Developer’s Guide to Clients
Sun™ ONE Application Server

Version 7

817-2173-10
March 2003



Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

THIS SOFTWARE CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE,
DISCLOSURE OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN
MICROSYSTEMS, INC.U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc.
standard license agreement and applicable provisions of the FAR and its supplements. Use is subject to license terms.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java and the Sun ONE logo are trademarks or registered trademarks of Sun Microsystems, Inc.
in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other
countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are
strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists,
including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

CE LOGICIEL CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN
MICROSYSTEMS, INC. SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS
L’AUTORISATION EXPRESSE, ECRITE ET PREALABLE DE SUN MICROSYSTEMS, INC. Droits du gouvernement américain,
utlisateurs gouvernmentaux - logiciel commercial. Les utilisateurs gouvernmentaux sont soumis au contrat de licence standard de
Sun Microsystems, Inc., ainsi qu aux dispositions en vigueur de la FAR [ (Federal Acquisition Regulations) et des suppléments a
celles-ci. Distribué par des licences qui en restreignent I'utilisation.

Cette distribution peut comprendre des composants développés pardes tierces parties.

Sun, Sun Microsystems, le logo Sun, Java et le logo Sun ONE sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et licenciée exlusivement par X/Open Company, Ltd.

Les produits qui font I’objet de ce manuel d’entretien et les informations qu’il contient sont régis par la législation américaine en
matiére de contrdle des exportations et peuvent étre soumis au droit d’autres pays dans le domaine des exportations et importations.
Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires, des missiles, des armes biologiques et chimiques ou du
nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous
embargo des Etats-Unis, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines, y compris, mais de maniére
non exclusive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une fagon directe ou indirecte, aux exportations
des produits ou des services qui sont régi par la Iégislation américaine en matiére de controle des exportations ("U.S. Commerce
Department’s Table of Denial Orders") et la liste de ressortissants spécifiquement désignés ("U.S. Treasury Department of Specially
Designated Nationals and Blocked Persons"), sont rigoureusement interdites.



Contents

AbouUt This DOCUMENT . ..o e e e e e e e 7
Who Should Use This GUIE .. ... ... o e e e e e e e e 7
Using the DOCUMENTAtION . .. ... e e e e e e e 8
How This Guide ISOrganized .. ........ ... i e 10
Reference INformation . ... ... .. . e 11
Documentation CoNVENTIONS .. ... . it et e et e 11
General CoNVENTIONS .. ..o e e e e e 11
Conventions Referring to DIreCtories . . .. ... ...t e 12
Chapter 1 Overview of Clients . ... .. ... e e 15
INtroduCing ClieNtS . ... o e e 15
TYPES OFf ClENES . .o e 16
WD NS . ..o 17
Web Services ClIENTS . . ... o 17
IMIS ClIENES oo 18
CORBA ClBNES oottt et e e e e e e 18
Application ClIeNtS . ... ... 19
Chapter 2 Using the Application Client Container ............ . ... i, 21
Introducing the Application Client Container ............. .. i 21
Application Client Container FEatures .. ...ttt e 22
Developing Applications Using the ACC ... ... i e e e 22
Creating an Application Client ... ... .. i e 22
Locating the Home INterface . . ... ... i e e 23
Creating an Enterprise Bean INStanCe . ...... ..ottt e 23
Invoking a Business Method .. ... ... i 24
Using an Application Clientto Invokean EJBModule ........ ... ... ... .. .. 24



Making a Remote Call onthe EJB .. ... ... e 25

Invoking an RMI/110P-based Client Without Usingthe ACC ........ ... ... ... ... ... ..... 26
Authenticating an Application Client Using the JAASModule ........... ... ... ... .. ..... 28
Authenticating an RMI/1IOP Client Without Usingthe ACC . ........ ... ... .. ... 35
Packaging an Application Client Usingthe ACC . ... ... i e 37
Editing the Configuration File .. ... .. . 38
Editing the appclient SCript . . . ... o 38
Editing the sun-accxml File . ... ... 38
Setting Security OPtiONS . ... .. 39
Using the package-appclient SCript . .. ... .. 40
Running an Application Client Usingthe ACC . ... ... . . i e 41
Sample Client Application . ... .. 42
Application Client Deployment DesCriptors .. ... ... e 42
Format of Deployment DeSCriptOrS .. ... ...ttt e 43
SUDEIEMENTS . 43
Data . . . 44
AT DUTES . 44
J2EE Application Client Deployment DesCriptor ... ....... ...t 45
Sun ONE Application Client Deployment Descriptor . ............co it 45
Elements in sun-application-client.xml file ......... ... ... . . . 45
Application Client Container Configuration File .......... ... .. . ... . . . i .. 50
Elements in the sun-accxml File ... ... . 50
Chapter 3 Java-based CORBA Clients . ... ... e 59
CORBA CHENTSCENAIIOS . . oottt ettt et e et 59
Stand-alone SCENANIO . .. ... 59
SEIVEr 10 SEIVEN SCENAITO . ..\ttt e e e et e 60
ORB SUPPOIt ArChiteCtUre . .. ... e e e e e e 61
Developing Java-based CORBA Clients .. ....... ..o e 61
Creating a Stand-alone CORBA CHENt . .. ... ... it 62
Specifying the Naming Factory Class .. ... e 62
Specifying the INDI Name of an EJB . .. ... .. i e 62
SUN ONE ORB Configuration . . ... ... ..t e 63
Running a Stand-alone CORBA CHEeNt .. ... .. i e 65
Third Party ORB SUPPOIt . ... e e e 65
Accessing EJBs in a Remote Application Server Instance From a Servlet/Enterprise JavaBean .. 65
Specifying the Naming Factory Class .. ...... ... e 66
Specifying the INDI Name of an EJB . .. ... .. i e 66
Configuring Back End Access Using Third Party Client ORBs Within Sun ONE Application Server

67
INStalling OrbiX . ..o 67
Configuring Sun ONE Application Server to Use Orbix .......... ..., 67
Overriding the BUuilt-in ORB . . ... .. e 68

Sun ONE Application Server 7 « Developer's Guide to Clients « March 2003



Chapter 4 C++ ClieNntS .. ..o e 71

Introducing C++ ClIeNntS ... ... . 71
Developing a C++ Client . ... ... e 71
Configuring C++ Clients to Access Sun ONE Application Server .......... ... ... .. ... ..... 72
Software ReQUITEMENTS . . . ... e e e e 72
Preparing for C++ Client Development . .......... .. i 73
Assumptions and Limitations .. ........ .. e 75
Creating a C++ ClENt .. ... e e e 75
Generating the IDL Files . ... ... 75
Generating CPP Files from IDL FileS . .. .. ..o o i 79
Sample ApPlICatiONS . ... ... 83
GlOS S aNY . ot 85
I EX o 111



6  Sun ONE Application Server 7 « Developer's Guide to Clients « March 2003



About This Document

This guide describes how to create and run Java(2) Platform, Enterprise Edition™

(J2EE) clients that access Enterprise JavaBeans'™ (EJBs) on Sun™ Open Net
Environment (Sun ONE) Application Server 7. In addition to describing
programming concepts and tasks, this guide offers sample code, implementation
tips, reference material, and a glossary.

This preface contains information about the following topics:
= Who Should Use This Guide

= Using the Documentation

< How This Guide Is Organized

= Reference Information

= Documentation Conventions

« Product Support

Who Should Use This Guide

The intended audience for this guide is the person who develops, assembles, and
deploys J2EE applications in a corporate enterprise.

This guide assumes you are familiar with the following topics:

J2EE specification
HTML

Java™ and XML programming

Java APIs as defined in specifications for EJBs, JSPs, and JDBC



Using the Documentation

= Software development processes, including debugging and source code
control

Using the Documentation

8

The Sun ONE Application Server manuals are available as online files in Portable
Document Format (PDF) and Hypertext Markup Language (HTML) formats, at:

http://docs. sun. conl

The following table lists tasks and concepts described in the Sun ONE Application
Server manuals. The left column lists the tasks and concepts, and the right column
lists the corresponding manuals.

Table 1  Sun ONE Application Server Documentation Roadmap

For information about See the following
Late-breaking information about the software and the Release Notes
documentation

Supported platforms and environments Platform Summary
Introduction to the application server, including new Getting Started Guide

features, general installation information, migration details,
and architectural overview

Installing Sun ONE Application Server and its various Installation Guide
components (sample applications, Administration interface,
Sun ONE Message Queue).

Creating and implementing J2EE applications that follow Developer’s Guide
the open Java standards model on the Sun ONE Application

Server 7. Includes general information about application

design, developer tools, security, assembly, deployment,

debugging, and creating lifecycle modules.

Creating and implementing J2EE applications that follow Developer’s Guide to Web
the open Java standards model for web applications on the  Applications

Sun ONE Application Server 7. Discusses web application

programming concepts and tasks, and provides sample

code, implementation tips, and reference material.

Sun ONE Application Server 7 « Developer's Guide to Clients « March 2003


http://docs.sun.com/

Using the Documentation

Table1  Sun ONE Application Server Documentation Roadmap

For information about See the following
Creating and implementing J2EE applications that follow Developer’s Guide to
the open Java standards model for EJBs on the Sun ONE Enterprise JavaBeans

Application Server 7. Discusses EJB programming concepts  Technology
and tasks, and provides sample code, implementation tips,
and reference material.

Creating clients that access J2EE applications on the Sun Developer’s Guide to Clients
ONE Application Server.

J2EE features such as JDBC, JNDI, JTS, JMS, and JavaMail. Developer’s Guide to J2EE
Features and Services

Creating custom NSAPI plug-ins Developer’s Guide to NSAPI
Performing the following administration tasks: Administrator’s Guide

= Using the Administration interface and the command
line interface

= Configuring server preferences

= Using server instances

= Monitoring and logging server activity
= Configuring the web server plug-in

= Configuring the Java Messaging Service
= Using J2EE features

= Configuring support for CORBA-based clients
= Configuring database connectivity

= Configuring transaction management

= Configuring the web container

= Deploying applications

= Managing virtual servers

Editing server configuration files Administrator’s
Configuration File Reference

Configuring and administering security for the Sun ONE Administrator’s Guide to
Application Server 7 operational environment. Includes Security

information on general security, certificates, and SSL/TLS

encryption. Web-core-based security is also addressed.

About This Document 9



How This Guide Is Organized

Table1  Sun ONE Application Server Documentation Roadmap

For information about See the following
Configuring and administering service provider J2EE CA Service Provider
implementation for J2EE CA connectors for the Sun ONE Implementation
Application Server 7. Includes information about the Administrator’s Guide

Administration Tool, DTDs and provides sample XML files.

Migrating your applications to the new Sun ONE Migration Guide
Application Server 7 programming model from the

Netscape Application Server version 2.1, including a

sample migration of an Online Bank application provided

with Sun ONE Application Server

Using Sun ONE Message Queue. The Sun ONE Message
Queue documentation at

http://docs.sun.com/db/
prod/sl.simsgqu#hic

How This Guide Is Organized

This guide provides instructions for the development, assemble, and the
deployment of various types of J2EE clients to Sun ONE Application Server.

e Chapter 1, “Overview of Clients”

This chapter introduces you to various types of clients that are supported by
Sun ONE Application Server.

= Chapter 2, “Using the Application Client Container”

This chapter describes how to use the Application Client Container to develop
and package application clients.

= Chapter 3, “Java-based CORBA Clients”

This chapter describes the procedure to develop, assemble, and deploy
Java-based CORBA clients that do not use the ACC.

e Chapter 4, “C++ Clients”

This chapter describes the procedure to develop C++ clients using a
third-party ORB.

Finally, Glossary and Index are provided.

10  Sun ONE Application Server 7 « Developer's Guide to Clients « March 2003


http://docs.sun.com/db/

Reference Information

Reference Information

We recommend the following additional reading:
General J2EE Information:

Core J2EE Patterns: Best Practices and Design Strategies by Deepak Alur, John Crupi,
& Dan Malks, Prentice Hall Publishing

Java Security, by Scott Oaks, O’Reilly Publishing

Programming with EJB components:

Enterprise JavaBeans, by Richard Monson-Haefel, O’Reilly Publishing

Java Remote Method Invocation Technology over Internet Inter-ORB Protocol:

http://java. sun.conlj2se/ 1. 4/ docs/ guide/rm -iiop/

Documentation Conventions

This section describes the types of conventions used throughout this guide:
= General Conventions

= Conventions Referring to Directories

General Conventions

The following general conventions are used in this guide:

< File and directory paths are given in UNIX® format (with forward slashes
separating directory names). For Windows versions, the directory paths are the
same, except that backslashes are used to separate directories.

< URLs are given in the format:
http://server.domain/path/file.nhtml

In these URLS, server is the server name where applications are run; domain is
your Internet domain name; path is the server’s directory structure; and file is
an individual filename. Italic items in URLs are placeholders.

e Font conventions include:

About This Document 11


http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/
http://server.domain/path/file.html

Documentation Conventions

o The nmonospace font is used for sample code and code listings, APl and
language elements (such as function names and class names), file names,
pathnames, directory names, and HTML tags.

o Italic type is used for code variables.

o Italic type is also used for book titles, emphasis, variables and placeholders,
and words used in the literal sense.

o Boldtype is used as either a paragraph lead-in or to indicate words used in
the literal sense.

= Installation root directories for most platforms are indicated by install_dir in
this document. Exceptions are noted in “Conventions Referring to Directories
on page 12.

By default, the location of install_dir on most platforms is:
o Solaris 8 non-package-based Evaluation installations:
user’s home directory/sun/ appser ver 7
o Solaris unbundled, non-evaluation installations:
/ opt / SUN\Wappser ver 7
o Windows, all installations:
C:. \ Sun\ AppServer7

For the platforms listed above, default_config_dir and install_config_dir are
identical to install_dir. See “Conventions Referring to Directories” on page 12
for exceptions and additional information.

= Instance root directories are indicated by instance_dir in this document, which
is an abbreviation for the following path:

default_config_dir/ domai ns/ domain/ instance

= UNIX-specific descriptions throughout this manual apply to the Linux
operating system as well, except where Linux is specifically mentioned.

Conventions Referring to Directories

By default, when using the Solaris 8 and 9 package-based installation and the
Solaris 9 bundled installation, the application server files are spread across several
root directories. These directories are described in this section.

12 Sun ONE Application Server 7 « Developer's Guide to Clients « March 2003



Documentation Conventions

< For Solaris 9, bundled installations, this guide uses the following document
conventions to correspond to the various default installation directories
provided:

o install_dir refers to/ usr/ appserver/, which contains the static portion of
the installation image. All utilities, executables, and libraries that make up
the application server reside in this location.

o default_config_dir refers to/ var/ appser ver/ domai ns, which is the default
location for any domains that are created.

o install_config_dir refers to / et ¢/ appser ver/ conf i g, which contains
installation-wide configuration information such as licenses and the
master list of administrative domains configured for this installation.

= For Solaris 8 and 9 package-based, non-evaluation, unbundled installations,
this guide uses the following document conventions to correspond to the
various default installation directories provided:

o install_dir refers to / opt / SUN\Vappser ver 7, which contains the static
portion of the installation image. All utilities, executables, and libraries
that make up the application server reside in this location.

o default_config_dir refers to/ var/ opt / SUN\Wappser ver 7/ domai nswhich is
the default location for any domains that are created.

o install_config_dir refers to / et c/ opt / SUNWappser ver 7/ conf i g, which
contains installation-wide configuration information such as licenses and
the master list of administrative domains configured for this installation.

Product Support

If you have problems with your system, contact customer support using one of the
following mechanisms;

« The online support web site at:
http://ww. sun. conl supportrai ni ng/
= The telephone dispatch number associated with your maintenance contract

Please have the following information available prior to contacting support. This
helps to ensure that our support staff can best assist you in resolving problems:

= Description of the problem, including the situation where the problem occurs
and its impact on your operation

About This Document 13


http://www.sun.com/supportraining/

Documentation Conventions

= Machine type, operating system version, and product version, including any
patches and other software that might be affecting the problem

= Detailed steps on the methods you have used to reproduce the problem

= Any error logs or core dumps

14 Sun ONE Application Server 7 « Developer's Guide to Clients « March 2003



Chapter 1

Overview of Clients

A client can be a simple web browser or an application that runs on the client
system. Sun ONE Application Server 7 provides various types of clients, a
framework to connect to a back end source, execute the application logic, and
return the result to the client.

This chapter introduces different types of clients that Sun ONE Application Server
supports. The following topics are discussed in this chapter:

= Introducing Clients

= Types of Clients

Introducing Clients

A client application can be written using Java, C, C++, Visual Basic, or any
compatible programming language. A client application sends a request to an
application server at a given URL. The server receives the request, processes it, and
returns a response. These client programs execute remote procedures and
functions in an application server instance.

Sun ONE Application Server is a Java application server and is fully compliant
with the J2EE specifications. The important layers of J2EE platform are as follows:

= Client layer - The client layer is where the user accesses the application.

= Presentation layer - The presentation layer is where the user interface is
dynamically generated. An application may require the following J2EE
components in the presentation layer.

o Servlets

o JSPs

15



Types of Clients

o Static Content

In addition, an application may require the following non-J2EE, HTTP
server-based components in the presentation layer:

o SHTML
o CGlI

For more information about the components in the presentation layer, see the

Sun ONE Application Server Developer’s Guide to Web Applications.

= Business logic layer -The business logic layer contains deployed EJB
components that encapsulate business rules and other functions in session
beans, entity beans, and message-driven beans.

For more information about components in business logic layer, see the Sun
ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology.

= Data access layer - In the data access layer, JDBC (java database connectivity) is

used to connect to databases, make queries, and return query results, and
custom connectors work with Sun ONE Application Server to enable
communication with legacy EIS systems, such as IBM’s CICS.

Developers are likely to integrate access to the following systems using J2EE
CA (J2EE connection architecture):

v Enterprise resource management system
o Mainframe systems
o Third-party security systems

For more information about JDBC, see the Sun ONE Application Server
Developer’s Guide to J2EE Features and Services.

For more information about connections, see the J2EE CA Service Provider
Implementation Administration Guide and the corresponding release notes.

For more information on the J2EE Architecture, see Sun ONE Application Server
Developer’s Guide.

Types of Clients

This section introduces the following types of clients that are supported by Sun
ONE Application Server:

e Web Clients

16  Sun ONE Application Server 7 « Developer's Guide to Clients « March 2003



Types of Clients

= Web Services Clients
= JMS Clients

= CORBA Clients

= Application Clients

Web Clients

A web client consists of two parts:

= Dynamic web pages containing various types of markup languages such as
Hyper Text Markup Language (HTML), Extensible Markup Language (XML),
etc, that are generated by web components running in the web server.

= A web browser, which renders the pages received from the server.

A web client is sometimes called a thin client. Thin clients do not query databases,
execute complex business rules, or connect to legacy applications. When you use a
thin client, heavyweight operations like these are off-loaded to enterprise beans
executing on the J2EE server where they can leverage the security, speed, services,
and reliability of J2EE server-side technologies.

Web Services Clients

Sun ONE Application Server supports Java-based client applications to send
requests to the web service, and receive a response from the web service. To invoke
a web service, these clients must construct and send SOAP messages over HTTP.

Sun ONE Application Server supports Apache SOAP version 2.2 and Java™ API
for XML-based RPC (JAX RPC) 1.1. Web services support is also built into Sun
ONE Studio 4, which is bundled with Sun ONE Application Server.

For information on developing and deploying Web Services clients, see the Sun
ONE Application Server Developer’s Guide to Web Services.

Chapter 1  Overview of Clients 17



Types of Clients

JMS Clients

Java Message Service (JMS) clients are the Java language programs that send and
receive messages using the JMS provider. JMS client can be any type of J2EE
application component:a web application, an Application Client Container client,
an EJB component, and so on. A client accesses a special kind of Enterprise
JavaBeans called the message-driven beans (MDB), through JMS by sending
messages to the JMS destination.

For more information on using the JIMS API to develop JMS clients, see the Sun
ONE Application Server Developer’s Guide to J2EE Features and Services.

CORBA Clients

CORBA clients are the client applications written in any language supported by
Common Object Request Broker Architecture (CORBA), including the Java
programming language, C++, and C.

CORBA clients are used when a stand-alone program or another application server
acts as a client to the EJBs deployed to Sun ONE Application Server. Sun ONE
Application Server supports access to EJBs using the Internet Inter-ORB Protocol
(I1OP) as specified in the Enterprise JavaBeans Specification, V2.0, and the
Enterprise JavaBeans to CORBA Mapping Specification. These clients use Java

Naming and Directory Interface (JNDI) to locate EJBs, and use Java™ Remote
Method Invocation/Internet Inter-ORB Protocol (RMI/110P) to access business
methods of remote EJBs.

CORBA clients that do not use the Application Client Container (ACC) have the
following limitations:

= JNDI is not supported. However, you can build name translations and do
lookups using standard COSNaming binding.

= SSL over RMI/ZIIOP is not supported.

= Features that are configurable in the sun- appl i cati on-client.xn and
sun-acc. xni files are not available.

18  Sun ONE Application Server 7 « Developer's Guide to Clients « March 2003



Types of Clients

Application Clients

A J2EE application client runs on a client machine and provides a way to handle
tasks that require a richer user interface than can be provided by a markup
language. Typically, an application client has a GUI created from Swing or
Abstract Window Toolkit (AWT) APIs. Alternatively, you can use the
command-line interface.

Application clients directly access the EJB components residing in Sun ONE
Application Server. However, if application requirements warrant it, a J2EE
application client can open an HTTP connection to establish communication with a
servlet running in the web server.

The figure, “Client and Sun ONE Application Server Architecture” illustrates client
machines running the web browser, web service clients, RMI-11OP clients, or IMS
clients; J2EE server machines running the Sun ONE Application Server; and EIS
server machines running databases and legacy applications. JSPs and servlets
provide the interface to the client tier, EJBs reside in the business tier, and
connectors provide the interface to legacy applications.

Figure 1-1 Client and Sun ONE Application Server Architecture

Chapter 1  Overview of Clients 19



Types of Clients

Client | Presentation Business Data | Data
layer : layer Logic layer Access layer : layer
: Web container EJB container :
| |
> > 4»( EJIJB )4¢—P»| IDBC |[¢—t—>
<_JT _/ I
Browser « | A |
-I_IL | RDBMS
|
Tig = |
: H»( Connector )4 :
| |
| |
Browser |4+ HTML 4; |
| |
| v |
Web ' '
Service )4 p( Serviet |«——»( EIB '
client : :
— | | v
Application | | Legacy
Client container » 1NN
: p(  EIJB )4»(Connector )4 ™! application
RMI/IIOP ¢ | A
client | |
| |
| |
| |
IMS - e »( MDB )4P(Connector )4
client | |
| |
| |
: | JMS provider |¢— :
| |
Client I Server I EIS

20

Sun ONE Application Server 7 « Developer's Guide to Clients « March 2003




Chapter 2

Using the Application Client
Container

This chapter describes how to access the application server using RMI/11OP
protocol, and how to use the Application Client Container (ACC) to develop and
package application clients.

This chapter contains the following sections:

= Introducing the Application Client Container
= Developing Applications Using the ACC

« Application Client Deployment Descriptors

Introducing the Application Client Container

The Application Client Container (ACC) includes a set of Java classes, libraries, and
other files that are required and distributed along with Java client programs that
execute on their own Java Virtual Machine. It manages the execution of the
application client components. The ACC provides system services that enable a
Java client program to execute. It communicates with Sun ONE Application Server
using RMI/11OP and manages the details of RMI/IIOP communication using the
client ORB that is bundled with it. The ACC is specific to the EJB container and is
often provided by the same vendor. Compared to other J2EE containers that reside
on the server, this container is lightweight.

21



Developing Applications Using the ACC

Application Client Container Features

Security
The ACC is responsible for collecting authentication data such as the username and

password from the user. Sends the collected data over RMI/ZIIOP to the server. The

server then processes the authentication data using the configured Java™

Authentication and Authorization Service (JAAS) module. See “Authenticating an
Application Client Using the JAAS Module” on page 28.

Authentication techniques are provided by the client container, and are not under
the control of the application client. The container integrates with the platform’s
authentication system. When you execute a client application, it displays a login
window and collects authentication data from the user. It also support SSL (Secure
Socket Layer)/11OP if configured and when it is necessary.

Naming

The client container enables the application clients to use Java Naming and
Directory Interface (JNDI) to look up EJB components and to reference
configurable parameters set at the time of deployment.

Developing Applications Using the ACC

This section describes the procedure to develop, assemble, and deploy client
applications using the ACC. This section describes the following topics:

= Creating an Application Client

= Using an Application Client to Invoke an EJB Module

= Invoking an RMI/Z11OP-based Client Without Using the ACC
= Authenticating an Application Client Using the JAAS Module
= Packaging an Application Client Using the ACC

= Running an Application Client Using the ACC

Creating an Application Client

A J2EE application client is a program written in the Java programming language.
At runtime, the client program executes in a different virtual machine than the
J2EE server.

22 Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Developing Applications Using the ACC

Code examples from the Convert er sample application illustrate the following
steps involved in the development of an application client:

= Locating the Home Interface
= Creating an Enterprise Bean Instance

= Invoking a Business Method

Locating the Home Interface

Use Java Naming and Directory Interface™ (JNDI) to lookup and locate an EJB
component’s home interface. The following steps describe the procedure to locate
an EJB component’s home interface.

1. Create an initial naming context.

Context initial = new Initial Context();
Context myEnv = (Context)initial.lookup(“java:comp/env”);
Object objref = myEnv.lookup(*“ejb/RMIConverter”);

The context interface is part of JINDI. An initial context object, which
implements the Cont ext interface, provides the starting point for the
resolution of names. All naming operations are relative to a context.

2. Retrieve the object bound to the name r ni Converter.
Obiject objref = initial.lookup(“rmiConverter");

The rmi Convert er name is bound to an enterprise bean reference, a logical
name for the home of an enterprise bean component. In this case, the

rmi Convert er name refers to the Conver t er Hone object. The names of
enterprise bean components should reside in the j ava: con env/ ej b
subcontext.

3. Narrow the reference to a Conver t er Hone object.

Convert er Home hone =(Converter Hone)
Por t abl eRenpt eQbj ect . narrow obj ref, ConverterHone. cl ass);

Creating an Enterprise Bean Instance

To create the bean instance, the client invokes the cr eat e method on the

Conver t er Hone object. The cr eat e method returns an object whose type is
Convert er . The remote converter interface defines the business methods of the
bean that the client may call and the EJB container instantiates the bean and then
invokes the Convert er Bean. ej bCr eat e method.

Converter currencyConverter = home.create();

Chapter 2  Using the Application Client Container 23



Developing Applications Using the ACC

Invoking a Business Method

To invoke a business method, you first need to invoke a method on the Convert er
object. The EJB container will invoke the corresponding method on the

Conver t er EJB instance that is running on the server. The client invokes the

dol I ar ToYen business method in the following lines of code:

Bi gDeci mal param = new Bi gDeci mal ("100.00");

Bi gDeci mal anmount = currencyConverter.dol | ar ToYen(paran;

Using an Application Client to Invoke an EJB
Module

This section describes how an application client can be used to call a stand-alone
EJB module, or an EJB module residing in another J2EE application client.

To call an EJB module from an application client, perform the following steps:
1. Define the element <ej b-r ef > in the sun-appl i cation-client.xn file.

For more information on the sun- appl i cation-client.xn file, see “Sun
ONE Application Client Deployment Descriptor” on page 45.

2.  Make sure that the INDI name matches with the JNDI name defined in the EJB
module.

3. Deploy the EJB module using the Administration interface. For more
information on deploying an EJB module using the Administration interface,
see the Sun ONE Application Server Administrator’s Guide.

The client JAR file is created at the following location:
[ appl i cati on/j 2ee- nodul es/ejbmodulename/appcli ent.j ar

4. Distribute your appcl i ent. j ar file to the location that the client JVM can
access.

5. Ensure that the appclient.j ar file includes the following files:
o alavaclass to access the bean
o application-client.xm
o sun-application-client-.xm

o The MANI FEST. MF file. This file contains the main class, which states the
complete package prefix and classname of the Java client.

24 Sun ONE Application Server 7 « Developer's Guide to Clients « March 2003



Developing Applications Using the ACC

6. Run the application client to access the EJB component. The following line of
code illustrates how to invoke an EJB component using the ACC:

appclient -client jarpath - mai ncl ass client application main class| - nanme
name -xm config_xml_file app-args

o -client isrequired and specifies the name and location of the application
client jar file.

o -mai ncl ass is optional and specifies the class name, that is located within
the appcl i ent . j ar file whose nai n() method is to be invoked. By default,
the class specified in the client jars Mai n- cl ass attribute of the MANI FEST
file is used.

o -nane is optional and specifies the display name that is located within the
appcl i ent.j ar. By default, the display name is specified in the client jar
application-client.xm fileas di spl ay- nanme attribute.

o -xm, which specifies the name and location of the ACC configuration xml
file, is required if you are not using the default domain and instance. By
default, the ACC uses instance_dir/confi g/ sun-acc. xnl for clients
running on the application server, or
install_dir// | i b/ appcl i ent/sun-acc. xm for clients that are packaged
using the package- appl cl i ent script.

o app- ar gs are optional and they represent the arguments passed to the
client’s mai n() method.

7. To deploy the application client, assemble the application client to create a
standard J2EE .ear file and then deploy the application client to Sun ONE
Application Server.

Making a Remote Call on the EJB

If you need to access the EJB components that are residing in a remote system other
than the system where the application client is being developed, make the
following changes into the sun- acc. xm fie.

= Define the <t ar get - ser ver > addr ess attribute to reference the remote server
machine.

« Define the <t ar get - server > port attribute to reference the ORB port on the
remote server.

This information can be obtained from the server . xnl file on the remote system.

For more information on server. xni file, see the Sun ONE Application Server
Administrator’s Configuration File Reference.

Chapter 2  Using the Application Client Container 25



Developing Applications Using the ACC

Invoking an RMI/IIOP-based Client Without
Using the ACC

You can invoke a J2EE client without using the ACC. When you are creating an
application client that does not use the ACC, you need to setup your development
environment as follows:

1. Include the following non-java libraries in the client’s classpath.
Windows:
The following libraries can be found at install_dir/bi n:
o cis.dll

o libnspr4.dll

o libplca.dll
o nss3.dll

o ssl3.dll
Solaris:

The following libraries can be found at install_dir/1 i b:

o libcis.so

o libnspr4.so
o libplc4.so
o libnss3.so
o libssl3.so

2. Inaddition to the non-java libraries, copy the following jar files to the client
system and add them to the classpath:

o appserv-ext.jar
o appserv-rt.jar
o fscontext.jar

o inmg.jar

o inmgadmn.jar

o imutil.jar

26 Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Developing Applications Using the ACC

The following steps describe the procedure to create a client:
1. Define the main class as shown in the code illustration below:
public static(String[] args) {
String url = null;
String jndinane = null;
bool ean acc = true;

}

2. Ifthe code sees the url and j ndi nane passed in, the acc flag is set to false and
does the EJB lookup differently than it does if this client code is called by the
application client utility without any arguments.
if (args.length == 2 ) {

url = args[0];

jndi nane = args[1];

acc = fal se;
Systemout.println("url = "+url);

}
3. Obtain the naming initial context and perform the JNDI look up.
Properties env = new Properties();

env. put ("java. nam ng.factory.initial",
"com sun. j ndi . cosnam ng. CNCt xFactory");

env. put ("j ava. nam ng. provider.url", url);
initial = new Initial Context(env);
objref = initial.lookup(jndinane);

4. Run the client from the command line.
java -cl asspat h CP ClientApp URL JNDIName
where,

o CPisthe CLASSPATH which includes the application client jar file and the
appserv-ext.jar.

o ClientApp refers to the client program.

o URL refers to the application server running on a machine with host name
and with an ORB-port.

o JNDIName matches the INDIName specified in the deployment file.

Chapter 2  Using the Application Client Container 27



Developing Applications Using the ACC

Authenticating an Application Client Using the
JAAS Module

Using the JAAS module, you can provide security in your application client code.
Create a Logi nMbdul e that describes the interface implemented by authentication
technology providers. Logi nModul es are plugged in under applications to provide
a particular type of authentication.The following steps are involved in creating a
Logi nModul e:

1. Write the Logi nModul e interface.
public class dientPasswordLogi nModul e i npl ements Logi nMbdul ef
private static Logger _logger=null;
static{
_l ogger =LogDonai ns. get Logger ( LogDomai ns. SECURI TY_LOGGER) ;
}
}

private Subject subject;

private Call backHandl er cal | backHandl er;
private Map sharedState;

private Map options;

The standard JAAS package required by this class is j avax. security. The
code line below illustrates how you can import the package in your client
application:

i mport javax.security.?*;
2. Initialize the Logi nMbdul e interface that you just created.

public void initialize(Subject subject, CallbackHandl er
cal | backHandl er, Map sharedState, Map options) {

t hi s. subj ect = subject;

t hi s.cal |l backHandl er = cal | backHandl er;
t his. sharedSt at e = sharedSt at e;
this.options = options;

}
o The parameter subj ect, is the subject to be authenticated.

o cal | backHandl er, for communicating with the end user which prompts
for the username and password.

o sharedSt at e, is the shared Logi nMbdul e state.

28  Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Developing Applications Using the ACC

o options, the options specified in the configuration file of the
Logi nModul e.

Use | ogi n() method to fetch the login information from the client application
and authenticate the user.

public bool ean | ogin() throws Logi nException {

if (uname !'= null) {
usernane = new String (unane);
pswd = System get Property (LOG N_PASSWORD) ;

}
The login information is fetched using the Cal | BackHandl er .

Cal | back[] call backs = new Cal | back[ 2] ;

cal I backs[ 0] = new
NareCal | back( | ocal Strings. getLocal String("l ogi n. user nane",
"d i ent Passwor dMbdul e username: "));

cal | backs[ 1] = new
Passwor dCal | back( | ocal Stri ngs. get Local String("l ogi n. password",
"d i ent Passwor dMbdul e password: "), false);

usernane = ((NaneCal | back) cal | backs[0]) . get Nane();

char[] tmpPassword =
((Passwor dCal | back) cal | backs[ 1] ). get Password() ;

The | ogi n() method tries to connect to the server using the login information
that is fetched. If the connection is established, the method returns the value
true.

Use conmi t () method to set the subject in the session to the username that is
verified by the login method. If the commit method returns a value true, then
this method associates Pri nci pal | npl with the subj ect located in the

Logi nModul e. If this LoginModule’s own authentication attempt is failed, then
this method removes any state that was originally saved.

public boolean commit() throws LoginException {

if (succeeded == false) {

return false;

}else {

// add a Principal (authenticated identity)to the Subject
// assume the user we authenticated is the Principallmpl
userPrincipal = new Principallmpl(username);

Use | ogout () method to remove the privilege settings associated with the
roles of the subject.

Chapter 2  Using the Application Client Container 29



Developing Applications Using the ACC

public bool ean | ogout () throws Logi nException {

subj ect . get Pri nci pal s().renove(userPrincipal);

succeeded = fal se;
succeeded = commi t Succeeded,;
usernane = null;
if (password != null) {
for (int i = 0; i < password.length; i++)

password[i] =" ;
password = null;

}

userPrincipal = null;
return true;

}

6. Editthe sun-acc. xm deployment descriptor to configure JAAS
authentication for the client. See “auth-realm” on page 57.

7. Integrate the Logi nMbdul e with the application server.

Edit the deployment descriptor to make the following changes:

o Configure the server with a realm that uses a specific Logi nMbdul e for
security authentication.

o Map the application realm and roles to the realm and roles defined by the
Logi nMbdul e.

8. Assemble the application client. See “Packaging an Application Client Using
the ACC” on page 37.

Sample Code

The sample code of d i net Logi nPasswor dMbdul e is given below:

package com sun. enterprise.security.auth.!|ogin;

inmport java.util.*;

import java.i
i mport javax.
i mport javax.
i mport javax.
i mport javax.

0. | OExcepti on;
security.auth.*;
security. aut h. cal |l back. *;
security.auth.login.*;
security.auth.spi.*;

import com sun.enterprise.security.auth.|ogin.PasswordCredenti al ;
i mport comsun.enterprise.security.Principallnpl;

i mport com sun. enterprise.security.auth. Logi nContextDriver;
import com sun.enterprise.util.Local StringManager|npl;

import java.util.logging.*;

i mport com sun. | oggi ng. *;

30 Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Developing Applications Using the ACC

public class dientPasswordLogi nModul e i npl ements Logi nMbdul e {

private static Logger _l|ogger=null;
static{
_l ogger =LogDonai ns. get Logger ( LogDomai ns. SECURI TY_LOGCER) ;

}

private static final String DEFAULT_REALMNAME = "defaul t";
private static Local StringManager!lnpl local Strings =
new Local St ri ngManager | npl (d i ent Passwor dLogi nModul e. cl ass) ;

/]l initial state

private Subject subject;

private Call backHandl er cal | backHandl er;
private Map sharedState;

private Map options;

private bool ean debug = comi pl anet.ias.util .l ogging. Debug. enabl ed;
/1 the authentication status

private bool ean succeeded = fal se;
private bool ean comit Succeeded = fal se;

/1 username and password

private String usernane;
private char[] password;

pr
/1 testUser’s Principallnpl

vate final PasswordCredential passwordCredential =null;

private Principallnmpl userPrincipal;
public static String LOG N_NAME = "j 2eel ogi n. nanme";
public static String LOd N_PASSWORD = "j 2eel ogi n. passwor d";

public void initialize(Subject subject, CallbackHandl er
cal | backHandl er, Map sharedState, Map options) {

t hi s. subj ect = subject;

this.call backHandl er = cal | backHandl er;
this.sharedState = sharedState;
this.options = options;

/1 initialize any configured options

debug =
"true". equal sl gnoreCase((String)options. get("debug"));

}

Chapter 2  Using the Application Client Container

31



Developing Applications Using the ACC

/* Authenticate the user by pronpting for a usernane and password.
@eturn true in all cases since this <code>Logi nMbdul e</ code> shoul d
not be ignored.*/

/* @xception Fail edLogi nException if the authentication fails.
@xception Logi nException if this <code>Logi nMbdul e</ code> i s unabl e
to performthe authentication.*/

public bool ean | ogin() throws Logi nException {
/1 pronpt for a usernane and password
if (callbackHandl er == null){

String failure =
I ocal Strings.getLocal String("login.nocallback","Error: no
Cal | backHandl er avail able to garner authentication information from
t he user");

t hr ow new Logi nException(failure);

}

String unane = System get Property (LOG N_NAME);
String pswd;

if (uname !'= null) {

usernane = new String (unane);
pswd = System get Property (LOG N_PASSWORD) ;
char[] dest;
if (pswd == null){
dest = new char[0];
password = new char[O0];
} else {
int length = pswd. | ength();
dest = new char[l ength];
pswd. get Chars(0, length, dest, 0 );
password = new char[l ength];
}
System arraycopy (dest, 0, password, 0, dest.length);
} else{
Cal | back[] call backs = new Cal | back[ 2];
cal | backs[ 0] = new
NarmeCal | back( | ocal Strings. getLocal String("l ogi n. user nane",
"d i ent Passwor dvbdul e username: "));
cal I backs[ 1] = new
Passwor dCal | back( | ocal Stri ngs. get Local String("l ogi n. password”,
"d i ent Passwor dModul e password: "), false);

32  Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Developing Applications Using the ACC

try {
cal | backHandl er . handl e( cal | backs);

usernane = ((NanmeCal | back) cal | backs[ 0] ). get Nane();

if(usernane == null){
String fail =
I ocal Strings.getLocal String("login.nousernanme", "No user
speci fied");

t hr ow new Logi nException(fail);

}

char[] tnpPassword =
((PasswordCal | back) cal | backs[ 1] ). get Password() ;

if (tnpPassword == null) {
/1 treat a NULL password as an enpty password
t npPassword = new char[0];
}
password = new char[tnpPassword. | ength];
System arraycopy(t npPassword, O,
password, 0O, tnpPassword.|ength);
((PasswordCal | back) cal | backs[1]). cl ear Password();
} catch (java.io.lCException ioe) {
t hr ow new Logi nException(ioe.toString());
} catch (UnsupportedCal | backException uce) {
String nocal |l back =
I ocal Strings.getLocal String("login.callback","Error: Callback not
avai |l abl e to garner authentication information from
user (Cal | backNane): " );
t hr ow new Logi nExcepti on(nocal | back + uce. getCal |l back().toString());

}

}

/1 print debugging information

if (debug) {

for (int i =0; i < password.length; i++){

/1 System out. print(password[i]);

}

/1 Systemout.println();

}

/1 by default - the client side login nodule will always say
/1 that the login successful. The actual login will take place
/1 on the server side.

i f (debug)

Chapter 2  Using the Application Client Container 33



Developing Applications Using the ACC

_logger.log(Level.FINE, "[CientPasswordLogi nModul e] "
+"aut henti cati on succeeded");

succeeded = true;

return true;

}

public bool ean commit () throws Logi nException {
if (succeeded == false) {
return fal se;
} else {
/1 add a Principal (authenticated identity)to the Subject
/] assune the user we authenticated is the Principallnpl
user Princi pal = new Principallnpl (usernane);
if (!subject.getPrincipals().contains(userPrincipal))
subj ect . get Pri nci pal s().add(userPrincipal);
if (debug) {
_logger.log(Level.FINE, "[CientPasswordLogi nModul e] "
+"added Principal lnpl to Subject");

}

Passwor dCredenti al pc = new PasswordCredenti al (usernane, new
String(password), realm;

if(!subject.getPrivateCredential s().contains(pc))subject.getPrivate
Credenti al s().add(pc);

usernane = null;
for (int i =0; i < password.length; i++){
password[i] =" ";

password = null;

conmi t Succeeded = true;

return true;

}

}

public bool ean abort() throws Logi nException {

if (succeeded == false) {

return fal se;

} else if (succeeded == true && conm t Succeeded == fal se) {

/1 1ogin succeeded but overall authentication failed
succeeded = fal se;
usernane = null;
if (password !'= null) {
for (int i = 0; i < password.length; i++)

1 1

password[i] = ;

34  Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Developing Applications Using the ACC

password = en das ull;

}

userPrincipal = null;
} else {

/1 overall authentication succeeded and conmit succeeded,
/1 but soneone else’'s commit failed
| ogout () ;

return true;

}

public bool ean | ogout () throws Logi nException {

subj ect . get Princi pal s().renove(userPrincipal);
succeeded = fal se;
succeeded = conmi t Succeeded,;
usernane = null;
if (password !'= null) {
for (int i =0; i < password.length; i++)

password[i] = ;
password = null;

}

userPrincipal = null;
return true;

}
}

Authenticating an RMI/IIOP Client Without Using
the ACC

This section describes the necessary steps and procedure to create an RMI/I10OP
client that accesses secure EJBs from outside the ACC.

First, you must setup your client development environment using the following
steps:

1. Include the following jar files in the classpath on the client side:
o appserv-rt.jar -available at install_dir/li b
o appserv-ext.jar -available at install_dir/l i b

o Theclient jar that is generated after you deploy your application

Chapter 2  Using the Application Client Container 35



Developing Applications Using the ACC

2. Setorg. ong. CORBA. ORBI ni ti al Host to the host on which the IIOP listener is
running.

env. set Property("org.ong. CORBA. ORBI ni ti al Host", “name service
host name") ;

3. Setorg. onmg. CORBA. ORBI ni ti al Port to the port on which the I1OP listener is
listening (usually 3700).

env. set Property("org.ong. CORBA. CRBInitial Port", "3700");

4. Set java.security.auth.login.configto
install_dir/ | i b/ appcl i ent/appclientl ogin. conf

NOTE Do not set j ava. nani ng. factory.initial.The default INDI
provider will by default be picked from the above set classpath.

Next step is to create the client application. The following steps describe the
procedure:

1. Obtain a username and a password. To obtain a username and a password,
you can either write your own JAAS login callback handler or use the standard
one provided with Sun ONE Application Server
(com sun. enterprise.security.auth.|ogin.LoginCall backHandl er).

The following code line illustrates the use of standard handler using
GUI-based authentication:

Logi nCal | backHandl er handl er = new Logi nCal | backHandl er (true);

The following code line illustrates the use of standard handler using the text
authentication:

Logi nCal | backHandl er handl er = new Logi nCal | backHandl er (f al se);

The following code line is an example code for writing your own login callback
handler:

i mport javax.security.auth.call back. Cal | backHandl er;

i mport

j avax. security. auth. cal | back. Unsupport edCal | backExcepti on;
i mport javax.security. auth. call back. Cal | back;

i mport javax.security.auth. call back. NaneCal | back;

i mport javax.security.auth. call back. PasswordCal | back;

public class LoginCall backHandl er inplements Cal |l backHandl er {

36  Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Developing Applications Using the ACC

private String usernane
private String password

"j2ee";
"j2ee";

public void handl e(Cal | back[] cal | backs) throws
Unsupport edCal | backException {
try {
for (int i = 0; i <callbacks.length; i++) {
if (callbacks[i] instanceof NameCall back) ({
NameCal | back nc = (NaneCal | back) cal | backs[i];
nc. set Name(user nane) ;
} else if(callbacks[i] instanceof PasswordCall back) {
Passwor dCal | back pc = (PasswordCal | back) cal | backs[i]
pc. set Passwor d( password. t oCharArray());

}

} catch (Exception ex) {
ex. printStackTrace();
}
}
}

Pass an instance of your handler to the security infrastructure using the
following call:

Logi nCont ext Dri ver. dod i ent Logi n( AppCont ai ner . USERNAME_PASSWORD,
handl er) ;

The following two imports are required for the above call:

i mport com sun. enterprise. appclient. AppCont ai ner;
i mport com sun. enterprise.security.auth. Logi nContextDriver;

Packaging an Application Client Using the ACC

After installing Sun ONE Application Server, the ACC can be run by executing the
appcl i ent script located in the install_dir/bi n directory. The script

package- appcl i ent that is located in the same directory, is used to package a
client application into a single appcl i ent . j ar file. Packaging an application client
involves the following main steps:

Editing the Configuration File
Editing the appclient Script
Editing the sun-acc.xml File

Setting Security Options

Chapter 2  Using the Application Client Container 37



Developing Applications Using the ACC

Using the package-appclient Script

Editing the Configuration File

Modify the environment variables in asenv. conf file located in the
default-config_dir directory as shown below:

$AS_| NSTALL to reference the location where the package was un-jared plus
/appcl i ent . For example: $AS_| NSTALL=/mylocation/appcl i ent .

$AS_NSS to reference the location of the nss libs.
For example:
UNIX:
$AS_NSS=/mylocation/appclient/lib
WINDOWS:
%AS_NSS%\mylocation\appcl i ent\ bi n
$AS_JAVA to reference the location where you have installed the JDK.

$AS_ACC_CONFI Gto reference the configuration xml (sun- acc. xm ). The
sun-acc. xnl is located at install_dir/confi g.

$AS_| MQ LI Bto reference the img home. It should be: install_dir/i my/ 1 i b.

Editing the appclient Script
Modify the appcl i ent script file as follows:

UNIX:

Change $CONFI G_HOVE/ asenv. conf to your_ACC_dir/confi g/ asenv. conf .

Windows:

Change %CONFI G_HOVE% conf i g\ asenv. bat to your_ACC_dir\confi g\ asenv. bat

Editing the sun-acc.xml File
Modify sun- acc. xni file to set the following attributes:

Ensure that the DOCTYPE references %&6ERVER _ROOT%44 | i b/ dt ds to
your_ACC _dir/l i b/ dt ds.

Ensure that the <t ar get - ser ver > addr ess attribute references the remote
server machine.

38  Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Developing Applications Using the ACC

= Ensure that the <t ar get - server > port attribute references the ORB port on
the remote server.

= If you want to log the messages in a file, specify a file name for the
<l og-servi ce> file attribute. You can also set the log level.

For example,

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE client-container SYSTEM "file:{Your installed server
root}/lib/dtds/sun-application-client-container_1 0.dtd ">

<cl i ent - cont ai ner >

<t arget-server nane="qgasol -el" address="gasol -el"
port="3700">

<l og-service file=" " level ="WARNI NG'/ >
</client-container>

For more information on the sun-acc. xnl file, see “Application Client Container
Configuration File” on page 50.

Setting Security Options

You can run the application client using SSL with certificate authentication. In
order to set the security options, modify the sun- acc. xni file as shown in the code
illustration below. For more information on the sun- acc. xm file, see the
“Application Client Container Configuration File” on page 50.

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE cl i ent-contai ner SYSTEM

"file:/ll/export3/sun/appserver7/appserv/lib/dtds/sun-applicatio
n-client-container_1_0.dtd">

<cl i ent - cont ai ner >
<t arget-server nane="qgasol -el" address="gasol -el" port="3700">
<security>

<ssl cert-ni cknane="cts" ssl 2-enabl ed="fal se"
ssl 2-ci phers="-rc4, -rcdexport,-rc2, -rc2export, - des, - desede3"

ssl 3- enabl ed="true"

ssl 3-tl s-ciphers="+rsa_rc4_128_md5, -rsa_rc4_40_nd5, +rsa3_des_sha
,+rsa_des_sha,-rsa rc2 40 nd5,-rsa null_nd5,-rsa _des 56 sha, -rsa
_rc4_56_sha"

tls-enabl ed="true" tls-roll back-enabl ed="true"/>

Chapter 2  Using the Application Client Container 39


file:////export3/sun/appserver7/appserv/lib/dtds/sun-applicatio

Developing Applications Using the ACC

<cert-db pat h="/export 3/ctsdatal/ctscertdb" password="changeit"/>
</security>

</target-server>

<client-credential user-nanme="j2ee" password="j2ee"/>

<l og-service file="" |evel ="WARNI NG'/ >

</ client-container>

Using the package-appclient Script

The following steps describe the procedure to use the package- appcl i ent script
that is bundled with Sun ONE Application Server:

1. Under install_dir/bi n directory, run the package- appcl i ent script. This
creates an appclient.jar file and stores it under install_dir/l i b/ appcl i ent/
directory.

NOTE The appclient.jar file provides an application client container
package targeted at remote hosts and does not contain a server
installation. You can run this file from a remote machine with the
same operating system as where it is created. That is,
appclient.jar created on a Solaris platform will not function on
Windows.

2. Copy the install_dir/l i b/ appcl i ent/appclient.jar file to the desired
location. The appclient.jar file contains the following files:

o appclient/bin-contains the appcl i ent script which you use to launch
the ACC.

o appclient/lib-contains the JAR and runtime shared library files.

o appclient/lib/appclient -contains the following files:
« sun-acc.xm -the ACC configuration file.
» client.policy file- the security manager policy file for the ACC.
» appclientlogin.conf file-thelogin configuration file.

« client.jar file-iscreated during the deployment of the client
application.

40  Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Developing Applications Using the ACC

o appclient/lib/dtds -contains
sun-application_client-contianer_1 3-0.dtdwhichisthe DTD
corresponding to sun- acc. xni .

client.policy

client. policy file is the J2SE policy file used by the application client. Each
application client hasacl i ent. pol i cy file. The default policy file limits the
permissions of J2EE deployed application clients to the minimal set of permissions
required for these applications to operate correctly. If you develop an application
client that requires more than this default set of permissions, you can edit the
client. policy file to add the custom permissions that your applications need.
You can use the J2SE standard policy tool or any text editor to edit this file. For
more information on using the J2SE policy tool, visit the following URL:

http://java. sun. conf docs/ books/tutorial/securityl.2/tour2/
i ndex. ht m

For more information about the permissions you can setinthecl i ent . pol i cy file,
visit the following URL:

http://java. sun. conlj 2se/ 1. 4/ docs/ gui de/ securi ty/ perm ssi ons. ht m

Running an Application Client Using the ACC

To run a client application that is packaged in an application jar file, you first need
to launch the ACC. You can launch the application client container using
appcl i ent script.

appclient -client client_application_jar [ - mai ncl ass
client_application_main_class_name| - nane display_name] [ - xm sun-acc. xm ]
[-textauth] [-user user_name] [-password password]

< -client: Specifies the name and location of the client application jar file. This
is a required parameter.

= -mai ncl ass: Specifies the class name that is located within the client jar whose
mai n() method is to be invoked. By default, uses the class specified in the
client jar.Thisisoptional.

NOTE The class name must be the full name. For example,
com sun. test. AppCd i ent

Chapter 2  Using the Application Client Container 41


http://java.sun.com/docs/books/tutorial/security1.2/tour2/
http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html

Application Client Deployment Descriptors

= -nane: Specifies the display name that is located in the application client jar
file. By default, the display name is specified in the client jar
application-client.xm file which is identified by the di spl ay- name
attribute. This is optional.

NOTE -mai ncl ass, -name are optional for a single client application. For
multiple client applications use either the -cl assname option or the
-nane option.

< -xnl: isused to specify the name and location of the client configuration xml
file. If you do not specify this option, ACC will use the default one from
appcl i ent script identified by $AS_ACC_CONFI Gthat references to the default
instance. For Solaris bundle, this option is required.

= -textaut h:is optional for user to specify authentication using the text format.

The following example shows how to run the sample application client,
rm Converter:

appclient -client rmi-sinpledient.jar

Sample Client Application

You can find the sample client application that demonstrates the working of an
RMI/IIOP client that uses an application client container at the following location:

install_dir/sanpl es/ rmi-iiop/sinple

Application Client Deployment Descriptors

Deployment descriptors are the XML files used to configure the runtime properties
of a module or application. The J2EE Specification defines the format of these
descriptors. You can view and edit the deployment descriptors using a text editor
at any time during the development process.

Sun ONE Application Server application clients require three deployment
descriptors files:

< AJ2EE standard file (appl i cati on. cli ent.xnl ), described in the J2EE
Specification.

42 Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Application Client Deployment Descriptors

= Anoptional Sun ONE Application Server specific client deployment descriptor
file (sun- appl i cation-client.xm ), described in this section.

= Anoptional Sun ONE Application Server specific Application Client Container
Configuration file (sun- acc. xni ), described in this section.

This section presents the following topics:

= Format of Deployment Descriptors

« J2EE Application Client Deployment Descriptor

« Sun ONE Application Client Deployment Descriptor

= Application Client Container Configuration File

Format of Deployment Descriptors

A deployment descriptor file defines the elements that an XML file can contain and
the subelements and attributes these elements can have. The
sun-application-client-1_3-0.dtd file defines the format of the
sun-application-client.xm file. The
sun-application-client-container-1_0.dtd file defines the format of
sun-acc. xm file. These DTD files are located in the install_dir/ | i b/ dt ds directory.

NOTE Do not edit the DTD files. Their contents change only with new
versions of Sun ONE Application Server.

For general information about DTD files and XML, see the XML specification at:
http://ww. w3. or g/ TR/ REC- xmi

Each element defined in a DTD file (which may be present in the corresponding
XML file) can contain the following:

e Subelements
e Data

< Attributes
Subelements

An element can contain other elements. For example, the following code defines
thecli ent-contai ner element.

Chapter 2  Using the Application Client Container 43


http://www.w3.org/TR/REC-xml

Application Client Deployment Descriptors

<! ELEMENT
client-container(target-server,auth-real n?, client-credential ?,
| og- servi ce?, property*))>

The ELEMENT tag specifies thatacl i ent - cont ai ner element can contain
target-server, auth-realm client-credential, |og-service, property
subelements.

The following table shows how optional suffix characters of subelements
determine the requirement rules, or number of allowed occurrences, for the
subelements. The left column lists the subelement ending character, and the right
column lists the corresponding requirement rule:

Table 2-1  requirement rules for subelement suffixes

Subelement Ending Character Requirement

* Can contain zero or more of this subelement.
? Can contain zero or one of this subelement.

+ Must contain one or more of this subelement.
(none) Must contain only one of this subelement.

If an element cannot contain other elements, you see EMPTY or ( #PCDATA) instead
of a list of element names in parentheses.

Data

Some elements contain data instead of subelements. These elements have
definitions of the following format:

<! ELEMENT element-name (#PCDATA) >
For example:

<! ELEMENT credenti al (#PCDATA) >

Attributes

Elements that have ATTLI ST tags contain attributes (name-value pairs). Attributes
have definitions of the following format:

<! ATTLI ST element attribute type default attribute type default ...>
For example:

<I ATTLI ST client-contai ner user-name CDATA #REQUI RED

44 Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Application Client Deployment Descriptors

password CDATA #REQUI RED
realm CDATA #l| MPLI ED>

Aclient-contai ner element can contain user - nane, passwor d, and real m
attributes.

The #REQUI RED label means that a value must be supplied.

The #I MPLI ED label means that the attribute is optional, and that Sun ONE
Application Server generates a default value. Wherever possible, explicit defaults
for optional attributes (such as "true") are listed.

Attribute declarations specify the type of the attribute. For example, CDATA means
character data, and %bool ean is a predefined enumeration.

J2EE Application Client Deployment Descriptor

Application clients are packaged in JAR format files with a .jar extension and
include a deployment descriptor similar to other J2EE application components. The
deployment descriptor describes the enterprise beans and external resources
referenced by the application. As with other J2EE application components, you
need to configure access to resources at the time of deployment, assign names for
enterprise beans and resources, etc.The deployment descriptor is standardized by
the J2EE 1.3 specification.

Sun ONE Application Client Deployment
Descriptor

The sun-application-client.xm isthe deployment descriptor for the
application clients. The easiest way to create a sun- appl i cati on-client.xm file
is to deploy the application client. For more information on deploying a client
using the Administration interface, see the Sun ONE Application Server Developer’s
Guide.

Elements in sun-application-client.xml file
Elements in the sun- appl i cati on-client.xnl fileare as follows:

e sun-application-client
e resource-ref

e ejb-ref

Chapter 2  Using the Application Client Container 45



Application Client Deployment Descriptors

® resource-env-ref

* res-ref-nane

* resource-env-ref-nane

= defaul t-resource-principal
* nane

e password

* ejb-ref-nane

e jndi-nane

NOTE Subelements must be defined in the order in which they are listed
under each Subelements heading unless otherwise noted.

Attributes
Elements can contain attributes (name, value pairs). Attributes are defined in
attributes lists using the ATTLIST tag.

None of the elements in the sun- appl i cati on-client.xn file contain attributes.

sun-application-client
This is the root element describing all the runtime bindings of a single application
client.

Subelements

The following table describes subelements for the sun- appl i cati on-cl i ent
element. The left column lists the subelement name, the middle column indicates
the requirement rule, and the right column describes what the element does.

Table 2-2  sun-application-client subelements

Element Required Description

resour ce-ref zero or more  Maps the absolute JNDI name to the
resour ce-ref inthe corresponding J2EE
XML file.

ej b-ref zero or more  Maps the absolute JNDI name to the ej b- r ef

in the corresponding J2EE XML file.

46  Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Application Client Deployment Descriptors

Table 2-2  sun-application-client subelements (Continued)

Element Required Description

resource-env-ref zero or more  Maps the absolute JNDI name to the
resour ce- env-r ef in the corresponding
J2EE XML file.

resource-ref

Maps the absolute JNDI name to the r esour ce-r ef element in the corresponding
J2EE XML file.

Subelements

The following table describes subelements for the r esour ce-ref element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

Table 2-3  resour ce-ref subelements

Element Required Description

res-ref-nane only one Specifies the res-ref-namne inthe
corresponding J2EE
application-client.xnl file.

j ndi - nane only one Specifies the absolute jndi name of a resource.
default-resource-princi  zero or Specifies the default principal (user) that the
pal more container uses to access a resource.

res-ref-name

Specifies the r es- r ef - name in the corresponding J2EE appl i cati on-client. xn
file resour ce-ref entry.

Subelements
none

default-resource-principal
Specifies the default principal (user) that the container uses to access a resource.

Chapter 2  Using the Application Client Container 47



Application Client Deployment Descriptors

If this element is used in conjunction with a JMS Connection Factory resource, the
name and passwor d subelements must be valid entries in Sun ONE Message
Queue’s broker user repository. See the “Security Management” chapter in the Sun
ONE Message Queue Administrator’s Guide for details.

Subelements

The following table describes subelements for the def aul t - r esour ce- pri nci pal
element. The left column lists the subelement name, the middle column indicates
the requirement rule, and the right column describes what the element does.

Table 2-4  defaul t-resource-princi pal subelements

Element Required Description

nane only one Specifies the name of the principal.

password only one Specifies the password for the principal.

name
Contains data that specifies the name of the principal.

Subelement
none

password
Contains data that specifies the password for the principal.

Subelement
none

ejb-ref
Maps the ej b- r ef - nane in the corresponding J2EE ej b-j ar . xm file ej b-r ef
entry to the absolute j ndi - name of a resource.

Subelements

The following table describes subelements for the ej b-ref element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

48  Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Application Client Deployment Descriptors

Table 2-5  ej b-ref subelements

Element Required Description

ej b-ref-name only one Specifies the name of a ejb reference in the
corresponding J2EE appclient.xml file.

j ndi - name only one Specifies the absolute jndi name of a resource.

ejb-ref-name
Specifies the ej b- r ef - narme in the corresponding J2EE ej b-ref . xm file ej b-r ef
entry. This element locates the name of the ejb reference in the application.

Subelement
none

resource-env-ref
Specifies the name of a resource env reference.

Subelements

The following table describes subelements for the r esour ce- env-ref element.
The left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

Table 2-6 resour ce- env-ref subelements

Element Required Description

resour ce- env-ref - nanme only one Specifies the r es- r ef - name in the corresponding
J2EE appl i cati on-client.xm file
resour ce- env-ref entry.

defaul t-resource-princi pal onlyone Specifies the default principal (user) that the container
uses to access a resource.

jndi-name only one Specifies the jndi-name of the associated entity.

resource-env-ref-name

Specifies the r es- r ef - name in the corresponding J2EE appl i cati on-client. xn
file resour ce- env-ref entry.

Subelements

Chapter 2  Using the Application Client Container

49



Application Client Deployment Descriptors

none

jndi-name
Contains data that specifies the absolute j ndi - name of a URL resource or a
resource in the appl i cati on-client.xnl file.

Subelement
none

Application Client Container Configuration File

The sun-acc. xm file tracks changes in Sun ONE Application Client Container
configuration.

Elements in the sun-acc.xml File
Elements in the sun-acc. xm file are as follows:

e client-container
e target-server

e description

= client-credential

< log-service

e security
e ssl
e cert-db

e auth-realm

- property

client-container

Defines Sun ONE Application Server specific configuration for the ACC. This is the
root element; there can only be one cl i ent - cont ai ner element in a sun-acc. xm
file.

50 Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Application Client Deployment Descriptors

Subelements

The following table describes subelements for the cl i ent - cont ai ner element.
The left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

Table 2-7 client-container subelements

Element Required Description
target-server Zero or Specifies the I1IOP listener configuration of the
more target server.
aut h-real m only one Specifies the optional configuration for JAAS
authentication realm.
client-credential only one Specifies the default client credential that will be
sent to the server.
log-service only one Specifies the default log file and the severity
level of the message.
property zero or Specifies a property which has a name and a
more value.
Attributes

The following table describes attributes for the cl i ent - cont ai ner element. The
left column lists the attribute name, the middle column indicates the default value,
and the right column describes what the attribute does.

Table 2-8 client-contai ner attributes

Attribute Default Value Description

sendPasswor d none Specifies whether client authentication credentials
should be sent to the server. Without
authentication credential all access to protected
EJBs will result in exceptions.

target-server
Defines the IIOP listener configuration of the target server.

Chapter 2  Using the Application Client Container 51



Application Client Deployment Descriptors

Subelements

The following table describes subelements for the t ar get - server element. The
left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

Table 2-9  target-server subelements

Element Required Description
description zero or Specifies the description of the target server.
more
security Zero or Specifies the security configuration for the
more IIOP/SSL communication with the target
server.
Attributes

The following table describes attributes for the t ar get - ser ver element. The left
column lists the attribute name, the middle column indicates the default value, and
the right column describes what the attribute does.

Table 2-10 target-server attributes

Attribute Default Value Description

name none Specifies the name of the application server
instance accessed by the client container.

addr ess none Specifies the host name or IP address (resolvable by
DNS) of the ORB.

port 3700 Specifies port number of the ORB.

For the new server instance, you need to assign a
different port number other than 3700. You can
change the port number in the Administration
Interface. See the Sun ONE Application Server
Administrator’s Guide for more information.

description
Contains data that specifies a text description of the containing element.

Subelement
none

52 Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Application Client Deployment Descriptors

Attributes
none

client-credential

Default client credentials that will be sent to the server. If this element is present,
then it will be automatically sent to the server, without prompting the user for
username and password on the client side.

Subelements

The following table describes subelements for the cl i ent - credenti al element.
The left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

Table 2-11 client-credential subelement

Element Required Description

property zero or Specifies a property which has a name and a
more value.

Attributes

The following table describes attributes for the cl i ent - credent i al element. The
left column lists the attribute name, the middle column indicates the default value,
and the right column describes what the attribute does.

Table 2-12 client-credential attributes

Attribute Default Value Description

user - nane none The user name used to authenticate the Application
client container.

password none The password used to authenticate the Application
client container.

real m none The realm (specified by name) where credentials
are to be resolved.

log-service
Specifies configuration settings for the log file.

Chapter 2  Using the Application Client Container 53



Application Client Deployment Descriptors

Subelements

The following table describes subelements for the | og- servi ce element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

Table 2-13 | og- servi ce subelement

Element Required Description

property zero or Specifies a property which has a name and a
more value.

Attributes

The following table describes attributes for the | og- ser vi ce element. The left
column lists the attribute name, the middle column indicates the default value, and
the right column describes what the attribute does.

Table 2-14 | og- ser vi ce attributes

Attribute Default Value Description

log-file client.log Specifies the name of the file where the application
client container logging information will be stored.
By default, the log file will be located at
your_Acc_dir/l ogs/ cl i ent .| og.

| evel none Sets the base level of severity. Messages at or above
this setting get logged into the log file.

security

Defines SSL security configuration for IIOP/SSL communication with the target
server.

Subelements

The following table describes subelements for the security element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

54  Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Application Client Deployment Descriptors

Table 2-15 security subelement

Element Required Description

ssl zero or Specifies the SSL processing parameters.
more

cert-db zero or Specifies the location and authentication to read
more the certification database.

Attributes

none

ssl

Defines SSL processing parameters.

Subelements
none

Attributes

The following table describes attributes for the SSL element. The left column lists
the attribute name, the middle column indicates the default value, and the right
column describes what the attribute does.

Table 2-16 ssl| attributes

Attribute Default Value Description

cert-ni cknane none The nickname of the server certificate in the
certificate database or the PKCS#11 token.In the
certificate, the name format is
tokenname:nickname. Including the tokenname:
part of the name in this attribute is optional.

ssl 2- enabl ed none (Optional) Determines whether SSL2 is enabled.
ssl 3- enabl ed none (Optional) Determines whether SSL3 is enabled.
ssl 2-ci phers none (Optional) A space-separated list of the SSL2

ciphers used with the prefix + to enable or - to
disable. For example, +r c4. Allowed values are
rc4, rcdexport, rc2, rc2export,

i dea, des, desede3.

Chapter 2  Using the Application Client Container 55



Application Client Deployment Descriptors

Table 2-16 ssl| attributes

Attribute Default Value Description

ssl 3-tl s-ci phers none (Optional) A space-separated list of the SSL3
ciphers used, with the prefix + to enable or - to
disable, for example +r sa_des_sha. Allowed
SSL3 valuesarersa_rc4_128 nub,
rsa3_des_sha, rsa_des_sha,
rsa_rc4_40_md5, rsa_rc2_40_nd5,
rsa_nul | _md5. All owed TLS val ues
are rsa_des_56_sha, rsa_rc4_56_sha.

tls-enabl ed none Determines whether TLS is enabled.

tls-roll back-ena none Determines whether TLS rollback is

bl ed enabled.TLS rollback should be enabled for
MicroSoft Internet Explorer 5.0 and 5.5.

client-auth-enab none Determines whether SSL3 client authentication

| ed is performed on every request, independent of

ACL-based access control.

If both SSL2 and SSL3 are enabled, the server tries SSL3 encryption first. If that
fails, the server tries SSL2 encryption. If both SSL2 and SSL3 are enabled for a
virtual server, the server tries SSL3 encryption first. If that fails, the server tries
SSL2 encryption.

cert-db

Location and password to read the certificate database. SUnONE Application
Server provides utilities with which a certificate database can be created.
certutil, distributed as part of NSS can also be used to create certificate database.

Subelement
none

Attributes

The following table describes attributes for the cert - db element. The left column
lists the attribute name, the middle column indicates the default value, and the
right column describes what the attribute does.

56  Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Application Client Deployment Descriptors

Table 2-17 cert - db attributes

Attribute Default Value Description

cert-db-path none Specifies the absolute path of the certificate
database (cert7.db).

cert-db-password none Specifies the password to access the certificate
database.

auth-realm

JAAS is available on the ACC. Defines the optional configuration for JAAS
authentication realm.

Authentication realms require provider-specific properties, which vary depending
on what a particular implementation needs.

For more information about how to define realms, see the Sun ONE Application
Server Developer’s Guide.

Here is an example of the default file realm:

<aut h-real m nane="fil e"

cl assname="com i pl anet.ias.security.auth.realmfile.FileReal nf>
<property nane="file" value="instance_dir/config/keyfile"/>
<property nane="jaas-context" value="fil eReal ni'/>

</ aut h-real >

Which properties an aut h- r eal melement uses depends on the value of the
aut h-r eal melement’s name attribute. The file r eal musesfil e andj aas- cont ext
properties. Other realms use different properties.

Subelements

The following table describes subelements for the aut h- r eal m element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

Table 2-18 aut h-r eal m subelement

Element Required Description
property zero or Specifies a property which has a name and a
more value.

Chapter 2  Using the Application Client Container 57



Application Client Deployment Descriptors

Attributes

The following table describes attributes for the aut h- r eal melement. The left
column lists the attribute name, the middle column indicates the default value, and
the right column describes what the attribute does.

Table 2-19 aut h- r eal mattributes

Attribute Default Value Description

aut h-real m nanme none Defines the name of this realm.

cl assnane none Defines the Java class which implements this realm.
property

Specifies a property, which has a name and a value.

Subelement

none

Attributes

The following table describes attributes for the pr operty element. The left column
lists the attribute name, the middle column indicates the default value, and the
right column describes what the attribute does.

Table 2-20 property attributes

Attribute Default Value Description
nanme none Specifies the name of the property.
val ue none Specifies the value of the property.

58  Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Chapter 3

Java-based CORBA Clients

This chapter describes how to develop and deploy CORBA clients that use
RMI/I11OP protocol.

This chapter contains the following sections:
= CORBA Client Scenarios

= Developing Java-based CORBA Clients
e Third Party ORB Support

CORBA Client Scenarios

The most common scenarios in which CORBA clients are used are when either a
stand-alone program or another application server acts as a client to EJBs deployed
to Sun ONE Application Server. This section describes the following scenarios:

= Stand-alone Scenario

e Server to Server Scenario

Stand-alone Scenario

In the simplest case, a stand-alone program which does not use the ACC, running
on a variety of operating systems uses I1OP to access business logic housed in
backend EJB components, as shown in the figure “Stand-alone Client Accessing the
EJB Components”.

Figure 3-1 Stand-alone Client Accessing the EJB Components

59



CORBA Client Scenarios

Java-based
CORBA Client

RMI/IIOP

Sun ONE Application Server

60

Server to Server Scenario

EJB Container

CORBA objects, and other application servers can use IIOP to access EJB
components housed in Sun ONE Application Server, as shown in the figure
“Application Server and CORBA Objects Accessing EJB Components”.

Figure 3-2

Sun ONE Application Server 7 « Developer's Guide to Clients ¢ March 2003

Application
Server

CORBA Server

RMI/IIOP

Application Server and CORBA Objects Accessing EJB Components

1O

Sun ONE
Application Server

EJB Container




Developing Java-based CORBA Clients

ORB Support Architecture

CORBA client support in Sun ONE Application Server involves the communication
between the ORB on the client and the ORB on the server, as shown in the figure
“ORB Support Architecture”.

Figure 3-3 ORB Support Architecture

Sun ONE Application Server

Sun ONE |RMI/IIOP Sun ONE

/ ORB ORB @
il

Java R
Client RMI/”(?B/ EJB Container
R other |-~ Java Engine =
ORB
Client Backend
CORBA
ORB  |IlORy,
Server

You can use the ORB that is bundled as part of the Sun ONE Application Server, or
you can use a third-party ORB (ORBIX 2000 or ORBacus 4.1).

Developing Java-based CORBA Clients

This section describes the procedure to create, assemble, and deploy a Java-based
CORBA client that is not packaged using the ACC. This section describes the
following topics:

« Creating a Stand-alone CORBA Client
< Running a Stand-alone CORBA Client

Chapter 3 Java-based CORBA Clients 61



Developing Java-based CORBA Clients

Creating a Stand-alone CORBA Client

Clients do not directly access the EJB components. Instead, clients communicate
with the EJB components using the JNDI to locate EJB components’s home
interface. Clients invoke a method on the EJB component’s home interface to get a
reference to the EJB components’s home interface.

One of the first steps in coding a CORBA client using RMIZIIOP is, to perform a
lookup of an EJB components’s home interface. In preparation for performing a
JNDI lookup of the home interface, you must first set several environment
properties for the I ni ti al Cont ext . Then you provide a lookup name for the EJB
component.

The steps and an example are summarized in the following sections.
= Specifying the Naming Factory Class
e Specifying the JNDI Name of an EJB

Specifying the Naming Factory Class

According to the RMI/IIOP specification, the client must specify

com sun. j ndi . cosnani ng. CNCt xFact or y as the value of the
java.naming.factory.initial entryinan instance of a Properti es object. This
object is then passed to the JNDI | ni t i al Cont ext constructor prior to looking up
an EJB component’s home interface. For example:

Properties env = new Properties();

env. put ("j ava. nam ng. factory.initial","com sun.jndi.cosnan ng. CN
Ct xFactory");

env. put ("j ava. nam ng. provider.url", "iiop://" + host +":"+port);
Context initial = new Initial Context(env);

Obj ect objref = initial.lookup("rmconverter");

Specifying the JNDI Name of an EJB

After creating a new JNDI | ni ti al Cont ext object, your client calls the | ookup
method on the I ni ti al Cont ext to locate EJB component’s home interface. The
name of the EJB components is provided on the call to | ookup. When using
RMI/I10OP to access remote EJB components, the parameter is referred to as the
“JNDI name” of the EJB component. The supported values of the JNDI name vary,
depending on how your client application is packaged.

62  Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Developing Java-based CORBA Clients

When the client application is not packaged as part of an Application Client
Container (ACC), you must specify the absolute name of the EJB component in the
JNDI lookup. You must use the prefix j ava: conp/ env/ ej b/ when performing
lookups using absolute references. For example, the lookup in the r i convert er
sample could be written as follows:

initial.lookup("java:conp/env/ejb/rmconverter");
Or, with a module name, it could be written as follows:

initial.lookup("java:conp/env/ejb/rm converterE b/
rmconverter");

There is no mechanical difference between supplying this prefix and the first two
approaches. You might find the j ava: conp/ env/ ej b/ confusing when used in
conjunction with absolute EJB references because this notation is typically used
when you are using indirect EJB references.

NOTE Sun ONE Application Server does not support the authentication of
Java-based stand-alone CORBA clients.

Sun ONE ORB Configuration

If you are using built-in Sun ONE ORB, you can configure client-side load
balancing using the Round Robin DNS approach.

To implement a simple load balancing scheme without making source code
changes to your client, you can leverage the round robin feature of DNS. In this
approach, you define a single virtual host name representing multiple physical IP
addresses on which server instance ORBs are listening. Assuming that you
configure all of the ORBs to listen on a common IIOP port number, the client
applications can use a single host _nane: 11 0OP port during the JNDI lookup. The
DN server resolves the host name to a different IP address each time the client is
executed.

You can also implement client-side load balancing using the Sun ONE Application
Server-specific naming factory class SI ASCt xFact ory. You can use this class both
on the client-side and on the server-side which maintains a pool of ORB instances
in order to limit the number of ORB instances that are created in a given process.

The following code illustrates the use of SLASCt xFact or y class:

Properties env = new Properties();

env. set Property("java.nanm ng.factory.initial","comsun. appserv. namni
ng. SIASCt xFactory");

Chapter 3 Java-based CORBA Clients 63



Developing Java-based CORBA Clients

env. set Property("org. ong. CORBA. ORBI ni ti al Host", “name service

host name") ;

env. set Property("org.ong. CORBA. ORBI ni tial Port"”, "“name service port
nunmber"");

Initial Context ic = new Initial Context(env);

If you set a single URL property for the host and port above, your code would look
like this:

Properties env = new Properties();

env. set Property("java.nanming.factory.initial",
"com sun. appserv. nam ng. SLASCt xFact ory");

env. set Property("java. nam ng. provider.url", "iiop://“nane service
host nane: name servi ce port nunber");

Initial Context ic = new Initial Context(env);

If you prefer, you may set the host and port values and the URL value as Java
System properties, instead of setting them in the environment as shown in the
above code illustration. The values set in your code will, however, override any
System property settings. Also, if you set both the URL and the host and port
properties, the URL takes precedence.

Note that the [ name servi ce host nane] value mentioned above could be a name
that maps to multiple IP addresses. The SIASCt xFact or y will appropriately round
robin ORB instances across all the IP addresses everytime a user calls new

I nitial Context() method.

You can also use the following property of SIASCt xFact or y class to implement
client-side load balancing:

com sun. appserv.iiop. | oadbal anci ngpol i cy=r oundr obi n, host1:port1,host2:po
rez,...,

This property provides you with a list of host:port combinations to round robin the
ORBs. These host names may also map to multiple IP addresses. If you use this
property along with or g. ong. CORBA. ORBI ni ti al Host and

or g. omg. CORBA. ORBI ni ti al Port assystem properties, the round robin algorithm
will round robin across all the values provided. If, however, you provide a host
name and port number in your code, in the environment object, that value will
override any such system property settings.

64  Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Third Party ORB Support

Running a Stand-alone CORBA Client

As long as the client environment is set appropriately and you are using a
compatible JVM, you merely need to run the nai n class. Depending on whether
you are passing the 11OP URL components (host and port number) on the
command line or obtaining this information from a properties file, the exact
manner in which you run the main program will vary. For example, the

rmi convert er sample is run in the following manner:

java rmconverter. ConverterC ient host_name port

The host_name is the name of the host on which an ORB is listening on the specified
port.

Third Party ORB Support

Sun ONE provides a built-in ORB to support IIOP access to the EJBs. You can also
install and configure a third party ORB to use IIOP with Sun ONE Application
Server.

For information on Configuring built-in ORB for supporting CORBA clients, see
the Sun ONE Application Server Administrator’s Guide.

This section discusses the following scenarios:

= Accessing EJBs in a Remote Application Server Instance From a
Servlet/Enterprise JavaBean

= Configuring Back End Access Using Third Party Client ORBs Within Sun ONE
Application Server

Accessing EJBs in a Remote Application Server
Instance From a Servlet/Enterprise JavaBean

Sun ONE Application Server supports accessing the EJBs residing in another
instance of the server via RMI/IIOP. This section describes the procedure to create
a client application that accesses the EJB components residing in another instance
of the application server.

Clients do not directly access the EJB components. Instead, clients communicate
with the EJB components using the JNDI to locate EJB component’s home interface.
Clients invoke a method on the EJBs’s home interface to get a reference to the EJB
component’s home interface.

Chapter 3 Java-based CORBA Clients 65



Third Party ORB Support

One of the first steps in coding a client using RMI/IIOP is, to perform a lookup of
an EJB component’s home interface. In preparation for performing a JNDI lookup
of the home interface, you must first set several environment properties for the
I'nitial Context.Then you provide a lookup name for the EJB.

The steps and an example are summarized in the following sections.
= Specifying the Naming Factory Class
= Specifying the JNDI Name of an EJB

Specifying the Naming Factory Class

According to the RMI/ZIIOP specification, the client must specify

com sun. j ndi . cosnami ng. CNCt xFact or y as the value of the

java. naming.factory.initial entryinan instance of a Properti es object. This
object is then passed to the JNDI | ni ti al Cont ext constructor prior to looking up
an EJB component’s home interface. For example:

Properties env = new Properties();

env. put ("java. nam ng.factory.initial","comsun.jndi.cosnam ng. CN
Ct xFactory");

env. put ("j ava. nam ng. provider.url", "iiop://" + host +":"+port);
Context initial = new Initial Context(env);

Systemout.println("Inside other host after initialcontext");
Obj ect objref = initial.lookup("MConverter");

The above code line is part of the EJB business method.

Specifying the JNDI Name of an EJB

After creating a new JNDI I ni ti al Cont ext object, your client calls the | ookup
method on the | ni ti al Cont ext to locate the EJB component’s home interface. The
name of the EJB is provided on the call to | ookup. When using RMI/ZI1OP to access
remote EJBs, the parameter is referred to as the “JNDI name” of the EJB.
initial.lookup("ejb/ejb-name");

initial.lookup("ejb/module-name/ ejb-name™) ;

The ejb-name is the name of the EJB as it appears in the <ej b- nane> element of the

EJB’s deployment descriptor. For example, here is a lookup using the value
Myconverter:

66  Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Third Party ORB Support

initial.lookup("MConverter");

Convert er Hone home =
(Convert er Hone) Port abl eRenpt eChj ect . narr ow( obj r ef , Convert er Hone. cl a
ss);

Converter currencyConverter = home.create();

Systemout.println("Inside other host after Create");

Configuring Back End Access Using Third Party
Client ORBs Within Sun ONE Application Server

J2EE components (such as Servlet and EJBs) deployed to Sun ONE Application
Server can access backend CORBA objects through third party Object Request
Brokers (ORBSs). This support enables J2EE applications to leverage investments in
the existing CORBA-based business components. In addition to supporting server
side access to backend CORBA objects, you can also use the built-in Sun ONE ORB
for RMI/110P-based access to EJB components from Java or C++ application clients
as explained in the RMI/ZI1OP samples.

Configuring Orbix ORB with Sun ONE Application Server involves the following
steps:

= Installing Orbix
= Configuring Sun ONE Application Server to Use Orbix
= Overriding the Built-in ORB

Installing Orbix
To install Orbix, perform the following steps:

< Ensure that you have the Orbix 2000 software available for installation.

= Install the software. For instructions to install Orbix 2000, read through the
Orbix Installation Guide.

= Verify to ensure that the Orbix configuration is proper.

Configuring Sun ONE Application Server to Use Orbix

You must configure the runtime environment to enable the application server to
load the Orbix ORB classes. Add the following to the CLASSPATH:

e Orbix classes

Chapter 3 Java-based CORBA Clients 67



Third Party ORB Support

= OMG classes
= Directory containing Orbix license file

Goto Application Server |nstances ->server1 (or any other instance) then
click on Java Options and append the following:

classpath to Class Path Suffix text field under Directory Paths option

/etc/opt/ional:/opt/iona/orbix_art/1.2/classes/orbix2000.jar:/opt/i
ona/orbi x_art/1.2/cl asses/ong. jar

After modifying Class Path Suffix click Save then click on serverl (server instance)
and click on Apply Changes tab, restart the application server instance to update
the changes.

Overriding the Built-in ORB

Sun ONE Application Server relies on a built-in ORB to support RMI/IIOP access
to EJB components from Java application clients. When implementing servlets and
EJB components that access backend CORBA-based applications residing outside
of the application server, you may need to override the built-in ORB classes with
the ORB classes from third party products such as Orbix 2000.

You can use any of the following approaches to override the built-in ORB classes
with ORB classes from third party products:

= ORB.init() Properties Approach
= orb.properties Approach
= Providing JVM Start-up Arguments

ORB.init() Properties Approach

The code illustration given below overrides the built-in Sun ONE ORB classes with
ORB classes from IONA’s ORBIX 2000.

For example:

Properties orbProperties = new Properties();

or bProperti es. put (" org. ong. CORBA. ORBCl ass", "comiona.corba.art.arti
mpl . ORBI npl ") ;

or bProperti es. put (" org. ong. CORBA. ORBSi ngl et onCl ass", "com i ona. cor ba
.art.artinpl.ORBSi ngl eton");

orb = ORB.init(args, orbProperties);

68  Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Third Party ORB Support

The advantage of this approach is that RMI/ZI1OP access to EJB components housed
in the application server will still be performed using the built-in Sun ONE ORB
classes while only access from servlets and EJB components to backend
CORBA-based applications will use the third party ORB classes. This is the efficient
method of supporting simultaneous use of multiple ORBs in the application server
environment.

orb.properties Approach

InJava 2 1.2.1 environment, the JVM’s or b. properti es file contains property
settings to identify the ORB implementation classes that are used by default
throughout the JVM. To override the use of the built-in Sun ONE ORB classes, you
can simply modify the or b. pr operti es file to specify third party ORB classes and
restart the application server.

For example, to set the implementation classes to specify the Orbix 2000 classes,
make the following modification to the or b. properti es file that is located at:
install_dir/j dk/jre/lib/

Before:
or g. ong. CORBA. ORBCl ass=com sun. corba. se.internal .l nterceptors. PIOR

or g. ong. CORBA. ORBSi ngl et onCl ass=com sun. cor ba. se. i nternal . cor ba. ORB
Si ngl et on

After:
or g. ong. CORBA. ORBCl ass=com i ona. corba. art. arti npl . ORBI npl

or g. ong. CORBA. ORBSi ngl et onCl ass=com i ona. corba. art.artinpl.
ORBSI ngl et on

The javax. rm classes are used to support RMI/ZIIOP client access to EJB
components housed in the application server. Since these classes are not used to
access backend CORBA servers, you do not need to override these settings.

The main advantage of this approach is that it involves only one time setting for all
applications deployed to the application server. There is no need for each servlet
and/or EJB component that is acting as a client to a backend CORBA application to
specify the ORB implementation classes.

Providing JVM Start-up Arguments

You can also specify the ORB implementation classes as server’s IVM_ARGS in the
server. xn file.

Go to the

Chapter 3 Java-based CORBA Clients 69



Third Party ORB Support

instances_dir/confi g

and edit the server. xnl file and add these jvm options as a subelement under
<j ava- confi g> tag.

<j vm opti ons>

- Dor g. ong. CORBA. ORBCl ass=com i ona. corba. art. arti npl . ORBI npl
</jvmoptions>
<j vm opti ons>

- Dor g. ong. CORBA. ORBSI ngl et onCl ass=com i ona. corba. art. arti npl.
ORBSi ngl et on

</jvmoptions>

This approach gives the benefit of specifying the ORB implementation classes only
once, but the main advantage when compared to changing the or b. properti es
file is that, the changes made to server’s configuration file are specific to server
instance and are applicable to all the applications running on a particular instance
only.

You can find a sample that demonstrates the third-party ORB support in Sun ONE
Application Server at the following location:

install_dir/ sanpl es/ cor ba/

70  Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Chapter 4

C++ Clients

This chapter describes how to develop and deploy C++ clients that uses third-party
ORBs.

This chapter contains the following sections:
= Introducing C++ Clients

= Developing a C++ Client

Introducing C++ Clients

Sun ONE Application Server relies on the Sun ONE built-in ORB to support access
to EJBs via RMI/IIOP. Java programs and other components, such as servlets and
applets can use the existing RMI/Z11OP support to access EJB components housed in
Sun ONE Application Server.

A C++ client can access EJB components via IIOP. However, this can not be
achieved using the Sun ONE ORB due to the absence of a Sun ONE ORB for C++
clients. A C++ client requires an ORB implementation on its side; the Sun ONE
ORB has only a Java version of the implementation. This forces the C++ client
developers to use a third-party ORB on the client side.

Developing a C++ Client

This section describes the steps to develop a C++ client using ORBacus 4.1 runtime
and development environment. This C++ client will call methods of an EJB that are
deployed to Sun ONE Application Server.

This section describes the following topics:

71



Developing a C++ Client

= Configuring C++ Clients to Access Sun ONE Application Server

= Creating a C++ Client

Configuring C++ Clients to Access Sun ONE
Application Server

This section describes how to configure C++ clients to access Sun ONE Application
Server. In the code example here, C++ client accesses the third party ORB ORBacus
4.1.

This section presents the following topics:
= Software Requirements
= Preparing for C++ Client Development

< Assumptions and Limitations

Software Requirements
The following software are necessary for the development of a C++ client:

SOLARIS:

= Solaris 2.8

= ORBacus 4.1 for C++ on Solaris

< Sun Workshop 6 Update 2 (C++ 5.2)
< Sun ONE Application Server

- Java'™ 2 Platform, Standard Edition (J2SE ™ platform) 1.4
Windows:

= Windows 2000

< ORBacus 4.1 for C++ on WIN 2000
= VC++ Version 6.0

< Sun ONE Application Server

= J2SE 1.4 for WIN 2000

72 Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Developing a C++ Client

Preparing for C++ Client Development
You must perform the following tasks before you start developing a C++ client:

1.

Make sure that all the required software are installed. For more information on
the software required for C++ client development, see “Software
Requirements” on page 72.

Install Java Development Kit (JDK) 1.4.

Install ORBacus 4.1.

For instructions on installing ORBacus 4.1, see the ORBacus documentation.
SOLARIS:

Set the PATH to CC (C++ compiler of Sun workshop 6.2), r mi ¢ (RMI compiler),
idl compiler of ORBacus.

export
PATH=<SUNwor kshoppat h>/ SUNWpr o/ Ws6U2/ bi n: <JDK_HOVE>bi n: : $PATH

export ORBACUS_LI CENSE=path to ORBacus 4.1 license file
directory/ | i censes. t xt
export LD LI BRARY_PATH=path to ORBacus home/ | i b

Windows:

Set the PATH to cl (VC++ compiler of MicroSoft visual studio), r mi ¢ of JIDK1.4,
idl compiler of ORBacus.

These can be set at the command prompt as follows:

set PATH=C. Progranfil es\ M crosoft Vi sual St udi o\ VC98-i n;
C:\J2SDK Forte\jdkl.4.0-in;C\ORBacus_I| DL; %ATH%

set ORBACUS_LI CENSE=path/licenses.txt.

You can also set the PATH from the Environmental Settings dialog box.

Chapter 4 C++Clients 73



Developing a C++ Client

NOTE

If your client development machine is different from that of the
machine where Sun ONE Application Server is installed, copy
the following classes to your client system:

o The appserv-ext.jar part of Sun ONE Application Server
available in install dir/l i b.

o All the classes corresponding to the application including
home interface, remote interface, helper classes, and third
party classes used by the application.

Java language mapping specification does not support the use of
Java package names differing only in case, to simplify the
mapping. Sun ONE Application Server also does not support
the use of class or interface names within the same package that
differ only in case. Both of these are treated as errors. Therefore
the deployed beans should not have package name and class
name differing only in case.

The explanations in this document are with respect to the
sample application Cart available at the following location:
install_dir/sanpl es/rmi -iiop/cpp/

5. Install Sun ONE Application Server and test for basic functionality.

6. Deploy the sample application Cart - BookCart App. ear.

You can deploy this application using the Administration interface. It is not
mandatory to deploy the application, but a recommended step. For detailed
information on deploying this application, see the Sun ONE Application Server
Administrator’s Guide.

NOTE

To develop a C++ client, all the corresponding classes of the
application should be accessible. That is, the home and remote
interfaces of all the EJB components, helper classes, and other classes
that are part of the application must be accessible. After the
deployment, these can be made either part of Sun ONE Application
Server or independent of Sun ONE Application Server.

74 Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Developing a C++ Client

Assumptions and Limitations

For Java data types such as, HashTable or other custom Java classes that have to be
passed by value, you have to provide native C++ implementation or provide a
wrapper over existing C++ implementation of those classes (such as STL) that
conforms to the IDL files generated for the Java classes.

Creating a C++ Client

This section describes the procedure to create a C++ client that uses a third party
ORB. The developed C++ client application can then be deployed to Sun ONE
Application Server. The following are the major steps involved in creating a C++
client:

= Generating the IDL Files
« Generating CPP Files from IDL Files

Generating the IDL Files
1. Create a directory for C++ client development. For example:

nkdi r cppclient
cd cppclient

2. Generate IDL files corresponding to remote and home interfaces of the EJB
components, helper classes, and other third party classes used by J2EE
applications.

Use the r ni ¢ tool, which is part of IDK™ 1.4, for generating IDL files.

a. Generate the IDL files corresponding to home and remote interface of all
the EJB components.

When the IDL files corresponding to home and remote references are
generated, the IDL files corresponding to the classes mentioned as part of
the method signature are also generated. Thus, the separate IDL
generation of those classes are not required. Generate only the classes
which do not figure as part of the method signature separately.

For example:
I. rmc -classpath

instance_dir/appl i cati ons/j 2ee- apps/ BookCart App_1/ BookCar t App
B b_j ar: install_dir/l i b/ appserv-ext.j ar
-idl samples.rm _iiop.cpp.ejb. CartHome

Chapter 4 C++Clients 75



Developing a C++ Client

rmc -classpath

instance_dir/appl i cati ons/j 2ee- apps/ BookCar t App_1/ BookCar t App
E b_j ar: install_dir/l i b/ appserv-ext.jar

-idl samples.rm _iiop.cpp.ejb.Cart

rmc -classpath

instance_dir/appl i cati ons/j 2ee- apps/ BookCart App_1/ BookCar t App
E b_j ar: install_dir/l i b/ appserv-ext.jar

-idl sanples.rm _iiop.cpp.ejb.InterfaceTestC ass

-cl asspat h - contains the path to all the classes against which IDL is
being generated. If the classes appearing as arguments to the method
are part of a different package, include those paths also. Include the
path to appser v-ext . j ar in the classes.

The generated IDL files will be stored under directories corresponding
to the package of the classes.

For example, the Cart . cl ass will be mappedto Cart.idl and will be
under/ cppclient/sanpl es/rmi _iiop/ cpp/ej b/ directory.

Similarly, classes corresponding to JDK are generated under
javall ang, javalio,javax/rm/ejb, org/ ong/ and other similar
directories.

76  Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Developing a C++ Client

Generate the valuetypes corresponding to the classes native to J2SDK.

As mentioned in Step 2, when IDL specific to application classes such as, home
interface, remote interface, and other classes part of the application are
generated, it also generates the IDLs corresponding to the classes native to the
JDK.

The classes of JDK that are serializable get mapped as IDL value types. You
have to provide the implementation for these valuetypes using the IDL-to-CPP
compiler.

This will create C++ classes corresponding to the classes native to JDK.
However, these C++ files have only dummy methods apart from protected
methods that have implementation of accessor and modifier methods. If you
need to manipulate the C++ objects, you need to add new methods to the
generated C++ files.

If the Java class has any member variables, then the value type implementation
of that class will have accessor and modifier methods and they are protected.
You can add new public methods in the implementation class of valuetypes to
access and modify those member variables by calling the corresponding
protected methods.

Subsequently, compile these classes to generate an object file or as a shared
library. This is a one time effort and you do not require perform for every J2EE
application that you develop. You may re-use these implementations.

Develop the library for the valuetype implementations.

The following steps describe the procedure to develop your own library for the
valuetype implementations. All these valuetype implementations can be
grouped as a library. This library should contain object files (valuetype
implementation), the header(.h) and the IDL (.idl) files.

a. Modify the IDL files as required by following the guidelines given in the
next step.

b. Generate cpp files for all the IDL files corresponding to the Java classes
using the IDL compiler supplied with ORBacus. For example,

idl --inpl-all -1. -1Iclasspathto IDL files - I orbacus_home/i dl /
- | orbacus_home/i dl / OB *.i dlI

c. Implement the valuetype types, if required.

This is required only if you need to manipulate the object. For example,
collection classes like Vector, Hashtable, etc., proper implementation has to
be provided as lists so that elements can be retrieved and added to the list.

Chapter 4 C++Clients 77



Developing a C++ Client

d. Compile the cpp file to generate an object file or a shared library.

NOTE Generate the Java language classes before processing other IDL files.
Implement all the IDL files corresponding to the JDK before
proceeding with application specific IDL files.

5. Modify the generated IDL files such as the EJBs, helper classes, and third-party
classes corresponding to the application.

The generated IDL files do not compile directly. You need to manually modify
the IDL files for generating a CPP file. The list below explains the situations
when you need to modify the IDL files:

NOTE This is not a complete list and you may need to make suitable
modification to IDL files for successful generation of IDL files to
CPP files.

a. Delete the duplicate variables defined.

For example, in Enpl oyee. i dl, employee_is defined twice as:
private:: CORBA: : Wst ri ngVal ue enpl oyee_;
attribute:: CORBA: : Watri ngVal ue enpl oyee_;

Either of the duplicate entries can be deleted. Deleting the following
attribute is recommended:
attribute:: CORBA : Watri ngVal ue enpl oyee_;

b. Change the custom valuetypes to non-custom valuetypes.

For example, Valuetype Exception inherits from Thr owabl e, which is a
custom valuetype. Remove the tag custom from the Thr owabl e valuetype
definition.

c. There will be cases where the same IDL file will be included more than
once. This will result in improper generation of the CPP files. Comment
such multiple includes.

» For example, Exception.idl underjava/l ang has
javal/ | ang/ Throwabl e. i dI included twice. Comment the second
include.

+ The IDL file may compile even when multiple includes are present.
However, the generated CPP file will be incorrect.

78  Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Developing a C++ Client

d. There will be cases where other IDL files are included circularly.

Some of the abstract valuetypes would be inheriting from
java::io::Serializable. Remove such inheritance.

For example, in InterfaceTest.idl,InterfaceTest isan abstract
valuetype and it inherits fromj ava: : i o: : Seri al i zabl e. Remove this
inheritance.

Generating CPP Files from IDL Files
To generate the .cpp files form the .idl files, perform the following steps:

1.

Go to the path where the IDL files are generated. Include the following paths to
the idl command:

a. pathsto all the application IDLs

b. paths to all the JDK related IDLs

c. ORBacus_home/ i dl

d. ORBacus_home/i dl / OB

The paths are included by the - | option.

Execute the following command with the paths mentioned in Step 1, with
--i npl -al | options idl_file_name.

For example,
idl --inpl-all -1classpath_to_java_classes_IDL -1/ cppclient
-1/ orbacus_home/ i dl/ -1/ orbacus_home/idl /OB -1. Conpl exQhject.idl

You must first include the classpath to Java classes IDL files.

Execute the above command for all the IDL files corresponding to the
application in all the directories.

Modify the generated classes.

Some of the cpp files should be manually modified. The situations under
which modifications are required are given below:

Chapter 4 C++Clients 79



Developing a C++ Client

80

a.

There can be clashes in the namespaces that appear in the code generated
from IDL to CPP using the IDL tool.

The following examples illustrate the scenarios:
Example 1

The class, O assDesc, generated under j avax/ r mi / CORBA uses the classes
such as, CORBA: : Val ueBase. The class, CORBA: : Val ueBase, is part of the
ORB implementation and is defined under the namespace, CORBA.

Cl assDesc is defined under the namespace, j avax::rm:: CORBA. Ifa
reference to ValueBase as CORBA: : Val ueBase is made inside this class, it
looks for its definition under the j avax: : r mi : : CORBA namespace.

This fails as it is defined under the namespace CORBA and not
javax::rm:: CORBA. To force it to look in the namespace CORBA, change
the syntax to j avax::rm:: CORBA: : Val ueBase.

Example 2

In the class example generated under the j ava/ | ang directory, there are
references to the Exception class.

There are two types of exceptions: CORBA: : Except i on and
java::lang:: Exception.Changetojava: : | ang: : Excepti on from
CORBA: : Except i on. These kind of code changes are required for the
classes to compile properly.

NOTE

You need not compile the classes corresponding to the skeletons, as
they will not be used to implement the valuetypes.

Sun ONE Application Server 7 « Developer's Guide to Clients ¢ March 2003



Developing a C++ Client

5. Implement the valuetypes.

The --i npl - al | option to the IDL command also generates the code for the
valuetype implementation, including the factories for creating the value types.
The valuetype implementation will have most of the methods as protected.

Therefore, they cannot be accessed directly and add new methods to the
valuetype implementation that are public. These methods call the protected
methods to achieve the desired functionality. The client programs will call
these newly added methods depending on the functionality.

However, sometimes these public methods are also generated by the IDL. In
such cases implementation can be provided in these methods by calling the
protected methods without adding new methods.

This type of generation is dependent on whether the variables are defined as
private or attribute in the IDL files. For example, Enpl oyee. cl ass gets
mapped as Enpl oyee valuetype. The implementation which is Enpl oyee. cpp
generated for this valuetype as part of IDL command consists of the method,
enpl oyee_() as protected. Since this cannot be accessed directly, we have to
add get Enpl oyeeName() as a public method in the Enpl oyee_i npl . cpp and
Enpl oyee. h. This method calls enpl oyee_() method to achieve the
functionality of returning the Enpl oyeeNane.

NOTE You may have to add additional methods to achieve specific
functionality and to change the state of the object. These are
determined by your application design and the required
functionality.

6. Compile the value type implementations and other generated cpp files. You
need to write the makefile to generate a cpp file.

Windows:

Use the / GRoption.

Chapter 4 C++Clients 81



Developing a C++ Client

Develop the client program as required by design and functionality.

Include the header files of all the valuetypes. The following code illustrates the
steps:

sanples::rmi_iiop::cpp::ejb:: Conpl exoj ect Factory_i npl
*conpl exObj ect Vf = new
sanples::rmi _iiop::cpp::ejb:: Conmpl exOhject Factory_inpl ();

/1 initializing the ORB
CORBA: : ORB_var orb = CORBA:: ORB_init(argc,argv);

/1 registering the value factories. This is required for
//unmarshal I i ng the val uetypes

or b->regi st er _val ue_factory(
sanples::rm _iiop::cpp::ejb:: ConplexOoject::_OB_id(), conpl ex(hj e
ctVf);

Register the valuefactories after or bi ni t (). The registration of the
valuefactories are very essential. If they are not registered, it results in
marshalling exceptions and the ORB fails to unmarshall valuetypes.

Compile and link the client program with the previously generated object files.
Windows

Use / GRoption.

Run the client program.

Provide the NaneSer vi ce URL to the program. You can pass this as the
-ORBconfig <config fil e>property to the client. The configuration file
contains the NaneSer vi ce URL as follows:

ooc. or b. servi ce. NameSer vi ce=cor bal oc: : green. i ndi a. sun. com 1050/ N
ameServi ce

For other ways to pass the NaneSer vi ce URL, refer to the ORBacus
documentation.

For example, c++client -ORBconfig = config_file path/ config_file_name

82  Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Developing a C++ Client

Sample Applications

RMI/110P sample applications have been bundled with Sun ONE Application
Server. These samples have been augmented with detailed setup instructions for
deploying the application to Sun ONE Application Server. The setup
documentation and source code are available at the following location:

install_dir/sanpl es/rmi -iiop/

Chapter 4 C++Clients 83



Developing a C++ Client

84  Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



Glossary

This glossary provides definitions for common terms used to describe the Sun ONE
Application Server deployment and development environment. For a glossary of
standard J2EE terms, please see the J2EE glossary at:

http://java. sun. conlj 2ee/ gl ossary. ht m

access control  The means of securing your Sun ONE Application Server by
controlling who and what has access to it.

ACL Access Control List. ACLs are text files that contain lists identifying who can
access the resources stored on your Sun ONE Application Server. See also general
ACL.

activation The process of transferring an enterprise bean's state from secondary
storage to memory.

Administration interface The set of browser based forms used to configure and
administer the Sun ONE Application Server. See also CLI.

administration server An application server instance dedicated to providing the
administrative functions of the Sun ONE Application Server, including
deployment, browser-based administration, and access from the command-line
interface (CLI) and Integrated Development Environment (IDE).

administrative domain Multiple administrative domains is a feature within the
Sun ONE Application Server that allows different administrative users to create
and manage their own domains. A domain is a set of instances, created using a
common set of installed binaries in a single system.

APl Applications Program Interface. A set of instructions that a computer

program can use to communicate with other software or hardware that is designed
to interpret that API.

85


http://java.sun.com/j2ee/glossary.html

86

applet A small application written in Java that runs in a web browser. Typically,
applets are called by or embedded in web pages to provide special functionality.
By contrast, a servlet is a small application that runs on a server.

application A group of components packaged into an . ear file with a J2EE
application deployment descriptor. See also component, module.

application client container See container.

application server A reliable, secure, and scalable software platform in which
business applications are run. Application servers typically provide high-level
services to applications, such as component lifecycle, location, and distribution and
transactional resource access,

application tier A conceptual division of a J2EE application:

client tier: The user interface (Ul). End users interact with client software (such as a
web browser) to use the application.

server tier: The business logic and presentation logic that make up your application,
defined in the application’s components.

data tier: The data access logic that enables your application to interact with a data
source.

assembly The process of combining discrete components of an application into a
single unit that can be deployed. See also deployment.

asynchronous communication A mode of communication in which the sender of
a message need not wait for the sending method to return before it continues with
other work.

attribute A name-value pair in a request object that can be set by a servlet. Also a
name-value pair that modifies an element in an XML file. Contrast with parameter.
More generally, an attribute is a unit of metadata.

auditing The method(s) by which significant events are recorded for subsequent
examination, typically in error or security breach situations.

authentication The process by which an entity (such as a user) proves to another
entity (such as an application) that it is acting on behalf of a specific identity (the
user’s security identity). Sun ONE Application Server supports basic, form-based,
and SSL mutual authentication. See also client authentication, digest authentication,
host-IP authentication, pluggable authentication.

Sun ONE Application Server 7 « Developer’s Guide to Clients * March 2003



authorization The process by which access to a method or resource is
determined. Authorization in the J2EE platform depends upon whether the user
associated with a request through authentication is in a given security role. For
example, a human resources application may authorize managers to view personal
employee information for all employees, but allow employees to only view their
own personal information.

backup store A repository for data, typically a file system or database. A backup
store can be monitored by a background thread (or sweeper thread) to remove
unwanted entries.

bean-managed persistence Data transfer between an entity bean's variables and
a data store. The data access logic is typically provided by a developer using Java
Database Connectivity (JDBC) or other data access technologies. See also
container-managed persistence.

bean-managed transaction Where transaction demarcation for an enterprise
bean is controlled programmatically by the developer. See also container-managed
transaction.

BLOB Binary Large OBject. A data type used to store and retrieve complex object
fields. BLOBs are binary or serializable objects, such as pictures, that translate into
large byte arrays, which are then serialized into container-managed persistence
fields.

BMP See bean-managed persistence.

BMT See bean-managed transaction.

broker The Sun ONE Message Queue entity that manages JMS message routing,
delivery, persistence, security, and logging, and which provides an interface that
allows an administrator to monitor and tune performance and resource use.

business logic The code that implements the essential business rules of an
application, rather than data integration or presentation logic.

CA See certificate authority or connector architecture.

Glossary 87



cached rowset A CachedRowSet object permits you to retrieve data from a data
source, then detach from the data source while you examine and modify the data.
A cached row set keeps track both of the original data retrieved, and any changes
made to the data by your application. If the application attempts to update the
original data source, the row set is reconnected to the data source, and only those
rows that have changed are merged back into the database.

Cache Control Directives Cache-control directives are a way for Sun ONE
Application Server to control what information is cached by a proxy server. Using
cache-control directives, you override the default caching of the proxy to protect
sensitive information from being cached, and perhaps retrieved later. For these
directives to work, the proxy server must comply with HTTP 1.1.

callable statement A class that encapsulates a database procedure or function
call for databases that support returning result sets from stored procedures.

certificate Digital data that specifies the name of an individual, company, or
other entity, and certifies that the public key included in the certificate belongs to
that entity. Both clients and servers can have certificates.

certificate authority A company that sells certificates over the Internet, or a
department responsible for issuing certificates for a company’s intranet or extranet.

cipher A cryptographic algorithm (a mathematical function), used for encryption
or decryption.

CKL Compromised Key List. A list, published by a certificate authority, that
indicates any certificates that either client users or server users should no longer
trust. In this case, the key has been compromised. See also CRL.

classloader A Java component responsible for loading Java classes according to
specific rules. See also classpath.

classpath A path that identifies directories and JAR files where Java classes are
stored. See also classloader.

CLI Command-line interface. An interface that enables you to type executable
instructions at a user prompt. See also Administration interface.

client authentication The process of authenticating client certificates by

cryptographically verifying the certificate signature and the certificate chain
leading to the CA on the trust CA list. See also authentication, certificate authority.

88  Sun ONE Application Server 7 « Developer's Guide to Clients « March 2003



client contract A contract that determines the communication rules between a
client and the EJB container, establishes a uniform development model for
applications that use enterprise beans, and guarantees greater reuse of beans by
standardizing the relationship with the client.

CMP See container-managed persistence.
CMR See container-managed relationship.
CMT See container-managed transaction.

co-locate To position a component in the same memory space as a related
component in order avoid remote procedure calls and improve performance.

column A field in a database table.

commit To complete a transaction by sending the required commands to the
database. See rollback, transaction.

component A web application, enterprise bean, message-driven bean,
application client, or connector. See also application, module.

component contract A contract that establishes the relationship between an
enterprise bean and its container.

configuration The process of tuning the server or providing metadata for a
component. Normally, the configuration for a specific component is kept in the
component’s deployment descriptor file. See also administration server,
deployment descriptor.

connection factory An object that produces connection objects that enable a J2EE
component to access a resource. Used to create JMS connections (TopicConnection
or QueueConnection) which allow application code to make use of the provided
JMS implementation. Application code uses the JNDI Service to locate connection
factory objects using a JNDI Name.

Connection Pool allows highly efficient access to a database by caching and
reusing physical connections, thus avoiding connection overhead and allowing a
small number of connections to be shared between a large number of threads. See
also JDBC connection pool

Glossary 89



90

connector A standard extension mechanism for containers to provide
connectivity to EISs. A connector is specific to an EIS and consists of a resource
adapter and application development tools for EIS connectivity. The resource
adapter is plugged in to a container through its support for system level contracts
defined in the connector architecture.

connector architecture An architecture for the integration of J2EE applications
with EISs. There are two parts to this architecture: a EIS vendor-provided resource
adapter and a J2EE server that allows this resource adapter to plug in. This
architecture defines a set of contracts that a resource adapter has to support to plug
in to a J2EE server, for example, transactions, security and resource management.

container An entity that provides life cycle management, security, deployment,
and runtime services to a specific type of J2EE component. Sun ONE Application
Server provides web and EJB containers, and supports application client
containers. See also component.

container-managed persistence Where the EJB container is responsible for entity
bean persistence. Data transfer between an entity bean's variables and a data store,
where the data access logic is provided by the Sun ONE Application Server. See also
bean-managed persistence.

container-managed relationship A relationship between fields in a pair of
classes where operations on one side of the relationship affect the other side.

container-managed transaction Where transaction demarcation for an enterprise
bean is specified declaratively and automatically controlled by the EJB container
See also bean-managed transaction.

control descriptor A set of enterprise bean configuration entries that enable you
to specify optional individual property overrides for bean methods, plus enterprise
bean transaction and security properties.

conversational state Where the state of an object changes as the result of repeated
interactions with the same client. See also persistent state.

cookie A small collection of information that can be transmitted to a calling web
browser, then retrieved on each subsequent call from that browser so the server
can recognize calls from the same client. Cookies are domain-specific and can take
advantage of the same web server security features as other data interchange
between your application and the server.

Sun ONE Application Server 7 « Developer’s Guide to Clients * March 2003



CORBA Common Object Request Broker Architecture. A standard architecture
definition for object-oriented distributed computing.

COSNaming Service An an IIOP-based naming service.

CosNaming provider To support a global INDI name space (accessible to [1OP
application clients), Sun ONE Application Server includes J2EE based CosNaming
provider which supports binding of CORBA references (remote EJB references).

create method A method for customizing an enterprise bean at creation.

CRL Certificate Revocation List. A list, published by a certificate authority, that
indicates any certificates that either client users or server users should no longer
trust. In this case, the certificate has been revoked. See also CKL.

data access logic Business logic that involves interacting with a data source.

database A generic term for Relational Database Management System (RDBMS).
A software package that enables the creation and manipulation of large amounts of
related, organized data.

database connection A database connection is a communication link with a
database or other data source. Components can create and manipulate several
database connections simultaneously to access data.

data source A handle to a source of data, such as a database. Data sources are
registered with the iPlanet Application Server and then retrieved
programmatically in order to establish connections and interact with the data
source. A data source definition specifies how to connect to the source of data.

DataSource Object A DataSource object has a set of properties that identify and
describe the real world data source that it represents.

declarative security Declaring security properties in the component’s
configuration file and allowing the component’s container (for instance, a bean’s
container or a servlet engine) to manage security implicitly. This type of security
requires no programmatic control. Opposite of programmatic security. See
container-managed persistence.

declarative transaction See container-managed transaction.
decryption The process of transforming encrypted information so that it is

intelligible again.

Glossary 91



92

delegation An object-oriented technique for using the composition of objects as
an implementation strategy. One object, which is responsible for the result of an
operation, delegates the implementation to another object, its delegatee. For
example, a classloader often delegates the loading of some classes to its parent.

deployment The process of distributing the files required by an application to an
application server to make the application available to run on the application
server. See also assembly.

deployment descriptor An XML file provided with each module and application
that describes how they should be deployed. The deployment descriptor directs a
deployment tool to deploy a module or application with specific container options
and describes specific configuration requirements that a deployer must resolve.

destination resource An objects that represents Topic or Queue destinations.
Used by applications to read/write to Queues or publish/subscribe to Topics.
Application code uses the JNDI Service to locate JMS resource objects using a JNDI
Name.

digest authentication A for of authentication that allows the user to authenticate
based on user name and password without sending the user name and password
as cleartext.

digital signature an electronic security mechanism used to authenticate both a
message and the signer.

directory server See Sun ONE Directory Server.
Distinguished Name See DN, DN attribute.

distributable session A user session that is distributable among all servers in a
cluster.

distributed transaction A single transaction that can apply to multiple
heterogeneous databases that may reside on separate servers.

Document Root The document root (sometimes called the primary document
directory) is the central directory that contains all the virtual server’s files you want
to make available to remote clients.

Sun ONE Application Server 7 « Developer’s Guide to Clients * March 2003



Domain Registry The Domain Registry is a single data structure that contains
domain-specific information, for all the domains created and configured on an
installation of Sun ONE Application Server, such as domain name, domain
location, domain port, domain host.

DTD Document Type Definition. A description of the structure and properties of
a class of XML files.

DN Distinguished Name. The string representation for the name of an entry in a
directory server.

DN attribute Distinguished Name attribute. A text string that contains
identifying information for an associated user, group, or object.

dynamic redeployment The process of redeploying a component without
restarting the server.

dynamic reloading The process of updating and reloading a component without
restarting the server. By default, servlet, JavaServer Page (JSP), and enterprise bean
components can be dynamically reloaded. Also known as versioning.

EAR file Enterprise ARchive file. An archive file that contains a J2EE application.
EAR files have the . ear extension. See also JAR file.

e-commerce Electronic commerce. A term for business conducted over the
Internet.

EIS Enterprise Information System. This can be interpreted as a packaged
enterprise application, a transaction system, or a user application. Often referred to
as an EIS. Examples of EISs include: R/3, PeopleSoft, Tuxedo, and CICS.

EJB container See container.

EJB QL EJB Query Language. A query language that provides for navigation
across a network of entity beans defined by container-managed relationships.

EJB technology An enterprise bean is a server-side component that encapsulates
the business logic of an application. The business logic is the code that fulfills the
purpose of the application. In an inventory control application, for example, the
enterprise beans might implement the business logic in methods called

checkl nvent oryLevel and or der Pr oduct . By invoking these methods, remote
clients can access the inventory services provided by the application. See also
container, entity bean, message-driven bean, and session bean.

Glossary 93



ejbc utility The compiler for enterprise beans. It checks all EJB classes and
interfaces for compliance with the EJB specification, and generates stubs and
skeletons.

element A member of a larger set; for example, a data unit within an array, or a
logic element. In an XML file, it is the basic structural unit. An XML element
contains subelements or data, and may contain attributes.

encapsulate To localize knowledge within a module. Because objects encapsulate
data and implementation, the user of an object can view the object as a black box
that provides services. Instance variables and methods can be added, deleted, or
changed, but if the services provided by the object remain the same, code that uses
the object can continue to use it without being rewritten.

encryption The process of transforming information so it is unintelligible to
anyone but the intended recipient.

entity bean An enterprise bean that relates to physical data, such as a row in a
database. Entity beans are long lived, because they are tied to persistent data.
Entity beans are always transactional and multi-user aware. See message-driven
bean, read-only bean, session bean.

ERP Enterprise Resource Planning. A multi-module software system that
supports enterprise resource planning. An ERP system typically includes a
relational database and applications for managing purchasing, inventory,
personnel, customer service, shipping, financial planning, and other important
aspects of the business.

event A named action that triggers a response from a module or application.

external JDNI resource Allows the JNDI Service to act as a bridge to a remote
JNDI server.

facade Where an application-specific stateful session bean is used to manage
various Enterprise JavaBeans (EJBS).

factory class A class that creates persistence managers. See also connection
factory.

failover A recovery process where a bean can transparently survive a server
crash.

94  Sun ONE Application Server 7 « Developer’s Guide to Clients « March 2003



finder method Method which enables clients to look up a bean or a collection of
beans in a globally available directory.

firewall an electronic boundary that allows a network administrator to restrict
the flow of information across networks in order to enforce security.

File Cache The file cache contains information about files and static file content.
The file cache is turned on by default.

form action handler A specially defined method in servlet or application logic
that performs an action based on a named button on a form.

FQDN Fully Qualified Domain Name. The full name of a system, containing its
hostname and its domain name.

general ACL A named list in the Sun ONE Directory Server that relates a user or
group with one or more permissions. This list can be defined and accessed
arbitrarily to record any set of permissions.

generic servlet A servletthat extendsj avax. servl et. Generi cSer vl et . Generic
servlets are protocol-independent, meaning that they contain no inherent support
for HTTP or any other transport protocol. Contrast with HTTP servlet.

global database connection A database connection available to multiple
components. Requires a resource manager.

global transaction A transaction that is managed and coordinated by a
transaction manager and can span multiple databases and processes. The
transaction manager typically uses the XA protocol to interact with the database
backends. See local transaction.

granularity level The approach to dividing an application into pieces. A high level
of granularity means that the application is divided into many smaller, more
narrowly defined Enterprise JavaBeans (EJBs). A low level of granularity means the
application is divided into fewer pieces, producing a larger program.

group A group of users that are related in some way. Group membership is
usually maintained by a local system administrator. See user, role.

handle An object that identifies an enterprise bean. A client may serialize the
handle, and then later deserialize it to obtain a reference to the bean.

Glossary 95



96

Heuristic Decision The transactional mode used by a particular transaction. A
transaction has to either Commit or Rollback.

home interface A mechanism that defines the methods that enable a client to
create and remove an enterprise bean.

host-1P authentication A security mechanism used for of limiting access to the
Administration Server, or the files and directories on a web site by making them
available only to clients using specific computers.

HTML Hypertext Markup Language. A coding markup language used to create
documents that can be displayed by web browsers. Each block of text is
surrounded by codes that indicate the nature of the text.

HTML page A page coded in HTML and intended for display in a web browser.

HTTP Hypertext Transfer Protocol. The Internet protocol that fetches hypertext
objects from remote hosts. It is based on TCP/IP.

HTTP servlet A servlet that extendsj avax. servl et. Htt pServl et . These
servlets have built-in support for the HTTP protocol. Contrast with generic servlet.

HTTPS HyperText Transmission Protocol, Secure. HTTP for secure transactions.

IDE Integrated Development Environment. Software that allows you to create,
assemble, deploy, and debug code from a single, easy-to-use interface.

IIOP Internet Inter-ORB Protocol. Transport-level protocol used by both Remote
Method Invocation (RMI) over IIOP and Common Object Request Broker
Architecture (CORBA).

I1OP Listener The IIOP listener is a listen socket that listens on a specified port
and accepts incoming connections from CORBA based client application

IP address A structured, numeric identifier for a computer or other device on a
TCP/IP network. The format of an IP address is a 32-bit numeric address written as
four numbers separated by periods. Each number can be zero to 255. For example,
123.231.32.2 could be an IP address.

IMAP Internet Message Access Protocol.

isolation level See transaction isolation level.

Sun ONE Application Server 7 « Developer’s Guide to Clients * March 2003



J2EE Java 2 Enterprise Edition. An environment for developing and deploying
multi-tiered, web-based enterprise applications. The J2EE platform consists of a set
of services, application programming interfaces (APIs), and protocols that provide
the functionality for developing these applications.

JAF The JavaBeans Activation Framework (JAF) integrates support for MIME
data types into the Java platform. See Mime Types.

JAR file Java ARchive file. A file used for aggregating many files into one file.
JAR files have the.j ar extension.

JAR file contract Java ARchive contract that specifies what information must be
in the enterprise bean package.

JAR file format Java ARchive file format. A platform-independent file format
that aggregates many files into one file. Multiple applets and their requisite
components (class files, images, sounds, and other resource files) can be bundled in
a JAR file and subsequently downloaded to a browser in a single HTTP transaction.
The JAR files format also supports file compression and digital signatures.

JavaBean A portable, platform-independent reusable component model.

Java IDL Java Interface Definition Language. APls written in the Java
programming language that provide a standards-based compatibility and
connectivity with Common Object Request Broker Architecture (CORBA).

JavaMail session An object used by an application to interact with a mail store.
Application code uses the JNDI Service to locate JavaMail session resources objects
using a JNDI name.

JAXM Java API for XML Messaging. Enables applications to send and receive
document-oriented XML messages using the SOAP standard. These messages can
be with or without attachments.

JAXP Java API for XML Processing. A Java API that supports processing of XML
documents using DOM, SAX, and XSLT. Enables applications to parse and
transform XML documents independent of a particular XML processing
implementation.

JAXR Java API for XML Registry. Provides a uniform and standard Java API for

accessing different kinds of XML registries. Enables users to build, deploy and
discover web services.

Glossary 97



98

JAX-RPC Java API for XML-based Remote Procedure Calls. Enables developers
to build interoperable web applications and web services based on XML-based
RPC protocols.

JDBC Java Database Connectivity. A standards-based set of classes and
interfaces that enable developers to create data-aware components. JDBC
implements methods for connecting to and interacting with data sources in a
platform- and vendor-independent way.

JDBC connection pool A pool that combines the JDBC data source properties
used to specify a connection to a database with the connection pool properties.

JDBC resource A resource used to connect an application running within the
application server to a database using an existing JDBC connection pool. Consists
of a JNDI name (which is used by the application) and the name of an existing
JDBC connection pool.

JDK Java Development Kit. The software that includes the APIs and tools that
developers need to build applications for those versions of the Java platform that
preceded the Java 2 Platform. See also JDK.

JMS Java Message Service. A standard set of interfaces and semantics that define
how a JMS client accesses the facilities of a JMS message service. These interfaces
provide a standard way for Java programs to create, send, receive, and read
messages.

JMS-administered object A pre-configured JMS object—a connection factory or
a destination—created by an administrator for use by one or more JMS clients.

The use of administered objects allows JMS clients to be provider-independent;
that is, it isolates them from the proprietary aspects of a provider. These objects are
placed in a JNDI name space by an administrator and are accessed by JMS clients
using JNDI lookups.

JMS client An application (or software component) that interacts with other JMS
clients using a JMS message service to exchange messages.

JMS connection factory The JMS administered object a JMS client uses to create a
connection to a JMS message service.

Sun ONE Application Server 7 « Developer’s Guide to Clients * March 2003



JMS destination The physical destination in a JMS message service to which
produced messages are delivered for routing and subsequent delivery to
consumers. This physical destination is identified and encapsulated by an JMS
administered object that a JMS client uses to specify the destination for which it is
producing messages and/or from which it is consuming messages.

JMS messages Asynchronous requests, reports, or events that are consumed by
JMS clients. A message has a header (to which additional fields can be added) and
a body. The message header specifies standard fields and optional properties. The
message body contains the data that is being transmitted.

JMS provider A product that implements the JMS interfaces for a messaging
system and adds the administrative and control functions needed for a complete
product.

JMS Service Software that provides delivery services for a JIMS messaging
system, including connections to JMS clients, message routing and delivery,
persistence, security, and logging. The message service maintains physical
destinations to which JMS clients send messages, and from which the messages are
delivered to consuming clients.

JNDI Java Naming and Directory Interface. This is a standard extension to the
Java platform, providing Java technology-enabled applications with a unified
interface to multiple naming and directory services in the enterprise. As part of the
Java Enterprise API set, INDI enables seamless connectivity to heterogeneous
enterprise naming and directory services.

JNDI name A name used to access a resource that has been registered in the JNDI
naming service.

JRE Java Runtime Environment. A subset of the Java Development Kit (JDK)
consisting of the Java virtual machine, the Java core classes, and supporting files
that provides runtime support for applications written in the Java programming
language. See also JDK.

JSP JavaServer Page. A text page written using a combination of HTML or XML
tags, JSP tags, and Java code. JSPs combine the layout capabilities of a standard
browser page with the power of a programming language.

jspc utility The compiler for JSPs. It checks all JSPs for compliance with the JSP
specification.

Glossary 99



100

JTA Java Transaction API. An API that allows applications and J2EE servers to
access transactions.

JTS Java Transaction Service. The Java service for processing transactions.
key-pair file See trust database.

LDAP Lightweight Directory Access Protocol. LDAP is an open directory access
protocol that runs over TCP/IP. It is scalable to a global size and millions of entries.
Using Sun ONE Directory Server, a provided LDAP server, you can store all of
your enterprise’s information in a single, centralized repository of directory
information that any application server can access through the network.

LDIF LDAP Data Interchange Format. Format used to represent Sun ONE
Directory Server entries in text form.

lifecycle event A stage in the server life cycle, such as startup or shutdown.

lifecycle module A module that listens for and performs its tasks in response to
events in the server life cycle.

Listener A class, registered with a posting object, that says what to do when an
event occurs.

local database connection The transaction context in a local connection is local to
the current process and to the current data source, not distributed across processes
or across data sources.

local interface An interface that provides a mechanism for a client that is located
in the same Java Virtual Machine (JVM) with a session or entity bean to access that
bean.

local session A user session that is only visible to one server.

local transaction A transaction that is native to one database and is restricted
within a single process. Local transactions work only against a single backend.
Local transactions are typically demarcated using JDBC APIs. See also global
transaction.

mapping The ability to tie an object-oriented model to a relational model of data,
usually the schema of a relational database. The process of converting a schema to
a different structure. Also refers to the mapping of users to security roles.

Sun ONE Application Server 7 « Developer’s Guide to Clients « March 2003



MDB See message-driven bean.

message-driven bean An enterprise bean that is an asynchronous message
consumer. A message-driven bean has no state for a specific client, but its instance
variables may contain state across the handling of client messages, including an
open database connection and an object reference to an EJB object. A client accesses
a message-driven bean by sending messages to the destination for which the
message-driven bean is a message listener.

messaging A system of asynchronous requests, reports, or events used by
enterprise applications that allows loosely coupled applications to transfer
information reliably and securely.

metadata Information about a component, such as its name, and specifications
for its behavior.

MIME Data Type MIME (Multi-purpose Internet Mail Extension) types control
what types of multimedia files your system supports.

module A web application, enterprise bean, message-driven bean, application
client, or connector that has been deployed individually, outside an application. See
also application, component, lifecycle module.

NTV Name, Type, Value.
object persistence See persistence.

O/R mapping tool Object-to-relational [database] tool. A mapping tool within
the Sun ONE Application Server Administrative interface that creates XML
deployment descriptors for entity beans.

package A collection of related classes that are stored in a common directory.
They are often literally packaged together in a Java archive JAR file. See also
assembly, deployment.

parameter A name/value pair sent from the client, including form field data,
HTTP header information, and so on, and encapsulated in a request object.
Contrast with attribute. More generally, an argument to a Java method or database-
prepared command.

passivation A method of releasing a bean’s resources from memory without

destroying the bean. In this way, a bean is made to be persistent, and can be
recalled without the overhead of instantiation.

Glossary 101



permission A set of privileges granted or denied to a user or group. See also ACL.

persistence For enterprise beans, the protocol for transferring the state of an
entity bean between its instance variables and an underlying database. Opposite of
transience. For sessions, the session storage mechanism.

persistence manager The entity responsible for the persistence of the entity beans
installed in the container.

persistent state Where the state of an object is kept in persistent storage, usually a
database.

pluggable authentication A mechanism that allows J2EE applications to use the
Java Authentication and Authorization Service (JAAS) feature from the J2SE
platform. Developers can plug in their own authentication mechanisms.

point-to-point delivery model Producers address messages to specific queues;
consumers extract messages from queues established to hold their messages. A
message is delivered to only one message consumer.

pooling The process of providing a number of preconfigured resources to
improve performance. If a resource is pooled, a component can use an existing
instance from the pool rather than instantiating a new one. In the Sun ONE
Application Server, database connections, servlet instances, and enterprise bean
instances can all be pooled.

POP3 Post Office Protocol

prepared command A database command (in SQL) that is precompiled to make
repeated execution more efficient. Prepared commands can contain parameters. A
prepared statement contains one or more prepared commands.

prepared statement A class that encapsulates a QUERY, UPDATE, or | NSERT
statement that is used repeatedly to fetch data. A prepared statement contains one
or more prepared commands.

presentation layout The format of web page content.

presentation logic Activities that create a page in an application, including

processing a request, generating content in response, and formatting the page for
the client. Usually handled by a web application.

102  Sun ONE Application Server 7 « Developer’s Guide to Clients « March 2003



primary key The unique identifier that enables the client to locate a particular
entity bean.

primary key class name A variable that specifies the fully qualified class name of
a bean’s primary key. Used for JNDI lookups.

principal The identity assigned to an entity as a result of authentication.
private key See public key cryptography.

process Execution sequence of an active program. A process is made up of one or
more threads.

programmatic security The process of controlling security explicitly in code
rather than allowing the component’s container (for instance, a bean’s container or
a servlet engine) to handle it. Opposite of declarative security.

programmer-demarcated transaction See bean-managed transaction.

property A single attribute that defines the behavior of an application
component. In the server. xnl file, a property is an element that contains a
name/value pair.

public key cryptography A form of cryptography in which each user has a
public key and a private key. Messages are sent encrypted with the receiver's
public key; the receiver decrypts them using the private key. Using this method,
the private key never has to be revealed to anyone other than the user.

publish/subscribe delivery model Publishers and subscribers are generally
anonymous and may dynamically publish or subscribe to a topic. The system
distributes messages arriving from a topic’s multiple publishers to its multiple
subscribers.

queue An object created by an administrator to implement the point-to-point
delivery model. A queue is always available to hold messages even when the client
that consumes its messages is inactive. A queue is used as an intermediary holding
place between producers and consumers.

QOS QOS (Quality of Service) refers to the performance limits you set for a
server instance or virtual server. For example, if you are an ISP, you might want to
charge different amounts of money for virtual servers depending on how much
bandwidth is provided. You can limit two areas: the amount of bandwidth and the
number of connections.

Glossary 103



RAR file Resource ARchive. A JAR archive that contains a resource adapter.
RDB Relational database.
RDBMS Relational database management system.

read-only bean An entity bean that is never modified by an EJB client. See also
entity bean.

realm A scope over which a common security policy is defined and enforced by
the security administrator of the security service. Also called a security policy domain
or security domain in the J2EE specification.

remote interface One of two interfaces for an Enterprise JavaBean. The remote
interface defines the business methods callable by a client.

request object An object that contains page and session data produced by a
client, passed as an input parameter to a servlet or JavaServer Page (JSP).

resource manager An object that acts as a facilitator between a resource such as a
database or message broker, and client(s) of the resource such as Sun ONE
Application Server processes. Controls globally-available data sources.

resource reference An element in a deployment descriptor that identifies the
component’s coded name for the resource.

response object An object that references the calling client and provides methods
for generating output for the client.

ResultSet An object that implements the j ava. sql . Resul t Set interface.
Resul t Set s are used to encapsulate a set of rows retrieved from a database or
other source of tabular data.

reusable component A component created so that it can be used in more than
one capacity, for instance, by more than one resource or application.

RMI Remote Method Invocation. A Java standard set of APIs that enable
developers to write remote interfaces that can pass objects to remote processes.

RMIC Remote Method Invocation Compiler.

role A functional grouping of subjects in an application, represented by one or
more groups in a deployed environment. See also user, group.

104  Sun ONE Application Server 7 « Developer’s Guide to Clients « March 2003



rollback Cancellation of a transaction.
row A single data record that contains values for each column in a table.

RowSet An object that encapsulates a set of rows retrieved from a database or
other source of tabular data. RowSet extends the j ava. sql . Resul t Set interface,
enabling Resul t Set to act as a JavaBeans component.

RPC Remote Procedure Call. A mechanism for accessing a remote object or
service.

runtime system The software environment in which programs run. The runtime
system includes all the code necessary to load programs written in the Java
programming language, dynamically link native methods, manage memory, and
handle exceptions. An implementation of the Java virtual machine is included,
which may be a Java interpreter.

SAF Server Application Function. A function that participates in request
processing and other server activities

schema The structure of the underlying database, including the names of tables,
the names and types of columns, index information, and relationship (primary and
foreign key) information.

Secure Socket Layer See SSL.

security A screening mechanism that ensures that application resources are only
accessed by authorized clients.

serializable object An object that can be deconstructed and reconstructed, which
enables it to be stored or distributed among multiple servers.

server instance A Sun ONE Application Server can contain multiple instances in
the same installation on the same machine. Each instance has its own directory
structure, configuration, and deployed applications. Each instance can also contain
multiple virtual servers. See also virtual server.

servlet An instance of the Servl et class. A servlet is a reusable application that
runs on a server. In the Sun ONE Application Server, a servlet acts as the central
dispatcher for each interaction in an application by performing presentation logic,
invoking business logic, and invoking or performing presentation layout.

Glossary 105



servlet engine An internal object that handles all servlet metafunctions.
Collectively, a set of processes that provide services for a servlet, including
instantiation and execution.

servlet runner The part of the servlet engine that invokes a servlet with a request
object and a response object. See servlet engine.

session An object used by a servlet to track a user’s interaction with a web
application across multiple HTTP requests.

session bean An enterprise bean that is created by a client; usually exists only for
the duration of a single client-server session. A session bean performs operations
for the client, such as calculations or accessing other EJBs. While a session bean
may be transactional, it is not recoverable if a system crash occurs. Session bean
objects can be either stateless (not associated with a particular client) or stateful
(associated with a particular client), that is, they can maintain conversational state
across methods and transactions. See also stateful session bean, stateless session
bean.

session cookie A cookie that is returned to the client containing a user session
identifier. See also sticky cookie.

session timeout A specified duration after which the Sun ONE Application
Server can invalidate a user session. See session.

single sign-on A situation where a user’s authentication state can be shared
across multiple J2EE applications in a single virtual server instance.

SMTP Simple Mail Transport Protocol

SNMP SNMP (Simple Network Management Protocol) is a protocol used to
exchange data about network activity. With SNMP, data travels between a
managed device and a network management station (NMS). A managed device is
anything that runs SNMP: hosts, routers, your web server, and other servers on
your network. The NMS is a machine used to remotely manage that network.

SOAP The Simple Object Access Protocol (SOAP) uses a combination of
XML-based data structuring and Hyper Text Transfer Protocol (HTTP) to define a
standardized way of invoking methods in objects distributed in diverse operating
environments across the Internet.

SQL Structured Query Language. A language commonly used in relational
database applications. SQL2 and SQL3 designate versions of the language.

106  Sun ONE Application Server 7 « Developer’s Guide to Clients « March 2003



SSL  Secure Sockets Layer. A protocol designed to provide secure
communications on the Internet.

state 1. The circumstances or condition of an entity at any given time. 2. A
distributed data storage mechanism which you can use to store the state of an
application using the Sun ONE Application Server feature interface | St at e2. See
also conversational state, persistent state.

stateful session bean A session bean that represents a session with a particular
client and which automatically maintains state across multiple client-invoked
methods.

stateless session bean A session bean that represents a stateless service. A
stateless session bean is completely transient and encapsulates a temporary piece
of business logic needed by a specific client for a limited time span.

sticky cookie A cookie that is returned to the client to force it to always connect
to the same server process. See also session cookie.

stored procedure A block of statements written in SQL and stored in a database.
You can use stored procedures to perform any type of database operation, such as
modifying, inserting, or deleting records. The use of stored procedures improves
database performance by reducing the amount of information that is sent over a
network.

streaming A technique for managing how data is communicated through HTTP.
When results are streamed, the first portion of the data is available for use
immediately. When results are not streamed, the whole result must be received
before any part of it can be used. Streaming provides a way to allow large amounts
of data to be returned in a more efficient way, improving the perceived
performance of the application.

system administrator The person who administers Sun ONE Application Server
software and deploys Sun ONE Application Server applications.

Sun ONE Application Server RowSet A RowSet object that incorporates the Sun
ONE Application Server extensions.

Sun ONE Directory Server The Sun ONE version of Lightweight Directory
Access Protocol (LDAP). Every instance of Sun ONE Application Server uses Sun
ONE Directory Server to store shared server information, including information
about users and groups. See also LDAP.

Glossary 107



Sun ONE Message Queue The Sun ONE enterprise messaging system that
implements the Java Message Service (JMS) open standard: it is a JMS provider.

TLS Transport Layer Security. A protocol that provides encryption and
certification at the transport layer, so that data can flow through a secure channel
without requiring significant changes to the client and server applications.

table A named group of related data in rows and columns in a database.

thread An execution sequence inside a process. A process may allow many
simultaneous threads, in which case it is multi-threaded. If a process executes each
thread sequentially, it is single-threaded.

topic An object created by an administrator to implement the publish/subscribe
delivery model. A topic may be viewed as node in a content hierarchy that is
responsible for gathering and distributing messages addressed to it. By using a
topic as an intermediary, message publishers are kept separate from message
subscribers.

transaction context A transaction’s scope, either local or global. See local
transaction, global transaction.

transaction isolation level Determines the extent to which concurrent
transactions on a database are visible to one-another.

transaction manager An object that controls a global transaction, normally using
the XA protocol. See global transaction.

transaction A set of database commands that succeed or fail as a group. All the
commands involved must succeed for the entire transaction to succeed.

Transaction Recovery Automatic or manual recovery of distributed transactions.
Transaction Attribute A transaction attribute controls the scope of a transaction.

transience A protocol that releases a resource when it is not being used. Opposite
of persistence.

trust database | security file that contains the public and private keys; also
referred to as the key-pair file.

108 Sun ONE Application Server 7 « Developer’s Guide to Clients « March 2003



URI Universal Resource Identifier. Describes a specific resource at a domain.
Locally described as a subset of a base directory, so that / hant bur ger is the base
directory and a URI specifies t oppi ngs/ cheese. ht nl . A corresponding URL
would be htt p: // domai n: port/toppi ngs/ cheese. htni .

URL Uniform Resource Locator. An address that uniquely identifies an HTML
page or other resource. A web browser uses URLS to specify which pages to
display. A URL describes a transport protocol (for example, HTTP, FTP), a domain
(for example, www. my- domai n. com), and optionally a URI.

user A person who uses an application. Programmatically, a user consists of a
user name, password, and set of attributes that enables an application to recognize
a client. See also group, role.

user session A series of user application interactions that are tracked by the
server. Sessions maintain user state, persistent objects, and identity authentication.

versioning See dynamic reloading.

virtual server A virtual web server that serves content targeted for a specific
URL. Multiple virtual servers may serve content using the same or different host
names, port numbers, or IP addresses. The HTTP service can direct incoming web
requests to different virtual servers based on the URL. Also called a virtual host.

A web application can be assigned to a specific virtual server. A server instance can
have multiple virtual servers. See also server instance.

WAR file Web ARchive. A Java archive that contains a web module. WAR files
have the.war extension.

web application A collection of servlets, JavaServer Pages, HTML documents,
and other web resources, which might include image files, compressed archives,
and other data. A web application may be packaged into an archive (a WAR file) or
exist in an open directory structure.

Sun ONE Application Server also supports some non-Java web application
technologies, such as SHTML and CGl.

web cache An Sun ONE Application Server feature that enables a servlet or JSP
to cache its results for a specific duration in order to improve performance.
Subsequent calls to that servlet or JSP within the duration are given the cached
results so that the servlet or JSP does not have to execute again.

Glossary 109


http://domain:port/toppings/cheese.html

web connector plug-in  An extension to a web server that enables it to
communicate with the Sun ONE Application Server.

web container See container.
web module An individually deployed web application. See web application.

web server A host that stores and manages HTML pages and web applications,
but not full J2EE applications. The web server responds to user requests from web
browsers.

Web Server Plugin The web server plugin is an HTTP reverse proxy plugin that
allows you to instruct a Sun One Web Server or Sun ONE Application Server to
forward certain HTTP requests to another server.

web service A service offered via the web. A self-contained, self-describing,
modular application that can accept a request from a system across the Internet or
an intranet, process it, and return a response.

WSDL Web Service Description Language. An XML-based language used to
define web services in a standardized way. It essentially describes three
fundamental properties of a web service: definition of the web service, how to
access that web service, and the location of that web service.

UDDI Universal Description, Discovery, and Integration. Provides worldwide
registry of web services for discovery and integration.

XA protocol A database industry standard protocol for distributed transactions.
XML Extensible Markup Language. A language that uses HTML-style tags to

identify the kinds of information used in documents as well as to format
documents.

110  Sun ONE Application Server 7 « Developer’s Guide to Clients « March 2003



A

ACC
features 22
naming 22
security 22
acc 21
acc flag 27
acc package
asenv configuration settings 38
editing sun-acc.xml 38
modifying appclient script 38
using package-appclient script 40
appclient.jar file 40
contents 40
application client 19
accessing EJB 25
appclient script 41
create bean instance 23
creating using the ACC 23
invoke business method 24
invoking an EJB module 24
locate EJB home interface 23
making a remote call 25
running 41
using SSL with CA 39
application client container 21
application client container package
client.policy file 41
application clients
authenticating using JAAS 28
security 28
application-client.xml 45

Index

ATTLIST tag 44
attributes
#IMPLIED label 45
#REQUIRED label 45
authentication realm 57

C

c++clients 71

configuring 72

developing 75

preparing for development 73

required classes 74

running 82
client 15, 50

architecture 19

web services clients 17
client types 16
clients

application clients 19

CORBA clients 18

JMS clients 18

RMI-11OP clients 18

web client 17

web services clients 17
client-side load balancing 63
configure to use orbix 67
configuring Sun ONE ORB 63
CORBA clients 18

scenarios 59

111



Section D

cpp files 79 |
create bean instance )
create method 23 IDL files
generate 75
rmic tool 75
IIOP 18
accessing EJBs 59
D accessing servers 60
deployment descriptors 42 IIOP listener cc?nfigu!'ation 51
application client container 50 [1OP/SSL configuration 54
attributes 44 InitialContext 62, 66
data 44 invoking a J2EE client without using acc 26
element 43
format 43

J2EE application client 45
subelements 43
Sun ONE application client 45 J

developing c++ clients J2EE application client 22

generate cpp files 79 J2EE platform layers 15

generate IDL files 75 Business logic layer 16
generate valuetypes 77 client 15

implementing valuetypes 81 database 16
modifying the generated IDL files 78
registering valuefactories 82
document directories
primary 92
document root 92

presentation 15
J2SE policy file 41
JAAS module 28
LoginModule 28
JMS clients 18
JNDI 18
specifying EJB hame 62, 66
JVM arguments in server.xml 69

E
EJBs
accessing with IIOP 59
specifying JNDI name 62, 66 L
launching acc 41
library for valuetype implementation
developing 77
F load balancing 63
form-hint-field attribute 51 logging messages 39

LoginModule
CallBackHandler 29
commit() method 29
integrate 30
login() method 29

112 Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



logout() method 29

M

message-driven beans 18

MIME (Multi-purpose Internet Mail Extension) types
definition and accessing page 101

modifying the generated IDL files
changing valuetypes 78
deleting duplicate variables 78

N

naming factory class 62, 66

O

ORB architecture 61

overriding built-in ORB 68
approaches 68
ORB.init properties approach 68
ORB.init() properties 68
orb.properties 69
orb.properties approach 69
provide JVM start-up arguments 69
providing JVM arguments 69

P

param-name element 47

presentation layer
J2EE components 15
non-J2EE components 16

primary document directory, setting 92

Section M

R

RMI/ZIIOP 18

S

S1ASCtxFactory class 63
scenarios
server-server 60
stand-alone 59
security
authentication data 22
JAAS module 22
using SSL with CA 39
setting the ORB port 39
singleton approach 69
SSL 22
SSL processing parameters 55
stand-alone CORBA client
creating 62
running 65
subelements
requirement rules 44
Sun ONE customer support 13
Sun ONE ORB 71
sun-acc.xml elements
auth-realm 57
cert-db 56
client-container 50
client-credential 53
description 52
log-service 53
property 58
security 54
ssl 55
target-server 51
sun-acc.xml file 50
elementsin 50
sun-application element
definition in sun-application_1_3-0.dtd file 43
sun-application-client.xml 45
sun-application-client.xml elements
default-resource-principal 47

Index 113



Section T

ejb-ref 48

ejb-ref-name 49

jndi-name 50

name 48

password 48

resource-env-ref 49

resource-env-ref-name 49

resource-ref 47

resource-ref-name 47

sun-application-client 46
sun-application-client.xml file 46

elements in 45

T

thin client 17

third party ORB 65
accessing another server instance 65
accessing backend 67
configure Orbix ORB 67
transactions
attributes 108

w

web client 17
web services clients 17

114  Sun ONE Application Server 7 « Developer’'s Guide to Clients « March 2003



	Developer’s Guide to Clients
	Contents
	About This Document
	Who Should Use This Guide
	Using the Documentation
	How This Guide Is Organized
	Reference Information
	Documentation Conventions
	General Conventions
	Conventions Referring to Directories


	Overview of Clients
	Introducing Clients
	Types of Clients
	Web Clients
	Web Services Clients
	JMS Clients
	CORBA Clients
	Application Clients


	Using the Application Client Container
	Introducing the Application Client Container
	Developing Applications Using the ACC
	Creating an Application Client
	Using an Application Client to Invoke an EJB Module
	Invoking an RMI/IIOP-based Client Without Using the ACC
	Authenticating an Application Client Using the JAAS Module
	Authenticating an RMI/IIOP Client Without Using the ACC
	Packaging an Application Client Using the ACC
	Running an Application Client Using the ACC
	Sample Client Application

	Application Client Deployment Descriptors
	Format of Deployment Descriptors
	J2EE Application Client Deployment Descriptor
	Sun ONE Application Client Deployment Descriptor
	Application Client Container Configuration File


	Java-based CORBA Clients
	CORBA Client Scenarios
	Stand-alone Scenario
	Server to Server Scenario
	ORB Support Architecture

	Developing Java-based CORBA Clients
	Creating a Stand-alone CORBA Client
	Running a Stand-alone CORBA Client

	Third Party ORB Support
	Accessing EJBs in a Remote Application Server Instance From a Servlet/Enterprise JavaBean
	Configuring Back End Access Using Third Party Client ORBs Within Sun ONE Application Server


	C++ Clients
	Introducing C++ Clients
	Developing a C++ Client
	Configuring C++ Clients to Access Sun ONE Application Server
	Creating a C++ Client
	Sample Applications


	Glossary
	Index

