Sun GlassFish Mobility Platform
1.1 Developer's Guide for Client
Applications

X Sun

microsystems

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
US.A.

Part No: 820-7206
March 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, GlassFish, Java EE, Java Naming and Directory Interface, Java SE, Java
ME, JDBC, MySQL, Java, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing
SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. ORACLE is a registered trademark of Oracle Corporation.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “ASIS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs a la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent étre dérivées du logiciel Berkeley BSD, licenciés par 'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, GlassFish, Java EE, Java Naming and Directory Interface, Java SE, Java ME,
JDBC, MySQL, Java et Solaris sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans
d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc. ORACLE est une marque déposée
registre de Oracle Corporation.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de I'informatique. Sun détient
une licence non exclusive de Xerox sur I'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matiére de contréle des exportations et
peuvent étre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de maniére
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une fagon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matiére de controle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A LAPTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

090318@21990

Contents

PrEface ... e 5
1 Introduction to the Sun GlassFish Mobility Platform Client APlsccoccoeniinninnccnnnnn 9

About the Mobile Client Business Object (MCBO) API

SYNChrONIZAtION TYPES .cecvrvreeieiieicireieeeiieee et

Client Device ReQUITEIMENTSc..cuiuiiiiiiciiiicieiccic e 12

Server-side REQUITEIMENTSc.cucueueciriirieeicireieietretsesetse sttt sttt eae 12

2 Building a Client Application

Overview of the Mobile Client Business Object APTc.cccvureerneurenecinerneeeneineeeenennenseesenneenene 13
Overview of the JErseYMe API ..ottt ssesesenns 15
Extending the Busine@ss0DFeCt ClaSScoeuiueeceriureeemeirieeieereieeeeeeireeeneesesessesessesessessesensensesesaennes 15
Using the Mobile Client Business Object AP in a Java ME Applicationcccccccveuereuriceniucnen. 18
Creating DefaultSecurityManager, SyncManager, and BusinessObjectStorage
ODJECLS vttt 19
Establishing Login Credentials ..o saessesassssessens 20
Working with Business Objects on the File SYStemcccocveeunencricininecrneneeeneinceeerneenene 21
Synchronizing Data with the SEIVeroceiicnincccceceee e seeeeeens 22
Developing Client Applications for the BlackBerry Using NetBeans IDEcccccooeveeuvcurenennee 23
PIereqUISITES ...ooviieiiciitiiicccc
V To Configure BlackBerry JDE v4.2.1
V To Configure NetBeans IDE for BlackBerry Application Developmentcccocoveevecunennee. 25
V To Import the SecureMusicDB Sources into NetBeans IDE as a BlackBerry Project 26
V To Create a New BlackBerry Project to Use the MCBO APIccooeuiemninccenerneeeenennne 33
3 Client Security ArchiteCture ...ttt eene 37
Best Practices for Secure Client APPlICAtIONSccveureeeecurevereereireennerreeenseererereeesesseeesessesensessesenees 38

Contents

5

Authentication on the CHent DeVICEc.cucuureeciniirieeicireirieneineiecireieeeesesseeesetsesesscssesessessesssaesse 38

Authentication IMplementationccececrneeinineese s ssesssens 39
Data ENCIYPHON ..o 39
TTanSPOIt-layer SECUIILYc.ovueviuriueieciriirieeictreeeec ettt ettt sebe ettt ese et sese st 39
Data DEeSTIUCHION .ovviiiiiiiiiiiccci e 40
LOCKOUL oottt ettt st 40
POISON PIll ...ttt ettt e 40
Data FAQINE ...couvriiiiieicecce ettt 40
Secure MusicDB Java ME Application Security FEaturescocoveveeencrnerencrnenecenerneeeesensennenenne 41

Classes and Methods in the Mobile Client Business Object APl Packagecccooevunnenn. 43
The AESSeCUrityManagerClassoceeueveueeeirieeerereteteeeeeee et st ses et es st as s s s s s s s asasesene 43
The BUSINE@SSODTECT ClASS .voveveverieieiieiereteteteeeeeeee ettt ettt et es et se st essas s s s s esesesessasasans
The BusinessObjectStorage Class

The DefaultSecurityManager ClASSeeeeeeeeeeiereeerese s ese s s ss s s s sas s ssene 47
The ENCOiNgTYPE ClaSS ..ccveveveveueeeiiiieieteieteteieettsete st seseese st ss e e s s s sesesasesssasssssesesesasasannans 48
The SECUritYMANAGEE ClASS ..ovovieeeveeieeeeeeeeereeeeteeeteeevese et et s et eseseesesesesessesssesesessesesessesensesens 49
The SecurityManagerBase CLaSSccccceeieerieeerereteteeeeeeee oot sseseseseseseseseseasassesesesesesessssasessene 52
The SMSMesSageHANATET ClASS ...cueviirierererereieiiiriete ettt s s s st s bbb s sesssnananene 53
The SYNCEXCEPTION CLASS eovvieivieiieeieeeeeeet ettt ettt s et et sese st essssssensssensesesesessnserens 54
The SYNCMANAGET CLASS «.evuvevverererereeieeeeetete ettt sese ettt et et esetete s sttt esesesessasassesesesesesessasasans 55
The SYNCRESUTES CLASS ...vveevveeiereeeereteeeteeeeteteee et ettt ettt ens et ese et ese s eseseeseseesesensesesensesensesessenens 57

The SyncType Class

JerseyMe APIDOCUMENTATION ..ot enen 61
THE CLLENT CLASS w.veveviiiieiecieieieiestsieee ettt s ettt s s s s s ssssssssebesessssssesssssasesesnssanas 61
The UniformINterface INTEITACE ...cooviiiieireteteeeeeccectete ettt snas 62
The UniformInterfac@EXCEPTLION CLaSSociiceeeicieieeieeeeeeeteeeeeeee ettt eeseeenenens 64
The WEDRESOUICE ClASSvurueveeereieieiiiicicieie ettt bbb s sss s b b ssssssesssssesebesesssnanns 64

Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications « March 2009

Preface

This guide explains how to develop mobile client applications for Sun GlassFish Mobility
Platform 1.1.

Sun GlassFish Mobility Platform is a comprehensive mobility solution that enables offline data
access, data synchronization, and secure access to EIS/EAI applications such as Siebel and SAP.

Sun GlassFish Mobility Platform is based entirely upon open standards, including the
following:

= Java Platform, Mobile Edition (Java ME)

= Java Platform, Enterprise Edition (Java EE)

= The dominant industry standard OMA DS and its SyncML protocols. The specifications for
Open Mobile Alliance Data Synchronization V1.1.2 and V1.2.1 are available at
http://www.openmobilealliance.org/Technical/release program/ds v112.aspx and
http://www.openmobilealliance.org/Technical/release program/ds v12.aspx.

Who Should Use This Book

This guide is intended for developers who have experience creating applications for Java
Platform, Micro Edition (Java ME).

Before You Read This Book

Before reading this guide, you should be familiar with Java Platform, Micro Edition (Java ME).

Sun GlassFish Mobility Platform Documentation

The Sun GlassFish Mobility Platform 1.1 documentation set will be available at
http://docs.sun.com/coll/1918.1. To learn about Sun GlassFish Mobility Platform, refer to
the books listed in the following table.

http://www.openmobilealliance.org/Technical/release_program/ds_v112.aspx
http://www.openmobilealliance.org/Technical/release_program/ds_v12.aspx
http://docs.sun.com/coll/1918.1

Preface

TABLEP-1 Books in the Sun GlassFish Mobility Platform Documentation Set

BookTitle

Description

Sun GlassFish Mobility Platform 1.1 Release
Notes

Late-breaking information about the software and the documentation. Includes a
comprehensive summary of the supported hardware, operating systems, application
server, Java™ Development Kit (JDK™), databases, and EIS/EAI systems.

Sun GlassFish Mobility Platform 1.1
Architectural Overview

Introduction to the architecture of Sun GlassFish Mobility Platform.

Sun GlassFish Mobility Platform 1.1
Installation Guide

Installing the software and its components, and running a simple application to verify
that installation succeeded.

Sun GlassFish Mobility Platform 1.1
Deployment Guide

Deployment of applications and application components to Sun GlassFish Mobility
Platform.

Sun Glassfish Mobility Platform 1.1
Developer’s Guide for Client Applications

Creating and implementing Java Platform, Mobile Edition (Java ME platform)
applications for Sun GlassFish Mobility Platform that run on mobile devices.

Sun Glassfish Mobility Platform 1.1
Developer’s Guide for Enterprise Connectors

Creating and implementing Enterprise Connectors for Sun GlassFish Mobility
Platform intended to run on Sun GlassFish Enterprise Server.

Sun GlassFish Mobility Platform 1.1
Administration Guide

System administration for Sun GlassFish Mobility Platform, focusing on the use of the
Sun GlassFish Mobility Platform Administration Console.

For up-to-the-minute information about Sun GlassFish Mobility Platform from the Sun
GlassFish Mobility Platform technical team at Sun, see the Enterprise Mobility Blog at
http://blogs.sun.com/mobility/.

Related Third-Party Web Site References

Third-party URLs are referenced in this document and provide additional, related information.

Note - Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

6 Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications - March 2009

http://docs.sun.com/doc/820-7202
http://docs.sun.com/doc/820-7202
http://docs.sun.com/doc/820-7204
http://docs.sun.com/doc/820-7204
http://docs.sun.com/doc/820-7203
http://docs.sun.com/doc/820-7203
http://docs.sun.com/doc/820-7205
http://docs.sun.com/doc/820-7205
http://docs.sun.com/doc/820-7206
http://docs.sun.com/doc/820-7206
http://docs.sun.com/doc/820-7208
http://docs.sun.com/doc/820-7208
http://blogs.sun.com/mobility/

Preface

Documentation, Support, and Training

The Sun web site provides information about the following additional resources:

= Documentation (http://www.sun.com/documentation/)
= Support (http://www.sun.com/support/)
= Training (http://www.sun.com/training/)

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.comand click Feedback.

Typographic Conventions

The following table describes the typographic conventions that are used in this book.

TABLEP-2 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories, ~ Edit your . login file.

and onscreen computer output
P P Use 1s -a to list all files.

machine name% you have mail.

AaBbCc123 What you type, contrasted with onscreen machine_names su
computer output
Password:
aabbcecl23 Placeholder: replace with a real name or value The command to remove a file is rm
filename.
AaBbCc123 Book titles, new terms, and terms to be Read Chapter 6 in the User's Guide.
emphasized

A cacheis a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://docs.sun.com

Preface

Shell Prompts in Command Examples

The following table shows the default UNIX® system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLEP-3 Shell Prompts

Shell Prompt

C shell machine nameSs
C shell for superuser machine_name#
Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

8 Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications - March 2009

L K R 4 CHAPTER 1

Introduction to the Sun GlassFish Mobility
Platform Client APIs

Sun GlassFish Mobility Platform provides two client libraries that you can use to develop client
applications

= A Java Platform, Mobile Edition (Java ME) data synchronization library, called the Mobile
Client Business Object (MCBO) APL. This library, in conjunction with either the Enterprise
Connector Business Object (ECBO) API or the Java API for RESTful Web Services
(JAX-RS) API, provides a complete solution that allows you to synchronize arbitrary
enterprise data. Although the MCBO and ECBO APIs are based on Open Mobile Alliance
Data Synchronization (OMA DS), you do not need to know specifics of OMA DS in order to
use the APIs.

= A client API called the JerseyMe library, which allows a client application to access RESTful
web services using Java ME. It is modelled after Jersey's client API for Java SE.

You must be connected to a server in order to synchronize data with the server. However, you
can use the MCBO library in disconnected mode; that is, you can add, delete, and modify client
data without being connected to a server.

This chapter covers the following topics:

“About the Mobile Client Business Object (MCBO) API” on page 9
“Synchronization Types” on page 10
“Client Device Requirements” on page 12

u
| |
| |
= “Server-side Requirements” on page 12

About the Mobile Client Business Object (MCBO) API

The Mobile Client Business Object (MCBO) API provides a simple set of APIs to build Java ME
client applications that can synchronize business data with databases or ERP/EAI systems. To
provide this synchronization capability, the APIs use an implementation of the Open Mobile
Alliance Data Synchronization (OMA DS) protocols known as SyncML. Even if you have no
knowledge of SyncML, you can use the MCBO API to build Java ME client applications with

Synchronization Types

SyncML capabilities on Java ME devices. These client applications can synchronize their local
data with a Sun GlassFish Mobility Platform server, which in turn communicates with a
database or ERP/EAI system. The MCBO API can establish connections to any server that
conforms to the OMA DS standard.

The MCBO API provides the ability to synchronize business objects in the form of arbitrary
user-defined data types.

The MCBO API allows you to synchronize any objects that can be represented as a byte array,
including arbitrary data types and data collections. Examples include:

= Databases
= Binary data, such as images

= Nodes belonging to hierarchical/tree data structures (for example, registry entries)

The MCBO API offers the following benefits:

= Jtprovides a very simple framework for data synchronization of business objects
= Jtkeeps the resulting application jar files small

= Client device memory requirements are low (the maximum size of the heap is kept low)

Synchronization Types

10

The MCBO API supports the following types of client-initiated synchronizations:

® Both from server to client and from client to server:
= Two-way sync (fast sync)

Two-way sync, also called fast sync, is the normal synchronization mode, in which the
client and the server exchange modifications to the data that they have stored. An initial
slow sync is used to populate the data on the client.

For details, see “Two-way Sync (Fast Sync)” in Sun GlassFish Mobility Platform 1.1
Architectural Overview.

= Slow sync

The slow sync is similar to two-way sync, except that all the items in the client databases
are compared with all the items in the server databases. A slow sync is typically the first
synchronization to be performed; it can also be requested if the client and server data is
mismatched or if the client or server loses its information. A slow sync is similar to a full
backup, while a fast sync is similar to an incremental backup. The slow sync behaves as if
no previous sync has been done, so items deleted from the client are not deleted from the
server.

For details, see “Slow Sync” in Sun GlassFish Mobility Platform 1.1 Architectural
Overview

Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications « March 2009

http://docs.sun.com/doc/820-7204/ggyde?a=view
http://docs.sun.com/doc/820-7204/ggyde?a=view
http://docs.sun.com/doc/820-7204/ggyas?a=view
http://docs.sun.com/doc/820-7204/ggyas?a=view

Synchronization Types

= From client to server only:
= One-way sync from client

This is one half of a two-way sync. In this mode, the client sends modifications of its data
store to the server. The server updates its data store appropriately but does not send
modifications of its data store to the client. After a one-way sync, the data on the client
and server may not be the same.

= Refresh sync from client

In this mode, the client exports all its data to the server. The server is expected to replace
all its data with the data sent by the client.

Note - Use this synchronization type with caution.

= From server to client only:
= One-way sync from server

This is the other half of a two-way sync. In this mode, the server sends modifications of
its data store to the client. The client updates its data store appropriately but does not
send modifications of its data store to the server. After a one-way sync, the data on the
client and server may not be the same.

= Refresh sync from server

In this mode, the server exports all its data from a database to the client. The client is
expected to replace all its data with the data sent by the server.

Server-initiated synchronization is also possible. The server can initiate syncs by sending SMS
messages to the client device.

Both the client and the server store information about changes to their respective data stores
since the last successful synchronization. When the next synchronization is performed, the
client and server negotiate how the changes are resolved and propagated according to the type
of synchronization being performed.

Chapter 1 « Introduction to the Sun GlassFish Mobility Platform Client APIs 1

Client Device Requirements

Client Device Requirements

The client device must be a Java and GPRS/UMTS enabled device that supports the following
specifications:

= Mobile Information Device Profile (MIDP) 2.0

MIDP is a specification published for the use of Java on embedded devices such as cell
phones and PDAs. MIDP is part of the Java ME framework. MIDP 2.0 was developed under
the Java Community Process as JSR-118.

= Either Connected Limited Device Configuration (CLDC) 1.1 or Connected Device
Configuration (CDC) 1.1.2

CLDC s a specification of a framework for Java ME applications targeted at devices with
very limited resources, such as pagers and mobile phones. CLDC 1.1 was developed under
the Java Community Process as JSR-139.

CDC s a specification of a framework for Java ME applications targeted at devices with less
limited resources, such as PDAs. CDC 1.1.2 was developed under the Java Community
Process as JSR-218.

= JSR-75, PDA Optional Packages for the Java ME Platform, for accessing mobile device
filesystems

The size of the obfuscated jar file for the MCBO API is approximately 190 KB (it can vary
depending upon the size of the application), so the burden of supporting this API is low even on
devices that have limited memory. Client applications are bundled with a copy of the APl as a
single jar file.

Server-side Requirements

On the server side, the MCBO API needs a standard-conforming OMA DS server. The Sun
GlassFish Mobility Platform gateway installed on Sun GlassFish Enterprise Server is such a
server.

12 Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications - March 2009

L K R 4 CHAPTER 2

Building a Client Application

A Sun GlassFish Mobility Platform client application typically includes the following:

® A Java Platform, Micro Edition (Java ME) MIDlet that uses the Mobile Client Business
Object (MCBO) API in addition to Java ME APIs

= Anextension of the com.sun.mep.client.api.BusinessObject class

This chapter describes the basics of building a Sun GlassFish Mobility Platform client
application. It contains the following sections:

“Overview of the Mobile Client Business Object API” on page 13

“Overview of the JerseyMe API” on page 15

“Extending the BusinessObject Class” on page 15

“Using the Mobile Client Business Object API in a Java ME Application” on page 18
“Developing Client Applications for the BlackBerry Using NetBeans IDE” on page 23

This chapter does not explain how to develop a MIDlet, because this process varies depending
upon what development tools you use.

Overview of the Mobile Client Business Object API

The Mobile Client Business Object (MCBO) API consists of the following Java classes:

= com.sun.mep.client.api.BusinessObject, which defines your data model and the
serialized form used to store the data on the client device

= com.sun.mep.client.api.BusinessObjectStorage, which manages the storage and
retrieval of BusinessObject instances on the client device

® com.sun.mep.client.api.DefaultSecurityManager and
com.sun.mep.client.api.AESSecurityManager, which provide basic implementations of
com.sun.mep.client.api.SecurityManager (DefaultSecurityManager isa Triple-DES
implementation, while AESSecurityManager is an AES/CDC implementation)

Overview of the Mobile Client Business Object API

14

® com.sun.mep.client.api.SecurityManager and its base class
com.sun.mep.client.api.SecurityManagerBase, which manage all of the client-side
security features

= com.sun.mep.client.api.SyncManager, which controls synchronization with the Sun
GlassFish Mobility Platform gateway

= com.sun.mep.client.api.SyncResults, which provides statistics after synchronizations

= com.sun.mep.client.api.SMSMessageHandler, which is a callback handler for SMS push
notification messages sent from the gateway

= com.sun.mep.client.api.SyncType, which enumerates the six synchronization types
= com.sun.mep.client.api.EncodingType, which enumerates two encoding types

= com.sun.mep.client.api.SyncException, which provides exception-handling methods

See Chapter 4, “Classes and Methods in the Mobile Client Business Object API Package,” for
summaries of the fields and methods in these classes. The API documentation is also included
in the Sun GlassFish Mobility Platform client bundle. In the directory where you unzipped the
client bundle (see the Sun GlassFish Mobility Platform 1.1 Installation Guide for details), it is in
the directory sgmp-client-1_1 01-fcs-b@2/doc/mcbo/api.

The MCBO API packages provide a simple interface on top of a set of more complex packages,
the com.synchronica APIs. At times an application may find it useful to call some of these APIs.

This chapter uses the Secure MusicDB sample application provided with Sun GlassFish
Mobility Platform to demonstrate how to use the MCBO API. The client in this application
communicates with an Enterprise Connector deployed in the gateway, which in turn
communicates with a database using the Java Database Connectivity (JDBC) APL

The source code for the Secure MusicDB sample application is included in the Sun GlassFish
Mobility Platform client bundle. In the directory where you unzipped the client bundle, it is in
the subdirectory sgmp-client-1_1 01-fcs-b@2/samples/secure-musicdb/src/mcbo.
Extract the contents of the file securemusicdb-sources. jar to view the sources.

Use of security features in a Sun GlassFish Mobility Platform application is recommended, but
itis not required. If you implement security, you can provide your own implementation of
com.sun.mep.client.api.SecurityManager to replace
com.sun.mep.client.api.DefaultSecurityManager or
com.sun.mep.client.api.AESSecurityManager.

The Sun GlassFish Mobility Platform client bundle includes the source code for an additional
sample client, for the Salesforce application. This client is more complex than the MusicDB
client, and the code is organized differently. You can find it in the subdirectory
sgmp-client-1 1 01-fcs-b02/samples/salesforce-ws/src/mcbo. Extract the contents of
the file salesforce ws-sources.jar to view the sources.

Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications « March 2009

http://docs.sun.com/doc/820-7203

Extending the BusinessObject Class

The Secure MusicDB and Salesforce sample clients can each communicate with a connector
that is implemented using either the JAX-RS API or the Enterprise Connector Business Object
(ECBO) API. The MCBO API client code for the applications is the same for both.

Overview of the JerseyMe API

The JerseyMe API allows a client application to access RESTful web services using Java ME. It is
modelled after Jersey's client API for Java SE. The minimum platform requirements are CLDC
1.1 and MIDP 2.0.

Sun GlassFish Mobility Platform applications can use JerseyMe to access resources on the web.

JerseyMe supports caching using the file system on the device. Caching can be used to avoid
re-fetching the same resource over and over and also to support an offline mode, in which
resources are retrieved only from the local cache, even if they are stale.

The JerseyMe API contains the following classes and interface:

= com.sun.jerseyme.api.client.Client, which provides the entry point to the API

= Thecom.sun.jerseyme.api.client.UniformInterface interface and its implementation,
the com.sun.jerseyme.api.client.WebResource class, which implements a web resource
on which the HTTP methods GET, PUT, POST, DELETE and HEAD can be called

m TheUniformInterfaceException class, which indicates an error in a UniformInterface
method

See Chapter 5, “JerseyMe API Documentation,” for summaries of the JerseyMe API methods.
The API documentation is also included in the Sun GlassFish Mobility Platform client bundle.
In the directory where you unzipped the client bundle (see the Sun GlassFish Mobility
Platform 1.1 Installation Guide for details), it is in the directory

sgmp-client-1 1 01-fcs-b02/doc/JerseyMe/api/doc.

The MusicDB and Salesforce sample clients make only minor use of the JerseyMe API, but other
applications are likely to find it very useful.

Extending the BusinessObject Class

To create a client application using the MCBO API, you need to create your own class that
extends the com.sun.mep.client.api.BusinessObject class.

Typically, you begin by importing the packages the class needs. In the Secure MusicDB sample
code, the Album class, defined in the file Album. java, begins by importing the following
packages:

import com.sun.mep.client.api.BusinessObject;
import com.synchronica.commons.date.DateStringParser;

Chapter2 - Building a Client Application 15

http://docs.sun.com/doc/820-7203
http://docs.sun.com/doc/820-7203

Extending the BusinessObject Class

16

import com.synchronica.commons.date.Iso8601Converter;
import java.io.ByteArrayInputStream;

import java.io.ByteArrayOutputStream;

import java.io.DatalInputStream;

import java.io.DataOutputStream;

import java.io.IOException;

import java.util.Calendar;

import java.util.Date;

import java.util.TimeZone;

You must implement bean properties for your data model. The only required getter and setter
methods are setName and getName, which specify and retrieve the name of the object, and
getExtension, which returns the file extension for your object.

In addition, you must implement the serialize and deserialize methods.

The Album class extends the BusinessObject class:

public class Album extends BusinessObject {

The code first declares a string constant and the bean properties:
private static final String DEFAULT VALUE = "$$default$s”;

String albumName;

/**
* Album’'s artist.
*/

String artist;

/**
* Date in which the album was published.
*/

Date datePublished;

/**
* Album’s rating from 1 to 5.
*/

int rating;

The Album class has two constructor methods, a no-argument version and one that takes the
name of the album as an argument:

public Album() {
super();

public Album(String name) {
super(name) ;

Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications « March 2009

Extending the BusinessObject Class

The Album class does not implement its own versions of getName and setName, instead
inheriting the versions in BusinessObject. It implements getExtension by specifying the
suffix . alb as the file extension for Album objects:

public String getExtension() {
return ".alb";

}

In addition, the class implements getter and setter methods for the String property artist, the
java.util.Date property datePublished, and the int property rating:

public String getArtist() {
return artist;

}

public Date getDatePublished() {
return datePublished;

}

public int getRating() {
return rating;

}

public void setArtist(String artist) {
this.artist = artist;

}

public void setDatePublished(Date datePublished) {
this.datePublished = datePublished;

}

public void setRating(int rating) {
this.rating = rating;

}

The Album class implements the serialize method by creating a java.io.DataOutputStream
froma java.io.ByteArrayOutputStream, writing the album data to the
java.io.DataOutputStream, then returning the java.io.ByteArrayOutputStream converted
toaByteArray.

public byte[] serialize() throws IOException {
ByteArrayOutputStream out = new ByteArrayOutputStream();
DataOutputStream dOut = new DataOutputStream(out);

dOut.writeUTF(getName());
dOut.writeUTF(artist != null ? artist : DEFAULT_VALUE);
dOut.writeUTF(
datePublished != null ? getSimplifiedDate(datePublished) : DEFAULT VALUE);
dOut.writeUTF(Integer.toString(rating));
dOut. flush();

System.err.println("Serializing album:");
System.err.println(" Name: " + getName());

Chapter2 - Building a Client Application 17

Using the Mobile Client Business Object APl in a Java ME Application

System.err.println(" Artist: + artist != null ? artist : DEFAULT VALUE);
System.err.println(" Date: " +

datePublished != null ? getSimplifiedDate(datePublished) : DEFAULT VALUE);
System.err.println(" Rating: " + Integer.toString(rating));

return out.toByteArray();
}

The class implements the deserialize method by creatinga java.io.DataInputStreamfrom
ajava.io.ByteArrayInputStream passed as an argument, then reading the album data from
the java.io.DataInputStream. It uses some utility methods from the com.synchronica API to
handle date information.

public void deserialize(byte[] array) throws IOException {
ByteArrayInputStream in = new ByteArrayInputStream(array);
DataInputStream dIn = new DataInputStream(in);

albumName = dIn.readUTF();

artist = dIn.readUTF();

if (artist.equals(DEFAULT VALUE)) {
artist = null;

DateStringParser dateParser = new Iso8601Converter();

String date = dIn.readUTF();

Calendar ¢ = dateParser.stringToCalendar(date, TimeZone.getDefault());
datePublished = date.equals(DEFAULT VALUE) ? null : c.getTime();

rating = Integer.parseInt(dIn.readUTF());
}

The Album class also contains a utility method, getSimplifiedDate, that converts the
java.util.Date valuetoaString.

Using the Mobile Client Business Object APl in a Java ME
Application

18

A client application on a mobile device consists primarily of a Java ME MIDlet. The MIDlet
implements the Graphical User Interface (GUI) for the application and also calls Mobile Client
Business Object (MCBO) API methods to synchronize the BusinessObject data.

This section describes how to use the MCBO API in a MIDlet. It assumes that you are already
familiar with the Java ME APL. It does not describe how to create a Graphical User Interface
(GUI) to display business objects and allow users to create or modify them. A good tool for
creating a MIDlet is the NetBeans IDE with the Mobility Pack; for details, visit the NetBeans
web site (http://www.netbeans.org/).

Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications « March 2009

http://www.netbeans.org/
http://www.netbeans.org/

Using the Mobile Client Business Object APl in a Java ME Application

In the Secure MusicDB sample code, the SecureJdbcMIDlet. java file contains Java ME code
and MCBO API code. The Java ME code creates the user interface that allows users to create,
edit, and delete business objects. The MCBO API code stores and retrieves business object data
on the client device and synchronizes client-side modifications with the data on the back end.

Typically, a MIDlet begins by importing the MCBO API and JerseyMe packages in addition to
the Java ME packages:

import com.sun.mep.client.api.*;
import com.sun.jerseyme.api.client.Client;
import com.sun.jerseyme.api.client.WebResource;

A MIDlet uses the API to perform the following tasks:

= “Creating DefaultSecurityManager, SyncManager, and BusinessObjectStorage Objects”
on page 19

“Establishing Login Credentials” on page 20

“Working with Business Objects on the File System” on page 21

“Synchronizing Data with the Server” on page 22

Creating DefaultSecurityManager, SyncManager,and
BusinessObjectStorage Objects

The first task for the Sun GlassFish Mobility Platform client code is to create the objects needed
for synchronization and data manipulation:

= A SyncManager object
= ABusinessObjectStorage object

L Optionally, aDefaultSecurityManager or AESSecurityManager object, or another
extension of the SecurityManager class

You may also want to enable logging for debugging purposes by calling the
SyncManager.enableLogging method. Iflogging is enabled, logging messages for the client
code are written both to standard output and to a file on the device named meplog. txt.

You commonly perform these operations within a thread, as follows:

Thread t = new Thread(new Runnable() {
public void run() {
securityMgr = new DefaultSecurityManager("musicdb")
securityMgr.setMaxValidationAttempts(3);
syncMgr = new SyncManager(".alb", securityMgr);
syncMgr.enablelLogging(true);
boStorage = syncMgr.getBusinessObjectStorage();

Chapter2 - Building a Client Application 19

Using the Mobile Client Business Object APl in a Java ME Application

20

1)
t.run();

This code first instantiates a security manager and sets the maximum allowed number of
validation attempts. If this maximum is exceeded, all Sun GlassFish Mobility Platform records
on the device are erased. See “Data Destruction” on page 40 for details.

The code then uses the form of the SyncManager constructor that takes two arguments, the file
extension used for the business object and the security manager. In this case, the extension is the
string . alb", as specified by the getExtension method of the Album class. The code also turns
onlogging.

Once you enable security by specifying an implementation of SecurityManager in the
SyncManager constructor, all of the data stored locally on the device will be encrypted and
decrypted automatically. There are no further requirements on the client application to
explicitly perform encryption or decryption of the data.

The code then calls the SyncManager . getBusinessObjectStorage factory method to
instantiate the BusinessObjectStorage object. This object provides storage for Album objects
on the mobile device's file system.

Establishing Login Credentials

To provide application-level authentication, a secure client application must use the security
manager to create login credentials for the user. The MIDlet code provides an initial login
screen that requires the user to create both a secret and a Personal Identification Number (PIN).
Users do not need to remember the secret, but they must remember the PIN.

The MIDlet code calls the security manager's computeKey and setKey methods to create a key
from the PIN entered by the user. It then calls the security manager's storeCredentials
method to create credentials based on the secret.

byte[] key = securityMgr.computeKey(getInitialPinField().getString());
securityMgr.setKey(key);
securityMgr.storeCredentials(getSecretField().getString());

The getInitialPinField and getSecretField methods are Ul methods that obtain the
needed string values.

The secret and PIN provide security in addition to the username and password credentials
required by the gateway in order to perform synchronization (as described in “Setting User
Credentials” on page 22).

Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications « March 2009

Using the Mobile Client Business Object APl in a Java ME Application

Working with Business Objects on the File System

The MIDlet code typically allows users to create new objects and to edit or delete existing
objects in disconnected mode, using the mobile device's file system without being connected to
aserver. The code commonly uses a combination of BusinessObject and
BusinessObjectStorage methods to perform the following tasks:

= “Retrieving Objects for Editing” on page 21
= “Deleting Objects” on page 21
= “Saving Objects” on page 22

Typically, a user on a client device performs a number of operations on the client device in
disconnected mode, then logs in to the server and synchronizes the data.

Retrieving Objects for Editing

To allow users to view existing objects, the code commonly displays a list of names returned by
the BusinessObjectStorage.listBusinessObjectNames method. This method retrieves a list
of the names of all the business objects that have the file extension specified by the SyncManager
constructor method. For example, the SecureJdbcMIDlet code calls the following method
before populating a form with a list of albums:

Vector v = boStorage.listBusinessObjectNames();

To display a selected album, the SecureJdbcMIDlet code instantiates an Album object, using a
name argument that represents the filename stripped of its " . alb" extension. The code then
calls the BusinessObjectStorage. readBusinessObject method to read the data for the
selected album from the file system into the Album object.

Album a = new Album(selectedAlbum.substring(@, selectedAlbum.length()-4));
boStorage.readBusinessObject(a);

The SecureJdbcMIDlet code then calls the getter methods for Album objects to retrieve the
selected album's property values and display them in a form for editing.

Deleting Objects

To allow users to delete a selected album, the SecureJdbcMID1let code calls the
BusinessObjectStorage.deleteBusinessObject method with a String argument, the name
of the album:

boStorage.deleteBusinessObject(selectedAlbum);

Chapter2 - Building a Client Application 21

Using the Mobile Client Business Object APl in a Java ME Application

22

Saving Objects

To save a newly created or edited album, the SecureJdbcMIDlet code calls its saveAlbum
method. This method instantiates an Album object and then calls the methods that set the
album's properties, using Java ME GUI code to retrieve the values. Finally, the saveAlbum
method calls the BusinessObjectStorage.writeBusinessObject method to save the album to
the file system:

Album a = new Album();

boStorage.writeBusinessObject(a);

Synchronizing Data with the Server

Once users have created or modified objects on the client using BusinessObjectStorage
methods, they can use SyncManager methods to synchronize the modified data with the server.
Synchronization includes the following tasks:

= “Setting User Credentials” on page 22
= “Performing Synchronization” on page 22
= “Retrieving Synchronization Results” on page 23

Setting User Credentials

The gateway requires username/password authentication for secure access. Before performing
a synchronization, the MIDlet must call the SyncManager. setCredentials method, which
takes three arguments: the username, the password, and the HTTP/S URL of the gateway. In
SecureJdbcMIDlet. java, the arguments are supplied by three GUI methods, as follows:

syncMgr.setCredentials(
getUserName().getString(),
getPassword().getString(),
getSyncServer().getString());

These methods obtain input from the user and return TextField values.
The initial creation of users is a Sun GlassFish Mobility Platform administrative task, described

in the Sun GlassFish Mobility Platform 1.1 Administration Guide

Performing Synchronization

Once user credentials are established, synchronization can take place. The SecureJdbcMIDlet
code calls the SyncManager. sync method, which takes a SyncType argument. In this case, the
code calls a method that returns a SyncType value:

syncMgr.sync(getSelectedSyncType());

Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications « March 2009

http://docs.sun.com/doc/820-7208

Developing Client Applications for the BlackBerry Using NetBeans IDE

The getSelectedSyncType method in turn uses the value returned by a GUI method,
getSyncType.

Retrieving Synchronization Results

After a successful synchronization, you can retrieve and display information about the
synchronization results. The SecureJdbcMIDlet code retrieves the results using the
SyncManager.getSyncResults method, which returns a SyncResults value:

SyncResults results = syncMgr.getSyncResults();

It then displays the results in a GUI form by calling SyncResults methods. These methods can
return either the number of items changed or a list of the actual business objects that were
changed. The SecureJdbcMIDlet code displays only the number of items changed.

Developing Client Applications for the BlackBerry Using
NetBeans IDE

This guide cannot describe how to develop client applications for every possible device using
every possible development tool. This section, however, describes how to develop a client
application for one of the most commonly used devices, the BlackBerry, using one of the most
commonly used development tools, NetBeans IDE. It contains the following sections:

“Prerequisites” on page 23

“To Configure BlackBerry JDE v4.2.1” on page 24

“To Configure NetBeans IDE for BlackBerry Application Development” on page 25

“To Import the SecureMusicDB Sources into NetBeans IDE as a BlackBerry Project” on
page 26

m “To Create a New BlackBerry Project to Use the MCBO API” on page 33

Prerequisites

Before you can develop a client application for the Blackberry using NetBeans IDE, you must
install the following software on a Microsoft Windows system:

= The Java Development Kit (JDK), version 5 or 6. Set your JAVA_HOME and PATH environment
variables to point to your installation of JDK 5 or JDK 6.
= NetBeans IDE 6.5

Gotohttp://www.netbeans.org/, then download and install NetBeans IDE 6.5.
BlackBerry client application development has been thoroughly tested only with this
version of NetBeans IDE.

Chapter2 - Building a Client Application 23

http://www.netbeans.org/

Developing Client Applications for the BlackBerry Using NetBeans IDE

On the NetBeans download page, select Java as the bundle to download. This bundle
includes Java SE, Web and Java EE, and Java ME. When you install NetBeans IDE, click
Customize to install only some of the components. Deselect all of the listed runtimes, since
you are using the Sun GlassFish Mobility Platform version of Sun GlassFish Enterprise
Server.

= BlackBerry Java Development Environment (BlackBerry JDE) v4.2.1

Gotohttp://na.blackberry.com/eng/developers/javaappdev/javadevenv. jsp, then
download and install BlackBerry JDE v4.2.1. This is the only version that is compatible with
current versions of NetBeans IDE. BlackBerry JDE runs only on Windows systems.

= BlackBerry Email and MDS Services Simulator Package v4.1.4

Goto
http://na.blackberry.com/eng/developers/browserdev/devtoolsdownloads. jsp,
then download and install the BlackBerry Email and MDS Services Simulator Package
v4.1.4.

Note - You must have a BlackBerry Developer Community account in order to download the
BlackBerry software. If you do not have an account, follow the instructions on the website to
obtain one.

v To Configure BlackBerry JDE v4.2.1

1 Click Start—All Programs—Research In Motion—BlackBerry JDE 4.2.1—JDE.
2 (lick Edit—Preferences.
3 Clickthe Simulator tab and perform these steps:

a. Select the 8800-JDE Profile from the pull-down menu.

b. Select the Launch simulator checkbox.

c. Select the Launch Mobile Data Service (MDS) with Simulator checkbox.

4 Click the MDS Simulator Tab. Make sure that the MDS Simulator directory location is pointing to
the v4.1.4 MDS directory you installed. For example:

C:\Program Files\Research In Motion\BlackBerry Email and MDS Services Simulators 4.1.4\MDS

5 Click OK.

You can leave the JDE running, because you may need it later on.

24 Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications - March 2009

http://na.blackberry.com/eng/developers/javaappdev/javadevenv.jsp
http://na.blackberry.com/eng/developers/browserdev/devtoolsdownloads.jsp

Developing Client Applications for the BlackBerry Using NetBeans IDE

v To Configure NetBeans IDE for BlackBerry Application
Development

1 Starta text editor and copy the following text into an empty file.

Note - If you installed BlackBerry JDE in a non-default location (for example, not on the C:\
drive), edit the contents of the home property setting for the platform element.

Make sure that the contents of the preverifycmd property setting for the platform element all
appear on one line of the file. The contents are broken up here for readability only.

<?xml version="1.0"7>
<IDOCTYPE platform PUBLIC '-//NetBeans//DTD J2ME PlatformDefinition 1.0//EN’
"http://www.netbeans.org/dtds/j2me-platformdefinition-1 0.dtd’>
<platform name="BlackBerry JDE 421"
home="C:\Program Files\Research In Motion\BlackBerry JDE 4.2.1"
type="CUSTOM"
displayname="BlackBerry JDE 421"
srcpath=""
docpath="¢${platform.home}/docs/api,"
preverifycmd:""{platformhome}{/}bin{/}preverify"

{classpath]|-classpath "{classpath}"}

-d "{destdir}" "{srcdir}""
runcmd="cmd /C "cd /D {platformhome}{/}simulator&{device}"
debugcmd="cmd /C "cd /D {platformhome}{/}bin&jdwp"">

<device name="8800" description="8800">
<optional name="JSR75" version="1.0"
displayname="File Connection and PIM Optional Packages"
classpath="${platform.home}/lib/net rim api.jar"
dependencies="" default="true"/>
<optional name="MMAPI" version="1.0"
displayname="Mobile Media API"
classpath="${platform.home}/lib/net rim api.jar"
dependencies="" default="true"/>
<configuration name="CLDC" version="1.1"
displayname="Connected Limited Device Configuration"
classpath="${platform.home}/1lib/net rim api.jar"
dependencies="" default="true"/>
<optional name="OBEX" version="1.0"
displayname="Object Exchange APIs"
classpath="${platform.home}/1lib/net rim api.jar"
dependencies="" default="true"/>
<optional name="JSR82" version="1.0"
displayname="Java APIs for Bluetooth Wireless Technology"
classpath="¢${platform.home}/1lib/net rim api.jar"

Chapter 2 - Buildinga Client Application

25

Developing Client Applications for the BlackBerry Using NetBeans IDE

26

Next Steps

dependencies="" default="true"/>
<optional name="WMA" version="1.1"
displayname="Wireless Messaging API"
classpath="¢${platform.home}/lib/net rim api.jar"
dependencies="" default="true"/>
<optional name="JSR179" version="1.0"
displayname="Location Based APIs"
classpath="¢${platform.home}/lib/net rim api.jar"
dependencies="" default="true"/>
<optional name="JSR177" version="1.0"
displayname="Security and Trust Services APIs"
classpath="¢${platform.home}/lib/net rim api.jar"
dependencies="" default="true"/>
<profile name="MIDP" version="2.0"
displayname="Mobile Information Device Profile"
classpath="${platform.home}/lib/net rim api.jar"
dependencies="" default="true"/>
</device>
</platform>

Save thefile, giving it the name BlackBerry JDE 421.xml.

Copy the file to the following location in your home directory under C: \Documents and
Settings:

.netbeans\6.5\config\Services\Platforms\org-netbeans-api-java-Platform

If NetBeans IDE is running, stop it.

You will be prompted to start (or restart) NetBeans IDE in the next task, “To Import the
SecureMusicDB Sources into NetBeans IDE as a BlackBerry Project” on page 26.

After you start NetBeans IDE, The Blackberry JDE will appear in the list of platforms when you
choose Java Platforms from the Tools menu.

To Import the SecureMusicDB Sources into NetBeans
IDE as a BlackBerry Project

To build and run a SecureMusicDB project for the BlackBerry from sources in NetBeans IDE,
follow these steps.

To obtain the Sun GlassFish Mobility Platform client library bundle, go to the following URL:
http://www.sun.com/software/products/mep/get.jsp.

Click Download, provide the requested information, then click Log In and Continue.

Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications « March 2009

http://www.sun.com/software/products/mep/get.jsp

Developing Client Applications for the BlackBerry Using NetBeans IDE

Download the sgmp-client-1 1 01-fcs-b02.zip bundle.
Unzip the bundle in a location of your choosing (for example, under C:\).
Unzip the source files for the SecureMusicDB project.

a. Navigate to the directory
C:\sgmp-client-1 1 01-fcs-b@2\samples\secure-musicdb\src\mcbo.

b. Extractthefilesfromthe securemusicdb-sources.jar filetothe
C:\sgmp-client-1 1 @1-fcs-b@2\samples\secure-musicdb\src\mcbo directory.

You could use WinZip or the jar xvf command, for example, to extract the files.
¢. Remove the META- INF directory and its contents (the file MANIFEST . MF).

Start NetBeans IDE.
The first time you start NetBeans IDE, you are prompted to install some updates. Install them.

In NetBeans IDE, follow these steps to create a Java ME Project and import the secure-musicdb
sources.

a. From the File menu, select New Project.

The Choose Project screen appears.
b. Click Java ME, then click Mobile Project with Existing MIDP Sources.

c. Click Next.
The Specify MIDP Sources Screen appears.

d. Inthe Sources Location field, specify the location of the secure-musicdb sources you
extracted. For example, if you unzipped the bundle to the C : \ directory, specify the
following:

C:\sgmp-client-1 1 01-fcs-b0@2\samples\secure-musicdb\src\mcbo

Leave the JAD/Manifest Location field empty.

e. Click Next.

The Name and Location Screen appears.
f. Type aname for the Project or keep the default name.

g. Click Next.

The Default Platform Selection Screen appears.

Chapter2 - Building a Client Application 27

Developing Client Applications for the BlackBerry Using NetBeans IDE

28

h. Setthe Emulator Platform to“BlackBerry JDE 421" and verify that the Device is 8800.

i. Click Finish.

The project appears in the Projects pane.
8 Tospecify the MIDlet and icon to be used, follow these steps.
a. Right-click the project and select Properties.
b. Click the Application Descriptor node.
c. Clickthe MIDlets tab.

d. IftheSecureldbcMIDlet appears, click Edit. If it does not, click Add.

In the Add MIDlet dialog, the MIDIet name and class, SecureJdbcMID1let and
sample.SecureJdbcMIDlet, are already filled in.

e. Forthe MiDletlIcon, select /Clear Note 32.pngfrom the menu (itis the only choice). If no
menu appears, type the value in the field.

f. Click OK, then click OK in the properties dialog.

9 Toaddthefilesmep client api.jarandjerseyme api.jartothe supported Libraries &
Resources, follow these steps.

a. Right-click the project and select Properties.
b. Click Libraries & Resources under Build.
¢. Click Add Jar/Zip.

d. Browsetothe lib\BlackBerry directorytoaddmep client api.jar.

For example, if you unzipped the bundle to the C:\ directory, the file name would be
C:\sgmp-client-1 1 01-fcs-b@2\lib\BlackBerry\mep client api.jar.

e. Fromthesamelocation,add jerseyme api.jar.
f. Click OK.

g. Click the Files tab (next to the Projects tab) and open the project.properties file under the
nbproject directory.

Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications « March 2009

Developing Client Applications for the BlackBerry Using NetBeans IDE

h. Editthefile.reference.mep client api.jar property to contain the fully qualified path
name ofthemep client api.jarfile.

For a BlackBerry project, the pathname must be absolute, not relative.

For example, if you unzipped the bundle to the C:\ directory, edit the property definition to
look like this:
file.reference.mep _client api.jar=C:/sgmp-client-1 1 01-fcs-b02/lib/BlackBerry/mep client api.jar

Use forward slashes (/) instead of the usual Windows file separator.

i. Editthefile.reference.jerseyme api.jar property to contain the fully qualified path
name of the jerseyme api.jarfile.
For example, if you unzipped the bundle to the C: \ directory, edit the property definition to
look like this:
file.reference.jerseyme api.jar=C:/sgmp-client-1 1 01-fcs-b0@2/1ib/BlackBerry/jerseyme api.jar

j. Editthefile.reference.src-mcbo property to contain the fully qualified path name of the
project sources.
For example, if you unzipped the bundle to the C:\ directory, edit the property definition to
look like this:

file.reference.src-mcbo=C:/sgmp-client-1 1 01-fcs-b02/samples/secure-musicdb/src/mcbo
10 Click the Files tab and open the project's build.xm1 file.

11 Add the following code fragment immediately before the </project>tag at the end of the file:

<target name="do-preprocess">
<fail unless="libs.ant-contrib.classpath">
Classpath to Ant Contrib library (libs.ant-contrib.classpath property) is not set.

</fail>
<taskdef resource="net/sf/antcontrib/antlib.xml">
<classpath>
<pathelement path="${libs.ant-contrib.classpath}"/>
</classpath>
</taskdef>
<available file="${platform.home}/bin/rapc.exe" property="do.rapc"/>
<if>
<isset property="do.rapc"/>
<then>

<property name="jpda.port" value="8000"/>
<path id="antlib.classpath">
<fileset dir="¢${user.dir}/mobility8/modules/ext/"
includes="ant-contrib-1.0b3.jar"/>
</path>
<mkdir dir="${dist.dir}"/>
<path id="src-files">
<fileset dir="${src.dir}" includes="**/* *"/>

Chapter2 - Building a Client Application 29

Developing Client Applications for the BlackBerry Using NetBeans IDE

</path>

<property name="srcs" value="${toString:src-files}"/>

<for list="${srcs}" param="file" delimiter=";" trim="true">
<sequential>

<echo message="@{file}${line.separator}"
file="${src.dir}/${name} build.files" append="true"/>
</sequential>
</for>
<touch file="${dist.dir}/${dist.jar}"/>
<nb-overrideproperty name="buildsystem.baton"
value="${preprocessed.dir}"/>
</then>
<else>
<nb-overrideproperty name="buildsystem.baton" value="${src.dir}"/>
<antcall target="${name}-impl.do-preprocess"/>
</else>
</if>
</target>
<target name="do-compile">
<if>
<isset property="do.rapc"/>
<then>
<antcall target="create-jad"/>
<antcall target="update-jad"/>
<copy file="${dist.dir}/${dist.jad}" toDir="¢${src.dir}"/>
<exec dir="${src.dir}"
executable="${platform.home}/bin/rapc.exe" failonerror="true">
<arg value="-quiet"/>
<arg value="import=${platform.bootclasspath};${libs.classpath}"/>
<arg value="codename=${name}"/>
<arg value="-midlet"/>
<arg value="jad=${dist.jad}"/>
<arg value="@${name} build.files"/>
</exec>
<delete file="${basedir}/${src.dir}/${name} build.files"/>
<copy file="${name}.alx" todir="¢${dist.dir}"/>
<nb-overrideproperty name="buildsystem.baton"
value="${build.classes.dir}"/>
</then>
<else>
<nb-overrideproperty name="buildsystem.baton"
value="${preprocessed.dir}"/>
<antcall target="${name}-impl.do-compile"/>
</else>
</if>
</target>
<target name="pre-obfuscate">
<nb-overrideproperty name="buildsystem.baton" value="${build.classes.dir}"/>

30 Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications - March 2009

Developing Client Applications for the BlackBerry Using NetBeans IDE

12

</target>
<target name="post-jar" if="do.rapc">
<move todir="${dist.dir}">
<fileset dir="${src.dir}">
<include name="**/${name}*.*"/>
</fileset>
</move>
<copy todir="${platform.home}/simulator" verbose="true">
<fileset dir="¢${dist.dir}">
<include name="**/${name}*.*"/>
</fileset>
</copy>
</target>
<target name="post-clean"s
<delete failonerror="false" includeemptydirs="true">
<fileset dir="${platform.home}/simulator">
<include name="**/${name}*.*"/>
</fileset>
<fileset dir="${dist.dir}">
<include name="**/* *"/>
</fileset>
<fileset dir="${src.dir}">
<include name="**/${name}*.*"/>
</fileset>
</delete>
</target>

Create an . alx file for this project.

a. ClicktheFiles tab.

b.

C.

Right-click your project and select New—Other.

In the Choose File Type screen, click Other, then click Empty File.

. Click Next.

In the Name and Location screen, give the file the same name as your project, with the
extension .alx.

For example, if bb-secure-musicdb is the project name, name the file
bb-secure-musicdb.alx

Click Finish.
The empty file opens.

Chapter2 - Building a Client Application 31

Developing Client Applications for the BlackBerry Using NetBeans IDE

g. Copy and paste the following text into the file, replacing myProject with your project name,
and including any vendor and copyright information needed for your application.

<loader version="1.0">
<application id="myProject">

<name>
myProject
</name>
<description/>
<version>
1.0
</version>
<vendor>
</vendor>
<copyright>
</copyright>
<fileset Java="1.3">
<directory/>
<files>
myProject.cod
</files>
</fileset>
<application id="mep client api">
<name/>
<description/>
<version>
1.0
</version>
<vendor>
Sun Microsystems Inc.
</vendor>
<copyright>
Copyright (c) 2009 Sun Microsystems Inc.
</copyright>
<fileset Java="1.3">
<directory/>
<files>
mep client api.cod
</files>
<files>
jerseyme api.cod
</files>
</fileset>
</application>
</application>
</loader>

h. Save and close thefile.

32 Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications - March 2009

Developing Client Applications for the BlackBerry Using NetBeans IDE

13

14

15

16

Next Steps

Copy thefilesmep client api.codandjerseyme api.codfromthe directory
C:\sgmp-client-1 1 01-fcs-b@2\lib\BlackBerry tothe simulator directory of the
BlackBerry JDE (for example, C:\Program Files\Research In Motion\BlackBerry JDE
4.2.1\simulator).

Click the Projects tab, then right-click your secure-musicdb project and select Clean & Build.

If a message that begins error while reading original manifest appears, you can ignore it.

Right-click your secure-musicdb project and select Run.
The BlackBerry Device Simulator appears.

Note - When you select Run, NetBeans IDE automatically loads the application on the
Simulator using the . jad and . jar files (not the . cod file). If you want to load the application
from the . cod file created, use the File—Load Java Program option in the Simulator.

Launch the SecureJdbcMIDlet application and perform a Sync.

The icon for the application is a musical note.

Note - The MDS must be running for the client to perform syncs. If you started the JDE, MDS
should get launched automatically. Otherwise, start MDS manually as follows: From the
Windows Start menu, choose All Programs—Research in Motion—BlackBerry Email and MDS
Services Simulators 4.1.4—MDS.

To remove the application from the Simulator, delete the . jad, . jar,and . cod files from the
Simulator directory within the JDE and execute the three erase options in the JDE under
File—Erase Simulator File.

To Create a New BlackBerry Project to Use the MCBO
API

To create a new NetBeans IDE project that uses the MCBO API, follow these steps.
In NetBeans IDE, choose New Project from the File menu.

Choose Project Screen.

Click Java ME—MIDP Application.

Click Next.

Chapter 2 - Buildinga Client Application 33

Developing Client Applications for the BlackBerry Using NetBeans IDE

34

Inthe Name and Location screen:

[+V]

. Type aname for the project or keep the default name.
b. Select Setas Main Project.

c. SelectCreate Hello MIDlet.

d. Click Next.

In the Default Platform Selection Screen:

a. Specify BlackBerryJDE421 as the Emulator Platform.
b. Specify 8800 as the Device.

c. Click Finish.

Addthemep client api.jarand jerseyme api.jarfilestoyourLibraries & Resources for this
projectin order to call and have access to the MCBO API.

a. Ifyouhave notdone so before, go to
http://www.sun.com/software/products/mep/get.jsp and download the
sgmp-client-1 1 01-fcs-b02.zip bundle.

b. Unzipthesgmp-client-1 1 01-fcs-b02.zip bundle (forexample, underc:\).

¢. InNetBeans IDE, right-click the project and select Properties.

d. ClickLibraries & Resources.

e. Click Add Jar/Zip.

f. Browse to the location of the unzipped bundle above the 1ib directory to add
mep client api.jar.

For example, if you unzipped the bundle to the C:\ directory, the file name would be
C:\sgmp-client-1 1 01-fcs-b@2\1ib\BlackBerry\mep client api.jar.
g. Fromthe same location,add jerseyme api.jar.

h. Click OK.

i. Clickthe FilesTab (next to the Projects tab) and openthe project.properties file under
thenbproject directory.

Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications « March 2009

http://www.sun.com/software/products/mep/get.jsp

Developing Client Applications for the BlackBerry Using NetBeans IDE

j. Editthefile.reference.mep client api.jar property to contain the fully qualified path
nameofthemep client api.jarfile.

For a BlackBerry project, the pathname must be absolute, not relative.

For example, if you unzipped the bundle to the C:\ directory, edit the property setting to
look like this:

file.reference.mep_client api.jar=C:/sgmp-client-1 1 01-fcs-b02/lib/BlackBerry/mep client api.jar

Use forward slashes (/) instead of the usual Windows file separator.

k. Editthefile.reference.jerseyme api.jar property to contain the fully qualified path
name of the jerseyme api.jarfile.

For example, if you unzipped the bundle to the C: \ directory, edit the property setting to
look like this:

file.reference.jerseyme api.jar=C:/sgmp-client-1 1 01-fcs-b0@2/1ib/BlackBerry/jerseyme api.jar

I. Click the Files Tab and open the project's build. xm1 file. Immediately before the
</project>tag at the end of the file, add the same code fragment you added in Step 11 of
“To Import the SecureMusicDB Sources into NetBeans IDE as a BlackBerry Project”on
page 26.

8 Createan .alxfilefor this project:

a. ClicktheFiles tab.

b. Right-click your project and select New—0Other.

c. IntheChoose File Type screen, click Other, then click Empty File.

d. Click Next.

e. Give thefile the same name as your project name, with the . alx extension.

f. Click Finish.

g. Copy and paste into the file the content from Step g under Step 12 of “To Import the
SecureMusicDB Sources into NetBeans IDE as a BlackBerry Project” on page 26, replacing

myProject with your project name.

h. Save and close thefile.

Chapter 2 - Buildinga Client Application 35

Developing Client Applications for the BlackBerry Using NetBeans IDE

36

10

11

12

Next Steps

Copy thefilesmep client api.codand jerseyme api.codfrom thedirectory
C:\sgmp-client-1 1 01-fcs-b@2\lib\BlackBerry tothe simulator directory of the
BlackBerry JDE (for example, C:\Program Files\Research In Motion\BlackBerry JDE
4.2.1\simulator).

Click the Projects tab, then right-click your project and select Clean & Build.

Right-click your project and select Run.
The BlackBerry Device Simulator appears.

Note - When you select Run, NetBeans IDE automatically loads the application on the
Simulator using the . jad and . jar files (not the . cod file). To load the application from the
. cod file created, use the Load Java Program option in the Simulator.

Launch the MIDlet application.

At this point, you have a boilerplate application that says Hello World. You can now add code to
implement and call the MCBO API classes and methods, and you can edit the MIDlet code to
provide a user interface and to perform synchronizations.

Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications « March 2009

CHAPTER 3

Client Security Architecture

This chapter contains an overview of the Sun GlassFishMobility Platform client security
features and describes how the Secure MusicDB application implements these features.

This chapter covers the following topics:

“Best Practices for Secure Client Applications” on page 38
“Authentication on the Client Device” on page 38

“Data Encryption” on page 39

“Transport-layer Security” on page 39

“Data Destruction” on page 40

“Lockout” on page 40

“Poison Pill” on page 40

“Data Fading” on page 40

“Secure MusicDB Java ME Application Security Features” on page 41

Client security must perform the following tasks:

Provide a simple PIN-based form of authentication (see “Authentication on the Client
Device” on page 38)

Provide a means to secure data at rest on the mobile device (see “Data Encryption” on
page 39)

Provide a means to securely synchronize with the gateway on the server (see
“Transport-layer Security” on page 39)

Provide a mechanism to destroy business data (see “Data Destruction” on page 40)

Provide a means to prevent the client device from synchronizing (see “Lockout” on
page 40)

Provide a means to remotely destroy all of the data on the device (see “Poison Pill” on
page 40)

Provide a means to notify the application that a certain quiet period has elapsed (see “Data
Fading” on page 40)

37

Best Practices for Secure Client Applications

= Provide an API that allows developers to replace the Sun GlassFish Mobility Platform
default implementation with their own (see “The DefaultSecurityManager Class” on
page 47 and “The SecurityManager Class” on page 49)

Best Practices for Secure Client Applications

Developers of secure client applications should observe the following rules to obtain the best
possible level of client security:

= Do not hard-code values for the gateway credentials into the application

= Do not store or cache form data on the device

= Require or encourage end users to use the native security services of the device
= Youmust use HTTPS to provide transport-layer security

= Use the security features provided with the Mobile Client Business Objects (MCBO) API,
including requiring authentication, encrypting the data, and implementing data destruction
and lockout measures

Authentication on the Client Device

38

There are two forms of authentication on the client device:

= User Authentication: the end user authenticates with the device through an alphanumeric
Personal Identification Number (PIN)

= Gateway Authentication: the end user authenticates with the gateway through a username
and password

The Sun GlassFish Mobility Platform client library provides an API to validate an arbitrary
length alphanumeric PIN against a PIN derivative stored on the device. The library also
maintains a count of validation attempts (even across restarts of the application). If a threshold
of failed attempts is exceeded (specified by the client application), data destruction and device
lockout can occur.

Storing the PIN derivative and a count of validation attempts on the device is an obvious
weakness in the security architecture, as this data could be easily subverted. Therefore, it is
recommended that users follow the best practices outlined above to improve the overall security
of the system.

Supplying the correct PIN allows users to access the application and perform local operations,
but users will not be able to synchronize with the gateway unless they supply the proper
username/password credentials for the gateway.

Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications « March 2009

Transport-layer Security

Authentication Implementation
Let:

S = alphanumeric secret (random key sequence entered exactly once by user)
S'=md5sum(S)

P = alphanumeric PIN (entered by user every time)
P'=md5sum(P)

cipherText = encrypt(S, P')
persist { S', cipherText } on the device
Upon subsequent logins:

P =PIN
P'=md5sum(P)
plainText = decrypt(cipherText, P')

if (md5sum(plainText) == S")
success

else
failure

Data Encryption

Data at rest on the mobile device is encrypted by using a digest of the PIN as the encryption key.
There are four locations in the Sun GlassFish Mobility Platform client library where encryption
and decryption must occur. In these locations, the library will invoke encrypt/decrypt callback
methods that perform the tasks.

Transport-layer Security

Since data streaming in the SyncML protocol is simply base64 encoded XML and is therefore
not secure, it is assumed that HT'TPS will be used to provide transport-layer security.

Chapter 3 « Client Security Architecture 39

Data Destruction

Data Destruction

Lockout

Poison Pill

The Sun GlassFish Mobility Platform client library keeps track of how many times client
applications attempt to validate a PIN against the PIN derivative stored on the device (even
across application restarts). If the application exceeds the threshold specified by the application
developer, the client library will erase all of the Sun GlassFish Mobility Platform records on the
mobile device and prevent any further attempts to validate the PIN.

The Sun GlassFish Mobility Platform client library keeps track of how much time has lapsed
since the last synchronization attempt with the gateway. At the beginning of each
synchronization, the client library calculates how much time has elapsed. If the time since the
last synchronization exceeds the threshold specified by the application developer, then all Sun
GlassFish Mobility Platform records can be erased from the device.

The library also maintains a count of validation attempts (even across restarts of the
application). If a threshold of failed attempts is exceeded, both data destruction and lockout can
occur.

A Sun GlassFish Mobility Platform administrator can remotely trigger the destruction (wiping)
of all the data on a particular device.

Data Fading

40

The client security implementation keeps track of how much time has elapsed since the last
successful synchronization. The client application may specify a maximum quiet period after
which the application may decide to activate the data destruction feature.

Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications « March 2009

Secure MusicDB Java ME Application Security Features

Secure MusicDB Java ME Application Security Features

The Secure MusicDB application demonstrates most of the security features described in this
document:

Authentication on the Client Device: The first time you launch the MIDlet, you are
prompted to set a security PIN. The PIN can be any alphanumeric string. You are also asked
to enter a long random sequence of key-presses on the device in the “secret” field. The PIN
and secret are used to compute the derivatives described above, which are stored on the
mobile device's RMS record store. Upon subsequent launches of the MIDlet, you are
prompted to enter the PIN. If the PIN does not correctly reverse the computation of the
derivatives stored in RMS, then an error message appears, and you are prompted to enter
the PIN again. The MIDlet also clearly indicates how many attempts you have left before it
performs data destruction.

Data Destruction and Lockout: After you fail to enter the PIN 3 times, the MIDlet destroys
all MusicDB data on the device, and you are prevented from using the application.

Recovering from Lockout: If you are locked out of the application, you must remove and
reinstall the Secure MusicDB application on your device. This should reset the security
information stored in RMS, and you will see the initial screen asking for a secret and PIN.

Encryption: The PIN you enter is used to encrypt and decrypt all data at rest on the device.

Transport-layer Security: The gateway is configured to allow mobile clients to
communicate using HT'TPS in order to provide transport-layer security. (See Chapter 4,
“Configuring HTTP and HTTPS Proxies,” in Sun GlassFish Mobility Platform 1.1
Installation Guide for more information.)

Chapter3 - Client Security Architecture 41

http://docs.sun.com/doc/820-7203/gigbs?a=view
http://docs.sun.com/doc/820-7203/gigbs?a=view
http://docs.sun.com/doc/820-7203/gigbs?a=view

42

L R 2 4 CHAPTER 4

Classes and Methods in the Mobile Client
Business Object APl Package

The Mobile Client Business Object (MCBO) API contains one package,
com.sun.mep.client.api, that developers must use. This chapter summarizes the classes and
methods contained within this package.

= “The AESSecurityManagerClass” on page 43

= “TheBusinessObject Class” on page 45

“The BusinessObjectStorage Class” on page 46
“The DefaultSecurityManager Class” on page 47
“The EncodingType Class” on page 48

“The SecurityManager Class” on page 49

“The SecurityManagerBase Class” on page 52
“The SMSMessageHandler Class” on page 53
“The SyncException Class” on page 54

“The SyncManager Class” on page 55

“The SyncResults Class” on page 57

= “The SyncType Class” on page 59

The API documentation is included in the MEP client bundle. In the directory where you
unzipped the client bundle (see the Sun GlassFish Mobility Platform 1.1 Installation Guide for
details), it is in the directory sgmp-client-1_1 01-fcs-b02/doc/mcbo/api.

The AESSecurityManagerClass

Table 4-1 lists the constructors and methods belonging to the AESSecurityManager class. This
class provides a basic AES/CDC implementation of SecurityManager.

128-bit security keys are generated from the pin using MD5 digest. The key is used to reverse a
basic pin derivatives algorithm for client authentication. It is also used as the symmetric key for
AES/CDC encryption of data at rest on the device.

43

http://docs.sun.com/doc/820-7203

The AESSecurityManagerClass

TABLE 4-1

Class com.sun.mep.client.api.AESSecurityManager

Method

Description

AESSecurityManager(java.lang.String
contextName)

public final byte[]
computeKey(java.lang.String pin)

public static final byte[]
computeMD5Digest (byte[] dataBytes)

public static final byte[]
computeMD5Digest(java.lang.String data)

public final byte[] decrypt(bytel[]
cipherText)

public final boolean

destroyBusinessObjects(SyncManager mgr)

public final byte[] encrypt(byte[] plainText)

public final byte[] getKey()

public final long getMaxQuietPeriod()

public final int getMaxValidationAttempts()

public final long

getRemainingQuietTime(SyncManager mgr)

public final int getValidationAttempts()

public final boolean isPinSet()

public void setKey(byte[] key)

public final void setMaxQuietPeriod(long
period)

Single-argument constructor. The contextName
parameter is used to uniquely store security-related
information in the Record Management System
(RMS) about this security manager. The context name
should be unique across applications and instances of
SecurityManager and should be no more than 16
Unicode characters long.

Inherited from “The SecurityManagerBase Class” on
page 52.

Inherited from “The SecurityManagerBase Class” on
page 52.

Inherited from “The SecurityManagerBase Class” on
page 52.

Inherited from “The SecurityManagerBase Class” on
page 52.

Inherited from “The SecurityManager Class” on
page 49.

Inherited from “The SecurityManagerBase Class” on
page 52.

Inherited from “The SecurityManagerBase Class” on
page 52.

Inherited from “The SecurityManager Class” on
page 49.

Inherited from “The SecurityManager Class” on
page 49.

Inherited from “The SecurityManager Class” on
page 49.

Inherited from “The SecurityManagerBase Class” on
page 52.

Inherited from “The SecurityManagerBase Class” on
page 52.

Inherited from “The SecurityManagerBase Class” on
page 52.

Inherited from “The SecurityManager Class” on
page 49.

Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications « March 2009

TheBusinessObject Class

TABLE 4-1

Class com.sun.mep.client.api.AESSecurityManager

(Continued)

Method

Description

public final void
setMaxValidationAttempts(int attempts)

public final void
storeCredentials(java.lang.String secret)

public final boolean
validatePin(java.lang.String pin)

Inherited from “The SecurityManager Class” on
page 49.

Inherited from “The SecurityManagerBase Class” on
page 52.

Inherited from “The SecurityManagerBase Class” on
page 52.

TheBusinessObject Class

Table 4-2 lists the constructors and methods belonging to the BusinessObject class. This class
is the base type for objects that will be synchronized with the gateway. Each business object
instance is identified by a name, which is also used to name the file holding the serialized form
of the object on the device's filesystem. You can create a BusinessObject from scratch by
instantiating a concrete subclass, or you can create an empty BusinessObject and deserialize
the contents of a byte array into it. Use the latter technique when implementing the

deserialize method.

TABLE4-2 Class com.sun.mep.client.api.BusinessObject

Method

Description

BusinessObject()

BusinessObject(java.lang.String name)

public abstract void deserialize(byte[] data)

public abstract java.lang.String
getExtension()

public java.lang.String getName()

public abstract byte[] serialize()

No-argument constructor.

Constructor that takes the name of the object as an
argument.

Deserializes the supplied byte array into this empty
BusinessObject.

Returns the default extension for business objects of
this type. Extensions are used by the files holding these
objects and must be part of the contract with the
Enterprise Connectors. That is, clients and Enterprise
Connectors must use the same extension for the same
type of business object. Concrete subclasses should
redefine this method.

Returns the name of this BusinessObject.

Serializes this BusinessObject into a byte array.

Chapter4 - Classes and Methods in the Mobile Client Business Object APl Package 45

The BusinessObjectStorage Class

TABLE4-2 Class com.sun.mep.client.api.BusinessObject

(Continued)

Method

Description

public void setName(java.lang.String name)

Sets the name of this BusinessObject. This method
may only be called once, to initialize a new
BusinessObject being deserialized. You may not
change the name once it has been set. The name must
be a unique identifier that can legally be used as a file
name. For more information about the format of the
file name, refer to the API documentation for package
javax.microedition.io.file under the section
entitled “FileConnection URL Format” in JSR-75:
Optional Packages for the J2ME Platform.

TheBusinessObjectStorage Class

Table 4-3 lists the methods belonging to the BusinessObjectStorage class. This class manages
the storage and retrieval of BusinessObject instances in their serialized form on the device's
filesystem. The factory method used to get an instance of this class is

SyncManager.getBusinessObjectStorage.

TABLE4-3 Classcom.sun.mep.client.api.BusinessObjectStorage

Method

Description

public boolean deleteAllBusinessObjects()

public void
deleteBusinessObject(java.lang.String name)

public void
deleteBusinessObject(BusinessObject obj)

public java.util.Vector
listBusinessObjectNames()

public void readBusinessObject(BusinessObject
result)

public void
writeBusinessObject(BusinessObject obj)

Deletes all of the business objects from the device's file
system. Returns true if the operation succeeded, false
otherwise.

Deletes the serialized form of the BusinessObject
with the specified file name.

Convenience method equivalent to
deleteBusinessObject(obj.getName() +
extension).

Returns a list of file names for all of the serialized
BusinessObject instances that match the extension.

Reads a serialized BusinessObject from the device's
filesystem and returns the result by reference in the
result parameter.

Writes the serialized form of the specified
BusinessObject to the device's filesystem, possibly
replacing any existing data.

Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications « March 2009

http://jcp.org/aboutJava/communityprocess/final/jsr075/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr075/index.html

The DefaultSecurityManager Class

TheDefaultSecurityManager Class

Table 4-4 lists the methods belonging to the DefaultSecurityManagerclass. This class
provides a basic implementation of SecurityManager (see Table 4-6).

128-bit security keys are generated from the pin using MD5 digest. The key is used to reverse a
basic pin derivatives algorithm for client authentication. It is also used as the symmetric key for
Triple-DES encryption of data at rest on the device.

TABLE4-4 Classcom.sun.mep.client.api.DefaultSecurityManager

Method

Description

public
DefaultSecurityManager(java.lang.String
contextName)

public final bytel[]
computeKey(java.lang.String pin)

public static final byte[]
computeMD5Digest (byte[] dataBytes)

public static final byte[]
computeMD5Digest(java.lang.String data)

public final byte[] decrypt(bytel[]
cipherText)

public final boolean

destroyBusinessObjects(SyncManager mgr)

public final byte[] encrypt(byte[] plainText)

public final byte[] getKey()

public final long getMaxQuietPeriod()

public final int getMaxValidationAttempts()

public final long
getRemainingQuietTime(SyncManager mgr)

Single-argument constructor. The contextName
parameter is used to uniquely store security-related
information in the Record Management System
(RMS) about this security manager. The context name
should be unique across applications and instances of
SecurityManager and should be no more than 16
Unicode characters long.

Inherited from “The SecurityManagerBase Class” on
page 52.

Inherited from “The SecurityManagerBase Class” on
page 52.

Inherited from “The SecurityManagerBase Class” on
page 52.

Inherited from “The SecurityManagerBase Class” on
page 52.

Inherited from “The SecurityManager Class” on
page 49.

Inherited from “The SecurityManagerBase Class” on
page 52.

Inherited from “The SecurityManagerBase Class” on
page 52.

Inherited from “The SecurityManager Class” on
page 49.

Inherited from “The SecurityManager Class” on
page 49.

Inherited from “The SecurityManager Class” on
page 49.

Chapter4 - Classes and Methods in the Mobile Client Business Object APl Package 47

The EncodingType Class

TABLE4-4 Class com.sun.mep.client.api.DefaultSecurityManager (Continued)

Method Description

public final int getValidationAttempts() Inherited from “The SecurityManagerBase Class” on
page 52.

public final boolean isPinSet() Inherited from “The SecurityManagerBase Class” on
page 52.

public void setKey(byte[] key) Inherited from “The SecurityManagerBase Class” on
page 52.

public final void setMaxQuietPeriod(long Inherited from “The SecurityManager Class” on

period) page 49.

public final void Inherited from “The SecurityManager Class” on

setMaxValidationAttempts(int attempts) page 49.

public final void Inherited from “The SecurityManagerBase Class” on

storeCredentials(java.lang.String secret) page 52.

public final boolean Inherited from “The SecurityManagerBase Class” on

validatePin(java.lang.String pin) page 52.

The EncodingType Class

Table 4-5 lists the fields and the one method belonging to the EncodingType class. This class
provides a simple enum for SyncML encoding types. These values can be used to specify either
simple XML encoding or WBXML encoding during synchronizations with the gateway server.

The WBXML encoding is a binary WAP encoding standard developed by the Open Mobile
Alliance (OMA) for compressing the SyncML payloads in order to reduce bandwidth usage on
mobile devices.

TABLE4-5 Class com.sun.mep.client.api.EncodingType

Field/Method Description

public static final EncodingType WBXML WBXML encoding.

public static final EncodingType XML Simple XML encoding.

public java.lang.String getValue() Returns the value of the current encoding type.

48 Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications - March 2009

The SecurityManager Class

The SecurityManager Class

Table 4-6 lists the constructors and methods belonging to the SecurityManager class. This
class manages all of the client-side security features. A default implementation is provided
(DefaultSecurityManager), but you are free to supply your own implementation.

Security features include the following:

Authentication

Encryption

Data Fading

A simple form of pin-based authentication is provided. The isPinSet ()
method determines if the user of the application has set a pin yet. If not,
you will need to prompt the user to enter a “secret”, which is just a long
random alphanumeric string, and a pin, which is also an alphanumeric
string. You must compute a security key from the pin using

computeKey (String) and then set the key on the SecurityManager with
setKey (byte[]). You then persist the user credentials using the
storeCredentials(String) method. This method computes a hash of
the unencrypted secret and stores this value along with the secret
encrypted with the key into the device's RMS record store.

If the user has already set their pin, use the validatePin(String)
method to determine if the pin is valid. This method computes an
encryption key from the supplied pin and reverses the encryption and
hash calculation on the encrypted secret stored in RMS. If the hash
calculations match, the pin is valid.

The SecurityManager also keeps track of pin validation attempts (that is,
how many times the MIDlet calls validatePin(String)). If the MIDlet
exceeds the maximum number of attempts
(getMaxValidationAttempts()),a SecurityException is thrown. The
number of pin validation attempts is stored in RMS so they can be tracked
across restarts of the MIDlet.

The encrypt (byte[]) and decrypt (byte[]) methods are callbacks used
by the MEP synchronization library to perform encryption and
decryption of the business objects as they are read from and written to the
device file system. If security is enabled, the data is never written to the
device in clear text.

You can specify a maximum “quiet period” between successful
synchronizations by using setMaxQuietPeriod(long). Using the
getRemainingQuietTime(SyncManager) method, you can determine
how much time is left before the quiet period expires. Based on this
information, you could choose to destroy all of the business objects on the
device.

Chapter4 - Classes and Methods in the Mobile Client Business Object APl Package 49

The SecurityManager Class

Data Destruction

In certain circumstances, you may choose to destroy all of the business

objects stored on the device(for example, if the MIDlet has failed pin
validation too many times, or if the quiet period has expired since the last
sync). To destroy the data, call the
destroyBusinessObjects(SyncManager) method for each type of
business object you wish to destroy.

TABLE4-6 Class com.sun.mep.client.api.SecurityManager

Method

Description

public SecurityManager()

public abstract byte[]
computeKey(java.lang.String pin)

public abstract byte[] decrypt(bytel[]
cipherText)

public final boolean
destroyBusinessObjects(SyncManager mgr)

public abstract byte[] encrypt(bytel[]
plainText)

public abstract byte[] getKey()

public final long getMaxQuietPeriod()
public final int getMaxValidationAttempts()

public final long
getRemainingQuietTime(SyncManager mgr)

public abstract int getValidationAttempts()

No-argument constructor.

Computes an encryption key from the pin. There are
no restrictions on the length of the pin or the key. It is
up to the implementing class to produce the
appropriate length key for the encryption algorithm
being used. Calling this method will also set the key
value so it can be retrieved using getKey ().

Callback handler to perform decryption of data on
device. The MEP runtime will invoke this method
whenever it is necessary to decrypt data.

Activates data destruction on business objects
managed by the specified SyncManager. All business
objects managed by the specified SyncManager will be
deleted from the device.

Callback handler to perform encryption of data on
device. The MEP runtime will invoke this method
whenever it is necessary to encrypt data.

Returns the value of the key computed by
computeKey(String).

Returns the maximum allowable quiet time.
Returns the maximum allowable validation attempts.

Returns the time remaining (in milliseconds) before
the quiet period expires. If there is no specified quiet
period (that is, if the value returned by
getMaxQuietPeriod() isless than zero), this method
returns a negative value. Otherwise, it returns the time
remaining in milliseconds, or zero if the quiet period
has been exceeded. If a sync has not been attempted
yet, it returns getMaxQuietPeriod ().

Returns the number of validation attempts.

Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications « March 2009

The SecurityManager Class

TABLE4-6 Class com.sun.mep.client.api.SecurityManager (Continued)
Method Description
public abstract boolean isPinSet() Returns true if the user has never logged into the

application. Use this method to determine when the
credentials need to be stored on the device.

public abstract void setKey(byte[] key) Sets the key on the SecurityManager so it can be used
during callbacks to encrypt or decrypt data on the
device.

public final void setMaxQuietPeriod(long Sets the maximum allowable quiet time (in

period) milliseconds) between sync requests. If the device has

been quiet for too long, the application will be
prevented from performing the sync. Additionally, the
application can decide to perform data destruction by
calling destroyBusinessObjects(SyncManager).
Passing a negative value indicates that there should be

no timeout.
public final void Sets the maximum allowable validation attempts.
setMaxValidationAttempts(int attempts) When the number of pin validation attempts exceeds

this value, the application can decide to lock out the
user and perform data destruction by calling
destroyBusinessObjects(SyncManager). The
default value is 10 validation attempts. An argument
of 0 (zero) indicates that there is no maximum
number of validation attempts.

public abstract void Persists derivatives of the pin/key and the supplied
storeCredentials(java.lang.String secret) secret on the device. These derivatives are used upon
subsequent logins to validate the pin.

The secret can be any non-null, non-zero length
alphanumeric string. Typically, the application
developer would prompt the user to enter a random
sequence of key presses on the device and pass that
value into this method. This is a single-use value, so
the user does not need to remember it.

This method should only be called once, when the
user needs to set their pin number (if isFirstLogin()
returns true).

Chapter4 - Classes and Methods in the Mobile Client Business Object APl Package 51

The SecurityManagerBase Class

TABLE4-6 Class com.sun.mep.client.api.SecurityManager (Continued)
Method Description
public abstract boolean Determines if the pin is able to recompute the
validatePin(java.lang.String pin) derivatives stored on the device in

storeCredentials(byte[], String). If so, it returns
true; otherwise, it returns false.

This method also keeps track of how many times it has
been invoked. If it exceeds the maximum number of
allowed attempts (getMaxValidationAttempts()),
then a SecurityException is thrown, unless
getMaxValidationAttempts() returnsO.

The SecurityManagerBase Class

Table 4-7 lists the methods belonging to the SecurityManagerBase class. This abstract class
serves as a base for implementations of the “The SecurityManager Class” on page 49.

TABLE4-7 Class com.sun.mep.client.api.SecurityManagerBase

Method Description
public final byte[] Computes an encryption key from the specified pin.
computeKey(java.lang.String pin) This method takes an arbitrary-length clear-text pin

entered by the user and creates a fixed-length digest
suitable for use by the encrypt and decrypt methods.

public static final byte[] Computes an MD5 hash of the specified byte[].
computeMD5Digest (byte[] dataBytes)

public static final byte[] Computes an MD5 hash of the specified string.
computeMD5Digest(java.lang.String data)

public final byte[] decrypt(bytel[] Callback handler to perform decryption of data on
cipherText) device. The MEP runtime will invoke this method

whenever it is necessary to decrypt data.

public final byte[] encrypt(byte[] plainText) Callback handler to perform encryption of data on
device. The MEP runtime will invoke this method
whenever it is necessary to encrypt data.

public final byte[] getKey() Returns the value of the key.

public final boolean isPinSet() Returns true if the user has never logged into the
application. Use this method to determine when the
credentials need to be stored on the device.

52 Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications - March 2009

The SMSMessageHandler Class

TABLE4-7 Class com.sun.mep.client.api.SecurityManagerBase (Continued)

Method

public void setKey(byte[] key)

public final void

storeCredentials(java.lang.String secret)

public final boolean

validatePin(java.lang.String pin)

Description

Set the key on the SecurityManager so it can be used
during callbacks to encrypt and decrypt data on the
device.

Persists derivatives of the pin/key and the supplied
secret on the device. These derivatives are used upon
subsequent logins to validate the pin.

The secret can be any non-null, non-zero length
alphanumeric string. Typically, the application
developer would prompt the user to enter a random
sequence of key presses on the device and pass that
value into this method. This is a single-use value, so
the user does not need to remember it.

This method should only be called once, when the
user needs to set their pin number (that is, if
isFirstLogin() returns true).

Determines if the pin is able to recompute the
derivatives stored on the device in
storeCredentials(byte[], String). If so, it returns
true, else it returns false.

This method also keeps track of how many times it has
been invoked. If it exceeds the maximum number of
allowed attempts (getMaxValidationAttempts()),
then a SecurityException is thrown, unless
getMaxValidationAttempts() returnsO.

The SMSMessageHandler Class

Table 4-8 lists the constructor and methods belonging to the SMSMessageHandler class. This
class is a callback handler for SMS push notification messages sent from the gateway.

TABLE4-8 Class com.sun.mep.client.api.SMSMessageHandler

Method

Description

public SMSMessageHandler ()

public abstract void handlePoisonPill()

No-argument constructor.

Callback to allow client applications to respond to an
SMS push poison pill request. Applications should
immediately perform data destruction upon receiving
this instruction.

Chapter4 - Classes and Methods in the Mobile Client Business Object APl Package 53

The SyncException Class

TABLE4-8 Class com.sun.mep.client.api.SMSMessageHandler (Continued)
Method Description
public abstract void handleSync(SyncType Callback to allow client applications to respond to an
type) SMS push sync request. Applications should initiate a

synchronization session of the requested type.

public void processSMSMessagePayload (bytel[] Processes the payload of the incoming SMS message

rawPayload, java.lang.String pin) and dispatches the instruction to the proper callback
method (handlePoisonPill() or
handleSync(com.sun.mep.client.api.SyncType)).

The application's implementation of
javax.messaging.Messagelistener must call this
method in order to decrypt and dispatch the
instruction sent from the gateway server.

Make sure that this method is not invoked within the
same thread that is delivering the SMS message.

This method only supports processing SMS messages
with text payloads. There is no support for binary SMS
messages.

If a pin is supplied, this method processes the payload
as if it were encrypted. Otherwise, it is processed as
clear text.

The SyncException Class

Table 4-9 lists the constructors and methods belonging to the SyncException class. This class is
a checked exception type that indicates an error during synchronization.

TABLE4-9 Class com.sun.mep.client.api.SyncException

Method Description

public SyncException(java.lang.String Constructor that takes a String argument.
pMessage)

public SyncException(java.lang.Throwable Constructor that takes a linked exception argument.
pLinkedException)

public SyncException(java.lang.String Constructor that takes both a String and a linked
pMessage, java.lang.Throwable exception as arguments.

pLinkedException)

public java.lang.Throwable Retrieves the linked exception for this exception, if
getLinkedException() there is one; otherwise, it returns null.

54 Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications - March 2009

The SyncManager Class

TABLE4-9 Class com.sun.mep.client.api.SyncException (Continued)
Method Description
public void printStackTrace() Prints a stack trace for this exception to the standard
error stream.
public void Sets the linked exception for this exception.
setLinkedException(java.lang.Throwable
pLinkedException)

The SyncManager Class

Table 4-10 lists the constructors and methods belonging to the SyncManager class. This class is
responsible for managing synchronizations with the gateway server for a particular kind of
BusinessObject (classified by a particular extension). There is a one-to-one mapping between
SyncManager and kinds of BusinessObject instances. If you have an application that deals with
two different BusinessObject types, then you would have an instance of SyncManager for each

type.

You must specify a unique extension for your BusinessObject when you construct this class.
The name field in the BusinessObject, combined with the extension, will determine the entire
name of the file on the device's filesystem. For example, you might pass the string *.act" for
accountor".ord" for orders, but it can be anything legally allowed in a file name.

You may optionally enable on-device security features by supplying an instance of
SecurityManager during construction.

An invocation of the sync(SyncType) method initiates a synchronization session with the
gateway server. During this session, only BusinessObject instances whose extension fields
match will be synchronized.

The default encoding type used in the SyncML protocol messages is EncodingType . XML, but
you can select EncodingType.WBXML by using the setEncoding method.

You should explicitly specify a file system root (see FileSystemRegistry.listRoots() in
JSR-75: Optional Packages for the J2ME Platform for a discussion of roots). If you do not, a
default root will be selected for you.

TABLE4-10 Class com.sun.mep.client.api.SyncManager

Method Description
public SyncManager(java.lang.String Constructor that creates a new SyncManager for the
extension) specified business object type (extension) with no

SecurityManager. This method is the equivalent of
calling new SyncManager (extension, null).

Chapter4 - Classes and Methods in the Mobile Client Business Object APl Package 55

http://jcp.org/aboutJava/communityprocess/final/jsr075/index.html

The SyncManager Class

56

TABLE4-10 Class com.sun.mep.client.api.SyncManager

(Continued)

Method

Description

public SyncManager(java.lang.String
extension, SecurityManager sm)

public SyncManager(java.lang.String
extension, SecurityManager sm,
java.lang.String fsRoot)

public SyncManager(java.lang.String
extension, java.lang.String fsRoot)

public void enablelLogging(boolean value)

public BusinessObjectStorage
getBusinessObjectStorage()

public EncodingType getEncoding()

public java.lang.String getExtension()

public java.lang.String getFilesystemRoot ()

Constructor that creates a new SyncManager for the
specified business object type (extension) and uses
the specified SecurityManager.

Constructor that creates a new SyncManager for the
specified business object type (extension) with the
specified SecurityManager and device-specific file
system root. The file system root must follow the
syntax described in FileSystemRegistry.listRoots
in JSR-75 (the root should not include the file:///
protocol).

Constructor that creates a new SyncManager for the
specified business object type (extension) with no
SecurityManager using the specified device-specific
file system root. The file system root must follow the
syntax described inFileSystemRegistry.listRoots
in JSR-75 (the root should not include the file:///
protocol).

Enables or disables debug logging in the MEP client
APIs. If enabled, the MEP implementation library
writes logging information to stdout and also to alog
file (named meplog. txt) on the device. Logging is
disabled by default.

Returns the BusinessObjectStorage manager
associated with this SyncManager. There is a strict 1:1
relationship between SyncManager and
BusinessObjectStorage.

Returns the current transport encoding type.

Returns the extension type associated with this
SyncManager.

Returns the file system root being used by this
SyncManager to store business objects.

Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications « March 2009

The SyncResults Class

TABLE4-10 Class com.sun.mep.client.api.SyncManager

(Continued)

Method

Description

public java.util.Hashtable getProperties()

public static final SecurityManager
getSecurityManager()

public SyncResults getSyncResults()

public long getTimeOfLastSync()

public void setCredentials(java.lang.String
username, java.lang.String password,
java.lang.String url)

public void setEncoding(EncodingType
encoding)

public void sync(SyncType syncType)

Return a live Hashtable containing application
Experimental Meta Information (EMI) SyncML
properties. Any modifications to the hashtable will be
immediately applied to the underlying storage; you
are not operating on a clone. You should treat the
return type as Hashtable<String, String>. The
properties will be serialized as key.toString() +
+ value.toString().

Refer to the SyncML protocol specifications for more
information on EMI.

Returns a reference to the security manager, or null if
one has not been set.

Returns the sync results for the latest successful sync.

Returns a time stamp of the last successful sync. This
time stamp is recorded by calling
System.currentTimeMillis(), so it is an offset from
January 1, 1970 UTC. If a sync has not been performed
yet, the method returns a negative value.

Sets the credentials used during the synchronization
process.

Sets the transport encoding type. The encoding must
be one of the fields defined in EncodingType; it must
not be null.

Performs the specified type of synchronization.

The SyncResults Class

Table 4-11 lists the methods belonging to the SyncResults class. This class contains statistics
about the most recent synchronization (additions, deletions, and modifications).

TABLE4-11

Class com.sun.mep.client.api.SyncResults

Method

Description

public int getClientAdditions()

public int getClientDeletions()

Returns the number of records added on the client
and sent to the server.

Returns the number of records deleted on the client
and sent to the server.

Chapter4 - Classes and Methods in the Mobile Client Business Object APl Package 57

The SyncResults Class

TABLE4-11 Class com.sun.mep.client.api.SyncResults (Continued)
Method Description
public int getClientUpdates() Returns the number of records updated on the client

public

public

public

public

public

public

public

public

public

int getServerAdditions()

int getServerDeletions()

int getServerUpdates()

java.

java.

java.

java.

java.

java.

util.Vector listClientAdditions()

util.Vector listClientDeletions()

util.Vector listClientUpdates()

util.Vector listServerAdditions()

util.Vector listServerDeletions()

util.Vector listServerUpdates()

and sent to the server.

Returns the number of records added on the server
and sent to the client.

Returns the number of records deleted on the server
and sent to the client.

Returns the number of records updated on the server
and sent to the client.

Returns the list of BusinessObject names that were
added on the client since the last sync.

The return type should be treated as a
Vector<String>.

Return the list of BusinessObject names that were
deleted on the client since the last sync.

The return type should be treated as a
Vector<String>.

Returns the list of BusinessObject names that were
updated on the client since the last sync.

The return type should be treated as a
Vector<String>.

Returns the list of BusinessObject names that were
added on the client during the last sync from the
server.

The return type should be treated as a
Vector<String>.

Returns the list of BusinessObject names that were
deleted on the client during the last sync from the
server.

The return type should be treated as a
Vector<String>.

Returns the list of BusinessObject names that were
updated on the client during the last sync from the
server.

The return type should be treated as a
Vector<String>.

58 Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications - March 2009

The SyncType Class

The SyncType Class

Table 4-12 lists the fields and methods belonging to the SyncType class. This class provides a
simple enum for the available synchronization types.

TABLE4-12 Class com.sun.mep.client.api.SyncType

Field/Method

Description

public static final SyncType BACKUP_SYNC

public static final int BACKUP_ SYNC VALUE

public static final SyncType FAST SYNC

public static final int FAST SYNC_VALUE

public static final SyncType
ONE_WAY_CLIENT_SYNC

public static final int
ONE_WAY_CLIENT_SYNC_VALUE

public static final SyncType
ONE_WAY_ SERVER SYNC

public static final int
ONE_WAY_SERVER SYNC_VALUE

public static final SyncType RESTORE_SYNC

public static final int RESTORE SYNC VALUE

public static final SyncType SLOW_SYNC

public static final int SLOW_SYNC_VALUE
public java.lang.String getDescription()

public int getValue()

Refresh sync from client. All of the server data is
replaced with the client data. Use with caution.

Constant enum value for BACKUP_SYNC.

Two-way fast sync. Client modifications since the last
synchronization are sent to the server, and server
modifications since the last synchronization are sent
back to the client.

Constant enum value for FAST_SYNC.

One-way sync from client. Client modifications are
sent to the server, but server modifications are not sent
back to the client.

Constant enum value for ONE_WAY_CLIENT_SYNC.

One-way sync from server. Server modifications are
sent to the client, but client modifications are not sent
to the server.

Constant enum value for ONE_WAY SERVER SYNC.

Refresh sync from server. All of the client data is
replaced with the server data.

Constant enum value for RESTORE_SYNC.

Two-way slow sync. This is the same as a fast sync
except that ALL client data (including unmodified
records) is sent to the server for reconciliation.

Constant enum value for SLOW_SYNC.
Returns a description of the current SyncType.

Returns the value of the current SyncType.

Chapter4 - Classes and Methods in the Mobile Client Business Object APl Package 59

60

CHAPTER 5

JerseyMe APl Documentation

The JerseyMe library is a client API to access RESTful web services using the Java ME platform.
It is modelled on Jersey's client API for the Java SE platform. The minimum platform
requirements are CLDC 1.1 and MIDP 2.0. This chapter summarizes the classes, interface, and
methods contained in the com.sun. jerseyme.api.client package, the only package in the
JerseyMe APL.

® “The Client Class” on page 61

= “TheUniformInterface Interface” on page 62

= “TheUniformInterfaceException Class” on page 64
= “TheWebResource Class” on page 64

The API documentation is included in the MEP client bundle. In the directory where you
unzipped the client bundle (see the Sun GlassFish Mobility Platform 1.1 Installation Guide for
details), it is in the directory sgmp-client-1_1_01-fcs-b02/doc/JerseyMe/api.

The Client Class

Table 5-1 lists the constructors and methods belonging to the Client class. This class provides
the entry point to the JerseyME APIL. Although the class contains a constructor, use the create
method to create an instance of this class.

TABLE5-1 Class com.sun.jerseyme.api.client.Client

Method Description

Client() No-argument constructor.

public void clearCache() Clears the cache, removing all local resources.
public static Client create() Returns an instance of this class.

61

http://docs.sun.com/doc/820-7203

The UniformInterface Interface

TABLE 5-1

Class com.sun.jerseyme.api.client.Client

(Continued)

Method

Description

public WebResource resource(java.lang.String
uri)

public void setCachePolicy(long elapsedTime)

public static void setLogging(boolean b)

Returns a web resource (an instance of the
WebResource class) given a URL

Sets the elapsed time, in milliseconds, after which a
resource must be refreshed in the cache. If the
argument is zero, resources are refreshed every time. If
aresource cannot be refreshed, it will be returned
from the cache, even if stale.

Enables or disables logging in the APIL.

TheUniformInterface Interface

Table 5-2 lists the methods in the UniformInterface interface, which is implemented by the

WebResource class.

These methods throwa UniformInterfaceException (see “The UniformInterfaceException

Class” on page 64).

TABLE5-2 Interface com.sun.jerseyme.api.client.UniformInterface

Method

Description

UniformInterface accept(java.lang.String
type)

UniformInterface
acceptlLanguage(java.lang.String type)

UniformInterface cookie(java.lang.String
type)

void delete()

java.lang.Object delete(java.lang.Class c)

java.lang.Object delete(java.lang.Class c,
java.lang.Object o)

Sets an Accept HTTP header.

Sets an Accept-Language HTTP header.

Sets a Cookie HTTP header.

Invokes the DELETE method with no request entity or
response. May use X-HTTP-Method-Override if
HTTP DELETE is not supported.

Invokes the DELETE method with no request entity
that returns a response. May use
X-HTTP-Method-Override if HTTP DELETE is not
supported.

Invokes the DELETE method with a request entity
that returns a response. May use
X-HTTP-Method-Override if HTTP DELETE is not
supported.

Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications « March 2009

TheUniformInterface Interface

TABLE5-2 Interface com.sun.jerseyme.api.client.UniformInterface

(Continued)

Method

Description

void delete(java.lang.Object o)

java.lang.Object get(java.lang.Class c)

java.lang.Object get(java.lang.Class c,
boolean ignoreCache)
java.util.Hashtable head()

void post()

java.lang.0Object post(java.lang.Class c)
java.lang.Object post(java.lang.Class c,
java.lang.0Object o)

void post(java.lang.Object o)

void put()

java.lang.Object put(java.lang.Class c)

java.lang.Object put(java.lang.Class c,
java.lang.Object o)

void put(java.lang.Object o)

UniformInterface type(java.lang.String type)

Invokes the DELETE method with a request entity
and no response. May use X-HTTP-Method-Override
it HTTP DELETE is not supported.

Invokes the GET method.

Invokes the GET method, possibly ignoring local
cache.

Invokes the HEAD method, returning a hash table
with all the HTTP headers returned.

Invokes the POST method with no request entity or
response.

Invokes the POST method with no request entity that
returns a response.

Invokes the POST method with a request entity that
returns a response.

Invokes the POST method with a request entity and
no response.

Invokes the PUT method with no request entity or
response. May use X-HTTP-Method-Override if
HTTP PUT is not supported.

Invokes the PUT method with no request entity that
returns a response. May use
X-HTTP-Method-Override if HTTP PUT is not
supported.

Invokes the PUT method with a request entity that
returns a response. May use
X-HTTP-Method-Override if HTTP PUT is not
supported.

Invokes the PUT method with a request entity and no
response. May use X-HTTP-Method-Override if
HTTP PUT is not supported.

Sets a Content-Type HTTP header.

Chapter5 « JerseyMe API Documentation

63

TheUniformInterfaceException Class

TheUniformInterfaceException Class

Table 5-3 lists the constructors in the UniformInterfaceException class. This classis a
runtime exception that indicates an error in aUniformInterface method.

TABLE5-3 Class com.sun.jerseyme.api.client.UniformInterfaceException

Method Description

public Constructor that takes an Exception argument.
UniformInterfaceException(java.lang.Exception
e)

public Constructor that takes a String argument.
UniformInterfaceException(java.lang.String
message)

ThewebResource Class

Table 5-4 lists the methods in the WebResource class, which implements a web resource on
which the HTTP methods GET, PUT, POST, DELETE and HEAD can be called. To create an
instance of this class, call the Client. resource(String) method. This class implements the
UniformInterface interface. Only the lastGetCached method is specific to this class.

TABLE5-4 Class com.sun.jerseyme.api.client.WebResource

64

Method

Description

public UniformInterface
accept(java.lang.String type)

UniformInterface
acceptlLanguage(java.lang.String type)

UniformInterface cookie(java.lang.String
type)

void delete()

java.lang.0Object delete(java.lang.Class c)

Adds an accept type to the list prepared for the next
HTTP GET request.

Sets a value for the HTTP header Accept-Language.

Sets a value for the HTTP header Cookie.

Deletes an empty resource without returning any
content. Uses X-HTTP-Method-Override to override
POST operation.

Deletes a resource without returning any content. The
argument must be an instance of String,
InputStreanm, or byte[].If the argument is of type
String, the platform's default character set is used for
encoding. Uses X-HTTP-Method-Override to
override POST operation.

Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications « March 2009

The WebResource Class

TABLE5-4 Class com.sun.jerseyme.api.client.WebResource (Continued)

Method

Description

java.lang.Object delete(java.lang.Class c,
java.lang.Object o)

void delete(java.lang.Object o)

java.lang.Object get(java.lang.Class c)

java.lang.Object get(java.lang.Class c,
boolean ignoreCache)

java.util.Hashtable head()

public boolean lastGetCached()

void post()

java.lang.Object post(java.lang.Class c)

Deletes a resource. The first argument specifies the
class of the instance returned and must be String,
InputStream,or byte[]. The second argument must
be an instance of String, InputStream, or byte[].If
the result or the argument is of type String, the
platform's default character set is used for decoding.
Uses X-HTTP-Method-Override to override POST
operation.

Posts a resource without returning any content. The
argument must be an instance of String,
InputStream, or byte[]. If the argument is of type
String, the platform's default character set is used for
encoding.

Gets a resource by first looking it up in the local cache.
If the resource is available locally and it isn't stale, it is
returned. If it is stale, it will be re-fetched. If it can't be
re-fetched, its stale copy is returned. The argument
specifies the class of the instance returned; it must be
String, InputStream, or byte[].

Same as get (Class) except that you can force the
local cache to be ignored by setting the second
parameter to true. The first argument specifies the
class of the instance returned; it must be String,
InputStream, or byte[]. The second argumentis a
flag that indicates whether or not the cache should be
inspected.

Calls the HEAD operation on the resource, returning
a hash table of headers.

Returns a boolean value that indicates whether the last
HTTP GET operation was resolved using the local
cache.

Posts an empty resource without returning any
content.

Posts an empty resource. If the result is of type String,
the platform's default character set is used for
decoding. The argument specifies the class of the
instance returned; it must be String, InputStream, or
bytel].

Chapter5 « JerseyMe API Documentation

65

TheWebResource Class

TABLE5-4 Class com.sun.jerseyme.api.client.WebResource (Continued)
Method Description
java.lang.Object post(java.lang.Class c, Posts a resource. If the result or the parameter is of
java.lang.0Object o) type String, the platform's default character set is

used for decoding. The first argument specifies the
class of the instance returned; it must be String,
InputStream,or byte[]. The second argument must
be an instance of String, InputStream, or byte[].

void post(java.lang.Object o) Posts a resource without returning any content. If the
parameter is of type String, the platform's default
character set is used for encoding. The argument must
be an instance of String, InputStream, or byte[].

void put() Puts an empty resource without returning any
content. Uses X-HTTP-Method-Override to override
a POST operation.

java.lang.Object put(java.lang.Class c) Puts an empty resource. If the result is of type String,

the platform's default character set is used for
decoding. Uses X-HTTP-Method-Override to
override a POST operation. The argument specifies
the class of the instance returned; it must be String,
InputStream,or byte[].

java.lang.Object put(java.lang.Class c, Puts a resource. If the result or the argument is of type

java.lang.Object o) String, the platform's default character set is used for
decoding. Uses X-HTTP-Method-Override to
override a POST operation. The first argument
specifies the class of the instance returned; it must be
String, InputStream, or byte[]. The second
argument must be an instance of String,
InputStream,or byte[].

void put(java.lang.Object o) Puts a resource without returning any content. If the
argument is of type String, the platform's default
character set is used for encoding. Uses
X-HTTP-Method-Override to override a POST
operation. The argument must be an instance of
String, InputStream, or byte[].

UniformInterface type(java.lang.String type) Setsthe value for HTTP header Content-Type.

66 Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications - March 2009

	Sun GlassFish Mobility Platform 1.1 Developer's Guide for Client Applications
	Preface
	Who Should Use This Book
	Before You Read This Book
	Sun GlassFish Mobility Platform Documentation
	Related Third-Party Web Site References
	Documentation, Support, and Training
	Sun Welcomes Your Comments
	Typographic Conventions
	Shell Prompts in Command Examples

	Introduction to the Sun GlassFish Mobility Platform Client APIs
	About the Mobile Client Business Object (MCBO) API
	Synchronization Types
	Client Device Requirements
	Server-side Requirements

	Building a Client Application
	Overview of the Mobile Client Business Object API
	Overview of the JerseyMe API
	Extending the BusinessObject Class
	Using the Mobile Client Business Object API in a Java ME Application
	Creating DefaultSecurityManager, SyncManager, and BusinessObjectStorage Objects
	Establishing Login Credentials
	Working with Business Objects on the File System
	Retrieving Objects for Editing
	Deleting Objects
	Saving Objects

	Synchronizing Data with the Server
	Setting User Credentials
	Performing Synchronization
	Retrieving Synchronization Results

	Developing Client Applications for the BlackBerry Using NetBeans IDE
	Prerequisites
	To Configure BlackBerry JDE v4.2.1
	To Configure NetBeans IDE for BlackBerry Application Development
	To Import the SecureMusicDB Sources into NetBeans IDE as a BlackBerry Project
	To Create a New BlackBerry Project to Use the MCBO API

	Client Security Architecture
	Best Practices for Secure Client Applications
	Authentication on the Client Device
	Authentication Implementation

	Data Encryption
	Transport-layer Security
	Data Destruction
	Lockout
	Poison Pill
	Data Fading
	Secure MusicDB Java ME Application Security Features

	Classes and Methods in the Mobile Client Business Object API Package
	The AESSecurityManagerClass
	The BusinessObject Class
	The BusinessObjectStorage Class
	The DefaultSecurityManager Class
	The EncodingType Class
	The SecurityManager Class
	The SecurityManagerBase Class
	The SMSMessageHandler Class
	The SyncException Class
	The SyncManager Class
	The SyncResults Class
	The SyncType Class

	JerseyMe API Documentation
	The Client Class
	The UniformInterface Interface
	The UniformInterfaceException Class
	The WebResource Class

