
Solaris System Management
Agent Developer's Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819–6812–01
May 2007

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Solstice Enterprise Agents, Java, and Solaris are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Solstice Enterprise Agents, Java et Solaris sont des marques de fabrique ou
des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de
fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

070604@17466

Contents

Preface ...13

1 Introduction to the System Management Agent ... 17
Overview of SNMP Agents ... 17
Overview of the System Management Agent ... 18

Extending the Agent .. 22
Features Added in System Management Agent .. 23

Contents of the SMA for Developers .. 24
File Locations of Developer Files .. 24
SMA Tools .. 25
API Libraries ... 26
Demonstration Modules ... 26
Technical Support for Developers ... 27

2 Creating Modules ..29
About Modules .. 29
Overview of Creating Modules .. 30
Defining a MIB .. 31

MIB File Names .. 31
Setting MIB Environment Variables ... 32
Generating Code Templates .. 33
Modifying Code Templates .. 35
Configuring the Module ... 35
Delivering the Module .. 35
Namespace Issues .. 36

Avoiding Namespace Collisions ... 36
Module Names ... 36

3

Library Names .. 37

3 Data Modeling ..39
init_module Routine ... 39
Scalar Objects ... 41

demo_module_1 Code Example for Scalar Objects ... 41
Modifications for Scalar Data Retrieval ... 42

Simple Tables ... 43
demo_module_2 Code Example for Simple Tables ... 44
Modifications for Simple Table Data Retrieval .. 45
Data Retrieval From Large Simple Tables ... 46
Multiple SET Processing in demo_module_2 ... 46

General Tables ... 48
demo_module_3 Code Example for General Tables ... 49

4 Storing Module Data ...51
About Storing Module Data ... 51

Configuration Files .. 51
Defining New Configuration Tokens .. 52

Implementing Persistent Data in a Module .. 52
Storing Persistent Data .. 53
Reading Persistent Data .. 54

demo_module_5 Code Example for Persistent Data ... 54
Storing Persistent Data in demo_module_5 ... 54
Reading Persistent Data in demo_module_5 .. 56
Using SNMP_CALLBACK_POST_READ_CONFIG in demo_module_5 ... 56

5 Implementing Alarms ...59
Refresh Intervals .. 59
Asynchronous Trap Notification .. 60
Thresholds for Sending Traps .. 60
demo_module_4 Code Example for Alarms .. 61

Reading Data From the demo_module_4.conf Configuration File .. 62
Using SNMP_CALLBACK_POST_READ_CONFIG in demo_module_4 ... 63

Contents

Solaris System Management Agent Developer's Guide • May 20074

Generating Traps in demo_module_4 ... 63

6 Deploying Modules ...65
Overview of Module Deployment ... 65
Choosing Dynamic Modules or Subagents .. 66
Loading Modules Dynamically .. 67

▼ How to Dynamically Load a Module and Restart the Agent ... 68
▼ How to Dynamically Load a Module Without Restarting the Agent 68

Using Subagents .. 70
AgentX Protocol ... 71
Functions of a Subagent .. 71

Deploying a Module as a Subagent .. 71
demo_module_8 Code Example for Implementing a Subagent ... 72
Subagent Security Guidelines ... 72

7 Multiple Instance Modules ..75
Implementing Multiple Instances of a Module .. 75

▼ How To Implement Multiple Instance Modules .. 76
demo_module_6 Code Example for Multiple Instance Modules ... 77

Enabling Dynamic Updates to a Multiple Instance Module .. 78
demo_module_7 Code Example for Dynamic Updates of Multiple Instance Modules 78

Modifying the demo_module_7 Code ... 78
▼ How to Enable Dynamic Update of a Multi-Instance Module .. 78

Registering New Instances in the Module ... 83

8 Long–Running Data Collection ...85
About Long-Running Data Collection ... 85
SNMP Alarm Method for Data Collection ... 86

demo_module_9 Code Example for SNMP Alarm Method ... 86
Managing the Timing of Data Collection ... 87

SNMP Manager Polling Method for Data Collection ... 88
demo_module_10 Code Example for SNMP Polling Method .. 88
Avoiding a Race Condition When Polling .. 88

Contents

5

9 Entity MIB ..91
About the Entity MIB .. 91
SMA Entity MIB Implementation ... 93

Using the Entity MIB ... 93
▼ How to Set Up the Agent to Use the Entity MIB ... 94

Entity MIB API .. 94
Physical Table Functions ... 96
Physical Contains Table Functions .. 100
Logical Table Functions .. 103
LP Mapping Table Functions ... 107
Alias Mapping Table Functions ... 109

Header Files for Entity MIB Functions ... 111
entPhysicalEntry_t Structure ... 111
entLogicalEntry_t Structure ... 112

Tips for Using Entity MIB Functions .. 113
demo_module_11 Code Example for Entity MIB ... 115

10 Migration of Solstice Enterprise Agents to the System Management Agent125
Why Migrate to SMA? .. 125
Solstice Enterprise Agents Migration Strategy Overview ... 126
Migrating Solstice Enterprise Agent Subagents to SMA .. 126

demo_module_12 Code Example for Solstice Enterprise Agents Subagent Migration 127
Modifying the SMA Instrumentation Code ... 129

A SMA Resources ...131
Man Pages ... 131
API Functions .. 134

B MIBs Implemented in SMA ...141
MIBs Implemented in SMA ... 141

Glossary .. 143

Index ... 145

Contents

Solaris System Management Agent Developer's Guide • May 20076

Figures

FIGURE 1–1 Net-SNMP Architecture ... 19
FIGURE 3–1 Set Processing State Diagram ... 47
FIGURE 8–1 Race Condition When Polling for Data .. 89

7

8

Tables

TABLE 1–1 File Locations for Developer Content ... 24
TABLE 1–2 Descriptions of Demonstration Modules ... 26
TABLE 2–1 Configuration Files for Use With mib2cTool .. 34
TABLE 2–2 Data Collection Documentation ... 35
TABLE 6–1 Advantages and Disadvantages of Deployment Methods 67
TABLE 9–1 Entity MIB Functions Listed by Category .. 95
TABLE 10–1 Comparison of MIB Tools in SMA and Solstice Enterprise Agents Software ..127
TABLE 10–2 Comparison of Solstice Enterprise Agents Templates to SMA Templates 128
TABLE A–1 Man Pages for General SNMP Topics ... 131
TABLE A–2 Man Pages for SNMP Tools .. 132
TABLE A–3 Man Pages for SNMP Configuration Files .. 133
TABLE A–4 Man Pages for SNMP Daemons ... 134

9

10

Examples

EXAMPLE 9–1 Physical Entities for demo_module_11 ... 115
EXAMPLE 9–2 Logical Entities for demo_module_11 .. 121
EXAMPLE 9–3 Logical to Physical Mappings for demo_module_11 .. 122
EXAMPLE 9–4 Physical to Logical to MIB Alias Mappings for demo_module_11 123
EXAMPLE 9–5 Physical Contains Table Entries for demo_module_11 .. 124

11

12

Preface

This manual, Solaris System Management Agent Developer's Guide, describes how to develop
MIB modules for use in extending the System Management Agent.

The manual also includes information about migrating existing modules that were developed
for the Solstice Enterprise Agents.

Note – This SolarisTM release supports systems that use the SPARC® and x86 families of processor
architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon EM64T. The supported
systems appear in the Solaris 10 Hardware Compatibility List at
http://www.sun.com/bigadmin/hcl. This document cites any implementation differences
between the platform types.

In this document these x86 related terms mean the following:

■ “x86” refers to the larger family of 64-bit and 32-bit x86 compatible products.
■ “x64” points out specific 64-bit information about AMD64 or EM64T systems.
■ “32-bit x86” points out specific 32-bit information about x86 based systems.

For supported systems, see the Solaris 10 Hardware Compatibility List.

Who Should Use This Book
This manual is intended for developers who want to add new management data to the System
Management Agent. This data can then be manipulated through network management
programs.

The manual assumes that you are familiar with the following technologies:

■ C programming concepts
■ SNMPv1, SNMPv2c, and SNMPv3 protocols
■ Structure of Management Information (SMI) v1 and v2
■ Management Information Base (MIB) structure
■ Abstract Syntax Notation (ASN.1)

13

http://www.sun.com/bigadmin/hcl

How This Book Is Organized
This manual contains the following chapters:

Chapter 1 provides an introduction to the Simple Network Management Protocol (SNMP) and
the System Management Agent (SMA).

Chapter 2 provides basic guidelines for creating System Management Agent modules.

Chapter 3 discusses the handling of data in scalar form and in tables.

Chapter 4 explains how to store module data that is preserved when the agent is restarted.

Chapter 5 explains how to implement alarms in modules.

Chapter 6 discusses the ways to deploy your module, as a subagent or a dynamically loaded
module.

Chapter 7 describes how to implement a module to allow more than one instance of the module
to run on a host.

Chapter 8 discusses the ways that you can enable a module to collect data over a long period of
time.

Chapter 9 describes the Entity MIB and its API functions.

Chapter 10 contains information for developers who want to migrate an SEA subagent from
Solstice Enterprise Agents to use in the System Management Agent.

Appendix A lists System Management Agent resources that you might find helpful.

Appendix B lists the MIBs that are included in the System Management Agent.

Glossary contains definitions of terms that are used in this manual.

Related Reading
For general information on SNMP and writing MIBs, you might find the following books
helpful:
■ Essential SNMP by Douglas R. Mauro and Kevin J. Schmidt, published by O'Reilly and

Associates.
■ Understanding SNMP MIBs by David T. Perkins and Evan McGinnis, published by Prentice

Hall.

If you intend to use the Entity MIB for the management of hardware, you should read the
following RFC:

Preface

Solaris System Management Agent Developer's Guide • May 200714

Internet Engineering Task Force RFC Number 2737 on the Entity MIB at
http://www.ietf.org/rfc/rfc2737.txt.

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Preface

15

http://www.ietf.org/rfc/rfc2737.txt
http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/

Shell Prompts in Command Examples
The following table shows the default UNIX® system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Preface

Solaris System Management Agent Developer's Guide • May 200716

Introduction to the System Management Agent

The System Management Agent is a Simple Network Management Protocol (SNMP) agent.
This chapter contains the following topics:

■ “Overview of SNMP Agents” on page 17
■ “Overview of the System Management Agent” on page 18
■ “Contents of the SMA for Developers” on page 24

Overview of SNMP Agents
SNMP uses the term manager for the client application that accesses the data about a managed
device or system. The manager usually runs on a system that is different from the managed
system. The term agent is used for the program that implements the protocol stack for servicing
the requests from the manager. The SNMP agent typically runs on the managed device. The
agent offers services on a designated TCP/IP port. The default SNMP port is 161.

Information about the target device is contained in a Management Information Base (MIB).
MIBs are used by agents and managers so that both programs have knowledge of the data
available. The MIB tells the manager about the device's functions and data. The MIB also tells
the manager how to address or access that information in the form of managed objects. To
access this management information, the manager issues requests to the agent. The requests
contain identifiers for the MIB's data objects that are of interest to the manager. If the request
can be successfully completed, the agent returns a response that contains the values for the
required data objects.

Most SNMP agents support the basic SNMP protocol stack, and some minimal MIBs. However,
to make management of a device more effective, additional MIBs must be supported on the
managed device. The additional MIBs are provided by device vendors to provide management
information about custom features of the managed device.

A MIB that is added to an SNMP agent is commonly known as an extension because the MIB
extends the capabilities of the agent. An agent that can accept extensions is extensible. The

1C H A P T E R 1

17

System Management Agent (SMA), described in this manual, is an extensible agent. The
extensions to the System Management Agent are called extension modules.

Overview of the System Management Agent
The System Management Agent (SMA) is an SNMP agent that is based on an open source
project, Net-SNMP at http://www.net-snmp.org. This base agent supports SNMPv1, v2c, and
v3 protocols.

Note – The Net-SNMP version used in SMA is 5.0.9.

The following diagram shows the structure of the Net-SNMP agent, and is followed by an
explanation of the components.

Overview of the System Management Agent

Solaris System Management Agent Developer's Guide • May 200718

http://www.net-snmp.org

The components of the Net-SNMP agent are:

■ Transport domains

The Net-SNMP agent currently supports the transports TCP, UDP, and UNIX Domain
Sockets. The agent can receive and transmit SNMP messages through these transports. The
agent's implementation of each transport implements functions to send and receive raw
SNMP data. The raw messages received by the transport domains are passed to the message
processor for further processing. The message processor also transfers raw SNMP messages
to the transport domain for sending.

Message Processor
snmp_api.c

Dispatcher
(associated to transports)

snmp_agent.c

OID registration handler
agent_handler.c

Security module
registration

(snmp_secmod.c)

Authorization
module registration

Repository
(read_config.c)

VACM

USM

Persistent
file

TCP UDP UNIX

Helpers

Proxy

Other SNMP
agents

AgentX

AgentX
subagents

Modules

Transport domains

Agent

FIGURE 1–1 Net-SNMP Architecture

Overview of the System Management Agent

Chapter 1 • Introduction to the System Management Agent 19

■ Message processor
The message processor decodes raw SNMP messages into internal PDU structures. The
processor also encodes PDUs into raw SNMP messages. The SNMP messages are encoded
by using Binary Encoding Rules, which are described in RFC 3416 and RFC 1157. The
message processor also handles the security parameters in the SNMP messages. If the
messages include User-based Security Model (USM) security parameters, the message
processor passes the required parameters to the USM module. Additionally, trap messages
from modules can be sent to the message processor for transmission.

■ USM module
The USM module handles all processing that is required by the User-based Security Model
as defined in RFC 3414. The module also implements the SNMP-USER-BASED-SM-MIB as
defined in the same RFC. The USM module, when initialized, registers with the agent
infrastructure. The message processor invokes the USM module through this registration.
The USM module decrypts incoming messages. The module then verifies authentication
data and creates the PDUs. For outgoing messages, the USM module encrypts PDUs and
generates authentication data. The module then passes the PDUs to the message processor,
which then invokes the dispatcher.
The USM module's implementation of the SNMP-USER-BASED-SM-MIB enables the
SNMP manager to issue commands to manage users and security keys. The MIB also
enables the agent to ensure that a requesting user exists and has the proper authentication
information. When authentication is done, the request is carried out by the agent.
The various keys that the USM module needs to perform encryption and authentication
operations are stored persistently.
See Chapter 4, “Managing Security,” in Solaris System Management Agent Administration
Guide for more information about USM.

■ Dispatcher
The dispatcher is responsible for routing messages to appropriate destinations. After the
USM module processes an incoming message into PDUs, the dispatcher performs an
authorization check. This authorization check is done by the registered access control
module, which is the VACM module. If the check succeeds, the dispatcher uses the agent
registry to determine the module that has registered for the relevant object identifier. The
dispatcher then invokes appropriate operations on the module. A particular request might
cause the dispatcher to invoke several modules if the SNMP request contains multiple
variables. The dispatcher keeps track of outstanding requests through session objects.
Responses from the modules are then dispatched to the transports that are associated with
the session objects. The message processor performs the appropriate message encoding.

■ VACM module
The View-based Access Control Model is described in RFC 3415. This RFC also defines the
SNMP-VIEW-BASED-ACM-MIB. The MIB specifies objects that are needed to control
access to all MIB data that is accessible through the SNMP agent. Upon initialization, the
VACM module registers as the access control module with the agent infrastructure. The

Overview of the System Management Agent

Solaris System Management Agent Developer's Guide • May 200720

VACM module implements access control checks according to several parameters that are
derived from the SNMP message. These parameters specify:
■ The security model being used, which can be USM, v1 communities, or v2 communities
■ The security name, which is user name in USM, and community string in v1 and v2
■ The context
■ The object being accessed
■ The operation being performed

By implementing the SNMP-VIEW-BASED-ACM-MIB, the VACM module handles
manipulation of various table entries that are mandated by VACM. These table entries are
looked up in performing the VACM check and are maintained persistently in the agent
configuration file.

See Chapter 4, “Managing Security,” in Solaris System Management Agent Administration
Guide for more information about VACM.

■ Repository
The agent configuration file, snmpd.conf, is the repository for the agent. Configuration
tokens for various modules are stored in the repository. The modules have access to these
configuration tokens when the modules are initialized. Modules can also register callback
routines with the repository. The callbacks are invoked when the module state needs to be
persisted, or written to disk to be retrieved later. Within the callbacks, each module is
allowed to output its state. When the agent shuts down, the callbacks are used to save the
modules' state. An SNMP SET command can also be used to cause a module's state to be
persisted.

■ OID registration handler
The OID registration handler, or agent registry, handles the registration of object identifiers
that are specified by modules.

■ Proxy module
The proxy module handles proxy forwarding of SNMP messages to and from other SNMP
agents. The proxy module can also map between SNMPv1 and SNMPv2 protocols
according to the rules specified in RFC 2576.
The proxy module stores its configuration tokens in the agent configuration file. A
particular configuration entry can associate OIDs within a context with another SNMP
agent. The configuration file also specifies community strings and destination transport end
points. By using these configuration tokens, the proxy module registers as the handler for
the specific OIDs. When an incoming request for any of the proxy module's OIDs reaches
the dispatcher, the dispatcher invokes the proxy module. The proxy module then issues
appropriate SNMP requests to the target agents. Responses are returned back to the
dispatcher.
The System Management Agent uses the proxy module for interaction with the Solstice
Enterprise Agents.

Overview of the System Management Agent

Chapter 1 • Introduction to the System Management Agent 21

■ AgentX module

The AgentX module implements RFCs 2741 and 2742. The AgentX module registers as the
handler for the AgentX-related registration tables defined in the AGENTX-MIB. The
transports that are used for the AgentX protocol interactions are specified in the agent
configuration file. In the Net-SNMP agent, the transports are typically UNIX domain
sockets. When the AgentX module is initialized, the module creates sessions on these
transports and registers as the handler for these sessions. In the System Management Agent,
the only allowable AgentX transport is UNIX domain sockets, so only sessions on UNIX
domain sockets are created.

When an AgentX subagent starts, the subagent sends its registration requests with messages
that use the AgentX protocol to the master agent. The requests are received by the sessions
that have been created by the AgentX module. The message processor decodes the message,
then invokes the AgentX module. The AgentX module, rather than the dispatcher module,
is the handler for these sessions.

The AgentX module then registers as the handler for OIDs that are specified in the subagent
registration message. When requests for these OIDs are received by the dispatcher, the
requests are directed to the AgentX module, which in turn connects to the required
subagent. Requests to unregister OIDs are handled similarly.

■ Extension modules

Extension modules, which are depicted at the bottom of Figure 1–1, are the means by which
MIBs are implemented in the agent. An extension module registers with the agent all the
object identifiers that the module manages. The module also implements functionality to
perform SNMP operations on the module's objects. As shown in Figure 1–1, helper routines
or handlers in the API can be inserted between a module and the agent infrastructure. These
handlers can have various functions, such as handling details of table iterations or providing
debug output.

Extending the Agent
The Net-SNMP agent can be extended in the following ways:

■ The agent can be recompiled to include a static module, which becomes part of the agent
infrastructure. Static modules are initialized on agent start up. Examples of static modules
include the VACM and USM modules. The System Management Agent was developed by
compiling several static modules for MIBs that are not included in the Net-SNMP agent. See
“Features Added in System Management Agent” on page 23 for a list of the MIBs included
in SMA.

You cannot deploy your own modules as static modules with SMA because you cannot
recompile the SMA code.

Overview of the System Management Agent

Solaris System Management Agent Developer's Guide • May 200722

■ Modules can be loaded into the master agent's process image. A shared object is dynamically
loaded into the agent when the agent is running. The shared object registers the OIDs for the
MIB that is supported by the shared object. The location of the shared object libraries for the
module can be specified through SNMP requests or in the agent configuration file.

■ Modules can be loaded into secondary SNMP subagents. Subagents are separate executable
programs that can dynamically register themselves with the agent that is running on the
designated SNMP port. The monitoring agent processes any SNMP request that comes to
the SNMP port, and can send a request to a subagent, if needed. In this scenario, the agent
on the designated port is called the master agent. The AgentX RFCs 2741 and 2742 define
the protocols between the subagent and master agent as well as the MIBs that contain details
of the registrations. For more information on master agents and subagents, see Chapter 6.

■ A module can be delivered as an SNMP agent. The master agent can interact with such
agents through a proxy mechanism.

Note – The System Management Agent supports module deployment in the form of dynamically
loaded modules or subagents. The agent also provides a proxy mechanism. You cannot
recompile the System Management Agent.

See Chapter 6 for information about how to deploy modules as dynamic modules and in
subagents.

Features Added in System Management Agent
The SMA product includes the Net-SNMP agent, Net-SNMP developer tools, and Net-SNMP
API libraries that enable the agent to be extended through modules. You can use the tools and
APIs to create a module to support the custom features of a managed device. A management
program can then be used for monitoring and managing the device.

The SMA extends the Net-SNMP agent to support the following MIBs:

■ MIB II, described in http://www.ietf.org/rfc/rfc1213.txt, defines the structure of
management information and the network management protocol for TCP/IP-based
networks. The SMA implements all the object groups of MIB II except the EGP group.

■ Host Resources MIB, described in http://www.ietf.org/rfc/rfc2790.txt, defines the
structure of management information for managing host systems. The SMA implements
the same host resources MIB that is included in the base Net-SNMP agent.

■ Sun MIB is the MIB II with Sun-specific object groups added. Sun MIB was originally
provided in the Solstice Enterprise Agents product beginning with the Solaris 2.6 operating
system. The SMA implements the following groups from the Sun MIB:
■ Sun System group
■ Sun Processes group

Overview of the System Management Agent

Chapter 1 • Introduction to the System Management Agent 23

http://www.ietf.org/rfc/rfc1213.txt
http://www.ietf.org/rfc/rfc2790.txt

■ Sun Host Performance group

Support for these MIBs is provided as static modules that run in the SMA agent. The agent was
created by recompiling the Net-SNMP agent to include these modules.

The SMA provides an additional MIB for hardware, the Entity MIB, in an external dynamically
loaded module. The Entity MIB is described in RFC 2737 at
http://www.ietf.org/rfc/rfc2737.txt. The Entity MIB is implemented as a skeleton MIB,
so that module developers can populate the various tables of the MIB. The Entity MIB can be
used by a single agent for managing multiple logical entities and physical entities. For more
information about the Entity MIB, see Chapter 9.

Contents of the SMA for Developers
SMA includes the following content for developers:

■ Developer tools, and Perl modules needed by the tools
■ API libraries for using Net-SNMP functions
■ API library for using the Entity MIB functions
■ Demo modules, for demonstrating how to implement some types of data modeling

In addition, you can install the SUNWsmaS package, which contains the source code for
Net-SNMP. See the Solaris System Management Agent Administration Guide for installation
instructions.

File Locations of Developer Files
The developer files are installed in the locations that are shown in the following table.

TABLE 1–1 File Locations for Developer Content

Directory Developer Content

/usr/demo/sma_snmp Sample modules for demonstration purposes. See
“Demonstration Modules” on page 26 for more
information.

/usr/sfw/bin Command line tools that are useful for developers. For more
information on these tools, see “SMA Tools” on page 25.

/usr/sfw/sbin Executable files for the snmpd agent daemon and snmptrapd

trap daemon, which provide the SNMP services.

Contents of the SMA for Developers

Solaris System Management Agent Developer's Guide • May 200724

http://www.ietf.org/rfc/rfc2737.txt

TABLE 1–1 File Locations for Developer Content (Continued)
Directory Developer Content

/usr/sfw/lib The 32-bit shared libraries that contain the API functions
from Net-SNMP, and the libentity.so library, which
defines functions for using the Entity MIB.

This directory is supplied on all Solaris platforms. See “API
Libraries” on page 26 for more information.

/usr/sfw/lib/sparcv9 The 64-bit shared libraries that contain the API functions
from Net-SNMP, and the libentity.so library, which
defines functions for using the Entity MIB.

This directory is supplied only on 64-bit Solaris on SPARC®
platforms. See “API Libraries” on page 26 for more
information.

/usr/sfw/include Header files needed by API libraries.

/usr/sfw/doc/sma_snmp/html HTML documentation for Net-SNMP API functions.

/etc/sma/snmp Configuration files that are used by the mib2c tool.

/etc/sma/snmp/mibs The MIBs supported by the System Management Agent.

/usr/perl5/vendor_perl/

5.8.3/sun4-solaris-64int

Perl modules needed by the mib2c tool.

/usr/share/sma_snmp Source code for Net-SNMP. The code is provided in the
SUNWsmaS package, which is not installed by default during
Solaris installation. The package must be installed manually
from the Solaris media. For instructions for installing the
SUNWsmaS package, see the Solaris System Management
Agent Administration Guide.

SMA Tools
The SMA includes many command-line tools, which are described in the sma_snmp(5) man
page.

Each tool has an associated man page. Links to all the man pages for the product are included in
Appendix A. The tools are located in /usr/sfw/bin.

The snmp commands can be used to query the agent to test your modules. Read the man pages
for detailed usage information.

Contents of the SMA for Developers

Chapter 1 • Introduction to the System Management Agent 25

API Libraries
The following API libraries are included with the SMA product:

■ libnetsnmp

■ libnetsnmpagent

■ libnetsnmpmibs

■ libnetsnmphelpers

■ libentity

The libentity library is not part of Net-SNMP, but is a customization for the SMA product.

On SPARC platforms, the 32–bit Net-SNMP libraries are contained in the /usr/sfw/lib
directory. The 64–bit Net-SNMP libraries are contained in the /usr/sfw/lib/sparcv9
subdirectory.

On x86 platforms, only the 32–bit Net-SNMP libraries are available in the /usr/sfw/lib
directory.

The functions contained in the Net-SNMP libraries are used in the MIB modules that you
create, as well as in the agent. Documentation from Net-SNMP for using the API functions is
contained in /usr/sfw/doc/sma_snmp/html.

The SMA includes the same Net-SNMP API functions that are available with the open source
Net-SNMP agent. “API Functions” on page 134 includes a list of functions that are certified to
work with the System Management Agent.

Demonstration Modules
The /usr/demo/sma_snmp directory contains several demonstration modules. The demo
modules illustrate methods for creating modules to solve various kinds of
information-gathering problems. Later chapters in this manual discuss the demo modules in
detail. The following table lists and describes the demo modules. The table also provides
cross-references to the sections that discuss the demos.

TABLE 1–2 Descriptions of Demonstration Modules

Module Name Demonstrates Discussed in Section

demo_module_1 Data modeling for scalar objects “Scalar Objects” on page 41

demo_module_2 Data modeling for a simple table with writable
objects

“Simple Tables” on page 43

demo_module_3 Data modeling for a general table “General Tables” on page 48

Contents of the SMA for Developers

Solaris System Management Agent Developer's Guide • May 200726

TABLE 1–2 Descriptions of Demonstration Modules (Continued)
Module Name Demonstrates Discussed in Section

demo_module_4 Implementing alarms “demo_module_4 Code Example for
Alarms” on page 61

demo_module_5 Persistence of module data across agent restarts “demo_module_5 Code Example for
Persistent Data” on page 54

demo_module_6 Running multiple instances of a module on a
single host

“Implementing Multiple Instances
of a Module” on page 75

demo_module_7 Dynamically updating multi-instance modules “Enabling Dynamic Updates to a
Multiple Instance Module” on
page 78

demo_module_8 Implementing a module as an AgentX subagent “Deploying a Module as a
Subagent” on page 71

demo_module_9 Implementing objects that wait for external
events without blocking the agent

“SNMP Alarm Method for Data
Collection” on page 86

demo_module_10 Module design that handles long running data
collections so that their values can be polled by an
SNMP manager

“SNMP Manager Polling Method
for Data Collection” on page 88

demo_module_11 How to use the Entity MIB API functions “SMA Entity MIB
Implementation” on page 93

demo_module_12 How use Solstice Enterprise Agents code
templates and SMA code templates to help
re-implement Solstice Enterprise Agents
subagents as SMA modules

“Migrating Solstice Enterprise
Agent Subagents to SMA” on
page 126

Technical Support for Developers
Technical support for developers of modules for the System Management Agent is provided
through the Net-SNMP open source community at http://www.net-snmp.org. You might
find the developers discussion mailing list net-snmp-coders@lists.sourceforge.net to be
helpful. An archive for the mailing list is located at
http://sourceforge.net/mailarchive/forum.php?forum_id=7152.

Contents of the SMA for Developers

Chapter 1 • Introduction to the System Management Agent 27

http://www.net-snmp.org
http://sourceforge.net/mailarchive/forum.php?forum_id=7152

28

Creating Modules

This chapter provides basic guidelines for creating System Management Agent modules. The
chapter includes a process you can use to implement a MIB as a module in System Management
Agent. Guidelines for naming components of your implementation to avoid conflicts are also
included.

The following topics are discussed:

■ “About Modules” on page 29
■ “Overview of Creating Modules” on page 30
■ “Defining a MIB” on page 31
■ “Setting MIB Environment Variables” on page 32
■ “Generating Code Templates” on page 33
■ “Modifying Code Templates” on page 35
■ “Configuring the Module” on page 35
■ “Delivering the Module” on page 35
■ “Namespace Issues” on page 36

About Modules
The term module as used in this manual has two closely related meanings. Module refers
generically to the “container” of the new pieces of management data that the developer needs to
inform the agent about. In this sense, a module is an abstract concept.

However, an abstract module must be represented as a shared object file, which runs on a
managed system. The shared object file, or the associated program, is often referred to as a
module. Therefore, a module can be defined as a C program that works with the SMA to
manage additional resources.

All modules communicate through the API library functions. The API functions are used
whether the modules are compiled in the agent, or loaded dynamically, or running in a separate
subagent.

2C H A P T E R 2

29

Overview of Creating Modules
You can create modules for the System Management Agent to allow a specific application,
device, system, or network to be managed through a management application. The System
Management Agent includes and documents the functions that are required by a module. The
functions are used to register a module with the agent, to handle requests for module data, and
to perform other module tasks.

You are not required to code a module manually, although you can if you prefer. Refer to the
http://www.net-snmp.org/ web site for information about writing a module manually. The
process is outside the scope of this document.

The high-level process described in this manual for implementing a module is as follows:

1. Define the MIB for the objects to be managed.
To define a MIB, you must know what management data is associated with the system or
entity to be managed. You must assign variable names to each discrete management item.
You must also determine the attributes and ASN.1 data types. MIB definition is outside the
scope of this manual. See “Defining a MIB” on page 31 for more information about MIBs.

2. Generate code templates for a module from the MIB.
To generate code templates, you convert the MIB nodes into C source code files with the
mib2c tool. The code templates include API functions for registering the data, and handling
the requests for the data. See “Generating Code Templates” on page 33 for more
information.

3. Modify the code templates to fill in the data collection and management portions of the
module.
To modify the code templates, you must determine how to implement much of the
functionality of the agent. See “Modifying Code Templates” on page 35 for more
information.

4. Compile the C files into a shared object file.
You compile a module for the System Management Agent as you would compile any C
shared object file.

5. Decide on the deployment method and configuration of the module.
You must determine whether to configure the module as a separate subagent, or to load the
module dynamically into the SNMP agent. See Chapter 6 for information about
deployment.

Overview of Creating Modules

Solaris System Management Agent Developer's Guide • May 200730

http://www.net-snmp.org/

Defining a MIB
MIB definition is one of the more time-consuming steps of creating a module. MIB syntax can
be quite complicated, and is outside the scope of this document. Refer to “Related Reading” on
page 14 for suggestions of other sources of information about MIB syntax.

Tip – The mib2c tool, used for converting MIBs to C code, includes error checking for MIB
syntax. You can use mib2c to check your MIB syntax as you create your MIB, even before you
are ready to convert the MIB.

You should consider using one of the standard MIBs that are included with the SMA as a model
for creating your MIB. The /etc/sma/snmp/mibs directory contains all the standard MIBs
supported by the SMA.

The following MIBs can be used as examples to emulate because the MIBs have been found to
work well with mib2c:

■ UCD-DLMOD-MIB.txt

■ SUN-SEA-EXTENSIONS-MIB.txt

■ IP-MIB.txt

Tip – Pay particular attention to the name that is assigned for the MODULE-IDENTITY. This name
should be equal to the MIB file name with the hyphens removed, and in mixed case. For
example, SUN-SEA-EXTENSIONS-MIB.txt uses sunSeaExtensionsMIB for the
MODULE-IDENTITY. A MIB file that does not use this format might not work with mib2c.

The file NET-SNMP-EXAMPLES-MIB.txt is also included in the /etc/sma/snmp/mibs directory,
and might be helpful in explaining how to define a variety of MIB variable types.

MIB File Names
You must ensure unique names for your MIB files. All custom MIBs to be used with SMA are in
the same namespace as the standard MIBs, even if you keep the custom MIBs in a separate
directory. Most of the MIBs derived from RFCs have RFC numbers in their names to clearly
identify the MIBs, and ensure unique names. Other MIBs follow naming conventions, which
decrease the chances of duplicate names.

Defining a MIB

Chapter 2 • Creating Modules 31

MIBs are usually named with the following conventions:

■ Use all uppercase letters, and use hyphens to separate segments of the file name.
■ Begin the MIB name with your company name. For example, if the MIB is for a company

that is named Acme, the first segment of the MIB name might be ACME.
■ Indicate the type of objects in the middle of the name. For example, if the MIB is for a router,

you could use ROUTER in the middle of the name.
■ Include MIB as the last segment of the name.
■ Append a .txt file extension.

A sample name that uses these conventions is ACME-ROUTER-MIB.txt.

Setting MIB Environment Variables
You should set the MIBS and MIBDIRS environment variables to ensure that the tools that use the
MIBs can find and load your MIB file. Tools that use the MIBs include mib2c and all the snmp
commands such as snmpget, snmpwalk, and snmpset.

Set the MIBS environment variable to include the MIB file that you are using. For example, to
add a MIB called MYTESTMIB.txt to the list of MIBs, use one of the following commands:

In the csh or tcsh shells:

% setenv MIBS +MYTESTMIB

In the sh or bash shells:

MIBS=+MYTESTMIB;export MIBS

These commands add your MIB to the list of default MIB modules that the agent supports.

The default search path for MIB files is /etc/sma/snmp/mibs. You can modify the MIB search
path by setting the MIBDIRS variable. For example, to add the path /home/mydir/mibs to the
MIB search path, type the following commands:

In the csh or tcsh shells:

% setenv MIBDIRS /home/mydir/mibs:/etc/sma/snmp/mibs

% setenv MIBS ALL

In the sh or bash shells:

MIBDIRS=/home/mydir/mibs:/etc/sma/snmp/mibs

export MIBDIRS

MIBS=ALL;export MIBS

Setting MIB Environment Variables

Solaris System Management Agent Developer's Guide • May 200732

Setting MIBS to ALL ensures that mib2c finds all MIBs in the search location for MIB files. Both
the MIB files to be loaded and the MIB file search location can also be configured in the
snmp.conf file. See the snmp.conf(4)man page for more information.

Note – You should avoid copying your MIBs into the /etc/sma/snmp/mibs directory. That
directory should be reserved for the MIBs provided with SMA.

Generating Code Templates
You use the mib2c tool to generate C header files and implementation files from your MIB. You
can use the generated C files as templates for your module. You can modify the templates
appropriately for your purposes, and then use the templates to make your module. Before the
file generation begins, mib2c tests your MIB node for syntax errors. Any errors are reported to
standard output. You must fix any syntax errors before the code can be generated. This
error-checking ability enables you to use mib2c as you create your MIB to ensure that the MIB
syntax is correct.

Note – Be sure to set your MIB environment variables as described in “Setting MIB Environment
Variables” on page 32 before you use mib2c.

The mib2c command must be run against nodes in the MIB, not on the entire MIB at once. You
do not need to specify the MIB name, but the MIB file must be located in a directory on your
MIB search path. On the mib2c command line, you must specify a configuration file and the
name of one or more MIB nodes. The configuration file must matches the type of data in the
MIB node. The command must use the following format:

mib2c -c configfile MIBnode [MIBnode2 MIBnode3 ...]

For example, if you have one node that is called scalarGroup in your MIB, you could use the
following command to generate the code templates:

% mib2c -c mib2c.scalar.conf scalarGroup

The files scalarGroup.h and scalarGroup.c are generated.

If your MIB contains both scalar and table data, you should run mib2c separately on the MIB
nodes for each type of data. You specify the appropriate configuration file for each type of data.

The following table lists the mib2c configuration files. The table describes the purpose of each
configuration file, to help you decide which configuration file to use for your data.

Generating Code Templates

Chapter 2 • Creating Modules 33

TABLE 2–1 Configuration Files for Use With mib2cTool

mib2cConfiguration File Purpose

mib2c.scalar.conf For scalar data, including integers and non-integers. This
configuration file causes mib2c to generate handlers for the scalar
objects in the specified MIB node. Internal structural definitions, table
objects, and notifications in the MIB are ignored.

mib2c.int_watch.conf For scalar integers only. When you use this configuration file, mib2c
generates code to map integer type scalar MIB objects to C variables.
GET or SET requests on MIB objects subsequently have the effect of
getting and setting the corresponding C variables in the module
automatically. This feature might be useful if you want to watch, or
monitor, the values of certain objects.

mib2c.iterate.conf For tables of data that are not kept in the agent's memory. The tables
are located externally, and the tables need to be searched to find the
correct row. When you use this configuration file, mib2c generates a
pair of routines that can iterate through the table. The routines can be
used to select the appropriate row for any given request. The row is
then passed to the single table handler routine. This routine handles
the rest of the processing for all of the column objects, for both GET
and SET requests.

mib2c.create-dataset.conf For tables of data that are kept in the agent's memory. The table does
not need to be searched to find the correct row. This configuration file
causes mib2c to generate a single handler routine for each table. Most
of the processing is handled internally within the agent, so this handler
routine is only needed if particular column objects require special
processing.

mib2c.array-user.conf For tables of data that are kept in the agent's memory. The data can be
sorted by the table index. This configuration file causes mib2c to
generate a series of separate routines to handle different aspects of
processing the request. As with the mib2c.create-dataset.conf file,
much of the processing is handled internally in the agent. Many of the
generated routines can be deleted if the relevant objects do not need
special processing.

mib2c.column_defines.conf To create a header file that contains a #define for each column
number in a MIB table.

mib2c.column_enums.conf To create a header file that contains a #define for each enum of
common values used by the columns in a MIB table.

The mib2c(1M) man page includes more details about using the mib2c tool. You should also see
Chapter 3 for more examples of using mib2c.

Generating Code Templates

Solaris System Management Agent Developer's Guide • May 200734

Modifying Code Templates
The code templates that are generated by mib2c include code that registers the OIDs for the
MIB data and handles the requests for the data. The init_module routine in the mibnode.c
template provides the basic code for data retrieval. You must modify the templates to provide
the data collection and data management, or instrumentation, of your module. See
“init_module Routine” on page 39 for information about modifying the initialization routine.

The following table shows where to find more information about how to do various types of
data collection.

TABLE 2–2 Data Collection Documentation

Type of data Reference

Scalar objects “Scalar Objects” on page 41

Simple tables “Simple Tables” on page 43

General tables “General Tables” on page 48

Long running Chapter 8

Configuring the Module
Configuration of the module depends partly on the module. You can provide automatic
configuration as part of the installation process for your module. Alternatively, you can provide
the steps and suggestions as part of the end user documentation. If you want users to be able to
set configuration parameters for your module, you can store configuration parameters in a
configuration file. The parameters can then be retrieved by the module whenever the module
starts. See Chapter 4 for information.

For any module, you must decide whether to run the module as a subagent or a dynamically
loading module. See Chapter 6 for more information.

Delivering the Module
When the module code is complete, you must decide how to deliver the module. If you are
creating a module that must be distributed and then be installed, you should use the operating
system's native software delivery model. For the Solaris operating system, you should use
packages as described in the Application Packaging Developer’s Guide.

Delivering the Module

Chapter 2 • Creating Modules 35

Namespace Issues
This section explains the naming conventions for the System Management Agent. The
conventions are required to enable all developers to avoid namespace collisions.

Avoiding Namespace Collisions
Namespace is a term used to indicate the complete set of possible names that can exist together
in a certain “space.” Namespaces exist in the computer world and in the real world. For example,
the names of people in a group, such as the passenger list in an aircraft, forms a namespace. In
the computer world, a namespace might be a list of file names in a directory, or the function
names in a source code file.

A namespace usually requires names to be unique, to ease the addressing of an individual entity.
In the real world, the names of entities in a namespace might not always be unique. For
example, there might be two aircraft passengers with the same name. In such situations, an
attribute other than the name of the entities of the namespace must be used. For example, the
seat numbers might form the namespace of the passengers on the aircraft.

The namespaces in the computing world mandate that uniqueness is ensured. For example, you
must have unique names for all the files in a directory or functions that are part of the same
program.

Namespace collision occurs if parts of the namespace delivered by different people have the
same names. For example, two vendors might come up with the same library name and install
in the same directory. A recent trend is to make the directory name part of the namespace, to
ensure different directories for different vendors or different products. Even if the file names are
the same, the file names are in different directories.

For the SMA developer, several areas are susceptible to namespace collisions. The following
sections discuss naming conventions that you must follow to greatly reduce the possibility of
having naming issues.

Module Names
The module name should be based closely on the name of the MIB that is implemented by the
module. MIB name guidelines are discussed in “MIB File Names” on page 31.

Use the following guidelines to name your module, beginning with the name of the MIB file:
■ Remove the hyphens
■ Remove the word MIB
■ Remove the .txt
■ Convert to lowercase

Namespace Issues

Solaris System Management Agent Developer's Guide • May 200736

For example, if your MIB name is ACME-ROUTER-MIB.txt, you should name the module
acmerouter. When you compile, the shared object that results is acmerouter.so.

Library Names
You must ensure unique names for your custom libraries because all libraries to be used with
SMA are delivered into a single lib namespace. You should observe the following guidelines in
naming your libraries:

■ Observe the guidelines for creating unique MIB names in “MIB File Names” on page 31.
■ Observe the guidelines for naming your module in “Module Names” on page 36.
■ Add the prefix lib to your module name to create the name of your library.

For example, assume that your MIB name is ACME-ROUTER-MIB.txt. Your module name is
acmerouter. The associated library should be named libacmerouter.so. The .so extension is
added when you compile.

Namespace Issues

Chapter 2 • Creating Modules 37

38

Data Modeling

This chapter provides information on how to modify the init_module() routine of a module to
handle various types of data. The chapter discusses the related code examples that are provided
with the System Management Agent:

demo_module_1 Scalar data example

demo_module_2 Simple table example

demo_module_3 General table example

The chapter includes the following topics:

■ “init_module Routine” on page 39
■ “Scalar Objects” on page 41
■ “Simple Tables” on page 43
■ “General Tables” on page 48

init_module Routine
When a module is loaded in the agent, the agent calls the init_module() routine for the
module. The init_module() routine registers the OIDs for the objects that the module handles.
After this registration occurs, the agent associates the module name with the registered OIDs.
All modules must have this init_module() routine.

The mib2c utility creates the init_module() routine for you. The routine provides the basic
code for data retrieval, which you must modify appropriately for the type of data.

If you have several MIB nodes in your MIB, the mib2c utility creates several .c files. Each
generated file contains an init_mibnode() routine. A module must have only one initialization
routine, which must conform to the convention of init_module(). Therefore, when you have

3C H A P T E R 3

39

more than one MIB node represented in your module, you must combine the initialization
content of all the generated .c files into one file to ensure that the initialization routine for each
MIB node is called by init_module().

You can combine files to build a module in one of the following ways:

■ Create a module file to call all the initialization routines.
With this approach, the routine init_myMib() in myMib.c might look similar to the
following pseudo code:

#include "scalarGroup.h"

#include "tableGroup.h"

...

init_myMib() {

init_scalarGroup();

init_tableGroup();

}

where init_scalarGroup() and init_tableGroup() are in different files.
■ Combine the initialization routines' code into one initialization routine.

If you used this approach, the routine init_myMib() might be similar to the following
pseudo code:

init_myMib() {

<init code - scalarGroup> /* found in scalarGroup.c */

<init code - tableGroup> /* found in tableGroup.c */

}

In both cases, the rest of the code in myMib.c might be similar to the following pseudo code:

/* get/set handlers for scalarGroup found in scalarGroup.c */

/* get_first/get_next/handler for tableGroup - found in tableGroup.c */

The following sections discuss how the data retrieval code must be modified in your module for
different types of data.

init_module Routine

Solaris System Management Agent Developer's Guide • May 200740

Scalar Objects
Scalar objects are used for singular variables that are not part of a table or an array. If your MIB
contains scalar objects, you must run mib2c with a scalar-specific configuration file on the MIB
nodes that contain the scalars. You should use the following command, where mibnode1 and
mibnode2 are top-level nodes of scalar data for which you want to generate code:

mib2c -c mib2c.scalar.conf mibnode1 mibnode2 ...

You can specify as many nodes of scalar data as you want. This command generates two C code
files that are named mibnode.c and mibnode.h for each MIB node that is specified in the
command line. You must modify the mibnode1.c and mibnode2.c files to enable the agent to
retrieve data from scalar objects. See the mib2c(1M) man page for more information about
using the mib2c tool.

Now, compile the MIB and example code as described in “demo_module_1 Code Example for
Scalar Objects” on page 41.

demo_module_1Code Example for Scalar Objects
The demo_module_1 code example is provided to help you understand how to modify the code
generated by the mib2c command to perform a scalar data retrieval. The demo_module_1 code
example is located by default in the directory /usr/demo/sma_snmp/demo_module_1.

The README_demo_module_1 file contains instructions that describe how to perform the
following tasks:

■ Generate code templates from a MIB that contains scalar objects
■ Compile source files to generate a shared library object that implements a module
■ Set up the agent to dynamically load the module
■ Test the module with snmp commands to show that the module is functioning as expected

The demo_module_1 is set up to allow you to generate code templates me1LoadGroup.c and
me1LoadGroup.h. You can then compare the generated files to the files demo_module_1.c and
demo_module_1.h. The mib2c utility generates me1LoadGroup.c, which contains the
init_me1LoadGroup() function. You should compare this function to the
init_demo_module_1() function in the demo_module_1.c file.

The demo_module_1.c and demo_module_1.h files have been modified appropriately to retrieve
scalar data. You can use these files as a model for learning how to work with scalar data in your
own module. The instructions then explain how to compile the modified source files to create a
functioning module.

Scalar Objects

Chapter 3 • Data Modeling 41

Modifications for Scalar Data Retrieval
The demo_module_1 example code, demo_module_1.c, provides the system load average for 1, 5
and 15 minutes, respectively.

The init_demo_module_1() function call defines the OIDs for the following three scalar
objects:

■ me1SystemLoadAvg1min

■ me1SystemLoadAvg5min

■ me1SystemLoadAvg15min

These OIDs are set up in the demo_module_1.c source file, to reflect what is in the
SDK-DEMO1-MIB.txt. The OIDs are defined as follows:

static oid me1SystemLoadAvg15min_oid[] =

{ 1,3,6,1,4,1,42,2,2,4,4,1,1,3, 0 };

static oid me1SystemLoadAvg1min_oid[] =

{ 1,3,6,1,4,1,42,2,2,4,4,1,1,1, 0 };

static oid me1SystemLoadAvg5min_oid[] =

{ 1,3,6,1,4,1,42,2,2,4,4,1,1,2, 0};

The mib2c command used the netsnmp_register_read_only_instance() function to register
these handler functions:

■ get_me1SystemLoadAvg1min()

■ get_me1SystemLoadAvg5min()

■ get_me1SystemLoadAvg15min()

In this way, when a GET or GET_NEXT request is received, the corresponding handler
function is called.

For example, for the 15 minute load average, you can manually register the
get_me1SystemLoadAvg15min() handler function. The handler retrieves data on the
me1SystemLoadAvg15min scalar. You must place the handler in the
netsnmp_register_read_only_instance() function as follows:

netsnmp_register_read_only_instance

(netsnmp_create_handler_registration

("me1SystemLoadAvg15min",

get_me1SystemLoadAvg15min,

me1SystemLoadAvg15min_oid,

OID_LENGTH(me1SystemLoadAvg15min_oid),

HANDLER_CAN_RONLY));

Scalar Objects

Solaris System Management Agent Developer's Guide • May 200742

Alternatively, you can use the mib2c command to generate the function bodies of the handler
functions for you. Replace /* XXX... in the generated code with your own data structure for
returning the data to the requests. For instance, the following code must be modified:

case MODE_GET:

snmp_set_var_typed_value(requests->requestvb, ASN_OCTET_STR, (u_char

) / XXX: a pointer to the scalar’s data */,

/* XXX: the length of the data in bytes */);

break;

This code must be modified to include your own data structure for returning data to the
requests. Replace the /* XXX... that is shown in the preceding code.

case MODE_GET:

data = getLoadAvg(LOADAVG_1MIN);

snmp_set_var_typed_value(requests->requestvb, ASN_OCTET_STR, (u_char

*) data , strlen(data));

free(data);

break;

Note that the input MIB file contains the specification of a table as well as scalar data. When you
run mib2c -c mib2c.scalar.conf scalar-node the template code is generated only for the
scalar nodes in the MIB.

Simple Tables
A simple table has four characteristics:

■ The table is indexed by a single integer value
■ Such indexes run from 1 to a determinable maximum
■ All indexes within this range are valid
■ The data for a particular index can be retrieved directly by, for example, indexing into an

underlying data structure

If any of these conditions are not met, the table is not a simple table but a general table. The
techniques described here are applicable only to simple tables.

Note – mib2c assumes that all tables are simple. For information on handling the general tables
case, see “General Tables” on page 48.

Simple Tables

Chapter 3 • Data Modeling 43

If your MIB contains simple tables, you must run mib2c with a configuration file that handles
code generation for simple tables. You should use the following command, where mibnode1
and mibnode2 are top level nodes of tabular data for which you want to generate code:

mib2c -c mib2c.iterate.conf mibnode1 mibnode2 ...

You can specify as many nodes of simple table data as you want. This command generates two C
code files that are named mibnode.c and mibnode.h for each MIB node that is specified in the
command line. You must modify the mibnode1.c and mibnode2.c files to enable the agent to
retrieve data from simple tables. See the mib2c(1M) man page for more information about
using the mib2c tool.

The demo_module_2 code example shows how to generate code templates for simple tables.

demo_module_2Code Example for Simple Tables
The demo_module_2 code example is provided to help you understand how to modify the code
generated by the mib2c command to perform data retrieval from simple tables. The
demo_module_2 code example is located by default in the directory
/usr/demo/sma_snmp/demo_module_2.

The README_demo_module_2 file contains instructions that describe how to do the following
tasks:

■ Generate code templates from a MIB that contains a simple table
■ Compile source files to generate a shared library object that implements a module
■ Set up the agent to dynamically load the module
■ Test the module with snmp commands to show that the module is functioning as expected

The demo_module_2 is set up to allow you to generate code templates me1FileTable.c and
me1FileTable.h. You can then compare the generated files to the files demo_module_2.c and
demo_module_2.h.

The mib2c utility generates me1FileTable.c, which contains the init_me1FileTable()
function. You should compare this function to the init_demo_module_2() function in the
demo_module_2.c file.

Simple Tables

Solaris System Management Agent Developer's Guide • May 200744

Modifications for Simple Table Data Retrieval
In demo_module_2.c, the init_demo_module_2 routine calls the
initialize_table_me1FileTable() function. The initialize_table_me1FileTable()
function registers the OID for the table handled by the function. The function also calls some
Net-SNMP functions to initialize the tables.

You should provide the table data in this initialize_table_me1FileTable() function if
needed. The initialize_table_me1FileTable() function performs the following:

Initialization The initialize_table_me1FileTable() function performs
the real table initialization, by performing tasks such as setting
the maximum number of rows and columns.

OID Table Definition The initialize_table_me1FileTable() function defines
the table OID:

static oid me1FileTable_oid[] =

{1,3,6,1,4,1,42,2,2,4,4,1,2,1};

Table Definition The initialize_table_me1FileTable() function sets up the
table's definition. This function specifies another function to
call, me1FileTable_get_first_data_point(), to process the
first row of data in the table. The function
me1FileTable_get_next_data_point() is called to process
the remaining rows in the table.

netsnmp_table_helper_add_indexes(table_info,

ASN_UNSIGNED, /* index: me1FileIndex */

0);

table_info->min_column = 1;

table_info->max_column = 4;

/* iterator access routines */

iinfo->get_first_data_point =

me1FileTable_get_first_data_point;

iinfo->get_next_data_point =

me1FileTable_get_next_data_point;

iinfo->table_reginfo =

table_info;

iinfo is a pointer to a netsnmp_iterator_info structure.

Master Agent Registration The initialize_table_me1FileTable() function registers
the table with the master agent:

Simple Tables

Chapter 3 • Data Modeling 45

netsnmp_register_table_iterator(my_handler, iinfo);

The table iterator is a helper function that modules can use to index through rows in a table.
Functionally, the table iterator is a specialized version of the more generic table helper. The
table iterator eases the burden of GETNEXT processing. The table iterator loops through all the
data indexes retrieved through those function calls that should be supplied by the module that
requests help. See the API documentation at
/usr/sfw/doc/sma_snmp/html/group__table__iterator.html for more information on
table iterator APIs.

Note that the input MIB file contains the specification of table and scalar data. However, when
you run mib2c with mib2c.iterate.conf and specify the table node name, only template code
for the simple table in the MIB is generated.

Data Retrieval From Large Simple Tables
Data retrieval from a simple table requires you to use the single, integer index subidentifier to
index into an existing data structure.

With some modules, this underlying table might be relatively large, or only accessible through a
cumbersome interface. Data retrieval might be very slow, particularly if performing a walk of a
MIB tree requires the table to be reloaded for each variable requested. In these circumstances, a
useful technique is to cache the table on the first read and use that cache for subsequent
requests.

To cache the table, you must have a separate routine to read in the table. The routine uses two
static variables. One variable is a structure or array for the data. The other variable is an
additional timestamp to indicate when the table was last loaded. When a call is made to the
routine to read the table, the routine can first determine whether the cached table is sufficiently
new. If the data is recent enough, the routine can return immediately. The system then uses the
cached data. If the cached version is old enough to be considered out of date, the routine can
retrieve the current data. The routine updates the cached version of the data and the timestamp
value. This approach is particularly useful if the data is relatively static, such as a list of mounted
file systems.

Multiple SET Processing in demo_module_2

The demo_module_2 example code shows how to perform a multiple OID set action. In this case,
a file name and row status are provided.

When the agent processes a SET request, a series of calls to the MIB module code are made.
These calls ensure that all SET requests in the incoming packet can be processed successfully.
This processing allows modules the chance to get out of the transaction sequence early. If the

Simple Tables

Solaris System Management Agent Developer's Guide • May 200746

module gets out of one transaction early, none of the transactions in the set are completed, in
order to maintain continuity. However, this behavior makes the code for processing SET
requests more complex. The following diagram is a simple state diagram that shows each step of
the master agent's SET processing.

An operation with no failures is illustrated by the vertical path on the left, in the preceding
figure. If any of the MIB modules that are being acted upon returns an error, the agent branches
to one of the failure states. The failure states are on the right side in the figure. These failure
states require you to clean up and, where necessary, undo the actions of previous steps in your
module.

See the me1FileTable_handler() function in the demo_module_2 example code, for how to
perform SET requests in different states. The following is list describes each of the states:

case MODE_SET_RESERVE1 Checks that the value being set is acceptable.

case MODE_SET_RESERVE2 Allocates any necessary resources. For example, calls to the
malloc() function occur here.

case MODE_SET_FREE Frees resources when one of the other values being SET failed for
some reason.

case MODE_SET_ACTION Sets the variable as requested and saves information that might
be needed in order to reverse this SET later.

case MODE_SET_COMMIT Operation is successful. Discards saved information and makes
the change permanent. For example, writes to the snmpd.conf
configuration file and frees any allocated resources.

Start

Succeeds

RESERVE1

Succeeds

RESERVE2

Succeeds

ACTION

FREE

UNDO

Succeeds

COMMIT

Fails

Fails

Fails

FIGURE 3–1 Set Processing State Diagram

Simple Tables

Chapter 3 • Data Modeling 47

case MODE_SET_UNDO A failure occurred, so resets the variable to its previous value.
Frees any allocated resources.

You can perform the set action using either of the following commands when you use the
demo_module_2 example:

snmpset -v1 -c private localhost me1FileTable.1.2.3 s "test"

snmpset -v1 -c private localhost .1.3.6.1.4.1.42.2.2.4.4.1.2.1.1.2.2 s "test"

These commands change the file that you want to monitor.

Note – In order to use the snmpset command to specify a different file name, you must have a
private community string in the snmpd.conf file, which is located in /etc/sma/snmp or
$HOME/.snmp.

General Tables
A general table differs from a simple table in at least one of the following ways:

■ The table is not indexed with a single integer.
For example, if the index is an IP address, the table is a general table.

■ The maximum index cannot be determined easily.
For example, the network interfaces table is a general table because it does not have a
maximum index that you can determine.

■ At any given point, some indexes might be invalid.
For example, a table of currently running software might contain a row for a program that
has just ended, but the table has yet to be updated. The table must be processed as a general
table.

■ The table data is not directly accessible.
For example, the network interfaces table is maintained in the kernel and cannot be accessed
directly.

The command that you use to generate code templates for general tables is the same command
used for simple tables:

mib2c -c mib2c.iterate.conf mibnode1 mibnode2 ...

The demo_module_3 code example shows how modify the templates appropriately to retrieve
data from general tables.

General Tables

Solaris System Management Agent Developer's Guide • May 200748

demo_module_3Code Example for General Tables
The demo_module_3 code example is provided to help you understand how to modify the code
generated by the mib2c command to perform a data retrieval in a general table. The table
example provides information for monitoring a list of files. The demo_module_3 code example is
located by default in the directory /usr/demo/sma_snmp/demo_module_3.

The README_demo_module_3 file contains instructions that describe how to perform the
following tasks:

■ Generate code templates from a MIB that contains general table
■ Compile source files to generate a shared library object that implements a module
■ Set up the agent to dynamically load the module
■ Test the module with snmp commands to show that the module is functioning as expected

The demo_module_3 is set up to allow you to generate code templates me1ContactInfoTable.c
and me1ContactInfoTable.h. You can then compare the generated files to the files
demo_module_3.c and demo_module_3.h.

The me1ContactInfoTable.c and me1ContactInfoTable.h have been modified appropriately
to retrieve data from general tables. You can use these files as a model for learning how to work
with general tables in your own module. The instructions then explain how to compile the
modified source files to create a functioning module.

The demo_module_3 code was generated by using mib2c with the -c mib2c.iterate.conf
option. Some functions have been added to implement a link list to provide the test data.

The example uses some dummy data to perform data retrieval for a two-index table. The code is
similar to the demo_module_2.c with one extra index. The following code sets up the table with
two indexes:

netsnmp_table_helper_add_indexes(table_info,

ASN_INTEGER, /* index: me1FloorNumber */

ASN_INTEGER, /* index: me1RoomNumber */

0);

Use care in returning the “NEXT” data when function
me1ContactInfoTable_get_next_data_point() is called. For instance, the data in this table is
presorted so the next data is conveniently pointed by the pNext pointer in this example code:

me1ContactEntry* nextNode = (me1ContactEntry*) *my_loop_context;

nextNode = nextNode->pNext;

If your implementation is more complicated, make sure the OIDs are increased incrementally,
(xxx.1.1, xxx.1.2,).

General Tables

Chapter 3 • Data Modeling 49

The input MIB file contains the specification of tables and scalars. When you run mib2c -c

mib2c.iterate.conf on a general table node, template code is generated only for the general
table in the MIB.

General Tables

Solaris System Management Agent Developer's Guide • May 200750

Storing Module Data

This chapter discusses how a module can store data that persists when the agent is restarted.

The chapter includes the following topics:

■ “About Storing Module Data” on page 51
■ “Implementing Persistent Data in a Module” on page 52
■ “demo_module_5 Code Example for Persistent Data” on page 54

About Storing Module Data
You might want your module to store persistent data. Persistent data is information such as
configuration settings that the module stores in a file and reads from that file. The data is
preserved across restarts of the agent.

Modules can store tokens with assigned values in module-specific configuration files. A
configuration file is created manually. Tokens can be written to the file or read from the file by a
module. The module registers handlers that are associated with the module's specific
configuration tokens.

Configuration Files
The snmp_config(4) man page discusses SNMP configuration files in general. The man page
documents the locations where the files can be stored so the agent can find the files. These
locations are on the default search path for SNMP configuration files.

For your modules, the best location to store configuration files is in a $HOME/.snmp directory,
which is on the default search path. You can also set the SNMPCONFPATH environment variable if
you want to use a non-default location for configuration files.

4C H A P T E R 4

51

When you create your own configuration file, you must name the file module.conf or
module.local.conf. You must place the file in one of the directories on the SNMP
configuration file search path.

Note – You might find that the Net-SNMP routines write your module's configuration file to the
/var/sma_snmp directory. The routines make updates to that version of the file. However, the
routines can find the configuration file in other locations when the module needs to initially
read the file.

Defining New Configuration Tokens
Configuration tokens are used by modules to get persistent data during runtime. When your
module uses custom configuration tokens, you should create one or more custom configuration
files for the module. You might also choose to create one configuration file for several related
modules. You can define new tokens in the custom configuration file.

Custom tokens must use the same format as the directives in snmpd.conf. One token is defined
in each line of the configuration file. The configuration tokens are written in the form:

Token Value

For example, your token might be:

my_token 4

Modules should not define custom tokens in the SNMP configuration file,
/etc/sma/snmp/snmpd.conf. If a module stores tokens in /etc/sma/snmp/snmpd.conf,
namespace collisions can potentially occur. See “Avoiding Namespace Collisions” on page 36
for more information about namespace collisions.

Implementing Persistent Data in a Module
The module can register handlers that are associated with tokens in a module-specific
configuration file with the register_config_handler() function. The handlers can then be
used later in the module for a specific task.

The register_config_handler() is defined as follows:

register_config_handler (const char *type_param, const char *token,

void(*parser)(const char *, char *),

void(*releaser)(void), const char *help)

The first argument to this function designates the base name of the configuration file, which
should be the same as the name of the module. For example, if the first argument is

Implementing Persistent Data in a Module

Solaris System Management Agent Developer's Guide • May 200752

my_custom_module, then the agent infrastructure looks for the configuration tokens in the file
my_custom_module.conf. Note that you must create the configuration file manually before the
module can use the file.

The second argument to this function designates the configuration token that the module is
looking for.

For more information about register_config_handler() and other related functions, see the
API documentation in /usr/sfw/doc/sma_snmp/html/group__read__config.html. You can
also look at /usr/demo/sma_snmp/demo_module_5/demo_module_5.c to see how the function
is used.

Storing Persistent Data
Your module must use the read_config_store_data() and read_config_store() functions
together with callback functions to store data.

Your module must first register a callback with the snmp_register_callback() function so
that data is written to the configuration file when the agent shuts down.

The snmp_register_callback() function is as follows:

int snmp_register_callback(int major,

int minor,

SNMPCallback *new_callback,

void *arg);

You must set major to SNMP_CALLBACK_LIBRARY, set minor to SNMP_CALLBACK_STORE_DATA.
When arg is not set to NULL, arg is a void pointer used whenever the new_callback function is
exercised.

The prototype to your callback function, the new_callback pointer, is as follows:

int (SNMPCallback) (int majorID,

int minorID,

void *serverarg,

void *clientarg);

See the API documentation for more information about setting up callback registrations with
the agent at /usr/sfw/doc/sma_snmp/html/group__callback.html.

The read_config_store_data() function should be used to create the token-value pair that is
to be written into the module's configuration file. The read_config_store() function actually
does the storing when the registered callbacks are exercised upon agent shutdown.

Implementing Persistent Data in a Module

Chapter 4 • Storing Module Data 53

Note – When your module stores persistent data, you might find that the configuration file is
written to the /var/sma_snmp directory. Modified token-value pairs are appended to the file,
rather than overwriting the previous token-value pairs in the file. The last values that were
defined in the file are the values that are used.

Reading Persistent Data
Data is read from a module's configuration file into the module by using the
register_config_handler() function. For example, you can call the function as follows:

register_config_handler("my_module", "some_token",

load_my_tokens, NULL, NULL);

Whenever the token some_token is read by the agent in my_module.conf file, the
load_my_tokens() function is called with token name and value as arguments. The
load_my_tokens() function is invoked. The data can be parsed by using the
read_config_read_data() function.

demo_module_5Code Example for Persistent Data
The demo_module_5 code example demonstrates the persistence of data across agent restart.
The demo is located in the directory /usr/demo/sma_snmp/demo_module_5 by default.

This module implements SDK-DEMO5-MIB.txt. The demo_module_5.c and demo_module_5.h

templates were renamed from the original templates me5FileGroup.c and me5FileGroup.h

that were generated with the mib2c command. The name of the initialization function is
changed from init_me5FileGroup to init_demo_module_5.

See the README_demo_module_5 file in the demo_module_5 directory for the procedures to build
and run the demo.

Storing Persistent Data in demo_module_5

This example stores configuration data in the /var/sma_snmp/demo_module_5.conf file.

In demo_module_5.c, the following statement registers the callback function. The callback
function is called whenever the agent sees that module data needs to be stored, such as during
normal termination of the agent.

snmp_register_callback(SNMP_CALLBACK_LIBRARY,

SNMP_CALLBACK_STORE_DATA,

demo5_persist_data,

NULL);

demo_module_5 Code Example for Persistent Data

Solaris System Management Agent Developer's Guide • May 200754

The demo5_persist_data() function uses read_store_config to store data:

int demo5_persist_data(int a, int b, void *c, void *d)

{

char filebuf[300];

sprintf(filebuf, "demo5_file1 %s", file1);

read_config_store(DEMO5_CONF_FILE, filebuf);

sprintf(filebuf, "demo5_file2 %s", file2);

read_config_store(DEMO5_CONF_FILE, filebuf);

sprintf(filebuf, "demo5_file3 %s", file3);

read_config_store(DEMO5_CONF_FILE, filebuf);

sprintf(filebuf, "demo5_file4 %s", file4);

read_config_store(DEMO5_CONF_FILE, filebuf);

}

In demo_module_5, a new file can be added for monitoring, by using the snmpset command.
The commit phase of the snmpset request uses the read_config_store() function to store file
information:

case MODE_SET_COMMIT:

/*

* Everything worked, so we can discard any saved information,

* and make the change permanent (e.g. write to the config file).

* We also free any allocated resources.

*

*/Persist the file information */

snprintf(&filebuf[0], MAXNAMELEN, "demo5_file%d %s",

data->findex, data->fileName);

read_config_store(DEMO5_CONF_FILE, &filebuf[0]);

/*

* The netsnmp_free_list_data should take care of the allocated

* resources

*/

The persistent data is stored in the /var/sma_snmp/demo_module_5.conf file.

demo_module_5 Code Example for Persistent Data

Chapter 4 • Storing Module Data 55

Reading Persistent Data in demo_module_5

Data is read from the configuration files into a module by registering a callback function to be
called whenever an relevant token is encountered. For example, you can call the function as
follows:

register_config_handler(DEMO5_CONF_FILE, "demo5_file1",

demo5_load_tokens, NULL, NULL);

Whenever the demo5_file1 token in the demo_module_5.conf file is read by the agent, the
function demo5_load_tokens() is called with token name and value as arguments. The
demo5_load_tokens() function stores the token value in appropriate variables:

void

demo5_load_tokens(const char *token, char *cptr)

{

if (strcmp(token, "demo5_file1") == 0) {

strcpy(file1, cptr);

} else if (strcmp(token, "demo5_file2") == 0) {

strcpy(file2, cptr);

} else if (strcmp(token, "demo5_file3") == 0) {

strcpy(file3, cptr);

} else if (strcmp(token, "demo5_file4") == 0) {

strcpy(file4, cptr);

} else {

/* Do Nothing */

}

return;

}

Using SNMP_CALLBACK_POST_READ_CONFIG in
demo_module_5

A few seconds elapse after agent startup while all configuration tokens are read by the module.
During this interval, the module should not perform certain functions. For example, until the
persistent file names are read from /var/sma_snmp/demo_module_5.conf into the module, the
file table cannot be populated. To handle these cases, a callback function can be set. This
callback function is called when the process of reading the configuration files is complete. For
example, you might call the function as follows:

snmp_register_callback(SNMP_CALLBACK_LIBRARY,

SNMP_CALLBACK_POST_READ_CONFIG, demo_5_post_read_config, NULL);

demo_module_5 Code Example for Persistent Data

Solaris System Management Agent Developer's Guide • May 200756

The demo_5_post_read_config() function is called after the configuration files are read. In
this example, the demo_5_post_read_config() function populates the file table, then registers
the callback function for data persistence.

int

demo5_post_read_config(int a, int b, void *c, void *d)

{ if (!AddItem(file1))

snmp_log(LOG_ERR, "Failed to add instance in init_demo_module_5\n");

if (!AddItem(file2))

snmp_log(LOG_ERR, "Failed to add instance in init_demo_module_5\n");

if (!AddItem(file3))

snmp_log(LOG_ERR, "Failed to add instance in init_demo_module_5\n");

if (!AddItem(file4))

snmp_log(LOG_ERR, "Failed to add instance in init_demo_module_5\n");

snmp_register_callback

(SNMP_CALLBACK_LIBRARY, SNMP_CALLBACK_STORE_DATA,

demo5_persist_data, NULL);

}

demo_module_5 Code Example for Persistent Data

Chapter 4 • Storing Module Data 57

58

Implementing Alarms

This chapter explains how to implement alarms in modules. The demo_module_4 is used to
illustrate techniques.

The chapter contains the following topics:

■ “Refresh Intervals” on page 59
■ “Asynchronous Trap Notification” on page 60
■ “Thresholds for Sending Traps” on page 60
■ “demo_module_4 Code Example for Alarms” on page 61

Refresh Intervals
Refresh intervals, also known as automatic refresh, can be implemented in the System
Management Agent. You can use a callback mechanism that calls a specified function at regular
intervals. Data refresh can be implemented by the snmp_alarm_register() function. In
demo_module_4, the load data is refreshed at a configurable time interval, 60 seconds in this
example, using the following callback:

snmp_alarm_register(60, SA_REPEAT, refreshLoadAvg, NULL);

void refreshLoadAvg(unsigned int clientreg, void *clientarg){

// Refresh the load data here

}

The snmp_alarm_register() function can be included in the init_()module() function so
that the refresh interval is set during the initialization of the module.

5C H A P T E R 5

59

Asynchronous Trap Notification
Typically, checking for trap conditions is done in the following sequence:

1. Get current data for a particular node.
2. Compare the data with a threshold to check if the trap condition is met.
3. Send a trap to the manager if the condition is met.

Steps 2 and 3 are implemented in SMA by calling an algorithm after data for a node is acquired.
The algorithm determines if an alarm condition is met. The algorithm in most cases involves
comparing the current data with the threshold. If the algorithm indicates that an alarm
condition is met, the appropriate trap functions are called to issue a trap. In demo_module_4,
steps 2 and 3 are performed in the following function:

void refreshLoadAvg(unsigned int clientreg, void *clientarg) {

// Refresh Load data

// Check if Load data crossed thresholds, send trap if necessary.

check_loadavg1_state();

check_loadavg5_state();

check_loadavg15_state();

}

The check_loadavg_state functions compare the current load data with thresholds. The
functions also send the traps if necessary.

The module must use a trap function such as send_v2trap() to send a trap to the manager. For
more information on SNMP trap APIs, see
/usr/sfw/doc/sma_snmp/html/group__agent__trap.html. The SNMP trap notifications are
defined in SNMP-NOTIFICATION-MIB.txt. For demo_module_4, the trap notifications are defined
in SDK-DEMO4-MIB.txt.

Thresholds for Sending Traps
In the System Management Agent, any configurable data can be stored in a module-specific
configuration file. Data from this file can be loaded into the module at the time of module
initialization. Data is read from the configuration files into a module by registering a callback
function to be called whenever an interesting token is encountered.

register_config_handler("demo_module_4", "threshold_loadavg1",

read_load_thresholds, NULL, NULL);

In this example demo_module_4, whenever a threshold_loadavg1 token is read by the agent in
the demo_module_4.conf file, the read_load_thresholds() function is called, with token

Asynchronous Trap Notification

Solaris System Management Agent Developer's Guide • May 200760

name and value as arguments. The read_load_thresholds() function stores the token value in
appropriate variables and uses these thresholds to determine alarm conditions. For more
information on the register_config_handler APIs, see the documentation in
/usr/sfw/doc/sma_snmp/html/group__read__config.html.

demo_module_4Code Example for Alarms
The demo_module_4 code example is provided to help you understand how to implement
alarms. The demo is by default located in the directory /usr/demo/sma_snmp/demo_module_4.
The README_demo_module_4 file in that directory contains instructions that describe how to do
the following tasks:

■ Compile source files to generate a shared library object that implements a module
■ Set up the agent to dynamically load the module
■ Test the module with snmp commands to show that the module is functioning as expected

The demo_module_4 module implements SDK-DEMO4-MIB.txt. The me4LoadGroup.c and
me4LoadGroup.h files were generated with the mib2c command and then modified.

Module data is maintained in the following variables:

loadavg1 Stores data for me4SystemLoadAvg1min

loadavg5 Stores data for me4SystemLoadAvg5min

loadavg15 Stores data for me4SystemLoadAvg15min

The demo_module_4 module refreshes data every 60 seconds. During refresh intervals, the
module also checks whether trap conditions are met. If trap conditions are met, an SNMPv2
trap is generated by the module. The trap condition in this module is a simple comparison of
current data with a threshold value. If the threshold is crossed, a trap is generated. The
threshold data can be configured through the file demo_module_4.conf, which is installed in
$HOME/.snmp.

When an snmpget request for these variables arrives, the following functions are called:

■ int get_me4SystemLoadAvg1min()

■ int get_me4SystemLoadAvg5min()

■ int get_me4SystemLoadAvg15min()

These accessory functions refresh the load data by calling the refreshLoadAvg() function to
return the current load value. However, the reload occurs only in response to a GET request.
The load data must also be refreshed asynchronously without waiting for GET requests from
the manager. Asynchronous refreshing allows trap conditions to be checked continuously in

demo_module_4 Code Example for Alarms

Chapter 5 • Implementing Alarms 61

order to alert the manager of any problems. You can refresh the load data without a request
from the manager by registering a callback function to be called at regular intervals. For
example, you can call the function as follows:

snmp_alarm_register(60, SA_REPEAT, refreshLoadAvg, NULL)

This function causes the refreshLoadAvg() function to be called every 60 seconds. You can
enable a manager to configure this interval by introducing a token to represent this value in the
demo_module_4.conf file.

See the API documentation at /usr/sfw/doc/sma_snmp/html /group__snmp__alarm.html for
more information on snmp_alarm_register() functions.

Reading Data From the demo_module_4.conf
Configuration File
Data is read from the configuration files into a module by registering a callback function to be
called whenever an appropriate token is encountered. For example, you can call the function as
follows:

register_config_handler(demo_module_4, threshold_loadavg1,

read_load_thresholds, NULL, NULL);

Whenever a threshold_loadavg1 token in the demo_module_4 file is read by the agent, the
function read_load_thresholds() is called with token name and value as arguments. The
read_load_thresholds() function stores the token value in appropriate variables:

void

read_load_thresholds(const char *token, char *cptr)

{

if (strcmp(token, "threshold_loadavg1") == 0) {

threshold_loadavg1=atof(cptr);

} else if (strcmp(token,"threshold_loadavg5") == 0) {

threshold_loadavg5=atof(cptr);

} else if (strcmp(token,"threshold_loadavg15") == 0) {

threshold_loadavg15=atof(cptr);

} else {

/* Do nothing */

}

return;

}

demo_module_4 Code Example for Alarms

Solaris System Management Agent Developer's Guide • May 200762

See the API documentation about register_config_handler() in
/usr/sfw/doc/sma_snmp/html/group__read__config.html for more information.

Using SNMP_CALLBACK_POST_READ_CONFIG in
demo_module_4

A few seconds elapse after agent startup while all configuration tokens are read by the module.
During this interval, the module should not perform certain functions. For example, until the
threshold settings are read from configuration files into the module, trap condition checks
should not be performed. To handle these cases, a callback function can be set. This callback
function is called when the process of reading the configuration files is complete. For example,
you can call the function as follows:

snmp_register_callback(SNMP_CALLBACK_LIBRARY,

SNMP_CALLBACK_POST_READ_CONFIG,demo_4_post_read_config, NULL);

The demo_4_post_read_config() function is called after the configuration files are read. In
this example, the demo_4_post_read_config() function registers refresh callbacks:

int demo_4_post_read_config(int a, int b, void *c, void *d)

{

/* Refresh the load data every 60 seconds */

snmp_alarm_register(60, SA_REPEAT, refreshLoadAvg, NULL);

/* Acquire the data first time */

refreshLoadAvg(0,NULL);

}

Generating Traps in demo_module_4

The refreshLoadAvg() function is called at regular intervals to refresh data. Immediately after
data is refreshed, the refreshLoadAvg() function checks for trap conditions by calling the
following functions:

■ check_loadavg1_state()

■ check_loadavg5_state()

■ check_loadavg15_state()

In me4LoadGroup.c, a module property could be in one of two states: OK or ERROR. When the
current data value crosses the threshold, the state is set to ERROR. A trap is then generated. The
check functions have the following algorithm:

demo_module_4 Code Example for Alarms

Chapter 5 • Implementing Alarms 63

check_loadavg1_state() {

// Step-1: check condition

if (currentData > threshold_loadavg1) new_loadavg1_state = ERROR;

// Step-2: Generate trap if necessary

if (new_loadavg1_state > prev_loadavg1_state) {

// Send trap

prev_loadavg1_state=new_loadavg1_state;

} else if(new_loadavg1_state == prev_loadavg1_state) {

/* No Change in state .. Do nothing */

} else if (new_loadavg1_state < prev_loadavg1_state) {

if (new_loadavg1_state == OK) {

prev_loadavg1_state=OK;

// Send OK trap

}

}

}

When the check indicates that the threshold has been crossed, the send_v2trap function is used
to generate an SNMPv2 trap. The trap OID and the varbinds are as specified in the
SDK-DEMO4-MIB.txt MIB. For more information on SNMP trap APIs, see
/usr/sfw/doc/sma_snmp/html/group__agent__trap.html.

demo_module_4 Code Example for Alarms

Solaris System Management Agent Developer's Guide • May 200764

Deploying Modules

This chapter discusses the ways to deploy your module. The chapter provides information to
help you decide whether you should use a subagent or a dynamically loaded module. Examples
of deploying demonstration modules as subagents and dynamically loaded modules are
included.

This chapter contains the following topics:

■ “Overview of Module Deployment” on page 65
■ “Choosing Dynamic Modules or Subagents” on page 66
■ “Loading Modules Dynamically” on page 67
■ “Using Subagents” on page 70
■ “Deploying a Module as a Subagent” on page 71

Overview of Module Deployment
With the System Management Agent, you have the following choices for deploying a module:

■ Load the module dynamically.
When you load a module dynamically, the module is included within the SNMP agent
without the need to recompile and relink the agent binary. This method is the only
supported way to load a module into the System Management Agent. You cannot recompile
the agent.
Details of the module to load are specified in the configuration file. At runtime, the agent
reads the configuration file. The agent locates the module files that are listed in the
configuration file. The agent then merges the modules into the agent process image.

■ Implement the module as an AgentX subagent.
When you use a subagent, the module is embedded in an external application. The external
application contains code to set up the application to run as an AgentX subagent. The
SNMP agent's configuration file specifies that the agent is the AgentX master agent. When

6C H A P T E R 6

65

the external application starts, the module's OIDs are registered with the SNMP agent. The
subagent application and the agent use the AgentX protocol to communicate.

These deployment methods have advantages and disadvantages, which are discussed in
“Choosing Dynamic Modules or Subagents” on page 66. However, the way that you develop
your module and the content of your module have no bearing on how you deploy your module.
You can use the same module, without modification, with either deployment method.

Choosing Dynamic Modules or Subagents
In general, when you are first developing and testing your module, you should dynamically load
the module in the master agent. This method reduces the complexity while you work out any
problems in the module. When you are ready to deploy a module, you should compile the
module in a subagent instead of dynamically loading into the master agent. By using subagents,
you can more easily isolate problems in the module.

However, sometimes a subagent is not the optimal deployment method. Use the following
criteria to determine when to load a module into a master agent instead of a subagent:

■ If more than five requests per second are targeted to the module's MIB, you should consider
loading the module into the master agent.

■ If your module queries the SYSTEM group often, and queries the IP branch very rarely, load
the module into the master agent.

■ If your module queries the IP branch of the MIB very often, load the module in the
subagent. The IP group of the module MIB is six times more computationally costly
compared to the SYSTEM group.

The following table summarizes the primary advantages and disadvantages of dynamically
loaded modules and subagents.

Choosing Dynamic Modules or Subagents

Solaris System Management Agent Developer's Guide • May 200766

TABLE 6–1 Advantages and Disadvantages of Deployment Methods

Deployment Method Advantages Disadvantages

Dynamically loaded Less complexity compared to
subagent approach

Incurs a slightly greater load on agent at startup.

Makes the master agent more vulnerable,
especially if the module has quality and
performance problems. For example, a module
with quality problems might have a memory
violation, which can crash the master agent. A
module with performance problems might
consume too many system resources, such as
CPU time and memory. These problems might
overload the master agent, causing the master
agent not to function properly in processing
other requests.

AgentX subagent Isolates the module processing
from the agent

Incurs an extra cost to the master agent by
causing the agent to build packets to transport
requests between the master agent and the
subagent. The master agent performs an extra
step of both encoding and decoding for every
incoming request that is targeted to the
subagent. If the subagent gets too many requests,
the time spent on additional encoding and
decoding might be excessive.

Loading Modules Dynamically
The simplest way to load modules dynamically is to restart the agent after you add entries to the
configuration file. Dynamic loading is the best method to use while you are developing and
testing a module. Most of the demonstration modules in /usr/demo/sma_snmp use dynamic
loading. You should use the procedure “How to Dynamically Load a Module and Restart the
Agent” on page 68 during the development and testing phase.

When you are using the module in a production environment, that environment might require
you not to restart the agent. If you want to load modules without restarting the agent, you
should use the procedure “How to Dynamically Load a Module Without Restarting the Agent”
on page 68.

Loading Modules Dynamically

Chapter 6 • Deploying Modules 67

▼ How to Dynamically Load a Module and Restart the
Agent

Copy the module shared library object to a libdirectory.
You should keep your .so files in a directory that is writable by non-root users.

As root, edit the agent's configuration file to enable the agent to dynamically load the module.
In the /etc/sma/snmp/snmpd.conf file, add a line that is similar to the following, where
testmodule is the name of the module.
dlmod testmodule /home/username/snmp/lib/testmodule.so

As root, restart the snmpd agent by typing the following command.
svcadm restart svc:/application/management/sma:default

The module should now be loaded. You can use snmpget and snmpset commands to access the
module's data to confirm that the module is loaded. You should make sure your MIB can be
located by the snmpget and snmpset commands by setting your MIBDIRS and MIBS environment
variables, as described in “Setting MIB Environment Variables” on page 32.

Tip – To unload a module, you would remove the dlmod line from the snmpd.conf file and restart
the agent.

▼ How to Dynamically Load a Module Without
Restarting the Agent
The UCD-DLMOD-MIB provides MIB entries for the module name, path, and status. By
setting these MIB entries, you can cause the agent to load or unload the module without
restarting the agent.

Note – This procedure causes the module to be loaded only for the current session of the agent. If
you want the module to be loaded each time the agent starts, you should add a dlmod line to the
snmpd.conf file. The process of adding the line is described in Step 2 of the previous procedure.
Do not restart the agent after adding the line.

View the UCD-DLMOD-MIB.txt file in /etc/sma/snmp/mibs.
Look for the DlmodEntry and dlmodStatus entries, which appear as follows:
DlmodEntry ::= SEQUENCE {

dlmodIndex Integer32,

dlmodName DisplayString,

1

2

3

1

Loading Modules Dynamically

Solaris System Management Agent Developer's Guide • May 200768

dlmodPath DisplayString,

dlmodError DisplayString,

dlmodStatus INTEGER

}

dlmodStatus OBJECT-TYPE

SYNTAX INTEGER {

loaded(1),

unloaded(2),

error(3),

load(4),

unload(5),

create(6),

delete(7)

}

MAX-ACCESS read-write

STATUS current

DESCRIPTION

"The current status of the loaded module."

::= { dlmodEntry 5 }

DlmodEntry defines a row in a table of dynamically loaded modules. A table row describes an
instance by defining an index, name, path, error code, and status code. You need to set the
name, path, and status of the first empty row of the table.

Type the following command to check the first row of the table. The command can tell you
whether an instance of a dynamically loaded module already exists in the table.
$ /usr/sfw/bin/snmpget -v 1 -c public localhost UCD-DLMOD-MIB::dlmodStatus.1

Error in packet

Reason: (noSuchName) There is no such variable name in this MIB.

Failed object: UCD-DLMOD-MIB::dlmodStatus.1

This response indicates that no other dynamic module is defined as instance 1. If you get back a
positive response, examine dlmodStatus.2 with the same command.

Create an instance for your module in the table by typing the following command:
$ /usr/sfw/bin/snmpset -v 1 -c private localhost \

UCD-DLMOD-MIB::dlmodStatus.1 i create

UCD-DLMOD-MIB::dlmodStatus.1 = INTEGER: create(6)

Repeat the snmpget command to show the status of the first instance.
$ /usr/sfw/bin/snmpget -v 1 -c public localhost \

UCD-DLMOD-MIB::dlmodStatus.1

UCD-DLMOD-MIB::dlmodStatus.1 = INTEGER: unloaded(2)

The instance now exists, but the module is unloaded currently.

2

3

4

Loading Modules Dynamically

Chapter 6 • Deploying Modules 69

Set the name and path to the module that you want to load. Type a command that is similar to
the following:
$ /usr/sfw/bin/snmpset -v 1 -c private localhost \

UCD-DLMOD-MIB::dlmodName.1 s "testmodule" \

UCD-DLMOD-MIB::dlmodPath.1 s "/home/username/lib/testmodule.so"

UCD-DLMOD-MIB::dlmodName.1 = STRING: testmodule

UCD-DLMOD-MIB::dlmodPath.1 = STRING: /home/username/lib/testmodule.so

testmodule is the name of your module.

Load the module by typing the following command:
$ /usr/sfw/bin/snmpset -v 1 -c private localhost \

UCD-DLMOD-MIB::dlmodStatus.1 i load

UCD-DLMOD-MIB::dlmodStatus.1 = INTEGER: load(4)

This command sets the dlmodStatus.1 variable to load.

Confirm that the module was loaded by typing the following command:
$ /usr/sfw/bin/snmpget -v 1 -c public localhost \

UCD-DLMOD-MIB::dlmodStatus.1

UCD-DLMOD-MIB::dlmodStatus.1 = INTEGER: loaded(1)

The response indicates that the module is loaded.

(Optional) Unload the module by typing the following command:
$ /usr/sfw/bin/snmpset -v 1 -c private localhost \

UCD-DLMOD-MIB::dlmodStatus.1 i unload

UCD-DLMOD-MIB::dlmodStatus.1 = INTEGER: unload(5)

(Optional) Confirm that the module was unloaded by typing the following command:
$ /usr/sfw/bin/snmpget -v 1 -c public localhost \

UCD-DLMOD-MIB::dlmodStatus.1

Timeout: No Response from localhost.

The lack of response from localhost indicates that the module is unloaded.

Using Subagents
Using subagents with an extensible SNMP agent avoids the problem of having one very large
SNMP agent. Before subagents were devised, an SNMP agent had to be recompiled to add new
management objects in MIBs. The subagent approach provides the ability to dynamically add
management objects to an agent without recompiling the agent. The need to standardize the
way in which agents and subagents work together led to the development of the AgentX
protocol.

5

6

7

8

9

Using Subagents

Solaris System Management Agent Developer's Guide • May 200770

AgentX Protocol
The AgentX protocol enables subagents to connect to the master agent. The protocol also
enables the master agent to distribute received SNMP protocol messages to the subagents.

The AgentX protocol defines an SNMP agent to consist of one master agent entity and other
subagent entities. The master agent runs on the SNMP port, and sends and receives SNMP
messages as specified by the SNMP framework documents. The master agent does not access
the subagents' management information directly. The subagents do not handle SNMP
messages, but subagents do access their management information. In short, the master agent
handles SNMP for the subagents, and only handles SNMP. The subagent handles manipulation
of management data but does not handle SNMP messages. The responsibilities of each type of
agent are strictly defined. The master agent and subagents communicate through AgentX
protocol messages. AgentX is described in detail by RFC 2741. See
http://www.ietf.org/rfc/rfc2741.txt

The SMA performs in the role of the master agent. Subagents that you create can add
management objects to the agent.

Functions of a Subagent
An AgentX subagent performs the following functions:
■ Initiates AgentX sessions with the master agent
■ Registers MIB regions with the master agent
■ Instantiates managed objects
■ Binds object IDs (OIDs) within its registered MIB regions to actual variables
■ Performs management operations on variables
■ Initiates notifications, or traps

Deploying a Module as a Subagent
You can embed a MIB module that was written for the SMA into an external application. This
application can be run either as an SNMP master agent or an AgentX subagent. Generally, you
should run the SMA as the master agent, and set up your application as a subagent. The
subagent attaches to the master agent, and registers its MIB with the master agent. By running
the SMA as the master agent, you can easily add and remove subagents while the master agent
continues to run. In this way, the agent can continue to communicate with network
management applications.

SMA provides Net-SNMP API functions that enable you to embed an SNMP agent or AgentX
subagent into an external application. In your application code, you must initialize your
module, the SNMP library, and the SNMP agent library. This initialization is done slightly
differently depending on whether the application is to run as a master agent or an AgentX
subagent.

Deploying a Module as a Subagent

Chapter 6 • Deploying Modules 71

http://www.ietf.org/rfc/rfc2741.txt

The functions that you use in the agent application include:

■ init_agent(char *name)

Initializes the embedded agent. This function must be called before the init_snmp() call.
The name is used to specify what configuration file to read when init_snmp() is called later.
See the API documentation at /usr/sfw/doc/sma_snmp/html/group__library.html for
more information.

■ init_module()
Initializes your module. This function must be called after the agent is initialized.

■ init_snmp(char *name)

Initializes the SNMP library, which causes the agent to read the application's configuration
file. The configuration file can be used to configure access control, for instance. See the
snmp_config(4) and snmpd.conf(4) man pages for more information about configuration
files.

■ snmp_shutdown(char *name)

Shuts down the subagent, saving any needed persistent data. See the API documentation at
/usr/sfw/doc/sma_snmp/html/group__library.html for more information.

You must also link against the Net-SNMP libraries in your subagent application. The command

net-snmp-config --agent-libs

displays a list of libraries you need.

The demo_module_8 code example shows you how to create a subagent that calls a module that
returns load averages.

demo_module_8Code Example for Implementing a
Subagent
The demo_module_8 code example demonstrates how to deploy a module in a subagent. The
demo is by default located in the directory /usr/demo/sma_snmp/demo_module_8. The
README_demo_module_8 file within that directory includes procedures for building and running
the sample module and subagent program.

Subagent Security Guidelines
You must be aware of the following security considerations in writing subagents that use the
AgentX protocol:

Deploying a Module as a Subagent

Solaris System Management Agent Developer's Guide • May 200772

■ The AgentX protocol does not contain a mechanism for authorizing or refusing to initiate
sessions. Access control between subagents and master agent must be done at a lower layer,
such as the transport layer.
The SMA supports only UNIX domain sockets for communication between the master
agent and subagents. As a result, the master agent and subagents must run on the same host.
In open source Net-SNMP, the master agent and subagent can be on different hosts. The
agents must then use UDP and TCP ports for the AgentX communication. Currently, the
AgentX protocol provides no inherent security when using UDP and TCP ports. To reduce
security risks, the SMA does not allow subagents to use UDP and TCP ports.

■ The AgentX protocol does not define any access control mechanism. The protocol also does
not contain a mechanism for authorizing or refusing sessions.

■ A subagent can register any subtree. Potentially, a malicious subagent could register an
unauthorized subtree of sensitive information. That subagent could then see modification
requests to those objects in the tree. A malicious subagent might also give answers to SNMP
manager queries. These answers might cause the manager to perform an action that leads to
information disclosure or other damage.

Deploying a Module as a Subagent

Chapter 6 • Deploying Modules 73

74

Multiple Instance Modules

This chapter describes how to implement a module to allow more than one instance of the
module to run on a host. The chapter also describes how to dynamically update modules with
multiple instances.

The following topics are discussed:

■ “Implementing Multiple Instances of a Module” on page 75
■ “Enabling Dynamic Updates to a Multiple Instance Module” on page 78
■ “demo_module_7 Code Example for Dynamic Updates of Multiple Instance Modules” on

page 78

Implementing Multiple Instances of a Module
For some types of modules, multiple instances of the module can be run simultaneously on a
single host. For example, consider a module that monitors the status of a single printer. For a
system with several printers, the printer-monitoring module must be loaded multiple times,
once for each printer. In that scenario, several separate instances of the printer module must be
running simultaneously. For such modules, you must distinguish the different instances that
are loaded and running.

SNMPv2 introduced the concept of contexts to identify MIB modules that can have multiple
instances. Each SNMP context is represented by a separate MIB subtree.

In SMA, you can implement multiple instances of a module only when the agent is configured
to use SNMPv3. You need to specify an SNMPv3 user and password when loading and
unloading modules. You specify an instance name by assigning a string to the contextName
member of the netsnmp_handler_registration struct in the module.

The following procedure tells you how to implement multiple-instance modules. The
procedure uses examples from demo_module_6, which you can adapt to your own module.

7C H A P T E R 7

75

▼ How To Implement Multiple Instance Modules
As root, stop the agent if the agent is already running.
svcadm disable -t svc:/application/management/sma:default

Set up an SNMPv3 user.
For example, set up user name myuser with password mypassword as follows:
$ /usr/sfw/bin/net-snmp-config

--create-snmpv3-user myuser

Enter authentication pass-phrase:

mypassword

Enter encryption pass-phrase:

[press return to reuse the authentication pass-phrase]

Edit the module to register context names that the module handles.
Find the init_module routine in the module. Add code to register context names that the
module handles.

For example, you might add the following code:
void

init_filesize(void)

{

// Declare the OID

static oid filesize_oid[] = { 1,3,6,1,4,1,42,2,2,4,4,6,1,1,0 };

// Declare a registration handler

netsnmp_handler_registration *myreg1;

// Declare pointers to character arrays initialized

// to the context name strings

char *filexcon = "fileX";

char *fileycon = "fileY";

// Create a registration handler for the OID.

// filesize is the name of handler.

// get_filesize is the function to call when an SNMP

// request for the OID is received, filesize_oid is the

// OID for which the handler is registered,

// OID_LENGTH(filesize_oid) passes the length of the

// OID array to the agent.

// HANDLER_CAN_RONLY is a constant that specifies that

// this handler only handles get requests.

myreg1 = netsnmp_create_handler_registration

1

2

3

Implementing Multiple Instances of a Module

Solaris System Management Agent Developer's Guide • May 200776

("filesize", get_filesize,

filesize_oid, OID_LENGTH(filesize_oid),

HANDLER_CAN_RONLY);

// Assign the string fileX to the contextName member of the

// netsnmp_handler_registration struct

myreg1->contextName=filexcon;

// Register the netsnmp_handler_registration struct with the

// agent. netsnmp_register_read_only is a helper function

// that notifies the agent that this module only handles snmp

// get requests.

netsnmp_register_read_only_instance(myreg1);

}

demo_module_6Code Example for Multiple Instance
Modules
The demo_module_6 code is located by default in /usr/demo/sma_snmp/demo_module_6. The
README_demo_module_6 file within that directory contains instructions that describe how to
perform the following tasks:

■ Compile source files to generate a shared library object that implements a module
■ Set up the agent with an SNMPv3 user
■ Set up the agent to dynamically load the module
■ Test the module with snmp commands to show that the module is functioning as expected

The demo_module_6 example shows how to write a module that registers an object in two
different contexts. The example also shows how to check for the contextName in a request and
return a different value depending on the value of the contextName.

demo_module_6 registers one object, filesize, in two different contexts, fileX, and fileY. The
OIDs are registered by using a read-only instance handler helper. The OIDs do not need to be
read-only. You could also register the OIDs using any of the SMA instance handler helper APIs.

The function get_filesize() is registered to handle GET requests for instances of the
filesize object. The get_filesize() function checks the contextName in the reginfo
structure that is passed to the function by the SMA. If the value of contextName is fileX, the
function returns fileX_data, which has been set to the integer 111. If the value of contextName
is fileY, the function returns fileY_data, which has been set to the integer 999.

Implementing Multiple Instances of a Module

Chapter 7 • Multiple Instance Modules 77

Enabling Dynamic Updates to a Multiple Instance Module
When you perform a dynamic update to a module, you use a command to modify a module that
is loaded and running with System Management Agent. The SMA does not provide a
mechanism for dynamically adding and removing instances of managed objects in a
multi-instance module. However, you can code your module to enable an administrator or
application to use the snmpset command to update the module.

The demo_module_7 code example is used to show how to update a module that has been
registered with the agent.

demo_module_7Code Example for Dynamic Updates of
Multiple Instance Modules

The demo_module_7 code example shows how to implement multiple instance modules. The
demo is by default located in the directory /usr/demo/sma_snmp/demo_module_7. The
README_demo_module_7 file in that directory contains instructions that describe how to
perform the following tasks:
■ Compile source files to generate a shared library object that implements a module
■ Set up the agent with an SNMPv3 user
■ Set up the agent to dynamically load the module
■ Test the module with snmp commands to show that the module is functioning as expected

Modifying the demo_module_7Code
The following procedure lists the steps you should follow to enable your module to be
dynamically updated. The procedure uses examples from the demo_module_7.c code to
illustrate each step. The code contains modifications to code templates that were produced by
using mib2c on a MIB group in SDK-DEMO1–MIB.txt.

The demo_module_7 example registers new instances as contexts that represent files.
Subsequent snmpget requests to these contexts retrieve the size of a specified file.

▼ How to Enable Dynamic Update of a Multi-Instance Module

Define two objects in the MIB for the module:

■ A string with read-write MAX-ACCESS that, when set, registers the specified string as a context
name.

■ A string with read-write MAX-ACCESS that, when set, unregisters the specified string context
name.

1

Enabling Dynamic Updates to a Multiple Instance Module

Solaris System Management Agent Developer's Guide • May 200778

For example, the following objects, which are defined in the SDK-DEMO1-MIB.txt file, register
and unregister a context string that is set with an snmpset request:

me1createContext OBJECT-TYPE

SYNTAX OCTET STRING (SIZE(0..1024))

MAX-ACCESS read-write

STATUS current

DESCRIPTION

"String which when set, registers a context."

::= { me1MultiGroup 2 }

me1removeContext OBJECT-TYPE

SYNTAX OCTET STRING (SIZE(0..1024))

MAX-ACCESS read-write

STATUS current

DESCRIPTION

"String which when set, unregisters a context."

::= { me1MultiGroup 3 }

In the module, declare the location within the MIB tree where the OIDs for the context objects
should be registered.
For example, the following code declares the OIDs for context strings:
// Registers a context

static oid me1createContext_oid[] =

{ 1,3,6,1,4,1,42,2,2,4,4,6,1,2,0 };

// Unregisters a context

static oid me1removeContext_oid[] =

{ 1,3,6,1,4,1,42,2,2,4,4,6,1,3,0 };

In the module, register both OIDs of the context objects with the SMA.
The following code shows an example:

// Create a read-write registration handler named filesize,

// which calls the set_createContext function to service snmp requests

// for the me1createContext_oid object. The OID_LENGTH argument

// calculates the length of the me1createContext_oid.

myreg1 = netsnmp_create_handler_registration

("filesize",

set_createContext,

me1createContext_oid,

OID_LENGTH(me1createContext_oid),

HANDLER_CAN_RWRITE);

// Create a read-write registration handler named filesize,

// which calls the set_removeContext function to service snmp requests

2

3

demo_module_7 Code Example for Dynamic Updates of Multiple Instance Modules

Chapter 7 • Multiple Instance Modules 79

// for the me1removeContext_oid object. The OID_LENGTH argument

// calculates the length of the me1removeContext_oid.

myreg1 = netsnmp_create_handler_registration

("filesize",

set_removeContext,

me1removeContext_oid,

OID_LENGTH(me1removeContext_oid),

HANDLER_CAN_RWRITE);

In the set_createContext() function handler code, extract the context name string from the
SNMP message. Register the string as a new context.
The following code shows an example:
int

set_createContext(netsnmp_mib_handler *handler,

netsnmp_handler_registration *reginfo,

netsnmp_agent_request_info *reqinfo,

netsnmp_request_info *requests)

{

// This handler handles set requests on the m1createContext_oid.

// The handler extracts the string from the snmp set request and

// uses it to register a new context for the me1filesize_oid.

//

// For detailed info. on net-snmp set processing,

// see http://www.net-snmp.org/tutorial-5/toolkit/mib_module/index.html

// The agent calls each SNMP mode in sequence. We include a case

// statement with only a break statement for each snmp set mode the

// the agent handles. In this example, we implement only the

// snmp set action mode. The case statement

// transfers control to the default: case when no other condition

// is satisfied.

netsnmp_handler_registration *myreg;

char *context_names[256];

switch(reqinfo->mode) {

case MODE_SET_RESERVE1:

break;

case MODE_SET_RESERVE2:

break;

case MODE_SET_FREE:

break;

case MODE_SET_ACTION:

// You must allocate memory for this variable because

// the unregister_mib function frees it.

filename = malloc(requests->requestvb->val_len + 1);

4

demo_module_7 Code Example for Dynamic Updates of Multiple Instance Modules

Solaris System Management Agent Developer's Guide • May 200780

snprintf(filename, sizeof(filename), "%s", (u_char *)

requests->requestvb->val.string);

// Create a registration handler for the me1filesize_oid

// object in the new context name specified by

// the snmp set on the me1createContext OID.

myreg = netsnmp_create_handler_registration

("test",

get_test,

me1filesize_oid,

OID_LENGTH(me1filesize_oid),

HANDLER_CAN_RONLY);

myreg->contextName=filename;

break;

case MODE_SET_COMMIT:

break;

case MODE_SET_UNDO:

break;

default:

/* we should never get here, so this is a really bad error */

DEBUGMSGTL(("filesize", "default CALLED\n"));

}

return SNMP_ERR_NOERROR;

}

In the set_removeContext handler code, extract the context name string from the SNMP
message. Unregister the context.
The following code shows an example:
// This handler handles set requests on the m1removeContext_oid

int

set_removeContext(netsnmp_mib_handler *handler,

netsnmp_handler_registration *reginfo,

netsnmp_agent_request_info *reqinfo,

netsnmp_request_info *requests)

{

static int PRIORITY = 0;

static int SUB_ID = 0;

static int RANGE_UBOUND = 0;

switch(reqinfo->mode) {

case MODE_SET_RESERVE1:

break;

case MODE_SET_RESERVE2:

break;

5

demo_module_7 Code Example for Dynamic Updates of Multiple Instance Modules

Chapter 7 • Multiple Instance Modules 81

case MODE_SET_ACTION:

snprintf(filename, sizeof(filename), "%s\n", (u_char *)

requests->requestvb->val.string);

unregister_mib_context(me1filesize_oid, OID_LENGTH(me1filesize_oid),

PRIORITY, SUB_ID, RANGE_UBOUND,

filename);

break;

case MODE_SET_COMMIT:

break;

case MODE_SET_FREE:

break;

case MODE_SET_UNDO:

break;

default:

/* we should never get here, so this is a really bad error */

DEBUGMSGTL(("filesize", "set_removeContext CALLED\n"));

}

return SNMP_ERR_NOERROR;

}

In the handler code for a new context, get the context string from the reginfo->contextName
variable.
/* This handler is called to handle snmp get requests for

the me1filesize_oid for a specified context name. */

int

get_test(netsnmp_mib_handler *handler,

netsnmp_handler_registration *reginfo,

netsnmp_agent_request_info *reqinfo,

netsnmp_request_info *requests)

{

/* We are never called for a GETNEXT if it’s registered as an

"instance", as it’s "magically" handled for us. */

/* An instance handler also only hands us one request at a time, so

we don’t need to loop over a list of requests; we’ll only get one. */

struct stat buf;

static int fd = 0;

switch(reqinfo->mode) {

case MODE_GET:

6

demo_module_7 Code Example for Dynamic Updates of Multiple Instance Modules

Solaris System Management Agent Developer's Guide • May 200782

if (strcmp(reginfo->contextName, filename) == 0)

// An open() for reading only returns without delay.

if ((fd = open(filename, O_NONBLOCK | O_RDONLY)) == -1)

DEBUGMSGTL(("filesize", "ERROR\n"));

if (fstat(fd, &buf) == -1)

DEBUGMSGTL(("filesize", "ERROR\n"));

else

DEBUGMSGTL(("filesize", "FILE SIZE IN BYTES = %d:\n", buf.st_size));

snmp_set_var_typed_value(requests->requestvb, ASN_INTEGER,

(u_char *) &buf.st_size /* XXX: a pointer to the scalar’s data */,

sizeof(buf.st_size) /* XXX: the length of the data in bytes */);

break;

default:

/* we should never get here, so this is a really bad error */

return SNMP_ERR_GENERR;

}

return SNMP_ERR_NOERROR;

}

Registering New Instances in the Module
The demo_module_7 code example module registers context name strings that represent files.
GET requests to these contexts retrieve the size of the file.

You do not need to edit the module to register new instances. The module can be dynamically
updated to register new instances through the snmpset command. A management application
passes the file name to the module by issuing an snmpset command, of the following format:

/usr/sfw/bin/snmpset -v 3 -u username -l authNoPriv -A "password" \

hostname createContext_OID s "filename"

For example, the register_file script in the demo_module_7 directory issues a command that
registers the file /usr/sfw sbin/snmpd as a new context name with the module:

/usr/sfw/bin/snmpset -v 3 -u myuser -l authNoPriv \

-A "mypassword" localhost .1.3.6.1.4.1.42.2.2.4.4.6.1.2.0 \

s "/usr/sfw/sbin/snmpd"

demo_module_7 Code Example for Dynamic Updates of Multiple Instance Modules

Chapter 7 • Multiple Instance Modules 83

The module registers the set_createContext handler to handle incoming snmpset requests for
the specified OID. The set_createContext handler registers the new file name as a context
string in the contextName member of the netsnmp_registration_handler struct for the
me1filesize_oid.

A management application can request the size of the file in blocks by issuing an snmpget

command of the following format:

/usr/sfw/bin/snmpget -v 3 -u username -n contextname\
-l authNoPriv -A "password" hostname me1filesize_oid

For example, the get_filesize script in the demo_module_7 directory issues a command that is
similar to the following command:

/usr/sfw/bin/snmpget -m+SDK-DEMO6-MIB -v 3 -u myuser \

-n "/usr/sfw/sbin/snmpd" -l authNoPriv -A "mypassword" localhost \

.1.3.6.1.4.1.42.2.2.4.4.6.1.1.0

demo_module_7 Code Example for Dynamic Updates of Multiple Instance Modules

Solaris System Management Agent Developer's Guide • May 200784

Long–Running Data Collection

This chapter discusses the ways that you can enable a module to collect data over a long period
of time without blocking the System Management Agent. The demonstration modules
demo_module_9 and demo_module_10 illustrate these approaches.

This chapter contains the following topics:

■ “About Long-Running Data Collection” on page 85
■ “SNMP Alarm Method for Data Collection” on page 86
■ “SNMP Manager Polling Method for Data Collection” on page 88

About Long-Running Data Collection
SNMP is not ideally suited to collecting data that is generated over a period of time. Time-outs
specified by an SNMP manager are generally only a few seconds, to enable most problems to be
detected quickly. However, some data might be useful when looked at over a longer period, for
example, to indicate a developing condition. Such data can only be collected through a
long-running data collection to get around the timeout issue. You can code your module to
perform long-running data collection. You can choose from several different design patterns to
model such operations.

The following design patterns can be used to enable a module to handle long-running data
collections through the agent.

SNMP alarm-based approach The module registers an SNMP alarm to call a function at a
specified interval. For most sites, this solution is most useful
for performing long-running data collections. See “SNMP
Alarm Method for Data Collection” on page 86 for more
information and code examples.

SNMP manager polling The SNMP manager polls a status variable to find out
whether a data collection is complete, and to determine the
age of the data. The data is retrieved when the status variable

8C H A P T E R 8

85

returns an acceptable value. The polling approach is most
useful if your site has one SNMP manager and several SNMP
agents. See “SNMP Manager Polling Method for Data
Collection” on page 88 for more information and code
examples.

SNMP Alarm Method for Data Collection
In the SNMP alarm method for long-running data collection, the module registers an SNMP
alarm to call a function at a specified interval. The interval is specified in seconds. The function
can be called one time, or called repeatedly until the alarm is unregistered. The module sets a
flag that causes the agent to delegate the SNMP request. By delegating a request, the agent
avoids blocking other requests while responding to a request. The agent caches the SNMP
request information to be retrieved later when the request is handled. The demo_module_9
example demonstrates the SNMP-alarm-based approach.

demo_module_9Code Example for SNMP Alarm
Method
The demo_module_9 code is located by default in /usr/demo/sma_snmp/demo_module_9. The
README_demo_module_9 file within that directory contains instructions that describe how to
perform the following tasks:

■ Compile source files to generate a shared library object that implements a module
■ Set up the agent to dynamically load the module
■ Test the module with snmp commands to show that the module is functioning as expected

The demo_module_9 example implements the objects defined in the SDK-DEMO9-MIB.txt. The
module demonstrates how to implement objects that normally would block the agent as the
agent waits for external events. The agent can continue responding to other requests while this
implementation waits.

This example uses the following features:

■ Sets the delegated member of the requests structure to 1 to indicate to the agent that this
request should be delayed. The agent queues this request to be handled later and then is
available to handle other requests. The agent is not blocked by this request.

■ Registers an SNMP alarm to update the results at a later time.

SNMP Alarm Method for Data Collection

Solaris System Management Agent Developer's Guide • May 200786

Managing the Timing of Data Collection
An important aspect of the demo_module_9 example is the relationship between the SNMP
timeout and the delay time interval of the module. The delay time interval is the interval in
seconds after which the agent sends an alarm to the module. The delay_time variable in the
module stores this value. By default, the delay time is set to 1 in the module. You can change this
value by issuing an snmpset command on the delayedInstanceOid object and supplying an
integer value. The set_demo_module_9 script does issue the snmpset command to change the
delay time interval. The new time interval value is used by the module to register for an alarm
with the agent.

The agent calls the module when a snmpget or snmpset is issued on the delayedInstanceOid
object. Instead of returning the requesting data right away, the module sets a flag to tell the
agent that the request processing might take a while. The agent is free to handle other requests.
The module then registers an alarm with the agent. The module needs some way to get the agent
to return to the module and return the requested data when the data collection has completed.
In demo_module_9, a one-time alarm is set to go off in 1 second. If you want a longer data
collection, you can set the delay_time value to a longer interval. You can also set the alarm to
go off repeatedly at a specified interval.

The module registers the alarm with a callback function. At the specific alarm interval, the agent
calls the callback function in the module. In demo_module_9, the callback function is
return_delayed_response(), which actually handles the SNMP GET or SNMP SET request.

The client that requested the data with SNMP GET must wait for the response from the agent.
The snmpget command and other Net-SNMP tools have a default timeout value of 5 seconds.
The client is likely to time out before getting the requested response. For this reason, you should
increase the timeout value for the snmpget and snmpset commands.

You should increase the timeout of the command the amount of time required to complete the
data collection. If you are doing an snmpset, make the timeout value 3 or 4 times longer than the
delay time interval. A longer timeout is needed because a SET operation is more
time-consuming than a GET. The agent makes several calls to the module to process a single
SET, and each call is delayed by the delay value.

The -t option is used to set the timeout value. See thesnmpcmd(1M) man page for more
information about common command-line options for Net-SNMP tools.

SNMP Alarm Method for Data Collection

Chapter 8 • Long–Running Data Collection 87

SNMP Manager Polling Method for Data Collection
In the SNMP manager polling method, an SNMP manager polls a status variable to find out
whether a data collection is complete. When the data collection is complete, the age of the data
is determined. If the date of the data is not acceptable, the manager can set the status variable to
start a new collection. The polling method is recommended if you have one SNMP manager
that is to control the polling of one or more agents. The demo_module_10 example demonstrates
the SNMP manager polling approach.

demo_module_10Code Example for SNMP Polling
Method
The demo_module_10 code is located by default in /usr/demo/sma_snmp/demo_module_10. The
README_demo_module_10 file within that directory contains instructions that tell how to
perform the following tasks:

■ Compile source files to generate a shared library object that implements a module
■ Set up the agent to dynamically load the module
■ Test the module with snmp commands to show that the module is functioning as expected

The demo_module_10 example implements the objects defined in the SDK-DEMO10-MIB.txt.
The module is designed to handle long-running data collections so that their values can be
polled by an SNMP manager. The module also shows how to implement objects that normally
would block the agent as the agent waits for external events. The agent can continue responding
to other requests while this implementation waits.

The demo_module_10 module uses the following features:

■ Sets the delegated member of the requests structure to 1 to indicate to the agent that this
request should be delayed. The agent queues this request to be handled later and then is
available to handle other requests. The agent is not blocked by this request.

■ Registers an SNMP alarm to update the results at a later time.
■ Uses status variable to communicate the status of a data collection to the polling SNMP

manager.
■ Uses refreshTime variable to return the date and time that the data collection completed.

Avoiding a Race Condition When Polling
A race condition can occur with two or more management applications. When multiple
applications issue GET or SET protocol operations that span more than a single PDU,

SNMP Manager Polling Method for Data Collection

Solaris System Management Agent Developer's Guide • May 200788

competition for the results occurs. In the case of a long-running data collection, a race
condition can occur when the module completes data collection. The module updates the
status variable to indicate that the data is ready to send. However, the agent issues a second
GET operation on the same variable before the first request receives the requested data. If the
module starts a new data collection in response to the second request, no data is available to
return to the first request.

In the following figure, Mgr2's request is received by the module after Mgr1's request but before
Mgr1 gets the data. This situation could happen if the module starts a new data collection while
requests are pending.

To avoid this scenario, a module can define a flag to maintain the state of outstanding requests.
When an SNMP request is received, the module checks the flag. The module starts a new
collection only if no SNMP requests are outstanding. The module returns an SNMP error if
requests are outstanding.

Mgr1 Module
SNMP GET status

Not ready

Mgr1 Module
SNMP GET status

Ready

Module
SNMP GET status

Ready

Module
SNMP GET data xyz

Data xyz

Mgr1 Module
SNMP GET data xyz

No data

Restart data
collection

Mgr2

Mgr2

1

2

3

4

5

FIGURE 8–1 Race Condition When Polling for Data

SNMP Manager Polling Method for Data Collection

Chapter 8 • Long–Running Data Collection 89

90

Entity MIB

This chapter describes the implementation of the Entity MIB and the associated API functions
in the System Management Agent. The demonstration module demo_module_11 is used to
explain how to use the MIB and the tables that are defined in the MIB. The chapter contains the
following topics:

■ “About the Entity MIB” on page 91
■ “SMA Entity MIB Implementation” on page 93
■ “Entity MIB API” on page 94
■ “Header Files for Entity MIB Functions” on page 111
■ “Tips for Using Entity MIB Functions” on page 113
■ “demo_module_11 Code Example for Entity MIB” on page 115

About the Entity MIB
The Entity MIB is defined by the Internet Engineering Task Force RFC 2737 at
http://www.ietf.org/rfc/rfc2737.txt. This chapter does not describe the Entity MIB in
detail. You should read RFC 2737 before reading this chapter.

The Entity MIB provides a mechanism for presenting hierarchies of physical entities by using
SNMP tables. The Entity MIB contains the following groups, which describe the physical
elements and logical elements of a managed system:

entityPhysical group The entityPhysical group describes the identifiable physical
resources that are managed by the agent. Resources include the
chassis, boards, power supplies, sensors, and so on.

Physical entities are represented by rows in the entPhysicalTable,
where one row is provided for each hardware resource. The rows
are called entries. A particular row is referred to as an instance. Each
table entry has a unique index, entPhysicalIndex, and contains
several objects that represent common characteristics of the

9C H A P T E R 9

91

http://www.ietf.org/rfc/rfc2737.txt

hardware resource. One object, entPhysicalContainedIn, points
to the index of another row in this table. This object is used to
indicate whether an entity is contained within another entity. A
row for a system board might use entPhysicalContainedIn to
specify the index of the row that represents the chassis where the
board is installed.

entityLogical group The entityLogical group describes the logical entities managed
by the agent. Logical entities represent nonphysical, abstract
elements that provide services. The abstract elements are controlled
by higher levels of management. For example, logical entities might
represent elements of platform hardware management. Such
elements might include functions such as OS reboot, hardware
reset, and power control. Logical entities might also represent
administrative domains such as Solaris domains or service
controllers.

Logical entities are represented as rows in the entLogicalTable,
which provides one row for each logical entity. Each table row has a
unique index, entLogicalIndex, and contains objects for the
logical entity's name, description, and type.

Each row also contains security information that is applicable to
SNMPv1, SNMPv2c, and SNMPv3 to allow access to the logical
entity's MIB information. If an agent represents multiple logical
entities with this MIB, the agent must implement the
entityLogical group for all logical entities that are known to the
agent. If an agent represents one logical entity, or multiple logical
entities within a single naming scope, the agent can omit
implementation of this group.

entityMapping group The entityMapping group describes the objects that represent the
associations between elements for which a single agent provides
management information. These elements include multiple logical
entities, physical components, interfaces, and port identifiers.

The entityMapping group contains the following tables:
■ The entPhysicalContainsTable provides a hierarchy of the

hardware resources that are represented in the
entPhysicalTable. The entPhysicalContainsTable table is
two-dimensional, indexed first by the entPhysicalIndex of the
containing entry, and second by the entPhysicalChildIndex
of the contained entries.

About the Entity MIB

Solaris System Management Agent Developer's Guide • May 200792

■ The entLPMappingTable is the logical-physical mapping table.
The entLPMappingTable makes associations between logical
entities and physical entities by mapping the indexes of the
entLogicalTable to the indexes of entPhysicalTable For
example, the table could map a firewall to a particular board.

■ The entAliasMappingTable represents mappings of logical
entity and physical component to external MIB identifiers.

entityGeneral group This table describes objects that represent general entity
information for which a single agent provides management
information. Currently, only one object exists in this group. The
object records the time interval between agent startup and the last
change to the Physical Entity Table or Physical Mapping Table.

The RFC 2737 and the ENTITY-MIB.txt file describe these tables in more detail. The
ENTITY-MIB.txt file is located in the /etc/sma/snmp/mibs directory.

SMA Entity MIB Implementation
The System Management Agent provides a module called libentity.so for use with the Entity
MIB. This module is contained in the /usr/sfw/include directory.

The libentity.so module performs the following tasks when loaded:

■ Registers OIDs for the Entity MIB
■ Creates empty tables for the groups described and defined in RFC 2737
■ Handles the rules and constraints of the Entity MIB tables and maintains table integrity as

specified in RFC 2737
■ Provides Entity API functions that support a module's ability to add, delete, and modify

objects in the OID space of the Entity MIB

If you want your module to use the Entity MIB, you must load the libentity.so module into
the agent before you load your module.

Using the Entity MIB
To use the Entity MIB, you must write a module to create objects that reflect the devices that
you want to manage. You use the objects to populate the empty tables that are created by the
libentity.so module. Your module must use the API functions that are documented in
“Entity MIB API” on page 94. Use demo_module_11, which is described in “demo_module_11
Code Example for Entity MIB” on page 115, to see how that module uses the API functions. The

SMA Entity MIB Implementation

Chapter 9 • Entity MIB 93

demo_module_11 also contains table header files that you need to use the API functions. See
“Header Files for Entity MIB Functions” on page 111.

After you write your module, you can use the following procedure to set up the agent to use the
Entity MIB and your module.

▼ How to Set Up the Agent to Use the Entity MIB

As root, add the appropriate dlmod statement for your operating system in the agent's
configuration file /etc/sma/snmp/snmpd.conf.

■ On a 64-bit Solaris Operating System on SPARC:
dlmod entity /usr/sfw/lib/sparcv9/libentity.so

■ On a 32-bit Solaris Operating System:
dlmod entity /usr/sfw/lib/libentity.so

In the /etc/sma/snmp/snmpd.conf file, insert a dlmod statement for your module after the
dlmod statement for the libentity.so.
For example, suppose your module is named libacmerouter.so. The module is located in
/home/username/lib. You would enter the following line:
dlmod acmerouter /home/username/lib/libacmerouter.so

Your module must be loaded after the entity module because your module is dependent upon
the entity module.

Restart the SNMP agent.
svcadm restart svc:/application/management/sma:default

Entity MIB API
This section lists and describes the API functions that are provided in the libentity.so
module. Use these functions in your module when you want to use the Entity MIB.

1

2

3

Entity MIB API

Solaris System Management Agent Developer's Guide • May 200794

TABLE 9–1 Entity MIB Functions Listed by Category

Function Category Functions

“Physical Table Functions” on
page 96

allocPhysicalEntry()

getPhysicalEntry()

deletePhysicalTableEntry()

makePhysicalTableEntryStale()

makePhysicalTableEntryLive()

getPhysicalStaleEntry()

getAllChildrenFromPhysicalContainedIn()

“Physical Contains Table
Functions” on page 100

addPhysicalContainsTableEntry()

deletePhysicalContainsTableEntry()

deletePhysicalContainsParentIndex()

deletePhysicalContainsChildIndex()

getPhysicalContainsChildren()

“Logical Table Functions” on
page 103

allocLogicalEntry()

getLogicalTableEntry()

deleteLogicalTableEntry()

makeLogicalTableEntryStale()

makeLogicalTableEntryLive()

getLogicalStaleEntry()

“LP Mapping Table
Functions” on page 107

addLPMappingTableEntry()

deleteLPMappingTableEntry()

deleteLPMappingLogicalIndex()

deleteLPMappingPhysicalIndex()

“Alias Mapping Table
Functions” on page 109

addAliasMappingTableEntry()

deleteAliasMappingTableEntry()

deleteAliasMappingLogicalIndex()

deleteAliasMappingPhysicalIndex()

Entity MIB API

Chapter 9 • Entity MIB 95

Physical Table Functions
The entPhysicalTable contains one row for each physical entity. The table contains at least
one row for an overall physical entity. Each table entry provides objects to help an NMS to
identify and characterize the entry. Other objects in the table entry help an NMS to relate the
particular entry to other entries in the table.

The following functions are for use with the entPhysicalTable in the Entity MIB.

■ “allocPhysicalEntry()” on page 96
■ “getPhysicalEntry()” on page 97
■ “deletePhysicalTableEntry()” on page 98
■ “makePhysicalTableEntryStale()” on page 98
■ “makePhysicalTableEntryLive()” on page 99
■ “getPhysicalStaleEntry()” on page 99
■ “getAllChildrenFromPhysicalContainedIn()” on page 100

allocPhysicalEntry()

Synopsis

extern int allocPhysicalEntry(int physidx, entPhysicalEntry_t *newPhysEntry);

Description

Allocates an entry in the entPhysicalTable. The physidx parameter is the requested physical
index. If physidx= 0, the function tries to use the first available index in the table. If physidx= 1
or greater, the function tries to use the specified index. If the specified index is in use, the
function returns the first available index in the table. As a result, the returned index might not
be the same as the requested physical index.

The memory that is associated with newPhysEntry can be freed. The function creates an internal
copy of the data.

The entPhysicalEntry_t structure definition is shown in “entPhysicalEntry_t Structure” on
page 111. Special cases for newPhysEntry values are handled as shown in the following table.

Object Value of newPhysEntry Entity MIB module handling

entPhysicalDescr NULL reject

entPhysicalVendorType NULL { 0, 0 }

entPhysicalName NULL ""

Entity MIB API

Solaris System Management Agent Developer's Guide • May 200796

Object Value of newPhysEntry Entity MIB module handling

entPhysicalHardwareRev NULL ""

entPhysicalFirmwareRev NULL ""

entPhysicalSoftwareRev NULL ""

entPhysicalSerialNum NULL ""

entPhysicalMfgName NULL ""

entPhysicalModelName NULL ""

entPhysicalAlias NULL ""

entPhysicalAssetID NULL ""

Returns

index allocated to the physical entry.

-1 if an error occurs when adding the entry. Check the log for more details.

getPhysicalEntry()

Synopsis

entPhysicalEntry_t *getPhysicalEntry(int index);

Description

Gets the actual physical table entry for the specified index. The caller must not change the values
or release the memory of the entry that is returned. The entPhysicalEntry_t structure
definition is shown in “entPhysicalEntry_t Structure” on page 111.

Returns

getPhysicalEntry() returns the entry for the specified index.

Returns NULL if an error occurs while finding the entry, or if a stale entry exists. In this context,
stale means that the entry details are present in the agent memory but should not be displayed
during any SNMP operation.

Entity MIB API

Chapter 9 • Entity MIB 97

deletePhysicalTableEntry()

Synopsis

extern int deletePhysicalTableEntry(int xPhysicalIndex);

Description

Deletes the physical table entry that is associated with the specified xPhysicalIndex. The
instances of xPhysicalIndex in the entAliasMappingTable, entLPMappingTable and the
entPhysicalContainsTable are also deleted to maintain integrity among the various Entity
MIB tables.

Returns

0 for success.

-1 if the xPhysicalIndex is not found.

-2 if a stale entry was found for the xPhysicalIndex. In this context, “stale” means that the
entry details are present in the agent memory but are not displayed during any SNMP
operation.

makePhysicalTableEntryStale()

Synopsis

extern int makePhysicalTableEntryStale(int xPhysicalIndex);

Description

Makes the physical table entry that is associated with the xPhysicalIndex become stale. In this
context, “stale” means that the entry details are present in the agent memory but are not
displayed during any SNMP operation. The index that was allocated to a stale entry is not
allocated to another entry.

When you make an entry become stale, the instances of xPhysicalIndex in the
entAliasMappingTable, entLPMappingTable and entPhysicalContainsTable are also
deleted. The deletion maintains integrity among the various Entity MIB tables. Before you
make an entry stale, you might want to store the entries that are to be deleted from the tables.

The physical table entry can be made available or “live” again by calling the
makePhysicalTableEntryLive() functions, which is described in
“makePhysicalTableEntryLive()” on page 99.

Entity MIB API

Solaris System Management Agent Developer's Guide • May 200798

Returns

0 for success.

-1 if the xPhysicalIndex is not found.

-2 if a stale entry already exists for xPhysicalIndex.

makePhysicalTableEntryLive()

Synopsis

extern int makePhysicalTableEntryLive(int xPhysicalIndex);

Description

Makes the stale physical table entry associated with the xPhysicalIndex live. In this context,
“live” means that the entry details that are present in the agent memory are displayed during
SNMP operations. The entry can be made stale by calling the
makePhysicalTableEntryStale() function. In this context, “stale” means that the entry details
are present in the agent memory but are not displayed during any SNMP operation.

If a stale entry is made live again, you must recreate the corresponding entries that were deleted
in the entPhysicalContainsTable, the entLPMappingTable, and the entAliasMappingTable.
Use the appropriate functions for adding an entry to each table:
“addPhysicalContainsTableEntry()” on page 101, “addLPMappingTableEntry()” on
page 107, and “addAliasMappingTableEntry()” on page 109.

Returns

0 for success.

-1 if the xPhysicalIndex is not found.

-2 if a live entry already exists for xPhysicalIndex.

getPhysicalStaleEntry()

Synopsis

entPhysicalEntry_t *getPhysicalStaleEntry(int index);

Description

The caller must not change the values or release the memory of the entry that is returned.

Entity MIB API

Chapter 9 • Entity MIB 99

Gets the stale physical table index structure for the specified index. In this context, stale means
that the entry details are present in the agent memory but are not displayed during any SNMP
operation. The entPhysicalEntry_t structure definition is shown in “entPhysicalEntry_t
Structure” on page 111.

Returns

Returns the index structure for the specified index.

Returns NULL if an error occurs while finding the entry, or if a live entry exists.

getAllChildrenFromPhysicalContainedIn()

Synopsis

int getAllChildrenFromPhysicalContainedIn(int parentIndex);

Description

Gets the indexes for all children in the entPhysicalTable that have parentIndex as their parent
in the entPhysicalContainedIn field.

Returns

Returns an array of integer indexes with null termination.

Returns NULL if no children, or invalid index, or not enough memory when allocating the array.

Physical Contains Table Functions
The entPhysicalContainsTable exposes the container relationships between physical entities.
This table provides the same information that can be found by constructing the virtual
containment tree for a given entPhysicalTable, but in a more direct format.

The following functions are for use with the entPhysicalContainsTable in the Entity MIB:

■ “addPhysicalContainsTableEntry()” on page 101
■ “deletePhysicalContainsTableEntry()” on page 101
■ “deletePhysicalContainsParentIndex()” on page 102
■ “deletePhysicalContainsChildIndex()” on page 102
■ “getPhysicalContainsChildren()” on page 102

Entity MIB API

Solaris System Management Agent Developer's Guide • May 2007100

addPhysicalContainsTableEntry()

Synopsis

extern int addPhysicalContainsTableEntry(int entPhysicalIndex, int childIndex);

Description

Adds an entry to the entPhysicalContainsTable table for the specified entPhysicalIndex and
childIndex. The entPhysicalContainedIn OID that is present in the entPhysicalTable for the
childIndex might be replaced by the OID for entPhysicalIndex. The OID is replaced if the
entPhysicalIndex has a lower index than the original index.

Returns

0 for successful addition.

-1 for failure to add.

-2 for stale index.

1 if the entry already exists for the specified entPhysicalIndex and childIndex.

deletePhysicalContainsTableEntry()

Synopsis

extern int deletePhysicalContainsTableEntry(int parentIndex, int childIndex);

Description

Deletes the parentIndex or childIndex entry that is present in the entPhysicalContainsTable.

Returns

0 for success.

-1 for failure.

-2 for stale entry, either parent or child, or both.

Entity MIB API

Chapter 9 • Entity MIB 101

deletePhysicalContainsParentIndex()

Synopsis

extern int deletePhysicalContainsParentIndex(int parentIndex);

Description

Deletes all entries in the entPhysicalContainsTable where the parent index is equal to the
specified parentIndex.

Returns

number of children successfully deleted for the specified parent.

-1 for failure.

-2 for stale parent entry.

deletePhysicalContainsChildIndex()

Synopsis

extern int deletePhysicalContainsChildIndex(int childIndex);

Description

Deletes all entries in the entPhysicalContains table where the child index is equal to the
specified childIndex.

Returns

number of parents successfully deleted for the specified child.

-1 for failure.

-2 for stale child entry.

getPhysicalContainsChildren()

Synopsis

extern int getPhysicalContainsChildren(int parentIndex);

Entity MIB API

Solaris System Management Agent Developer's Guide • May 2007102

Description

Get the indexes for all the children of the specified parent in the entPhysicalContainsTable.

Returns

Returns an array of integer indexes, with null termination.

Returns NULL if children exist, or if not enough memory exists when allocating the array. The
array is a copy that should be freed when done.

Logical Table Functions
The entLogicalTable table contains one row per logical entity. For agents that implement
more than one naming scope, at least one entry must exist. Agents that instantiate all MIB
objects within a single naming scope are not required to implement this table.

The following functions are for use with the entLogicalTable in the Entity MIB:

■ “allocLogicalEntry()” on page 103
■ “deleteLogicalTableEntry()” on page 104
■ “makeLogicalTableEntryStale()” on page 105
■ “makeLogicalTableEntryLive()” on page 106
■ “getLogicalStaleEntry()” on page 106

allocLogicalEntry()

Synopsis

extern int allocLogicalEntry(int logidx, entLogicalEntry_t *xnewLogicalEntry);

Description

Allocates an entry in the Logical Table. The logidx parameter is the requested logical index. If
logidx= 0, the function tries to use the first available index in the table. If logidx= 1 or greater, the
function tries to use the specified index. If the specified index is in use, the function returns the
first available index in the table. As a result, the returned index might not be the same as the
requested logical index.

The allocLogicalEntry() function returns the logical index that is allocated to the entry. The
memory that is associated with xnewLogicalEntry can be freed. The function creates a internal
copy of the data.

Entity MIB API

Chapter 9 • Entity MIB 103

The entLogicalEntry_t structure definition is shown in “entLogicalEntry_t Structure” on
page 112. Special cases for xnewLogicalEntry values are handled as shown in the following table.

Object Value of xnewLogicalEntry Entity MIB module handling

entLogicalDescr NULL reject

entLogicalType NULL { 1,3,6,1,2,1 }

entLogicalCommunity NULL ""

entLogicalTAddress NULL or "" reject

entLogicalTDomain NULL reject

entLogicalContextEngineId NULL ""

entLogicalContextName NULL ""

Returns

Returns the index allocated to the logical entry.

Returns -1 for error in adding the entry. Check the log for more details.

getLogicalTableEntry()

Synopsis

entLogicalEntry_t *getLogicalTableEntry(int xLogicalIndex);

Description

This function gets the logical table index structure for a particular index. The caller must not
change the value or release the memory of the entry that is returned. The entLogicalEntry_t
structure definition is shown in “entLogicalEntry_t Structure” on page 112.

Returns

Returns the entry that is associated with xLogicalIndex.

Returns NULL on error in finding the entry, or if a stale entry exists.

deleteLogicalTableEntry()

Synopsis

extern int deleteLogicalTableEntry(int xLogicalIndex);

Entity MIB API

Solaris System Management Agent Developer's Guide • May 2007104

Description

Deletes the logical table entry that is associated with the xLogicalIndex. The instances of
xLogicalIndex in the entAliasMappingTable and the entLPMappingTable are also deleted to
maintain integrity among the various Entity MIB tables.

Returns

0 for success.

-1 if the xLogicalIndex is not found.

-2 if a stale entry was found for xLogicalIndex.

makeLogicalTableEntryStale()

Synopsis

extern int makeLogicalTableEntryStale(int xLogicalIndex);

Description

Makes the logical table entry associated with the xLogicalIndex become stale. In this context,
“stale” means that the entry details are present in the agent memory but are not displayed
during any SNMP operation. The index that was allocated to a stale entry is not allocated to
another entry.

When you make an entry become stale, the instances of xLogicalIndex in the
entAliasMappingTable, entLPMappingTable and entPhysicalContainsTable are also
deleted. The deletion maintains integrity among the various Entity MIB tables. Before you
make an entry stale, you might want to store the entries that are to be deleted from the other
tables.

The stale logical table entry can be made available again by calling the
makeLogicalTableEntryLive() function, which is described in
“makeLogicalTableEntryLive()” on page 106.

Returns

0 for success.

-1 if the xLogicalIndex is not found.

–2 if a stale entry was found for xLogicalIndex.

Entity MIB API

Chapter 9 • Entity MIB 105

makeLogicalTableEntryLive()

Synopsis

extern int makeLogicalTableEntryLive(int xLogicalIndex);

Description

Makes the stale logical table entry associated with the xLogicalIndex become live. In this context,
“live” means that the entry details that are present in the agent memory are displayed during
any SNMP operations. The entry can be made stale by calling the
makeLogicalTableEntryStale() function.

If an entry is made live again, you must recreate the corresponding entries that were deleted in
the entPhysicalContainsTable, the entLPMappingTable, and the entAliasMappingTable.
Use the appropriate functions for adding an entry to each table:
“addPhysicalContainsTableEntry()” on page 101, “addLPMappingTableEntry()” on
page 107, and “addAliasMappingTableEntry()” on page 109.

Returns

0 for success.

-1 if the xLogicalIndex is not found.

–2 if a live entry already exists for xLogicalIndex.

getLogicalStaleEntry()

Synopsis

entLogicalEntry_t *getLogicalStaleEntry(int index);

Description

Gets the stale logical table index structure for the specified index. The caller must not change
the values or release the memory of the entry that is returned. The entLogicalEntry_t
structure definition is shown in “entLogicalEntry_t Structure” on page 112.

Returns

Returns the stale entry for the specified index.

Returns NULL if the entry is not found, or if a live entry exists.

Entity MIB API

Solaris System Management Agent Developer's Guide • May 2007106

LP Mapping Table Functions
The entLPMappingTable contains zero or more rows that associate logical entities to physical
equipment. For each logical entity that is known by this agent, there are zero or more mappings
to the physical resources that are used to realize that logical entity. An agent should limit the
number and nature of entries in this table so that only meaningful and non-redundant
information is returned. See the /etc/sma/snmp/mibs/ENTITY-MIB.txt file for more
information about the entLPMappingTable.

The following functions are for use with the entLPMappingTable:

■ “addLPMappingTableEntry()” on page 107
■ “deleteLPMappingTableEntry()” on page 107
■ “deleteLPMappingLogicalIndex()” on page 108
■ “deleteLPMappingPhysicalIndex()” on page 108

addLPMappingTableEntry()

Synopsis

extern int addLPMappingTableEntry(int xentLogicalIndex, int xentPhysicalIndex);

Description

Adds an entry to the entLPMappingTable with the xentLogicalIndex as the primary index and
xentPhysicalIndex as the secondary index.

Returns

0 for successful addition.

1 if the entry already exists for the given xentPhysicalIndex and xentLogicalIndex.

-1 for failure to add.

-2 for stale index.

deleteLPMappingTableEntry()

Synopsis

extern int deleteLPMappingTableEntry(int xentLogicalIndex, int xentPhysicalIndex);

Entity MIB API

Chapter 9 • Entity MIB 107

Description

Deletes the entry of the LP Mapping table that uses the specified xentLogicalIndex as the
primary index and xentPhysicalIndex as the secondary index.

Returns

0 for successful deletion.

-1 for failure to delete.

-2 for stale entry, either logical index or physical index, or both.

deleteLPMappingLogicalIndex()

Synopsis

extern int deleteLPMappingLogicalIndex(int xentLogicalIndex);

Description

Deletes all the entries of the entLPMappingTable that have the xentLogicalIndex as the primary
index.

Returns

number of successfully deleted entries.

-1 for failure.

-2 for stale logical entry.

deleteLPMappingPhysicalIndex()

Synopsis

extern int deleteLPMappingPhysicalIndex(int xentPhysicalIndex);

Description

Deletes all the entries of the entLPMappingTable that have xentPhysicalIndex as the secondary
index.

Entity MIB API

Solaris System Management Agent Developer's Guide • May 2007108

Returns

number of successfully deleted entries.

–1 if no entry was deleted.

-2 for stale physical entry.

Alias Mapping Table Functions
The entAliasMappingTable contains zero or more rows that represent mappings of logical
entity and physical entities for ports to external MIB identifiers. Each physical port in the
system can be associated with a mapping to an external identifier. The external identifier is
associated with a particular logical entity's naming scope. A wildcard mechanism is provided to
indicate that an identifier is associated with more than one logical entity.

The following functions are for use with the entAliasMappingTable in the Entity MIB:

■ “addAliasMappingTableEntry()” on page 109
■ “deleteAliasMappingTableEntry()” on page 110
■ “deleteAliasMappingLogicalIndex()” on page 110
■ “deleteAliasMappingPhysicalIndex()” on page 111

addAliasMappingTableEntry()

Synopsis

extern int addAliasMappingTableEntry(int xentPhysicalIndex, int xentLogicalIndex,
oid* xAliasMapId, int xAliasMapIdSize);

Description

Adds an entry to the entAliasMappingTable with the xentPhysicalIndex as the primary index
and xentLogicalIndex as the secondary index. xAliasMapId is the alias (OID) for the entry and
xAliasMapIdSize is the size in bytes of xAliasMapId.

Note that if entAliasMapId = NULL, the request is rejected.

Returns

0 for successful addition.

1 if the entry already exists for the given xentPhysicalIndex and xentLogicalIndex.

-1 for failure.

Entity MIB API

Chapter 9 • Entity MIB 109

-2 for stale entry.

deleteAliasMappingTableEntry()

Synopsis

extern int deleteAliasMappingTableEntry(int xentPhysicalIndex, int

xentLogicalIndex);

Description

Deletes the entry in the entAliasMappingTable that has xentPhysicalIndex as the primary
index and xentLogicalIndex as the secondary index.

Returns

0 for successful deletion.

-1 for entry not found.

-2 for stale entry.

deleteAliasMappingLogicalIndex()

Synopsis

extern int deleteAliasMappingLogicalIndex(int xentLogicalIndex);

Description

Deletes all entries of the entAliasMappingTable that have xentLogicalIndex as the secondary
index.

This function cannot be used to delete all indexes that have an xentLogicalIndex of zero. Use the
deleteAliasMappingTableEntry() function to delete such entries one at a time, with the
appropriate xentPhysicalIndex specified.

Returns

number of entries successfully deleted.

-1 for entry not found.

-2 for stale logical entry.

Entity MIB API

Solaris System Management Agent Developer's Guide • May 2007110

deleteAliasMappingPhysicalIndex()

Synopsis

extern int deleteAliasMappingPhysicalIndex(int xentPhysicalIndex);

Description

Deletes all entries in the entAliasMappingTable whose primary index matches the specified
xentPhysicalIindex.

Returns

number of entries successfully deleted.

–1 for entry not found.

–2 for stale physical entry.

Header Files for Entity MIB Functions
Data declarations and defines that are needed by the Entity MIB functions are included in
header files. The following header files in /usr/demo/sma_snmp/demo_module_11 can be copied
and modified for use with your own modules:

entAliasMappingTable.h

entLastChangeTime.h

entLogicalTable.h

entLPMappingTable.h

entPhysicalContainsTable.h

entPhysicalTable.h

The structures defined in entPhysicalTable.h and entLogicalTable.h are shown in the
following sections.

entPhysicalEntry_t Structure
The entPhysicalTable.h header file contains the typedef for the entPhysicalEntry_t
structure. This structure is representative of the entPhysicalTable columns that are defined in
RFC 2737. The entPhysicalEntry_t is defined as follows:

Header Files for Entity MIB Functions

Chapter 9 • Entity MIB 111

typedef struct entPhysicalEntry_s {

int_l entPhysicalIndex;

char *entPhysicalDescr;

oid *entPhysicalVendorType;

int_l entPhysicalVendorTypeSize;

int_l entPhysicalContainedIn;

int_l entPhysicalClass;

int_l entPhysicalParentRelPos;

char *entPhysicalName;

char *entPhysicalHardwareRev;

char *entPhysicalFirmwareRev;

char *entPhysicalSoftwareRev;

char *entPhysicalSerialNum;

char *entPhysicalMfgName;

char *entPhysicalModelName;

char *entPhysicalAlias;

char *entPhysicalAssetID;

int_l entPhysicalIsFRU;

struct entPhysicalEntry_s *pNextEntry;

} entPhysicalEntry_t;

entLogicalEntry_t Structure
The entLogicalTable.h header file contains the typedef for the
entLogicalEntry_tstructure. This structure is representative of the entLogicalTable
columns that are defined in RFC 2737. The entLogicalEntry_t is defined as follows:

typedef struct entLogicalEntry_s {

int_l entLogicalIndex;

char *entLogicalDescr;

oid *entLogicalType;

int_l entLogicalTypeSize;

char *entLogicalCommunity;

char *entLogicalTAddress;

oid *entLogicalTDomain;

int_l entLogicalTDomainSize;

char *entLogicalContextEngineId;

char *entLogicalContextName;

struct entLogicalEntry_s* pNextEntry;

} entLogicalEntry_t;

Header Files for Entity MIB Functions

Solaris System Management Agent Developer's Guide • May 2007112

Tips for Using Entity MIB Functions
Creating physical or logical entries Create the appropriate physical entries or logical entries

first, before creating the entries in the three mapping
tables: entLPMappingTable, entAliasMappingTable,
and the entPhysicalContainsTable.

Multiple parents For physical entries that have more than one parent, all
relationships must be defined in the
entPhysicalContainsTable. For example, suppose you
want to define that C is contained in A with the
entPhysicalContainedIn field. You also want to define
that C is also contained in B. In this case, you must
define that C is contained in A, and C is contained in B
in the entPhysicalContainsTable.

Recursive Relationships Recursive relationships are not allowed in the
entPhysicalTable and entPhysicalContainsTable.
For example, suppose B is contained in A, and C is
contained in B. In this case, A cannot be contained in C.
The parent/child relationship is defined both in the
entPhysicalContainedIn field of the
entPhysicalTable() function and in the
entPhysicalContainsTable. The recursive check
safeguard is already built into the
addPhysicalContainsTableEntry() function.

Uniqueness When you specify entPhysicalParentRelPos, the
allocPhysicalEntry() function does not check for
uniqueness. For example, you can specify that A and B
are contained in C by setting both
entPhysicalParentRelPos fields to the same value.
However, doing so would violate RFC 2737. The
uniqueness of many fields is not necessarily checked by
the functions. You must be aware of this fact during the
design phase.

Deleting physical or logical entries Deleting an entry is similar to making the entry stale.
Both deleted and stale entries no longer show up in
tables when performing SNMP operations. Whether
you delete an entry or make an entry stale, the
corresponding entries are automatically deleted in the
three mapping tables. Note that you cannot undelete
these corresponding mapping tables entries. This
deletion is done to maintain the integrity of the tables.

Tips for Using Entity MIB Functions

Chapter 9 • Entity MIB 113

The difference between deleting an entry and making
the entry stale is that a stale entry can be restored. Stale
entries can be made live with functions that are designed
for that purpose. A deleted entry cannot be restored.

Deleting Parents The integrity of the entPhysicalTable and
entPhysicalContainsTable are not maintained if you
delete a parent before you delete the subsequent
generations. The deletePhysicalTableEntry()
function does not recursively remove the parent and its
subsequent generations. The function only removes the
specified entry from the tables. If you do not delete a
parent's generations before deleting the parent, you
leave orphaned children. This practice is a violation of
RFC 2737.

When you delete a parent of a multi-parent child, the
entPhysicalContainedIn parameter is reset automatically
to the lowest of the remaining parent index. RFC 2737
requires this reset. The entPhysicalParentRelPos
parameter is then out of place. No API function lets you
change that parameter. You can modify the
entPhysicalParentRelPos parameter by manipulating the
entry that is returned by the getPhysicalTableEntry()
function. However, this approach for modifying
entPhysicalParentRelPos is not supported. If you decide
to try this approach, use caution.

Traps A notification trap is sent out whenever a change is
made to any of the five tables, such as the creation or
deletion of entries. A mechanism exists to suppress traps
from being sent too frequently. The throttling period is
five seconds.

RFC Constraints and errors The Entity MIB implementation has some constraints,
which are dictated by RFC 2737. The only mechanism to
notify the user about an error is through the error codes.
You must understand the RFC thoroughly to be aware
of the constraints.

Tips for Using Entity MIB Functions

Solaris System Management Agent Developer's Guide • May 2007114

demo_module_11Code Example for Entity MIB
The /usr/demo/sma_snmp/demo_module_11 code example shows how the Entity MIB module
can be used. The demo module is designed to populate the empty MIB tables that are created
when the libentity.so module is dynamically loaded into the agent. The data that is loaded is
described in this section.

You should examine the code in demo_module_11, especially the code in the MyTable.c file. The
file README_demo_module_11 in that directory includes procedures for building and using the
example.

The demo_module_11 example refers to a system with the following components that need to be
managed:

■ Two boards, with two CPU modules on each board
■ One board that contains three ports
■ Two logical domains
■ Two firewall instances

These components can be divided into the following entities:

■ 14 physical entities
1 chassis
3 slots in the chassis
3 boards in the slots
4 CPU modules in two boards
3 ports in one board

■ 4 logical entities
2 domains
2 firewalls

Some of the physical entities are contained in other physical entities. The logical entities are
associated with particular physical entities. The Entity MIB tables should be populated to show
the relationships among the various entities.

The following examples demonstrate how the MIB tables could be populated for this system.

EXAMPLE 9–1 Physical Entities for demo_module_11

The entPhysicalTable might be populated with the following values:

■ One field-replaceable physical chassis:

entPhysicalDescr.1 == ’Sun Chassis Model b1000’

entPhysicalVendorType.1 == sun.chassisTypes.1

entPhysicalContainedIn.1 == 0

demo_module_11 Code Example for Entity MIB

Chapter 9 • Entity MIB 115

EXAMPLE 9–1 Physical Entities for demo_module_11 (Continued)

entPhysicalClass.1 == chassis(3)

entPhysicalParentRelPos.1 == -1

entPhysicalName.1 == ’b1000’

entPhysicalHardwareRev.1 == ’A(1.00.02)’

entPhysicalSoftwareRev.1 == ’’

entPhysicalFirmwareRev.1 == ’’

entPhysicalSerialNum.1 == ’C100076544’

entPhysicalMfgName.1 == ’Sun Microsystems’

entPhysicalModelName.1 == ’CHS-1000’

entPhysicalAlias.1 == ’cl-SJ17-3-006:rack1:rtr-U3’

entPhysicalAssetID.1 == ’0007372293’

entPhysicalIsFRU.1 == true(1)

■ Slot 1 within the chassis:

entPhysicalDescr.2 == ’Sun Chassis Slot Type AA’

entPhysicalVendorType.2 == sun.slotTypes.1

entPhysicalContainedIn.2 == 1

entPhysicalClass.2 == container(5)

entPhysicalParentRelPos.2 == 1

entPhysicalName.2 == ’S1’

entPhysicalHardwareRev.2 == ’B(1.00.01)’

entPhysicalSoftwareRev.2 == ’’

entPhysicalFirmwareRev.2 == ’’

entPhysicalSerialNum.2 == ’’

entPhysicalMfgName.2 == ’Sun Microsystems’

entPhysicalModelName.2 == ’SLT-AA97’

entPhysicalAlias.2 == ’’

entPhysicalAssetID.2 == ’’

entPhysicalIsFRU.2 == false(2)

■ Slot 2 within the chassis:

entPhysicalDescr.3 == ’Sun Chassis Slot Type AA’

entPhysicalVendorType.3 = sun.slotTypes.1

entPhysicalContainedIn.3 == 1

entPhysicalClass.3 == container(5)

entPhysicalParentRelPos.3 == 2

entPhysicalName.3 == ’S2’

entPhysicalHardwareRev.3 == ’1.00.07’

entPhysicalSoftwareRev.3 == ’’

entPhysicalFirmwareRev.3 == ’’

entPhysicalSerialNum.3 == ’’

demo_module_11 Code Example for Entity MIB

Solaris System Management Agent Developer's Guide • May 2007116

EXAMPLE 9–1 Physical Entities for demo_module_11 (Continued)

entPhysicalMfgName.3 == ’Sun Microsystems’

entPhysicalModelName.3 == ’SLT-AA97’

entPhysicalAlias.3 == ’’

entPhysicalAssetID.3 == ’’

entPhysicalIsFRU.3 == false(2)

■ Slot 3 within the chassis:

entPhysicalDescr.4 == ’Sun Chassis Slot Type AA’

entPhysicalVendorType.4 = sun.slotTypes.1

entPhysicalContainedIn.4 == 1

entPhysicalClass.4 == container(5)

entPhysicalParentRelPos.4 == 3

entPhysicalName.4 == ’S3’

entPhysicalHardwareRev.4 == ’1.00.07’

entPhysicalSoftwareRev.4 == ’’

entPhysicalFirmwareRev.4 == ’’

entPhysicalSerialNum.4 == ’’

entPhysicalMfgName.4 == ’Sun Microsystems’

entPhysicalModelName.4 == ’SLT-AA97’

entPhysicalAlias.4 == ’’

entPhysicalAssetID.4 == ’’

entPhysicalIsFRU.4 == false(2)

■ Board 1 within Slot 1:

entPhysicalDescr.5 == ’Sun CPU-100’

entPhysicalVendorType.5 == sun.moduleTypes.14

entPhysicalContainedIn.5 == 2

entPhysicalClass.5 == module(9)

entPhysicalParentRelPos.5 == 1

entPhysicalName.5 == ’M1’

entPhysicalHardwareRev.5 == ’1.00.07’

entPhysicalSoftwareRev.5 == ’1.5.1’

entPhysicalFirmwareRev.5 == ’A(1.1)’

entPhysicalSerialNum.5 == ’C100087363’

entPhysicalMfgName.5 == ’Sun Microsystems’

entPhysicalModelName.5 == ’R10-FE00’

entPhysicalAlias.5 == ’rtr-U3:m1:SJ17-3-eng’

entPhysicalAssetID.5 == ’0007372562’

entPhysicalIsFRU.5 == true(1)

■ First CPU, in Board 1, within Slot 1:

demo_module_11 Code Example for Entity MIB

Chapter 9 • Entity MIB 117

EXAMPLE 9–1 Physical Entities for demo_module_11 (Continued)

entPhysicalDescr.6 == ’Sun Ultrasparc-III 400MHz’

entPhysicalVendorType.6 == sun.cpuTypes.2

entPhysicalContainedIn.6 == 5

entPhysicalClass.6 == other(1)

entPhysicalParentRelPos.6 == 1

entPhysicalName.6 == ’P1’

entPhysicalHardwareRev.6 == ’G(1.02)’

entPhysicalSoftwareRev.6 == ’’

entPhysicalFirmwareRev.6 == ’1.1’

entPhysicalSerialNum.6 == ’’

entPhysicalMfgName.6 == ’Sun Microsystems’

entPhysicalModelName.6 == ’SFE-400M’

entPhysicalAlias.6 == ’’

entPhysicalAssetID.6 == ’’

entPhysicalIsFRU.6 == false(2)

■ Second CPU, in Board 1, within Slot 1:

entPhysicalDescr.7 == ’Sun Ultrasparc-III 400MHz’

entPhysicalVendorType.7 == sun.cpuTypes.2

entPhysicalContainedIn.7 == 5

entPhysicalClass.7 == other(1)

entPhysicalParentRelPos.7 == 2

entPhysicalName.7 == ’P2’

entPhysicalHardwareRev.7 == ’G(1.02)’

entPhysicalSoftwareRev.7 == ’’

entPhysicalFirmwareRev.7 == ’1.1’

entPhysicalSerialNum.7 == ’’

entPhysicalMfgName.7 == ’Sun Microsystems’

entPhysicalModelName.7 == ’SFE-400M’

entPhysicalAlias.7 == ’’

entPhysicalAssetID.7 == ’’

entPhysicalIsFRU.7 == false(2)

■ Board 2 within Slot 2:

entPhysicalDescr.8 == ’Sun CPU-200’

entPhysicalVendorType.8 == sun.moduleTypes.15

entPhysicalContainedIn.8 == 3

entPhysicalClass.8 == module(9)

entPhysicalParentRelPos.8 == 1

entPhysicalName.8 == ’M2’

entPhysicalHardwareRev.8 == ’2.01.00’

demo_module_11 Code Example for Entity MIB

Solaris System Management Agent Developer's Guide • May 2007118

EXAMPLE 9–1 Physical Entities for demo_module_11 (Continued)

entPhysicalSoftwareRev.8 == ’3.0.7’

entPhysicalFirmwareRev.8 == ’A(1.2)’

entPhysicalSerialNum.8 == ’C100098732’

entPhysicalMfgName.8 == ’Sun Microsystems’

entPhysicalModelName.8 == ’R10-FE0C’

entPhysicalAlias.8 == ’rtr-U3:m2:SJ17-2-eng’

entPhysicalAssetID.8 == ’0007373982’

entPhysicalIsFRU.8 == true(1)

■ Third CPU, in Board 2, within Slot 2:

entPhysicalDescr.9 == ’Sun Ultrasparc-III 400MHz’

entPhysicalVendorType.9 == sun.cpuTypes.5

entPhysicalContainedIn.9 == 8

entPhysicalClass.9 == other(1)

entPhysicalParentRelPos.9 == 1

entPhysicalName.9 == ’P3’

entPhysicalHardwareRev.9 == ’CC(1.07)’

entPhysicalSoftwareRev.9 == ’2.0.34’

entPhysicalFirmwareRev.9 == ’1.1’

entPhysicalSerialNum.9 == ’’

entPhysicalMfgName.9 == ’Sun Microsystems’

entPhysicalModelName.9 == ’SFE-400M’

entPhysicalAlias.9 == ’’

entPhysicalAssetID.9 == ’’

entPhysicalIsFRU.9 == false(2)

■ Fourth CPU, in Board 2, within Slot 2:

entPhysicalDescr.10 == ’Sun Ultrasparc-III 400MHz’

entPhysicalVendorType.10 == sun.cpuTypes.2

entPhysicalContainedIn.10 == 8

entPhysicalClass.10 == other(1)

entPhysicalParentRelPos.10 == 2

entPhysicalName.10 == ’P4’

entPhysicalHardwareRev.10 == ’G(1.04)’

entPhysicalSoftwareRev.10 == ’’

entPhysicalFirmwareRev.10 == ’1.3’

entPhysicalSerialNum.10 == ’’

entPhysicalMfgName.10 == ’Sun Microsystems’

entPhysicalModelName.10 == ’SFE-400M’

entPhysicalAlias.10 == ’’

demo_module_11 Code Example for Entity MIB

Chapter 9 • Entity MIB 119

EXAMPLE 9–1 Physical Entities for demo_module_11 (Continued)

entPhysicalAssetID.10 == ’’

entPhysicalIsFRU.10 == false(2)

■ Board 3 within Slot 3:

entPhysicalDescr.11 == ’Sun port-200’

entPhysicalVendorType.11 == sun.moduleTypes.25

entPhysicalContainedIn.11 == 4

entPhysicalClass.11 == module(9)

entPhysicalParentRelPos.11 == 1

entPhysicalName.11 == ’M2’

entPhysicalHardwareRev.11 == ’2.01.00’

entPhysicalSoftwareRev.11 == ’3.0.7’

entPhysicalFirmwareRev.11 == ’A(1.2)’

entPhysicalSerialNum.11 == ’C100098732’

entPhysicalMfgName.11 == ’Sun Microsystems’

entPhysicalModelName.11 == ’R11-C100’

entPhysicalAlias.11 == ’rtr-U3:m2:SJ17-2-eng’

entPhysicalAssetID.11 == ’0007373982’

entPhysicalIsFRU.11 == true(1)

■ Port 1, in Board 3, within Slot 3:

entPhysicalDescr.12 == ’Sun Ethernet-100 Port’

entPhysicalVendorType.12 == sun.portTypes.5

entPhysicalContainedIn.12 == 11

entPhysicalClass.12 == port(10)

entPhysicalParentRelPos.12 == 1

entPhysicalName.12 == ’P3’

entPhysicalHardwareRev.12 == ’CC(1.07)’

entPhysicalSoftwareRev.12 == ’2.0.34’

entPhysicalFirmwareRev.12 == ’1.1’

entPhysicalSerialNum.12 == ’’

entPhysicalMfgName.12 == ’Sun Microsystems’

entPhysicalModelName.12 == ’SFE-P100’

entPhysicalAlias.12 == ’’

entPhysicalAssetID.12 == ’’

entPhysicalIsFRU.12 == false(2)

■ Port 2, in Board 3, within Slot 3:

entPhysicalDescr.13 == ’Sun Ethernet-100 Port’

entPhysicalVendorType.13 == sun.portTypes.5

entPhysicalContainedIn.13 == 11

demo_module_11 Code Example for Entity MIB

Solaris System Management Agent Developer's Guide • May 2007120

EXAMPLE 9–1 Physical Entities for demo_module_11 (Continued)

entPhysicalClass.13 == port(10)

entPhysicalParentRelPos.13 == 2

entPhysicalName.13 == ’Ethernet B’

entPhysicalHardwareRev.13 == ’G(1.04)’

entPhysicalSoftwareRev.13 == ’’

entPhysicalFirmwareRev.13 == ’1.3’

entPhysicalSerialNum.13 == ’’

entPhysicalMfgName.13 == ’Sun Microsystems’

entPhysicalModelName.13 == ’SFE-P100’

entPhysicalAlias.13 == ’’

entPhysicalAssetID.13 == ’’

entPhysicalIsFRU.13 == false(2)

■ Port 3, in Board 3, within Slot 3:

entPhysicalDescr.14 == ’Sun Ethernet-100 Port’

entPhysicalVendorType.14 == sun.portTypes.5

entPhysicalContainedIn.14 == 11

entPhysicalClass.14 == port(10)

entPhysicalParentRelPos.14 == 3

entPhysicalName.14 == ’Ethernet B’

entPhysicalHardwareRev.14 == ’G(1.04)’

entPhysicalSoftwareRev.14 == ’’

entPhysicalFirmwareRev.14 == ’1.3’

entPhysicalSerialNum.14 == ’’

entPhysicalMfgName.14 == ’Sun Microsystems’

entPhysicalModelName.14 == ’SFE-P100’

entPhysicalAlias.14 == ’’

entPhysicalAssetID.14 == ’’

entPhysicalIsFRU.14 == false(2)

EXAMPLE 9–2 Logical Entities for demo_module_11

The entLogicalTable is populated with the following values when you run demo_module_11:

■ Logical Domain “A”

entLogicalDescr.1 == ’Domain A’

entLogicalType.1 == solaris

entLogicalCommunity.1 == ’public-dom1’

entLogicalTAddress.1 == 124.125.126.127:161

demo_module_11 Code Example for Entity MIB

Chapter 9 • Entity MIB 121

EXAMPLE 9–2 Logical Entities for demo_module_11 (Continued)

entLogicalTDomain.1 == SunExampleDomain

entLogicalContextEngineID.1 == ’’

entLogicalContextName.1 == ’’

■ Logical Domain “B”

entLogicalDescr.2 == ’Domain B’

entLogicalType.2 == solaris

entLogicalCommunity.2 == ’public-dom2’

entLogicalTAddress.2 == 124.125.126.128:161

entLogicalTDomain.2 == SunExampleDomain

entLogicalContextEngineID.2 == ’’

entLogicalContextName.2 == ’’

■ Firewall 1

entLogicalDescr.3 == ’Sun Firewall v2.1.1’

entLogicalType.3 == dot1dFirewall

entLogicalCommunity.3 == ’public-firewall1’

entLogicalTAddress.3 == 124.125.126.129:161

entLogicalTDomain.3 == SunExampleDomain

entLogicalContextEngineID.3 == ’’

entLogicalContextName.3 == ’’

■ Firewall 2

entLogicalDescr.4 == ’Sun Firewall v2.1.1’

entLogicalType.4 == dot1dFirewall

entLogicalCommunity.4 == ’public-firewall2’

entLogicalTAddress.4 == 124.125.126.130:161

entLogicalTDomain.4 == SunExampleDomain

entLogicalContextEngineID.4 == ’’

entLogicalContextName.4 == ’’

Note – entLogicalTable does not support SNMPv3 in this example.

EXAMPLE 9–3 Logical to Physical Mappings for demo_module_11

The entLPMappingsTable is populated with the objects and values in the right column of the
following table when you run demo_module_11.

demo_module_11 Code Example for Entity MIB

Solaris System Management Agent Developer's Guide • May 2007122

EXAMPLE 9–3 Logical to Physical Mappings for demo_module_11 (Continued)

Logical Entity and Physical Entity Associations Logical to Physical Mapping Indexes

Domain A (entLogicalIndex.1) uses:
Board 1 (entPhysicalIndex.5)
Port 1 (entPhysicalIndex.12)

entLPPhysicalIndex.1.5 == 5

entLPPhysicalIndex.1.12 == 12

Domain B (entLogicalIndex.2) uses:
Board 2 (entPhysicalIndex.8)
Port 2 (entPhysicalIndex.13)
Port 3 (entPhysicalIndex.14)

entLPPhysicalIndex.2.8 == 8

entLPPhysicalIndex.2.13 == 13

entLPPhysicalIndex.2.14 == 14

Firewall 1 (entLogicalIndex.3) uses:
CPU 1 (entPhysicalIndex.6)
Port 1 (entPhysicalIndex.12)

entLPPhysicalIndex.3.6 == 6

entLPPhysicalIndex.3.12 == 12

Firewall 2 (entLogicalIndex.4) uses:
CPU 3 (entPhysicalIndex.9)
Port 2 (entPhysicalIndex.13)
Port 3 (entPhysicalIndex.14)

entLPPhysicalIndex.4.9 == 9

entLPPhysicalIndex.4.13 == 13

entLPPhysicalIndex.4.14 == 14

These mappings are included in the entLPMappingTable because
Firewall 2 uses ports in the board. If the firewall did not use these
ports, then a single mapping to the board, for example
entLPPhysicalIndex.4.11 would be sufficient.

EXAMPLE 9–4 Physical to Logical to MIB Alias Mappings for demo_module_11

The entAliasMappingTable is populated with the following objects and values when you run
demo_module_11.

If the ifIndex values are shared by all logical entities, the entAliasMappingTable might be
populated as follows:

entAliasMappingIdentifier.12.0 == ifIndex.1

entAliasMappingIdentifier.13.0 == ifIndex.2

entAliasMappingIdentifier.14.0 == ifIndex.3

The first index in the entAliasMappingIdentifier signifies the physical index. In this case,
physical entities with the indexes 12, 13, and 14 are Port 1, Port 2, and Port 3. In the preceding
entAliasMappingIdentifier assignments, Port 1 is mapped to ifIndex.1, Port 2 is mapped to
ifIndex.2, and Port 3 is mapped to ifIndex.3. This mapping is for all logical entities that use
each of these ports.

If the ifIndex values are not shared by all logical entities, the entAliasMappingTable might be
populated as follows:

demo_module_11 Code Example for Entity MIB

Chapter 9 • Entity MIB 123

EXAMPLE 9–4 Physical to Logical to MIB Alias Mappings for demo_module_11 (Continued)

entAliasMappingIdentifier.12.0 == ifIndex.1

entAliasMappingIdentifier.12.3 == ifIndex.101

entAliasMappingIdentifier.13.0 == ifIndex.2

entAliasMappingIdentifier.13.3 == ifIndex.102

entAliasMappingIdentifier.14.0 == ifIndex.3

entAliasMappingIdentifier.14.3 == ifIndex.103

In this case, one logical entity is mapped differently. Firewall 1, which is entLogicalIndex.3, is
mapped as follows:

■ ifIndex.101 on Port 1
■ ifIndex.102 on Port 2
■ ifIndex.103 on Port 3

EXAMPLE 9–5 Physical Contains Table Entries for demo_module_11

The following table shows the containment relationships among the physical entities. The right
column of the table lists the entries added to the entPhysicalContainsTable of the Entity MIB
by demo_module_11.

Physical Entity Contains entPhysicalContainsTable Entry

Chassis Slot 1 entPhysicalChildIndex.1.2 == 2

Slot 2 entPhysicalChildIndex.1.3 == 3

Slot 3 entPhysicalChildIndex.1.4 == 4

Slot 1 Board 1 entPhysicalChildIndex.2.5 == 5

Slot 2 Board 2 entPhysicalChildIndex.3.8 == 8

Slot 3 Board 3 entPhysicalChildIndex.4.11 == 11

Board 1 CPU 1 entPhysicalChildIndex.4.6 == 6

CPU 2 entPhysicalChildIndex.4.7 == 7

Board 2 CPU 3 entPhysicalChildIndex.8.9 == 9

CPU 4 entPhysicalChildIndex.8.10 == 10

Board 3 Port 1 entPhysicalChildIndex.11.12 == 12

Port 2 entPhysicalChildIndex.11.13 == 13

Port 3 entPhysicalChildIndex.11.14 == 14

demo_module_11 Code Example for Entity MIB

Solaris System Management Agent Developer's Guide • May 2007124

Migration of Solstice Enterprise Agents to the
System Management Agent

This chapter contains information for developers who want to migrate a subagent from Solstice
Enterprise Agents to use in the System Management Agent. The chapter uses demo_module_12
to illustrate procedures. The following topics are discussed:

■ “Why Migrate to SMA?” on page 125
■ “Solstice Enterprise Agents Migration Strategy Overview” on page 126
■ “Migrating Solstice Enterprise Agent Subagents to SMA” on page 126
■ “demo_module_12 Code Example for Solstice Enterprise Agents Subagent Migration” on

page 127
■ “Modifying the SMA Instrumentation Code” on page 129

Why Migrate to SMA?
Support for the Solstice Enterprise Agents software might be discontinued in a future Solaris
release. For this reason, any Solstice Enterprise Agents subagents that you have created must be
migrated to use the SMA. In this Solaris release, you can run the Solstice Enterprise Agents
software and associated subagents concurrently with the SMA.

The Solstice Enterprise Agents product includes mibiisa, a subagent that implements MIB-II
and the Sun MIB. In SMA, the functionality of mibiisa is implemented by the MIB-II portion
of the SMA agent and a new Sun extensions subagent. By default, the mibiisa subagent is
disabled in this Solaris release.

Requests for MIB-II are handled by the SMA agent directly. Requests for the extensions in the
Sun MIB are handled by the seaExtensions module, if that module has been loaded. Requests
for the Solstice Enterprise Agents master agent, which implements the snmpdx.mib, are handled
by the seaProxy module if that module has been loaded.

The seaProxy module generates dynamic proxies based on static and dynamic Solstice
Enterprise Agents subagent registrations. The proxies are not statically defined in snmpd.conf.
Note that the seaProxy module does not generate proxies for the mibiisa subagent itself. After

10C H A P T E R 1 0

125

the dynamic proxies are generated, the agent's proxy mechanism handles the forwarding of
those requests to the Solstice Enterprise Agents master agent.

Solstice Enterprise Agents subagents can still be used with the Solstice Enterprise Agents master
agent, and thus with SMA by using the seaProxy module, as explained in Solaris System
Management Agent Administration Guide. However, SMA support of the Solstice Enterprise
Agents software is for a limited transitional time. You should migrate any Solstice Enterprise
Agents subagents that you have implemented to use the SMA as early as possible.

Solstice Enterprise Agents Migration Strategy Overview
The general process for implementing a Solstice Enterprise Agents subagent as an SMA module
is as follows:

1. Obtain the MIB that was used to create the Solstice Enterprise Agents subagent.
2. Make a copy of the MIB. Name the MIB file according to the guidelines in “MIB File Names”

on page 31, if necessary.
Modify the copy of the MIB for compatibility with mib2c. Use the
SUN-SEA-EXTENSIONS-MIB.txt as a model for modifying the MIB. Pay particular attention
to the format of the MODULE-IDENTITY group.

3. Use the mib2c tool to generate C code for SMA module templates from the modified MIB.
4. Use the Solstice Enterprise Agents mibcodegen tool to generate C code header and stub files

for Solstice Enterprise Agents modules from the original MIB.
5. Compare the template code that mib2c produced to the template code that mibcodegen

produced. Examine the instrumentation code from the Solstice Enterprise Agents subagent
to determine what you need for instrumentation in the SMA module.

6. Modify the SMA templates to use the appropriate functions to implement similar
instrumentation code.

The following section uses an example MIB in demo_module_12 to illustrate this migration
process.

Migrating Solstice Enterprise Agent Subagents to SMA
The SMA does not provide a comprehensive tool to migrate a Solstice Enterprise Agents
subagent to an SMA module. A Solstice Enterprise Agents subagent uses two types of API
functions. One type of API function is used for interaction with the master agent, and the other
type is used for custom implementation. The functions for interaction with the master agent are
common among all subagents. No tool is available that can separate the two types of functions,
and put only the custom implementation code automatically into the corresponding place in
the mib2c-generated code.

Solstice Enterprise Agents Migration Strategy Overview

Solaris System Management Agent Developer's Guide • May 2007126

The simplest way to migrate a Solstice Enterprise Agents subagent is first to use the MIB tools of
each environment to create code templates for each environment.

The following table compares aspects of the SMA mib2c tool and the Solstice Enterprise Agents
mibcodegen tool. This comparison might help you to understand the code templates that each
tool produces.

TABLE 10–1 Comparison of MIB Tools in SMA and Solstice Enterprise Agents Software

SMA mib2c tool
Solstice Enterprise Agents mibcodegen
tool

Scope of action on MIB mib2c is run against individual nodes in a MIB,
such as a subtree that contains scalars or a table.
Running mib2c against individual tables rather
than a parent subtree or group is advantageous.
You can generate code templates that are
customized according to the way you plan to
implement each table in SMA. For example, you
can generate templates for a table differently if
the table is internal or external to the agent.

mibcodegen is run against the
whole MIB.

Code generated mib2c generates code for the implementation of
a module that can be used in SNMP agent or
AgentX subagent frameworks. Well-defined
APIs are used to expose the functionality.

mibcodegen generates code to
make the output represent a
standalone subagent. SNMP is
used to communicate between the
master agent and the subagent.

demo_module_12Code Example for Solstice Enterprise
Agents Subagent Migration
The demo_module_12 demonstrates how to implement a Solstice Enterprise Agents subagent as
an SMA module.

The demo_module_12 code example is by default located in the directory
/usr/demo/sma_snmp/demo_module_12. The README_demo_module_12 file within that
directory contains instructions that describe how to perform the following tasks:

■ Generate SMA template code from the EXAMPLE-MIB, by running the runmib2c script
■ Generate Solstice Enterprise Agents template code from the EXAMPLE-MIB, by running

the runmibcodegen script

You should perform the procedures in demo_module_12 to produce the templates that are
analyzed in the following section.

Analysis of the demo_module_12 Solstice Enterprise Agents Templates
The mibcodgen tool produced several files. The following table describes and analyzes the files.

Migrating Solstice Enterprise Agent Subagents to SMA

Chapter 10 • Migration of Solstice Enterprise Agents to the System Management Agent 127

TABLE 10–2 Comparison of Solstice Enterprise Agents Templates to SMA Templates

Template File Name Content Comparison to SMA Templates

example_tree.c Contains the type or
storage definition for
the MIB information.

Only the OID and column definitions
contained in this file are also used in templates
generated by mib2c. The agent or AgentX
frameworks handle the rest for you.

example_stub.h Contains extern
function definitions for
all get, set, and free

functions that
implement the
variables in the MIB.

For each SNMP group, mib2c generates an
include file that defines externs for similar
functions for both scalars and tables.

example_stub.c Contains all get, set,
and free functions that
implement the scalar
variables in the MIB.

For each SNMP group, mib2c generates a
source code file. The file implements code for
similar functions for the data types that the
group contains, scalars, or tables.

mib2c also generates the registration code that
is invoked at initialization time. The
registration code makes the agent aware of the
OIDs that are supported. The registration code
also identifies the get and set functions.

Migrating Solstice Enterprise Agent Subagents to SMA

Solaris System Management Agent Developer's Guide • May 2007128

TABLE 10–2 Comparison of Solstice Enterprise Agents Templates to SMA Templates (Continued)
Template File Name Content Comparison to SMA Templates

example_rwTableEntry.c Contains all get, set,
and free functions that
implement the column
variables for
rwTableEntry in the
MIB.

An equivalent file, tableType.c in the
example, is generated by mib2c with one of the
table configuration options. The
mib2c-generated file contains similar
functions but uses very different index
handling.

mibcodegen generates a get method that is
passed a parameter to indicate whether to
perform a get or getnext request.

With mib2c, however, the index handling is
performed prior to invoking the get method
to handle a getnext request. A get_first

method is exposed to the SMA agent so that
the agent can find the first item in a table. A
get_next method handles getting the next row
in the table. When the correct row is found, the
get or set method is called with the column to
manipulate. This process applies to getting the
correct row for get, getnext, or set functions
when the data is external to the agent. If the
data is held by the SMA master agent, table
registration involves populating the table.
After the table is populated, requests to the
table would be handled directly by the SMA
master agent.

example_trap.c Contains trap
definitions.

mib2c does not generate equivalent code.
Traps can be generated by calling
send_enterprise_trap_vars().

example_appl.c Contains code to
support subagent.

mib2c does not generate equivalent code
because such code is not needed. The SMA
agent or AgentX framework handles the
overhead and invokes the code through API
functions.

Modifying the SMA Instrumentation Code
After you generate and analyze the templates, the task then is to extract the core SNMP get,
getnext, and set processing out of the Solstice Enterprise Agents subagent code, and move it to
the get and set handler and get_first/get_next methods defined in the SMA module
approach.

Migrating Solstice Enterprise Agent Subagents to SMA

Chapter 10 • Migration of Solstice Enterprise Agents to the System Management Agent 129

The index handling is removed from each get and set function in Solstice Enterprise Agents
code to be handled by the SMA. Special methods are used for tables. Context fields are used to
store the current index information so that advancing in the table is relatively simple.

Migrating Solstice Enterprise Agent Subagents to SMA

Solaris System Management Agent Developer's Guide • May 2007130

SMA Resources

This appendix lists System Management Agent resources that you might find helpful.

Man Pages
This section lists all the man pages that are associated with the System Management Agent. The
man pages are listed in tables, which are organized by the type of content documented in the
pages:

■ Man Pages for General SNMP Topics
■ Man Pages for SNMP Tools
■ Man Pages for SNMP Configuration Files
■ Man Pages for SNMP Daemons

The following table lists man pages for general SNMP information.

TABLE A–1 Man Pages for General SNMP Topics

Man Page Description

sma_snmp(5) Gives an overview of the System Management Agent, the
Net-SNMP implementation included in the Solaris operating
system.

snmpcmd(1M) Describes the common options for Net-SNMP commands.

snmp_variables(4) Discusses the format that must be used to specify variable
names to Net-SNMP commands.

The following table lists the man pages for Net-SNMP command tools.

AA P P E N D I X A

131

TABLE A–2 Man Pages for SNMP Tools

Man page Tool Description

mib2c(1M) The mib2c tool uses nodes in a MIB definition file to produce
two C code template files. The templates can be used as a basis
for a MIB module.

snmpbulkget(1M) The snmpbulkget utility is an SNMP application that uses the
SNMP GETBULK operation to send information to a network
manager.

snmpbulkwalk(1M) The snmpbulkwalk utility is an SNMP application that uses
SNMP GETBULK requests to query a network entity efficiently
for a tree of information.

snmpget(1M) The snmpget utility is an SNMP application that uses the SNMP
GET request to query for information on a network entity.

snmpgetnext(1M) The snmpgetnext utility is an SNMP application that uses the
SNMP GETNEXT request to query for information on a
network entity.

snmpinform(1M) The snmpinform command invokes the snmptrap utility, which
is an SNMP application that uses the SNMP TRAP operation to
send information to a network manager.

snmpnetstat(1M) The snmpnetstat command symbolically displays the values of
various network-related information retrieved from a remote
system by using the SNMP protocol.

snmpset(1M) The snmpset utility is an SNMP application that uses the SNMP
SET request to set information on a network entity.

snmptrap(1M) The snmptrap utility is an SNMP application that uses the
SNMP TRAP operation to send information to a network
manager.

snmpusm(1M) The snmpusm utility is an SNMP application that can be used to
do simple maintenance on an SNMP agent's User-based
Security Module (USM) table.

snmpvacm(1M) The snmpvacm utility is a SNMP application that can be used to
do maintenance on an SNMP agent's View-based Access
Control Module (VACM) table.

snmpwalk(1M) The snmpwalk utility is an SNMP application that uses SNMP
GETNEXT requests to query a network entity for a tree of
information.

Man Pages

Solaris System Management Agent Developer's Guide • May 2007132

TABLE A–2 Man Pages for SNMP Tools (Continued)
Man page Tool Description

snmpdf(1M) The snmpdf command is a networked version of the df
command. snmpdf checks the disk space on the remote machine
by examining the HOST-RESOURCES-MIB's hrStorageTable
or the UCD-SNMP-MIB's dskTable.

snmpdelta(1M) The snmpdelta utility monitors the specified OIDs and reports
changes over time.

snmptable(1m) The snmptable utility is an SNMP application that repeatedly
uses the SNMP GETNEXT or GETBULK requests to query for
information on a network entity.

snmptest(1M) The snmptest utility is a flexible SNMP application that can
monitor and manage information on a network entity. The
utility uses a command-line interpreter to enable you to send
different types of SNMP requests to target agents.

snmptranslate(1m) The snmptranslate utility is an application that translates one
or more SNMP object identifier values between symbolic
textual forms and numerical forms.

snmpstatus(1) The snmpstatus command is an SNMP application that
retrieves several important statistics from a network entity.

The following table lists the man pages associated with configuration files that are used by the
Net-SNMP agent.

TABLE A–3 Man Pages for SNMP Configuration Files

Man Page Description

snmp_config(4) Provides an overview of the Net-SNMP configuration files
included with System Management Agent.

snmp.conf(4) The file snmp.conf defines how the Net-SNMP applications
operate. The Net-SNMP applications include snmpget,
snmpwalk, and similar tools.

snmpd.conf(4) The file snmpd.conf defines how the Net-SNMP agent
operates.

snmptrapd.conf(4) The file snmptrapd.conf defines how the Net-SNMP
trap-receiving daemon, snmptrapd, operates when receiving
a trap.

snmpconf(1M) The snmpconf utility is a script that asks you configuration
questions. The utility then creates an snmpd.conf

configuration file that is based on your responses.

Man Pages

Appendix A • SMA Resources 133

The following table lists the man pages for daemons that are associated with Net-SNMP.

TABLE A–4 Man Pages for SNMP Daemons

Man Page Description

snmpd(1M) The snmpd daemon is the SNMP agent. The daemon binds to a
port and awaits requests from SNMP management software.

snmptrapd(1M) The snmptrapd daemon is an SNMP application that receives
and logs SNMP TRAP and INFORM messages.

API Functions
The following Net-SNMP API functions have been tested and are certified to work with the
System Management Agent. Documentation from Net-SNMP is provided for all the functions
in /usr/sfw/doc/sma_snmp/html.

netsnmp_mib_handler *netsnmp_create_handler(

const char *name,

Netsnmp_Node_Handler *handler_access_method);

netsnmp_handler_registration *netsnmp_create_handler_registration(

const char *name,

Netsnmp_Node_Handler *handler_access_method,

oid * reg_oid,

size_t reg_oid_len,

int modes);

void

send_enterprise_trap_vars(int trap,

int specific,

oid *enterprise,

int enterprise_length,

netsnmp_variable_list * vars);

void

send_easy_trap(int, int);

API Functions

Solaris System Management Agent Developer's Guide • May 2007134

void

send_v2trap(netsnmp_variable_list *);

netsnmp_mib_handler *netsnmp_get_debug_handler(void);

void

netsnmp_init_debug_helper(void);

int

netsnmp_register_instance(netsnmp_handler_registration *reginfo);

int

netsnmp_register_read_only_instance(netsnmp_handler_registration *reginfo);

netsnmp_mib_handler *netsnmp_get_instance_handler(void);

netsnmp_mib_handler *netsnmp_get_mode_end_call_handler(

netsnmp_mode_handler_list *endlist);

netsnmp_mode_handler_list *netsnmp_mode_end_call_add_mode_callback(

netsnmp_mode_handler_list *endlist,

int mode,

netsnmp_mib_handler *callbackh);

int

netsnmp_register_scalar(netsnmp_handler_registration *reginfo);

int

netsnmp_register_read_only_scalar(netsnmp_handler_registration *reginfo);

netsnmp_mib_handler *netsnmp_get_scalar_handler(void);

API Functions

Appendix A • SMA Resources 135

netsnmp_mib_handler *netsnmp_get_table_handler(

netsnmp_table_registration_info

void

netsnmp_table_helper_add_indexes(va_alist);

int

netsnmp_register_table_iterator(netsnmp_handler_registration *reginfo,

netsnmp_iterator_info *iinfo);

void *

netsnmp_extract_iterator_context(netsnmp_request_info *);

int

netsnmp_set_request_error(netsnmp_agent_request_info *reqinfo,

netsnmp_request_info *request, int error_value);

int

snmp_register_callback(int major,

int minor,

SNMPCallback * new_callback,

void *arg);

int

snmp_call_callbacks(int major,

int minor,

void *caller_arg);

int

snmp_unregister_callback(int major,

int minor,

SNMPCallback * new_callback,

void *arg,

int matchargs);

API Functions

Solaris System Management Agent Developer's Guide • May 2007136

void

snmp_alarm_unregister(unsigned int clientreg);

void

snmp_alarm_unregister_all(void);

unsigned int

snmp_alarm_register(unsigned int when,

unsigned int flags,

SNMPAlarmCallback * thecallback,

void *clientarg);

unsigned int

snmp_alarm_register_hr(struct timeval t,

unsigned int flags,

SNMPAlarmCallback * cb,

void *cd);

int

snmp_log(int priority, const char *format, ...);

int

snmp_vlog(int priority, const char *format, va_list ap);

int

netsnmp_ds_set_boolean(int storeid,

int which,

int value)

int

agent_check_and_process(int block)

void

snmp_shutdown(const char *type)

API Functions

Appendix A • SMA Resources 137

void

init_snmp(const char *type)

int

init_agent(const char *app)

void *

netsnmp_request_get_list_data(netsnmp_request_info *request,

const char *name)

void

netsnmp_request_add_list_data(netsnmp_request_info *request,

netsnmp_data_list *node)

netsnmp_table_request_info *

netsnmp_extract_table_info(netsnmp_request_info *request)

int

netsnmp_register_int_instance (const

char *name, oid *reg_oid, size_t

reg_oid_len, int *it,

Netsnmp_Node_Handler *subhandler)

int

unregister_mib_context (oid *name, size_t len, int priority,

int range_subid, oid range_ubound, const char *context)

int

snmp_set_var_typed_value (netsnmp_variable_list *newvar,

u_char type, const u_char *val_str, size_t val_len)

config_line *

register_config_handler (const char *type_param,

const char *token, void(*parser)(const char *, char *),

void(*releaser)(void), const char *help)

API Functions

Solaris System Management Agent Developer's Guide • May 2007138

void

unregister_config_handler (const char

*type_param, const char *token)

char *

read_config_read_data (int type, char *readfrom,

void *dataptr, size_t *len)

char *

read_config_store_data (int type, char *storeto, void

*dataptr, size_t *len)

netsnmp_delegated_cache *

netsnmp_create_delegated_cache(

netsnmp_mib_handler *handler,

netsnmp_handler_registration *reginfo,

netsnmp_agent_request_info *reqinfo,

netsnmp_request_info *requests,

void *localinfo);

int

snmp_set_var_value (netsnmp_variable_list *var,

const u_char *valstr, size_tsize)

void netsnmp_table_set_multi_add_default_row(netsnmp_table_data_set *, ...);

void netsnmp_table_set_multi_add_default_row(va_alist);

netsnmp_table_data_set *netsnmp_create_table_data_set(const char *);

netsnmp_table_set_add_indexes;

int

netsnmp_register_table_data_set(netsnmp_handler_registration *,

netsnmp_table_data_set *,

netsnmp_table_registration_info *);

API Functions

Appendix A • SMA Resources 139

void send_trap_vars(int trap, int specific, netsnmp_variable_list *vars);

API Functions

Solaris System Management Agent Developer's Guide • May 2007140

MIBs Implemented in SMA

This appendix lists some of the MIBs that are implemented in the System Management Agent.

MIBs Implemented in SMA
This list includes the MIB modules that have been built into the agent.

UCD-DISKIO-MIB MIB module for disk IO statistics

RFC1213-MIB MIB II groups, including IP, TCP, UDP, SYSTEM, ICMP,
SNMP, INTERFACES, and STATISTICS. The EGP
group is not implemented.

UCD-SNMP-MIB Memory usage, watch reporting, load averages, virtual
memory statistics.

SNMP-USER-BASED-SM-MIB SNMPv3 user model, security statistics, authentication
key information, privacy protocols, USM storage types.

SNMP-VIEW-BASED-ACM-MIB Group names and access views for View-based Access
Control Model (VACM).

UCD-DLMOD-MIB Names of dynamically loadable modules, location of
module, status, dynamic load and unload state.

NET-SNMP-AGENT-MIB Defines control and monitoring structures for the
Net-SNMP agent, gives OIDs and timeout values of all
SNMP registered with the agent.

DISMAN-EVENT-MIB Allows triggering of events and actions for management
purposes. The Management Agent for Sun Fire servers
uses this MIB.

HOST-RESOURCES-MIB This MIB is for use in managing host systems. A host in
this context is a computer that is used by one or more

BA P P E N D I X B

141

people. The computer communicates with other similar
computers that are attached to the network. The Host
Resources MIB does not necessarily apply to devices
such as terminal servers, routers, bridges, and
monitoring equipment, whose primary function is
communications services. However, these types of
communication devices are not explicitly precluded
from being managed with this MIB. The Host Resources
MIB defines attributes that are common to all Internet
hosts including, for example, both personal computers
and UNIX systems. The MIB also provides Solaris
kernel statistics.

SNMP-NOTIFICATION-MIB The SNMP-NOTIFICATION-MIB module defines MIB
objects that provide mechanisms to remotely configure
notification parameters. These parameters are used by
an SNMP entity for the generation of notifications, or
traps.

SUN-SEA-EXTENSIONS-MIB The SUN-SEA-EXTENSIONS-MIB module describes
the Sun-specific extensions to MIB-II.

SUN-SEA-PROXY-MIB The SUN-SEA-PROXY-MIB is used to manage the
Solstice Enterprise Agents snmpdx master agent
daemon.

AGENTX-MIB The AGENTX-MIB module is used for the SNMP Agent
Extensibility Protocol, AgentX. This MIB module is
implemented by the master agent but must be explicitly
enabled in order to be used.

MIBs Implemented in SMA

Solaris System Management Agent Developer's Guide • May 2007142

Glossary

agent A software program, typically run on a managed device, that implements the SNMP protocol and services
the requests of a manager. Agents can act as proxies for some non-SNMP manageable network nodes.

Agent
Extensibility
Protocol (AgentX)

A protocol that enables communication between a master SNMP agent and subagents.

ASN.1 Abstract Syntax Notation One. A specification that is used to encode information between a manager and
agents in a manner that is independent of the machine and network type.

configuration
tokens

Variables that are used for configuring the SNMP agent or modules. Values of tokens can be identifiers,
keywords, constants, punctuation, or white space.

context A collection of managed objects accessible by an SNMP entity. The name for a subset of managed objects.

DAQ data acquisition. The process of collecting information from a device.

DES Data Encryption Standard, a standard encryption algorithm used for securing data.

extension Code that increases the functionality of the SNMP agent. An extension might also be referred to as a MIB
module, an extension module, or simply a module.

legacy subagent A subagent that does not use the AgentX protocol and requires the use of a proxy to communicate with the
Net-SNMP agent.

Management
Information Base
(MIB)

A virtual information store for managed objects. MIBs define the properties of a device that can be
managed.

manager A client application that accesses data from a managed device or system.

master agent An agent running on a designated SNMP port. The master agent receives SNMP requests from
management applications, dispatches the requests to the appropriate subagents, and sends data returned
by the subagents to the requester. In addition, the subagents can send traps to the master agent, which are
then forwarded to the management application.

MD5 The message digest algorithm, defined in RFC 1321, which converts a message of arbitrary length into a
unique 128–bit string. The MD5 algorithm is used to create digital signatures which can be used to verify
data integrity.

MIB Management Information Base.

143

MIB II A standard that defines the Management Information Base objects in TCP/IP-based networks that can be
managed. MIB II is defined in RFC 1213.

module Code that increases the functionality of the SNMP agent. A module might also be referred to as a MIB
module, an extension module, or an extension.

Net-SNMP An SNMP agent that is developed as an open source community project. The System Management Agent
is based on the Net-SNMP agent.

Network
Management
Station (NMS)

An application that is used to manage and monitor network devices. The NMS makes SNMP requests to
the SNMP agent and receives information from the agent. An NMS is sometimes called a manager or a
management application.

Object Identifier
(OID)

A sequence of numbers that uniquely identifies each object in a MIB. The OID is a series of integers
separated by periods, which indicate the object's place in the MIB tree. For example, the sequence
1.3.6.1.2.1.1.1.0 specifies the system description within the system group of the management subtree.

PDU Protocol Data Unit. A message, or packet of data, that is transported through network protocol layers.
Each layer attaches headers to the packet before passing it along to the next layer. The entire packet,
including the user data and headers, is the PDU. SNMP messages consist of a version identifier, an SNMP
community name, and a PDU. The PDU types supported in SNMP are GetRequest, GetNextRequest,
GetResponse, SetRequest, and Trap.

proxy agent An agent that acts on behalf of a non-SNMP (foreign) network device. The management station contacts
the proxy agent and indicates the identity of the foreign device. The proxy agent translates the protocol
interactions it receives from the management station into the interactions supported by the foreign device.

SHA–1 Secure Hash Algorithm - Version 1.0, defined in RFC 3174. SHA is a cryptographic message digest
algorithm. The algorithm converts a message into a 160–bit string.

Simple Network
Management
Protocol (SNMP)

A standard protocol used to manage nodes in the Internet community.

Structure of
Management
Information (SMI)

An industry-accepted method of organizing object names so that logical access can occur. The SMI states
that each managed object must have a name, a syntax, and an encoding. The name, an object identifier
(OID), uniquely identifies the object. The syntax defines the data type, such as an integer or a string of
octets. The encoding describes how the information associated with the managed objects is serialized for
transmission between machines.

subagent An agent that interacts with a master agent.

trap A message, sent to a manager, that describes exceptions that occurred on a managed device.

USM User-based Security Model. A standard for providing SNMP message-level security, described in RFC
3414 at http://www.ietf.org/rfc/rfc3414.txt. This RFC document also includes a MIB for remotely
monitoring and managing the configuration parameters for the User-based Security Model.

VACM View-Based Access Control Mechanism A standard for controlling access to management information,
described in RFC 3415 at http://www.ietf.org/rfc/rfc3415.txt. This RFC document also includes a
MIB for remotely managing the configuration parameters for the View-based Access Control Model.

MIB II

Solaris System Management Agent Developer's Guide • May 2007144

http://www.ietf.org/rfc/rfc3414.txt
http://www.ietf.org/rfc/rfc3415.txt

Index

A
agent, SNMP, 17
AgentX module, 22
AgentX protocol, 71
AgentX subagents, See subagents
alarms

implementing, 59-64
using with long-running data collection, 86-87

Alias Mapping Table functions, 109-111
API functions

Entity MIB, 94-111
Net-SNMP, 134-140

API libraries, 26
asynchronous trap notification, 60

C
code templates

generating, 33
modifying, 35

configuration files, module-specific, 51-52
configuration tokens

defining new, 52
in snmpd.conf, 21

conflicts, naming, 36
contents, for developers, 24

D
data collection, over time, 85-86

data modeling, 39-50
data persistence, 52-54
demo_module_1 code example, 41
demo_module_10 code example, 88
demo_module_11 code example, 115-124
demo_module_12 code example, 127-129
demo_module_2 code example, 44
demo_module_3 code example, 49-50
demo_module_4 code example, 61-64
demo_module_5 code example, 54-57
demo_module_6 code example, 77
demo_module_7 code example, 78-84
demo_module_8 code example, 72
demo_module_9 code example, 86
demonstration modules, descriptions of, 26-27
developer, content in SMA, 24
devices, representing with SNMP tables, 91
dispatcher, 20
dynamically loading modules

advantages and disadvantages, 67
procedures, 67-70

E
entAliasMappingTable, functions used with, 109-111
entAliasMappingTable of Entity MIB, 93
Entity MIB

API functions, 94-111
Alias Mapping Table, 109-111
header files, 111-112
Logical Table, 103-106

145

Entity MIB, API functions (Continued)
LP Mapping Table, 107-109
Physical Contains Table, 100-103
Physical Table, 96-100
tips for using, 113-114

libentity.so, 93-94
module, 24, 93-94

code example, 115-124
overview, 91-93

entityGeneral group of Entity MIB, 93
entityLogical group of Entity MIB, 92
entityMapping group of Entity MIB, 92
entityPhysical group of Entity MIB, 91
entLogicalTable, functions used with, 103-106
entLPMappingTable, functions used with, 107-109
entLPMappingTable of Entity MIB, 93
entPhysicalContainsTable, functions used

with, 100-103
entPhysicalContainsTable of Entity MIB, 92
entPhysicalTable, functions used with, 96
environment variables, MIB, 32-33
extensible agent, defined, 17
extension, MIB, 17
extension modules, 22

F
features added in SMA, 23-24
file locations, for developer, 24-25
functions, Entity MIB, 94-111

G
general tables

See data retrieval from
demonstration code, 49-50

H
hardware devices, representing with SNMP tables, 91
header files for Entity MIB functions, 111-112
Host Resources MIB, 23

I
init_module routine, 39-40

L
libentity.so module

tasks, 93-94
using with your module, 93-94

library, naming conventions, 37
logical entities, 92

mapping to physical entities, 93
Logical Table functions, 103-106
long-running data collection, 85-86

code example, 86
polling method, 88-89
using alarms, 86-87

LP Mapping Table functions, 107-109

M
man pages for System Management Agent, 131-134
manager, SNMP, 17
message processor, 20
MIB

defining, 31
environment variables, 32-33
examples to emulate, 31
extension, 17
file name conventions, 31-32
purpose of, 17
syntax checking, 31

MIB II, 23
and Solstice Enterprise Agents, 125

mib2c, and migrating Solstice Enterprise Agents, 127
mib2c

configuration files, 33
generating templates, 33

mibcodegen, and migrating Solstice Enterprise
Agents, 127

mibiisa subagent, 125
MIBs

implemented in SMA, 141-142
supported in SMA, 23

Index

Solaris System Management Agent Developer's Guide • May 2007146

migrating Solstice Enterprise Agents subagents
comparison of generated templates, 128-129
guidelines, 126-130
instrumentation code, 129-130
reasons for, 125
strategy, 126

module, delivery, 35
modules

about, 29
configuring, 35
creating, 30
deploying, 65-73

guidelines, 66-67
in subagents, 70-71
overview, 65-66

extension
in Net-SNMP architecture, 22

loading
See also deploying

loading dynamically, 67-70
multiple instance, 75-77
naming conventions, 36
storing data, 51-52
types of, 22

multiple instances of a module
implementing, 75-77
updating dynamically, 78

N
namespace collisions, avoiding, 36
naming conventions

libraries, 37
MIB, 31-32
modules, 36

Net-SNMP
API functions, 134-140
architecture, 18
component descriptions, 19
differences between SMA and, 23-24
location of API documentation, 134
version, 18

O
OID registration handler, 21
overview

extending the agent, 22-23
SNMP agents, 17-18
System Management Agent, 18-24

P
persistent data, 51

implementing in a module, 52-54
Physical Contains Table functions, 100-103
physical entities, 91

mapping to logical entities, 93
Physical Table functions, 96-100
polling

avoiding race condition, 88-89
for long-running data collection, 88-89

port, SNMP, 17
processing multiple OID set actions, 46-48
proxy module, 21

R
race condition in polling, 88-89
refresh intervals, used with alarms, 59
repository, and configuration tokens, 21

S
scalar objects

demonstration code for retrieving, 41
running mib2c on, 41

seaProxy module, 125
security, guidelines for subagents, 72-73
set multiple OIDs, 46-48
simple tables, See tables, simple
SNMP-USER-BASED-SM-MIB, 20
SNMP-VIEW-BASED-ACM-MIB, 21
Solstice Enterprise Agents, See migrating Solstice

Enterprise Agents subagents
source code for Net-SNMP, 24

Index

147

static modules, 22
storing module data, 51-52
structure definitions for Entity MIB functions, 111-112
subagent, functions, 71
subagents

advantages and disadvantages, 67
AgentX, 70-71
deploying modules in, 71-73
security guidelines, 72-73

Sun MIB, 23
and Solstice Enterprise Agents, 125

support, technical, 27

T
table iterator, 46
tables

general
data retrieval from, 48-50
demonstration code, 49-50

simple
caching, 46
data retrieval from, 43-48
demonstration code, 44

technical support, 27
templates

generating, 33
modifying, 35

thresholds, for sending traps, 60-61
timed data collection, 85-86
transport domains, 19
trap, asynchronous notification, 60
traps, implementing, 59-64

U
USM module, 20

V
VACM module, 20

Index

Solaris System Management Agent Developer's Guide • May 2007148

	Solaris System Management Agent Developer's Guide
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Related Reading
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples

	Introduction to the System Management Agent
	Overview of SNMP Agents
	Overview of the System Management Agent
	Extending the Agent
	Features Added in System Management Agent

	Contents of the SMA for Developers
	File Locations of Developer Files
	SMA Tools
	API Libraries
	Demonstration Modules
	Technical Support for Developers

	Creating Modules
	About Modules
	Overview of Creating Modules
	Defining a MIB
	MIB File Names

	Setting MIB Environment Variables
	Generating Code Templates
	Modifying Code Templates
	Configuring the Module
	Delivering the Module
	Namespace Issues
	Avoiding Namespace Collisions
	Module Names
	Library Names

	Data Modeling
	init_module Routine
	Scalar Objects
	demo_module_1 Code Example for Scalar Objects
	Modifications for Scalar Data Retrieval

	Simple Tables
	demo_module_2 Code Example for Simple Tables
	Modifications for Simple Table Data Retrieval
	Data Retrieval From Large Simple Tables
	Multiple SET Processing in demo_module_2

	General Tables
	demo_module_3 Code Example for General Tables

	Storing Module Data
	About Storing Module Data
	Configuration Files
	Defining New Configuration Tokens

	Implementing Persistent Data in a Module
	Storing Persistent Data
	Reading Persistent Data

	demo_module_5 Code Example for Persistent Data
	Storing Persistent Data in demo_module_5
	Reading Persistent Data in demo_module_5
	Using SNMP_CALLBACK_POST_READ_CONFIG in demo_module_5

	Implementing Alarms
	Refresh Intervals
	Asynchronous Trap Notification
	Thresholds for Sending Traps
	demo_module_4 Code Example for Alarms
	Reading Data From the demo_module_4.conf Configuration File
	Using SNMP_CALLBACK_POST_READ_CONFIG in demo_module_4
	Generating Traps in demo_module_4

	Deploying Modules
	Overview of Module Deployment
	Choosing Dynamic Modules or Subagents
	Loading Modules Dynamically
	How to Dynamically Load a Module and Restart the Agent
	How to Dynamically Load a Module Without Restarting the Agent

	Using Subagents
	AgentX Protocol
	Functions of a Subagent

	Deploying a Module as a Subagent
	demo_module_8 Code Example for Implementing a Subagent
	Subagent Security Guidelines

	Multiple Instance Modules
	Implementing Multiple Instances of a Module
	How To Implement Multiple Instance Modules
	demo_module_6 Code Example for Multiple Instance Modules

	Enabling Dynamic Updates to a Multiple Instance Module
	demo_module_7 Code Example for Dynamic Updates of Multiple Instance Modules
	Modifying the demo_module_7 Code
	How to Enable Dynamic Update of a Multi-Instance Module

	Registering New Instances in the Module

	Long–Running Data Collection
	About Long-Running Data Collection
	SNMP Alarm Method for Data Collection
	demo_module_9 Code Example for SNMP Alarm Method
	Managing the Timing of Data Collection

	SNMP Manager Polling Method for Data Collection
	demo_module_10 Code Example for SNMP Polling Method
	Avoiding a Race Condition When Polling

	Entity MIB
	About the Entity MIB
	SMA Entity MIB Implementation
	Using the Entity MIB
	How to Set Up the Agent to Use the Entity MIB

	Entity MIB API
	Physical Table Functions
	allocPhysicalEntry()
	Synopsis
	Description
	Returns

	getPhysicalEntry()
	Synopsis
	Description
	Returns

	deletePhysicalTableEntry()
	Synopsis
	Description
	Returns

	makePhysicalTableEntryStale()
	Synopsis
	Description
	Returns

	makePhysicalTableEntryLive()
	Synopsis
	Description
	Returns

	getPhysicalStaleEntry()
	Synopsis
	Description
	Returns

	getAllChildrenFromPhysicalContainedIn()
	Synopsis
	Description
	Returns

	Physical Contains Table Functions
	addPhysicalContainsTableEntry()
	Synopsis
	Description
	Returns

	deletePhysicalContainsTableEntry()
	Synopsis
	Description
	Returns

	deletePhysicalContainsParentIndex()
	Synopsis
	Description
	Returns

	deletePhysicalContainsChildIndex()
	Synopsis
	Description
	Returns

	getPhysicalContainsChildren()
	Synopsis
	Description
	Returns

	Logical Table Functions
	allocLogicalEntry()
	Synopsis
	Description
	Returns

	getLogicalTableEntry()
	Synopsis
	Description
	Returns

	deleteLogicalTableEntry()
	Synopsis
	Description
	Returns

	makeLogicalTableEntryStale()
	Synopsis
	Description
	Returns

	makeLogicalTableEntryLive()
	Synopsis
	Description
	Returns

	getLogicalStaleEntry()
	Synopsis
	Description
	Returns

	LP Mapping Table Functions
	addLPMappingTableEntry()
	Synopsis
	Description
	Returns

	deleteLPMappingTableEntry()
	Synopsis
	Description
	Returns

	deleteLPMappingLogicalIndex()
	Synopsis
	Description
	Returns

	deleteLPMappingPhysicalIndex()
	Synopsis
	Description
	Returns

	Alias Mapping Table Functions
	addAliasMappingTableEntry()
	Synopsis
	Description
	Returns

	deleteAliasMappingTableEntry()
	Synopsis
	Description
	Returns

	deleteAliasMappingLogicalIndex()
	Synopsis
	Description
	Returns

	deleteAliasMappingPhysicalIndex()
	Synopsis
	Description
	Returns

	Header Files for Entity MIB Functions
	entPhysicalEntry_t Structure
	entLogicalEntry_t Structure

	Tips for Using Entity MIB Functions
	demo_module_11 Code Example for Entity MIB

	Migration of Solstice Enterprise Agents to the System Management Agent
	Why Migrate to SMA?
	Solstice Enterprise Agents Migration Strategy Overview
	Migrating Solstice Enterprise Agent Subagents to SMA
	demo_module_12 Code Example for Solstice Enterprise Agents Subagent Migration
	Analysis of the demo_module_12 Solstice Enterprise Agents Templates

	Modifying the SMA Instrumentation Code

	SMA Resources
	Man Pages
	API Functions

	MIBs Implemented in SMA
	MIBs Implemented in SMA

	Glossary
	Index

