
Solaris Trusted Extensions
Reference Manual

Beta

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819–7307–04
September 2007

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, ToolTalk, Sun Ray, Java, and Solaris are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

070822@18135

Contents

Preface ...7

Introduction ...9
Intro(3TSOL) ... 10

User Commands ...13
dtappsession(1) .. 14
getlabel(1) ... 16
getzonepath(1) ... 17
plabel(1) .. 18
setlabel(1) ... 19

System Administration Commands ..21
add_allocatable(1M) ... 22
atohexlabel(1M) .. 24
chk_encodings(1M) .. 25
hextoalabel(1M) .. 26
remove_allocatable(1M) .. 27
smtnrhdb(1M) ... 28
smtnrhtp(1M) .. 32
smtnzonecfg(1M) .. 36
tnchkdb(1M) .. 40
tnctl(1M) .. 42
tnd(1M) .. 44
tninfo(1M) .. 46
updatehome(1M) .. 48

3

System Calls ..51
getlabel(2) ... 52

Trusted Extensions Library ..55
blcompare(3TSOL) ... 56
blminmax(3TSOL) .. 57
bltocolor(3TSOL) .. 58
bltos(3TSOL) ... 60
btohex(3TSOL) .. 63
getdevicerange(3TSOL) .. 65
getpathbylabel(3TSOL) .. 66
getplabel(3TSOL) .. 68
getuserrange(3TSOL) ... 69
getzonelabelbyid(3TSOL) .. 70
getzonerootbyid(3TSOL) ... 71
hextob(3TSOL) .. 72
labelbuilder(3TSOL) ... 73
labelclipping(3TSOL) ... 78
label_to_str(3TSOL) ... 80
m_label(3TSOL) .. 82
sbltos(3TSOL) .. 83
setflabel(3TSOL) .. 85
stobl(3TSOL) ... 87
str_to_label(3TSOL) ... 90
tsol_getrhtype(3TSOL) ... 92

X Library Extensions ..93
XTSOLgetClientAttributes(3XTSOL) .. 94
XTSOLgetPropAttributes(3XTSOL) .. 95
XTSOLgetPropLabel(3XTSOL) .. 96
XTSOLgetPropUID(3XTSOL) .. 97
XTSOLgetResAttributes(3XTSOL) ... 98
XTSOLgetResLabel(3XTSOL) ... 99
XTSOLgetResUID(3XTSOL) .. 100
XTSOLgetSSHeight(3XTSOL) .. 101

Contents

Solaris Trusted Extensions Reference Manual • September 2007 (Beta)4

XTSOLgetWorkstationOwner(3XTSOL) .. 102
XTSOLIsWindowTrusted(3XTSOL) .. 103
XTSOLMakeTPWindow(3XTSOL) ... 104
XTSOLsetPolyInstInfo(3XTSOL) ... 105
XTSOLsetPropLabel(3XTSOL) ... 106
XTSOLsetPropUID(3XTSOL) .. 107
XTSOLsetResLabel(3XTSOL) ... 108
XTSOLsetResUID(3XTSOL) ... 109
XTSOLsetSessionHI(3XTSOL) ... 110
XTSOLsetSessionLO(3XTSOL) .. 111
XTSOLsetSSHeight(3XTSOL) ... 112
XTSOLsetWorkstationOwner(3XTSOL) .. 113

File Formats ..115
label_encodings(4) .. 116
sel_config(4) ... 121
tnrhdb(4) .. 123
tnrhtp(4) ... 126
tnzonecfg(4) ... 129
TrustedExtensionsPolicy(4) ... 132

Standards, Environments, and Macros ..135
labels(5) .. 136
pam_tsol_account(5) .. 138

Index ... 141

Contents

5

6

Preface

Both novice users and those familiar with the Solaris Operating System can use online man
pages to obtain information about the system and its features. A man page is intended to answer
concisely the question “What does it do?” The man pages in general comprise a reference
manual. They are not intended to be a tutorial.

Overview of Solaris Trusted Extensions Man Pages
The following describes each Trusted Extensions man page section:

■ Section 1 describes commands that are unique to Solaris Trusted Extensions software. This
section includes a man page, dtappsession, which extends CDE functionality.

■ Section 1M describes Trusted Extensions commands that are used chiefly for system
maintenance and administration.

■ Section 2 describes the Trusted Extensions system calls.
■ Section 3TSOL describes functions that are exclusive to Trusted Extensions software.
■ Section 3XTSOL describes functions that extend X Windows software for Solaris Trusted

Extensions. These functions are exclusive to Trusted Extensions software.
■ Section 4 outlines the formats of Trusted Extensions files. Where applicable, the C structure

declarations for the file formats are given.
■ Section 5 contains a PAM module and a labels description.

Solaris Trusted Extensions man pages follow the generic format for Solaris OS man pages. For
more information and details about each section, see man(1) and the Introductory man pages to
each section.

7

8

Introduction

R E F E R E N C E

9

Intro – introduction to Trusted Extensions interfaces

This page introduces all Trusted Extensions man pages, not just those man pages that have the
suffix 3TSOL. Trusted Extensions man pages include commands that are available to users and
system administrators, the files that are unique to Trusted Extensions, and the interfaces that
are available to developers. Trusted Extensions man pages follow the format for Solaris OS
man pages.

Interfaces that are exclusive to Trusted Extensions software are in the printed copy of this
reference manual. Trusted Extensions modifications to existing Solaris interfaces are not in
the printed copy of this reference manual.

Where Trusted Extensions extends Solaris interfaces, the descriptions are on the appropriate
Solaris man page. For example, the audit classes that are exclusive to Trusted Extensions are
described on the audit_class(4) man page. For more information and details about man
page sections, see man(1) and the introductory man page for each section in the Solaris OS
man pages.

The following describes each Trusted Extensions man page section:

■ Section 1 describes commands that are unique to Trusted Extensions software. This
section includes a man page, dtappsession(1), which extends CDE functionality.

■ Section 1M describes Trusted Extensions commands that are used chiefly for system
maintenance and administration.

■ Section 2 describes the Trusted Extensions system calls.
■ Section 3TSOL describes functions that are exclusive to Trusted Extensions software.
■ Section 3XTSOL describes functions that extend X Windows software for Trusted

Extensions. These functions are exclusive to Trusted Extensions software.
■ Section 4 outlines the formats of Trusted Extensions files. Where applicable, the C

structure declarations for the file formats are given.
■ Section 5 contains a PAM module and a labels description.

Trusted Extensions adds three libraries:

(3TSOL) These functions constitute the Trusted Extensions library, libtsol, and
various functions in other libraries that are used only by Trusted Extensions
software.

libtsol.so is implemented as a shared object but is not automatically linked
by the C compilation system. To link with the libtsol library, specify -ltsol
on the cc command line.

Name

Description

Overview of Solaris
Trusted Extensions

Interfaces

Trusted Extensions
Library Interfaces and

Headers

Intro(3TSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 26 Jun 200610

Functions from a private library, libtsnet, are included in this section. To link
with the libtsnet library, specify -ltsnet on the cc command line. These
libraries are described in the Solaris man pages libtsol(3LIB) and
libtsnet(3LIB).

(3XTSOL) These functions constitute the Trusted Extensions to the X windows library
libXtsol. libXtsol.so is implemented as a shared object but is not
automatically linked by the C compilation system. To link with the libXtsol
library, specify -lX11 and then -lXtsol on the cc command line (cc -lX11
-lXtsol).

Intro(1), man(1)

Solaris Trusted Extensions Developer’s Guide

Solaris Trusted Extensions Administrator’s Procedures

See Also

Intro(3TSOL)

Introduction 11

12

User Commands

R E F E R E N C E

13

dtappsession – start a new Application Manager session

/usr/dt/bin/dtappsession [hostname]

dtappsession is a specialized version of the Xsession shell script. It is an alternative to using
the CDE remote login that allows you to access a remote host without logging out of your
current CDE session. dtappsession starts a new instance of the CDE Application Manager in
its own ToolTalkTM session. It can be used to remotely display the Application Manager back to
your local display after logging in to a remote host with the rlogin(1) command.

A new, independent instance of ttsession(1) starts a simple session management window.
This window displays the title

remote_hostname: Remote Administration

where remote_hostname is the system that is being accessed. The window also displays an
Exit button. Clicking Exit terminates the ToolTalk session and all windows that are part of
the session.

The Application Manager that is displayed can be used to start remote CDE actions to run in
this session. Exiting the Application Manager does not terminate the session, and it is not
recommended. Clicking Exit is the recommended way to end the session. To avoid confusing
the remote CDE applications with local ones, it is recommended that a new CDE workspace
be created for clients in the remote session.

The hostname is not needed when the DISPLAY environment variable is set to the local
hostname on the remote host.

On a system that is configured with Trusted Extensions, dtappsession can be used for remote
administration by administrative roles that have the ability to log in to the remote host.

dtappsession does not require any privilege, and it does not need to run on a system that is
configured with Trusted Extensions. When installed in /usr/dt/bin on a Solaris system,
along with the startApp.ds file, dtappsession can be used to administer the remote Solaris
system from a local system that is configured with Trusted Extensions. However, in this case,
the CDE workspace that is used for remote display must be a normal workspace, rather than a
role workspace.

EXAMPLE 1 Remote Login and dtappsession

After creating a new CDE workspace, type the following in a terminal window:

rlogin remote_hostname
password: /*type the remote password*/

dtappsession local_hostname /* on the remote host */

Name

Synopsis

Description

Examples

dtappsession(1)

Solaris Trusted Extensions Reference Manual • Last Revised 15 Aug 200514

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdttsu

/usr/dt/bin/startApp.ds dt Korn shell script for session manager window

X11/CDE applications that do not register with the ToolTalk session manager will not exit
automatically when the session is terminated. Such applications must be explicitly terminated.

dtfile(1), rlogin(1), ttsession(1), attributes(5)

Chapter 8, “Remote Administration in Trusted Extensions (Tasks),” in Solaris Trusted
Extensions Administrator’s Procedures

Attributes

Files

Bugs

See Also

dtappsession(1)

User Commands 15

getlabel – display the label of files

/usr/bin/getlabel [-sS] filename...

getlabel displays the label that is associated with each filename. When options are not
specified, the output format of the label is displayed in default format.

-s Display the label that is associated with filename in short form.

-S Display the label that is associated with filename in long form.

getlabel exits with one of the following values:

0 Successful completion.

1 Unsuccessful completion due to usage error.

2 Unable to translate label.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

Stability (Command Line) Stable

Stability (Output) Not an interface

setlabel(1), label_encodings(4), attributes(5)

Name

Synopsis

Description

Options

Return Values

Attributes

See Also

getlabel(1)

Solaris Trusted Extensions Reference Manual • Last Revised 31 May 200616

getzonepath – display root path of the zone corresponding to the specified label

/usr/bin/getzonepath {sensitivity-label}

getzonepath displays the root pathname of the running labeled zone that corresponds to the
specified sensitivity label. The returned pathname is relative to the caller's root pathname, and
has the specified sensitivity label.

If the caller is in the global zone, the returned pathname is not traversable unless the caller's
processes have the file_dac_search privilege.

If the caller is in a labeled zone, the caller's label must dominate the specified label. Access to
files under the returned pathname is restricted to read-only operations.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

Stability Stable

getzonepath exits with one of the following values:

0 Success

1 Usage error

2 Failure; error message is the system error number from getzonerootbylabel(3TSOL)

getzonerootbylabel(3TSOL), attributes(5)

“Acquiring a Sensitivity Label” in Solaris Trusted Extensions Developer’s Guide

Name

Synopsis

Description

Attributes

Diagnostics

See Also

getzonepath(1)

User Commands 17

plabel – get the label of a process

/usr/bin/plabel [-sS] [pid...]

plabel, a proc tools command, gets the label of a process. If the pid is not specified, the label
displayed is that of the plabel command. When options are not specified, the output format
of the label is displayed in default format.

-s Display the label that is associated with pid in short form.

-S Display the label that is associated with pid in long form.

plabel exits with one of the following values:

0 Successful completion.

1 Unsuccessful completion because of a usage error.

2 Inability to translate label.

3 Inability to allocate memory.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

Stability Stable

Stability (Output) Not an interface

proc(1), getplabel(3TSOL), attributes(5)

Name

Synopsis

Description

Options

Return Values

Attributes

See Also

plabel(1)

Solaris Trusted Extensions Reference Manual • Last Revised 16 Mar 200618

setlabel – move files to zone with corresponding sensitivity label

/usr/bin/setlabel newlabel filename...

setlabel moves files into the zone whose label corresponds to newlabel. The old file
pathname is adjusted so that it is relative to the root pathname of the new zone. If the old
pathname for a file's parent directory does not exist as a directory in the new zone, the file is
not moved. Once moved, the file might no longer be accessible in the current zone.

Unless newlabel and filename have been specified, no labels are set.

Labels are defined by the security administrator at your site. The system always displays labels
in uppercase. Users can enter labels in any combination of uppercase and lowercase.
Incremental changes to labels are supported.

Refer to setflabel(3TSOL) for a complete description of the conditions that are required to
satisfy this command, and the privileges that are needed to execute this command.

setlabel exits with one of the following values:

0 Successful completion.

1 Usage error.

2 Error in getting, setting or translating the label.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

Stability Stable

On the command line, enclose the label in double quotes unless the label is only one word.
Without quotes, a second word or letter separated by a space is interpreted as a second
argument.

% setlabel SECRET somefile
% setlabel "TOP SECRET" somefile

Use any combination of upper and lowercase letters. You can separate items in a label with
blanks, tabs, commas or slashes (/). Do not use any other punctuation.

% setlabel "ts a b" somefile
% setlabel "ts,a,b" somefile
% setlabel "ts/a b" somefile
% setlabel " TOP SECRET A B " somefile

Name

Synopsis

Description

Return Values

Attributes

Usage

setlabel(1)

User Commands 19

EXAMPLE 1 To Set a Label

To set somefile's label to SECRET A:

example% setlabel "Secret a" somefile

EXAMPLE 2 To Turn On a Compartment

Plus and minus signs can be used to modify an existing label. A plus sign turns on the specified
compartment for somefile's label.

example% setlabel +b somefile

EXAMPLE 3 To Turn Off a Compartment

A minus sign turns off the compartments that are associated with a classification. To turn off
compartment A in somefile's label:

example% setlabel -A somefile

If an incremental change is being made to an existing label and the first character of the label is
a hyphen (−), a preceding double-hyphen (–-) is required.

To turn off compartment -A in somefile's label:

example% setlabel -- -A somefile

This implementation of setting a label is meaningful for the Defense Intelligence Agency
(DIA) Mandatory Access Control (MAC) policy. For more information, see
label_encodings(4).

setflabel(3TSOL), label_encodings(4), attributes(5)

Examples

Notes

See Also

setlabel(1)

Solaris Trusted Extensions Reference Manual • Last Revised 31 May 200620

System Administration Commands

R E F E R E N C E

21

add_allocatable – add entries to allocation databases

/usr/sbin/add_allocatable [-f] [-s] [-d] -n name -t type -l device-list
[-a authorization] [-c clean] [-o key=value]

add_allocatable creates new entries for user allocatable devices that are to be managed by
the device allocation mechanism. add_allocatable can also be used to update existing entries
of such devices.

add_allocatable can also create and update entries for non-allocatable devices, such as
printers, whose label range is managed by the device allocation mechanism.

add_allocatable can be used in shell scripts, such as installation scripts for driver packages,
to automate the administrative work of setting up a new device.

Use list_devices(1) to see the names and types of allocatable devices, their attributes, and
device paths.

-f Force an update of an already-existing entry with the specified
information. add_allocatable exits with an error if this option is not
specified when an entry with the specified device name already exists.

-s Turn on silent mode. add_allocatable does not print any error or
warning messages.

-d If this option is present, add_allocatable updates the system-supplied
default attributes of the device type specified with -t.

-n name Adds or updates an entry for device that is specified by name.

-t type Adds or updates device entries that are of a type that are specified by type.

-l device-list Adds or updates device paths to the device that is specified with -n.
Multiple paths in device-list must be separated by white spaces and the
list must be quoted.

-a authorization Adds or updates the authorization that is associated with either the
device that is specified with -n or with devices of the type that is specified
with -t. When more than one authorization is specified, the list must be
separated by commas and must be quoted. When the device is not
allocatable, authorization is specified with an asterisk (*) and must be
quoted. When the device is allocatable by any user, authorization is
specified with the at sign (@) and must be quoted. Default authorization
is '@'.

-c clean Specifies the device_clean(5) program clean to be used with the device
that is specified with -n or with devices of the type that is specified with
-t. The default clean program is /bin/true.

Name

Synopsis

Description

Options

add_allocatable(1M)

Solaris Trusted Extensions Reference Manual • Last Revised 15 June 200722

-o key=value Accepts a string of colon-separated key=value pairs for a device that is
specified with -n or with devices of the type that is specified with -t. The
following keys are currently interpreted by the system:

minlabel The minimum label at which the device can be used.

maxlabel The maximum label at which the device can be used.

class Specifies a logical grouping of devices. For example, all
Sun RayTM devices of all device types is a logical grouping.
The class keyword has no default value.

xdpy Specifies the display name of the X session. This keyword
is used to identify devices that are associated with the X
session. The xdpy keyword has no default value.

When successful, add_allocate returns an exit status of 0 (true). add_allocate returns a
nonzero exit status in the event of an error. The exit codes are as follows:

1 Invocation syntax error

2 Unknown system error

3 An entry already exists for the specified device. This error occurs only when the -f
option is not specified.

4 Permission denied. User does not have DAC or MAC access record updates.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

Interface Stability See below.

The invocation is Uncommitted. The options are Uncommitted. The output is
Not-an-interface.

allocate(1), deallocate(1), list_devices(1), remove_allocatable(1M), attributes(5),
device_clean(5)

Errors

Attributes

See Also

add_allocatable(1M)

System Administration Commands 23

atohexlabel – convert a human readable label to its internal text equivalent

/usr/sbin/atohexlabel [human-readable-sensitivity-label]

/usr/sbin/atohexlabel -c [human-readable-clearance]

This file is part of the Defense Intelligence Agency (DIA) Mandatory Access Control (MAC)
policy. This file might not be applicable to other MAC policies that might be developed for
future releases of Solaris Trusted Extensions software.

atohexlabel converts a human readable label into an internal text representation that is safe
for storing in a public object. If no option is supplied, the label is assumed to be a sensitivity
label.

Internal conversions can later be parsed to their same value. This internal form is often
hexadecimal. The converted label is written to the standard output file. If no human readable
label is specified, the label is read from the standard input file. The expected use of this
command is emergency repair of labels that are stored in internal databases.

-c Identifies the human readable label as a clearance.

The following exit values are returned:

0 On success.

1 On failure, and writes diagnostics to the standard error file.

/etc/security/tsol/label_encodings

The label encodings file contains the classification names, words, constraints, and values
for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

Stability Level See NOTES below

hextoalabel(1M), label_to_str(3TSOL), str_to_label(3TSOL), label_encodings(4),
attributes(5)

“How to Obtain the Hexadecimal Equivalent for a Label” in Solaris Trusted Extensions
Administrator’s Procedures

The stability of the command output is Stable for systems with the same label_encodings
file. The stability of the command invocation is Stable for systems that implement the DIA
MAC policy.

Name

Synopsis

Interface Level

Description

Options

Exit Status

Files

Attributes

See Also

Notes

atohexlabel(1M)

Solaris Trusted Extensions Reference Manual • Last Revised 31 Aug 200524

chk_encodings – check the label encodings file syntax

/usr/sbin/chk_encodings [-a] [-c maxclass] [pathname]

This file is part of the Defense Intelligence Agency (DIA) Mandatory Access Control (MAC)
policy. This file might not be applicable to other MAC policies that might be developed for
future releases of Solaris Trusted Extensions software.

chk_encodings checks the syntax of the label-encodings file that is specified by pathname.
With the -a option, chk_encodings also prints a semantic analysis of the label-encodings file
that is specified by pathname. If pathname is not specified, chk_encodings checks and
analyzes the /etc/security/tsol/label_encodings file.

If label-encodings file analysis was requested, whatever analysis can be provided is written to
the standard output file even if errors were found.

-a Provide a semantic analysis of the label encodings file.

-c maxclass Accept a maximum classification value of maxclass (default 255) in the label
encodings file CLASSIFICATIONS section.

When successful, chk_encodings returns an exit status of 0 (true) and writes to the standard
output file a confirmation that no errors were found in pathname. Otherwise, chk_encodings
returns an exit status of nonzero (false) and writes an error diagnostic to the standard output
file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

Stability Level Mixed. See NOTES below

/etc/security/tsol/label_encodings

The label encodings file contains the classification names, words, constraints, and values
for the defined labels of this system.

label_encodings(4), attributes(5), labels(5)

“How to Analyze and Verify the label_encodings File” in Solaris Trusted Extensions Label
Administration

The stability of the syntactic checking is considered standard and controlled by DIA
document DDS-2600-6216-93, Compartmented Mode Workstation Labeling: Encodings
Format, September 1993. The stability of the command output is undefined. The stability of
the command invocation is stable for systems that implement the DIA MAC policy.

Name

Synopsis

Interface Level

Description

Options

Errors

Attributes

Files

See Also

Notes

chk_encodings(1M)

System Administration Commands 25

hextoalabel – convert an internal text label to its human readable equivalent

/usr/sbin/hextoalabel [internal-text-sensitivity-label]

/usr/sbin/hextoalabel -c [internal-text-clearance]

This file is part of the Defense Intelligence Agency (DIA) Mandatory Access Control (MAC)
policy. This file might not be applicable to other MAC policies that might be developed for
future releases of Solaris Trusted Extensions software.

hextoalabel converts an internal text label into its human readable equivalent and writes the
result to the standard output file. This internal form is often hexadecimal. If no option is
supplied, the label is assumed to be a sensitivity label.

If no internal text label is specified, the label is read from the standard input file. The expected
use of this command is emergency repair of labels that are stored in internal databases.

-c Identifies the internal text label as a clearance.

The following exit values are returned:

0 On success.

1 On failure, and writes diagnostics to the standard error file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

Stability Level See NOTES below

/etc/security/tsol/label_encodings

The label encodings file contains the classification names, words, constraints, and values
for the defined labels of this system.

atohexlabel(1M), label_to_str(3TSOL), str_to_label(3TSOL), label_encodings(4),
attributes(5)

“How to Obtain a Readable Label From Its Hexadecimal Form” in Solaris Trusted Extensions
Administrator’s Procedures

The stability of the command output is Stable for systems with the same label_encodings
file. The stability of the command invocation is Stable for systems that implement the DIA
MAC policy.

Name

Synopsis

Interface Level

Description

Options

Exit Status

Attributes

Files

See Also

Notes

hextoalabel(1M)

Solaris Trusted Extensions Reference Manual • Last Revised 31 Aug 200526

remove_allocatable – remove entries from allocation databases

/usr/sbin/remove_allocatable [-f] -n name

/usr/sbin/remove_allocatable [-f] [-d] -t dev-type

remove_allocatable removes entries of user allocatable devices from the device allocation
mechanism. remove_allocatable also removes entries of some non-allocatable devices, such
as printers, whose label range is managed by the mechanism.

-d Removes system-supplied default attributes of the device type that is specified
with -t.

-f Force the removal of an entry. remove_allocatable exits with an error if this
option is not specified when an entry with the specified device name no longer
exists.

-n name Removes the entry for the device name.

-t dev-type Removes devices of type dev-type.

When successful, remove_allocatable returns an exit status of 0 (true).
remove_allocatable returns a nonzero exit status in the event of an error. The exit codes are
as follows:

1 Invocation syntax error

2 Unknown system error

3 Device name or dev-type not found. This error occurs only when the -f option is not
specified.

4 Permission denied. User does not have DAC or MAC access to database.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

Interface Stability See below.

The invocation is Uncommitted. The options are Uncommitted. The output is
Not-an-interface.

allocate(1), deallocate(1), add_allocatable(1M), attributes(5), device_clean(5)

Name

Synopsis

Description

Options

Errors

Attributes

See Also

remove_allocatable(1M)

System Administration Commands 27

smtnrhdb – manage entries in the tnrhdb database

/usr/sadm/bin/smtnrhdb subcommand [auth_args] -- subcommand_args]

The smtnrhdb command adds, modifies, deletes, and lists entries in the tnrhdb database.

smtnrhdb subcommands are:

add Adds a new entry to the tnrhdb database. To add an entry, the administrator must
have the solaris.network.host.write and solaris.network.security.write

authorizations.

delete Deletes an entry from the tnrhdb database. To delete an entry, the administrator
must have the solaris.network.host.write and
solaris.network.security.write authorizations.

list Lists all entries in the tnrhdb database. To list an entry, the administrator must
have the solaris.network.host.read and solaris.network.security.read

authorizations.

modify Modifies an entry in the tnrhdb database. To modify an entry, the administrator
must have the solaris.network.host.write and
solaris.network.security.write authorizations.

The smtnrhdb authentication arguments, auth_args, are derived from the smc arg set. These
arguments are the same regardless of which subcommand you use. The smtnrhdb command
requires the Solaris Management Console to be initialized for the command to succeed (see
smc(1M)). After rebooting the Solaris Management Console server, the first smc connection
can time out, so you might need to retry the command.

The subcommand-specific options, subcommand_args, must be preceded by the -- option.

The valid auth_args are -D, -H, -l, -p, -r, and -u; they are all optional. If no auth_args are
specified, certain defaults will be assumed and the user might be prompted for additional
information, such as a password for authentication purposes. These letter options can also be
specified by their equivalent option words preceded by a double dash. For example, you can
use either -D or --domain.

-D | --domain domain Specifies the default domain that you want to
manage. The syntax of
domain=type:/host_name/domain_name, where type
is dns, ldap, or file; host_name is the name of the
server; and domain_name is the name of the domain
you want to manage.

If you do not specify this option, the Solaris
Management Console assumes the file default
domain on whatever server you choose to manage,

Name

Synopsis

Description

Options

auth_args

smtnrhdb(1M)

Solaris Trusted Extensions Reference Manual • Last Revised 26 Jun 200628

meaning that changes are local to the server.
Toolboxes can change the domain on a tool-by-tool
basis; this option specifies the domain for all other
tools.

-H | --hostname host_name:port Specifies the host_name and port to which you want
to connect. If you do not specify a port, the system
connects to the default port, 898. If you do not specify
host_name:port, the Solaris Management Console
connects to the local host on port 898.

-l | --rolepassword role_password Specifies the password for the role_name. If you
specify a role_name but do not specify a
role_password, the system prompts you to supply a
role_password. Passwords specified on the command
line can be seen by any user on the system, hence this
option is considered insecure.

-p | --password password Specifies the password for the user_name. If you do
not specify a password, the system prompts you for
one. Passwords specified on the command line can be
seen by any user on the system, hence this option is
considered insecure.

-r | --rolename role_name Specifies a role name for authentication. If you do not
specify this option, no role is assumed.

-u | --username user_name Specifies the user name for authentication. If you do
not specify this option, the user identity running the
console process is assumed.

-- This option is required and must always follow the
preceding options. If you do not enter the preceding
options, you must still enter the -- option.

Note: Descriptions and other arg options that contain white spaces must be enclosed in double
quotes.

-h Displays the command's usage statement.

-H hostname Specifies the name of the host. For the list subcommand, the
hostname argument is not specified. This is not required if the
ipaddress subcommand argument is specified.

-i ipaddress Specifies the IP address of the host. This is not required if the
hostname subcommand argument is specified.

-n templatename Specifies the name of the template.

subcommand_args

smtnrhdb(1M)

System Administration Commands 29

-p prefixlen Specifies the prefix length (in bits) of a wildcard representation of
the IP address. The prefix is the left-most portion of the IP address.

-w ipaddress-wildcard Specifies the IP address of the subnet using a wildcard.

■ One of the following sets of arguments must be specified for subcommand add:

-H hostname -n templatename |

-i ipaddress -n templatename |

-w ipaddress-wildcard -n templatename [-p prefixlen] |

-h

■ One of the following sets of arguments must be specified for subcommand modify:

-H hostname -n templatename |

-i ipaddress -n templatename |

-w ipaddress-wildcard -n templatename [-p prefixlen] |

-h

■ One of the following sets of arguments must be specified for subcommand delete:

-H hostname |

-i ipaddress |

-w ipaddress-wildcard [-p prefixlen] |

-h

■ The subcommand list takes the following argument:

-h

EXAMPLE 1 Specifying the Template Name for a Wildcard IP Address

The admin role specifies the template name, cipso_lan, for a series of hosts that use the IP
address wildcard 192.168.113.0 on the local file system. Since no authorization arguments
were specified, the administrator connects to port 898 of the local host on the local server with
the file domain type, which are the defaults. The administrator is prompted for the admin
password.

$ usr/sadm/bin/smtnrhdb add -- -w 192.168.113.0 -n cipso_lan

EXAMPLE 2 Deleting an Entry in the tnrhdbDatabase

The admin role connects to port 898 (which happens to be the default) of the LDAP server and
deletes a host entry from the database by specifying its IP address, 192.168.113.8. Since the
domain was not specified, the file domain type and local server are used by default. The
administrator is prompted for the admin password.

/usr/sadm/bin/smtnrhdb delete \

-D ldap:/example.domain -i 192.168.113.8

The following exit values are returned:

Examples

Exit Status

smtnrhdb(1M)

Solaris Trusted Extensions Reference Manual • Last Revised 26 Jun 200630

0 Successful completion.

1 Invalid command syntax. A usage message displays.

2 An error occurred while executing the command. An error message displays.

The following files are used by the smtnrhdb command:

/etc/security/tsol/tnrhdb Trusted network remote-host database. See tnrhdb(4).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWmgts

smc(1M), tnrhdb(4), attributes(5)

Files

Attributes

See Also

smtnrhdb(1M)

System Administration Commands 31

smtnrhtp – manage entries in the trusted network template database

/usr/sadm/bin/smtnrhtp subcommand [auth_args] -- [subcommand_args]

The smtnrhtp command adds, modifies, deletes, and lists entries in the tnrhtp database.

smtnrhtp subcommands are:

add Adds a new entry to the tnrhtp database. To add an entry, the administrator must
have the solaris.network.security.read and
solaris.network.security.write authorizations.

modify Modifies an entry in the tnrhtp database. To modify an entry, the administrator
must have the solaris.network.security.read and
solaris.network.security.write authorizations.

delete Deletes an entry from tnrhtp database. To delete an entry, the administrator must
have the solaris.network.security.read and
solaris.network.security.write authorizations.

list Lists entries in the tnrhtp database. To list an entry, the administrator must have
the solaris.network.security.read authorizations.

The smtnrhtp authentication arguments, auth_args, are derived from the smc arg set and are
the same regardless of which subcommand you use. The smtnrhtp command requires the
Solaris Management Console to be initialized for the command to succeed (see smc(1M)).
After rebooting the Solaris Management Console server, the first smc connection can time
out, so you might need to retry the command.

The subcommand-specific options, subcommand_args, must be preceded by the -- option.

The valid auth_args are -D, -H, -l, -p, -r, and -u; they are all optional. If no auth_args are
specified, certain defaults will be assumed and the user might be prompted for additional
information, such as a password for authentication purposes. These letter options can also be
specified by their equivalent option words preceded by a double dash. For example, you can
use either -D or --domain.

-D | --domain domain Specifies the default domain that you want to
manage. The syntax of
domain=type:/host_name/domain_name, where type
is dns, ldap, or file; host_name is the name of the
server; and domain_name is the name of the domain
you want to manage.

If you do not specify this option, the Solaris
Management Console assumes the file default
domain on whatever server you choose to manage,
meaning that changes are local to the server.

Name

Synopsis

Description

Options

auth_args

smtnrhtp(1M)

Solaris Trusted Extensions Reference Manual • Last Revised 26 Jun 200632

Toolboxes can change the domain on a tool-by-tool
basis; this option specifies the domain for all other
tools.

-H | --hostname host_name:port Specifies the host_name and port to which you want
to connect. If you do not specify a port, the system
connects to the default port, 898. If you do not specify
host_name:port, the Solaris Management Console
connects to the local host on port 898.

-l | --rolepassword role_password Specifies the password for the role_name. If you
specify a role_name but do not specify a
role_password, the system prompts you to supply a
role_password. Passwords specified on the command
line can be seen by any user on the system, hence this
option is considered insecure.

-p | --password password Specifies the password for the user_name. If you do
not specify a password, the system prompts you for
one. Passwords specified on the command line can be
seen by any user on the system, hence this option is
considered insecure.

-r | --rolename role_name Specifies a role name for authentication. If you do not
specify this option, no role is assumed.

-u | --username user_name Specifies the user name for authentication. If you do
not specify this option, the user identity running the
console process is assumed.

-- This option is required and must always follow the
preceding options. If you do not enter the preceding
options, you must still enter the -- option.

Note: Descriptions and other arg options that contain white spaces must be enclosed in double
quotes.

-h Displays the command's usage statement.

-n templatename Specifies the name of the template.

-t hosttype Specifies the hosttype of the new host. Valid values are unlabeled
and cipso.

-x doi=doi-value Specifies the DOI value.

-x

max=maximum-label
Specifies the maximum label. Values can be a hex value or string
(such as admin_high).

subcommand_args

smtnrhtp(1M)

System Administration Commands 33

-x min=minimum-label Specifies the minimum label. Values can be a hex value or string
(such as admin_low).

-x label=default-label Specifies the default label when the host type is unlabeled. This
option does not apply if hosttype is CIPSO. Values can be a hex
value or string (such as admin_low).

-x slset=l1,l2,l3,l4 Specifies a set of sensitivity labels. You can specify up to four label
values, separated by commas. Values can be a hex value or string
(such as admin_low).

■ One of the following sets of arguments must be specified for subcommand add:

-n template name (

-t cipso [-x doi=doi-value -x min=minimum-label -x max=maximum-label -x
slset=l1,l2,l3,l4] |
-t unlabeled [-x doi=doi-value -x min=minimum-label -x max=maximum-label -x
label=default-label -x slset=l1,l2,l3,l4] |
-h

)

■ One of the following sets of arguments must be specified for subcommand modify:

-n template name (

-t cipso [-x doi=doi-value -x min=minimum-label -x max=maximum-label -x
slset=l1,l2,l3,l4] |
-t unlabeled [-x doi=doi-value -x min=minimum-label -x max=maximum-label -x
label=default-label-x slset=l1,l2,l3,l4] |
-h

)

Note: If the host type is changed, all options for the new host type must be specified.
■ One of the following sets of arguments must be specified for subcommand delete:

-n templatename |

-h

■ The following argument can be specified for subcommand list:

-n templatename |

-h

EXAMPLE 1 Adding a New Entry to the Network Template Database

The admin role connects to port 898 of the LDAP server and creates the unlabeled_ntk entry
in the tnrhtp database. The new template is assigned a host type of unlabeled, a domain of

Examples

smtnrhtp(1M)

Solaris Trusted Extensions Reference Manual • Last Revised 26 Jun 200634

EXAMPLE 1 Adding a New Entry to the Network Template Database (Continued)

interpretation of 1, minimum label of public, maximum label of restricted, and a default
label of needtoknow. The administrator is prompted for the admin password.

$ /usr/sadm/bin/smtnrhtp \

add -D ldap:directoryname -H servername:898 -- \

-n unlabeled_ntk -t unlabeled -x DOI=1 \

-x min=public -x max=restricted -x label="need to know"

The following exit values are returned:

0 Successful completion.

1 Invalid command syntax. A usage message displays.

2 An error occurred while executing the command. An error message displays.

The following files are used by the smtnrhtp command:

/etc/security/tsol/tnrhtp Trusted network remote-host templates. See tnrhtp(4).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWmgts

smc(1M), tnrhtp(4), attributes(5)

Exit Status

Files

Attributes

See Also

smtnrhtp(1M)

System Administration Commands 35

smtnzonecfg – manage entries in the zone configuration database for Trusted Extensions
networking

/usr/sadm/bin/smtnzonecfg subcommand [auth_args] -- [subcommand_args]

The smtnzonecfg command adds, modifies, deletes, and lists entries in the tnzonecfg
database.

smtnzonecfg subcommands are:

add Adds a new entry to the tnzonecfg database. To add an entry, the administrator
must have the solaris.network.host.write and
solaris.network.security.write authorizations.

modify Modifies an entry in the tnzonecfg database. To modify an entry, the
administrator must have the solaris.network.host.write and
solaris.network.security.write authorizations.

delete Deletes an entry from the tnzonecfg database. To delete an entry, the
administrator must have the solaris.network.host.write and
solaris.network.security.write authorizations.

list Lists entries in the tnzonecfg database. To list an entry, the administrator must
have the solaris.network.host.read and solaris.network.security.read

authorizations.

The smtnzonecfg authentication arguments, auth_args, are derived from the smc arg set and
are the same regardless of which subcommand you use. The smtnzonecfg command requires
the Solaris Management Console to be initialized for the command to succeed (see smc(1M)).
After rebooting the Solaris Management Console server, the first smc connection can time
out, so you might need to retry the command.

The subcommand-specific options, subcommand_args, must be preceded by the -- option.

The valid auth_args are -D, -H, -l, -p, -r, and -u; they are all optional. If no auth_args are
specified, certain defaults will be assumed and the user can be prompted for additional
information, such as a password for authentication purposes. These letter options can also be
specified by their equivalent option words preceded by a double dash. For example, you can
use either -D or --domain.

-D | --domain domain Specifies the default domain that you want to
manage. The syntax of
domain=type:/host_name/domain_name, where type
is dns, ldap, or file; host_name is the name of the
server; and domain_name is the name of the domain
you want to manage.

Name

Synopsis

Description

Options

auth_args

smtnzonecfg(1M)

Solaris Trusted Extensions Reference Manual • Last Revised 26 June 200636

If you do not specify this option, the Solaris
Management Console assumes the file default
domain on whatever server you choose to manage,
meaning that changes are local to the server.
Toolboxes can change the domain on a tool-by-tool
basis. This option specifies the domain for all other
tools.

-H | --hostname host_name:port Specifies the host_name and port to which you want
to connect. If you do not specify a port, the system
connects to the default port, 898. If you do not specify
host_name:port, the Solaris Management Console
connects to the local host on port 898.

-l | --rolepassword role_password Specifies the password for the role_name. If you
specify a role_name but do not specify a
role_password, the system prompts you to supply a
role_password. Passwords specified on the command
line can be seen by any user on the system, hence this
option is considered insecure.

-p | --password password Specifies the password for the user_name. If you do
not specify a password, the system prompts you for
one. Passwords specified on the command line can be
seen by any user on the system, hence this option is
considered insecure.

-r | --rolename role_name Specifies a role name for authentication. If you do not
specify this option, no role is assumed.

-u | --username user_name Specifies the user name for authentication. If you do
not specify this option, the user identity running the
console process is assumed.

-- This option is required and must always follow the
preceding options. If you do not enter the preceding
options, you must still enter the -- option.

Note: Descriptions and other arg options that contain white spaces must be enclosed in double
quotes.

-h Displays the command's usage statement.

-n zonename Specifies the zone name for the entry. This name is used
when the zone is configured. zonename is case-sensitive.
The specified zone name must be one of the configured
zones on the system. The following command returns a
list of configured zones:

subcommand_args

smtnzonecfg(1M)

System Administration Commands 37

/usr/sbin/zoneadm list -c

-l label Specifies the label for the zone. This field is used to label
the zone when the zone is booted.

-x policymatch=0|1 Specifies the policy match level for non-transport traffic.
Only values of 0 (match the label) or 1 (be within the label
range of the zone) are accepted. See tnzonecfg(4) for more
detail. This subcommand argument is optional. If not
specified, it will have a default value of 0.

-x mlpzone=“”|port/protocol Specifies the multilevel port configuration entry for
zone-specific IP addresses. Multiple port/protocol
combinations are separated by a semi-colon. The empty
string can be specified to remove all existing MLP zone
values. This subcommand argument is optional.

-x mlpshared=“”|port/protocol Specifies the multilevel port configuration entry for
shared IP addresses. Multiple port/protocol combinations
are separated by a semi-colon. The empty string can be
specified to remove all existing MLP shared values. This
subcommand argument is optional.

■ One of the following sets of arguments must be specified for subcommand add:

-n zonename -l label [-x policymatch=policy-match-level \

-x mlpzone=port/protocol;.... | -x mlpshared=port/protocol;....]

-h

■ One of the following sets of arguments must be specified for subcommand modify:

-n zonename [-l label] [-x policymatch=policy-match-level \

-x mlpzone=port/protocol;.... | -x mlpshared=port/protocol;....]

-h

■ One of the following arguments must be specified for subcommand delete:

-n zonename |

-h

■ The following argument can be specified for subcommand list:

-n zonename |

-h

smtnzonecfg(1M)

Solaris Trusted Extensions Reference Manual • Last Revised 26 June 200638

EXAMPLE 1 Adding a New Entry to the Zone Configuration Database

The admin role creates a new zone entry, public, with a label of public, a policy match level
of 1, and a shared MLP port and protocol of 666 and TCP. The administrator is prompted for
the admin password.

$ /usr/sadm/bin/smtnzonecfg add -- -n public -l public \

-x policymatch=1 -x mlpshared=666/tcp

EXAMPLE 2 Modifying an Entry in the Zone Configuration Database

The admin role changes the public entry in the tnzonecfg database to needtoknow. The
administrator is prompted for the admin password.

$ /usr/sadm/bin/smtnzonecfg modify -- -n public -l needtoknow

EXAMPLE 3 Listing the Zone Configuration Database

The admin role lists the entries in the tnzonecfg database. The administrator is prompted for
the admin password.

$ /usr/sadm/bin/smtnzonecfg list --

The following exit values are returned:

0 Successful completion.

1 Invalid command syntax. A usage message displays.

2 An error occurred while executing the command. An error message displays.

The following files are used by the smtnzonecfg command:

/etc/security/tsol/tnzonecfg Trusted zone configuration database. See tnzonecfg(4).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWmgts

smc(1M), tnzonecfg(4), attributes(5)

Examples

Exit Status

Files

Attributes

See Also

smtnzonecfg(1M)

System Administration Commands 39

tnchkdb – check file syntax of trusted network databases

/usr/sbin/tnchkdb [-h path] [-t path] [-z path]

tnchkdb checks the syntax of the tnrhtp(4), tnrhdb(4), and tnzonecfg(4) databases. By default,
the path for each file is:

■ /etc/security/tsol/tnrhtp

■ /etc/security/tsol/tnrhdb

■ /etc/security/tsol/tnzonecfg

You can specify an alternate path for any or all of the files by specifying that path on the
command line by using the -h (tnrhdb), -t (tnrhtp) and -z (tnzonecfg) options. The options
are useful when testing a set of modified files before installing the files as new system
databases.

All three database files are checked for integrity. tnchkdb returns an exit status of 0 if all of the
files are syntactically and, to the extent possible, semantically correct. If one or more files have
errors, then an exit status of 1 is returned. If there are command line problems, such as an
unreadable file, an exit status of 2 is returned. Errors are written to standard error.

To avoid cascading errors, when there are errors in tnrhtp, the template names in tnrhdb are
not validated.

tnchkdb can be run at any label, but the standard /etc/security/tsol files are visible only in
the global zone.

-h [path] Check path for proper tnrhdb syntax. If path is not specified, then check
/etc/security/tsol/tnrhdb.

-t [path] Check path for proper tnrhtp syntax. If path is not specified, then check
/etc/security/tsol/tnrhtp.

-z [path] Check path for proper tnzonecfg syntax. If path is not specified, then check
/etc/security/tsol/tnzonecfg.

EXAMPLE 1 Sample Error Message

The tnchkdb command checks for CIPSO errors. In this example, the admin_low template has
an incorrect value of ADMIN_HIGH for its default label.

tnchkdb

checking /etc/security/tsol/tnrhtp ...

tnchkdb: def_label classification 7fff is invalid for cipso labels:

line 14 entry admin_low

tnchkdb: def_label compartments 241-256 must be zero for cipso labels:

line 14 entry admin_low

checking /etc/security/tsol/tnrhdb ...

checking /etc/security/tsol/tnzonecfg ...

Name

Synopsis

Description

Options

Examples

tnchkdb(1M)

Solaris Trusted Extensions Reference Manual • Last Revised 26 Jun 200640

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

Stability (Command Line) Evolving

Stability (Output) Unstable

/etc/security/tsol/tnrhdb Trusted network remote-host database

/etc/security/tsol/tnrhtp Trusted network remote-host templates

/etc/security/tsol/tnzonecfg Trusted zone configuration database

tnd(1M), tnctl(1M), tnrhdb(4), tnrhtp(4), tnzonecfg(4), attributes(5)

“How to Check the Syntax of Trusted Network Databases” in Solaris Trusted Extensions
Administrator’s Procedures

It is possible to have inconsistent but valid configurations of tnrhtp and tnrhdb when LDAP
is used to supply missing templates.

Attributes

Files

See Also

Notes

tnchkdb(1M)

System Administration Commands 41

tnctl – configure Trusted Extensions network parameters

/usr/sbin/tnctl [-dfv] [-h host [/prefix] [:template]] [-m zone:mlp:shared-mlp]
[-t template [:key=val [;key=val]]] [-HTz] file]

tnctl provides an interface to manipulate trusted network parameters in the Solaris kernel.

As part of Solaris Trusted Extensions initialization, tnctl is run in the global zone by an
smf(5) script during system boot. The tnctl command is not intended to be used during
normal system administration. Instead, if a local trusted networking database file is modified
without using the Solaris Management Console, the administrator first issues tnchkdb(1M) to
check the syntax, and then refreshes the kernel copy with this command:

svcadm restart svc:/network/tnctl

See WARNINGS about the risks of changing remote host and template information on a running
system.

-d

Delete matching entries from the kernel. The default is to add new entries.

When deleting MLPs, the MLP range must match exactly. MLPs are specified in the form:

port[-port]/protocol

Where port can be a number in the range 1 to 65535. or any known service (see
services(4)), and protocol can be a number in the range 1 to 255, or any known protocol
(see protocols(4)).

-f

Flush all kernel entries before loading the entries that are specified on the command line.
The flush does not take place unless at least one entry parsed successfully.

-v

Turn on verbose mode.

-h host[/prefix][:template]
Update the kernel remote-host cache on the specified host or, if a template name is given,
change the kernel's cache to use the specified template. If prefix is not specified, then an
implied prefix length is determined according to the rules used for interpreting the
tnrhdb(4). If -d is specified, then a template name cannot be specified.

-m zone:mlp:shared-mlp
Modify the kernel's multilevel port (MLP) configuration cache for the specified zone. zone
specifies the zone to be updated. mlp and shared-mlp specify the MLPs for the zone-specific
and shared IP addresses. The shared-mlp field is effective in the global zone only.

Name

Synopsis

Description

Options

tnctl(1M)

Solaris Trusted Extensions Reference Manual • Last Revised 26 Jun 200642

-t template[key=val[;key=val]]
Update the kernel template cache for template or, if a list of key=val pairs is given, change
the kernel's cache to use the specified entry. If -d is specified, then key=val pairs cannot be
specified. See tnrhtp(4) for the format of the entries.

-T file
Load all template entries in file into the kernel cache.

-H file
Load all remote host entries in file into the kernel cache.

-z file
Load just the global zone's MLPs from file into the kernel cache. To reload MLPs for a
non-global zone, reboot the zone:

zoneadm -z non-global zone reboot

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

Stability Level Unstable

/etc/security/tsol/tnrhdb Trusted network remote-host database

/etc/security/tsol/tnrhtp Trusted network remote-host templates

/etc/security/tsol/tnzonecfg Trusted zone configuration database

/etc/nsswitch.conf Configuration file for the name service switch

svcs(1), svcadm(1M), tninfo(1M), tnd(1M), tnchkdb(1M), zoneadm(1M), nsswitch.conf(4),
protocols(4), services(4), tnrhdb(4), tnrhtp(4), tnzonecfg(4), attributes(5), smf(5)

“How to Synchronize the Kernel Cache With Trusted Network Databases” in Solaris Trusted
Extensions Administrator’s Procedures

The tnctl service is managed by the service management facility, smf(5), under the service
identifier:

svc:/network/tnctl

The service's status can be queried by using svcs(1). Administrative actions on this service,
such as refreshing the kernel cache, can be performed using svcadm(1M), as in:

svcadm refresh svc:/network/tnctl

Changing a template while the network is up can change the security view of an undetermined
number of hosts.

Attributes

Files

See Also

Notes

Warnings

tnctl(1M)

System Administration Commands 43

tnd – trusted network daemon

/usr/sbin/tnd [-p poll-interval]

The tnd (trusted network daemon) initializes the kernel with trusted network databases and
also reloads the databases on demand from an LDAP server and local files. tnd follows the
order specified in the nsswitch.conf(4) file when loading configuration databases. tnd is
started at the beginning of the boot process.

tnd loads two databases into the kernel: the remote host database, tnrhdb(4) and the
remote-host template database, tnrhtp(4). These databases and their effect on the trusted
network are described in their respective man pages. When the associated LDAP database or
local databases are changed, tnd also updates the local kernel cache at the predetermined
interval.

If a local trusted networking database file is modified, the administrator should run
tnchkdb(1M) to check the syntax, and should also run svcadm refresh svc:/network/tnd to
initiate an immediate database scan by tnd.

tnd is intended to be started from an smf(5) script and to run in the global zone. The following
signals cause specific svcadm actions:

SIGHUP Causes svcadm refresh svc:/network/tnd to be run.

Initiates a rescan of the local and LDAP tnrhdb and tnrhtp databases. tnd
updates the kernel database with any changes found.

SIGTERM Causes svcadm disable svc:/network/tnd to be run.

Terminates the tnd daemon. No changes are made to the kernel database.

-p poll-interval Set poll interval to poll-interval seconds. The default poll-interval is 1800
seconds (30 minutes).

EXAMPLE 1 Changing the Poll Interval

The following command changes the polling interval to one hour, and puts this interval in the
SMF repository. At the next boot, the tnd poll interval will be one hour.

svccfg -s network/tnd setprop tnd/poll_interval=3600

The following command changes the polling interval, but does not update the repository. At
the next boot, the tnd poll interval remains the default, 30 minutes.

tnd -p 3600

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Description

Options

Examples

Attributes

tnd(1M)

Solaris Trusted Extensions Reference Manual • Last Revised 26 Jun 200644

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

Stability Level (Command) Stable

Stability Level (Service) Project Private

/etc/security/tsol/tnrhdb Trusted network remote-host database

/etc/security/tsol/tnrhtp Trusted network remote-host templates

/etc/security/tsol/tnzonecfg Trusted zone configuration database

/etc/nsswitch.conf Configuration file for the name service switch

svcs(1), svcadm(1M), tninfo(1M), tnctl(1M), tnchkdb(1M), tnrhdb(4), tnrhtp(4),
tnzonecfg(4), nsswitch.conf(4), attributes(5), smf(5)

“How to Synchronize the Kernel Cache With Trusted Network Databases” in Solaris Trusted
Extensions Administrator’s Procedures

The tnd service is managed by the service management facility, smf(5), under the service
identifier:

svc:/network/tnd

The service's status can be queried by using svcs(1). Administrative actions on this service,
such as requests to restart the daemon, can be performed using svcadm(1M), as in:

svcadm restart svc:/network/tnd

Files

See Also

Notes

tnd(1M)

System Administration Commands 45

tninfo – print kernel-level network information and statistics

/usr/sbin/tninfo [-h hostname] [-m zone-name] [-t template]

tninfo provides an interface to retrieve and display kernel-level network information and
statistics.

-h hostname Display the security structure for the specified host in the remote-host
cache. The output should reflect what is specified in the tnrhdb database.

-m zone-name Display the MLP configuration associated with the specified zone. The
output should reflect what is specified in the tnzonecfg database.

-t template Display the structure associated with the specified template. The output
should reflect what is specified in the tnrhtp database.

EXAMPLE 1 Displaying Remote Host Structures Cached in the Kernel

This example shows the remote host structures cached in the kernel. The output reflects the
definition in the tnrhdb database.

tninfo -h machine1

IP address= 192.168.8.61

Template = cipso

EXAMPLE 2 Displaying Multilevel Ports for the Global Zone

This example shows the kernel-cached MLPs for the global zone. The output reflects the
definition in the tnzonecfg database, plus any dynamically allocated MLPs. private indicates
zone-specific MLPs.

tninfo -m global

private:23/tcp;111/tcp;111/udp;515/tcp;2049/tcp;6000-6003/tcp;

32812/tcp;36698/ip;38634/tcp;64365/ip

shared: 6000-6003/tcp

EXAMPLE 3 Displaying the cipsoTemplate Definition

This example shows the kernel-cached cipso template definition. The output reflects the
definition in the tnrhtp database.

tninfo -t cipso

=====================================

Remote Host Template Table Entries:

template: cipso

host_type: CIPSO

doi: 1

Name

Synopsis

Description

Options

Examples

tninfo(1M)

Solaris Trusted Extensions Reference Manual • Last Revised 26 Jun 200646

EXAMPLE 3 Displaying the cipsoTemplate Definition (Continued)

min_sl: ADMIN_LOW

hex: ADMIN_LOW

max_sl: ADMIN_HIGH

hex: ADMIN_HIGH

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

Stability (Command Line) Evolving

Stability (Output) Unstable

/etc/security/tsol/tnrhdb Trusted network remote-host database

/etc/security/tsol/tnrhtp Trusted network remote-host templates

/etc/security/tsol/tnzonecfg Trusted zone configuration database

tnd(1M), tnctl(1M), tnrhdb(4), tnrhtp(4), tnzonecfg(4), attributes(5)

“How to Synchronize the Kernel Cache With Trusted Network Databases” in Solaris Trusted
Extensions Administrator’s Procedures

Attributes

Files

See Also

tninfo(1M)

System Administration Commands 47

updatehome – update the home directory copy and link files for the current label

/usr/bin/updatehome [-cirs]

updatehome reads the user's minimum-label copy and link-control files (.copy_files and
.link_files). These files contain a list of files to be copied and symbolically linked from the
user's minimum-label home directory to the user's home directory at the current label.

The Solaris Trusted Extensions dtsession program performs an updatehome whenever a
newly labeled workspace is created so that the user's favorite files are available for use. For
example, the user probably wants a symlink to such files as .profile, .login, .cshrc, .exrc,
.mailrc, and ~/bin. The updatehome command provides a convenient mechanism for
accomplishing this symlink. The user can add files to those to be copied (.copy_files) and to
those to be symbolically linked (.link_files).

-c Replace existing home-directory copies at the current label. The default is to skip over
existing copies.

-i Ignore errors encountered. The default aborts on error.

-r Replace existing home-directory copies or symbolic links at the current label. This
option implies options -c and -s. The default is to skip over existing copies or symbolic
links.

-s Replace existing home-directory symbolic links at the current label. The default is to
skip over existing symbolic links.

Upon success, updatehome returns 0. Upon failure, updatehome returns 1 and writes
diagnostic messages to standard error.

EXAMPLE 1 A Sample .copy_files File

The files that are listed in .copy_files can be modified at every user's label.

.cshrc

.mailrc

.mozilla/bookmarks.html

EXAMPLE 2 A Sample .link_files File

The files that are listed in .link_files can be modified at the lowest label. The changes
propagate to the other labels that are available to the user.

~/bin

.mozilla/preferences

.xrc

.rhosts

Name

Synopsis

Description

Options

Return Values

Examples

updatehome(1M)

Solaris Trusted Extensions Reference Manual • Last Revised 16 Mar 200648

EXAMPLE 3 Updating the Linked and Copied Files

The .copy_files and .link_files were updated by the user at the minimum label. At a
higher label, the user refreshes the copies and the links. No privileges are required to run the
command.

% updatehome -r

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

Stability Stable

$HOME/.copy_files List of files to be copied

$HOME/.link_files List of files to be symbolically linked

attributes(5)

“.copy_files and .link_files Files” in Solaris Trusted Extensions Administrator’s Procedures

Attributes

Files

See Also

updatehome(1M)

System Administration Commands 49

50

System Calls

R E F E R E N C E

51

getlabel, fgetlabel – get file sensitivity label

cc [flags...] file... -ltsol [library...]

#include <tsol/label.h>

int getlabel(const char *path, m_label_t *label_p);

int fgetlabel(int fd, m_label_t *label_p);

getlabel() obtains the sensitivity label of the file that is named by path. Discretionary read,
write or execute permission to the final component of path is not required, but all directories
in the path prefix of path must be searchable.

fgetlabel() obtains the label of an open file that is referred to by the argument descriptor,
such as would be obtained by an open(2) call.

label_p is a pointer to an opaque label structure. The caller must allocate space for label_p by
using m_label_alloc(3TSOL).

getlabel() and fgetlabel() return:

0 On success.

−1 On failure, and set errno to indicate the error.

getlabel() fails if one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix of path. To
override this restriction, the calling process can assert the
PRIV_FILE_DAC_SEARCH privilege.

EFAULT label_p or path points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX.

A pathname component is longer than NAME_MAX while _POSIX_NO_TRUNC
is in effect (see pathconf(2)).

ENOENT The file referred to by path does not exist.

ENOTDIR A component of the path prefix of path is not a directory.

fgetlabel() fails if one or more of the following are true:

EBADF fd is not a valid open file descriptor.

EFAULT label_p points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file system.

Name

Synopsis

Description

Return Values

Errors

getlabel(2)

Solaris Trusted Extensions Reference Manual • Last Revised 31 May 200652

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcslr

Interface Stability Stable

open(2), pathconf(2), m_label_alloc(3TSOL), attributes(5), labels(5)

“Obtaining a File Label” in Solaris Trusted Extensions Developer’s Guide

Attributes

See Also

getlabel(2)

System Calls 53

54

Trusted Extensions Library

R E F E R E N C E

55

blcompare, blequal, bldominates, blstrictdom, blinrange – compare binary labels

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

int blequal(const m_label_t *label1, const m_label_t *label2);

int bldominates(const m_label_t *label1, const m_label_t *label2);

int blstrictdom(const m_label_t *label1, const m_label_t *label2);

int blinrange(const m_label_t *label, const brange_t *range);

These functions compare binary labels for meeting a particular condition.

blequal() compares two labels for equality.

bldominates() compares label label1 for dominance over label label2.

blstrictdom() compares label label1 for strict dominance over label label2.

blinrange() compares label label for dominance over range→lower_bound and
range→upper_bound for dominance over level label.

These functions return non-zero if their respective conditions are met, otherwise zero is
returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

Interface Stability Stable

ucred_getlabel(3C), getplabel(3TSOL), label_to_str(3TSOL), label_encodings(4),
attributes(5), labels(5)

“Determining the Relationship Between Two Labels” in Solaris Trusted Extensions Developer’s
Guide

Name

Synopsis

Description

Return Values

Attributes

See Also

blcompare(3TSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 31 May 200656

blminmax, blmaximum, blminimum – bound of two labels

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

void blmaximum(m_label_t *maximum_label, const m_label_t *bounding_label);

void blminimum(m_label_t *minimum_label, const m_label_t *bounding_label);

blmaximum() replaces the contents of label maximum_label with the least upper bound of the
labels maximum_label and bounding_label. The least upper bound is the greater of the
classifications and all of the compartments of the two labels. This is the least label that
dominates both of the original labels.

blminimum() replaces the contents of label minimum_label with the greatest lower bound of
the labels minimum_label and bounding_label. The greatest lower bound is the lower of the
classifications and only the compartments that are contained in both labels. This is the greatest
label that is dominated by both of the original labels.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

Interface Stable

label_to_str(3TSOL), sbltos(3TSOL), attributes(5)

Name

Synopsis

Description

Attributes

See Also

blminmax(3TSOL)

Trusted Extensions Library 57

bltocolor, bltocolor_r – get character-coded color name of label

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

char *bltocolor(const m_label_t *label);

char *bltocolor_r(const m_label_t *label, const int size, char *color_name);

The bltocolor() and bltocolor_r() functions are obsolete. Use the label_to_str(3TSOL)
function instead.

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective privileges to get
color names of labels that dominate the current process's sensitivity label.

bltocolor() and bltocolor_r() get the character-coded color name associated with the
binary label label.

bltocolor() returns a pointer to a statically allocated string that contains the character-coded
color name specified for the label or returns (char *)0 if, for any reason, no character-coded
color name is available for this binary label.

bltocolor_r() returns a pointer to the color_name string which contains the
character-coded color name specified for the label or returns (char *)0 if, for any reason, no
character-coded color name is available for this binary label. color_name must provide for a
string of at least size characters.

/etc/security/tsol/label_encodings

The label encodings file contains the classification names, words, constraints, and values
for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

Stability Level Obsolete

MT-Level MT-Safe with exceptions

label_to_str(3TSOL), attributes(5)

These functions are obsolete and retained for ease of porting. They might be removed in a
future Solaris Trusted Extensions release.

The function bltocolor() returns a pointer to a statically allocated string. Subsequent calls to
it will overwrite that string with a new character-coded color name. It is not MT-Safe.

For multithreaded applications the function bltocolor_r() should be used.

Name

Synopsis

Interface Level

Description

Return Values

Files

Attributes

See Also

Notes

bltocolor(3TSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 31 May 200658

If label includes a specified word or words, the character-coded color name associated with the
first word specified in the label encodings file is returned. Otherwise, if no character-coded
color name is specified for label, the first character-coded color name specified in the label
encodings file with the same classification as the binary label is returned.

bltocolor(3TSOL)

Trusted Extensions Library 59

bltos, bsltos, bcleartos – translate binary labels to character coded labels

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

int bsltos(const m_label_t *label, char **string, const int str_len, const int flags);

int bcleartos(const m_label_t *label, char **string, const int str_len, const int flags);

The bsltos() and bcleartos() functions are obsolete. Use the label_to_str(3TSOL) function
instead.

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective privileges to
perform label translation on labels that dominate the current process' sensitivity label.

These routines translate binary labels into strings controlled by the value of the flags
parameter.

The generic form of an output character-coded label is:

CLASSIFICATION WORD1 WORD2 WORD3/WORD4 SUFFIX PREFIX WORD5/WORD6

Capital letters are used to display all CLASSIFICATION names and WORDs. The ‘ ' (space)
character separates classifications and words from other words in all character-coded labels
except where multiple words that require the same PREFIX or SUFFIX are present, in which
case the multiple words are separated from each other by the ‘/' (slash) character.

string can point to either a pointer to pre-allocated memory, or the value (char *)0. If string
points to a pointer to pre-allocated memory, then str_len indicates the size of that memory. If
string points to the value (char *)0, memory is allocated using malloc() to contain the
translated character-coded labels. The translated label is copied into allocated or pre-allocated
memory.

flags is 0 (zero), or the logical sum of the following:

LONG_WORDS Translate using long names of words defined in label.

SHORT_WORDS Translate using short names of words defined in label. If no short
name is defined in the label_encodings file for a word, the long
name is used.

LONG_CLASSIFICATION Translate using long name of classification defined in label.

SHORT_CLASSIFICATION Translate using short name of classification defined in label.

ACCESS_RELATED Translate only access-related entries defined in information label
label.

VIEW_EXTERNAL Translate ADMIN_LOW and ADMIN_HIGH labels to the lowest and
highest labels defined in the label_encodings file.

Name

Synopsis

Interface Level

Description

bltos(3TSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 31 May 200660

VIEW_INTERNAL Translate ADMIN_LOW and ADMIN_HIGH labels to the admin low
name and admin high name strings specified in the
label_encodings file. If no strings are specified, the strings
“ADMIN_LOW” and “ADMIN_HIGH” are used.

NO_CLASSIFICATION Do not translate classification defined in label.

bsltos() translates a binary sensitivity label into a string. The applicable flags are
LONG_CLASSIFICATION or SHORT_CLASSIFICATION, LONG_WORDS or SHORT_WORDS,
VIEW_EXTERNAL or VIEW_INTERNAL, and NO_CLASSIFICATION. A flags value 0 is equivalent to
(SHORT_CLASSIFICATION | LONG_WORDS).

bcleartos() translates a binary clearance into a string. The applicable flags are
LONG_CLASSIFICATION or SHORT_CLASSIFICATION, LONG_WORDS or SHORT_WORDS,
VIEW_EXTERNAL or VIEW_INTERNAL, and NO_CLASSIFICATION. A flags value 0 is equivalent to
(SHORT_CLASSIFICATION | LONG_WORDS). The translation of a clearance might not be the same
as the translation of a sensitivity label. These functions use different label_encodings file
tables that might contain different words and constraints.

These routines return:

−1 If the label is not of the valid defined required type, if the label is not dominated by the
process sensitivity label and the process does not have PRIV_SYS_TRANS_LABEL in its set
of effective privileges, or the label_encodings file is inaccessible.

0 If memory cannot be allocated for the return string, or the pre-allocated return string
memory is insufficient to hold the string. The value of the pre-allocated string is set to
the NULL string (*string[0]=’\\00’;).

>0 If successful, the length of the character-coded label including the NULL terminator.

If the VIEW_EXTERNAL or VIEW_INTERNAL flags are not specified, translation of ADMIN_LOW and
ADMIN_HIGH labels is controlled by the label view process attribute flags. If no label view
process attribute flags are defined, their translation is controlled by the label view configured
in the label_encodings file. A value of External specifies that ADMIN_LOW and ADMIN_HIGH

labels are mapped to the lowest and highest labels defined in the label_encodings file. A
value of Internal specifies that the ADMIN_LOW and ADMIN_HIGH labels are translated to the
admin low and admin high name strings specified in the label_encodings file. If no such
names are specified, the strings “ADMIN_LOW” and “ADMIN_HIGH” are used.

/etc/security/tsol/label_encodings

The label encodings file contains the classification names, words, constraints, and values
for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

Return Values

Process Attributes

Files

Attributes

bltos(3TSOL)

Trusted Extensions Library 61

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

Stability Obsolete

MT-Level MT-Safe with exceptions

free(3C), malloc(3C), label_to_str(3TSOL), label_encodings(4), attributes(5)

These functions are obsolete and retained for ease of porting. They might be removed in a
future Solaris Trusted Extensions release.

If memory is allocated by these routines, the caller must free the memory with free() when
the memory is no longer in use.

See Also

Notes

bltos(3TSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 31 May 200662

btohex, bsltoh, bcleartoh, bsltoh_r, bcleartoh_r, h_alloc, h_free – convert binary label to
hexadecimal

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

char *bsltoh(const m_label_t *label);

char *bcleartoh(const m_label_t *clearance);

char *bsltoh_r(const m_label_t *label, char *hex);

char *bcleartoh_r(const m_label_t *clearance, char *hex);

char *h_alloc(const unsigned char type);

void h_free(char *hex);

The bsltoh(), bcleartoh(), bsltoh_r(), bcleartoh_r(), h_alloc(), and h_free()

functions are obsolete. Use the label_to_str(3TSOL) function instead.

These functions convert binary labels into hexadecimal strings that represent the internal
value.

bsltoh() and bsltoh_r() convert a binary sensitivity label into a string of the form:

[0xsensitivity_label_hexadecimal_value]

bcleartoh() and bcleartoh_r() convert a binary clearance into a string of the form:

0xclearance_hexadecimal_value

h_alloc() allocates memory for the hexadecimal value type for use by bsltoh_r() and
bcleartoh_r().

Valid values for type are:

SUN_SL_ID label is a binary sensitivity label.

SUN_CLR_ID label is a binary clearance.

h_free() frees memory allocated by h_alloc().

These functions return a pointer to a string that contains the result of the translation, or (char
*)0 if the parameter is not of the required type.

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Interface Level

Description

Return Values

Attributes

btohex(3TSOL)

Trusted Extensions Library 63

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

Stability Level Obsolete

MT-Level MT-Safe with exceptions

atohexlabel(1M), hextoalabel(1M),label_to_str(3TSOL), attributes(5), labels(5)

These functions are obsolete and retained for ease of porting. They might be removed in a
future Solaris Trusted Extensions release.

The functions bsltoh() and bcleartoh() share the same statically allocated string storage.
They are not MT-Safe. Subsequent calls to any of these functions will overwrite that string
with the newly translated string.

For multithreaded applications, the functions bsltoh_r() and bcleartoh_r() should be
used.

See Also

Notes

btohex(3TSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 16 Mar 200664

getdevicerange – get the label range of a device

cc [flag...] file... -lbsm -ltsol [library...]

#include <tsol/label.h>

blrange_t *getdevicerange(const char *device);

The getdevicerange() function returns the label range of a user-allocatable device.

If label range is not specified for device, getdevicerange() returns the default values of
ADMIN_LOW for the lower bound and ADMIN_HIGH for the upper bound of device.

From the command line, list_devices(1) can be used to see the label range of device.

The getdevicerange() function returns NULL on failure and sets errno. On successful
completion, it returns a pointer to a blrange_t structure which must be freed by the caller, as
follows:

blrange_t *range;

...

m_label_free(range->lower_bound);

m_label_free(range->upper_bound);

free(range);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcslr

Stability Evolving

MT-Level MT-Safe

The getdevicerange() function fails if:

EAGAIN There is not enough memory available to allocate the required bytes. The
application could try later.

ENOMEM The physical limits of the system are exceeded by size bytes of memory which
cannot be allocated.

ENOTSUP Invalid upper or lower bound for device.

list_devices(1), free(3C), m_label_free(3TSOL), attributes(5)

“Validating the Label Request Against the Printer’s Label Range” in Solaris Trusted Extensions
Developer’s Guide

Name

Synopsis

Description

Return Values

Attributes

Errors

See Also

getdevicerange(3TSOL)

Trusted Extensions Library 65

getpathbylabel – return the zone pathname

cc [flags...] file... -ltsol

#include <tsol/label.h>

char *getpathbylabel(const char *path, char *resolved_path, size_t bufsize,
const m_label_t *sl);

getpathbylabel() expands all symbolic links and resolves references to '/./', '/../', extra '/'
characters, and stores the zone pathname in the buffer named by resolved_path. The bufsize
argument specifies the size in bytes of this buffer. The resulting path will have no symbolic
links components, nor any '/./', '/. ./'. This function can only be called from the global zone.

The zone pathname is relative to the sensitivity label sl. To specify a sensitivity label for a zone
name which does not exist, the process must assert either the PRIV_FILE_UPGRADE_SL or
PRIV_FILE_DOWNGRADE_SL privilege depending on whether the specified sensitivity label
dominates or does not dominate the process sensitivity label.

getpathbylabel() returns a pointer to the resolved_path on success. On failure, it returns
NULL and sets errno to indicate the error.

EACCES Search permission is denied for a component of the path prefix of path.

EFAULT resolved_path extends outside the process's allocated address space or
beyond bufsize bytes.

ELOOP Too many symbolic links were encountered in translating path.

EINVAL path or resolved_path was NULL, current zone is not the global zone, or sl is
invalid.

EIO An I/O error occurred while reading from or writing to the file system.

ENOENT The named file does not exist.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX. A pathname
component is longer than NAME_MAX (see sysconf(3C)) while
_POSIX_NO_TRUNC is in effect (see pathconf(2)).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcslr

MT-Level MT-Safe

Interface Stability Stable

readlink(2), getzonerootbyid(3TSOL), attributes(5), labels(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

getpathbylabel(3TSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 26 Jun 200666

getpathbylabel() indirectly invokes the readlink(2) system call, and hence inherits the
possibility of hanging due to inaccessible file system resources.

Warnings

getpathbylabel(3TSOL)

Trusted Extensions Library 67

getplabel – get process label

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

int getplabel(m_label_t *label_p);

getplabel() obtains the sensitivity label of the calling process.

getplabel() returns:

0 On success.

−1 On failure, and sets errno to indicate the error. label_p is unchanged.

getplabel() fails (and label_p does not refer to a valid sensitivity label) if this condition is
true:

EFAULT label_p points to an invalid address.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

Interface Stability Stable

ucred_getlabel(3C), m_label_alloc(3TSOL), m_label_free(3TSOL), attributes(5)

“Obtaining a Process Label” in Solaris Trusted Extensions Developer’s Guide

This function returns different values for system processes than ucred_getlabel(3C) returns.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

getplabel(3TSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 16 Mar 200668

getuserrange – get the label range of a user

cc [flags...] file... -ltsol

#include <tsol/label.h>

m_range_t *getuserrange(const char *username);

The getuserrange() function returns the label range of username. The lower bound in the
range is used as the initial workspace label when a user logs into a multilevel desktop. The
upper bound, or clearance, is used as an upper limit to the available labels that a user can
assign to labeled workspaces.

The default value for a user's label range is specified in label_encodings(4). Overriding values
for individual users are specified in user_attr(4).

The getuserrange() function returns NULL if the memory allocation fails. Otherwise, the
function returns a structure which must be freed by the caller, as follows:

m_range_t *range;

...

m_label_free(range->lower_bound);

m_label_free(range->upper_bound);

free(range);

The getuserrange() function fails if:

ENOMEM The physical limits of the system are exceeded by size bytes of memory which
cannot be allocated.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcslr

MT-Level MT-Safe

Interface Stability See NOTES below

free(3C), m_label_free(3TSOL), label_encodings(4), user_attr(4), attributes(5)

The stability of this function is Stable for systems that implement the Defense Intelligence
Agency (DIA) MAC policy of label_encodings(4). Other policies might exist in a future release
of Trusted Extensions that might obsolete or supplement label_encodings(4).

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

getuserrange(3TSOL)

Trusted Extensions Library 69

getzonelabelbyid, getzonelabelbyname, getzoneidbylabel – map between zones and labels

cc [flags...] file... -ltsol

#include <tsol/label.h>

m_label_t *getzonelabelbyid(zoneid_t zoneid);

m_label_t *getzonelabelbyname(const char *zonename);

zoneid_t *getzoneidbylabel(const m_label_t *label);

The getzonelabelbyid() function returns the mandatory access control (MAC) label of
zoneid.

The getzonelabelbyname() function returns the MAC label of the zone whose name is
zonename.

The getzoneidbylabel() function returns the zone ID of the zone whose label is label.

All of these functions require that the specified zone's state is at least ZONE_IS_READY. The
zone of the calling process must dominate the specified zone's label, or the calling process
must be in the global zone.

On successful completion, the getzonelabelbyid() and getzonelabelbyname() functions
return a pointer to a sensitivity label that is allocated within these functions. To free the
storage, use m_label_free(3TSOL). If the zone does not exist, NULL is returned.

On successful completion, the getzoneidbylabel() function returns the zone ID with the
matching label. If there is no matching zone, the function returns -1.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcslr

MT-Level Safe

Interface Stability Stable

The getzonelabelbyid() and getzonelabelbyname() functions fail if:

ENOENT The specified zone does not exist.

The getzonelabelbyid() function fails if:

ENOENT No zone corresponds to the specified label.

Intro(2), getzonenamebyid(3C), getzoneidbyname(3C), m_label_free(3TSOL),
attributes(5), labels(5)

Name

Synopsis

Description

Return Values

Attributes

Errors

See Also

getzonelabelbyid(3TSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 16 Mar 200670

getzonerootbyid, getzonerootbylabel, getzonerootbyname – map between zone root
pathnames and labels

cc [flags...] file... -ltsol

#include <tsol/label.h>

char *getzonerootbyid(zoneid_t zoneid);

char *getzonerootbylabel(const m_label_t *label);

char *getzonerootbyname(const char *zonename);

The getzonerootbyid() function returns the root pathname of zoneid.

The getzonerootbylabel() function returns the root pathname of the zone whose label is
label.

The getzonerootbyname() function returns the root pathname of zonename.

All of these functions require that the specified zone's state is at least ZONE_IS_READY. The
zone of the calling process must dominate the specified zone's label, or the calling process
must be in the global zone. The returned pathname is relative to the root path of the caller's
zone.

On successful completion, the getzonerootbyid(), getzonerootbylabel(), and
getzonerootbyname() functions return a pointer to a pathname that is allocated within these
functions. To free the storage, use free(3C). On failure, these functions return NULL and set
errno to indicate the error.

EINVAL zoneid invalid, or zone not found or not ready.

EFAULT Invalid argument; pointer location is invalid.

ENOMEM Unable to allocate pathname.

ENOENT Zone does not exist.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcslr

MT-Level Safe

Interface Stability Stable

Intro(2), free(3C), getzonenamebyid(3C), attributes(5), labels(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

getzonerootbyid(3TSOL)

Trusted Extensions Library 71

hextob, htobsl, htobclear – convert hexadecimal string to binary label

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

int htobsl(const char *s, m_label_t *label);

int htobclear(const char *s, m_label_t *clearance);

The htobsl() and htobclear() functions are obsolete. Use the str_to_label(3TSOL) function
instead.

These functions convert hexadecimal string representations of internal label values into
binary labels.

htobsl() converts into a binary sensitivity label, a hexadecimal string of the form:

0xsensitivity_label_hexadecimal_value

htobclear() converts into a binary clearance, a hexadecimal string of the form:

0xclearance_hexadecimal_value

These functions return non-zero if the conversion was successful, otherwise zero is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

Stability Level Obsolete

MT-Level MT-Safe

str_to_label(3TSOL), attributes(5), labels(5)

These functions are obsolete and retained for ease of porting. They might be removed in a
future Solaris Trusted Extensions release.

Name

Synopsis

Interface Level

Description

Return Values

Attributes

See Also

Notes

hextob(3TSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 31 May 200672

labelbuilder, tsol_lbuild_create, tsol_lbuild_get, tsol_lbuild_set, tsol_lbuild_destroy – create a
Motif-based user interface for interactively building a valid label or clearance

cc [flag...] file... -ltsol -lDtTsol [library...]

#include <Dt/ModLabel.h>

ModLabelData *tsol_lbuild_create(Widget widget void (*event_handler)() ok_callback
lbuild_attributes extended_operation,, NULL);

void *tsol_lbuild_get(ModLabelData *data, lbuild_attributes extended_operation);

void tsol_lbuild_set(ModLabelData *data lbuild_attributes extended_operation,,
NULL);

void tsol_lbuild_destroy(ModLabelData *data);

The label builder user interface prompts the end user for information and generates a valid
sensitivity label or clearance from the user input based on specifications in the
label_encodings(4) file on the system where the application runs. The end user can build the
label or clearance by typing a text value or by interactively choosing options.

Application-specific functionality is implemented in the callback for the OK pushbutton. This
callback is passed to the tsol_lbuild_create() call where it is mapped to the OK pushbutton
widget.

When choosing options, the label builder shows the user only those classifications (and related
compartments and markings) dominated by the workspace sensitivity label unless the
executable has the PRIV_SYS_TRANS_LABEL privilege in its effective set.

If the end user does not have the authorization to upgrade or downgrade labels, or if the
user-built label is out of the user's accreditation range, the OK and Reset pushbuttons are
grayed. There are no privileges to override these restrictions.

tsol_lbuild_create() creates the graphical user interface and returns a pointer variable of
type ModLabeldata* that contains information on the user interface. This information is a
combination of values passed in the tsol_lbuild_create() input parameter list, default
values for information not provided, and information on the widgets used by the label builder
to create the user interface. All information except the widget information should be accessed
with the tsol_lbuild_get() and tsol_lbuild_set() routines.

The widget information is accessed directly by referencing the following fields of the
ModLabelData structure.

lbuild_dialog The label builder dialog box.

ok The OK pushbutton.

cancel The Cancel pushbutton.

reset The Reset pushbutton.

Name

Synopsis

Description

labelbuilder(3TSOL)

Trusted Extensions Library 73

help The Help pushbutton.

The tsol_lbuild_create() parameter list takes the following values:

widget The widget from which the dialog box is created. Any Motif widget can be
passed.

ok_callback A callback function that implements the behavior of the OK pushbutton on
the dialog box.

..., NULL A NULL terminated list of extended operations and value pairs that define the
characteristics and behavior of the label builder dialog box.

tsol_lbuild_destroy() destroys the ModLabelData structure returned by
tsol_lbuild_create().

tsol_lbuild_get() and tsol_lbuild_set() access the information stored in the
ModLabelData structure returned by tsol_lbuild_create().

The following extended operations can be passed to tsol_lbuild_create() to build the user
interface, to tsol_lbuild_get() to retrieve information on the user interface, and to
tsol_lbuild_set() to change the user interface information. All extended operations are
valid for tsol_lbuild_get(), but the *WORK* operations are not valid for tsol_lbuild_set()
or tsol_lbuild_create() because these values are set from input supplied by the end user.
These exceptions are noted in the descriptions.

LBUILD_MODE Create a user interface to build a sensitivity label or a clearance.
Value is LBUILD_MODE_SL by default.

LBUILD_MODE_SL Build a sensitivity label.

LBUILD_MODE_CLR Build a clearance.

LBUILD_VALUE_SL The starting sensitivity label. This value is ADMIN_LOW by default and
is used when the mode is LBUILD_MODE_SL.

LBUILD_VALUE_CLR The starting clearance. This value is ADMIN_LOW by default and is
used when the mode is LBUILD_MODE_CLR.

LBUILD_USERFIELD A character string prompt that displays at the top of the label
builder dialog box. Value is NULL by default.

LBUILD_SHOW Show or hide the label builder dialog box. Value is FALSE by default.

TRUE Show the label builder dialog box.

FALSE Hide the label builder dialog box.

LBUILD_TITLE A character string title that appears at the top of the label builder
dialog box. Value is NULL by default.

labelbuilder(3TSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 5 Aug 200574

LBUILD_WORK_SL Not valid for tsol_lbuild_set() or tsol_lbuild_create(). The
sensitivity label the end user is building. Value is updated to the end
user's input when the end user selects the Update pushbutton or
interactively chooses an option.

LBUILD_WORK_CLR Not valid for tsol_lbuild_set() or tsol_lbuild_create(). The
clearance the end user is building. Value is updated to the end user's
input when the end user selects the Update pushbutton or
interactively chooses an option.

LBUILD_X The X position in pixels of the top-left corner of the label builder
dialog box in relation to the top-left corner of the screen. By default
the label builder dialog box is positioned in the middle of the
screen.

LBUILD_Y The Y position in pixels of the top-left corner of the label builder
dialog box in relation to the top-left corner of the screen. By default
the label builder dialog box is positioned in the middle of the
screen.

LBUILD_LOWER_BOUND The lowest classification (and related compartments and markings)
available to the user as radio buttons for interactively building a
label or clearance. This value is the user's minimum label.

LBUILD_UPPER_BOUND The highest classification (and related compartments and
markings) available to the user as radio buttons for interactively
building a label or clearance. A supplied value should be within the
user's accreditation range. If no value is specified, the value is the
user's workspace sensitivity label, or if the executable has the
PRIV_SYS_TRANS_LABEL privilege, the value is the user's clearance.

LBUILD_CHECK_AR Check that the user-built label entered in the Update With field is
within the user's accreditation range. A value of 1 means check, and
a value of 0 means do not check. If checking is on and the label is
out of range, an error message is raised to the end user.

LBUILD_VIEW Use the internal or external label representation. Value is
LBUILD_VIEW_EXTERNAL by default.

LBUILD_VIEW_INTERNAL Use the internal names for the highest
and lowest labels in the system:
ADMIN_HIGH and ADMIN_LOW.

LBUILD_VIEW_EXTERNAL Promote an ADMIN_LOW label to the
next highest label, and demote an
ADMIN_HIGH label to the next lowest
label.

labelbuilder(3TSOL)

Trusted Extensions Library 75

The tsol_lbuild_get() returns −1 if it is unable to get the value.

The tsol_lbuild_create() routine returns a variable of type ModLabelData that contains
the information provided in the tsol_lbuild_create() input parameter list, default values
for information not provided, and information on the widgets used by the label builder to
create the user interface.

EXAMPLE 1 To Create a Label Builder

(ModLabelData *)lbldata = tsol_lbuild_create(widget0, callback_function,

LBUILD_MODE, LBUILD_MODE_SL,

LBUILD_TITLE, "Setting Sensitivity Label",

LBUILD_VIEW, LBUILD_VIEW_INTERNAL,

LBUILD_X, 200,

LBUILD_Y, 200,

LBUILD_USERFIELD, "Pathname:",

LBUILD_SHOW, FALSE,

NULL);

EXAMPLE 2 To Query the Mode and Display the Label Builder

These examples call the tsol_lbuild_get() routine to query the mode being used, and call
the tsol_lbuild_set() routine so the label builder dialog box displays.

mode = (int)tsol_lbuild_get(lbldata, LBUILD_MODE);

tsol_lbuild_set(lbldata, LBUILD_SHOW, TRUE, NULL);

EXAMPLE 3 To Destroy the ModLabelData Variable

This example destroys the ModLabelData variable returned in the call to
tsol_lbuild_create().

tsol_lbuild_destroy(lbldata);

/usr/dt/include/Dt/ModLabel.h

Header file for label builder functions

/etc/security/tsol/label_encodings

The label encodings file contains the classification names, words, constraints, and values
for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

Return Values

Examples

Files

Attributes

labelbuilder(3TSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 5 Aug 200576

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

label_encodings(4), attributes(5)

Chapter 7, “Label Builder APIs,” in Solaris Trusted Extensions Developer’s Guide

See Also

labelbuilder(3TSOL)

Trusted Extensions Library 77

labelclipping, Xbsltos, Xbcleartos – translate a binary label and clip to the specified width

cc [flag...] file... -ltsol -lDtTsol [library...]

#include <Dt/label_clipping.h>

XmString Xbsltos(Display *display, const m_label_t *senslabel, Dimension width,
const XmFontList fontlist, const int flags);

XmString Xbcleartos(Display *display, const m_label_t *clearance,
Dimension width, const XmFontList fontlist, const int flags);

The labelclipping functions, Xbsltos() and Xbcleartos(), are obsolete. Use the
label_to_str(3TSOL) function instead.

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective privileges to
translate labels or clearances that dominate the current process' sensitivity label.

display The structure controlling the connection to an X Window System display.

senslabel The sensitivity label to be translated.

clearance The clearance to be translated.

width The width of the translated label or clearance in pixels. If the specified width is
shorter than the full label, the label is clipped and the presence of clipped letters
is indicated by an arrow. In this example, letters have been clipped to the right of:
TS<-. See the sbltos(3TSOL) man page for more information on the clipped
indicator. If the specified width is equal to the display width (display), the label is
not truncated, but word-wrapped using a width of half the display width.

fontlist A list of fonts and character sets where each font is associated with a character
set.

flags The value of flags indicates which words in the label_encodings(4) file are used
for the translation. See the bltos(3TSOL) man page for a description of the flag
values: LONG_WORDS, SHORT_WORDS, LONG_CLASSIFICATION,
SHORT_CLASSIFICATION, ALL_ENTRIES, ACCESS_RELATED, VIEW_EXTERNAL,
VIEW_INTERNAL, NO_CLASSIFICATION. BRACKETED is an additional flag that can be
used with Xbsltos() only. It encloses the sensitivity label in square brackets as
follows: [C].

These interfaces return a compound string that represents the character-coded form of the
sensitivity label or clearance that is translated. The compound string uses the language and
fonts specified in fontlist and is clipped to width. These interfaces return NULL if the label or
clearance is not a valid, required type as defined in the label_encodings(4) file, or not
dominated by the process' sensitivity label and the PRIV_SYS_TRANS_LABEL privilege is not
asserted.

Name

Synopsis

Interface Level

Description

Return Values

labelclipping(3TSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 15 Jun 200678

/usr/dt/include/Dt/label_clipping.h

Header file for label clipping functions

/etc/security/tsol/label_encodings

The label encodings file contains the classification names, words, constraints, and values
for the defined labels of this system.

EXAMPLE 1 To Translate and Clip a Clearance

This example translates a clearance to text using the long words specified in the
label_encodings(4) file, a font list, and clips the translated clearance to a width of 72 pixels.

xmstr = Xbcleartos(XtDisplay(topLevel),

&clearance, 72, fontlist, LONG_WORDS

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bltos(3TSOL), label_to_str(3TSOL), label_encodings(4), attributes(5)

See XmStringDraw(3) and FontList(3) for information on the creation and structure of a font
list.

Files

Examples

Attributes

See Also

labelclipping(3TSOL)

Trusted Extensions Library 79

label_to_str – convert labels to human readable strings

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

int label_to_str(const m_label_t *label, char **string,
const m_label_str_t conversion_type, uint_t flags);

label_to_str() is a simple function to convert various mandatory label types to human
readable strings.

label is the mandatory label to convert. string points to memory that is allocated by
label_to_str() that contains the converted string. The caller is responsible for calling
free(3C) to free allocated memory.

The calling process must have mandatory read access to the resulting human readable string.
Or the calling process must have the sys_trans_label privilege.

The conversion_type parameter controls the type of label conversion. Not all types of
conversion are valid for all types of label:

M_LABEL Converts label to a human readable string based on its type.

M_INTERNAL Converts label to an internal text representation that is safe for
storing in a public object. Internal conversions can later be parsed
to their same value.

M_COLOR Converts label to a string that represents the color name that the
administrator has associated with the label.

PRINTER_TOP_BOTTOM Converts label to a human readable string that is appropriate for
use as the top and bottom label of banner and trailer pages in the
Defense Intelligence Agency (DIA) encodings printed output
schema.

PRINTER_LABEL Converts label to a human readable string that is appropriate for
use as the banner page downgrade warning in the DIA encodings
printed output schema.

PRINTER_CAVEATS Converts label to a human readable string that is appropriate for
use as the banner page caveats section in the DIA encodings printed
output schema.

PRINTER_CHANNELS Converts label to a human readable string that is appropriate for
use as the banner page handling channels in the DIA encodings
printed output schema.

The flags parameter provides a hint to the label conversion:

DEF_NAMES The default names are preferred.

Name

Synopsis

Description

label_to_str(3TSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 28 Feb 200780

SHORT_NAMES Short names are preferred where defined.

LONG_NAMES Long names are preferred.

Upon successful completion, the label_to_str() function returns zero (0). Otherwise, -1 is
returned, errno is set to indicate the error and the string pointer is set to NULL.

The label_to_str() function fails if:

EINVAL Invalid parameter.

ENOTSUP The system does not support label translations.

ENOMEM The physical limits of the system are exceeded by size bytes of memory which
cannot be allocated.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

Interface Stability See NOTES and WARNINGS below

free(3C), str_to_label(3TSOL), label_encodings(4), attributes(5), labels(5)

“Using the label_to_str Function” in Solaris Trusted Extensions Developer’s Guide

label_to_str() is Stable. Conversion types that are relative to the DIA encodings schema are
Standard. Standard is specified in label_encodings(4). The returned string is Undefined and is
dependent on the specific label_encodings file. The conversion type INTERNAL is Unstable,
but is always accepted as input to str_to_label(3TSOL).

A number of these conversions rely on the DIA label encodings schema. They might not be
valid for other label schemata.

Return Values

Errors

Attributes

See Also

Notes

Warnings

label_to_str(3TSOL)

Trusted Extensions Library 81

m_label, m_label_alloc, m_label_dup, m_label_free – m_label functions

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

m_label_t *m_label_alloc(const m_label_type_t label_type);

int m_label_dup(m_label_t **dst, const m_label_t *src);

void m_label_free(m_label_t *label);

The m_label_alloc() function allocates resources for a new label. label_type defines the type
for a newly allocated label. The label type can be:

MAC_LABEL A Mandatory Access Control (MAC) label.

USER_CLEAR A user clearance.

The m_label_dup() function allocates resources for a new dst label. The function returns a
pointer to the allocated label, which is an exact copy of the src label. The caller is responsible
for freeing the allocated resources by calling m_label_free().

The m_label_free() function frees resources that are associated with the previously allocated
label.

Upon successful completion, the m_label_alloc() function returns a pointer to the newly
allocated label. Otherwise, m_label_alloc() returns NULL and errno is set to indicate the
error.

Upon successful completion, the m_label_dup() function returns zero (0). Otherwise, -1 is
returned and errno is set to indicate the error.

EINVAL Invalid parameter.

ENOMEM The physical limits of the system are exceeded by size bytes of memory which
cannot be allocated.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

Interface Stability Stable

label_to_str(3TSOL), str_to_label(3TSOL), label_encodings(4), attributes(5), labels(5)

“Determining Whether the Printing Service Is Running in a Labeled Environment” in Solaris
Trusted Extensions Developer’s Guide

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

m_label(3TSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 18 Jul 200682

sbltos, sbsltos, sbcleartos – translate binary labels to canonical character-coded labels

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

char *sbsltos(const m_label_t *label, const int len);

char *sbcleartos(const m_label_t *clearance, const int len);

The sbsltos() and sbcleartos() functions are obsolete. Use the label_to_str(3TSOL)
function instead.

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective privileges to
perform label translation on labels that dominate the current process's sensitivity label.

These functions translate binary labels into canonical strings that are clipped to the number of
printable characters specified in len. Clipping is required if the number of characters of the
translated string is greater than len. Clipping is done by truncating the label on the right to two
characters less than the specified number of characters. A clipped indicator, “<−”, is appended
to sensitivity labels and clearances. The character-coded label begins with a classification
name separated with a single space character from the list of words making up the remainder
of the label. The binary labels must be of the proper defined type and dominated by the
process's sensitivity label. A len of 0 (zero) returns the entire string with no clipping.

sbsltos() translates a binary sensitivity label into a clipped string using the long form of the
words and the short form of the classification name. If len is less than the minimum number of
characters (three), the translation fails.

sbcleartos() translates a binary clearance into a clipped string using the long form of the
words and the short form of the classification name. If len is less than the minimum number of
characters (three), the translation fails. The translation of a clearance might not be the same as
the translation of a sensitivity label. These functions use different tables of the
label_encodings file which might contain different words and constraints.

These routines return a pointer to a statically allocated string that contains the result of the
translation, or (char *)0 if the translation fails for any reason.

Assume that a sensitivity label is:

UN TOP/MIDDLE/LOWER DRAWER

When clipped to ten characters it is:

UN TOP/M<−

Assume that a clearance is:

UN TOP/MIDDLE/LOWER DRAWER

Name

Synopsis

Interface Level

Description

Return Values

Examples

sbsltos()

sbcleartos()

sbltos(3TSOL)

Trusted Extensions Library 83

When clipped to ten characters it is:

UN TOP/M<−

If the VIEW_EXTERNAL or VIEW_INTERNAL flags are not specified, translation of ADMIN_LOW and
ADMIN_HIGH labels is controlled by the label view process attribute flags. If no label view
process attribute flags are defined, their translation is controlled by the label view configured
in the label_encodings file. A value of External specifies that ADMIN_LOW and ADMIN_HIGH

labels are mapped to the lowest and highest labels defined in the label_encodings file. A
value of Internal specifies that the ADMIN_LOW and ADMIN_HIGH labels are translated to the
admin low name and admin high name strings specified in the label_encodings file. If no
such names are specified, the strings “ADMIN_LOW” and “ADMIN_HIGH” are used.

/etc/security/tsol/label_encodings

The label encodings file contains the classification names, words, constraints, and values
for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

Stability Obsolete

MT-Level Unsafe

label_to_str(3TSOL), attributes(5), labels(5)

These functions are obsolete and retained for ease of porting. They might be removed in a
future Solaris Trusted Extensions release.

All these functions share the same statically allocated string storage. They are not MT-Safe.
Subsequent calls to any of these functions will overwrite that string with the newly translated
string.

Process Attributes

Files

Attributes

See Also

Notes

Warnings

sbltos(3TSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 31 May 200684

setflabel – move file to zone with corresponding sensitivity label

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

int setflabel(const char *path, const m_label_t *label_p);

The file that is named by path is relabeled by moving it to a new pathname relative to the root
directory of the zone corresponding to label_p. If the source and destination file systems are
loopback mounted from the same underlying file system, the file is renamed. Otherwise, the
file is copied and removed from the source directory.

The following policy checks are enforced by this function:
■ If the sensitivity label of label_p equals the existing sensitivity label, then the file is not

moved.
■ If the corresponding directory does not exist in the destination zone, or if the directory

exists, but has a different label than label_p, the file is not moved. Also, if the file already
exists in the destination directory, the file is not moved.

■ If the sensitivity label of the existing file is not equal to the calling process label and the
caller is not in the global zone, then the file is not moved. If the caller is in the global zone,
the existing file label must be in a labeled zone (not ADMIN_LOW or ADMIN_HIGH).

■ If the calling process does not have write access to both the source and destination
directories, then the calling process must have PRIV_FILE_DAC_WRITE in its set of effective
privileges.

■ If the sensitivity label of label_p provides read only access to the existing sensitivity label
(an upgrade), then the user must have the solaris.label.file.upgrade authorization.
In addition, if the current zone is a labeled zone, then it must have been assigned the
privilege PRIV_FILE_UPGRADE_SL when the zone was configured.

■ If the sensitivity label of label_p does not provide access to the existing sensitivity label (a
downgrade), then the calling user must have the solaris.label.file.downgrade
authorization. In addition, if the current zone is a labeled zone, then it must have been
assigned the privilege PRIV_FILE_DOWNGRADE_SL when the zone was configured.

■ If the calling process is not in the global zone, and the user does not have the
solaris.label.range authorization, then label_p must be within the user's label range
and within the system accreditation range.

■ If the existing file is in use (not tranquil) it is not moved. This tranquility check does not
cover race conditions nor remote file access.

Additional policy constraints can be implemented by customizing the shell script
/etc/security/tsol/relabel. See the comments in this file.

setflabel() returns:

0 On success.

Name

Synopsis

Description

Return Values

setflabel(3TSOL)

Trusted Extensions Library 85

−1 On failure, and sets errno to indicate the error.

setflabel() fails and the file is unchanged if any of these conditions prevails:

EACCES Search permission is denied for a component of the path prefix of path.

The calling process does not have mandatory write access to the final
component of path because the sensitivity label of the final component of
path does not dominate the sensitivity label of the calling process and the
calling process does not have PRIV_FILE_MAC_WRITE in its set of effective
privileges.

EBUSY There is an open file descriptor reference to the final component of path.

ECONNREFUSED A connection to the label daemon could not be established.

EEXIST A file with the same name exists in the destination directory.

EINVAL Improper parameters were received by the label daemon.

EISDIR The existing file is a directory.

ELOOP Too many symbolic links were encountered in translating path.

EMLINK The existing file is hardlinked to another file.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX.

ENOENT The file referred to by path does not exist.

EROFS The file system is read-only or its label is ADMIN_LOW or ADMIN_HIGH.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcslr

MT-Level MT-Safe

Interface Stability Stable

attributes(5)

“Setting a File Sensitivity Label” in Solaris Trusted Extensions Developer’s Guide

Errors

Attributes

See Also

setflabel(3TSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 26 Jun 200686

stobl, stobsl, stobclear – translate character-coded labels to binary labels

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

int stobsl(const char *string, m_label_t *label, const int flags, int *error);

int stobclear(const char *string, m_label_t *clearance, const int flags,
int *error);

The stobsl() and stobclear() functions are obsolete. Use the str_to_label(3TSOL) function
instead.

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective privileges to
perform label translation on character-coded labels that dominate the process's sensitivity
label.

The stobl functions translate character-coded labels into binary labels. They also modify an
existing binary label by incrementing or decrementing it to produce a new binary label relative
to its existing value.

The generic form of an input character-coded label string is:

[+] classification name] [[+ | −] word ...

Leading and trailing white space is ignored. Fields are separated by white space, a ‘/' (slash), or
a ‘,' (comma). Case is irrelevant. If string starts with + or −, string is interpreted a modification
to an existing label. If string starts with a classification name followed by a + or −, the new
classification is used and the rest of the old label is retained and modified as specified by string.
+ modifies an existing label by adding words. − modifies an existing label by removing words.
To the maximum extent possible, errors in string are corrected in the resulting binary label
label.

The stobl functions also translate hexadecimal label representations into binary labels (see
hextob(3TSOL)) when the string starts with 0x and either NEW_LABEL or NO_CORRECTION is
specified in flags.

flags can be the following:

NEW_LABEL label contents is not used, is formatted as a label of the relevant type, and
is assumed to be ADMIN_LOW for modification changes. If NEW_LABEL is not
present, label is validated as a defined label of the correct type dominated
by the process's sensitivity label.

NO_CORRECTION No corrections are made if there are errors in the character-coded label
string. string must be complete and contain all the label components that
are required by the label_encodings file. The NO_CORRECTION flag
implies the NEW_LABEL flag.

Name

Synopsis

Interface Level

Description

stobl(3TSOL)

Trusted Extensions Library 87

0 (zero) The default action is taken.

error is a return parameter that is set only if the function is unsuccessful.

stobsl() translates the character-coded sensitivity label string into a binary sensitivity label
and places the result in the return parameter label.

flags can be either NEW_LABEL, NO_CORRECTION, or 0 (zero). Unless NO_CORRECTION is specified,
this translation forces the label to dominate the minimum classification, and initial
compartments set that is specified in the label_encodings file and corrects the label to
include other label components required by the label_encodings file, but not present in
string.

stobclear() translates the character-coded clearance string into a binary clearance and
places the result in the return parameter clearance.

flags can be either NEW_LABEL, NO_CORRECTION, or 0 (zero). Unless NO_CORRECTION is specified,
this translation forces the label to dominate the minimum classification, and initial
compartments set that is specified in the label_encodings file and corrects the label to
include other label components that are required by the label_encodings file, but not present
in string. The translation of a clearance might not be the same as the translation of a sensitivity
label. These functions use different tables of the label_encodings file that might contain
different words and constraints.

These functions return:

1 If the translation was successful and a valid binary label was returned.

0 If an error occurred. error indicates the type of error.

When these functions return zero, error contains one of the following values:

−1 Unable to access the label_encodings file.

0 The label label is not valid for this translation and the NEW_LABEL or NO_CORRECTION
flag was not specified, or the label label is not dominated by the process's sensitivity
label and the process does not have PRIV_SYS_TRANS_LABEL in its set of effective
privileges.

>0 The character-coded label string is in error. error is a one-based index into string
indicating where the translation error occurred.

/etc/security/tsol/label_encodings

The label encodings file contains the classification names, words, constraints, and values
for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

Return Values

Errors

Files

Attributes

stobl(3TSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 16 March 200688

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

Stability Level Obsolete

MT-Level MT-Safe

blcompare(3TSOL), hextob(3TSOL), str_to_label(3TSOL), attributes(5)

These functions are obsolete and are retained for ease of porting. They might be removed in a
future release of Solaris Trusted Extensions.

In addition to the ADMIN_LOW name and ADMIN_HIGH name strings defined in the
label_encodings file, the strings “ADMIN_LOW” and “ADMIN_HIGH” are always accepted as
character-coded labels to be translated to the appropriate ADMIN_LOW and ADMIN_HIGH label,
respectively.

Modifying an existing ADMIN_LOW label acts as the specification of a NEW_LABEL and forces the
label to start at the minimum label that is specified in the label_encodings file.

Modifying an existing ADMIN_HIGH label is treated as an attempt to change a label that
represents the highest defined classification and all the defined compartments that are
specified in the label_encodings file.

The NO_CORRECTION flag is used when the character-coded label must be complete and
accurate so that translation to and from the binary form results in an equivalent
character-coded label.

See Also

Notes

stobl(3TSOL)

Trusted Extensions Library 89

str_to_label – parse human readable strings to label

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

int str_to_label(const char *string, m_label_t **label,
const m_label_type_t label_type, uint_t flags, int *error);

str_to_label() is a simple function to parse human readable strings into labels of the
requested type.

string is the string to parse. If string is the result of a label_to_str() conversion of type
M_INTERNAL, flags are ignored, and any previously parsed label is replaced.
If *label is NULL, str_to_label() allocates resources for label and initializes the label to the
label_type that was requested before parsing string.
If *label is not NULL, the label is a pointer to a mandatory label that is the result of a
previously parsed label and label_type is ignored. The type that is used for parsing is
derived from label for any type-sensitive operations.
If flags is L_MODIFY_EXISTING, the parsed string can be used to modify this label.
If flags is L_NO_CORRECTION, the previously parsed label is replaced and the parsing
algorithm does not attempt to infer missing elements from string to compose a valid label.
If flags is L_DEFAULT, the previously parsed label is replaced and the parsing algorithm
makes a best effort to imply a valid label from the elements of string.

The caller is responsible for freeing the allocated resources by calling the m_label_free()
function. label_type defines the type for a newly allocated label. The label type can be:

MAC_LABEL The string should be translated as a Mandatory Access Control (MAC) label.

USER_CLEAR The string should be translated as a label that represents the least upper
bound of the labels that the user is allowed to access.

If error is NULL, do not return additional error information for EINVAL. The calling process
must have mandatory read access to label and human readable string. Or the calling process
must have the sys_trans_label privilege.

The manifest constants ADMIN_HIGH and ADMIN_LOW are the human readable strings that
correspond to the Trusted Extensions policy admin_high and admin_low label values. See
labels(5).

Upon successful completion, the str_to_label() function returns zero (0). Otherwise, -1 is
returned, errno is set to indicate the error, and error provides additional information for
EINVAL. Otherwise, error is a zero-based index to the string parse failure point.

The str_to_label() function fails if:

Name

Synopsis

Description

Return Values

Errors

str_to_label(3TSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 31 May 200690

EINVAL Invalid parameter. M_BAD_STRING indicates that string could not be parsed.
M_BAD_LABEL indicates that the label passed in was in error.

ENOTSUP The system does not support label translations.

ENOMEM The physical limits of the system are exceeded by size bytes of memory which
cannot be allocated.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability See NOTES and WARNINGS below

label_to_str(3TSOL), m_label(3TSOL), label_encodings(4), attributes(5), labels(5)

“Validating the Label Request Against the Printer’s Label Range” in Solaris Trusted Extensions
Developer’s Guide

str_to_label() is Stable. Parsing types that are relative to Defense Intelligence Agency (DIA)
encodings schema are Standard. Standard is specified in label_encodings(4).

A number of the parsing rules rely on the DIA label encodings schema. The rules might not be
valid for other label schemata.

Attributes

See Also

Notes

Warnings

str_to_label(3TSOL)

Trusted Extensions Library 91

tsol_getrhtype – get trusted network host type

cc [flag...] file... -ltsnet [library...]

#include <libtsnet.h>

tsol_host_type_t tsol_getrhtype(char *hostname);

The tsol_getrhtype() function queries the kernel-level network information to determine
the host type that is associated with the specified hostname. The hostname can be a regular
hostname, an IP address, or a network wildcard address.

The returned value will be one of the enumerated types that is defined in the
tsol_host_type_t typedef. Currently these types are UNLABELED and SUN_CIPSO.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl

MT-Level MT-Safe

/etc/security/tsol/tnrhdb Trusted network remote-host database

tnrhdb(4), attributes(5)

“Obtaining the Remote Host Type” in Solaris Trusted Extensions Developer’s Guide

Name

Synopsis

Description

Return Values

Attributes

Files

See Also

tsol_getrhtype(3TSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 10 May 200792

X Library Extensions

R E F E R E N C E

93

XTSOLgetClientAttributes – get all label attributes associated with a client

#include <X11/extensions/Xtsol.h>

Status XTSOLgetClientAttributes(display, windowid, clientattr);

Display *display;
XID windowid;
XTsolClientAttributes *clientattrp;

XTSOLgetClientAttributes() is used to get all label attributes that are associated with a
client in a single call. The attributes include process ID, user ID, IP address, audit flags and
session ID.

display Specifies a pointer to the Display structure. Is returned from XOpenDisplay().

windowid Specifies window ID of X client.

clientattrp Client must provide a pointer to an XTsolClientAttributes structure.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwts

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadValue Not a valid client

XTSOLgetPropAttributes(3XTSOL), XTSOLgetResAttributes(3XTSOL)

Name

Synopsis

Description

Parameters

Attributes

Return Values

Errors

See Also

XTSOLgetClientAttributes(3XTSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 10 Aug 200694

XTSOLgetPropAttributes – get the label attributes associated with a property hanging on a
window

#include <X11/extensions/Xtsol.h>

Status XTSOLgetPropAttributes(display, window, property, propattrp);

Display *display;
Window window;

Atom property;
XTSOLPropAttributes *propattrp;

The client requires the PRIV_WIN_DAC_READ and PRIV_WIN_MAC_READ privileges.
XTSOLgetPropAttributes() is used to get the label attributes that are associated with a
property hanging out of a window in a single call. The attributes include UID and sensitivity
label.

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

window Specifies the ID of a window system object.

property Specifies the property atom.

propattrp Client must provide a pointer to XTSOLPropAttributes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwts

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadWindow Not a valid window

BadAtom Not a valid atom

XTSOLgetClientAttributes(3XTSOL), XTSOLgetResAttributes(3XTSOL)

“Setting Window Polyinstantiation Information” in Solaris Trusted Extensions Developer’s
Guide

Name

Synopsis

Description

Parameters

Attributes

Return Values

Errors

See Also

XTSOLgetPropAttributes(3XTSOL)

X Library Extensions 95

XTSOLgetPropLabel – get the label associated with a property hanging on a window

#include <X11/extensions/Xtsol.h>

Status XTSOLgetPropLabel(display, window, property, sl);

Display *display;
Window window;

Atom property;
m_label_t *sl;

Client requires the PRIV_WIN_DAC_READ and PRIV_WIN_MAC_READ privileges.
XTSOLgetPropLabel() is used to get the sensitivity label that is associated with a property
hanging on a window.

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

window Specifies the ID of the window whose property's label you want to get.

property Specifies the property atom.

sl Returns a sensitivity label that is the current label of the specified property.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwts

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadWindow Not a valid window

BadAtom Not a valid atom

XTSOLgetPropAttributes(3XTSOL), XTSOLsetPropLabel(3XTSOL)

“Setting Window Polyinstantiation Information” in Solaris Trusted Extensions Developer’s
Guide

Name

Synopsis

Description

Parameters

Attributes

Return Values

Errors

See Also

XTSOLgetPropLabel(3XTSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 26 Jun 200696

XTSOLgetPropUID – get the UID associated with a property hanging on a window

#include <X11/extensions/Xtsol.h>

Status XTSOLgetPropUID (display, window, property, uidp);
Display *display;
Window window;

Atom property;
uid_t *uidp;

The client requires the PRIV_WIN_DAC_READ and PRIV_WIN_MAC_READ privileges.
XTSOLgetPropUID() gets the ownership of a window's property. This allows a client to get the
ownership of an object it did not create.

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

window Specifies the ID of the window whose property's UID you want to get.

property Specifies the property atom.

uidp Returns a UID which is the current UID of the specified property. Client needs to
provide a uid_t type storage and passes the address of this storage as the function
argument. Client must provide a pointer to uid_t.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwts

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadWindow Not a valid window

BadAtom Not a valid atom

XTSOLgetPropAttributes(3XTSOL), XTSOLsetPropUID(3XTSOL)

“Setting Window Polyinstantiation Information” in Solaris Trusted Extensions Developer’s
Guide

Name

Synopsis

Description

Parameters

Attributes

Return Values

Errors

See Also

XTSOLgetPropUID(3XTSOL)

X Library Extensions 97

XTSOLgetResAttributes – get all label attributes associated with a window or a pixmap

#include <X11/extensions/Xtsol.h>

Status XTSOLgetResAttributes(display, object, type, winattrp);

Display *display;
XID object;
ResourceType type;
XTSOLResAttributes *winattrp;

The client requires the PRIV_WIN_DAC_READ and PRIV_WIN_MAC_READ privileges.
XTSOLgetResAttributes() is used to get all label attributes that are associated with a window
or a pixmap in a single call. The attributes include UID, sensitivity label, and workstation
owner.

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

object Specifies the ID of a window system object. Possible window system objects are
windows and pixmaps.

type Specifies what type of resource is being accessed. Possible values are IsWindow
and IsPixmap.

winattrp Client must provide a pointer to XTSOLResAttributes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwts

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadWindow Not a valid window

BadPixmap Not a valid pixmap

BadValue Not a valid type

XTSOLgetClientAttributes(3XTSOL), XTSOLgetPropAttributes(3XTSOL)

“Obtaining Window Attributes” in Solaris Trusted Extensions Developer’s Guide

Name

Synopsis

Description

Parameters

Attributes

Return Values

Errors

See Also

XTSOLgetResAttributes(3XTSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 26 Jun 200698

XTSOLgetResLabel – get the label associated with a window, a pixmap, or a colormap

#include <X11/extensions/Xtsol.h>

Status XTSOLgetResLabel(display, object, type, sl);

Display *display;
XID object;
ResourceType type;
m_label_t *sl;

The client requires the PRIV_WIN_DAC_READ and PRIV_WIN_MAC_READ privileges.
XTSOLgetResLabel() is used to get the label that is associated with a window or a pixmap or a
colormap.

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

object Specifies the ID of a window system object whose label you want to get. Possible
window system objects are windows, pixmaps, and colormaps.

type Specifies what type of resource is being accessed. Possible values are IsWindow,
IsPixmap or IsColormap.

sl Returns a sensitivity label which is the current label of the specified object.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwts

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadPixmap Not a valid pixmap

BadValue Not a valid type

XTSOLgetClientAttributes(3XTSOL), XTSOLsetResLabel(3XTSOL)

“Obtaining a Window Label” in Solaris Trusted Extensions Developer’s Guide

Name

Synopsis

Description

Parameters

Attributes

Return Values

Errors

See Also

XTSOLgetResLabel(3XTSOL)

X Library Extensions 99

XTSOLgetResUID – get the UID associated with a window, a pixmap

#include <X11/extensions/Xtsol.h>

Status XTSOLgetResUID(display, object, type, uidp);

Display *display;
XID object;
ResourceType type;
uid_t *uidp;

The client requires the PRIV_WIN_DAC_READ and PRIV_WIN_MAC_READ privileges.

XTSOLgetResUID() gets the ownership of a window system object. This allows a client to get
the ownership of an object that the client did not create.

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

object Specifies the ID of a window system object whose UID you want to get. Possible
window system objects are windows or pixmaps.

type Specifies what type of resource is being accessed. Possible values are IsWindow and
IsPixmap.

uidp Returns a UID which is the current UID of the specified object. Client must
provide a pointer to uid_t.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwts

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadWindow Not a valid window

BadPixmap Not a valid pixmap

BadValue Not a valid type

XTSOLgetClientAttributes(3XTSOL), XTSOLgetResAttributes(3XTSOL),
XTSOLgetResLabel(3XTSOL)

“Obtaining the Window User ID” in Solaris Trusted Extensions Developer’s Guide

Name

Synopsis

Description

Parameters

Attributes

Return Values

Errors

See Also

XTSOLgetResUID(3XTSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 26 Jun 2006100

XTSOLgetSSHeight – get the height of screen stripe

#include <X11/extensions/Xtsol.h>

Status XTSOLgetSSHeight(display, screen_num, newheight);

Display *display;
int screen_num;

int *newheight;

XTSOLgetSSHeight() gets the height of trusted screen stripe at the bottom of the screen.
Currently the screen stripe is only present on the default screen. Client must have the Trusted
Path process attribute.

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

screen_num Specifies the screen number.

newheight Specifies the storage area where the height of the stripe in pixels is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwts

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadValue Not a valid screen_num or newheight

XTSOLsetSSHeight(3XTSOL)

“Accessing and Setting the Screen Stripe Height” in Solaris Trusted Extensions Developer’s
Guide

Name

Synopsis

Description

Parameters

Attributes

Return Values

Errors

See Also

XTSOLgetSSHeight(3XTSOL)

X Library Extensions 101

XTSOLgetWorkstationOwner – get the ownership of the workstation

#include <X11/extensions/Xtsol.h>

Status XTSOLgetWorkstationOwner(display, uidp);

Display *display;
uid_t *uidp;

XTSOLgetWorkstationOwner() is used to get the ownership of the workstation.

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

uidp Returns a UID which is the current UID of the specified Display workstation
server. Client must provide a pointer to uid_t.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwts

MT-Level MT-Unsafe

None.

BadAccess Lack of privilege

XTSOLsetWorkstationOwner(3XTSOL)

“Obtaining the X Window Server Workstation Owner ID” in Solaris Trusted Extensions
Developer’s Guide

Name

Synopsis

Description

Parameters

Attributes

Return Values

Errors

See Also

XTSOLgetWorkstationOwner(3XTSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 26 Jun 2006102

XTSOLIsWindowTrusted – test if a window is created by a trusted client

#include <X11/extensions/Xtsol.h>

Bool XTSOLIsWindowTrusted(display, window);

Display *display;
Window window;

XTSOLIsWindowTrusted() tests if a window is created by a trusted client. The window created
by a trusted client has a special bit turned on. The client does not require any privilege to
perform this operation.

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

window Specifies the ID of the window to be tested.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwts

MT-Level MT-Unsafe

True If the window is created by a trusted client.

BadWindow Not a valid window.

Name

Synopsis

Description

Parameters

Attributes

Return Values

Errors

XTSOLIsWindowTrusted(3XTSOL)

X Library Extensions 103

XTSOLMakeTPWindow – make this window a Trusted Path window

#include <X11/extensions/Xtsol.h>

Status XTSOLMakeTPWindow(display, w);

Display *display;
Window w;

XTSOLMakeTPWindow() is used to make a window a trusted path window. Trusted Path
windows always remain on top of other windows. The client must have the Trusted Path
process attribute set.

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

w Specifies the ID of a window.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwts

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadWindow Not a valid window

BadValue Not a valid type

Name

Synopsis

Description

Parameters

Attributes

Return Values

Errors

XTSOLMakeTPWindow(3XTSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 26 Jun 2006104

XTSOLsetPolyInstInfo – set polyinstantiation information

#include <X11/extensions/Xtsol.h>

Status XTSOLsetPolyInstInfo(display, sl, uidp, enabled);

Display *display;
m_label_t sl;
uid_t *uidp;
int enabled;

XTSOLsetPolyInstInfo() sets the polyinstantiated information to get property resources. By
default, when a client requests property data for a polyinstantiated property, the data returned
corresponds to the SL and UID of the requesting client. To get the property data associated
with a property with specific sl and uid a client can use this call to set the SL and UID with
enabled flag to TRUE. The client should also restore the enabled flag to FALSE after retrieving
the property value. Client must have the PRIV_WIN_MAC_WRITE and PRIV_WIN_DAC_WRITE

privileges.

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

sl Specifies the sensitivity label.

uidp Specifies the pointer to UID.

enabled Specifies whether client can set the property information retrieved.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwts

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadValue Not a valid display or sl.

“Setting Window Polyinstantiation Information” in Solaris Trusted Extensions Developer’s
Guide

Name

Synopsis

Description

Parameters

Attributes

Return Values

Errors

See Also

XTSOLsetPolyInstInfo(3XTSOL)

X Library Extensions 105

XTSOLsetPropLabel – set the label associated with a property hanging on a window

#include <X11/extensions/Xtsol.h>

Status XTSOLsetPropLabel(*display, window, property, *sl);

Display *display;
Window window;

Atom property;
m_label_t *sl;

XTSOLsetPropLabel() is used to change the sensitivity label that is associated with a property
hanging on a window. The client must have the PRIV_WIN_DAC_WRITE, PRIV_WIN_MAC_WRITE,
and PRIV_WIN_UPGRADE_SL privileges.

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

window Specifies the ID of the window whose property's label you want to change.

property Specifies the property atom.

sl Specifies a pointer to a sensitivity label.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwts

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadWindow Not a valid window

BadAtom Not a valid atom

BadValue Not a valid sl

XTSOLgetPropAttributes(3XTSOL), XTSOLgetPropLabel(3XTSOL)

Name

Synopsis

Description

Parameters

Attributes

Return Values

Errors

See Also

XTSOLsetPropLabel(3XTSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 26 Jun 2006106

XTSOLsetPropUID – set the UID associated with a property hanging on a window

#include <X11/extensions/Xtsol.h>

Status XTSOLsetPropUID(display, window, property, uidp);

Display *display;
Window window;

Atom property;
uid_t *uidp;

XTSOLsetPropUID() changes the ownership of a window's property. This allows another
client to modify a property of a window that it did not create. The client must have the
PRIV_WIN_DAC_WRITE and PRIV_WIN_MAC_WRITE privileges.

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

window Specifies the ID of the window whose property's UID you want to change.

property Specifies the property atom.

uidp Specifies a pointer to a uid_t that contains a UID.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwts

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadWindow Not a valid window

BadAtom Not a valid atom

XTSOLgetPropAttributes(3XTSOL), XTSOLgetPropUID(3XTSOL)

Name

Synopsis

Description

Parameters

Attributes

Return Values

Errors

See Also

XTSOLsetPropUID(3XTSOL)

X Library Extensions 107

XTSOLsetResLabel – set the label associated with a window or a pixmap

#include <X11/extensions/Xtsol.h>

Status XTSOLsetResLabel(display, object, type, sl);

Display *display;
XID object;
ResourceType type;
m_label_t *sl;

The client must have the PRIV_WIN_DAC_WRITE, PRIV_WIN_MAC_WRITE,
PRIV_WIN_UPGRADE_SL, and PRIV_WIN_DOWNGRADE_SL privileges.

XTSOLsetResLabel() is used to change the label that is associated with a window or a pixmap.

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

object Specifies the ID of a window system object whose label you want to change.
Possible window system objects are windows and pixmaps.

type Specifies what type of resource is being accessed. Possible values are IsWindow and
IsPixmap.

sl Specifies a pointer to a sensitivity label.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwts

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadPixmap Not a valid pixmap

BadValue Not a valid type or sl

XTSOLgetResAttributes(3XTSOL), XTSOLgetResLabel(3XTSOL)

“Setting a Window Label” in Solaris Trusted Extensions Developer’s Guide

Name

Synopsis

Description

Parameters

Attributes

Return Values

Errors

See Also

XTSOLsetResLabel(3XTSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 26 Jun 2006108

XTSOLsetResUID – set the UID associated with a window, a pixmap, or a colormap

#include <X11/extensions/Xtsol.h>

Status XTSOLsetResUID(display, object, type, uidp);

Display *display;
XID object;
ResourceType type;
uid_t *uidp;

The client must have the PRIV_WIN_DAC_WRITE and PRIV_WIN_MAC_WRITE privileges.
XTSOLsetResUID() changes the ownership of a window system object. This allows a client to
create an object and then change its ownership. The new owner can then make modifications
on this object as this object being created by itself.

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

object Specifies the ID of a window system object whose UID you want to change.
Possible window system objects are windows and pixmaps.

type Specifies what type of resource is being accessed. Possible values are: IsWindow and
IsPixmap.

uidp Specifies a pointer to a uid_t structure that contains a UID.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwts

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadWindow Not a valid window

BadPixmap Not a valid pixmap

BadValue Not a valid type

XTSOLgetResUID(3XTSOL)

Name

Synopsis

Description

Parameters

Attributes

Return Values

Errors

See Also

XTSOLsetResUID(3XTSOL)

X Library Extensions 109

XTSOLsetSessionHI – set the session high sensitivity label to the window server

#include <X11/extensions/Xtsol.h>

Status XTSOLsetSessionHI(display, sl);

Display *display;
m_label_t *sl;

XTSOLsetSessionHI() After the session high label has been set by a Trusted Extensions
window system TCB component, logintool, Xsun will reject connection request from clients
running at higher sensitivity labels than the session high label. The client must have the
PRIV_WIN_CONFIG privilege.

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

sl Specifies a pointer to a sensitivity label to be used as the session high label.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwts

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

XTSOLsetSessionLO(3XTSOL)

“Setting the X Window Server Clearance and Minimum Label” in Solaris Trusted Extensions
Developer’s Guide

Name

Synopsis

Description

Parameters

Attributes

Return Values

Errors

See Also

XTSOLsetSessionHI(3XTSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 26 Jun 2006110

XTSOLsetSessionLO – set the session low sensitivity label to the window server

#include <X11/extensions/Xtsol.h>

Status XTSOLsetSessionLO(display, sl);

Display *display;
m_label_t *sl;

XTSOLsetSessionLO() sets the session low sensitivity label. After the session low label has
been set by a Trusted Extensions window system TCB component, logintool, Xsun will reject
a connection request from a client running at a lower sensitivity label than the session low
label. The client must have the PRIV_WIN_CONFIG privilege.

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

sl Specifies a pointer to a sensitivity label to be used as the session low label.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwts

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

XTSOLsetSessionHI(3XTSOL)

“Setting the X Window Server Clearance and Minimum Label” in Solaris Trusted Extensions
Developer’s Guide

Name

Synopsis

Description

Parameters

Attributes

Return Values

Errors

See Also

XTSOLsetSessionLO(3XTSOL)

X Library Extensions 111

XTSOLsetSSHeight – set the height of screen stripe

#include <X11/extensions/Xtsol.h>

Status XTSOLsetSSHeight(display, screen_num, newheight);

Display *display;
int screen_num;

int newheight;

XTSOLsetSSHeight() sets the height of the trusted screen stripe at the bottom of the screen.
Currently the screen stripe is present only on the default screen. The client must have the
Trusted Path process attribute.

display Specifies a pointer to the Display structure; returned from XOpenDisplay.

screen_num Specifies the screen number.

newheight Specifies the height of the stripe in pixels.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwts

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadValue Not a valid screen_num or newheight.

XTSOLgetSSHeight(3XTSOL)

“Accessing and Setting the Screen Stripe Height” in Solaris Trusted Extensions Developer’s
Guide

Name

Synopsis

Description

Parameters

Attributes

Return Values

Errors

See Also

XTSOLsetSSHeight(3XTSOL)

Solaris Trusted Extensions Reference Manual • Last Revised 26 Jun 2006112

XTSOLsetWorkstationOwner – set the ownership of the workstation

#include <X11/extensions/Xtsol.h>

Status XTSOLsetWorkstationOwner(display, uidp);

Display *display;
uid_t *uidp;
XTSOLClientAttributes *clientattrp;

XTSOLsetWorkstationOwner() is used by the Solaris Trusted Extensions logintool to assign
a user ID to be identified as the owner of the workstation server. The client running under this
user ID can set the server's device objects, such as keyboard mapping, mouse mapping, and
modifier mapping. The client must have the Trusted Path process attribute.

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

uidp Specifies a pointer to a uid_t structure that contains a UID.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwts

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

XTSOLgetWorkstationOwner(3XTSOL)

“Accessing and Setting a Workstation Owner ID” in Solaris Trusted Extensions Developer’s
Guide

Name

Synopsis

Description

Parameters

Attributes

Return Values

Errors

See Also

XTSOLsetWorkstationOwner(3XTSOL)

X Library Extensions 113

114

File Formats

R E F E R E N C E

115

label_encodings – label encodings file

/etc/security/tsol/label_encodings

This file is part of the Defense Intelligence Agency (DIA) Mandatory Access Control (MAC)
policy. This file might not be applicable to other Mandatory policies that might be developed
for future releases of Solaris Trusted Extensions software.

Parts of the label_encodings file are considered standard and are controlled by Defense
Intelligence Agency document DDS-2600-6216-93, Compartmented Mode Workstation
Labeling: Encodings Format, September 1993. Of that standard, the parts that refer to the
INFORMATION LABELS: and NAME INFORMATION LABELS: sections are Obsolete. However, the
INFORMATION LABELS: section must be present and syntactically correct. It is ignored. The
NAME INFORMATION LABELS: section is optional. If present, it is ignored but must be
syntactically correct.

The following values in the optional LOCAL DEFINITIONS: section are obsolete. These values
might only affect the obsolete bltos(3TSOL) functions, and might be ignored by the
label_to_str(3TSOL) replacement function:

ADMIN LOW NAME=

ADMIN HIGH NAME=

DEFAULT LABEL VIEW IS EXTERNAL

DEFAULT LABEL VIEW IS INTERNAL

DEFAULT FLAGS=

FORCED FLAGS=

CLASSIFICATION NAME=

COMPARTMENTS NAME=

The label_encodings file is a standard encodings file of security labels that are used to
control the conversion of human-readable labels into an internal format, the conversion from
the internal format to a human-readable canonical form, and the construction of banner
pages for printed output. On a Solaris Trusted Extensions system, the label_encodings file is
protected at the label admin_high. The file should be edited and checked by the security
administrator using the Check Label Encodings action in the System_Admin folder in the
Application Manager.

In addition to the required sections of the label encodings file that are described in
Compartmented Mode Workstation Labeling: Encodings Format, a Solaris Trusted Extensions
system accepts optional local extensions. These extensions provide various translation options
and an association between character-coded color names and sensitivity labels.

The optional local extensions section starts with the LOCAL DEFINITIONS: keyword and is
followed by zero or more of the following unordered statements:

Name

Synopsis

Interface Level

Description

Extended
Description

label_encodings(4)

Solaris Trusted Extensions Reference Manual • Last Revised 31 May 2006116

DEFAULT USER SENSITIVITY LABEL= sensitivity label
This option specifies the sensitivity label to use as the user's minimum sensitivity label if
none is defined for the user in the administrative databases. The default value is the
MINIMUM SENSITIVITY LABEL= value from the ACCREDITATION RANGE: section of the label
encodings file.

DEFAULT USER CLEARANCE= clearance
This option specifies the clearance to use as the user's clearance if none is defined for the
user in the administrative databases. The default value is the MINIMUM CLEARANCE= value
from the ACCREDITATION RANGE: section of the label encodings file.

The final part of the LOCAL DEFINITIONS: section defines the character-coded color names to
be associated with various words, sensitivity labels, or classifications. This section supports the
str_to_label(3TSOL) function. It consists of the COLOR NAMES: keyword and is followed by
zero or more color-to-label assignments. Each statement has one of the following two
syntaxes:

word= word value; color= color value;

label= label value; color= color value;

where color value is a character−coded color name to be associated with the word word value,
or with the sensitivity label label value, or with the classification label value.

The character−coded color name color value for a label is determined by the order of entries in
the COLOR NAMES: section that make up the label. If a label contains a word word value that is
specified in this section, the color value of the label is the one associated with the first word
value specified. If no specified word word value is contained in the label, the color value is the
one associated with an exact match of a label value. If there is no exact match, the color value is
the one associated with the first specified label value whose classification matches the
classification of the label.

EXAMPLE 1 A Sample LOCAL DEFINITIONS: Section

LOCAL DEFINITIONS:

DEFAULT USER SENSITIVITY LABEL= C A;

DEFAULT USER CLEARANCE LABEL= S ABLE;

COLOR NAMES:

label= Admin_Low; color= Pale Blue;

label= unclassified; color= light grey;

word= Project A; color= bright blue;

label= c; color= sea foam green;

label= secret; color= #ff0000; * Hexadecimal RGB value

word= Hotel; color= Lavender;

word= KeLO; color= red;

Examples

label_encodings(4)

File Formats 117

EXAMPLE 1 A Sample LOCAL DEFINITIONS: Section (Continued)

label= TS; color= khaki;

label= TS Elephant; color= yellow;

label= Admin_High; color= shocking pink;

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsr

Stability Level Mixed. See INTERFACE LEVEL, above.

/etc/security/tsol/label_encodings

The label encodings file contains the classification names, words, constraints, and values
for the defined labels of this system. It is protected at the label admin_high.

The following diagnostics are in addition to those found in Appendix A of Compartmented
Mode Workstation Labeling: Encodings Format:

Can’t allocate NNN bytes for color names table.

The system cannot dynamically allocate the memory it needs to process the COLOR NAMES:
section.

Can’t allocate NNN bytes for color table entry.

The system cannot dynamically allocate the memory it needs to process a Color Table
entry.

Can’t allocate NNN bytes for color word entry.

The system cannot dynamically allocate the memory it needs to process a Color Word
entry.

Can’t allocate NNN bytes for DEFAULT USER CLEARANCE.

The system cannot dynamically allocate the memory it needs to process the DEFAULT
USER CLEARANCE.

Can’t allocate NNN bytes for DEFAULT USER SENSITIVITY LABEL.

The system cannot dynamically allocate the memory it needs to process the DEFAULT
USER SENSITIVITY LABEL.

DEFAULT USER CLEARANCE= XXX is not in canonical form. Is YYY what is intended?

This error occurs if the clearance specified, while understood, is not in canonical form. This
additional canonicalization check ensures that no errors are made in specifying the
clearance.

Attributes

Files

Diagnostics

label_encodings(4)

Solaris Trusted Extensions Reference Manual • Last Revised 31 May 2006118

DEFAULT USER SENSITIVITY LABEL= XXX is not in canonical form. Is YYY what is

intended?

This error occurs if a sensitivity label specified, while understood, is not in canonical form.
This additional canonicalization check ensures that no errors are made in specifying the
sensitivity label.

Duplicate DEFAULT USER CLEARANCE= ignored.

More than one DEFAULT USER CLEARANCE= option was encountered. All but the first are
ignored.

Duplicate DEFAULT USER SENSITIVITY LABEL= ignored.

More than one DEFAULT USER SENSITIVITY LABEL= option was encountered. All but the
first are ignored.

End of File not found where expected. Found instead: XXX.

The noted extraneous text was found when the end of label encodings file was expected.

End of File or LOCAL DEFINITIONS: not found. Found instead: XXX.

The noted extraneous text was found when the LOCAL DEFINITIONS: section or end of label
encodings file was expected.

Found color XXX without associated label.

The color XXX was found, however it had no label or word associated with it.

Invalid color label XXX.

The label XXX cannot be parsed.

Invalid DEFAULT USER CLEARANCE XXX.

The DEFAULT USER CLEARANCE XXX cannot be parsed.

Invalid DEFAULT USER SENSITIVITY LABEL XXX.

The DEFAULT USER SENSITIVITY LABEL XXX cannot be parsed.

Label preceding XXX did not have a color specification.

A label or word was found without a matching color name.

Word XXX not found as a valid Sensitivity Label word.

The word XXX was not found as a valid word for a sensitivity label.

chk_encodings(1M), label_to_str(3TSOL), str_to_label(3TSOL), attributes(5), labels(5)

Solaris Trusted Extensions Label Administration

Defense Intelligence Agency document DDS-2600-6216-93, Compartmented Mode
Workstation Labeling: Encodings Format, September 1993.

Creation of and modification to the label encodings file should only be undertaken with a
thorough understanding not only of the concepts in Compartmented Mode Workstation
Labeling: Encodings Format, but also of the details of the local labeling requirements.

See Also

Warnings

label_encodings(4)

File Formats 119

The following warnings are paraphrased from Compartmented Mode Workstation Labeling:
Encodings Format.

Take extreme care when modifying a label encodings file that is already loaded and running
on a Solaris Trusted Extensions system. Once the system runs with the label encodings file,
many objects are labeled with sensitivity labels that are well formed with respect to the loaded
label encodings file. If the label encodings file is subsequently changed, it is possible that the
existing labels will no longer be well-formed. Changing the bit patterns associated with words
causes existing objects whose labels contain the words to have possibly invalid labels. Raising
the minimum classification or lowering the maximum classification that is associated with
words will likely cause existing objects whose labels contain the words to no longer be
well-formed.

Changes to a current encodings file that has already been used should be limited only to
adding new classifications or words, changing the names of existing words, or modifying the
local extensions. As described in Compartmented Mode Workstation Labeling: Encodings
Format, it is important to reserve extra inverse bits when the label encodings file is first created
to allow for later expansion of the label encodings file to incorporate new inverse words. If an
inverse word is added that does not use reserved inverse bits, all existing objects on the system
will erroneously have labels that include the new inverse word.

This file is only meaningful for the DIA MAC policy. Parts of it are obsolete and retained for
ease of porting. The obsolete parts might be removed in a future Solaris Trusted Extensions
release.

Defining the label encodings file is a three-step process. First, the set of human-readable labels
to be represented must be identified and understood. The definition of this set includes the list
of classifications and other words that are used in the human-readable labels, relations
between and among the words, classification restrictions that are associated with use of each
word, and intended use of the words in mandatory access control and labeling system output.
Next, this definition is associated with an internal format of integers, bit patterns, and logical
relationship statements. Finally, a label encodings file is created. The Compartmented Mode
Workstation Labeling: Encodings Format document describes the second and third steps, and
assumes that the first has already been performed.

Notes

label_encodings(4)

Solaris Trusted Extensions Reference Manual • Last Revised 31 May 2006120

sel_config – selection rules for copy, cut, paste, drag and drop operations

/usr/dt/config/sel_config

The sel_config file specifies how a system that is configured with Trusted Extensions
behaves when a user transfers data between windows that have different labels. Transfer
operations include cut-and-paste, copy-and-paste, and drag-and-drop. There are two types of
entries in this file: automatic confirmation and automatic reply.

This type of entry specifies whether a confirmation window, the selection confirmer, displays.
Each entry has the form:

relationship: confirmation

relationship identifies the result of comparing the selected data's source and destination
windows' labels. There are three allowed values:

upgradesl The source window's label is less than the destination window's label.

downgradesl The source window's label is higher than the destination window's label.

disjointsl The source and destination windows' labels are disjoint. Neither label
dominates the other.

confirmation specifies whether to perform automatic confirmation. Allowed values are:

n Use manual confirmation, that is, display the selection confirmer window. This is the
default.

y Use automatic confirmation, that is, do not display the selection confirmer window.

A single user operation can involve several flows of information between the source and
destination windows. The automatic reply set of entries provides a means to reduce the
number of confirmations that are required of the user.

There must be one entry of this form:

autoreply: value

If value is y (for yes), then the remaining entries of the set are used as attributes for the
selection data (rather than the actual contents) to complete the operation without
confirmation. If value is n (for no), then the remaining entries are ignored.

Defaults can be specified for any type field that appears in the Confirmer window. Below are
some sample entries for defaults.

replytype: TARGETS

replytype: Pixel Sets

replytype: LENGTH

replytype: Type Of Monitor

Name

Synopsis

Description

Automatic
Confirmation

Automatic Reply

sel_config(4)

File Formats 121

The TARGETS entry, when used, returns the list of target atoms that are supported by the source
window. The Pixel Sets and Type Of Monitor entries are used for animation during a
drag-and-drop operation. The LENGTH entry specifies the number of bytes in the selection.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

attributes(5)

“Rules When Changing the Level of Security for Data” in Solaris Trusted Extensions
Administrator’s Procedures

Attributes

See Also

sel_config(4)

Solaris Trusted Extensions Reference Manual • Last Revised 26 Jan 2006122

tnrhdb – trusted network remote-host database

/etc/security/tsol/tnrhdb

The tnrhdb database specifies which remote-host template to use for each host, including the
local host, in the distributed system. tnrhdb works together with the tnrhtp(4) database to
enable the administrator to establish the security and network accreditation attributes for each
host. If a host's IP address cannot be matched to some entry in the tnrhdb database,
communication with the host is not permitted.

The trusted network software uses a network “longest prefix of matching bits” mechanism
when looking for a tnrhdb entry for a host. The software looks first for an entry that is specific
to the host. If the software does not find a matching entry, the software falls back to searching
for an entry with the longest prefix of a matching bit pattern, and so on.

Note – The actual numeric value of the subnet address or other subnetting information on the
system (for example, from the netmasks(4) file) are not considered by this mechanism.

Using the “longest prefix of matching bits” mechanism, an IPv4 wildcard entry (IPv4 address
0.0.0.0) has a prefix length of 0 and hence can match any IPv4 address.

Each entry in tnrhdb consists of a line of the form IP-address:template.

IP-address This field is the IP address of the host or network that has the security
properties that are specified by the template that is defined in the tnrhtp(4)
database.

An entry can be a host address, for example, 10.100.100.201 or
fe80\:\:9\:20ff\:fea0\:21f7. Or an entry can be an IPv4 or IPv6 subnet
address.

An IPv4 subnet entry can take the form of a subnet address with an explicit
prefix length (10.100.128.0/17) or the form of a subnet address with trailing
zero octets that imply a prefix length (10.100.0.0).

An IPv6 subnet entry must take the form of a subnet address with a prefix
length (fe80\:\:/10). See NOTES for the use of the backslash in tnrhdb entries.

When IPv4 subnet entries are specified by using the implied prefix length
format, the actual prefix length will take the value 0, 8, 16, or 24 when there are
4, 3, 2, or 1 trailing zero octets, respectively. An entry with a non-zero value in
the final octet is interpreted as a host address and implies a prefix length of 32.
See EXAMPLES for sample IPv4 entries.

template This value must be a valid template name in the tnrhtp database. For
information on the security attributes, see tnrhtp(4).

Name

Synopsis

Description

tnrhdb(4)

File Formats 123

More than one IP address can use the same template. If this database is
modified while the network is up, the changes do not take effect until after
tnctl(1M) is used to update the remote-host entries. Administrators are
allowed to add new entries and modify existing entries while the network is up.
The template field cannot contain any white spaces.

After each modification to the tnrhdb database, the administrator should run tnchkdb(1M) to
check the syntax. If this database is modified while the network is up, the changes do not take
effect until tnctl(1M) updates the kernel.

EXAMPLE 1 Sample IPv4 Entries

IPv4 Entry Host Address Implied Prefix

or Wildcard? Length

============== ============== ==============

0.0.0.0 Wildcard 0

10.0.0.0 Wildcard 8

10.100.0.0 Wildcard 16

10.0.100.0 Wildcard 24

10.0.100.100 Host Address 32

EXAMPLE 2 Sample tnrhdb File

The templates in the following example are first defined in the tnrhtp, then used in the tnrhdb
file. The example shows a host that uses the template cipso, a host that uses the template
public, and a host that uses the template needtoknow. There are two subnets. One subnet uses
the template internal, and the other subnet uses the template secret. Every other host uses
the template default-template that is specified in the wildcard entries for IPv4 hosts and
IPv6 hosts.

#

Assume that templates default-template, cipso, public,

internal, needtoknow, and secret are defined in the

tnrhtp database.

#

the first two entries are addresses of the IPv4 and

IPv6 loopback interfaces

127.0.0.1:cipso

\:\:1:cipso

10.0.0.1:cipso

192.168.120.6:public

192.168.120.0:internal

192.168.120.7:needtoknow

192.168.121.0:secret

0.0.0.0:default-template

0\:\:0/0:default-template

fe80\:\:a00\:20ff\:fea0\:21f7:cipso

Examples

tnrhdb(4)

Solaris Trusted Extensions Reference Manual • Last Revised 16 Jun 2006124

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsg

Stability Project Private

/etc/security/tsol/tnrhdb Trusted network remote-host database

smtnrhdb(1M), hosts(4), ipnodes(4), netmasks(4), tnchkdb(1M), tnctl(1M), tnd(1M),
tninfo(1M), tnrhtp(4), tnzonecfg(4), attributes(5)

Chapter 12, “Trusted Networking (Overview),” in Solaris Trusted Extensions Administrator’s
Procedures

Changing a template while the network is up can change the security view of an undetermined
number of hosts.

The colon (:) character is a database separation character. If the colon is used as part of a data
field, it must be escaped with a backslash (\), as in fe80\:\:a00\:20ff\:fea0\:21f7.

The administrator might want to create one tnrhdb entry for each host that runs Trusted
Extensions software, and make one subnet entry that applies to all unlabeled hosts that have
the same security attributes. Then, the administrator can make a separate entry for each host
that must be assigned a different set of security attributes.

Attributes

Files

See Also

Warnings

Notes

tnrhdb(4)

File Formats 125

tnrhtp – trusted network remote-host templates

/etc/security/tsol/tnrhtp

The tnrhtp database of templates is specified by the administrator for convenience when
assigning accreditation and security attributes for each host in the distributed system,
including the local host and network.

tnrhtp works together with tnrhdb(4). IP addresses in tnrhdb can be assigned only to
templates that are defined in the tnrhtp database. After each modification to the tnrhtp
database, the administrator should run tnchkdb(1M) to check the syntax.

Each entry in the template database is entered as one long line. The fields of the entry are
separated by semicolons (;):

template_name:attr

A pound sign (#) as the first character of a line indicates a comment line, which is ignored.

template_name
Is a character string that names the template that is being defined. The string is
case-sensitive. Only the first 31 characters of string are read and interpreted. You can use
any printable character in template_name except for field delimiters, newline, or the
comment character.

attr
Is a list of semicolon (;) separated key=value pairs that describe the attributes of the
template. All keys are mandatory unless otherwise indicated, even if no value other than
none is set. The following keys are currently interpreted by the system.

host_type Takes one of two defined values, unlabeled and cipso. The cipso host
type is for hosts that use CIPSO (Common IP Security Options - Tag
Type 1 only) to label packets.

def_label Defines the default attributes to be applied to incoming data from
remote hosts that do not support these attributes. This key is valid for
the unlabeled host type only.

doi Is the domain of interpretation. In the case of the unlabeled host type,
this is the domain of interpretation for the def_label.

The domain of interpretation defines the set of rules for translating
between the external or internal representation of the security
attributes and their network representation. When systems that are
configured with Trusted Extensions software have the same doi, they
share that set of rules. In the case of the unlabeled host type, these
systems also share the same interpretation for the default attributes
that are assigned to the unlabeled templates that have that same doi.

Name

Synopsis

Description

tnrhtp(4)

Solaris Trusted Extensions Reference Manual • Last Revised 16 Jun 2006126

min_sl, max_sl Specifies the label accreditation range for the remote hosts that use this
template. All labels are specified in a shortened hexadecimal format,
except for the administrative labels ADMIN_LOW and ADMIN_HIGH.

For gateway systems, min_sl and max_sl define the default range for
forwarding labeled packets. The label range for routes is typically set by
using a route(1M) subcommand with the -secattr option. When the
label range for routes is not specified, the min_sl to max_sl range in
the tnrhtp database is used.

sl_set Specifies the security label set which is allowed for the remote hosts
that use this template. For gateway systems, the labels in sl_set are
used for forwarding labeled packets. sl_set is optional. The maximum
number of labels in a set is 4.

If the tnrhtp database is modified while the network is up, the changes do not take effect
immediately unless tnctl(1M) is used to update the template entries. Otherwise, the changes
take effect when next polled by the trusted network daemon, tnd(1M). Administrators are
allowed to add new templates and modify attributes of existing templates while the network is
up.

EXAMPLE 1 Unlabeled Host Entries

For the sake of clarity on this man page, examples are shown using a continuation character
(\). In the database file, however, the backslash is not permitted because each entry is made on
a single line.

Sample ADMIN_LOW template entry for machines or networks.

Note that the doi field is required.

#

admin_low:host_type=unlabeled;\

def_label=ADMIN_LOW;\

min_sl=ADMIN_LOW;\

max_sl=ADMIN_HIGH;\

doi=1;

Unless the label at which you want to communicate with an unlabeled host is ADMIN_LOW, you
should not use the above template. Rather, you should use a template that matches an entry in
your label encodings file. The following example matches an entry in the sample
label_encodings file.

Sample PUBLIC template entry

based on the sample label_encodings file.

#

public:host_type=unlabeled;\

def_label=0x0002-08-08;\

min_sl=ADMIN_LOW;\

Examples

tnrhtp(4)

File Formats 127

EXAMPLE 1 Unlabeled Host Entries (Continued)

max_sl=ADMIN_HIGH;\

doi=1;

EXAMPLE 2 CIPSO Host Entry

Labeled host template

#

h1_allzones:host_type=cipso;\

min_sl=ADMIN_LOW;\

max_sl=ADMIN_HIGH;\

doi=1;

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsg

Stability Project Private

/etc/security/tsol/tnrhtp Trusted network remote-host templates

route(1M), smtnrhtp(1M), tnchkdb(1M), tnctl(1M), tnd(1M), tninfo(1M), tnrhdb(4),
attributes(5)

“Network Security Attributes in Trusted Extensions” in Solaris Trusted Extensions
Administrator’s Procedures

Changing a template while the network is up can change the security view of an undetermined
number of hosts.

Allowing unlabeled hosts onto a Solaris Trusted Extensions network is a security risk. To
avoid compromising the rest of your network, such hosts must be trusted in the sense that the
administrator is certain that these unlabeled hosts will not be used to compromise the
distributed system. These hosts should also be physically protected to restrict access to
authorized individuals. If you cannot guarantee that an unlabeled host is physically secure
from tampering, it and similar hosts should be isolated on a separate branch of the network.

Attributes

Files

See Also

Warnings

tnrhtp(4)

Solaris Trusted Extensions Reference Manual • Last Revised 16 Jun 2006128

tnzonecfg – trusted network zone configuration database

/etc/security/tsol/tnzonecfg

The tnzonecfg database is a list of Solaris Trusted Extensions zone configuration entries for
the local host. The database is indexed by zone name. Each configuration entry specifies a
zone's label, multilevel port (MLP), and other zone-related information for zone creation.

Each entry in the zone configuration database consists of five fields. Each entry is on one long
line, with fields of the entry separated by colons (:).

zone-name:label:network-policy:zone-mlp-list:shared-mlp-list
global:ADMIN_LOW:1:6000-6003/tcp:6000-6003/tcp

A pound sign (#) as the first character of a line indicates a comment line, which is ignored.

zone-name Is the name for the zone. This name is used when the zone is configured.
See zonecfg(1M), under the -z zonename option, for the constraints on
zone names.

label Is the label for the zone. This field is used to label the zone when the zone is
booted. The label can be in shortened hexadecimal format or in text
format. The labels are defined in the label_encodings file. Each zone
must have a unique label.

network-policy Is the policy for handling all non-transport traffic. This field is used to
decide for non-MLP traffic if an exact zone label is required or if a label
range match is allowed. The value 0 indicates strict zone label matching for
inbound packets. If this field is set to 1, the receiving host accepts packets
within the host's accreditation range.

ICMP packets that are received on the global zone IP address are accepted
based on the label range of the global zone's tnrhtp entry if the global
zone's network-policy field is set to 1. When this field is set to 0 for a zone,
the zone will not respond to an ICMP echo request from a host with a
different label.

zone-mlp-list Is the multilevel port configuration entry for a zone on the IP addresses
that belong to that zone. zone-mlp-list is a list of semicolon-separated MLP
configuration entries. Each MLP configuration entry is specified by
port/protocol or port-range/protocol. For example, 6001-6003/tcp means
that tcp ports 6001, 6002, and 6003 are all MLPs.

An MLP is used to provide multilevel service in the global zone as well as
in non-global zones. As an example of how a non-global zone can use an
MLP, consider setting up two labeled zones, internal and public. The
internal zone can access company networks; the public zone can access
public internet but not the company's internal networks. For safe

Name

Synopsis

Description

tnzonecfg(4)

File Formats 129

browsing, when a user in the internal zone wants to browse the Internet,
the internal zone browser forwards the URL to the public zone, and the
web content is then displayed in a public zone web browser. That way, if
the download in public zone compromises the web browser, it cannot
affect the company's internal network. To set this up, tcp port 8080 in the
public zone is an MLP (8080/tcp), and the tnrhtp template for the
public zone has a label range from PUBLIC to INTERNAL.

shared-mlp-list Is the multilevel port configuration entry for shared IP addresses.
shared-mlp-list is a list of semicolon-separated MLP configuration entries.
Each MLP configuration entry is specified by port/protocol. Other zones
do not have access to this port/protocol on shared interfaces. It is a
configuration error to specify the same port/protocol in the shared-mlp-list
field of more than one zone.

A shared IP address can reduce the total number of IP addresses that are
needed on the system, especially when configuring a large number of
zones. If network traffic is received on a shared interface, on a port that is
specified in a zone's shared-mlp-list, the traffic cannot be received by other
zones.

After each modification to the tnzonecfg database, the administrator should run
tnchkdb(1M) to check the syntax. If this database is modified while the network is up, the
changes do not take effect until tnctl(1M) updates the kernel.

EXAMPLE 1 Sample Zone Configuration Entries

In the database file, each zone entry is made on a single line.

In this example, there are four non-global zones: public, internal, needtoknow, and
restricted. Only the global zone and the public zone have MLPs.

In the global entry, the zone-mlp-list value of 111/tcp;111/udp;2049/tcp;6000-6003/tcp
specifies these ports as MLPs in the global zone only. The shared-mlp-list value of
6000-6003/tcp specifies these ports as MLPs for the shared IP addresses, that is, for the
labeled zones. With a network-policy of 1, only the global zone accepts incoming packets from
a host whose label is different from its own.

In the public entry, the network-policy value of 0 restricts it to receiving public
non-transport traffic. The zone-mlp-list value of 8080/tcp makes the public zone's web
browser port an MLP.

The 8080 tcp port in the other zones is a single-level port, so is not listed. Similarly, each
labeled zone has a single–level 111 port, 2049 port, and so on.

#

Sample global zone configuration file

Examples

tnzonecfg(4)

Solaris Trusted Extensions Reference Manual • Last Revised 16 Jun 2006130

EXAMPLE 1 Sample Zone Configuration Entries (Continued)

#

Multilevel Port (MLP) specification:

#

MLP PURPOSE

--- -------

111 Port Mapper

2049 NFSv4 server

6000-6003 Multilevel Desktop

#

global:ADMIN_LOW:1:111/tcp;111/udp;2049/tcp;6000-6003/tcp:6000-6003/tcp

public:PUBLIC:0:8080/tcp:

internal:0x0004-08-48:0::

needtoknow:0x0004-08-68:0::

restricted:0x0004-08-78:0::

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsg

Stability Project Private

/etc/security/tsol/tnzonecfg Trusted network zone configuration database

smtnzonecfg(1M), tnchkdb(1M), tnctl(1M), tnd(1M), tninfo(1M), zonecfg(1M),
label_encodings(4), tnrhdb(4), tnrhtp(4), attributes(5)

“Solaris Management Console Tools” in Solaris Trusted Extensions Administrator’s Procedures

Attributes

Files

See Also

tnzonecfg(4)

File Formats 131

TrustedExtensionsPolicy – configuration file for Trusted Extensions X Server Extension

/usr/X11/lib/X11/xserver/TrustedExtensionsPolicy

/usr/openwin/server/etc/TrustedExtensionsPolicy

TrustedExtensionsPolicy is the configuration file for Trusted Extensions X Server
Extension (SUN_TSOL). SUN_TSOL provides security policy enforcement. This enforcement is
based on Mandatory Access Control (MAC) and Discretionary Access Control (DAC).

Blank lines and comments in the TrustedExtensionsPolicy file are ignored. Comments start
with a pound sign (#). The format of the file is as follows:

keyword{space|tab}value

where keyword can be one of the following:

atom Label this atom ADMIN_LOW, so that XGetAtomName(3X11) succeeds.

property Instantiate this property once. The default is to polyinstantiate a property.

selection Polyinstantiate this selection. The default is to instantiate the selection once.

extension Disable this extension.

privilege Implicitly allow this window privilege on all clients.

For possible keyword values, see the
/usr/X11/lib/X11/xserver/TrustedExtensionsPolicy file for the Xorg X server. For
Xsun, see the /usr/openwin/server/etc/TrustedExtensionsPolicy file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwts

The following entry in the TrustedExtensionsPolicy file polyinstantiates the Dtpad
program:

selection Dtpad

If the entry is missing, or commented out, the Dtpad program is instantiated once.

Similarly, the following entry instantiates the WM_ICON_SIZE property once:

property WM_ICON_SIZE

If the entry is missing, or commented out, the WM_ICON_SIZE property is polyinstantiated.

/usr/X11/lib/X11/xserver/TrustedExtensionsPolicy

Configuration file for Trusted Extensions X Server Extension

Name

Synopsis

Description

Attributes

Examples

Files

TrustedExtensionsPolicy(4)

Solaris Trusted Extensions Reference Manual • Last Revised 26 Jun 2006132

XGetAtomName(3X11), attributes(5)See Also

TrustedExtensionsPolicy(4)

File Formats 133

134

Standards, Environments, and Macros

R E F E R E N C E

135

labels – Solaris Trusted Extensions label attributes

Labels are attributes that are used in mandatory policy decisions. Labels are associated, either
explicitly or implicitly, with all subjects (generally processes) and objects (generally things
with data such as files) that are accessible to subjects. The default Trusted Extensions
mandatory policy labels are defined by a site's security administrator in label_encodings(4).

Various mandatory policies might be delivered in the lifetime of Solaris Trusted Extensions.

The default mandatory policy of Trusted Extensions is a Mandatory Access Control (MAC)
policy that is equivalent to that of the Bell-LaPadula Model of the Lattice, the Simple Security
Property, and the *-Property (Star Property), with restricted write up. The default mandatory
policy is also equivalent to the Goguen and Mesegeur model of Non-Inteference.

For this MAC policy, two labels are always defined: admin_low and admin_high. The site's
security administrator defines all other labels in label_encodings(4). admin_low is associated
with all normal user readable (viewable) Trusted Extensions objects. admin_high is associated
with all other Trusted Extensions objects. Only administrative users have MAC read (view)
access to admin_high objects and only administrative users have MAC write (modify) access
to admin_low objects or admin_high objects.

Users interact with labels as strings. Graphical user interfaces and command line interfaces
present the strings as defined in label_encodings(4). Human readable labels are classified at
the label that they represent. Thus the string for a label A is only readable (viewable,
translatable to or from human readable to opaque m_label_t) by a subject whose label allows
read (view) access to that label.

In order to store labels in publicly accessible (admin_low) name service databases, an
unclassified internal text form is used. This textual form is not intended to be used in any
interfaces other than those that are provided with the Trusted Extensions software release that
created this textual form of the label.

Applications interact with labels as opaque (m_label_t) structures. The semantics of these
opaque structures are defined by a string to m_label_t translation. This translation is defined
in label_encodings(4). Various Application Programming Interfaces (API) translate
between strings and m_label_t structures. Various APIs test access of subject-related labels to
object-related labels.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See NOTES below

chk_encodings(1M), blcompare(3TSOL), label_to_str(3TSOL), m_label_alloc(3TSOL),
m_label_dup(3TSOL), m_label_free(3TSOL), str_to_label(3TSOL), label_encodings(4),
attributes(5)

Name

Description

Mandatory Policy

Human Readable
Labels

Internal Text Labels

Labels and
Applications

Attributes

See Also

labels(5)

Solaris Trusted Extensions Reference Manual • Last Revised 31 May 2006136

Bell, D. E., and LaPadula, L. J. Secure Computer Systems: Unified Exposition and Multics
Interpretation, MTR-2997 Rev. 2, MITRE Corp., Bedford Mass., March 1976. NTIS AD-A023
588/7.

Goguen, J. A., and Mesegeur, J.: Security Policies and Security Models, Proceedings 1982
Symposium on Security and Privacy, IEEE Computer Society Press, 1982, p 11-20.

Goguen, J. A., and Mesegeur, J.: Unwinding and Interference Control, Proceedings 1984
Symposium on Security and Privacy, IEEE Computer Society Press, 1984, p 75-86.

Compartmented Mode Workstation Labeling: Encodings Format

The stability of the labels implementation is Stable for systems that implement the Defense
Intelligence Agency (DIA) MAC policy of label_encodings(4). Other policies might exist in a
future release of Trusted Extensions that might obsolete or supplement label_encodings.

Internal text labels are not an interface and might change with any release of Trusted
Extensions. They are only intended for input and generation on the same release of Trusted
Extensions software.

As a potential porting aid for Trusted Solaris 8 applications, the opaque structure names
bslabel_t, blevel_t, and bclear_t are defined to be equivalent to m_label_t. Like
m_label_t, these types must be ported as opaque pointers. The same must be done with the
various Trusted Solaris 8 label interfaces. These Trusted Solaris 8 structures and interfaces are
Obsolete and might be removed from a future release of Trusted Extensions.

Notes

labels(5)

Standards, Environments, and Macros 137

pam_tsol_account – PAM account management module for Trusted Extensions

/usr/lib/security/pam_tsol_account.so.1

The Solaris Trusted Extensions service module for PAM,
/usr/lib/security/pam_tsol_account.so.1, checks account limitations that are related to
labels. The pam_tsol_account.so.1 module is a shared object that can be dynamically loaded
to provide the necessary functionality upon demand. Its path is specified in the PAM
configuration file.

pam_tsol_account.so.1 contains a function to perform account management,
pam_sm_acct_mgmt(). The function checks for the allowed label range for the user. The
allowable label range is set by the defaults in the label_encodings(4) file. These defaults can be
overridden by entries in the user_attr(4) database.

By default, this module requires that remote hosts connecting to the global zone must have a
CIPSO host type. To disable this policy, add the allow_unlabeled keyword as an option to the
entry in pam.conf(4), as in:

other account required pam_tsol_account allow_unlabeled

The following options can be passed to the module:

allow_unlabeled Allows remote connections from hosts with unlabeled template types.
See tnrhtp(4).

debug Provides debugging information at the LOG_DEBUG level. See
syslog(3C).

The following values are returned:

PAM_SUCCESS The account is valid for use at this time and label.

PAM_PERM_DENIED The current process label is outside the user's label range, or the label
information for the process is unavailable, or the remote host type is
not valid.

Other values Returns an error code that is consistent with typical PAM operations.
For information on error-related return values, see the pam(3PAM)
man page.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT Level MT-Safe with exceptions

Name

Synopsis

Description

Options

Return Values

Attributes

pam_tsol_account(5)

Solaris Trusted Extensions Reference Manual • Last Revised 26 Jun 2006138

keylogin(1), syslog(3C), libpam(3LIB), pam(3PAM), pam_sm_acct_mgmt(3PAM),
pam_start(3PAM), label_encodings(4), pam.conf(4), tnrhtp(4), user_attr(4),
attributes(5)

Chapter 16, “Using PAM,” in System Administration Guide: Security Services

The interfaces in libpam(3LIB) are MT-Safe only if each thread within the multi-threaded
application uses its own PAM handle.

See Also

Notes

pam_tsol_account(5)

Standards, Environments, and Macros 139

140

Index

A
account management for Trusted Extensions, 138
add entries to device allocation mechanism,

add_allocatable, 22
administer tnrhdb, smtnrhdb, 28
administer tnrhtp, smtnrhtp, 32
administer tnzonecfg, smtnzonecfg, 36
allocate resources for a new destination label, 82
allocate resources for a new label, 82

B
bounds of two labels, 57

C
change file label, setlabel, 19
change sensitivity label of file, setflabel, 85
change user interface for labels, tsol_lbuild_set, 73
check file syntax of trusted network databases,

tnchkdb, 40
check label encodings file syntax, chk_encodings, 25
compare labels for dominance, 56
compare labels for equality, 56
compare labels for strict dominance, 56
configuration file for Trusted Extensions X Server

Extension, TrustedExtensionsPolicy, 132
configure Trusted Extensions network parameters,

tnctl, 42

convert a human readable label to its internal text
equivalent, atohexlabel, 24

convert an internal text label to its human readable
equivalent, hextoalabel, 26

convert labels to strings, label_to_str, 80
convert strings to labels, str_to_label, 90
.copy_files, 48
copy home directory files, updatehome, 48
create user interface for labels, tsol_lbuild_create, 73

D
databases

administer tnrhdb from Solaris Management
Console, 28

administer tnrhtp from Solaris Management
Console, 32

administer tnzonecfg from Solaris Management
Console, 36

check file syntax of network databases, 40
configure trusted network databases, 42
get remote host type from trusted network

databases, 92
label encodings, 116
tnrhdb, 123
tnrhtp, 126
tnzonecfg, 129

destroy user interface for labels,
tsol_lbuild_destroy, 73

determine if label is within label range, 56

141

devices
add to device allocation mechanism, 22
remove entries from device allocation

mechanism, 27

E
/etc/security/tsol files

label encodings, 116
tnrhdb, 123
tnrhtp, 126
tnzonecfg, 129

F
file label

fgetlabel, 52
getlabel, 52
setflabel, 85
setlabel, 19

files
.copy_files, 48
description of labels model, 136
label encodings, 116
.link_files, 48
pam_tsol_account, 138
tnrhdb, 123
tnrhtp, 126
tnzonecfg, 129
TrustedExtensionsPolicy, 132

free resources that are associated with the previously
allocated label, 82

G
get all label attributes associated with a client,

XTSOLgetClientAttributes, 94
get all label attributes associated with a window or a

pixmap, XTSOLgetResAttributes, 98
get remote host type, tsol_getrhtype, 92
get the height of screen stripe, XTSOLgetSSHeight, 101

get the label associated with a property hanging on a
window, XTSOLgetPropLabel, 96

get the label associated with a window, a pixmap, or a
colormap, XTSOLgetResLabel, 99

get the label attributes associated with a property
hanging on a window, XTSOLgetPropAttributes, 95

get the label range of a user, 69
get the ownership of the workstation,

XTSOLgetWorkstationOwner, 102
get the UID associated with a property hanging on a

window, XTSOLgetPropUID, 97
get the UID associated with a window, a pixmap,

XTSOLgetResUID, 100
get trusted network information, tsol_getrhtype, 92
get user interface for labels, tsol_lbuild_get, 73
greatest lower bound of two labels, blminimum, 57

I
initialize network databases, tnd, 44

L
label appearance, label builder, 73
label builder

tsol_lbuild_create, 73
tsol_lbuild_destroy, 73
tsol_lbuild_get, 73
tsol_lbuild_set, 73

label interface, label builder, 73
label library

bldominates, 56
blequal, 56
blinrange, 56
blmaximum, 57
blminimum, 57
blstrictdom, 56
getdevicerange, 65
getpathbylabel, 66
getplabel, 68
getuserrange, 69
getzoneidbylabel, 70
getzonelabelbyid, 70

Index

Solaris Trusted Extensions Reference Manual • September 2007 (Beta)142

label library (Continued)
getzonelabelbyname, 70
getzonerootbyid, 71
getzonerootbylabel, 71
getzonerootbyname, 71
label_to_str, 80
m_label_alloc, 82
m_label_dup, 82
m_label_free, 82
setflabel, 85
str_to_label, 90
tsol_lbuild_create, 73
tsol_lbuild_destroy, 73
tsol_lbuild_get, 73
tsol_lbuild_set, 73

label mappings
getzoneidbylabel, 70
getzonelabelbyid, 70
getzonelabelbyname, 70
getzonerootbyid, 71
getzonerootbylabel, 71
getzonerootbyname, 71
label_to_str, 80
str_to_label, 90

label of file
fgetlabel, 52
getlabel, 16, 52
setflabel, 85
setlabel, 19

label of process, plabel, 18
label ranges

blcompare, 56
getdevicerange, 65
getuserrange, 69

labels
appearance, 73
bounds of two labels, 57
build labels, 73
check label encodings file syntax, 25
compare labels, 56
convert to human readable equivalent, 26
convert to internal text equivalent, 24
convert to strings, 80
copy home directory files to different labels, 48

labels (Continued)
description, 136
encodings file, 116
get file label, 16, 52
get process label, 18
interface, 73
label builder, 73
link home directory files to different labels, 48
model for Solaris Trusted Extensions, 136
parse from strings, 90
set file label, 19, 85
user interface, 73

labels file, 136
labels model, 136
least upper bound of two labels, blmaximum, 57
.link_files, 48
link home directory files, updatehome, 48

M
make this window a Trusted Path window,

XTSOLMakeTPWindow, 104
manage entries in the tnrhdb, smtnrhdb, 28
manage entries in the tnrhtp database, smtnrhtp, 32
manage entries in the tnzonecfg database,

smtnzonecfg, 36
map between zone root pathnames and labels

getzonerootbyid, 71
getzonerootbylabel, 71
getzonerootbyname, 71

map between zones and labels
getzoneidbylabel, 70
getzonelabelbyid, 70
getzonelabelbyname, 70

move files to zone with corresponding label, 19

N
network commands

check syntax of databases, 40
configure trusted network databases, 42
initialize network databases, 44
print network information, 46

Index

143

network commands (Continued)
smtnrhdb, 28
smtnrhtp, 32

network databases
administer tnrhdb from Solaris Management

Console, 28
administer tnrhtp from Solaris Management

Console, 32
check syntax, 40
configure trusted network, 42
get remote host type from, 92
initialize the kernel with, 44
print information about, 46
tnrhdb, 123
tnrhtp, 126

network information
get remote host type from trusted network

databases, 92
tninfo, 46

O
obsolete functions

bcleartoh, 63
bcleartoh_r, 63
bcleartos, 60
bltocolor, 58
bltocolor_r, 58
bsltoh, 63
bsltoh_r, 63
bsltos, 60
h_alloc, 63
h_free, 63
htobclear, 72
htobsl, 72
sbcleartos, 83
sbsltos, 83
stobclear, 87
stobsl, 87
Xbcleartos, 78
Xbsltos, 78

P
parse strings to labels, str_to_label, 90
process label, getplabel, 68

R
remote administration, dtappsession, 14
return zone pathname, getpathbylabel, 66

S
selection rules for copy, cut, paste, drag and drop

operations, sel_config file, 121
sensitivity label of file

fgetlabel, 52
getlabel, 52

set polyinstantiation information,
XTSOLsetPolyInstInfo, 105

set sensitivity label of file, setflabel, 85
set the height of screen stripe, XTSOLsetSSHeight, 112
set the label associated with a property hanging on a

window, XTSOLsetPropLabel, 106
set the label associated with a window or a pixmap,

XTSOLsetResLabel, 108
set the ownership of the workstation,

XTSOLsetWorkstationOwner, 113
set the session high sensitivity label,

XTSOLsetSessionHI, 110
set the session low sensitivity label,

XTSOLsetSessionLO, 111
set the UID associated with a property hanging on a

window, XTSOLsetPropUID, 107
set the UID associated with a window, a pixmap, or a

colormap, XTSOLsetResUID, 109
smf services

tnctl, 42
tnd, 44

Solaris Management Console
administer tnrhdb database, 28
administer tnrhtp database, 32
administer tnzonecfg database, 36

start a new Application Manager session, 14
SUN_TSOL, 132

Index

Solaris Trusted Extensions Reference Manual • September 2007 (Beta)144

T
test if a window is created by a trusted client,

XTSOLIsWindowTrusted, 103
tnrhdb, get remote host type from, 92
Trusted Extensions X Server Extension, 132
trusted network daemon, tnd, 44
trusted network databases, See network databases
trusted network remote-host database, tnrhdb, 123
trusted network remote-host templates, tnrhtp, 126
trusted network zone configuration database,

tnzonecfg, 129

U
user interface, 73
/usr/openwin/server/etc/TrustedExtensionsPolicy, 132
/usr/X11/lib/X11/xserver/TrustedExtensionsPolicy, 132

Z
zone configuration database, 129
zone pathname, 66
zones

getpathbylabel, 66
getzoneidbylabel, 70
getzonelabelbyid, 70
getzonelabelbyname, 70
getzonepath, 17
getzonerootbyid, 71
getzonerootbylabel, 71
getzonerootbyname, 71
tnzonecfg, 129

Index

145

146

	Solaris Trusted Extensions Reference Manual
	Preface
	Overview of Solaris Trusted Extensions Man Pages

	Introduction
	Intro(3TSOL)

	User Commands
	dtappsession(1)
	getlabel(1)
	getzonepath(1)
	plabel(1)
	setlabel(1)

	System Administration Commands
	add_allocatable(1M)
	atohexlabel(1M)
	chk_encodings(1M)
	hextoalabel(1M)
	remove_allocatable(1M)
	smtnrhdb(1M)
	smtnrhtp(1M)
	smtnzonecfg(1M)
	tnchkdb(1M)
	tnctl(1M)
	tnd(1M)
	tninfo(1M)
	updatehome(1M)

	System Calls
	getlabel(2)

	Trusted Extensions Library
	blcompare(3TSOL)
	blminmax(3TSOL)
	bltocolor(3TSOL)
	bltos(3TSOL)
	btohex(3TSOL)
	getdevicerange(3TSOL)
	getpathbylabel(3TSOL)
	getplabel(3TSOL)
	getuserrange(3TSOL)
	getzonelabelbyid(3TSOL)
	getzonerootbyid(3TSOL)
	hextob(3TSOL)
	labelbuilder(3TSOL)
	labelclipping(3TSOL)
	label_to_str(3TSOL)
	m_label(3TSOL)
	sbltos(3TSOL)
	setflabel(3TSOL)
	stobl(3TSOL)
	str_to_label(3TSOL)
	tsol_getrhtype(3TSOL)

	X Library Extensions
	XTSOLgetClientAttributes(3XTSOL)
	XTSOLgetPropAttributes(3XTSOL)
	XTSOLgetPropLabel(3XTSOL)
	XTSOLgetPropUID(3XTSOL)
	XTSOLgetResAttributes(3XTSOL)
	XTSOLgetResLabel(3XTSOL)
	XTSOLgetResUID(3XTSOL)
	XTSOLgetSSHeight(3XTSOL)
	XTSOLgetWorkstationOwner(3XTSOL)
	XTSOLIsWindowTrusted(3XTSOL)
	XTSOLMakeTPWindow(3XTSOL)
	XTSOLsetPolyInstInfo(3XTSOL)
	XTSOLsetPropLabel(3XTSOL)
	XTSOLsetPropUID(3XTSOL)
	XTSOLsetResLabel(3XTSOL)
	XTSOLsetResUID(3XTSOL)
	XTSOLsetSessionHI(3XTSOL)
	XTSOLsetSessionLO(3XTSOL)
	XTSOLsetSSHeight(3XTSOL)
	XTSOLsetWorkstationOwner(3XTSOL)

	File Formats
	label_encodings(4)
	sel_config(4)
	tnrhdb(4)
	tnrhtp(4)
	tnzonecfg(4)
	TrustedExtensionsPolicy(4)

	Standards, Environments, and Macros
	labels(5)
	pam_tsol_account(5)

	Index

