
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Action Request System™
Programmer’s Manual

SunSoft Part No: 875-1777-10
Revision A, December 1995



Please
Recycle

Copyright 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This document and related product are protected by copyright and distributed under licenses restricting their use, copying,
distribution, and decompilation. No part of this document or the product may be reproduced in any form by any means without
prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from Novell, Inc., and from the Berkeley 4.3 BSD
system, licensed from the University of California. UNIX is a registered trademark in the United States and other countries and is
exclusively licensed by X/Open Company Ltd. Third-party software, including font technology in this product, is protected by
copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS:  Use, duplication, or disclosure by the U.S. Government is subject to restrictions of
FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

Sun, Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo, Solstice, Solstice HelpDesk, and Solaris are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under
license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries.
Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun graphical user interfaces were developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for
the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox graphical user interface, which license also
covers Sun’s licensees who implement OPEN LOOK graphical user interfaces and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF NON-INFRINGEMENT, OR THE IMPLIED WARRANTIES OF
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.



 1991, 1992, 1993, 1994, 1995, 1996 by Remedy Corporation. All rights reserved. This documentation may not be copied in whole or in part
without the prior written consent of Remedy Corporation.

Printed in the U.S.A.

Action Request System and AR System are trademarks of Remedy Corporation.

Apple and Macintosh are registered trademarks and MacTCP is a trademark of Apple Computer, Inc.

AT&T is a registered trademark of American Telephone and Telegraph Company.

CA-OpenINGRES is a trademark of Computer Associates, Inc

ChameleonNFS and NETMANAGE are trademarks of NETMANAGE, Inc.

HP, HP-UX, and OpenView are trademarks of Hewlett-Packard Company.

HyperHelp is a trademark of Bristol Technology Inc.

IBM, OS/2, and RISC System/6000 are registered trademarks, and RS/6000, NetView and AIX are trademarks of
International Business Machines Corporation.

INFORMIX is a registered trademark of Informix Software, Inc.

LAN WorkPlace and Novell are registered trademarks of Novell, Inc.

Microsoft, MS, MS-DOS, and XL design (the Microsoft Excel logo) are registered trademarks, and Windows and Windows NT are trademarks of
Microsoft Corporation.

Motif, OSF, and OSF/Motif are trademarks of the Open Software Foundation, Inc.

Motorola mc88100 is a registered trademark of Motorola Corporation.

ORACLE and SQL*Plus are registered trademarks, and ORACLE7 is a trademark of Oracle Corporation.

PC/TCP is a registered trademark of FTP Software, Inc.

Reflection and Reflection Network Series are registered trademarks of Walker Richer & Quinn, Inc.

Silicon Graphics and IRIS are registered trademarks and IRIX is a trademark of Silicon Graphics, Inc.

Sun Microsystems, NFS, and PC-NFS are registered trademarks of Sun Microsystems, Inc. SunOS, Solaris,
SunSelect, OpenWindows, and SunNet are trademarks of Sun Microsystems, Inc. SPARCstation is a trademark of SPARC International, Inc.,
licensed exclusively to Sun Microsystems, Inc.

SuperTCP for Windows is a trademark of Frontier Technologies Corporation.

SYBASE is a registered trademark of Sybase, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Ltd.

Verity and TOPIC are registered trademarks of Verity, Inc.

All other products mentioned in this document are identified by the trademarks or service marks of their respective companies or organizations.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data
and Computer Software clause in DFAR 52.227-7013 or the equivalent clause in FAR 52.227-19, whichever is applicable.

Cover design by Carlick Advertising.

Part Number: PGU-210-001



iv

Contents

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1. Overview of the AR System API  . . . . . . . . . . . . . . . . . . . . . . . . 1

Entry Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Schema Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Field Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Menu Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Filter Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Escalation Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Active Link Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Administrator Extension Operations  . . . . . . . . . . . . . . . . . . . . . 9

Miscellaneous Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. Using the AR System API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Libraries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Include Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17



v Action Request System Programmer’s Guide—January 1995

Special Handling for Field/Keyword Substitution . . . . . . . . . . 35

Routines to Free Allocated Memory  . . . . . . . . . . . . . . . . . . . . . . 35

Responsibility for Freeing Allocated Memory . . . . . . . . . . . . . . 36

Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ARInitialization and ARTermination. . . . . . . . . . . . . . . . . . . . . . 38

Using the GetList Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Sample Source — An API Driver . . . . . . . . . . . . . . . . . . . . . . . . . 39

Building an API Program in the Windows NT Environment 39

3. Overview of the Notification Subsystem API  . . . . . . . . . . . . . 41

Notification Client Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Notification Server Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4. Using the Notification Subsystem API . . . . . . . . . . . . . . . . . . . 45

Libraries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

For UNIX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

For Windows NT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Include Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Routines to Free Allocated Memory  . . . . . . . . . . . . . . . . . . . . . . 50

Responsibility for Freeing Allocated Memory . . . . . . . . . . . . . . 51

Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

NTInitialization Client, NTTermination Client, NTInitialization
Server, and NTTermination Server  . . . . . . . . . . . . . . . . . . . . 53

5. AR System and Notification Subsystem Manual Pages . . . . . 55

User Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



Contents vi

addsnm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

aradmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

arascii  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

arcache. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

arimport  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

armaild  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

arnvd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

arnvui  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

arovd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

arovui  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

arreload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

arserverd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

arservdsd  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

arservftd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

arservtcd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

arsnmd  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

arsnmui . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

aruser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

license  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

notifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

ntclientd  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

ntserverd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

C Library Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

ARCreateActiveLink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



vii Action Request System Programmer’s Guide—January 1995

ARCreateAdminExtension . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

ARCreateCharMenu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

ARCreateEntry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

ARCreateEscalation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

ARCreateField  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

ARCreateFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

ARCreateSchema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

ARDecodeDiary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

ARDecodeStatusHistory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

ARDeleteActiveLink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

ARDeleteAdminExtension . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

ARDeleteCharMenu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

ARDeleteEntry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

ARDeleteEscalation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

ARDeleteField  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

ARDeleteFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

ARDeleteSchema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

ARExecuteAdminExtension . . . . . . . . . . . . . . . . . . . . . . . . . . 118

ARExpandCharMenu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

ARExport  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

ARGetActiveLink. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

ARGetAdminExtension  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

ARGetCharMenu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

ARGetEntry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



Contents viii

ARGetEntryStatistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

ARGetEscalation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

ARGetField . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

ARGetFilter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

ARGetFullTextInfo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

ARGetListActiveLink  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

ARGetListAdminExtension  . . . . . . . . . . . . . . . . . . . . . . . . . . 145

ARGetListCharMenu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

ARGetListEntry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

ARGetListEscalation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

ARGetListField. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

ARGetListFilter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

ARGetListGroup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

ARGetListSchema  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

ARGetListServer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

ARGetListSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

ARGetListUser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

ARGetSchema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

ARGetServerInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

ARGetServerStatistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

ARImport  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

ARInitialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

ARLoadARQualifierStruct . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

ARMergeEntry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



ix Action Request System Programmer’s Guide—January 1995

ARSetActiveLink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

ARSetAdminExtension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

ARSetCharMenu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

ARSetEntry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

ARSetEscalation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

ARSetField  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

ARSetFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

ARSetFullTextInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

ARSetSchema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

ARSetServerInfo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

ARTermination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

ARVerifyUser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

FreeAR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

FreeNT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

NTCheckRegisteredClient  . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

NTDeregisterClient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

NTDeregisterServer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

NTGetListServer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

NTInitializationClient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

NTInitializationServer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

NTNotificationClient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

NTNotificationServer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

NTRegisterClient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

NTRegisterServer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227



Contents x

NTTerminationClient  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

NTTerminationServer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

File Formats  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

ar  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

ar.conf  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Glossary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251



xi Action Request System Programmer’s Guide—January 1995



xii

Preface

Audience
This guide is intended for software developers who wish to use an application
programming interface (API) to interact with the Action Request (AR) System.
You should be familiar with UNIX and/or Windows NT, the C programming
language, and the AR System. Experience with distributed applications is
helpful.

Overview of this Document
Chapter 1, “Overview of the AR System API,” provides a general overview of
the operations that can be performed on AR System objects.

Chapter 2, “Using the AR System API,” describes important libraries, data
structures, conventions for memory and error management, and sample code.

Chapter 3, “Overview of the Notification Subsystem API,” provides a general
overview of the operations that can be performed in the Notification Tool
subsystem.

Terminology Note: Be aware in this guide that “NT” is sometimes used as
an abbreviation for the AR System Notification Tool.
When this guide refers to the Windows NT operating
system, it is described either as “the Windows NT
operating system” or simply as “Windows NT.”



xiii Action Request System Programmer’s Guide—January 1995

Chapter 4, “Using the Notification Subsystem API,” describes important
libraries, include files, data structures and conventions for memory and error
management, and information about initialization and termination.

Chapter 5, “AR System and Notification Subsystem Manual Pages,” provides
a complete set of manual pages for the AR System and Notification subsystem.

AR System Documents
The Action Request System Installation Guide describes how to install and
license the AR System software. There are separate Installation Guides for the
UNIX and Windows NT environments.

The Action Request System User’s Guide is a how-to description of the
operations performed by all users of the AR System. There are separate User’s
Guides for environments supporting the Motif, Macintosh, and Windows
graphical user interfaces (GUIs) and for ASCII terminals.

The Action Request System Administrator’s Guide describes how the AR
System administrator can use the Administrator Tool to set up the AR System
and define its local operations. This manual is also a reference of advanced AR
System concepts. There are separate Administrator’s Guides for the Motif and
Windows environments.

The Action Request System Programmer’s Guide (this document) is a reference
guide for programming with the APIs that come with the AR System.

The Action Request System Troubleshooting and Error Messages Guide
provides information to help you identify and solve problems with the AR
System.

The Action Request System Getting Started Guide and Sample
Schemas provides an online demonstration showing the use of the AR System
in a sample help desk environment and describes how you can use the sample
schemas provided with the AR System.

The Action Request System Distributed Server Option Administrator’s Guide
provides information about operating the AR System in a distributed, UNIX
multi-server environment. Included are instructions for creating all of the
necessary mappings and filters that you use along with the Distributed Server
Option to keep AR System entries synchronized across multiple servers.



Preface xiv

The ARWeb Administrator’s Guide provides details about installing, using,
and customizing the ARWeb application, so that you can provide access to
your company's AR System applications through the World-Wide Web.

The Action Request System Help Desk Template Guide describes the Helpdesk
application that runs in conjunction with the AR System to help you manage
your internal help desk organization. The template takes full advantage of the
rich feature set of the AR System and implements workflow and reporting
mechanisms to simplify the task of working in or managing a help desk.

Conventions Used in this Manual
bold font

Indicates that a word is a new or important term.
Example: filters.

Initial Caps
Button and menu names and items have the first letter capitalized.
Example: File.

computer font
Indicates computer output, including UNIX prompts, an explicit directory, or a
file name.
Example: prompt%.

Indicates data to be entered by the user.
Example: aruser & .

<small italic  font>
Indicates a variable directory, file name, or string that you replace with an
appropriate directory, file name, or string.
Example: <ar_config_dir>.

italics
Indicates a reference to another manual or to a different section within the
current manual.
Example: see AR System Documents
Italic type is also used for emphasis.
Example: All users will be affected.



xv Action Request System Programmer’s Guide—January 1995



1

Overview of the AR System API 1

This chapter provides an overview of the Action Request (AR) System
application programming interface (API) functions. The API functions can be
used to perform operations on the following AR System objects:

• Entries.

• Schemas.

• Fields.

• Menus.

• Filters.

• Escalations.

• Active links.

• Administrator extensions. (For your reference, administrator extensions are
referred to as administrator commands in the AR System Administrator Tool
for OSF/Motif.)

For example, you can create entries in the database for a specified schema. Or,
if you have administrator access to the AR System you can create or delete
schemas from a specified server. (For detailed information on access control,
refer to the Action Request System Administrator’s Guide.)



2 Action Request System Programmer’s Guide—January 1995

1

Note – For information on API functions that are used exclusively to interact
with the Notification Tool (NT) subsystem, see
Chapter 3, “Overview of the Notification Subsystem API,” and Chapter 4,
“Using the Notification Subsystem API.”

There are five main operations that can be performed for each AR System
object:

• Create an object.

• Delete an object.

• Retrieve information (get) about an object.

• Modify (set) an object.

• Retrieve a list of objects (get list).

There are also miscellaneous operators for importing and exporting definitions,
verifying users, and initializing and terminating interaction with the AR
System.

The remainder of this chapter briefly describes each of the available API
functions. The sections are organized by the type of object. For detailed
information on each operation, see the appropriate manual page in Chapter 5,
“AR System and Notification Subsystem Manual Pages.”

Entry Operations

ARCreateEntry

Adds a new entry to the database for a specified schema. You can specify any
number of fields and associated values. The system checks permissions for
each field and reports errors if a field does not exist, or if you do not have
access.

If any one of the fields is in error, the entire create operation is rejected and no
change is made to the database.



Overview of the AR System API 3

1

ARDeleteEntry

Deletes an entry from the database for a specified schema. You must have
administrator access to perform this function.

ARGetEntry

Retrieves information about the entry, as indicated by the entryId  in the
specified schema. You can request the values for a specific list of fields, for all
fields that are accessible, or for no fields (to verify the existence of an entry). If
you do not have read access to the specified field(s), then no data is returned.

ARSetEntry

Updates information about the entry, as indicated by the entryId  in the
specified schema. You can specify any number of fields and associated values.
The system will check permissions for each field and report errors if a field
does not exist, or if you do not have access.

If any one of the fields is in error, the entire set operation is rejected and no
change is made to the entry.

ARGetListEntry

Performs a high-performance database search. The system retrieves the
entryId  and a short description of all the entries in the schema that meet the
specified conditions and are accessible by you. The system returns only entries
to which you have read access.

ARMergeEntry

Merges an existing entry from another source into the database for a specified
schema. You can specify any number of fields and associated values. The
system checks permissions for each field and reports errors if a field does not
exist or if you do not have access. You are expected to supply information for
some of the system fields as they were set in the previous environment.

If any one of the fields is in error, the entire operation is rejected and no change
is made to the database.



4 Action Request System Programmer’s Guide—January 1995

1

ARGetEntryStatistics

Performs a high-performance statistical calculation. The system returns a
statistic computed on all entries that meet the specified condition and are
accessible to you.

Schema Operations

ARCreateSchema

Creates a new schema on the specified server. The schema created will contain
the core fields. You must have administrator access to perform this function.

ARDeleteSchema

Deletes an existing schema from the specified server. The operation deletes the
schema, its associated fields, filters, escalations, and active links. In addition,
the delete operation removes any entries for the schema from the database. You
must have administrator access to perform this function.

ARGetSchema

Retrieves information about a schema on the specified server. The information
returned is global schema information (for instance, when the schema was last
modified, or indexes on the schema), not information on specific fields within
the schema. Only schemas that you have access to are returned.

You must have administrator access to retrieve information about permissions.

ARSetSchema

Updates information about a schema on the specified server. The information
that is updated is global schema information (for instance, changing the
schema name), not information about individual fields within the schema. You
must have administrator access to perform this function.



Overview of the AR System API 5

1

ARGetListSchema

Retrieves a list of all the schemas on a specified server. You can specify a
timestamp that limits the schemas returned to those modified after the
designated time. Only schemas to which you have access are returned.

Field Operations

ARCreateField

Creates a new field in a specified schema. You must have administrator access
to perform this function.

ARDeleteField

Deletes an existing field from the specified schema. In addition, this operation
deletes (from the database) all of the data contained in the field. You must have
administrator access to perform this function.

ARGetField

Retrieves information about a specified field in a particular schema. You must
have administrator access to retrieve information about permissions.

ARSetField

Updates information for a specified field in a particular schema (for instance,
whether a field is required or optional). You must have administrator access to
perform this function.

ARGetListField

Retrieves a list of all the fields for a specified schema. You can specify a
timestamp that limits the fields returned to those modified after the designated
time.



6 Action Request System Programmer’s Guide—January 1995

1

Menu Operations

ARCreateCharMenu

Creates a new menu on the specified server. The menu can be a hierarchical list
of items, a reference to a file, or a query to a schema. You must have
administrator access to perform this function.

ARDeleteCharMenu

Deletes an existing menu from the specified server. You must have
administrator access to perform this function.

ARGetCharMenu

Retrieves the definition of a menu on the specified server.

ARSetCharMenu

Updates information about a menu on the specified server. You must have
administrator access to perform this function.

ARGetListCharMenu

Retrieves a list of all the menus on a specified server. You can specify a
timestamp that limits the fields returned to those modified after the designated
time.

ARExpandCharMenu

Expands the definition of the character menu to a list-style menu. Query
references are resolved and file contents are loaded as defined by the menu
structure.

Filter Operations
You must have administrator access to perform any of the following filter
operations.



Overview of the AR System API 7

1

ARCreateFilter

Creates a new filter on the specified server. The filter is immediately activated,
and remains activated until modified or deleted.

ARDeleteFilter

Deletes an existing filter from the specified server. The deleted filter is
immediately removed and all processing associated with it is no longer
performed.

ARGetFilter

Retrieves information about a filter on the specified server.

ARSetFilter

Updates an existing filter on the specified server. The updates are immediately
activated and remain activated until modified or deleted.

ARGetListFilter

Retrieves a list of all the filters on a specified server. You can specify a
timestamp that limits the filters returned to those modified after the designated
time. Or, you can specify a particular schema to limit the filters returned to
those that are linked to that schema.

Escalation Operations
You must have administrator access to perform any of the following escalation
operations.

ARCreateEscalation

Creates a new escalation on the specified server. The escalation is immediately
activated, and remains activated until modified or deleted.



8 Action Request System Programmer’s Guide—January 1995

1

ARDeleteEscalation

Deletes an existing escalation from the specified server. The deleted escalation
is immediately removed and all processing associated with it is no longer
performed.

ARGetEscalation

Retrieves information about a escalation on the specified server.

ARSetEscalation

Updates an existing escalation on the specified server. The updates are
immediately activated and remain activated until modified or deleted.

ARGetListEscalation

Retrieves a list of all the escalations on a specified server. You can specify a
timestamp that limits the escalations returned to those modified after the
designated time. Or, you can specify a particular schema to limit the
escalations returned to those that are linked to that schema.

Active Link Operations

ARCreateActiveLink

Creates an active link on the specified server. The active link is activated on a
particular client the next time the client connects to the schema. You must have
administrator access to create an active link.

ARDeleteActiveLink

Deletes an existing active link from the specified server. The deleted link will
be removed from each client the next time a new copy of the schema is
accessed by the client. You must have administrator access to delete an active
link.



Overview of the AR System API 9

1

ARGetActiveLink

Retrieves information about an active link on the specified server. You must
have access to an active link to retrieve it. You must have administrator access
to retrieve information about permissions.

ARSetActiveLink

Updates an existing active link on the specified server. Each client will be
informed of the updates the next time the client accesses the schema from the
server. You must have administrator access to update an active link.

ARGetListActiveLink

Retrieves a list of all active links on a specified server. You can specify a
timestamp that limits the active links returned to those modified after the
designated time. Or, you can specify a particular schema to limit the active
links returned to those that are linked to that schema. Only active links that are
accessible to you are returned.

Administrator Extension Operations

Note – Administrator extensions are referred to as administrator commands in
the AR System Administrator Tool for OSF/Motif and apply to the UNIX
server only.

ARCreateAdminExtension

Creates a new administrator extension on the specified server. You must have
administrator access to create an administrator extension.

ARDeleteAdminExtension

Deletes existing administrator extensions from the specified server. You must
have administrator access to delete an administrator extension.



10 Action Request System Programmer’s Guide—January 1995

1

ARGetAdminExtension

Retrieves information about an administrator extension on the specified server.
You must have access to an administrator extension to retrieve it. You must
have administrator access to retrieve information about permissions.

ARSetAdminExtension

Updates information about an administrator extension on the specified server.
You must have administrator access to update information about an
administrator extension.

ARGetListAdminExtension

Retrieves a list of all the administrator extensions on a specified server. You can
specify a timestamp that limits the extensions returned to those modified after
the designated time. Only administrator extensions that are accessible to you
are returned.

ARExecuteAdminExtension

Executes the process defined by an administrator extension on the specified
server. You must have access to the administrator extension to execute it.

Miscellaneous Operations

ARInitialization

Initializes the program’s interaction with the AR System. For some systems,
this call performs no work, while for other systems it establishes an initial state
for the system. You should always call this routine in case it is needed by the
environment.

ARTermination

Terminates the program’s interaction with the AR System. For all systems, it
deregisters the user from being a current user on the system (otherwise they
remain registered until the timeout interval). For some systems, this call



Overview of the AR System API 11

1

performs no additional work, while for other systems it performs some
cleanup operations for the system. You should always call this routine in case
it is needed by the environment.

ARVerifyUser

Checks whether or not the user is registered on the AR System. You use this
routine to check the user against those registered on the specified server.

ARGetListServer

Retrieves a list of all the servers that are accessible from the current machine. It
retrieves the list of servers by processing the AR directory file /etc/ar ,
retrieving all registered AR System servers.

ARExport

Exports one or more structure definitions from the AR System. Exportable
structures are: schemas (including mail templates), menus, filters, escalations,
active links, and administrator extensions. This allows the duplication of
definitions from one server to another. You must have administrator access to
export filters, escalations, administrator extensions, and full-detailed schema
and active link definitions. Otherwise, if you have access (but not
administrator access), you can export schema, menu, and active link definitions
without permissions information.

ARGetListSQL

Retrieves a list of results for a specified SQL command on a specified server. It
will retrieve values appropriate to the command issued and return rows in the
database that match.

ARGetListGroup

Retrieves a list of all the groups on a specified server. You must have
administrator access to perform this function. ARGetListGroup also allows
retrieval of group information for a specific user. If for yourself, anyone can do
it. If for someone else, must be Administrator.



12 Action Request System Programmer’s Guide—January 1995

1

ARGetListUser

Allows retrieval of a list of all registered or current users and information
about their licenses (Admin only). Also allows retrieval of information about
yourself (anyone).

ARImport

Imports one or more structure definitions (schemas, menus, filters, escalations,
active links, and administrator extensions) to the AR System. This allows the
duplication of definitions from one server to another. You must have
administrator access to perform this function.

ARGetServerInfo

Retrieves information about the server. This information includes the version,
the type of database, license information, OS and hardware environment, and
configuration settings for the AR System server.

ARSetServerInfo

Updates information about the server environment. This information includes
only the configuration settings subset of the information available in the
ARGetServerInfo  call.

ARGetFullTextInfo (UNIX only)

Retrieves information about Full Text configuration on the server. This includes
its state, location, and other configuration settings.

ARSetFullTextInfo (UNIX only)

Allows setting Full Text configuration, such as state, location, and other
settings.

ARGetServerStatistics

Allows retrieval of statistical information about the operation and performance
of the AR System server.



Overview of the AR System API 13

1

ARDecodeStatusHistory

Takes a formatted status-history string returned from the server and decodes it
into an array of name and time values.

ARDecodeDiary

Takes a formatted diary string returned from the server and decodes it into an
array of name, time, and text values.

ARLoadARQualifierStruct

Takes a string containing a qualification and returns an ARQualifierStruct . It
parses the string and builds an appropriate structure, allocating new space and
building all necessary levels of the data structure.



14 Action Request System Programmer’s Guide—January 1995

1



15

Using the AR System API 2

This chapter provides a brief introduction to the AR System API and how it is
used. The following subjects are covered:

• Libraries.

• Include files.

• Data structures.

• Special handling for field/keyword substitution.

• Routines to free allocated memory.

• Error handling.

• Notes about using Initialization, Termination, and GetList.

• Sample source — an API driver.

The AR System API provides a complete interface to the server. All AR clients,
including clients that have been developed by Remedy Corporation, work
exclusively through this API.

As described in Chapter 1, “Overview of the AR System API,” the API
functions are organized into groups by the type of object they are working
with (schemas, fields, etc.); each group supports five basic operations (Create,
Delete, Get, Set, and GetList). All of the functions follow the same general
guidelines for interaction. This chapter explains in detail how the API is
organized, and explains the issues you must consider when using the API.



16 Action Request System Programmer’s Guide—January 1995

2

At the end of the chapter, there is a brief discussion of an API driver. The
source for that driver is provided in the directory <ar_install_dir>/api/src/driver

(for UNIX) and <ar_install_dir>\api\driver (for Windows NT). It provides
examples of how to load all of the data structures and how to call each of the
API routines in the product. There are a number of routines in this sample code
(especially the print functions) that may be useful during your application
development.

Libraries
There is one library associated with the AR System API:

For Sun SPARCstations running SunOS the AR System library, libar.a , is
built using the System V compiler (xpg2 ) using the System V message catalog
facility. Using the catalog routines allows you to internationalize all messages
returned by the system. If you do not have the System V compiler, you must
link in the additional library, libarcat.a . This will provide some missing
libraries to provide System V message catalog support.

Include Files
There are five include files associated with the AR System API. The following
list contains a description of each file, as well as information on when the file
should be included in your program:

arapi.lib For Windows NT, the AR System library
containing all the AR System API functions.
This library is located in the
<ar_install_dir>\api\lib  directory.

libar.a For UNIX, the AR System library containing
all the AR System API functions. This library
is located in the <ar_install_dir>/api/lib
directory.

ar.h The main include file for the AR System. It contains all of the basic data
structure definitions as well as all of the definitions for size limits and
AR System constants.
This file must be included whenever any AR System routine or
structure is referenced in the file.



Using the AR System API 17

2

For UNIX, these include files are located in the <ar_install_dir>/api/include

directory. For Windows NT, they are located in the <ar_install_dir>\api\include

directory.

Data Structures
There are a number of data structures in the AR System, most of which are
relatively straightforward. However, there are a few that are either a bit more
involved or central to the use of the API. These data structures are described in
detail in this section.

arerrno.h The list of error codes for the AR System. It contains a definition for
each of the error codes that can be generated by the AR System API or
server.
If you will be checking for specific error codes, you should include this
file (always use the definition and not the error number itself in case the
error number changes). If you are simply reporting returned errors or
are not processing errors in a given file, you do not need this file.

arextern.h The external declarations for all of the API functions. It contains an
external declaration for each of the AR System API functions. The
definitions are specified both with and without parameter prototypes so
they can be used by a standard C, an ANSI C, or a C++ compiler.
If you call any AR System API function in the file, it is recommended
that you include this file. Although it is not required for the standard C
compiler, both the ANSI C and C++ compilers require function
prototypes.

arfree.h The external declarations for all the AR System API free functions. It
contains an external declaration for each of the AR System API
functions that frees a data structure. The definitions are specified both
with and without parameter prototypes so they can be used by a
standard C, an ANSI C, or a C++ compiler.
If you call any AR System API free function in the file, it is a good idea
to include this file. Although it is not required for the standard C
compiler, both the ANSI C and C++ compilers require function
prototypes.

arstruct.h The data and file structure definitions for the AR System. It contains
definitions for core and other reserved field IDs, the set of special
separator characters used within the database to format data entries,
and the set of labels used whenever structure definitions are exported
to files.



18 Action Request System Programmer’s Guide—January 1995

2

Note – Many of the data structures involve allocated memory. See the
discussions that follow for information on freeing data structures and on who
is responsible for freeing the data. It is important that you free space when it is
no longer needed.

Before getting into any specific structures, a general note about lists is in order.
There are many different places in the system where you are dealing with lists
of names, IDs, or structures. In general, lists are handled as arrays in the
system, not as linked lists. The basic list structure for a list of type XXX is
defined as follows:

typedef struct {
unsigned intnumItems;
ARXXXStruct *ARXXX List;

} ARXXXList;

The numItems  field indicates the number of items that are on the list. This
number can be 0, in which case the ARXXXList  field is not used (ARXXXList  is
generally set to NULL but it does not have to be since numItems  of 0 causes it to
be ignored). If there is a single item, the ARXXXList  field points to allocated
space holding a single item of type ARXXXStruct . If there is more than one
item, the ARXXXList  field points to the start of an array of numItems

ARXXXStruct  items. A single block of memory is allocated for the set of
ARXXXStruct  items (not one block per item). If the ARXXXStruct  items
themselves point to allocated memory, the nested memory is allocated as
needed separately from the array.

The following sections describe nine of the most important or complex
structures. These include:

• ARControlStruct  and ARStatusList , which are used in almost every call.

• ARValueStruct , ARFieldValueList , and ARQualifierStruct , which are
used to interact with entries.

• ARFieldLimitStruct , which is used to manage fields.

• ARCharMenuStruct , which is used to manage menus.

• ARAssignStruct  and ARFieldAssignList , which are used when dealing
with filters, escalations, and active links.



Using the AR System API 19

2

ARControlStruct

The ARControlStruct  structure is the first parameter in most of the AR System
API functions. It contains information about you and the current environment
in which you are operating. You must load information about yourself into this
structure and transfer it with each call to the system. Since the API does not
establish and maintain connections across the network, this information is
necessary to verify permissions.

The fields of the ARControlStruct  structure include:

cacheId An ID that provides a key to the server about where information for
the user is stored. The server creates and maintains this cache area.
You should initialize the ID to 0 before the first call.
It is important that you do not change this value or the AR System
server will have to reload information about you for each call instead
of using a local cache of information.

operationTime A timestamp that indicates the date and time the operation occurred
on the server. This value is assigned by the server on each API call.

user Your user name in the AR System. This identifies you to the server so
your permissions are retrieved and verified by the server.

password The password for the specified user name.
language An ASCII string containing the name of the language (using one of

the language strings supported by the setlocale  routine). To use
the default language, specify either the empty string ("") or C. Error
messages will be returned in the language specified (assuming there
is a message catalog for that language).

server The name of the server to contact for this operation. In both single-
and multi-server environments, the server name is stored. Each call
can be to a different server although it is likely that you will choose
one server and perform most or all of your operations on that server.
You can use the ARGetListServer  routine to get a list of accessible
servers.

typedef struct {
long cacheId;
ARTimestamp operationTime;
ARNameType user;
ARNameType password;
char language[AR_MAX_LANG_SIZE + 1];
char server[AR_MAX_SERVER_SIZE + 1];

} ARControlStruct;



20 Action Request System Programmer’s Guide—January 1995

2

ARStatusList

The ARStatusList  structure is the last parameter of every AR System API
function. It provides error and warning information about the operation that
was performed. The structure itself is straightforward. It is simply a list (as
described above) of ARStatusStruct  items. The ARStatusStruct  structure
contains three fields:

For more information on this structure, see the section “Error Handling, later
in this chapter.

messageType A code for the type of message:
AR_RETURN_OK: All is OK, just an informational note.
AR_RETURN_WARNING: The operation completed
successfully, but there is some condition that you may be
interested in.
AR_RETURN_ERROR: The operation failed. No action was
performed.

messageNum The numeric value for the message (can use the
constants in arerrno.h  to search for specific errors).

messageText ASCII text message for the error. This message is up to
AR_MAX_MESSAGE_SIZEbytes long and in the
language specified by the language field of the
ARControlStruct .

typedef struct {
unsigned int messageType;
int messageNum;
char *messageText;

} ARStatusStruct;

typedef struct {
unsigned int numItems;
ARStatusStruct *statusList;

} ARStatusList;



Using the AR System API 21

2

ARValueStruct

The ARValueStruct structure contains two pieces of information: the data type
of the value and the value itself. Each data type has a specific format for the
value it expects and a corresponding field:

AR_DATA_TYPE_NULL A NULL (that is, no) value.
This is not really a data type, as a value for any data type
can be NULL. Note that a NULL value is not the same as
an empty string or a 0 for a numeric value.
Note: If you use an API call (such as ARGetEntry ) on a
field that returns null values, then the data type in the
value structure changes to AR_DATA_TYPE_NULL. If you
are concerned whether or not a value is null, you need to
check the data type instead of the value itself.

AR_DATA_TYPE_KEYWORD A numeric index (between 0 and
AR_MAX_KEYWORD_USED as defined in the include file
ar.h ) indicating which keyword.
This data type is used during assignment of values and
to hold limits or default values. It will not be present in
values returned from the database.

AR_DATA_TYPE_INTEGER A 32-bit integer value.
AR_DATA_TYPE_REAL A 64-bit floating-point value.
AR_DATA_TYPE_CHAR A null-terminated character string. The space for the

character string is allocated (and so must be freed).
Specifying a data type of AR_DATA_TYPE_CHAR with a
NULL pointer is equivalent to specifying a data type of
AR_DATA_TYPE_NULL.

typedef struct {
unsigned int dataType;
union {

unsigned int keyNum;
long intVal;
double realVal;
char *charVal;
char *diaryVal;
unsigned long enumVal;
ARTimestamp timeVal;
unsigned long maskVal;

} u;
} ARValueStruct;



22 Action Request System Programmer’s Guide—January 1995

2

ARFieldValueList

The ARFieldValueList  structure is the main structure used in the Entry
functions to retrieve and set values for the individual fields of an entry.
Accordingly, you will be using this structure anytime you deal with entries in

AR_DATA_TYPE_DIARY A null-terminated character string. The space for the
character string is allocated (and so must be freed).
Specifying a data type of AR_DATA_TYPE_DIARY with a
NULL pointer is equivalent to specifying a data type of
AR_DATA_TYPE_NULL.
Note: On input to a create or set operation, the diary
data is simply the new diary text to be added to the
value. Do not include the existing diary text or it will be
added to the diary again.
On output and on input to a merge operation, the string
contains the entire contents of the diary value (including
user and timestamps). Use the API call,
ARDecodeDiary , to decode the string if needed.

AR_DATA_TYPE_ENUM A numeric-enumerated (selection) value. An enumerated
value is a 0-indexed value indicating the position of the
choice in the list of enumerated values. If you want to
interact with names instead of numbers, it is your
responsibility to translate the names into numbers (and
numbers into names) when interacting with this
structure (see ARFieldLimitStruct ).

AR_DATA_TYPE_TIME A time and date stamp using a UNIX-style time (number
of seconds since Jan. 1, 1970). You can use standard
system functions to translate to and from a more
readable format.

AR_DATA_TYPE_BITMASK Reserved for future use.

typedef struct {
ARInternalId fieldId;
ARValueStruct value;

} ARFieldValueStruct;

typedef struct {
unsigned int numItems;
ARFieldValueStruct *fieldValueList;

} ARFieldValueList;



Using the AR System API 23

2

the system. The structure is a list (see previous discussion) of
ARFieldValueStruct  items. Each ARFieldValueStruct item is structured as
follows:

ARQualifierStruct

Following is the ARQualifierStruct example.

fieldId The internal ID of a field. All interaction with the server
regarding fields uses the field ID instead of the field
name. This is because the field ID is a fixed number that
is unique regardless of how users have customized the
labels on their local view, and regardless of the language
they are speaking.

value An ARValueStruct  item that holds the value of the
associated field. Remember, if the field has or is to be
assigned no value, use the AR_DATA_TYPE_NULL data
type; otherwise, the data type of the value and of the
field definition must be compatible (must match or be
assigned to a type-compatible keyword).



24 Action Request System Programmer’s Guide—January 1995

2

typedef struct {
unsigned long enumVal;
unsigned int userOrTime;

} ARStatHistoryValue;

typedef struct {
unsigned int tag;

union {
ARInternalId fieldId;
ARValueStruct value;
struct ARArithOpStruct *arithOp;
ARStatHistoryValue statHistory;

} u;
} ARFieldValueOrArithStruct;

typedef struct ARArithOpStruct {
unsigned int operation;

ARFieldValueOrArithStruct operandLeft;
ARFieldValueOrArithStruct operandRight;

} ARArithOpStruct;

typedef struct {
unsigned int operation;
ARFieldValueOrArithStruct operandLeft;
ARFieldValueOrArithStruct operandRight;

} ARRelOpStruct;

typedef struct ARQualifierStruct {
unsigned int operation;
union {

 struct {
struct ARQualifierStruct

*operandLeft;
struct ARQualifierStruct

*operandRight;
} andor;

 struct ARQualifierStruct *not;
 ARRelOpStruct

*relOp;
} u;

} ARQualifierStruct;



Using the AR System API 25

2

Note – An API call, ARLoadARQualifierStruct, exists that takes a
qualification string and converts it into the appropriate set of these structures.
For details, see ARLoadARQualifierStruct in Chapter 5.

The ARQualifierStruct  structure is one of the more involved structures in the
system. It is used to specify qualification criteria to the ARGetListEntry  and
ARGetEntryStatistics  calls and for the qualification in all the filter,
escalation, and active link calls. It is important to be able to specify a complex
sequence of conditions in a reasonable structure. The following discussion will
detail how this structure is organized, including a discussion of the nested
structures used to build a full qualification.

To start, you need to think about what a qualification is. It is a set of zero or
more conditions that specify limits on which entries should be retrieved. The
ARQualifierStruct  structure (along with all its nested support structures) is
used to define a qualification.

The ARQualifierStruct  structure itself consists of an operation to be
performed and then one or more pointers to structures that contain
information for that operation. If there is no qualification, you can either
specify a NULL for the entire structure or you can specify an operation of
AR_COND_OP_NONE. If there is some qualification, you need to specify one of the
other operations. AR_COND_OP_AND, AR_COND_OP_OR, and AR_COND_OP_NOT are
used to indicate the three basic logical operations. The AND and OR operations
require specification of a left and right operand while the NOT operation
requires a single operand. Each of these operands is simply another
ARQualifierStruct . AR_COND_OP_REL_OP indicates that the operation is not
one of the logicals but a simple relational operation. The value associated with
a relational operation is stored in the ARRelOpStruct  structure.

The ARRelOpStruct  structure defines a relational operation. The following six
basic relational operators are supported:

• AR_REL_OP_EQUAL

• AR_REL_OP_GREATER

• AR_REL_OP_GREATER_EQUAL

• AR_REL_OP_LESS

• AR_REL_OP_LESS_EQUAL

• AR_REL_OP_NOT_EQUAL



26 Action Request System Programmer’s Guide—January 1995

2

A pattern-matching operator, AR_REL_OP_LIKE, is also supported. (See the
discussion of the LIKE  operator, Full Text Search capability, and the use of wild
cards in the Action Request System User’s Guide).

For each of these operations, the qualification has a left and right operand. The
ARFieldValueOrArithStruct  structure is used to define the value to be used
in the operation. There are four major types of values:

Note – There are several additional branches to this structure that have been
defined and not described here. They are reserved for future use and are not
implemented at this time.

The ARArithOpStruct  structure defines an arithmetic operation. The
operations supported are the binary operations AR_ARITH_OP_ADD,
AR_ARITH_OP_SUBTRACT, AR_ARITH_OP_MULTIPLY, AR_ARITH_OP_DIVIDE, and
AR_ARITH_OP_MODULO along with the unary operation AR_ARITH_OP_NEGATE.
For the binary operations, you must define the left and right operands using
the ARFieldValueOrArithStruct  structure. For the unary operation, ignore the
operandLeft  field and supply a single operand using operandRight .

AR_FIELD Identify a field whose value is to be retrieved for the
qualification.

AR_VALUE Specify a constant value that is to be used in the
qualification.

AR_ARITHMETIC Use the ARArithOpStruct  structure to define an
arithmetic operation (see below) to be performed during
the qualification.

AR_STAT_HISTORY Identify a specific status history field whose value is to
be retrieved for the qualification. A status history field is
identified by supplying the enumerated value for the
status of the desired field and a tag indicating whether
the user or time information of that status is desired
(AR_STAT_HISTORY_USER or
AR_STAT_HISTORY_TIME).



Using the AR System API 27

2

ARFieldLimitStruct

The ARFieldLimitStruct  structure is used to define the limits on fields.
During the create operation, you can specify no limits by supplying a NULL

pointer for the limit parameter. During the set operation, a NULL pointer means
the value is unchanged. So you will need to specify the structure with the
dataType  field set to AR_FIELD_LIMIT_NONE to reset to no limit (this can be
used during the create operation too).

typedef struct {
long rangeLow;

long rangeHigh;
} ARIntegerLimitsStruct;

typedef struct {
double rangeLow;
double rangeHigh;
int precision;

} ARRealLimitsStruct;

typedef struct {
unsigned int maxLength;
unsigned int menuStyle;
unsigned int qbeMatchOperation;
ARNameType charMenu;
char *pattern;

unsigned int FullTextOptions;
} ARCharLimitsStruct;

typedef struct {
unsigned int FullTextOptions;

} ARDiaryLimitsStruct;

typedef struct {
unsigned int dataType;
union {

ARIntegerLimitsStruct intLimits;
ARRealLimitsStruct realLimits;
ARCharLimitsStruct charLimits;

ARDiaryLimitsStruct diarylimits;
ARNameList enumLimits;

} u;
} ARFieldLimitStruct;



28 Action Request System Programmer’s Guide—January 1995

2

As noted, a data type of AR_FIELD_LIMIT_NONE is used to indicate that there
are no limits defined for a field. If limits are defined, the dataType  field will be
set to the data type of the field. Note that the field will never be set for time
field since there are no field limits that can be specified for this type. Each of
the other types can have limits defined as follows:

AR_DATA_TYPE_INTEGER Using the ARIntegerLimitsStruct  structure, you can
define a lower- and upper-range limit for the value.

AR_DATA_TYPE_REAL Using the ARRealLimitsStruct  structure, you can
define a lower- and upper-range limit for the value. In
addition, you can specify a precision setting to use when
a value is displayed. This setting will limit the number of
decimal places that are displayed for the value.

AR_DATA_TYPE_CHAR Using the ARCharLimitsStruct  structure, you can
define a maximum length for the value. Specifying a
maximum length of 0 indicates an unlimited length. See
the discussion of the Length field property in Chapter 4
of the Action Request System Administrator’s Guide for
notes about the efficiency of long character string
storage.
In addition, you can specify whether a character menu is
associated with the field, whether dropping a value from
a menu (if attached) overwrites existing data or appends
to it, the type of qualification to use by default for a QBE
(query-by-example) query, a pattern that all values must
match and a flag to indicate whether the field is Full Text
indexed. Simply leave the charMenu  or pattern fields
blank to specify no menu or no pattern.

AR_DATA_TYPE_DIARY Using the ARDiaryLimitStruct  structure, you can
define whether the field is Full Text indexed.

AR_DATA_TYPE_ENUM Using the ARNameList  structure, you define the list of
one or more names that form the enumerated set for the
field. You must specify a limit for an enumerated field
since it is undefined without the set of enumerated
values.



Using the AR System API 29

2

ARCharMenuList

typedef struct {
ARNameType menuLabel;
unsigned int menuType;
union {

char *menuValue;
struct ARCharMenuStruct *childMenu;

} u;
} ARCharMenuItemStruct;

typedef struct {
ARNameType schema;
char server[AR_MAX_SERVER_SIZE + 1];
ARQualifierStruct qualifier;
ARInternalId labelField;
ARInternalId valueField;
ARBoolean sortOnLabel;

} ARCharMenuQueryStruct;

typedef struct {
unsigned int fileLocation;
char *filename;

} ARCharMenuFileStruct;

typedef struct {
unsigned int numItems;
ARCharMenuItemStruct *charMenuList;

} ARCharMenuList;

typedef struct ARCharMenuStruct {
unsigned int menuType;
union {

ARCharMenuList menuList;
ARCharMenuQueryStruct menuQuery;
ARCharMenuFileStruct menuFile;
ARCharMenuSQLStruct menuSQL;

} u;
} ARCharMenuStruct;



30 Action Request System Programmer’s Guide—January 1995

2

The ARCharMenuStruct  structure is used when dealing with menus. A menu
definition can be one of four types:

The ARCharMenuItemStruct structure holds information for a single item in a
list type menu. It contains the following fields:

AR_CHAR_MENU_LIST Labels and values are defined as part of the menu
definition. A hierarchical menu definition is put into
place as an integral part of the definition.

AR_CHAR_MENU_QUERY A query to the same or another AR System schema on
the same or a different server is used to build a menu
dynamically. The definition includes which field to use
as the label and which as the value.

AR_CHAR_MENU_FILE A file contains the definition of the menu. The file can
contain a flat or hierarchical file definition.

AR_CHAR_MENU_SQL An SQL command on the same or a different server is
used to build a menu dynamically. The definition
includes which column to use as the label and which
column as the value.

menuLabel The label for the menu item. This is the visible label and
not the text associated with the item.

menuType The type of item at this position:
AR_MENU_TYPE_VALUE: This item is a leaf in the menu
and has an associated value.
AR_MENU_TYPE_MENU: This item has a submenu so no
value is associated with it.

menuValue If AR_MENU_TYPE_VALUE, a pointer to the actual value
that is associated with this menu item. It may or may not
be the same as the label.

childMenu If AR_MENU_TYPE_MENU, a pointer to an
ARCharMenuStruct  structure that contains the menu
definition for the submenu.



Using the AR System API 31

2

ARAssignStruct
typedef struct {

char server[AR_MAX_SERVER_SIZE
+ 1];

ARNameType schema;
ARQualifierStruct qualifier;
unsigned int tag;
union {

ARInternalId fieldId;
ARStatHistoryValue statHistory;

} u;
} ARAssignFieldStruct;

typedef struct {
char  *serviceName;
char *topic;
char  *item;
unsigned int                action;

char *pathToProgram;
char *command;

} ARDDEStruct;

typedef struct {
        char            server[AR_MAX_SERVER_SIZE + 1];
        char            *sqlCommand;
        unsigned int    valueIndex;
        unsigned int    noMatchOption;
        unsigned int    multiMatchOption;
} ARAssignSQLStruct;

typedef struct {
unsigned int assignType;
union {

ARValueStruct value;
ARAssignFieldStruct *field;
char *process;
struct ARArithOpAssignStruct *arithOp;
ARDDEStruct  *dde;

ARAssignSQLStruct *sql;
} u;

} ARAssignStruct;

typedef struct ARArithOpAssignStruct {
unsigned int operation;
ARAssignStruct operandLeft;
ARAssignStruct operandRight;

} ARArithOpAssignStruct;

typedef struct ARFunctionAssignStruct {
unsigned int functionCode;
unsigned int numItems;
ARAssignStruct *parameterList;

} ARFunctionAssignStruct;



32 Action Request System Programmer’s Guide—January 1995

2

The ARAssignStruct  structure contains two pieces of information: a tag
detailing the type of assignment operation to perform and a structure with
details for the assignment. The types of assignment and the details needed for
each are as follows:

AR_ASSIGN_TYPE_VALUE A simple constant value using the ARValueStruct
structure. The value can be a constant value of the same
type as the target field or a keyword value with a
compatible type.

AR_ASSIGN_TYPE_FIELD A cross-reference assignment to a value that is held in a
field in the current or another entry in the AR System.
The entry can be in the same or a different schema. You
use the ARAssignFieldStruct  structure to define the
entry being referenced (refer to the
ARAssignFieldStruct  discussion on the following
page).

AR_ASSIGN_TYPE_PROCESSA string to be transferred to the operating system and
executed in a shell. The value returned to stdout  by the
process executed will be assigned to the target field if the
return code of the process is 0. If the return is not 0, it
indicates an error return and the data in stdout  is
treated as error text and displayed to the user. (Not
available for active links run from Windows or
Macintosh.)

AR_ASSIGN_TYPE_ARITH An arithmetic operation between several values is to be
performed and the result assigned to the target. The
operation is defined using the
ARArithOpAssignStruct  structure.

AR_ASSIGN_TYPE_FUNCTIONA function to be performed on one or more parameters
and the result assigned to the target. The function is
defined using the ARFunctionAssignStruct  structure.

AR_ASSIGN_TYPE_DDE A DDE request operation to be performed against
another operation and the result assigned to the target.
The operation is defined using the ARDDEStruct
structure. (Only available for active links run from
Windows.)

AR_ASSIGN_TYPE_SQL A cross-reference assignment to a value that is returned
using a SQL command. You use the
ARAssignSQLStruct  structure to define the data being
referenced (refer to the ARAssignSQLStruct
discussion).



Using the AR System API 33

2

The ARAssignFieldStruct  structure is used to reference a field whose value is
to be retrieved and assigned to the target field. It contains information about
the server and schema that contains the desired field and an optional qualifier
that selects an entry from that schema. Finally, it contains a tag indicating
whether the desired value is a field value or a status history value and which
field/status history is desired. To indicate that the value should be extracted
from the currently displayed window and not from the database, specify ‘*’ as
the value for the schema and server.

Note – For filters and escalations, if no values match the qualification, a NULL

value is assigned to the field; if more than one value is returned, the first return
value is used. For active links, if no values match, an error is returned; if more
than one value is returned, a selection list appears to allow the use to select the
item desired.

The ARAssignSQLStruct  structure is used to reference a database entry whose
value is to be retrieved and assigned to the target field. It contains an SQL
statement used to retrieve the database entry and an index of which value to
use. It also specifies the action to take if there are no matches or more than one
match.

The ARArithOpAssignStruct  structure defines an arithmetic operation (much
like the ARArithOpStruct  defined above). You can specify any combination of
operations using any of the types of value assignment defined as long as the
resulting value is compatible with the target value.

The following operations are supported binary operations:

• AR_ARITH_OP_ADD

• AR_ARITH_OP_SUBTRACT

• AR_ARITH_OP_MULTIPLY

• AR_ARITH_OP_DIVIDE

• AR_ARITH_OP_MODULO

For these operations, you must define the left and right operands using the
ARAssignStruct  structure.

For the unary operation, AR_ARITH_OP_NEGATE, ignore the operandLeft  field
and supply a single operand using operandRight .



34 Action Request System Programmer’s Guide—January 1995

2

The ARFunctionOpAssignStruct  structure defines a function to be performed
and specifies the list of parameters to use while performing the function. There
are over 20 functions defined. You can specify any arbitrary set of assign
structure arguments for the parameters. You must define a number of
parameters appropriate for the call being made. Automatic data type
conversion will be performed for each parameter as necessary.

ARFieldAssignList

The ARFieldAssignList  structure is the main structure used in filter,
escalation, and active link functions to set values for individual fields within a
set fields action. The structure is a list (see previous description) of
ARFieldAssignStruct  items. Each ARFieldAssignStruct item is structured as
follows:

fieldId The internal ID of a field. All interaction with the server
regarding fields uses the field ID instead of the field
name. This is because the field ID is a fixed number that
is unique regardless of how users have customized the
labels on their local view, and regardless of the language
they are speaking.

value An ARAssignStruct  item that holds the value of the
associated field. Remember, if the field is specified, it
must be assigned a value using one of the possible
assignment types.

typedef struct {
ARInternalId fieldId;
ARAssignStruct assignment;

} ARFieldAssignStruct;

typedef struct {
unsigned int numItems;
ARFieldAssignStruct *fieldAssignList;

} ARFieldAssignList;



Using the AR System API 35

2

Special Handling for Field/Keyword Substitution
There are a number of cases where fields and/or keywords can be specified in
a value with the intention of expanding the value with the contents of that
field or keyword when the value is used. Some examples of these values
include: notify text in the filter and escalation notify action, the message text in
filter and active link message actions, the run process string in filter, escalation,
and active link run process actions, and a macro parameter value in an active
link macro action.

To handle these situations, place a parameter that represents the field or
keyword directly into the character string. The string will be pre-processed
with the parameter expanded. The syntax for field and keyword parameters
are:

When used through the aruser  and aradmin  programs, you are allowed to use
the field and keyword names. This is because these programs translate the
internal parameter format to and from names for easier viewing and
manipulation by the user. However, since the names of the fields and of the
keywords (in case of localization) can be different for different users, the
parameters must key off of the IDs.

Routines to Free Allocated Memory
The API includes a set of functions to make it easy to free memory for all the
AR System structures that allocate memory (see arfree.h ). This includes any
structures you may create and any that are returned from the AR System API
calls. You simply pass a pointer to the structure to the appropriate free routine
and it will recursively free all allocated memory within that structure.

Each of the free functions has two parameters. The first is a pointer to the
structure whose memory is to be freed. The second is a boolean flag. If it is set
to TRUE, you are stating that the memory used by the base structure is also
allocated and should be freed with any nested memory. If it is set to FALSE, you
are stating that the top level structure is not allocated and should not be freed

field id $id $ where id  is the field ID (for example, $1$).
keyword $-keynum $ where keynum  is the index of the keyword as defined in ar.h

(for example, $-3 $). Note the negative sign before the number.
This is necessary to indicate a keyword value as distinguished
from a field ID. For $NULL$, use the string $--1$  (two minus
signs followed by the number one).



36 Action Request System Programmer’s Guide—January 1995

2

with the rest of the memory. If not freed, the fields of the top-level structure are
initialized to an empty state so a second free on the structure will perform no
action.

Note that all of the free functions are coded to handle “empty” structures. They
will all no-op if a NULL pointer is specified for the structure. They will also
work if the structure is a list structure containing 0 entries. You can safely call
the free functions with any structure that has been initialized to an empty state
regardless of whether any data has subsequently been assigned.

Responsibility for Freeing Allocated Memory
Both the input and output parameters to the AR System API functions involve
allocated memory. It is important to remember to free that space to avoid a
buildup of old allocated memory that is no longer used.

In simple terms, you (the caller of the API functions) are responsible for freeing
all memory for both input and output parameters. The API function cannot tell
if any of the input parameters are allocated (you could have statically allocated
space on the stack and used pointers to that space) and cannot tell how long
you want to retain any returned data. So, you have the responsibility of freeing
any space when it is no longer needed.

If you receive a return from a function that is AR_RETURN_ERROR,
AR_RETURN_FATAL, or AR_RETURN_BAD_STATUS, the API functions guarantee that
the only structure that may have allocated memory is the ARStatusList

parameter. All other output parameters will be initialized to an empty state.
You can call the free functions on those empty parameters if you desire or if it
is easier given how you have structured your code, but it is not required in an
error case.

Error Handling
As in any system, the management of errors reported by the AR System API
functions is important. Because all errors are reported in a common structure,
ARStatusList , error processing can be handled in a generic routine for all the
AR System API functions.

First, every API function has an int  return, which indicates whether or not the
operation was successful. The return is one of the following values:



Using the AR System API 37

2

You can check the return value of the call to determine whether the operation
occurred. It is safe to ignore any informational notes at any time. You can also
ignore warnings, but it is better if you at least report them. You should never
ignore errors since they resulted in the failure of the operation.

The errors in the status list are sorted so that errors are first, warnings next,
and notes last. In addition, the most recent message of each category is first,
with older messages in chronological order after that. So, the most recent and
most serious messages are always listed first with the return of the function
reflecting the severity of the first message in the list.

Remember that the ARStatusList  structure uses allocated space for the
message list and for the text of any message. It is important to call the
FreeARStatusList  function after any processing of the status list for every API
call (even if they return AR_RETURN_OK since notes can be returned even if all is
okay). You do not need to worry about whether there are any messages before
calling the free routine since it will perform no action if there are no messages
to free.

AR_RETURN_OK The operation was successfully performed. The status
list may contain an informational note (in a few cases).

AR_RETURN_WARNING The operation was successfully performed; however,
something happened during the operation that the
system wants you to be aware of. There will be one or
more warning messages (and maybe some notes) in the
status list.

AR_RETURN_ERROR The operation failed and was not performed. There will
be one or more error messages (and maybe some
warnings and notes) in the status list.

AR_RETURN_FATAL The operation failed and was not performed. In addition,
an error was encountered while trying to prepare the
status list with the error information. There may be one
or more error messages (and maybe some warnings and
notes) in the status list. Note that the status list may not
be complete and may even be empty if the error is such
that the entries cannot be added to the status list.

AR_RETURN_BAD_STATUS The operation was not performed. The status parameter
is bad so the operation was cancelled.



38 Action Request System Programmer’s Guide—January 1995

2

ARInitialization and ARTermination
The AR System API is designed to be able to run in a wide variety of
environments. Each environment has a different set of operations that must be
performed to set up and shut down the RPC and/or network environment for
use by an application. Accordingly, the ARInitialization  and ARTermination

functions help deal with varying environments.

These functions perform the operations needed to establish the correct
environment for the rest of the API functions. You should use
ARInitialization  as the first AR System API call in your program and
ARTermination  as the last. You can call ARInitialization  at the beginning of
the program and ARTermination  at the end to make it easier to ensure the calls
are made first and last, respectively.

In an environment where floating licenses are used, the ARTermination  call is
even more important. This call is used to disconnect from the server and to free
the floating license token held by the user. If this call is not made, the token
will not be freed and will be held until the defined timeout interval even
though the user is no longer accessing the system.

Using the GetList Functions
The API has been structured around the idea of using the ARxxxGetList

functions to get a list of 0 or more items matching a set of criteria, then using
the IDs/names returned to call the ARGetxxx , ARSetxxx , and/or ARDeletexxx

function to perform some operation on the items in the list. The GetList

functions are all designed to be efficient at retrieving the values requested to
provide quick response to your list requests.

The ARGetListEntry  function uses the ARQualifierStruct  structure
(discussed previously) to specify conditions that all entries you are interested
in must meet. The other GetList  operations allow qualification of entries using
a timestamp. That timestamp specifies that only items changed since the time
indicated are returned. A timestamp of 0 is used to indicate all items.
Generally, you will use a timestamp of 0 for an initial list and then the
timestamp saved from the last retrieval (the time from the ARControlStruct )
for future calls to just get a list of the items that have been modified.



Using the AR System API 39

2

Sample Source — An API Driver
The AR System provides a sample program that implements a prompt-driven
interface to the API routines. The program contains a call to every API routine,
illustrating how the input structures can be loaded and the output structures
traversed. It is located in <ar_install_dir>/api/src/driver (in UNIX) and
<ar_install_dir>\api\driver (in Windows NT).

The source is intended as example code to help you understand how to work
with the AR System API. There are a number of routines that may be helpful to
you while developing an application. A good example of this is the print.c

file which contains a set of print routines for each of the data structures in the
AR System. Using these routines, you can print the contents of structures
before and after API calls to ensure they contain the data you expect.

This source can be compiled into a program called driver which provides an
interactive, prompt-driven interface to the API calls. You can use the interface
to see how various combinations of parameters would work and to get a feel
for whether you are calling the routines correctly. When you run the driver,
you should be aware of the following:

• The ARControlStruct  structure is loaded with the log command and is
loaded globally, not with each API call. You can change it if desired but it is
not necessary to reset it for each call.

• Use the h command (for help) to display the menu of options again.

Other than this, you simply choose an API call to make and the driver will
prompt you for all the parameters, make the call, and display the results.

Building an API Program in the Windows NT Environment

You can create an application that makes API calls to your AR System
servers. To build your own applications, you need to link the API library. You
can use the sample driver.mak  file, found in the <ar_install_dir>\api\driver

directory, as a template to create your own make file.

After you create a make file, run nmake from the command line, as in the
following example:

nmake /f  driver.mak



40 Action Request System Programmer’s Guide—January 1995

2



41

Overview of the Notification
Subsystem API 3

The AR System supplies a set of API functions that allows access to the full
functionality of the Notification Tool subsystem.

Note – Terminology: Be aware in this chapter that “NT” is sometimes used as
an abbreviation for the AR System Notification Tool. When this guide
specifically refers to the Windows NT operating system, it is described either
as “the Windows NT operating system” or simply as “Windows NT.”

The Notification System API is divided into two sets of calls, NTxxxClient and
NTxxxServer, which represent the division of the Notification subsystem into
two processes:

• The Notification client (ntclientd ) receives notifications and distributes them
locally to processes that have registered interest. To receive notifications,
you interact with this set of calls.

• The Notification server (ntserverd ) accepts requests for notifications to be
sent and delivers them to registered users. To send notifications, you
interact with this set of calls.

The remainder of this chapter briefly describes each available API function. For
more information on each operation, see the appropriate manual page in
Chapter 5.



42 Action Request System Programmer’s Guide—January 1995

3

Notification Client Operations
This section contains a complete list of the Notification client operations, and
information on the calls you can use to receive notifications.

Several of the operations are used to communicate between the ntclientd  and
ntserverd  processes. Normally, you would not need to use these calls;
however, it is possible to call them directly if you are replacing ntclientd  with
your own process. These calls are noted as follows: (server -> client)

NTCheckRegisteredClient

Checks with the Notification client to see if the specified user is registered.
(server -> client)

NTDeregisterClient

Closes registration for the specified process with the Notification client.

NTInitializationClient

Initializes the program for interaction with the Notification client. For some
systems, this call performs no work, while in others it establishes an initial
state for the system. You should always call NTInitializationClient  in case
it is needed by the environment.

NTNotificationClient

Delivers a notification to the indicated client. (server -> client)

NTRegisterClient

Registers the process with the Notification client.



Overview of the Notification Subsystem API 43

3

NTTerminationClient

Terminates the program’s interaction with the Notification client. For some
systems, this call performs no work, while in others it performs some cleanup
operations for the system. You should always call NTTerminationClient  in
case it is needed by the environment.

To register to receive messages, use the following calls

Notification Server Operations
This section contains a complete list of the Notification server operations and
information on the calls you can use to send messages.

Several of the operations are used in communications between the ntclientd

and ntserverd  processes. Normally, you would not need to use these calls;
however, it is possible for you to call them directly if you will be replacing
ntserverd  with your own process. These calls are noted as follows: (client ->
server)

NTDeregisterServer

Closes registration for the specified process with the Notification server.
(client -> server)

NTGetListServer

Retrieves a list of all the servers that are accessible from the current machine.

NTInitializationClient Set up the program for communications with the
Notification client.

NTRegisterClient Register with the Notification client, validate and
register the user with each Notification server on the
network. Read messages from pipe used for
communications (specified in call).

NTDeregisterClient Close registration for this Notification client.
NTTerminationClient Perform cleanup operations and terminate interaction

with the Notification client.



44 Action Request System Programmer’s Guide—January 1995

3

NTInitializationServer

Initializes the program for interaction with the Notification server. For some
systems, this call performs no work, while in others it establishes an initial
state for the system. You should always call this routine in case it is needed by
the environment.

NTNotificationServer

Delivers a notification to the indicated server.

NTRegisterServer

Registers the process with the Notification server. (client -> server)

NTTerminationServer

Terminates the program’s interaction with the Notification server. For some
systems, this call performs no work, while in others it performs some cleanup
operations for the system. You should always call this routine in case it is
needed by the environment.

To send messages, use the following calls

NTInitializationServer Set up the program for communications with the
Notification server.

NTNotificationServer Deliver message. One call for each message sent. The
server will process the message to deliver it to the
Notification client processes registered with the
Notification server.

NTTerminationServer Perform cleanup operations and terminate interaction
with the Notification server.



45

Using the Notification Subsystem API 4

This chapter describes the structure of the Notification Tool subsystem API
functions, and how to use the API functions to interact with the Notification
client and server.

Note – Terminology Be aware in this chapter that “NT” is sometimes used as
an abbreviation for the AR System Notification Tool. When this guide refers to
the Windows NT operating system, it is described either as “the Windows NT
operating system” or simply as “Windows NT.”

The topics covered in this chapter include:

• Libraries.

• Include files.

• Data structures.

• Routines to free allocated memory.

• Error handling.

• Notes about using Initialization and Termination.

The Notification System API provides a complete interface to the Notification
client and server. All clients of the Notification subsystem, including clients
that have been developed by Remedy Corporation, work exclusively through
this API.



46 Action Request System Programmer’s Guide—January 1995

4

Libraries
There are two libraries associated with the Notification System API. Each of the
libraries is described below for the UNIX and Windows NT platforms
respectively.

For UNIX

The Notification System API libraries for UNIX are located in the
<ar_install_dir>/api/lib  directory:

For Sun SPARCstations running SunOS the AR System library, libar.a , is
built using the System V compiler (xpg2 ) using the System V message catalog
facility. Using the catalog routines allows you to internationalize all messages
returned by the system. If you do not have the System V compiler, you must
link in the additional library, libarcat.a . This will provide some missing
libraries to provide System V message catalog support.

For Windows NT

The Notification System API libraries for Windows NT are located in the
<ar_install_dir>\api\lib  directory:

libntc.a The Notification client library containing all the
Notification client API functions.

libnts.a The Notification server library containing all the
Notification server API functions.

ntc.lib The Notification client library containing all the
Notification client API functions.

nts.lib The Notification server library containing all the
Notification server API functions.



Using the Notification Subsystem API 47

4

Include Files
There are six include files associated with the Notification System API. The
following list contains a description of each file, as well as information on
when the file should be included in your program:

nt.h The main include file for the Notification System subsystem. It
contains all of the basic data structure definitions as well as all of
the definitions for size limits and Notification constants.
This file must be included whenever any Notification routine or
structure is referenced in the file.

ntcextrn.h The external declarations for all of the Notification client API
functions. It contains an external declaration for each of the
Notification client API functions. The definitions are specified both
with and without parameter prototypes so they can be used by a
standard C, an ANSI C, and a C++ compiler.
If you call any Notification client API function in the file, it is a
good idea to include this file. Although it is not required for the
standard C compiler, both the ANSI C and C++ compilers require
function prototypes.

nterrno.h The list of error codes for the Notification System subsystem. It
contains a definition for each of the error codes that can be
generated by the Notification System subsystem.
If you will be checking for specific error codes, you should include
this file (always use the define and not the error number itself in
case the error number changes). If you are simply reporting
returned errors or are not processing errors in a given file, you do
not need this file.

ntfree.h The external declarations for all the Notification System API free
functions. It contains an external declaration for each of the
Notification API functions that frees memory used by Notification
data structures. The definitions are specified both with and
without parameter prototypes so they can be used by a standard C,
an ANSI C, and a C++ compiler.
If you call any Notification API free function in the file, it is a good
idea to include this file. Although it is not required for the
standard C compiler, both the ANSI C and C++ compilers require
function prototypes.



48 Action Request System Programmer’s Guide—January 1995

4

For UNIX, these include files are located in the <ar_install_dir>/api/include

directory. For Windows NT, they are located in the <ar_install_dir>\api\include

directory.

Data Structures
There are few data structures in the Notification subsystem. Only one
significant structure is described in detail in this section — NTStatusList .

Note – Some of the data structures involve allocated memory. See the
following discussions on freeing data structures and on who is responsible for
freeing the data. It is important that you free space when it is no longer
needed.

ntsextrn.h The external declarations for all of the Notification server API
functions. It contains an external declaration for each of the
Notification server API functions. The definitions are specified
both with and without parameter prototypes so they can be used
by a standard C, an ANSI C, and a C++ compiler.
If you call any Notification server API function in the file, it is a
good idea to include this file. Although it is not required for the
standard C compiler, both the ANSI C and C++ compilers require
function prototypes.

ntcextrn.h The external declarations for all of the Notification client API
functions. It contains an external declaration for each of the
Notification client API functions. The definitions are specified both
with and without parameter prototypes so they can be used by a
standard C, an ANSI C, and a C++ compiler.
If you call any Notification client API function in the file, it is a
good idea to include this file. Although it is not required for the
standard C compiler, both the ANSI C and C++ compilers require
function prototypes.



Using the Notification Subsystem API 49

4

Before getting into any specific structures, a general note about lists is in order.
There are many different places in the system where you are dealing with lists
of names, IDs, or structures. In general, lists are handled as arrays in the
system, not as linked lists. The basic list structure for a list of type XXX is
defined as follows:

typedef struct {

unsigned intnumItems;

NTXXXStruct *NTXXXList;

} NTXXXList;

The numItems  field indicates the number of items that are on the list. This
number can be 0 in which case the NTXXXList  field is not used (NTXXXList  is
generally set to NULL but it does not have to be since numItems  of 0 causes it to
be ignored). If there is a single item, the NTXXXList  field points to allocated
space holding a single item of type NTXXXStruct . If there is more than one
item, the NTXXXList field points to the start of an array of numItems

NTXXXStruct  items. A single block of memory is allocated for the set of
NTXXXStruct  items (not one block per item). If the NTXXXStruct  items
themselves point to allocated memory, the nested memory is allocated as
needed separately from the array.

NTStatusList

typedef struct {
unsigned int messageType;
int messageNum;
char *messageText;

} NTStatusStruct;

typedef struct {
unsigned int numItems;

NTStatusStruct *statusList;
} NTStatusList;



50 Action Request System Programmer’s Guide—January 1995

4

The NTStatusList  structure is the last parameter of every Notification System
API function. It provides error and warning information about the operation
that was performed. The structure itself is straightforward. It is simply a list (as
described) of NTStatusStruct  items. The NTStatusStruct  structure contains
three fields:

For more information on this structure, see the section, “Error Handling, later
in this chapter.

Routines to Free Allocated Memory
The API includes a set of functions to make it easy to free memory for all the
Notification structures that allocate memory (see ntfree.h ). This includes any
structures you may create and any that are returned from the Notification
System API calls. You simply pass a pointer to the structure to the appropriate
free routine and it will recursively free all allocated memory within that
structure.

Each of the free functions has two parameters. The first is a pointer to the
structure whose memory is to be freed. The second is a Boolean flag. If it is set
to TRUE, you are stating that the memory used by the base structure is also
allocated and should be freed with any nested memory. If it is set to FALSE, you
are stating that the top level structure is not allocated and should not be freed
with the rest of the memory. If not freed, the fields of the top-level structure are
initialized to an empty state so a second free on the structure will perform no
action.

messageType A code for the type of message:
NT_RETURN_OK: All is OK, just an informational note.
NT_RETURN_WARNING: The operation completed
successfully, but there is some condition that you may be
interested in.
NT_RETURN_ERROR: The operation failed. No action was
performed.

messageNum The numeric value for the message (can use the
constants in nterrno.h  to search for specific errors).

messageText ASCII text message for the error. This message is up to
NT_MAX_MESSAGE_SIZEbytes long.



Using the Notification Subsystem API 51

4

Note that all of the free functions are coded to handle “empty” structures. They
will all no-op if a NULL pointer is specified for the structure. They will also
work if the structure is a list structure containing 0 entries. You can safely call
the free functions with any structure that has been initialized to an empty state
regardless of whether any data has subsequently been assigned.

Responsibility for Freeing Allocated Memory
Both the input and output parameters to the Notification System API functions
involve allocated memory. It is important to remember to free that space to
avoid a buildup of allocated memory that is no longer used.

In simple terms, you (the caller of the API functions) are responsible for freeing
all memory for both input and output parameters. The API function cannot tell
if any of the input parameters are allocated (you could have statically allocated
space on the stack and used pointers to that space) and cannot tell how long
you want to retain any returned data. So, you have the responsibility of freeing
any space when it is no longer needed.

If you receive a return from a function that is NT_RETURN_ERROR,
NT_RETURN_FATAL, or NT_RETURN_BAD_STATUS, the API functions guarantee that
the only structure that may have allocated memory is the NTStatusList

parameter. All other output parameters will be initialized to an empty state.
You can call the free functions on those empty parameters if you desire or if it
is easier given how you have structured your code, but it is not required in an
error case.

Error Handling
As in any system, the management of errors reported by the Notification
System API functions is important. Because all errors are reported in a
common structure, NTStatusList , error processing can be handled in a generic
routine for all the Notification System API functions.

First, every API function has an int return, which indicates whether or not the
operation was successful. The return is one of the following values:

NT_RETURN_OK The operation was successfully performed. The status list
may contain an informational note (in a few cases).



52 Action Request System Programmer’s Guide—January 1995

4

You can check the return value of the call to determine whether the operation
occurred. It is safe to ignore any informational notes at any time. You can also
ignore warnings, but it is better if you at least report them. You should never
ignore errors since they resulted in the failure of the operation.

The errors in the status list are sorted so that errors are first, warnings next,
and notes last. In addition, the most recent message of each category is first,
with older messages in chronological order after that. So, the most recent and
most serious messages are always listed first with the return of the function
reflecting the severity of the first message in the list.

Remember that the NTStatusList  structure uses allocated space for the
message list and for the text of any message. It is important to call the
FreeNTStatusList  function after any processing of the status list for every API
call (even if they return NT_RETURN_OK since notes can be returned even if all is
okay). You do not need to worry about whether there are any messages before
calling the free routine since it will perform no action if there are no messages
to free.

NT_RETURN_WARNING The operation was successfully performed; however,
something happened during the operation that the system
wants you to be aware of. There will be one or more
warning messages (and maybe some notes) in the status
list.

NT_RETURN_ERROR The operation failed and was not performed. There will be
one or more error messages (and maybe some warnings
and notes) in the status list.

NT_RETURN_FATAL The operation failed and was not performed. In addition,
an error was encountered while trying to prepare the
status list with the error information. There may be one or
more error messages (and maybe some warnings and
notes) in the status list. Note that the status list may not be
complete and may even be empty if the error is such that
the entries cannot be added to the status list.

NT_RETURN_BAD_STATUS The operation was not performed. The status parameter is
bad so the operation was cancelled.



Using the Notification Subsystem API 53

4

NTInitialization Client, NTTermination Client, NTInitialization Server, and
NTTermination Server

The Notification System API is designed to be able to run in a wide variety of
environments. Each environment has a different set of operations that must be
performed to set up and shut down the RPC and/or network environment for
use by an application.

Accordingly, the NTInitializationClient/NTInitializationServer  and
NTTerminationClient/NTTerminationServer  functions help deal with
varying environments.

These functions perform the operations needed to establish the correct
environment for the rest of the API functions. You should call
NTInitializationClient/NTInitializationServer  as the first Notification
System API call in your program and
NTTerminationClient/NTTerminationServer  as the last.

You can call NTInitializationClient/NTInitializationServer  at the
beginning of the program and NTTerminationClient/NTTerminationServer

at the end to make it easier to ensure the calls are made first and last,
respectively.



54 Action Request System Programmer’s Guide—January 1995

4



55

AR System and Notification
Subsystem Manual Pages 5

This Chapter contains the UNIX-style manual pages for the programming
interfaces.

Note – Functions which apply only to the UNIX or Windows NT environments
are noted in their respective sections.

The chapter is organized first by manual section:

• User Commands (beginning on page 56).

• C Library Functions (beginning on page 87).

• File Formats (beginning on page 231).

and then alphabetically within each section.



56 Action Request System Programmer’s Guide—January 1995

5

User Commands

addsnm

NAME

addsnm – add new User Commands to one or more SunNet Manager schema files

SYNOPSIS
addsnm

DESCRIPTION

addsnm is a program that helps you to add User Commands to the SunNet Manager schema files. By default, it will
connect to the elements.schema file. You can change to any SunNet Manager schema file you want.

Whatever schema file you choose, including the default, you must have write access to the file you will be updating.
If you do not have write access, you will receive an error when you try and save your changes to the file.

You can load a single User Command onto a single glyph class, a single command onto multiple glyph classes, or
multiple commands onto a single or multiple glyph classes.

This process only updates the schema files. It is your responsibility to restart SunNet Manager (using the -i option) to
recompile using the new schema files.

SEE ALSO

snm (1)

aradmin

NAME

aradmin – interactive Administrator interface to AR System

SYNOPSIS
aradmin  [ -a | -e | -f | -m | -s | -t ] [ -x server ]

DESCRIPTION

aradmin is the Administrator interface to the AR System. It allows you to manage the AR System server. Only an AR
System Administrator user can use this tool. You can create and manage schemas, filters, active links, menus,
escalations, and administrator extensions.

When the program runs, it stores cached and personalized configuration information in a directory on the local
machine. By default, that directory is$HOME/arHome where $HOME is your home directory. If you want the local
information stored in another location, you must set theARHOME  environment variable to the directory you want to
use. You must have write access to the directory you choose.



AR System and Notification Subsystem Manual Pages 57

5

OPTIONS

The following options toaradmin may appear in any order on the command line:

-a Place the system into active link mode at startup.

-e Place the system into administrator extensions mode at startup.

-f Place the system into filter mode at startup.

-m Place the system into character menu mode at startup.

-s Place the system into schema mode at startup.

-t Place the system into escalation mode at startup.

-x Specify the name of a server to connect to. This option may be included more than once to connect to multiple
servers.

By default, the list of servers the tool will connect to is defined in the directory file/etc/ar. If the-x option is
not specified, this file will be used to determine where to connect. If this option is specified one or more times,
the servers specified in these options will be used.

ENVIRONMENT

ARDATE Defines the date format to be used by the program. By default, the date format is
determined by the format associated with the language identified by the LANG
environment variable. If the default format is not sufficient, you can set this variable.
The value is a string of operators as defined by the strftime(3) library call. NOTE:
There are some combinations of formats that will display successfully, but cannot
be translated for input.

ARHOME Defines the location of the local home environment for the user. It is the directory
where the config file is stored and where the default arcmd directory is located. If
not specified, this directory defaults to$HOME/arHome.

ARPATH Defines a search path of directories that may contain macro definitions. The value is
a set of one or more directories separated by colons. The directory
$ARHOME/arcmds is always assumed to be on the path so all directories defined
here are in addition to this directory.

FILES

/etc/ar

$ARHOME/config

SEE ALSO

arserverd (1),aruser (1),notifier  (1)



58 Action Request System Programmer’s Guide—January 1995

5

aradmin

NAME

aradmin – interactive Administrator interface to AR System

SYNOPSIS
aradmin  [ -a | -e | -f | -m | -s | -t ] [ -x server ]

DESCRIPTION

aradmin is the Administrator interface to the AR System. It allows you to manage the AR System server. Only an AR
System Administrator user can use this tool. You can create and manage schemas, filters, active links, menus,
escalations, and administrator extensions.

When the program runs, it stores cached and personalized configuration information in a directory on the local
machine. By default, that directory is$HOME/arHome where $HOME is your home directory. If you want the local
information stored in another location, you must set theARHOME  environment variable to the directory you want to
use. You must have write access to the directory you choose.

OPTIONS

The following options toaradmin may appear in any order on the command line:

-a Place the system into active link mode at startup.

-e Place the system into administrator extensions mode at startup.

-f Place the system into filter mode at startup.

-m Place the system into character menu mode at startup.

-s Place the system into schema mode at startup.

-t Place the system into escalation mode at startup.

-x Specify the name of a server to connect to. This option may be included more than once to connect to multiple
servers.

By default, the list of servers the tool will connect to is defined in the directory file/etc/ar. If the-x option is
not specified, this file will be used to determine where to connect. If this option is specified one or more times,
the servers specified in these options will be used.

ENVIRONMENT

ARDATE Defines the date format to be used by the program. By default, the date format is
determined by the format associated with the language identified by the LANG
environment variable. If the default format is not sufficient, you can set this variable.
The value is a string of operators as defined by the strftime(3) library call. NOTE:
There are some combinations of formats that will display successfully, but cannot
be translated for input.

ARHOME Defines the location of the local home environment for the user. It is the directory
where the config file is stored and where the default arcmd directory is located. If
not specified, this directory defaults to$HOME/arHome.



AR System and Notification Subsystem Manual Pages 59

5

ARPATH Defines a search path of directories that may contain macro definitions. The value is
a set of one or more directories separated by colons. The directory
$ARHOME/arcmds is always assumed to be on the path so all directories defined
here are in addition to this directory.

FILES

/etc/ar

$ARHOME/config

SEE ALSO

arserverd (1),aruser (1),notifier  (1)



60 Action Request System Programmer’s Guide—January 1995

5

arascii

NAME

arascii – interactive interface to the AR System

SYNOPSIS
arascii [ -s | -q ] [ -I ] [ -n ] [ -d directory ] [ -x server ]

[ { -e | -i } macroName [ -p param=value ...]]

DESCRIPTION

arascii is the interface to the AR System for dumb terminals. It allows you to submit new entries to the AR System
and to query and manage existing entries.

To submit an entry, open a Submit window. You simply fill in the data on the screen that represents the
problem/request you are submitting.

You can specify qualification criteria to select existing entries that match a given set of conditions. You can then
proceed to view and/or change the entries selected. Note that the entries you have access to and what data for each
entry you can access are determined by the permissions you have been given in the system.

When the program runs, it stores cached and personalized configuration information in a directory on the local
machine. By default, that directory is$HOME/arHome where $HOME is your home directory. If you want the local
information stored in another location, you must set theARHOME  environment variable to the directory you want to
use. You must have write access to the directory you choose.

To allow access to the on-line help subsystem, you must set the environment variable ARHELP to the help directory
where the AR system is installed.

OPTIONS

The following options toarascii may appear in any order on the command line:

-d The directory that the macro indicated by the-e or -i parameter is located in. This parameter is optional. If it
is not specified, the macro is assumed to be in the default location for the user running the command
($ARHOME/arcmds).

-e Run the indicated macro at system startup and exit the program when the macro has been completed. This
option is good for running the tool to perform some specific operation (for example, generate a report) but
not come up interactively. This is especially useful when running the system from a batch script.

-i Run the indicated macro at system startup and the program remains active when the macro has been
completed. This option is good for setting the system into an initial state at startup.

-p Specify a value for a parameter. There may be more than one-p option in a command line. If the macro
specified (using the-e or -i options) has a parameter, a value can be supplied by naming that parameter and
assigning a value. If either the parameter name or value includes a space or other special character that is
interpreted by the command line, the parameter must be enclosed in quotes to stop the interpretation of the
special characters.

-q This option performs no operation. It is supplied for backward compatibility.

-s Open a submit window on the initial schema at startup. If there is no initial schema, this option does nothing.



AR System and Notification Subsystem Manual Pages 61

5

-x Specify the name of a server to connect to. This option may be included more than once to connect to multiple
servers.

By default, the list of servers the tool will connect to is defined in the directory file/etc/ar. If this option is
not specified, this file will be used to determine where to connect. If this option is specified one or more times,
the servers specified in these options will be used.

ENVIRONMENT

ARDATE Defines the date format to be used by the program. By default, the date format is
determined by the format associated with the language identified by the LANG
environment variable. If the default format is not sufficient, you can set this variable.
The value is a string of operators as defined by the strftime(3) library call. NOTE:
There are some combinations of formats that will display successfully, but cannot
be translated for input.

ARHELP Defines the directory that contains the help files for the AR System. If this variable
is not defined, on-line help will not be accessible to this program.

ARHOME Defines the location of the local home environment for the user. It is the directory
where the config file is stored and where the default arcmd directory is located. If
not specified, this directory defaults to$HOME/arHome.

ARPATH Defines a search path of directories that may contain macro, custom report, or user
command definitions. The value is a set of one or more directories separated by
colons. The directory$ARHOME/arcmds is always assumed to be on the path so
all directories defined here are in addition to this directory.

ARRPC  Defines the specific RPC socket to communicate with during the run of the
program. If there is no AR System server running on the identified socket, an error
will be returned and the program will not run. In general, this variable is not used.

LPDEST Defines the default printer for the user. If a report to printer is issued and no printer
is specified, the default printer is used. If this variable is set, it defines the printer to
use. If not set, the system default printer is used.

NT_SPAWN_DELAY Defines the timeout interval after which the system will stop waiting for an
acknowledgment from a tool we are trying to share. The default is 30 seconds. It can
be adjusted if needed, although there is rarely a need to adjust this setting.

EXAMPLES

arascii -s &

Start arascii and open a submit window on the initial schema.

arascii -iTestQuery -p parm = 10 &

Start arascii, execute the macro named TestQuery, substituting the value of 10 for the parameter named parm. The
program will remain running after the macro is executed.

arascii -x fred &

Start arascii specifying the machine fred as the machine running the AR System server process. The directory file
/etc/ar is not accessed.

arascii -p “which user=Fred” &



62 Action Request System Programmer’s Guide—January 1995

5

To set the parameter “which user” to the value Fred, use -p “which user=Fred”.

FILES

/etc/ar

$ARHOME/config

$ARHOME/*.ard

$ARHOME/*.arf

$ARHOME/*.arv

$ARHOME/arcmds/*.arc

$ARHOME/arcmds/*.arq

$ARHOME/arcmds/*.arr

SEE ALSO

aradmin (1),arserverd (1),notifier  (1)



AR System and Notification Subsystem Manual Pages 63

5

arcache

NAME

arcache – update an entry in one or more user/group caches in the AR System

SYNOPSIS
arcache  {-U | -G} {a | d}  [ -d ] -e entryId  [ -n name ] [ -s server ]

[ -g groupList ] [ -ld flashboardLicense ] [ -lf fulltextLicense]
[ -lw writeLicense ] [ -m mailAddress ] [ -p password ]
[ -x notifyMech ]
[ -i groupId ] [ -t groupType ]

DESCRIPTION

arcache is the interface allowing you to update a single user/group entry in the access control cache for one or more
AR System servers. You specify the operation you want to perform and the information about the item to update. The
program will send that update to all the appropriate target servers to update their caches with the new information.

This program is only used in a multi-server environment where there is a desire to have a centralized access control
scheme. All updates from a user/group schema to the local access control cache are performed automatically.

This program is generally run using a filter in the AR System. A pair of filters can be defined which execute on Submit
and Modify to the User and Group schemas. These filters would allow the system to perform an appropriate update
operation on all servers whenever the schemas that contain the user/group information are updated.

OPTIONS

There is a set of common options that can be used with either users or groups and a set of options specific to one or
the other. Each option is identified below according to which type of option it is.

The following options toarcache may appear in any order on the command line:

-d Set the system into debugging mode. This mode prints messages to stdout that detail the progress of the
operations it is performing. Debugging mode should be used only to find problems with how thearcache
process is running.

-e Identifies the entry ID of the corresponding entry in the User or Group schema. This is the key for the entry
and must be supplied for both users and groups.

-g A list of groups defining the user’s permissions in the system. This list consists of a set of one or more group
IDs separated by semicolons. This field is used only when
adding/updating users.

For example, for a new user who was an administrator, the group list value would be “1;”. If the user had
Customize capability and was a member of the Staff group (which had an ID of 43), the value would be “2;
43;”.

-G Identifies this operation as an operation on the group cache. This tag must be followed by the type of operation
to be performed:

a  - Add a new or update an existing group

d  - Delete an existing group



64 Action Request System Programmer’s Guide—January 1995

5

This option is mutually exclusive with the -U option.

-i The ID for the group. This field is used only when adding/updating groups.

-ld The flashboard license type (0 - none, 1 - fixed, or 2 - floating) to be issued to this user. This field is used only
when adding/updating users.

If no flashboard license type is specified, it will default to 0 (none).

-lf The full text license type (0 - none, 1 - fixed, or 2 - floating) to be issued to this user. This field is used only
when adding/updating users.

If no full text license type is specified, it will default to 0 (none).

-lw The write license type (0 - read, 1 - fixed, or 2 - floating) to be issued to this user. This field is used only when
adding/updating users.

If no write license type is specified, it will default to 0 (read).

-m The email address for the user. The address is used by default when a message is to be sent to the user. This
field is used only when adding/updating users.

-n The name of the user/group. This field is required for add operations and is recommended (but not required)
for delete operations. This field is used with both users and groups.

-p The password for the user. This field is used only when adding/updating users.

-s The name of a single server. Ordinarily, the program will update the entry in ALL servers in the system. It
finds all servers by reading the/etc/ar file (in UNIX) or <ar_config_dir>\ar (in the Windows NT server) and
contacting all AR System servers it identifies. With this option, you can identify a single specific server to be
updated with the information. This field can be used with both users and groups.

-t The type of the group (1 - view only or 2 - view/change). This field is used only when adding/updating groups.

-U Identifies this operation as an operation on the user cache. This tag must be followed by the type of operation
to be performed:

a  - Add a new or update an existing user

d  - Delete an existing user

This option is mutually exclusive with the -G option.

-x The default notify mechanism for the user. The notify mechanism is used when a notification is delivered to
the user via the default notify method for that user. This field is used only when adding/updating users.

If no notify mechanism is specified, it will default to 1 (notifier).

EXAMPLES

arcache -Ua -e000000000000104 -n "Fred Johnson" -m "fredj@remedy.com" -x 1

Add a new user to all server caches. The new user is Fred Johnson with no password, an email address of
fredj@remedy.com, and a default notify mechanism of 1 (via the notifier, see ar.h). The entry ID of the entry in the
User schema is 000000000000104. Fred will be added to the cache as a user who is a member of no access group.

FILES

/etc/ar (UNIX)

<ar_config_dir>\ar (Windows NT)



AR System and Notification Subsystem Manual Pages 65

5

SEE ALSO

arreload (1),arserverd (1)

arimport

NAME

arimport – interactive interface to import data into the AR System

SYNOPSIS
arimport [[ -x server ] ...] [ -d directory ] [ -m mappingName ] [ -b ]

DESCRIPTION

arimport  is the data import interface to the AR System. It allows you to import data from a file into the AR System.
This file could have been generated byaruser or some other application.

To import a data file, you should first open a schema and open a file. The file could be in AR Export, Comma Separated
Values (CSV), or plain text (ASCII) format. Once the schema and file have been opened, mappings need to be defined
for the schema fields, then the file can be imported to the schema. The tool can automatically define mappings by
matching field ids and field names, but you can also map each field individually. The field mapping can be any text
string, an import file field, a keyword, or any combination of the above.

Once the mappings are defined, you can save the mappings. Once saved, the mapping can be loaded at a later time and
used again. The mappings can be saved in any directory, but the default is $ARHOME/arcmds.

When the program runs, it stores personalized configuration information in a directory on the local machine. By
default, that directory is$HOME/arHome where $HOME is your home directory. If you want the local information
stored in another location, you must set theARHOME  environment variable to the directory you want to use. You
must have write access to the directory you choose.

All error messages will be logged in the import log file, whose name can be changed from the Preferences window.

OPTIONS

The following options toarimport  may appear in any order on the command line:

-b Load the indicated mapping at tool startup and exit the tool when the import of the file indicated in the
mapping has been completed. The tool does not display any windows when this option is used.

-d The directory that the mapping indicated by the-m parameter is located in. This parameter is optional. If it is
not specified, the mapping is assumed to be in the default location for the user running the command
($ARHOME/arcmds).

-m Load the indicated mapping at system startup. This option is good for loading an initial mapping.

-x Specify the name of a server to connect to. This option may be included more than once to connect to multiple
servers.

By default, the list of servers the tool will connect to is defined in the directory file/etc/ar. If this option is
not specified, this file will be used to determine where to connect. If this option is specified one or more times,
the servers specified in these options will be used.



66 Action Request System Programmer’s Guide—January 1995

5

ENVIRONMENT

ARDATE Defines the date format to be used by the program. By default, the date format is
determined by the format associated with the language identified by the LANG
environment variable. If the default format is not sufficient, you can set this variable.
The value is a string of operators as defined by the strftime(3) library call. NOTE:
There are some combinations of formats that will display successfully, but cannot
be translated for input.

ARHELP Defines the directory that contains the help files for the AR System. If this variable
is not defined, on-line help will not be accessible to this program.

ARHOME Defines the location of the local home environment for the user. It is the directory
where the config file is stored and where the default arcmd directory is located. If
not specified, this directory defaults to$HOME/arHome.

ARPATH Defines a search path of directories that may contain mapping definitions. The value
is a set of one or more directories separated by colons. The directory
$ARHOME/arcmds is always assumed to be on the path so all directories defined
here are in addition to this directory.

ARRPC Defines the specific RPC socket to communicate with during the run of the program.
If there is no AR System server running on the identified socket, an error will be
returned and the program will not run. In general, this variable is not used.

EXAMPLES

arimport -m "DB Mapping" &

Start arimport and load the mapping named “DB Mapping”. The program will remain running after the mapping is
loaded.

arimport -m “DB Mapping” -d /usr/mappings -b

Start arimport and load the mapping named “DB Mapping” from the directory /usr/mappings, then import the data
from the import file specified in the mapping. The program will exit after the file is imported.

arimport -x fred &

Start arimport specifying the machine fred as the machine running the AR System server process. The directory file is
not accessed.

FILES

/etc/ar $ARHOME/config

$ARHOME/arcmds/*.arm

SEE ALSO

aruser(1), aradmin(1), arserverd(1)



AR System and Notification Subsystem Manual Pages 67

5

armaild

NAME

armaild – AR System mail daemon

SYNOPSIS
armaild  [ -d ] [ -f filename ] [ -n number-of-intervals ]

DESCRIPTION

armaild  supplies the mail interface to the AR System. It accepts mail messages containing new ARs and creates the
new entries in the AR System. It also accepts messages containing queries for information that exists in the database.

Before the mail daemon can be used, you must first set up a mail address for messages to be mailed to the AR System.
By default, this address isARSystem; however, you can use any address you desire by supplying a value for the
Address: setting in the configuration file.

Thearmaild  process will watch that mailbox and when a new entry arrives, retrieve the message and process its
contents. If the message has a valid format, either a new entry is submitted to the system or a query is run against the
system. If a submit is requested and the entry is successfully submitted, a message containing the submitted text and
the ID of the newly created entry are returned. If there is an error during submit, the submitted text and all errors
generated are returned. If a query is requested, a list of matching entries is returned. If the message format is not valid,
the message is rejected and error messages along with the original message are returned.

OPTIONS

The following options toarmaild  may appear in any order on the command line:

-d Set the system into debugging mode. This mode prints messages to stdout that detail the progress of the
operations it is performing. Debugging mode should be used only to find problems with how thearmaild
process is running.

(For UNIX) Messages are printed to stdout.

(For NT) Messages are printed to stdout if the -m option is specified or to the file armaild.log in the db
directory under the AR System installation directory.

-f Process the indicated file for command options to thearmaild  process. The various options that can be
defined are discussed below.

If not specified, no configuration file is associated with this run and all the system defaults apply.

-m (NT only) This option acts as a flag to control what occurs with the debug output. If specified, debug output
is directed to the current window. If not specified, debug output is directed to a file.

-n The number of polling intervals this daemon will run. This setting allows you to limit the amount of time the
daemon will run.

If not specified, the system will run until terminated.

Configuration file settings:



68 Action Request System Programmer’s Guide—January 1995

5

Address: The mail address to be used as the address of the mailbox to watch for messages to
the AR System. This address does not have to be associated to a user on the system,
just with a mail address. You can specify any address you want, but it should be used
strictly for the AR System.

Default: ARSystem

Default-Password: The AR System password to use if there is no “Password:” specified in the submitted
message. If there is a “Password:” line in the submitted message, it overrides this
setting.

Default: no password

Default-Schema: The schema to submit to or query on if there is no “Schema:” specified in the
submitted message. If there is a “Schema:” line in the submitted message, it
overrides this setting.

Default: none, the schema must be specified in the message

Default-Server: The server to submit to if there is no “Server:” specified in the submitted message.
If there is a “Server:” line in the submitted message, it overrides this setting.

Default: the same machine as the one running thearmaild  process

Default-User: The AR System login user to use if there is no “Login:” specified in the message. If
there is a “Login:” line in the message, it overrides this setting.

Default: Mailer daemon

Include-Original-On-Failure: A flag indicating whether to include the full text of the original message in a reply
to a failed submission. Legal values are T and F.

Default: T

Include-Original-On-Success: A flag indicating whether to include the full text of the original message in a reply
to a successful submission. Legal values are T and F.

Default: T

Poll-Interval: The number of seconds to wait between polls to the mailbox to check for new
messages. The minimum interval is 5 seconds and any time shorter than 5 will
default to 5.

Default: 300

Reply-Failure: The email address to use to send replies to failed submissions. This definition is used
to redirect all replies for failed submissions to a third party instead of sending the
response to the sender of the message.

(For UNIX) Set the address to /dev/null (or to an address directed to /dev/null in the
mail aliases file with a line like nobody: /dev/null) to suppress sending of a message
on failure.

(For Windows NT) Set the address to discard to suppress sending of a message on
failure.

Default: Send the reply to the sender of the message. Use the “Reply-to:” field of the
header, then the “From:” field, and finally the “From” header to try and find the user
to respond to.



AR System and Notification Subsystem Manual Pages 69

5

Reply-Success: The email address to use to send replies to successful submissions. This definition
is used to redirect all replies for successful submissions to a third party instead of
sending the response to the sender of the message.

(For UNIX) Set the address to /dev/null (or to an address directed to /dev/null in the
mail aliases file with a line like nobody: /dev/null) to suppress sending of a message
on success.

(For Windows NT) Set the address to discard to suppress sending of a message on
success.

Default: Send the reply to the sender of the message. Use the “Reply-to:” field of the
header, then the “From:” field, and finally the “From” header to try and find the user
to respond to.

Required-Schema: The only schema for which messages will be accepted. If there is a “Schema:” line
in the message, it must contain this schema name or the message will be rejected. If
there is no “Schema:” line, the setting of theDefault-Schema is used to determine
if there is a default or if “Schema:” is required. If there is a default, it must match
this value.

Default: there is no required schema setting

Required-Server: The only server for which messages will be accepted. If there is a “Server:” line in
the message, it must contain this server name or the message will be rejected. If there
is no “Server:” line, the setting of theDefault-Server is used to determine if there
is a default or if “Server:” is required. If there is a default, it must match this value.

Default: there is no required server setting

NOTES

For backward compatibility with earlier releases, thearmaild  process will also accept the address and poll interval as
positional parameters with no option code. For example,armaild ARSystem 60 is equivalent to running with a
configuration file containing settings forAddress: andPoll-Interval: . The old positional style of specifying options
is present only for backward compatibility to allow existing registrations to continue operating as they have been. It
should not be used for any new registrations of the daemon.

ENVIRONMENT

ARDATE Defines the date format to be used by the program. By default, the date format is
determined by the format associated with the language identified by the LANG
environment variable. If the default format is not sufficient, you can set this variable.
The value is a string of operators as defined by the strftime(3) library call. NOTE:
There are some combinations of formats that will display successfully, but cannot
be translated for input.

ARRPC Defines the specific RPC socket to communicate with during the run of the program.
If there is no AR System server running on the identified socket, an error will be
returned and the program will not run. In general, this variable is not used.

MAIL Defines the path to the mail directory. In general, the default value is sufficient, but
if it is not correct, this setting will allow you to define where the directory is located.
The default for SGI, HP, Solaris, and Motorola is /usr/mail, for NCR is /var/mail,
and for SunOS and IBM is /var/spool/mail.



70 Action Request System Programmer’s Guide—January 1995

5

SEE ALSO

arserverd (1),aruser (1)

arnvd

NAME

arnvd – IBM NetView/6000 event stream to AR System translation daemon

SYNOPSIS
arnvd  [ -d ] [ -p password ]

DESCRIPTION

arnvd is the daemon that takes SNMP traps from the IBM NetView/6000 event stream and translates the traps that are
of interest into AR System entries. It reads translation requests from the filenv.ar. Every trap received by IBM
NetView/6000 is forwarded to this daemon for processing. When the trap is received, it is checked against all the
translations specified. If it matches one, an AR System entry is generated according to the translation. If the trap does
not match any of the requested translations, it is ignored.

The entries that are created will be submitted by the userIBM NetView/6000 with the password specified by the-p
option. Field values will be assigned as specified in the translation.

OPTIONS

The following options toarnvd may appear in any order on the command line:

-d Run the program in debug mode. For each trap received, messages will be printed to stdout to display the
progress toward mapping the trap into an entry in the AR System. This mode is especially useful if a specific
type of trap is not being mapped and you expect it to be.

-p Password for theIBM NetView/6000 user. If there is no password defined for this user or if the user is not
registered with the AR System, this option must be omitted.

EXAMPLES

arnvd -p fred

Run the IBM NetView/6000 translation daemon where the password for theIBM NetView/6000 user is fred.

FILES

/etc/ar

/etc/ar.conf

<ar_install_dir>/db/nv.ar

SEE ALSO

arserverd (1),arnvui  (1),nvw (1)



AR System and Notification Subsystem Manual Pages 71

5

arnvui

NAME

arnvui – define translations of IBM NetView/6000 traps to AR System entries

SYNOPSIS
arnvui  [ -p password ]

DESCRIPTION

arnvui  is the interface allowing you to specify translations from the IBM NetView/6000 event stream to the AR
System. At startup, the tool will open thenv.ar file and display all the existing translations. You can delete or modify
existing translations or create entirely new ones. Remember that the translation list is processed serially so the order
of the translations is important (especially when wild cards are used).

When the changes are saved, thearnvd process will pick up the new definitions when the next trap from IBM
NetView/6000 arrives. You do not need to take any further action to have your new translations take affect.

OPTIONS

The following option toarnvui  may appear on the command line:

-p Password for theIBM NetView/6000 user. If there is no password defined for this user or if the user is not
registered with the AR System, this option must be omitted.

EXAMPLES

arnvui -p fred

Run the process to specify translations where the password for theIBM NetView/6000 user is fred.

FILES

/etc/ar.conf

<ar_install_dir>/db/nv.ar

SEE ALSO

arserverd (1),arnvd (1),nvw (1)

arovd

NAME

arovd – HP OpenView event stream to AR System translation daemon



72 Action Request System Programmer’s Guide—January 1995

5

SYNOPSIS
arovd  [ -d ] [ -p password ]

DESCRIPTION

arovd is the daemon that takes SNMP traps from the HP OpenView event stream and translates the traps that are of
interest into AR System entries. It reads translation requests from the fileov.ar. Every trap received by HP OpenView
is forwarded to this daemon for processing. When the trap is received, it is checked against all the translations
specified. If it matches one, an AR System entry is generated according to the translation. If the trap does not match
any of the requested translations, it is ignored.

It is important that this daemon is run AFTER SunNet manager is started. This is because the daemon registers with
the SunNet Manager process. The SunNet Manager process must be active first or no events will be passed.

The entries that are created will be submitted by theHP OpenView user with the password specified by the-p option.
Field values will be assigned as specified in the translation.

OPTIONS

The following options toarovd may appear in any order on the command line:

-d Run the program in debug mode. For each trap received, messages will be printed to stdout to display the
progress toward mapping the trap into an entry in the AR System. This mode is especially useful if a specific
type of trap is not being mapped and you expect it to be.

-p Password for theHP OpenView user. If there is no password defined for this user or if the user is not registered
with the AR System, this option must be omitted.

EXAMPLES

arovd -p fred

Run the HP OpenView translation daemon where the password for theHP OpenView user is fred.

FILES

/etc/ar

/etc/ar.conf

<ar_install_dir>/db/ov.ar

SEE ALSO

arserverd (1),arovui (1),ovw (1)



AR System and Notification Subsystem Manual Pages 73

5

arovui

NAME

arovui – define translations of HP OpenView traps to AR System entries

SYNOPSIS
arovui  [ -p password ]

DESCRIPTION

arovui is the interface allowing you to specify translations from the HP OpenView event stream to the AR System. At
startup, the tool will open theov.ar file and display all the existing translations. You can delete or modify existing
translations or create entirely new ones. Remember that the translation list is processed serially so the order of the
translations is important (especially when wild cards are used).

When the changes are saved, thearovd process will pick up the new definitions when the next trap from HP OpenView
arrives. You do not need to take any further action to have your new translations take affect.

OPTIONS

The following option toarovui may appear on the command line:

-p Password for theHP OpenView user. If there is no password defined for this user or if the user is not registered
with the AR System, this option must be omitted.

EXAMPLES

arovui -p fred

Run the process to specify translations where the password for theHP OpenView user is fred.

FILES

/etc/ar.conf

<ar_install_dir>/db/ov.ar

SEE ALSO

arserverd (1),arovd (1),ovw (1)



74 Action Request System Programmer’s Guide—January 1995

5

arreload

NAME

arreload – reload all the user/group cache entries from a given schema

SYNOPSIS
arreload  { -u | -g } schema -a adminUser [ -d ] [ -f ] [ -p adminPassword ]  [ -s server ]

DESCRIPTION

arreload is the interface allowing you to reload the user/group caches from a given user/group schema to one or more
AR System servers. The process will delete all the existing cached entries for the selected schema and load all the
information from the schema into the cache. This is useful for bringing all the servers into sync.

Note that this process must be run on the same machine as the AR System server that contains the schema to be
reloaded.

In a multi-server environment, this program is generally run as part of a periodic maintenance operation for the AR
System. Setting up a job to run on a weekly or monthly basis that does a reload of the user/group caches helps insure
that all the caches remain in sync with all the latest information. In a single-server environment, this program is
generally unused (except to recover from disk crashes).

OPTIONS

The following options toarreload may appear in any order on the command line:

-a The user name of a user with Administrator access to the schema to be reloaded.

-d Set the system into debugging mode. This mode prints messages to stdout that detail the progress of the
operations it is performing.

-f Flush the user or group cache definition of entries from ALL servers before reloading the cache with the
specified definitions. This option is especially useful when you are changing or renaming the machine that is
running the AR System.

-g Identifies this operation as a group reload and supplies the name of the schema that is to be reloaded.

-p The password for the Administrator user identified with the -a option. If there is a password for the
Administrator identified (which is recommended), you must specify this option with the appropriate
password.

-s The name of a single server. Ordinarily, the program will update the entry in ALL servers in the system. It
finds all servers by reading the/etc/ar file (in UNIX) or <ar_config_dir>\ar (in Windows NT) and
contacting all AR System servers it identifies. With this option, you can identify a single specific server to be
updated with the information.

-u Identifies this operation as a user reload and supplies the name of the schema that is to be reloaded.

EXAMPLES

arreload -a Admin -p password -u User



AR System and Notification Subsystem Manual Pages 75

5

Reload the user cache of all servers to remove any existing definitions from the user schema on this server and add
entries for all the current users defined in the User schema. The administrator user is Admin with a password of
password to allow access to the schema to get the information to be reloaded.

FILES

/etc/ar (UNIX)

<ar_config_dir>\ar (Windows NT)

SEE ALSO

arcache (1),arserverd (1)

arserverd

NAME

arserverd – AR System server daemon

SYNOPSIS
arserverd [ -r rpcSocket ]

DESCRIPTION

arserverd is the main server daemon for the AR System. This program is the core of the AR System. It handles all
interaction between the clients and the database.

Although this program must be run before any access to the AR System is possible, it is generally launched and
managed by the AR System controller daemon,arservtcd.   Private servers can be started manually if they are
licensed. If the process is accidentally (or purposely) shut down, it can simply be restarted at any time.

arserverd will reread all its configuration files and reset all cached information about structures in the AR System
whenever it receives aSIGHUP signal and read only the configuration file if it receives aSIGUSR1 signal. These
signals would generally be used only when there was some manual repair or restore operation performed. If done
accidentally, no damage will be done and there is no affect on any users currently accessing the AR System.

OPTIONS

The following options toarserverd may appear in any order on the command line:

-r Set a specific RPC socket number for this program. This option is used only if the system is running in Multi-
Process mode. It identifies the specific instance of thearserverd program that is to be run.

ENVIRONMENT

ARDATE Defines the date format to be used by the program. By default, the date format is
determined by the format associated with the language identified by the LANG
environment variable. If the default format is not sufficient, you can set this variable.
The value is a string of operators as defined by the strftime(3) library call. NOTE:
There are some combinations of formats that will display successfully, but cannot
be translated for input.



76 Action Request System Programmer’s Guide—January 1995

5

ARRPC  Defines the specific RPC socket to open for this program. This variable is
overridden by the use of the -r command line argument.

FILES

/etc/ar (UNIX)

/etc/ar.conf (UNIX)

/etc/remedy.lic (UNIX)

<ar_config_dir>\ar (Windows NT)

<ar_config_dir>\remedy.lic  (Windows NT)

<ar_config_dir>\ar.cfg  (Windows NT)

SEE ALSO

aradmin (1),arservdsd(1), arservftd(1), arservtcd(1), aruser (1),ntserverd (1)

arservdsd

NAME

arservdsd – AR System Distributed Server Option daemon

SYNOPSIS
arservdsd [ -d ] [ -r rpcSocket ]

DESCRIPTION

arservdsd is the server daemon for the AR System Distributed Server Option. This program is responsible for all the
distributed server operations performed by the system. It works as a client to thearserverd program to read and write
data.

Although this program must be run before any distributed server operations are possible, it is generally launched and
managed by the AR System controller daemon,arservtcd. If the process is accidentally (or purposely) shut down, it
can simply be restarted at any time. arserverd will reread all its configuration files and reset all cached information
about structures in the AR System whenever it receives a SIGHUP signal, read only the configuration file if it receives
a SIGUSR1 signal, and recheck its list of pending distributed operations whenever it receives a SIGUSR2 signal. These
signals would generally be used only when there was some manual repair or restore operation performed. If done
accidentally, no damage will be done and there is no affect on any users currently accessing the AR System.

OPTIONS

The following options toarservdsd may appear in any order on the commandline:

-d Activate the debug trace mode for the distributed server daemon. This is an override option that allows the
debug trace mode to be turned on and displayed to stdout. It will override the setting for the debug trace mode
configured through thearadmin tool.



AR System and Notification Subsystem Manual Pages 77

5

-r Set a specific RPC socket number for this program to use when communicating with thearserverd process.
This option can be used only if the system is running in Multi-Process mode. An instance of thearserverd
process must be running on this socket on ALL machines in the distributed environment.

ENVIRONMENT

ARRPC Defines the specific RPC socket to use for this program. This variable is overridden
by the use of the-r command line argument.

FILES

/etc/ar

/etc/ar.conf

/etc/remedy.lic

SEE ALSO

aradmin (1),arserverd(1), arservtcd(1)

arservftd

NAME

arservftd – AR System Full Text indexer daemon

SYNOPSIS
arservftd

DESCRIPTION

arservftd is the indexer process for the Full Text search capability of the AR System. It is responsible for performing
the management and update of the Full Text indexes in the system.

This program is launched by thearservtcd process. It is responsible for performing all the indexing operations needed
for the Full Text search capability of the system.

FILES

/etc/ar.conf

/usr/ar/db/arftp.lst

/usr/ar/db/arft.log

/usr/ar/db/arftext.log

SEE ALSO

arserverd(1), arservtcd (1)



78 Action Request System Programmer’s Guide—January 1995

5

arservtcd

NAME

arservtcd - AR System controller daemon

SYNOPSIS
arservtcd

DESCRIPTION

arservtcd is the controller daemon for the AR System. This program launches and manages the one or more instances
of thearserverd process that are running in the system. In addition, if the Distributed Server Option is licensed, the
program will launch and manage thearservdsd process.

This program is generally the only AR System process that the user must run. It will launch instances of the server
processes as it has been configured. Generally, the program is registered in the system startup file so that the program
is started on system startup. If it is accidentally (or purposely) shut down, it can simply be restarted at any time.

arservtcd will reread all its configuration files and reset all child processes whenever it receives aSIGHUP or
SIGUSR1 signal. These signals would generally be used only when there was some manual repair or restore operation
performed. If done accidentally, no damage will be done and there is no affect on any users currently accessing the AR
System.

FILES

/etc/ar.conf

/etc/remedy.lic

SEE ALSO

aradmin (1),aruser (1), arservdsd (1),arserverd (1)

arsnmd

NAME

arsnmd – SunNet Manager event stream to AR System translation daemon

SYNOPSIS
arsnmd  [ -d ] [ -p password ]

DESCRIPTION

arsnmd is the daemon that takes events from the SunNet Manager event stream and translates events (events are either
SunNet Manager threshold events or SNMP traps) that are of interest into AR System entries. It reads translation
requests from the filesnm.ar. Every event received by SunNet Manager is forwarded to this daemon for processing.
When the event is received, it is checked against all the translations specified. If it matches one, an AR System entry
is generated according to the translation. If the event does not match any of the requested translations, it is ignored.



AR System and Notification Subsystem Manual Pages 79

5

It is important that this daemon is runafter SunNet Manager is started. This is because the daemon registers with the
SunNet Manager process. The SunNet Manager process must be active first or no events will be passed.

The entries that are created will be submitted by theSunNet Manager user with the password specified by the-p option.
Field values will be assigned as specified in the translation.

OPTIONS

The following options toarsnmd may appear in any order on the command line:

-d Run the program in debug mode. For each event/trap received, messages will be printed to stdout to display
the progress toward mapping the event/trap into an entry in the AR System. This mode is especially useful if
a specific type of trap/event is not being mapped and you expect it to be.

-p Password for theSunNet Manager user. If there is no password defined for this user or if the user is not
registered with the AR System, this option must be omitted.

EXAMPLES

arsnmd -p fred

Run the SNM translation daemon where the password for theSunNet Manager user is fred.

FILES

/etc/ar

/etc/ar.conf

<ar_install_dir>/db/snm.ar

SEE ALSO

arserverd (1),arsnmui (1),snm (1)

arsnmui

NAME

arsnmui – define translations of SunNet Manager events to AR System entries

SYNOPSIS
arsnmui  [ -p password ]

DESCRIPTION

arsnmui is the interface allowing you to specify translations from the SunNet Manager event stream to the AR System.
At startup, the tool will open thesnm.ar file and display all the existing translations. You can delete or modify existing
translations or create entirely new ones. Remember that the translation list is processed serially so the order of the
translations is important (especially when wild cards are used).

When the changes are saved, thearsnmd process will pick up the new definitions when the next event from SunNet
Manager arrives. You do not need to take any further action to have your new translations take affect.



80 Action Request System Programmer’s Guide—January 1995

5

OPTIONS

The following option toarsnmui may appear on the command line:

-p Password for theSunNet Manager user. If there is no password defined for this user or if the user is not
registered with the AR System, this option must be omitted.

EXAMPLES

arsnmui -p fred

Run the process to specify translations where the password for theSunNet Manager user is fred.

FILES

/etc/ar.conf

<ar_install_dir>/db/snm.ar

SEE ALSO

arserverd (1),arsnmd (1),snm (1)

aruser

NAME

aruser – interactive interface to the AR System

SYNOPSIS
aruser [ -s | -q ] [ -I ] [ -n ] [ -d directory ] [ -x server ]

[ { -e | -i } macroName [ -p param=value ...]]

DESCRIPTION

aruser is the main interface to the AR System. It allows you to submit new entries to the AR System and to query and
manage existing entries.

To submit an entry, open a Submit window. You simply fill in the data on the screen that represents the
problem/request you are submitting. Remember thatbold font labels represent required fields for which you must
supply a value,italic font labels represent fields that are automatically managed by the system and so are read-only on
this screen, and Normal font labels represent optional fields for which you can supply a value or not.

You can specify qualification criteria to select existing entries that match a given set of conditions. You can then
proceed to view and/or change the entries selected. Note that the entries you have access to and what data for each
entry you can access are determined by the permissions you have been given in the system.

When the program runs, it stores cached and personalized configuration information in a directory on the local
machine. By default, that directory is$HOME/arHome where $HOME is your home directory. If you want the local
information stored in another location, you must set theARHOME  environment variable to the directory you want to
use. You must have write access to the directory you choose.



AR System and Notification Subsystem Manual Pages 81

5

OPTIONS

The following options toaruser may appear in any order on the command line:

-d The directory that the macro indicated by the-e or -i parameter is located in. This parameter is optional. If it
is not specified, the macro is assumed to be in the default location for the user running the command
($ARHOME/arcmds).

-e Run the indicated macro at system startup and exit the program when the macro has been completed. This
option is good for running the tool to perform some specific operation (for example, generate a report) but
not come up interactively. This is especially useful when running the system from a batch script.

-i Run the indicated macro at system startup and the program remains active when the macro has been
completed. This option is good for setting the system into an initial state at startup.

-I Iconize the program at startup.

-n Do not share an existing instance of thearuser program even if it is possible. Run this instance as an
independent program.

By default, the system will share a running instance of the program when run with the-i option. This makes
the system run more efficiently by running the macro in an existing instance of the tool and not paying the
overhead penalty for an independent instance. This option allows you to override that default operation and
force an independent instance of the tool to be run.

In general, you want to take advantage of the sharing of existing instances as it is both faster and uses the
resources on the workstation more efficiently. This option should be used as an exception case when and if
needed.

-p Specify a value for a parameter. There may be more than one-p option in a command line. If the macro
specified (using the-e or -i options) has a parameter, a value can be supplied by naming that parameter and
assigning a value. If either the parameter name or value includes a space or other special character that is
interpreted by the command line, the parameter must be enclosed in quotes to stop the interpretation of the
special characters.

-q This option performs no operation. It is supplied for backward compatibility.

-s Open a submit window on the initial schema at startup. If there is no initial schema, this option does nothing.

-x Specify the name of a server to connect to. This option may be included more than once to connect to multiple
servers.

By default, the list of servers the tool will connect to is defined in the directory file/etc/ar. If this option is
not specified, this file will be used to determine where to connect. If this option is specified one or more times,
the servers specified in these options will be used.

ENVIRONMENT

ARDATE Defines the date format to be used by the program. By default, the date format is
determined by the format associated with the language identified by the LANG
environment variable. If the default format is not sufficient, you can set this variable.
The value is a string of operators as defined by the strftime(3) library call. NOTE:
There are some combinations of formats that will display successfully, but cannot
be translated for input.

ARHELP Defines the directory that contains the help files for the AR System. If this variable
is not defined, on-line help will not be accessible to this program.



82 Action Request System Programmer’s Guide—January 1995

5

ARHOME Defines the location of the local home environment for the user. It is the directory
where the config file is stored and where the default arcmd directory is located. If
not specified, this directory defaults to$HOME/arHome.

ARPATH Defines a search path of directories that may contain macro, custom report, or user
command definitions. The value is a set of one or more directories separated by
colons. The directory$ARHOME/arcmds is always assumed to be on the path so
all directories defined here are in addition to this directory.

ARRPC  Defines the specific RPC socket to communicate with during the run of the
program. If there is no AR System server running on the identified socket, an error
will be returned and the program will not run. In general, this variable is not used.

LPDEST Defines the default printer for the user. If a report to printer is issued and no printer
is specified, the default printer is used. If this variable is set, it defines the printer to
use. If not set, the system default printer is used.

NT_SPAWN_DELAY Defines the timeout interval after which the system will stop waiting for an
acknowledgement from a tool we are trying to share. The default is 30 seconds. It
can be adjusted if needed, although there is rarely a need to adjust this setting.

EXAMPLES

aruser -s &

Start aruser and open a submit window on the initial schema.

aruser -iTestQuery -p parm = 10 &

Start aruser, execute the macro named TestQuery, substituting the value of 10 for the parameter named parm. The
program will remain running after the macro is executed.

aruser -x fred &

Start aruser specifying the machine fred as the machine running the AR System server process. The directory file
/etc/ar is not accessed.

aruser -p “which user=Fred” &

To set the parameter “which user” to the value Fred, use -p “which user=Fred”.

FILES

/etc/ar

$ARHOME/config

$ARHOME/*.ard

$ARHOME/*.arf

$ARHOME/*.arv

$ARHOME/arcmds/*.arc

$ARHOME/arcmds/*.arq

$ARHOME/arcmds/*.arr



AR System and Notification Subsystem Manual Pages 83

5

SEE ALSO

aradmin (1),arserverd (1),notifier  (1)

license

NAME

license – Remedy License Tool

SYNOPSIS
license

DESCRIPTION

license is a tool that is used to install and maintain licenses for the software from Remedy Corporation. The License
Tool allows you to examine and alter existing licenses as well as generate new ones.

TheLicenseTool must be run on the system that is being licensed. If you wish, you can run this tool via remote X on
some other workstation if it is more convenient. To do this, you should rlogin to the system that is being licensed and
then run the License Tool with the-display local_host:0.0 runtime switch to specify your local display.

Once theLicenseTool has been invoked, you can examine existing licenses by selecting one of the entries in the
license table or create a new license by pressing the “New License” button. After filling in the fields on the window
(such as selecting the proper feature or license type), you will need to call your software reseller to obtain a key to
enable the license.

After you have obtained the key and entered it into the “License Key” field, you press the “Apply” button to validate
and save the license. If an error is detected, a notice box will appear warning you that the key is not valid. Otherwise,
a message appears at the bottom of the window stating the key is valid and the license is added to the system license
file /etc/remedy.lic.

FILES

/etc/remedy.lic

SEE ALSO

arserverd (1)



84 Action Request System Programmer’s Guide—January 1995

5

notifier

NAME

notifier – “desktop beeper” notification tool

SYNOPSIS
notifier

DESCRIPTION

notifier  is the interface to the Notification System. It allows you to register your presence on a given machine and
configure parameters about how the system notifies you of new items.

When the program runs, it stores cached and personalized configuration information in a directory on the local
machine. By default, that directory is$HOME/arHome where $HOME is your home directory. If you want the local
information stored in another location, you must set theNTHOME  environment variable to the directory you want to
use. You must have write access to the directory you choose.

ENVIRONMENT

NTHELP Defines the directory that contains the help files for the AR System. If this variable
is not defined, the system will use the setting of theARHELP  variable. If neither is
set, on-line help will not be accessible to this program.

NTHOME Defines the location of the local home environment for the user. It is the directory
where the config file is stored and where the default arcmd directory is located. If
not specified, this directory defaults to $HOME/arHome.

FILES

/etc/ar

$NTHOME/config

SEE ALSO

aradmin (1),aruser (1),ntclientd (1),ntserverd (1)



AR System and Notification Subsystem Manual Pages 85

5

ntclientd

NAME

ntclientd – client daemon for the Notification System

SYNOPSIS
ntclientd  [ -d ] [ -p num-pipes ] [ -s ] [ -x server ]

DESCRIPTION

ntclientd is the daemon used by the Notification System that runs on the local machine with the notification client. It
registers users when one or more notifiers are started and listens for and distributes notifications that are received from
the server to the appropriate client(s) on that machine. This daemon is required to allow multiple notifier clients to be
running on a single machine. Since only one process can register for rpc calls, there must be a process who is
responsible for listening for rpc calls which are then distributed to the appropriate display.

This daemon is automatically launched when thenotifier  program is run.

OPTIONS

The following options tontclientd may appear in any order on the command line:

-d Set the system into debugging mode. This mode prints messages to stdout that detail the progress of the
operations it is performing.

-p Specify the maximum number of pipes the system configuration allows to be open by a single process. By
default, this value is 11. If you will be having more than 11 processes connected to this daemon, you must
reconfigure the system kernel to allow more processes. Do not use this option unless you have reconfigured
the system to allow more pipes per process. If this number is more than configured, the notification system
can stop functioning and need to be reset to allow communication to resume.

Default: 11

This option applies only to the SunOS operating system.

-s Suppress the message issued if a second copy of this daemon is run. Only one instance of this daemon can be
running on a system at a given time. If a second copy is run, an error is issued that indicates there is already
a running process. This flag allows the suppression of this message. This is most useful when this program is
launched by other programs as a first step in connecting to the notification system.

This option does not allow a second instance of the program to run. It simply suppresses the error message
and causes the program to exit quietly.

-x Specify the name of a server to connect to. This option may be included more than once to connect to multiple
servers.

By default, the list of servers the tool will connect to is defined in the directory file/etc/ar. If this option is
not specified, this file will be used to determine where to connect. If this option is specified one or more times,
the servers specified in these options will be used.

FILES

/etc/ar



86 Action Request System Programmer’s Guide—January 1995

5

/usr/tmp/ntclient.lck

SEE ALSO

notifier  (1),ntserverd (1)

ntserverd

NAME

ntserverd – server daemon for the Notification System

SYNOPSIS
ntserverd  [ -d ]

DESCRIPTION

ntserverd is the server daemon for the Notification System. It can run on any machine in the system although it is
likely that it will run on the same machine as an AR System server. It accepts registration of users and will deliver any
notification message it receives to the target user if they are registered, wherever they are registered.

Notifications for a user that is registered in one or more locations are delivered immediately to that user. If the user is
not currently registered, the notifications are held in the file
/usr/spool/remedy/ntserver.log. When a user registers an active connection, all pending notifications are delivered
to that user. The notification log is periodically purged of all entries over 30 days old to prevent overflow of the
notification log with obsolete notifications.

To survive system problems, the daemon records all current registrations in a file named
/usr/spool/remedy/ntusers. This way, if thentserverd process is shut down or the system fails and has to restart, the
program can read a list of all the users it last had registered from this file. This allows the system to gracefully recover
and maintain “connection” to registered users.

OPTIONS

The following option tontserverd may appear on the command line:

-d Set the system into debugging mode. This mode prints messages to stdout that detail the progress of the
operations it is performing. Debugging mode should be used only to find problems with how thentserverd
process is running.

FILES

/usr/spool/remedy/ntserver.log

/usr/spool/remedy/ntusers

/usr/tmp/ntserver.lck

SEE ALSO

arserverd (1),notifier  (1),ntclientd (1)



AR System and Notification Subsystem Manual Pages 87

5

C Library Functions

ARCreateActiveLink

NAME

ARCreateActiveLink – create a new active link in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARCreateActiveLink (control, name, order, schema, groupList, executeMask, field, displayList, enable,

query, actionList, helpText, owner, changeDiary, status)
ARControlStruct *control;
ARNameType name;
unsigned int order;
ARNameType schema;
ARInternalIdList *groupList;
unsigned int executeMask;
ARInternalId *field;
ARDisplayList *displayList;
unsigned int enable;
ARQualifierStruct *query;
ARActiveLinkActionList *actionList;
char *helpText;
ARNameType owner;
char *changeDiary;
ARStatusList *status;

DESCRIPTION

ARCreateActiveLink  will create a new active link with the indicated name on the specified server. The active link
will be added to the server immediately and will be returned to users who request information about active links. Since
the operation of active links is on clients accessing the server, the new definition will not be available on individual
clients until the client reloads configuration from the server (by reconnecting to the schema).

This operation can be performed only by users who have Administrator capabilities within the AR System.



88 Action Request System Programmer’s Guide—January 1995

5

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the active link to create. The names of all active links on a given server
must be unique.

order The order of the new active link. The active link order is a code between 0 and 1000,
inclusive. It allows the ordering of active links so that active links with lower orders
are executed before active links with higher orders. So, the active link order allows
you to specify the order in which active links will be processed and lets you insure
that given active links will be performed in the order you desire.

schema The name of the schema the active link is linked to. The active linkmust be tied to
a single, specific schema. This schema must currently exist on the server.

groupList A list of 0 or more groups identifying the groups which will have access to this active
link. Users can perform an active link if they are a member of a group that has access
to the active link.

Defining a groupList with 0 items will define an active link that can be accessed only
by users with Administrator capability. Defining a groupList that contains the
“Public” group (group id 0) will define an active link that can be accessed by all
users.

executeMask A bit mask of the conditions under which this active link will be executed. This field
consists of one or more of the following values OR’ed together:

AR_EXECUTE_ON_BUTTON , AR_EXECUTE_ON_RETURN,
AR_EXECUTE_ON_SUBMIT , AR_EXECUTE_ON_MODIFY ,
AR_EXECUTE_ON_DISPLAY , AR_EXECUTE_ON_MENU_CHOICE , and
AR_EXECUTE_ON_SET_DEFAULT .

field The id of the field the active link is tied to if the execute mask includes the
AR_EXECUTE_ON_RETURN or AR_EXECUTE_ON_MENU_CHOICE flag. If
the flag is included, a value must be supplied for this field. Otherwise, any value
supplied is ignored.

displayList Information about the button and its position if the execute mask includes the
AR_EXECUTE_ON_BUTTON flag. If the flag is included, a value is expected for
this field.

enable A flag with a setting of 0 to indicate that this active link is to be marked as disabled
so it will not be executed or 1 to indicate that the link is active and available for use.
An active link that is disabled will not be visible to the end user and will not fire.

query A qualification that is to be performed when the active link is executed. It will allow
the conditional execution of the active link. If the condition specified by the query
is met, the active link executes; otherwise, it is not performed (as if there were no
active link).

If there is no qualification, specify NULL or assign a value of
AR_COND_OP_NONE to this value.



AR System and Notification Subsystem Manual Pages 89

5

actionList The set of one or more actions to take when the active link is executed. Every active
link MUST have at least one action and may have as many as AR_MAX_ACTIONS
actions.

helpText The help text that is to be associated with the active link. The help text can be of any
length.

If no help text is to be assigned, a NULL pointer should be supplied for this
parameter.

owner The owner for the active link.

If NULL is specified for this parameter, the owner will default to the user
performing the operation.

changeDiary The initial change diary that is to be associated with the active link. The change diary
text can be of any length. When saved, the time of the change and the user who made
the change are added to the change diary (called time- and user-stamping).

If no change diary is to be assigned, a NULL pointer should be supplied for this
parameter.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARDeleteActiveLink (3),ARGetActiveLink  (3),ARGetListActiveLink  (3),ARSetActiveLink  (3),
FreeARActiveLinkActionList  (3),FreeARDisplayList (3),FreeARInternalIdList  (3),FreeARQualifierStruct
(3), FreeARStatusList (3)



90 Action Request System Programmer’s Guide—January 1995

5

ARCreateAdminExtension

NAME

ARCreateAdminExtension – create a new administrator extension in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARCreateAdminExtension (control, name, groupList, command, helpText, owner, changeDiary, status)

ARControlStruct *control;
ARNameType name;
ARInternalIdList *groupList;
char *command;
char *helpText;
ARNameType owner;
char *changeDiary;
ARStatusList *status;

DESCRIPTION

ARCreateAdminExtension will create a new administrator extension with the indicated name on the specified server.

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the extension to create. The names of all extensions on a given server
must be unique.

groupList A list of 0 or more groups identifying the groups which will have access to this
extension. Users can perform an extension if they are a member of a group that has
access to the extension.

Defining a groupList with 0 items will define an administrator extension that can be
accessed only by users with Administrator capability. Defining a groupList that
contains the “Public” group (group id 0) will define an administrator extension that
can be accessed by all users.

command The command that forms the administrator extension. There must be a command
value specified.

helpText The help text that is to be associated with the extension. The help text can be of any
length.

If no help text is to be assigned, a NULL pointer should be supplied for this
parameter.



AR System and Notification Subsystem Manual Pages 91

5

owner The owner for the extension.

If NULL is specified for this parameter, the owner will default to the user
performing the operation.

changeDiary The initial change diary that is to be associated with the extension. The change diary
text can be of any length. When saved, the time of the change and the user who made
the change are added to the change diary (called time- and user-stamping).

If no change diary is to be assigned, a NULL pointer should be supplied for this
parameter.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARDeleteAdminExtension (3),ARExecuteAdminExtension (3),ARGetAdminExtension (3),
ARGetListAdminExtension (3),ARSetAdminExtension (3),FreeARInternalIdList  (3),FreeARStatusList (3)



92 Action Request System Programmer’s Guide—January 1995

5

ARCreateCharMenu

NAME

ARCreateCharMenu – create a new character menu in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARCreateCharMenu (control, name, refreshCode, menuDefn, helpText, owner, changeDiary, status)

ARControlStruct *control;
ARNameType name;
unsigned int refreshCode;
ARCharMenuStruct *menuDefn;
char *helpText;
ARNameType owner;
char *changeDiary;
ARStatusList *status;

DESCRIPTION

ARCreateCharMenu will create a new character menu with the indicated name on the specified server.

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the character menu to create. The names of all character menus on a
given server must be unique.

refreshCode Code indicating when the menu should be refreshed. This code allows you to
balance performance and the frequency at which the menu is checked for
consistency with the server. The refresh code is one of
AR_MENU_REFRESH_CONNECT, AR_MENU_REFRESH_OPEN,or
AR_MENU_REFRESH_INTERVAL.

menuDefn The definition of the character menu.

helpText The help text that is to be associated with the character menu. The help text can be
of any length.

If no help text is to be assigned, a NULL pointer should be supplied for this
parameter.

owner The owner for the character menu.



AR System and Notification Subsystem Manual Pages 93

5

If NULL is specified for this parameter, the owner will default to the user
performing the operation.

changeDiary The initial change diary that is to be associated with the character menu. When
saved, the time of the change and the user who made the change are added to the
change diary (called time- and user-stamping).

If no change diary is to be assigned, a NULL pointer should be supplied for this
parameter.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARDeleteCharMenu (3),ARExpandCharMenu (3),ARGetCharMenu (3),ARGetListCharMenu  (3),
ARSetCharMenu (3),FreeARCharMenuStruct (3),FreeARStatusList (3)



94 Action Request System Programmer’s Guide—January 1995

5

ARCreateEntry

NAME

ARCreateEntry – create a new entry in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARCreateEntry (control, schema, fieldList, entryId, status)

ARControlStruct *control;
ARNameType schema;
ARFieldValueList *fieldList;
AREntryIdType entryId;
ARStatusList *status;

DESCRIPTION

ARCreateEntry  will add a new entry to the specified schema. The user can specify any number of fields and
associated values. The system will check permissions for each field and report errors if a field does not exist or if the
user does not have access. If any one of the fields is in error, the entire create operation is rejected and no change is
made to the database.

Access to entries is controlled through the security scheme of the AR System. The user identified in the control record
in combination with the create mode specified for the field is used to determine which fields can be updated by the
user. If a value is provided for a field to which the user does not have write access, an error will be reported on that
field and the operation will be cancelled. Each value is checked to make sure it can be updated with an error returned
if not writable.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

schema Identifies the schema to which the new entry is to be added.

fieldList A list of field/value pairs for all the fields to be set for the new entry. The fields can
be in any order in the list. Any nonexistent or inaccessible field will result in an error
return. The datatype of the value must match the datatype of the field (or be NULL).
All required fields that do not have a default value MUST be assigned a value. To
assign no value for a field, assign the value NULL (AR_DATA_TYPE_NULL) as
the value. If the field is a required field in the system, you cannot assign it a NULL
value. Note that this use overrides any configured default value for the field.

RETURN VALUES

entryId This is the unique identifier for the new entry. The system will create a new entry ID
to uniquely identify this entry in all future operations.



AR System and Notification Subsystem Manual Pages 95

5

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARDeleteEntry (3),ARGetEntry  (3),ARGetEntryStatistics (3),ARGetListEntry  (3),ARMergeEntry  (3),
ARSetEntry (3),FreeARFieldValueList (3),FreeARStatusList (3)



96 Action Request System Programmer’s Guide—January 1995

5

ARCreateEscalation

NAME

ARCreateEscalation – create a new escalation in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARCreateEscalation (control, name, escalationTm, schema, enable, query, actionList, helpText, owner,

changeDiary, status)
ARControlStruct *control;
ARNameType name;
AREscalationTmStruct *escalationTm;
ARNameType schema;
unsigned int enable;
ARQualifierStruct *query;
ARFilterActionList *actionList;
char *helpText;
ARNameType owner;
char *changeDiary;
ARStatusList *status;

DESCRIPTION

ARCreateEscalation will create a new escalation with the indicated name on the specified server. The escalation
condition will be checked regularly depending on time structure defined when it is enabled.

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the escalation to create. The names of all escalations on a given server
must be unique.

escalationTm The checking time of the new escalation. It defines a datetime or frequency of AR
System checks for the escalation condition. Escalation time has two formats, one is
in seconds as a time interval between checks, the other is a datetime mask specifying
on what day of the month or week and at what hour and minute of the day the AR
System checks the escalation condition.

schema The name of the schema the escalation is linked to. The escalation MUST be tied to
a single, specific schema. This schema must currently exist on the server.



AR System and Notification Subsystem Manual Pages 97

5

enable A flag with a setting of 0 to indicate that this escalation is to be marked as disabled
so it will not be executed or 1 to indicate that the escalation is active and will be
checked on the specified time interval. An escalation that is disabled will not
perform its condition checks and will not fire.

query A qualification that is used to search the specified schema. Any records that match
the qualification will have the escalation action performed on them.

If there is no qualifying condition, specify NULL or assign a value of
AR_COND_OP_NONE to this value.

actionList The set of one or more actions to take when the escalation conditions are met. Every
escalation MUST have at least one action and may have as many as
AR_MAX_ACTIONS actions.

helpText The help text that is to be associated with the escalation. The help text can be of any
length.

If no help text is to be assigned, a NULL pointer should be supplied for this
parameter.

owner The owner for the escalation.

If NULL is specified for this parameter, the owner will default to the user
performing the operation.

changeDiary The initial change diary that is to be associated with the escalation. The change diary
text can be of any length. When saved, the time of the change and the user who made
the change are added to the change diary (called time- and user-stamping).

If no change diary is to be assigned, a NULL pointer should be supplied for this
parameter.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad



98 Action Request System Programmer’s Guide—January 1995

5

SEE ALSO

ARDeleteEscalation (3),ARGetEscalation (3),ARGetListEscalation (3),ARSetEscalation (3),
FreeARFilterActionList  (3),FreeARQualifierStruct  (3),FreeARStatusList (3)

ARCreateField

NAME

ARCreateField – create a new field in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARCreateField (control, schema, fieldId, reservedIdOK, dataType, option, createMode, defaultVal,

permissions, limit, displayList, helpText, owner, changeDiary, status)
ARControlStruct *control;
ARNameType schema;
ARInternalId *fieldId;
ARBoolean reservedIdOK;
unsigned int dataType;
unsigned int option;
unsigned int createMode;
ARValueStruct *defaultVal;
ARPermissionList *permissions;
ARFieldLimitStruct *limit;
ARDisplayList *displayList;
char *helpText;
ARNameType owner;
char *changeDiary;
ARStatusList *status;

DESCRIPTION

ARCreateField will create a new field in the indicated schema on the specified server.

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

schema The name of the schema in which the field to create is to be located. The field must
be tied to a single, specific schema. This schema must currently exist on the server.



AR System and Notification Subsystem Manual Pages 99

5

fieldId The internal ID of the new field within the schema. Remember that the IDs for all
fields must be unique within a single schema.

The system has a core field range (0 to
AR_MAX_CORE_FIELD_ID), a reserved ID range
(AR_MAX_CORE_FIELD_ID + 1 to
AR_MAX_RESERVED_FIELD_ID), and an open range
(AR_MAX_RESERVED_FIELD_ID + 1 and up). Ids in the core range are allocated
for the core fields. No ID can be created in the core field range. IDs in the reserved
range represent fields that have a registered definition with Remedy Corporation and
should be used only for fields that match the rules and criteria for the registered
definition. Ids in the open range are available for any use desired by the user.

If an ID of 0 is specified for this field, the AR System server will find the next
available ID and assign it to the new field. The new ID assigned will be returned in
this parameter.

reservedIdOK A flag indicating whether it is OK to create a field in the reserved ID range. If the
ID is in the reserved range, the setting of this flag indicates the action to be taken. If
the flag is TRUE, the field will be created. If it is FALSE, the field will NOT be
created and an error will be reported. This is to allow an extra warning before a
reserved field is created that the field is expected to match the registered definition
for the field.

option The option flag indicating whether the field is a required or optional field. The value
is one ofAR_FIELD_OPTION_REQUIRED,
AR_FIELD_OPTION_OPTIONAL,  or AR_FIELD_OPTION_SYSTEM .

createMode A flag indicating whether the field is open or protected at create time. An open field
is one that any user, whether registered or not with the system, can set during the
Submit operation. A protected field is one the user must have been given specific
access to in order to set the field during the Submit operation. The value is one of
AR_FIELD_OPEN_AT_CREATE  or
AR_FIELD_PROTECTED_AT_CREATE .

defaultVal The value used by the system if a new entry is submitted without a value for this
field. If a value is specified, its datatype must match the datatype of the field. Specify
NULL for this parameter or a value of AR_DEFAULT_VALUE_NONE to indicate
that there is no default value for this field.

permissions The permissions that have been assigned to this field. The information details which
groups have access to the field and what access those groups have.

If you assign a blank permissions set, you will receive a warning,
AR_WARN_ADMIN_ONLY_ACCESS, indicating that the field can be accessed
only by the administrator. The field will be created as specified.

limit The limits that you want assigned for this field. If limits are assigned, the datatype
of the limits must match the datatype of the field. Specify NULL for this parameter
or a value of AR_FIELD_LIMIT_NONE to indicate that there are no limits for the
field.



100 Action Request System Programmer’s Guide—January 1995

5

displayList The display list is an array of entries, each of which describes how the field should
be displayed on the screen. Each of these items has an associated character tag to
identify it. This tag can be specified during Export operations to get only the
definition for a given tag. Each entry contains the tag, the name for the field, the
position of the field, and the type of control to use on the screen.

helpText The help text that is to be associated with the field.

If you do not want any helpText, specify NULL for this parameter.

owner The owner for the field.

If NULL is specified for this parameter, the owner will default to the user
performing the operation.

changeDiary The initial change diary that is to be associated with the field. The change diary text
can be of any length. When saved, the time of the change and the user who made the
change are added to the change diary (called time- and user-stamping).

If no change diary is to be assigned, a NULL pointer should be supplied for this
parameter.

RETURN VALUES

fieldID The internal ID of the field within the schema.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARDeleteField (3),ARDisplayList (3), ARGetField (3),ARGetListField  (3),ARSetField (3),
FreeARFieldLimitStruct  (3),FreeARPermissionList (3),FreeARStatusList (3),FreeARValueStruct (3)



AR System and Notification Subsystem Manual Pages 101

5

ARCreateFilter

NAME

ARCreateFilter – create a new filter in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARCreateFilter (control, name, order, schema, opSet, enable, query, actionList, helpText, owner,

changeDiary, status)

ARControlStruct *control;
ARNameType name;
unsigned int order;
ARNameType schema;
unsigned int opSet;
unsigned int enable;
ARQualifierStruct *query;
ARFilterActionList *actionList;
char *helpText;
ARNameType owner;
char *changeDiary;
ARStatusList *status;

DESCRIPTION

ARCreateFilter  will create a new filter with the indicated name on the specified server. The filter will take effect
immediately and will remain in effect until changed or deleted.

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the filter to create. The names of all filters on a given server must be
unique.

order The order of the new filter. The filter order is a code between 0 and 1000, inclusive.
It allows the ordering of filters so that filters with lower orders are executed before
filters with higher orders. So, the filter order allows you to specify the order in which
filters will be processed and lets you insure that given filters will be performed in the
order you desire.

schema The name of the schema the filter is linked to. The filtermust be tied to a single,
specific schema. This schema must currently exist on the server.



102 Action Request System Programmer’s Guide—January 1995

5

opSet A bit mask of the operations for which this filter applies. This field consists of one
or more of the following values OR’ed together.AR_OPERATION_GET ,
AR_OPERATION_SET, AR_OPERATION_CREATE ,
AR_OPERATION_DELETE , andAR_OPERATION_MERGE .

enable A flag with a setting of 0 to indicate that this filter is to be marked as disabled so it
will not be executed or 1 to indicate that the filter is active and available for use. A
filter that is disabled will not be checked for match during any operation and will not
fire.

query A qualification that is used to test the operation/record being accessed. The
operation/values of fields for the record must match this qualification to trigger the
filter.

If there is no qualifying condition, specify NULL or assign a value of
AR_COND_OP_NONE to this value.

actionList The set of one or more actions to take when the filter conditions are met. Every filter
MUST have at least one action and may have as many as AR_MAX_ACTIONS
actions.

helpText The help text that is to be associated with the filter. The help text can be of any
length.

If no help text is to be assigned, a NULL pointer should be supplied for this
parameter.

owner The owner for the filter.

If NULL is specified for this parameter, the owner will default to the user
performing the operation.

changeDiary The initial change diary that is to be associated with the filter. The change diary text
can be of any length. When saved, the time of the change and the user who made the
change are added to the change diary (called time- and user-stamping).

If no change diary is to be assigned, a NULL pointer should be supplied for this
parameter.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error



AR System and Notification Subsystem Manual Pages 103

5

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARDeleteFilter (3),ARGetFilter  (3),ARGetListFilter  (3),ARSetFilter (3),FreeARFilterActionList  (3),
FreeARQualifierStruct  (3),FreeARStatusList (3)

ARCreateSchema

NAME

ARCreateSchema – create a new schema in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARCreateSchema (control, name, groupList, adminGroupList, getListFields, indexList, helpText, owner,

changeDiary, status)
ARControlStruct *control;
ARNameType name;
ARInternalIdList *groupList;
ARInternalIdList *adminGroupList;
AREntryListFieldList *getListFields;
ARIndexList *indexList;
char *helpText;
ARNameType owner;
char *changeDiary;
ARStatusList *status;

DESCRIPTION

ARCreateSchema will create a new schema with the indicated name on the specified server. The schema created will
contain the “core” fields.

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the schema to create. The names of all schemas on a given server must
be unique.



104 Action Request System Programmer’s Guide—January 1995

5

groupList The groupList definition for the schema. This list of 0 or more groups defines the list
of groups whose users are allowed to access this schema.

Defining a groupList with 0 items will define a schema that can be accessed only by
users with Administrator capability. Defining a groupList that contains the “Public”
group (group id 0) will define a schema that can be accessed by all users.

adminGroupList The list of groups whose users have potential Sub-Administrator access to this
schema. This is the list of groups whose members will have sub-administration
rights to the schema and its associated filters, escalations, and active links if the user
is also a member of the SubAdministrator group.

Defining an adminGroupList with 0 items will define a schema that can be
administered only by users with Administrator capability. Defining an
adminGroupList that contains the “Public” group (group id 0) will define a schema
that can be administered by all users who are members of the SubAdministrator
group.

getListFields The getListFields definition for the schema. This list of 0 or more fields and
formatting information defines the description that will be returned with the
ARGetListEntry call. The maximum size of the fields and separators must be less
than or equal to AR_MAX_SDESC_SIZE.

Specifying NULL for this parameter or defining a getListFields definition with 0
items specifies that the description will be derived from the Short-Description core
field (field id is 8).

indexList The indexList definition for the schema. This list of 0 or more indexes defines the
indexes created in the database on the schema. Indexes can be specified on a single
or on multiple columns. You cannot index any diary field or character field with a
maximum length over 255 bytes.

helpText The help text that is to be associated with the schema. The help text can be of any
length.

If no help text is to be assigned, a NULL pointer should be supplied for this
parameter.

owner The owner for the schema.

If NULL is specified for this parameter, the owner will default to the user
performing the operation.

changeDiary The initial change diary that is to be associated with the schema. The change diary
text can be of any length. When saved, the time of the change and the user who made
the change are added to the change diary (called time- and user-stamping).

If no change diary is to be assigned, a NULL pointer should be supplied for this
parameter.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.



AR System and Notification Subsystem Manual Pages 105

5

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateField (3),ARDeleteSchema (3),ARGetSchema (3),ARGetListSchema (3),ARSetField (3),
ARSetSchema (3),FreeAREntryListFieldList  (3),FreeARIndexList (3),FreeARInternalIdList  (3),
FreeARStatusList (3)

ARDecodeDiary

NAME

ARDecodeDiary – decode a formatted diary string into an array

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARDecodeDiary (diaryString, diaryList, status)

char *diaryString;
ARDiaryList *diaryList;
ARStatusList *status;

DESCRIPTION

ARDecodeDiary takes a formatted diary string as returned for a diary field from theARGetEntry  call or for the
change diary record from any structure and decodes it. The resulting timestamp, user name, and value sets are returned
in an array.

INPUT ARGUMENTS

diaryString The formatted diary value that is returned byARGetEntry  or one of the structure
get calls.



106 Action Request System Programmer’s Guide—January 1995

5

RETURN VALUES

diaryList Array structure that holds the decoded diary value.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARDecodeStatusHistory (3),ARGetActiveLink  (3),ARGetAdminExtension (3),ARGetCharMenu (3),
ARGetEntry  (3),ARGetEscalation (3),ARGetField (3), ARGetFilter  (3),ARGetSchema (3),FreeARDiaryList
(3), FreeARStatusList (3)

ARDecodeStatusHistory

NAME

ARDecodeStatusHistory – decode a formatted status history string into an array

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARDecodeStatusHistory (statHistString, statHistList, status)

char *statHistString;
ARStatusHistoryList *statHistList;
ARStatusList *status;

DESCRIPTION

ARDecodeStatusHistory takes a formatted status history string as returned for the field
AR_CORE_STATUS_HISTORY from theARGetEntry  call and decodes it. The resulting timestamp and user name
values for each status are returned in an array.



AR System and Notification Subsystem Manual Pages 107

5

INPUT ARGUMENTS

statHistString The formatted status history value that is returned by theARGetEntry  call.

RETURN VALUES

statHistList Array structure that holds the decoded status history value.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARDecodeDiary (3),ARGetEntry  (3),FreeARStatusList (3),FreeARStatusHistoryList (3)

ARDeleteActiveLink

NAME

ARDeleteActiveLink – delete an existing active link from the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARDeleteActiveLink (control, name, status)

ARControlStruct *control;
ARNameType name;
ARStatusList *status;

DESCRIPTION

ARDeleteActiveLink will delete an existing active link with the indicated name from the specified server. The deleted
active link is immediately removed and will no longer be returned to users who request information about active links.



108 Action Request System Programmer’s Guide—January 1995

5

Since the operation of active links is on clients accessing the server, the active link will still be available on individual
clients until the client reloads the configuration from the server.

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the active link to delete.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateActiveLink  (3),ARDeleteSchema (3),ARGetActiveLink  (3),ARGetListActiveLink  (3),
ARSetActiveLink  (3),FreeARStatusList (3)



AR System and Notification Subsystem Manual Pages 109

5

ARDeleteAdminExtension

NAME

ARDeleteAdminExtension – delete an existing administrator extension from the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARDeleteAdminExtension (control, name, status)

ARControlStruct *control;
ARNameType name;
ARStatusList *status;

DESCRIPTION

ARDeleteAdminExtension will delete an existing administrator extension with the indicated name from the specified
server.

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the extension to delete.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad



110 Action Request System Programmer’s Guide—January 1995

5

SEE ALSO

ARCreateAdminExtension (3),ARExecuteAdminExtension (3),ARGetAdminExtension (3),
ARGetListAdminExtension (3),ARSetAdminExtension (3),FreeARStatusList (3)

ARDeleteCharMenu

NAME

ARDeleteCharMenu – delete an existing character menu from the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARDeleteCharMenu (control, name, status)

ARControlStruct *control;
ARNameType name;
ARStatusList *status;

DESCRIPTION

ARDeleteCharMenu will delete an existing character menu with the indicated name from the specified server. The
deleted character menu is immediately removed and will no longer be returned to users who request information about
character menus. Since the operation of character menus is on clients accessing the server, the character menu will still
be available on individual clients until the client refreshes the character menu definition (controlled by the refresh
code).

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the character menu to delete.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful



AR System and Notification Subsystem Manual Pages 111

5

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateCharMenu (3),ARExpandCharMenu (3),ARGetCharMenu (3),ARGetListCharMenu  (3),
ARSetCharMenu (3),FreeARStatusList (3)

ARDeleteEntry

NAME

ARDeleteEntry – delete an entry from the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARDeleteEntry (control, schema, entryId, status)

ARControlStruct *control;
ARNameType schema;
AREntryIdType entryId;
ARStatusList *status;

DESCRIPTION

ARDeleteEntry will add a delete an entry from the specified schema. This operation can only be performed by users
who have Administrator access to the schema.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

schema Identifies the schema from which the entry is to be deleted.

entryId Identifies the specific entry within the schema.



112 Action Request System Programmer’s Guide—January 1995

5

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateEntry  (3),ARGetEntry  (3),ARGetEntryStatistics (3),ARGetListEntry  (3),ARMergeEntry  (3),
ARSetEntry (3),FreeARStatusList (3)

ARDeleteEscalation

NAME

ARDeleteEscalation – delete an existing escalation from the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARDeleteEscalation (control, name, status)

ARControlStruct *control;
ARNameType name;
ARStatusList *status;

DESCRIPTION

ARDeleteEscalation will delete an existing escalation with the indicated name from the specified server. The deleted
escalation is immediately removed and all processing associated with it is no longer performed.

This operation can be performed only by users who have Administrator capabilities within the AR System.



AR System and Notification Subsystem Manual Pages 113

5

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the escalation to delete.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateEscalation (3),ARDeleteSchema (3),ARGetEscalation (3),ARGetListEscalation (3),
ARSetEscalation (3),FreeARStatusList (3)



114 Action Request System Programmer’s Guide—January 1995

5

ARDeleteField

NAME

ARDeleteField – delete an existing field from an AR System schema

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARDeleteField (control, schema, fieldId, deleteData, status)

ARControlStruct *control;
ARNameType schema;
ARInternalId fieldId;
ARBoolean deleteData;
ARStatusList *status;

DESCRIPTION

ARDeleteField will delete an existing field with the indicated id from the specified schema on the specified server.
The delete operation will delete the field along with any data contained within that field (see the deleteData flag
below).

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

schema The name of the schema containing the field to be deleted.

fieldId The id of the specific field to delete.

deleteData A flag controlling the operation of the delete. Before the delete operation is
performed, the system checks to see if there are any data entries for the field. If not,
the delete operation is performed. If there is data, this flag is checked. If it is TRUE,
the field is deleted; otherwise, the delete operation is NOT performed and a notice
is returned to the user.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful



AR System and Notification Subsystem Manual Pages 115

5

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateField (3),ARDeleteSchema (3),ARGetField (3),ARGetListField  (3),ARSetField (3),
FreeARStatusList (3)

ARDeleteFilter

NAME

ARDeleteFilter – delete an existing filter from the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARDeleteFilter (control, name, status)

ARControlStruct *control;
ARNameType name;
ARStatusList *status;

DESCRIPTION

ARDeleteFilter will delete an existing filter with the indicated name from the specified server. The deleted filter is
immediately removed and all processing associated with it is no longer performed.

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the filter to delete.



116 Action Request System Programmer’s Guide—January 1995

5

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateFilter  (3),ARDeleteSchema (3),ARGetFilter  (3),ARGetListFilter  (3),ARSetFilter (3),
FreeARStatusList (3)

ARDeleteSchema

NAME

ARDeleteSchema – delete an existing schema from the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARDeleteSchema (control, name, deleteEntries, status)

ARControlStruct *control;
ARNameType name;
ARBoolean deleteEntries;
ARStatusList *status;

DESCRIPTION

ARDeleteSchema will delete an existing schema with the indicated name from the specified server. The delete
operation will delete the schema, all associated fields, and any active links, filters, and escalations that are linked to
this schema. In addition, the delete operation removes any data contents for this schema from the server (see the
deleteEntries flag below).



AR System and Notification Subsystem Manual Pages 117

5

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the schema to delete.

deleteEntries A flag controlling the operation of the delete. Before the delete operation is
performed, the system checks to see if there are any data entries for the schema. If
not, the delete operation is performed. If there are entries, this flag is checked. If it
is TRUE, the schema is deleted; otherwise, the delete operation is NOT performed
and a notice is returned to the user.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateSchema (3),ARGetSchema (3),ARGetListSchema (3),ARSetSchema (3),FreeARStatusList (3)



118 Action Request System Programmer’s Guide—January 1995

5

ARExecuteAdminExtension

NAME

ARExecuteAdminExtension – execute an administrator extension on the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARExecuteAdminExtension (control, name, status)

ARControlStruct *control;
ARNameType name;
ARStatusList *status;

DESCRIPTION

ARExecuteAdminExtension will perform the administrator extension with the indicated name on the specified
server.

Execute permission on administrator extensions is controlled through the security scheme of the AR System. The user
identified in the control record is used to determine which extensions are accessible to the requestor. Only extensions
that are accessible to the user can be executed.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the extension to execute.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.



AR System and Notification Subsystem Manual Pages 119

5

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateAdminExtension (3),ARDeleteAdminExtension (3),ARGetAdminExtension (3),
ARGetListAdminExtension (3),ARSetAdminExtension (3),FreeARStatusList (3)

ARExpandCharMenu

NAME

ARExpandCharMenu – expand the passed menu definition by resolving all query and file references

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARExpandCharMenu (control, menuDefn, menu, status)

ARControlStruct *control;
ARCharMenuStruct *menuDefn;
ARCharMenuStruct *menu;
ARStatusList *status;

DESCRIPTION

ARExpandCharMenu takes the specified menu definition and expands any query and file references within the
menu. The resulting menu contains only items using the “list” style of menu.

This operation is available to all users. If there is a query style menu that must be expanded, the query operation is
controlled by the access rights of the user.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.



120 Action Request System Programmer’s Guide—January 1995

5

menuDefn The definition of the character menu that is to be expanded.

RETURN VALUES

menu The expanded menu definition. The expanded definition will use only the “list”
branch of the structure.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateCharMenu (3),ARDeleteCharMenu (3),ARGetCharMenu (3),ARGetListCharMenu  (3),
ARSetCharMenu (3),FreeARCharMenuStruct (3),FreeARStatusList (3)



AR System and Notification Subsystem Manual Pages 121

5

ARExport

NAME

ARExport – export existing schema, mail template, filter, escalation, active link, menu, and admin extension
definitions

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARExport (control, structItems, displayTag, exportBuf, status)

ARControlStruct *control;
ARStructItemList *structItems;
ARNameType displayTag;
char **exportBuf;
ARStatusList *status;

DESCRIPTION

ARExport  will export one or more structure definitions (schemas, escalations, filters, active links, character menus,
and administrator extensions) from the AR System. This allows the copying of definitions from one server to another.

The export of filters, escalations, administrator extensions, and full detailed schema and active link definitions can be
performed only by users who have Administrator capabilities within the AR System. Other users can export schema,
active link, and admin extension definitions without sensitive information like permissions if they have permission to
access the structure.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

structItems An array of the items to export. The type and name of the items to export are
identified. Each item to be exported must be indicated.

The codes for the types of exports allowed are as follows:

n AR_STRUCT_ITEM_SCHEMA: Full schema definition

n AR_STRUCT_ITEM_SCHEMA_DEFN: Partial schema definition
containing field database definition

n AR_STRUCT_ITEM_SCHEMA_VIEW: Partial schema definition
containing field display definition

n AR_STRUCT_ITEM_SCHEMA_MAIL: Mail template format of schema
definition

n AR_STRUCT_ITEM_FILTER: Filter definition



122 Action Request System Programmer’s Guide—January 1995

5

n AR_STRUCT_ITEM_ACTIVE_LINK: Active link
definition

n AR_STRUCT_ITEM_ADMIN_EXT: Administrator
extension definition

n AR_STRUCT_ITEM_CHAR_MENU: Character menu
definition

n AR_STRUCT_ITEM_ESCALATION: Escalation definition

displayTag Tag that identifies which specific display struct view to export when exporting a
schema using AR_STRUCT_ITEM_SCHEMA_VIEW or an active link definition.
If there is a display that matches the tag, only that display structure is exported. If
there is not one that matches, the display that is listed first in the displayList is
exported. If an empty string or NULL is specified, only the first item in the
displayList is exported for each field and active link.

RETURN VALUES

exportBuf malloced buffer containing the text of the items exported. The buffer will contain
information for all of the items requested (or at least for all the items without an
error).

Note that if a schema is to be later imported, the full definition format of the schema
must be exported. The other formats are used for caching of definition and/or view
information and are not the complete definitions needed.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARImport  (3),FreeARStatusList (3),FreeARStructItemList  (3)



AR System and Notification Subsystem Manual Pages 123

5

ARGetActiveLink

NAME

ARGetActiveLink – retrieve information about an active link in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARGetActiveLink (control, name, order, schema, groupList, executeMask, field, displayList, enable, query,

actionList, helpText, timestamp, owner, lastChanged, changeDiary, status)
ARControlStruct *control;
ARNameType name;
unsigned int *order
ARNameType schema;
ARInternalIdList *groupList;
unsigned int *executeMask;
ARInternalId *field;
ARDisplayList *displayList;
unsigned int *enable;
ARQualifierStruct *query;
ARActiveLinkActionList *actionList;
char **helpText;
ARTimestamp *timestamp;
ARNameType owner;
ARNameType lastChanged;
char **changeDiary;
ARStatusList *status;

DESCRIPTION

ARGetActiveLink  will retrieve information about an active link with the indicated name on the specified server.

Access to active link information is restricted to users who have been granted access to the active link. If you are
granted permission to the active link, you can see all the data except groupList information which is limited to users
with Administrator capability. If you are not granted permission, you cannot retrieve any information about the active
link.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the active link to retrieve.



124 Action Request System Programmer’s Guide—January 1995

5

RETURN VALUES

order The order of the active link. The active link order is a code between 0 and 1000,
inclusive. It allows the ordering of active links so that active links with lower orders
are executed before active links with higher orders. So, the active link order allows
you to specify the order in which active links will be processed and lets you insure
that given active links will be performed in the order you desire.

If you do not want the order returned, specify NULL for this parameter.

schema The name of the schema the active link is tied to.

If you do not want the schema returned, specify NULL for this parameter.

groupList A list of 0 or more groups identifying groups that have permission to access this
active link.

Only a user with Administrator capability can retrieve the groupList information.
Any other user will receive an empty list along with a warning,
AR_WARN_PERM_REQUIRES_ADMIN, indicating that no groupList
information was returned because the user did not have Administrator capability.

If you do not want the group list returned, specify NULL for this parameter.

executeMask A bit mask of the conditions under which this active link will be executed. This field
consists of one or more of the following values OR’ed together:

AR_EXECUTE_ON_BUTTON , AR_EXECUTE_ON_RETURN,
AR_EXECUTE_ON_SUBMIT , AR_EXECUTE_ON_MODIFY ,
AR_EXECUTE_ON_DISPLAY , AR_EXECUTE_ON_MENU_CHOICE , and
AR_EXECUTE_ON_SET_DEFAULT .

If you do not want the execute mask returned, specify NULL for this parameter.

field The ID of the field the active link is tied to if the execute mask includes the
AR_EXECUTE_ON_RETURN or AR_EXECUTE_ON_MENU_CHOICE flag. If
not included, the return for this field is a 0.

If you do not want the field returned, specify NULL for this parameter.

displayList The display information for the button to be displayed on the user’s view if the
execute mask includes the AR_EXECUTE_ON_BUTTON flag. If not included, the
label is set to blank and the positions to 0s.

If you do not want the display information returned, specify NULL for this
parameter.

enable A flag set to 0 if this active link is disabled and to 1 if it is enabled.

If you do not want the enable flag returned, specify NULL for this parameter.

query A qualification that is to be performed when the active link is executed. It will allow
conditional execution of active links or a different operation to be performed
depending on the conditions on the window where the active link is being executed.

If there is no qualifying condition, a value of AR_COND_OP_NONE is returned for
this value.

If you do not want the query returned, specify NULL for this parameter.



AR System and Notification Subsystem Manual Pages 125

5

actionList The set of one or more actions to take when the active link is executed. Every active
link MUST have at least one action and can have up to AR_MAX_ACTIONS.

If you do not want the action list returned, specify NULL for this parameter.

helpText The help text that is associated with the active link.

If you do not want the help text returned, specify NULL for this parameter. This is
useful when you will not be using the help text information as you are calling this
routine to verify the existence of an active link. By not retrieving the help text, the
operation is more efficient and takes less time and space.

timestamp The timestamp indicating when this active link was last changed.

If you do not want the timestamp returned, specify NULL for this parameter.

owner The user who is defined as the owner of this active link definition.

If you do not want the owner returned, specify NULL for this parameter.

lastChanged The user who last changed this active link definition in some way.

If you do not want the lastChanged user returned, specify NULL for this parameter.

changeDiary The change diary that is associated with the active link. Space is allocated for the
text and a pointer to that space returned. If there is no change diary for the active link,
a NULL pointer is returned.

The text returned is a formatted diary string. Use the ARDecodeDiary call to decode
this string into an array of timestamp, user name, and text string pieces.

If you do not want the change diary returned, specify NULL for this parameter. This
is useful when you will not be using the change diary information as you are calling
this routine to verify the existence of an active link. By not retrieving the change
diary, the operation is more efficient and takes less time and space.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad



126 Action Request System Programmer’s Guide—January 1995

5

SEE ALSO

ARCreateActiveLink  (3),ARDecodeDiary (3),ARDeleteActiveLink (3),ARGetListActiveLink  (3),
ARSetActiveLink  (3),FreeARActiveLinkActionList  (3),FreeARDisplayList (3),FreeARInternalIdList  (3),
FreeARQualifierStruct  (3),FreeARStatusList (3)

ARGetAdminExtension

NAME

ARGetAdminExtension – retrieve information about an administrator extension in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARGetAdminExtension (control, name, groupList, command, helpText, timestamp, owner, lastChanged,

changeDiary, status)
ARControlStruct *control;
ARNameType name;
ARInternalIdList *groupList;
char *command;
char **helpText;
ARTimestamp *timestamp;
ARNameType owner;
ARNameType lastChanged;
char **changeDiary;
ARStatusList *status;

DESCRIPTION

ARGetAdminExtension will retrieve information about the administrator extension indicated by name on the
specified server.

Access to administrator extension information is restricted to users who have been granted access to the administrator
extension. If you are granted permission to the administrator extension, you can see all the data except groupList
information which is limited to users with Administrator capability. If you are not granted permission, you cannot
retrieve any information about the administrator extension.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the extension about which information is being requested.



AR System and Notification Subsystem Manual Pages 127

5

RETURN VALUES

groupList A list of 0 or more groups identifying groups that have permission to access this
extension.

Only a user with Administrator capability can retrieve the groupList information.
Any other user will receive an empty list along with a warning,
AR_WARN_PERM_REQUIRES_ADMIN, indicating that no groupList
information was returned because the user did not have Administrator capability.

If you do not want the group list returned, specify NULL for this parameter.

command The command that represents the extension. It can be anything from a simple shell
command to running a process with a variety of parameters.

If you do not want the command returned, specify NULL for this parameter.

helpText The help text that is associated with the extension. Space is allocated for the text and
a pointer to that space returned. If there is no help text for the extension, a NULL
pointer is returned.

If you do not want the help text returned, specify NULL for this parameter. This is
useful when you will not be using the help text information as you are calling this
routine to verify the existence of a extension. By not retrieving the help text, the
operation is more efficient and takes less time and space.

timestamp Timestamp indicating when this extension was last changed.

If you do not want the timestamp returned, specify NULL for this parameter.

owner The user who is defined as the owner of this extension definition.

If you do not want the owner returned, specify NULL for this parameter.

lastChanged The user who last changed this extension definition in some way.

If you do not want the lastChanged user returned, specify NULL for this parameter.

changeDiary The change diary that is associated with the extension. Space is allocated for the text
and a pointer to that space returned. If there is no change diary for the extension, a
NULL pointer is returned.

The text returned is a formatted diary string. Use the ARDecodeDiary call to decode
this string into an array of timestamp, user name, and text string pieces.

If you do not want the change diary returned, specify NULL for this parameter. This
is useful when you will not be using the change diary information as you are calling
this routine to verify the existence of an extension. By not retrieving the change
diary, the operation is more efficient and takes less time and space.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful



128 Action Request System Programmer’s Guide—January 1995

5

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateAdminExtension (3),ARDecodeDiary (3),ARDeleteAdminExtension (3),
ARExecuteAdminExtension (3),ARGetListAdminExtension (3),ARSetAdminExtension (3),
FreeARInternalIdList  (3),FreeARStatusList (3)

ARGetCharMenu

NAME

ARGetCharMenu – retrieve information about a character menu definition in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARGetCharMenu (control, name, refreshCode, menuDefn, helpText, timestamp, owner, lastChanged,

changeDiary, status)
ARControlStruct *control;
ARNameType name;
unsigned int *refreshCode;
ARCharMenuStruct *menuDefn;
char **helpText;
ARTimestamp *timestamp;
ARNameType owner;
ARNameType lastChanged;
char **changeDiary;
ARStatusList *status;

DESCRIPTION

ARGetCharMenu will retrieve information about the character menu indicated by name on the specified server.

Access to character menu information is available to all users.



AR System and Notification Subsystem Manual Pages 129

5

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the character menu to retrieve.

RETURN VALUES

refreshCode The code indicating the refresh frequency for the character menu when it is being
used.

If you do not want the refresh code returned, specify NULL for this parameter.

menuDefn The definition of the character menu.

If you do not want the menu definition returned, specify NULL for this parameter.

helpText The help text that is associated with the character menu.

If you do not want the help text returned, specify NULL for this parameter. This is
useful when you will not be using the help text information as you are calling this
routine to verify the existence of a character menu. By not retrieving the help text,
the operation is more efficient and takes less time and space.

timestamp The timestamp indicating when this character menu was last changed.

If you do not want the timestamp returned, specify NULL for this parameter.

owner The user who is defined as the owner of this character menu definition.

If you do not want the owner returned, specify NULL for this parameter.

lastChanged The user who last changed this character menu definition in some way.

If you do not want the lastChanged user returned, specify NULL for this parameter.

changeDiary The change diary that is associated with the character menu. Space is allocated for
the text and a pointer to that space returned. If there is no change diary for the
character menu, a NULL pointer is returned.

The text returned is a formatted diary string. Use the ARDecodeDiary call to decode
this string into an array of timestamp, user name, and text string pieces.

If you do not want the change diary returned, specify NULL for this parameter. This
is useful when you will not be using the change diary information as you are calling
this routine to verify the existence of a character menu. By not retrieving the change
diary, the operation is more efficient and takes less time and space.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful



130 Action Request System Programmer’s Guide—January 1995

5

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateCharMenu (3),ARDecodeDiary (3),ARDeleteCharMenu (3),ARExpandCharMenu (3),
ARGetListCharMenu  (3),ARSetCharMenu (3),FreeARCharMenuStruct (3),FreeARStatusList (3)

ARGetEntry

NAME

ARGetEntry – retrieve details of an entry in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARGetEntry (control, schema, entryId, idList, fieldList, status)

ARControlStruct *control;
ARNameType schema;
AREntryIdType entryId;
ARInternalIdList *idList;
ARFieldValueList *fieldList;
ARStatusList *status;

DESCRIPTION

ARGetEntry  will retrieve information about the entry indicated by the entry ID in the specified schema. You can
request the values for a specific list of fields, for all fields that are accessible, or to no fields to just verify the existence
of an entry.

Access to entries is controlled through the security scheme of the AR System. The user identified in the control record
is used to determine which fields are accessible to the requestor. If a value is requested for a field that the user does
not have access to, no value will be returned for that field in the result and awarning message will be returned in the
status list. Each value is checked for accessibility, with either the value or an error returned.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.



AR System and Notification Subsystem Manual Pages 131

5

schema Identifies the schema that contains the desired entry.

entryId Identifies the specific entry within the schema whose values are to be retrieved.

idList A list of field IDs identifying the fields for which values are desired. If you want only
a few specific fields, it is more efficient to specify just those fields rather than
retrieve all values and then just use the ones you want.

To retrieve ALL fields (subject to security constraints), specify a NULL pointer for
this parameter or specify this list with the numItems field set to 0.

To perform a quick check of existence, specify a NULL pointer for this parameter
and NULL for thefieldList  parameter.

RETURN VALUES

fieldList A list of field/value pairs for all the fields requested. The items in the list will be in
the same order as the IDs listed in the idList (if a specific list was given). For any
field ID that doesn’t exist in the schema or for which you do not have access, the
field ID at the corresponding position will be 0 and the value NULL. Appropriate
errors/warnings will be included in the status return.

To check existence of the item without retrieving any fields, pass a NULL pointer
for this parameter.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateEntry  (3),ARDecodeDiary (3),ARDecodeStatusHistory (3),ARDeleteEntry (3),
ARGetEntryStatistics (3),ARGetListEntry  (3),ARSetEntry (3), FreeARInternalIdList  (3),
FreeARFieldValueList (3),FreeARStatusList (3)



132 Action Request System Programmer’s Guide—January 1995

5

ARGetEntryStatistics

NAME

ARGetEntryStatistics – compute a statistic on data meeting a specified condition

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARGetEntryStatistics (control, schema, qualifier, target, statistic, results, status)

ARControlStruct *control;
ARNameType schema;
ARQualifierStruct *qualifier;
ARFieldValueOrArithStruct *target;
unsigned int statistic;
ARValueList *results;
ARStatusList *status;

DESCRIPTION

ARGetEntryStatistics will compute a statistical result on data matching a specified set of criteria. It will retrieve a
statistic computed across all of all the entries in the schema that meet the specified criteria and are accessible by the
user.

The access control scheme of the system controls which entries can be searched. If you have access to the entry ID
field of an entry, the entry is included in your search set and will be included by this call. If you don’t, the item is not
in the search set and will never be included by this call.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

schema Identifies the schema that is to be searched.

qualifier A structure identifying the condition(s) to be searched on. Any field that is
accessible to the user can be qualified. Qualifications include conditional operations
(AND, OR, NOT), relational operations (=, !=, >, >=, <, <=, and a pattern matching
LIKE operator), and arithmetic operations on numeric types. The condition can
apply to a single field or to multiple fields.

You must have read access to all the fields being qualified. If a field does not exist
or you do not have read access to a field, an error is returned and the operation is not
performed.

To select ALL entries, supply either a NULL or a structure with the operation field
set to AR_COND_OP_NONE.



AR System and Notification Subsystem Manual Pages 133

5

target A structure identifying the arithmetic operation to be used for computing the
statistic. The structure can be as simple as a single field or as complex as desired
within the arithmetic operations supported by the system.

You must have read access to all the fields on which you are computing the statistic
result. If you do not have read access to a field, the operation will be rejected.

If the operation being performed is a COUNT operation, this field is optional. You
can omit it by setting the tag field to 0. For all other operations, this field must be
supplied to identify what field(s) you are computing the statistic on.

statistic The statistic to perform. It must be from the setAR_STAT_OP_COUNT,
AR_STAT_OP_SUM, AR_STAT_OP_AVERAGE,
AR_STAT_OP_MINIMUM, andAR_STAT_OP_MAXIMUM.

RETURN VALUES

results The result from the statistic operation.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateEntry  (3),ARDeleteEntry (3),ARGetEntry  (3),ARGetListEntry (3), ARLoadARQualifierStruct (3),
ARMergeEntry  (3),ARSetEntry (3),FreeARFieldValueOrArithStruct  (3),FreeARQualifierStruct  (3),
FreeARStatusList (3),FreeARValueList (3)



134 Action Request System Programmer’s Guide—January 1995

5

ARGetEscalation

NAME

ARGetEscalation – retrieve information about an escalation in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARGetEscalation (control, name, escalationTm, schema, enable, query, actionList, helpText, timestamp,

owner, lastChanged, changeDiary, status)
ARControlStruct *control;
ARNameType name;
AREscalationTmStruct *escalationTm;
ARNameType schema;
unsigned int *enable;
ARQualifierStruct *query;
ARFilterActionList *actionList;
char **helpText;
ARTimestamp *timestamp;
ARNameType owner;
ARNameType lastChanged;
char **changeDiary;
ARStatusList *status;

DESCRIPTION

ARGetEscalation will retrieve information about an escalation with the indicated name on the specified server.

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the escalation to retrieve.

RETURN VALUES

escalationTm The checking time of the escalation. It defines a datetime or frequency of AR System
checks for escalation condition. Escalation time has two formats, one is in seconds
as a time interval between checks, the other is a datetime mask specifying on what
day of the month or week at what hour and minute of the day the AR System checks
the escalation condition.

If you do not want the escalationTm returned, specify NULL for this parameter.



AR System and Notification Subsystem Manual Pages 135

5

schema The name of the schema the escalation is tied to.

If you do not want the schema returned, specify NULL for this parameter.

enable A flag set to 0 if this escalation is disabled and to 1 if it is enabled.

If you do not want the enable flag returned, specify NULL for this parameter.

query A qualification that is used to search the specified schema. Any records that match
the qualification will have the escalation action performed on them.

If there is no qualifying condition, a value of AR_COND_OP_NONE is returned for
this value.

If you do not want the query returned, specify NULL for this parameter.

actionList The set of one or more actions to take when the escalation conditions are met. Every
escalation MUST have at least one action and can have up to AR_MAX_ACTIONS.

If you do not want the action list returned, specify NULL for this parameter.

helpText The help text that is associated with the escalation.

If you do not want the help text returned, specify NULL for this parameter. This is
useful when you will not be using the help text information as you are calling this
routine to verify the existence of a escalation. By not retrieving the help text, the
operation is more efficient and takes less time and space.

timestamp The timestamp indicating when this escalation was last changed.

If you do not want the timestamp returned, specify NULL for this parameter.

owner The user who is defined as the owner of this escalation definition.

If you do not want the owner returned, specify NULL for this parameter.

lastChanged The user who last changed this escalation definition in some way.

If you do not want the lastChanged user returned, specify NULL for this parameter.

changeDiary The change diary that is associated with the escalation. Space is allocated for the text
and a pointer to that space returned. If there is no change diary for the escalation, a
NULL pointer is returned.

The text returned is a formatted diary string. Use the ARDecodeDiary call to decode
this string into an array of timestamp, user name, and text string pieces.

If you do not want the change diary returned, specify NULL for this parameter. This
is useful when you will not be using the change diary information as you are calling
this routine to verify the existence of a escalation. By not retrieving the change diary,
the operation is more efficient and takes less time and space.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful



136 Action Request System Programmer’s Guide—January 1995

5

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateEscalation (3),ARDecodeDiary (3),ARDeleteEscalation (3),ARGetListEscalation (3),
ARSetEscalation (3),FreeARQualifierStruct  (3),FreeARFilterActionList  (3),FreeARStatusList (3)

ARGetField

NAME

ARGetField – retrieve information about a field in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARGetField (control, schema, fieldId, dataType, option, createMode, defaultVal, permissions, limit,

displayList, helpText, timestamp, owner, lastChanged, changeDiary, status)

ARControlStruct *control;
ARNameType schema;
ARInternalId fieldId;
unsigned int *dataType;
unsigned int *option;
unsigned int *createMode;
ARValueStruct *defaultVal;
ARPermissionList *permissions;
ARFieldLimitStruct *limit;
ARDisplayList *displayList;
char **helpText;
ARTimestamp *timestamp;
ARNameType owner;
ARNameType lastChanged;
char **changeDiary;
ARStatusList *status;



AR System and Notification Subsystem Manual Pages 137

5

DESCRIPTION

ARGetField will retrieve information about the specified field in the indicated schema on the specified server.
Information specifically about the individual field is retrieved.

Access to field information is restricted to users who have been granted access to the schema which holds the field. If
you are granted permission to the schema, you can see all the data except for the permission information which is
limited to users with Administrator capability. If you are not granted permission, you cannot retrieve any information
about the field.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

schema The name of the schema containing the field about which information is being
requested.

fieldId The internal ID of the specific field within the schema to get information about.

RETURN VALUES

dataType The datatype of the field. The code (as defined in ar.h) indicating the base datatype
of the field.

If you do not want the datatype returned, specify NULL for this parameter.

option The option flag indicating whether the field is a required or optional field.

If you do not want the option flag returned, specify NULL for this parameter.

createMode A flag indicating whether the field is open or protected at create time. An open field
is one any user, whether having write access or not, can set during the Submit
operation. A protected field is one the user must have been given specific write
access to in order to set the field during the Submit operation.

If you do not want the create mode returned, specify NULL for this parameter.

defaultVal The value to use for this field if a new entry is submitted without a value for this
field. If there is no default value for the field, the value returned will have a tag of
AR_DEFAULT_VALUE_NONE.

If you do not want the default value returned, specify NULL for this parameter.

permissions The permissions that have been assigned to this field. The information details which
groups have access to the field and what access those groups have.

Only a user with Administrator capability can retrieve the permission information.
Any other user will receive an empty list along with a warning,
AR_WARN_PERM_REQUIRES_ADMIN, indicating that no permission
information was returned because the user did not have Administrator capability.

If you do not want the permissions returned, specify NULL for this parameter.

limit The limits which have been assigned for this field.

If you do not want the limits returned, specify NULL for this parameter.



138 Action Request System Programmer’s Guide—January 1995

5

displayList The display list is an array of entries, each of which describes how the field should
be displayed on the screen. Each of these items has an associated character tag to
identify it. This tag can be specified during Export operations to get only the
definition for a given tag. Each entry contains the tag, the name for the field, the
position of the field, and the type of control to use on the screen.

If you do not want the displayList returned, specify NULL for this parameter.

helpText The help text that is associated with the field. Space is allocated for the text and a
pointer to that space returned. If there is no help text for the schema, a NULL pointer
is returned.

If you do not want the helpText returned, specify NULL for this parameter. This is
useful when you will not be using the helpText information as you are calling this
routine to verify the existence of a schema. By not retrieving the helpText, the
operation is more efficient and takes less time and space.

timestamp Timestamp indicating when this field was last changed.

If you do not want the timestamp returned, specify NULL for this parameter.

owner The user who is defined as the owner of this field definition.

If you do not want the owner returned, specify NULL for this parameter.

lastChanged The user who last changed this field definition in some way.

If you do not want the lastChanged user returned, specify NULL for this parameter.

changeDiary The change diary that is associated with the field. Space is allocated for the text and
a pointer to that space returned. If there is no change diary for the field, a NULL
pointer is returned.

The text returned is a formatted diary string. Use the ARDecodeDiary call to decode
this string into an array of timestamp, user name, and text string pieces.

If you do not want the change diary returned, specify NULL for this parameter. This
is useful when you will not be using the change diary information as you are calling
this routine to verify the existence of a field. By not retrieving the change diary, the
operation is more efficient and takes less time and space.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information



AR System and Notification Subsystem Manual Pages 139

5

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateField (3),ARDecodeDiary (3),ARDeleteField (3),ARGetSchema (3),ARGetListField  (3),
ARSetField (3),FreeARDisplayList (3),FreeARFieldLimitStruct  (3),FreeARPermissionList (3),
FreeARStatusList (3),FreeARValueStruct (3)

ARGetFilter

NAME

ARGetFilter – retrieve information about a filter in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARGetFilter (control, name, order, schema, opSet, enable, query, actionList, helpText, timestamp, owner,

lastChanged, changeDiary, status)
ARControlStruct *control;
ARNameType name;
unsigned int *order;
ARNameType schema;
unsigned int *opSet;
unsigned int *enable;
ARQualifierStruct *query;
ARFilterActionList *actionList;
char **helpText;
ARTimestamp *timestamp;
ARNameType owner;
ARNameType lastChanged;
char **changeDiary;
ARStatusList *status;

DESCRIPTION

ARGetFilter  will retrieve information about a filter with the indicated name on the specified server.

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the filter to retrieve.



140 Action Request System Programmer’s Guide—January 1995

5

RETURN VALUES

order The order of the filter. The filter order is a code between 0 and 1000, inclusive. It
allows the ordering of filters so that filters with lower orders are executed before
filters with higher orders. So, the filter order allows you to specify the order in which
filters will be processed and lets you insure that given filters will be performed in the
order you desire.

If you do not want the order returned, specify NULL for this parameter.

schema The name of the schema the filter is tied to.

If you do not want the schema returned, specify NULL for this parameter.

opSet A bit mask of the operations this filter applies to. This field consists of one or more
of the following values OR’ed together:

AR_OPERATION_GET , AR_OPERATION_SET,
AR_OPERATION_CREATE , AR_OPERATION_DELETE , and
AR_OPERATION_MERGE .

If you do not want the operation set returned, specify NULL for this parameter.

enable A flag set to 0 if this filter is disabled and to 1 if it is enabled.

If you do not want the enable flag returned, specify NULL for this parameter.

query A qualification that is used to test the operation/record being accessed. The
operation/values of fields for the record must match this qualification to trigger the
filter.

If there is no qualifying condition, a value of AR_COND_OP_NONE is returned for
this value.

If you do not want the query returned, specify NULL for this parameter.

actionList The set of one or more actions to take when the filter conditions are met. Every filter
MUST have at least one action and can have up to AR_MAX_ACTIONS.

If you do not want the action list returned, specify NULL for this parameter.

helpText The help text that is associated with the filter.

If you do not want the help text returned, specify NULL for this parameter. This is
useful when you will not be using the help text information as you are calling this
routine to verify the existence of a filter. By not retrieving the help text, the operation
is more efficient and takes less time and space.

timestamp The timestamp indicating when this filter was last changed.

If you do not want the timestamp returned, specify NULL for this parameter.

owner The user who is defined as the owner of this filter definition.

If you do not want the owner returned, specify NULL for this parameter.

lastChanged The user who last changed this filter definition in some way.

If you do not want the lastChanged user returned, specify NULL for this parameter.



AR System and Notification Subsystem Manual Pages 141

5

changeDiary The change diary that is associated with the filter. Space is allocated for the text and
a pointer to that space returned. If there is no change diary for the filter, a NULL
pointer is returned.

The text returned is a formatted diary string. Use the ARDecodeDiary call to decode
this string into an array of timestamp, user name, and text string pieces.

If you do not want the change diary returned, specify NULL for this parameter. This
is useful when you will not be using the change diary information as you are calling
this routine to verify the existence of a filter. By not retrieving the change diary, the
operation is more efficient and takes less time and space.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateFilter  (3),ARDecodeDiary (3),ARDeleteFilter (3),ARGetListFilter  (3),ARSetFilter (3),
FreeARFilterActionList  (3),FreeARQualifierStruct  (3),FreeARStatusList (3)



142 Action Request System Programmer’s Guide—January 1995

5

ARGetFullTextInfo

NAME

ARGetFullTextInfo – get full text information from an AR System server

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
int ARGetFullTextInfo (control, requestList, fullTextInfo, status)

ARControlStruct *control;
ARFullTextInfoRequestList *requestList;
ARFullTextInfoList *fullTextInfo;
ARStatusList *status;

DESCRIPTION

ARGetFullTextInfo  retrieves one or more pieces of information about the AR System server full text environment.

Access to this information is available to all users.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

requestList This is a list of one or more codes indicating the information that is desired. The
various codes are discussed below under the FullTextInfo parameter.

RETURN VALUES

fullTextInfo The information retrieved from the server. If there is an error retrieving any piece of
information, its value will be NULL (have datatype set to
AR_DATA_TYPE_NULL).

Following are the various codes that can be requested:

n AR_FULLTEXTINFO_COLLECTION_DIR: A character string
containing the directory in which the full text collection information is stored.

n AR_FULLTEXTINFO_STOPWORD: A structure containing the currently
defined words to ignore (stopwords) for the full text collection.

n AR_FULLTEXTINFO_CASE_SENSITIVE_SRCH: An integer
indicating whether the search will be performed in a case-sensitive
(AR_CASE_SENSITIVE_SEARCH) or case-insensitive
(AR_CASE_INSENSITIVE_SEARCH) manner.



AR System and Notification Subsystem Manual Pages 143

5

n AR_FULLTEXTINFO_STATE:  An integer indicating whether full text support
is Active (AR_FULLTEXT_STATE_ON) or inactive
(AR_FULLTEXT_STATE_OFF).

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARGetServerInfo (3),ARSetFullTextInfo  (3),ARSetServerInfo (3),FreeARFullTextInfoList  (3),
FreeARFullTextInfoRequestList (3),FreeARStatusList (3)



144 Action Request System Programmer’s Guide—January 1995

5

ARGetListActiveLink

NAME

ARGetListActiveLink – retrieve a list of active links on a server

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARGetListActiveLink (control, schema, changedSince, nameList, status)

ARControlStruct *control;
ARNameType schema,
ARTimestamp changedSince;
ARNameList *nameList;
ARStatusList *status;

DESCRIPTION

ARGetListActiveLink  retrieves a list of all the active links on a given server. You can specify a timestamp that limits
the active links retrieved to those changed after the time specified or a schema name that limits the list of active links
to those related to a given schema. These are useful for getting a list of things that are different since the last time you
accessed the server or that were tied to a specific server.

Access to active links is controlled through the security scheme of the AR System. The user identified in the control
record is used to determine which active links are accessible to the requestor. Only active links that are accessible to
the user are returned.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

schema The name of a schema to limit active links retrieved to only those linked to the
specified schema. If this parameter is NULL or an empty string, there is no schema
qualification so all active links will be retrieved. If specified, only those linked to the
specified schema are retrieved.

changedSince Timestamp used to limit active links returned to those that have been changed after
this time. To specify retrieval of ALL active links (subject to qualification by the
schema as noted above), set the timestamp to 0.

RETURN VALUES

nameList A list of all the active links, matching the time and schema criteria, to which the user
has access.

If no accessible active links match the criteria, the routine will return success but this
list will contain 0 names.



AR System and Notification Subsystem Manual Pages 145

5

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateActiveLink  (3),ARDeleteActiveLink (3),ARDeleteSchema (3),ARGetActiveLink  (3),
ARSetActiveLink  (3),FreeARNameList (3),FreeARStatusList (3)

ARGetListAdminExtension

NAME

ARGetListAdminExtension – retrieve a list of administrator extensions on a server

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARGetListAdminExtension (control, changedSince, nameList, status)

ARControlStruct *control;
ARTimestamp changedSince;
ARNameList *nameList;
ARStatusList *status;

DESCRIPTION

ARGetListAdminExtension retrieves a list of all the administrator extensions on a given server. You can specify a
timestamp that limits the extensions retrieved to those changed after the time specified. This is useful for getting a list
of things that are different since the last time you accessed the server.

Access to administrator extensions is controlled through the security scheme of the AR System. The user identified in
the control record is used to determine which extensions are accessible to the requestor. Only extensions that are
accessible to the user are returned.



146 Action Request System Programmer’s Guide—January 1995

5

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

changedSince Timestamp used to limit extensions returned to those that have been changed after
this time. To specify retrieval of ALL extensions, set the timestamp to 0.

RETURN VALUES

nameList A list of all the extensions matching the time criteria to which the user has access.

If no accessible extensions match the criteria, the routine will return success but this
list will contain 0 names.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateAdminExtension (3),ARDeleteAdminExtension (3),ARExecuteAdminExtension (3),
ARGetAdminExtension (3),ARSetAdminExtension (3),FreeARNameList (3),FreeARStatusList (3)



AR System and Notification Subsystem Manual Pages 147

5

ARGetListCharMenu

NAME

ARGetListCharMenu – retrieve a list of character menus on a server

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARGetListCharMenu (control, changedSince, nameList, status)

ARControlStruct *control;
ARTimestamp changedSince;
ARNameList *nameList;
ARStatusList *status;

DESCRIPTION

ARGetListCharMenu  retrieves a list of all the character menus on a given server. You can specify a timestamp that
limits the character menus retrieved to those changed after the time specified. This is useful for getting a list of things
that are different since the last time you accessed the server.

Access to character menu information is available to all users.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

changedSince Timestamp used to limit character menus returned to those that have been changed
after this time. To specify retrieval of ALL character menus set the timestamp to 0.

RETURN VALUES

nameList A list of all the character menus matching the time criteria.

If no character menus match the criteria, the routine will return success but this list
will contain 0 names.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully



148 Action Request System Programmer’s Guide—January 1995

5

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateCharMenu (3),ARDeleteCharMenu (3),ARExpandCharMenu (3),ARGetCharMenu (3),
ARSetCharMenu (3),FreeARNameList (3),FreeARStatusList (3)

ARGetListEntry

NAME

ARGetListEntry – retrieve a list of entries meeting a specified condition

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARGetListEntry (control, schema, qualifier, sortList, maxRetrieve, entryList, numMatches, status)

ARControlStruct *control;
ARNameType schema;
ARQualifierStruct *qualifier;
ARSortList *sortList;
unsigned int maxRetrieve;
AREntryListList *entryList;
unsigned int *numMatches;
ARStatusList *status;

DESCRIPTION

ARGetListEntry  is a high performance database search. It will retrieve the entry ID and list description of all the
entries in the schema that meet the specified criteria and are accessible by the user.

The access control scheme of the system controls which entries can be searched. If you have access to the entry ID
field of an entry, the entry is included in your search set and can be selected by this call. If you don’t, the item is not
in the search set and will never be returned by this call.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

schema Identifies the schema that is to be searched.



AR System and Notification Subsystem Manual Pages 149

5

qualifier A structure identifying the condition(s) to be searched on. Any field that is
accessible to the user can be qualified. Qualifications include conditional operations
(AND, OR, NOT), relational operations (=, !=, >, >=, <, <=, and a pattern matching
LIKE operator), and arithmetic operations on numeric types. The condition can
apply to a single field or to multiple fields.

You must have read access to all the fields being qualified. If a field does not exist
or you do not have read access to a field, an error is returned and the operation is not
performed.

To select ALL entries, supply either a NULL or a structure with the operation field
set to AR_COND_OP_NONE.

sortList A list of fields to sort the resulting entries by. You can specify any number of fields
and specify whether to sort in ascending or descending order.

You must have read access to all the fields on which you are sorting. If you do not
have read access to a field, the operation will be rejected.

If sorting is not important, you can specify either a NULL or set the numItems field
to 0. By default, the entries are sorted by entry ID.

maxRetrieve The maximum number of entries to retrieve. This setting allows you to specify an
upper boundary on the number of entries that this call will retrieve. This helps to
limit calls to the database that access too many entries due to insufficient qualifying
criteria.

Specify a value of AR_NO_MAX_LIST_RETRIEVE to specify unlimited retrieval
of all possible matches.

RETURN VALUES

entryList A list of all the entries matching the specified criteria. Each item in the list will
supply the entry ID and the list description for the matching entries. If you do not
have access to fields defined as part of the list description, those fields will be
omitted. If you do not have access to any of the fields, the list description will be an
empty string.

If no entries match the criteria, the routine will return success but this list will
contain 0 entries.

numMatches This field will be loaded with the total number of matches found for the qualification
criteria. If the number that matches is less than the value formaxRetrieve, this
number will be equal to the number of items returned. Otherwise, it will be equal to
the total number that would have been returned had they all been returned.

This parameter can be set to NULL to ignore the total count. If set to NULL, the
database can abandon the search for matches as soon as it hits the maximum limit
specified bymaxRetrieve. This provides for better performance with queries that
match more than what is desired. With this parameter, the search must continue in
order to complete the count of potential matches. There is a gain from a reduction of
data returned, but the search costs are unchanged.



150 Action Request System Programmer’s Guide—January 1995

5

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateEntry  (3),ARDeleteEntry (3),ARGetEntry  (3),ARGetEntryStatistics (3),
ARLoadARQualifierStruct (3), ARMergeEntry  (3),ARSetEntry (3),FreeAREntryList  (3),
FreeARQualifierStruct  (3),FreeARSortList (3),FreeARStatusList (3)

ARGetListEscalation

NAME

ARGetListEscalation – retrieve a list of escalations on a server

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARGetListEscalation (control, schema, changedSince, nameList, status)

ARControlStruct *control;
ARNameType schema;
ARTimestamp changedSince;
ARNameList *nameList;
ARStatusList *status;

DESCRIPTION

ARGetListEscalation retrieves a list of all the escalations on a given server. You can specify a timestamp that limits
the escalations retrieved to those to be fired before the time specified and/or a schema name that limits the list of
escalations to those related to a given schema. These are useful for getting a list of things that are different since the
last time you accessed the server and/or that were tied to a specific server.



AR System and Notification Subsystem Manual Pages 151

5

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

schema The name of a schema to limit escalations retrieved to only those linked to the
specified schema. If this parameter is NULL or an empty string, there is no schema
qualification so all escalations will be retrieved. If specified, only those linked to the
specified schema are retrieved.

changedSince Timestamp used to limit escalations returned to those that are to be fired before this
time. To specify retrieval ofall escalations, set the timestamp to 0.

RETURN VALUES

nameList A list of all the escalations matching the time and schema criteria.

If no escalations match the criteria, the routine will return success but this list will
contain 0 names.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateEscalation (3),ARDeleteEscalation (3),ARDeleteSchema (3),ARGetEscalation (3),ARSetEscalation
(3), FreeARNameList (3),FreeARStatusList (3)



152 Action Request System Programmer’s Guide—January 1995

5

ARGetListField

NAME

ARGetListField – retrieve a list of fields for a given schema

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARGetListField (control, schema, changedSince, idList, status)

ARControlStruct *control;
ARNameType schema;
ARTimestamp changedSince;
ARInternalIdList *idList;
ARStatusList *status;

DESCRIPTION

ARGetListField  retrieves a list of all the fields for a given schema. You can specify a timestamp that limits the fields
retrieved to those changed after the time specified. This is useful for getting a list of things that are different since the
last time you accessed the schema.

Access to field lists is available to all users who have permission to access the schema.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

schema The name of the schema from which to get a list of fields.

changedSince Timestamp used to limit fields returned to those that have been changed after this
time. To specify retrieval ofall fields, set the timestamp to 0.

RETURN VALUES

idList A list of the internal IDs of all the fields matching the time criteria.

If no fields match the criteria, the routine will return success but this list will contain
0 IDs.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful



AR System and Notification Subsystem Manual Pages 153

5

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateField (3),ARDeleteField (3),ARGetField (3),ARSetField (3),FreeARInternalIDList  (3),
FreeARStatusList (3)

ARGetListFilter

NAME

ARGetListFilter – retrieve a list of filters on a server

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARGetListFilter (control, schema, changedSince, nameList, status)

ARControlStruct *control;
ARNameType schema;
ARTimestamp changedSince;
ARNameList *nameList;
ARStatusList *status;

DESCRIPTION

ARGetListFilter  retrieves a list of all the filters on a given server. You can specify a timestamp that limits the filters
retrieved to those changed after the time specified and/or a schema name that limits the list of filters to those related
to a given schema. These are useful for getting a list of things that are different since the last time you accessed the
server and/or that were tied to a specific server.

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.



154 Action Request System Programmer’s Guide—January 1995

5

schema The name of a schema to limit filters retrieved to only those linked to the specified
schema. If this parameter is NULL or an empty string, there is no schema
qualification so all filters will be retrieved. If specified, only those linked to the
specified schema are retrieved.

changedSince Timestamp used to limit filters returned to those that have been changed after this
time. To specify retrieval ofall filters, set the timestamp to 0.

RETURN VALUES

nameList A list of all the filters matching the time and schema criteria.

If no filters match the criteria, the routine will return success but this list will contain
0 names.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateFilter  (3),ARDeleteFilter (3),ARDeleteSchema (3),ARGetFilter  (3),ARSetFilter (3),
FreeARNameList (3),FreeARStatusList (3)



AR System and Notification Subsystem Manual Pages 155

5

ARGetListGroup

NAME

ARGetListGroup – retrieve a list of groups from the access control cache

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARGetListGroup (control, userName, groupList, status)

ARControlStruct *control;
ARNameType *userName;
ARGroupInfoList *groupList;
ARStatusList *status;

DESCRIPTION

ARGetListGroup  retrieves a list of all the groups known on a given server.

This operation can be performed by any user to get information about the list of groups on the server or for a list of
groups for yourself. To get information about groups for another user, you must have Administrator capabilities within
the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

userName The name of a specific user of the system. If specified, a list of groups that the
specified user is a member of is returned. If not specified (set to NULL), a list of all
groups defined on the server is returned.

RETURN VALUES

groupList A list of all the groups the user is a member of or, if no user is specified, that are
known on the server. The information returned consists of a list of the unique group
IDs along with the one or more names associated with each ID.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.



156 Action Request System Programmer’s Guide—January 1995

5

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARGetListUser (3),FreeARGroupInfoList  (3),FreeARStatusList (3)

ARGetListSchema

NAME

ARGetListSchema – retrieve a list of schemas on a server

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARGetListSchema (control, changedSince, nameList, status)

ARControlStruct *control;
ARTimestamp changedSince;
ARNameList *nameList;
ARStatusList *status;

DESCRIPTION

ARGetListSchema retrieves a list of all the schemas on a given server. You can specify a timestamp that limits the
schemas retrieved to those changed after the time specified. This is useful for getting a list of things that are different
since the last time you accessed the server.

Access to schema lists is available to all users. The list of schemas returned will be limited to those schemas to which
you have access.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.



AR System and Notification Subsystem Manual Pages 157

5

changedSince Timestamp used to limit schemas returned to those that have been changed after this
time. To specify retrieval ofall schemas, set the timestamp to 0.

RETURN VALUES

nameList A list of all the schemas matching the time criteria to which you have access.

If no accessible schemas match the criteria, the routine will return success but this
list will contain 0 names.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateSchema (3),ARDeleteSchema (3),ARGetSchema (3),ARSetSchema (3),FreeARNameList (3),
FreeARStatusList (3)



158 Action Request System Programmer’s Guide—January 1995

5

ARGetListServer

NAME

ARGetListServer – retrieve a list of servers accessible from the current machine

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
int ARGetListServer (serverList, status)

ARServerNameList *serverList;
ARStatusList *status;

DESCRIPTION

ARGetListServer retrieves a list of all the servers that are accessible from the current machine. It gets the list of
servers by processing the AR directory file /etc/ar (in UNIX) or <ar_config_dir>\ar (in the Windows NT server),
retrieving all registered AR System servers.

The /etc/ar file may be under NIS control. If it is, the NIS map is consulted instead of any local
/etc/ar file.

Access to the server list is available to all users.

RETURN VALUES

serverList A list of all the servers that are registered.

If no servers are registered, the routine will return success but this list will contain 0
names.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad



AR System and Notification Subsystem Manual Pages 159

5

SEE ALSO

FreeARServerNameList (3),FreeARStatusList (3)

ARGetListSQL
NAME

ARGetListSQL – retrieve a list of results for a specified SQL command

SYNOPSIS

#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"

int ARGetListSQL(control, sqlCommand, maxRetrieve, valueListList, numMatches,
                 status)

ARControlStruct *control;
char *sqlCommand;
unsigned int maxRetrieve;
ARValueListList *valueListList;
unsigned int *numMatches;
ARStatusList *status;

DESCRIPTION

ARGetListSQL  allows you to issue an SQL command directly to the underlying SQL database. It will retrieve values
appropriate to the command issued and will return the 0 or more rows in the database that match. If this operation is
attempted against a flat file database, 0 matches and a warning will be returned.

The SQL command is issued by the AR System server process so the permissions of the AR System server are used
to control what level of access is available to items in the database.

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control  The control record for the operation. It contains information about the user requesting
the operation and where that operation is to be performed. The user and server fields
must be supplied in this structure.

sqlCommand The SQL command to be issued. You can issue any SQL command, but all the syntax
rules that are appropriate to the underlying database must be followed.

You must have access to perform the requested operation. Remember, you are running
as the AR System server so that user must have permissions to perform the operation
being requested.



160 Action Request System Programmer’s Guide—January 1995

5

maxRetrieve  The maximum number of rows to retrieve. This setting allows you to specify an upper
boundary on the number of rows that this call will retrieve. This helps to limit calls to
the database that access too many rows due to insufficient qualifying criteria.

Specify a value of AR_NO_MAX_LIST_RETRIEVE to specify unlimited retrieval of
ALL possible matches.

RETURN VALUES

valueListList A list of all the columns for all the rows that were selected by the command. Each item
in this list is a list of the values that were retrieved for a particular row selected from the
database.

If no rows match the criteria, the routine will return success but this list will contain 0
entries.

numMatches  This field will be loaded with the total number of matches found for the qualification
criteria. If the number that matches is less than the value formaxRetrieve, this number
will be equal to the number of items returned. Otherwise, it will be equal to the total
number that would have been returned had they all been returned.

This parameter can be set to NULL to ignore the total count. If set to NULL, the database
can abandon the search for matches as soon as it hits the maximum limit specified by
maxRetrieve. This provides for better performance with queries that match more than
what is desired. With this parameter, the search must continue in order to complete the
count of potential matches. There is a gain from a reduction of data returned, but the
search costs are unchanged.

status  A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or more
notes each containing the type of error, its code, and a message generated using the
language specified in the control record. The more serious errors are listed first in the
list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The return
will be one of the following values:

n AR_RETURN_OK : Operation successful

n AR_RETURN_WARNING : Warning during process but operation completed
successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL : Operation failed; the status array may or may not contain
any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARGetListEntry (3)



AR System and Notification Subsystem Manual Pages 161

5

ARGetListUser

NAME

ARGetListUser – retrieve a list of users from the AR System server

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARGetListUser (control, userListType, userList, status)

ARControlStruct *control;
unsigned int userListType;
ARUserInfoList *userList;
ARStatusList *status;

DESCRIPTION

ARGetListUser retrieves a list of all the users known on a given server or of all the users currently accessing a given
server, or information about the current user.

If the operation is to get information about yourself (the current user), the operation can be performed by any user. To
get information about other users, you must have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

userListType Code for the type of user list wanted. The code can be either
AR_USER_LIST_MYSELF to get information about the current user,
AR_USER_LIST_REGISTERED to get a list of all registered users, or
AR_USER_LIST_CURRENT to get a list of all the users who are currently
accessing the server.

RETURN VALUES

userList A list of all the users in the category specified byuserListType. The information
returned consists of a list of the user names along with the license type of the user.
If the category is AR_USER_LIST_CURRENT, the list also contains a timestamp
for the last time the user accessed the server.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:



162 Action Request System Programmer’s Guide—January 1995

5

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARGetListGroup  (3),FreeARUserInfoList (3),FreeARStatusList (3)

ARGetSchema

NAME

ARGetSchema – retrieve information about a schema in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARGetSchema (control, name, groupList, adminGroupList, getListFields, indexList, helpText, timestamp,

owner, lastChanged, changeDiary, status)
ARControlStruct *control;
ARNameType name;
ARInternalIdList *groupList;
ARInternalIdList *adminGroupList;
AREntryListFieldList *getListFields;
ARIndexList *indexList;
char **helpText;
ARTimestamp *timestamp;
ARNameType owner;
ARNameType lastChanged;
char **changeDiary;
ARStatusList *status;

DESCRIPTION

ARGetSchema will retrieve information about the schema indicated by name on the specified server. The information
that is available is the global schema information, not information on specific fields within the schema.

Access to schema information is restricted to users who have been granted access to the schema. If you are granted
permission to the schema, you can see all data except groupList information which is limited to users with
Administrator capability. If you are not granted permission, you cannot retrieve any information about the schema.



AR System and Notification Subsystem Manual Pages 163

5

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the schema to get information about.

RETURN VALUES

groupList A list of 0 or more groups defining the groups whose users will be allowed to access
this schema.

Only a user with Administrator capability can retrieve the groupList information.
Any other user will receive an empty list along with a warning,
AR_WARN_PERM_REQUIRES_ADMIN, indicating that no groupList
information was returned because the user did not have Administrator capability.

If you do not want the groupList returned, specify NULL for this parameter.

adminGroupList A list of 0 or more groups defining the groups whose users have potential sub-
administration access to this schema.

Only a user with Administrator capability can retrieve the adminGroupList
information. Any other user will receive an empty list along with a warning,
AR_WARN_PERM_REQUIRES_ADMIN, indicating that no adminGroupList
information was returned because the user did not have Administrator capability.

If you do not want the adminGroupList returned, specify NULL for this parameter.

getListFields A list of 0 or more fields that define the information that will be returned in the
description component of an ARGetListEntry call.

If you do not want getListFields returned, specify NULL for this parameter.

indexList A list of the indexes to define on the schema.

If you do not want the indexList returned, specify NULL for this parameter.

helpText The help text that is associated with the schema. Space is allocated for the text and
a pointer to that space returned. If there is no help text for the schema, a NULL
pointer is returned.

If you do not want the help text returned, specify NULL for this parameter. This is
useful when you will not be using the help text information as you are calling this
routine to verify the existence of a schema. By not retrieving the help text, the
operation is more efficient and takes less time and space.

timestamp Timestamp indicating when this schema was last changed. Changes include changes
to the schema information itself, to any existing field within the schema (including
changes to character menus), and the addition of new fields. So, this timestamp can
be used to detect any change to the schema definition.

If you do not want the timestamp returned, specify NULL for this parameter.



164 Action Request System Programmer’s Guide—January 1995

5

owner The user who is defined as the owner of this schema definition.

If you do not want the owner returned, specify NULL for this parameter.

lastChanged The user who last changed this schema definition in some way.

If you do not want the lastChanged user returned, specify NULL for this parameter.

changeDiary The change diary that is associated with the schema. Space is allocated for the text
and a pointer to that space returned. If there is no change diary for the schema, a
NULL pointer is returned.

The text returned is a formatted diary string. Use the ARDecodeDiary call to decode
this string into an array of timestamp, user name, and text string pieces.

If you do not want the change diary returned, specify NULL for this parameter. This
is useful when you will not be using the change diary information as you are calling
this routine to verify the existence of a schema. By not retrieving the change diary,
the operation is more efficient and takes less time and space.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateSchema (3),ARDecodeDiary (3),ARDeleteSchema (3),ARGetField (3),ARGetListField  (3),
ARGetListSchema (3),ARSetSchema (3),FreeAREntryListFieldList  (3),FreeARIndexList (3),
FreeARInternalIdList  (3),FreeARStatusList (3)



AR System and Notification Subsystem Manual Pages 165

5

ARGetServerInfo

NAME

ARGetServerInfo – get information from an AR System server

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
int ARGetServerInfo (control, requestList, serverInfo, status)

ARControlStruct *control;
ARServerInfoRequestList *requestList;
ARServerInfoList *serverInfo;
ARStatusList *status;

DESCRIPTION

ARGetServerInfo retrieves one or more pieces of information about the AR System server environment.

Access to this information is available to all users.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

requestList This is a list of one or more codes indicating the information that is desired. The
various codes are discussed below under the serverInfo parameter.

RETURN VALUES

Some return values (for example, for full text search) do not apply to the Windows NT server.

serverInfo The information retrieved from the server. If there is an error retrieving any piece of
information, its value will be NULL (have datatype set to
AR_DATA_TYPE_NULL).

Following are the various codes that can be requested:
• AR_SERVER_INFO_DB_TYPE: A character string containing the type of

underlying database being used by the server.

• AR_SERVER_INFO_SERVER_LICENSE: A character string noting the type
of server license defined for the server.

• AR_SERVER_INFO_USER _LICENSE: An integer noting the number of fixed
write licenses defined on the server.

• AR_SERVER_INFO_VERSION: A character string holding the version of the
AR System server.



166 Action Request System Programmer’s Guide—January 1995

5

• AR_SERVER_INFO_ALLOW_GUESTS: An integer flag with 1 indicating that
guest users are allowed in the system and 0 indicating they are not allowed. Guest
users are users who are not registered with the AR System. If allowed, they can
access only data with “Public” view access and submit new entries with fields
that have a create mode of “Open”.

• AR_SERVER_INFO_USE_ETC_PASSWD: An integer flag with 1 indicating
that the /etc/passwd file will be searched if the user is not registered with the AR
System and 0 indicating that /etc/passwd will not be searched.

• AR_SERVER_INFO_XREF_PASSWORDS: An integer flag with 1 indicating
that the system will check passwords in /etc/passwd for any registered user with a
blank password in the AR System and 0 indicating there is no cross reference
check.

• AR_SERVER_INFO_DEBUG_MODE: An integer bitmask that specifies which
debugging modes are active in the system (bit 1 is the low order bit): bit 1
specifies SQL tracing, bit 2 specifies Filter tracing, bit 3 specifies User tracing, bit
4 specifies Escalation tracing, and bit 5 specifies API tracing.

• AR_SERVER_INFO_DB_NAME: A character string containing the name of the
database/tablespace being used by the AR System. Empty string if using a flat file
database.

• AR_SERVER_INFO_HARDWARE : A character string containing the type of
hardware on which the server is running.

• AR_SERVER_INFO_OS: A character string containing the type of operating
system under which the server is running.

• AR_SERVER_INFO_SERVER_DIR: A character string containing the path
specified for the Server directory. For flat file installations, this is where the data
files are located. For all installations, this is where miscellaneous support data
files are placed.

• AR_SERVER_INFO_DBHOME_DIR : A character string containing the path to
the SQL database home directory. This is used only if the database being used is
an SQL database.

• AR_SERVER_INFO_SET_PROC_TIME: An integer set to the maximum time
to wait for a filter run process operation that is returning a value.

• AR_SERVER_INFO_EMAIL_FROM : A character string containing the name
of the user who will be specified as the source of all email notifications.

• AR_SERVER_INFO_SQL_LOG_FILE : A character string containing the
filename (relative or absolute) where the information from the SQL tracing
operation is placed.



AR System and Notification Subsystem Manual Pages 167

5

• AR_SERVER_INFO_FLOAT_LICENSE : An integer noting the number of
floating write licenses defined on the server.

• AR_SERVER_INFO_FLOAT_TIMEOUT : An integer noting the number of
hours before a floating write license will automatically timeout.

• AR_SERVER_INFO_UNQUAL_QUERIES: An integer flag with 1 indicating
that the server will respond to unqualified queries from users and 0 indicating that
unqualified queries will return an error.

• AR_SERVER_INFO_FILTER_LOG_FILE : A character string containing the
filename (relative or absolute) where the information from the Filter tracing
operation is placed.

• AR_SERVER_INFO_USER_LOG_FILE: A character string containing the
filename (relative or absolute) where the information from the User tracing
operation is placed.

• AR_SERVER_INFO_REM_SERV_ID: A character string containing the
Remedy server id that is associated with the server license.

• AR_SERVER_INFO_EMBEDDED_SQL: An integer flag with 1 indicating that
the server is running with an embedded SQL database and 0 indicating that the
database is not embedded in (was purchased separately from) the AR System.

• AR_SERVER_INFO_MAX_SCHEMAS : An integer which if set to 0 indicates
no limit on the number of schemas allowed on the server and if set to a number
indicates the maximum number of schemas that can be created on the server.

• AR_SERVER_INFO_DB_VERSION: A character string containing the version
of the database that is being used by the AR System.

• AR_SERVER_INFO_MAX_ENTRIES : An integer that identifies the maximum
number of entries that will be returned in response to a single ARGetListEntry
call. This value works in combination with the value that can be defined by the
user in the call toARGetListEntry  with the minimum of the two values taking
precedence in a given call.

• AR_SERVER_INFO_MAX_F_DAEMONS : An integer that specifies the
maximum number of “fast” servers that will be run in a multi-process server
environment. (This option is effective only if the multi-process server option has
been activated for the software.)

• AR_SERVER_INFO_MAX_L_DAEMONS : An integer that specifies the
maximum number of “list” servers that will be run in a multi-process server
environment. (This option is effective only if the multi-process server option has
been activated for the software.)



168 Action Request System Programmer’s Guide—January 1995

5

• AR_SERVER_INFO_ESCALATION_LOG_FILE : A character string
containing the filename (relative or absolute) where the information from the
Escalation tracing operation is placed.

• AR_SERVER_INFO_ESCL_DAEMON: An integer that specifies whether a
separate escalation servers will be run in a multi-process server environment. If
set to 0, no separate escalation server will run. If set to 1, a separate escalation
server will run. (This option is effective only if the multi-process server option
has been activated for the software.)

• AR_SERVER_INFO_SUBMITTER_MODE : An integer flag that when set to
AR_SUBMITTER_MODE_LOCKED indicates that the value in the Submitter
field will be locked at submit time and not changeable thereafter and the
Submitter is allowed to change values within permissions with or without a
license and when set to AR_SUBMITTER_MODE_CHANGEABLE indicates
that the value in the Submitter field can be changed at any time within
permissions, but that any change using the Submitter group permissions requires
a license.

• AR_SERVER_INFO_API_LOG_FILE : A character string containing the
filename (relative or absolute) where the information from the API tracing
operation is placed.

• AR_SERVER_INFO_FTEXT_FIXED : An integer noting the number of fixed
full text licenses defined on the server.

• AR_SERVER_INFO_FTEXT_FLOAT : An integer noting the number of
floating full text licenses defined on the server.

• AR_SERVER_INFO_FTEXT_TIMEOUT : An integer noting the number of
hours before a floating full text license will automatically timeout.

• AR_SERVER_INFO_RESERV1_A: Reserved for future use.

• AR_SERVER_INFO_RESERV1_B: Reserved for future use.

• AR_SERVER_INFO_RESERV1_C: Reserved for future
use.

• AR_SERVER_INFO_SERVER_IDENT: A character string containing a unique
identifier of a server machine. The string can be used to test two servers to see if
they are really the same machine.

• AR_SERVER_INFO_DS_SVR_LICENSE: A character string noting the type
of distributed server license defined for the server.

• AR_SERVER_INFO_DS_MAPPING: A character string containing the name
of the schema that contains the distributed mapping definitions for the distributed
server system.



AR System and Notification Subsystem Manual Pages 169

5

• AR_SERVER_INFO_DS_PENDING: A character string containing the name of
the schema that contains the pending operation list for the distributed server
system.

• AR_SERVER_INFO_DS_RPC_SOCKET: An integer that holds the socket
number of the RPC socket being used by the distributed server environment. If
NULL, the distributed server is using the default socket. If set, the specific socket
specified is being used.

• AR_SERVER_INFO_DS_LOG_FILE: A character string containing the
filename (relative or absolute) where the information from the distributed server
tracing operation is placed.

• AR_SERVER_INFO_SUPPRESS_WARN: A character string containing a list
of one or more note/warning numbers (separated by spaces). The messages that
are tied to these numbers will be suppressed by the server.

• AR_SERVER_INFO_HOSTNAME : A character string containing the hostname
of the server machine. This name is the “short” name of the system.

• AR_SERVER_INFO_FULL_HOSTNAME : A character string containing the
full (DNS) hostname of the server machine. This name is the “long” name of the
system.

• AR_SERVER_INFO_SAVE_LOGIN : An integer value that indicates whether to
save login information in client tools and who controls that saving. Can be set to
one of the following:
0 - User controlled (default), 1 - Admin controlled, set to save the login
information, 2 - Admin controlled, set to not save the login information.

• AR_SERVER_INFO_U_CACHE_CHANGE: An integer value that indicates
the time at which the user cache last changed.

• AR_SERVER_INFO_G_CACHE_CHANGE: An integer value that indicates
the time at which the group cache last changed.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

• AR_RETURN_OK: Operation successful
• AR_RETURN_WARNING: Warning during process but operation

completed successfully
• AR_RETURN_ERROR: Operation failed due to error
• AR_RETURN_FATAL: Operation failed; the status array may or may

not contain any information



170 Action Request System Programmer’s Guide—January 1995

5

• AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARGetFullTextInfo  (3),ARSetFullTextInfo  (3),ARSetServerInfo (3),FreeARServerInfoList (3),
FreeARServerInfoRequestList (3),FreeARStatusList (3)

ARGetServerStatistics

NAME

ARGetServerStatistics – get statistics from an AR server

SYNOPSIS
#include “ar.h”

#include “arerrno.h”
#include “arextern.h”

int ARGetServerInfo(control, requestList, serverInfo, status)

ARControlStruct*control;
ARServerInfoRequestList*requestList;
ARServerInfoList*serverInfo;
ARStatusList*status;

DESCRIPTION

ARGetServerStatistics retrieves one or more statistics about the running AR server environment. In general the
numbers are all raw counters. They contain a number of times of a cumulative time since the server being queried has
started. If the values hit a value of MAX_LONG, they will roll to 0 and start growing from there again.

Access to this information is available to all users.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

requestList  This is a list of one or more codes indicating the statistics that are desired. The
various codes are discussed below under the serverInfo parameter.

RETURN VALUES

serverInfo The statistics retrieved from the server. If there is an error retrieving any piece of
information, its value will be NULL (have datatype set to
AR_DATA_TYPE_NULL).



AR System and Notification Subsystem Manual Pages 171

5

Following are the various codes that can be requested:

n AR_SERVER_STAT_START_TIME: A timestamp containing the UNIX
time at which this server was started.

n AR_SERVER_STAT_BAD_PASSWORD: An integer containing the total
number of times a bad password was specified during login.

n AR_SERVER_STAT_NO_WRITE_TOKEN: An integer containing the
total number of times a user tried to connect and there was no floating write token
available.

n AR_SERVER_STAT_NO_FULL_TOKEN: An integer containing the
total number of times a user tried to connect and there was no floating Full Text
token available.

n AR_SERVER_STAT_CURRENT_USERS: An integer containing the
total number of users currently accessing the system.

n AR_SERVER_STAT_WRITE_FIXED: An integer containing the total
number user that are currently connected that have a fixed write license.

n AR_SERVER_STAT_WRITE_FLOATING: An integer containing the
total number user that are currently connected that have a floating write license.

n AR_SERVER_STAT_WRITE_READ: An integer containing the total
number user that are currently connected that have no write license.

n AR_SERVER_STAT_FULL_FIXED: An integer containing the total
number user that are currently connected that have a fixed Full Text license.

n AR_SERVER_STAT_FULL_FLOATING: An integer containing the total
number user that are currently connected that have a floating Full Text license.

n AR_SERVER_STAT_FULL_NONE: An integer containing the total
number user that are currently connected that have no Full Text license.

n AR_SERVER_STAT_API_REQUESTS: An integer containing the total
number of API requests that have been received.

n AR_SERVER_STAT_API_TIME: An integer containing the total time
(clock time) spent in API calls.

n AR_SERVER_STAT_ENTRY_TIME: An integer containing the total time
(clock time) spent in API calls manipulating an Entry.

n AR_SERVER_STAT_RESTRUCT_TIME: An integer containing the total
time (clock time) spent in API calls performing a restructuring operation.

n AR_SERVER_STAT_OTHER_TIME: An integer containing the total time
(clock time) spent in API calls that are not manipulating an entry and are not
restructuring the database.



172 Action Request System Programmer’s Guide—January 1995

5

n AR_SERVER_STAT_CACHE_TIME: An integer containing the total time
(clock time) spent loading the internal cache to improve performance.

n AR_SERVER_STAT_GET_E_COUNT: An integer containing the total
number of calls made to the ARGetEntry API call.

n AR_SERVER_STAT_GET_E_TIME: An integer containing the total time
(clock time) spent in the ARGetEntry API call.

n AR_SERVER_STAT_SET_E_COUNT: An integer containing the total
number of calls made to the ARSetEntry API call.

n AR_SERVER_STAT_SET_E_TIME: An integer containing the total time
(clock time) spent in the ARSetEntry API call.

n AR_SERVER_STAT_CREATE_E_COUNT: An integer containing the
total number of calls made to the ARCreateEntry API call.

n AR_SERVER_STAT_CREATE_E_TIME: An integer containing the total
time (clock time) spent in the ARCreateEntry API call.

n AR_SERVER_STAT_DELETE_E_COUNT: An integer containing the
total number of calls made to the ARDeleteEntry API call.

n AR_SERVER_STAT_DELETE_E_TIME: An integer containing the total
time (clock time) spent in the ARDeleteEntry API call.

n AR_SERVER_STAT_MERGE_E_COUNT: An integer containing the
total number of calls made to the ARMergeEntry API call.

n AR_SERVER_STAT_MERGE_E_TIME: An integer containing the total
time (clock time) spent in the ARMergeEntry API call.

n AR_SERVER_STAT_GETLIST_E_COUNT: An integer containing the
total number of calls made to the ARGetListEntry API call.

n AR_SERVER_STAT_GETLIST_E_TIME: An integer containing the total
time (clock time) spent in the ARGetListEntry API call.

n AR_SERVER_STAT_E_STATS_COUNT: An integer containing the total
number of calls made to the ARGetEntryStatistics API call.

n AR_SERVER_STAT_E_STATS_TIME: An integer containing the total
time (clock time) spent in the ARGetEntryStatistics API call.

n AR_SERVER_STAT_FILTER_PASSED: An integer containing the total
number of filters that passed their qualification and were fired.

n AR_SERVER_STAT_FILTER_FAILED: An integer containing the total
number of filters that failed their qualification and were skipped.

n AR_SERVER_STAT_FILTER_DISABLE: An integer containing the total
number of filters that were checked, but were marked as disabled.



AR System and Notification Subsystem Manual Pages 173

5

n AR_SERVER_STAT_FILTER_NOTIFY: An integer containing the total
number of notify filter actions that were performed.

n AR_SERVER_STAT_FILTER_MESSAGE: An integer containing the
total number of message filter actions that were performed.

n AR_SERVER_STAT_FILTER_LOG: An integer containing the total
number of log filter actions that were performed.

n AR_SERVER_STAT_FILTER_FIELDS: An integer containing the total
number of set fields filter actions that were performed.

n AR_SERVER_STAT_FILTER_PROCESS: An integer containing the
total number of run process filter actions that were performed.

n AR_SERVER_STAT_FILTER_TIME: An integer containing the total time
(clock time) spent during the checking and processing of filters.

n AR_SERVER_STAT_ESCL_PASSED: An integer containing the total
number of escalations that passed their qualification and were fired.

n AR_SERVER_STAT_ESCL_FAILED: An integer containing the total
number of escalations that failed their qualification and were skipped.

n AR_SERVER_STAT_ESCL_DISABLE: An integer containing the total
number of escalations that were checked, but were marked as disabled.

n AR_SERVER_STAT_ESCL_NOTIFY: An integer containing the total
number of notify escalation actions that were performed.

n AR_SERVER_STAT_ESCL_LOG: An integer containing the total number
of log escalation actions that were performed.

n AR_SERVER_STAT_ESCL_FIELDS: An integer containing the total
number of set fields escalation actions that were performed.

n AR_SERVER_STAT_ESCL_PROCESS: An integer containing the total
number of run process escalation actions that were performed.

n AR_SERVER_STAT_ESCL_TIME: An integer containing the total time
(clock time) spent during the checking and processing of escalations.

n AR_SERVER_STAT_TIMES_BLOCKED: An integer containing the total
number of times that at least one API call was blocked behind the API call being
processed.

n AR_SERVER_STAT_NUMBER_BLOCKED: An integer containing the
total number of processes that were blocked when there was at least one blocked.
So, if there were 5 times that a call was blocked and the total number of times
blocked was 6, it means that 4 times there was 1 process blocked and 1 time there
were 2.



174 Action Request System Programmer’s Guide—January 1995

5

n AR_SERVER_STAT_CPU: An integer containing the total time (CPU time)
that has been used by the server.

n AR_SERVER_STAT_SQL_DB_COUNT: An integer containing the total
number of SQL commands that have been issued to the database.

n AR_SERVER_STAT_SQL_DB_TIME: An integer containing the total
time (clock time) spent during processing of a database operation.

n AR_SERVER_STAT_FTS_SRCH_COUNT: An integer containing the
total number of FTS search operations that have been performed.

n AR_SERVER_STAT_FTS_SRCH_TIME: An integer containing the total
time (clock time) spent during processing of FTS searches.

n AR_SERVER_STAT_SINCE_START: An integer containing the number
of seconds since the start time. This represents the number of seconds (wall time)
that the process has been running.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARGetFullTextInfo (3), ARGetServerInfo(3), FreeARServerInfoList(3),
FreeARServerInfoRequestList(3), FreeARStatusList(3)



AR System and Notification Subsystem Manual Pages 175

5

ARImport

NAME

ARImport – import existing schema, filter, escalation, active link, menu, and administrator extension definitions

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARImport (control, structItems, importBuf, status)

ARControlStruct *control;
ARStructItemList *structItems;
char *importBuf;
ARStatusList *status;

DESCRIPTION

ARImport  will import one or more structure definitions (schemas, filters, active links, escalation, character menus,
and administrator extensions) into the AR System. This allows the copying of definitions from one server to another.

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

structItems An array of the items to import. The type and name of the items to import are
identified. The items indicated are imported with any other data in the file ignored.

To import the entire file contents, specify a NULL value for this parameter.

The codes for the types of imports allowed are as follows:

n AR_STRUCT_ITEM_SCHEMA: Full schema definition

n AR_STRUCT_ITEM_FILTER: Filter definition

n AR_STRUCT_ITEM_ACTIVE_LINK: Active Link
definition

n AR_STRUCT_ITEM_ADMIN_EXT: Administrator
extension definition

n AR_STRUCT_ITEM_CHAR_MENU: Character menu
definition

n AR_STRUCT_ITEM_ESCALATION: Escalation definition



176 Action Request System Programmer’s Guide—January 1995

5

importBuf Buffer containing the text of the items to import. The text may include a single item
OR it may contain several items. Any one or more of the items in the text may be
imported.

Note that if a schema is to be imported, only the full definition format of the schema
can be imported. The other formats are used for caching of definition and/or view
information and are not the complete definitions needed.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARExport  (3),FreeARStatusList (3),FreeARStructItemList  (3)



AR System and Notification Subsystem Manual Pages 177

5

ARInitialization

NAME

ARInitialization – initialize interaction with the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARInitialization (status)

ARStatusList *status;

DESCRIPTION

ARInitialization  serves to initialize the program for interaction with the AR System. For many systems, this call
performs no work, while in others it establishes an initial state for the system. It should always be called in case it is
needed by the environment.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARTermination  (3),FreeARStatusList (3)



178 Action Request System Programmer’s Guide—January 1995

5

ARLoadARQualifierStruct

NAME

ARLoadARQualifierStruct – parse a qualification string into an ARQualiferStruct

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARLoadARQualifierStruct (control, schema, displayTag, qualString, qualifier, status)

ARControlStruct *control;
ARNameType schema;
ARNameType displayTag;
char *qualString;
ARQualifierStruct *qualifier;
ARStatusList *status;

DESCRIPTION

ARLoadARQualifierStruct  will parse the passed qualification string and if the qualification is legal for the schema,
load an ARQualifierStruct that is appropriate for the qualification. This routine simplifies the loading of the
qualification structure used to select a set of entries from the server.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

schema The name of the schema the qualification applies to.

displayTag Tag that identifies which specific display struct view to use when resolving field
names. If there is a display that matches the tag, the name associated with that tag is
used. If there is not one that matches, the display that is listed first in the displayList
is used.

If an empty string or NULL is specified, only the first item in the displayList is used
for resolving field names.

qualString The qualification that is to be parsed. The syntax follows the same rules as any
qualification you can enter using thearuser program query bar.

RETURN VALUES

qualifier The qualifier structure that is loaded as appropriate for the qualification that was
specified. There may be nested space allocated for this structure so it is important to
free the structure when no longer needed.



AR System and Notification Subsystem Manual Pages 179

5

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

aruser (1),ARGetEntryStatistics (3),ARGetListEntry  (3),FreeARStatusList (3),FreeARQualifierStruct  (3)

ARMergeEntry

NAME

ARMergeEntry – merge an entry into the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARMergeEntry (control, schema, fieldList, newIdIfConflict, entryId, status)

ARControlStruct *control;
ARNameType schema;
ARFieldValueList *fieldList;
ARBoolean newIdIfConflict;
AREntryIdType entryId;
ARStatusList *status;

DESCRIPTION

ARMergeEntry  will merge an entry into the specified schema. The user can specify any number of fields and
associated values. The system will check permissions for each field and report errors if a field does not exist or if the
user does not have access. If any one of the fields is in error, the entire merge operation is rejected and no change is
made to the schema.



180 Action Request System Programmer’s Guide—January 1995

5

Note that this routine is different from the ARCreateEntry routine in that the entry being created is assumed to already
exist in some form in another schema in the AR System. The fields assigned MAY include the entry ID, create date,
last modified user, last modified date, and status history fields. Any diary field MUST include the fully formatted diary
value, NOT just new text for a diary item.

The system attempts to add an entry using the same entry ID that was supplied. However, if that ID conflicts with an
existing ID, the system will return an error if the newIdIfConflict flag is FALSE or generate a new unique ID if the
flag is TRUE.

Access to entries is controlled through the security scheme of the AR System. The user identified in the control record
in combination with the create mode specified for the field is used to determine which fields can be updated by the
user. If a value is provided for a field to which the user does not have write access, an error will be reported on that
field and the operation will be cancelled. Each value is checked for to make sure it can be updated, with an error
returned if not writable. Remember that the extra system fields are being assigned values so the access requirements
against them are checked also.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

schema Identifies the schema to which the entry is to be merged.

fieldList A list of field/value pairs for all the fields to be set for the new entry. The fields can
be in any order in the list. Any nonexistent or inaccessible field will result in an error
return. The datatype of the value must match the datatype of the field (or be NULL).
All required fields that do not have a default value MUST be assigned a value. To
assign no value for a field, assign the value NULL (AR_DATA_TYPE_NULL) as
the value. If the field is a required field in the system, you cannot assign it a NULL
value. Note that this use overrides any configured default value for the field.

Remember that diary values must be a fully formatted diary value (includes the user
and time stamps just like a diary value returned by the ARGetEntry call).

newIdIfConflict A flag that if set to TRUE indicates that the system should generate a new unique ID
for the entry if the entry ID supplied with the request conflicts with an existing
definition and if set to FALSE indicates that an error should be returned on conflict.
If no entry ID is supplied or if there is no conflict with the existing entry ID, this field
is ignored.

RETURN VALUES

entryId This is the unique identifier for the entry. If an ID was supplied and was unique, it
is the ID supplied. If no ID was supplied or there was a conflict and a new ID was
generated, this is the new unique ID.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:



AR System and Notification Subsystem Manual Pages 181

5

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

arimport  (1),ARCreateEntry  (3),ARGetListEntry  (3),FreeARFieldValueList (3),FreeARStatusList (3)



182 Action Request System Programmer’s Guide—January 1995

5

ARSetActiveLink

NAME

ARSetActiveLink – update an existing active link in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARSetActiveLink (control, name, newName, order, schema, groupList, executeMask, field, displayList,

enable, query, actionList, helpText, owner, changeDiary, status)

ARControlStruct *control;
ARNameType name;
ARNameType newName;
unsigned int *order;
ARNameType schema;
ARInternalIdList *groupList;
unsigned int *executeMask;
ARInternalId *field;
ARDisplayList *displayList;
unsigned int *enable;
ARQualifierStruct *query;
ARActiveLinkActionList *actionList;
char *helpText;
ARNameType owner;
char *changeDiary;
ARStatusList *status;

DESCRIPTION

ARSetActiveLink  will update an existing active link with the indicated name on the specified server. The updates will
be made immediately to the database and will be returned to users who request information about active links. Since
the operation of active links is on clients accessing the server, the updated definition will not be available on individual
clients until the client reloads configuration from the server (by reconnecting to the schema).

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the active link to update.

newName The new name for the active link. Remember that all active link names on a given
server must be unique.



AR System and Notification Subsystem Manual Pages 183

5

If you do not want the name of the active link changed, specify NULL for this
parameter.

order The new order of the active link. The active link order is a code between 0 and 1000,
inclusive. It allows the ordering of active links so that active links with lower orders
are executed before active links with higher orders. So, the active link order allows
you to specify the order in which active links will be processed and lets you insure
that given active links will be performed in the order you desire.

If you do not want the active link option changed, specify NULL for this parameter.

schema The name of the schema the active link is linked to. Every active link must be linked
to a schema. Changing the schema will break the connection to the old schema and
change it to the new one.

If you do not want the schema changed, specify NULL for this parameter.

groupList A list of 0 or more groups identifying the groups which will have access to this active
link. Changing this list removes all old permissions and establishes the ones
specified here as the new permissions.

Defining a groupList with 0 items will define an active link that can be accessed only
by users with Administrator capability. Defining a groupList that contains the
“Public” group (group id 0) will define an active link that can be accessed by all
users.

If you do not want the group list changed, specify NULL for this parameter.

executeMask A bit mask of the conditions under which this active link will be executed. This field
consists of or more of the following values OR’ed together:

AR_EXECUTE_ON_BUTTON , AR_EXECUTE_ON_RETURN,
AR_EXECUTE_ON_SUBMIT , AR_EXECUTE_ON_MODIFY ,
AR_EXECUTE_ON_DISPLAY , AR_EXECUTE_ON_MENU_CHOICE , and
AR_EXECUTE_ON_SET_DEFAULT .

If you do not want the execute mask changed, specify NULL for this parameter.

field The ID of the field the active link is tied to if the execute mask includes the
AR_EXECUTE_ON_RETURN or ar_EXECUTE_ON_MENU_CHOICE flag.
Providing this data will change which field the link is tied to.

If you do not want the field changed, specify NULL for this parameter.

displayList Information about the button and its position if the execute mask includes the
AR_EXECUTE_ON_BUTTON flag. Providing this data will change the button on
the view.

If you do not want the display information changed, specify NULL for this
parameter.

enable A flag with a setting of 0 to indicate that this active link is to be marked as disabled
so it will not be executed or 1 to indicate that the link is active and available for use.
An active link that is disabled will not be visible to the end user and will not fire.

If you do not want the enable flag changed, specify NULL for this parameter.

query A qualification that is to be performed when the active link is executed. It will allow
the conditional execute of the active link.



184 Action Request System Programmer’s Guide—January 1995

5

If there is no qualification, specify NULL or assign a value of
AR_COND_OP_NONE to this value.

If you do not want the query changed, specify NULL for this parameter.

actionList The set of one or more actions to take when the active link is executed. Every active
link MUST have at least one action and can have up to AR_MAX_ACTIONS.

If you do not want the action list changed, specify NULL for this parameter.

helpText The help text that is to be associated with the active link. The help text can be of any
length. Existing help text can be eliminated by setting helpText to point to a 0-length
string

If you do not want the help text changed, specify NULL for this parameter.

owner The new owner for the active link.

If you do not want to change the owner for the active link, specify NULL for this
parameter.

changeDiary The additional change diary that is to be associated with the active link. The added
change diary text can be of any length. The new text will be appended to the end of
any existing text. Existing text cannot be deleted or changed. The new text is
timestamped and user name stamped as it is added to the existing change diary text.

If the change diary is to be left unchanged, a NULL pointer should be supplied for
this parameter.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateActiveLink  (3),ARDeleteActiveLink (3),ARGetActiveLink  (3),ARGetListActiveLink  (3),
FreeARActiveLinkActionList  (3),FreeARDisplayList (3),FreeARInternalIdList  (3),FreeARQualifierStruct
(3), FreeARStatusList (3)



AR System and Notification Subsystem Manual Pages 185

5

ARSetAdminExtension

NAME

ARSetAdminExtension – update information about an administrator extension in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARSetAdminExtension (control, name, newName, groupList, command, helpText, owner, changeDiary,

status)
ARControlStruct *control;
ARNameType name;
ARNameType newName;
ARInternalIdList *groupList;
char *command;
char *helpText;
ARNameType owner;
char *changeDiary;
ARStatusList *status;

DESCRIPTION

ARSetAdminExtension will update information about the administrator extension indicated by name on the specified
server.

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the extension to update.

newName The new name for the extension. Remember that all extension names on a given
server must be unique.

If you do not want to change the name of the extension, specify NULL for this
parameter.

groupList A list of 0 or more groups identifying the groups which will have access to this active
link. Changing this list removes all old permissions and establishes the ones
specified here as the new permissions.

Defining a groupList with 0 items will define an administrator extension that can be
accessed only by users with Administrator capability. Defining a groupList that
contains the “Public” group (group ID 0) will define an administrator extension that
can be accessed by all users.



186 Action Request System Programmer’s Guide—January 1995

5

If you do not want the group list changed, specify NULL for this parameter.

command The new command string for this extension.

If you do not want to change the command, specify NULL for this parameter.

helpText The help text that is to be associated with the extension. The help text can be of any
length. Existing help text can be eliminated by setting helpText to point to a 0-length
string.

If the help text is to be left unchanged, a NULL pointer should be supplied for this
parameter.

owner The new owner for the extension.

If you do not want to change the owner for the extension, specify NULL for this
parameter.

changeDiary The additional change diary that is to be associated with the extension. The added
change diary text can be of any length. The new text will be appended to the end of
any existing text. Existing text cannot be deleted or changed. The new text is
timestamped and user name stamped as it is added to the existing change diary text.

If the change diary is to be left unchanged, a NULL pointer should be supplied for
this parameter.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateAdminExtension (3),ARDeleteAdminExtension (3),ARExecuteAdminExtension (3),
ARGetAdminExtension (3),ARGetListAdminExtension (3),FreeARInternalIdList  (3),FreeARStatusList (3)



AR System and Notification Subsystem Manual Pages 187

5

ARSetCharMenu

NAME

ARSetCharMenu – update an existing character menu in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARSetCharMenu (control, name, newName, refreshCode, menuDefn, helpText, owner, changeDiary,

status)
ARControlStruct *control;
ARNameType name;
ARNameType newName;
unsigned int *refreshCode;
ARCharMenuStruct *menuDefn;
char *helpText;
ARNameType owner;
char *changeDiary;
ARStatusList *status;

DESCRIPTION

ARSetCharMenu will update an existing character menu with the indicated name on the specified server. The updates
will be made immediately to the database and will be returned to users who request information about character menus.
Since the use of character menus is on clients accessing the server, the updated definition will not be available on
individual clients until the client requests the character menu definition again (controlled by the refresh code).

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the character menu to update.

newName The new name for the character menu. Remember that all character menu names on
a given server must be unique.

If you do not want the name of the character menu changed, specify NULL for this
parameter.



188 Action Request System Programmer’s Guide—January 1995

5

refreshCode Code indicating when the menu should be refreshed. This code allows you to
balance performance and the frequency at which the menu is checked for
consistency with the server. The refresh code is one of
AR_MENU_REFRESH_CONNECT, AR_MENU_REFRESH_OPEN, or
AR_MENU_REFRESH_INTERVAL.

If you do not want the refresh code changed, specify NULL for this parameter.

menuDefn The definition of the character menu.

If you do not want the menu definition changed, specify NULL for this parameter.

helpText The help text that is to be associated with the character menu. The help text can be
of any length. Existing help text can be eliminated by setting helpText to point to a
0-length string.

If you do not want the help text changed, specify NULL for this parameter.

owner The new owner for the character menu.

If you do not want to change the owner for the character menu, specify NULL for
this parameter.

changeDiary The additional change diary that is to be associated with the character menu. The
added change diary text can be of any length. The new text will be appended to the
end of any existing text. Existing text cannot be deleted or changed. The new text is
timestamped and user name stamped as it is added to the existing change diary text.

If the change diary is to be left unchanged, a NULL pointer should be supplied for
this parameter.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateCharMenu (3),ARDeleteCharMenu (3),ARExpandCharMenu (3),ARGetCharMenu (3),
ARGetListCharMenu  (3),FreeARCharMenuStruct (3),FreeARStatusList (3)



AR System and Notification Subsystem Manual Pages 189

5

ARSetEntry

NAME

ARSetEntry – update an entry in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARSetEntry (control, schema, entryId, fieldList, getTime, status)

ARControlStruct *control;
ARNameType schema;
AREntryIdType entryId;
ARFieldValueList *fieldList;
ARTimestamp getTime;
ARStatusList *status;

DESCRIPTION

ARSetEntry will update information about the entry indicated by the entry ID in the specified schema. The user can
specify any number of fields and associated values. The system will check permissions for each field and report errors
if a field does not exist or if the user does not have access. If any one of the fields is in error, the entire set operation
is rejected and no change is made to the entry.

Access to entries is controlled through the security scheme of the AR System. The user identified in the control record
is used to determine which fields can be updated by the requestor. If a value is provided for a field that the user does
not have write access to, an error will be reported on that field and the operation will be cancelled. Each value is
checked to make sure it can be updated, with an error returned if not writable.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

schema Identifies the schema that contains the entry to be updated.

entryId Identifies the specific entry within the schema whose values are to be updated.

fieldList A list of field/value pairs for all the fields to be updated. This list must contain at
least one pair or an error will be returned. The fields can be in any order in the list.
Any nonexistent or inaccessible field will result in an error return.

The datatype of the value must match the datatype of the field (or be NULL).

To delete a value for a field, assign the value NULL (AR_DATA_TYPE_NULL) as
the value. If the field is a required field in the system, you cannot assign it a NULL
value.

getTime The time at which a get operation on this field was last done.



190 Action Request System Programmer’s Guide—January 1995

5

This parameter is important when considering a shared environment where there
may be multiple users changing an entry at the same time. There is no record locking
performed by the server. Instead, the use of timestamps allows warnings of possible
conflicts with the resolution left up to the user.

The getTime value is checked against the “Modified-date” value of the entry. If the
getTime is later than the “Modified-date”, the update operation is performed. If the
getTime is earlier than the “Modified-date”, it is assumed that someone else has
changed the record since the record was read and an error is returned indicating that
fact. You can then react to this error by either ignoring it and overriding the check
(with a getTime of 0) OR you can retrieve the record again to look at the changes
made before applying your own.

Assigning a value of 0 causes no check to be performed.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateEntry  (3),ARDeleteEntry (3),ARGetEntry  (3),ARGetEntryStatistics (3),ARGetListEntry  (3),
ARMergeEntry  (3),FreeARFieldValueList (3),FreeARStatusList (3)



AR System and Notification Subsystem Manual Pages 191

5

ARSetEscalation

NAME

ARSetEscalation – update an existing escalation in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARSetEscalation(control, name, newName, escalationTm, schema, enable, query, actionList, helpText,

owner, changeDiary, status)
ARControlStruct *control;
ARNameType name;
ARNameType newName;
AREscalationTmStruct *escalationTm;
ARNameType schema;
unsigned int *enable;
ARQualifierStruct *query;
ARFilterActionList *actionList;
char *helpText;
ARNameType owner;
char *changeDiary;
ARStatusList *status;

DESCRIPTION

ARSetEscalation will update an existing escalation with the indicated name on the specified server. The updates will
take effect immediately and will remain in effect until changed or deleted.

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the escalation to update.

newName The new name for the escalation. Remember that all escalation names on a given
server must be unique.

If you do not want the name of the escalation changed, specify NULL for this
parameter.

escalationTm The checking time of the new escalation. It defines a datetime or frequency of AR
System checks for the escalation condition. Escalation time has two formats, one is
in seconds as a time interval between checks, the other is a datetime mask specifying
on what day of the month or week and at what hour and minute of the day the AR
System checks the escalation condition.



192 Action Request System Programmer’s Guide—January 1995

5

If you do not want the escalation option changed, specify NULL for this parameter.

schema The name of the schema the escalation is linked to. Every escalation must be linked
to a schema. Changing the schema will break the connection to the old schema and
change it to the new one.

If you do not want the schema changed, specify NULL for this parameter.

enable A flag with a setting of 0 to indicate that this escalation is to be marked as disabled
so it will not be executed or 1 to indicate that the escalation is active and will be
checked on the specified time interval. An escalation that is disabled will not
perform its condition checks and will not fire.

If you do not want the enable flag changed, specify NULL for this parameter.

query A qualification that is used to search the specified schema. Any records that match
the qualification will have the escalation action performed on them.

If there is no qualifying condition, specify NULL or assign a value of
AR_COND_OP_NONE to this value.

If you do not want the query changed, specify NULL for this parameter.

actionList The set of one or more actions to take when the escalation conditions are met. Every
escalation MUST have at least one action and can have up to AR_MAX_ACTIONS.

If you do not want the action list changed, specify NULL for this parameter.

helpText The help text that is to be associated with the escalation. The help text can be of any
length. Existing help text can be eliminated by setting helpText to point to a 0-length
string.

If you do not want the help text changed, specify NULL for this parameter.

owner The new owner for the escalation.

If you do not want to change the owner for the escalation, specify NULL for this
parameter.

changeDiary The additional change diary that is to be associated with the escalation. The added
change diary text can be of any length. The new text will be appended to the end of
any existing text. Existing text cannot be deleted or changed. The new text is
timestamped and user name stamped as it is added to the existing change diary text.

If the change diary is to be left unchanged, a NULL pointer should be supplied for
this parameter.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful



AR System and Notification Subsystem Manual Pages 193

5

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateEscalation (3),ARDeleteEscalation (3),ARGetEscalation (3),ARGetListEscalation (3),
FreeARFilterActionList  (3),FreeARQualifierStruct  (3),FreeARStatusList (3)

ARSetField

NAME

ARSetField – update information about a field in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARSetField (control, schema, fieldId, option, createMode, defaultVal, permissions, limit, displayList,

helpText, owner, changeDiary, status)
ARControlStruct *control;
ARNameType schema;
ARInternalId fieldId;
unsigned int *option;
unsigned int *createMode;
ARValueStruct *defaultVal;
ARPermissionList *permissions;
ARFieldLimitStruct *limit;
ARDisplayList *displayList;
char *helpText;
ARNameType owner;
char *changeDiary;
ARStatusList *status;

DESCRIPTION

ARSetField will update information about the specified field in the indicated schema on the specified server.

This operation can be performed only by users who have Administrator capabilities within the AR System.



194 Action Request System Programmer’s Guide—January 1995

5

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

schema The name of the schema containing the field to update.

fieldId The internal ID of the specific field within the schema to update.

option The option flag indicating whether the field is a required or optional field. The value
is one of AR_FIELD_OPTION_REQUIRED, AR_FIELD_OPTION_OPTIONAL,
or AR_FIELD_OPTION_SYSTEM.

If you do not want the option flag changed, specify NULL for this parameter.

createMode A flag indicating whether the field is open or protected at create time. An open field
is one any user, whether having write access or not, can set during the Submit
operation. A protected field is one the user must have been given specific write
access to in order set the field during the Submit operation. The value is one of
AR_FIELD_OPEN_AT_CREATE or AR_FIELD_PROTECTED_AT_CREATE.

If you do not want the create mode changed, specify NULL for this parameter.

defaultVal The value to use for this field if a new entry is submitted without a value for this
field. If a value is specified, its datatype must match the datatype of the field or be
AR_DEFAULT_VALUE_NONE to indicate that any existing default value should
be cleared.

If you do not want the default value changed, specify NULL for this parameter.

permissions The permissions that have been assigned to this field. The information details which
groups have access to the field and what access those groups have.

If you assign a blank permissions set, you will receive a warning,
AR_WARN_ADMIN_ONLY_ACCESS, indicating that the field can be accessed
only by the administrator. The field will be updated as specified.

If you do not want the permissions changed, specify NULL for this parameter.

limit The limits that you want assigned for this field. If new limits are assigned, the
datatype of the limits must match the datatype of the field or be set to
AR_FIELD_LIMIT_NONE to indicate that there are no limits (any existing limits
for this field will be cleared).

If you do not want the limits changed, specify NULL for this parameter.

displayList The display list is an array of entries, each of which describes how the field should
be displayed on the screen. Each of these items has an associated character tag to
identify it. This tag can be specified during Export operations to get only the
definition for a given tag. Each entry contains the tag, the name for the field, the
position of the field, and the type of control to use on the screen.

If you do not want the displayList changed, specify NULL for this parameter.

helpText The new help text that is to be associated with the field.

If you do not want the helpText changed, specify NULL for this parameter. Existing
help text can be eliminated by setting helpText to point to a 0-length string.



AR System and Notification Subsystem Manual Pages 195

5

owner The new owner for the field.

If you do not want to change the owner for the field, specify NULL for this
parameter.

changeDiary The additional change diary that is to be associated with the field. The added change
diary text can be of any length. The new text will be appended to the end of any
existing text. Existing text cannot be deleted or changed. The new text is
timestamped and user name stamped as it is added to the existing change diary text.

If the change diary is to be left unchanged, a NULL pointer should be supplied for
this parameter.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateField (3),ARDeleteField (3),ARGetField (3),ARGetListField  (3),FreeARDisplayList
(3),FreeARFieldLimitStruct  (3),FreeARPermissionList (3),FreeARStatusList (3),FreeARValueStruct (3)



196 Action Request System Programmer’s Guide—January 1995

5

ARSetFilter

NAME

ARSetFilter – update an existing filter in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARSetFilter (control, name, newName, order, schema, opSet, enable, query, actionList, helpText, owner,

changeDiary, status)
ARControlStruct *control;
ARNameType name;
ARNameType newName;
unsigned int *order;
ARNameType schema;
unsigned int *opSet;
unsigned int *enable;
ARQualifierStruct *query;
ARFilterActionList *actionList;
char *helpText;
ARNameType owner;
char *changeDiary;
ARStatusList *status;

DESCRIPTION

ARSetFilter will update an existing filter with the indicated name on the specified server. The updates will take effect
immediately and will remain in effect until changed or deleted.

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

name The name of the filter to update.

newName The new name for the filter. Remember that all filter names on a given server must
be unique.

If you do not want the name of the filter changed, specify NULL for this parameter.

order The new order of the filter. The filter order is a code between 0 and 1000, inclusive.
It allows the ordering of filters so that filters with lower orders are executed before
filters with higher orders. So, the filter order allows you to specify the order in which
filters will be processed and lets you insure that given filters will be performed in the
order you desire.



AR System and Notification Subsystem Manual Pages 197

5

If you do not want the filter option changed, specify NULL for this parameter.

schema The name of the schema the filter is linked to. Every filter must be linked to a
schema. Changing the schema will break the connection to the old schema and
change it to the new one.

If you do not want the schema changed, specify NULL for this parameter.

opSet A bit mask of the operations this filter applies to. This field consists of one or more
of the following values OR’ed together:

AR_OPERATION_GET , AR_OPERATION_SET,
AR_OPERATION_CREATE , AR_OPERATION_DELETE , and
AR_OPERATION_MERGE .

If you do not want the operation set changed, specify NULL for this parameter.

enable A flag with a setting of 0 to indicate that this filter is to be marked as disabled so it
will not be executed or 1 to indicate that the filter is active and available for use. A
filter that is disabled will not be checked for match during any operation and will not
fire.

If you do not want the enable flag changed, specify NULL for this parameter.

query A qualification that is used to test the operation/record being accessed. The
operation/values of fields for the record must match this qualification to trigger the
filter.

If there is no qualifying condition, specify NULL or assign a value of
AR_COND_OP_NONE to this value.

If you do not want the query changed, specify NULL for this parameter.

actionList The set of one or more actions to take when the filter conditions are met. Every filter
MUST have at least one action and can have up to AR_MAX_ACTIONS.

If you do not want the action list changed, specify NULL for this parameter.

helpText The help text that is to be associated with the filter. The help text can be of any
length. Existing help text can be eliminated by setting helpText to point to a 0-length
string.

If you do not want the help text changed, specify NULL for this parameter.

owner The new owner for the filter.

If you do not want to change the owner for the filter, specify NULL for this
parameter.

changeDiary The additional change diary that is to be associated with the filter. The added change
diary text can be of any length. The new text will be appended to the end of any
existing text. Existing text cannot be deleted or changed. The new text is
timestamped and user name stamped as it is added to the existing change diary text.

If the change diary is to be left unchanged, a NULL pointer should be supplied for
this parameter.



198 Action Request System Programmer’s Guide—January 1995

5

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateFilter  (3),ARDeleteFilter (3),ARGetFilter  (3),ARGetListFilter  (3),FreeARFilterActionList  (3),
FreeARQualifierStruct  (3),FreeARStatusList (3)

ARSetFullTextInfo

NAME

ARSetFullTextInfo – set full text information for an AR System server

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
int ARSetFullTextInfo (control, fullTextInfo, status)

ARControlStruct *control;
ARFullTextInfoList *fullTextInfo;
ARStatusList *status;

DESCRIPTION

ARSetFullTextInfo  updates one or more pieces of information about the AR System server full text environment.

This operation can be performed only by users who have Administrator capabilities within the AR System.



AR System and Notification Subsystem Manual Pages 199

5

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

fullTextInfo The information to be updated on the server. If there is an error updating any piece
of information, an error will be returned and that information will remain
unchanged. Other updates will occur.

Following are the various codes for information that can be updated:

n AR_FULLTEXTINFO_COLLECTION_DIR: A character string
containing the directory in which the full text collection information is stored.

n AR_FULLTEXTINFO_STOPWORD: A structure containing the new list
of words to ignore (stopwords) for the full text collection. Existing indexes will
NOT be rebuilt to reflect changes. Use any AR_FULLTEXTINFO_REINDEX to
force reindexing.

n AR_FULLTEXTINFO_REINDEX: Existing indexes WILL NOT be rebuilt
to reflect any changes.Use the option AR_FULLTEXTINFO_REINDEX to force
reindexing. An integer that specifies old fields be reindexed if set to 0
(AR_FULLTEXT_REINDEX). It takes no action to set to 0.

n AR_FULLTEXTINFO_CASE_SENSITIVE_SRCH: An integer
indicating whether the search will be performed in a case-sensitive
(AR_CASE_SENSITIVE_SEARCH) or case-insensitive
(AR_CASE_INSENSITIVE_SEARCH) manner.

n AR_FULLTEXTINFO_STATE: An integer indicating whether the full text
system is active (AR_FULLTEXT_STATE_ON) or inactive
(AR_FULLTEXT_STATE_OFF). If the system is inactive, no indexing is
performed for new entries and searching using the full text engine is disabled.

Note: When reactivating full text support, you should consider reindexing all entries to insure old
data is properly indexed.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully



200 Action Request System Programmer’s Guide—January 1995

5

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARGetFullTextInfo  (3),ARGetServerInfo (3),ARSetServerInfo (3),FreeARFullTextInfoList  (3),
FreeARStatusList (3)

ARSetSchema

NAME

ARSetSchema – update information about a schema in the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARSetSchema (control, name, newName, groupList, adminGroupList, getListFields, indexList, helpText,

owner, changeDiary, status)
ARControlStruct *control;
ARNameType name;
ARNameType newName;
ARInternalIdList *groupList;
ARInternalIdList *adminGroupList;
AREntryListFieldList *getListFields;
ARIndexList *indexList;
char *helpText;
ARNameType owner;
char *changeDiary;
ARStatusList *status;

DESCRIPTION

ARSetSchema will update information about the schema indicated by name on the specified server. Information that
can be updated is the global schema information and not information on individual fields (see ARSetField).

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.



AR System and Notification Subsystem Manual Pages 201

5

name The name of the schema to update.

newName The new name for the schema. Remember that all schema names on a given server
must be unique. All references to the schema by name (for example, within filters)
are updated to reflect the new name.

If you do not want to change the name of the schema, specify NULL for this
parameter.

groupList The new groupList definition for the schema. This list of 0 or more groups defines
the list of groups whose users are allowed to access this schema.

Defining a groupList with 0 items will define a schema that can be accessed only by
users with Administrator capability. Defining a groupList that contains the “Public”
group (group id 0) will define a schema that can be accessed by all users.

If you do not want to change the groupList definition for the schema, specify NULL
for this parameter.

adminGroupList The list of groups whose users have potential SubAdministrator access to this
schema. This is the list of groups whose members will have sub-administration
rights to the schema and its associated filters, escalations, and active links if the user
is also a member of the SubAdministrator group.

Defining an adminGroupList with 0 items will define a schema that can be
administered only by users with Administrator capability. Defining an
adminGroupList that contains the “Public” group (group id 0) will define a schema
that can be administered by all users who are members of the SubAdministrator
group.

If you do not want to change the adminGroupList definition for the schema, specify
NULL for this parameter.

getListFields The new getListFields definition for the schema. This list of 0 or fields and
formatting information defines the description that will be returned with the
ARGetListEntry call. The maximum size of the fields and separators must be less
than or equal to AR_MAX_SDESC_SIZE.

Defining a getListFields definition with 0 items specifies that the description will be
derived from the Short-Description core field (field id is 8).

If you do not want to change the getListFields definition for the schema, specify
NULL for this parameter.

indexList The new indexList definition for the schema. This list of 0 or more indexes defines
the list of indexes created in the database on the schema. Indexes can be specified
on a single or on multiple columns. You cannot index any diary field or character
field with a maximum length over 255 bytes.

If you do not want to change the indexList definition for the schema, specify NULL
for this parameter.

helpText The help text that is to be associated with the schema. The help text can be of any
length. Existing help text can be eliminated by setting helpText to point to a 0-length
string.

If the help text is to be left unchanged, a NULL pointer should be supplied for this
parameter.



202 Action Request System Programmer’s Guide—January 1995

5

owner The new owner for the schema.

If you do not want to change the owner for the schema, specify NULL for this
parameter.

changeDiary The additional change diary that is to be associated with the schema. The added
change diary text can be of any length. The new text will be appended to the end of
any existing text. Existing text cannot be deleted or changed. The new text is
timestamped and user name stamped as it is added to the existing change diary text.

If the change diary is to be left unchanged, a NULL pointer should be supplied for
this parameter.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARCreateField (3),ARCreateSchema (3),ARDeleteSchema (3),ARGetListSchema (3),ARGetSchema (3),
ARSetField (3),FreeAREntryListFieldList  (3),FreeARIndexList (3),FreeARInternalIdList  (3),
FreeARStatusList (3)



AR System and Notification Subsystem Manual Pages 203

5

ARSetServerInfo

NAME

ARSetServerInfo – set information for an AR System server

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
int ARSetServerInfo (control, serverInfo, status)

ARControlStruct *control;
ARServerInfoList *serverInfo;
ARStatusList *status;

DESCRIPTION

ARSetServerInfo updates one or more pieces of information about the AR System server environment.

This operation can be performed only by users who have Administrator capabilities within the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

serverInfo The information to be updated on the server. If there is an error updating any piece
of information, an error will be returned and that information will remain
unchanged. Other updates will occur.

Following are the various codes for information that can be updated:

n AR_SERVER_INFO_ALLOW_GUESTS: An integer flag with 1
indicating that guest users are allowed in the system and 0 indicating they are not
allowed. Guest users are users who are not registered with the AR System. If
allowed, they can access only data with “Public” view access and submit new
entries with fields that have a create mode of “Open”.

n AR_SERVER_INFO_USE_ETC_PASSWD: An integer flag with 1
indicating that the /etc/passwd file will be searched if the user is not registered
with the AR System and 0 indicating that /etc/passwd will not be searched.

n AR_SERVER_INFO_XREF_PASSWORDS: An integer flag with 1
indicating that the system will check passwords in /etc/passwd for any registered
user with a blank password in the AR System and 0 indicating there is no cross
reference check.



204 Action Request System Programmer’s Guide—January 1995

5

n AR_SERVER_INFO_DEBUG_MODE: An integer bitmask that specifies
which debugging modes are active in the system (bit 1 is the low order bit): bit 1
specifies SQL tracing, bit 2 specifies Filter tracing, bit 3 specifies User tracing, bit
4 specifies Escalation tracking, and bit 5 specifies API tracing.

n AR_SERVER_INFO_DB_PASSWORD: A character string containing the
password to assign to the AR System database/tablespace. This is the password
for the ARAdmin user. This setting is used only if the underlying database is
SYBASE or ORACLE.

n AR_SERVER_INFO_SET_PROC_TIME: An integer set to the maximum
time to wait for a filter run process operation that is returning a value.

n AR_SERVER_INFO_EMAIL_FROM: A character string containing the
name of the user who will be specified as the source of all email notifications.

n AR_SERVER_INFO_SQL_LOG_FILE: A character string containing the
filename (relative or absolute) where the information from the SQL tracing
operation is placed.

n AR_SERVER_INFO_FLOAT_TIMEOUT: An integer
noting the number of hours before a floating license will automatically timeout.

n AR_SERVER_INFO_UNQUAL_QUERIES: An integer flag with 1
indicating that the server will respond to unqualified queries from users and 0
indicating that unqualified queries will return an error.

n AR_SERVER_INFO_FILTER_LOG_FILE: A character string
containing the filename (relative or absolute) where the information from the
Filter tracing operation is placed.

n AR_SERVER_INFO_USER_LOG_FILE: A character
string containing the filename (relative or absolute) where the information from
the User tracing operation is placed.

n AR_SERVER_INFO_MAX_ENTRIES: An integer that identifies the
maximum number of entries that will be returned in response to a single
ARGetListEntry call. This value works in combination with the value that can be
defined by the user in the call toARGetListEntry  with the minimum of the two
values taking precedence in a given call.

n AR_SERVER_INFO_MAX_F_DAEMONS: An integer that specifies the
maximum number of “fast” servers that will be run in a multi-process server
environment. (This option is effective only if the multi-process server option has
been activated for the software.)



AR System and Notification Subsystem Manual Pages 205

5

n AR_SERVER_INFO_MAX_L_DAEMONS: An integer that specifies the
maximum number of “list” servers that will be run in a multi-process server
environment. (This option is effective only if the multi-process server option has
been activated for the software.)

n AR_SERVER_INFO_ESCALATION_LOG_FILE: A
character string containing the filename (relative or absolute) where the
information from the Escalation tracing operation is placed.

n AR_SERVER_INFO_ESCL_DAEMON: An integer that specifies whether
a separate escalation servers will be run in a multi-process server environment. If
set to 0, no separate escalation server will run. If set to 1, a separate escalation
server will run. (This option is effective only if the multi-process server option has
been activated for the software.)

n AR_SERVER_INFO_SUBMITTER_MODE: An integer flag that when
set to AR_SUBMITTER_MODE_LOCKED indicates that the value in the
Submitter field will be locked at submit time and not changeable thereafter and the
Submitter is allowed to change values within permissions with or without a
license and when set to AR_SUBMITTER_MODE_CHANGEABLE indicates
that the value in the Submitter field can be changed at any time within
permissions, but that any change using the Submitter group permissions requires
a license.

NOTE: A change to this value will not take affect until the server is next restarted.

n AR_SERVER_INFO_API_LOG_FILE: A character string containing the
filename (relative or absolute) where the information from the API tracing
operation is placed.

n AR_SERVER_INFO_FTEXT_TIMEOUT: An integer noting the number
of hours before a floating full text license will automatically timeout.

n AR_SERVER_INFO_DS_RPC_SOCKET: An integer that holds the socket
number of the RPC socket being used by the distributed server environment. If
NULL, the distributed server is set to use the default socket. If set, the specific
socket will be used. Legal values are 390600 and 390680 through 390694.

n AR_SERVER_INFO_DS_LOG_FILE:  A character string containing the
filename (relative or absolute) where the information from the distributed server
tracing operation is placed.

n AR_SERVER_INFO_SUPPRESS_WARN: A character string containing a list
of one or more note/warning numbers (separated by spaces). The messages that
are tied to these numbers will be suppressed by the server.



206 Action Request System Programmer’s Guide—January 1995

5

n AR_SERVER_INFO_SAVE_LOGIN : An integer value that indicates whether
to save login information in client tools and who controls that saving. Can be set
to one of the following:
0 - User controlled (default), 1 - Admin controlled, set to save the login
information, 2 - Admin controlled, set to not save the login information.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARGetFullTextInfo  (3),ARGetServerInfo (3),ARSetFullTextInfo  (3),FreeARServerInfoList (3),
FreeARStatusList (3)

ARTermination

NAME

ARTermination – terminates interaction with the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARTermination (status)

ARStatusList *status;



AR System and Notification Subsystem Manual Pages 207

5

DESCRIPTION

ARTermination  serves to terminate the programs interaction with the AR System. For many systems, this call
performs no work, while in others it performs some cleanup operations for the system. It should always be called in
case it is needed by the environment.

In an environment using Floating licenses, it is essential that this routine be called. This procedure will release the
floating license token when access to the AR System is terminated. Otherwise, the floating license token is not released
until the configured timeout interval.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

ARInitialization  (3),FreeARStatusList (3)



208 Action Request System Programmer’s Guide—January 1995

5

ARVerifyUser

NAME

ARVerifyUser – verify user within the AR System

SYNOPSIS
#include "ar.h"
#include "arerrno.h"
#include "arextern.h"
#include "arstruct.h"
int ARVerifyUser (control, adminFlag, subAdminFlag, customFlag, status)

ARControlStruct *control;
ARBoolean *adminFlag;
ARBoolean *subAdminFlag;
ARBoolean *customFlag;
ARStatusList *status;

DESCRIPTION

ARVerifyUser  will check the user against the user cache on the specified AR System server. The routine is used to
check whether the user is a registered user of the AR System.

INPUT ARGUMENTS

control The control record for the operation. It contains information about the user
requesting the operation and where that operation is to be performed. The user and
server fields must be supplied in this structure.

RETURN VALUES

adminFlag A Boolean flag indicating whether the user specified is a member of the
Administrator group (has superuser type access to AR System). If the user is invalid
or unknown to the system, this value will be FALSE.

If this flag is not desired, a NULL value can be passed for this parameter and the
value will not be returned.

adminFlag A Boolean flag indicating whether the user specified is a member of the
SubAdministrator group (has qualified superuser type access to AR System). If the
user is invalid or unknown to the system, this value will be FALSE.

If this flag is not desired, a NULL value can be passed for this parameter and the
value will not be returned.



AR System and Notification Subsystem Manual Pages 209

5

customFlag A Boolean flag indicating whether the user specified is a member of the Customize
group. If the user is invalid or unknown to the system, this value will be FALSE. If
the user is a member of the Administrator group, this flag will always be TRUE. The
Customize group is an advisory group that indicates whether a user is allowed to
perform customizations within the system. It is interpreted as desired by any
interface to the system.

If this flag is not desired, a NULL value can be passed for this parameter and the
value will not be returned.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n AR_RETURN_OK: Operation successful

n AR_RETURN_WARNING: Warning during process but operation
completed successfully

n AR_RETURN_ERROR: Operation failed due to error

n AR_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n AR_RETURN_BAD_STATUS: Status parameter was bad

If the user is known to the system but the password is not valid, the error
AR_ERROR_PASSWORD_MISMATCH is returned. If the user is unknown to the
system and guest users are allowed, this is not considered an error, but the warning
AR_WARN_NO_SUCH_USER is returned. This is done as the AR System allows
a limited level of access to the system to unknown users (guests). The warning can
be trapped and treated as an error condition if you do not wish to allow unknown
users. If the user is unknown and guest users are NOT allowed, the error
AR_ERROR_NO_SUCH_USER is returned.

SEE ALSO

FreeARStatusList (3)



210 Action Request System Programmer’s Guide—January 1995

5

FreeAR

NAME

FreeAR – free space in one of the AR System data structures

SYNOPSIS
#include "ar.h"
#include "arfree.h"
void FreeARActiveLinkActionList (value, freeStruct)

ARActiveLinkActionList *value;
ARBoolean freeStruct;

void FreeARActiveLinkActionStruct (value, freeStruct)
ARActiveLinkActionStruct *value;
ARBoolean freeStruct;

void FreeARArithOpAssignStruct (value, freeStruct)
ARArithOpAssignStruct *value;
ARBoolean freeStruct;

void FreeARArithOpStruct (value, freeStruct)
ARArithOpStruct *value;
ARBoolean freeStruct;

void FreeARAssignFieldStruct (value, freeStruct)
ARAssignFieldStruct *value;
ARBoolean freeStruct;

void FreeARAssignStruct (value, freeStruct)
ARAssignStruct *value;
ARBoolean freeStruct;

void FreeARCharMenuItemStruct (value, freeStruct)
ARCharMenuItemStruct *value;
ARBoolean freeStruct;

void FreeARCharMenuList (value, freeStruct)
ARCharMenuList *value;
ARBoolean freeStruct;

void FreeARCharMenuStruct (value, freeStruct)
ARCharMenuStruct *value;
ARBoolean freeStruct;

void FreeARDDEStruct(value, freeStruct)
ARDDEStruct *value;
ARBoolean freeStruct;

void FreeARDiaryList (value, freeStruct)
ARDiaryList *value;
ARBoolean freeStruct;



AR System and Notification Subsystem Manual Pages 211

5

void FreeARDisplayList (value, freeStruct)
ARDisplayList *value;
ARBoolean freeStruct;

void FreeAREntryIdList (value, freeStruct)
AREntryIdList *value;
ARBoolean freeStruct;

void FreeAREntryListFieldList (value, freeStruct)
AREntryListFieldList *value;
ARBoolean freeStruct;

void FreeAREntryListList (value, freeStruct)
AREntryListList *value;
ARBoolean freeStruct;

void FreeARFieldAssignList (value, freeStruct)
ARFieldAssignList *value;
ARBoolean freeStruct;

void FreeARFieldAssignStruct (value, freeStruct)
ARFieldAssignStruct *value;
ARBoolean freeStruct;

void FreeARFieldLimitStruct (value, freeStruct)
ARFieldLimitStruct *value;
ARBoolean freeStruct;

void FreeARFieldValueList (value, freeStruct)
ARFieldValueList *value;
ARBoolean freeStruct;

void FreeARFieldValueStruct (value, freeStruct)
ARFieldValueStruct *value;
ARBooleanfreeStruct;

void FreeARFieldValueOrArithStruct (value, freeStruct)
ARFieldValueOrArithStruct *value;
ARBoolean freeStruct;

void FreeARFilterActionList (value, freeStruct)
ARFilterActionList *value;
ARBoolean freeStruct;

void FreeARFilterActionStruct (value, freeStruct)
ARFilterActionStruct *value;
ARBoolean freeStruct;

void FreeARFullTextInfoList (value, freeStruct)
ARFullTextInfoList *value;
ARBoolean freeStruct;

void FreeARFullTextInfoRequestList (value, freeStruct)
ARFullTextInfoRequestList *value;
ARBoolean freeStruct;



212 Action Request System Programmer’s Guide—January 1995

5

void FreeARFunctionAssignStruct (value, freeStruct)
ARFunctionAssignStruct *value;
ARBoolean freeStruct;

void FreeARGroupInfoList (value, freeStruct)
ARGroupInfoList *value;
ARBoolean freeStruct;

void FreeARIndexList (value, freeStruct)
ARIndexList *value;
ARBoolean freeStruct;

void FreeARInternalIdList (value, freeStruct)
ARInternalIdList *value;
ARBoolean freeStruct;

void FreeARNameList (value, freeStruct)
ARNameList *value;
ARBoolean freeStruct;

void FreeARPermissionList (value, freeStruct)
ARPermissionList *value;
ARBoolean freeStruct;

void FreeARQualifierStruct (value, freeStruct)
ARQualifierStruct *value;
ARBoolean freeStruct;

void FreeARRelOpStruct (value, freeStruct)
ARRelOpStruct *value;
ARBoolean freeStruct;

void FreeARServerInfoList (value, freeStruct)
ARServerInfoList *value;
ARBoolean freeStruct;

void FreeARServerInfoRequestList (value, freeStruct)
ARServerInfoRequestList *value;
ARBoolean freeStruct;

void FreeARServerNameList (value, freeStruct)
ARServerNameList *value;
ARBoolean freeStruct;

void FreeARSortList (value, freeStruct)
ARSortList *value;
ARBoolean freeStruct;

void FreeARStatusList (value, freeStruct)
ARStatusList *value;
ARBoolean freeStruct;

void FreeARStatusHistoryList (value, freeStruct)
ARStatusHistoryList *value;
ARBoolean freeStruct;



AR System and Notification Subsystem Manual Pages 213

5

void FreeARStructItemList (value, freeStruct)
ARStructItemList *value;
ARBoolean freeStruct;

void FreeARUserInfoList (value, freeStruct)
ARUserInfoList *value;
ARBoolean freeStruct;

void FreeARUserLicenseList (value, freeStruct)
ARUserLicenseList *value;
ARBoolean freeStruct;

void FreeARValueList (value, freeStruct)
ARValueList *value;
ARBoolean freeStruct;

void FreeARValueStruct (value, freeStruct)
ARValueStruct *value;
ARBoolean freeStruct;

DESCRIPTION

TheFreeAR routines take a pointer to one of the AR structures and free all the nested space within the structure. They
can optionally free the top level structure space if requested.

Any structure that is returned from the AR API calls that has allocated space can be completely freed by a call to this
routine.

INPUT ARGUMENTS

value A pointer to the structure whose space is to be freed.

freeStruct A flag indicating whether to free the top level value structure or not. If this flag is
TRUE, the top level structure is freed. If FALSE, the top level isnot freed but its
values are set to an “empty” state.

This flagmust not be set to TRUE unless the top level structure pointed to by the
value parameter was dynamically allocated.

SEE ALSO

FreeNT (3)



214 Action Request System Programmer’s Guide—January 1995

5

FreeNT

NAME

FreeNT – free space in one of the Notification system data structures

SYNOPSIS
#include "nt.h"
#include "ntfree.h"
void FreeNTNameList (value, freeStruct)

NTBoolean freeStruct;
void FreeNTServerNameList (value, freeStruct)

NTServerNameList *value;
NTBoolean freeStruct;

void FreeNTStatusList (value, freeStruct)
NTStatusList *value;
NTBoolean freeStruct;

DESCRIPTION

TheFreeNT routines take a pointer to one of the Notification structures and frees all the nested space within the
structure. They can optionally free the top level structure space if requested.

Any structure that is returned from the Notification API calls that has allocated space can be completely freed by a call
to this routine.

INPUT ARGUMENTS

value A pointer to the structure whose space is to be freed.

freeStruct A flag indicating whether to free the top level value structure or not. If this flag is
TRUE, the top level structure is freed. If FALSE, the top level isnot freed but its
values are set to an “empty” state.

This flagmust not be set to TRUE unless the top level structure pointed to by the
value parameter was dynamically allocated.

SEE ALSO

FreeAR (3)



AR System and Notification Subsystem Manual Pages 215

5

NTCheckRegisteredClient

NAME

NTCheckRegisteredClient – check with an Notification System client to see if a user is registered

SYNOPSIS
#include "nt.h"
#include "nterrno.h"
#include "ntcextrn.h"

int NTCheckRegisteredClient (user, status)
char *clientHost;
NTNameType user;
NTStatusList *status;

DESCRIPTION

NTCheckRegisteredClient checks with the Notification System client to see if the indicated user is registered.

This call is really an internal call between the Notification System client and Notification System server. In general, it
should not be called.

INPUT ARGUMENTS

clientHost The host name for the machine where the Notification System client that you want
to check is running.

user The name of the user we are checking on.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n NT_RETURN_OK: Operation successful

n NT_RETURN_WARNING: Warning during process but operation
completed successfully

n NT_RETURN_ERROR: Operation failed due to error

n NT_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n NT_RETURN_BAD_STATUS: Status parameter was bad



216 Action Request System Programmer’s Guide—January 1995

5

SEE ALSO

NTDeregisterClient (3),NTRegisterClient (3),FreeNTStatusList (3)

NTDeregisterClient

NAME

NTDeregisterClient – cancel registration with the Notification System client process

SYNOPSIS
#include "nt.h"
#include "nterrno.h"
#include "ntcextrn.h"
int NTDeregisterClient (user, password, filename, status)

NTNameType user;
NTNameType password;
char *filename;
NTStatusList *status;

DESCRIPTION

NTDeregisterClient will close registration for this process with the Notification System client. The combination of
user and filename identifies which instance to deregister.

INPUT ARGUMENTS

user The name of the user deregistering with the Notification System. The user will be
removed from the active list and no more notifications delivered.

password The password for the user. If the user is a registered user of the system, the password
is used to validate that user. This prevents another user from deregistering a user so
that the user misses notifications.

filename The filename of a named pipe that will be used for communication between this
process and the Notification System client. This insures that the correct instance of
the registration is closed in case the user is registered with more than one
Notification tool running.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.



AR System and Notification Subsystem Manual Pages 217

5

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n NT_RETURN_OK: Operation successful

n NT_RETURN_WARNING: Warning during process but operation
completed successfully

n NT_RETURN_ERROR: Operation failed due to error

n NT_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n NT_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

NTRegisterClient (3),FreeNTStatusList (3)

NTDeregisterServer

NAME

NTDeregisterServer – cancel registration with the Notification System server process

SYNOPSIS
#include "nt.h"
#include "nterrno.h"
#include "ntsextrn.h"
int NTDeregisterServer (serverHost, user, password, status)

char *serverHost;
NTNameType user;
NTNameType password;
NTStatusList *status;

DESCRIPTION

NTDeregisterServer will close registration for this process with the Notification System server. The combination of
user and hostname identifies which instance to deregister.

This call is really an internal call between the Notification System client and Notification System server. In general, it
should not be called.

INPUT ARGUMENTS

serverHost The name of the host on which the Notification System server is running.

user The name of the user deregistering with the Notification System. The user will be
removed from the active list and no more notifications delivered.



218 Action Request System Programmer’s Guide—January 1995

5

password The password for the user. If the user is a registered user of the system, the password
is used to validate that user. This prevents another user from deregistering a user so
that the user misses notifications.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n NT_RETURN_OK: Operation successful

n NT_RETURN_WARNING: Warning during process but operation
completed successfully

n NT_RETURN_ERROR: Operation failed due to error

n NT_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n NT_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

NTRegisterServer (3),FreeNTStatusList (3)

NTGetListServer

NAME

NTGetListServer – retrieve a list of servers accessible from the current machine

SYNOPSIS
#include "nt.h"
#include "nterrno.h"
#include "ntsextrn.h"
int NTGetListServer (serverList, status)

NTServerNameList *serverList;
NTStatusList *status;

DESCRIPTION

NTGetListServer retrieves a list of all the servers that are accessible from the current machine. It gets the list of
servers by processing the Notification directory file/etc/ar (in UNIX) or <ar_config_dir>\ar (in the Windows NT
server), retrieving all registered Notification servers.

Access to the server list is available to all users.



AR System and Notification Subsystem Manual Pages 219

5

This call is really an internal call between the Notification System client and Notification System server. In general, it
should not be called.

RETURN VALUES

serverList A list of all the servers that are registered.

If no servers are registered, the routine will return successfully but this list will
contain 0 names.

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n NT_RETURN_OK: Operation successful

n NT_RETURN_WARNING: Warning during process but operation
completed successfully

n NT_RETURN_ERROR: Operation failed due to error

n NT_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n NT_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

FreeNTStatusList (3),FreeNTServerNameList (3)

NTInitializationClient

NAME

NTInitializationClient – initialize interaction with the Notification System client

SYNOPSIS
#include "nt.h"
#include "nterrno.h"
#include "ntcextrn.h"
int NTInitializationClient (status)

NTStatusList *status;

DESCRIPTION

NTInitializationClient  serves to initialize the program for interaction with the Notification system client. For many
systems, this call performs no work, while in others it establishes an initial state for the system. It should always be



220 Action Request System Programmer’s Guide—January 1995

5

called in case it is needed by the environment.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n NT_RETURN_OK: Operation successful

n NT_RETURN_WARNING: Warning during process but operation
completed successfully

n NT_RETURN_ERROR: Operation failed due to error

n NT_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n NT_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

NTTerminationClient  (3),FreeNTStatusList (3)

NTInitializationServer

NAME

NTInitializationServer – initialize interaction with the Notification System server

SYNOPSIS
#include "nt.h"
#include "nterrno.h"
#include "ntsextrn.h"
int NTInitializationServer (status)

NTStatusList *status;

DESCRIPTION

NTInitializationServer  serves to initialize the program for interaction with the Notification system server. For many
systems, this call performs no work, while in others it establishes an initial state for the system. It should always be
called in case it is needed by the environment.



AR System and Notification Subsystem Manual Pages 221

5

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n NT_RETURN_OK: Operation successful

n NT_RETURN_WARNING: Warning during process but operation
completed successfully

n NT_RETURN_ERROR: Operation failed due to error

n NT_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n NT_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

NTTerminationServer (3),FreeNTStatusList (3)

NTNotificationClient

NAME

NTNotificationClient – deliver a notification to the indicated Notification System client

SYNOPSIS
#include "nt.h"
#include "nterrno.h"
#include "ntcextrn.h"
int NTNotificationClient (clientHost, user, notifyText, notifyCode, notifyCodeText, status)

char *clientHost;
NTNameType user;
char *notifyText;
int notifyCode;
char *notifyCodeText;
NTStatusList *status;

DESCRIPTION

NTNotificationClient  will deliver a notification to the indicated client. The client will then process the message to
deliver it on to the processes who have registered with the Notification System client.

This call is really an internal call between the Notification System client and Notification System server. In general, it
should not be called.



222 Action Request System Programmer’s Guide—January 1995

5

INPUT ARGUMENTS

clientHost The host name for the machine where the Notification System client is running.

user The name of the user the notification is for.

notifyText The full text of the notification.

notifyCode A code that indicates the type and source of the notification. The Notification
System does not specify these codes, they are solely between the sender and receiver
of the notification.

notifyCodeText Text that is associated with the notifyCode. If there is no associated text, this
parameter should be set to NULL.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n NT_RETURN_OK: Operation successful

n NT_RETURN_WARNING: Warning during process but operation
completed successfully

n NT_RETURN_ERROR: Operation failed due to error

n NT_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n NT_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

NTDeregisterClient (3),NTRegisterClient (3),FreeNTStatusList (3)



AR System and Notification Subsystem Manual Pages 223

5

NTNotificationServer

NAME

NTNotificationServer – deliver a notification to the indicated Notification System server

SYNOPSIS
#include "nt.h"
#include "nterrno.h"
#include "ntsextrn.h"
int NTNotificationServer (serverHost, user, notifyText, notifyCode, notifyCodeText, status)

char *serverHost;
NTNameType user;
char *notifyText;
int notifyCode;
char *notifyCodeText;
NTStatusList *status;

DESCRIPTION

NTNotificationServer will deliver a notification to the indicated server. The server will then process the message to
deliver it on to the Notification System client processes who have registered with the Notification System server.

INPUT ARGUMENTS

serverHost The host name for the machine where the Notification System server is running.

user The name of the user the notification is for.

notifyText The full text of the notification.

notifyCode A code that indicates the type and source of the notification. The Notification
System does not specify these codes, they are solely between the sender and receiver
of the notification.

As used by Remedy Corporation, there are two codes defined: 1 and 2. Code 1
indicates that the notification is from the NT System. Code 2 indicates that the
notification is from the AR System. See below for the format of the text that is used
in each of these cases.

notifyCodeText Text that is associated with the notifyCode. If there is no associated text, this
parameter should be set to NULL.

As used by Remedy Corporation, the two codes noted above use the following
format for thenotifyCodeText:

The text for Notification System notifications is simply a character string containing
any further details of the notification being sent. This is usually a qualifying error
message with further details of the problem generating the notification.

The text for AR System notifications is a formatted string consisting of three parts.
The first two are padded to the maximum possible size with the value left-justified,
the third is simply the value itself with no need for padding.



224 Action Request System Programmer’s Guide—January 1995

5

n Entry-Id  The entry ID of the entry that is associated to the notification (padded
to AR_MAX_ENTRYID_SIZE)

n Schema The name of the schema that contains the associated entry (padded to
AR_MAX_NAME_SIZE)

n Server The name of the server where the schema is located

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n NT_RETURN_OK: Operation successful

n NT_RETURN_WARNING: Warning during process but operation
completed successfully

n NT_RETURN_ERROR: Operation failed due to error

n NT_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n NT_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

NTDeregisterServer (3),NTRegisterServer (3),FreeNTStatusList (3)



AR System and Notification Subsystem Manual Pages 225

5

NTRegisterClient

NAME

NTRegisterClient – register with the Notification client process to receive notifications

SYNOPSIS
#include "nt.h"
#include "nterrno.h"
#include "ntcextrn.h"
int NTRegisterClient (user, password, filename, status)

NTNameType user;
NTNameType password;
char *filename;
NTStatusList *status;

DESCRIPTION

NTRegisterClient will register this process with the Notification System client. The user will be validated and
registered with each of the Notification System servers on the network. When any message is received by the
Notification client, it will be returned in the named pipe specified in the call.

INPUT ARGUMENTS

user The name of the user registering with the Notification System. All notifications that
are directed to this user will be delivered to the pipe specified.

password The password for the user. If the user is a registered user of the system, the password
is used to validate that user. This prevents registration and receipt of notifications by
people who are simply posing as the user.

filename The filename of a named pipe that will be used for communication between this
process and the NT System client. The file should have already been opened for read
access by this process. The NT System client will open it with write access and will
write any notifications received for the specified user into the pipe.

Every message delivered on this pipe will be exactly NT_MAX_FULL_MESSAGE
bytes. The actual formatted string will be null terminated and any bytes after that are
unused and should be ignored.

The format of the message delivered is as follows. Each of the items in the string is
separated by a separator character (NT_NOTIFY_STRING_SEP).

n notifyCode - Code indicating the source of the notification. At this time, there
are three sources identified:
0 - The notify is a heartbeat and the message should be ignored,
1 - Notification from the Notification System, and
2 - Notification from the AR System.

n notifyTextLen - Length in bytes of the notify text

n notifyText - The actual notify text



226 Action Request System Programmer’s Guide—January 1995

5

n notifyCodeText - This text is optional. If there is additional text, it will be
present; otherwise, this text is omitted. For notifications with a notifyCode of 1,
this text is details of an error message. For notifications with a notifyCode of 2,
this is a formatted string that consists of the entry ID for
AR_MAX_ENTRYID_SIZE bytes (left-justified), the schema name for
AR_MAX_NAME_SIZE bytes (left-justified), and the server name.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n NT_RETURN_OK: Operation successful

n NT_RETURN_WARNING: Warning during process but operation
completed successfully

n NT_RETURN_ERROR: Operation failed due to error

n NT_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n NT_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

NTDeregisterClient (3),FreeNTStatusList (3)



AR System and Notification Subsystem Manual Pages 227

5

NTRegisterServer

NAME

NTRegisterServer – register with the Notification server process to receive notifications

SYNOPSIS
#include "nt.h"
#include "nterrno.h"
#include "ntsextrn.h"
int NTRegisterServer (serverHost, user, password, status)

char *serverHost;
NTNameType user;
NTNameType password;
NTStatusList *status;

DESCRIPTION

NTRegisterServer will register this process with the Notification System server. The user will be validated and
registered. When any message is received by the Notification server, it will be forwarded to the registered machine.

This call is really an internal call between the Notification System client and Notification System server. In general, it
should not be called.

INPUT ARGUMENTS

serverHost The name of the machine on which the Notification System server is to be run.

user The name of the user registering with the Notification System. All notifications that
are directed to this user will be delivered to the machine the process making this call
is run on (through the NTNotificationClient call).

password The password for the user. If the user is a registered user of the system, the password
is used to validate that user. This prevents registration and receipt of notifications by
people who are simply posing as the user.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.



228 Action Request System Programmer’s Guide—January 1995

5

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n NT_RETURN_OK: Operation successful

n NT_RETURN_WARNING: Warning during process but operation
completed successfully

n NT_RETURN_ERROR: Operation failed due to error

n NT_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n NT_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

NTDeregisterServer (3),FreeNTStatusList (3)

NTTerminationClient

NAME

NTTerminationClient – terminates interaction with the Notification System client

SYNOPSIS
#include "nt.h"
#include "nterrno.h"
#include "ntcextrn.h"
int NTTerminationClient (status)

NTStatusList *status;

DESCRIPTION

NTTerminationClient  serves to terminate the program’s interaction with the Notification system client. For many
systems, this call performs no work, while in others it performs some cleanup operations for the system. It should
always be called in case it is needed by the environment.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n NT_RETURN_OK: Operation successful



AR System and Notification Subsystem Manual Pages 229

5

n NT_RETURN_WARNING: Warning during process but operation
completed successfully

n NT_RETURN_ERROR: Operation failed due to error

n NT_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n NT_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

NTInitializationClient  (3),FreeNTStatusList (3)

NTTerminationServer

NAME

NTTerminationServer – terminates interaction with the Notification System server

SYNOPSIS
#include "nt.h"
#include "nterrno.h"
#include "ntsextrn.h"
int NTTerminationServer (status)

NTStatusList *status;

DESCRIPTION

NTTerminationServer serves to terminate the program’s interaction with the Notification system server. For many
systems, this call performs no work, while in others it performs some cleanup operations for the system. It should
always be called in case it is needed by the environment.

RETURN VALUES

status A list of all the Notes/Warnings/Errors generated from the call. This is a list of 0 or
more notes each containing the type of error, its code, and a message generated using
the language specified in the control record. The more serious errors are listed first
in the list with lesser warnings and notes listed later.

The return of the function itself is an integer indicating the success of the call. The
return will be one of the following values:

n NT_RETURN_OK: Operation successful

n NT_RETURN_WARNING: Warning during process but operation
completed successfully

n NT_RETURN_ERROR: Operation failed due to error



230 Action Request System Programmer’s Guide—January 1995

5

n NT_RETURN_FATAL: Operation failed; the status array may or may not
contain any information

n NT_RETURN_BAD_STATUS: Status parameter was bad

SEE ALSO

NTInitializationServer  (3),FreeNTStatusList (3)



AR System and Notification Subsystem Manual Pages 231

5

File Formats

ar

NAME

ar – directory file to AR and Notification System servers

SYNOPSIS
/etc/ar (for UNIX)
<ar_config_dir>\ar (for Windows NT)

DESCRIPTION

The file /etc/ar for UNIX and<ar_config_dir>\ar for Windows NT contains a list of all the AR and Notification
System servers that are accessible from the current machine. This file is processed through the ARGetListServer and
NTGetListServer routines to return lists of all accessible servers. In order to be recognized by any of the AR or
Notification System tools, a server must be registered in this file. This file is required on all machines serving as either
a server or client for the AR and/or Notification systems.

Any line beginning with a# in column 1 is treated as a comment line and ignored.

An entry in this file is composed of two space or tab separated fields:

server-name server-type-list

Theserver-name field is the name of a machine that is acting as a server in the environment. This name is resolved to
a network location using the/etc/hosts file on the local machine.

Theserver-type-list field contains a semicolon-separated list of keywords indicating the type of server supported on
that machine. Following is a list of all the legal keywords:

AR Server for the Action Request System.

NT Server for the Notification System.

EXAMPLES

The following configuration file:

# directory file for AR/NT servers
starlight AR;NT
capricorn AR
jason NT

registers three servers: two for the AR System and two for the Notification system. The first, starlight, is registered as
a server for both the Action Request and Notification Systems. The second and third, capricorn and jason, are
registered for the Action Request System and Notification System, respectively.

SEE ALSO

ARGetListServer (3),NTGetListServer (3)



232 Action Request System Programmer’s Guide—January 1995

5

ar.conf

NAME

ar.conf – configuration file for the Action Request System

SYNOPSIS
/etc/ar.conf
<ar_install_dir>\ar.cfg (Windows NT)

DESCRIPTION

The file /etc/ar.conf or <ar_install_dir>\ar.cfg contains configuration information used by the Action Request
System. This file is read by any process needing a piece of configuration information about the server. It is located
only on systems that are serving as servers for the Action Request System.

Information from this file can be retrieved using the API callARGetServerInfo and can be set using the call
ARSetServerInfo. If set using this call, all changes take affect immediately. If set by manually changing the file,
changes do not take affect until thearserverd process is restarted.

Any line beginning with a# in column 1 is treated as a comment line and ignored.

An entry in this file is composed of a header followed by a value that corresponds to the header. The header and value
are separated by any number of spaces or tabs.

header value

The recognizedheader andvalue pairs are described below. Any other line is simply ignored.

API-Log-File The name of the file to be used if API tracing (seeDebug-Mode:) is activated.

Allow-Guest-Users Flag indicating whether the AR System server will accept guest users. A guest user
is a user that is not registered with the AR System. If guest users are allowed, the
user is accepted as a user without permissions but they can do basic operations in the
system and submit entries to schemas where open access at submit time is allowed.
If guest users are disallowed, unregistered users are allowed no access.

Legal values for this field areT andF. The default if neither is specified is T (allow
guest users).

Allow-Unqual-Queries Flag indicating whether the AR System server will allow unqualified queries
(ARGetListEntry calls with NULL for the qualifier or a qualifier with operation
AR_COND_OP_NONE). Queries that match and return ALL the data in the
database are potential sources of performance problems in the system. They will
match and return ALL the entries for a given schema which is a costly operation for
large schemas. Note: You can use a dummy qualification like 1 = 1 to allow queries
for all entries when this flag is set to False.

Legal values for this field areT andF. The default if neither is specified is T (allow
unqualified queries).

Case-Insensitive-Search: Code indicating whether the AR System server will perform case-insensitive (1) or
case-sensitive (2) searches when using the full text search engine.



AR System and Notification Subsystem Manual Pages 233

5

Legal values for this field are1 and2. The default if neither is specified is 1 (case-
insensitive).

Collection-directory: Directory that is the collection directory for the full text engine. All the full text
indexes recorded for the system are stored in this directory. If th

2ere are no fields that are full text indexed, this directory is not used.

Crossref-Blank-Password: Flag indicating whether the AR System server will cross-reference from the AR
System to the/etc/passwd file for password checking if the user in the AR System
has no password. This flag allows the definition of users in the AR System to define
group membership and allow registration of other support information while
keeping a tie to the/etc/passwd file for passwords.

Legal values for this field areT andF. The default if neither is specified is F
(disallow blank password cross-reference).

Dbhome-directory: Directory that is the home directory for the relational database system that is being
used by the Action Request System. If the flat file database is being used, this entry
is not used.

Db-password: If you are using one of the SQL databases that allows users to be created (SYBASE
or ORACLE), this is the database password that is being used for the ARSystem
database/tablespace. It is stored in encrypted form. You can change the database
password using theARSetServerInfo call.

If you change the password directly, you must enter the password you provided in
clear-text after this keyword, then change the password (maybe to the same value)
using the AR System utilities to have it encrypted.

Debug-mode: Bitmask setting indicating debug modes that are possible for the AR System servers.

If bit 1 (the low-order bit) is set, SQL tracing on the arserverd process is activated.
By default, tracing will be performed to a file named arsql.log in the directory
indicated by theServer-directory: label. This name can be overridden by using the
SQL-Log-File: label.

If bit 2 is set, Filter tracing on the arserverd process is activated. By default, tracing
will be performed to a file named arfilter.log in the directory indicated by the
Server-directory: label. This name can be overridden by using theFilter-Log-File:
label.

If bit 3 is set, User tracing on the arserverd process is activated. By default, tracing
will be performed to a file named aruser.log in the directory indicated by theServer-
directory:  label. This name can be overridden by using theUser-Log-File: label.

If bit 4 is set, Escalation tracing on the arserverd process is activated. By default,
tracing will be performed to a file named arescl.log in the directory indicated by the
Server-directory: label. This name can be overridden by using theEscalation-Log-
File: label.

If bit 5 is set, API tracing on the arserverd process is activated. By default, tracing
will be performed to a file named arapi.log in the directory indicated by theServer-
directory:  label. This name can be overridden by using theAPI-Log-File:  label.



234 Action Request System Programmer’s Guide—January 1995

5

If bit 16 is set, Distributed Server tracing on the arservdsd process is activated. By
default, tracing will be performed to a file named ardist.log in the directory indicated
by theServer-directory: label. This name can be overridden by using the
Distrib-Log-File:  label. (Note that this tracing is meaningful only if the Distributed
Server Option is licensed.)

Email-Delivery-System: For NCR and Motorola platforms, there are two major subsystems for delivery of
mail: rmail  andsendmail. The default for NCR isrmail  and for Motorola is
sendmail. For all other platforms, this option is ignored andsendmail is used.

Email-Notify-From: Use the value supplied as the “From” name for any email notifications that are
generated from Filters within the AR System where there is no value supplied in the
Subject line.

This value can only be used by “trusted” email users. To check on or add new trusted
users, refer to documentation on the mail configuration file /etc/sendmail.cf.

Escalation-Log-File: The name of the file to be used if escalation tracing (seeDebug-Mode:) is activated.

Escalation-Daemon: Flag indicating whether this server runs a private escalation daemon. The server
must be licensed to run multi-process.

Legal values for this field areT andF. The default if neither is specified is F (don’t
run a separate escalation server).

Filter-Log-File: The name of the file to be used if filter tracing (seeDebug-Mode:) is activated.

FTS-Debug-Mode: Trace level for thearservftd process.

If bit 1 is set (the default), logging for all VDK failure messages in the arft.log file
is activated.

If bit 2 is set, logging for incoming index commands is activated.

If bit 3 is set, logging for index drop commands is activated.

If bit 4 is set, logging for VDK commands is activated.

FullText-home: Directory that is the home directory for the full text engine that is being used by the
Action Request System. If the server is not licensed for full text support, this entry
is not used.

FullText-License-Timeout: The interval (in hours) after which full text licensed users who have performed no
action to the AR System server are automatically disconnected. If this is a user
holding a floating full text license token, that token is freed at this time.

Informix-DBServer-Name: The name of the INFORMIX DB Server when accessing a remote INFORMIX
database. This field is present only if the underlying database is INFORMIX On-
line.

Informix-SE-DBPath: Directory where the INFORMIX-SE database is stored for the ARSystem database.
This is often the same as the Dbhome-directory setting for the database but it does
not have to be. This field is present only if the underlying database is INFORMIX-
SE.

Informix-TBConfig: Filename for thetbconfig file for the INFORMIX database. This field is present only
if the underlying database is INFORMIX.



AR System and Notification Subsystem Manual Pages 235

5

Ingres-Vnode-Name: The name of the INGRES Vnode when accessing a remote INGRES database. This
field is present only if the underlying database is INGRES.

License-Timeout: The interval (in hours) after which users who have performed no action to the AR
System server are automatically disconnected. If this is a user holding a floating
write license token, that token is freed at this time.

Max-Entries-Per-Query: The maximum number of entries the server will return from a single query. The
actual maximum is the lower of this number and the number configured by the user
for the actual call.

Max-Fast-Daemons: Number of “fast” servers to run in the system. A “fast” server is one that performs
its operations quickly without blocking on the database. No searches are performed
through these servers. The server must be licensed to run multi-process.

Legal values for this field are 0 through 15. The default if nothing is specified is 0
(don’t run any “fast” servers).

Max-List-Daemons: Number of “list” servers to run in the system. A “list” server is one that performs a
search in the database for its results. This may lead to a short or long block on
response from the server.

Legal values for this field are 0 through 35. The default if nothing is specified is 0
(don’t run any “list” servers).

Oracle-SID: System ID for the ORACLE database. This field is present only if the underlying
database is ORACLE.

Oracle-Two-Task: Two task environment setting for the ORACLE database. This field is present only
if the underlying database is ORACLE.

Server-directory: Directory that serves as the database directory for the Action Request System. For
the flat file database, it contains all the database definition and data files. For any of
the SQL databases, it contains support files but not the actual database files.

Set-Process-Timeout: Timeout setting for a process run during a set fields action within a filter. To avoid
hanging the server, the server will timeout after this many seconds if the process has
not completed yet. The value can be between 1 and 20 seconds with a default of 5
seconds if nothing is set.

SQL-Log-File: The name of the file to be used if SQL tracing (seeDebug-Mode:) is activated.

Submitter-Mode: Current mode for the server. The server can be put into two modes: Locked and
Changeable. If Locked, the Submitter field cannot be changed after an entry is
submitted and the Submitter can change values via permissions in the Submitter
group without needing change permission. If Changeable, the Submitter field can be
changed as needed after submit, but the Submitter must have a fixed or floating write
license to change data.

Legal values for this field are 1 (locked) and 2 (changeable). The default if nothing
is specified is 2 (changeable).

Suppress-warnings: A series of 0 or more numbers of warning or note messages to be suppressed. If a
warning or note is encountered by the system, but the code for the message is on this
list, the message will be suppressed.

Sybase-Server-Name: Server name of the SYBASE database. This field is present only if the underlying
database is SYBASE.



236 Action Request System Programmer’s Guide—January 1995

5

Use-Password-File: Flag indicating whether the AR System server will look in the
/etc/passwd file during user validation if the user is not registered in the AR System.
If true, logins are checked in /etc/password if not found in the AR System itself. If a
match is found, the user is valid. The UNIX group ID is used as the ID for the group
the user found belong to.

Legal values for this field areT andF. The default if neither is specified is T (allow
password file lookup).

User-Log-File: The name of the file to be used for logging of active user registration to the AR
System.

EXAMPLES

The following/etc/ar.conf file:
# Action Request System configuration file
Server-directory:/usr/ar/db
Dbhome-directory:/usr/SQL-DB

notes that the AR System database directory is at /usr/ar/db and the home directory of the SQL database system we are
using is at /usr/SQL-DB.

SEE ALSO

arservdsd (1), arserverd (1),arservftd (1),arservtcd (1), ARGetFullTextInfo  (3),ARGetServerInfo (3),
ARSetFullTextInfo  (3),ARSetServerInfo (3)



237

Glossary

access control
Security feature that lets you limit the access users have to specific fields
within a schema and to specific functions within the system.
See also access control group, permissions.

access control group
Facility of the Action Request System used primarily to define user access to
the contents of a schema field. Each group can have its own member list
defining users who belong to that group. The AR System defines a number of
special groups: Public, Administrator, Subadministrator, Customize, Submitter,
and Assignee. You can define additional groups through the Group schema.
Once you have defined a group, you can specify the type of access that the
group will have to specific fields within a schema. See also access control,
permissions.

access permissions
See permissions.

action request
AR. A collection of information that describes an event (transaction), such as a
problem or a service request.

active link
A cause and effect relationship that you define on a per schema basis. Active
links cause the Action Request System to perform specific operations in
response to specific user actions. The AR System administrator can define
active links that run macros, set fields to specified values, run independent



238 Action Request System Programmer’s Guide—January 1995

system processes, send an interactive message to the user, change field
characteristics, or execute a DDE operation on a Windows User Tool. Active
links run on the client machine.

administrator
Individual responsible for the management of the AR System, including setting
up schemas, setting access rights for users, and designing the workflow
process. To manage the AR System, you must be a member of the
Administrator or Subadministrator group.

administrator default
Value that the administrator assigns to a field while designing the schema.
When the user sets defaults, this value is used unless the user has assigned
their own default. When a user submits an AR, the AR System automatically
enters this value in the field unless the user has assigned their own default or
has entered a different value.

administrator command
Menu extension defined by the AR System administrator using the
Administrator Tool. Administrator commands allow users to invoke specific
commands running on the server. (Administrator commands are not available
from PC or Macintosh clients.) See also user command.

Administrator group
One of several special access control groups provided by the AR System.
Members of this group have full and unlimited access to the AR System,
including unlimited ability to create schemas, filters, escalations, active links,
menus, and administrator commands. See also Subadministrator group.

Administrator Tool
The part of the AR System used exclusively by administrators (and to a lesser
extent, by subadministrators) to set up the system for use by support staff and
end users. This includes setting up schemas, setting access permissions (users
and groups), and creating filters, escalations, active links, menus, and
administrator commands.

administrator view
The layout of a schema that was designed by the AR System administrator.
This is the view that users will see unless they customize their view.



Glossary 239

admin server
The arserverd process that can handle any AR System operation. The admin
server performs all admin restructuring operations, guaranteeing the
serialization and integrity of data. There can be only one admin server process
at any time.

API
Application program interface. A set of functions that provide application
programmers with access to the full functionality of a product. The AR System
API provides a complete interface to the AR System server.

AR
See action request.

arservtcd server
The controller process that handles requests from clients for information on
which socket to use for communicating with other server processes.

AR System client
1.Subset of AR System software necessary to allow a user to access an AR
System server on the network and run the AR System tools on the local
workstation.
2.Hardware (workstation, terminal, Macintosh, or PC) running the AR System
client software.

AR System server
1.Full set of AR System software, including the arservtcd and the fast, list, and
escalation arserverd processes. When installed on a workstation on the
network, the server software provides access to the full feature set of the AR
System and can be accessed by workstations, Macintoshes, terminals and PCs
on the network that are running the AR System client software.
2.Hardware (workstation) running the AR System server software.

assignee
The person who is assigned responsibility for resolving an action request.

Assignee group
One of several special access control groups provided by the AR System. This
is an implicit group; users automatically belong to this group and, if they have
a valid AR System license, are granted change access for ARs for which they
have been assigned responsibility (their name is in the Assigned-to field).



240 Action Request System Programmer’s Guide—January 1995

character data type
Data type used for fields where you will be entering text data. The AR System
administrator can specify a maximum length for the field or leave the length
unlimited. The administrator can also specify a pattern to restrict the data that
users can enter or attach a character menu to the field.

character menu
A type of menu that the AR system administrator can create and attach to any
character-type data field. Character menus can be displayed as list boxes or
pull-right menus.

client
See AR System client.

command line options
Parameters that you can combine with the commands to start the User,
Administrator, Import, and Notification Tools that allow you to specify how
the tools will run. For the User Tool, you can execute a macro or open to the
Query or Submit window. For the Administrator Tool, you can attach to a
specific server or open the tool with a specific category displayed.

core field
One of a set of basic fields that are common to all AR System schemas.
Additional limits, such as fixed or maximum sizes, are placed on some core
fields.

configuration
1.The process of setting up hardware and/or software so that it operates in a
manner consistent with the needs of a location.
2.The physical setup of a device or devices.
3.The operating characteristics of software.

custom extension
See administrator command, user command.

Customize group
One of several special access control groups provided by the AR System. This
group grants users the right to customize their schema layout and create
custom commands in the User Tool.



Glossary 241

database
A collection of information maintained in the form of individual entries. The
AR System allows you to create and maintain a history of trouble reporting
information.

data type
Property of a field that determines what type of information the field contains.
The choices are character, date and time, diary, integer, real, and selection.

date/time data type
Fields with this data type are limited to calendar dates and time.

DDE
Dynamic Date Exchange. This is a standard inter-application communication
feature used in Windows applications. For more information, see your
Windows documentation.

default
Administrator or user defined setting or value that automatically applies to a
field if users do not supply a different setting or value when submitting a new
action request.

diary data type
Fields with this data type allow you to capture a history of the actions taken
for an AR. Each multiple character entry is stamped with the time, date, and
name of the user who entered the item.

dynamic menu
Menu that performs a query at the time a user selects the menu icon and uses
the results of the query to build the list of menu items from which the user
chooses.

end user
In the AR System, an end user is the person who is responsible for notifying
support staff of problems and service requests by submitting ARs.

email
Electronic mail. The AR System allows you to set up an electronic mail handler
so that users can submit ARs through email if they do not have access to a User
Tool or if the AR server is inaccessible. (If you are running the client tools on a
PC, your PC must be equipped with an SMTP gateway to allow email
submissions.)



242 Action Request System Programmer’s Guide—January 1995

escalations
Facility that tests server transactions at specified times or regular intervals to
see if certain conditions are met and responds to the conditions by taking a
specific action or actions. The AR System administrator can define escalations
to perform actions such as notify an individual, run a process, set specified
fields, or make an entry to a log.

This facility is useful if, for example, you want to notify support staff when
ARs are in the Assigned state too long.

escalation server
The arserverd process that, if enabled, handles all escalation operations.

export
Facility that lets you move schemas, filters, active links, menus, administrator
commands, and mail templates to a file. Exporting is useful if you want to
share schemas with another server or generate mail templates.

fast server
The arserverd process that, if enabled, handles the operations that generally
run to completion quickly without blocking access to the server.

extension
See user command, administrator command.

filter
Facility that tests every server transaction to see if certain conditions are met
and responds to the conditions by taking a specific action or actions. The AR
System administrator can define filters that set fields to specified values, run
independent system processes, send an interactive message to the user, notify
the user when the state of an AR changes, or make an entry in an audit trail
log. Filters run on the server.

fixed license
Write license that is permanently assigned to a user so that the user always has
access to the AR System.
See also floating license, write license.



Glossary 243

floating license
Write license that exists on a server and is allocated to any user who requests a
license and who is defined in the User database as having a floating license
type. If no floating license is available at the time of the user request, the user
must wait until a license becomes available.
See also fixed license, write license.

FTS
See full text search.

FTS license
Fixed or floating license that allows a user to perform a full text search in any
large text or diary field indexed for FTS.

full text search (FTS)
Facility that allows a user to quickly search for information in large text or
diary fields. The fields must be indexed and FTS-enabled by the AR System
administrator, and the user must have an FTS license.

group access
See group type.

Group schema
Schema that lets you add new groups and modify group permissions.

group type
The maximum permission type allowed for a group. May be None, View, or
Change. (Note that permission may be set below the group’s maximum at the
field level.)

guest user
An unregistered user with a limited set of capabilities (submit ARs and
possibly review those ARs). Unregistered users may not be allowed at your
site.

hidden field
A field that exists but is not visible in a user’s view of the schema.

import
Facility that lets you share schemas, filters, escalations, active links, menus,
and administrator commands that were created on another server. First, you
must export the definitions from the server on which they were created to an
ASCII file, then you can import the file to your own server.



244 Action Request System Programmer’s Guide—January 1995

Import Tool
The part of the AR System that lets you transfer data from a data file to a
server.

integer data type
Fields with this data type contain numeric values between
-2147483648 and 2147483647. (The range for a particular field may be limited
by the administrator.)

license
See Flashboards license, fixed license, floating license, FTS license, read license,
write license.

list server
The arserverd process that, if enabled, handles the operations of the AR System
that may take some time to complete: AR Export, ARGetListEntry (high-
performance database searches), and ARGetEntryStatistics.

login window
Window that allows you to login to the AR System when you first start an AR
System tool.

macro
A set of operations recorded for later execution. Macros are useful for
automating frequently used or complex query operations.

mail template
Template that contains the fields that you need to fill in to submit an action
request using electronic mail. Templates are generated by the administrator
from existing schema using the export facility. (If you are running the client
tools on a PC, your PC must be equipped with an SMTP gateway to allow
email submissions.)

multiple schema views
Ability of an administrator to create different views of what users see when
they bring up a schema, including hiding or re-arranging fields by changing a
field’s display properties.



Glossary 245

multi-process server
A product that allows the AR System administrator to distribute operations
among different servers and, consequently, improve the performance of the AR
System.

For example, the arservtcd process routes the load among the Admin server,
Fast server, List server, Escalation server and Private servers as appropriate,
automatically starts the specified arserverd processes and restarts the arserverd
processes if they terminate.

notification
An alert that tells you that an AR System event has occurred. The alert may be
a system beep, flash, the display of a notice window, or the opening of the
Notification Tool.

Notification Tool
The part of the AR System that alerts you when specific changes are made to
ARs. Also referred to as the Notifier.

operator
One of a number of functions that let you define complex queries or build filter
qualifications. The AR System operators are available through use of the query
bar palette or the filter qualification palette or you can type them in directly.

permissions
Field property setting that allows you to control who can view and change
individual fields of a schema. Permissions are defined for each access control
group. View permission limits group members to reading the contents of a
field. Change permission allows group members to read and write the contents
of a field. See also access control group.

pick list
See selection list.

private server
An arserverd process that, if enabled, handles dedicated access to system
operations for specific users.

property
An attribute that is defined. For example, the properties of a field include its
data type, physical characteristics such as length, and whether it is required or
optional.



246 Action Request System Programmer’s Guide—January 1995

Public group
One of several special access control groups provided by the AR System. Every
user is automatically a member of this view only group.

pull-right menu
See character menu.

query
Process that lets you select a subset of ARs according to search criteria that you
define and then perform one of several operations on the selected ARs. See also
query operation.

query bar
Part of the Query window that lets you define complex query criteria. Includes
a palette of operators that you can use in the query you build.

query list
A list that includes a one-line summary of each AR matching a query.

query operation
Action that you can perform on the entries that match the criteria defined in a
query. The possible operations are: Query List, Display, Modify, Report, and
Delete.

query statement
A complete definition of query criteria constructed in the query bar.

Query window
The User Tool window that lets you search the database for ARs that match
specific criteria and display the results of the search. You also use the Query
window to view or modify an existing AR. See also Submit window.

range
Defines the upper and lower limits of acceptable values. For example, if a
field’s range is -10 to 100, you will be able to enter any number from negative
10 to positive 100 inclusive.

read license
License that allows a user to query the AR System schemas and submit new
ARs but does not allow the user to modify or save data on existing ARs. See
also write license.



Glossary 247

real data type
Fields with this data type contain a floating-point number. The range is set by
the administrator.

report format
The layout that you specify when you generate a report from an AR System
query. You can format a report in columns or as a list of records. You can also
choose selected fields to print or print them all. To create a more sophisticated
layout, you can export the report to a file and import the file into a desktop
publishing application.

reserved field
One of a set of fields defined with specific interpretations. You can use these
fields in any schema, if desired.

schema
The definition of the data fields in a database. Each schema represents a
database on an AR System server. The AR System comes with several sample
schemas and you can build as many additional schemas as needed.

scroll bar
Window element that appears when there is more information to view than
will fit in the window. You use the mouse to slide the scroll bar and shift the
view area. A scroll bar at the bottom of the window lets you move the viewing
area left and right. A scroll bar on the right side of the window lets you move
the viewing area up and down.

selection data type
Fields with this data type present a set of mutually exclusive choices from
which the user is to choose. The selections are displayed as radio buttons or as
items on a menu.

selection list
List that appears as a result of an active link that performs a query that returns
more than one AR. The selection list lets the user pick the appropriate AR for
the active link to continue processing with.

server
See AR System Server.



248 Action Request System Programmer’s Guide—January 1995

status field
Core field that lets you keep a record as an AR moves through the various
stages of the process you are using to resolve ARs. The defined states should
reflect the workflow process.

status history
Information that shows the progress that has been made on an AR. You can
view status history from the Display or Modify window.

subadministrator
Individuals who have limited administrative access to the AR System. To be a
subadministrator, you must be a member of the Subadministrator group and
belong to a group with sub-admin access to a schema.

Subadministrator
Group
One of several special access control groups provided by the AR System.
Members of this group have limited access to the AR System. You must be a
member of this group to be able to administer any schemas that your group
has sub-admin access to and to create and administer filters, active links, and
escalations connected to schemas that your group has administrative access to.

Submit window
The User Tool window that lets you enter the appropriate information to create
and submit a new AR. See also Query window.

submitter
The person who submits an action request. The submitter’s name is entered in
the Submitter field.

Submitter group
One of several special access control groups provided by the AR System. This
is an implicit group; users submitting ARs automatically belong to this group
and, if they have a valid AR System license or if the Submitter Mode is set to
Locked, are granted change access for ARs that are submitted with their name
in the Submitter field.

support staff
Person or group responsible for resolving action requests. They assign and are
assigned ARs, log their progress in appropriate fields, and use information
stored in previous ARs to help resolve problems.



Glossary 249

toolbar
A floating window (Mac) or part of the Main window (Windows) that allows
easy access to some of the more commonly performed functions in the
Windows and Macintosh User Tool and Windows Administrator Tool.

user default
Value that a user who has customize permission can assign to a field. When the
user sets defaults, the AR System loads this value into the field. When the user
submits an AR, the AR System automatically loads this value into the field
unless the user has entered a different value.

user command
Facility that allows you to invoke an operating system command (or
application capable of being run from an operating system command line)
from the Execute menu of the Query window. Each user can define their own
set of user commands. (User commands are not available from PC or
Macintosh clients.) See also administrator command.

User schema
Schema that lets you add users to the AR System and specify the type of access
each user will have.

User Tool
The part of the AR System that lets users enter new ARs and track them
through the troubleshooting process. Users can also query the database for
ARs that match specified criteria, generate reports, and modify existing ARs
with the User Tool.

user view
What the user sees when they bring up a schema. If users have permission to
customize their views, they are able to change the physical layout and other
properties of the schema and schema fields as they appear for that user.

variable
Data element that changes according to user input. In macros, you can include
variable definitions that will cause the AR System to prompt the user for
certain information when the macro executes.

version
The system release number. To display the version of the AR System that you
are running, select About (Windows) or On Version (Motif) under the Help menu
in the User Tool. If you have the Macintosh User Tool, select About AR user Tool
under the Apple menu.



250 Action Request System Programmer’s Guide—January 1995

view layout
The location of fields in a user’s view of a schema.

wild card
Character that you can enter to represent other characters in a search string. In
query statements, for example, you can use wild card characters to match
single characters, strings, or characters within a range or set.

write license
License that allows a user to modify and save data on existing ARs as field and
schema permission settings allow. Write licenses may be either fixed
(permanently attached to a single user) or floating (allocated to users as
required).
See also fixed license, floating license, read license.



251

Index

A
active links

creating, 8
deleting, 8
getting a list of, 9
getting information about, 9
operations, 8
setting fields, 34
updating, 9

administrator extensions
creating, 9
deleting, 9
executing, 10
getting a list of, 10
getting information about, 10
operations, 9
updating, 10

allocated memory, 18, 48
freeing, 35, 50
responsibility for, 35, 50

AND, 25
API

driver example, 39
free functions, 17
free functions (Notification), 47
functions

establishing environment, 38, 53
Notification client, 47

libraries, 16
Notification client, 46
Notification server, 46

organization of, 15
program in Windows NT,

building, 39
AR System API library, 16
ar.h, 16
arerrno.h, 17
arextern.h, 17
arfree.h, 17
arimport, 65
arithmetic operations, 26
arstruct.h, 17
assigning field values, 33

B
basic logical operations, 25

C
C library functions, 87

ARCreateActiveLink, 87
ARCreateCharMenu, 92
ARCreateEntry, 94
ARCreateEscalation, 96
ARCreateExtension, 90



252 Action Request System Programmer’s Guide—January 1995

ARCreateField, 98
ARCreateFilter, 101
ARCreateSchema, 103
ARDecodeDiary, 105
ARDecodeStatusHistory, 106
ARDeleteActiveLink, 107
ARDeleteAdminExtension, 109
ARDeleteCharMenu, 110
ARDeleteEntry, 111
ARDeleteEscalation, 112
ARDeleteField, 114
ARDeleteFilter, 115
ARDeleteSchema, 116
ARExecuteAdminExtension, 118
ARExpandCharMenu, 119
ARExport, 121
ARGetActiveLink, 123
ARGetAdminExtension, 126
ARGetCharMenu, 128
ARGetEntry, 130
ARGetEntryStatistics, 132
ARGetEscalation, 134
ARGetField, 136
ARGetFilter, 139
ARGetFullTextInfo, 142
ARGetListActiveLink, 144
ARGetListCharMenu, 147
ARGetListEntry, 148
ARGetListEscalation, 150
ARGetListField, 152
ARGetListFilter, 153
ARGetListGroup, 155
ARGetListSchema, 156
ARGetListServer, 158
ARGetListSQL, 159
ARGetListUser, 161
ARGetSchema, 162
ARGetServerInfo, 165
ARGetServerStatistics, 170
ARImport, 175
ARInitialization, 177
ARLoadQualifierStruct, 178
ARMergeEntry, 179
ARSetActiveLink, 182
ARSetAdminExtension, 185
ARSetCharMenu, 187

ARSetEntry, 189
ARSetEscalation, 191
ARSetField, 193
ARSetFilter, 196
ARSetSchema, 200
ARSetServerInfo, 203
ARSetTextInfo, 198
ARTermination, 206
ARVerifyUser, 208
FreeAR, 210
FreeNT, 214
NTCheckRegisteredClient, 215
NTDeregisterClient, 216
NTDeregisterServer, 217
NTGetListServer, 218
NTInitializationClient, 219
NTInitializationServer, 220
NTNotificationClient, 221
NTNotificationServer, 223
NTRegisterClient, 225
NTRegisterServer, 227
NTTerminationClient, 228
NTTerminationServer, 229

character menus, 30
creating, 6
dealing with, 30
definition, 6
deleting, 6
expanding, 6
getting an entry, 6
getting the definition of, 6
operations, 6
updating an entry, 6

checking
error codes, 17
registered user, 11
registered user (Notification

client), 42
close registration for Notification

client, 42, 43
code example, 39
conditions, 38
copying definitions between servers, 11,

12
creating



Index 253

active links, 8
administrator extensions, 9
character menus, 6
entries, 2
escalations, 7
fields, 5
filters, 7
schemas, 4

D
data and file structure definitions, 17
data structures, 17, 48
data type, 21
database search, 3
decode diary, server, 13
defining limits on fields, 27
definitions

character menus, 6
data and file structures, 17
error codes

AR System, 17
Notification System, 47

deleting
active links, 8
administrator extensions, 9
character menu, 6
entries from the database, 3
escalations, 8
fields, 5
filters, 7
schemas, 4

delivering notifications, 42
driver program, example API, 39

E
entries, 23

creating, 2
deleting from the database, 3
merging from another source, 3
operations, 2
retrieving information about, 3
updating, 3
verifying existence, 3

error
codes

AR System, 17
Notification System, 47

handling, 36, 51
information, 20, 50
messages, 37, 52

escalations
creating, 7
deleting, 8
getting a list of, 8
getting information about, 8
operations, 7
updating, 8

establishing environment for API
functions

AR System, 38
Notification System, 53

example program, 39
executing administrator extensions, 10
expanding values, 35
exportable structures, 11, 12
exporting definitions, 11, 12
external declarations, 17

Notification client API functions, 47
Notification System, 48

F
fields

creating, 5
deleting, 5
getting a list of, 5
getting information about, 5
internal ID, 34
limits, 27
operations, 5
referencing, 33
updating, 5
values, assigning, 33

file formats, 231
ar, 231
ar.conf (UNIX), 232

filters



254 Action Request System Programmer’s Guide—January 1995

creating, 7
deleting, 7
getting a list of, 7
getting information about, 7
operations, 6
updating, 7

format of value, 21
freeing allocated memory, 35, 50
full text, retrieving server configuration

info, 12
functions, C library, 87

G
groups

cache, 6, 11
getting list of, 6, 11

I
include files, 16
information

error, 50
user, 19
warning, 50

informational messages, 37, 52
initializing a program, 10, 38, 53

Notification client, 42
Notification server, 44

K
keyword substitution, 35

L
language, 19
libraries

AR System, 16
functions, 87
Notification System, 46

license details, 12
limits on fields, 27
list

active links, 9

administrator extensions, 10
error codes

AR System, 17
Notification System, 47

escalations, 8
fields, 5
filters, 7
groups, 11
handling, 38
retrieving registered or current

users, 12
schemas, 5
servers, 11
structure

AR System, 18
Notification system, 49

logical operations, 25

M
main include file, 16

Notification System, 47
man page organization, 55
memory

allocated, 18, 48
freeing allocated, 35, 50

merging entries, 3
messages

error, 37, 52
informational, 52
number, 20, 50
sorting in status list, 37, 52
text, 20, 50
type, 20, 50
warning, 37, 52

miscellaneous operations, 10

N
NOT, 25
Notification client

API functions, 47
API library, 46
close registration, 42, 43
initializing program for, 42



Index 255

operations, 42
Notification server

API library, 46
getting a list of, 43
initializing program for, 44
operations, 43

Notification System
API free functions, 47
error codes, 47

notification, delivering, 42
nt.h, 47
ntcextrn.h, 47
nterrno.h, 47
ntfree.h, 47
ntsextrn.h, 48
NULL value, 21

O
objects, 1
operations, 2

active link, 8
administrator extensions, 9
character menus, 6
entry, 2
escalation, 7
field, 5
filter, 6
miscellaneous, 10
Notification client, 42
Notification server, 43
schema, 4

OR, 25
organization

API, 15
man pages, 55

P
passing user information, 19
password, 19
performance

server, 12
program

API in Windows NT, building, 39
initializing, 10, 38, 53
initializing for

Notification client, 42
Notification server, 44

terminating, 10, 38, 53

Q
qualification criteria, 25

R
referencing a field, 33
registration

close for Notification client, 42, 43
register process, 42

S
sample API driver program, 39
schemas

creating, 4
deleting, 4
getting a list of, 5
getting information about, 4
operations, 4
updating global information, 4

servers
arservdsd, 76
arserverd, 75
arservftd, 77
arservtcd, 78
decode diary, 13
full text, retrieving configuration

info, 12
getting a list of, 11
getting information about, 12
load qualifier, 13
name, 19
performance, 12
statistical information, 12
status history, 13
version, 12

setting fields in active link function, 34



256 Action Request System Programmer’s Guide—January 1995

sorting messages in status list
AR System, 37
Notification System, 52

specifying
conditions, 38
qualification criteria, 25

statistics
entry, 4
server, 12

status history, decode, 13
structure, loading qualifications, 13

T
terminating

interaction with Notification
client, 43

interaction with Notification
server, 44

program, 10, 38, 53
text of message, 20, 50
type of

database, 12
message

AR System, 20
Notification System, 50

U
updating

active links, 9
administrator extensions, 10
character menu entry, 6
entries, 3
escalations, 8
fields, 5
filters, 7
global schema information, 4

user
information, 19
list of registered or current users, 12
name, 19
permissions, 19
verifying, 11
verifying, Notification client, 42

user commands
addsnm, 56
aradmin, 56, 58
arascii, 60
arcache, 63
arimport, 65
armaild, 67
arnvd, 70
arnvui, 71
arovd, 71
arovui, 73
arreload, 74
arservdsd, 76
arserverd, 75
arservftd, 77
arservtcd, 78
arsnmd, 78
arsnmui, 79
aruser, 60, 80
license, 83
notifier, 84
ntclientd, 85
ntserverd, 86

V
values, 21

W
warning

information, 20, 50
messages, 37, 52


