BLOB,

);

CREATE TABLE League
(

league_Id VARCHAR(255) PRIMARY KEY,
name VARCHAR(255) ,
sport VARCHAR(255) ,

);

sun-cmp-mappings Subelements

Subelement Required Description

sun-cmp-mapping one or more Specifies beans mapped to a particular
schema.

Examples

122 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

CREATE TABLE Team
(

team_Id VARCHAR(255) PRIMARY KEY,
city VARCHAR(255) ,
name VARCHAR(255) ,
league_Id VARCHAR(255) ,
FOREIGN KEY (league_Id) REFERENCES League (league_Id) ,

);

CREATE TABLE TeamPlayer
(

player_Id VARCHAR(255) ,
team_Id VARCHAR(255),
CONSTRAINT pk_TeamPlayer PRIMARY KEY (player_Id , team_Id) ,
FOREIGN KEY (team_Id) REFERENCES Team (team_Id),
FOREIGN KEY (player_Id) REFERENCES Player (player_Id) ,

);

Sample CMP Mapping XML File
For information on these elements, refer to “Elements in the
sun-cmp-mappings.xml File,” on page 112.

The following sample mapping file would have the name
META-INF/sun-cmp-mappings.xml in a deployable EJB JAR file:

<?xml version="1.0" encoding="UTF-8"?>
<sun-cmp-mappings>

<sun-cmp-mapping>
<schema>RosterSchema</schema>
<entity-mapping>

<ejb-name>League</ejb-name>
<table-name>LEAGUE</table-name>
<cmp-field-mapping>

<field-name>name</field-name>
<column-name>LEAGUE.NAME</column-name>

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>leagueId</field-name>
<column-name>LEAGUE.LEAGUE_ID</column-name>

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>sport</field-name>
<column-name>LEAGUE.SPORT</column-name>

</cmp-field-mapping>
<cmr-field-mapping>

Examples

Chapter 4 Using Container-Managed Persistence for Entity Beans 123

<cmr-field-name>team</cmr-field-name>
<column-pair>

<column-name>LEAGUE.LEAGUE_ID</column-name>
<column-name>TEAM.LEAGUE_ID</column-name>

</column-pair>
</cmr-field-mapping>

</entity-mapping>
<entity-mapping>

<ejb-name>Team</ejb-name>
<table-name>TEAM</table-name>
<cmp-field-mapping>

<field-name>name</field-name>
<column-name>TEAM.NAME</column-name>

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>city</field-name>
<column-name>TEAM.CITY</column-name>

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>teamId</field-name>
<column-name>TEAM.TEAM_ID</column-name>

</cmp-field-mapping>
<cmr-field-mapping>

<cmr-field-name>playerId</cmr-field-name>
<column-pair>
<column-name>TEAM.TEAM_ID</column-name>
<column-name>TEAMPLAYER.TEAM_ID</column-name>

</column-pair>
<column-pair>

<column-name>TEAMPLAYER.PLAYER_ID</column-name>
<column-name>PLAYER.PLAYER_ID</column-name>

</column-pair>
<fetched-with>

<none/>
</fetched-with>

</cmr-field-mapping>
<cmr-field-mapping>

<cmr-field-name>leagueId</cmr-field-name>
<column-pair>

<column-name>TEAM.LEAGUE_ID</column-name>
<column-name>LEAGUE.LEAGUE_ID</column-name>

</column-pair>
<fetched-with>

<none/>
</fetched-with>

</cmr-field-mapping>
</entity-mapping>

Examples

124 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

<entity-mapping>
<ejb-name>Player</ejb-name>
<table-name>PLAYER</table-name>
<cmp-field-mapping>

<field-name>salary</field-name>
<column-name>PLAYER.SALARY</column-name>

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>playerId</field-name>
<column-name>PLAYER.PLAYER_ID</column-name>

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>position</field-name>
<column-name>PLAYER.POSITION</column-name>

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>name</field-name>
<column-name>PLAYER.NAME</column-name>

</cmp-field-mapping>
<cmr-field-mapping>

<cmr-field-name>teamId</cmr-field-name>
<column-pair>

<column-name>PLAYER.PLAYER_ID</column-name>
<column-name>TEAMPLAYER.PLAYER_ID</column-name>

</column-pair>
<column-pair>

<column-name>TEAMPLAYER.TEAM_ID</column-name>
<column-name>TEAM.TEAM_ID</column-name>

</column-pair>
</cmr-field-mapping>

</entity-mapping>
</sun-cmp-mapping>

</sun-cmp-mappings>

Sample EJB QL Queries
<query>

<description></description>
<query-method>

<method-name>findAll</method-name>
<method-params />

</query-method>
<ejb-ql>select object(l) from League l</ejb-ql>

</query>

Examples

Chapter 4 Using Container-Managed Persistence for Entity Beans 125

<query>
<description></description>
<query-method>

<method-name>findByName</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</query-method>
<ejb-ql>select object(l) from League l where l.name = ?1</ejb-ql>

</query>

<query>
<description></description>
<query-method>

<method-name>findByPosition</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</query-method>
<ejb-ql>select distinct object(p) from Player p where p.position = ?1</ejb-ql>

</query>

<query>
<description>Selector returning SET</description>
<query-method>

<method-name>ejbSelectTeamsCity</method-name>
<method-params>

<method-param>team.LocalLeague</method-param>
</method-params>

</query-method>
<ejb-ql>select distinct t.city from Team t where t.league = ?1</ejb-ql>

</query>

<query>
<description>Selector returning single object LocalInterface</description>
<query-method>

<method-name>ejbSelectTeamByCity</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</query-method>
<result-type-mapping>Local</result-type-mapping>
<ejb-ql>select distinct Object(t) from League l, in(l.teams) as t where t.city

= ?1</ejb-ql>
</query>

Examples

126 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

<query>
<description>Selector returning single object String</description>
<query-method>

<method-name>ejbSelectTeamsNameByCity</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</query-method>
<ejb-ql>select distinct t.name from League l, in(l.teams) as t where t.city =

?1</ejb-ql>
</query>

<query>
<description>Selector returning Set using multiple collection

declarations</description>
<query-method>

<method-name>ejbSelectPlayersByLeague</method-name>
<method-params>

<method-param>team.LocalLeague</method-param>
</method-params>

</query-method>
<result-type-mapping>Local</result-type-mapping>
<ejb-ql>select Object(p) from League l, in(l.teams) as t, in(t.players) p

where l = ?1</ejb-ql>
</query>

<query>
<description>Selector single object int</description>
<query-method>

<method-name>ejbSelectSalaryOfPlayerInTeam</method-name>
<method-params>

<method-param>team.LocalTeam</method-param>
<method-param>java.lang.String</method-param>

</method-params>
</query-method>
<ejb-ql>select p.salary from Team t, in(t.players) as p where t = ?1 and p.name

= ?2</ejb-ql>
</query>

<query>
<description>Finder using the IN Expression</description>
<query-method>

<method-name>findByPositionsGoalkeeperOrDefender</method-name>
<method-params/>

</query-method>
<ejb-ql>select object(p) from Player p where p.position IN (’goalkeeper’,

’defender’)</ejb-ql>
</query>

Examples

Chapter 4 Using Container-Managed Persistence for Entity Beans 127

<query>
<description>Finder using the LIKE Expression</description>
<query-method>

<method-name>findByNameEndingWithON</method-name>
<method-params/>

</query-method>
<ejb-ql>select object(p) from Player p where p.name LIKE ’%on’</ejb-ql>

</query>

<query>
<description>Finder using the IS NULL Expression</description>
<query-method>

<method-name>findByNullName</method-name>
<method-params/>

</query-method>
<ejb-ql>select object(p) from Player p where p.name IS NULL</ejb-ql>

</query>

<query>
<description>Finder using the MEMBER OF Expression</description>
<query-method>

<method-name>findByTeam</method-name>
<method-params>

<method-param>team.LocalTeam</method-param>
</method-params>

</query-method>
<ejb-ql>select object(p) from Player p where ?1 MEMBER p.teams</ejb-ql>

</query>

<query>
<description>Finder using the ABS function</description>
<query-method>

<method-name>findBySalarayWithArithmeticFunctionABS</method-name>
<method-params>

<method-param>double</method-param>
</method-params>

</query-method>
<ejb-ql>select object(p) from Player p where p.salary = ABS(?1)</ejb-ql>

</query>

<query>
<description>Finder using the SQRT function</description>
<query-method>

<method-name>findBySalarayWithArithmeticFunctionSQRT</method-name>
<method-params>

<method-param>double</method-param>

Examples

128 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

</method-params>
</query-method>
<ejb-ql>select object(p) from Player p where p.salary = SQRT(?1)</ejb-ql>

</query>

129

Chapter 5

Using Message-Driven Beans

This section describes message-driven beans and explains the requirements for
creating them in the Sun ONE Application Server 7 environment.

This section contains the following topics:

• About Message-Driven Beans

• Developing Message-Driven Beans

• Restrictions and Optimizations

• Sample Message-Driven Bean XML Files

NOTE If you are unfamiliar with message-driven beans or the EJB
technology, refer to the Java Software tutorials:

http://java.sun.com/j2ee/docs.html

Extensive information on message-driven beans is contained in
chapters 15 and 16 of the Enterprise JavaBeans Specification, v2.0.

Overview material on the Sun ONE Application Server is contained
in “Introducing the Sun ONE Application Server Enterprise
JavaBeans Technology,” on page 19 and the Sun ONE Application
Server Product Introduction.

About Message-Driven Beans

130 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

About Message-Driven Beans
A message-driven bean is an enterprise bean that allows J2EE applications to
process messages asynchronously. It acts as message listener, which is similar to an
event listener except that it receives messages instead of events. The messages may
be sent by any J2EE component—an application client, another enterprise bean, or
a web component—or by an application or system that does not use J2EE
technology.

The following topics are addressed in this section:

• Message-Driven Beans Differences

• Message-Driven Bean Characteristics

• Transaction Management

• Concurrent Message Processing

Message-Driven Beans Differences
Session beans and entity beans allow you to send JMS messages and to receive
them synchronously, but not asynchronously. To avoid tying up server resources,
you may prefer to use asynchronous receives in a server-side component. To
receive messages asynchronously, use a message-driven bean.

The most visible difference between message-driven beans and session and entity
beans is that clients do not access message-driven beans through interfaces. Unlike
a session or entity bean, a message-driven bean has only a bean class.

In several respects, a message-driven bean resembles a stateless session bean:

• A message-driven bean's instances retain no data or conversational state for a
specific client.

• All instances of a message-driven bean are equal, allowing the container to
pool these message-driven bean instances. This allows streams of messages to
be processed concurrently.

• A single message-driven bean can process messages from multiple clients.

The instance variables of the message-driven bean instance can contain some state
across the handling of client messages—for example, a JMS connection, an open
database connection, or an object reference to an EJB object.

About Message-Driven Beans

Chapter 5 Using Message-Driven Beans 131

Message-Driven Bean Characteristics
A message-driven bean instance is an instance of a message-driven bean class. It
has neither a home nor a remote interface; message-driven beans are anonymous.
They have no client-visible identity.

A client accesses a message-driven bean through JMS by sending messages to the
message destination for which the message-driven bean class is the
MessageListener. A message-driven bean’s Queue and Topic are assigned during
deployment using the Sun ONE Application Server resources.

Message-driven beans have the following characteristics:

• Execute upon receipt of a single client message.

• Are asynchronously invoked.

• Are relatively short lived.

• Do not represent directly shared data in the database, but may access and
update this data.

• Can be transaction-aware.

• Are stateless.

Transaction Management
Both container-managed and bean-managed transactions as defined in the
Enterprise JavaBeans Specification, v2.0 are supported.

With container-managed transactions, a message may be delivered to a
message-driven bean within a transaction context, so that all operations within the
onMessage method are part of a single transaction. If message processing is rolled
back, the message will be redelivered.

Refer to “Handling Transactions with Enterprise Beans,” on page 143 for
additional information on transactions.

Developing Message-Driven Beans

132 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Concurrent Message Processing
A container allows many instances of a message-driven bean class to be running
concurrently, thus allowing for the concurrent processing of a stream of messages.
No guarantees are made as to the exact order in which messages are delivered to
the instances of the message-driven bean class, although the container attempts to
deliver messages in chronological order when this does not impair the concurrency
of message processing.

Message-driven beans should, therefore, be prepared to handle messages that are
out of sequence. For example, a message to cancel a reservation may be delivered
before the message to make the reservation.

Developing Message-Driven Beans
The goal of the message-driven bean model is to make developing an enterprise
bean that is asynchronously invoked to handle incoming messages as simple as
developing the same functionality in any other JMS listener. A further goal is to
allow for concurrent processing of a stream of messages by means of
container-provided pooling of message-driven bean instances.

The following sections provide guidelines on creating message-driven beans:

• Creating the Bean Class Definition

• Configuration

Creating the Bean Class Definition
Unlike session and entity beans, message-driven beans do not have the remote or
local interfaces that define client access. Client components do not locate
message-driven beans and invoke methods directly on them.

Although message-driven beans do not have business methods, they may contain
helper methods that are invoked internally by the onMessage method.

For message-driven beans, the class requirements are:

• The class must implement, directly or indirectly, the
javax.ejb.MessageDrivenBean interface.

• The class must implement, directly or indirectly, the
javax.ejb.MessageListener interface.

Developing Message-Driven Beans

Chapter 5 Using Message-Driven Beans 133

• The class must be defined as public and must not be defined as abstract or final.

• The class must have a public constructor that takes no arguments (used by the
container to create instances of the message-driven bean class).

• The class must not define the finalize method.

• The class must implement the onMessage method.

• The class must implement one ejbCreate method, with no arguments.

• The class must implement one ejbRemove method with no arguments.

The following sections address the various methods in a message-driven bean’s
class definition.

• Using ejbCreate

• Using setMessageDrivenContext

• Using onMessage

• Using ejbRemove

Using ejbCreate
The message-driven bean class defines one ejbCreate method whose signature
must follow these rules:

• The method name must be ejbCreate.

• The method must be declared as public and must not be declared as final or
static.

• The return type must be void.

• The method must have no arguments.

• The throws clause must not define any application exceptions.

Using setMessageDrivenContext
The container provides the message-driven bean instance with a
MesssageDrivenContext. This gives the message-driven bean instance access to
the instance's context maintained by the container.

Using onMessage
The onMessage method has a single argument: the incoming message.

Developing Message-Driven Beans

134 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

The onMessage method is called by the bean’s container when a message has
arrived for the bean to service. This method contains the business logic that
handles the processing of the message. It is the message-driven bean's
responsibility to parse the message and perform the necessary business logic.

The message-driven bean class defines one onMessage method whose signature
must follow these rules:

• The method must be declared as public and must not be declared as final or
static.

• The return type must be void.

• The method must have a single argument of type javax.jms.Message.

• The throws clause must not define any application exceptions. Refer to
“onMessage Runtime Exception,” on page 139 for semantics on throwing an
exception from onMessage.

The onMessage method is invoked in the scope of a transaction that is determined
by the transaction attribute specified in the deployment descriptor.

Using ejbRemove
The message-driven bean class defines one ejbRemove method to free a bean when
it is no longer needed. The signature must follow these rules:

• The method name must be ejbRemove.

• The method must be declared as public and must not be declared as final or
static.

• The return type must be void.

• The method must have no arguments.

• The throws clause must not define any application exceptions.

NOTE If the bean is specified as using container-managed transaction
demarcation, either the Required or NotSupport transaction
attribute must be specified in its deployment descriptor.

NOTE You cannot assume that the container will always invoke the
ejbRemove method on a message-driven bean instance.

Developing Message-Driven Beans

Chapter 5 Using Message-Driven Beans 135

The ejbRemove method is not called if the EJB container crashes, or if an exception
is thrown from the instance’s onMessage method to the container. If the
message-driven bean instance allocates resources in the ejbCreate method,
and/or the onMessage method, and releases the resources in the ejbRemove
method, these resources will not be automatically released. Your application
should provide a mechanism to periodically clean up the unreleased resources.

Configuration
This section addresses the following configuration topics:

• Connection Factory and Destination

• Message-Driven Bean Pool

• Server instance-wide Attributes

• Automatic Reconnection to JMS Provider

Connection Factory and Destination
A message-driven bean is a JMS client. Therefore, the message-driven bean
container uses the JMS service integrated into the Sun ONE Application Server.
JMS clients use JMS Connection Factory- and Destination-administered objects. A
JMS Connection Factory administered object is a resource manager Connection
Factory object that is used to create connections to the JMS provider.

The mdb-connection-factory element in the sun-ejb-jar.xmlfile for a
message-driven bean can be used to specify the connection factory used by the
container to create the container connection to the JMS provider. This element can
be used to work with a third-party JMS provider.

If the mdb-connection-factory element is not specified, a default one created at
server startup is used. This provides connection to the built-in Sun ONE Message
Queue broker on the port that is specified in the jms-service element (if enabled)
in the server.xml file, using the default user name/password (resource principal)
of the Sun ONE Message Queue. Refer to the Sun ONE Message Queue Developer’s
Guide for more information.

The jndi-name element of the ejb element in sun-ejb-jar.xml file specifies the
JNDI name of the administered object for the JMS Queue or Topic destination that
is associated with the message-driven bean.

Developing Message-Driven Beans

136 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Message-Driven Bean Pool
The container manages a pool of message-driven beans for the concurrent
processing of a stream of messages. The Sun ONE Application Server-specific bean
deployment descriptor contains the elements that define the pool (that is, the
bean-pool element):

• steady-pool-size

• resize-quantity

• max-pool-size

• pool-idle-timeout-in-seconds

For information on these elements, refer to “Pooling and Caching Elements,” on
page 203.

Server instance-wide Attributes
An administrator can control the following server instance-wide message-driven
bean attributes for the mdb-container element in the server.xml file:

• steady-pool-size

• pool-resize-quantity

• max-pool-size

• idle-timeout-in-seconds

• log-level

• monitoring-enabled

For further explanation on these attributes, refer to “Pooling and Caching
Elements,” on page 203 and the Sun ONE Application Server Administrator’s
Configuration File Reference.

For information on monitoring message-driven beans, see the Sun ONE
Application Server Administration interface online help and Administrator’s Guide.

NOTE Running monitoring when it is not need may impact performance,
so you may choose to turn monitoring off using the asadmin
command or the Administration interface when it is not in use.

Restrictions and Optimizations

Chapter 5 Using Message-Driven Beans 137

Automatic Reconnection to JMS Provider
When the Sun ONE Application Server is started, for each deployed
message-driven bean, its container keeps a connection to the JMS provider. When
the connection is broken, the container is not able to receive messages from the JMS
provider and, therefore, is unable to deliver messages to its message-driven bean
instances. When the auto reconnection feature is enabled, the container
automatically tries to reconnect to the JMS provider if the connection is broken.

The mdb-container element in the server.xml file contains auto reconnection
properties. By default, reconnect-enabled is set to true and
reconnect-delay-in-seconds is set to 60 seconds. That is, there is a delay of 60
seconds before each attempt to reconnect, and reconnect-max-retries is set to
60.

The container logs messages for each reconnect attempt.

Refer to the Sun ONE Application Server Administrator’s Configuration File Reference
for information on auto reconnect properties of the mdb-container element in the
server.xml file.

Restrictions and Optimizations
This section discusses the following restrictions and performance optimizations
that you should be aware of in developing message-driven beans:

• JMS Limitation

• Pool Tuning and Monitoring

• onMessage Runtime Exception

NOTE Depending on where the message processing stage is, if the
connection is broken, the onMessage method may not be able to
complete successfully, or the transaction may be rolled back due to a
JMS exception. When the container reestablishes connection to the
JMS provider, JMS message redelivery semantics apply.

Restrictions and Optimizations

138 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

JMS Limitation
The Sun ONE Application Server supports JMS messaging through a built-in JMS
service provided by Sun ONE Message Queue 3.0.1, Platform Edition. As a
standalone product, Sun ONE Message Queue 3.0.1 supports the JMS 1.1
specification. However, Sun ONE Application Server 7 supports the J2EE 1.3
specification, which encompasses only the more limited JMS 1.02b specification.
For this reason, the additional features embodied in JMS 1.1 are not available to
applications running on the Sun ONE Application Server 7.

Developers of JMS messaging applications should, therefore, limit JMS client
components that run in a Sun ONE Application Server environment to JMS 1.02b.
For more information, see the Sun ONE Message Queue Developer’s Guide or Release
Notes.

Pool Tuning and Monitoring
The message-driven bean pool is also a pool of threads, with each message-driven
bean instance in the pool associating with a server session, and each server session
associating with a thread. Therefore, a large pool size also means a high number of
threads, which will impact performance and server resources.

When configuring message-driven bean pool properties, you must consider factors
such as message arrival rate and pattern, onMessage method processing time,
overall server resources (threads, memory, and so on), and any concurrency
requirements and limitations from other resources that the message-driven bean
may access.

Performance and resource usage tuning should also consider potential JMS
provider properties for the connection factory that is used by the container
(mdb-connection-factory element in deployment descriptor). For example, the
Sun ONE Message Queue flow control related properties for connection factory
should be tuned in situations where the message incoming rate is much higher
than max-pool-size can handle.

Refer to the Sun ONE Application Server Administrator’s Guide for information on
how to get message-driven bean pool statistics.

Restrictions and Optimizations

Chapter 5 Using Message-Driven Beans 139

onMessage Runtime Exception
Message-driven beans, like other well-behaved JMS MessageListeners, should not,
in general, throw runtime exceptions. If a message-driven bean’s onMessage
method encounters a system-level exception or error that does not allow the
method to successfully complete, the Enterprise JavaBeans Specification, v2.0
provides the following guidelines:

• If the bean method encounters a runtime exception or error, it should simply
propagate the error from the bean method to the container.

• If the bean method performs an operation that results in a checked exception
that the bean method cannot recover, the bean method should throw the
javax.ejb.EJBException that wraps the original exception.

• Any other unexpected error conditions should be reported using
javax.ejb.EJBException (javax.ejb.EJBException is a subclass of
java.lang.RuntimeException).

Under container-managed transaction demarcation, upon receiving a runtime
exception from a message-driven bean's onMessage method, the container will roll
back the container-started transaction and JMS message will be redelivered. This is
because the message delivery itself is part of the container-started transaction. By
default, the Sun ONE Application Server container closes the container's
connection to the JMS provider when the first runtime exception is received from a
message-driven bean instance's onMessage method. This avoids potential message
redelivery looping and protects server resources if the message-driven bean's
onMessage method continues misbehaving. This default container behavior can be
changed using the cmt-max-runtime-exceptions property of the
mdb-container element in the server.xml file.

The cmt-max-runtime-exceptions property specifies the maximum number of
runtime exceptions allowed from a message-driven bean's onMessage method
before the container starts to close the container's connection to the JMS provider.
By default this value is 1; -1 disables this container protection.

A message-driven bean's onMessage method can use the javax.jms.Message
getJMSRedelivered method to check whether a received message is a redelivered
message.

NOTE The cmt-max-runtime-exceptions property may be deprecated in
the future.

Sample Message-Driven Bean XML Files

140 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Sample Message-Driven Bean XML Files
This section includes the following sample files:

• Sample ejb-jar.xml File

• Sample sun-ejb-jar.xml File

For information on the elements associated with message-driven beans, refer to
“Elements in the sun-ejb-jar.xml File,” on page 176 and the Sun ONE Application
Server Developer’s Guide.

Sample ejb-jar.xml File
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ejb-jar PUBLIC ’-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
2.0//EN’ ’http://java.sun.com/dtd/ejb-jar_2_0.dtd’>

<ejb-jar>
<enterprise-beans>

<message-driven>
<ejb-name>MessageBean</ejb-name>
<ejb-class>samples.mdb.ejb.MessageBean</ejb-class>
<transaction-type>Container</transaction-type>
<message-driven-destination>

<destination-type>javax.jms.Queue</destination-type>
</message-driven-destination>
<resource-ref>

<res-ref-name>jms/QueueConnectionFactory</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Container</res-auth>

</resource-ref>
</message-driven>

</enterprise-beans>
<assembly-descriptor>

<container-transaction>
<method>

<ejb-name>MessageBean</ejb-name>
<method-intf>Bean</method-intf>
<method-name>onMessage</method-name>
<method-params>

<method-param>javax.jms.Message</method-param>
</method-params>

</method>

Sample Message-Driven Bean XML Files

Chapter 5 Using Message-Driven Beans 141

<trans-attribute>NotSupported</trans-attribute>
</container-transaction>

</assembly-descriptor
</ejb-jar>

Sample sun-ejb-jar.xml File
For information on these elements, refer to “Elements in the sun-ejb-jar.xml File,”
on page 176

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE sun-ejb-jar PUBLIC ’-//Sun Microsystems, Inc.//DTD Sun ONE Application
Server 7.0 EJB 2.0//EN’
’http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2_0-0.dtd’>

<sun-ejb-jar>
<enterprise-beans>

<ejb>
<ejb-name>MessageBean</ejb-name>
<jndi-name>jms/sample/Queue</jndi-name>
<resource-ref>

<res-ref-name>jms/QueueConnectionFactory</res-ref-name>
<jndi-name>jms/sample/QueueConnectionFactory</jndi-name>
<default-resource-principal>

<name>guest</name>
<password>guest</password>

</default-resource-principal>
</resource-ref>
<mdb-connection-factory>

<jndi-name>jms/sample/QueueConnectionFactory</jndi-name>
<default-resource-principal>

<name>guest</name>
<password>guest</password>

</default-resource-principal>
</mdb-connection-factory>

</ejb>
</enterprise-beans>

</sun-ejb-jar>

Sample Message-Driven Bean XML Files

142 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

143

Chapter 6

Handling Transactions with
Enterprise Beans

This section describes the transaction support built into the Enterprise JavaBeans
(EJBs) programming model for Sun ONE Application Server 7.

This section addresses the following topics:

• JTA and JTS Transaction Support

• Using Container-Managed Transactions

• Using Bean-Managed Transactions

• Setting Transaction Timeouts

• Handling Isolation Levels

NOTE If you are unfamiliar with transaction handling in the EJB
technology, refer to the Java Software tutorials:

http://java.sun.com/j2ee/docs.html

Extensive information on EJB transaction support is contained in
Chapter 17, “Support for Transactions,” of the Enterprise JavaBeans
Specification, v2.0.

Overview material on the Sun ONE Application Server is contained
in “Introducing the Sun ONE Application Server Enterprise
JavaBeans Technology,” on page 19 and the Sun ONE Application
Server Product Introduction.

JTA and JTS Transaction Support

144 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

JTA and JTS Transaction Support
J2EE includes support for distributed transactions through two specifications:

• Java Transaction API (JTA)

• Java Transaction Service (JTS)

The JTA is a high-level, implementation-independent protocol API that allows
applications and application servers to access transactions.

JTS specifies the implementation of a transaction manager which supports the JTA
and implements the Java mapping of the OMG Object Transaction Service (OTS)
1.1 specification at the level below the API. JTS propagates transactions using the
Internet Inter-ORB Protocol (IIOP).

The current transaction manager implementation supports JTS and the JTA. The
EJB container itself uses the Java Transaction API interface to interact with JTS.

The J2EE transaction manager controls all EJB transactions, except for
bean-managed Java Database Connectivity (JBDC) transactions, and allows an
enterprise bean to update multiple databases within a transaction.

About Transaction Handling
As a developer, you can write an application that updates data in multiple
databases which may be distributed across multiple sites. The site may use EJB
servers from different vendors.

This section provides overview information on the following topics:

• Flat Transactions

• Global and Local Transactions

• Demarcation Models

• Commit Options

• Administration and Monitoring

About Transaction Handling

Chapter 6 Handling Transactions with Enterprise Beans 145

Flat Transactions
The Enterprise JavaBeans Specification, v2.0 requires support for flat (as opposed
to nested) transactions. In a flat transaction, each transaction is decoupled from and
independent of other transactions in the system. You cannot start another
transaction in the same thread until the current transaction ends.

Flat transactions are the most prevalent model and are supported by most
commercial database systems. Although nested transactions offer a finer
granularity of control over transactions, they are supported by far fewer
commercial database systems.

Global and Local Transactions
Understanding the distinction between global and local transactions is crucial in
understanding the Sun ONE Application Server support for transactions.

• Global transactions—Transactions that are managed and coordinated by a
resource manager, and can span multiple databases and processes. The
resource manager typically uses the XA two-phase commit protocol to interact
with the Enterprise Information System (EIS) or database.

• Local transactions—Transactions that are native to a single EIS or database and
are restricted within a single process. Local transactions do not involve
multiple data sources.

Both local and global transactions are demarcated using the
javax.transaction.UserTransaction interface, which the client must use. Local
transactions bypass the transaction manager and are faster.

Initially, all transactions are local. If a non-XA data source connection is the first
resource connection enlisted in a transaction scope, it will become a global
transaction when a (second) XA data source connection joins it. If a second non-XA
data source connection attempts to join, an exception is thrown.

The Sun ONE Application Server operates in either global or local transaction
mode, but the two modes cannot be mixed in the same transaction.

NOTE If your application uses global transactions, you must configure
and enable the corresponding Sun ONE Application Server
resource managers. For more information, see the Sun ONE
Application Server Administration interface online help and the
and Administrator’s Guide.

About Transaction Handling

146 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Demarcation Models
As a developer, you can choose between using programmatic transaction
demarcation in the EJB code (bean-managed) or declarative demarcation
(container-managed). Regardless of whether an enterprise bean uses
bean-managed or container-managed transaction demarcation, the burden of
implementing transaction management is on the EJB container and the Sun ONE
Application Server. The container and the server implement the necessary
low-level transaction protocols, such as the two-phase commit protocol between a
transaction manager and a dustbowls system or Sun ONE Message Queue
provider, transaction context propagation, and distributed two-phase commit.

These demarcation models are addressed in the following sections:

• Container-Managed Transactions

• Bean-Managed Transactions

Container-Managed Transactions
One primary advantage of enterprise beans is the support they provide for
container-managed transactions, also known as declarative transactions. In an
enterprise bean with container-managed transactions, the EJB container sets the
boundaries of the transactions.

Container-managed transactions simplify development because the EJB code does
not explicitly mark the transaction's boundaries. That is, the code does not include
statements that begin and end the transaction. The container is responsible for:

• Demarcating and transparently propagating the transactional context

• In conjunction with a transaction manager, ensuring that all participants in the
transaction see a consistent outcome

NOTE You can use container-managed transactions with any type of
enterprise bean (session, entity, or message-driven), but an entity
bean can only use container-managed transactions.

About Transaction Handling

Chapter 6 Handling Transactions with Enterprise Beans 147

Bean-Managed Transactions
The EJB specification supports bean-managed transaction demarcation, also
known as programmer-demarcated transactions, using
javax.transaction.UserTransaction. With bean-managed transactions, you
must perform a Java Naming and Directory Interface (JNDI) lookup to obtain a
UserTransaction object.

There are two types of bean-managed transactions:

• JDBC type—You delimit JDBC transactions with the commit and rollback
methods of the connection interface.

• JTA type—You invoke the begin, commit, and rollback methods of the
UserTransaction interface to demarcate JTA transactions.

Commit Options
The EBJ protocol is designed to give the container the flexibility to select the
disposition of the instance state at the time a transaction is committed. This allows
the container to best manage caching an entity object’s state and associating an
entity object identity with the EJB instances.

There are three commit-time options:

• Option A—The container caches a ready instance between transactions. The
container ensures that the instance has exclusive access to the state of the object
in persistent storage.

In this case, the container does not have to synchronize the instance’s state from
the persistent storage at the beginning of the next transaction.

NOTE You can use bean-managed transactions with session or
message-driven beans, but an entity bean must use
container-managed transactions.

NOTE Commit option A is not supported for Sun ONE Application Server
7.

About Transaction Handling

148 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

• Option B—The container caches a ready instance between transactions, but the
container does not ensure that the instance has exclusive access to the state of
the object in persistent storage. This is the default.

In this case, the container must synchronize the instance’s state by invoking
ejbLoad from persistent storage at the beginning of the next transaction.

• Option C—The container does not cache a ready instance between transactions,
but instead returns the instance to the pool of available instances after a
transaction has completed.

The life cycle for every business method invocation under commit option C
looks like this:

ejbActivate->
ejbLoad ->

business method ->
ejbStore ->

ejbPassivate

If there is more than one transactional client concurrently accessing the same
entity EJBObject, the first client gets the ready instance and subsequent
concurrent clients get new instances from the pool.

The Sun ONE Application Server deployment descriptor has an element,
commit-option, that specifies the commit option to be used. Based on the specified
commit option, the appropriate handler is instantiated.

Administration and Monitoring
An administrator can control the following instance-wide transaction service
attributes for the transaction-service element in the server.xml file:

• automatic-recovery

• timeout-in-seconds

• tx-log-directory

• heuristic-decision

• keypoint-interval

NOTE It is assumed that if commit option A is used, the developer is
responsible for ensuring that only this application is updating the
database. In other words, this is not the container's responsibility.

Using Container-Managed Transactions

Chapter 6 Handling Transactions with Enterprise Beans 149

• log-level

• monitoring-enabled

For further explanation on these attributes, refer to the Sun ONE Application Server
Administrator’s Configuration File Reference.

In addition, the administrator can monitor transactions using statistics from the
transaction manager that provide information on such activities as the number of
transactions completed/rolled back/recovered since server startup, and
transactions presently being processed.

For information on administering and monitoring transactions, see the Sun ONE
Application Server Administration interface online help and the Sun ONE
Application Server Administrator’s Guide.

Using Container-Managed Transactions
Typically, the container begins a transaction immediately before an EJB method
starts, and commits the transaction just before the method exits. Each method can
be associated with a single transaction.

Container-managed transactions do not require all methods to be associated with
transactions. When deploying an enterprise bean, you specify which of the bean’s
methods are associated with transactions by setting the transaction attributes.

Although beans with container-managed transactions require less coding, they
have one limitation:

When a method is executing, it can only be associated with either a single
transaction or no transaction at all.

If this limitation will make coding your bean difficult, bean-managed transactions
may be your best choice.

When a commit occurs, the transaction signals the container that the bean has
completed its useful work and tells the container to synchronize its state with the
underlying data source. The container permits the transaction to complete and then
frees the bean. Result sets associated with a committed transaction are no longer
valid. Subsequent requests for the same bean cause the container to issue a load to
synchronize state with the underlying data source.

NOTE Nested or multiple transactions are not allowed within a method.

Using Container-Managed Transactions

150 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Any participant can roll back a transaction.

The following sections are related to developing enterprise beans with
container-managed transactions:

• Specifying Transaction Attributes

• Rolling Back a Container-Managed Transaction

• Synchronizing a Session Bean's Instance Variables

• Methods Not Allowed in Container-Managed Transactions

Specifying Transaction Attributes
A transaction attribute is a parameter that controls the scope of a transaction.

Because transaction attributes are stored in the deployment descriptor, they can be
changed during several phases of J2EE application development: at EJB creation, at
assembly (packaging), or at deployment. However, as an EJB developer, it is your
responsibility to specify the attributes when creating the EJB. The attributes should
be modified only when you (or whoever is assembling) are assembling
components into larger applications.

You can specify the transaction attributes for the entire enterprise bean or for
individual methods. If you've specified one attribute for a method and another for
the bean, the attribute for the method takes precedence.

NOTE Transactions initiated by the container are implicitly committed.

NOTE Do not expect the person who is deploying the J2EE application to
specify the transaction attributes.

TIP If you're unsure about how to set up transactions in the EJB’s
deployment descriptor, specify container-managed transactions.
Then, set the Required transaction attribute for the entire enterprise
bean. This approach will work most of the time.

Using Container-Managed Transactions

Chapter 6 Handling Transactions with Enterprise Beans 151

For more information, on the EJB deployment descriptor file, refer to “Creating
Deployment Descriptors,” on page 170.

This section addresses the following topics:

• Differing Attribute Requirements

• Attribute Values

Differing Attribute Requirements
When specifying attributes for individual methods, the requirements differ with
the type of bean.

• Session beans—Need the attributes defined for business methods, but do not
allow them for the create methods.

• Entity beans—Require transaction attributes for the business, create, remove,
and finder methods.

• Message-driven beans—Require transaction attributes (either Required or
NotSupported) for the onMessage method.

Attribute Values
A transaction attribute may have one of the following values:

• Required

• RequiresNew

• Mandatory

• NotSupported

• Supports

• Never

Required
If the client is running within a transaction and invokes the enterprise bean's
method, the method executes within the client's transaction. If the client is not
associated with a transaction, the container starts a new transaction before running
the method.

Using Container-Managed Transactions

152 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

RequiresNew
If the client is running within a transaction and invokes the EJB’s method, the
container takes the following steps:

1. Suspends the client’s transaction.

2. Starts a new transaction.

3. Delegates the call to the method.

4. Resumes the client’s transaction after the method completes.

If the client is not associated with a transaction, the container starts a new
transaction before running the method.

You should use the RequiresNew attribute when you want to ensure that the
method always runs within a new transaction.

Mandatory
If the client is running within a transaction and invokes the EJB’s method, the
method executes within the client’s transaction. If the client is not associated with a
transaction, the container throws a TransactionRequiredException.

Use the Mandatory attribute if the EJB’s method must use the transaction of the
client.

NotSupported
If the client is running within a transaction and invokes the EJB’s method, the
container suspends the client’s transaction before invoking the method. After the
method has completed, the container resumes the client’s transaction.

If the client is not associated with a transaction, the container does not start a new
transaction before running the method.

Supports
If the client is running within a transaction and invokes the EJB’s method, the
method executes within the client’s transaction. If the client is not associated with a
transaction, the container does not start a new transaction before running the
method.

TIP The Required attribute will work for most transactions. Therefore,
you may want to use it as a default, at least in the early phases of
development. Because transaction attributes are declarative, you can
easily change them at a later time.

Using Container-Managed Transactions

Chapter 6 Handling Transactions with Enterprise Beans 153

Never
If the client is running within a transaction and invokes the enterprise bean’s
method, the container throws a RemoteException. If the client is not associated
with a transaction, the container does not start a new transaction before running
the method.

Use the NotSupported attribute for methods that don’t need transactions. Because
transactions involve overhead, this attribute may improve performance.

The following table summarizes the effects of the transaction attributes. The left
column lists the transaction attribute, the middle column lists the type of client
transaction, and the right column lists the transaction type of the business method.
Transactions can be T1, T2, or None. (Both T1 and T2 transactions are controlled by
the container.)

• T1 transaction—Is associated with the client that calls a method in the
enterprise bean. In most cases, the client is another enterprise bean.

• T2 transaction—Is started by the container, just before the method executes.

• None—In the third column, the word None means that the business method
does not execute within a transaction controlled by the container. However, the
database calls in such a business method might be controlled by the transaction
manager of the database.

NOTE Because the transactional behavior of the method may vary, you
should use the Supports attribute with caution.

Transaction Attributes and Scope

Transaction Attribute Client’s Transaction Business Method’s Transaction

Required None T2

T1 T1

RequiresNew None T2

T1 T2

Mandatory None Error

T1 T1

NotSupported None None

T1 None

Using Container-Managed Transactions

154 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Rolling Back a Container-Managed Transaction
There are two ways to roll back a container-managed transaction:

• First, if a system exception is thrown, the container automatically rolls back the
transaction.

• Second, by invoking the setRollbackOnly method of the EJBContext
interface, the bean method instructs the container to roll back the transaction. If
the bean throws an application exception, the rollback is not automatic, but
may be initiated by a call to setRollbackOnly.

When the container rolls back a transaction, it always undoes the changes to data
made by SQL calls within the transaction. However, only in entity beans will the
container undo changes made to instance variables. (It does so by automatically
invoking the entity bean's ejbLoad method, which loads the instance variables
from the database.)

A session bean must explicitly reset any instance variables changed within the
transaction when a rollback occurs. The easiest way to reset a session bean's
instance variables is by implementing the SessionSynchronization interface.

Synchronizing a Session Bean’s Instance
Variables
The SessionSynchronization interface, which is optional in session beans, allows
you to synchronize the instance variables with their corresponding values in the
database. The container invokes the SessionSynchronization
methods—afterBegin, beforeCompletion, and afterCompletion—at each of the
main stages of a transaction.

Supports None None

T1 T1

Never None None

Ti Error

Transaction Attributes and Scope (Continued)

Transaction Attribute Client’s Transaction Business Method’s Transaction

Using Container-Managed Transactions

Chapter 6 Handling Transactions with Enterprise Beans 155

• afterBegin method—Informs the instance that a new transaction has begun.
The container invokes afterBegin immediately before it invokes the business
method. The afterBegin method is a good place to load the instance variables
from the database.

• beforeCompletion method—The container invokes beforeCompletion
method after the business method has finished, but just before the transaction
commits. The beforeCompletion method is the last opportunity for the
session bean to roll back the transaction (by calling setRollbackOnly).

If it hasn't already updated the database with the values of the instance
variables, the session bean may do so in the beforeCompletion method.

• afterCompletion method—Indicates that the transaction has completed. It
has a single boolean parameter, whose value is true if the transaction was
committed, and false if it was rolled back.

If a rollback occurred, the session bean can refresh its instance variables from
the database in the afterCompletion method.

Methods Not Allowed in Container-Managed
Transactions
For container-managed transactions, you should not invoke any method that might
interfere with the transaction boundaries set by the container. Prohibited methods
are:

• The commit, setAutoCommit, and rollback methods of
java.sql.Connection

• The getUserTransaction method of javax.ejb.EJBContext

• Any method of javax.transaction.UserTransaction

You may, however, use these methods to set boundaries in bean-managed
transactions.

Using Bean-Managed Transactions

156 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Using Bean-Managed Transactions
In a bean-managed transaction, the code in the session or message-driven bean
explicitly marks the boundaries of the transaction. By moving transaction
management to the bean level, you gain the ability to place all the bean’s
activities—even those not directly tied to database access—under the same
transaction control as your database calls. This guarantees that all application parts
controlled by a bean run as part of the same transaction.

In a failure situation, either everything the bean undertakes is committed, or
everything is rolled back.

The following sections are related to developing enterprise beans with
bean-managed transactions:

• Choosing the Type of Transactions

• Returning Without Committing

• Methods Not Allowed in Bean-Managed Transactions

Choosing the Type of Transactions
When coding a bean-managed transaction for session or message-driven beans,
you must decide whether to use JDBC or JTA transactions.

The following sections discuss both types of transactions:

• JDBC Transactions

• JTA Transactions

JDBC Transactions
JDBC transaction is controlled by the transaction manager of the database. You
may want to use JDBC transactions when wrapping legacy code inside a session
bean.

NOTE In a session bean with bean-managed transactions, it is possible to
mix JDBC and JTA transactions. This practice is not recommended,
however, because it could make your code difficult to debug and
maintain.

Using Bean-Managed Transactions

Chapter 6 Handling Transactions with Enterprise Beans 157

To code a JDBC transaction, you invoke the commit and rollback methods of the
java.sql.Connection interface. The beginning of a transaction is implicit. A
transaction begins with the first SQL statement that follows the most recent
commit, rollback, or connect statement. (This rule is generally true, but may vary
with database vendor.)

For additional information on JDBC, refer to the Sun ONE Application Server
Developer’s Guide to J2EE Features and Services.

JTA Transactions
JTA allows you to demarcate transactions in a manner that is independent of the
transaction manager implementation. The J2EE SDK implements the transaction
manager with the JTS. But your code doesn’t call the JTS methods directly. Instead,
it invokes the JTA methods, which then call the lower-level JTS routines.

A JTA transaction is controlled by the J2EE transaction manager. You may want to
use a JTA transaction because it can span updates to multiple databases from
different vendors. A particular database’s transaction manager may not work with
heterogeneous databases.

The J2EE transaction manager does have one limitation—it does not support
nested transactions. In other words, it cannot start a transaction for an instance
until the previous transaction has ended.

For additional information on the JTA, refer to the Sun ONE Application Server
Developer’s Guide to J2EE Features and Services.

Returning Without Committing
A stateless session bean with bean-managed transactions that has begun a
transaction in a business method must commit or roll back a transaction before
returning. However, a stateful session bean does not have this restriction. In a
stateful session bean with a JTA transaction—The association between the bean
instance and the transaction is retained across multiple client calls.

Methods Not Allowed in Bean-Managed
Transactions
For bean-managed transactions, do not invoke the getRollbackOnly and
setRollbackOnly methods of the EJBContext interface. These methods should be
used only in container-managed transactions.

Setting Transaction Timeouts

158 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Setting Transaction Timeouts
For container-managed transactions, you control the transaction timeout interval
by setting the value of the timeout-in-seconds property in the server.xml file.
For example, you would set the timeout value to 5 seconds as follows:

timeout-in-seconds=5

With this setting, if the transaction has not completed within 5 seconds, the EJB
container rolls the transaction back.

Handling Isolation Levels
Transactions not only ensure the full completion (or rollback) of the statements that
they enclose, but also isolate the data modified by the statements. The isolation level
describes the degree to which the data being updated is visible to other
transactions.

If the transaction allows other programs to read uncommitted data, performance
may improve because the other programs don’t have to wait until the transaction
ends. But this may also cause a problem—if the transaction subsequently rolls
back, another program might read the wrong data.

For entity beans with bean-managed persistence and for all session beans, you can
set the isolation level programmatically with the API provided by the underlying
database. A database, for example, might allow you to permit uncommitted reads
by invoking the setTransactionIsolation method.

For entity beans that use container-managed persistence, you can use the
consistency element in the sun-cmp-mapping.xml file to set the isolation level.

NOTE For bean-managed transactions, invoke the getStatus and
rollback methods of the UserTransaction interface.

NOTE Only enterprise beans using container-managed transactions are
affected by the timeout-in-seconds property. For enterprise beans
using bean-managed JTA transactions, you invoke the
setTransactionTimeout method of the UserTransaction
interface.

Handling Isolation Levels

Chapter 6 Handling Transactions with Enterprise Beans 159

CAUTION Do not change the isolation level in the middle of a transaction.
Usually, such a change causes the database software to issue an
implicit commit. Because the isolation levels offered by database
vendors may vary, you should check the database documentation
for more information. Isolation levels are not standardized for the
J2EE platform.

Handling Isolation Levels

160 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

161

Chapter 7

Developing Secure Enterprise Beans

This section describes how security management works in the EJB architecture and
provides guidelines for developing secure enterprise beans for the Sun ONE
Application Server 7 environment.

This section addresses the following topics:

• About Secure Enterprise Beans

• Defining Security Roles

• Declaring Method Permissions

• Declaring Security Role References

• Specifying Security Identities

• Using Programmatic Security

• Handling Unprotected EJB-Tier Resources

General information on application security is contained in the Sun ONE
Application Server Developer’s Guide.

NOTE If you are unfamiliar with the EJB technology, refer to the Java
Software tutorials:

http://java.sun.com/j2ee/docs.html

Extensive information on EJB security is contained in Chapter 21,
“Security Management,” of the Enterprise JavaBeans Specification,
v2.0.

General information on application security is contained in the Sun
ONE Application Server Developer’s Guide.

About Secure Enterprise Beans

162 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

About Secure Enterprise Beans
Your main role as an EJB developer is to declare the security requirements of your
applications in such a way that these requirements can be satisfied during
application deployment. In most cases, the EJB’s business methods should not
contain any security-related logic.

The following topics are addressed in this section:

• Authorization and Authentication

• Security Roles

• Deployment

Authorization and Authentication
Authorization provides controlled access to protected resources; it is based on
identification and authentication. Identification is the process that enables
recognition of an entity by a system. Authentication is the process that verifies the
identity of a user, device, or other entity in a computer system, usually as a
prerequisite to allowing access to resources in a system.

Enterprise beans can be configured to permit access only to users with the
appropriate authorization level. This is done by using the Sun ONE Application
Server Administration interface to generate the deployment descriptor for the
application EAR and EJB JAR files.

Security Roles
A security role is an application-specific logical grouping of users, classified by
common trait, such as a customer profile or job title. When an application is
deployed, roles are mapped to security identities, such as principals (identities
assigned to users as a result of authentication) or groups, in the operational
environment. Based on this, a user with a certain security role has associated access
rights to an enterprise bean. The link is the actual name of the security role that is
being referenced.

A group also represents a category of users, but its scope is different from the scope
of a role.

• A role is a J2EE application-specific abstraction.

Defining Security Roles

Chapter 7 Developing Secure Enterprise Beans 163

• A group is a set of environment-specific users from the current realm. Group
membership is determined by the underlying realm implementation.

Deployment
The security role reference defines a mapping between the name of a role that is
called from an ENTERPRISE BEAN using isCallerInRole (String name) and the
name of a security role that has been defined for the application. This security role
reference allows an enterprise bean to reference an existing security role.

When an application is deployed, the deployer maps the roles to the security
identities that exist in the operational environment. When you are developing
enterprise beans, you should know the roles of your users, but you probably won't
know exactly who the users will be. That's taken care of in the J2EE security
architecture. After your component has been deployed, the system administrator
maps the roles to the J2EE users (or groups) of the default realm (usually the file
realm).

Defining Security Roles
To create a role for a J2EE application, you declare it for the EJB JAR file or for the
WAR file that is contained in the application. The security roles defined by the
security-role elements are scoped to the EJB JAR file level and apply to all
enterprise beans in the EJB JAR files.

Example
The following example of a security role definition in a deployment descriptor
specifies two role-name elements, employee and admin.

...
<assembly-descriptor>

<security-role>
<description>

This role includes the employees of the enterprise who

NOTE When defining method restrictions and role mappings, it is a
common error to confuse realm groups and J2EE application roles.
Such confusion can lead to unintended access consequences or
inoperable application configurations. For information on realms,
refer to the Sun ONE Application Server Developer’s Guide.

Declaring Method Permissions

164 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

are allowed to access the employee self service
application. This role is allowed to access only
her/his information

</desciption>
<role-name>employee<role-name>
</security-role>
<security-role>

<description>
This role should be assigned to the personnel
authorized to perform administrative functions
for the employee self service application. This
role does not have direct access to
sensitive employee and payroll information

</desciption>
<role-name>admin<role-name>
</security-role>

...
</assembly-descriptor>

Declaring Method Permissions
Method permissions indicate which roles are allowed to invoke which methods. The
application assembler declares the method permission relationships in the
deployment descriptor using the method permission elements as follows:

• Each method-permission element includes a list of one or more security roles
and a list of one or more methods.

All listed security roles are allowed to invoke all listed methods. Each security
role in the list is identified by the role-name element, and each method (or set
of methods, as described below) is identified by the method element. An
optional description can be associated with a method-permission element
using the description element.

• The method permissions relationship is defined as the union of all method
permissions defined in the individual method permission elements.

• A security role or a method may appear in multiple method-permission
elements.

Example
The following deployment descriptor example illustrates how security roles are
assigned method permissions in the deployment descriptor. These are converted
into security elements at deployment.

Declaring Security Role References

Chapter 7 Developing Secure Enterprise Beans 165

...
<method-permission>

<role-name>employee</role-name>
<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>

<method-permission>
<role-name>employee</role-name>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeeInfo</method-name>

</method
</method-permission>
...

Declaring Security Role References
As the EJB developer, you are responsible for declaring all security role names
used in the enterprise bean in the security-role-ref elements of the deployment
descriptor for roles which are used programmatically from within the respective
enterprise beans.

• The application assembler is responsible for linking all security role references
declared in the security-role-ref elements to the security roles defined in
the security-role elements.

• The application assembler links each security role reference to a security role
using the role-link element.

NOTE The role-link element value must be one of the security role
names defined in a security-role element.

Specifying Security Identities

166 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Example
The following deployment descriptor example shows how to link the security role
reference named payroll to the security role named payroll-department.

<enterprise-beans>
...
<entity>

<ejb-name>AardvarkPayroll</ejb-name>
<ejb-class>com.aardvark.payroll.PayrollBean</ejb-class>

...
<security-role-ref>
<description> This role should be assigned to the payroll
department’s employees. Members of this role have access to
anyone’s payroll record. The role has been linked to the
payroll-department role.
</description>
<role-name>payroll</role-name>
<role-link>payroll-department</role-link>
</security-role-ref>

....
</entity>
...

</enterprise-beans>

This role should be assigned to the payroll department’s employees. Members of
this role have access to anyone's payroll record. The role has been linked to the
payroll-department role.

Further information on security roles can be found in the Sun ONE Application
Server Developer’s Guide. More information on EJB access control configuration can
be found in the Enterprise JavaBeans Specification, v2.0.

Specifying Security Identities
Optionally, the EJB assembler can specify whether the caller’s identity should be
used for executing the EJB methods or whether a specific run-as identity should be
used. The security-identity element in the deployment descriptor is used for
this purpose. The value of the security-identity element is
use-caller-identity or run-as.

Unless specified, the caller identity is used by default.

Using Programmatic Security

Chapter 7 Developing Secure Enterprise Beans 167

The run-as Identity
The run-as identity establishes the identity the enterprise bean will use when it
makes calls. It does not affect the identities of its callers, which are the identities
tested for permission to access the methods of the enterprise bean.

The EJB assembler can use the run-as element to define a run-as identity for an
enterprise bean in the deployment descriptor. The run-as identity applies to the
enterprise bean as a whole, that is, to all methods of the EJB’s home and component
interface, or to the onMessage method of a message-driven bean, and all internal
methods of the enterprise bean that might, in turn, be called.

Because the assembler does not generally know the security environment of the
operational environment, the run-as identity is designated by a logical role-name
which corresponds to one of the security roles defined in the deployment
descriptor. The deployer must then assign a security principal (defined in the
operational environment) to be used as the principal for the run-as identity. The
security principal should be a principal that has been assigned to the security role
as specified by the role-name element.

Using Programmatic Security
In general, security management should be enforced by the container in a manner
that is transparent to the EJB’s business methods.

Programmatic security in the EJB tier consists of the getCallerPrincipal and the
isCallerInRole methods. You can use the getCallerPrincipal method to
determine the caller of the enterprise bean, and the isCallerInRole method to
determine the caller's role.

The getCallerPrincipal method of the EJBContext interface returns the
java.security.Principal object that identifies the caller of the enterprise bean.
(In this case, a principal is the same as a user.) In the following example, the
getUser method of an enterprise bean returns the name of the J2EE user that
invoked it:

NOTE Enterprise beans can use programmatic login just as servlets do. For
more information, see the Sun ONE Application Server Developer’s
Guide.

Handling Unprotected EJB-Tier Resources

168 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

public String getUser()
{

return context.getCallerPrincipal().getName();
}

You can determine whether an EJB’s caller belongs to a particular role by invoking
the isCallerInRole method:

boolean result = context.isCallerInRole("Customer");

For details on how to implement programmatic security, refer to Chapter 21,
Security Management,” of the Enterprise JavaBeans Specification, v2.0.

Handling Unprotected EJB-Tier Resources
All users have the anonymous role. By default, the value of the anonymous role is
ANYONE, which is configurable in the server.xml file. So, if a method permission
specifies that the role required is ANYONE (or whatever the anonymous role is set
to), then any user can access this method.

If a method permission exists, it is always enforced. For example, if a method
permission is set so that the updateEmployeeInfo method can only be accessed by
the employee role, then it is never possible to access this method without role
employee. If the employee role is not mapped to any user or group, no one will be
able to invoke the updateEmployeeInfo method.

NOTE If a method permission covering a method does not exist, the
method is accessible to all.

169

Chapter 8

Assembling and Deploying Enterprise
Beans

This section describes how enterprise beans are assembled and deployed in the Sun
ONE Application Server 7 environment and provides information on the elements
and subelements used to create the EJB XML files.

This section contains the following topics:

• EJB Structure

• Creating Deployment Descriptors

• Deploying Enterprise Beans

• The sun-ejb-jar_2_0-0.dtd File Structure

• Elements in the sun-ejb-jar.xml File

• Sample EJB XML Files

An alphabetical list of all EJB-related elements is contained in “Elements Listings,”
on page 229.

NOTE For general assembly and deployment information, see the Sun
ONE Application Server Developer’s Guide.You should already be
familiar with that deployment material before proceeding with EJB
assembly.

EJB Structure

170 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

EJB Structure
The EJB Java ARchive (JAR) file is the standard format for assembling enterprise
beans. This file contains the bean classes (home, remote, local, and
implementation), all the utility classes, and the deployment descriptors
(ejb-jar.xml and sun-ejb-jar.xml).

An EJB JAR file produced by a developer contains one or more enterprise beans
and typically does not contain assembly instructions; an EJB JAR file produced by
an assembler contains one or more enterprise beans plus application assembly
instructions describing how the enterprise beans are combined into a single
application deployment unit.

An EJB JAR file can stand alone without being part of an Enterprise ARchive (EAR)
file, or be part of an EAR file.

Sample application files are located in install_root/samples/j2ee/.

Creating Deployment Descriptors
A J2EE module is a collection of one or more J2EE components of the same
container type with two deployment descriptors of that type. One descriptor is
J2EE standard, the other is specific to Sun ONE Application Server. For enterprise
beans, two deployment descriptor files apply:

• ejb-jar.xml

A J2EE standard file, described in the Enterprise JavaBeans Specification, v2.0.

• sun-ejb-jar.xml

A Sun ONE Application Server-specific file described in this chapter.

• sun-cmp-mappings.xml

A Sun ONE Application Server-specific file used if the deployed bean uses
container-managed persistence.

NOTE For information on the XML file associated with container-managed
persistence, refer to “Elements in the sun-cmp-mappings.xml File,”
on page 112.”

Deploying Enterprise Beans

Chapter 8 Assembling and Deploying Enterprise Beans 171

The easiest way to create the deployment descriptor files is to deploy an EJB
module using the Administration interface or Sun ONE Studio 4 IDE. For more
information, see the Sun ONE Application Server Developer’s Guide. For example EJB
XML files, see “Sample EJB XML Files,” on page 213.

After you have created these files, you can edit them using the Administration
interface or a combination of an editor and command line utilities such as Ant to
reassemble and redeploy the updated deployment descriptor information.

The J2EE standard deployment descriptors are described in the 1.3 J2EE
Specification. For more information on EJB deployment descriptors, see Chapter 22
in the Enterprise JavaBeans Specification, v2.0. Our sample applications develop
some ANT targets that help in assembly and deployment. Refer to the ANT
information in the Sun ONE Application Server Developer’s Guide.

Deploying Enterprise Beans
When you deploy, undeploy, or redeploy a enterprise bean, you do not need to
restart the server.

This section addresses the following topics:

• Using the Administration Interface

• Using the Command-Line Interface

• Using the Sun ONE Studio 4 IDE

• Reloading Enterprise Beans

NOTE You can create the deployment descriptor manually if you prefer.

NOTE Stubs and skeletons are generated during deployment. You can
retrieve the client JAR file with the stubs and skeletons for use with
a rich client.

Deploying Enterprise Beans

172 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Using the Administration Interface
To deploy an EJB application using the Administration interface:

1. Open the Applications component under your server instance.

2. Go to the EJB Modules page.

3. Click Deploy.

4. Enter the full path to the JAR module (or click Browse to find it), then click OK.

Using the Command-Line Interface
To deploy an enterprise bean using the command line:

1. Edit the deployment descriptor files (ejb-jar.xml and sun-ejb-jar.xml) by
hand.

2. Execute an Ant build command (such as build jar) to reassemble the JAR
module.

3. Use the asadmin deploy command to deploy the JAR module. The syntax is as
follows:

asadmin deploy -type ejb [-name component-name] [-force=true]
[-upload=true] -instance instancename filepath

For example, the following command deploys an EJB application as a
stand-alone module:

asadmin deploy -type ejb -instance inst1 myEJB.jar

Using the Sun ONE Studio 4 IDE
You can use Sun ONE Studio 4 IDE, bundled with Sun ONE Application Server, to
assemble and deploy enterprise beans. For information about using Sun ONE
Studio 4, see the Sun ONE Studio 4, Enterprise Edition tutorial.

NOTE In Sun ONE Studio 4, deploying a web application is referred to as
executing it.

Deploying Enterprise Beans

Chapter 8 Assembling and Deploying Enterprise Beans 173

Reloading Enterprise Beans
If you make code changes to an enterprise bean and dynamic reloading is enabled,
you do not need to redeploy the enterprise bean or restart the server. You can
simply drop the changed files into the application’s deployed directory (such as,
instance-dir/applications) and the changes will be picked up.

To enable dynamic reloading with the Administration interface:

1. In the Administration interface, select your server instance

2. Select Applications.

The Application Properties page is displayed.

3. Check the Reload Enabled box to enable dynamic reloading.

4. Enter a number of seconds in the Reload Poll Interval field to set the interval at
which applications and modules are checked for code changes and
dynamically reloaded.

5. Click Save.

For details, see the Sun ONE Application Server Administrator’s Guide.

In addition, to load new servlet files, reload EJB related changes, or reload
deployment descriptor changes, you must do the following:

1. Create an empty file named .reload at the root of the deployed application:

instance_dir/applications/j2ee-apps/app_name/.reload

or individually deployed module:

instance_dir/applications/j2ee-modules/module_name/.reload

2. Explicitly update the .reload file’s timestamp (touch .reload in UNIX) each
time you make changes to the bean or deployment descriptor.

The reload monitor thread periodically looks at the timestamp of the .reload
files to detect any changes. This interval is, by default, two seconds and can be
modified by changing the value of
dynamic-reload-poll-interval-in-seconds in the server.xml file.

You can deploy an EJB application in a number of ways:

• Using the Command-Line Interface

• Using the Administration Interface

• Using the Sun ONE Studio 4 IDE

The sun-ejb-jar_2_0-0.dtd File Structure

174 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

For more detailed information about deployment, see the Sun ONE Application
Server Developer’s Guide.

The sun-ejb-jar_2_0-0.dtd File Structure
The sun-ejb-jar_2_0-0.dtd file defines the structure of the sun-ejb-jar.xml
file, including the elements it can contain and the subelements and attributes these
elements can have. The sub-ejb-jar_2_0-0.dtd file is located in the
install-dir/lib/dtds directory.

For general information about DTD files and XML, see the XML specification at:

http://www.w3.org/TR/REC-xml

Each element defined in a DTD file (which may be present in the corresponding
XML file) can contain the following:

• Subelements

• Data

• Attributes

An alphabetical list of all EJB-related elements is contained in “Elements Listings,”
on page 229.

Subelements
Elements can contain subelements. For example, the following file fragment
defines the cmp-resource element:

<!ELEMENT cmp-resource (jndi-name, default-resource-principal?)>

This ELEMENT tag specifies that a resource element called cmp-resource can
contain subelements called jndi-name and default-resource-principal, with
the question mark (?) indicating that there can be zero or one of the
default-resource-principal subelement.

Each subelement can be suffixed with an optional character to determine the
number of times it can occur.

NOTE Do not edit the sun-ejb-jar_2_0-0.dtd file; its contents change
only with new versions of the Sun ONE Application Server.

The sun-ejb-jar_2_0-0.dtd File Structure

Chapter 8 Assembling and Deploying Enterprise Beans 175

The following table shows how optional suffix characters of subelements
determine the requirement rules, or number of allowed occurrences, for the
subelements. The left column lists the subelement ending character, the right
column list the corresponding requirement rule.

If an element cannot contain other elements, you see EMPTY or (#PCDATA) instead
of a list of element names in parentheses.

Data
Some elements contain character data instead of subelements. These elements have
definitions of the following format:

<!ELEMENT element-name (#PCDATA)>

For example:

<!ELEMENT description (#PCDATA)>

In the Sun ONE Application Server XML files, white space is treated as part of the
data in a data element. Therefore, there should be no extra white space before or
after the data delimited by a data element. For example:

<description>class name of session manager</description>

<password>secret</password>

Attributes
Elements can contain attributes (name, value pairs). Attributes are defined in
attributes lists using the ATTLIST tag.

None of the elements in the sun-ejb-jar.xml file contain attributes.

Requirement Rules for Subelement Suffixes

Suffix Number of Occurrences

element* Can contain zero or more of this subelement.

?element Can contain zero or one of this subelement.

element+ Must contain one or more of this subelement.

element (no suffix) Must contain only one of this subelement.

Elements in the sun-ejb-jar.xml File

176 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Elements in the sun-ejb-jar.xml File
An alphabetical list of all EJB-related elements is contained in “Elements Listings,”
on page 229.

This section describes the XML elements in the sun-ejb-jar_2_0-0.dtd file. For
your convenience, the elements are grouped as follows:

• General Elements

• Role Mapping Elements

• Reference Elements

• Security Elements

• Persistence Elements

• Pooling and Caching Elements

• Class Elements

General Elements
General elements are as follows:

• ejb

• ejb-name

• enterprise-beans

NOTE For information on the DTD and XML file associated with
container-managed persistence mapping, refer to “Elements in the
sun-cmp-mappings.xml File,” on page 112.”

NOTE If any configuration for an enterprise bean is not specified in the
sun-ejb-jar.xml file, it can default to a corresponding value in the
ejb-container element of the server.xml file if an equivalency
exists. You can change the default values in the server.xml file;
these changes will be reflected in any enterprise bean that does not
have that value defined.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 177

• is-read-only-bean

• refresh-period-in-seconds

• sun-ejb-jar

• unique-id

ejb
Defines runtime properties for a single enterprise bean within the application. The
subelements listed below apply to particular enterprise beans as follows:

• All types of beans—ejb-name, ejb-ref, resource-ref, resource-env-ref,
cmp, ior-security-config, gen-classes, jndi-name

• Stateless session beans and message-driven beans—bean-pool

• Stateful session beans and entity beans—bean-cache

• Entity beans (BMP)—is-read-only-bean, refresh-period-in-seconds,
commit-option, bean-cache

• Message-driven bean—mdb-connection-factory,
jms-durable-subscription-name, jms-max-messages-load, bean-pool

Subelements
The following table describes subelements for the ejb element.

ejb Subelements

Subelement Required Description

ejb-name only one Matches the display name of the bean
to which it refers.

jndi-name zero or more Specifies the absolute jndi-name. In
the case of message-driven beans, this
is the JNDI name of the Java Message
Service Queue or Topic destination
resource object associated with the
message-driven bean class. Whether it
is Queue or Topic type depends on the
destination type in the message-driven
deployment descriptor
message-driven-destination. If no
message-driven-destination
deployment descriptor is specified, this
defaults to Queue type.

Elements in the sun-ejb-jar.xml File

178 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

ejb-ref zero or more Maps the absolute JNDI name to the
ejb-ref element in the corresponding
J2EE XML file.

resource-ref zero or more Maps the absolute JNDI name to the
resource-ref in the corresponding
J2EE XML file.

resource-env-ref zero or more Maps the absolute JNDI name to the
resource-env-ref in the
corresponding J2EE XML file.

pass-by-reference zero or one When a servlet or EJB calls another
bean that is co-located within the same
process, the Sun ONE Application
Server does not automatically perform
marshalling of all call parameters.

cmp zero or one Specifies runtime information for a
container-managed persistence (CMP)
EntityBean object for EJB1.1 and EJB2.0
beans. This is a pointer to a file that
describes the mapping information of a
bean.

principal zero or one Specifies the principal (user) name in
an enterprise bean that has the run-as
role specified.

mdb-connection-factory zero or one Specifies the connection factory
associated with a message-driven bean.

jms-durable-subscripti
on-name

zero or one Contains data that specifies the durable
subscription associated with a
message-driven bean.

jms-max-messages-load zero or one Specifies the maximum number of
messages to load into a Java Message
Service session at one time for a
message-driven bean to serve. The
default is 1.

ior-security-config zero or one Specifies the security information for
the IOR.

is-read-only-bean zero or one Flag specifying this bean is a read-only
bean.

ejb Subelements (Continued)

Subelement Required Description

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 179

Example
<ejb>

ejb-name>CustomerEJB</ejb-name>
<jndi-name>customer</jndi-name>
<resource-ref>

<res-ref-name>jdbc/SimpleBank</res-ref-name>
<jndi-name>jdbc/PointBase</jndi-name>

</resource-ref>
<is-read-only-bean>false</is-read-only-bean>
<commit-option>B</commit-option>
<bean-pool>

<steady-pool-size>10</steady-pool-size>
<resize-quantity>10</resize-quantity>
<max-pool-size>100</max-pool-size>
<pool-idle-timeout-in-seconds>
600
</pool-idle-timeout-in-seconds>

</bean-pool>
<bean-cache>

<max-cache-size>100</max-cache-size>
<resize-quantity>10</resize-quantity>

refresh-period-in-seco
nds

zero or one Specifies the rate at which a
read-only-bean must be refreshed from
the data source. If this is less than or
equal to zero, the bean is never
refreshed; if greater than zero, the bean
instances are refreshed at the specified
interval. This rate is just a hint to the
container. Default is 600.

commit-option zero or one Contains data that has valid values of
A, B, or C. Default value is B.

gen-classes zero or one Specifies all the generated class names
for a bean.

bean-pool zero or one
bean-pool

Specifies the bean pool properties.
Used for stateless session beans, entity
beans, and message-driven bean pools.

bean-cache zero or one
bean-pool

Specifies the bean cache properties.
Used only for stateful session beans
and entity beans

ejb Subelements (Continued)

Subelement Required Description

Elements in the sun-ejb-jar.xml File

180 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

<removal-timeout-in-seconds>3600</removal-timeout-in-seconds>
<victim-selection-policy>LRU</victim-selection-policy>

</bean-cache>
</ejb>

ejb-name
Matches the display name of the enterprise bean to which it refers. This name is
assigned by the EJB JAR file producer to name the enterprise bean in the EJB JAR
file’s deployment descriptor. The name must be unique among the names of the
enterprise beans in the same EJB JAR file.

There is no architected relationship between the ejb-name in the deployment
descriptor and the JNDI name that the deployer will assign to the EJB’s home.

Subelements
none

Example
<ejb-name>EmployeeService</ejb-name>

enterprise-beans
Specifies all the runtime properties for an EJB JAR file in the application.

Subelements
The following table describes subelements for the enterprise-bean element.

enterprise-beans Subelements

Subelement Required Description

name zero or one Specifies the name string.

unique-id zero or one Specifies a unique system identifier. This
data is automatically generated and
updated at deployment/redeployment.

ejb zero or more Defines runtime properties for a single
enterprise bean within the application.

pm-descriptors zero or one Describes the persistence manager
descriptors. One of them must be in use at
a given time. This basically applies to Sun
ONE Application Server pluggable
persistence manager APIs.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 181

Example
<enterprise-beans>

<ejb>
ejb-name>CustomerEJB</ejb-name>
<jndi-name>customer</jndi-name>
<resource-ref>

<res-ref-name>jdbc/SimpleBank</res-ref-name>
‘ <jndi-name>jdbc/PointBase</jndi-name>

</resource-ref>
<is-read-only-bean>false</is-read-only-bean>
<commit-option>B</commit-option>
<bean-pool>

<steady-pool-size>10</steady-pool-size>
<resize-quantity>10</resize-quantity>
<max-pool-size>100</max-pool-size>
<pool-idle-timeout-in-seconds>
600
</pool-idle-timeout-in-seconds>

</bean-pool>
<bean-cache>

<max-cache-size>100</max-cache-size>
<resize-quantity>10</resize-quantity>
<removal-timeout-in-seconds>3600</removal-timeout-in-seconds>
<victim-selection-policy>LRU</victim-selection-policy>

</bean-cache>
</ejb>

</enterprise-beans

is-read-only-bean
A flag specifying that this bean is a read-only bean.

Subelements
none

Example
<is-read-only-bean>false</is-read-only-bean>

cmp-resource zero or one Specifies the database to be used for
storing container-managed persistence
(CMP) beans in an EJB JAR file.

enterprise-beans Subelements (Continued)

Subelement Required Description

Elements in the sun-ejb-jar.xml File

182 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

refresh-period-in-seconds
Specifies the rate at which a read-only-bean must be refreshed from the data
source. If the value is less than or equal to zero, the bean is never refreshed; if the
value is greater than zero, the bean instances are refreshed at specified intervals.
This rate is just a hint to the container. Default is 600.

Subelements
none

sun-ejb-jar
Defines the Sun ONE Application Server-specific configuration for an EJB JAR file
in the application. This is the root element; there can only be one sun-ejb-jar
element in an sun-ejb-jar.xml file.

Refer to “Sample sun-ejb-jar.xml File,” on page 214 for example of this file.

Subelements
The following table describes subelements for the sun-ejb-jar element.

unique-id
Specifies a unique system identifier. This data is automatically generated and
updated at deployment/redeployment. Developers should not change these
values after deployment.

Subelements
none

sun-ejb-jar Subelements

Subelement Required Description

security-role-mapping zero or more Maps a role in the corresponding J2EE
XML file to a user or group.

enterprise-beans only one Describes all the runtime properties for an
EJB JAR file in the application.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 183

Role Mapping Elements
The role mapping element maps a role, as specified in the EJB JAR role-name
entries, to a environment-specific user or group. If it maps to a user, it must be a
concrete user which exists in the current realm who can log into the server using
the current authentication method. If it maps to a group, the realm must support
groups and it must be a concrete group which exists in the current realm. To be
useful, there must be at least one user in that realm who belongs to that group.

Role mapping elements are as follows:

• group-name

• principal

• principal-name

• role-name

• security-role-mapping

• server-name

group-name
Specifies the group name.

Subelements
none

principal
Defines a node that specifies a user name on the platform.

Subelements
The following table describes subelements for the principal element.

principal Subelements

Subelement Required Description

name only one Specifies the name of the user.

Elements in the sun-ejb-jar.xml File

184 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

principal-name
Specifies the principal (user) name in an enterprise bean that has the run-as role
specified.

Subelements
none

role-name
Specifies the role-name in the security-role element of the ejb-jar.xml file.

Subelements
none

Example
<role-name>employee</role-name>

security-role-mapping
Maps roles to users and groups.

Subelements
The following table describes subelements for the security-role-mapping
element.

server-name
Specifies the name of the server where the application is being deployed.

security-role-mapping Subelements

Subelement Required Description

role-name only one Specifies the role-name from the
ejb-jar.xml file being mapped.

principal-name requires at least one
principal-name
or group-name

Specifies the principal (user) name in a bean
that has the run-as role specified.

group-name requires at least one
principal-name
or group-name

Specifies the group name.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 185

Subelements
none

Reference Elements
Reference elements are as follows:

• ejb-ref

• ejb-ref-name

• jndi-name

• pass-by-reference

• res-ref-name

• resource-env-ref

• resource-env-ref-name

• resource-ref

ejb-ref
Maps the absolute jndi-name name to the ejb-ref element in the corresponding
J2EE XML file. The ejb-ref element is used for the declaration of a reference to an
EJB’s home.

Applies to session beans or entity beans.

Subelements
The following table describes subelements for the ejb-ref element.

 ejb-ref Subelements

Subelement Required Description

ejb-ref-name only one Specifies the ejb-ref-name in the corresponding J2EE
EJB JAR file ejb-ref entry.

jndi-name only one Specifies the absolute jndi-name.

Elements in the sun-ejb-jar.xml File

186 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

ejb-ref-name
Specifies the ejb-ref-name in the corresponding J2EE XML file ejb-ref entry.
The name must be unique within the enterprise bean. It is recommended that the
name be prefixed with ejb/.

Subelements
none

Example
<ejb-ref-name>ejb/Payroll</ejb-ref-name>

jndi-name
Specifies the absolute jndi-name.

Applies to all enterprise beans.

Subelements
none

Example
<jndi-name>jdbc/PointBase</jndi-name>

pass-by-reference
Specifies the passing method used by a servlet or enterprise bean calling a remote
interface method in another bean that is co-located within the same process.
Default is false.

• If false (the default if this element is not present), this application uses
pass-by-value semantics, which the Enterprise JavaBeans Specification, v2.0
requires.

• If true, this application uses pass-by-reference semantics.

NOTE The pass-by-reference flag only applies for method calls to
remote interfaces. As defined in the Enterprise JavaBeans
Specification, v2.0, calls to local interfaces use pass by reference
semantics.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 187

When a servlet or enterprise bean calls a remote interface method in another bean
that is co-located within the same process, by default the Sun ONE Application
Server makes copies of all the call parameters in order to preserve the
pass-by-value semantics. This increases the call overhead and decreases
performance.

However, if the calling method does not mutate the object being passed as a
parameter, it is safe to pass the object itself without making a copy of it. To do this,
set the pass-by-reference value to true.

To apply pass-by-reference semantics to an entire J2EE application containing
multiple EJB modules, you can set the same element in the sun-application.xml
file. If you want to use pass-by-reference in both the bean and application level, the
bean level takes precedence over the application level.

For information on the server.xml file, see the Sun ONE Application Server
Developer’s Guide and Administrator’s Configuration File Reference.

Subelements
none

res-ref-name
Specifies the res-ref-name in the corresponding J2EE ejb-jar.xml file
resource-ref entry. The res-ref-name element specifies the name of a resource
manager connection factory reference. The name is a JNDI name relative to the
java:comp/env context. The name must be unique within an enterprise bean.

Subelements
none

Example
<res-ref-name>jdbc/SimpleBank</res-ref-name>

Elements in the sun-ejb-jar.xml File

188 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

resource-env-ref
Maps the resource-env-ref-name in the corresponding J2EE ejb-jar.xml file
resource-env-ref entry to an absolute jndi-name in the resources element in
the server.xml file. The resource-env-ref element contains a declaration of an
enterprise bean’s reference to an administered object associated with a resource in
the bean’s environment.

Used in entity, message-driven, and session beans.

Subelements
The following table describes subelements for the resource-env-ref element.

Example
<resource-env-ref>

<resource-env-ref-name>
jms/StockQueueName
</resource-env-ref-name>
<jndi-name>jms/StockQueue</jndi-name>

</resource-env-ref>

resource-env-ref-name
Specifies the resource-ref-name in the corresponding J2EE ejb-jar.xml file
resource-env-ref entry. The resource-env-ref-name element specifies the
name of a resource environment reference; its value is the environment entry name
used in the EJB code. The name is a JNDI name relative to the java:comp/env
context and must be unique within an enterprise bean.

Subelements
none

Example
<resource-env-ref-name>jms/StockQueue</resource-env-ref-name>

 resource-env-ref Subelements

Subelement Required Description

resource-env-ref-name only one Specifies the resource-env-ref-name
in the corresponding J2EE ejb-jar.xml
file resource-env-ref entry.

jndi-name only one Specifies the absolute jndi-name.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 189

resource-ref
Maps the res-ref-name in the corresponding J2EE ejb-jar.xml file
resource-ref entry to the absolute jndi-name in the resources element in the
server.XML file. The resource-ref element contains a declaration of an EJB’s
reference to an external resource.

Used in entity, message-driven, and session beans.

Subelements
The following table describes subelements for the resource-ref element.

NOTE Connections acquired from JMS connection factories are not
shareable in the current release of the Sun ONE Application Server.
The res-sharing-scope element in the ejb-jar.xml file
resource-ref element is ignored for JMS connection factories.

NOTE When resource-ref specifies a JMS connection factory for the Sun
ONE Message Queue, the default-resource-principal
(name/password) must exist in the Sun ONE Message Queue user
repository. Refer to the Security Management chapter in the Sun
ONE Message Queue Administrator’s Guide for information on how to
manage the Sun ONE Message Queue user repository.

resource-ref Subelements

Subelement Required Description

res-ref-name only one Specifies the res-ref-name in the
corresponding J2EE ejb-jar.xml file
resource-ref entry.

jndi-name only one Specifies the absolute jndi-name.

default-resource
-principal

zero or one Specifies the default sign-on (name/password) to
the resource manager.

Elements in the sun-ejb-jar.xml File

190 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Example
<resource-ref>

<res-ref-name>jdbc/EmployeeDBName</res-ref-name>
<jndi-name>jdbc/EmployeeDB</jndi-name>

</resource-ref>

Messaging Elements
This section contains the following elements associated with messaging:

• jms-durable-subscription-name

• jms-max-messages-load

• mdb-connection-factory

jms-durable-subscription-name
Specifies the durable subscription associated with a message-driven bean class.
Only applies to the Java Message Service Topic Destination type, and only when
the message-driven bean deployment descriptor subscription durability is
Durable.

Subelements
none

jms-max-messages-load
Specifies the maximum number of messages to load into a Java Message Service
session at one time for a message-driven bean to serve. The default is 1.

Subelements
none

mdb-connection-factory
Specifies the connection factory associated with a message-driven bean. Queue or
Topic type must be consistent with the Java Message Service Destination type
associated with the message-driven bean class.

Subelements
The following table describes subelements for the mdb-connection-factory
element.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 191

Security Elements
This section describes the elements that are associated with authentication,
authorization, and general security. The following elements are included:

• as-context

• auth-method

• caller-propagation

• confidentiality

• default-resource-principal

• establish-trust-in-client

• establish-trust-in-target

• integrity

• ior-security-config

• name

• password

• realm

• required

• sas-context

• transport-config

 mdb-connection-factory Subelements

Subelement Required Description

jndi-name only one Specifies the absolute jndi-name.

default-resource-pr
incipal

zero or one Specifies the default sign-on
(name/password) to the resource manager.

Elements in the sun-ejb-jar.xml File

192 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

as-context
Specifies the authentication mechanism that will be used to authenticate the client.
If specified, it will be USERNAME_PASSWORD.

Subelements
The following table describes subelements for the as-context element.

auth-method
Specifies the authentication method. The only supported value is
USERNAME_PASSWORD.

Subelements
none

caller-propagation
Specifies if the target will accept propagated caller identities. The values are
NONE, SUPPORTED, or REQUIRED.

Subelements
none

 as-context Subelements

Subelement Required Description

auth-method only one Specifies the authentication method. The
only supported value is
USERNAME_PASSWORD.

realm only one Specifies the realm in which the user is
authenticated.

required only one Specifies if the authentication method
specified is required to be used for client
authentication. If so, the
EstablishTrustInClient bit will be set in the
target_requires field of as-context. The value
is either true or false.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 193

confidentiality
Specifies if the target supports privacy-protected messages. The values are NONE,
SUPPORTED, or REQUIRED.

Subelements
none

default-resource-principal
Specifies the default sign-on (name/password) to the resource manager.

Subelements
The following table describes subelements for the default-resource-principal
element.

establish-trust-in-client
Specifies if the target is capable of authenticating a client. The values are NONE,
SUPPORTED, or REQUIRED.

Subelements
none

establish-trust-in-target
Specifies if the target is capable of authenticating to a client. The values are NONE,
SUPPORTED, or REQUIRED.

Subelements
none

 default-resource-principal Subelements

Subelement Required Description

name only one Specifies the default resource principal name
used to sign on to a resource manager.

password only on Specifies password of the default resource
principal.

Elements in the sun-ejb-jar.xml File

194 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

integrity
Specifies if the target supports integrity-protected messages. The values are NONE,
SUPPORTED, or REQUIRED.

Subelements
none

ior-security-config
Specifies the security information for the input-output redirection (IOR).

Subelements
The following table describes subelements for the ior-security-config element.

name
Specifies an identity.

Subelements
none

password
Specifies the password that security needs to complete authentication.

Subelements
none

realm
Specifies the realm in which the user is authenticated.

 ior-security-config Subelements

Subelement Required Description

transport-config zero or one Specifies the security information for
transport.

as-context zero or one Describes the authentication mechanism that
will be used to authenticate the client. If
specified, it will be USERNAME_PASSWORD.

sas-context zero or one Describes the sas-context fields.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 195

Subelements
none

required
Specifies if the authentication method specified is required to be used for client
authentication. If so, the EstablishTrustInClient bit will be set in the
target_requires field of as-context. The value is either true or false.

Subelements
none

sas-context
Describes the sas-context fields.

Subelements
The following table describes subelements for the sas-context element.

transport-config
Specifies the security transport information.

Subelements
The following table describes subelements for the transport-config element.

 sas-context Subelements

Subelement Required Description

caller-propagation only one Specifies if the target will accept propagated
caller identities. The values are NONE,
SUPPORTED, or REQUIRED.

 transport-config Subelements

Subelement Required Description

integrity only one Specifies if the target supports
integrity-protected messages. The values are
NONE, SUPPORTED, or REQUIRED.

confidentiality only one Specifies if the target supports
privacy-protected messages. The values are
NONE, SUPPORTED, or REQUIRED.

Elements in the sun-ejb-jar.xml File

196 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Persistence Elements
This section describes the elements associated with container-managed persistence
(CMP), the persistence manager, and the persistence vendor. For information on
using these elements, refer to “Using Container-Managed Persistence,” on page 86.

The following elements are included:

• cmp

• cmp-resource

• concrete-impl

• finder

• is-one-one-cmp

• mapping-properties

• method-name

• one-one-finders

• pc-class

• pm-class-generator

• pm-config

• pm-descriptor

• pm-descriptors

• pm-identifier

• pm-inuse

• pm-mapping-factory

establish-trust-in-
target

only one Specifies if the target is capable of
authenticating to a client. The values are
NONE, SUPPORTED, or REQUIRED.

establish-trust-in-
client

only one Specifies if the target is capable of
authenticating a client. The values are NONE,
SUPPORTED, or REQUIRED.

 transport-config Subelements (Continued)

Subelement Required Description

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 197

• pm-version

• query-filter

• query-params

• query-variables

cmp
Describes runtime information for a container-managed persistence (CMP) entity
bean object for EJB1.1 and EJB2.0 beans. This is a pointer to a file that describes the
mapping information of a bean.

Subelements
The following table describes subelements for the cmp element.

 cmp Subelements

Subelement Required Description

mapping-properties only one Contains data that specifies the location of
the persistence vendor’s specific
object-to-relational (O/R) database mapping
file.

concrete-impl only one Contains data that specifies the location of
the persistence vendor’s specific concrete
class name.

pc-class zero or one Contains data that specifies the persistence
vendor’s specific class.

is-one-one-cmp zero or one Contains the boolean specifics for
container-managed persistence (CMP) 1.1.
Used to identify CMP 1.1 with old
descriptors.

one-one-finders zero or one Describes the finders for container-managed
persistence (CMP) 1.1.

Elements in the sun-ejb-jar.xml File

198 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

cmp-resource
Specifies the database to be used for storing container-managed persistence (CMP)
beans in an EJB JAR file.

Subelements
The following table describes subelements for the cmp-resource element.

concrete-impl
Specifies the location of the persistence vendor’s specific concrete class name.

Subelements
none

finder
Describes the finders for container-managed persistence 1.1 with a method name
and query.

Subelements
The following table describes subelements for the finder element.

 cmp-resource Subelements

Subelement Required Description

jndi-name only one Specifies the absolute jndi-name.

default-resource-
principall

zero or one Specifies the default runtime bindings of a
resource reference.

 finder Subelements

Subelement Required Description

method-name only one Specifies the method name for the query
field.

query-params only one Optional data that specifies the query
parameters for the container-managed
persistence (CMP) 1.1 finder.

query-filter only one Specifies the query filter for the
container-managed persistence (CMP) 1.1
finder.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 199

is-one-one-cmp
Specifies the boolean specifics for container-managed persistence 1.1. Used to
identify CMP 1.1 with old descriptors.

Subelements
none

mapping-properties
Specifies the location of the persistence vendor’s specific object-to-relational (O/R)
database mapping file. Most persistence vendors use the concept of a project,
which represents all the related beans and their dependent classes, and can be
deployed as a single unit. There can be a vendor-specific XML file associated with
the project.

Subelements
none

method-name
Specifies the method name for the query field. The method-name element contains
a name of an EJB method or the asterisk (*) character. The asterisk is used when the
element denotes all the methods of an EJB's component and home interfaces.

Examples
<method-name>create</method-name>

<method-name>*</method-name>

Subelements
none

query-variables only one Optional data that specifies variables in
query expression for the container-managed
persistence 1.1 finder.

 finder Subelements (Continued)

Subelement Required Description

Elements in the sun-ejb-jar.xml File

200 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

one-one-finders
Describes the finders for container-managed persistence (CMP) 1.1.

Subelements
The following table describes subelements for the one-one-finders element.

pc-class
Specifies the persistence vendor’s specific class.

Subelements
none

pm-class-generator
Specifies which vendor-specific concrete class generator is to be used. This is the
name of the class specific to the vendor.

Subelements
none

pm-config
Specifies the vendor-specific configuration file to be used.

Subelements
none

pm-descriptor
Describes the properties of the persistence manager associated with an entity bean.

Subelements
The following table describes subelements for the pm-descriptor element.

 one-one-finders Subelements

Subelement Required Description

finder must have
one or more

Describes the finders for container-managed
persistence (CMP) 1.1 with a method name
and query.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 201

pm-descriptors
Describes the persistence manager descriptors. One of them must be in use at a
given time. This basically applies to Sun ONE Application Server pluggable
persistence manager APIs.

Subelements
The following table describes subelements for the pm-descriptors element. The
left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

pm-descriptor Subelements

Subelement Required Description

pm-identifier only one Specifies the vendor who provided the
persistence manager implementation. For
example, this could be Sun ONE Application
Server container-managed persistence or a
third-party vendor.

pm-version only one Specifies which version of the persistence
manager vendor product is to be used.

pm-config zero or one Specifies the vendor-specific configuration
file to be used.

pm-config zero or one Specifies which vendor-specific concrete
class generator is to be used. This is the name
of the class specific to the vendor.

pm-mapping-factory zero or one Specifies which vendor-specific mapping
factory is to be used. This is the name of the
class specific to the vendor.

pm-descriptors Subelements

Subelement Required Description

pm-descriptor one or more Describes the properties of the persistence
manager associated with an entity bean.

pm-inuse only one Specifies whether this particular persistence
manager must be used or not.

Elements in the sun-ejb-jar.xml File

202 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

pm-identifier
Specifies the vendor who provided the persistence manager implementation. For
example, this could be Sun ONE Application Server container-managed
persistence or a third-party vendor.

Subelements
none

pm-inuse
Specifies whether this particular persistence manager must be used or not.

Subelements
The following table describes subelements for the pm-inuse element.

pm-mapping-factory
Specifies which vendor-specific mapping factory is to be used. This is the name of
the class specific to the vendor.

Subelements
none

pm-version
Specifies which version of the persistence manager vendor product is to be used.

Subelements
none

pm-insue Subelements

Subelement Required Description

pm-identifier only one Contains data that specifies the vendor who
provided the persistence manager
implementation. For example, this could be
Sun ONE Application Server
container-managed persistence or a
third-party vendor.

pm-version only one Contains data that specifies which version of
the persistence manager vendor product is to
be used.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 203

query-filter
Specifies the query filter for the container-managed persistence 1.1 finder.
Optional.

Subelements
none

query-params
Specifies the query parameters for the container-managed persistence 1.1 finder.

Subelements
none

query-variables
Specifies variables in query expression for the container-managed persistence 1.1
finder. Optional.

Subelements
none

Pooling and Caching Elements
This section describes the elements associated with cache, timeout, and the EJB
pool. These elements are used to control memory usage and performance tuning.
For more information, refer to the Sun ONE Application Server Performance, Tuning,
and Sizing Guide.

The following elements are discussed:

• bean-cache

• bean-pool

• cache-idle-timeout-in-seconds

• commit-option

• is-cache-overflow-allowed

• max-cache-size

• max-pool-size

Elements in the sun-ejb-jar.xml File

204 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

• max-wait-time-in-millis

• pool-idle-timeout-in-seconds

• removal-timeout-in-seconds

• resize-quantity

• steady-pool-size

• victim-selection-policy

bean-cache
Specifies the entity bean cache properties. Used for entity beans and stateful
session beans.

Subelements
The following table describes subelements for the bean-cache element.

 bean-cache Subelements

Subelement Required Description

max-cache-size zero or one Specifies the maximum number of beans
allowable in cache.

is-cache-overflow-
allowed

zero or one Deprecated.

cache-idle-timeout
-in-seconds

zero or one Specifies the maximum time that a stateful
session bean or entity bean is allowed to be
idle in cache before being passivated. Default
value is 10 minutes (600 seconds).

removal-timeout-in
-seconds

zero or one Specifies the amount of time a bean remains
before being removed. If
removal-timeout-in-seconds is less
than idle-timeout, the bean is removed
without being passivated.

resize-quantity zero or one Specifies the number of beans to be created if
the pool is empty (subject to the
max-pool-size limit). Values are from 0 to
MAX_INTEGER.

victim-selection-p
olicy

zero or one Specifies the algorithm that must be used by
the container to pick victims. Applies only to
stateful session beans.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 205

Example
<bean-cache>

<max-cache-size>100</max-cache-size>
<cache-resize-quantity>10</cache-resize-quantity>
<removal-timeout-in-seconds>3600</removal-timeout-in-seconds>
<victim-selection-policy>LRU</victim-selection-policy>

<cache-idle-timeout-in-seconds>
600
</cache-idle-timeout-in-seconds>

<removal-timeout-in-seconds>5400</removal-timeout-in-seconds>
</bean-cache>

bean-pool
Specifies the pool properties of stateless session beans, entity beans, and
message-driven bean.

Subelements
The following table describes subelements for the bean-pool element.

 bean-pool Subelements

Subelement Required Description

steady-pool-size zero or one Specifies the initial and minimum number
of beans maintained in the pool. Default is
32.

resize-quantity zero or one Specifies the number of beans to be created
if the pool is empty (subject to the
max-pool-size limit). Values are from 0
to MAX_INTEGER.

max-pool-size zero or one Specifies the maximum number of beans in
the pool. Values are from 0 to
MAX_INTEGER. Default is to server.xml
or 60.

max-wait-time-in-mil
lis

zero or one Deprecated.

pool-idle-timeout-in
-seconds

zero or one Specifies the maximum time that a bean is
allowed to be idle in the pool. After this
time, the bean is removed. This is a hint to
the server. Default time is 600 seconds (10
minutes).

Elements in the sun-ejb-jar.xml File

206 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Example
<bean-pool>

<steady-pool-size>10</steady-pool-size>
<resize-quantity>10</resize-quantity>
<max-pool-size>100</max-pool-size>
<pool-idle-timeout-in-seconds>600</pool-idle-timeout-in-seconds>

</bean-pool>

cache-idle-timeout-in-seconds
Optionally specifies the maximum time that a bean can remain idle in the cache.
After this amount of time, the container can passivate this bean. A value of 0
specifies that beans may never become candidates for passivation. Default is 600.

Applies to stateful session beans and entity beans.

Subelements
none

commit-option
Optionally specifies the commit option that will be used on transaction completion.
Valid values for the Sun ONE Application Server are B or C. Default value is B.

Applies to entity beans.

Subelements
none

Example
<commit-option>B</commit-option>

is-cache-overflow-allowed
This element is deprecated and should not be used.

NOTE Commit option A is not supported for the Sun ONE Application
Server 7 release.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 207

max-cache-size
Optionally specifies the maximum number of beans allowable in cache. A value of
zero indicates an unbounded cache. In reality, there is no hard limit. The
max-cache-size limit is just a hint to the cache implementation. Default is 512.

Applies to stateful session beans and entity beans.

Subelements
none

Example
max-cache-size>100</max-cache-size>

max-pool-size
Optionally specifies the maximum number of bean instances in the pool. Values are
from 0 (1 for message-driven bean) to MAX_INTEGER. A value of 0 means the
pool is unbounded. Default is 64.

Applies to all beans.

Subelements
none

Example
<max-pool-size>100</max-pool-size>

max-wait-time-in-millis
This element is deprecated and should not be used.

pool-idle-timeout-in-seconds
Optionally specifies the maximum time, in seconds, that a bean instance is allowed
to remain idle in the pool. When this timeout expires, the bean instance in a pool
becomes a candidate for passivation or deletion. This is a hint to the server. A value
of 0 specifies that idle beans can remain in the pool indefinitely. Default value is
600.

Applies to stateless session beans, entity beans, and message-driven beans.

NOTE For a stateless session bean or a message-driven bean, the bean can
be removed (garbage collected) when the timeout expires.

Elements in the sun-ejb-jar.xml File

208 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Subelements
none

Example
<pool-idle-timeout-in-seconds>600</pool-idle-timeout-in-seconds>

removal-timeout-in-seconds
Optionally specifies the amount of time a bean instance can remain idle in the
container before it is removed (timeout). A value of 0 specifies that the container
does not remove inactive beans automatically. The default value is 5400.

If removal-timeout-in-seconds is less than or equal to
cache-idle-timeout-in-seconds, beans are removed immediately without
being passivated.

Applies to stateful session beans.

For related information, see cache-idle-timeout-in-seconds.

Subelements
none

Example
<removal-timeout-in-seconds>3600</removal-timeout-in-seconds>

resize-quantity
Optionally specifies the number of bean instances to be:

• Created, if a request arrives when the pool has less than steady-pool-size
quantity of beans (applies to pools only for creation). If the pool has more than
steady-pool-size minus resize-quantity of beans, then resize-quantity
is still created.

• Removed, when the pool-idle-timeout-in-seconds timer expires and a
cleaner thread removes any unused instances.

❍ For caches, when max-cache-size is reached, resize-quantity beans
will be selected for passivation using victim-selection-policy. In
addition, the cache-idle-timeout-in-seconds or
cache-remove-timeout-in-seconds timers will passivate beans from the
cache.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 209

❍ For pools, when the max-pool-size is reached, resize-quantity beans
will be selected for removal. In addition the
pool-idle-timeout-in-seconds timer will remove beans until
steady-pool-size is reached.

Values are from 0 to MAX_INTEGER. The pool is not resized below the
steady-pool-size. Default is 16.

Applies to stateless session beans, entity beans, and message-driven beans.

For EJB pools, the default value can be the value of the ejb-container element
pool-resize-quantity in the server.xml file. Default is 16.

For EJB caches, the default value can be the value of the ejb-container element
cache-resize-quantity in the server.xml file. Default is 32.

For message-driven beans, the default can be the value of the mdb-container
pool-resize-quantity element in the server.xml file. Default is 2.

Subelements
none

Example
<resize-quantity>10</resize-quantity>

steady-pool-size
Optionally specifies the initial and minimum number of bean instances that should
be maintained in the pool. Default is 32.

Applies to stateless session beans and message-driven beans.

Subelements
none

NOTE If steady-pool-size is set to a value greater than 0, the beans are
created when the server starts. If a bean relies on caching
information during the setInitialContext method that is not
available at server startup (such as a user’s security role), then the
bean should throw EJBException during the setInitialContext.
The container handles this exception and does not instantiate the
beans. If the bean swollows this exception, then steady-pool-size
should be set to 0 in the sun-ejb-jar.xml file.

Elements in the sun-ejb-jar.xml File

210 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Example
<steady-pool-size>10</steady-pool-size>

victim-selection-policy
Optionally specifies how stateful session beans are selected for passivation.
Possible values are First In, First Out (FIFO), Least Recently Used (LRU), Not
Recently Used (NRU). The default value is NRU, which is actually pseudo-LRU.

The victims are generally passivated into a backup store (typically a file system or
database). This store is cleaned during startup, and also by a periodic background
process that removes idle entries as specified by removal-timeout-in-seconds.
The backup store is monitored by a background thread (or sweeper thread) to
remove unwanted entries.

Applies to stateful session beans.

Subelements
none

Example
<victim-selection-policy>LRU</victim-selection-policy>

Class Elements
This section describes the elements associated with classes. The following elements
are included:

• gen-classes

• local-home-impl

• local-impl

• remote-home-impl

• remote-impl

NOTE The user cannot plug in his own victim selection algorithm.

Elements in the sun-ejb-jar.xml File

Chapter 8 Assembling and Deploying Enterprise Beans 211

gen-classes
Specifies all the generated class names for a bean.

Subelements
The following table describes subelements for the gen-class element.

local-home-impl
Specifies the fully-qualified class name of the generated EJBLocalHome impl class.

Subelements
none

local-impl
Specifies the fully-qualified class name of the generated EJBLocalObject impl
class.

NOTE This is automatically generated by the server at
deployment/redeployment time. It should not be specified by the
developer or changed after deployment.

 gen-classes Subelements

Subelement Required Description

remote-impl zero or one Specifies the fully-qualified class name of the
generated EJBObject impl class.

local-impl zero or one Specifies the fully-qualified class name of the
generated EJBLocalObject impl class.

remote-home-impl zero or one Specifies the fully-qualified class name of the
generated EJBHome impl class.

local-home-impl zero or one Specifies the fully-qualified class name of the
generated EJBLocalHome impl class.

NOTE This is automatically generated by the server at
deployment/redeployment time. It should not be specified by the
developer or changed after deployment.

Elements in the sun-ejb-jar.xml File

212 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

Subelements
none

remote-home-impl
Specifies the fully-qualified class name of the generated EJBHome impl class.

Subelements
none

remote-impl
Specifies the fully-qualified class name of the generated EJBObject impl class.

Subelements
none

NOTE This is automatically generated by the server at
deployment/redeployment time. It should not be specified by the
developer or changed after deployment.

NOTE This is automatically generated by the server at
deployment/redeployment time. It should not be specified by the
developer or changed after deployment.

NOTE This is automatically generated by the server at
deployment/redeployment time. It should not be specified by the
developer or changed after deployment.

Sample EJB XML Files

Chapter 8 Assembling and Deploying Enterprise Beans 213

Sample EJB XML Files
This section includes the following sample files:

• Sample ejb-jar.xml File

• Sample sun-ejb-jar.xml File

For information on the elements associated with enterprise beans, refer to
“Elements in the sun-ejb-jar.xml File,” on page 176 and the Sun ONE Application
Server Developer’s Guide.

Sample ejb-jar.xml File
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ejb-jar PUBLIC ’-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
2.0//EN’

’http://java.sun.com/dtd/ejb-jar_2_0.dtd’>

<ejb-jar>
<description>no description</description>
<display-name>CustomerJAR</display-name>

<enterprise-beans>
<entity>

<description>no description</description>
<display-name>CustomerEJB</display-name>
<ejb-name>CustomerEJB</ejb-name>
<home>samples.SimpleBankBMP.ejb.CustomerHome</home>
<remote>samples.SimpleBankBMP.ejb.Customer</remote>
<ejb-class>samples.SimpleBankBMP.ejb.CustomerEJB</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>java.lang.String</prim-key-class>
<reentrant>False</reentrant>
<security-identity>

<description></description>
<use-caller-identity></use-caller-identity>

</security-identity>
<resource-ref>

<res-ref-name>jdbc/SimpleBank</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>
</entity>

</enterprise-beans

Sample EJB XML Files

214 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

<assembly-descriptor>
<container-transaction>

<method>
<ejb-name>CustomerEJB</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>NotSupported</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>

Sample sun-ejb-jar.xml File
For information on these elements, refer to “Elements in the sun-ejb-jar.xml File,”
on page 176.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE sun-ejb-jar PUBLIC ’-//Sun Microsystems, Inc.//DTD Sun ONE Application
Server 7.0 EJB 2.0//EN’

’http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2_0-0.dtd’>

<sun-ejb-jar>
<display-name>First Module</display-name>
<enterprise-beans>

<ejb>
<ejb-name>CustomerEJB</ejb-name>
<jndi-name>customer</jndi-name>
<resource-ref>

<res-ref-name>jdbc/SimpleBank</res-ref-name>
‘ <jndi-name>jdbc/PointBase</jndi-name>

</resource-ref>
<is-read-only-bean>false</is-read-only-bean>
<commit-option>B</commit-option>
<bean-pool>

<steady-pool-size>10</steady-pool-size>
<resize-quantity>10</resize-quantity>
<max-pool-size>100</max-pool-size>
<pool-idle-timeout-in-seconds>600</pool-idle-timeout-in-seconds>

</bean-pool>
<bean-cache>

<max-cache-size>100</max-cache-size>
<resize-quantity>10</resize-quantity>

<removal-timeout-in-seconds>3600</removal-timeout-in-seconds>
<victim-selection-policy>LRU</victim-selection-policy>

Sample EJB XML Files

Chapter 8 Assembling and Deploying Enterprise Beans 215

</bean-cache>
</ejb>

</enterprise-beans>
</sun-ejb-jar>

Sample EJB XML Files

216 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

217

Appendix A

CMP Mapping with the Sun ONE
Studio 4 Interface

This section provides guidelines on mapping between a set of Java programming
language classes and a relational database using the Sun ONE Studio 4 interface.

This section addresses the following topics:

• Mapping CMP Beans

• EJB Persistence Properties

You should already be familiar with the “Using Container-Managed Persistence
for Entity Beans,” on page 79,” and chapter 10 of the Enterprise JavaBeans
Specification, v2.0 before using these procedures.

Mapping CMP Beans
To map container-managed persistence beans, you must first capture the schema,
then map the beans to the schema.

This section contains the following sections:

• Capturing a Schema

• Mapping Existing Enterprise Beans to a Schema

Capturing a Schema
Before mapping any enterprise beans to a database schema, you need to capture the
schema to create a working copy in your file system. This allows you to do your
work without affecting the database itself.

Mapping CMP Beans

218 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

1. You have three ways to display the Mapping Tool:

❍ Right-click on the file system and select New > Databases > Database
Schema.

❍ Choose New from the File menu and then, in the Template Chooser,
double-click Databases and select Database Schema.

❍ Select Capture Database Schema from the Tools menu.

2. In the Target Location pane, type a file name for the working copy of your
schema, then select a package for the captured schema.

3. In the Database Connection pane, if you have a connection established, you can
select it from the Existing Connection menu. Otherwise, under New
Connection, enter the following information:

❍ The name of the database you are connecting to. (If your database is not
listed in the dropdown menu, you might need to quit the Mapping Tool
and install the driver in the IDE before continuing.)

❍ Your system’s JDBC driver.

❍ The JDBC URL for the database, including the driver identifier, server,
port, and database name. For example,
jdbc:pointbase://localhost:9092/sample.

The format of a JDBC URL varies depending on which kind of database
management system (DBMS) you use—Oracle, Microsoft SQL Server, or
PointBase—and the version of that DBMS. Ask your system administrator
for the correct URL format for your DBMS.

❍ A user name for your database.

❍ The password for that user.

4. In the Tables and Views pane, choose the tables and views you want to
capture, then click Finish.

NOTE It is best to store the captured schema in a package. If you do not
have a package to contain the schema, create one by right-clicking
on the file system and selecting New Package.

Mapping CMP Beans

Appendix A CMP Mapping with the Sun ONE Studio 4 Interface 219

The database and its schema will be represented as shown in following figure.

Mapping Existing Enterprise Beans to a Schema
This section discusses how to use container-managed persistence to customize
mappings or to create a mapping for an existing object model.

Before you can map an enterprise bean to a database schema, you must make sure
that the database schema is captured and mounted in your Explorer file system.
See “Capturing a Schema,” on page 217 for instructions on how to do this.

You can set up or edit a mapping piecemeal by editing the individual properties in
the Properties window. All the mapping and persistence information can be
accessed through the Properties window. The mapping fields property editor
provides a way to view and edit groups of classes and fields at one time, providing
a useful overview of your mapping model.

1. Under Filesystem, open the EJB Module.

The enterprise beans in that module are listed.

NOTE If you choose one table and exclude another that is referenced to the
included table by a foreign key, both tables will be captured even
though you specified only one.

Mapping CMP Beans

220 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

2. Select the enterprise bean from its containing EJB module.

The properties table for the enterprise bean is displayed.

3. If you have completed the preliminary tasks, click Next to bring up the Select
Tables pane of the Mapping Tool.

Otherwise, click Cancel, complete the tasks, and restart the Mapping Tool.

4. Select a primary table from the Primary Table combo box, or click Browse to
open the Select Primary Table dialog.

5. If you open the Select Primary Table dialog, find a schema and expand it to
find its tables.

6. Select a table and click OK.

The table you select as the primary table should be the one that most closely
matches your class.

7. Once the primary table is set up, you can map one or more secondary tables by
clicking Add.

This opens the Secondary Table Settings dialog box.

A secondary table enables you to map fields in your enterprise bean to
columns that are not part of your primary table. For example, you might add a
DEPARTMENT table as a secondary table in order to include a department
name in your Employee class. A secondary table differs from a relationship, in
which one class is related to another by way of a relationship field. In a

Mapping CMP Beans

Appendix A CMP Mapping with the Sun ONE Studio 4 Interface 221

secondary table mapping, fields in the same class are mapped to two different
tables. A secondary table enables you to map your field directly to columns
that are not part of your primary table. You can use this pane to select
secondary tables, and to show how they are linked to the primary table.

A secondary table must be related to the primary table by one or more columns
whose associated rows have the same values in both tables. Normally, this is
defined as a foreign key between the tables. When you select a secondary table
from the drop-down menu, the Mapping Tool checks for a foreign key between
the two tables. If a foreign key exists, it is displayed as the reference key by
default.

a. Select a secondary table from the combo box.

Once you select a secondary table, the container-managed persistence
implementation checks to see if there is a foreign key between the primary
and secondary tables. If so, the foreign key is displayed as the default
reference key. If there is no foreign key, the editor displays Choose
Column, and you must set up a reference key.

b. To set up a reference key, click Choose Column and select a column from
the dropdown menu.

Once you pick a primary column, the choices in the secondary column are
limited to columns of compatible types. If no column is compatible, the
field displays No Compatible Columns. If you select a primary column
that is incompatible with your secondary column, the value of the
secondary column reverts to Choose Column.

You can select the Add Pair key to set up a complex key using more than
one pair of columns.

8. Click OK to save your selections.

NOTE If no pair of columns seems to relate in a logical manner, preventing
a logical reference key, you may want to reconsider your choice of a
secondary table.

Mapping CMP Beans

222 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

9. Click Next in the Mapping Tool to bring up the Field Mappings panel of the
Mapping Tool.

The Field Mappings panel displays all the persistent fields of the enterprise
bean and their mapping status. You can map a field to a column by selecting
the column in the drop-down menu for that field, or try to map all unmapped
fields by selecting Automap. Automap will make the most logical selections,
ignoring any relationship fields and any fields that have already been mapped.
It will not change any existing mappings.

If you want to map a field to a column from another table that is not available,
click Previous to return to the previous Mapping Tool page and add a
secondary table that contains the column you want.

Unmap works on whatever field or fields are selected. You can unmap a group
of fields at once by holding down the Shift key or Control key while selecting
the fields you want. If you want to unmap one item, choose Unmapped in the
drop-down menu for that field.

a. To map a field to multiple columns, click the ellipsis button (...) for the
appropriate field in the Field Mappings pane to display the Map Field to
Multiple Columns dialog box.

In this dialog box, you add columns to the list of mapped columns.
Columns are from the tables you have mapped to this class.You can
change the order of the columns by using Move Up/Move Down.

If you do not see the column you want to map, you might need to add a
secondary table to your mapping, or change the primary table you have
selected. If no columns are listed, you have not yet mapped a primary
table, or you have mapped a table that has no columns.

If you map a field to more than one column, all columns will be updated
with the value of the first column listed. Therefore, if the value of one of
the columns is changed outside of a container-managed persistence
application, the value will only be read if the change was made to that first
column. Writing a value to the database overwrites any conflicting changes
made to any other columns.

You must also make sure that if you map more than one field to any of
these columns, the mappings cannot partially overlap. Consider the
following three scenarios:

• Field A mapped to Columns A and B, Field B mapped to Column B.
Since the mappings only partially overlap, this example will get a
validation error at compilation.

Mapping CMP Beans

Appendix A CMP Mapping with the Sun ONE Studio 4 Interface 223

• Field A mapped to Column A, and Field B mapped to Column B. Since
there is no overlap, this mapping is allowed.

• Field A mapped to Columns A and B, Field B mapped to Columns A
and B. Since the mappings completely overlap, this mapping is
allowed.

b. Click OK to save the mapping.

Mapping Relationship Fields
When you have foreign keys between database tables, you usually want to
preserve those relationships in Java class references. Mapping CMR fields lets you
specify the relationships that correspond to the class reference fields.

1. To Map a Relationship Field, click the ellipsis button (...) in the Field Mappings
panel next to the drop-down menu of a relationship field to bring up the
Relationship Mapping editor.

To use the Relationship Mapping editor outside of the Mapping Tool, click the
relationship field in Explorer and edit its Mapping property.

a. In this pane, verify that the Related Class is set. If the related class is not
set, then set it. If the class you want to select is not persistence-capable, you
might need to cancel out of the editor, convert the class to
persistence-capable, then return.

b. Verify that the Related Field (if any) is also correct, and that the Primary
Table is set for the related class.

c. Select between linking the tables directly, or through a join table.

2. If your relationships are one-to-one or one-to-many, choose to link the tables
directly. Clicking Next opens the Map to Key pane of the Relationship
Mapping editor.

This pane shows:

❍ An existing mapping if there is one and there were no changes on the
initial setup page.

NOTE If you have a logical related field, you should choose a Primary
Table. That will create a managed relationship.

Mapping CMP Beans

224 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

❍ The default mapping if there is no existing mapping or the mapping is no
longer valid.

The editor attempts to determine the most logical key column pairs
between the two related classes, based on existing foreign keys. If there are
no foreign keys, you need to create the key column pairs by selecting local
and foreign columns. The columns in each pair are expected to have the
same value.

To create a complex key, use the Add Pair button to add additional Key
Column Pairs.

If the Finish button is disabled, you need to choose a key column pair.

3. If your relationship is many-to-many, link tables through a join table. Click
Next to open the Map to Key: Local to Join pane.

This pane shows:

❍ The first class and field in the relationship

❍ The join table to be used to create the relationship between the fields

❍ Key column pairs between the field join table and the table to which the
related class is mapped

In this pane, you choose a join table, then map the relationship field to a
key. This is only the relationship between the table This Class is mapped to
and the join table. If you don’t have a join table, go back to the previous
panel and select Link the Mapped Tables Directly.

Choose a join table that sits between the two tables that your classes are
mapped to. The Editor will attempt to determine the most logical key
column pairs between the join table and the table that This Class is
mapped to.

If the tables have a foreign key between them, the editor will use the
foreign key as the default key column pair. If there is no foreign key, then
you must create a key by choosing a pair of columns that will allow
navigation from the join table to the table to which This Class is mapped.
The columns in each pair are expected to have the same value.

To create a compound key, use Add pair to add additional Key Column
Pairs.

If the Next button is disabled, you need to pick a join table or make sure
that at least one key column pair exists that has columns on both sides.

EJB Persistence Properties

Appendix A CMP Mapping with the Sun ONE Studio 4 Interface 225

4. Click Next to open the Map to Key: Join to Foreign pane.

In this pane, you relate a second table to the join table you chose in the
previous pane.

The editor will attempt to determine the most logical key column pairs
between the join table and the table that the Related Class is mapped to.

If the tables have a foreign key between them, the editor will use the foreign
key as the default key column pair. If there is no foreign key, then you must
create a key by choosing a pair of columns that will allow navigation from the
join table to the table to which the Related Class is mapped. The columns in
each pair are expected to have the same value.

To create a compound key, use Add Pair to add additional key column pairs.

If the Finish button is disabled, you need to choose a valid key column pair.

5. Click Finish to return to the Field Mappings pane of the Mapping Tool.

6. Click Finish to close the Field Mappings pane and map the Java classes to the
database schema.

EJB Persistence Properties
Enterprise beans that use container-managed persistence have several unique
properties that can be specified outside the Mapping Tool.

The following table describes these unique properties.

EJB Persistence Properties

226 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

You can unmap a class by choosing <unmapped> from the drop-down menu for
the Mapped Primary Table property. When you unmap a currently mapped class,
a warning appears if there are field mappings or secondary tables. Click OK if you
are sure that you want to unmap the class. Otherwise, click Cancel to cancel the
mapping status change and leave the class mapped.

Click the Field Mapping tab at the bottom of the Properties window to see the field
mapping properties for a persistence-capable class.

Properties for CMP Enterprise Beans

Property Description

Mapped primary
table

The primary table you select for a persistence-capable class should
be the table in the schema that most closely matches the class. You
must specify a primary table in order to map a persistence-capable
class. See “Mapping Existing Enterprise Beans to a Schema,” on
page 219 for information on how to do this.

Mapped schema The schema containing the tables to which you are mapping the
persistence-capable class. The primary table, secondary tables, and
related classes must be from this schema. This setting cannot be
made until you capture the schema as described in “Capturing a
Schema,” on page 217.

Mapped secondary
table(s)

Secondary tables let you map columns that are not part of your
primary table to your class fields. For example, you might add a
DEPARTMENT table as a secondary table in order to include a
department name in your Employee class. You can add multiple
secondary tables, but no secondary table is required. This property
is only enabled when Mapped Primary Table is set. See page 98
and page 221 for more information on adding a secondary table.

Consistency levels Specifies container behavior in guaranteeing transactional
consistency of the data in the bean. If the consistency checking flag
element is not present, none is assumed. For further information
on consistency levels, see “consistency,” on page 115.

Fetch groups The fetched-with property specifies the fetch group
configuration for fields and relationships. A field may participate
in a hierarchical or independent fetch group. If the
fetched-with element is not present, the following value is
assumed: <fetched-with><none/></fetched-with>. Refer
to “fetched-with,” on page 117 for further information.

EJB Persistence Properties

Appendix A CMP Mapping with the Sun ONE Studio 4 Interface 227

EJB Persistence Properties

228 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

229

Appendix B

Elements Listings

This section provides alphabetic listings of the elements for the DTD files
associated with Enterprise JavaBeans (EJBs) in the Sun ONE Application Server 7
environment.

This section addresses the following topics:

• sun-ejb-jar_2_0-0.dtd File Elements

• sun-cmp-mapping_1_0.dtd File Elements

sun-ejb-jar_2_0-0.dtd File Elements
Explanations on these elements are contained in “Elements in the sun-ejb-jar.xml
File,” on page 176.

as-context

auth-method

bean-cache

bean-pool

cache-idle-timeout-in-seconds

caller-propagation

cmp

cmp-resource

commit-option

concrete-impl

confidentiality

default-resource-principal

sun-ejb-jar_2_0-0.dtd File Elements

230 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

ejb

ejb-name

ejb-ref

ejb-ref-name

enterprise-beans

establish-trust-in-client

establish-trust-in-target

finder

gen-classes

group-name

integrity

ior-security-config

is-cache-overflow-allowed

is-one-one-cmp

is-read-only-bean

jms-durable-subscription-name

jms-max-messages-load

jndi-name

local-home-impl

local-impl

mapping-properties

max-cache-size

max-pool-size

max-wait-time-in-millis

mdb-connection-factory

method-name

name

one-one-finders

pass-by-reference

password

pc-class

sun-ejb-jar_2_0-0.dtd File Elements

Appendix B Elements Listings 231

pm-class-generator

pm-config

pm-descriptor

pm-descriptors

pm-identifier

pm-inuse

pm-mapping-factory

pm-version

pool-idle-timeout-in-seconds

principal

principal-name

query-filter

query-params

query-variables

realm

refresh-period-in-seconds

remote-home-impl

remote-impl

removal-timeout-in-seconds

required

res-ref-name

resize-quantity

resource-env-ref

resource-env-ref-name

resource-ref

role-name

sas-context

security-role-mappingserver-name

steady-pool-size

sun-ejb-jar

transport-config

sun-cmp-mapping_1_0.dtd File Elements

232 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

unique-id

victim-selection-policy

sun-cmp-mapping_1_0.dtd File Elements
Explanations on these elements are contained in “Mapping Fields and
Relationships,” on page 94 and “Elements in the sun-cmp-mappings.xml File,” on
page 112.

check-all-at-commit

check-modified-at-commit

cmp-field-mapping

cmr-field-mapping

cmr-field-name

column-name

column-pair

consistency

ejb-name

entity-mapping

fetched-with

field-name

level

lock-when-loaded

lock-when-modified

named-group

none

read-only

schema

secondary-table

sun-cmp-mapping

sun-cmp-mappings

table-name

Index 233

Index

A
abstract schema 84, 217
access

overview 29
to resources 32

administering message-driven beans 136
administering transactions 148
afterBegin 154
afterCompletion 154
allow-concurrent-access element 77
anonymous role 168
ANYONE role 168
architecture 21, 27

entity beans 57
as-context element 192
assembling EJBs 169–213
attributes

for transactions 150
in deployment descriptor 175

authentication 162
auth-method element 192
authorization 162
auto reconnection feature 137

B
bean class definition

creating for BMP entity beans 68
creating for sessions beans 50

bean-cache element 204
bean-managed persistence 58

bean class definition 68
overview 33

bean-managed security 167
bean-managed transactions 147, 156

prohibited methods 157
return without commit 157

bean-pool element 205
beforeCompletion 154
BLOB support 92
business methods for session beans 51

C
cache management 24
caching elements for the DTD 203
caller-propagation element 192
capture-schema utility 88
capturing a schema 217
check-all-at-commit element 113
check-modified-at-commit element 113

234 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

class elements for the DTD 210
client view guidelines 37
clients accessing EJBs 29
cmp element 197
cmp-field-mapping element 100, 113
cmp-impl element 198
cmp-resource 104
cmp-resource element 198
CMR fields 223
cmr-field-mapping element 114
cmr-field-name element 103, 114, 115
Collection fields 84
column-name element 100, 103, 115
column-pair element 103, 115
commit options 147, 148, 155
commit-option element 206
concurrent access 78, 132
confidentiality element 193
configuring

for 1.1 finders (CMP) 106
resource manager (CMP) 104

connection factory 135, 138
connections to resources 32
consistency element 99, 115, 226
container

entity beans 57
overview 28
session beans 43

container-managed persistence 59, 79–122
assembly and deployment 85
configuring 1.1 finders 106
data type for mapping 90
deployment 104
elements 112
implementing 86–122
mapping 90, 217–226
operations 87
overview 33, 81–85
properties 225
relationships 83
resource manager 104
schema mapping 219
setting isolation level 158
support 80

third-party support 110
container-managed transactions 52, 146, 149–155

attributes 150
for message-driven beans 137
prohibited methods 155
rollback 154

D
data types for mapping 90
database connections, overview 33
database schema, capturing 88, 89, 217
default-resource-principal element 193
demarcation models for transactions 146
deployment

container-managed persistence 104
overview 39
read-only beans 77

deployment descriptors
overview 39, 170

deployment, dynamic 171
design factors 34
DTD file

caching elements 203
class elements 210
elements 176
general elements 176
messaging elements 190
persistence elements 196
pooling elements 203
reference elements 185
role mapping elements 183
security elements 191

dynamic deployment 171

E
EJB 2.0 summary of changes 20
ejb element 177
EJB QL 21, 84, 105, 106
ejbActivate 71

Index 235

EJBContext 157, 167
ejbCreate 49, 51, 69, 70
ejbFindByPrimaryKey 69, 73
ejbFindXXX 74
ejb-jar.xml file 140, 170
ejbLoad 71
ejb-name element 116, 180
EJBObject 52
ejbPassivate 75
ejbPostCreate 69
EJB-QL 80, 84
ejb-ref element 185
ejb-ref-name element 186
ejbRemove 73, 134
EJBs

container 28
design factors 34
elements 180
general usage guidelines 36
interfaces 29
overview 25–34
transaction attributes 151
user authorization 162

ejbStore 71
elements in XML files 112, 180, 229
enterprise-beans element 180
entity beans 55

abstract schema 84
container-managed persistence mapping 217
developing 59–78
overview 27, 56–59
persistence 57
read-only beans 74
transaction attributes 151

entity-mapping 96, 116
establish-trust-in-client element 193
establish-trust-in-target element 193

F
fetched-with element 101, 103, 117, 226
field mapping 223

field-name element 118
finder element 198
finder methods 73, 106
flat transactions 145
Forte for Java 17, 24

G
general elements in DTD file 176
getCallerPrincipal 167
getRollbackOnly 157
getStatus 158
getUser 167
getUserTransaction 155
global transactions 145
granularity 38
group-name element 183

H
home interface 29

I
IDE 24
identification 162
integrity element 194
interfaces 30, 37, 47, 48, 50, 65

entity beans 61
overview 29

ior-security-config element 194
isCallerInRole 167
isolation levels for transactions 158
is-one-one-cmp element 199
is-read-only-bean element 77, 181

236 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

J
J2EE transaction manager 144
JAR file, overview 170
Java language casts 37
Java Message Service. See JMS.
Java Transaction API 144

transactions 147
transactions (bean-managed) 157

Java Transaction Service 144
java.ejb.CreateException 51, 70
java.ejb.FinderException 74
java.rmi.RemoteException 50, 69, 74
java.sql.Connection 157
javax.ejb.CreateException 50
javax.ejb.EJBContext 155
javax.ejb.EJBHome 50
javax.ejb.EJBLocalHome 49, 65
javax.ejb.EJBLocalObject 48
javax.ejb.EJBMetaData 49
javax.ejb.SessionSynchronization 46, 51
javax.rmi.PortableRemote.Object.narrow 37
javax.transactionUserTransaction 155
JDBC

transaction type 147
transactions (bean-managed) 156

JDBC or JTA 156
JDOQL 106
JMS 135, 137
jms-durable-subscription-name element 190
jms-max-messages-load 190
JNDI 32, 33

for message-driven beans 135
for transactions 147
name for container-managed persistence 104

jndi-name 105
jndi-name element 186

L
level element 118

local home interface 48, 64
overview 30

local interface
entity beans 65
overview 30
session beans 48

local programming model 37
local transactions 145
lock-when-loaded element 118
lock-when-modified element 119

M
Mandatory attribute 152
many-to-many relationships 84
mapping 110

data types 90
elements in DTD file 112
features 89
for CMP 217–226
multiple columns (CMP) 222
primary table 226
relationship fields 223
schema 219, 226
secondary table 226
tool 90

mapping property 223
Mapping Tool (CMP) 218, 222
mapping-properties element 199
max-cache-size element 207
max-pool-size element 207
MDB file samples 140
mdb-connection-factory 135, 138
mdb-connection-factory element 190
mdb-container 137
mdb-container element 136
meet-in-the-middle mapping 90
message-driven bean

pooling 136
message-driven beans 129–140

bean class definition 132
connection factory 135

Index 237

developing 132
DTD elements 190
JMS limitation 138
monitoring 136
onMessage runtime exception 139
overview 27, 130–136
pool monitoring 138
sample XML files 140
transaction attributes 151
transactions 131
using run-as 167

messaging elements 190
method permissions, declaring 164
method-name element 199
method-permission element 164
Microsoft SQLServer 2000 80
monitoring 24
monitoring transactions 149
multiple columns 100
multiple columns, mapping 222

N
name element 194
named-group element 119
nested transactions 145
none element 102, 119
NotSupported attribute 152

O
O/R mapping tool 110
one-one-finders element 200
one-to-many relationships 84
one-to-one relationships 83
onMessage 133, 139, 167
Oracle 80, 92
overview of EJBs 19–34

P
packaging. See assembly.
param-name element 183, 184, 186, 187, 188
pass-by-reference element 23, 186
pass-by-value semantics 186
password element 194
pc-class element 200
persistence elements for the DTD file 196
persistence manager 104
persistence overview 57
persistence properties 225
persistence-manager-factory-resource 104
pm-class-generator element 200
pm-config element 200
pm-descriptor element 200
pm-descriptors 104
pm-descriptors element 201
pm-identifier element 202
pm-inuse element 202
pm-mapping-factory element 202
pm-version element 202
Pointbase 80
pool monitoring for MDBs 138
pool-idle-timeout-in-seconds 207, 208
pooling 28, 43, 46, 75, 110, 132, 136
pooling elements for the DTD 203
poolng 24
primary key class 80
primary table 220
primary table mapping 226
principal element 183
principal-name element 184
programmatic security 167
properties (persistence) 225

Q
query-filter element 203
query-params element 203

238 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

query-variables element 203

R
read-only beans 23, 59, 74–77

deploying 77
refreshing 76

read-only element 101, 119
ReadOnlyBeanNotifier 76
realm element 194
reference elements in the DTD file 185
refresh-period-in-seconds 75, 182
relationships 83

many-to-many 84
mapping fields 223
one-to-many 84
one-to-one 83

remote home interface
overview 29
session beans 49

remote interface
overview 29
session beans 47

remote programming model 37
removal-timeout-in-seconds element 208
remove methods for session beans 49, 63
Required attribute 152
required element 195
RequiresNew attribute 152
resize-quantity element 208
resource-env-ref element 188
resource-env-ref-name element 188
resource-ref element 189
resources, unprotected 168
res-ref-name element 187
restrictions

message-driven beans 137
on container-managed persistence 111
on session bean transactions 53

return without commit (bean-managed) 157
rich client 171
RMI/IIOP 50

role mapping elements for DTD 183
role-link element 165
role-name element 184
roles, security 162

declaring references 165
defining 163

rollback 154
method 155, 158
transactions 158

run-as identity 167

S
sample XML files 140, 213
sas-context element 195
schema 95
schema capture 121
schema element 119
schema mapping 219, 226
schema, capturing 88, 217
secondary table 87, 95, 98, 100, 113, 221
secondary-table 100
security 161–168

assembly and deployment 163
declaring method permissions 164
declaring role reference 165
DTD elements 191
overview 162–163
programmatic security 167
role reference 163
roles 162
specifying identifies 166
unprotected EJB-tier resources 168

security-identity element 166
security-role element 163, 165
security-role-mapping element 184
security-role-ref element 165
server.xml file 104, 136, 137, 148, 168
server-name element 184
session beans 41–52

container 43
creating bean class definition 50

Index 239

developing 44, 52
overview 42
restrictions 53
setting isolation levels 158
transaction attributes 151

SessionSynchronization interface 154
setAutoCommit 155
setEntityContext 73
setMessageDrivenContext 133
setRollbackOnly 155, 157
setTransactionIsolation 158
setTransactionTimeout 158
stateful session beans 45

overview 26
transactions 157

stateless session beans 46
overview 27

steady-pool-size 209
steady-pool-size element 209
stubs and skeletons 171
subelements 174
Sun customer support 18
Sun ONE Application Server

value-added features 20
Sun ONE Studio 17
Sun ONE Studio 4 24, 87, 88, 171, 172, 217
sun-cmp-mapping 95
sun-cmp-mapping element 120
sun-cmp-mapping.xml 94, 112, 122
sun-cmp-mappings 95, 120
sun-cmp-mappings.xml 36, 85, 170
sun-ejb-jar element 182
sun-ejb-jar.xml 104
sun-ejb-jar.xml file 170

sample 141
sun-ejb-jar_2_0.dtd file 174
sun-ejb-jar_2_0-0.dtd file 176
Supports attribute 153
Sybase 80
synchronization 78

T
table-name element 120, 121
third-party support for CMP 110
timeouts, setting for transactions 158
transaction attributes for EJBs 151
transaction.timeout property 158
TransactionRequiredException 152
transactions 143–159

administration and monitoring 148
bean-managed 147
commit options 147
container-managed 146
demarcation models 146
flat 145
global 145
isolation levels 158
local 145
message-driven beans 131
nested 145
overview 33, 144–149
rollback 158
setting timeouts 158
specifications 144

transaction-service element 148
transport-config element 195
tutorial for Sun ONE Studio 4 24

U
unique-id element 182
unprotected resources 168
unsetEntityContext 73
URL connections 33
use-caller-identity 166

V
validateLogin 51
value added features 20
value additions for product 23

240 Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology • September 2002

vendors 110, 199
verifier tool 36
victim-selection-policy element 210

X
XA protocol 145
XML files 170

elements 176
overview 39
sample 140, 213

	Developer’s Guide to Enterprise JavaBeans Technology
	Contents
	About This Guide
	Who Should Use This Guide
	Using the Documentation
	How This Guide Is Organized
	Related Information
	Documentation Conventions
	General Conventions
	Conventions Referring to Directories

	Product Support

	Introducing the Sun ONE Application Server Enterprise JavaBeans Technology
	Summary of EJB 2.0 Changes
	EJB Architecture
	Value Added Features
	Read-Only Beans
	pass-by-reference
	Pooling and Caching Features
	Monitoring
	Integration with Sun ONE Studio 4
	Dynamic Deployment and Reloading

	About Enterprise JavaBeans
	What Is an Enterprise JavaBean?
	Types of Beans
	EJB Flow
	The EJB Container
	Interfaces
	Pooling and Caching
	How Enterprise Beans Access Resources
	Transaction Management
	How Application Security Works

	About Developing an Effective Application
	General Process for Creating Enterprise Beans
	Bean Usage Guidelines
	Client View Guidelines
	Remote or Local Interface Guidelines
	Accessing Sun ONE Application Server Functionality

	About EJB Assembly and Deployment

	Using Session Beans
	About Session Beans
	Session Bean Characteristics
	The Container

	Developing Session Beans
	Development Requirements
	Determining Session Bean Usage
	Providing Interfaces
	Creating the Bean Class Definition

	Restrictions and Optimizations
	Optimizing Session Bean Performance
	Restricting Transactions

	Using Entity Beans
	About Entity Beans
	Entity Bean Characteristics
	The Container
	Persistence
	Read-Only Beans

	Developing Entity Beans
	Determining Entity Bean Usage
	Responsibilities of the Bean Developer
	Defining the Primary Key Class
	Defining Remote Interfaces
	Defining Local Interfaces
	Creating the Bean Class Definition (for Bean-Managed Persistence)

	Using Read-Only Beans
	Read-Only Bean Characteristics and Life Cycle
	Read-Only Bean Good Practices
	Refreshing Read-Only Beans
	Deploying Read Only Beans

	Handling Synchronization of Concurrent Access

	Using Container-Managed Persistence for Entity Beans
	Sun ONE Application Server Support
	About Container-Managed Persistence
	CMP Components
	Relationships
	Abstract Schema
	Deployment Descriptors
	Persistence Manager

	Using Container-Managed Persistence
	Process Overview
	Mapping Capabilities
	Supported Data Types for Mapping
	BLOB Support
	Using the capture-schema Utility
	Mapping Fields and Relationships
	Configuring the Resource Manager
	Using EJB QL
	Configuring Queries for 1.1 Finders

	Third-Party Pluggable Persistence Manager API
	Restrictions and Optimizations
	Unique Database Schema Names in EAR File
	Limitations on Container-Managed Persistence Protocol
	Restrictions on Remote Interfaces

	Elements in the sun-cmp-mappings.xml File
	Examples
	Sample Schema Definition
	Sample CMP Mapping XML File
	Sample EJB QL Queries

	Using Message-Driven Beans
	About Message-Driven Beans
	Message-Driven Beans Differences
	Message-Driven Bean Characteristics
	Transaction Management
	Concurrent Message Processing

	Developing Message-Driven Beans
	Creating the Bean Class Definition
	Configuration

	Restrictions and Optimizations
	JMS Limitation
	Pool Tuning and Monitoring
	onMessage Runtime Exception

	Sample Message-Driven Bean XML Files
	Sample ejb-jar.xml File
	Sample sun-ejb-jar.xml File

	Handling Transactions with Enterprise Beans
	JTA and JTS Transaction Support
	About Transaction Handling
	Flat Transactions
	Global and Local Transactions
	Demarcation Models
	Commit Options
	Administration and Monitoring

	Using Container-Managed Transactions
	Specifying Transaction Attributes
	Rolling Back a Container-Managed Transaction
	Synchronizing a Session Bean's Instance Variables
	Methods Not Allowed in Container-Managed Transactions

	Using Bean-Managed Transactions
	Choosing the Type of Transactions
	Returning Without Committing
	Methods Not Allowed in Bean-Managed Transactions

	Setting Transaction Timeouts
	Handling Isolation Levels

	Developing Secure Enterprise Beans
	About Secure Enterprise Beans
	Authorization and Authentication
	Security Roles
	Deployment

	Defining Security Roles
	Declaring Method Permissions
	Declaring Security Role References
	Specifying Security Identities
	The run-as Identity

	Using Programmatic Security
	Handling Unprotected EJB-Tier Resources

	Assembling and Deploying Enterprise Beans
	EJB Structure
	Creating Deployment Descriptors
	Deploying Enterprise Beans
	Using the Administration Interface
	Using the Command-Line Interface
	Using the Sun ONE Studio 4 IDE
	Reloading Enterprise Beans

	The sun-ejb-jar_2_0-0.dtd File Structure
	Subelements
	Data
	Attributes

	Elements in the sun-ejb-jar.xml File
	General Elements
	Role Mapping Elements
	Reference Elements
	Messaging Elements
	Security Elements
	Persistence Elements
	Pooling and Caching Elements
	Class Elements

	Sample EJB XML Files
	Sample ejb-jar.xml File
	Sample sun-ejb-jar.xml File

	CMP Mapping with the Sun ONE Studio 4 Interface
	Mapping CMP Beans
	Capturing a Schema
	Mapping Existing Enterprise Beans to a Schema
	Mapping Relationship Fields

	EJB Persistence Properties

	Elements Listings
	sun-ejb-jar_2_0-0.dtd File Elements
	sun-cmp-mapping_1_0.dtd File Elements

	Index

