
Developer’s Guide
SunTM ONE Application Server

Version 7, Update 1

817-2171-10
March 2003

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

THIS SOFTWARE CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE,
DISCLOSURE OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN
MICROSYSTEMS, INC.U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc.
standard license agreement and applicable provisions of the FAR and its supplements. Use is subject to license terms.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java and the Sun ONE logo are trademarks or registered trademarks of Sun Microsystems, Inc.
in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other
countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are
strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists,
including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

__

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

CE LOGICIEL CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN
MICROSYSTEMS, INC. SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS
L’AUTORISATION EXPRESSE, ÉCRITE ET PRÉALABLE DE SUN MICROSYSTEMS, INC. Droits du gouvernement américain,
utlisateurs gouvernmentaux - logiciel commercial. Les utilisateurs gouvernmentaux sont soumis au contrat de licence standard de
Sun Microsystems, Inc., ainsi qu aux dispositions en vigueur de la FAR [(Federal Acquisition Regulations) et des suppléments à
celles-ci. Distribué par des licences qui en restreignent l’utilisation.

Cette distribution peut comprendre des composants développés pardes tierces parties.

Sun, Sun Microsystems, le logo Sun, Java et le logo Sun ONE sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et licenciée exlusivement par X/Open Company, Ltd.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont régis par la législation américaine en
matière de contrôle des exportations et peuvent être soumis au droit d’autres pays dans le domaine des exportations et importations.
Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires, des missiles, des armes biologiques et chimiques ou du
nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous
embargo des États-Unis, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe ou indirecte, aux exportations
des produits ou des services qui sont régi par la législation américaine en matière de contrôle des exportations ("U.S. Commerce
Department’s Table of Denial Orders") et la liste de ressortissants spécifiquement désignés ("U.S. Treasury Department of Specially
Designated Nationals and Blocked Persons"), sont rigoureusement interdites.

3

Contents

About This Guide . 9
Who Should Use This Guide . 9
Using the Documentation . 10
How This Guide Is Organized . 12
Related Information . 13
Documentation Conventions . 14

General Conventions . 14
Conventions Referring to Directories . 15

Product Support . 16

Chapter 1 Designing Applications . 17
Application Requirements . 17
About the J2EE Programming Model . 18

The Client Layer . 19
Browser Clients . 19
Simple CORBA Clients . 19
ACC Clients . 20
Web Service Clients . 20
JMS Clients . 20

The Presentation Layer . 21
Servlets . 21
JSPs . 21
Static Content . 22
SHTML . 22
CGI . 22

The Business Logic Layer . 22
Session Beans . 23
Entity Beans . 23
Message-Driven Beans . 23

The Data Access Layer . 24
Best Practices for Designing J2EE Applications . 24

4 Sun ONE Application Server Developer’s Guide • March 2003

Presenting Data with Servlets and JSPs . 25
Creating Reusable Application Code . 25
Modularizing Applications . 26

Functional Isolation . 26
Reusable Code . 27
Prepackaged Components . 28
Shared Framework Classes . 28
Session and Security Issues . 28

Chapter 2 Developing J2EE Applications . 29
Setting Up a Development Environment . 29

Installing and Preparing the Server for Development . 29
Development Tools . 30

The asadmin Command . 31
The Administration Interface . 31
Sun ONE Studio . 31
Apache Ant . 31
Migration Tools . 32
Profiling Tools . 32
Source Code Control Tools . 32
Other Tools Supported Through Sun ONE Studio . 33

Steps for Creating Components . 33
Creating Web Applications . 33
Creating Enterprise JavaBeans . 34
Creating ACC Clients . 35
Creating Connectors . 36
Creating Complete Applications . 37

Chapter 3 Securing J2EE Applications . 39
Sun ONE Application Server Security Goals . 40
Sun ONE Application Server Specific Security Features . 40
Sun ONE Application Server Security Model . 41

Web Application and URL Authorizations . 41
Invocation of Enterprise Bean Methods . 42
ACC Client Invocation of Enterprise Bean Methods . 42

Security Responsibilities Overview . 42
Application Developer . 43
Application Assembler . 43
Application Deployer . 43

Common Security Terminology . 44
Authentication . 44
Authorization . 44

Contents 5

Realms . 44
Role Mapping . 45

Container Security . 45
Programmatic Security . 45
Declarative Security . 46

Application Level Security . 46
Web Component Level Security . 46
EJB Level Security . 47

Guide to Security Information . 47
User Information . 47
Security Roles . 48

Realm Configuration . 48
How to Configure a Realm and Set the Default Realm . 49

Using the Administration Interface . 49
Using the asadmin Command . 50
Editing the server.xml File . 51

Supported Realms . 51
file . 51
ldap . 54
certificate . 55
solaris . 57
Creating a Custom Realm . 57

The server.policy File . 58
Default Permissions . 58
Changing Permissions for an Application . 59
Disabling the Security Manager . 60

Programmatic Login . 61
Precautions . 61
Granting Programmatic Login Permission . 62
The ProgrammaticLogin Class . 62

Chapter 4 Assembling and Deploying J2EE Applications . 63
Overview of Assembly and Deployment . 63

Modules . 64
Applications . 65
J2EE Standard Descriptors . 67
Sun ONE Application Server Descriptors . 68
Naming Standards . 69
JNDI Naming . 69
Directory Structure . 71
Runtime Environments . 72

Module Runtime Environment . 72
Application Runtime Environment . 73

6 Sun ONE Application Server Developer’s Guide • March 2003

Classloaders . 74
The Classloader Hierarchy . 75
Classloader Universes . 77
Circumventing Classloader Isolation . 78

Sample Applications . 80
Assembling Modules and Applications . 82

Tools for Assembly . 82
Apache Ant . 83
Sun ONE Studio . 83
The Deployment Descriptor Verifier . 83

Assembling a WAR Module . 87
Assembling an EJB JAR Module . 88
Assembling a Lifecycle Module . 89
Assembling an Application . 89
Assembling an ACC Client . 90
Assembling a J2EE CA Resource Adapter . 91

Deploying Modules and Applications . 92
Deployment Names and Errors . 92
The Deployment Life Cycle . 93

Dynamic Deployment . 93
Disabling a Deployed Application or Module . 93
Dynamic Reloading . 94

Tools for Deployment . 95
Apache Ant . 95
Sun ONE Studio . 95
The asadmin Command . 96
The Administration Interface . 98

Deployment by Module or Application . 98
Deploying a WAR Module . 99
Deploying an EJB JAR Module . 99
Deploying a Lifecycle Module . 100

The asadmin Command . 100
The Administration Interface . 101

Deploying an ACC Client . 102
Deploying a J2EE CA Resource Adapter . 103
Access to Shared Frameworks . 103

Apache Ant Assembly and Deployment Tool . 103
Ant Tasks for Sun ONE Application Server 7 . 104

sun-appserv-deploy . 104
sun-appserv-undeploy . 108
sun-appserv-instance . 111
sun-appserv-component . 115
sun-appserv-admin . 118

Contents 7

sun-appserv-jspc . 119
Reusable Subelements . 121

server . 122
component . 125
fileset . 128

The Application Deployment Descriptor Files . 128
The sun-application_1_3-0.dtd File . 128

Subelements . 129
Data . 130
Attributes . 130

Elements in the sun-application.xml File . 130
sun-application . 131
web . 131
web-uri . 132
context-root . 132
pass-by-reference . 132
unique-id . 132
security-role-mapping . 133
role-name . 133
principal-name . 133
group-name . 133

Sample Application XML Files . 134
Sample application.xml File . 134
Sample sun-application.xml File . 134

Chapter 5 Debugging J2EE Applications . 135
Enabling Debugging . 135

Using the Administration Interface . 136
Editing the server.xml File . 136

JPDA Options . 137
Using Sun ONE Studio for Debugging . 137
Debugging JSPs . 138
Generating a Stack Trace for Debugging . 138
Sun ONE Message Queue Debugging . 138
Logging . 139

Using the Administration Interface . 139
Editing the server.xml File . 139

Profiling . 140
The HPROF Profiler . 140
The Optimizeit Profiler . 143
The Wily Introscope Profiler . 144
The JProbe Profiler . 144

8 Sun ONE Application Server Developer’s Guide • March 2003

Chapter 6 Developing Lifecycle Listeners . 147
Server Life Cycle Events . 147
The LifecycleListener Interface . 148
The LifecycleEvent Class . 150
The Server Lifecycle Event Context . 150
Assembling and Deploying a Lifecycle Module . 151
Considerations for Lifecycle Modules . 152

Glossary . 153

Index . 181

9

About This Guide

This guide describes how to create and run Java 2 Platform, Enterprise Edition
(J2EE) applications that follow the new open Java standards model for Servlets,
Enterprise JavaBeans (EJB components), and JavaServer Pages (JSPs) on the Sun™
Open Net Environment (Sun ONE) Application Server 7. In addition to describing
programming concepts and tasks, this guide offers sample code, implementation
tips, reference material, and a glossary.

This preface contains information about the following topics:

• Who Should Use This Guide

• Using the Documentation

• How This Guide Is Organized

• Related Information

• Documentation Conventions

• Product Support

Who Should Use This Guide
The intended audience for this guide is the person who develops, assembles, and
deploys J2EE applications in a corporate enterprise.

This guide assumes you are familiar with the following topics:

• J2EE specification

• HTML

• Java programming

Using the Documentation

10 Sun ONE Application Server Developer’s Guide • March 2003

• Java APIs as defined in servlet, JSP, EJB, and JDBC specifications

• Structured database query languages such as SQL

• Relational database concepts

• Software development processes, including debugging and source code
control

Using the Documentation
The Sun ONE Application Server manuals are available as online files in Portable
Document Format (PDF) and Hypertext Markup Language (HTML) formats, at:

http://docs.sun.com/

The following table lists tasks and concepts described in the Sun ONE Application
Server manuals. The left column lists the tasks and concepts, and the right column
lists the corresponding manuals.

Sun ONE Application Server Documentation Roadmap

For information about See the following

Late-breaking information about the software and the
documentation

Release Notes

Supported platforms and environments Platform Summary

Introduction to the application server, including new
features, evaluation installation information, and
architectural overview.

Getting Started Guide

Installing Sun ONE Application Server and its various
components (sample applications, Administration interface, Sun
ONE Message Queue).

Installation Guide

Creating and implementing J2EE applications that follow
the open Java standards model on the Sun ONE
Application Server 7. Includes general information about
application design, developer tools, security, assembly,
deployment, debugging, and creating lifecycle modules.

Developer’s Guide

Creating and implementing J2EE applications that follow
the open Java standards model for web applications on the
Sun ONE Application Server 7. Discusses web application
programming concepts and tasks, and provides sample
code, implementation tips, and reference material.

Developer’s Guide to Web
Applications

Using the Documentation

About This Guide 11

Creating and implementing J2EE applications that follow
the open Java standards model for enterprise beans on the
Sun ONE Application Server 7. Discusses EJB
programming concepts and tasks, and provides sample
code, implementation tips, and reference material.

Developer’s Guide to
Enterprise JavaBeans
Technology

Creating clients that access J2EE applications on the Sun
ONE Application Server 7

Developer’s Guide to Clients

Creating web services Developer’s Guide to Web
Services

J2EE features such as JDBC, JNDI, JTS, JMS, JavaMail,
resources, and connectors

Developer’s Guide to J2EE
Features and Services

Creating custom NSAPI plugins Developer’s Guide to NSAPI

Performing the following administration tasks:

• Using the Administration interface and the command line
interface

• Configuring server preferences

• Using administrative domains

• Using server instances

• Monitoring and logging server activity

• Configuring the web server plugin

• Configuring the Java Messaging Service

• Using J2EE features

• Configuring support for CORBA-based clients

• Configuring database connectivity

• Configuring transaction management

• Configuring the web container

• Deploying applications

• Managing virtual servers

Administrator’s Guide

Editing server configuration files Administrator’s Configuration
File Reference

Sun ONE Application Server Documentation Roadmap (Continued)

For information about See the following

How This Guide Is Organized

12 Sun ONE Application Server Developer’s Guide • March 2003

How This Guide Is Organized
This guide provides a Sun ONE Application Server environment overview for
designing programs, and includes the following topics:

• Chapter 1, “Designing Applications”

This chapter summarizes the Sun ONE Application Server application design
process and offers effective development guidelines.

• Chapter 2, “Developing J2EE Applications”

This chapter describes how to set up a development environment and provides
basic steps for creating application components.

• Chapter 3, “Securing J2EE Applications”

This chapter describes how to write secure J2EE applications, which contain
components that perform user authentication and access authorization for
servlets and EJB business logic.

Configuring and administering security for the Sun ONE
Application Server 7 operational environment. Includes
information on general security, certificates, and SSL/TLS
encryption. HTTP server-based security is also addressed.

Administrator’s Guide to
Security

Configuring and administering service provider
implementation for J2EE CA connectors for the Sun ONE
Application Server 7. Includes information about the
Administration Tool, DTDs and provides sample XML
files.

J2EE CA Service Provider
Implementation
Administrator’s Guide

Migrating your applications to the new Sun ONE Application
Server 7 programming model from the Netscape Application
Server version 2.1, including a sample migration of an Online
Bank application provided with Sun ONE Application Server

Migration Guide

Using Sun ONE Message Queue. The Sun ONE Message
Queue documentation at:

http://docs.sun.com/?p=/
coll/S1_MessageQueue_30

Sun ONE Application Server Documentation Roadmap (Continued)

For information about See the following

Related Information

About This Guide 13

• Chapter 4, “Assembling and Deploying J2EE Applications”

This chapter describes the contents of Sun ONE Application Server modules
and how these modules are assembled separately or together in an application.

• Chapter 5, “Debugging J2EE Applications”

This chapter gives guidelines for debugging applications in Sun ONE
Application Server 7.

• Chapter 6, “Developing Lifecycle Listeners”

This chapter describes how to create and use a lifecycle module, which is
automatically initiated at server startup and notified of server shutdown.

Finally, a Glossary and Index are provided.

Related Information
You can find a directory of URLs for the official specifications at
install_dir/docs/index.htm. Additionally, we recommend the following resources:

General J2EE Information:

Core J2EE Patterns: Best Practices and Design Strategies by Deepak Alur, John Crupi,
& Dan Malks, Prentice Hall Publishing

Java Security, by Scott Oaks, O’Reilly Publishing

Programming with Servlets and JSPs:

Java Servlet Programming, by Jason Hunter, O’Reilly Publishing

Java Threads, 2nd Edition, by Scott Oaks & Henry Wong, O’Reilly Publishing

Programming with EJB components:

Enterprise JavaBeans, by Richard Monson-Haefel, O’Reilly Publishing

Programming with JDBC:

Database Programming with JDBC and Java, by George Reese, O’Reilly Publishing

JDBC Database Access With Java: A Tutorial and Annotated Reference (Java Series), by
Graham Hamilton, Rick Cattell, & Maydene Fisher

Documentation Conventions

14 Sun ONE Application Server Developer’s Guide • March 2003

Documentation Conventions
This section describes the types of conventions used throughout this guide:

• General Conventions

• Conventions Referring to Directories

General Conventions
The following general conventions are used in this guide:

• File and directory paths are given in UNIX® format (with forward slashes
separating directory names). For Windows versions, the directory paths are the
same, except that backslashes are used to separate directories.

• URLs are given in the format:

http://server.domain/path/file.html

In these URLs, server is the server name where applications are run; domain is
your Internet domain name; path is the server’s directory structure; and file is
an individual filename. Italic items in URLs are placeholders.

• Font conventions include:

❍ The monospace font is used for sample code and code listings, API and
language elements (such as function names and class names), file names,
pathnames, directory names, and HTML tags.

❍ Italic type is used for code variables.

❍ Italic type is also used for book titles, emphasis, variables and placeholders,
and words used in the literal sense.

❍ Bold type is used as either a paragraph lead-in or to indicate words used in
the literal sense.

• Installation root directories for most platforms are indicated by install_dir in
this document. Exceptions are noted in “Conventions Referring to Directories”
on page 15.

By default, the location of install_dir on most platforms is:

❍ Solaris 8 non-package-based Evaluation installations:

user’s home directory/sun/appserver7

Documentation Conventions

About This Guide 15

❍ Solaris unbundled, non-evaluation installations:

/opt/SUNWappserver7

❍ Windows, all installations:

C:\Sun\AppServer7

For the platforms listed above, default_config_dir and install_config_dir are
identical to install_dir. See “Conventions Referring to Directories” on page 15
for exceptions and additional information.

• Instance root directories are indicated by instance_dir in this document, which
is an abbreviation for the following:

default_config_dir/domains/domain/instance

• UNIX-specific descriptions throughout this manual apply to the Linux
operating system as well, except where Linux is specifically mentioned.

Conventions Referring to Directories
By default, when using the Solaris 8 and 9 package-based installation and the
Solaris 9 bundled installation, the application server files are spread across several
root directories. These directories are described in this section.

• For Solaris 9 bundled installations, this guide uses the following document
conventions to correspond to the various default installation directories
provided:

❍ install_dir refers to /usr/appserver/, which contains the static portion of
the installation image. All utilities, executables, and libraries that make up
the application server reside in this location.

❍ default_config_dir refers to /var/appserver/domains, which is the default
location for any domains that are created.

❍ install_config_dir refers to /etc/appserver/config, which contains
installation-wide configuration information such as licenses and the
master list of administrative domains configured for this installation.

NOTE Forte for Java 4.0 has been renamed to Sun ONE Studio 4
throughout this manual.

Product Support

16 Sun ONE Application Server Developer’s Guide • March 2003

• For Solaris 8 and 9 package-based, non-evaluation, unbundled installations,
this guide uses the following document conventions to correspond to the
various default installation directories provided:

❍ install_dir refers to /opt/SUNWappserver7, which contains the static
portion of the installation image. All utilities, executables, and libraries
that make up the application server reside in this location.

❍ default_config_dir refers to /var/opt/SUNWappserver7/domainswhich is
the default location for any domains that are created.

❍ install_config_dir refers to /etc/opt/SUNWappserver7/config, which
contains installation-wide configuration information such as licenses and
the master list of administrative domains configured for this installation.

Product Support
If you have problems with your system, contact customer support using one of the
following mechanisms:

• The online support web site at:

http://www.sun.com/supportraining/

• The telephone dispatch number associated with your maintenance contract

Please have the following information available prior to contacting support. This
helps to ensure that our support staff can best assist you in resolving problems:

• Description of the problem, including the situation where the problem occurs
and its impact on your operation

• Machine type, operating system version, and product version, including any
patches and other software that might be affecting the problem

• Detailed steps on the methods you have used to reproduce the problem

• Any error logs or core dumps

17

Chapter 1

Designing Applications

This chapter summarizes the Sun ONE Application Server application design
process and offers effective development guidelines.

This chapter contains the following sections:

• Application Requirements

• About the J2EE Programming Model

• Best Practices for Designing J2EE Applications

Application Requirements
When developing a Sun ONE Application Server application, start by identifying
the application requirements. Typically, this means developing a widely
deployable application that is fast and secure, and that can reliably handle
additional requests as new users are added.

The Sun ONE Application Server meets these needs because it supports the J2EE
APIs as well as a set of pre-existing high performance features. For example, for an
online banking application, you can deliver:

• Security

• Rapid deployment of specific features; for example, account transfers, account
reporting, online trades, special offers to qualified customers

• Management and administration of different types of end users; for example,
individuals, corporations, or internal users

• Internal reporting

• Enterprise Information System (EIS) connectivity that provides access to
information stored in legacy databases

About the J2EE Programming Model

18 Sun ONE Application Server Developer’s Guide • March 2003

About the J2EE Programming Model
In the following figure, client machines are running web browser, web service,
RMI/IIOP, or JMS clients; J2EE server machines are running the Sun ONE
Application Server; and EIS server machines are running databases and legacy
applications. JSPs and servlets provide the interface to the client tier, EJB
components reside in the business tier, and connectors provide the interface to
legacy applications.

J2EE application layers

RDBMS

Client
layer

Client Server EIS

Presentation
layer

Web container

JMS provider

EJB container

Business
Logic layer

Data
Access layer

Data
layer

Web
Service
client

JMS
client

Browser

Browser

Legacy
application

JSP

JSP

Servlet

Servlet

HTML

EJB

EJB

EJB Connector

Connector

MDB Connector

Application
Client container

RMI/IIOP
client

Servlet

JDBC

About the J2EE Programming Model

Chapter 1 Designing Applications 19

A distributed application model allows different individual application layers to
focus on different functional elements, thereby improving performance.

These application layers are discussed in the following sections:

• The Client Layer

• The Presentation Layer

• The Business Logic Layer

• The Data Access Layer

The Client Layer
The client layer is where the user accesses the application. An application may
require one of the following types of clients:

• Browser Clients

• Simple CORBA Clients

• ACC Clients

• Web Service Clients

• JMS Clients

For more information about components in the client layer, see the Sun ONE
Application Server Developer’s Guide to Clients.

Browser Clients
In many cases, the client is simply a browser.

Simple CORBA Clients
You can use any client that is compliant with the Common Object Request Broker
Architecture (CORBA) to access EJB components deployed to Sun ONE
Application Server. The client can be written in any CORBA-supported language,
such as Java, C, C++, Visual Basic, and so on. CORBA clients are typically used
when a stand-alone program or another application server acts as a client to
services available on the Sun ONE Application Server.

Sun ONE Application Server supports access to EJB components using the IIOP
protocol as specified in the Enterprise JavaBeans Specification, V2.0, and the
Enterprise JavaBeans to CORBA Mapping specification.

About the J2EE Programming Model

20 Sun ONE Application Server Developer’s Guide • March 2003

Simple CORBA clients that do not use the Application Client Container (ACC)
have the following limitations:

• JNDI is not supported. However, you can build name translations and do
lookups using standard COSNaming binding.

• SSL over RMI/IIOP is not supported.

• Features that are configurable in the sun-application-client.xml and
sun-acc.xml files are not available.

ACC Clients
Sun ONE Application Server supports Application Client Container (ACC)
CORBA clients that are written in Java and that use RMI/IIOP to communicate
with the server.

The Sun ONE Application Server provides system services that enable ACC client
programs to execute. ACC clients use the Java Naming and Directory Interface
(JNDI) to locate services such as EJB components, JDBC resources, and JavaMail.
You can configure special features using the application-client.xml and
sun-application-client.xml deployment descriptor files.

All CORBA clients described in this manual are also ACC clients unless otherwise
specified.

Web Service Clients
Typically a business application sends a request to a web service at a given URL
using the SOAP protocol over HTTP. The service receives the request, processes it,
and returns a response. An often-cited example of a web service is that of a stock
quote service, in which the request asks for the current price of a specified stock,
and the response gives the stock price.

Sun ONE Application Server supports Apache SOAP version 2.2 and JAX RPC 1.1.
Apache SOAP web services support is also built into Sun ONE Studio 4.

For more information about web services, see the Sun ONE Application Server
Developer’s Guide to Web Services.

JMS Clients
Java applications that use Java Message Service (JMS) are called JMS clients. A JMS
client can create, send, receive, and read messages. Clients that send messages are
called producers, and those that receive messages are called consumers. For a
detailed overview of JMS, see the Sun ONE Message Queue Developer’s Guide.

About the J2EE Programming Model

Chapter 1 Designing Applications 21

The Presentation Layer
The presentation layer is where the user interface is dynamically generated. An
application may require the following J2EE components in the presentation layer:

• Servlets

• JSPs

• Static Content

In addition, an application may require the following non-J2EE, HTTP
server-based components in the presentation layer:

• SHTML

• CGI

For more information about components in the presentation layer, see the Sun ONE
Application Server Developer’s Guide to Web Applications.

Servlets
Servlets handle the application’s presentation logic. Servlets are the page-to-page
navigation dispatchers, and they also provide session management and simple
input validation. Servlets tie business logic elements together.

A servlet developer must understand programming issues related to HTTP
requests, security, internationalization, and web statelessness (such as sessions,
cookies, and time-outs). For a Sun ONE Application Server application, servlets
must be written in Java. Servlets are likely to call JSPs, EJB components, and JDBC
objects. Therefore, a servlet developer works closely with the application element
developers.

JSPs
JSPs handle most application display tasks, and they work in conjunction with
servlets to define the application’s presentation screens and page navigation. JSPs
are likely to call EJB components and JDBC objects. The EJB components typically
encapsulate business logic functionality. As such, they carry out calculations and
other repetitively requested tasks. JDBC objects are used to connect to databases,
make queries, and return query results.

About the J2EE Programming Model

22 Sun ONE Application Server Developer’s Guide • March 2003

Static Content
You can also provide static content, such as images and HTML pages. Properly
designed HTML pages provide:

• Uniform appearance across different browsers

• Efficient HTML loading across slow modem connections

• Dynamically generated page appearances that are servlet or JSP dispatched

SHTML
SHTML (Server-parsed HTML) files are HTML files that contain tags that are
executed on the server. In addition to supporting the standard server-side tags, or
SSIs, Sun ONE Application Server 7 allows you to embed servlets and define your
own server-side tags.

CGI
Common Gateway Interface (CGI) programs run on the server and generate a
response to return to the requesting client. CGI programs can be written in various
languages, including C, C++, Java, Perl, and as shell scripts. CGI programs are
invoked through URL invocation. Sun ONE Application Server complies with the
version 1.1 CGI specification.

The Business Logic Layer
The business logic layer typically contains deployed EJB components that
encapsulate business rules and other business functions in:

• Session Beans

• Entity Beans

• Message-Driven Beans

For more information about components in the business logic layer, see the Sun
ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology.

About the J2EE Programming Model

Chapter 1 Designing Applications 23

Session Beans
Session beans encapsulate the business processes and rules logic. For example, a
session bean could calculate taxes for a billing invoice. When there are complex
business rules that change frequently (for example, due to new business practices
or new government regulations), an application typically uses more session beans
than entity beans, and session beans may need continual revision.

Session beans are likely to call a full range of JDBC interfaces, as well as other EJB
components. Applications perform better when session beans are stateless,
although session beans can be stateful. A stateful session bean is needed when a
user-specific state, such as a shopping cart, must be maintained on the server.

Entity Beans
Entity beans represent persistent objects, such as a database row. Entity beans are
likely to call a full range of JDBC interfaces. However, entity beans typically do not
call other EJB components. The entity bean developer’s role is to design an
object-oriented view of an organization’s business data. Creating this
object-oriented view often means mapping database tables into entity beans. For
example, the developer might translate a customer table, invoice table, and order
table into corresponding customer, invoice, and order objects.

An entity bean developer works with session bean and servlet developers to ensure
that the application provides fast, scalable access to persistent business data.

There are two types of entity bean persistence:

• Container managed persistence (CMP) - The EJB container is responsible for
maintaining the interactions between the business logic and the database.

• Bean managed persistence (BMP) - The developer is responsible for writing the
code that controls interaction with the database.

Message-Driven Beans
Message-driven beans are persistent objects that are likely to call a full range of
JDBC interfaces, much like entity beans. However, message-driven beans have no
local or remote interfaces as do other EJB components, and they differ from entity
beans in how they are accessed.

A message-driven bean is a message listener that can reliably consume messages
from a queue or a durable subscription. The messages may be sent by any J2EE
component—from an application client, another EJB component, or a Web
component—or from an application or a system that does not use J2EE technology.

Best Practices for Designing J2EE Applications

24 Sun ONE Application Server Developer’s Guide • March 2003

For example, an inventory entity bean may send a message to a stock ordering
message-driven bean when the amount of an item is below a set lower limit.

The Data Access Layer
In the data access layer, JDBC (Java database connectivity) is used to connect to
databases, make queries, and return query results, and custom connectors work
with the Sun ONE Application Server to enable communication with legacy EIS
systems, such as IBM’s CICS.

Developers are likely to integrate access to the following systems using J2EE CA
(connector architecture):

• Enterprise resource management systems

• Mainframe systems

• Third-party security systems

For more information about JDBC, see the Sun ONE Application Server Developer’s
Guide to J2EE Features and Services.

For more information about connectors, see the Sun ONE J2EE CA Service Provider
Implementation Administrator’s Guide and the corresponding release notes.

Best Practices for Designing J2EE Applications
This section lists guidelines to consider when designing and developing an Sun
ONE Application Server application, and is merely a summary. For more details,
you may want to consult Core J2EE Patterns: Best Practices and Design Strategies by
Deepak Alur, John Crupi, and Dan Malks.

The guidelines are grouped into the following goals:

• Presenting Data with Servlets and JSPs

• Creating Reusable Application Code

• Modularizing Applications

Best Practices for Designing J2EE Applications

Chapter 1 Designing Applications 25

Presenting Data with Servlets and JSPs
Servlets are often used for presentation logic and serve as central dispatchers of
user input and data presentation. JSPs are used to dynamically generate the
presentation layout. Both servlets and JSPs can be used to conditionally generate
different pages.

If the page layout is its main feature and there is minimal processing involved to
generate the page, it may be easier to use a JSP for the interaction.

For example, after an online bookstore application authenticates a user, it provides
a boilerplate portal front page for the user to choose one of several tasks, including
a book search, purchase selected items, and so on. Since this portal conducts very
little processing, it can be implemented as a JSP.

Think of JSPs and servlets as opposite sides of the same coin. Each can perform all
the tasks of the other, but each is designed to excel at one task at the expense of the
other. The strength of servlets is in processing and adaptability. However,
performing HTML output from them involves many cumbersome println
statements. Conversely, JSPs excel at layout tasks because they are simply HTML
files and can be edited with HTML editors, though performing complex
computational or processing tasks with them can be awkward. You can use JSPs
and servlets together to get the benefits of both.

For more information on servlets and JSPs, see the Sun ONE Application Server
Developer’s Guide to Web Applications.

Creating Reusable Application Code
Aside from using good object-oriented design principles, there are several things to
consider when developing an application to maximize reusability, including the
following tips:

• Use relative paths and URLs so links remain valid if the code tree moves.

• Minimize Java in JSPs; instead, put Java in servlets and helper classes. JSP
designers can revise JSPs without being Java experts.

• Use property files or global classes to store hard-coded strings such as the data
source names, tables, columns, JNDI objects, or other application properties.

• Use session beans, rather than servlets and JSPs, to store business rules that are
domain-specific or likely to change often, such as input validation.

• Use entity beans for persistent objects; using entity beans allows management
of multiple beans per user.

Best Practices for Designing J2EE Applications

26 Sun ONE Application Server Developer’s Guide • March 2003

• For maximum flexibility, use Java interfaces rather than Java classes.

• Use J2EE CA to access legacy data.

Modularizing Applications
The major factors to keep in mind when designing your J2EE Applications are:

• Functional Isolation

• Reusable Code

• Prepackaged Components

• Shared Framework Classes

• Session and Security Issues

For more information about assembling modules and applications, see Chapter 4,
“Assembling and Deploying J2EE Applications.”

Functional Isolation
Each component should do one thing and one thing only. For example, in a payroll
system, one EJB component should access the 401k accounts while a separate bean
accesses the salary database. This functional isolation of tasks leads to the physical
isolation of business logic into two separate beans. If separate development teams
create these beans, each team should develop its own EJB JAR package.

Scenario 1
Assume that the user interface development team works with both of the bean
development teams. In this case, the UI development team should assemble its
servlets, JSPs, and static files into one WAR file. For example:

payroll system EAR file = payroll EJB jar
+ 401k EJB JAR
+ 1 common war from the UI team

This isolation of functionality within an EAR file does not mean that components
cannot interact with each other. The beans (in separate EJB JAR files) can call
business methods from each other.

Best Practices for Designing J2EE Applications

Chapter 1 Designing Applications 27

Scenario 2
Assume that each bean development team has its own UI development team. If this
is the case, then each web development team should assemble its servlets, JSPs, and
static files into separate WAR files. For example:

payroll system EAR file = payroll EJB jar
+ 401k EJB JAR
+ 1 payroll UI team's war + 1 401k UI team's war

With this setup, the components in each WAR file can access components from the
other WAR file.

Assembly Formulas
Some general formulas should be followed when assembling modules and
applications.

The following table outlines assembly formulas. The left column lists the type of
development group, the middle column lists the teams in the group, and the right
column lists the modularizing scheme.

Reusable Code
Reusable components are the primary reason for assembling and deploying
individual modules rather than applications. If the code developed by one team of
developers is a reusable component that may be accessed by several applications
(different EAR files), then that code should be deployed as an individual module.
For more information, see Chapter 4, “Assembling and Deploying J2EE
Applications.”

Assembly formulas

Type of Development Group Teams in Group Modularizing Scheme

Small workgroup 1 web team + 1 EJB team 1 EAR = 1 EJB + 1 WAR

Enterprise workgroup 2 EJB teams + 1 web team + 1
component

1 EAR = 2 EJB + 1 WAR
+ 1 individual
component

Best Practices for Designing J2EE Applications

28 Sun ONE Application Server Developer’s Guide • March 2003

Prepackaged Components
If you do not want to create your application from scratch, you can use
prepackaged components. Today's leading J2EE component vendors offer many
prepackaged components that provide a whole host of services. Their goal is to
provide up to 60% of the standard components needed for an application. With
Sun ONE Application Server, you can easily assemble applications that make use
of these readily available components.

Shared Framework Classes
Sometimes several applications need to access a single modular library. In such
cases, including the library in each J2EE application is not a good idea for these
reasons:

• Library size: Most framework libraries are large, so including them in an
application increases the size of the assembled application.

• Different versions: Because a separate classloader loads each application,
several copies of the framework classes exist during runtime.

For tips on how to set up a library so multiple applications can share it, see
“Circumventing Classloader Isolation,” on page 78.

Session and Security Issues
If session sharing is a requirement, all the components that need to access a session
should be contained in the same application.

If an HTTP session needs to be shared between two WAR files in an EAR file, the
session should be marked “distributed” in the deployment descriptor.

You should not allow unauthorized runtime access to classes, EJB components, and
other resources. A component should only contain classes that are permitted to
access other resources included in the component. In addition, you should use the
standard J2EE declarative security (see Chapter 3, “Securing J2EE Applications”)
for sensitive tasks.

NOTE Session sharing across application boundaries is not supported in
Sun ONE Application Server and is a violation of the J2EE
specification.

29

Chapter 2

Developing J2EE Applications

This chapter gives guidelines for developing applications in Sun ONE Application
Server 7. It includes the following sections:

• Setting Up a Development Environment

• Steps for Creating Components

Setting Up a Development Environment
Setting up an environment for creating, assembling, deploying, and debugging
your code involves installing the mainstream version of Sun ONE Application
Server and making use of development tools, which are covered in the following
sections:

• Installing and Preparing the Server for Development

• Development Tools

Installing and Preparing the Server for
Development
For bundled Solaris 9, Sun ONE Application Server installation is part of the
operating system installation process. For more information, see the Solaris 9
Installation Guide.

For all other platforms, installing the mainstream (non-evaluation) version of Sun
ONE Application Server is recommended.

Setting Up a Development Environment

30 Sun ONE Application Server Developer’s Guide • March 2003

For bundled Solaris 9 or the mainstream installation, the following components are
installed by default:

• Sun ONE Application Server Core, including:

❍ Sun ONE Message Queue

❍ Administration interface

• JDK

• Sun ONE Studio 4

• Sample Applications

For more information, see the Sun ONE Application Server Installation Guide.

After you have installed Sun ONE Application Server, you can further optimize the
server for development in these ways:

• Locate utility classes and libraries so they can be accessed by the proper
classloaders. For more information, see “Classloaders,” on page 74.

• Enable dynamic reloading. For more information, see “Dynamic Reloading,”
on page 94.

• Set up debugging. For more information, see Chapter 5, “Debugging J2EE
Applications.”

• Configure the JVM. For more information, see the Sun ONE Application Server
Administrator’s Guide.

Development Tools
The following general tools are provided with Sun ONE Application Server:

• The asadmin Command

• The Administration Interface

The following development tools are provided with Sun ONE Application Server
or downloadable from Sun:

• Sun ONE Studio

• Apache Ant

• Migration Tools

Setting Up a Development Environment

Chapter 2 Developing J2EE Applications 31

The following third-party tools may also be useful:

• Profiling Tools

• Source Code Control Tools

• Other Tools Supported Through Sun ONE Studio

The asadmin Command
The asadmin command allows you to configure a local or remote server and
perform both administrative and development tasks at the command line. For
information about deployment using asadmin, see “The asadmin Command,” on
page 96. For general information about asadmin, see the Sun ONE Application
Server Administrator’s Guide.

The Administration Interface
The Administration interface allows you to configure the server and perform both
administrative and development tasks using a web browser. For information about
deployment using the Administration interface, see “The Administration
Interface,” on page 98. For general information about the Administration interface,
see the Sun ONE Application Server Administrator’s Guide.

Sun ONE Studio
Sun ONE Studio 4 is an IDE (integrated development environment) that allows
you to create, assemble, deploy, and debug code in Sun ONE Application Server
from a single, easy-to-use interface. Behind the scenes, a plugin integrates Sun
ONE Studio with Sun ONE Application Server. For more information about using
Sun ONE Studio, see the Sun ONE Studio 4, Enterprise Edition Tutorial.

Apache Ant
You can use the automated assembly features available through Ant, a Java-based
build tool available through the Apache Software Foundation:

http://jakarta.apache.org/ant/

Ant is a java-based build tool that is extended using Java classes. Instead of using
shell commands, the configuration files are XML-based, calling out a target tree
where tasks get executed. Each task is run by an object that implements a particular
task interface.

Setting Up a Development Environment

32 Sun ONE Application Server Developer’s Guide • March 2003

Apache Ant 1.4.1 is provided with Sun ONE Application Server (or with the
operating system for bundled Solaris 9). Sun ONE Application Server also provides
server-specific Ant tasks for deployment and administration with the sample
applications. For more information about using Ant with Sun ONE Application
Server, see “Apache Ant Assembly and Deployment Tool,” on page 103.

Migration Tools
The following automated migration tools are downloadable from Sun:

• The Sun ONE Migration Tool for Application Servers reassembles J2EE
applications and modules developed on:

❍ iPlanet Application Server 6.x

❍ iPlanet Web Server 6.x

❍ IBM’s Websphere Application Server 4.0

❍ BEA Systems’ WebLogic Server 6.1

• The Sun ONE Migration Toolbox helps you migrate applications developed on
NetDynamics and Netscape Application Servers.

For more information, see Sun ONE Application Server Migrating and Redeploying
Server Applications.

Profiling Tools
You can use several profilers with Sun ONE Application Server, including HPROF,
Optimizeit™, Wily Introscope®, and JProbe™. For more information, see
“Profiling,” on page 140.

Source Code Control Tools
The following source code control tools are supported through Sun ONE Studio 4:

• Concurrent Versioning System (CVS) - built-in support in Community Edition

• PVCS - predefined configuration

• Visual Source Safe - predefined configuration

• VCS - can be integrated using API

• RCS - can be integrated using API

• SCCS - can be integrated using API

• Clearcase - can be integrated using API

Steps for Creating Components

Chapter 2 Developing J2EE Applications 33

For more information, see:

http://wwws.sun.com/software/sundev/jde/features/ce-features.html

Other Tools Supported Through Sun ONE Studio
For a list of other developer tools supported through Sun ONE Studio 4, see:

http://forte.sun.com/ffj/partnerprograms/partnerlist.html

Steps for Creating Components
Before creating J2EE applications and components, you should read “Best Practices
for Designing J2EE Applications,” on page 24.

This section covers the basic steps for the following:

• Creating Web Applications

• Creating Enterprise JavaBeans

• Creating ACC Clients

• Creating Connectors

• Creating Complete Applications

Creating Web Applications
To create a web application:

1. Create a directory for all the web application’s files. This is the web
application’s document root.

2. Create any needed HTML files, image files, and other static content. Place these
files in the document root directory or a subdirectory where they can be
accessed by other parts of the application.

3. Create any needed JSP files.

4. Create any needed servlets.

5. Compile the servlets. You can also precompile the JSPs.

6. Create the WEB-INF directory and the other structural requirements of a web
application.

Steps for Creating Components

34 Sun ONE Application Server Developer’s Guide • March 2003

7. Create the deployment descriptor files, web.xml and optionally sun-web.xml,
in the WEB-INF directory. It is a good idea to verify the structure of these files as
described in “The Deployment Descriptor Verifier,” on page 83.

8. Package the web application in a WAR file. If you are using directory
deployment, this is optional.

9. Deploy the web application by itself or include it in a J2EE application.

For details about all these steps, see the Sun ONE Application Server Developer’s
Guide to Web Applications.

Creating Enterprise JavaBeans
To create an EJB component:

1. Create a directory for all the EJB component’s files.

2. Decide on the type of EJB component you are creating:

❍ Session

• stateful

• stateless

❍ Entity

• with bean-managed persistence

• with container-managed persistence

❍ Message-Driven

3. Write the code for the EJB component according to the EJB specification,
including:

❍ A local and/or remote home interface

❍ A local and/or remote interface

❍ An implementation class (for a message-driven bean, this is all you need)

4. Compile the interfaces and classes.

5. Create the META-INF directory and the other structural requirements of an EJB
component.

Steps for Creating Components

Chapter 2 Developing J2EE Applications 35

6. Create the deployment descriptor files, ejb-jar.xml and sun-ejb-jar.xml,
in the META-INF directory. If the EJB component is an entity bean with
container-managed persistence, you must also create a .dbschema file and a
sun-cmp-mapping.xml file. It is a good idea to verify the structure of these files
as described in “The Deployment Descriptor Verifier,” on page 83.

7. Package the EJB component in a JAR file. If you are using directory
deployment, this is optional.

8. Deploy the EJB component by itself or include it in a J2EE application.

For details about all these steps, see the Sun ONE Application Server Developer’s
Guide to Enterprise JavaBeans Technology.

Creating ACC Clients
To create an ACC client:

1. Create a directory for all the client’s files.

2. Create the code for the client’s classes according to the Java 2 Platform
Enterprise Edition Specification.

3. Compile the client’s interfaces and classes.

4. Create the META-INF directory and the other structural requirements of an
ACC client.

5. Create the deployment descriptor files, application-client.xml and
sun-application-client.xml, in the META-INF directory. It is a good idea to
verify the structure of these files as described in “The Deployment Descriptor
Verifier,” on page 83.

6. Package the client in a JAR file. If the client communicates with one or more
EJB components and you are using directory deployment, this is optional.

7. If the client communicates with one or more EJB components, package the
client and EJB components together in an application, then deploy the
application.

8. Prepare the client machine:

a. Create the ACC package JAR file.

b. Copy the ACC package JAR file to the client machine and unjar it.

c. Configure the sun-acc.xml and asenv.conf (asenv.bat on Windows)
files.

Steps for Creating Components

36 Sun ONE Application Server Developer’s Guide • March 2003

d. Copy the client JAR to the client machine.

9. Execute the client.

For details about all these steps, see the Sun ONE Application Server Developer’s
Guide to Clients.

Creating Connectors
To create a connector:

1. Create a directory for all the connector’s files.

2. Create the code for the resource adapter classes (ConnectionFactory,
Connection, and so on) according to the J2EE Connector Architecture
Specification.

3. Compile the connector’s interfaces and classes.

4. Create one or more JAR files that contain all the connector’s classes.

5. Add any native libraries needed by the connector to the directory structure.

6. Create the META-INF directory and the other structural requirements of a
connector. Here is an example of the overall directory structure:

The ra.jar and client.jar files were created in Step 4. The win.dll and
solaris.so files are native libraries that were added in Step 5.

7. Create the deployment descriptor files, ra.xml and sun-ra.xml, in the
META-INF directory. Both are required. It is a good idea to verify the structure
of these files as described in “The Deployment Descriptor Verifier,” on page 83.

+ MyConnector/
|--- readme.html
|--- ra.jar
|--- client.jar
|--- win.dll
|--- solaris.so
'--+ META-INF/

|--- MANIFEST.MF
|--- ra.xml
'--- sun-ra.xml

Steps for Creating Components

Chapter 2 Developing J2EE Applications 37

8. Create a RAR file from the directory structure described in Step 6. If you are
using directory deployment, this is optional.

9. Deploy the connector by itself or include it in a J2EE application.

For details about all these steps, see the Sun ONE J2EE CA Service Provider
Implementation Administrator’s Guide.

Creating Complete Applications
To create a complete J2EE application:

1. Decide on the components (web applications, EJB components, and
connectors) that the application will comprise.

2. Create a directory for all the application’s files, and create a the META-INF
directory under it.

3. Create the components of the application and copy them into the application
directory. Each component must be in an open subdirectory named by
changing .jar, .war, or .rar to _jar, _war, or _rar, respectively.

4. Make sure the components call each other properly.

5. Create the deployment descriptor files, application.xml and optionally
sun-application.xml, in the META-INF directory under the application
directory. It is a good idea to verify the structure of these files as described in
“The Deployment Descriptor Verifier,” on page 83.

6. Package the application in an EAR file. If you are using directory deployment,
this is optional.

7. Deploy the application.

For details about all these steps, see Chapter 4, “Assembling and Deploying J2EE
Applications.”

NOTE You can use the Sun ONE Connector Builder to make building
connectors easier. For more information, see the Sun ONE Connector
Builder Developer’s Guide.

Steps for Creating Components

38 Sun ONE Application Server Developer’s Guide • March 2003

39

Chapter 3

Securing J2EE Applications

This chapter describes how to write secure J2EE applications, which contain
components that perform user authentication and access authorization for servlets
and EJB business logic.

For information about administrative security for the server, see the Sun ONE
Application Server Administrator's Guide to Security.

This chapter contains the following sections:

• Sun ONE Application Server Security Goals

• Sun ONE Application Server Specific Security Features

• Sun ONE Application Server Security Model

• Security Responsibilities Overview

• Common Security Terminology

• Container Security

• Guide to Security Information

• Realm Configuration

• The server.policy File

• Programmatic Login

Sun ONE Application Server Security Goals

40 Sun ONE Application Server Developer’s Guide • March 2003

Sun ONE Application Server Security Goals
In an enterprise computing environment there are many security risks. The Sun
ONE Application Server’s goal is to provide highly secure, interoperable, and
distributed component computing based on the J2EE security model. The security
goals for the Sun ONE Application Server include:

• Full compliance with the J2EE security model (for more information, see the
J2EE specification, v1.3 Chapter 3 Security)

• Full compliance with the EJB v2.0 security model (for more information, see
the Enterprise JavaBean specification v2.0 Chapter 15 Security Management).
This includes EJB role-based authorization.

• Full compliance with the Java Servlet v2.3 security model (for more
information, see the Java Servlet specification, v2.3 Chapter 11 Security). This
includes servlet role-based authorization.

• Support for single sign-on across all Sun ONE Application Server applications
within a single security domain.

• Security support for ACC Clients.

• Support for several underlying authentication realms, such as simple file and
LDAP. Certificate authentication is also supported for SSL client
authentication. For Solaris, OS platform authentication is supported in
addition to these.

• Support for declarative security via Sun ONE Application Server specific
XML-based role mapping.

Sun ONE Application Server Specific Security
Features

The Sun ONE Application Server supports the J2EE v1.3 security model, as well as
the following features which are specific to the Sun ONE Application Server:

• Single sign-on across all Sun ONE Application Server applications within a
single security domain

• Programmatic login

Sun ONE Application Server Security Model

Chapter 3 Securing J2EE Applications 41

Sun ONE Application Server Security Model
Secure applications require a client to be authenticated as a valid application user
and have authorization to access servlets, JSPs, and EJB business logic. Sun ONE
Application Server supports security for web, ACC, web service, and JMS clients.

Applications with secure web and EJB containers may enforce the following
security processes for clients:

• authenticate the caller

• authorize the caller for access to the EJB business methods

The following diagram shows the Sun ONE Application Server security model.

Web Application and URL Authorizations
Secure web applications may have authentication and authorization properties.
The web container supports three types of authentication: basic, certificate, and
form-based. When a browser requests the main application URL, the web container
collects the user authentication information (for example, username and password)
and passes it to the security service for authentication.

Servlet/
JSP

EJB

Sun ONE Application Server

ACC

.

Realm

Web

Client

Web Server
(optional)

Service
Client

MDB
JMS
Client

Web Server
(optional)

Browser

JMS
Provider

Security Responsibilities Overview

42 Sun ONE Application Server Developer’s Guide • March 2003

Sun ONE Application Server consults the security policies (derived from the
deployment descriptors) associated with the web resource to determine the
security roles used to permit resource access. The web container tests the user
credentials against each role to determine if it can map the user to the role. For
more information, see the Sun ONE Application Server Developer’s Guide to Web
Applications.

Invocation of Enterprise Bean Methods
Once the browser client has been authenticated and authorized by the web
container and the servlet or JSP performs a method call to the EJB component, the
user’s credentials (gathered during the authentication process) are propagated to
the EJB container. A secure EJB container has a deployment descriptor with
authorization properties, which are used to enforce access control on the bean
method. The EJB container uses role information received from the EJB JAR
deployment descriptors to decide whether it can map the caller to the role and
allow access to the bean method. For more information, see the Sun ONE
Application Server Developer’s Guide to Enterprise JavaBeans Technology.

ACC Client Invocation of Enterprise Bean
Methods
For ACC clients, a secure EJB container consults its security policies (obtained from
the deployment descriptors) to determine if the caller has the authority to access
the bean method. This process is the same for both web and ACC clients. For more
information, see the Sun ONE Application Server Developer’s Guide to Clients.

Security Responsibilities Overview
A J2EE platform’s primary goal is to isolate the developer from the security
mechanism details and facilitate a secure application deployment in diverse
environments. This goal is addressed by providing mechanisms for the application
security specification requirements declaratively and outside the application.

Security Responsibilities Overview

Chapter 3 Securing J2EE Applications 43

Application Developer
The application developer is responsible for the following:

• Specifying application roles.

• Defining role-based access restrictions for the application components
(Servlets/JSPs and EJB components).

• If programmatic security is used, verifying the user roles and authorizing
access to features based on these roles. (Programmatic security management is
discouraged since it hard codes the security login in the application instead of
allowing the containers to manage it.)

Application Assembler
The application assembler or application component provider must identify all
security dependencies embedded in a component including:

• All role names used by the components that call isCallerInRole or
isUserInRole.

• References to all external resources accessed by the components.

• References to all intercomponent calls made by the component.

Application Deployer
The application deployer takes all component security views provided by the
assembler and uses them to secure a particular enterprise environment in the
application, including:

• Assigning users or groups (or both) to security roles.

• Refines the privileges required to access component methods to suit the
requirements of the specific deployment scenario.

Common Security Terminology

44 Sun ONE Application Server Developer’s Guide • March 2003

Common Security Terminology
The most common security processes are authentication, authorization, realm
assignment, and role mapping. The following sections define this terminology.

Authentication
Authentication verifies the user. For example, the user may enter a username and
password in a web browser, and if those credentials match the permanent profile
stored in the active realm, the user is authenticated. The user is associated with a
security identity for the remainder of the session.

For more information about authentication in the Sun ONE Application Server, see
the Sun ONE Application Server Developer’s Guide to Web Applications and the Sun
ONE Application Server Developer’s Guide to Clients.

Authorization
Authorization permits a user to perform the desired operations, after being
authenticated. For example, a human resources application may authorize
managers to view personal employee information for all employees, but allow
employees to only view their own personal information.

For more information about authorization in the Sun ONE Application Server, see
the Sun ONE Application Server Developer’s Guide to Web Applications and the Sun
ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology.

Realms
A realm, also called a security policy domain or security domain in the J2EE
specification, is a scope over which a common security policy is defined and
enforced by the security administrator of the security service. Supported realms in
Sun ONE Application Server are file, ldap, certificate, and solaris. For
information about how to configure a realm, see “Realm Configuration,” on
page 48.

Container Security

Chapter 3 Securing J2EE Applications 45

Role Mapping
A client may be defined in terms of a security role. For example, a company might
use its employee database to generate both a company wide phone book
application and to generate payroll information. Obviously, while all employees
might have access to phone numbers and email addresses, only some employees
would have access to the salary information. Employees with the right to view or
change salaries might be defined as having a special security role.

A role is different from a user group in that a role defines a function in an
application, while a group is a set of users who are related in some way. For
example, members of the groups astronauts, scientists, and (occasionally) politicians
all fit into the role of SpaceShuttlePassenger.

The EJB security model describes roles (as distinguished from user groups) as
being described by an application developer and independent of any particular
domain. Groups are specific to a deployment domain. It is up to the deployer to
map roles into one or more groups for each application or module.

In the Sun ONE Application Server, roles correspond to users or groups (or both)
configured in the active realm.

Container Security
The component containers are responsible for providing J2EE application security.
There are two security forms provided by the container:

• Programmatic security

• Declarative security

Programmatic Security
Programmatic security is when an EJB component or servlet uses method calls to
the security API, as specified by the J2EE security model, to make business logic
decisions based on the caller or remote user’s security role. Programmatic security
should only be used when declarative security alone is insufficient to meet the
application’s security model.

The J2EE specification, v1.3 defines programmatic security as consisting of two
methods of the EJB EJBContext interface and two methods of the servlet
HttpServletRequest interface. The Sun ONE Application Server supports these
interfaces as specified in the specification.

Container Security

46 Sun ONE Application Server Developer’s Guide • March 2003

For more information on programmatic security, see the following:

• Section 3.3.6, Programmatic Security, in the J2EE Specification,v1.3

• “Programmatic Login,” on page 61

Declarative Security
Declarative security means that the security mechanism for an application is
declared and handled externally to the application. Deployment descriptors
describe the J2EE application’s security structure, including security roles, access
control, and authentication requirements.

The Sun ONE Application Server supports the DTDs specified by J2EE v1.3 and
has additional security elements included in its own deployment descriptors.
Declarative security is the application deployer’s responsibility. For more
information, see Chapter 4, “Assembling and Deploying J2EE Applications.”

There are three levels of declarative security, as follows:

• Application Level Security

• Web Component Level Security

• EJB Level Security

Application Level Security
The application XML deployment descriptor (sun-application.xml) contains
authorization descriptors for all user roles for accessing the application’s servlets
and EJB components. On the application level, all roles used by any application
container must be listed in a role-name element in this file. The role names are
scoped to the EJB XML deployment descriptors (ejb-jar.xml and
sun-ejb-jar.xml files) and to the servlet XML deployment descriptors (web.xml
and sun-web.xml files). The sun-application.xml file must also contain
matching security-role-mapping elements for each role-name used by the
application.

Web Component Level Security
A secure web container authenticates users and authorizes access to a servlet or JSP
by using the security policy laid out in the servlet XML deployment descriptors
(web.xml and sun-web.xml files). Once the user has been authenticated and
authorized, the servlet passes on user credentials to an EJB component to establish
a secure association with the bean.

Guide to Security Information

Chapter 3 Securing J2EE Applications 47

EJB Level Security
The EJB container is responsible for authorizing access to a bean method by using
the security policy laid out in the EJB XML deployment descriptors (ejb-jar.xml
and sun-ejb-jar.xml files).

Guide to Security Information
Each information type below is shown with a short description, the location where
the information resides, how to create the information, how to access the
information, and where to look for further information.

• User Information

• Security Roles

User Information
User name, password, and so on.

Location:
The location of the user information depends on the realm being used:

• For the file realm, the users and groups are listed in the key file, which is
located in the instance_dir/config directory.

• For the ldap realm, the users and groups are stored in an external LDAP
directory.

• For the certificate realm, the user identities are obtained from
cryptographically verified client certificates.

• For the solaris realm, the users and groups are stored in the underlying
Solaris user database, as determined by the system’s PAM configuration.

For more information about these realms, see “Realm Configuration,” on page 48.

How to Create:
How to create users and define groups is specific to the realm being used. The Sun
ONE Application Server does not provide administration capabilities for external
realms such as Solaris/PAM or LDAP. Consult your Solaris or LDAP server
documentation for details.

Realm Configuration

48 Sun ONE Application Server Developer’s Guide • March 2003

Security Roles
Role that defines an application function, made up of a number of users, groups, or
both. The relationship between users and groups is determined by the specific
realm implementation being used.

Location:
Roles are defined in the J2EE application deployment descriptors.

How to Create:
Use the Sun ONE Application Server Administration interface or the Sun ONE
Studio 4 development tools for application assembly and deployment.

How To Access:
Use isCallerInRole() to test for a user’s role membership. For example, in the
following code, if securedMethod() can be accessed by the Manager role, the call
to sctx.isCallerInRole("Manager") returns true.

public class SecTestEJB implements SessionBean
{

private SessionContext sctx = null;

public void setSessionContext(SessionContext sc)
{

sctx = sc;
}

public void securedMethod()
{

System.out.println(sctx.isCallerInRole("Manager"));
}

}

Realm Configuration
This section covers the following topics:

• How to Configure a Realm and Set the Default Realm

• Supported Realms

Realm Configuration

Chapter 3 Securing J2EE Applications 49

How to Configure a Realm and Set the Default
Realm
You can configure a realm in one of these ways:

• Using the Administration Interface

• Using the asadmin Command

• Editing the server.xml File

If you use the Administration interface or edit the server.xml file, you can set the
default realm.

Using the Administration Interface
To configure a realm using the Administration interface:

1. Open the Security component under your server instance.

2. Open the Realms component under the Security component.

3. Go to the Realms page.

4. Click on the check boxes of the realms you wish to activate. You can also use
the New and Delete buttons to add and remove realms. To edit a realm, click
on it.

5. If you are adding or editing a realm, enter the realm’s name, classname,
properties, and users (file realm only), then select the Save button.

6. Go to the Security page.

7. Select a default realm, then select the Save button.

8. Go to the server instance page and select the Apply Changes button.

9. Restart the server.

Realm Configuration

50 Sun ONE Application Server Developer’s Guide • March 2003

Using the asadmin Command
You can use the asadmin command to configure realms on local servers.

asadmin create-auth-realm
The asadmin create-auth-realm command configures a realm. The syntax is as
follows:

asadmin create-auth-realm --user admin_user [--password admin_password]
[--passwordfile password_file] [--host hostname] [--port adminport]
[--secure | -s] [--instance instance_name] --classname realm_class
[--property (name=value)[:name=value]*] realm_name

For example, the following command configures the certificate realm:

asadmin create-auth-realm --user jadams --password secret --instance
server1 --classname
com.iplanet.ias.security.auth.realm.certificate.CertificateRealm
certificate

asadmin delete-auth-realm
The asadmin delete-auth-realm command deactivates a realm. The syntax is as
follows:

asadmin delete-auth-realm --user admin_user [--password admin_password]
[--passwordfile password_file] [--host hostname] [--port adminport]
[--secure | -s] [--instance instance_name] realm_name

For example, the following command deactivates the certificate realm:

asadmin delete-auth-realm --user jadams --password secret --instance
server1 certificate

asadmin list-auth-realms
The asadmin list-auth-realms command lists all realms configured for a server
instance. The syntax is as follows:

asadmin list-auth-realms --user admin_user [--password admin_password]
[--passwordfile password_file] [--host hostname] [--port adminport]
[--secure | -s] instance_name

For example, the following command lists all realms in the server1 instance:

asadmin list-auth-realms --user jadams --password secret server1

Realm Configuration

Chapter 3 Securing J2EE Applications 51

Editing the server.xml File
Behind the scenes, the default realm is set in the security-service element in the
server.xml file. The security-service configuration looks like this:

<security-service default-realm="file" anonymous-role="ANYONE"
audit-enabled="false">

<auth-realm name="file"
classname="com.iplanet.ias.security.auth.realm.file.FileRealm">

<property name="file" value="instance_dir/config/keyfile"/>
<property name="jaas-context" value="fileRealm"/>

</auth-realm>
...

</security-service>

The default-realm attribute points to the realm the server is using. It must point
to one of the configured auth-realm names. The default is the file realm.

The audit flag determines whether auditing information is logged. If set to true,
the server logs audit messages for all authentication and authorization events.

If you change the realm configuration, you must restart the server for the change to
take effect.

For more information about the server.xml file, see the Sun ONE Application
Server Administrator’s Configuration File Reference.

Supported Realms
The following realms are supported in Sun ONE Application Server:

• file

• ldap

• certificate

• solaris

• Creating a Custom Realm

file
The file realm is the default realm when you first install the Sun ONE Application
Server. It has the following configuration characteristics:

• Name - file

• Classname - com.iplanet.ias.security.auth.realm.file.FileRealm

Realm Configuration

52 Sun ONE Application Server Developer’s Guide • March 2003

Required properties are as follows:

• file - The name of the file that stores user information. By default this file is
instance_dir/config/keyfile.

• jaas-context - The value must be fileRealm.

The user information file is initially empty, so you must add users before you can
use the file realm. You can configure users in one of these ways:

• Using the Administration Interface

• Using the asadmin Command

Using the Administration Interface
To configure a user in the file realm using the Administration interface:

1. Open the Security component under your server instance.

2. Open the Realms component under the Security component.

3. Go to the file page.

4. Click on the Manage Users button.

5. To add a new user, click on the New button. To modify information for a user,
click on the user’s name in the list. In either case, enter the following
information:

❍ User ID (required if new) - The name of the user.

❍ Password (required) - The user’s password.

❍ Retype Password (required) - The user’s password again, for verification.

❍ Group List (optional) - A comma-separated list of the groups the user
belongs to.

6. Click on the OK button.

7. Go to the server instance page and select the Apply Changes button.

8. Restart the server.

Using the asadmin Command
The asadmin create-file-user command creates one user in the file realm. Its
syntax is as follows, with defaults shown for optional parameters that have them:

Realm Configuration

Chapter 3 Securing J2EE Applications 53

asadmin create-file-user --user admin_user [--password admin_password]
[--passwordfile password_file] [--host localhost] [--port 4848]
[--secure | -s] [--instance instance_name] [--userpassword user_password]
[--groups user_group[:user_group]*] user_name

For example, the following command adds user dsanchez to the file realm and
assigns secret as this user’s password. Note that jadams and topsecret are the
administrator’s name and password, respectively.

asadmin create-file-user --user jadams --password topsecret
--userpassword secret dsanchez

The asadmin delete-file-user command removes one user from the file
realm. Its syntax is as follows, with defaults shown for optional parameters that
have them:

asadmin delete-file-user --user admin_user [--password admin_password]
[--passwordfile password_file] [--host localhost] [--port 4848]
[--secure | -s] [--instance instance_name] user_name

For example, the following command removes user dsanchez from the file realm.
Note that jadams and topsecret are the administrator’s name and password,
respectively.

asadmin delete-file-user --user jadams --password topsecret dsanchez

The asadmin update-file-user command changes information for one user in
the file realm. Its syntax is as follows, with defaults shown for optional
parameters that have them:

asadmin update-file-user --user admin_user [--password admin_password]
[--passwordfile password_file] [--host localhost] [--port 4848]
[--secure | -s] [--instance instance_name] [--userpassword user_password]
[--groups user_group[:user_group]*] user_name

For example, the following command changes the password for user dsanchez to
private. Note that jadams and topsecret are the administrator’s name and
password, respectively.

asadmin update-file-user --user jadams --password topsecret
--userpassword private dsanchez

The asadmin list-file-users command lists users in the file realm. Its syntax
is as follows, with defaults shown for optional parameters that have them:

asadmin list-file-users --user admin_user [--password admin_password]
[--passwordfile password_file] [--host localhost] [--port 4848]
[--secure | -s] instance_name

Realm Configuration

54 Sun ONE Application Server Developer’s Guide • March 2003

For example, the following command lists file realm users for the server1
instance. Note that jadams and topsecret are the administrator’s name and
password, respectively.

asadmin list-file-users --user jadams --password topsecret server1

The asadmin list-file-groups command lists groups in the file realm. Its
syntax is as follows, with defaults shown for optional parameters that have them:

asadmin list-file-groups --user admin_user [--password admin_password]
[--passwordfile password_file] [--host localhost] [--port 4848]
[--secure | -s] [--name user_name] instance_name

For example, the following command lists file realm groups for user dsanchez.
Note that jadams and topsecret are the administrator’s name and password,
respectively.

asadmin list-file-users --user jadams --password topsecret --name
dsanchez server1

ldap
The ldap realm allows you to use an LDAP database for user security information.
It has the following configuration characteristics:

• Name - ldap

• Classname - com.iplanet.ias.security.auth.realm.ldap.LDAPRealm

Required properties are as follows:

• directory - The LDAP URL to your server.

• base-dn - The base DN for the location of user data. This base DN can be at
any level above the user data, since a tree scope search is performed. The
smaller the search tree, the better the performance.

• jaas-context - The value must be ldapRealm.

You can add the following optional properties to tailor the LDAP realm behavior.

• search-filter - The search filter to use to find the user. The default is uid=%s
(%s expands to the subject name).

• group-base-dn - The base DN for the location of groups data. By default it is
same as the base-dn, but it can be tuned if necessary.

• group-search-filter - The search filter to find group memberships for the
user. The default is uniquemember=%d (%d expands to the user element DN).

Realm Configuration

Chapter 3 Securing J2EE Applications 55

• group-target - The LDAP attribute name that contains group name entries.
The default is CN.

• search-bind-dn - An optional DN used to authenticate to the directory for
performing the search-filter lookup. Only required for directories that do
not allow anonymous search.

• search-bind-password - The LDAP password for the DN given in
search-bind-dn.

You must create the desired user(s) in your LDAP directory. You can do this from
the Sun ONE Directory Server console in the Users & Groups main tab, or through
any other administration tool which supports LDAP and your directory’s schema.

The principal-name used in the deployment descriptors must correspond to your
LDAP user information.

For example, suppose an LDAP user, joe java, is defined in your LDAP directory
as follows:

uid=jjava,ou=People,dc=acme,dc=com
uid=jjava
givenName=joe
objectClass=top
objectClass=person
objectClass=organizationalPerson
objectClass=inetorgperson
sn=java
cn=joe java

The required properties in the ldap realm configuration would be as follows:

• The directory would be the LDAP URL to your server, for example:

ldap://ldap.acme.com:389

• The base-dn could be ou=People,dc=acme,dc=com. Note that it could also be
rooted at a higher point, for example dc=acme,dc=com, but searches would
traverse a larger part of the tree, impacting performance.

• The jaas-context must be ldapRealm.

certificate
The certificate realm supports SSL authentication. The certificate realm sets
up the user identity in the Sun ONE Application Server’s security context and
populates it with user data from the client certificate. The J2EE containers then
handle authorization processing based on each user’s DN from his or her
certificate. It has the following configuration characteristics:

Realm Configuration

56 Sun ONE Application Server Developer’s Guide • March 2003

• Name - certificate

• Classname -
com.iplanet.ias.security.auth.realm.certificate.CertificateRealm

You can add the following optional property to tailor the certificate realm
behavior.

• assign-groups - If this property is set, its value is taken to be a
comma-separated list of group names. All clients who present valid certificates
are assigned membership to these groups for the purposes of authorization
decisions in the web and EJB containers.

When you deploy an application, you must specify CLIENT-CERT as the
authentication mechanism in the web.xml file as follows:

<login-config>
<auth-method>CLIENT-CERT</auth-method>

</login-config>

You must obtain a client certificate and install it in your browser to complete the
setup for client certificate authentication. For details on how to set up the server
and client certificates, see the Sun ONE Application Server Administrator’s Guide to
Security.

You can configure the server instance for SSL authentication in these ways:

• Configure an ssl element in server.xml, then restart the server. For more
information about the server.xml file, see the Sun ONE Application Server
Administrator’s Configuration File Reference.

• Use the Administration interface, as follows:

a. Open the HTTP Server component under your server instance.

b. Open the HTTP Listeners component under the HTTP Server component.

c. Select the listener for which you want to configure SSL.

d. Edit the SSL/TLS Settings for the listener.

e. Select the Save button.

f. Go to the server instance page and select the Apply Changes button.

g. Restart the server.

For more information, see the Sun ONE Application Server Administrator’s Guide
to Security.

Realm Configuration

Chapter 3 Securing J2EE Applications 57

solaris
The solaris realm allows authentication using Solaris username+password data.
This realm is only supported on Solaris 9. It has the following configuration
characteristics:

• Name - solaris

• Classname - com.iplanet.ias.security.auth.realm.file.SolarisRealm

Required properties are as follows:

• jaas-context - The value must be solarisRealm.

Creating a Custom Realm
You can create a custom realm by providing a Java Authentication and
Authorization Service (JAAS) login module and a realm implementation. Note that
client-side JAAS login modules are not suitable for use with Sun ONE Application
Server. For more information about JAAS, refer to the JAAS specification for Java 2
SDK, v 1.4, available here:

http://java.sun.com/products/jaas/

A sample application that uses a custom realm is available with the Sun ONE
Application Server here:

install_dir/samples/security/realms

NOTE The Solaris realm invokes the underlying PAM infrastructure for
authenticating. If the configured PAM modules require root
privileges, the instance must run as root to use this realm. For
details, see the “Using Authentication Services (Tasks)” chapter in
the Solaris 9 Systems Administrators Guide: Security Services.

Solaris supports an enhanced method for controlling access to
resources called Role Based Access Control (RBAC). Sun ONE
Application Server includes RBAC facilities for its administrative
commands. For details, see the “Role-Based Access Control
(Overview)” chapter in the Solaris 9 Systems Administrators Guide:
Security Services.

The server.policy File

58 Sun ONE Application Server Developer’s Guide • March 2003

The server.policy File
Each Sun ONE Application Server instance has its own standard J2SE policy file,
located in the instance_dir/config directory. The file is named server.policy.

Sun ONE Application Server 7 is a J2EE 1.3-compliant application server. As such,
it follows the recommendations and requirements of the J2EE specification,
including the presence of the security manager (the Java component that enforces
the policy) and a limited permission set for J2EE application code.

This section covers the following topics:

• Default Permissions

• Changing Permissions for an Application

• Disabling the Security Manager

Default Permissions
Internal server code is granted all permissions. These are covered by the
AllPermission grant blocks to various parts of the server infrastructure code. Do
not modify these entries.

Application permissions are granted in the default grant block. These permissions
apply to all code not part of the internal server code listed previously. Sun ONE
Application Server 7 does not distinguish between EJB and web module
permissions. All code is granted the minimal set of Web component permissions
(which is a superset of the EJB minimal set).

A few permissions above the minimal set are also granted in the default
server.policy file. These are necessary due to various internal dependencies of
the server implementation. J2EE application developers must not rely on these
additional permissions.

One additional permission is granted specifically for using connectors. If
connectors are not used in a particular server instance, removal of this permission
is recommended, because it is not otherwise necessary.

The server.policy File

Chapter 3 Securing J2EE Applications 59

Changing Permissions for an Application
The default policy for each instance limits the permissions of J2EE deployed
applications to the minimal set of permissions required for these applications to
operate correctly. If you develop applications that require more than this default
set of permissions, you can edit the server.policy file to add the custom
permissions that your applications need.

You should add the extra permissions only to the applications that require them,
not to all applications deployed to a server instance. Do not add extra permissions
to the default set (the grant block with no codebase, which applies to all code).
Instead, add a new grant block with a codebase specific to the application requiring
the extra permissions, and only add the minimally necessary permissions in that
block.

As noted in the J2EE specification, an application should provide documentation of
the additional permissions it needs. If an application requires extra permissions but
does not document the set it needs, contact the application author for details.

As a last resort, you can iteratively determine the permission set an application
needs by observing AccessControlException occurrences in the server log. If this
is not sufficient, you can add the -Djava.security.debug=all JVM option to the
server instance. For details, see the Sun ONE Application Server Administrator’s
Guide or the Sun ONE Application Server Administrator’s Configuration File Reference.

You can use the J2SE standard policytool or any text editor to edit the
server.policy file. For more information, see:

http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html

For detailed information about the permissions you can set in the server.policy
file, see:

http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html

The Javadoc for the Permission class is here:

http://java.sun.com/j2se/1.4/docs/api/java/security/Permission.html

NOTE Do not add java.security.AllPermission to the server.policy
file for application code. Doing so completely defeats the purpose of
the security manager, yet you still get the performance overhead
associated with it. Disable the security manager instead, as
described in “Disabling the Security Manager,” on page 60.

The server.policy File

60 Sun ONE Application Server Developer’s Guide • March 2003

Disabling the Security Manager
Developers of J2EE application components should not disable the security
manager. As noted in the J2EE specification, J2EE application components should
be capable of running with the default set, and otherwise a component needs to
document its special requirements.

In a production environment, you may be able to safely disable the security
manager if:

• Performance is critical

• Deployment to the production server is carefully controlled

• Only trusted applications are deployed

• Applications don’t need policy enforcement

Disabling the security manager may improve performance significantly for some
types of applications. To disable the security manager, remove or comment the
following entry in the server.xml file:

<jvm-options>-Djava.security.policy=instance_dir/config/server.policy</jvm-options>

For more information about the server.xml file, see the Sun ONE Application
Server Administrator’s Configuration File Reference.

NOTE To ensure that a J2EE application is compliant with the J2EE policy
set, it is critical that J2EE developers do not disable the security
manager. Sun ONE Application Server 7 provides an option for
disabling the security manager, but future releases may not.
Applications that fail to comply with the J2EE policy set (and do not
document divergences) may fail to run in future releases.

Programmatic Login

Chapter 3 Securing J2EE Applications 61

Programmatic Login
Programmatic login allows a deployed J2EE application to invoke a login method.
If the login is successful, a SecurityContext is established as if the client had
authenticated using any of the conventional J2EE mechanisms.

Programmatic login is useful for an application that has special needs which
cannot be accommodated by any of the J2EE standard authentication mechanisms.

This section contains the following topics:

• Precautions

• Granting Programmatic Login Permission

• The ProgrammaticLogin Class

Precautions
The Sun ONE Application Server is not involved in how the login information
(user, password) is obtained by the deployed application. Programmatic login
places the burden on the application developer with respect to assuring that the
resulting system meets their security requirements. If the application code reads
the authentication information across the network, it is up to the application to
determine whether to trust the user.

Programmatic login allows the application developer to bypass the application
server-supported authentication mechanisms and feed authentication data directly
to the security service. While flexible, this capability should not be used without
some understanding of security issues.

Since this mechanism bypasses the container-managed authentication process and
sequence, the application developer must be very careful in making sure that
authentication is established before accessing any restricted resources or methods.
It is also the application developer’s responsibility to verify the status of the login
attempt and to alter the behavior of the application accordingly.

The programmatic login state does not necessarily persist in sessions or participate
in single-sign-on.

NOTE Programmatic login is specific to Sun ONE Application Server and
not portable to other application servers.

Programmatic Login

62 Sun ONE Application Server Developer’s Guide • March 2003

Lazy authentication is not supported for programmatic login. If an access check is
reached and the deployed application has not properly authenticated via the
programmatic login method, access is denied immediately and the application may
fail if not properly coded to account for this occurrence.

Granting Programmatic Login Permission
The ProgrammaticLoginPermission permission is required to invoke the
programmatic login mechanism for an application. This permission is not granted
by default to deployed applications because this is not a standard J2EE mechanism.

To grant the required permission to the application, add the following to the
instance_dir/config/server.policy file:

grant codeBase "file:jar_file_path" {
permission com.sun.appserv.security.ProgrammaticLoginPermission
"login";

};

The jar_file_path is the path to the application’s JAR file.

For more information about the server.policy file, see “The server.policy File,”
on page 58.

The ProgrammaticLogin Class
The com.sun.appserv.security.ProgrammaticLogin class enables a user to
perform login programmatically. This class has two login methods, one for
servlets or JSPs and one for EJB components.

The login method for servlets or JSPs has the following signature:

public Boolean login(String user, String password,
javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)

The login method for EJB components has the following signature:

public Boolean login(String user, String password)

Both login methods:

• Perform the authentication

• Return true if login succeeded, false if login failed

63

Chapter 4

Assembling and Deploying J2EE
Applications

This chapter describes Sun ONE Application Server modules and how these
modules are assembled separately or together in an application. For design
considerations that affect assembly, see “Modularizing Applications,” on page 26.

Sun ONE Application Server modules and applications include J2EE standard
elements and Sun ONE Application Server specific elements. Only Sun ONE
Application Server specific elements are described in detail in this chapter.

The following topics are presented in this chapter:

• Overview of Assembly and Deployment

• Assembling Modules and Applications

• Deploying Modules and Applications

• Apache Ant Assembly and Deployment Tool

• The Application Deployment Descriptor Files

Overview of Assembly and Deployment
Application assembly (also known as packaging) is the process of combining
discrete components of an application into a single unit that can be deployed to a
J2EE-compliant application server. A package can be classified either as a module
or as a full-fledged application. This section covers the following topics:

• Modules

• Applications

• J2EE Standard Descriptors

Overview of Assembly and Deployment

64 Sun ONE Application Server Developer’s Guide • March 2003

• Sun ONE Application Server Descriptors

• Naming Standards

• JNDI Naming

• Directory Structure

• Runtime Environments

• Classloaders

• Sample Applications

Modules
A J2EE module is a collection of one or more J2EE components of the same
container type (for example, web or EJB) with deployment descriptors of that type.
One descriptor is J2EE standard, the other is Sun ONE Application Server specific.
Types of J2EE modules are as follows:

• Web Application Archive (WAR): A web application is a collection of servlets,
HTML pages, classes, and other resources that can be bundled and deployed to
several J2EE application servers. A WAR file can consist of the following items:
servlets, JSPs, JSP tag libraries, utility classes, static pages, client-side applets,
beans, bean classes, and deployment descriptors (web.xml and optionally
sun-web.xml).

• EJB JAR File: The EJB JAR file is the standard format for assembling enterprise
beans. This file contains the bean classes (home, remote, local, and
implementation), all of the utility classes, and the deployment descriptors
(ejb-jar.xml and sun-ejb-jar.xml). If the EJB component is an entity bean
with container managed persistence, a .dbschema file and a CMP mapping
descriptor, sun-cmp-mapping.xml, must be included as well.

• Application Client Container JAR File: An ACC client is a Sun ONE
Application Server specific type of J2EE client. An ACC client supports the
standard J2EE Application Client specifications, and in addition, supports
direct access to the Sun ONE Application Server. Its deployment descriptors
are application-client.xml and sun-application-client.xml.

• Resource RAR File: RAR files apply to J2EE CA connectors. A connector
module is like a device driver. It is a portable way of allowing EJB components
to access a foreign enterprise system. Each Sun ONE Application Server
connector has a J2EE XML file, ra.xml. A connector must also have a Sun ONE
Application Server deployment descriptor, sun-ra.xml.

Overview of Assembly and Deployment

Chapter 4 Assembling and Deploying J2EE Applications 65

Package definitions must be used in the source code of all modules so the
classloader can properly locate the classes after the modules have been deployed.

Because the information in a deployment descriptor is declarative, it can be
changed without requiring modifications to source code. At run time, the J2EE
server reads this information and acts accordingly.

Sun ONE Application Server also supports lifecycle modules. See Chapter 6,
“Developing Lifecycle Listeners” for more information.

EJB JAR and Web modules can also be assembled as separate JAR or WAR files and
deployed separately, outside of any application, as in the following figure.

Module Assembly and Deployment

Applications
A J2EE application is a logical collection of one or more J2EE modules tied together
by application deployment descriptors. Components can be assembled at either the
module or the application level. Components can also be deployed at either the
module or the application level.

EJB

EJB

EJB

EJB
module

Web
module

(.jar file)

(.war file)

J2EE Modules
(.jar and .war files)

J2EE
Components

Deployment
to the

Application

sun-ejb-jar.xml
Sun ONE

sun-web.xml
SunONE

J2EE
ejb-jar.xml

J2EE
web.xmlWEB

Servlet

WEB
JSP

Server

Overview of Assembly and Deployment

66 Sun ONE Application Server Developer’s Guide • March 2003

The following diagram illustrates how components are assembled into modules
and then assembled into a Sun ONE Application Server application EAR file ready
for deployment.

Application Assembly and Deployment

EJB

EJB

EJB

EJB
module

Web
module

(.jar file)

(.war file)

J2EE Application
(.ear file)

J2EE Modules
(.jar, .war, .rar files)

J2EE
Components

Deployment
to the

Application

sun-ejb-jar.xml
Sun ONE

sun-web.xml
Sun ONE

sun-application-client.xml
Sun ONE

J2EE

Application Client
module
(.jar file)

ejb-jar.xml

J2EE
web.xml

J2EE

WEB
Servlet

WEB
JSP

Sun ONE Application Server File Set

Server

application-client.xml

application.xml
J2EE

sun-application.xml
Sun ONE

sun-ra.xml
Sun ONE

Connector
module
(.rar file)

J2EE
ra.xml

Overview of Assembly and Deployment

Chapter 4 Assembling and Deploying J2EE Applications 67

Each module has a Sun ONE Application Server deployment descriptor and a J2EE
deployment descriptor. The Sun ONE Application Server Administration interface
uses the deployment descriptors to deploy the application components and to
register the resources with the Sun ONE Application Server.

An application consists of one or more modules, an optional Sun ONE Application
Server deployment descriptor, and a required J2EE application deployment
descriptor. All items are assembled, using the Java ARchive (.jar) file format, into
one file with an extension of .ear.

J2EE Standard Descriptors
The J2EE platform provides assembly and deployment facilities. These facilities use
WAR, JAR, and EAR files as standard packages for components and applications,
and XML-based deployment descriptors for customizing parameters.

J2EE standard deployment descriptors are described in the J2EE specification, v1.3.
You can find the specification here:

http://java.sun.com/products/

To check the correctness of these deployment descriptors prior to deployment, see
“The Deployment Descriptor Verifier,” on page 83.

The following table shows where to find more information about J2EE standard
deployment descriptors. The left column lists the deployment descriptors, and the
right column lists where to find more information about those descriptors.

J2EE Standard Descriptors

Deployment Descriptor Where to Find More Information

application.xml Java 2 Platform Enterprise Edition Specification, v1.3, Chapter 8,
“Application Assembly and Deployment - J2EE:application XML DTD”

web.xml Java Servlet Specification, v2.3 Chapter 13, “Deployment Descriptor,” and
JavaServer Pages Specification, v1.2, Chapter 7, “JSP Pages as XML
Documents,” and Chapter 5, “Tag Extensions”

ejb-jar.xml Enterprise JavaBeans Specification, v2.0, Chapter 16, “Deployment
Descriptor”

application-client.xml Java 2 Platform Enterprise Edition Specification, v1.3, Chapter 9,
“Application Clients - J2EE:application-client XML DTD”

ra.xml Java 2 Enterprise Edition, J2EE Connector Architecture Specification, v1.0,
Chapter 10, “Packaging and Deployment.”

Overview of Assembly and Deployment

68 Sun ONE Application Server Developer’s Guide • March 2003

Sun ONE Application Server Descriptors
Sun ONE Application Server uses additional deployment descriptors for
configuring features specific to the Sun ONE Application Server. The
sun-application.xml and sun-web.xml files are optional; all the others are
required.

The DTD schema files for all the Sun ONE Application Server deployment
descriptors are located in the install_dir/lib/dtds directory.

To check the correctness of these deployment descriptors prior to deployment, see
“The Deployment Descriptor Verifier,” on page 83.

The following table shows where to find more information about Sun ONE
Application Server deployment descriptors. The left column lists the deployment
descriptors, and the right column lists where to find more information about those
descriptors.

Sun ONE Application Server Descriptors

Deployment Descriptor Where to Find More Information

sun-application.xml “The Application Deployment Descriptor Files,” on page 128.

sun-web.xml Sun ONE Application Server Developer’s Guide to Web Applications

sun-ejb-jar.xml and
sun-cmp-mapping.xml

Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans
Technology

sun-application-client.xml
and sun-acc.xml

Sun ONE Application Server Developer’s Guide to Clients

sun-ra.xml Sun ONE J2EE CA Service Provider Implementation Administrator’s Guide

NOTE The Sun ONE Application Server deployment descriptors must
have 600 level access privileges on UNIX systems.

Overview of Assembly and Deployment

Chapter 4 Assembling and Deploying J2EE Applications 69

Naming Standards
Names of applications and individually deployed EJB JAR, WAR, and connector
RAR modules (as specified by the name attributes in the server.xml file) must be
unique in a Sun ONE Application Server instance. If you do not explicitly specify a
name, the default name is the first portion of the file name (without the .war or
.jar extension). For details about server.xml, see the Sun ONE Application Server
Administrator’s Configuration File Reference.

Modules of different types can have the same name within an application, because
when the application is deployed, the directories holding the individual modules
are named with _jar, _war and _rar suffixes. Modules of the same type within an
application must have unique names. In addition, for entity beans that use
CMP,.dbschema file names must be unique within an application.

Make sure your package and file names do not contain spaces or characters that are
illegal for your operating system.

JNDI Naming
When clients or web applications communicate with EJB components, or when
web applications or EJB components require services provided by JDBC or other
resources, a naming service is what allows these components to locate and talk to
each other. A naming service maintains a set of bindings, which relate names to
objects. The J2EE naming service is JNDI (the Java Naming and Directory
Interface).

In Sun ONE Application Server, containers provide their components a naming
environment, or context, which allows components to look up other distributed
components and resources. A Context object provides the methods for binding
names to objects, unbinding names from objects, renaming objects, and listing the
bindings.

JNDI also provides subcontext functionality. Much like a directory in a file system,
a subcontext is a context within a context. This hierarchical structure permits better
organization of information. For naming services that support subcontexts, the
Context class also provides methods for creating and destroying subcontexts.

JNDI names for EJB components must be unique. For example, appending the
application name and the module name to the EJB name would be one way to
guarantee unique names. In this case, mycompany.pkging.pkgingEJB.MyEJB
would be the JNDI name for an EJB in the module pkgingEJB.jar, which is
packaged in the application pkging.ear.

Overview of Assembly and Deployment

70 Sun ONE Application Server Developer’s Guide • March 2003

The following table describes JNDI subcontexts for connection factories in Sun
ONE Application Server. The left column lists Resource Manager types, the middle
column lists Connection Factory types, and the right column lists JNDI
subcontexts.

NOTE To avoid collisions with names of other enterprise resources in
JNDI, and to avoid portability problems, all names in a Sun ONE
Application Server application should begin with the string
java:comp/env.

JNDI subcontexts for connection factories

Resource Manager Type Connection Factory Types JNDI Subcontext

JDBC javax.sql.DataSource java:comp/env/jdbc

JMS javax.jms.TopicConnectionFactory

javax.jms.QueueConnectionFactory

java:comp/env/jms

JavaMail javax.mail.Session java:comp/env/mail

URL java.net.URL java:comp/env/url

Connector javax.resource.cci.ConnectionFactory java:comp/env/eis

Overview of Assembly and Deployment

Chapter 4 Assembling and Deploying J2EE Applications 71

Directory Structure
When you deploy an application, the application is expanded to an open directory
structure, and the directories holding the individual modules are named with
_jar, _war and _rar suffixes. If you use the asadmin deploydir command to
deploy a directory instead of an EAR file, your directory structure must follow this
same convention.

Module and application directory structures follow the structure outlined in the
J2EE specification. Here is an example directory structure of a simple application
containing a web module, an EJB module, and a client module.

+ converter_1/
|--- converterClient.jar
|--+ META-INF/
| |--- MANIFEST.MF
| |--- application.xml
| '--- sun-application.xml
|--+ war-ic_war/
| |--- index.jsp
| |--+ META-INF/
| | |--- MANIFEST.MF
| '--+ WEB-INF/
| |--- web.xml
| '--- sun-web.xml
|--+ ejb-jar-ic_jar/
| |--- Converter.class
| |--- ConverterBean.class
| |--- ConverterHome.class
| '--+ META-INF/
| |--- MANIFEST.MF
| |--- ejb-jar.xml
| '--- sun-ejb-jar.xml
'--+ app-client-ic_jar/

|--- ConverterClient.class
'--+ META-INF/

|--- MANIFEST.MF
|--- application-client.xml
'--- sun-application-client.xml

Overview of Assembly and Deployment

72 Sun ONE Application Server Developer’s Guide • March 2003

Here is an example directory structure of an individually deployed connector
module.

Runtime Environments
Whether you deploy an individual module or an application, deployment affects
both the file system and the server configuration. See the following “Module
runtime environment” and “Application runtime environment” figures.

Module Runtime Environment
The following figure illustrates the environment for individually deployed
module-based deployment.

Module runtime environment

+ MyConnector/
|--- readme.html
|--- ra.jar
|--- client.jar
|--- win.dll
|--- solaris.so
'--+ META-INF/

|--- MANIFEST.MF
|--- ra.xml
'--- sun-ra.xml

Configuration: File System:

packagingEJB.jar

<ejb-module>
element in server.xml

instance_dir/applications/j2ee-modules/
packagingEJB/*

Overview of Assembly and Deployment

Chapter 4 Assembling and Deploying J2EE Applications 73

For file system entries, modules are extracted as follows:

instance_dir/applications/j2ee-modules/module_name
instance_dir/generated/ejb/j2ee-modules/module_name
instance_dir/generated/jsp/j2ee-modules/module_name

The applications directory contains the directory structures described in
“Directory Structure,” on page 71. The generated/ejb directory contains the stubs
and ties that an ACC client needs to access the module; the generated/jsp
directory contains compiled JSPs.

Lifecycle modules (see Chapter 6, “Developing Lifecycle Listeners”) are extracted
as follows:

instance_dir/applications/lifecycle-modules/module_name

Configuration entries are added in the server.xml file as follows:

<server>
<applications>

<type-module>
...module configuration...

</type-module>
</applications>

</server>

The type of the module in server.xml can be lifecycle, ejb, web, or connector.
For details about server.xml, see the Sun ONE Application Server Administrator’s
Configuration File Reference.

Application Runtime Environment
The following figure illustrates the environment for application-based deployment.

Application runtime environment

Configuration: File System:

packagingApp.ear

packagingEJB.jar

<j2ee-application>
element in server.xml

instance_dir/applications/j2ee-apps/
packagingApp/packagingEJB/*

Overview of Assembly and Deployment

74 Sun ONE Application Server Developer’s Guide • March 2003

For file system entries, applications are extracted as follows:

instance_dir/applications/j2ee-apps/app_name
instance_dir/generated/ejb/j2ee-apps/app_name
instance_dir/generated/jsp/j2ee-apps/app_name

The applications directory contains the directory structures described in
“Directory Structure,” on page 71. The generated/ejb directory contains the stubs
and ties that an ACC client needs to access the module; the generated/jsp
directory contains compiled JSPs.

Configuration entries are added in the server.xml file as follows:

<server>
<applications>

<j2ee-application>
...application configuration...

</j2ee-application>
</applications>

</server>

For details about server.xml, see the Sun ONE Application Server Administrator’s
Configuration File Reference.

Classloaders
Understanding Sun ONE Application Server classloaders can help you determine
where and how you can position supporting JAR and resource files for your
modules and applications.

In a Java Virtual Machine (JVM), the classloaders dynamically load a specific java
class file needed for resolving a dependency. For example, when an instance of
java.util.Enumeration needs to be created, one of the classloaders loads the
relevant class into the environment. This section includes the following topics:

• The Classloader Hierarchy

• Classloader Universes

• Circumventing Classloader Isolation

Overview of Assembly and Deployment

Chapter 4 Assembling and Deploying J2EE Applications 75

The Classloader Hierarchy
Classloaders in the Sun ONE Application Server runtime follow a hierarchy that is
illustrated here:

Classloader runtime hierarchy

Shared
Classloader

EJB
Classloader*

Web Container
Classloader

System
Classloader

Web
Classloader*

JSP Engine
Classloader*

*There are separate classloader instances for each application
(one of these classloaders is in each application classloader universe).

LifeCycleModule
Classloader

Bootstrap
Classloader

Common
Classloader

Overview of Assembly and Deployment

76 Sun ONE Application Server Developer’s Guide • March 2003

Note that this is not a Java inheritance hierarchy, but a delegation hierarchy. In the
delegation design, a classloader delegates classloading to its parent before
attempting to load a class itself. A classloader parent can be either the System
Classloader or another custom classloader. If the parent classloader can’t load a
class, the findClass() method is called on the classloader subclass. In effect, a
classloader is responsible for loading only the classes not available to the parent.

The exception is the Web Classloader, which follows the delegation model in the
Servlet specification. The Web Classloader looks in the local classloader before
delegating to its parent. You can make the Web Classloader delegate to its parent
first by setting delegate="true" in the class-loader element of the
sun-web.xml file. For details, see the Developer’s Guide to Web Applications.

The following table describes Sun ONE Application Server classloaders. The left
column lists the classloaders, and the right column lists descriptions of those
classloaders and the files they examine.

NOTE The Web Classloader for a web component of a web service must
delegate to its parent classloader, so you must set delegate="true"
in the class-loader element of the sun-web.xml file in this case.

Sun ONE Application Server classloaders

Classloader Description

Bootstrap The Bootstrap Classloader loads all the JDK classes.

System The System Classloader loads most of the core Sun ONE Application Server
classes. It is created based on the classpath-prefix,
server-classpath, and classpath-suffix attributes of the
java-config element in the server.xml file. The environment classpath
is included if env-classpath-ignored="false" is set in the
java-config element.

Common The Common Classloader loads classes in the instance_dir/lib/classes
directory, followed by JAR and ZIP files in the instance_dir/lib directory.
No special classpath settings are required. The existence of these directories
is optional; if they don’t exist, the Common Classloader is not created.

Shared The Shared Classloader is a single instance that loads classes (such as
individually deployed connector modules) that are shared across all
applications.

LifeCycle
Module

The LifeCycleModule Classloader is the parent classloader for lifecycle
modules. Each lifecycle module’s classpath is used to construct its own
classloader.

Overview of Assembly and Deployment

Chapter 4 Assembling and Deploying J2EE Applications 77

Classloader Universes
Access to components within applications and modules installed on the server
occurs within the context of isolated classloader universes, each of which has its
own EJB, Web, and JSP Engine classloaders.

• Application Universe: Each J2EE application has its own classloader universe,
which loads the classes in all the modules in the application.

• Individually Deployed Module Universe: Each individually deployed EJB
JAR, web WAR, or lifecycle module has its own classloader universe, which
loads the classes in the module.

EJB The EJB Classloader loads the enabled EJB classes in a specific enabled EJB
module or J2EE application. One instance of this classloader is present in
each classloader universe. The EJB Classloader is created with a list of URLs
that point to the locations of the classes it needs to load.

Web The Web Classloader loads the servlets and other classes in a specific
enabled web module or J2EE application. One instance of this classloader is
present in each classloader universe. The Web Classloader is created with a
list of URLs that point to the locations of the classes it needs to load.

JSP Engine The JSP Engine Classloader loads compiled JSP classes of enabled JSPs. One
instance of this classloader is present in each classloader universe. The JSP
Engine Classloader is created with a list of URLs that point to the locations
of the classes it needs to load.

NOTE In iPlanet Application Server 6.x, individually deployed modules
shared the same classloader. In Sun ONE Application Server 7, each
individually deployed module has its own classloader universe.

Sun ONE Application Server classloaders

Classloader Description

Overview of Assembly and Deployment

78 Sun ONE Application Server Developer’s Guide • March 2003

Circumventing Classloader Isolation
Since each application or individually deployed module classloader universe is
isolated, an application or module cannot load classes from another application or
module. This prevents two similarly named classes in different applications from
interfering with each other.

To circumvent this limitation for libraries, utility classes, or individually deployed
modules accessed by more than one application, you can include the relevant path
to the required classes in one of these ways:

• Using the System Classloader

• Using the Common Classloader

• Packaging the Client JAR for One Application in Another Application

Using the System Classloader
To use the System Classloader, do one of the following, then restart the server:

• Go to the server instance page in the Administration interface, select the JVM
Settings tab, select the Path Settings option, edit the Classpath Suffix field, and
select Save.

• Edit the classpath-suffix attribute of the java-config element in the
server.xml file. For details about server.xml, see the Sun ONE Application
Server Administrator’s Configuration File Reference.

Using the System Classloader makes an application or module accessible to any
other application or module across the server instance.

NOTE A resource such as a file that is accessed by a servlet, JSP, or EJB
component must be in a directory pointed to by the classloader’s
classpath. For example, the web classloader’s classpath includes
these directories:

module_name/WEB-INF/classes
module_name/WEB-INF/lib

If a servlet accesses a resource, it must be in one of these directories
or it will not be loaded.

Overview of Assembly and Deployment

Chapter 4 Assembling and Deploying J2EE Applications 79

Using the Common Classloader
To use the Common Classloader, copy the JAR and ZIP files into the
instance_dir/lib directory or copy the .class files into the
instance_dir/lib/classes directory, then restart the server.

Using the Common Classloader makes an application or module accessible to any
other application or module across the server instance.

Packaging the Client JAR for One Application in Another Application
By packaging the client JAR for one application in a second application, you allow
an EJB or web component in the second application to call an EJB component in the
first (dependent) application, without making either of them accessible to any
other application or module.

Packaging the client JAR for one application in another application has trade-offs.
After you enable the -nolocalstubs option, you can deploy multiple applications
that contain client JARs of other applications without restarting the server.
However, using the -nolocalstubs option may degrade server performance.

As an alternative, you can have the Common Classloader load client JAR of the
dependent application as described in “Using the Common Classloader,” on
page 79. Server performance is better, but you must restart the server to make the
dependent application accessible, and it is accessible across the server instance.
This approach is recommended for a production environment.

To package the client JAR for one application in another application:

1. Add the -nolocalstubs option to the server instance’s rmic options in one of
these ways, then restart the server:

❍ Go to the server instance page in the Administration interface, select the
JVM Settings tab, select the General option, add -nolocalstubs to the
rmic Options field, and select Save.

❍ Add -nolocalstubs to the rmic-options attribute of the java-config
element in server.xml. For details about server.xml, see the Sun ONE
Application Server Administrator’s Configuration File Reference.

After you make this change, all subsequently deployed EJB components can
only be accessed remotely.

2. Deploy the dependent application.

NOTE Using the -nolocalstubs option may degrade server performance.

Overview of Assembly and Deployment

80 Sun ONE Application Server Developer’s Guide • March 2003

3. Add the dependent application’s client JAR file to the calling application.

❍ For a calling EJB component, add the client JAR file at the same level as the
EJB component. Then add a Class-Path entry to the MANIFEST.MF file of
the calling EJB component. The Class-Path entry has this syntax:

Class-Path: filepath1.jar filepath2.jar ...

Each filepath is relative to the directory or JAR file containing the
MANIFEST.MF file. For details, see the J2EE specification, section 8.1.1.2,
“Dependencies.”

❍ For a calling web component, add the client JAR file under the
WEB-INF/lib directory.

4. For most applications, packaging the client JAR file with the calling EJB
component should suffice. You do not need to package the client JAR file with
both the EJB and web components unless the web component is directly calling
the EJB component in the dependent application. If you need to package the
client JAR with both the EJB and web components, set delegate="true" in the
class-loader element of the sun-web.xml file. This changes the Web
Classloader so it follows the standard classloader delegation model and
delegates to its parent before attempting to load a class itself.

5. Deploy the calling application.

Sample Applications
Sample applications that you can examine and deploy are included in Sun ONE
Application Server, in the install_dir/samples directory. The samples are organized
in categories such as ejb, jdbc, connectors, i18n, and so on. Each sample
category is further divided into subcategories. For example, under the ejb category
are stateless, stateful, security, mdb, bmp, and cmp subcategories.

Most Sun ONE Application Server samples have the following directory structure:

• The docs directory contains instructions for how to use the sample.

• The src directory contains:

❍ Source code

NOTE The calling EJB or web component must use the JNDI name of the
EJB component in the dependent application. Using an ejb-ref
mapping won’t work.

Overview of Assembly and Deployment

Chapter 4 Assembling and Deploying J2EE Applications 81

❍ The build.xml file, which defines asant targets for the sample (see
“Apache Ant Assembly and Deployment Tool,” on page 103)

❍ Deployment descriptors

• The build, assemble, and javadocs directories are generated as a result of
targets specified in the build.xml file.

The install_dir/samples/common.xml file defines properties common to all sample
applications and implements targets needed to compile, assemble, deploy and
undeploy sample applications. In most sample applications, the build.xml file
includes common.xml.

The following figure shows the structure of the helloworld sample:

The helloworld sample

NOTE Before using the samples under install_dir/samples/webservices,
make sure to copy the Java XML Pack JAR files into the
jre/lib/endorsed directory to override the JAR files bundled with
the JDK.

GreeterEjb
module

(stateless-simpleEjb.jar)

GreeterServlet
module

(stateless-simple.war)

J2EE Application
(stateless-simple.ear)

J2EE Modules
(.jar and .war files)

sun-ejb-jar.xml
Sun ONE

sun-web.xml
Sun ONE

J2EE
ejb-jar.xml

J2EE
web.xml

application.xml
J2EE

sun-application.xml
Sun ONE

Assembling Modules and Applications

82 Sun ONE Application Server Developer’s Guide • March 2003

After you deploy the sample in Sun ONE Application Server, you can invoke it
using the following URL:

http://server:port/helloworld

For a detailed description of the sample and how to deploy and run it, see the
associated documentation at:

install_dir/samples/ejb/stateless/simple/docs/index.html

Assembling Modules and Applications
Assembling (or packaging) modules and applications in Sun ONE Application
Server conforms to all of the customary J2EE-defined specifications. The only
difference is that when you assemble in Sun ONE Application Server, you include
Sun ONE Application Server-specific deployment descriptors (such as
sun-web.xml and sun-ejb-jar.xml) that enhance the functionality of the
application server.

This section covers the following topics:

• Tools for Assembly

• Assembling a WAR Module

• Assembling an EJB JAR Module

• Assembling a Lifecycle Module

• Assembling an Application

• Assembling an ACC Client

• Assembling a J2EE CA Resource Adapter

Tools for Assembly
The Sun ONE Application Server provides these methods for assembling a module
or an application:

• Apache Ant

• Sun ONE Studio

• The Deployment Descriptor Verifier

Assembling Modules and Applications

Chapter 4 Assembling and Deploying J2EE Applications 83

Apache Ant
Ant can help you assemble and deploy modules and applications. For details, see
“Apache Ant Assembly and Deployment Tool,” on page 103.

Sun ONE Studio
You can use Sun ONE Studio 4 to assemble J2EE applications and modules. For
more information about using Sun ONE Studio, see the Sun ONE Studio 4,
Enterprise Edition Tutorial.

The Deployment Descriptor Verifier
The verifier tool validates both J2EE and Sun One Application Server specific
deployment descriptors against their corresponding DTD files and gives errors and
warnings if a module or application is not J2EE and Sun One Application Server
compliant. You can verify deployment descriptors in EAR, WAR, RAR, and JAR
files.

The verifier tool is not simply an XML syntax verifier. Rules and interdependencies
between various elements in the deployment descriptors are verified. Where
needed, user application classes are introspected to apply validation rules.

The verifier is also integrated into the sun-appserv-deploy Ant task.

This section covers the following topics:

• Command Line Syntax

• Ant Integration

• Sample Results Files

Command Line Syntax
The verifier tool’s syntax is as follows:

verifier [options] file

The file can be an EAR, WAR, RAR, or JAR file.

The following table shows the options for the verifier tool. The left column lists
options, and the right column lists descriptions of those options.

TIP Using the verifier tool can help you avoid runtime errors that are
difficult to debug.

Assembling Modules and Applications

84 Sun ONE Application Server Developer’s Guide • March 2003

For example, the following command runs the verifier in verbose mode and writes
all the results of static verification of the ejb.jar file to the output directory
ResultsDir:

verifier -v -ra -d ResultsDir ejb.jar

The results files are ejb.jar_verifier.txt and ejb.jar_verifier.xml.

If the verifier runs successfully, a result code of 0 is returned. This does not mean
that no verification errors occurred. A non-zero error code is returned if the verifier
fails to run.

Ant Integration
You can integrate the verifier into an Ant build file as a target and use the Ant call
feature to call the target each time an application or module is assembled. This is
because the main method in com.sun.enterprise.tools.verifier.Verifier is
callable from user Ant scripts. The main method accepts the arguments described
in the “verifier options” table.

Example code for an Ant verify target is as follows:

<target name="verify">
<echo message="Verification Process for ${testfile}"/>
<java classname="com.sun.enterprise.tools.verifier.Verifier"

fork="yes">
<sysproperty key="com.sunone.enterprise.home"

value="${appserv.home}"/>
<sysproperty key="verifier.xsl"

value="${appserv.home}/verifier/config" />
<!-- uncomment the following for verbose output -->
<!--<arg value="-v"/>-->

verifier options

Option Description

-v Turns on verbose debug mode.

-d output_dir Writes test results to the output_dir, which must already exist. By default,
the results files are created in the system-defined tmp directory.

-ra Sets the output report level to display all results. This is the default in
both verbose and non verbose modes.

-rw Sets the output report level to display only warning and failure results.

-rf Sets the output report level to display only failure results.

Assembling Modules and Applications

Chapter 4 Assembling and Deploying J2EE Applications 85

<arg value="${assemble}/${ejbjar}" />
<classpath path="${appserv.cpath}:${java.class.path}"/>

</java>
</target>

Sample Results Files
Here is a sample results XML file:

<static-verification>
<ejb>

<failed>
<test>

<test-name>
tests.ejb.session.TransactionTypeNullForContainerTX

</test-name>
<test-assertion>

Session bean with bean managed transaction demarcation test
</test-assertion>
<test-description>

For [TheGreeter] Error: Session Beans [TheGreeter] with [Bean]
managed transaction demarcation should not have container
transactions defined.

</test-description>
</test>

</failed>
</ejb>

...
</static-verification>

Here is a sample results TXT file:

STATIC VERIFICATION RESULTS

NUMBER OF FAILURES/WARNINGS/ERRORS

of Failures : 3
of Warnings : 6
of Errors : 0

RESULTS FOR EJB-RELATED TESTS

FAILED TESTS :

Assembling Modules and Applications

86 Sun ONE Application Server Developer’s Guide • March 2003

Test Name : tests.ejb.session.TransactionTypeNullForContainerTX
Test Assertion : Session bean with bean managed transaction
demarcation test
Test Description : For [TheGreeter]
Error: Session Beans [TheGreeter] with [Bean] managed
transaction demarcation should not have container transactions
defined.

...

PASSED TESTS :

Test Name : tests.ejb.session.ejbcreatemethod.EjbCreateMethodStatic
Test Assertion : Each session Bean must have at least one non-static
ejbCreate method test
Test Description : For [TheGreeter] For EJB Class [
samples.helloworld.ejb.GreeterEJB] method [ejbCreate] [
samples.helloworld.ejb.GreeterEJB] properly declares non-static
ejbCreate(...) method.

...

WARNINGS :

Test Name : tests.ejb.businessmethod.BusinessMethodException
Test Assertion : Enterprise bean business method throws
RemoteException test
Test Description :

Test Name : tests.ejb.ias.beanpool.IASEjbBeanPool
Test Assertion :
Test Description : WARNING [IAS-EJB ejb] : bean-pool should be
defined for Stateless Session and Message Driven Beans

...

NOTAPPLICABLE TESTS :

Test Name :
tests.ejb.entity.pkmultiplefield.PrimaryKeyClassFieldsCmp

Assembling Modules and Applications

Chapter 4 Assembling and Deploying J2EE Applications 87

Test Assertion : Ejb primary key class properly declares all class
fields within subset of the names of the container-managed fields
test.
Test Description : For [TheGreeter] class
com.sun.enterprise.tools.verifier.tests.ejb.entity.pkmultiplefield.
PrimaryKeyClassFieldsCmp expected Entity bean, but called with
Session.

Test Name : tests.ejb.entity.ejbcreatemethod.EjbCreateMethodReturn
Test Assertion : Each entity Bean may have zero or more ejbCreate
methods which return primary key type test
Test Description : For [TheGreeter] class
com.sun.enterprise.tools.verifier.tests.ejb.entity.ejbcreatemethod.
EjbCreateMethodReturn expected Entity bean, but called with Session
bean.

...

RESULTS FOR OTHER XML-RELATED TESTS

PASSED TESTS :

Test Name : tests.dd.ParseDD
Test Assertion : Test parses the deployment descriptor using a SAX
parser to avoid the dependency on the DOL
Test Description : PASSED [EJB] : [remote] and [home] tags
present.
PASSED [EJB]: session-type is Stateless.
PASSED [EJB]: trans-attribute is NotSupported.
PASSED [EJB]: transaction-type is Bean.

...

Assembling a WAR Module
To assemble a WAR module, follow these steps:

1. Create a working directory, and copy the contents of your web module into it.
Make sure it has the structure described in the Sun ONE Application Server
Developer’s Guide to Web Applications.

Assembling Modules and Applications

88 Sun ONE Application Server Developer’s Guide • March 2003

2. Create two deployment descriptor files with these names: web.xml (required)
and sun-web.xml (optional). For more information about these files, see the
Sun ONE Application Server Developer’s Guide to Web Applications.

3. Execute this command to create the WAR file:

jar -cvf module_name.war *

Assembling an EJB JAR Module
To assemble an EJB JAR module, follow these steps:

1. Create a working directory, and copy the contents of your module into it. Make
sure it has the structure described in the Sun ONE Application Server Developer’s
Guide to Enterprise JavaBeans Technology.

2. Create two deployment descriptor files with these names: ejb-jar.xml and
sun-ejb-jar.xml (both required). For more information about these files, see
the Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans
Technology. If the EJB component is an entity bean with container-managed
persistence, you must also create a .dbschema file and a
sun-cmp-mapping.xml file.

3. Execute this command to create the JAR file:

jar -cvf module_name.jar *

TIP The first time, you can assemble the WAR module and create the
deployment descriptors using Sun ONE Studio. The resulting WAR
file can be extracted to yield the deployment descriptors.

TIP The assembly process can be automated using the Ant tool. To learn
more, see “Apache Ant Assembly and Deployment Tool,” on
page 103.

TIP The first time, you can assemble the EJB JAR module and create the
deployment descriptors using Sun ONE Studio. The resulting EJB
JAR file can be extracted to yield the deployment descriptors.

Assembling Modules and Applications

Chapter 4 Assembling and Deploying J2EE Applications 89

Assembling a Lifecycle Module
To assemble a lifecycle module, follow these steps:

1. Create a working directory, and copy the contents of your module into it.

2. Execute this command to create the JAR file:

jar -cvf module_name.jar *

For general information about lifecycle modules, see Chapter 6, “Developing
Lifecycle Listeners.”

Assembling an Application
To assemble an application, follow these steps:

1. Create a working directory, and copy the contents of your application into it,
including all modules. Make sure it has the structure described in the Sun ONE
Application Server Developer’s Guide to Enterprise JavaBeans Technology.

TIP The assembly process can be automated using the Ant tool. To learn
more, see “Apache Ant Assembly and Deployment Tool,” on
page 103.

NOTE According to the J2EE specification, section 8.1.1.2, “Dependencies,”
you cannot package utility classes within an individually deployed
EJB module. Instead, package the EJB module and utility JAR within
an application using the JAR Extension Mechanism Architecture.
For other alternatives, see “Circumventing Classloader Isolation,”
on page 78.

TIP The assembly process can be automated using the Ant tool. To learn
more, see “Apache Ant Assembly and Deployment Tool,” on
page 103.

Assembling Modules and Applications

90 Sun ONE Application Server Developer’s Guide • March 2003

2. Create two deployment descriptor files with these names: application.xml
(required) and sun-application.xml (optional). For more information about
these files, see “Sample Application XML Files,” on page 134.

3. Execute this command to create the J2EE application EAR file:

jar -cvf app_name.ear *

Assembling an ACC Client
This section provides some brief pointers for assembling ACC clients, but you
should first read the Sun ONE Application Server Developer’s Guide to Clients.

To assemble an ACC client JAR module, follow these steps:

1. Create a working directory, and copy the contents of your module into it. Make
sure it has the structure described in the Sun ONE Application Server Developer’s
Guide to Clients.

2. Create deployment descriptor files with these names:
application-client.xml and sun-application-client.xml (both
required). For more information about these files, see the Sun ONE Application
Server Developer’s Guide to Clients.

3. Execute this command to create the client JAR file:

jar -cvfm module_name.jar META-INF/MANIFEST.MF *

TIP The first time, you can assemble the application and create the
deployment descriptors using Sun ONE Studio. The resulting EAR
file can be extracted to yield the deployment descriptors.

TIP The assembly process can be automated using the Ant tool. To learn
more, see “Apache Ant Assembly and Deployment Tool,” on
page 103.

TIP The first time, you can assemble the client JAR module and create
the deployment descriptors using Sun ONE Studio. The resulting
client JAR file can be extracted to yield the deployment descriptors.

Assembling Modules and Applications

Chapter 4 Assembling and Deploying J2EE Applications 91

For a brief description of how to deploy an ACC client and prepare the client
machine, see “Deploying an ACC Client,” on page 102.

Assembling a J2EE CA Resource Adapter
This section provides some brief pointers for assembling J2EE CA resource
adapters, but you should first read the Sun ONE J2EE CA Service Provider
Implementation Administrator’s Guide.

The following XML connector files are required for deploying a connector to the
application server.

• ra.xml

• sun-ra.xml (including security map)

The ra.xml file is based on the J2EE CA specification and is packaged with the
connector. The sun-ra.xml file contains Sun ONE Application Server specific
information.

To assemble a connector RAR module, follow these steps:

1. Create a working directory, and copy the contents of your module into it. Make
sure it has the structure described in the Sun ONE J2EE CA Service Provider
Implementation Administrator’s Guide.

2. Create two deployment descriptor files with these names: ra.xml and
sun-ra.xml. For more information about these files, see the Sun ONE J2EE CA
Service Provider Implementation Administrator’s Guide.

3. Execute this command to create the RAR file:

jar -cvf module_name.rar *

TIP The assembly process can be automated using the Ant tool. To learn
more, see “Apache Ant Assembly and Deployment Tool,” on
page 103.

TIP The first time, you can assemble the RAR module and create the
deployment descriptors using Sun ONE Studio. The resulting RAR
file can be extracted to yield the deployment descriptors.

Deploying Modules and Applications

92 Sun ONE Application Server Developer’s Guide • March 2003

Deploying Modules and Applications
This section describes the different ways to deploy J2EE applications and modules
to the Sun ONE Application Server. It covers the following topics:

• Deployment Names and Errors

• The Deployment Life Cycle

• Tools for Deployment

• Deployment by Module or Application

• Deploying a WAR Module

• Deploying an EJB JAR Module

• Deploying a Lifecycle Module

• Deploying an ACC Client

• Deploying a J2EE CA Resource Adapter

• Access to Shared Frameworks

Deployment Names and Errors
When you deploy an application or module, a unique name is generated in the Sun
ONE Application Server deployment descriptors file. Redeploying an application
changes this name. Do not change this name manually. During deployment, the
server detects any name collisions and does not load an application or module
having a non-unique name. Messages are sent to the server log when this happens.
For more about naming, see “Naming Standards,” on page 69.

If an error occurs during deployment, the application or module is not deployed. If
a module within an application contains an error, the entire application is not
deployed. This prevents a partial deployment that could leave the server in an
inconsistent state.

TIP The assembly process can be automated using the Ant tool. To learn
more, see “Apache Ant Assembly and Deployment Tool,” on
page 103.

Deploying Modules and Applications

Chapter 4 Assembling and Deploying J2EE Applications 93

The Deployment Life Cycle
After an application is initially deployed, it may be modified and reloaded,
redeployed, disabled, re-enabled, and finally undeployed (removed from the
server). This section covers the following topics related to the deployment life
cycle:

• Dynamic Deployment

• Disabling a Deployed Application or Module

• Dynamic Reloading

Dynamic Deployment
You can deploy, redeploy, and undeploy an application or module without
restarting the server. This is called dynamic deployment.

Although primarily for developers, dynamic deployment can be used in
operational environments to bring new applications and modules online without
requiring a server restart. Whenever a redeployment is done, the sessions at that
transit time become invalid. The client must restart the session.

Disabling a Deployed Application or Module
You can disable a deployed application or module without removing it from the
server. Disabling an application makes it inaccessible to clients.

To disable an application or module, you can do one of the following:

• Set enabled="false" for the application or module in the server.xml file. For
details about server.xml, see the Sun ONE Application Server Administrator’s
Configuration File Reference.

• Use the Administration interface:

a. Open the Applications component under your server instance.

NOTE You can overwrite a previously deployed application by using the
--force option of asadmin deploy or by checking the appropriate
box in the Administration interface during deployment. However,
you must remove a preconfigured resource before you can update it.

Redeploying an application changes its automatically generated
name.

Deploying Modules and Applications

94 Sun ONE Application Server Developer’s Guide • March 2003

b. Go to the page for the type of application or module. For example, for a
web application, go to the Web Apps page.

c. Check the box for the application or module you wish to disable.

d. Select the Disable button. The status listed on this page for the application
or module changes to Disabled.

Dynamic Reloading
If dynamic reloading is enabled, you do not have to redeploy an application or
module when you change its code or deployment descriptors. All you have to do is
copy the changed JSP or class files into the deployment directory for the
application or module. The server checks for changes periodically and redeploys
the application, automatically and dynamically, with the changes.

This is useful in a development environment, because it allows code changes to be
tested quickly. Dynamic reloading is not recommended for a production
environment, however, because it may degrade performance. In addition,
whenever a reload is done, the sessions at that transit time become invalid. The
client must restart the session.

To enable dynamic reloading, you can do one of the following:

• Use the Administration interface:

a. Open the Applications component under your server instance.

b. Go to the Applications page.

c. Check the Reload Enabled box to enable dynamic reloading.

d. Enter a number of seconds in the Reload Poll Interval field to set the
interval at which applications and modules are checked for code changes
and dynamically reloaded.

e. Click on the Save button.

f. Go to the server instance page and select the Apply Changes button.

For details, see the Sun ONE Application Server Administrator’s Guide.

• Edit the following attributes of the server.xml file’s applications element:

❍ dynamic-reload-enabled="true" enables dynamic reloading.

❍ dynamic-reload-poll-interval-in-seconds sets the interval at which
applications and modules are checked for code changes and dynamically
reloaded.

Deploying Modules and Applications

Chapter 4 Assembling and Deploying J2EE Applications 95

For details about server.xml, see the Sun ONE Application Server
Administrator’s Configuration File Reference.

In addition, to load new servlet files, reload EJB related changes, or reload
deployment descriptor changes, you must do the following:

1. Create an empty file named .reload at the root of the deployed application:

instance_dir/applications/j2ee-apps/app_name/.reload

or individually deployed module:

instance_dir/applications/j2ee-modules/module_name/.reload

2. Explicitly update the .reload file’s timestamp (touch .reload in UNIX) each
time you make the above changes.

For JSPs, changes are reloaded automatically at a frequency set in the
reload-interval property of the jsp-config element in the sun-web.xml file. To
disable dynamic reloading of JSPs, set the reload-interval property to -1.

Tools for Deployment
This section discusses the various tools that can be used to deploy modules and
applications. The deployment tools include:

• Apache Ant

• Sun ONE Studio

• The asadmin Command

• The Administration Interface

Apache Ant
Ant can help you assemble and deploy modules and applications. For details, see
“Apache Ant Assembly and Deployment Tool,” on page 103.

Sun ONE Studio
You can use Sun ONE Studio 4 to deploy J2EE applications and modules. For more
information about using Sun ONE Studio, see the Sun ONE Studio 4, Enterprise
Edition Tutorial.

Deploying Modules and Applications

96 Sun ONE Application Server Developer’s Guide • March 2003

The asadmin Command
You can use the asadmin command to deploy or undeploy applications and
individually deployed modules on local servers. Concurrent deployment on
multiple machines or instances is not supported. This section describes the
asadmin command only briefly. For full details, see the Sun ONE Application Server
Administrator’s Guide.

To deploy a lifecycle module, see “Deploying a Lifecycle Module,” on page 100.

asadmin deploy
The asadmin deploy command deploys a WAR, JAR, RAR, or EAR file. To deploy
an application, specify --type application in the command. To deploy an
individual module, specify --type ejb, web, connector, or client. The syntax is
as follows, with defaults shown for optional parameters that have them:

asadmin deploy --user admin_user [--password admin_password]
[--passwordfile password_file] [--host localhost] [--port 4848]
[--secure | -s] [--virtualservers virtual_servers] [--type
application|ejb|web|connector] [--contextroot contextroot]
[--force=true] [--precompilejsp=false] [--verify=false] [--name
component_name] [--upload=true] [--retrieve local_dirpath] [--instance
instance_name] filepath

For example, the following command deploys an individual EJB module:

asadmin deploy --user jadams --password secret --host localhost
--port 4848 --type ejb --instance server1 packagingEJB.jar

If upload is set to false, the filepath must be an absolute path on the server
machine.

NOTE In Sun ONE Studio, deploying a module or application is referred to
as executing it. Execution also includes making sure the server is
running and displaying the correct URL to activate the module or
application.

Deploying Modules and Applications

Chapter 4 Assembling and Deploying J2EE Applications 97

asadmin deploydir
The asadmin deploydir command deploys an application or module in an open
directory structure. The structure must be as specified in “Directory Structure,” on
page 71. The location of the dirpath under instance_dir/applications/j2ee-apps
or instance_dir/applications/j2ee-modules determines whether it is an
application or individually deployed module. The syntax is as follows, with
defaults shown for optional parameters that have them:

asadmin deploydir --user admin_user [--password admin_password]
[--passwordfile password_file] [--host localhost] [--port 4848]
[--secure | -s] [--virtualservers virtual_servers] [--type
application|ejb|web|connector] [--contextroot contextroot]
[--force=true] [--precompilejsp=false] [--verify=false] [--name
component_name] [--instance instance_name] dirpath

For example, the following command deploys an individual EJB module:

asadmin deploydir --user jadams --password secret --host localhost
--port 4848 --type ejb --instance server1 packagingEJB

If upload is set to false, the filepath must be an absolute path on the server
machine.

asadmin undeploy
The asadmin undeploy command undeploys an application or module. To
undeploy an application, specify --type app in the command. To undeploy a
module, specify --type ejb, web, connector, or client. The syntax is as follows,
with defaults shown for optional parameters that have them:

asadmin undeploy --user admin_user [--password admin_password]
[--passwordfile password_file] [--host localhost] [--port 4848]
[--secure | -s] [--type application|ejb|web|connector] [--instance
instance_name] component_name

For example, the following command undeploys an individual EJB module:

asadmin undeploy --user jadams --password secret --host localhost
--port 4848 --type ejb --instance server1 packagingEJB

NOTE On Windows, if you are deploying a directory on a mapped drive,
you must be running Sun ONE Application Server as the same user
to which the mapped drive is assigned, or Sun ONE Application
Server won’t see the directory.

Deploying Modules and Applications

98 Sun ONE Application Server Developer’s Guide • March 2003

The Administration Interface
You can use the Administration interface to deploy modules and applications to
both local and remote Sun ONE Application Server sites. To use this tool, follow
these steps:

1. Open the Applications component under your server instance.

2. Go to the Enterprise Apps, Web Apps, Connector Modules, or EJB Modules
page.

3. Click on the Deploy button. (You can also undeploy, enable, or disable an
application or module from this page.)

4. Enter the full path to the module or application directory or archive file (or
click on Browse to find it), then click on the OK button.

5. Enter the module or application name.

6. For a web module, enter the context root.

7. Assign the application or web module to one or more virtual servers by
checking the boxes next to the virtual server names.

8. You can also redeploy the module or application if it already exists (called
forced deployment) by checking the appropriate box. This is optional.

9. You can run the verifier to check your deployment descriptor files. This is
optional. For details about the verifier, see “The Deployment Descriptor
Verifier,” on page 83.

10. Other fields are displayed depending on the type of module. Check
appropriate boxes and enter appropriate values. Required fields are marked
with asterisks (*).

11. Click on the OK button.

To deploy a lifecycle module, see “Deploying a Lifecycle Module,” on page 100.

Deployment by Module or Application
You can deploy applications or individual modules that are independent of
applications. The runtime and file system implications of application-based or
individual module-based deployment are described in “Runtime Environments,”
on page 72.

Deploying Modules and Applications

Chapter 4 Assembling and Deploying J2EE Applications 99

Individual module-based deployment is preferable when components need to be
accessed by:

• Other modules

• J2EE Applications

• ACC clients (Module-based deployment allows shared access to a bean from
an ACC client, a servlet, or an EJB component.)

Modules can be combined into an EAR file and then deployed as a single module.
This is similar to deploying the modules of the EAR independently.

Deploying a WAR Module
You deploy a WAR module as described in “Tools for Deployment,” on page 95.

You can precompile JSPs during deployment by checking the appropriate box in
the Administration interface or by using the --precompilejsp option of the
asadmin deploy or asadmin deploydir command. The sun-appserv-deploy
and sun-appserv-jspc Ant tasks also allow you to precompile JSPs.

You can keep the generated source for JSPs by adding the -keepgenerated flag to
the jsp-config element in sun-web.xml. If you include this property when you
deploy the WAR module, the generated source is kept in
instance_dir/generated/jsp/j2ee-apps/app_name/module_name if it is in an
application or instance_dir/generated/jsp/j2ee-modules/module_name if it is in
an individually deployed web module.

For more information about JSP precompilation and the -keepgenerated
property, see the Sun ONE Application Server Developer’s Guide to Web Applications.

Deploying an EJB JAR Module
You deploy an EJB JAR module as described in “Tools for Deployment,” on
page 95.

You can keep the generated source for stubs and ties by adding the
-keepgenerated flag to the rmic-options attribute of the java-config element in
server.xml. If you include this flag when you deploy the EJB JAR module, the
generated source is kept in
instance_dir/generated/ejb/j2ee-apps/app_name/module_name if it is in an

Deploying Modules and Applications

100 Sun ONE Application Server Developer’s Guide • March 2003

application or instance_dir/generated/ejb/j2ee-modules/module_name if it is in
an individually deployed EJB JAR module. For more information about the
-keepgenerated flag, see the Sun ONE Application Server Administrator’s
Configuration File Reference.

Deploying a Lifecycle Module
For general information about lifecycle modules, see Chapter 6, “Developing
Lifecycle Listeners.”

You can deploy a lifecycle module using the following tools:

• The asadmin Command

• The Administration Interface

The asadmin Command
To deploy a lifecycle module, use the asadmin create-lifecycle-module
command. The syntax is as follows, with defaults shown for optional parameters
that have them:

asadmin create-lifecycle-module --user admin_user [--password
admin_password] [--passwordfile password_file] [--host localhost] [--port
4848] [--secure | -s] [--instance instance_name] --classname classname
[--classpath classpath] [--loadorder load_order_number]
[--failurefatal=false] [--enabled=true] [--description text_description]
[--property (name=value)[:name=value]*] modulename

For example:

asadmin create-lifecycle-module --user jadams --password secret
--host localhost --port 4848 --instance server1 --classname
RMIServer MyRMIServer

To undeploy a lifecycle module, use the asadmin delete-lifecycle-module
command. The syntax is as follows, with defaults shown for optional parameters
that have them:

asadmin delete-lifecycle-module --user admin_user [--password
admin_password] [--passwordfile password_file] [--host localhost] [--port
4848] [--secure | -s] [--instance instance_name] module_name

For example:

asadmin delete-lifecycle-module --user jadams --password secret
--host localhost --port 4848 --instance server1 MyRMIServer

Deploying Modules and Applications

Chapter 4 Assembling and Deploying J2EE Applications 101

To list the lifecycle modules that are deployed on a server instance, use the
asadmin list-lifecycle-modules command. The syntax is as follows, with
defaults shown for optional parameters that have them:

asadmin list-lifecycle-modules --user admin_user [--password
admin_password] [--passwordfile password_file] [--host localhost] [--port
4848] instance_name

For example:

asadmin list-lifecycle-module --user jadams --password secret --host
localhost --port 4848 server1

The Administration Interface
You can also use the Administration interface to deploy a lifecycle module. Follow
these steps:

1. Open the Applications component under your server instance.

2. Go to the Lifecycle Modules page.

3. Click on the Deploy button.

4. Enter the following information:

❍ Name (required) - The name of the lifecycle module.

❍ Class Name (required) - The fully qualified name of the lifecycle module’s
class file.

❍ Classpath (optional) - The classpath for the lifecycle module. Specifies
where the module is located. The default location is under the application
root directory.

❍ Load Order (optional) - Determines the order in which lifecycle modules
are loaded at startup. Modules with smaller integer values are loaded
sooner. Values can range from 101 to the operating system’s MAXINT.
Values from 1 to 100 are reserved.

❍ Fatal Failure (optional) - Determines whether the server is shut down if the
lifecycle module fails. The default is false.

❍ Lifecycle Enabled (optional) - Determines whether the lifecycle module is
enabled. The default is true.

5. Click on the OK button.

Deploying Modules and Applications

102 Sun ONE Application Server Developer’s Guide • March 2003

Deploying an ACC Client
Deployment is only necessary for clients that communicate with EJB components.
To deploy an ACC client:

1. Assemble the necessary client files (as described in “Assembling an ACC
Client,” on page 90).

2. Assemble the EJB components to be accessed by the client.

3. Package the client and EJB components together in an application.

4. Deploy the application.

5. After deployment, a client JAR file is created in the following location:

instance_dir/applications/j2ee-apps/app_name/app_nameClient.jar

The client JAR contains the ties and necessary classes for the ACC client. Copy
this file to the client machine, and set the APPCPATH environment variable on
the client to point to this JAR.

If you wish to execute the client on the Sun ONE Application Server machine to test
it, you can use the appclient script in the install_dir/bin directory. If you are using
the default server instance, the only required option is -client. For example:

appclient -client converterClient.jar

The -xml parameter, which specifies the location of the sun-acc.xml file, is also
required if you are not using the default instance.

Before you can execute an ACC client on a different machine, you must prepare the
client machine:

1. Use the package-appclient script in the install_dir/bin directory to create the
ACC package JAR file. This JAR file is created in the install_dir/lib/appclient
directory.

2. Copy the ACC package JAR file to the client machine and unjar it. This creates
a directory structure under an appclient directory.

3. Configure the sun-acc.xml file, located in the
appclient/appserv/lib/appclient directory.

4. Configure the asenv.conf (asenv.bat on Windows) file, located in the
appclient/appserv/bin directory.

5. Copy the client JAR to the client machine.

You are now ready to execute the client. For more information, see the Sun ONE
Application Server Developer’s Guide to Clients.

Apache Ant Assembly and Deployment Tool

Chapter 4 Assembling and Deploying J2EE Applications 103

Deploying a J2EE CA Resource Adapter
You deploy a connector module as described in “Tools for Deployment,” on
page 95.

Access to Shared Frameworks
When J2EE applications and modules use shared framework classes (such as utility
classes and libraries) the classes can be put in the path for the System Classloader
or the Common Classloader rather than in an application or module. If you
assemble a large, shared library into every module that uses it, the result is a huge
file that takes too long to register with the server. In addition, several versions of
the same class could exist in different classloaders, which is a waste of resources.

For more information, see “Circumventing Classloader Isolation,” on page 78.

Apache Ant Assembly and Deployment Tool
You can use the automated assembly features available through Ant, a Java-based
build tool available through the Apache Software Foundation:

http://jakarta.apache.org/ant/

Ant is a java-based build tool that is extended using Java classes. Instead of using
shell commands, you declare the assembly steps using an XML document. Each
task is run by an object that implements a particular task interface.

Apache Ant 1.4.1 is provided with Sun ONE Application Server (or with the
operating system for bundled Solaris 9). The sample applications provided with
Sun ONE Application Server have Ant build.xml files; see “Sample Applications,”
on page 80.

Make sure you have done these things before using Ant:

• Include install_dir/bin in the PATH environment variable (/usr/sfw/bin for
bundled Solaris 9). The Ant script provided with Sun ONE Application Server,
asant, is located in this directory. For details on how to use asant, see the
sample applications documentation in the install_dir/samples/docs/ant.html
file.

• If you are executing platform-specific applications, such as the exec or cvs
task, the ANT_HOME environment variable must be set to the Ant installation
directory.

Apache Ant Assembly and Deployment Tool

104 Sun ONE Application Server Developer’s Guide • March 2003

❍ The ANT_HOME environment variable for bundled Solaris 9 must include
the following:

• /usr/sfw/bin - the Ant binaries (shell scripts)

• /usr/sfw/doc/ant - HTML documentation

• /usr/sfw/lib/ant - Java classes that implement Ant

❍ The ANT_HOME environment variable for all other platforms is
install_dir/lib.

This section covers the following Ant-related topics:

• Ant Tasks for Sun ONE Application Server 7

• Reusable Subelements

For information about standard Ant tasks, see the Ant documentation:

http://jakarta.apache.org/ant/manual/index.html

Ant Tasks for Sun ONE Application Server 7
Use the Ant tasks provided by Sun ONE Application Server for assembling,
deploying, and undeploying modules and applications, and for configuring the
server instance. The tasks are as follows:

• sun-appserv-deploy

• sun-appserv-undeploy

• sun-appserv-instance

• sun-appserv-component

• sun-appserv-admin

• sun-appserv-jspc

sun-appserv-deploy
Deploys any of the following to a local or remote Sun ONE Application Server
instance.

• Enterprise application (EAR file)

• Web application (WAR file)

• Enterprise Java Bean (EJB-JAR file)

Apache Ant Assembly and Deployment Tool

Chapter 4 Assembling and Deploying J2EE Applications 105

• Enterprise connector (RAR file)

• Application client

Subelements
The following table describes subelements for the sun-appserv-deploy task.
These are objects upon which this task acts. The left column lists the subelement
name, and the right column describes what the element specifies.

Attributes
The following table describes attributes for the sun-appserv-deploy task. The left
column lists the attribute name, the middle column indicates the default value, and
the right column describes what the attribute specifies.

sun-appserv-deploy subelements

Element Description

server A Sun ONE Application Server instance.

component A component to be deployed.

fileset A set of component files that match specified parameters.

sun-appserv-deploy attributes

Attribute Default Description

file none (optional if a component or fileset subelement is
present, otherwise required) The component to
deploy. If this attribute refers to a file, it must be a
valid archive. If this attribute refers to a directory, it
must contain a valid archive in which all
components have been exploded. If upload is set to
false, this must be an absolute path on the server
machine.

name file name
without
extension

(optional) The display name for the component
being deployed.

Apache Ant Assembly and Deployment Tool

106 Sun ONE Application Server Developer’s Guide • March 2003

type determined
from the file
or directory
name
extension

(optional) The type of component being deployed.
Valid types are application, ejb, web, and
connector. If not specified, the file (or directory)
extension is used to determine the component type:
.ear for applicaton, .jar for ejb, .war for web,
and .rar for connector. If it’s not possible to
determine the component type using the file
extension, the default is application.

force true (optional) If true, the component is overwritten if it
already exists on the server. If false,
sun-appserv-deploy fails if the component
exists.

retrievestubs client stubs
not saved

(optional) The directory where client stubs are saved.
This attribute is inherited by nested component
elements.

precompilejsp false (optional) If true, all JSPs found in an enterprise
application (.ear) or web application (.war) are
precompiled. This attribute is ignored for other
component types. This attribute is inherited by
nested component elements.

verify false (optional) If true, syntax and semantics for all
deployment descriptors are automatically verified
for correctness. This attribute is inherited by nested
component elements.

contextroot file name
without
extension

(optional) The context root for a web module (WAR
file). This attribute is ignored if the component is not
a WAR file.

upload true (optional) If true, the component is transferred to
the server for deployment. If the component is being
deployed on the local machine, set upload to false
to reduce deployment time.

virtualservers default
virtual
server only

(optional) A comma-separated list of virtual servers
to be deployment targets. This attribute applies only
to application (.ear) or web (.war) components
and is ignored for other component types. This
attribute is inherited by nested server elements.

user admin (optional) The username used when logging into the
application server administration instance. This
attribute is inherited by nested server elements.

sun-appserv-deploy attributes

Attribute Default Description

Apache Ant Assembly and Deployment Tool

Chapter 4 Assembling and Deploying J2EE Applications 107

Examples
Here is a simple application deployment script with many implied attributes:

<sun-appserv-deploy
file="${assemble}/simpleapp.ear"
password="${password}" />

Here is an equivalent script showing all the implied attributes:

<sun-appserv-deploy
file="${assemble}/simpleapp.ear"
name="simpleapp"
type="application"
force="true"
precompilejsp="false"
verify="false"
upload="true"
user="admin"
password="${password}"

password none The password used when logging into the
application server administration instance. This
attribute is inherited by nested server elements.

host localhost (optional) Target server. When deploying to a
remote server, use the fully qualified hostname. This
attribute is inherited by nested server elements.

port 4848 (optional) The administration port on the target
server. This attribute is inherited by nested server
elements.

instance name of
default
instance

(optional) Target application server instance. This
attribute is inherited by nested server elements.

sunonehome see
description

(optional) The installation directory for the local Sun
ONE Application Server 7 installation, which is used
to find the administrative classes. If not specified, the
command checks to see if the sunone.home
parameter has been set. Otherwise, administrative
classes must be in the system classpath.

sun-appserv-deploy attributes

Attribute Default Description

Apache Ant Assembly and Deployment Tool

108 Sun ONE Application Server Developer’s Guide • March 2003

host="localhost"
port="4848"
instance="${default-instance-name}"
sunonehome="${sunone.home}" />

This example deploys multiple components to the same Sun ONE Application
Server instance running on a remote server:

<sun-appserv-deploy password="${password}" host="greg.sun.com"
sunonehome="/opt/sunone" >

<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"

contextroot="test"/>
<component file="${assemble}/simplebean.jar"/>

</sun-appserv-deploy>

This example deploys multiple components to two Sun ONE Application Server
instances running on remote servers. In this example, both servers are using the
same admin password. If this were not the case, each password could be specified
in the server element.

<sun-appserv-deploy password="${password}" sunonehome="/opt/sunone"
>

<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"

contextroot="test"/>
<component file="${assemble}/simplebean.jar"/>

</sun-appserv-deploy>

This example deploys the same components as the previous example because the
three components match the fileset criteria, but note that it’s not possible to set
some component-specific attributes. All component-specific attributes (name, type,
and contextroot) use their default values.

<sun-appserv-deploy password="${password}" host="greg.sun.com"
sunonehome="/opt/sunone" >

<fileset dir="${assemble}" includes="**/*.?ar" />
</sun-appserv-deploy>

sun-appserv-undeploy
Undeploys any of the following from a local or remote Sun ONE Application
Server instance.

• Enterprise application (EAR file)

• Web application (WAR file)

Apache Ant Assembly and Deployment Tool

Chapter 4 Assembling and Deploying J2EE Applications 109

• Enterprise Java Bean (EJB-JAR file)

• Enterprise connector (RAR file)

• Application client

Subelements
The following table describes subelements for the sun-appserv-undeploy task.
These are objects upon which this task acts. The left column lists the subelement
name, and the right column describes what the element specifies.

Attributes
The following table describes attributes for the sun-appserv-undeploy task. The
left column lists the attribute name, the middle column indicates the default value,
and the right column describes what the attribute specifies.

sun-appserv-undeploy subelements

Element Description

server A Sun ONE Application Server instance.

component A component to be deployed.

fileset A set of component files that match specified parameters.

sun-appserv-undeploy attributes

Attribute Default Description

name file name
without
extension

(optional if a component or fileset subelement is
present or the file attribute is specified, otherwise
required) The display name for the component being
undeployed.

file none (optional) The component to undeploy. If this attribute
refers to a file, it must be a valid archive. If this attribute
refers to a directory, it must contain a valid archive in
which all components have been exploded.

Apache Ant Assembly and Deployment Tool

110 Sun ONE Application Server Developer’s Guide • March 2003

Examples
Here is a simple application undeployment script with many implied attributes:

<sun-appserv-undeploy name="simpleapp" password="${password}" />

Here is an equivalent script showing all the implied attributes:

<sun-appserv-undeploy
name="simpleapp"
type="application"
user="admin"

type determined
from the file
or directory
name
extension

(optional) The type of component being undeployed.
Valid types are application, ejb, web, and
connector. If not specified, the file (or directory)
extension is used to determine the component type:
.ear for applicaton, .jar for ejb, .war for web,
and .rar for connector. If it’s not possible to
determine the component type using the file extension,
the default is application.

user admin (optional) The username used when logging into the
application server administration instance. This attribute
is inherited by nested server elements.

password none The password used when logging into the application
server administration instance. This attribute is inherited
by nested server elements.

host localhost (optional) Target server. When deploying to a remote
server, use the fully qualified hostname. This attribute is
inherited by nested server elements.

port 4848 (optional) The administration port on the target server.
This attribute is inherited by nested server elements.

instance name of
default
instance

(optional) Target application server instance. This
attribute is inherited by nested server elements.

sunonehome see
description

(optional) The installation directory for the local Sun
ONE Application Server 7 installation, which is used to
find the administrative classes. If not specified, the
command checks to see if the sunone.home parameter
has been set. Otherwise, the administrative classes must
be in the system classpath.

sun-appserv-undeploy attributes

Attribute Default Description

Apache Ant Assembly and Deployment Tool

Chapter 4 Assembling and Deploying J2EE Applications 111

password="${password}"
host="localhost"
port="4848"
instance="${default-instance-name}"
sunonehome="${sunone.home}" />

This example demonstrates using the archive files (EAR and WAR, in this case) for
the undeployment, using the component name and type (for undeploying the EJB
component in this example), and undeploying multiple components.

<sun-appserv-undeploy password="${password}">
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" type="ejb"/>

</sun-appserv-undeploy>

As with the deployment process, components can be undeployed from multiple
servers in a single command. This example shows the same three components
being removed from two different instances of Sun ONE Application Server 7. In
this example, the passwords for both instances are the same.

<sun-appserv-undeploy password="${password}">
<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" type="ejb"/>

</sun-appserv-undeploy>

sun-appserv-instance
Starts, stops, restarts, creates, or removes one or more application server instances.

Subelements
The following table describes subelements for the sun-appserv-instance task.
These are objects upon which this task acts. The left column lists the subelement
name, and the right column describes what the element specifies.

sun-appserv-instance subelements

Element Description

server A Sun ONE Application Server instance.

Apache Ant Assembly and Deployment Tool

112 Sun ONE Application Server Developer’s Guide • March 2003

Attributes
The following table describes attributes for the sun-appserv-instance task. The
left column lists the attribute name, the middle column indicates the default value,
and the right column describes what the attribute specifies.

sun-appserv-instance attributes

Attribute Default Description

action none The control command for the target application server.
Valid values are start, stop, restart, create, and
delete. A restart sends the stop command
followed by the start command. The restart
command is not supported on Windows.

debug false (optional) If action is set to start or restart,
specifies whether the server starts in debug mode. This
attribute is ignored for other values of action. If true,
the instance generates additional debugging output
throughout its lifetime. This attribute is inherited by
nested server elements.

instanceport none (optional unless action is create) If a new instance is
being created, this attribute specifies its port number.
Otherwise, this attribute is ignored. This attribute is
inherited by nested server elements.

local false (optional) If true, an instance on the local machine (in
other words,localhost) is the target for the action,
an administration server need not be running, and the
host, port, user, and password attributes are
ignored. If false, an administration server must be
running and the host, port, user, and password
attributes must be set appropriately. This attribute is
inherited by nested server elements.

domain (optional unless local="true" and there are multiple
local domains) The target domain for a local action. If
local="false" this attribute is ignored. This
attribute is inherited by nested server elements.

user admin (optional) The username used when logging into the
application server administration instance. This
attribute is inherited by nested server elements.

password none (required unless local is set to true)The password
used when logging into the application server
administration instance. This attribute is inherited by
nested server elements.

Apache Ant Assembly and Deployment Tool

Chapter 4 Assembling and Deploying J2EE Applications 113

Examples
This example starts the local Sun ONE Application Server 7 instance:

<sun-appserv-instance action="start" password="${password}"
instance="${default-instance-name}"/>

Here is an equivalent script showing all the implied attributes:

<sun-appserv-instance
action="start"
user="admin"
password="${password}"
host="localhost"
port="4848"
instance="${default-instance-name}"
sunonehome="${sunone.home}" />

Multiple servers can be controlled using a single command. In this example, two
servers are restarted, and in this case each server uses a different password:

<sun-appserv-instance action="restart"
instance="${default-instance-name}"/>

<server host="greg.sun.com" password="${password.greg}"/>
<server host="joe.sun.com" password="${password.joe}"/>

</sun-appserv-instance>

host localhost (optional) Target server. If it is a remote server, use the
fully qualified hostname. This attribute is inherited by
nested server elements.

port 4848 (optional) The administration port on the target server.
This attribute is inherited by nested server elements.

instance name of
default
instance

Target application server instance. This attribute is
inherited by nested server elements.

sunonehome see
description

(optional) The installation directory for the local Sun
ONE Application Server 7 installation, which is used to
find the administrative classes. If not specified, the
command checks to see if the sunone.home parameter
has been set. Otherwise, the administrative classes must
be in the system classpath.

sun-appserv-instance attributes

Attribute Default Description

Apache Ant Assembly and Deployment Tool

114 Sun ONE Application Server Developer’s Guide • March 2003

This example creates a new Sun ONE Application Server 7 instance:

<sun-appserv-instance
action="create" instanceport="8080"
password="${password}"
instance="development" />

Here is an equivalent script showing all the implied attributes:

<sun-appserv-instance
action="create"
instanceport="8080"
user="admin"
password="${password}"
host="localhost"
port="4848"
instance="development"
sunonehome="${sunone.home}" />

Instances can be created on multiple servers using a single command. This example
creates a new instance named qa on two different servers. In this case, both servers
use the same password.

<sun-appserv-instance
action="create"
instanceport="8080"
instance="qa"
password="${password}>

<server host="greg.sun.com"/>
<server host="joe.sun.com"/>

</sun-appserv-instance>

These instances can also be removed from their respective servers:

<sun-appserv-instance
action="delete"
instance="qa"
password="${password}>

<server host="greg.sun.com"/>
<server host="joe.sun.com"/>

</sun-appserv-instance>

Different instance names and instance ports can also be specified using attributes
of the server subelement:

<sun-appserv-instance action="create" password="${password}>
<server host="greg.sun.com" instanceport="8080" instance="qa"/>
<server host="joe.sun.com" instanceport="9090"

instance="integration-test"/>
</sun-appserv-instance>

Apache Ant Assembly and Deployment Tool

Chapter 4 Assembling and Deploying J2EE Applications 115

sun-appserv-component
Enables or disables the following J2EE component types that have been deployed
to Sun ONE Application Server 7.

• Enterprise application (EAR file)

• Web application (WAR file)

• Enterprise Java Bean (EJB-JAR file)

• Enterprise connector (RAR file)

• Application client

You don’t need to specify the archive to enable or disable a component: only the
component name is required. You can use the component archive, however,
because it implies the component name.

Subelements
The following table describes subelements for the sun-appserv-component task.
These are objects upon which this task acts. The left column lists the subelement
name, and the right column describes what the element specifies.

Attributes
The following table describes attributes for the sun-appserv-component task. The
left column lists the attribute name, the middle column indicates the default value,
and the right column describes what the attribute specifies.

sun-appserv-component subelements

Element Description

server A Sun ONE Application Server instance.

component A component to be deployed.

fileset A set of component files that match specified parameters.

sun-appserv-component attributes

Attribute Default Description

action none The control command for the target application server.
Valid values are enable and disable.

Apache Ant Assembly and Deployment Tool

116 Sun ONE Application Server Developer’s Guide • March 2003

name file name
without
extension

(optional if a component or fileset subelement is
present or the file attribute is specified, otherwise
required) The display name for the component being
enabled or disabled.

file none (optional) The component to enable or disable. If this
attribute refers to a file, it must be a valid archive. If this
attribute refers to a directory, it must contain a valid
archive in which all components have been exploded.

type determined
from the file
or directory
name
extension

(optional) The type of component being enabled or
disabled. Valid types are application, ejb, web, and
connector. If not specified, the file (or directory)
extension is used to determine the component type:
.ear for applicaton, .jar for ejb, .war for web,
and .rar for connector. If it’s not possible to
determine the component type using the file extension,
the default is application.

user admin (optional) The username used when logging into the
application server administration instance. This attribute
is inherited by nested server elements.

password none The password used when logging into the application
server administration instance. This attribute is inherited
by nested server elements.

host localhost (optional) Target server. When enabling or disabling a
remote server, use the fully qualified hostname. This
attribute is inherited by nested server elements.

port 4848 (optional) The administration port on the target server.
This attribute is inherited by nested server elements.

instance name of
default
instance

(optional) Target application server instance. This
attribute is inherited by nested server elements.

sunonehome see
description

(optional) The installation directory for the local Sun
ONE Application Server 7 installation, which is used to
find the administrative classes. If not specified, the
command checks to see if the sunone.home parameter
has been set. Otherwise, the administrative classes must
be in the system classpath.

sun-appserv-component attributes

Attribute Default Description

Apache Ant Assembly and Deployment Tool

Chapter 4 Assembling and Deploying J2EE Applications 117

Examples
Here is a simple example of disabling a component:

<sun-appserv-component
action="disable"
name="simpleapp"
password="${password}" />

Here is a simple example of enabling a component:

<sun-appserv-component
action="enable"
name="simpleapp"
password="${password}" />

Here is an equivalent script showing all the implied attributes:

<sun-appserv-component
action="enable"
name="simpleapp"
type="application"
user="admin"
password="${password}"
host="localhost"
port="4848"
instance="${default-instance-name}"
sunonehome="${sunone.home}" />

This example demonstrates disabling multiple components using the archive files
(EAR and WAR, in this case) and using the component name and type (for an EJB
component in this example).

<sun-appserv-component action="disable" password="${password}">
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" type="ejb"/>

</sun-appserv-component>

Components can be enabled or disabled on multiple servers in a single task. This
example shows the same three components being enabled on two different
instances of Sun ONE Application Server 7. In this example, the passwords for both
instances are the same.

<sun-appserv-component action="enable" password="${password}">
<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" type="ejb"/>

</sun-appserv-component>

Apache Ant Assembly and Deployment Tool

118 Sun ONE Application Server Developer’s Guide • March 2003

sun-appserv-admin
Enables arbitrary administrative commands and scripts to be executed on the Sun
ONE Application Server 7. This is useful for cases where a specific Ant task hasn’t
been developed or a set of related commands are in a single script.

Subelements
The following table describes subelements for the sun-appserv-admin task. These
are objects upon which this task acts. The left column lists the subelement name,
and the right column describes what the element specifies.

Attributes
The following table describes attributes for the sun-appserv-admin task. The left
column lists the attribute name, the middle column indicates the default value, and
the right column describes what the attribute specifies.

sun-appserv-admin subelements

Element Description

server A Sun ONE Application Server instance.

sun-appserv-admin attributes

Attribute Default Description

command none (exactly one of these is required: command,
commandfile, or explicitcommand) The
command to execute. If the user, password,
host, port, or instance attributes are also
specified, they are automatically inserted into the
command before execution. If any of these options
are specified in the command string, the
corresponding attribute values are ignored.

commandfile none (exactly one of these is required: command,
commandfile, or explicitcommand) The
command script to execute. If commandfile is
used, the values of all other attributes are ignored.
Be sure to end the script referenced by
commandfile with the exit command; if you
omit exit, the Ant task may appear to hang after
the command script is called.

Apache Ant Assembly and Deployment Tool

Chapter 4 Assembling and Deploying J2EE Applications 119

sun-appserv-jspc
Precompiles JSP source code into Sun ONE Application Server compatible Java
code for initial invocation by Sun ONE Application Server. Use this task to speed
up access to JSP pages or to check the syntax of JSP source code. You can feed the
resulting Java code to the javac task to generate class files for the JSPs.

Subelements
none

explicitcommand none (exactly one of these is required: command,
commandfile, or explicitcommand) The exact
command to execute. No command processing is
done, and all other attributes are ignored.

user admin (optional) The username used when logging into
the application server administration instance. This
attribute is inherited by nested server elements.

password none (optional) The password used when logging into
the application server administration instance. This
attribute is inherited by nested server elements.

host localhost (optional) Target server. If it is a remote server, use
the fully qualified hostname. This attribute is
inherited by nested server elements.

port 4848 (optional) The administration port on the target
server. This attribute is inherited by nested server
elements.

instance name of
default
instance

(optional) Target application server instance. This
attribute is inherited by nested server elements.

sunonehome see
description

(optional) The installation directory for the local
Sun ONE Application Server 7 installation, which is
used to find the administrative classes. If not
specified, the command checks to see if the
sunone.home parameter has been set. Otherwise,
the administrative classes must be in the system
classpath.

sun-appserv-admin attributes

Attribute Default Description

Apache Ant Assembly and Deployment Tool

120 Sun ONE Application Server Developer’s Guide • March 2003

Attributes
The following table describes attributes for the sun-appserv-jspc task. The left
column lists the attribute name, the middle column indicates the default value, and
the right column describes what the attribute specifies.

sun-appserv-jspc attributes

Attribute Default Description

destdir The destination directory for the generated Java source
files.

srcdir (exactly one of these is required: srcdir or webapp)
The source directory where the JSP files are located.

webapp (exactly one of these is required: srcdir or webapp)
The directory containing the web application. All JSP
pages within the directory are recursively parsed. The
base directory must have a WEB-INF subdirectory
beneath it. When webapp is used, sun-appserv-jspc
hands off all dependency checking to the compiler.

verbose 2 (optional) The verbosity integer to be passed to the
compiler.

classpath (optional) The classpath for running the JSP compiler.

classpathref (optional) A reference to the JSP compiler classpath.

uribase / (optional) The URI context of relative URI references in
the JSP pages. If this context does not exist, it is derived
from the location of the JSP file relative to the declared or
derived value of uriroot. Only pages translated from
an explicitly declared JSP file are affected.

uriroot see
description

(optional) The root directory of the web application,
against which URI files are resolved. If this directory is
not specified, the first JSP page is used to derive it: each
parent directory of the first JSP page is searched for a
WEB-INF directory, and the directory closest to the JSP
page that has one is used. If no WEB-INF directory is
found, the directory sun-appserv-jspc was called
from is used. Only pages translated from an explicitly
declared JSP file (including tag libraries) are affected.

package (optional) The destination package for the generated
Java classes.

failonerror true (optional) If true, JSP compilation fails if errors are
encountered.

Apache Ant Assembly and Deployment Tool

Chapter 4 Assembling and Deploying J2EE Applications 121

Example
The following example uses the webapp attribute to generate Java source files from
JSP files. The sun-appserv-jspc task is immediately followed by a javac task,
which compiles the generated Java files into class files. The classpath value in the
javac task must be all on one line with no spaces.

<sun-appserv-jspc
destdir="${assemble.war}/generated"
webapp="${assemble.war}"
classpath="${assemble.war}/WEB-INF/classes"
sunonehome="${sunone.home}" />

<javac
srcdir="${assemble.war}/WEB-INF/generated"
destdir="${assemble.war}/WEB-INF/generated"
debug="on"
classpath="${assemble.war}/WEB-INF/classes:${sunone.home}/lib/

appserv-rt.jar:${sunone.home}/lib/appserv-ext.jar">
<include name="**/*.java"/>

</javac>

Reusable Subelements
Reusable subelements of the Ant tasks for Sun ONE Application Server 7 are as
follows. These are objects upon which the Ant tasks act.

• server

• component

• fileset

sunonehome see
description

(optional) The installation directory for the local Sun
ONE Application Server 7 installation, which is used to
find the administrative classes. If not specified, the
command checks to see if the sunone.home parameter
has been set. Otherwise, the administrative classes must
be in the system classpath.

sun-appserv-jspc attributes

Attribute Default Description

Apache Ant Assembly and Deployment Tool

122 Sun ONE Application Server Developer’s Guide • March 2003

server
Specifies a Sun ONE Application Server instance. Allows a single task to act on
multiple server instances. The server attributes override corresponding attributes
in the parent task; therefore, the parent task attributes function as default values.

Subelements
none

Attributes
The following table describes attributes for the server element. The left column
lists the attribute name, the middle column indicates the default value, and the
right column describes what the attribute specifies.

server attributes

Attribute Default Description

user admin (optional) The username used when logging into the
application server administration instance.

password none (optional if specified in the parent task) The
password used when logging into the application
server administration instance.

host localhost (optional) Target server. When targeting a remote
server, use the fully qualified hostname.

port 4848 (optional) The administration port on the target
server.

instance name of
default
instance

(optional) Target application server instance.

domain (applies to sun-appserv-instance only, optional
unless local="true" and there are multiple local
domains) The target domain for a local action. If
local="false" this attribute is ignored.

instanceport none (applies to sun-appserv-instance only, optional
unless action is create) If a new instance is being
created, this attribute specifies its port number.
Otherwise, this attribute is ignored.

Apache Ant Assembly and Deployment Tool

Chapter 4 Assembling and Deploying J2EE Applications 123

Examples
You can control multiple servers using a single task. In this example, two servers
are started, each using a different password. Only the second server is started in
debug mode.

<sun-appserv-instance action="start">
<server host="greg.sun.com" password="${password.greg}"/>
<server host="joe.sun.com" password="${password.joe}"

debug="true"/>
</sun-appserv-instance>

You can create instances on multiple servers using a single task. This example
creates a new instance named qa on two different servers. Both servers use the
same password.

debug false (applies to sun-appserv-instance only,
optional) If action is set to start, specifies
whether the server starts in debug mode. This
attribute is ignored for other values of action. If
true, the instance generates additional debugging
output throughout its lifetime.

local false (applies to sun-appserv-instance only,
optional) If true, an instance on the local machine
(in other words, localhost) is the target for the
action, an administration server need not be
running, and the host, port, user, and password
attributes are ignored. If false, an administration
server must be running and the host, port, user,
and password attributes must be set appropriately.

upload true (applies to sun-appserv-deploy only, optional) If
true, the component is transferred to the server for
deployment. If the component is being deployed on
the local machine, set upload to false to reduce
deployment time.

virtualservers default
virtual
server only

(applies to sun-appserv-deploy only, optional) A
comma-separated list of virtual servers to be
deployment targets. This attribute applies only to
application (.ear) or web (.war) components and is
ignored for other component types.

server attributes

Attribute Default Description

Apache Ant Assembly and Deployment Tool

124 Sun ONE Application Server Developer’s Guide • March 2003

<sun-appserv-instance action="create" instanceport="8080"
instance="qa" password="${password}>

<server host="greg.sun.com"/>
<server host="joe.sun.com"/>

</sun-appserv-instance>

These instances can also be removed from their respective servers:

<sun-appserv-instance action="delete" instance="qa"
password="${password}>

<server host="greg.sun.com"/>
<server host="joe.sun.com"/>

</sun-appserv-instance>

You can specify different instance names and instance ports using attributes of the
nested server element:

<sun-appserv-instance action="create" password="${password}>
<server host="greg.sun.com" instanceport="8080" instance="qa"/>
<server host="joe.sun.com" instanceport="9090"

instance="integration-test"/>
</sun-appserv-instance>

You can deploy multiple components to multiple servers (see the component
nested element. This example deploys each component to two Sun ONE
Application Server instances running on remote servers. Both servers use the same
password.

<sun-appserv-deploy password="${password}" sunonehome="/opt/s1as7" >
<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"

contextroot="test"/>
<component file="${assemble}/simplebean.jar"/>

</sun-appserv-deploy>

You can also undeploy multiple components from multiple servers. This example
shows the same three components being removed from two different instances.
Both servers use the same password.

<sun-appserv-undeploy password="${password}">
<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" type="ejb"/>

</sun-appserv-undeploy>

Apache Ant Assembly and Deployment Tool

Chapter 4 Assembling and Deploying J2EE Applications 125

You can enable or disable components on multiple servers. This example shows the
same three components being enabled on two different instances. Both servers use
the same password.

<sun-appserv-component action="enable" password="${password}">
<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" type="ejb"/>

</sun-appserv-component>

component
Specifies a J2EE component. Allows a single task to act on multiple components.
The component attributes override corresponding attributes in the parent task;
therefore, the parent task attributes function as default values.

Subelements
none

Attributes
The following table describes attributes for the component element. The left
column lists the attribute name, the middle column indicates the default value, and
the right column describes what the attribute specifies.

component attributes

Attribute Default Description

file none (optional if the parent task is sun-appserv-undeploy
or sun-appserv-component) The target component.
If this attribute refers to a file, it must be a valid archive.
If this attribute refers to a directory, it must contain a
valid archive in which all components have been
exploded. If upload is set to false, this must be an
absolute path on the server machine.

name file name
without
extension

(optional) The display name for the component.

Apache Ant Assembly and Deployment Tool

126 Sun ONE Application Server Developer’s Guide • March 2003

Examples
You can deploy multiple components using a single task. This example deploys
each component to the same Sun ONE Application Server instance running on a
remote server.

<sun-appserv-deploy password="${password}" host="greg.sun.com"
sunonehome="/opt/s1as7" >

<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"

contextroot="test"/>
<component file="${assemble}/simplebean.jar"/>

</sun-appserv-deploy>

You can also undeploy multiple components using a single task. This example
demonstrates using the archive files (EAR and WAR, in this case) and the
component name and type (for the EJB component).

type determined
from the
file or
directory
name
extension

(optional) The type of component. Valid types are
application, ejb, web, and connector. If not
specified, the file (or directory) extension is used to
determine the component type: .ear for applicaton,
.jar for ejb, .war for web, and .rar for connector.
If it’s not possible to determine the component type
using the file extension, the default is application.

force true (applies to sun-appserv-deploy only, optional) If
true, the component is overwritten if it already exists
on the server. If false, the containing element’s
operation fails if the component exists.

precompilejsp false (applies to sun-appserv-deploy only, optional) If
true, all JSPs found in an enterprise application (.ear)
or web application (.war) are precompiled. This
attribute is ignored for other component types.

retrievestubs client stubs
not saved

(applies to sun-appserv-deploy only, optional) The
directory where client stubs are saved.

contextroot file name
without
extension

(applies to sun-appserv-deploy only, optional) The
context root for a web module (WAR file). This attribute
is ignored if the component is not a WAR file.

verify false (applies to sun-appserv-deploy only, optional) If
true, syntax and semantics for all deployment
descriptors is automatically verified for correctness.

component attributes

Attribute Default Description

Apache Ant Assembly and Deployment Tool

Chapter 4 Assembling and Deploying J2EE Applications 127

<sun-appserv-undeploy password="${password}">
<component file="${assemble}/simpleapp.ear"/
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" type="ejb"/>

</sun-appserv-undeploy>

You can deploy multiple components to multiple servers. This example deploys
each component to two instances running on remote servers. Both servers use the
same password.

<sun-appserv-deploy password="${password}" sunonehome="/opt/s1as7" >
<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"

contextroot="test"/>
<component file="${assemble}/simplebean.jar"/>

</sun-appserv-deploy>

You can also undeploy multiple components to multiple servers. This example
shows the same three components being removed from two different instances.
Both servers use the same password.

<sun-appserv-undeploy password="${password}">
<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" type="ejb"/>

</sun-appserv-undeploy>

You can enable or disable multiple components. This example demonstrates
disabling multiple components using the archive files (EAR and WAR, in this case)
and the component name and type (for the EJB component).

<sun-appserv-component action="disable" password="${password}">
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" type="ejb"/>

</sun-appserv-component>

You can enable or disable multiple components on multiple servers. This example
shows the same three components being enabled on two different instances. Both
servers use the same password.

The Application Deployment Descriptor Files

128 Sun ONE Application Server Developer’s Guide • March 2003

<sun-appserv-component action="enable" password="${password}">
<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" type="ejb"/>

</sun-appserv-component>

fileset
Selects component files that match specified parameters. When fileset is
included as a subelement, the name and contextroot attributes of the containing
element must use their default values for each file in the fileset. For more
information, see:

http://jakarta.apache.org/ant/manual/CoreTypes/fileset.html

The Application Deployment Descriptor Files
Sun ONE Application Server applications include two deployment descriptor files:

• A J2EE standard file (application.xml), described in the Java Servlet
Specification, v2.3, Chapter 13, “Deployment Descriptors.”

• An optional Sun ONE Application Server specific file (sun-application.xml),
described in this section.

This section covers the following topics:

• The sun-application_1_3-0.dtd File

• Elements in the sun-application.xml File

• Sample Application XML Files

The sun-application_1_3-0.dtd File
The sun-application_1_3-0.dtd file defines the structure of the
sun-application.xml file, including the elements it can contain and the
subelements and attributes these elements can have. The
sun-application_1_3-0.dtd file is located in the install_dir/lib/dtds directory.

The Application Deployment Descriptor Files

Chapter 4 Assembling and Deploying J2EE Applications 129

For general information about DTD files and XML, see the XML specification at:

http://www.w3.org/TR/REC-xml

Each element defined in a DTD file (which may be present in the corresponding
XML file) can contain the following:

• Subelements

• Data

• Attributes

Subelements
Elements can contain subelements. For example, the following code defines the
sun-application element.

<!ELEMENT sun-application (web*, pass-by-reference?, unique-id?, security-role-mapping*)>

The ELEMENT tag specifies that a sun-application element can contain web,
pass-by-reference, unique-id, and security-role-mapping elements.

The following table shows how optional suffix characters of subelements
determine the requirement rules, or number of allowed occurrences, for the
subelements. The left column lists the subelement ending character, and the right
column lists the corresponding requirement rule.

If an element cannot contain other elements, you see EMPTY or (#PCDATA) instead
of a list of element names in parentheses.

NOTE Do not edit the sun-application_1_3-0.dtd file; its contents
change only with new versions of Sun ONE Application Server.

requirement rules and subelement suffixes

Subelement Suffix Requirement Rule

element* Can contain zero or more of this subelement.

element? Can contain zero or one of this subelement.

element+ Must contain one or more of this subelement.

element (no suffix) Must contain only one of this subelement.

The Application Deployment Descriptor Files

130 Sun ONE Application Server Developer’s Guide • March 2003

Data
Some elements contain character data instead of subelements. These elements have
definitions of the following format:

<!ELEMENT element-name (#PCDATA)>

For example:

<!ELEMENT role-name (#PCDATA)>

In the sun-application.xml file, white space is treated as part of the data in a
data element. Therefore, there should be no extra white space before or after the
data delimited by a data element. For example:

<role-name>manager</role-name>

Attributes
Elements that have ATTLIST tags contain attributes. None of the elements in the
sun-application.xml file contain attributes.

Elements in the sun-application.xml File
This section describes the following elements in the sun-application.xml file:

• sun-application

• web

• web-uri

• context-root

• pass-by-reference

• unique-id

• security-role-mapping

• role-name

• principal-name

• group-name

The Application Deployment Descriptor Files

Chapter 4 Assembling and Deploying J2EE Applications 131

sun-application
Defines Sun ONE Application Server specific configuration for an application. This
is the root element; there can only be one sun-application element in a
sun-application.xml file.

Subelements
The following table describes subelements for the sun-application element. The
left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

web
Specifies the application’s web tier configuration.

Subelements
The following table describes subelements for the web element. The left column
lists the subelement name, the middle column indicates the requirement rule, and
the right column describes what the element does.

sun-application subelements

Element Required Description

web zero or more Specifies the application’s web tier
configuration.

pass-by-reference zero or one Determines whether EJB modules use
pass-by-value or pass-by-reference
semantics.

unique-id zero or one Contains the unique ID for the application.

security-role-mapping zero or more Maps a role in the corresponding J2EE
XML file to a user or group.

web subelements

Element Required Description

web-uri only one Contains the web URI for the application.

context-root only one Contains the web context root for the application.

The Application Deployment Descriptor Files

132 Sun ONE Application Server Developer’s Guide • March 2003

web-uri
Contains the web URI for the application. Must match the corresponding element
in the application.xml file.

Subelements
none

context-root
Contains the web context root for the application. Overrides the corresponding
element in the application.xml file.

Subelements
none

pass-by-reference
If false (the default if this element is not present), this application uses
pass-by-value semantics, which the EJB specification requires. If true, this
application uses pass-by-reference semantics. The setting of this element in the
sun-application.xml file applies to all EJB modules in the application.

For an individually deployed EJB module, you can set the same element in the
sun-ejb-jar.xml file. If you want to use pass-by-reference at both the bean and
application level, the bean level takes precedence over the application level. For
details, see the Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans
Technology.

Subelements
none

unique-id
Contains the unique ID for the application. This value is automatically updated
each time the application is deployed or redeployed. Do not edit this value.

Subelements
none

The Application Deployment Descriptor Files

Chapter 4 Assembling and Deploying J2EE Applications 133

security-role-mapping
Maps roles to users and groups. At least one principal or group name is required,
but you do not need to have one of each.

Subelements
The following table describes subelements for the security-role-mapping
element. The left column lists the subelement name, the middle column indicates
the requirement rule, and the right column describes what the element does.

role-name
Contains the role-name in the security-role element of the application.xml
file.

Subelements
none

principal-name
Contains the principal (user) name.

Subelements
none

group-name
Contains the group name.

Subelements
none

security-role-mapping subelements

Element Required Description

role-name only one Contains the role-name in the
security-role element of the
application.xml file.

principal-name one or more if no group-name,
otherwise zero or more

Contains the principal (user) name.

group-name one or more if no principal-name,
otherwise zero or more

Contains the group name.

The Application Deployment Descriptor Files

134 Sun ONE Application Server Developer’s Guide • March 2003

Sample Application XML Files
This section includes the following:

• Sample application.xml File

• Sample sun-application.xml File

Sample application.xml File
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE application PUBLIC '-//Sun Microsystems, Inc.//DTD J2EE
Application 1.3//EN' 'http://java.sun.com/dtd/application_1_3.dtd'>

<application>

<display-name>app_stateless-simple</display-name>

<description>Application description</description>

<module>

<ejb>stateless-simpleEjb.jar</ejb>

</module>

<module>

<web>

<web-uri>stateless-simple.war</web-uri>

<context-root>helloworld</context-root>

</web>

</module>

</application>

Sample sun-application.xml File
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE sun-application PUBLIC '-//Sun Microsystems, Inc.//DTD Sun
ONE Application Server 7.0 J2EE Application 1.3//EN'
'http://www.sun.com/software/sunone/appserver/dtds/sun-application_
1_3-0.dtd'>

<sun-application>

 <unique-id>67488732739338240</unique-id>

</sun-application>

135

Chapter 5

Debugging J2EE Applications

This chapter gives guidelines for debugging applications in Sun ONE Application
Server 7. It includes the following sections:

• Enabling Debugging

• JPDA Options

• Using Sun ONE Studio for Debugging

• Debugging JSPs

• Generating a Stack Trace for Debugging

• Sun ONE Message Queue Debugging

• Logging

• Profiling

Debugging applications requires that you edit the server.xml file as described in
this chapter. For more general information about this file, see the Sun ONE
Application Server Administrator’s Configuration File Reference.

Enabling Debugging
When you enable debugging, you enable both local and remote debugging.

You can enable debugging in one of these ways:

• Using the Administration Interface (recommended)

• Editing the server.xml File

Sun ONE Application Server debugging is based on the JPDA (Java Platform
Debugger Architecture). For more information, see “JPDA Options,” on page 137.

Enabling Debugging

136 Sun ONE Application Server Developer’s Guide • March 2003

Using the Administration Interface
To enable debugging:

1. Go to the server instance page.

2. Select the General tab.

3. Check the Start in Debug Mode box.

4. Select the Apply Changes button.

5. Restart the server.

6. Select the JVM Settings tab and the General option.

7. Look in the Debug Options field for address=port_number, and write down this
port number. You will need this port number when you attach a debugger.

8. If you wish to add JPDA options, follow these additional, optional steps:

a. Add any desired JPDA debugging options in Debug Options. See “JPDA
Options,” on page 137.

b. Select the Save button.

c. Repeat Step 2 through Step 5 above.

Editing the server.xml File
To enable debugging, set the following attributes of the java-config element in
the server.xml file:

• Set debug-enabled="true" to turn on debugging.

• Add any desired JPDA debugging options in the debug-options attribute. See
“JPDA Options,” on page 137.

• To specify the port to use when attaching the JVM to a debugger, specify
address=port_number in the debug-options attribute.

For details about the server.xml file, see the Sun ONE Application Server
Administrator’s Configuration File Reference.

JPDA Options

Chapter 5 Debugging J2EE Applications 137

JPDA Options
The default JPDA options in Sun ONE Application Server are as follows:

-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n

If you substitute suspend=y, the JVM starts in suspended mode and stays
suspended until a debugger attaches to it. This is helpful if you want to start
debugging as soon as the JVM starts.

To specify the port to use when attaching the JVM to a debugger, specify
address=port_number.

You can include additional options. A list of JPDA debugging options is available
here:

http://java.sun.com/products/jpda/doc/conninv.html#Invocation

Using Sun ONE Studio for Debugging
To use the Sun ONE Studio 4 debugger with Sun ONE Application Server:

1. Start Sun ONE Studio, and mount the directory that contains the application
source code you want to debug.

2. Select the Runtime tab, then navigate to the Sun ONE Application Server
instance that you want to start in debug mode (local or remote).

3. Right click on the server instance and select Status from the menu that appears.
The Status window appears.

4. If the server instance is not running in debug mode, select Stop Server Instance,
then select Start in Debug Mode.

5. When the server instance is running in debug mode, a port_number is displayed
in the Status window and on the status line. Write down this port number.

6. Select the Debug menu and the Attach... option.

7. Change the Connector:text field to SocketAttach.

8. Type the host name of the Application Server in the Host text box.

9. Type the port_number in the Port text box, then select OK.

You should be able to debug your Java classes now using Sun ONE Studio.

Debugging JSPs

138 Sun ONE Application Server Developer’s Guide • March 2003

For help on debugging applications with Sun ONE Studio, select Help, select
Contents, then select Debugging Java Programs. You can also consult the Sun ONE
Studio 4, Enterprise Edition Tutorial.

Debugging JSPs
When you use Sun ONE Studio 4 to debug JSPs, you can set breakpoints in either
the JSP code or the generated servlet code, and you can switch between them and
see the same breakpoints in both.

To set up debugging in Sun ONE Studio, see the previous section. For further
details, see the Sun ONE Studio 4, Enterprise Edition Tutorial.

Generating a Stack Trace for Debugging
You can generate a Java stack trace for debugging as described here:

http://developer.java.sun.com/developer/technicalArticles/Programming/Stacktrace/

If the -Xrs flag is set (for reduced signal usage) in the server.xml file (under
<jvm-options>), comment it out before generating the stack trace. If the -Xrs flag
is used, the server may simply dump core and restart when you send the signal to
generate the trace.

The stack trace goes to the system log file or to stderr based on the log-service
attributes in server.xml.

For more about the server.xml file, see the Sun ONE Application Server
Administrator’s Configuration File Reference.

Sun ONE Message Queue Debugging
Sun ONE Message Queue has a broker logger, which can be useful for debugging
JMS, including message-driven bean, applications. You can adjust the logger’s
verbosity, and you can send the logger output to the broker’s console using the
broker’s -tty option. For more information, see the Sun ONE Message Queue
Administrator’s Guide.

Logging

Chapter 5 Debugging J2EE Applications 139

Logging
You can use the Sun ONE Application Server’s log files to help debug your
applications. For general information about logging, see the Sun ONE Application
Server Administrator’s Guide. For information about configuring logging in the
server.xml file, see the Sun ONE Application Server Administrator’s Configuration
File Reference.

You can change logging settings in one of these ways:

• Using the Administration Interface

• Editing the server.xml File

Using the Administration Interface
To change logging settings:

1. Go to the server instance page.

2. Select the Logging tab and the General option.

3. If you wish to send exceptions to the client in addition to the log file, check the
Echo to stderr box.

4. On Windows only, if you wish to enable the console, check the Create console
box.

5. Select the Save button.

6. Restart the server.

Editing the server.xml File
To change logging settings, set the attributes of the log-service element in the
server.xml file.

You can send exceptions to the client in addition to the log file. Set the following
parameter in server.xml. If the client is a browser, exceptions are displayed in the
browser.

<log-service ... echo-log-messages-to-stderr=true ... />

Profiling

140 Sun ONE Application Server Developer’s Guide • March 2003

On Windows only, you can add the following line to the server.xml file to enable
the console:

<log-service ... create-console=true ... />

For details about the server.xml file, see the Sun ONE Application Server
Administrator’s Configuration File Reference.

Profiling
You can use a profiler to perform remote profiling on the Sun ONE Application
Server to discover bottlenecks in server-side performance. This section describes
how to configure these profilers for use with Sun ONE Application Server:

• The HPROF Profiler

• The Optimizeit Profiler

• The Wily Introscope Profiler

• The JProbe Profiler

The HPROF Profiler
HPROF is a simple profiler agent shipped with the Java 2 SDK. It is a dynamically
linked library that interacts with the JVMPI and writes out profiling information
either to a file or to a socket in ASCII or binary format. This information can be
further processed by a profiler front-end tool such as HAT.

HPROF can present CPU usage, heap allocation statistics, and monitor contention
profiles. In addition, it can also report complete heap dumps and states of all the
monitors and threads in the Java virtual machine. For more details on the HPROF
profiler, see the JDK documentation at:

http://java.sun.com/j2se/1.4/docs/guide/jvmpi/jvmpi.html#hprof

Once HPROF is installed using the following instructions, its libraries are loaded
into the server process.

To use HPROF profiling on UNIX, follow these steps:

1. Configure Sun ONE Application Server in one of these ways:

❍ Go to the server instance page in the Administration interface, select the
JVM Settings tab, select the Profiler option, and edit the following fields
before selecting Save:

Profiling

Chapter 5 Debugging J2EE Applications 141

• Name: hprof

• Enabled: true

• Classpath: (leave blank)

• Native Library Path: (leave blank)

• JVM Option: For each of these options, type the option in the JVM
Option field, select Add, then check its box in the JVM Options list:

-Xrunhprof:file=log.txt,options

❍ Edit the server.xml file as appropriate:

<!-- hprof options -->
<profiler name="hprof" enabled="true">

<jvm-options>
-Xrunhprof:file=log.txt,options

</jvm-options>
</profiler>

Here is an example of options you can use:

-Xrunhprof:file=log.txt,thread=y,depth=3

The file option is important because it determines where the stack dump is
written in Step 6.

The syntax of HPROF options is as follows:

-Xrunhprof[:help]|[:option=value,option2=value2, ...]

Using help lists options that can be passed to HPROF. The output is as follows:

Hprof usage: -Xrunhprof[:help]|[:<option>=<value>, ...]

Option Name and Value Description Default
--------------------- ----------- -------
heap=dump|sites|all heap profiling all
cpu=samples|old CPU usage off
format=a|b ascii or binary output a
file=<file> write data to file java.hprof
 (.txt for ascii)
net=<host>:<port> send data over a socket write to file
depth=<size> stack trace depth 4

NOTE Do not use the -Xrs flag.

Profiling

142 Sun ONE Application Server Developer’s Guide • March 2003

cutoff=<value> output cutoff point 0.0001
lineno=y|n line number in traces? y
thread=y|n thread in traces? n
doe=y|n dump on exit? y

2. You must also change a line in the Sun ONE Application Server start script.
The start script file is instance_dir/startserv. Change the following line:

PRODUCT_BIN=appservd-wdog

to this:

PRODUCT_BIN=appservd

3. Start the server by running the start script. Since the server runs in the
foreground (the change in step 2), the command prompt returns only after the
server has been stopped.

4. In another window or terminal, find the process ID of the server process.

% ps -ef | grep appservd

This command lists two appservd processes. Look at the PPID (parent process
ID) column and identify which of the two processes is the parent process and
which is the child process. Note the PID (process ID) of the child process ID.

5. Send a SIGQUIT signal (signal 3) to the child process:

% kill -QUIT child_PID

6. To stop the Application Server, run the stop script from another window.

% ./stopserv

This writes an HPROF stack dump to the file you specified using the file
HPROF option in Step 1. For general information about using a stack dump,
see “Generating a Stack Trace for Debugging,” on page 138.

7. Undo the changes in steps 1 and 2 to return your Application Server to its
original configuration.

NOTE The cpu and monitor options don’t work in JDK 1.4.

Profiling

Chapter 5 Debugging J2EE Applications 143

The Optimizeit Profiler
You can purchase Optimizeit™ 4.2 from Intuitive Systems at:

http://www.optimizeit.com/index.html

Once Optimizeit is installed using the following instructions, its libraries are
loaded into the server process.

To enable remote profiling with Optimizeit, do one of the following:

• Go to the server instance page in the Administration interface, select the JVM
Settings tab, select the Profiler option, and edit the following fields before
selecting Save:

❍ Name: optimizeit

❍ Enabled: true

❍ Classpath: Optimizeit_dir/lib/optit.jar

❍ Native Library Path: Optimizeit_dir/lib

❍ JVM Option: For each of these options, type the option in the JVM Option
field, select Add, then check its box in the JVM Options list:

• -DOPTITHOME=Optimizeit_dir

• -Xrunoii

• -Xbootclasspath/a:Optimizeit_dir/lib/oibcp.jar

• Edit the server.xml file as appropriate:

<!-- Optimizeit options -->
<profiler name="optimizeit" classpath="Optimizeit_dir/lib/optit.jar"

native-library-path="Optimizeit_dir/lib" enabled="true">
<jvm-options>

-DOPTIT_HOME=Optimizeit_dir -Xboundthreads -Xrunoii
-Xbootclasspath/a:Optimizeit_dir/lib/oibcp.jar

</jvm-options>
</profiler>

In addition, you may have to set the following in your server.policy file:

grant codeBase "file:Optimizeit_dir/lib/optit.jar" {
permission java.security.AllPermission;

};

For more information about the server.policy file, see “The server.policy File,”
on page 58.

Profiling

144 Sun ONE Application Server Developer’s Guide • March 2003

When the server starts up with this configuration, you can attach the profiler. For
further details, see the Optimizeit documentation.

The Wily Introscope Profiler
Information about Introscope® from Wily Technology is available at:

http://www.wilytech.com/solutions_introscope.html

Once Introscope is installed using the following instructions, its libraries are
loaded into the server process.

To enable remote profiling with Introscope edit the server.xml file as appropriate:

<!-- Introscope options. For Win2K, use ; in classpath -->
<java-config ... bytecode-preprocessors" value="S1ASAutoProbe" ... >

<profiler name="wily" enabled="true"
classpath="Wily_dir/ProbeBuilder.jar:Wily_dir/Agent.jar" >

</profiler>
</java-config>

When the server starts up with this configuration, you can attach the profiler. For
further details, see the Introscope documentation.

The JProbe Profiler
Information about JProbe™ from Sitraka is available at:

http://www.klgroup.com/software/jprobe/

Once JProbe is installed using the following instructions, its libraries are loaded
into the server process.

NOTE If any of the configuration options are missing or incorrect, the
profiler may experience problems that affect the performance of the
Sun ONE Application Server.

NOTE If any of the configuration options are missing or incorrect, the
profiler may experience problems that affect the performance of the
Sun ONE Application Server.

Profiling

Chapter 5 Debugging J2EE Applications 145

To enable remote profiling with JProbe:

1. Install JProbe 3.0.1.1. This version supports JDK 1.4. For details, see the JProbe
documentation.

2. Configure Sun ONE Application Server in one of these ways:

❍ Go to the server instance page in the Administration interface, select the
JVM Settings tab, type a path to JDK 1.4.0 or 1.4.0_01 in the Java Home
field, and select Save.

Select the Profiler option, and edit the following fields before selecting
Save and restarting the server:

• Name: jprobe

• Enabled: true

• Classpath: (leave blank)

• Native Library Path: JProbe_dir/profiler

• JVM Option: For each of these options, type the option in the JVM
Option field, select Add, then check its box in the JVM Options list:

-Xbootclasspath/p:JProbe_dir/profiler/jpagent.jar

-Xrunjprobeagent

-Xnoclassgc

❍ Edit the server.xml file as appropriate, then restart the server:

<java-config java-home="JDK_path" ...>
<profiler name="jprobe" enabled="true"

native-library-path="JProbe_dir/profiler" >
<jvm-options>

-Xbootclasspath/p:JProbe_dir/profiler/jpagent.jar
-Xrunjprobeagent -Xnoclassgc

</jvm-options>
</profiler>

</java-config>

The JDK_path must point to JDK 1.4.0 or 1.4.0_01.

NOTE JProbe does not work with JDK 1.4.0_02, which is bundled with Sun
ONE Application Server.

Profiling

146 Sun ONE Application Server Developer’s Guide • March 2003

When the server starts up with this configuration, you can attach the profiler.

3. Set the following environment variable:

JPROBE_ARGS_0=-jp_input=JPL_file_path

See Step 6 for instructions on how to create the JPL file.

4. Start the server instance.

5. Launch the jpprofiler and attach to Remote Session. The default port is 4444.

6. Create the JPL file using the JProbe Launch Pad. Here are the required settings:

a. Select Server Side for the type of application.

b. On the Program tab, provide the following details:

• Target Server - other_server

• Server home Directory - install_dir

• Server class File - com.iplanet.ias.server.J2EERunner

• Working Directory - install_dir

• Classpath - install_dir/lib/appserv-rt.jar

• Source File Path - source_code_dir (in case you want to get the line level
details)

• Server class arguments - (optional)

• Main Package - com.iplanet.ias.server

You must also set VM, Attach and Coverage tabs appropriately. For further
details, see the JProbe documentation. Once you have created the JPL file, use
this an input to JPROBE_ARGS_0.

NOTE If any of the configuration options are missing or incorrect, the
profiler may experience problems that affect the performance of the
Sun ONE Application Server.

147

Chapter 6

Developing Lifecycle Listeners

Lifecycle listener modules provide a means of running short or long duration
Java-based tasks within the application server environment, such as instantiation
of singletons or RMI servers. These modules are automatically initiated at server
startup and are notified at various phases of the server life cycle.

The following sections describe how to create and use a lifecycle module:

• Server Life Cycle Events

• The LifecycleListener Interface

• The LifecycleEvent Class

• The Server Lifecycle Event Context

• Assembling and Deploying a Lifecycle Module

• Considerations for Lifecycle Modules

Server Life Cycle Events
A lifecycle module listens for and performs its tasks in response to the following
events in the server life cycle:

• During the INIT_EVENT, the server reads the configuration, initializes built-in
subsystems (such as security and logging services), and creates the containers.

• During the STARTUP_EVENT, the server loads and initializes deployed
applications.

• During the READY_EVENT, the server is ready to service requests.

• During the SHUTDOWN_EVENT, the server destroys loaded applications and
stops.

The LifecycleListener Interface

148 Sun ONE Application Server Developer’s Guide • March 2003

• During the TERMINATION_EVENT, the server closes the containers, the built-in
subsystems, and the server runtime environment.

These events are defined in the LifecycleEvent class.

The lifecycle modules that listen for these events implement the
LifecycleListener interface and are configured in the server.xml file.

The LifecycleListener Interface
To create a lifecycle module is to configure a customized class that implements the
com.sun.appserv.server.LifecycleListener interface. You can create and
simultaneously execute multiple lifecycle modules.

The LifecycleListener interface defines this method:

• public void handleEvent(com.sun.appserv.server.LifecycleEvent

event) throws ServerLifecycleException

This method responds to a lifecycle event and throws a
com.sun.appserv.server.ServerLifecycleException if an error occurs.

A sample implementation of the LifecycleListener interface is the
LifecycleListenerImpl.java file, which you can use for testing lifecycle events:

package com.sun.appserv.server;

import java.util.Properties;

/**
* LifecycleListenerImpl is a dummy implementation for the LifecycleListener
* interface.This implementaion stubs out various lifecycle interface methods.
*/

public class LifecycleListenerImpl implements LifecycleListener {

/** receive a server lifecycle event
* @param event associated event
* @throws <code>ServerLifecycleException</code> for exceptional condition.
*
* Configure this module as a lifecycle-module in server.xml:
*
* <applications>
* <lifecycle-module name="test"
* class-name="com.sun.appserv.server.LifecycleListenerImpl"
* is-failure-fatal="false">
* <property name="foo" value="fooval"/>

The LifecycleListener Interface

Chapter 6 Developing Lifecycle Listeners 149

* </lifecycle-module>
* </applications>
*
* Set<code>is-failure-fatal</code>in server.xml to <code>true</code> for
* fatal conditions.
*/
public void handleEvent(LifecycleEvent event) throws ServerLifecycleException
{

LifecycleEventContext context = event.getLifecycleEventContext();

context.log("got event" + event.getEventType() + " event data: "
+ event.getData());

Properties props;

if (LifecycleEvent.INIT_EVENT == event.getEventType()) {
context.log("LifecycleListener: INIT_EVENT");

props = (Properties) event.getData();

// handle INIT_EVENT
return;

}

if (LifecycleEvent.STARTUP_EVENT == event.getEventType()) {
context.log("LifecycleListener: STARTUP_EVENT");

// handle STARTUP_EVENT
return;

}

if (LifecycleEvent.READY_EVENT == event.getEventType()) {

context.log("LifecycleListener: READY_EVENT");

// handle READY_EVENT
return;

}

if (LifecycleEvent.SHUTDOWN_EVENT== event.getEventType()) {
context.log("LifecycleListener: SHUTDOWN_EVENT");

// handle SHUTDOWN_EVENT
return;

}

if (LifecycleEvent.TERMINATION_EVENT == event.getEventType()) {

The LifecycleEvent Class

150 Sun ONE Application Server Developer’s Guide • March 2003

context.log("LifecycleListener: TERMINATE_EVENT");

// handle TERMINATION_EVENT
return;

}
}

}

The LifecycleEvent Class
The com.sun.appserv.server.LifecycleEvent class defines a server life cycle
event. The following methods are associated with the event:

• public java.lang.Object getData()

This method returns the data associated with the event.

• public int getEventType()

This method returns the event type, which is INIT_EVENT, STARTUP_EVENT,
READY_EVENT, SHUTDOWN_EVENT, or TERMINATION_EVENT.

• public com.sun.appserv.server.LifecycleEventContext

getLifecycleEventContext()

This method returns the lifecycle event context, described next.

A LifecycleEvent instance is passed to the LifecycleListener.handleEvent
method.

The Server Lifecycle Event Context
The com.sun.appserv.server.LifecycleEventContext interface exposes
runtime information about the server. The lifecycle event context is created when
the LifecycleEvent class is instantiated at server initialization. The
LifecycleEventContext interface defines these methods:

• public java.lang.String[] getCmdLineArgs()

This method returns the server startup command-line arguments.

• public java.lang.String getInstallRoot()

This method returns the server installation root directory.

Assembling and Deploying a Lifecycle Module

Chapter 6 Developing Lifecycle Listeners 151

• public java.lang.String getInstanceName()

This method returns the server instance name.

• public javax.naming.InitialContext getInitialContext()

This method returns the initial JNDI naming context. The naming environment
for lifecycle modules is installed during the STARTUP_EVENT. A lifecycle
module can look up any resource defined in the server.xml file by its
jndi-name attribute after the STARTUP_EVENT is complete.

If a lifecycle module needs to look up resources, it can do so in the
READY_EVENT. It can use the getInitialContext() method to get the initial
context to which all the resources are bound.

• public void log(java.lang.String message)

This method writes the specified message to the server log file. The message
parameter is a String specifying the text to be written to the log file.

• public void log(java.lang.String message, java.lang.Throwable

throwable)

This method writes an explanatory message and a stack trace for a given
Throwable exception to the server log file. The message parameter is a String
that describes the error or exception. The throwable parameter is the
Throwable error or exception.

Assembling and Deploying a Lifecycle Module
You assemble a lifecycle module as described in “Assembling a Lifecycle Module,”
on page 89. You deploy a lifecycle module as described in “Deploying a Lifecycle
Module,” on page 100.

During lifecycle module deployment, a lifecycle-module element is created in
the server.xml file. You can edit this file to change its configuration. The
property subelement allows you to specify input parameters. For example:

NOTE To avoid collisions with names of other enterprise resources in
JNDI, and to avoid portability problems, all names in a Sun ONE
Application Server lifecycle module should begin with the string
java:comp/env.

Considerations for Lifecycle Modules

152 Sun ONE Application Server Developer’s Guide • March 2003

<lifecycle-module name="customStartup"
enabled="true"
class-name="com.acme.CustomStartup"
classpath="/apps/customStartup"
load-order="200"
is-failure-fatal="true">

<description>custom startup module to do my tasks</description>
<property name="rmiServer" value="acme1:7070" />
<property name="timeout" value="30" />

</lifecycle-module>

Note that if is-failure-fatal is set to true (the default is false), lifecycle
module failure prevents server initialization or startup, but not shutdown or
termination.

For more information about the server.xml file, see the Sun ONE Application
Server Administrator’s Configuration File Reference.

After you deploy a lifecycle module, you must restart the server to activate it. The
server instantiates it and registers it as a lifecycle event listener at server
initialization.

Considerations for Lifecycle Modules
The resources allocated during initialization or startup should be freed during
shutdown or termination. The lifecycle module classes are called synchronously
from the main server thread, therefore it is important to ensure that these classes
don’t block the server. Lifecycle modules may create threads if appropriate, but
these threads must be stopped in the shutdown and termination phases.

The LifeCycleModule Classloader is the parent classloader for lifecycle modules.
Each lifecycle module’s classpath in server.xml is used to construct its
classloader. All the support classes needed by a lifecycle module must be available
to the LifeCycleModule Classloader or its parent, the Shared Classloader. (The
Shared Classloader loads server-wide resources.)

You must ensure that the server.policy file is appropriately set up, or a lifecycle
module trying to perform a System.exec() may cause a security access violation.
For details, see “The server.policy File,” on page 58.

The configured properties for a lifecycle module are passed as properties in the
INIT_EVENT. The JNDI naming context is not available in the INIT_EVENT. If a
lifecycle module requires the naming context, it can get this in the STARTUP_EVENT,
READY_EVENT, or SHUTDOWN_EVENT.

153

Glossary

This glossary provides definitions for common terms used to describe the Sun
ONE Application Server deployment and development environment. For a
glossary of standard J2EE terms, please see the J2EE glossary at:

http://java.sun.com/j2ee/glossary.html

access control The means of securing your Sun ONE Application Server by
controlling who and what has access to it.

ACL Access Control List. ACLs are text files that contain lists identifying who can
access the resources stored on your Sun ONE Application Server. See also general
ACL.

activation The process of transferring an enterprise bean's state from secondary
storage to memory.

Administration interface The set of browser based forms used to configure and
administer the Sun ONE Application Server. See also CLI.

administration server An application server instance dedicated to providing the
administrative functions of the Sun ONE Application Server, including
deployment, browser-based administration, and access from the command-line
interface (CLI) and Integrated Development Environment (IDE).

administrative domain Multiple administrative domains is a feature within the
Sun ONE Application Server that allows different administrative users to create
and manage their own domains. A domain is a set of instances, created using a
common set of installed binaries in a single system.

API Applications Program Interface. A set of instructions that a computer
program can use to communicate with other software or hardware that is designed
to interpret that API.

154 Sun ONE Application Server Developer’s Guide • March 2003

applet A small application written in Java that runs in a web browser. Typically,
applets are called by or embedded in web pages to provide special functionality.
By contrast, a servlet is a small application that runs on a server.

application A group of components packaged into an .ear file with a J2EE
application deployment descriptor. See also component, module.

application client container See container.

application server A reliable, secure, and scalable software platform in which
business applications are run. Application servers typically provide high-level
services to applications, such as component lifecycle, location, and distribution and
transactional resource access,

application tier A conceptual division of a J2EE application:

client tier: The user interface (UI). End users interact with client software (such as a
web browser) to use the application.

server tier: The business logic and presentation logic that make up your application,
defined in the application’s components.

data tier: The data access logic that enables your application to interact with a data
source.

assembly The process of combining discrete components of an application into a
single unit that can be deployed. See also deployment.

asynchronous communication A mode of communication in which the sender of
a message need not wait for the sending method to return before it continues with
other work.

attribute A name-value pair in a request object that can be set by a servlet. Also a
name-value pair that modifies an element in an XML file. Contrast with parameter.
More generally, an attribute is a unit of metadata.

auditing The method(s) by which significant events are recorded for subsequent
examination, typically in error or security breach situations.

authentication The process by which an entity (such as a user) proves to another
entity (such as an application) that it is acting on behalf of a specific identity (the
user’s security identity). Sun ONE Application Server supports basic, form-based,
and SSL mutual authentication. See also client authentication, digest authentication,
host-IP authentication, pluggable authentication.

Glossary 155

authorization The process by which access to a method or resource is
determined. Authorization in the J2EE platform depends upon whether the user
associated with a request through authentication is in a given security role. For
example, a human resources application may authorize managers to view personal
employee information for all employees, but allow employees to only view their
own personal information.

backup store A repository for data, typically a file system or database. A backup
store can be monitored by a background thread (or sweeper thread) to remove
unwanted entries.

bean-managed persistence Data transfer between an entity bean's variables and
a data store. The data access logic is typically provided by a developer using Java
Database Connectivity (JDBC) or other data access technologies. See also
container-managed persistence.

bean-managed transaction Where transaction demarcation for an enterprise
bean is controlled programmatically by the developer. See also container-managed
transaction.

BLOB Binary Large OBject. A data type used to store and retrieve complex object
fields. BLOBs are binary or serializable objects, such as pictures, that translate into
large byte arrays, which are then serialized into container-managed persistence
fields.

BMP See bean-managed persistence.

BMT See bean-managed transaction.

broker The Sun ONE Message Queue entity that manages JMS message routing,
delivery, persistence, security, and logging, and which provides an interface that
allows an administrator to monitor and tune performance and resource use.

business logic The code that implements the essential business rules of an
application, rather than data integration or presentation logic.

CA See certificate authority or connector architecture.

156 Sun ONE Application Server Developer’s Guide • March 2003

cached rowset A CachedRowSet object permits you to retrieve data from a data
source, then detach from the data source while you examine and modify the data.
A cached row set keeps track both of the original data retrieved, and any changes
made to the data by your application. If the application attempts to update the
original data source, the row set is reconnected to the data source, and only those
rows that have changed are merged back into the database.

Cache Control Directives Cache-control directives are a way for Sun ONE
Application Server to control what information is cached by a proxy server. Using
cache-control directives, you override the default caching of the proxy to protect
sensitive information from being cached, and perhaps retrieved later. For these
directives to work, the proxy server must comply with HTTP 1.1.

callable statement A class that encapsulates a database procedure or function
call for databases that support returning result sets from stored procedures.

certificate Digital data that specifies the name of an individual, company, or
other entity, and certifies that the public key included in the certificate belongs to
that entity. Both clients and servers can have certificates.

certificate authority A company that sells certificates over the Internet, or a
department responsible for issuing certificates for a company’s intranet or extranet.

cipher A cryptographic algorithm (a mathematical function), used for encryption
or decryption.

CKL Compromised Key List. A list, published by a certificate authority, that
indicates any certificates that either client users or server users should no longer
trust. In this case, the key has been compromised. See also CRL.

classloader A Java component responsible for loading Java classes according to
specific rules. See also classpath.

classpath A path that identifies directories and JAR files where Java classes are
stored. See also classloader.

CLI Command-line interface. An interface that enables you to type executable
instructions at a user prompt. See also Administration interface.

client authentication The process of authenticating client certificates by
cryptographically verifying the certificate signature and the certificate chain
leading to the CA on the trust CA list. See also authentication, certificate authority.

Glossary 157

client contract A contract that determines the communication rules between a
client and the EJB container, establishes a uniform development model for
applications that use enterprise beans, and guarantees greater reuse of beans by
standardizing the relationship with the client.

CMP See container-managed persistence.

CMR See container-managed relationship.

CMT See container-managed transaction.

co-locate To position a component in the same memory space as a related
component in order avoid remote procedure calls and improve performance.

column A field in a database table.

commit To complete a transaction by sending the required commands to the
database. See rollback, transaction.

component A web application, enterprise bean, message-driven bean,
application client, or connector. See also application, module.

component contract A contract that establishes the relationship between an
enterprise bean and its container.

configuration The process of tuning the server or providing metadata for a
component. Normally, the configuration for a specific component is kept in the
component’s deployment descriptor file. See also administration server,
deployment descriptor.

connection factory An object that produces connection objects that enable a J2EE
component to access a resource. Used to create JMS connections (TopicConnection
or QueueConnection) which allow application code to make use of the provided
JMS implementation. Application code uses the JNDI Service to locate connection
factory objects using a JNDI Name.

Connection Pool allows highly efficient access to a database by caching and
reusing physical connections, thus avoiding connection overhead and allowing a
small number of connections to be shared between a large number of threads. See
also JDBC connection pool

158 Sun ONE Application Server Developer’s Guide • March 2003

connector A standard extension mechanism for containers to provide
connectivity to EISs. A connector is specific to an EIS and consists of a resource
adapter and application development tools for EIS connectivity. The resource
adapter is plugged in to a container through its support for system level contracts
defined in the connector architecture.

connector architecture An architecture for the integration of J2EE applications
with EISs. There are two parts to this architecture: a EIS vendor-provided resource
adapter and a J2EE server that allows this resource adapter to plug in. This
architecture defines a set of contracts that a resource adapter has to support to plug
in to a J2EE server, for example, transactions, security and resource management.

container An entity that provides life cycle management, security, deployment,
and runtime services to a specific type of J2EE component. Sun ONE Application
Server provides web and EJB containers, and supports application client
containers. See also component.

container-managed persistence Where the EJB container is responsible for entity
bean persistence. Data transfer between an entity bean's variables and a data store,
where the data access logic is provided by the Sun ONE Application Server. See also
bean-managed persistence.

container-managed relationship A relationship between fields in a pair of
classes where operations on one side of the relationship affect the other side.

container-managed transaction Where transaction demarcation for an enterprise
bean is specified declaratively and automatically controlled by the EJB container
See also bean-managed transaction.

control descriptor A set of enterprise bean configuration entries that enable you
to specify optional individual property overrides for bean methods, plus enterprise
bean transaction and security properties.

conversational state Where the state of an object changes as the result of repeated
interactions with the same client. See also persistent state.

cookie A small collection of information that can be transmitted to a calling web
browser, then retrieved on each subsequent call from that browser so the server
can recognize calls from the same client. Cookies are domain-specific and can take
advantage of the same web server security features as other data interchange
between your application and the server.

Glossary 159

CORBA Common Object Request Broker Architecture. A standard architecture
definition for object-oriented distributed computing.

COSNaming Service An an IIOP-based naming service.

CosNaming provider To support a global JNDI name space (accessible to IIOP
application clients), Sun ONE Application Server includes J2EE based CosNaming
provider which supports binding of CORBA references (remote EJB references).

create method A method for customizing an enterprise bean at creation.

CRL Certificate Revocation List. A list, published by a certificate authority, that
indicates any certificates that either client users or server users should no longer
trust. In this case, the certificate has been revoked. See also CKL.

data access logic Business logic that involves interacting with a data source.

database A generic term for Relational Database Management System (RDBMS).
A software package that enables the creation and manipulation of large amounts of
related, organized data.

database connection A database connection is a communication link with a
database or other data source. Components can create and manipulate several
database connections simultaneously to access data.

data source A handle to a source of data, such as a database. Data sources are
registered with the iPlanet Application Server and then retrieved
programmatically in order to establish connections and interact with the data
source. A data source definition specifies how to connect to the source of data.

DataSource Object A DataSource object has a set of properties that identify and
describe the real world data source that it represents.

declarative security Declaring security properties in the component’s
configuration file and allowing the component’s container (for instance, a bean’s
container or a servlet engine) to manage security implicitly. This type of security
requires no programmatic control. Opposite of programmatic security. See
container-managed persistence.

declarative transaction See container-managed transaction.

decryption The process of transforming encrypted information so that it is
intelligible again.

160 Sun ONE Application Server Developer’s Guide • March 2003

delegation An object-oriented technique for using the composition of objects as
an implementation strategy. One object, which is responsible for the result of an
operation, delegates the implementation to another object, its delegatee. For
example, a classloader often delegates the loading of some classes to its parent.

deployment The process of distributing the files required by an application to an
application server to make the application available to run on the application
server. See also assembly.

deployment descriptor An XML file provided with each module and application
that describes how they should be deployed. The deployment descriptor directs a
deployment tool to deploy a module or application with specific container options
and describes specific configuration requirements that a deployer must resolve.

destination resource An objects that represents Topic or Queue destinations.
Used by applications to read/write to Queues or publish/subscribe to Topics.
Application code uses the JNDI Service to locate JMS resource objects using a JNDI
Name.

digest authentication A for of authentication that allows the user to authenticate
based on user name and password without sending the user name and password
as cleartext.

digital signature an electronic security mechanism used to authenticate both a
message and the signer.

directory server See Sun ONE Directory Server.

Distinguished Name See DN, DN attribute.

distributable session A user session that is distributable among all servers in a
cluster.

distributed transaction A single transaction that can apply to multiple
heterogeneous databases that may reside on separate servers.

Document Root The document root (sometimes called the primary document
directory) is the central directory that contains all the virtual server’s files you want
to make available to remote clients.

Glossary 161

Domain Registry The Domain Registry is a single data structure that contains
domain-specific information, for all the domains created and configured on an
installation of Sun ONE Application Server, such as domain name, domain
location, domain port, domain host.

DN Distinguished Name. The string representation for the name of an entry in a
directory server.

DN attribute Distinguished Name attribute. A text string that contains
identifying information for an associated user, group, or object.

DTD Document Type Definition. A description of the structure and properties of
a class of XML files.

dynamic redeployment The process of redeploying a component without
restarting the server.

dynamic reloading The process of updating and reloading a component without
restarting the server. By default, servlet, JavaServer Page (JSP), and enterprise bean
components can be dynamically reloaded. Also known as versioning.

EAR file Enterprise ARchive file. An archive file that contains a J2EE application.
EAR files have the .ear extension. See also JAR file.

e-commerce Electronic commerce. A term for business conducted over the
Internet.

EIS Enterprise Information System. This can be interpreted as a packaged
enterprise application, a transaction system, or a user application. Often referred to
as an EIS. Examples of EISs include: R/3, PeopleSoft, Tuxedo, and CICS.

EJB container See container.

EJB QL EJB Query Language. A query language that provides for navigation
across a network of entity beans defined by container-managed relationships.

EJB technology An enterprise bean is a server-side component that encapsulates
the business logic of an application. The business logic is the code that fulfills the
purpose of the application. In an inventory control application, for example, the
enterprise beans might implement the business logic in methods called
checkInventoryLevel and orderProduct. By invoking these methods, remote
clients can access the inventory services provided by the application. See also
container, entity bean, message-driven bean, and session bean.

162 Sun ONE Application Server Developer’s Guide • March 2003

ejbc utility The compiler for enterprise beans. It checks all EJB classes and
interfaces for compliance with the EJB specification, and generates stubs and
skeletons.

element A member of a larger set; for example, a data unit within an array, or a
logic element. In an XML file, it is the basic structural unit. An XML element
contains subelements or data, and may contain attributes.

encapsulate To localize knowledge within a module. Because objects encapsulate
data and implementation, the user of an object can view the object as a black box
that provides services. Instance variables and methods can be added, deleted, or
changed, but if the services provided by the object remain the same, code that uses
the object can continue to use it without being rewritten.

encryption The process of transforming information so it is unintelligible to
anyone but the intended recipient.

entity bean An enterprise bean that relates to physical data, such as a row in a
database. Entity beans are long lived, because they are tied to persistent data.
Entity beans are always transactional and multi-user aware. See message-driven
bean, read-only bean, session bean.

ERP Enterprise Resource Planning. A multi-module software system that
supports enterprise resource planning. An ERP system typically includes a
relational database and applications for managing purchasing, inventory,
personnel, customer service, shipping, financial planning, and other important
aspects of the business.

event A named action that triggers a response from a module or application.

external JDNI resource Allows the JNDI Service to act as a bridge to a remote
JNDI server.

facade Where an application-specific stateful session bean is used to manage
various Enterprise JavaBeans (EJBs).

factory class A class that creates persistence managers. See also connection
factory.

failover A recovery process where a bean can transparently survive a server
crash.

Glossary 163

finder method Method which enables clients to look up a bean or a collection of
beans in a globally available directory.

File Cache The file cache contains information about files and static file content.
The file cache is turned on by default.

firewall an electronic boundary that allows a network administrator to restrict
the flow of information across networks in order to enforce security.

form action handler A specially defined method in servlet or application logic
that performs an action based on a named button on a form.

FQDN Fully Qualified Domain Name. The full name of a system, containing its
hostname and its domain name.

general ACL A named list in the Sun ONE Directory Server that relates a user or
group with one or more permissions. This list can be defined and accessed
arbitrarily to record any set of permissions.

generic servlet A servlet that extends javax.servlet.GenericServlet. Generic
servlets are protocol-independent, meaning that they contain no inherent support
for HTTP or any other transport protocol. Contrast with HTTP servlet.

global database connection A database connection available to multiple
components. Requires a resource manager.

global transaction A transaction that is managed and coordinated by a
transaction manager and can span multiple databases and processes. The
transaction manager typically uses the XA protocol to interact with the database
backends. See local transaction.

granularity level The approach to dividing an application into pieces. A high level
of granularity means that the application is divided into many smaller, more
narrowly defined Enterprise JavaBeans (EJBs). A low level of granularity means the
application is divided into fewer pieces, producing a larger program.

group A group of users that are related in some way. Group membership is
usually maintained by a local system administrator. See user, role.

handle An object that identifies an enterprise bean. A client may serialize the
handle, and then later deserialize it to obtain a reference to the bean.

164 Sun ONE Application Server Developer’s Guide • March 2003

Heuristic Decision The transactional mode used by a particular transaction. A
transaction has to either Commit or Rollback.

home interface A mechanism that defines the methods that enable a client to
create and remove an enterprise bean.

host-IP authentication A security mechanism used for of limiting access to the
Administration Server, or the files and directories on a web site by making them
available only to clients using specific computers.

HTML Hypertext Markup Language. A coding markup language used to create
documents that can be displayed by web browsers. Each block of text is
surrounded by codes that indicate the nature of the text.

HTML page A page coded in HTML and intended for display in a web browser.

HTTP Hypertext Transfer Protocol. The Internet protocol that fetches hypertext
objects from remote hosts. It is based on TCP/IP.

HTTP servlet A servlet that extends javax.servlet.HttpServlet. These
servlets have built-in support for the HTTP protocol. Contrast with generic servlet.

HTTPS HyperText Transmission Protocol, Secure. HTTP for secure transactions.

IDE Integrated Development Environment. Software that allows you to create,
assemble, deploy, and debug code from a single, easy-to-use interface.

IIOP Internet Inter-ORB Protocol. Transport-level protocol used by both Remote
Method Invocation (RMI) over IIOP and Common Object Request Broker
Architecture (CORBA).

IIOP Listener The IIOP listener is a listen socket that listens on a specified port
and accepts incoming connections from CORBA based client application

IMAP Internet Message Access Protocol.

IP address A structured, numeric identifier for a computer or other device on a
TCP/IP network. The format of an IP address is a 32-bit numeric address written as
four numbers separated by periods. Each number can be zero to 255. For example,
123.231.32.2 could be an IP address.

isolation level See transaction isolation level.

Glossary 165

J2EE Java 2 Enterprise Edition. An environment for developing and deploying
multi-tiered, web-based enterprise applications. The J2EE platform consists of a set
of services, application programming interfaces (APIs), and protocols that provide
the functionality for developing these applications.

JAF The JavaBeans Activation Framework (JAF) integrates support for MIME
data types into the Java platform. See Mime Types.

JAR file Java ARchive file. A file used for aggregating many files into one file.
JAR files have the.jar extension.

JAR file contract Java ARchive contract that specifies what information must be
in the enterprise bean package.

JAR file format Java ARchive file format. A platform-independent file format
that aggregates many files into one file. Multiple applets and their requisite
components (class files, images, sounds, and other resource files) can be bundled in
a JAR file and subsequently downloaded to a browser in a single HTTP transaction.
The JAR files format also supports file compression and digital signatures.

JavaBean A portable, platform-independent reusable component model.

Java IDL Java Interface Definition Language. APIs written in the Java
programming language that provide a standards-based compatibility and
connectivity with Common Object Request Broker Architecture (CORBA).

JavaMail session An object used by an application to interact with a mail store.
Application code uses the JNDI Service to locate JavaMail session resources objects
using a JNDI name.

JAXM Java API for XML Messaging. Enables applications to send and receive
document-oriented XML messages using the SOAP standard. These messages can
be with or without attachments.

JAXP Java API for XML Processing. A Java API that supports processing of XML
documents using DOM, SAX, and XSLT. Enables applications to parse and
transform XML documents independent of a particular XML processing
implementation.

JAXR Java API for XML Registry. Provides a uniform and standard Java API for
accessing different kinds of XML registries. Enables users to build, deploy and
discover web services.

166 Sun ONE Application Server Developer’s Guide • March 2003

JAX-RPC Java API for XML-based Remote Procedure Calls. Enables developers
to build interoperable web applications and web services based on XML-based
RPC protocols.

JDBC Java Database Connectivity. A standards-based set of classes and
interfaces that enable developers to create data-aware components. JDBC
implements methods for connecting to and interacting with data sources in a
platform- and vendor-independent way.

JDBC connection pool A pool that combines the JDBC data source properties
used to specify a connection to a database with the connection pool properties.

JDBC resource A resource used to connect an application running within the
application server to a database using an existing JDBC connection pool. Consists
of a JNDI name (which is used by the application) and the name of an existing
JDBC connection pool.

JDK Java Development Kit. The software that includes the APIs and tools that
developers need to build applications for those versions of the Java platform that
preceded the Java 2 Platform. See also JDK.

JMS Java Message Service. A standard set of interfaces and semantics that define
how a JMS client accesses the facilities of a JMS message service. These interfaces
provide a standard way for Java programs to create, send, receive, and read
messages.

JMS-administered object A pre-configured JMS object—a connection factory or
a destination—created by an administrator for use by one or more JMS clients.

The use of administered objects allows JMS clients to be provider-independent;
that is, it isolates them from the proprietary aspects of a provider. These objects are
placed in a JNDI name space by an administrator and are accessed by JMS clients
using JNDI lookups.

JMS client An application (or software component) that interacts with other JMS
clients using a JMS message service to exchange messages.

JMS connection factory The JMS administered object a JMS client uses to create a
connection to a JMS message service.

Glossary 167

JMS destination The physical destination in a JMS message service to which
produced messages are delivered for routing and subsequent delivery to
consumers. This physical destination is identified and encapsulated by an JMS
administered object that a JMS client uses to specify the destination for which it is
producing messages and/or from which it is consuming messages.

JMS messages Asynchronous requests, reports, or events that are consumed by
JMS clients. A message has a header (to which additional fields can be added) and
a body. The message header specifies standard fields and optional properties. The
message body contains the data that is being transmitted.

JMS provider A product that implements the JMS interfaces for a messaging
system and adds the administrative and control functions needed for a complete
product.

JMS Service Software that provides delivery services for a JMS messaging
system, including connections to JMS clients, message routing and delivery,
persistence, security, and logging. The message service maintains physical
destinations to which JMS clients send messages, and from which the messages are
delivered to consuming clients.

JNDI Java Naming and Directory Interface. This is a standard extension to the
Java platform, providing Java technology-enabled applications with a unified
interface to multiple naming and directory services in the enterprise. As part of the
Java Enterprise API set, JNDI enables seamless connectivity to heterogeneous
enterprise naming and directory services.

JNDI name A name used to access a resource that has been registered in the JNDI
naming service.

JRE Java Runtime Environment. A subset of the Java Development Kit (JDK)
consisting of the Java virtual machine, the Java core classes, and supporting files
that provides runtime support for applications written in the Java programming
language. See also JDK.

JSP JavaServer Page. A text page written using a combination of HTML or XML
tags, JSP tags, and Java code. JSPs combine the layout capabilities of a standard
browser page with the power of a programming language.

jspc utility The compiler for JSPs. It checks all JSPs for compliance with the JSP
specification.

168 Sun ONE Application Server Developer’s Guide • March 2003

JTA Java Transaction API. An API that allows applications and J2EE servers to
access transactions.

JTS Java Transaction Service. The Java service for processing transactions.

key-pair file See trust database.

LDAP Lightweight Directory Access Protocol. LDAP is an open directory access
protocol that runs over TCP/IP. It is scalable to a global size and millions of entries.
Using Sun ONE Directory Server, a provided LDAP server, you can store all of
your enterprise’s information in a single, centralized repository of directory
information that any application server can access through the network.

LDIF LDAP Data Interchange Format. Format used to represent Sun ONE
Directory Server entries in text form.

lifecycle event A stage in the server life cycle, such as startup or shutdown.

lifecycle module A module that listens for and performs its tasks in response to
events in the server life cycle.

Listener A class, registered with a posting object, that says what to do when an
event occurs.

local database connection The transaction context in a local connection is local to
the current process and to the current data source, not distributed across processes
or across data sources.

local interface An interface that provides a mechanism for a client that is located
in the same Java Virtual Machine (JVM) with a session or entity bean to access that
bean.

local session A user session that is only visible to one server.

local transaction A transaction that is native to one database and is restricted
within a single process. Local transactions work only against a single backend.
Local transactions are typically demarcated using JDBC APIs. See also global
transaction.

mapping The ability to tie an object-oriented model to a relational model of data,
usually the schema of a relational database. The process of converting a schema to
a different structure. Also refers to the mapping of users to security roles.

Glossary 169

MDB See message-driven bean.

message-driven bean An enterprise bean that is an asynchronous message
consumer. A message-driven bean has no state for a specific client, but its instance
variables may contain state across the handling of client messages, including an
open database connection and an object reference to an EJB object. A client accesses
a message-driven bean by sending messages to the destination for which the
message-driven bean is a message listener.

messaging A system of asynchronous requests, reports, or events used by
enterprise applications that allows loosely coupled applications to transfer
information reliably and securely.

metadata Information about a component, such as its name, and specifications
for its behavior.

management information base (MIB) A tree-like structure that defines the
variables the master SNMP agent can access. The MIB provides access to the HTTP
server’s network configuration, status, and statistics. Using SNMP, you can view
this information from the network management workstation (NMS). See also
network management station (NMS) and SNMP.

MIME Data Type MIME (Multi-purpose Internet Mail Extension) types control
what types of multimedia files your system supports.

module A web application, enterprise bean, message-driven bean, application
client, or connector that has been deployed individually, outside an application. See
also application, component, lifecycle module.

network management station (NMS) A machine used to remotely manage a
specific network. Usually, the NMS software will provide a graph to display
collected data or use that data to make sure the server is operating within a
particular tolerance. See also SNMP.

NTV Name, Type, Value.

object persistence See persistence.

O/R mapping tool Object-to-relational [database] tool. A mapping tool within
the Sun ONE Application Server Administrative interface that creates XML
deployment descriptors for entity beans.

170 Sun ONE Application Server Developer’s Guide • March 2003

package A collection of related classes that are stored in a common directory.
They are often literally packaged together in a Java archive JAR file. See also
assembly, deployment.

parameter A name/value pair sent from the client, including form field data,
HTTP header information, and so on, and encapsulated in a request object.
Contrast with attribute. More generally, an argument to a Java method or database-
prepared command.

passivation A method of releasing a bean’s resources from memory without
destroying the bean. In this way, a bean is made to be persistent, and can be
recalled without the overhead of instantiation.

permission A set of privileges granted or denied to a user or group. See also ACL.

persistence For enterprise beans, the protocol for transferring the state of an
entity bean between its instance variables and an underlying database. Opposite of
transience. For sessions, the session storage mechanism.

persistence manager The entity responsible for the persistence of the entity beans
installed in the container.

persistent state Where the state of an object is kept in persistent storage, usually a
database.

pluggable authentication A mechanism that allows J2EE applications to use the
Java Authentication and Authorization Service (JAAS) feature from the J2SE
platform. Developers can plug in their own authentication mechanisms.

point-to-point delivery model Producers address messages to specific queues;
consumers extract messages from queues established to hold their messages. A
message is delivered to only one message consumer.

pooling The process of providing a number of preconfigured resources to
improve performance. If a resource is pooled, a component can use an existing
instance from the pool rather than instantiating a new one. In the Sun ONE
Application Server, database connections, servlet instances, and enterprise bean
instances can all be pooled.

POP3 Post Office Protocol

Glossary 171

prepared command A database command (in SQL) that is precompiled to make
repeated execution more efficient. Prepared commands can contain parameters. A
prepared statement contains one or more prepared commands.

prepared statement A class that encapsulates a QUERY, UPDATE, or INSERT
statement that is used repeatedly to fetch data. A prepared statement contains one
or more prepared commands.

presentation layout The format of web page content.

presentation logic Activities that create a page in an application, including
processing a request, generating content in response, and formatting the page for
the client. Usually handled by a web application.

primary key The unique identifier that enables the client to locate a particular
entity bean.

primary key class name A variable that specifies the fully qualified class name of
a bean’s primary key. Used for JNDI lookups.

principal The identity assigned to an entity as a result of authentication.

private key See public key cryptography.

process Execution sequence of an active program. A process is made up of one or
more threads.

programmatic security The process of controlling security explicitly in code
rather than allowing the component’s container (for instance, a bean’s container or
a servlet engine) to handle it. Opposite of declarative security.

programmer-demarcated transaction See bean-managed transaction.

property A single attribute that defines the behavior of an application
component. In the server.xml file, a property is an element that contains a
name/value pair.

public key cryptography A form of cryptography in which each user has a
public key and a private key. Messages are sent encrypted with the receiver's
public key; the receiver decrypts them using the private key. Using this method,
the private key never has to be revealed to anyone other than the user.

172 Sun ONE Application Server Developer’s Guide • March 2003

publish/subscribe delivery model Publishers and subscribers are generally
anonymous and may dynamically publish or subscribe to a topic. The system
distributes messages arriving from a topic’s multiple publishers to its multiple
subscribers.

QOS QOS (Quality of Service) refers to the performance limits you set for a
server instance or virtual server. For example, if you are an ISP, you might want to
charge different amounts of money for virtual servers depending on how much
bandwidth is provided. You can limit two areas: the amount of bandwidth and the
number of connections.

queue An object created by an administrator to implement the point-to-point
delivery model. A queue is always available to hold messages even when the client
that consumes its messages is inactive. A queue is used as an intermediary holding
place between producers and consumers.

RAR file Resource ARchive. A JAR archive that contains a resource adapter.

RDB Relational database.

RDBMS Relational database management system.

read-only bean An entity bean that is never modified by an EJB client. See also
entity bean.

realm A scope over which a common security policy is defined and enforced by
the security administrator of the security service. Also called a security policy domain
or security domain in the J2EE specification.

remote interface One of two interfaces for an Enterprise JavaBean. The remote
interface defines the business methods callable by a client.

request object An object that contains page and session data produced by a
client, passed as an input parameter to a servlet or JavaServer Page (JSP).

resource manager An object that acts as a facilitator between a resource such as a
database or message broker, and client(s) of the resource such as Sun ONE
Application Server processes. Controls globally-available data sources.

resource reference An element in a deployment descriptor that identifies the
component’s coded name for the resource.

Glossary 173

response object An object that references the calling client and provides methods
for generating output for the client.

ResultSet An object that implements the java.sql.ResultSet interface.
ResultSets are used to encapsulate a set of rows retrieved from a database or
other source of tabular data.

reusable component A component created so that it can be used in more than
one capacity, for instance, by more than one resource or application.

RMI Remote Method Invocation. A Java standard set of APIs that enable
developers to write remote interfaces that can pass objects to remote processes.

RMIC Remote Method Invocation Compiler.

role A functional grouping of subjects in an application, represented by one or
more groups in a deployed environment. See also user, group.

rollback Cancellation of a transaction.

row A single data record that contains values for each column in a table.

RowSet An object that encapsulates a set of rows retrieved from a database or
other source of tabular data. RowSet extends the java.sql.ResultSet interface,
enabling ResultSet to act as a JavaBeans component.

RPC Remote Procedure Call. A mechanism for accessing a remote object or
service.

runtime system The software environment in which programs run. The runtime
system includes all the code necessary to load programs written in the Java
programming language, dynamically link native methods, manage memory, and
handle exceptions. An implementation of the Java virtual machine is included,
which may be a Java interpreter.

SAF Server Application Function. A function that participates in request
processing and other server activities

schema The structure of the underlying database, including the names of tables,
the names and types of columns, index information, and relationship (primary and
foreign key) information.

Secure Socket Layer See SSL.

174 Sun ONE Application Server Developer’s Guide • March 2003

security A screening mechanism that ensures that application resources are only
accessed by authorized clients.

serializable object An object that can be deconstructed and reconstructed, which
enables it to be stored or distributed among multiple servers.

server instance A Sun ONE Application Server can contain multiple instances in
the same installation on the same machine. Each instance has its own directory
structure, configuration, and deployed applications. Each instance can also contain
multiple virtual servers. See also virtual server.

servlet An instance of the Servlet class. A servlet is a reusable application that
runs on a server. In the Sun ONE Application Server, a servlet acts as the central
dispatcher for each interaction in an application by performing presentation logic,
invoking business logic, and invoking or performing presentation layout.

servlet engine An internal object that handles all servlet metafunctions.
Collectively, a set of processes that provide services for a servlet, including
instantiation and execution.

servlet runner The part of the servlet engine that invokes a servlet with a request
object and a response object. See servlet engine.

session An object used by a servlet to track a user’s interaction with a web
application across multiple HTTP requests.

session bean An enterprise bean that is created by a client; usually exists only for
the duration of a single client-server session. A session bean performs operations
for the client, such as calculations or accessing other EJBs. While a session bean
may be transactional, it is not recoverable if a system crash occurs. Session bean
objects can be either stateless (not associated with a particular client) or stateful
(associated with a particular client), that is, they can maintain conversational state
across methods and transactions. See also stateful session bean, stateless session
bean.

session cookie A cookie that is returned to the client containing a user session
identifier. See also sticky cookie.

session timeout A specified duration after which the Sun ONE Application
Server can invalidate a user session. See session.

single sign-on A situation where a user’s authentication state can be shared
across multiple J2EE applications in a single virtual server instance.

Glossary 175

SMTP Simple Mail Transport Protocol

SNMP SNMP (Simple Network Management Protocol) is a protocol used to
exchange data about network activity. With SNMP, data travels between a
managed device and a network management station (NMS). A managed device is
anything that runs SNMP: hosts, routers, your web server, and other servers on
your network. The NMS is a machine used to remotely manage that network.

SOAP The Simple Object Access Protocol (SOAP) uses a combination of
XML-based data structuring and Hyper Text Transfer Protocol (HTTP) to define a
standardized way of invoking methods in objects distributed in diverse operating
environments across the Internet.

SQL Structured Query Language. A language commonly used in relational
database applications. SQL2 and SQL3 designate versions of the language.

SSL Secure Sockets Layer. A protocol designed to provide secure
communications on the Internet.

state 1. The circumstances or condition of an entity at any given time. 2. A
distributed data storage mechanism which you can use to store the state of an
application using the Sun ONE Application Server feature interface IState2. See
also conversational state, persistent state.

stateful session bean A session bean that represents a session with a particular
client and which automatically maintains state across multiple client-invoked
methods.

stateless session bean A session bean that represents a stateless service. A
stateless session bean is completely transient and encapsulates a temporary piece
of business logic needed by a specific client for a limited time span.

sticky cookie A cookie that is returned to the client to force it to always connect
to the same server process. See also session cookie.

stored procedure A block of statements written in SQL and stored in a database.
You can use stored procedures to perform any type of database operation, such as
modifying, inserting, or deleting records. The use of stored procedures improves
database performance by reducing the amount of information that is sent over a
network.

176 Sun ONE Application Server Developer’s Guide • March 2003

streaming A technique for managing how data is communicated through HTTP.
When results are streamed, the first portion of the data is available for use
immediately. When results are not streamed, the whole result must be received
before any part of it can be used. Streaming provides a way to allow large amounts
of data to be returned in a more efficient way, improving the perceived
performance of the application.

Sun ONE Directory Server The Sun ONE version of Lightweight Directory
Access Protocol (LDAP). Every instance of Sun ONE Application Server uses Sun
ONE Directory Server to store shared server information, including information
about users and groups. See also LDAP.

Sun ONE Message Queue The Sun ONE enterprise messaging system that
implements the Java Message Service (JMS) open standard: it is a JMS provider.

system administrator The person who administers Sun ONE Application Server
software and deploys Sun ONE Application Server applications.

table A named group of related data in rows and columns in a database.

thread An execution sequence inside a process. A process may allow many
simultaneous threads, in which case it is multi-threaded. If a process executes each
thread sequentially, it is single-threaded.

TLS Transport Layer Security. A protocol that provides encryption and
certification at the transport layer, so that data can flow through a secure channel
without requiring significant changes to the client and server applications.

topic An object created by an administrator to implement the publish/subscribe
delivery model. A topic may be viewed as node in a content hierarchy that is
responsible for gathering and distributing messages addressed to it. By using a
topic as an intermediary, message publishers are kept separate from message
subscribers.

transaction A set of database commands that succeed or fail as a group. All the
commands involved must succeed for the entire transaction to succeed.

Transaction Attribute A transaction attribute controls the scope of a transaction.

transaction context A transaction’s scope, either local or global. See local
transaction, global transaction.

Glossary 177

transaction isolation level Determines the extent to which concurrent
transactions on a database are visible to one-another.

transaction manager An object that controls a global transaction, normally using
the XA protocol. See global transaction.

Transaction Recovery Automatic or manual recovery of distributed transactions.

transience A protocol that releases a resource when it is not being used. Opposite
of persistence.

trust database I security file that contains the public and private keys; also
referred to as the key-pair file.

UDDI Universal Description, Discovery, and Integration. Provides worldwide
registry of web services for discovery and integration.

URI Universal Resource Identifier. Describes a specific resource at a domain.
Locally described as a subset of a base directory, so that /ham/burger is the base
directory and a URI specifies toppings/cheese.html. A corresponding URL
would be http://domain:port/toppings/cheese.html.

URL Uniform Resource Locator. An address that uniquely identifies an HTML
page or other resource. A web browser uses URLs to specify which pages to
display. A URL describes a transport protocol (for example, HTTP, FTP), a domain
(for example, www.my-domain.com), and optionally a URI.

user A person who uses an application. Programmatically, a user consists of a
user name, password, and set of attributes that enables an application to recognize
a client. See also group, role.

user session A series of user application interactions that are tracked by the
server. Sessions maintain user state, persistent objects, and identity authentication.

versioning See dynamic reloading.

virtual server A virtual web server that serves content targeted for a specific
URL. Multiple virtual servers may serve content using the same or different host
names, port numbers, or IP addresses. The HTTP service can direct incoming web
requests to different virtual servers based on the URL. Also called a virtual host.

A web application can be assigned to a specific virtual server. A server instance can
have multiple virtual servers. See also server instance.

178 Sun ONE Application Server Developer’s Guide • March 2003

WAR file Web ARchive. A Java archive that contains a web module. WAR files
have the.war extension.

web application A collection of servlets, JavaServer Pages, HTML documents,
and other web resources, which might include image files, compressed archives,
and other data. A web application may be packaged into an archive (a WAR file) or
exist in an open directory structure.

Sun ONE Application Server also supports some non-Java web application
technologies, such as SHTML and CGI.

web cache An Sun ONE Application Server feature that enables a servlet or JSP
to cache its results for a specific duration in order to improve performance.
Subsequent calls to that servlet or JSP within the duration are given the cached
results so that the servlet or JSP does not have to execute again.

web connector plug-in An extension to a web server that enables it to
communicate with the Sun ONE Application Server.

web container See container.

web module An individually deployed web application. See web application.

web server A host that stores and manages HTML pages and web applications,
but not full J2EE applications. The web server responds to user requests from web
browsers.

Web Server Plugin The web server plugin is an HTTP reverse proxy plugin that
allows you to instruct a Sun One Web Server or Sun ONE Application Server to
forward certain HTTP requests to another server.

web service A service offered via the web. A self-contained, self-describing,
modular application that can accept a request from a system across the Internet or
an intranet, process it, and return a response.

WSDL Web Service Description Language. An XML-based language used to
define web services in a standardized way. It essentially describes three
fundamental properties of a web service: definition of the web service, how to
access that web service, and the location of that web service.

XA protocol A database industry standard protocol for distributed transactions.

Glossary 179

XML Extensible Markup Language. A language that uses HTML-style tags to
identify the kinds of information used in documents as well as to format
documents.

180 Sun ONE Application Server Developer’s Guide • March 2003

181

Index

A
ACC clients

about 20
assembling 90
creating 35
deploying 102
module definition 64
preparing the client machine 102
security 42

action attribute 112, 115
Administration interface

about 31
using for deployment 98
using for dynamic reloading 94
using for HPROF configuration 140
using for JProbe configuration 145
using for lifecycle module deployment 101
using for Optimizeit configuration 143
using for SSL configuration 56
using to add file realm users 52
using to add to the server classpath 78
using to change logging settings 139
using to configure realms 49
using to disable modules and applications 93
using to enable debugging 136
using to make EJB access remote 79

ANT_HOME environment variable 103
Apache Ant

and deployment descriptor verification 83, 84
overview 103
Sun ONE Application Server specific tasks 104
using for deployment 104

using for JSP precompilation 119
using for server administration 111, 118

Apache SOAP 20
appclient script 102
Application Client Container see ACC
application.xml file 67, 128

example of 134
application-client.xml file 67
applications

assembling 89
best practices for creating 24
business logic layer 22
client layer 19
creating 37
creating reusable code 25, 27
data access layer 24
definition 65
directories deployed to 74
directory structure 71
disabling 93, 115
examples 80
functional isolation 26
identifying requirements 17
J2EE programming model 18
JNDI naming 69
modularizing 26
naming 69

automatic 92
presentation layer 21
runtime environment 73
security 39, 46

asadmin command 31, 96
asadmin create-auth-realm command 50

182 Sun ONE Application Server Developer’s Guide • March 2003

asadmin create-file-user command 52
asadmin create-lifecycle-module command 100
asadmin delete-auth-realm command 50
asadmin delete-file-user command 53
asadmin delete-lifecycle-module command 100
asadmin deploy command 96

--force option 93
--precompilejsp option 99

asadmin deploydir command 97
asadmin list-auth-realms command 50
asadmin list-file-groups command 54
asadmin list-file-users command 53
asadmin list-lifecycle-modules command 101
asadmin undeploy command 97
asadmin update-file-user command 53
asant script 103
asenv.conf file 102
assembly

formulas for modularizing 27
of ACC clients 90
of applications 89
of connectors 91
of EJB components 88
of lifecycle modules 89
of web applications 87
overview 63

attributes, about 130
authentication

definition 44
for web applications 41

authorization
definition 44
for EJB components 42
for web applications 41

B
Bean managed persistence (BMP) 23
beans

entity 23, 34
message-driven 23, 34, 138
session 23, 34

best practices for application creation 24
bin directory 103
Bootstrap Classloader 76
build.xml file 81, 103
business logic layer 22

C
certificate realm 55
CGI 22
CICS 24
class-loader element 76
classloaders 74

delegation hierarchy 75
isolation 77

circumventing 78
classpath attribute 120
classpath, server, changing 76
classpathref attribute 120
classpath-suffix attribute 76
Clearcase 32
clients

ACC clients 20, 64
browsers 19
client layer 19
CORBA 19
JAR file for 79, 102
JMS 20
web service 20

code re-use 25
command attribute 118
commandfile attribute 118
command-line server configuration see asadmin

command
Common Classloader 76

using to circumvent isolation 79
Common Gateway Interface see CGI
Common Object Request Broker Architecture see

CORBA
common.xml file 81
component subelement 125
Concurrent Versioning System (CVS) 32

Index 183

connection factories, JNDI subcontexts for 70
connectors

assembling 91
building tools 37
connector architecture 24
creating 36
deploying 103
JNDI subcontext for 70
module definition 64

console, Windows, creating 139, 140
Container managed persistence (CMP) 23
context, for JNDI naming 69
contextroot attribute 106, 126
context-root element 132
CORBA clients 19
CORBA Mapping specification 19

D
data access layer 24
.dbschema file 88
debug attribute 112, 123
debug-enabled attribute 136
debugging

enabling 135
generating a stack trace 138
JSPs 138
Sun ONE Message Queue 138
using Sun ONE Studio 137

debug-options attribute 136
default-realm attribute 51
delegation, classloader 76
deployment

directory deployment 97
disabling deployed applications and modules 93,

115
dynamic 93
errors during 92
module vs. application based 99
of ACC clients 102
of connectors 103
of EJB components 99
of lifecycle modules 100

of web applications 99
overview 63
redeployment 93
standard J2EE descriptors 67
Sun ONE Application Server descriptors 68
tools for 95
undeploying an application or module 97, 98, 108
using Apache Ant 104
using the Administration interface 98
verifying descriptor correctness 83

destdir attribute 120
development environment, creating 29

tools for developers 30
directory deployment 97
document directories

primary 160
document root 160
domain attribute 112, 122
DTD files

location of 68
structure of 128

dynamic
deployment 93
reloading 94

E
EAR file, creating 90
EIS systems 24
EJB Classloader 77
EJB components

about 22
assembling 88
calling from a different application 79
creating 34
deploying 99
generated source code 99
module definition 64
remote access 79
security 42, 47
see also beans

ejb-jar.xml file 67
ejb-ref mapping, using JNDI name instead 80

184 Sun ONE Application Server Developer’s Guide • March 2003

Enterprise JavaBeans see EJB components
entity beans 23

creating 34
env-classpath-ignored attribute 76
errors during deployment 92
events, server life cycle 147
example applications 80
exceptions, sending to the client 139
explicitcommand attribute 119

F
failonerror attribute 120
file attribute 105, 109, 116, 125
file realm 51

adding users 52
fileset subelement 128
force attribute 106, 126
forcing deployment 93
Forte for Java 15

G
getCmdLineArgs method 150
getData method 150
getEventType method 150
getInitialContext method 151
getInstallRoot method 150
getInstanceName method 151
getLifecycleEventContext method 150
group-name element 133
groups

and roles 45
creating for file realm users 53
listing for file realm users 54

H
handleEvent method 148
host attribute 107, 110, 113, 116, 122
HPROF profiler 140
HTML pages 22

I
IIOP, support for 19
INIT_EVENT 147
installation 29
instance attribute 107, 110, 113, 116, 122
instanceport attribute 112, 122
Introscope profiler 144
Intuitive Systems web site 143
iPlanet Application Server 6.x, migrating from 32
iPlanet Web Server 6.x, migrating from 32
is-failure-fatal attribute 152
isolation

of classloaders 77, 78
of code 26

J
J2EE

connector architecture (CA) 24
policy set 60
programming model 18
security model 40
standard deployment descriptors 67

JAR Extension Mechanism Architecture 89
JAR file

client, for a deployed application 79, 102
creating 88, 89
creating for an ACC client 90

Java Authentication and Authorization Service
(JAAS) 57

Java Database Connectivity see JDBC
Java Message Service see JMS

Index 185

Java Naming and Directory Interface see JNDI
Java Platform Debugger Architecture see JPDA
java-config element 76, 99
JavaMail, JNDI subcontext for 70
JAX RPC 20
JDBC 24

JNDI subcontext for 70
JMS

clients 20
debugging 138
JNDI subcontext for 70

JNDI
ACC clients 20
and lifecycle modules 151, 152
CORBA clients, simple 20
naming 69
subcontexts for connection factories 70
using instead of ejb-ref mapping 80

JPDA debugging options 137
JProbe profiler 144
JSP Engine Classloader 77
jsp-config element 95, 99
JSPs

about 21
best practices 25
compared to servlets 25
creating 33
debugging 138
generated source code 99
precompiling 99, 106, 119, 126

K
-keepgenerated flag 99

L
ldap realm 54
lib directory

for a web application 80
for the entire server

and ACC clients 102
and Apache Ant 104
and the Common Classloader 76
DTD file location 68

libraries 28, 78, 103
lifecycle modules 147

allocating and freeing resources 152
and classloaders 152
and the server.policy file 152
assembling 89
configuration 151
deploying 100

LifecycleEvent class 150
LifecycleEventContext interface 150
LifecycleListener interface 148
LifecycleListenerImpl.java file 148
LifeCycleModule Classloader 76, 152
local attribute 112, 123
log method 151
logging 139
login method 62
login, programmatic 61
log-service element 139

M
message-driven beans 23, 138

creating 34
META-INF directory 34, 35, 36
migration tools 32
MIME (Multi-purpose Internet Mail Extension) types

definition and accessing page 169
modularizing applications 26
modules

definition 64
directories deployed to 73
directory structure 71
disabling 93, 115
individual deployment of 99
naming 69

automatic 92
runtime environment 72

186 Sun ONE Application Server Developer’s Guide • March 2003

see also applications

N
name attribute 105, 109, 116, 125
naming service 69
native library path

configuring for hprof 141
configuring for JProbe 145
configuring for OptimizeIt 143

NetDynamics servers, migrating from 32
Netscape Application Servers, migrating from 32
-nolocalstubs option 79

O
Optimizeit profiler 143

P
package attribute 120
package-appclient script 102
packaging see assembly
PAM infrastructure 57
pass-by-reference element 132
pass-by-value semantics 132
password attribute 107, 110, 112, 116, 122
permissions

changing in server.policy 59
default in server.policy 58

port attribute 107, 110, 113, 116, 122
precompilejsp attribute 106, 126
--precompilejsp option 99
presentation layer 21
primary document directory, setting 160
principal-name element 133
profilers 140

programmatic login 61
ProgrammaticLogin class 62
ProgrammaticLoginPermission 62
PVCS 32

R
ra.xml file 67
RAR file, creating 91
RCS 32
READY_EVENT 147
realms

and role mapping 45
certificate realm 55
configuring 49
custom 57
default 49, 51
definition 44
file realm 51
ldap realm 54
solaris realm 57
supported 51
user information in 47

redeployment 93
.reload file 95
reloading, dynamic 94
reload-interval property 95
remote access of EJB components 79
requirement rules 129
resource adapters see connectors
retrievestubs attribute 106, 126
reusable code 25, 27
RMI/IIOP clients 20
rmic-options attribute 99
Role Based Access Control (RBAC) 57
role-name element 133
roles

creating 48
mapping 45

Index 187

S
sample applications 80
SCCS 32
security 39

ACC clients 42
applications 46
declarative 46
disabling the security manager 60
EJB components 42, 47
goals 40
J2EE model 40
of containers 45
of sessions 28
programmatic 45
programmatic login 61
responsibilities overview 42
role mapping 45
server.policy file 58
Sun ONE Application Server features 40
Sun ONE Application Server model 41
terminology 44
user information 47
web applications 41, 46

security policy domains see realms
security-role-mapping element 133
security-service element 51
server

administering instances using Ant 111
changing the classpath of 76
installation 29
lib directory of 68, 76, 102, 104
life cycle events 147
optimizing for development 30
security model 41
Sun ONE Application Server deployment

descriptors 68
using Ant scripts to control 118

server subelement 122
server.policy file 58

and lifecycle modules 152
changing permissions 59
default permissions 58
disabling the security manager 60
Optimizeit profiler options 143
ProgrammaticLoginPermission 62

server.xml file
application configuration 74
default realm 51
disabling modules and applications 93
dynamic reloading 94
enabling debugging 136
HPROF profiler 141
Introscope profiler 144
JProbe profiler 145
keeping stubs 99
lifecycle module configuration 151
logging 139
module configuration 73
Optimizeit profiler 143
security manager, disabling 60
stack trace generation 138
System Classloader 76, 78

server-classpath attribute 76
ServerLifecycleException 148
server-parsed HTML see SHTML
servlets

about 21
best practices 25
compared to JSPs 25
creating 33

session beans 23
creating 34

sessions
and dynamic redeployment 93
and dynamic reloading 94
security 28

Shared Classloader 76, 152
SHTML 22
SHUTDOWN_EVENT 147
Sitraka web site 144
SOAP 20
Solaris 9, bundled

Apache Ant bundling differences 103
installation differences 29
installation directory differences 15

solaris realm 57
source code control tools 32
srcdir attribute 120
SSI 22
SSL 20

188 Sun ONE Application Server Developer’s Guide • March 2003

authentication configuration 56
stack trace, generating 138
STARTUP_EVENT 147, 151
static content 22
stderr, logging to 139
stubs

directory for 73, 74
keeping 99, 106, 126
making remote 79

subelements, about 129
Sun customer support 16
Sun ONE Connector Builder 37
Sun ONE Message Queue 138

installation of 30
Sun ONE Studio

about 31
Apache SOAP web services support 20
debugging 137
debugging JSPs 138
renamed from Forte for Java 15
software partners 33
source code control tools 32
using for assembly 83
using for deployment 95

sun-acc.xml file 68, 102
sun-application element 131
sun-application.xml file 128

elements in 130
example of 134
schema for 128

sun-application_1_3-0.dtd file 128
sun-application-client.xml file 68
sun-appserv-admin task 118
sun-appserv-component task 115
sun-appserv-deploy task 104
sun-appserv-instance task 111
sun-appserv-jspc task 119
sun-appserv-undeploy task 108
sun-cmp-mapping.xml file 68
sun-ejb-jar.xml file 68
sunonehome attribute 107, 110, 113, 116, 121
sun-ra.xml file 68
sun-web.xml file 68, 95, 99

and classloaders 76

System Classloader 76
using to circumvent isolation 78

T
tasks, Apache Ant 104
TERMINATION_EVENT 148
tools

for deployment 95
for developers, general 30

transactions
attributes 176

type attribute 106, 110, 116, 126

U
unique-id element 132
upload attribute 106, 123
URI, configuring for an application 132
uribase attribute 120
uriroot attribute 120
URL, JNDI subcontext for 70
user attribute 106, 110, 112, 116, 122
users

adding to the file realm 52
and roles 45
security information 47

utility classes 78, 89, 103

V
VCS 32
verbose attribute 120
verifier tool 83
verify attribute 106, 126
virtualservers attribute 106, 123
Visual Source Safe 32

Index 189

W
WAR file, creating 88
web applications

assembling 87
creating 33
deploying 99
module definition 64
security 41, 46

Web Classloader 77
changing delegation in 76

web element 131
web service

changing Web Classloader delegation for 76
clients 20
sample applications 81

web.xml file 67
and certificate configuration 56

webapp attribute 120
WEB-INF directory 33
WebLogic Server, migrating from 32
Websphere Application Server, migrating from 32
web-uri element 132
Wily Technology web site 144

X
XML

specification 129
syntax verifier 83

-Xrs option and debugging 138, 141

190 Sun ONE Application Server Developer’s Guide • March 2003

	Developer’s Guide
	Contents
	About This Guide
	Who Should Use This Guide
	Using the Documentation
	How This Guide Is Organized
	Related Information
	Documentation Conventions
	General Conventions
	Conventions Referring to Directories

	Product Support

	Designing Applications
	Application Requirements
	About the J2EE Programming Model
	The Client Layer
	Browser Clients
	Simple CORBA Clients
	ACC Clients
	Web Service Clients
	JMS Clients

	The Presentation Layer
	Servlets
	JSPs
	Static Content
	SHTML
	CGI

	The Business Logic Layer
	Session Beans
	Entity Beans
	Message-Driven Beans

	The Data Access Layer

	Best Practices for Designing J2EE Applications
	Presenting Data with Servlets and JSPs
	Creating Reusable Application Code
	Modularizing Applications
	Functional Isolation
	Reusable Code
	Prepackaged Components
	Shared Framework Classes
	Session and Security Issues

	Developing J2EE Applications
	Setting Up a Development Environment
	Installing and Preparing the Server for Development
	Development Tools
	The asadmin Command
	The Administration Interface
	Sun ONE Studio
	Apache Ant
	Migration Tools
	Profiling Tools
	Source Code Control Tools
	Other Tools Supported Through Sun ONE Studio

	Steps for Creating Components
	Creating Web Applications
	Creating Enterprise JavaBeans
	Creating ACC Clients
	Creating Connectors
	Creating Complete Applications

	Securing J2EE Applications
	Sun ONE Application Server Security Goals
	Sun ONE Application Server Specific Security Features
	Sun ONE Application Server Security Model
	Web Application and URL Authorizations
	Invocation of Enterprise Bean Methods
	ACC Client Invocation of Enterprise Bean Methods

	Security Responsibilities Overview
	Application Developer
	Application Assembler
	Application Deployer

	Common Security Terminology
	Authentication
	Authorization
	Realms
	Role Mapping

	Container Security
	Programmatic Security
	Declarative Security
	Application Level Security
	Web Component Level Security
	EJB Level Security

	Guide to Security Information
	User Information
	Security Roles

	Realm Configuration
	How to Configure a Realm and Set the Default Realm
	Using the Administration Interface
	Using the asadmin Command
	Editing the server.xml File

	Supported Realms
	file
	ldap
	certificate
	solaris
	Creating a Custom Realm

	The server.policy File
	Default Permissions
	Changing Permissions for an Application
	Disabling the Security Manager

	Programmatic Login
	Precautions
	Granting Programmatic Login Permission
	The ProgrammaticLogin Class

	Assembling and Deploying J2EE Applications
	Overview of Assembly and Deployment
	Modules
	Applications
	J2EE Standard Descriptors
	Sun ONE Application Server Descriptors
	Naming Standards
	JNDI Naming
	Directory Structure
	Runtime Environments
	Module Runtime Environment
	Application Runtime Environment

	Classloaders
	The Classloader Hierarchy
	Classloader Universes
	Circumventing Classloader Isolation

	Sample Applications

	Assembling Modules and Applications
	Tools for Assembly
	Apache Ant
	Sun ONE Studio
	The Deployment Descriptor Verifier

	Assembling a WAR Module
	Assembling an EJB JAR Module
	Assembling a Lifecycle Module
	Assembling an Application
	Assembling an ACC Client
	Assembling a J2EE CA Resource Adapter

	Deploying Modules and Applications
	Deployment Names and Errors
	The Deployment Life Cycle
	Dynamic Deployment
	Disabling a Deployed Application or Module
	Dynamic Reloading

	Tools for Deployment
	Apache Ant
	Sun ONE Studio
	The asadmin Command
	The Administration Interface

	Deployment by Module or Application
	Deploying a WAR Module
	Deploying an EJB JAR Module
	Deploying a Lifecycle Module
	The asadmin Command
	The Administration Interface

	Deploying an ACC Client
	Deploying a J2EE CA Resource Adapter
	Access to Shared Frameworks

	Apache Ant Assembly and Deployment Tool
	Ant Tasks for Sun ONE Application Server 7
	sun-appserv-deploy
	sun-appserv-undeploy
	sun-appserv-instance
	sun-appserv-component
	sun-appserv-admin
	sun-appserv-jspc

	Reusable Subelements
	server
	component
	fileset

	The Application Deployment Descriptor Files
	The sun-application_1_3-0.dtd File
	Subelements
	Data
	Attributes

	Elements in the sun-application.xml File
	sun-application
	web
	web-uri
	context-root
	pass-by-reference
	unique-id
	security-role-mapping
	role-name
	principal-name
	group-name

	Sample Application XML Files
	Sample application.xml File
	Sample sun-application.xml File

	Debugging J2EE Applications
	Enabling Debugging
	Using the Administration Interface
	Editing the server.xml File

	JPDA Options
	Using Sun ONE Studio for Debugging
	Debugging JSPs
	Generating a Stack Trace for Debugging
	Sun ONE Message Queue Debugging
	Logging
	Using the Administration Interface
	Editing the server.xml File

	Profiling
	The HPROF Profiler
	The Optimizeit Profiler
	The Wily Introscope Profiler
	The JProbe Profiler

	Developing Lifecycle Listeners
	Server Life Cycle Events
	The LifecycleListener Interface
	The LifecycleEvent Class
	The Server Lifecycle Event Context
	Assembling and Deploying a Lifecycle Module
	Considerations for Lifecycle Modules

	Glossary
	Index

