Sun Java System Mobile
Enterprise Platform 1.0
Developer's Guide for Enterprise
Connectors

X Sun

microsystems

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
US.A.

Part No: 820-3754-10
July 2008

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, J2EE, JavaServer Pages, Enterprise JavaBeans, Java Naming and
Directory Interface, EJB, JSP, J2SE, Java, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. or its subsidiaries in the U.S. and other
countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries.
Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “ASIS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs a la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent étre dérivées du logiciel Berkeley BSD, licenciés par 'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, J2EE, JavaServer Pages, Enterprise JavaBeans, Java Naming and Directory
Interface, EJB, JSP, J2SE, Java et Solaris sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans
d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur I'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font I'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matiére de controle des exportations et
peuvent étre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de maniére
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une fagon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matiére de controle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A LAPTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

081007@21288

Contents

PrEface ... e 5
Introduction to Enterprise CONNECLOKSooovvieieiereiieiiieee et aeas
About the Enterprise Connector Business Object (ECBO) API

Packaging and Deploying Enterprise CONNECIOLScveureueureereveeeuriurieeisetreseeesseseesessessesessessesenaes
Creating an Enterpris@ CONNECIONccovieieieiiiininiiccccc ettt 15
Packages in the Enterprise Connector Business Object APTcccocveenerrieeeneireinecinerneeeneinenennes 16
Extending the BusinessObject Classcooeeveeerenceernecrnecnnes

Extending the BusinessObjectProvider Class

Extending the TransactionManager Classccrrncnenieenecreieeesseesesseseseseeessescsenes 27
Extending the InsertCommand, UpdateCommand, and DeleteCommand Classesccoceuevrenee 28
Creating the Resource File for an Enterprise CONNECLOTcocuvueueuriiueeresirineeeiresieeseeeeeseeeeseeens 29
Accessing a Sun JCA Adapter for an EIS/EAT SYStEIMc.ovveuirieireninisenieeessssssssssssessessssssnens 30

Creating an Object Type Definition (OTD)
Writing Code to Access a Sun JCA Adapter

Classes and Methods in the Enterprise Connector Business Object APl Package 43
The BusinessObject Class

The BusinessObjeCtProvider ClASSoociieieeeeeeieeeeeeeereeereseere e seseseeseseseesenseseseseseneesessnens 45
The COMMANG CLASS ..uvuveeeieieieeieieieiiieeeieie ettt b et ae s s sss s s se b s e s s ssssssssssetebesessssnsnanns 46
The DeleteCommand CLaSSccceuveeecererereiieee ettt s s bbb bbb sss st b besesesananes 46
The INSertCommand CLaSSccvvvririeeereiririririreeeeeiesessesasssssssss e sessssssssssssssesesesessssssssssssesesssssnsnees

The SESSTONCONTEXT ClASS .vovevvevieieieiietetereteteeeeee ettt es st s s sesebe s s s s st esesesesesnanans
The TransactionManager Class
The UpdateCommand CIASScoceeeveeeeereeieeerceeeeseee et eeeseeresessesessssesessesessesssessesessesessssssensesesssesensens

Preface

This guide explains how to develop Enterprise Connectors for Sun Java System Mobile
Enterprise Platform 1.0.

MEP is a comprehensive mobility solution that enables offline data access, data
synchronization, and secure access to EIS/EAT applications such as Siebel and SAP.

MEDP is based entirely upon open standards, including the following:
® Java Platform, Mobile Edition (Java ME)

= Java Platform, Enterprise Edition (Java EE)

= The dominant industry standard OMA DS, formerly known as SyncML. The specifications
for Open Mobile Alliance Data Synchronization V1.1.2 and V1.2.1 are available at
http://www.openmobilealliance.org/Technical/release program/ds v112.aspx and
http://www.openmobilealliance.org/Technical/release program/ds v12.aspx.

Who Should Use This Book

This guide is intended for developers who have experience creating Java applications.

How This Book Is Organized

This book contains the following chapters:

= Chapter 1, “Introduction to Enterprise Connectors”
= Chapter 2, “Creating an Enterprise Connector”
= Chapter 3, “Classes and Methods in the Enterprise Connector Business Object API Package’

>

http://www.openmobilealliance.org/Technical/release_program/ds_v112.aspx
http://www.openmobilealliance.org/Technical/release_program/ds_v12.aspx

Preface

Mobile Enterprise Platform Documentation Set

The Mobile Enterprise Platform documentation set is available at
http://docs.sun.com/coll/1780.1. To learn about Mobile Enterprise Platform, refer to the
books listed in the following table.

TABLEP-1 Books in the Mobile Enterprise Platform Documentation Set

BookTitle

Description

Sun Java System Mobile Enterprise
Platform 1.0 Release Notes

Late-breaking information about the software and the documentation. Includes a
comprehensive summary of the supported hardware, operating systems, application server,
Java™ Development Kit (JDK™), databases, and EIS/EAI systems.

Sun Java System Mobile Enterprise
Platform 1.0 Architectural Overview

Introduction to the architecture of Mobile Enterprise Platform.

Sun Java System Mobile Enterprise
Platform 1.0 Installation Guide

Installing the software and its components, and running a simple application to verify that
installation succeeded.

Sun Java System Mobile Enterprise
Platform 1.0 Deployment Guide

Deployment of applications and application components to Mobile Enterprise Platform.

Sun Java System Mobile Enterprise
Platform 1.0 Developer’s Guide for
Client Applications

Creating and implementing Java Platform, Mobile Edition (Java ME platform) applications
for Mobile Enterprise Platform that run on mobile devices.

Sun Java System Mobile Enterprise
Platform 1.0 Developer’s Guide for
Enterprise Connectors

Creating and implementing Enterprise Connectors for Mobile Enterprise Platform intended
to run on Sun Java System Application Server.

Sun Java System Mobile Enterprise
Platform 1.0 Administration Guide

System administration for Mobile Enterprise Platform, focusing on the use of the MEP
Administration Console.

Application Server Documentation Set

When you install MEP, it is deployed to Sun Java System Application Server 9.1 Update 2.

The Application Server documentation set describes deployment planning and system
installation. The Uniform Resource Locator (URL) for Application Server documentation is
http://docs.sun.com/coll/1343.5. For an introduction to Application Server, refer to the
books in the order in which they are listed in the following table.

TABLEP-2 Books in the Application Server Documentation Set

BookTitle

Description

Documentation Center

Application Server documentation topics organized by task and subject.

6 Sun Java System Mobile Enterprise Platform 1.0 Developer's Guide for Enterprise Connectors « July 2008

http://docs.sun.com/coll/1780.1
http://docs.sun.com/doc/820-3749
http://docs.sun.com/doc/820-3749
http://docs.sun.com/doc/820-3751
http://docs.sun.com/doc/820-3751
http://docs.sun.com/doc/820-3750
http://docs.sun.com/doc/820-3750
http://docs.sun.com/doc/820-3752
http://docs.sun.com/doc/820-3752
http://docs.sun.com/doc/820-3753
http://docs.sun.com/doc/820-3753
http://docs.sun.com/doc/820-3753
http://docs.sun.com/doc/820-3754
http://docs.sun.com/doc/820-3754
http://docs.sun.com/doc/820-3754
http://docs.sun.com/doc/820-3755
http://docs.sun.com/doc/820-3755
http://docs.sun.com/coll/1343.5

Preface

TABLEP-2 Books in the Application Server Documentation Set (Continued)
BookTitle Description
Release Notes Late-breaking information about the software and the documentation. Includes a

comprehensive, table-based summary of the supported hardware, operating system, Java
Development Kit (JDK), and database drivers.

Quick Start Guide

How to get started with the Application Server product.

Installation Guide

Installing the software and its components.

Deployment Planning Guide

Evaluating your system needs and enterprise to ensure that you deploy the Application Server
in a manner that best suits your site. General issues and concerns that you must be aware of
when deploying the server are also discussed.

Application Deployment Guide

Deployment of applications and application components to the Application Server. Includes
information about deployment descriptors.

Developer’s Guide Creating and implementing Java Platform, Enterprise Edition (Java EE platform) applications
intended to run on the Application Server that follow the open Java standards model for Java
EE components and APIs. Includes information about developer tools, security, debugging,
and creating lifecycle modules.

Java EE 5 Tutorial Using Java EE 5 platform technologies and APIs to develop Java EE applications.

Java WSIT Tutorial Developing web applications using the Web Service Interoperability Technologies (WSIT).

Describes how, when, and why to use the WSIT technologies and the features and options
that each technology supports.

Administration Guide

System administration for the Application Server, including configuration, monitoring,
security, resource management, and web services management.

High Availability Administration
Guide

Post-installation configuration and administration instructions for the high-availability
database.

Administration Reference

Editing the Application Server configuration file, domain.xml.

Upgrade and Migration Guide

Upgrading from an older version of Application Server or migrating Java EE applications
from competitive application servers. This guide also describes differences between adjacent
product releases and configuration options that can result in incompatibility with the product
specifications.

Performance Tuning Guide

Tuning the Application Server to improve performance.

Troubleshooting Guide

Solving Application Server problems.

Error Message Reference

Solving Application Server error messages.

Reference Manual

Utility commands available with the Application Server; written in man page style. Includes
the asadmin command line interface.

Preface

Typographic Conventions

The following table describes the typographic changes that are used in this book.

TABLEP-3 Typographic Conventions

Typeface

Meaning

Example

AaBbCc123

AaBbCc123

AaBbCc123

AaBbCcl23

The names of commands, files, and
directories, and onscreen computer
output

What you type, contrasted with onscreen
computer output

A placeholder to be replaced with a real
name or value

Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Edit your .login file.

Use s -a to list all files.
machine name% you have mail.
machine_nameS% su

Password:

The command to remove a file is rm filename.

Read Chapter 6 in the User's Guide.
A cacheis a copy that is stored locally.

Do not save the file.

Symbol Conventions

The following table explains symbols that might be used in this book.

TABLEP-4 Symbol Conventions

Symbol Description Example Meaning

[1 Contains optional arguments 1s [-1] The -1 option is not required.
and command options.

{1} Contains a set of choices fora -d {y|n} The -d option requires that you use
required command option. either the y argument or the n

argument.

${ 3} Indicates a variable ${com.sun.javaRoot} References the value of the
reference. com.sun.javaRoot variable.

- Joins simultaneous multiple ~ Control-A Press the Control key while you press
keystrokes. the A key.

+ Joins consecutive multiple Ctrl+A+N Press the Control key, release it, and
keystrokes. then press the subsequent keys.

8 Sun Java System Mobile Enterprise Platform 1.0 Developer's Guide for Enterprise Connectors « July 2008

Preface

TABLEP-4 Symbol Conventions (Continued)
Symbol Description Example Meaning
- Indicates menu item File — New — Templates From the File menu, choose New.
selection in a graphical user From the New submenu, choose
interface. Templates.

Documentation, Support, and Training

The Sun web site provides information about the following additional resources:

® Documentation (http://www.sun.com/documentation/)
= Support (http://www.sun.com/support/)
= Training (http://www.sun.com/training/)

Searching Sun Product Documentation

Besides searching Sun product documentation from the docs.sun.com®™ web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com
For example, to search for “broker,” type the following:
broker site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use sun. comin place of docs. sun. comin the search field.

Third-Party Web Site References

Third-party URLs are referenced in this document and provide additional, related information.

Note - Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://java.sun.com
http://www.sun.com
http://developers.sun.com

Preface

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.comand click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the part number of this book is 820-3754.

10 Sun Java System Mobile Enterprise Platform 1.0 Developer's Guide for Enterprise Connectors « July 2008

http://docs.sun.com

L K R 4 CHAPTER 1

Introduction to Enterprise Connectors

Sun Java System Mobile Enterprise Platform (MEP) includes a library, the Enterprise
Connector Business Object (ECBO) AP]J, that enables development of objects that provide an
interface between data on mobile client devices and data stored in a database or an EIS/EAI
system. This library, in conjunction with the Mobile Client Business Object (MCBO) API,
provides a complete solution that allows you to synchronize arbitrary enterprise data between a
client device and a database or EIS/EAI system, using a Gateway Engine deployed on the Sun
Java System Application Server that acts as an intermediary.

Although the MCBO and ECBO APIs are based on Open Mobile Alliance Data
Synchronization (OMA DS), you do not need to know specifics of OMA DS in order to use the
APIs. The ECBO API also depends upon Java Content Repository (JCR) technology as defined
by JSR-170 (http://jcp.org/aboutJava/communityprocess/final/jsrl70/index.html),
but it hides the complexity of this technology from the developer.

About the Enterprise Connector Business Object (ECBO) API

The Enterprise Connector Business Object (ECBO) API provides classes and methods that
allow you to create an Enterprise Connector, which is a Java artifact that consists of extensions
of five classes compiled and packaged into a JAR file along with a resource file.

The methods you implement in your connector are called by the MEP libraries deployed on the
Gateway Engine. In this respect, the ECBO API is more like a Service Provider Interface (SPI)
than an Application Programmer Interface (API).

Each connector defines a particular business object whose data is to be synchronized. It also
defines commands and operations that allow the connector to perform Create, Retrieve,
Update, and Delete (CRUD) operations on the business objects.

The five classes you must implement are called BusinessObject, BusinessObjectProvider,
InsertCommand, UpdateCommand, and DeleteCommand. The BusinessObjectProvider class

http://jcp.org/aboutJava/communityprocess/final/jsr170/index.html

Packaging and Deploying Enterprise Connectors

provides a method to perform the retrieve operation. Chapter 2, “Creating an Enterprise
Connector,” describes in detail how to implement these classes.

The resource file is an XML file that is used by the underlying JCR implementation. It defines a
repository name, a workspace name, and a few node types. All Enterprise Connectors use the
same set of node types.

The data to be synchronized takes the form of arbitrary Java objects. The way in which these
Java objects are serialized is open-ended and is part of the contract between an Enterprise
Connector and its corresponding Java ME client. It is recommended that you use a format that
supports data versioning.

Packaging and Deploying Enterprise Connectors

12

To package an Enterprise Connector, compile the five Java classes and then place them in a JAR
file along with the resource file. To see how the sample Enterprise Connectors provided with
MEP are packaged, use the jar command to view the contents of any of the following files in the
lib directory of the Application Server domain for MEP:

ds-jcr-musicdb.jar
ds-jcr-sap-eway.jar
ds-jcr-siebel-eway.jar

The same Enterprise Connector works equally well in a one-tier or two-tier MEP installation.
(See “MEP Architecture” in Sun Java System Mobile Enterprise Platform 1.0 Architectural
Overview for details on these two types of installation.) To deploy the Enterprise Connector,
place it in the lib directory of the Application Server domain that contains your MEP
installation.

Figure 1-1 shows the location of the Enterprise Connector in a single-tier deployment. The
Gateway Engine communicates with the Enterprise Connector using the Java Content
Repository (JCR) API. The Enterprise Connector in turn communicates with an EIS/EAI
system using a Sun JCA Adapter (JCA stands for Java Connector Architecture).

There are other uses for an Enterprise Connector in addition to communicating with an
EIS/EAI system using a Sun JCA Adapter. For example, you can use it in the following ways:

= To store data in a database using the JDBC API
= To store data on the file system
= Toaccessan EIS/EAI system using JAX-WS

Sun Java System Mobile Enterprise Platform 1.0 Developer's Guide for Enterprise Connectors « July 2008

http://docs.sun.com/doc/820-3751/ggfej?a=view
http://docs.sun.com/doc/820-3751/ggfej?a=view

Packaging and Deploying Enterprise Connectors

A
MCBO
v
Sync Library |¢——

Mobile I

Dot OMA
evice 8 DS/HTTP(S)

File Store
Single Tier
v
JPA OA Gateway JCR
< <+
Sync DB A A
JCA ECEO

Sun JCA Connector
Adapter Library

T

Proprietary

O mep Components ¢
| Application Components -
O Enterprise Data “
—» APIs
—» Protocols

FIGURE 1-1 An Enterprise Connector in a Single-tier MEP Deployment

In a two-tier MEP deployment, the Enterprise Connector is deployed on the second tier, as
shown in Figure 1-2. In this situation, communication between the Gateway Engine and the
Enterprise Connector goes through a web service. The Gateway Engine communicates with the
web service client using the Java Content Repository (JCR) API. The web service client
communicates with the web service endpoint using SOAP/HTTPS. Finally, the web service
endpoint communicates with the Enterprise Connector using the JCR APL

Chapter 1 « Introduction to Enterprise Connectors 13

Packaging and Deploying Enterprise Connectors

14

A
MCBO
v
Sync Library |«——

Mobile I

Devi OMA
evice 8 DSHTTP(S)

File Store

Gateway Tier

o) v
JPA 38K Gateway | _JCR
8

Sync DB
f

SOAP/HTTP(S)

0 MEP Components Enterprise Tier
ot WS Connector
O Application Components Endoom,
O Enterprise Data A
JgR

—» APIs
—» Protocols

4 4
JCA ECBO
- (o
 Proprietary | Sun JCA Connector
« 7| Adapter Library

FIGURE1-2 An Enterprise Connector in a Two-tier MEP Deployment

To configure your deployed Enterprise Connector, use the MEP Admin Console. For details,
see “Using the Connectors Tab” in Sun Java System Mobile Enterprise Platform 1.0
Administration Guide.

Sun Java System Mobile Enterprise Platform 1.0 Developer's Guide for Enterprise Connectors « July 2008

http://docs.sun.com/doc/820-3755/ggqlv?a=view
http://docs.sun.com/doc/820-3755/ggqlv?a=view

CHAPTER 2

Creating an Enterprise Connector

A Mobile Enterprise Platform (MEP) Enterprise Connector typically extends five classes in the
Enterprise Connector Business Object (ECBO) API, along with an XML file that defines
parameters used by the underlying Java Content Repository (JCR) implementation.

For details on the ECBO API classes and methods, see Chapter 3, “Classes and Methods in the
Enterprise Connector Business Object API Package” The API documentation is also included
in the MEP client bundle. In the directory where you unzipped the client bundle (see the Sun
Java System Mobile Enterprise Platform 1.0 Installation Guide for details), it is in the
subdirectory sjsmep-client-1_0_02-fcs/doc/ecbo/api.

This chapter uses the MusicDB sample application provided with MEP to demonstrate how to
use the ECBO API. The Enterprise Connector in this application acts as the intermediary
between a client on a mobile device and a database. For this simple demo application, the
database is not a full-fledged EIS/EAT system but an ordinary database that is accessed using the
Java Database Connectivity (JDBC) API.

The source code for the MusicDB Enterprise Connector is included in the MEP client bundle.
In the directory where you unzipped the client bundle, it is in the subdirectory
sjsmep-client-1 0 02-fcs/samples/ecbo/.

This chapter covers the following topics:

= “Packages in the Enterprise Connector Business Object API” on page 16

= “Extendingthe BusinessObject Class” on page 17

“Extending the BusinessObjectProvider Class” on page 22

“Extending the TransactionManager Class” on page 27

“Extending the InsertCommand, UpdateCommand, and DeleteCommand Classes” on page 28
= “Creating the Resource File for an Enterprise Connector” on page 29

= “Accessinga Sun JCA Adapter for an EIS/EAI System” on page 30

http://docs.sun.com/doc/820-3750
http://docs.sun.com/doc/820-3750

Packages in the Enterprise Connector Business Object API

Packages in the Enterprise Connector Business Object API

The Enterprise Connector Business Object (ECBO) API contains the following classes:

com.sun.mep.connector.api.BusinessObject is the base class for all business objects.
Business objects are the entities synchronized with client applications. The fields of the
Enterprise Connector business object must match those of the business object for the
corresponding client application.

com.sun.mep.connector.api.BusinessObjectProvider is a provider class for instances of
BusinessObject.

com.sun.mep.connector.api.Command is the base class for all business object commands.

com.sun.mep.connector.api.InsertCommand is the base class for the command that
inserts a business object into the database or EIS/EAI system.

com.sun.mep.connector.api.UpdateCommand is the base class for the command that
updates a business object in the database or EIS/EAI system.

com.sun.mep.connector.api.DeleteCommand is the base class for the command that
deletes a business object from the database or EIS/EAI system.

com.sun.mep.connector.api.SessionContext is a helper class used by
BusinessObjectProvider. It stores contextual information about the session in which a
BusinessObjectProvider is instantiated.

com.sun.mep.connector.api.TransactionManager is a helper class used by
BusinessObjectProvider. It supports methods for starting, stopping, and aborting
database transactions.

The MusicDB example implements its own versions of all of these classes except for
SessionContext. It uses the default implementation of SessionContext.

See Chapter 3, “Classes and Methods in the Enterprise Connector Business Object API
Package,” for summaries of the classes and methods in the ECBO API packages.

To synchronize data with an EIS/EAT system such as Siebel or SAP, your
BusinessObjectProvider implementation and the three command implementations will need
to call methods that access the Sun JCA Adapter for that system. These methods are provided by
the Sun Java Composite Application Platform Suite (Java CAPS). See “Accessing a Sun JCA
Adapter for an EIS/EAI System” on page 30 for details.

16 Sun Java System Mobile Enterprise Platform 1.0 Developer's Guide for Enterprise Connectors « July 2008

Extending the BusinessObject Class

Extending the BusinessObject Class

The BusinessObject class holds the data you need to synchronize. In addition to the required
properties name and extension, you specify properties and define getter and setter methods for
this data.

For details on this class, see “The BusinessObject Class” on page 43.

The name property is the most important BusinessObject property. This property defines the
identity of the business object. The name you specify must be unique within your database or
EIS/EAI system.

For the MusicDB example, the class that extends BusinessObject is MusicAlbum. The source
file MusicAlbum. java begins by importing Java SE packages, along with com.synchronica
logging packages and the required ECBO API classes:

package com.sun.mep.connector.jdbc.album;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.IOException;

import java.sql.Connection;

import java.util.Calendar;

import com.synchronica.logging.Loggers;
import com.synchronica.logging.Logger;
import com.sun.mep.connector.api.BusinessObject;
import com.sun.mep.connector.api.InsertCommand;
import com.sun.mep.connector.api.UpdateCommand;
import com.sun.mep.connector.api.DeleteCommand;

The class code itself begins by declaring a string value and setting up a logger:
public class MusicAlbum extends BusinessObject<MusicAlbumProvider> {
private static final String DEFAULT VALUE = "$$defaults$s”;
static Logger logger = Loggers.getLogger(MusicAlbum.class);

This example then declares its data properties (there are only three in addition to the name
property):

/**
* Album’s artist.
*/

Chapter2 - Creating an Enterprise Connector 17

Extending the BusinessObject Class

String artist;

/**

* Date when the album was published.
*/
Calendar datePublished;

/**

* Album’s rating from 1 to 5.
*/

int rating;

The file then declares a StringBuilder and defines the one-argument constructor, which takes
the MusicAlbumProvider as its argument:

/**

* String builder used to return SQL commands.

*/
StringBuilder stringBuilder = new StringBuilder();

public MusicAlbum(MusicAlbumProvider provider) {
super(provider);

}

Now the class implements its getter and setter methods for the artist, rating, and
datePublished properties:

public String getArtist() {
return artist;

public void setArtist(String artist) {
this.artist = artist;

public int getRating() {
return rating;

public void setRating(int rating) {
this.rating = rating;

/**

* Returns the date published as a string in the format
* "YYYYMMDD ' .

*/

public String getDatePublished() {

18 Sun Java System Mobile Enterprise Platform 1.0 Developer's Guide for Enterprise Connectors « July 2008

Extending the BusinessObject Class

stringBuilder.setlLength(0);
stringBuilder.append(datePublished.get(Calendar.YEAR));
int month = datePublished.get(Calendar.MONTH) + 1;
if (month < 10) {

stringBuilder.append(’'0’);
}
stringBuilder.append(month);
int day = datePublished.get(Calendar.DAY OF MONTH);
if (day < 10) {

stringBuilder.append('0’);
}
stringBuilder.append(day);
return stringBuilder.toString();

/**
* Set the date published in the format 'YYYYMMDD'.
*/
public void setDatePublished(String date) {
datePublished = Calendar.getInstance();
datePublished.set(Calendar.YEAR,
Integer.parselnt(date.substring(0, 4)));
datePublished.set(Calendar.MONTH,
Integer.parseInt(date.substring(4, 6)) - 1);
datePublished.set(Calendar.DAY OF MONTH,
Integer.parseInt(date.substring(6, 8)));
}

The class implements the getExtension method by specifying . alb as the file extension for
MusicAlbum objects. This extension must match the extension used by the client.

@Override
public String getExtension() {
return ".alb";

}

The class does not implement its own versions of the getName and setName methods; instead, it
uses the versions defined in the BusinessObject class.

The class uses Java Serialization to implement the serialize and deserialize methodsas
follows. Note the calls to the BusinessObject versions of getName and setName in addition to
the getter and setter methods defined by MusicAlbum. The format used in the serialize and
deserialize methods is part of the contract between the client and the Enterprise Connector.

public byte[] serialize() throws IOException {

ByteArrayOutputStream out = new ByteArrayOutputStream();
DataOutputStream dOut = new DataOutputStream(out);

Chapter2 - Creating an Enterprise Connector 19

Extending the BusinessObject Class

dOut.writeUTF(getName());

dOut.writeUTF(getArtist() != null ? getArtist() : DEFAULT VALUE);
dOut.writeUTF(getDatePublished() != null ? getDatePublished() : DEFAULT VALUE);
dOut.writeUTF(Integer.toString(getRating()));

dOout.flush();

return out.toByteArray();

public void deserialize(byte[] array) throws IOException {

}

ByteArrayInputStream in = new ByteArrayInputStream(array);
DataInputStream dIn = new DataInputStream(in);

setName (dIn.readUTF());

artist = dIn.readUTF();

if (artist.equals(DEFAULT VALUE)) {
artist = null;

}

String date = dIn.readUTF();

if (date.equals(DEFAULT VALUE)) {
datePublished = null;

}

else {
setDatePublished(date);

}

rating = Integer.parseInt(dIn.readUTF());

The class implements the getInsertCommand, getUpdateCommand, and getDeleteCommand
methods using the constructors specific to this business object:

/**

* {@inheritDoc}

@Override
public MusicAlbumInsertCommand getInsertCommand() {

/**

* {@inheritDoc}

return new MusicAlbumInsertCommand(this, getSQLConnection(),
getInsertString());

@Override
public MusicAlbumUpdateCommand getUpdateCommand() {

return new MusicAlbumUpdateCommand(this, getSQLConnection(),
getUpdateString());

20 Sun Java System Mobile Enterprise Platform 1.0 Developer's Guide for Enterprise Connectors « July 2008

Extending the BusinessObject Class

/**

* {@inheritDoc}

*/
@Override
public MusicAlbumDeleteCommand getDeleteCommand() {

return new MusicAlbumDeleteCommand(this, getSQLConnection(),
getDeleteString());
}

One of the constructor arguments for each command is the value returned by a helper method
(getInsertString,getUpdateString,getDeleteString)thatgenenﬂesanS()Lstaunnent
string. These methods are implemented as follows:

/**
* Returns an SQL insert statement to add this instance
* to the database.
*/
public String getInsertString() {
stringBuilder.setLength(Q);
stringBuilder.append("INSERT INTO album VALUES ('")
.append(getName()).append("’,"")
.append(artist) .append("’, DATE '")
.append(datePublished.get (Calendar.YEAR)).append("-")
.append(datePublished.get(Calendar.MONTH) + 1).append("-")
.append(datePublished.get(Calendar.DAY OF MONTH)).append("’,")
.append(Integer.toString(rating)).append(")")
.append(getBusinessObjectProvider().getUsername()).append("’)");
return stringBuilder.toString();

/**
* Returns an SQL update statement to modify this instance
* in the database.
*/
public String getUpdateString() {
stringBuilder.setLength(Q);
stringBuilder.append("UPDATE album SET artist="")
.append(artist).append("’, date published=DATE ")
.append(datePublished.get(Calendar.YEAR)).append("-")
.append(datePublished.get (Calendar.MONTH) + 1).append("-")
.append(datePublished.get(Calendar.DAY OF MONTH)).append("’, rating=")
.append(Integer.toString(rating))
.append (" WHERE name = '").append(getName())
.append("’ AND username = '" + getBusinessObjectProvider().getUsername() +
"y

return stringBuilder.toString();

Chapter2 - Creating an Enterprise Connector 21

Extending the BusinessObjectProvider Class

/**
* Returns an SQL delete statement to remove this instance
* from the database.
*/
public String getDeleteString() {
stringBuilder.setlLength(Q);
stringBuilder.append("DELETE FROM album WHERE name = '")
.append(getName())
.append("’ AND username =
+ getBusinessObjectProvider().getUsername() + "'");
return stringBuilder.toString();

o

}

You may notice that the SQL statements show an additional column, username, in the
database's album table in addition to columns for the MusicAlbum class's properties (name,
artist,datePublished, and rating). The username column and the name column provide a
composite primary key for the album table. The username column identifies the owner of an
album and allows the MusicAlbumProvider.getBusinessObjects method to return only the
albums for a particular user, so that multiple users can share the album table.

An additional method, getSelectString, is provided for testing purposes.

Another constructor argument for the commands is the value returned by another helper
method, getSQLConnection, which returns a JDBC Connection object created by the
MusicAlbumProvider class.

/**
* Returns a connection object that can be used to
* execute SQL commands.
*/
public Connection getSQLConnection() {
return getBusinessObjectProvider().getSQLConnection();

}

Extending the BusinessObjectProvider Class

The BusinessObjectProvider class serves several purposes:

= [tallows you to retrieve all the business objects from a database by calling the
getBusinessObjects () method.

= Jtallows you to create new business objects by calling the newBusinessObject () method.

= It provides access to a transaction manager and a session context.
For details on this class, see “The BusinessObjectProvider Class” on page 45.
For the MusicDB example, the class that extends BusinessObjectProvider is

MusicAlbumProvider. Like the file for the MusicAlbum class, the MusicAlbumProvider. java

22 Sun Java System Mobile Enterprise Platform 1.0 Developer's Guide for Enterprise Connectors « July 2008

Extending the BusinessObjectProvider Class

source file begins by importing Java SE packages, along with com.synchronicalogging
packages and the required ECBO API classes. It then begins by setting up a logger and declaring
some string constants, a JDBC connection object, its implementation of the
TransactionManager class, and a user name object:

public class MusicAlbumProvider extends BusinessObjectProvider<MusicAlbum> {
static Logger logger = Loggers.getlLogger(MusicAlbumProvider.class);

public static final String REPOSITORY NAME = "MusicDbRepository"
public static final String MUSICDB JNDI DATASOURCE = "jdbc/musicdb”;
public static final String DB USER NAME = "musicdbuser";

public static final String DB USER PASS = "musicdbpass";

Connection sqlConnection = null;

MusicAlbumTransactionManager transactionManager;

String username;

The REPOSITORY_NAME value is identical to the repository name specified in the resource file for
the Enterprise Connector. In the MusicDB sample, the resource file is named
MusicDbRepository.xml and defines a repository named MusicDbRepository.

The code implements two forms of the business object constructor: the no-argument
constructor specified by the API and a one-argument form that takes a user name as argument
for testing purposes.

Next, the code implements the two lifecycle methods for the BusinessObjectProvider class,
initialize and terminate, which coincide with the start and end of a synchronization session.

The initialize method allocates resources required for a synchronization session or for
database authentication. In this case, the code does the following:

= Looksup a]JDBC datasource.

= Retrieves the username value from the SessionContext for use in updating the album table
in the database.

= Obtains a JDBC connection using the credentials established for the MusicDB database
when it was created.

= Instantiates a transaction manager.

/**
* Creates a connection to the {@link #MUSICDB JNDI DATASOURCE}
* database.
*/

@Override

public void initialize() {

Chapter2 - Creating an Enterprise Connector 23

Extending the BusinessObjectProvider Class

logger.debug("Initializing provider " + this);
try {
Context jndiContext = new InitialContext();
DataSource ds = null;

// If unable to get INDI datasource, use local one for testing

try {
ds = (DataSource) jndiContext.lookup(MUSICDB JNDI DATASOURCE);

}
catch (NoInitialContextException e) {

ds = new MusicDbDataSource(); // testing only!
}

// Get database credentials from provider’s context
SessionContext sessionContext = getSessionContext();
username = sessionContext.getUsername();

// Get connection using default credentials
sqlConnection = ds.getConnection(DB_USER NAME, DB USER PASS);

// Init transaction manager

transactionManager = new MusicAlbumTransactionManager();
}
catch (Exception ex) {

throw new RuntimeException(ex);

}

The implementation of the terminate method releases any resources allocated by the
initialize method. In this case, it closes the JDBC connection.

/**
* Closes a connection to the {@link #MUSICDB JNDI DATASOURCE}
* database.

*/

@Override

public void terminate() {

logger.debug("Terminating provider

+ this);

try {
if (sqlConnection != null) {
sqlConnection.close();

}

catch (Exception e) {
throw new RuntimeException(e);

24 Sun Java System Mobile Enterprise Platform 1.0 Developer's Guide for Enterprise Connectors « July 2008

Extending the BusinessObjectProvider Class

The implementation of the getRepositoryName method specifies the string value declared at
the beginning of the class. The repository in question is the JCR repository that is used for
communication between the Gateway Engine and the Enterprise Connector and that is
specified by the resource file.

/**
* {@inheritDoc}
*/
@Override
public String getRepositoryName() {
return REPOSITORY NAME;
}

The implementation of the getBusinessObjects method uses a JDBC query to retrieve all the
albums for the user username from the database, instantiates a MusicAlbum object for each
retrieved album, and adds it to an ArrayList of albums.

/**
* {@inheritDoc}
*/
@Override
public List<MusicAlbum> getBusinessObjects() {
logger.debug("Getting objects from provider

+ this);

Statement stmt = null;
List<MusicAlbum> albums = null;

try {
stmt = sqlConnection.createStatement();

// Read all music albums and store them in array
albums = new ArrayList<MusicAlbum>();
ResultSet rs = stmt.executeQuery(
"SELECT * FROM album WHERE username = '" + username + "'");
while (rs.next()) {
MusicAlbum album = new MusicAlbum(this);
album.setName(rs.getString(1));
album.setArtist(rs.getString(2));
album.setDatePublished(rs.getString(3).replace("-", ""));
album.setRating(rs.getInt(4));
albums.add(album);
}
rs.close();
} catch (Exception ex) {
throw new RuntimeException(ex);
} finally {
if (stmt != null) {
try { stmt.close(); } catch (Exception e) { /* ignore !*/ }

Chapter2 - Creating an Enterprise Connector 25

Extending the BusinessObjectProvider Class

}

return albums;

}

The implementation of the newBusinessObject method is much simpler: it calls the
one-argument constructor for MusicAlbum.

/**
* {@inheritDoc}
*/
@Override
public MusicAlbum newBusinessObject() {
return new MusicAlbum(this);

}

The provider class also implements the helper method getSQLConnection, which returns the
JDBC connection that was instantiated by the initialize method. This method is called by the
MusicAlbum class.

/**
* Returns a connection object that can be used to
* execute SQL commands.
*/
public Connection getSQLConnection() {
return sqlConnection;

}

The provider class also implements a getUsername method that is called by the MusicAlbum
class's utility methods:

/**
* Returns the user name logged into the session that
* created this provider.
*/
public String getUsername() {
return username;

}

The getTransactionManager method retrieves the MusicAlbumTransactionManager thatis
declared at the beginning of the file, instantiated in the initialize method, and implemented
within the MusicAlbumProvider. java file.

/**
* Returns a transaction manager that uses JDBC to start,
* stop and abort transactions.
*/

@Override

26 Sun Java System Mobile Enterprise Platform 1.0 Developer's Guide for Enterprise Connectors « July 2008

Extending the TransactionManager Class

public MusicAlbumTransactionManager getTransactionManager() {
return transactionManager;

Extending the TransactionManager Class

The MusicAlbumProvider.java file includes the implementation of the TransactionManager
class. The TransactionManager class can be implemented in a separate file, but the
relationships between the two classes mean that it is simpler to keep them together. It is also
possible to use the default implementation of the TransactionManager class instead of
implementing it yourself.

For details on this class, see “The TransactionManager Class” on page 48.

The MusicDB implementation of this class is called MusicAlbumTransactionManager. This
class manages the database transactions for MusicAlbum objects using the JDBC APL. It turns
the database's auto-commit feature off if it has one and starts, stops, and aborts database
transactions. The class definition begins with the constructor, which takes no arguments.

public class MusicAlbumTransactionManager extends
TransactionManager<MusicAlbumProvider> {

public MusicAlbumTransactionManager() {
super(MusicAlbumProvider.this);

assert (sqlConnection != null);
try {
sqlConnection.setAutoCommit(false);

}
catch (SQLException e) {
// Ignore if not supported by DB

}

The abortTransaction method calls the JDBC Connection. rollback method:

@Override
public void abortTransaction() {
logger.debug("Aborting transaction on SQL connection
+ sqlConnection);

try {
sqlConnection.rollback();

}
catch (SQLException e) {
throw new RuntimeException(e);

Chapter2 - Creating an Enterprise Connector 27

Extending the InsertCommand, UpdateCommand, and DeleteCommand Classes

The beginTransaction and endTransaction methods are closely linked. The endTransaction
method commits the current transaction, an action that automatically starts the next
transaction. The beginTransaction method simply calls endTransaction.

@Override

public void beginTransaction() {
endTransaction(); // starts a new one

}

@Override

public void endTransaction() {
logger.debug("Starting/Committing transaction on SQL connection
+ sqglConnection);

try {
sqlConnection.commit();

}
catch (SQLException e) {
throw new RuntimeException(e);

Extending the InsertCommand, UpdateCommand, and
DeleteCommand Classes

The InsertCommand, UpdateCommand, and DeleteCommand classes all extend the Command class.

For details on these classes, see “The InsertCommand Class” on page 47, “The UpdateCommand
Class” on page 48, “The DeleteCommand Class” on page 46, and “The Command Class” on
page 46.

For the MusicDB example, the implementations of the three classes are almost identical. The
source files for the implementations are MusicAlbumInsertCommand. java,
MusicAlbumUpdateCommand. java, and MusicAlbumDeleteCommand.java.

Each source file begins by importing Java SE packages, along with com. synchronica logging
packages and the required ECBO API classes. It then begins by setting up alogger and declaring
two objects that are used by the constructor method and the execute method. For example,
MusicAlbumInsertCommand. java begins as follows:

public class MusicAlbumInsertCommand extends InsertCommand<MusicAlbum> {
static Logger logger = Loggers.getlLogger(MusicAlbumInsertCommand.class);
private String sqlStatement;

private Connection sqlConnection;

28 Sun Java System Mobile Enterprise Platform 1.0 Developer's Guide for Enterprise Connectors « July 2008

Creating the Resource File for an Enterprise Connector

The code then extends the class constructor. While the constructor for the base class takes one
argument, the constructor for each of the implementation classes takes three arguments: the
MusicAlbum, a string that represents a SQL statement, and a JDBC connection. For example, the
constructor for MusicAlbumUpdateCommand looks like this:

public MusicAlbumUpdateCommand(MusicAlbum album,
Connection sqlConnection, String sqlStatement)

{

super(album);

this.sqlConnection = sqlConnection;

this.sqlStatement = sqlStatement;

logger.debug("Creating instance " + this + ": " + sqlStatement);
}

Finally, the code for each command implements the execute method in exactly the same way.
First, it uses the instantiated connection to create a JDBC Statement object using the
instantiated string. Then it executes the statement.

public void execute() {
int result = 0;
Statement stmt = null;

try {
logger.debug ("Executing instance " + this +
stmt = sqlConnection.createStatement();
result = stmt.executeUpdate(sqlStatement);

+ sqlStatement);

}
catch (Exception ex) {
throw new RuntimeException(ex);

}
finally {
if (stmt != null) {
try { stmt.close(); } catch (Exception e) { /* ignore !*/ }
}
}

Creating the Resource File for an Enterprise Connector

The resource file that you need to package with an Enterprise Connector (as described in
“About the Enterprise Connector Business Object (ECBO) API” on page 11) is an XML file for
Jeceira, the implementation of JCR used by MEP. The name of the file typically refers to the
database or EIS/EAI system. For example, the resource file for MusicDB is named
MusicDbRepository.xml. The file begins and ends as follows:

<jeceira xmlns:nt="http://www.jcp.org/jcr/nt/1.0"
xmlns:jcr="http://www.jcp.org/jcr/1.0"

Chapter2 - Creating an Enterprise Connector 29

Accessing a Sun JCA Adapter for an EIS/EAI System

xmlns:sync="http://www.synchronica.com/jcr/types"
xmlns:aprzv="http://www.aparzev.com/jrc/aprzv"
xmlns:udc="http://www.synchronica.com/udc/types/1.0">
<repositories>

<repository name="MusicDbRepository">

<workspaces>
<workspace name="MusicDbWorkspace" />
</workspaces>

</repository>
</repositories>
</jeceira>

All resource files are identical except for two values:

® The name attribute of the repository element, in this case MusicDbRepository
®= The name attribute of the workspace element, in this case MusicDbWorkspace

To create your own resource file, you can copy the resource file from the sample Enterprise
Connector source directory, rename it, and modify these two values. In the unzipped client
bundle, you can find the file in

sjsmep-client-1 0 02-fcs/samples/ecbo/src/MusicDbRepository.xml.

You use these values when you configure the Enterprise Connector in the MEP Admin Console.
See “Using the Connectors Tab” in Sun Java System Mobile Enterprise Platform 1.0
Administration Guide for details.

Accessing a Sun JCA Adapter for an EIS/EAI System

30

If you are designing your Enterprise Connector to access an EIS/EAI system instead of a
database, the connector must access the Sun JCA Adapter for that system instead of making
JDBC calls.

You must first create an Object Type Definition (OTD) that maps your business object
properties to data on the EIS/EAI system. To create the OTD, you need to use the NetBeans IDE
with plugins that are provided with MEP.

After you create the OTD, use the NetBeans code completion feature to call methods on the
classes generated by the OTD wizard.

This section covers the following topics:

= “Creating an Object Type Definition (OTD)” on page 31
= “Writing Code to Access a Sun JCA Adapter” on page 32

Sun Java System Mobile Enterprise Platform 1.0 Developer's Guide for Enterprise Connectors « July 2008

http://docs.sun.com/doc/820-3755/ggqlv?a=view
http://docs.sun.com/doc/820-3755/ggqlv?a=view

Accessing a Sun JCA Adapter for an EIS/EAI System

Creating an Object Type Definition (OTD)

For information on working with Sun JCA Adapters, see the Designing section of the Java CAPS
documentation (http://developers.sun.com/docs/javacaps/designing/). Specific
sections you will need to look at include the following:

® Technical Overview for Sun JCA Adapters (http://developers.sun.com/
docs/javacaps/designing/jcapssunjcaad.cnfg tech-ovrvw t.html)

= Object Type Definition Wizards
(http://developers.sun.com/docs/javacaps/designing/jcapssunjcaad.ggrbu.html)

The two middle sections on inbound and outbound JCA Resource Adapter client code are
not relevant to Enterprise Connectors.

To obtain the NetBeans plugins needed to create an OTD, follow the instructions in Installation
of Netbeans Modules (http://developers.sun.com/
docs/javacaps/designing/jcapssunjcaad.inst jca-adapter t.html). The
NetBeansModules referred to in these instructions are part of your MEP installation. In the
location where you unzipped the installation bundle sjsmep-1_0- fcs - operating-system . zip,
you will find them in the directory sjsmep-1_0-fcs/NetBeansModules. (The Java CAPS
documentation states that they are in the directory
AdapterPack/NetBeansModules/CommonLib, but for MEP they are in the directory
NetBeansModules/commonlib.)

To develop an OTD for your application, follow the instructions appropriate to your EIS/EAI
system in Developing OTDs for Application Adapters (http://developers.sun.com/
docs/javacaps/designing/dotdappadptr.dotdappadptr_intro.html).

The instructions for adapters supported by MEP are in the following sections:

m Creating SAP BAPI OTDs (http://developers.sun.com/
docs/javacaps/designing/dotdappadptr.dsgn_sap-bapi-otd t.html)

® Creating Siebel EAIOTDs (http://developers.sun.com/
docs/javacaps/designing/dotdappadptr.dsgn_siebel-eai-otd t.html)

= Using the Oracle Applications Wizard and JCA Adapter Tooling with an EJB Project
(http://developers.sun.com/
docs/javacaps/designing/jcapssunjcaad.cnfg oracleapps-wiz t.html)

An Enterprise Connector is a Sun JCA Adapter client application that is not an Enterprise
JavaBeans (EJB) component. You may find that you need to create the OTD and develop the
Enterprise Connector inside an EJB project. However, you should then remove the Enterprise
Connector and OTD from the EJB JAR file and place them in an ordinary JAR file before you
place the JAR file in the domains/mep/lib directory for the Application Server. The OTD is
generated in a separate JAR file, so it is easy to copy it to another project.

Chapter2 « Creating an Enterprise Connector

http://developers.sun.com/docs/javacaps/designing/
http://developers.sun.com/docs/javacaps/designing/
http://developers.sun.com/docs/javacaps/designing/jcapssunjcaad.cnfg_tech-ovrvw_t.html
http://developers.sun.com/docs/javacaps/designing/jcapssunjcaad.cnfg_tech-ovrvw_t.html
http://developers.sun.com/docs/javacaps/designing/jcapssunjcaad.ggrbu.html
http://developers.sun.com/docs/javacaps/designing/jcapssunjcaad.ggrbu.html
http://developers.sun.com/docs/javacaps/designing/jcapssunjcaad.inst_jca-adapter_t.html
http://developers.sun.com/docs/javacaps/designing/jcapssunjcaad.inst_jca-adapter_t.html
http://developers.sun.com/docs/javacaps/designing/jcapssunjcaad.inst_jca-adapter_t.html
http://developers.sun.com/docs/javacaps/designing/dotdappadptr.dotdappadptr_intro.html
http://developers.sun.com/docs/javacaps/designing/dotdappadptr.dotdappadptr_intro.html
http://developers.sun.com/docs/javacaps/designing/dotdappadptr.dsgn_sap-bapi-otd_t.html
http://developers.sun.com/docs/javacaps/designing/dotdappadptr.dsgn_sap-bapi-otd_t.html
http://developers.sun.com/docs/javacaps/designing/dotdappadptr.dsgn_siebel-eai-otd_t.html
http://developers.sun.com/docs/javacaps/designing/dotdappadptr.dsgn_siebel-eai-otd_t.html
http://developers.sun.com/docs/javacaps/designing/jcapssunjcaad.cnfg_oracleapps-wiz_t.html
http://developers.sun.com/docs/javacaps/designing/jcapssunjcaad.cnfg_oracleapps-wiz_t.html
http://developers.sun.com/docs/javacaps/designing/jcapssunjcaad.cnfg_oracleapps-wiz_t.html

Accessing a Sun JCA Adapter for an EIS/EAI System

32

Writing Code to Access a Sun JCA Adapter

To access a Sun JCA Adapter, your code needs to use Java CAPS APIs, which are documented at
http://developers.sun.com/docs/javacaps/reference/javadocs/index.jsp.

This section describes how to extend the ECBO classes to access a Sun JCA Adapter.

= “Extending the BusinessObjectProvider Class to Access a Sun JCA Adapter” on page 32

= “Extending the BusinessObject Class to Access a Sun JCA Adapter” on page 37

= “Extending the InsertCommand, UpdateCommand, and DeleteCommand Classes to Access a Sun
JCA Adapter” on page 40

The default implementation of the TransactionManager class may be sufficient for your
application.

Extending the BusinessObjectProvider Class to Access a Sun JCA
Adapter

To allow your Enterprise Connector to work with a Sun JCA Adapter, your
BusinessObjectProvider implementation needs to create a connection to the Adapter in its
initialize method, close that connection in its terminate method, and retrieve objects
through the Adapter in its getBusinessObject method.

For a SAP BAPI application, for example, you import the following packages:

import com.stc.connector.appconn.common.ApplicationConnectionFactory;
import com.stc.connector.appconn.common.ApplicationConnection;

import com.stc.connector.sapbapiadapter.appconn.SAPApplicationConnection;
import com.stc.util.OtdObjectFactory;

When you create a provider for a Customer business object, you declare objects like the
following. The customer.Customer class is generated by the OTD wizard.

public class CustomerProvider extends BusinessObjectProvider<Customer> {

public static final String SAP_JNDI DATASOURCE = "jcaps/sap";
public static final String REPOSITORY NAME = "SAPRepository";

private ApplicationConnectionFactory mJCAsapadapter = null;
private ApplicationConnection mJCAsapadapterConnection = null;
private customer.Customer mJCAsapcustomerCommObj = null;

The provider's initialize method then allocates these resources. It obtains an
ApplicationConnectionFactory object by means of a JNDI lookup, then uses the factory to
create the ApplicationConnection object. These method calls are the same no matter which
EIS/EAI system you are using:

Sun Java System Mobile Enterprise Platform 1.0 Developer's Guide for Enterprise Connectors « July 2008

http://developers.sun.com/docs/javacaps/reference/javadocs/index.jsp

Accessing a Sun JCA Adapter for an EIS/EAI System

@Override
public void initialize() {
logger.debug("Initializing provider " + this);

try {
InitialContext ic = new InitialContext();
// First get ApplicationConnectionFactory through JNDI lookup
mJCAsapadapter =
(ApplicationConnectionFactory) ic.lookup(SAP_JNDI DATASOURCE);

/* Then create ApplicationConnection. One AppConn can be dynamically
* allocated to a physical connection defined in connection pool;
* this results in connection reuse according to JCA and Appserver
* contract
*/
mJCAsapadapterConnection = mJCAsapadapter.getConnection();

The initialize method then usesthe OtdObjectFactory to create an instance of a SAP
customer communication object. Methods called on this object are specific to the SAP OTD.
ThecodecamsthegeneﬂcApplicationConnectionobﬁxtmJCAsapadapterConnectionto
another application connection specific to SAP:

/* Create Customer communication object
*/
mJCAsapcustomerCommObj =
(customer.Customer) OtdObjectFactory.createInstance(null,
"customer.Customer")

/* Set ApplicationConnection on Customer communication object
*/
mJCAsapcustomerCommObj.setAppConn(
(SAPApplicationConnection) mJCAsapadapterConnection);

The initialize method next uses the ECBO API SessionContext object to retrieve the user
name and password. It then uses these values to create user credentials specific to SAP, and
finally connects to the Sun JCA Adapter for SAP.

// Get backend credentials from provider’s context

SessionContext sessionContext = getSessionContext();

String param = sessionContext.getUsername();

if (param != null) {
mJCAsapcustomerCommObj.getSAPConnectionParams().setUserid(param);

}

param = sessionContext.getPassword();

if (param != null) {
mJCAsapcustomerCommObj .getSAPConnectionParams () .setPassword(param);

}

mJCAsapcustomerCommObj.connectWithNewParams () ;

Chapter2 - Creating an Enterprise Connector 33

Accessing a Sun JCA Adapter for an EIS/EAI System

ic.close();

}

catch (Exception ex) {
logger.debug("Initializing provider exception" + ex.getMessage());
throw new RuntimeException(ex);

}

The terminate method closes the connection created by the initialize method:

@Override
public void terminate() {
logger.debug("Terminating provider

+ this);

try {
if (mJCAsapadapterConnection != null) {
mJCAsapadapterConnection.close();
logger.info("terminate provider close connection"
+ mJCAsapadapterConnection.toString());

}

catch (Exception e) {
logger.debug("terminating provider exception" + e.getMessage());
throw new RuntimeException(e);

}

The provider code also implements a utility method, getSAPCustomerClient, which retrieves
the customer communication object:

/**
* @return SAPCustomerClient object that can be used to
* operate on a Customer BAPI.
*/
public customer.Customer getSAPCustomerClient() {
return mJCAsapcustomerCommObj;

}

The getBusinessObjects method uses the getSAPCustomerClient method to retrieve the SAP
customer data and store it in the Enterprise Connector's Customer object. It again calls methods
on the communication object generated by the OTD wizard.

@Override

//Retrieve all IDocs and map here between Customer and VendorAccount Object

public List<Customer> getBusinessObjects() {
logger.debug("Getting objects from provider

+ this);

34 Sun Java System Mobile Enterprise Platform 1.0 Developer's Guide for Enterprise Connectors « July 2008

Accessing a Sun JCA Adapter for an EIS/EAI System

HashMap<String, Customer> customerMap = new HashMap<String, Customer>();

try {

// Getting customer list
getSAPCustomerClient().getGetList().getIDRANGE(Q).setOPTION("CP")
getSAPCustomerClient().getGetList().getIDRANGE(Q).setLOW("*");
logger.info("Executing Customer with the following values Option " +

"[" + getSAPCustomerClient().getGetList().getIDRANGE(Q).getLOW()

+ "] option ["

+ getSAPCustomerClient().getGetList().getIDRANGE(Q).getOPTION() + "1");
getSAPCustomerClient().getGetList().execute();

// Process returned data and populate customer list
customer.Customer.GetList.ExportParams.RETURN ret =

getSAPCustomerClient().getGetList().getExportParams().getRETURN();
logger.info("Retrieved ["

+ getSAPCustomerClient().getGetList().countADDRESSDATA()

+ "] customers");

customer.Customer.GetList.ADDRESSDATA[] addressList =
getSAPCustomerClient().getGetList().getADDRESSDATA();

for (int i = 0; i < addressList.length; i++) {
customer.Customer.GetList.ADDRESSDATA addr = addressList[i];

// Ignore companies whose names start with "DELETED" -- hack
if ('addr.getNAME().startsWith("DELETED")) {
// Ignore customers whose names are repeated
if (customerMap.containsKey(addr.getNAME())) {
continue;

// Create a new Customer instance
Customer comp = new Customer(this);

// Set unique name for business object
comp.setName (addr.getNAME());

// Set customer number and name
comp.setCustomerNumber(addr.getCUSTOMER()) ;
comp.setCustomerName (addr.getNAME());

// Get sales area

getSAPCustomerClient().getGetSalesAreas().getImportParams()
.setCUSTOMERNO (comp .getCustomerNumber());

getSAPCustomerClient().getGetSalesAreas().execute();

String retNo = getSAPCustomerClient().getGetSalesAreas()
.getExportParams().getRETURN() .getMESSAGE() ;

String retMsg = getSAPCustomerClient().getGetSalesAreas()

Chapter2 - Creating an Enterprise Connector 35

Accessing a Sun JCA Adapter for an EIS/EAI System

.getExportParams().getRETURN() .getCODE();
logger.info("Return Number [" + retNo + "] retMsg ["
+ retMsg + "1.");
if (retNo.length() > 0) {
throw new RuntimeException(retMsg);

// Set sales related fields
comp.setSalesOrg(getSAPCustomerClient () .getGetSalesAreas()
.getSALESAREAS (0) .getSALESORG()) ;
comp.setDistChannel(getSAPCustomerClient().getGetSalesAreas()
.getSALESAREAS (0) .getDISTRCHN()) ;
comp.setDivision(getSAPCustomerClient () .getGetSalesAreas()
.getSALESAREAS (0) .getDIVISION());

// Get detail on customer
getSAPCustomerClient().getGetDetaill().getImportParams()
.setCUSTOMERNO (comp .getCustomerNumber());
getSAPCustomerClient().getGetDetaill().getImportParams()
.setPI SALESORG(comp.getSalesOrg());
getSAPCustomerClient().getGetDetaill().getImportParams()
.setPI DISTR CHAN(comp.getDistChannel());
getSAPCustomerClient().getGetDetaill().getImportParams()
.setPI DIVISION(comp.getDivision());
getSAPCustomerClient().getGetDetaill().execute();
retNo =
getSAPCustomerClient().getGetDetaill().getExportParams()
.getRETURN() .getMESSAGE() ;
retMsg =
getSAPCustomerClient().getGetDetaill().getExportParams()
.getRETURN() .getNUMBER() ;
logger.info("Return Number [" + retNo + "] retMsg ["
+ retMsg + "1.");
if (retNo.length() > 0) {
throw new RuntimeException(retMsg);

// Populate customer object data
customer.Customer.GetDetaill.ExportParams.PE_COMPANYDATA
currAddr = getSAPCustomerClient().getGetDetaill()
.getExportParams().getPE_COMPANYDATA() ;
comp.setCity(currAddr.getCITY());
comp.setPostalCode(currAddr.getPOSTL COD1());
comp.setStreet(currAddr.getSTREET());
comp.setCountryKey(currAddr.getCOUNTRY());
comp.setlLanguageKey (currAddr.getLANGU ISO());
comp.setRegion(currAddr.getREGION());
comp.setTelephone(currAddr.getTEL1 NUMBR());

36 Sun Java System Mobile Enterprise Platform 1.0 Developer's Guide for Enterprise Connectors « July 2008

Accessing a Sun JCA Adapter for an EIS/EAI System

comp.setFaxNumber (currAddr.getFAX NUMBER()) ;
comp.setCurrencyKey (currAddr.getCURRENCY());

customerMap.put(comp.getCustomerName(), comp);

}

return new ArrayList<Customer>(customerMap.values());

}
catch (Exception ex) {
throw new RuntimeException(ex);

}

The getRepositoryName and newBusinessObject methods have implementations very similar
to those in the MusicAlbumProvider class:

@Override
public String getRepositoryName() {
return REPOSITORY_ NAME;

@Override
public Customer newBusinessObject() {
return new Customer(this);

}

The other methods in the provider class use the default BusinessObjectProvider
implementation: getSessionContext, setSessionContect, and getTransactionManager.

Extending the BusinessObject Class to Access a Sun JCA Adapter

The BusinessObject class for an Enterprise Connector that accesses a Sun JCA Adapter may
have straightforward implementations of the BusinessObject methods, but it may also require
some additional utility methods. A SAP BAPI Customer object, for example, implements a large
number of getter and setter methods for its properties. Its serialize and deserialize
methods can be relatively simple.

The Customer object implementations of the getInsertCommand, getUpdateCommand, and
getDeleteCommand methods call the constructors for the command classes, as expected.
However, here the constructors take two arguments, and the second argument is the value
returned by a utility method.

/**
* {@inheritDoc}
*/
@Override
public CustomerInsertCommand getInsertCommand() {

Chapter2 - Creating an Enterprise Connector 37

Accessing a Sun JCA Adapter for an EIS/EAI System

return new CustomerInsertCommand(this, getInsertCustomer());

/x*
* {@inheritDoc}
*/
@Override
public CustomerUpdateCommand getUpdateCommand() {
return new CustomerUpdateCommand(this, getUpdateCustomer());

/**
* {@inheritDoc}
*/
@Override
public CustomerDeleteCommand getDeleteCommand() {
return new CustomerDeleteCommand(this, getDeleteCustomer());

}

The utility methods use the provider class's getSAPCustomerClient method to retrieve first the
customer communication object, and then the CreateFromDatal object. For example, the
getInsertCustomer method begins as follows:

/**
* Returns a Customer CreateFromDatal object to be used for insert.
*/
public customer.Customer.CreateFromDatal getInsertCustomer() {
customer.Customer.CreateFromDatal cfd = getBusinessObjectProvider()
.getSAPCustomerClient().getCreateFromDatal();

The rest of the getInsertCustomer method uses the CreateFromDatal object to assign the
Customer properties to the SAP BAPI customer object. Finally, it returns the CreateFromDatal
object.

// Set import parameters
cfd.getImportParams().getPI_COPYREFERENCE().setREF_CUSTMR(
CustomerProvider.REF_CUSTOMER) ;
cfd.getImportParams().getPI COPYREFERENCE().setSALESORG(getSalesOrg());
cfd.getImportParams().getPI COPYREFERENCE().setDISTR CHAN(getDistChannel());
cfd.getImportParams().getPI COPYREFERENCE().setDIVISION(getDivision());

// Required import parameters
cfd.getImportParams().getPI_COMPANYDATA().setNAME(getCustomerName());
cfd.getImportParams().getPI COMPANYDATA().setLANGU ISO(getLanguageKey());
cfd.getImportParams().getPI COMPANYDATA().setCURRENCY (getCurrencyKey());
cfd.getImportParams().getPI COMPANYDATA().setCOUNTRY (getCountryKey());
cfd.getImportParams().getPI_COMPANYDATA().setPOSTL COD1(getPostalCode());
cfd.getImportParams().getPI COMPANYDATA().setCITY(getCity());

38 Sun Java System Mobile Enterprise Platform 1.0 Developer's Guide for Enterprise Connectors « July 2008

Accessing a Sun JCA Adapter for an EIS/EAI System

// Additional import parameters

cfd.getImportParams().getPI COMPANYDATA().setSTREET(getStreet());
cfd.getImportParams().getPI COMPANYDATA().setREGION(getRegion());
cfd.getImportParams().getPI COMPANYDATA().setTEL1 NUMBR(getTelephone());
cfd.getImportParams().getPI COMPANYDATA().setFAX NUMBER(getFaxNumber());

return cfd;

}

The getUpdateCustomer method is almost identical to the getInsertCustomer method except
that it also marks the fields as having changed:

// Mark fields to be changed
String ex = "X";

cfd.
cfd.

cfd

getImportParams().
getImportParams().

.getImportParams().
cfd.
cfd.
cfd.
cfd.
cfd.
cfd.
cfd.

getImportParams().
getImportParams().
getImportParams().
getImportParams().
getImportParams().
getImportParams().
getImportParams().

getPI COMPANYDATAX() .setNAME(ex);

getPI COMPANYDATAX().setLANGU ISO(ex);
getPI COMPANYDATAX() .setCURRENCY (ex) ;
getPI_COMPANYDATAX() .setCOUNTRY (ex) ;
getPI COMPANYDATAX().setPOSTL COD1(ex);
getPI COMPANYDATAX().setCITY(ex);

getPI COMPANYDATAX().setSTREET (ex);
getPI COMPANYDATAX().setREGION(ex);
getPI COMPANYDATAX().setTEL1 NUMBR(ex);
getPI COMPANYDATAX().setFAX NUMBER(ex);

Similarly, the getDeleteCustomer method informs SAP to delete a record by changing its name

to begin with the string DELETED:

// Mark customer as deleted by prepending "DELETE" to the name

setCustomerName ("DELETED

logger. fine("Changing

cfd.
cfd.
cfd.
cfd.
cfd.

cfd
cfd

getImportParams().
getImportParams().
getImportParams().
getImportParams().
getImportParams().

.getImportParams().
.getImportParams().
cfd.
cfd.
cfd.
cfd.

getImportParams().
getImportParams().
getImportParams().
getImportParams().

+ getCustomerName());

NAME field to [" + getCustomerName() + "1.");

getPI COMPANYDATA() .setNAME(getCustomerName());
getPI_COMPANYDATAX() .setNAME ("X");

getPI COMPANYDATA().setLANGU ISO(getLanguageKey());
getPI COMPANYDATA() .setCURRENCY (getCurrencyKey());
getPI_COMPANYDATA() .setCOUNTRY (getCountryKey());
getPI_COMPANYDATA().setPOSTL COD1(getPostalCode());
getPI COMPANYDATA().setCITY(getCity());
setCUSTOMERNO (getCustomerNumber());

setPI SALESORG(getSalesOrg());

setPI DISTR CHAN(getDistChannel());

setPI DIVISION(getDivision());

Chapter2 « Creating an Enterprise Connector

39

Accessing a Sun JCA Adapter for an EIS/EAI System

Extending the InsertCommand, UpdateCommand, and DeleteCommand
Classes to Access a Sun JCA Adapter

For the three command classes, you need to use generated classes and methods from the OTD.
For a SAP BAPI application, for example, you need to import the following packages for the
CustomerInsertCommand implementation:

import customer.Customer.CreateFromDatal;
import customer.Customer.CreateFromDatal.ExportParams.RETURN;

You then use the first of the imported classes in the class constructor, which takes two
arguments instead of the single argument of the default implementation:

public CustomerInsertCommand(Customer bobject, CreateFromDatal cfd) {
super(bobject);
mCreateFromData = cfd;
logger.debug("Creating instance

" + this);

}

The CreateFromDatal object passed to the constructor is the returned value from the Customer
class's getInsertCustomer method.

You implement the execute command by calling the class's own execute method and
retrieving any return value through the second imported class:

@Override
public void execute() {
try {
mCreateFromData.execute();
RETURN ret = mCreateFromData.getExportParams().getRETURN();
String retMsg = ret.getMESSAGE();
String message = "SAP (" + ret.getNUMBER() + "):
logger.info(message);
if (retMsg.length() > 0) {
throw new RuntimeException(message);

+ retMsg;

}

}

catch (RuntimeException e) {
throw e;

H

catch (Exception e) {
logger.severe(e.getMessage());
throw new RuntimeException(e.getMessage(), e);

}

For both the CustomerDeleteCommand and the CustomerUpdateCommand implementations, you
import the following:

40 Sun Java System Mobile Enterprise Platform 1.0 Developer's Guide for Enterprise Connectors « July 2008

Accessing a Sun JCA Adapter for an EIS/EAI System

import customer.Customer.ChangeFromDatal;
import customer.Customer.ChangeFromDatal.ExportParams.RETURN;

The constructors and the execute methods for these classes use the ChangeFromDatal object
returned from the Customer.getUpdateCustomer and Customer.getDeleteCustomer
methods. Otherwise the class implementations are identical to those of the
CustomerInsertCommand implementation.

Chapter2 - Creating an Enterprise Connector 41

42

L K R 4 CHAPTER 3

Classes and Methods in the Enterprise
Connector Business Object APl Package

The Enterprise Connector Business Object (MCBO) API contains one package,
com.sun.mep.connector.api, that developers must use. This chapter summarizes the classes
contained within this package:

= “TheBusinessObject Class” on page 43

“The BusinessObjectProvider Class” on page 45
“The Command Class” on page 46

“The DeleteCommand Class” on page 46

“The InsertCommand Class” on page 47

= “The SessionContext Class” on page 47

= “The TransactionManager Class” on page 48

= “The UpdateCommand Class” on page 48

The API documentation is included in the MEP client bundle. In the directory where you
unzipped the client bundle (see the Sun Java System Mobile Enterprise Platform 1.0 Installation
Guide for details), it is in the directory sjsmep-client-1_0 02-fcs/doc/echo/api.

TheBusinessObject Class

Table 3-1 lists the constructor and methods belonging to the BusinessObject class, the base
class for all business objects. Business objects are the entities synchronized with client
applications. Each business object instance is identified by a name, which is also used to name
the file that holds the object on the mobile client. Business objects are created by business object
providers; see “The BusinessObjectProvider Class” on page 45 for details.

43

http://docs.sun.com/doc/820-3750
http://docs.sun.com/doc/820-3750

The BusinessObject Class

TABLE 3-1

Class com.sun.mep.connector.api.BusinessObject

Method

Description

BusinessObject (T bobjectProvider)

public abstract void deserialize(byte[] data)

public T getBusinessObjectProvider()

public abstract <T extends BusinessObject>
DeleteCommand<T> getDeleteCommand()

public abstract java.lang.String
getExtension()

public abstract <T extends BusinessObject>
InsertCommand<T> getInsertCommand()

public long getLastModified()

public java.lang.String getName()

public abstract <T extends BusinessObject>
UpdateCommand<T> getUpdateCommand ()

public abstract byte[] serialize()

public void setlLastModified(long millis)

public void setName(java.lang.String name)

Constructor that takes the BusinessObjectProvider
for the business object as its argument.

Deserializes a business object from a byte array.

Returns a reference to the business object provider
associated with this object.

Returns a command that when executed can delete
this business object from a back end.

Returns the default extension for business objects of
this type. Extensions are used by the files holding these
objects and must be part of the contract with clients.
That s, clients and connectors must use the same
extension for the same type of business object.
Concrete subclasses should redefine this method.

Returns a command that when executed can insert
this business object into a back end.

Returns a timestamp indicating the last time this
business object was modified. The timestamp
represents the number of milliseconds since “the
epoch,” namely January 1, 1970, 00:00:00 GMT.

Returns the name of this business object. Names must
be unique identifiers.

Returns a command that when executed can update
this business object in a back end.

Serializes a business object into a byte array.

Sets a timestamp indicating the last time this business
object was modified. The timestamp must represent
the number of milliseconds since “the epoch,” namely
January 1, 1970, 00:00:00 GMT.

Sets the name of this business object. Names must be
unique identifiers.

Sun Java System Mobile Enterprise Platform 1.0 Developer's Guide for Enterprise Connectors « July 2008

TheBusinessObjectProvider Class

TheBusinessObjectProvider Class

Table 3-2 lists the constructor and methods belonging to the BusinessObjectProvider class.
This provider class for instances of BusinessObject serves multiple purposes:

= Jtcan be used to retrieve all the business objects from a back end by calling the

getBusinessObjects () method.

= [t can be used to create new business objects by calling the newBusinessObject () method.

= It provides access to a transaction manager and a session context. See “The
TransactionManager Class” on page 48 and “The SessionContext Class” on page 47 for

more information.

An instance of this class is created for each synchronization session. Use the methods
initialize() and terminate() to allocate and free session resources.

TABLE3-2 Class com.sun.mep.connector.api.BusinessObjectProvider

Method

Description

public BusinessObjectProvider()

public abstract java.util.List<T>
getBusinessObjects()

public abstract java.lang.String
getRepositoryName()

public SessionContext getSessionContext()

public <U extends BusinessObjectProvider>
TransactionManager<U>
getTransactionManager()

public void initialize()

public abstract T newBusinessObject()

public void setSessionContext(SessionContext
context)

No-argument constructor.

Returns a complete list of the business objects
available in the back end associated with this provider.
This is in essence a query method for all the instances
in the back end.

Returns the name of the repository holding these
objects.

Returns the session context associated with this
provider.

Returns the transaction manager associated with this
provider, or null if no transaction manager has been
set. If null is returned, transactions are not supported
by this provider.

This method is called right after an instance of this
class is created. You can use it to allocate resources for
the duration of a synchronization session. Other uses
of this method include back-end authentication.
Credentials needed for authentication are available
from the SessionContext, which you can access by
calling getSessionContext ().

Returns a fresh instance of a business object.

Sets the session context for this provider.

Chapter3 - Classes and Methods in the Enterprise Connector Business Object APl Package

45

The Command Class

TABLE3-2 Class com.sun.mep.connector.api.BusinessObjectProvider (Continued)
Method Description
public void terminate() This method is called when a synchronization session

is about to be terminated. Use this method to free any
resources allocated by this object.

The Command Class

Table 3-3 lists the constructor and methods belonging to the Commandclass. This class is the base
class for all business object commands. The classes that extend this class are described in “The
DeleteCommand Class” on page 46, “The InsertCommand Class” on page 47, and “The
UpdateCommand Class” on page 48.

TABLE3-3 Class com.sun.mep.connector.api.Command

Method Description
public Command(T bobject) Constructor that takes a business object argument.
public abstract void execute() Executes this command against a back end.

Unchecked exceptions, such as
java.lang.RuntimeException, can be used to report
errors.

public T getBusinessObject() Returns the business object on which this command is
executed.

The DeleteCommand Class

Table 34 lists the constructor and method belonging to the DeleteCommand class. This class is
the base class for delete business object commands. It deletes a business object from a back end.

TABLE3-4 Class com.sun.mep.connector.api.DeleteCommand

Method Description
public DeleteCommand(T bobject) Constructor that takes a business object argument.
public abstract void execute() Executes this command against a back end.

Unchecked exceptions, such as
java.lang.RuntimeException, can be used to report
errors.

46 Sun Java System Mobile Enterprise Platform 1.0 Developer's Guide for Enterprise Connectors « July 2008

The SessionContext Class

The InsertCommand Class

Table 3-5 lists the constructor and method belonging to the InsertCommand class. This class is
the base class for insert business object commands. It inserts a business object into a back-end.

TABLE3-5 Class com.sun.mep.connector.api.InsertCommand

Method

Description

public InsertCommand(T bobject)

public abstract void execute()

Constructor that takes a business object argument.

Executes this command against a back end.
Unchecked exceptions, such as
java.lang.RuntimeException, can be used to report
errors.

The SessionContext Class

Table 3-6 lists the constructor and methods belonging to the SessionContext class. This class
stores contextual information about the session in which a BusinessObjectProvider is
instantiated. This information includes credentials for logging into an EIS/EAI system or a
database as well as well as properties associated with an Enterprise Connector..

TABLE3-6 Class com.sun.mep.connector.api.SessionContext

Method

Description

public SessionContext(java.lang.String
username, java.lang.String password)

public java.util.Map<java.lang.String,
java.lang.String> getParameters()

public java.lang.String getPassword()

public java.lang.String getUsername()

public void setParameter(java.lang.String
name, java.lang.String value)

Two-argument constructor that accepts username
and password credentials.

Returns all properties specified in the Admin
Console's definition for this Enterprise Connector.

Returns the password used to log into the Enterprise
Connector.

Returns the user name used to log into the Enterprise
Connector.

Stores a name and value pair in the internal map.

Chapter3 - Classes and Methods in the Enterprise Connector Business Object APl Package 47

The TransactionManager Class

The TransactionManager Class

Table 3-7 lists the constructor and methods belonging to the TransactionManager class. This
class provides the transaction manager for a business object provider class. It supports methods
for starting, stopping, and aborting back-end transactions.

TABLE3-7 Class com.sun.mep.connector.api.TransactionManager

Method

Description

public TransactionManager (T bobjectProvider)

public void abortTransaction()

public void beginTransaction()

public void endTransaction()

public T getBusinessObjectProvider()

Constructor that creates a new TransactionManager
for the specified business object provider.

Rolls back the current transaction on the back-end
system. By default, this operation is a no-op.

Starts a new transaction on the back-end system. All
business object updates, deletes and inserts will be
executed in a transaction. By default, this operation is
ano-op.

Ends the current transaction on the back-end system.
All business object updates, deletes and inserts will be
executed in a transaction. By default, this operation is
ano-op.

Returns the business object manager associated with
this transaction manager.

The UpdateCommand Class

Table 3-8 lists the constructor and method belonging to the UpdateCommand class. This class is
the base class for update business object commands. It updates a business object in a back end.

TABLE3-8 Class com.sun.mep.connector.api.UpdateCommand

Method

Description

public UpdateCommand(T bobject)

public abstract void execute()

Constructor that takes a business object argument.

Executes this command against a back end.
Unchecked exceptions, such as
java.lang.RuntimeException, can be used to report
errors.

48 Sun Java System Mobile Enterprise Platform 1.0 Developer's Guide for Enterprise Connectors « July 2008

	Sun Java System Mobile Enterprise Platform 1.0 Developer's Guide for Enterprise Connectors
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Mobile Enterprise Platform Documentation Set
	Application Server Documentation Set
	Typographic Conventions
	Symbol Conventions
	Documentation, Support, and Training
	Searching Sun Product Documentation
	Third-Party Web Site References
	Sun Welcomes Your Comments

	Introduction to Enterprise Connectors
	About the Enterprise Connector Business Object (ECBO) API
	Packaging and Deploying Enterprise Connectors

	Creating an Enterprise Connector
	Packages in the Enterprise Connector Business Object API
	Extending the BusinessObject Class
	Extending the BusinessObjectProvider Class
	Extending the TransactionManager Class
	Extending the InsertCommand, UpdateCommand, and DeleteCommand Classes
	Creating the Resource File for an Enterprise Connector
	Accessing a Sun JCA Adapter for an EIS/EAI System
	Creating an Object Type Definition (OTD)
	Writing Code to Access a Sun JCA Adapter
	Extending the BusinessObjectProvider Class to Access a Sun JCA Adapter
	Extending the BusinessObject Class to Access a Sun JCA Adapter
	Extending the InsertCommand, UpdateCommand, and DeleteCommand Classes to Access a Sun JCA Adapter

	Classes and Methods in the Enterprise Connector Business Object API Package
	The BusinessObject Class
	The BusinessObjectProvider Class
	The Command Class
	The DeleteCommand Class
	The InsertCommand Class
	The SessionContext Class
	The TransactionManager Class
	The UpdateCommand Class

