This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).

Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

110804a/25097
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>5</td>
</tr>
<tr>
<td>Documentation and Feedback</td>
<td>5</td>
</tr>
<tr>
<td>About This Documentation (PDF and HTML)</td>
<td>5</td>
</tr>
<tr>
<td>Change History</td>
<td>5</td>
</tr>
<tr>
<td>Oracle Hardware CLI Tools Overview</td>
<td>6</td>
</tr>
<tr>
<td>Installing Components Using the Oracle Hardware Management Pack Installer</td>
<td>7</td>
</tr>
<tr>
<td>Getting Started</td>
<td>9</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>9</td>
</tr>
<tr>
<td>Installation Issues</td>
<td>10</td>
</tr>
<tr>
<td>Getting the Software</td>
<td>11</td>
</tr>
<tr>
<td>Installing Hardware Management Pack Components Using Installer</td>
<td>11</td>
</tr>
<tr>
<td>CLI Tools Command Syntax and Conventions</td>
<td>39</td>
</tr>
<tr>
<td>CLI Tools Command Syntax</td>
<td>39</td>
</tr>
<tr>
<td>CLI Tools Device-Naming Convention</td>
<td>40</td>
</tr>
<tr>
<td>Using the biosconfig Tool</td>
<td>43</td>
</tr>
<tr>
<td>biosconfig Dependencies</td>
<td>44</td>
</tr>
<tr>
<td>biosconfig Terminology</td>
<td>44</td>
</tr>
<tr>
<td>Using biosconfig</td>
<td>45</td>
</tr>
<tr>
<td>biosconfig for Solaris OS</td>
<td>45</td>
</tr>
<tr>
<td>biosconfig for Windows</td>
<td>46</td>
</tr>
<tr>
<td>biosconfig Command Overview</td>
<td>54</td>
</tr>
<tr>
<td>What Changes the Boot List</td>
<td>56</td>
</tr>
<tr>
<td>Important Notes on Devices</td>
<td>56</td>
</tr>
<tr>
<td>Configuring the Device Boot Order</td>
<td>57</td>
</tr>
<tr>
<td>BIOS CMOS Configuration</td>
<td>63</td>
</tr>
<tr>
<td>Commands That Produce Unrelated, Innocuous, Extra Output</td>
<td>70</td>
</tr>
<tr>
<td>Using the fwupdate Tool</td>
<td>73</td>
</tr>
<tr>
<td>fwupdate Command-Line Interface</td>
<td>74</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>update Subcommand</td>
<td>76</td>
</tr>
<tr>
<td>list Subcommand</td>
<td>79</td>
</tr>
<tr>
<td>reset Subcommand</td>
<td>80</td>
</tr>
<tr>
<td>Device-Naming Convention</td>
<td>81</td>
</tr>
<tr>
<td>Execution Summary</td>
<td>81</td>
</tr>
<tr>
<td>Using the raidconfig Tool</td>
<td>83</td>
</tr>
<tr>
<td>raidconfig Overview</td>
<td>83</td>
</tr>
<tr>
<td>raidconfig Command Overview</td>
<td>84</td>
</tr>
<tr>
<td>list Subcommand</td>
<td>85</td>
</tr>
<tr>
<td>create raid Subcommand</td>
<td>89</td>
</tr>
<tr>
<td>delete raid Subcommand</td>
<td>90</td>
</tr>
<tr>
<td>add spare Subcommand and Options</td>
<td>91</td>
</tr>
<tr>
<td>remove spare Subcommand and Options</td>
<td>92</td>
</tr>
<tr>
<td>modify Subcommand</td>
<td>93</td>
</tr>
<tr>
<td>export Subcommand</td>
<td>94</td>
</tr>
<tr>
<td>raidconfig export Options</td>
<td>94</td>
</tr>
<tr>
<td>import Subcommand</td>
<td>95</td>
</tr>
<tr>
<td>Using the ilomconfig Tool</td>
<td>97</td>
</tr>
<tr>
<td>ilomconfig Overview</td>
<td>97</td>
</tr>
<tr>
<td>ilomconfig Commands</td>
<td>99</td>
</tr>
<tr>
<td>Using ipmitool for Windows</td>
<td>109</td>
</tr>
<tr>
<td>ipmitool Overview</td>
<td>109</td>
</tr>
<tr>
<td>Sun IPMI System Management Driver 2.1</td>
<td>110</td>
</tr>
<tr>
<td>Using ipmitool for Configuration Tasks</td>
<td>110</td>
</tr>
<tr>
<td>CLI Tools Error Codes</td>
<td>113</td>
</tr>
<tr>
<td>Common Error Codes</td>
<td>113</td>
</tr>
<tr>
<td>biosconfig Error Codes</td>
<td>114</td>
</tr>
<tr>
<td>raidconfig Error Codes</td>
<td>115</td>
</tr>
<tr>
<td>ilomconfig Error Codes</td>
<td>115</td>
</tr>
<tr>
<td>fwupdate Error Codes</td>
<td>116</td>
</tr>
<tr>
<td>Index</td>
<td>119</td>
</tr>
</tbody>
</table>
Preface

The Oracle Hardware Management Pack documentation provides detailed information about how to install and use Hardware Management Pack and its components.

This preface describes related documentation, submitting feedback to Oracle, and a document change history.

- “Documentation and Feedback” on page 5
- “About This Documentation (PDF and HTML)” on page 5
- “Change History” on page 6

Documentation and Feedback

<table>
<thead>
<tr>
<th>Documentation</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Oracle products</td>
<td>http://www.oracle.com/documentation</td>
</tr>
<tr>
<td>Oracle ILOM 3.0</td>
<td>http://www.oracle.com/technetwork/documentation/</td>
</tr>
<tr>
<td></td>
<td>sys-mgmt-networking-190072.html#ilom</td>
</tr>
</tbody>
</table>

Provide feedback on this documentation at:

About This Documentation (PDF and HTML)

This documentation set is available in both PDF and HTML. The information is presented in topic-based format (similar to online help) and therefore does not include chapters, appendixes or section numbering.
Change History

The following changes have been made to the documentation set.

- September 2010, initial publication
- July 2011, updated document URLs
Oracle Hardware CLI Tools Overview

Oracle Hardware CLI Tools is part of the Hardware Management Pack. Hardware Management Pack is a delivery mechanism for the operating system (OS) native tools and agents required for configuring and managing server hardware.

For more information on other Hardware Management Pack features, see Oracle Hardware Management Pack 2.1 Installation Guide and the Oracle Server Management Agents 2.1 User’s Guide.

The downloaded package includes the Oracle Hardware Management Pack Installer, which is a cross platform installer that can be used to manage the hardware components.

Oracle Hardware CLI Tools consists of the following installable components:

- **biosconfig** is a cross operating system CLI tool that enables the user to configure their server’s BIOS CMOS settings and host boot order. See “Using the biosconfig Tool” on page 43.
- **fwupdate** is a cross OS tool that enables you to upgrade firmware of any server component, and supports only the firmware update of SAS storage components. For more information, see “Using the fwupdate Tool” on page 73.
- **raidconfig** is a cross OS and cross-vendor CLI tool that enables you to configure RAID volumes. For more information, see “Using the raidconfig Tool” on page 83.
- **ilomconfig** is a cross OS tool that enables the user to manipulate ILOM configurations by way of XML input. For more information, see “Using the ilomconfig Tool” on page 97.

For late-breaking issues and information about the CLI Tools, refer to the Release Notes document included with the software download.

See also:

- “CLI Tools Command Syntax and Conventions” on page 39
Installing Components Using the Oracle Hardware Management Pack Installer

This section describes how to install and uninstall Hardware Management Pack components on an Oracle server using the supplied Oracle Hardware Management Pack Installer. This section contains the following:

- “Getting Started” on page 9
- “Prerequisites” on page 9
- “Getting the Software” on page 11
- “Installing Hardware Management Pack Components Using Installer” on page 11

Getting Started

The following methods are available for installing the Hardware Management Pack components:

- GUI mode
- Console mode
- Silent mode

Regardless of the installation method you choose, you must carry out the installation as a user with administrative privileges, such as root on Linux or Solaris and Administrator on Windows.

Prerequisites

If you have previous versions of Hardware Management Pack or Component Manager installed, you will need to remove these before installing the Oracle Hardware Management Pack 2.1 components. For more information, refer to Sun Server Hardware Management Pack 2.1 documentation at

http://download.oracle.com/docs/cd/E19960-01/index.html

Different components are supported by different servers and operating systems, so ensure that your target platform is supported by all of the components you intend to install. Before proceeding make sure that you have consulted the support matrix for the version that you plan to install. The support matrix is available from the HMP tab at:

http://www.oracle.com/goto/system-management
Depending on the target server's operating system, you should note the following:

- **Oracle Solaris operating system** - For the Oracle Hardware SNMP Plugins to function correctly, you must have System Management Agent (SMA). SMA is installed by default on Solaris. For more information about SMA, see `snmpd(1M)`. When installing Hardware Management Pack components, you must be in the global zone. The device `/dev/bmc` must be present on your system for the Hardware Management Agent to function correctly.

- **Linux operating system** - For the Oracle Hardware SNMP Plugins to function correctly, you must have Net-SNMP installed. For more information about Net-SNMP, see the `snmpd` documentation. You must also make sure that the KCS IPMI interface between the Oracle server service processor and host operating system is enabled. When using the Hardware Management Agent, you must ensure the root user has read/write access to the IPMI device in order for the Hardware Management Agent to function correctly.

- **Windows operating system** - For the Oracle Hardware SNMP Plugins to function correctly, you must have an IPMI device installed and the SNMP service enabled. For more information about the IPMI devices available for your version of Windows, see your Windows product documentation.

Installation Issues

Review the following notes before performing the Hardware Management Pack installation.

Note – There might be additional installation issues in the Oracle Hardware Management Pack 2.1 Release Notes. Please review the Release Notes, along with the following issues, before installing Hardware Management Pack.

Unix Installer Issue (CR 6977584)

The installer aborts when the DISPLAY variable is set for a Solaris or Linux operating system. To avoid this issue, unset the DISPLAY variable before installing Hardware Management Pack.

Error Reported When Launching Installer on a Solaris System (CR 6982393)

When launching the Oracle Hardware Management Pack Installer on a Solaris system, the following error might appear: `./install.bin: !: not found` You can ignore this error. The Installer should launch normally.

Running Installer on Solaris With SUNWCreq Cluster Fails (CR 6982718)

Before installing Oracle Hardware Management Pack on a Solaris host installed with the SUNWCreq (Core System Support) metacluster, you must install SUNWxcu4 (contains POSIX df command) or set the following environment variable: `IATEMPDIR=$HOME`.
Sun Fire X4170 M2 Requires Tools and Driver Installation for Correct ICH10 Slot Information (CR 6992155)

For a Sun Fire X4170 M2 system running Windows 2008 R2, you need to install the drivers from the X4170 M2 Tools and Drivers CD before using the RAIDconfig tool. Failure to install the drivers could result in the slot information for the HDDs attached to the internal ICH10 controller to be reported incorrectly.

You can also use the Oracle Hardware Installation Assistant to install Windows 2008 R2 to avoid this problem.

Getting the Software

Before you start, make sure that you have downloaded the latest Hardware Management Pack compatible with the operating system on your target server. Instructions for downloading Hardware Management Pack are available the Downloads tab at:

http://www.oracle.com/goto/system-management

This file contains the files necessary to install Hardware Management Pack components.

The Hardware Management Pack download file name for the operating systems supported by Hardware Management Pack is as follows:

oracle-hmp-version-OSVersionNumber

where version is the version of the Hardware Management Pack, and OSVersionNumber is the operating system that this Hardware Management Pack is designed for.

Once you download the Hardware Management Pack, you need to uncompressed it to a local directory on the server that you want to manage.

Note – On the Solaris operating system, due to the restrictions of pkgadd(1M), the path that you uncompressed the Hardware Management Pack to must not contain any spaces for the installation process to proceed.

Installing Hardware Management Pack Components Using Installer

This section covers the following topics:

• “Using GUI Mode to Install and Uninstall Components” on page 12
• “Using Console Mode to Install or Uninstall Components” on page 29
Using GUI Mode to Install and Uninstall Components

This section covers the following procedures:

- “How to Install Hardware Management Components Using GUI Mode” on page 12
- “How to Uninstall Hardware Management Components Using GUI Mode” on page 22

How to Install Hardware Management Components Using GUI Mode

Before You Begin

- To install Management Pack components with Oracle Hardware Management Pack Installer, you must be logged into your system with Administrator privileges.
- Download and extract the Hardware Management Pack Software. See “Getting the Software” on page 11.
- The directory that you extract the files is referred to as extract-directory in this procedure.
- For Windows SP2 or earlier, you must first install the Sun IPMI System Management Driver. See “Installing the Sun IPMI System Management Driver 2.1” in Oracle Hardware Management Pack 2.1 Installation Guide. This driver is included with other operating systems.

1. To start the installer, issue one of the following commands:

 - For Solaris or Linux systems: /extract-directory/oracle-hmp-2.1/SOFTWARE/install.bin
 - For Windows systems: /extract-directory/oracle-hmp-2.1/SOFTWARE/install.exe

The following splash screen appears.
2 If any of the following dialogs display, perform the appropriate action.

- If the following dialog displays, click Quit and log into the system with Administrator privileges.

![Insufficient Privileges]

Insufficient Privileges
You must have administrator privileges to install this software.

- If the following dialog appears, click the Quit button and install the IPMI driver software. See “Installing the Sun IPMI System Management Driver 2.1” in Oracle Hardware Management Pack 2.1 Installation Guide.

![Required IPMI Driver Software Not Installed]

Required IPMI Driver Software Not Installed
The required IPMI driver software is not installed on this system.
Please install the IPMI driver software before installing the management pack software.

- If the following dialog displays, click Quit and remove the previously installed version of the software.

![Another Version of Software Installed]

Another Version of Software Installed
Another version of the software is installed. It (including Sun SSM Component Manager) must be removed before installing this version of the software.
If the following dialog displays, click quick and then?

Wrong Software Edition

The software you are attempting to install is not for this platform and/or architecture. Please install the SunOS x86 edition of the software on this system.

If the installation is ready to proceed, the Introduction screen appears.
3 Click Next.
 The Choose Install Set screen appears.

4 Select either Typical or Custom and click Next.
 - If you select Standard, The Hardware Management Agents and CLI Tools options will automatically be selected.
If you select Custom, the Choose Install Set screen appears.

Select the features that you want to install and click Next.

Take action, as needed, if one of the following dialogs appear:

- If the following dialog appears, click OK and de-select the Hardware Management Agent feature from the Choose Install Set screen.

SNMP Not Installed

The SNMP agent is not installed. It must be installed before you can install the hardware management agents.
If the following dialog appears, click OK and de-select the IPMITool feature from the Choose Install Set screen.

Other IPMITool Detected

Another ipmitool has been found on this system. It must be removed before you can install the Oracle IPMITool.

Alternatively, you can cancel the wizard and install SNMP software or remove IMPItool software, then restart the installation.

If the following dialog appears, click Quit and install the Solaris GCC runtime libraries.

GCC Runtime libraries missing

The GCC Runtime libraries (/usr/gоля/gcc-runtime) are not installed. They are required by the Agents, Tools features.

If the following dialog appears, click Quit and install the Solaris XML libraries.

XML library missing

The XML library (/usr/sgml/lib) is not installed. It is required by the Tools feature.
The Configure Agents screen appears.

7 Select Start for the Hardware Management Agent and SNMP Agent and click Next.

Note – If you select SNMP Agent, you must also select Hardware Management Agent.
The Local ILOM Interconnect (LAN Over USB) screen appears.

8 **Select one of the options for configuring the Local ILOM Interconnect.**

If you select the Configure manually option, you need to enter the ILOM IP Address, Netmask, and Host IP Address information.

Note – For more information on Local ILOM Interconnect, see “Enabling the Local Interconnect Interface” in *Oracle Hardware Management Pack 2.1 Installation Guide*.
A Pre-Installation Summary screen appears with information similar to the following screen.

9 Make sure that the information in the Pre-Installation Summary is correct.

- If you want to change any of the installation items, click the Previous button until you get back to the screen where you want to make the changes.
- If the information is correct, click Install.

The Installing Oracle Hardware Management screen appears.
The Install Complete screen appears when the installation has completed.

10 Click Done to complete the installation.

See Also
- "How to Uninstall Hardware Management Components Using GUI Mode" on page 22
- “Using Console Mode to Install or Uninstall Components” on page 29
- “Using Silent Mode to Install and Uninstall Components” on page 35

▼ How to Uninstall Hardware Management Components Using GUI Mode

Before You Begin
- To uninstall Management Pack components with Oracle Hardware Management Pack Installer, you must be logged into your system with Administrator privileges.

1 To start the uninstaller, issue one of the following commands:

- For Solaris or Linux systems: /opt/sun-ssm/setup/uninstall

- For Windows systems: C:\Program Files\Oracle\Oracle Hardware Management Pack\setup\uninstall
The following splash screen appears.

2 If the following dialog displays, click Quit and log into the system with Administrator privileges.
The Uninstall Oracle Management Pack screen appears.
3 Click Next. The Uninstall Options screen appears.
4 Select Complete Uninstall or Uninstall Specific Features and click Next.
If you selected Uninstall Specific Features, the Choose Product Features screen appears.
If the Local ILOM Interconnect as enabled during installation, the following screen appears.

5 Select Yes or No and click Uninstall.
6 Select any features that you want to uninstall and click Uninstall.
The Uninstall Oracle Hardware Management Pack screen appears.
When the components have been uninstalled, the Uninstall Complete screen appears.

7 Click Done.

See Also
- “How to Install Hardware Management Components Using GUI Mode” on page 12
- “Using Console Mode to Install or Uninstall Components” on page 29
- “Using Silent Mode to Install and Uninstall Components” on page 35

Using Console Mode to Install or Uninstall Components

This section covers the following procedures:
- “How to Install Hardware Management Components Using Console Mode” on page 29
- “How to Uninstall Hardware Management Pack Components Using Console Mode” on page 34

▼ How to Install Hardware Management Components Using Console Mode

Before You Begin
- To install Management Pack components with Oracle Hardware Management Pack Installer, you must be logged into your system with Administrator privileges.
• Download and extract the Hardware Management Pack Software. See “Getting the Software” on page 11.

The directory that you extract the files is referred to as extract-directory in this procedure.

• For Windows SP2 or earlier, you must first install the Sun IPMI System Management Driver. See “Installing the Sun IPMI System Management Driver 2.1” in Oracle Hardware Management Pack 2.1 Installation Guide.

1 Set up a console session with the server.
See product documentation for instructions on doing this.

2 To start the installer, issue one of the following commands:

• For Solaris or Linux systems: /extract-directory/oracle-hmp-2.1/SOFTWARE/install.bin -i console

• For Windows systems: \extract-directory\oracle-hmp-2.1\SOFTWARE\install.exe -i console

You will see output similar to the following:
Preparing to install...
Extracting the installation resources from the installer archive...
Configuring the installer for this system's environment...

Launching installer...
Preparing CONSOLE Mode Installation...

==
Oracle Hardware Management Pack (created with InstallAnywhere)
==

Introduction

InstallAnywhere will guide you through the installation of Oracle Hardware Management Pack.

It is strongly recommended that you quit all programs before continuing with this installation.

Respond to each prompt to proceed to the next step in the installation. If you want to change something on a previous step, type ‘back’.

You may cancel this installation at any time by typing ‘quit’.

PRESS <ENTER> TO CONTINUE:
3 **Press Enter to Continue.**

The following screen appears:

Choose Install Set

Please choose the Install Set to be installed by this installer.

- 1- Standard
- 2- Customize...

ENTER THE NUMBER FOR THE INSTALL SET, OR PRESS <ENTER> TO ACCEPT THE DEFAULT:

4 **Type the number for your choice or press Enter to select Standard.**

- If you selected Standard installation, go to Step 6.

- If you selected Custom installation, the following screen appears.

ENTER A COMMA SEPARATED LIST OF NUMBERS REPRESENTING THE FEATURES YOU WOULD LIKE TO SELECT, OR DESELECT. TO VIEW A FEATURE’S DESCRIPTION, ENTER ‘?=<NUMBER>’. PRESS <RETURN> IF YOU ARE DONE:

1- [X] Hardware Management Agents
2- [X] CLI Tools
3- [] IPMITool

Please choose the Features to be installed by this installer.:

Options 1 and 2 are pre-selected. When you enter a number, it will select an item that is not selected and deselect an item that is already selected.

For example, if you type 1, 3 Hardware Management Agents is deselected and IPMITool is selected.

5 **Type one or more numbers separated by a comma.**

If you chose to install Agents, the following screen appears. If you did not choose to install agents, go to Step 8.

Configure Hardware Management Agent

Start the Hardware Management Agent? This agent’s short name is hwmgmtd.

- 1- Yes
- 2- No

ENTER THE NUMBER FOR YOUR CHOICE, OR PRESS TO ACCEPT THE DEFAULT:

6 **Type the number for your choice or press Enter to select Yes.**

The following screen appears:

Configure SNMP Agent
Start the SNMP agent? This agent’s short name is snmpd on Unix and SNMP on Windows.

1. Yes
2. No

ENTER THE NUMBER FOR YOUR CHOICE, OR PRESS <ENTER> TO ACCEPT THE DEFAULT:

7 Type the number for your choice or press Enter to select Yes.

The following screen appears, if you selected CLI Tools in Step 5. If you did not select CLI Tools, go to Step 10:
Configure LAN Over USB

Configure the LAN-over-USB interconnect between the host and ILOM. This is a high-speed connection that allows fast communication with ILOM using an internal IP address. This enables IPMI and SSH clients as well as a web browser running on the host operating system to connect directly to ILOM.

1. Configure automatically
2. Configure manually
3. Do not configure

ENTER THE NUMBER FOR YOUR CHOICE, OR PRESS <ENTER> TO ACCEPT THE DEFAULT:

8 Type the number for your choice or Enter to select Configure automatically.

If you choose 1 or 3, go to Step 11. If you choose 2–Configure manually, the following screen appears.
Configure LAN Over USB Manually

Specify the following parameters.
IP Address: (DEFAULT: 192.168.1.1):
Netmask: (DEFAULT: 255.255.255.0):
Host IP Address: (DEFAULT: 192.168.1.2):

9 Enter the appropriate values for the IP Address, Netmask, and Host IP Address and press Enter.

A screen similar to the following appears, to confirm your installation choices.
Pre-Installation Summary

Please Review the Following Before Continuing:

Product Name:
Oracle Hardware Management Pack

Install Folder:
/opt/sun-ssm

Install Set:
Custom
Product Features:
- Hardware Management Agents,
- CLI Tools

Start Agents:
- Hardware Management Agent (hwmgmtd), SNMP Agent (snmpd/SNMP)

LAN Over USB:
- Configure manually

Disk Space Information (for Installation Target):
 - Required: 930,151 bytes
 - Available: 11,144,399,872 bytes

PRESS <ENTER> TO CONTINUE

10 Make sure that the information displayed is correct.

- If the information is not correct, type Back until you get back to the screen where you want to change the information.

- If the information shown in the screen is correct, press Enter to continue.

The following screen appears:

Ready To Install

InstallAnywhere is now ready to install Oracle Hardware Management Pack onto your system at the following location:

/opt/sun-ssm

PRESS <ENTER> TO INSTALL:

11 Press Enter to begin the installation.

The installation should take about 2 minutes. A progress bar is displayed as the installation proceeds.

When the installation is complete, the following screen appears:

Installation Complete

Congratulations. Oracle Hardware Management Pack has been successfully installed to:

/opt/sun-ssm

PRESS <ENTER> TO EXIT THE INSTALLER:

See Also
- “How to Uninstall Hardware Management Pack Components Using Console Mode” on page 34
How to Uninstall Hardware Management Pack Components Using Console Mode

Before You Begin
- To uninstall Management Pack components with Oracle Hardware Management Pack Installer, you must be logged into your system with Administrator privileges.

1 To start the uninstallation, issue one of the following command:
 - For Solaris or Linux systems: /opt/sun-ssm/setup/uninstall -i console
 - For Windows systems: C:\Program Files\Oracle\Oracle Hardware Management Pack\setup\uninstall -i console

The following screen appears:
Uninstall Oracle Hardware Management Pack
--
About to uninstall...
Oracle Hardware Management Pack
This will remove features installed by InstallAnywhere. It will not remove files and folders created after the installation.
PRESS <ENTER> TO CONTINUE:

2 Press Enter.
The following screen appears.
Uninstall Options

ENTER THE NUMBER FOR YOUR CHOICE, OR PRESS <ENTER> to select the default.
->1. Completely remove all features and components.
 2. Choose specific features that were installed by InstallAnywhere.

Please choose one of the following options:

3 Enter the number that represents your choice or press Enter to completely remove all features and components.
The uninstall begins. When the uninstall is complete, the following screen appears.
Uninstall Complete

All items were successfully uninstalled.

4 Press Enter to exit the installer.
Silent Mode Installation Options

Using Silent Mode to Install and Uninstall Components

The following topics are included in this section:

- “Silent Mode Installation Options” on page 35
- “How to Install Hardware Management Pack Component Using Silent Mode” on page 35
- “How to Uninstall Hardware Management Pack Component Using Silent Mode” on page 37

Silent Mode Installation Options

Silent mode is a non-interactive installation method. Silent mode can be executed in one of two ways:

- A silent installation can be directed by supplying a response file. The response file contains parameters and properties that define the installation choices for the Installer.

 A response file can first be created by running a GUI or console mode installation using the \-r option as shown in the following example:

 # ./install.bin -i GUI -r /path_to_file/response.txt

 Once the response file is created, you can use the file to do an identical silent installation, using the following command:

 # ./install.bin -i silent -f /path_to_file/response.txt

- If no response is supplied, a typical installation is performed with no post-installation configuration steps.

▼ How to Install Hardware Management Pack Component Using Silent Mode

Before You Begin

- To install Management Pack components with Oracle Hardware Management Pack Installer, you must be logged into your system with Administrator privileges.

- Download and extract the Hardware Management Pack Software. See "Getting the Software” on page 11.

 The directory that you extract the files is referred to as extract-directory in this procedure.

- For Windows SP2 or earlier, you must first install the Sun IPMI System Management Driver. See "Installing the Sun IPMI System Management Driver 2.1” in Oracle Hardware Management Pack 2.1 Installation Guide.

- Refer to “Silent Mode Installation Options” on page 35 before performing the installation.
To start the silent mode installation process, use one of the following commands:

For Solaris or Linux systems:

- To perform a typical silent installation:

  ```
  /extract-directory/oracle-hmp-2.1/SOFTWARE/install.bin -i silent
  ```

- To perform an installation directed by a response file:

  ```
  /extract-directory/oracle-hmp-2.1/SOFTWARE/install.bin -i silent
  -f:path_to_file/response.txt
  ```

For Window systems:

- To perform a typical silent installation:

  ```
  \extract-directory\oracle-hmp-2.1\SOFTWARE\install.bin -i silent
  ```

- To perform an installation directed by a response file:

  ```
  \extract-directory\oracle-hmp-2.1\SOFTWARE\install.bin -i silent
  -f:path_to_file/response.txt
  ```

The following output appears:

Preparing to install...
Extracting the installation resources from the installer archive...
Configuring the installer for this system's environment...

Launching installer...

Preparing SILENT Mode Installation...

==
Oracle Hardware Management Pack (created with InstallAnywhere)
==

The installation should take about two minutes. A progress bar is displayed as the installation proceeds.

When the installation is complete, the following output displays:

Installation Complete.
$
How to Uninstall Hardware Management Pack Component Using Silent Mode

Before You Begin
- To uninstall Management Pack components with Oracle Hardware Management Pack Installer, you must be logged into your system with Administrator privileges.

To start the silent mode installation process, use one of the following commands:

- For Solaris or Linux systems: `/opt/sun-ssm/setup/uninstall -i silent`
- For Windows systems: `C:\Program Files\Oracle\Oracle Hardware Management Pack\setup\uninstall -i silent`

The following output appears:

Preparing SILENT Mode Uninstallation...

```
Preparing SILENT Mode Uninstallation...
```

Uninstalling...

```
Uninstalling...
```

The installation should take about 2 minutes. A progress bar is displayed as the installation proceeds.

When the installation is complete, the following output displays:

```
Uninstallation Complete.
```

See Also
- “How to Install Hardware Management Pack Component Using Silent Mode” on page 35
- “Using GUI Mode to Install and Uninstall Components” on page 12
- “Using Console Mode to Install or Uninstall Components” on page 29
CLI Tools Command Syntax and Conventions

This section describes the common meta syntax to be used by all storage management Command-Line Interface (CLI) tools.

- “CLI Tools Command Syntax” on page 39
- “CLI Tools Device-Naming Convention” on page 40

CLI Tools Command Syntax

The CLI tools must conform to one of the following two command syntax formats:

- `command [option]`
- `command subcommand target [option]`

Note – The `biosconfig` tool does not conform to the above syntax. See “Using the `biosconfig` Tool” on page 43 for more information.

The following table describes the command fields:

<table>
<thead>
<tr>
<th>Command Field</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>command</td>
<td>The action that you want to perform. Consists of lower-case letters only.</td>
<td>biosconfig, fupdate, raidconfig, lomconfig</td>
</tr>
<tr>
<td>subcommand</td>
<td>Further defines the task to be performed by the <code>command</code>. Generally used as verbs. Consists of lower-case letters, hyphens, or the underscore character. The subcommand is not required when the <code>--version</code> or <code>--help</code> options is used immediately following the command.</td>
<td>list, update, reset, expander-boot-record, sas_bridgefirmware</td>
</tr>
<tr>
<td>target</td>
<td>Describes the object or target that is being acted upon by the subcommand. Application specific.</td>
<td>all, disk, expander, bridge, controller, user, snmp-community</td>
</tr>
</tbody>
</table>
Command Field | Description | Examples
---|---
option | Modifies the command or subcommand and can be optional or mandatory depending on the command or subcommand. There are long and short options that have identical functionality and are provided for ease of use:
Short-option is a hyphen followed by a single letter.
Long-option is two hyphens followed by a string. | -n or --device_name
- f or --filename
- r or --reset

The following options apply to all CLI tools commands:

<table>
<thead>
<tr>
<th>Short Option</th>
<th>Long Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-?</td>
<td>--help</td>
<td>Help—Displays help information.</td>
</tr>
<tr>
<td>-V</td>
<td>--version</td>
<td>Version—Displays the tool version.</td>
</tr>
<tr>
<td>-q</td>
<td>--quiet</td>
<td>Quiet—Suppresses informational message output and returns only error codes.</td>
</tr>
<tr>
<td>-y</td>
<td>--yes</td>
<td>Yes—Confirms operation. Does not prompt user for confirmation on the operation when running.</td>
</tr>
</tbody>
</table>

When using command options and its corresponding value or device name, you can use an equal sign (=) or a space as shown in the following examples:

- Using a command with spaces:
  ```plaintext
  raidconfig create raid -c c2 --raid-level 1 --number-disks 2
  ```
- Using a command with equal signs (=):
  ```plaintext
  raidconfig create raid -c=c2 --raid-level=1 --number-disks=2
  ```

See also:
- “CLI Tools Device-Naming Convention” on page 40

CLI Tools Device-Naming Convention

User-friendly, fully qualified device names are used with the CLI commands. The single characters represent all of the nodes that make up the device as follows:

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Controller — Using a unique logical ID.</td>
</tr>
<tr>
<td>Character</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>r</td>
<td>RAID Volume (logical disk) — The logical ID name of the volume or disk.</td>
</tr>
<tr>
<td>d</td>
<td>Disk — The physical disk logical ID name.</td>
</tr>
<tr>
<td>x</td>
<td>Expander — The unique expander logical ID name.</td>
</tr>
<tr>
<td>j</td>
<td>Chassis — The unique chassis logical ID name.</td>
</tr>
</tbody>
</table>

All integers used to represent the device are 0 based. Disks are represented by a logical ID name, assigned by the tool at initialization. The disks are sorted by expander, and slot ID, to come up with a unique numerical identifier. The numbering is sequential.

Here are examples of device names:
- c1 — Controller 1
- c1d2 — Disk with a logical ID 2 on controller 1
- c2r1 — RAID 1 on controller 2

Multiple devices can be listed together in a comma-separated list, for example:
dev1, dev2, dev3.

Here is an example from RAIDconfig when you create a RAID volume with three disks:

```
./raidconfig create --disks c1d2,c1d4,c1d5 --level 1
```

The following shows an implementation of the disk-naming scheme.
CLIToolsDevice-NamingConvention

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Model</th>
<th>Serial</th>
<th>Type</th>
<th>Capacity</th>
<th>Size</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1d21</td>
<td>SEAGATE</td>
<td>ST35000N</td>
<td>0</td>
<td>sata</td>
<td>HDD</td>
<td>500</td>
<td>3AZQ</td>
</tr>
<tr>
<td>c1d22</td>
<td>SEAGATE</td>
<td>ST35000N</td>
<td>0</td>
<td>sata</td>
<td>HDD</td>
<td>500</td>
<td>3AZQ</td>
</tr>
<tr>
<td>c1d23</td>
<td>SEAGATE</td>
<td>ST35000N</td>
<td>0</td>
<td>sata</td>
<td>HDD</td>
<td>500</td>
<td>3AZQ</td>
</tr>
<tr>
<td>c1d24</td>
<td>SEAGATE</td>
<td>ST373455SSUN72G</td>
<td>1</td>
<td>sas</td>
<td>HDD</td>
<td>73</td>
<td>0791</td>
</tr>
<tr>
<td>c1d25</td>
<td>SEAGATE</td>
<td>ST35000N</td>
<td>1</td>
<td>sata</td>
<td>HDD</td>
<td>500</td>
<td>3AZQ</td>
</tr>
<tr>
<td>c1d26</td>
<td>SEAGATE</td>
<td>ST373455SSUN72G</td>
<td>1</td>
<td>sas</td>
<td>HDD</td>
<td>73</td>
<td>0791</td>
</tr>
<tr>
<td>c1d27</td>
<td>SEAGATE</td>
<td>ST35000N</td>
<td>1</td>
<td>sata</td>
<td>HDD</td>
<td>500</td>
<td>3AZQ</td>
</tr>
<tr>
<td>c1d28</td>
<td>SEAGATE</td>
<td>ST373455SSUN72G</td>
<td>1</td>
<td>sas</td>
<td>HDD</td>
<td>73</td>
<td>0791</td>
</tr>
<tr>
<td>c1d29</td>
<td>SEAGATE</td>
<td>ST35000N</td>
<td>1</td>
<td>sata</td>
<td>HDD</td>
<td>500</td>
<td>3AZQ</td>
</tr>
<tr>
<td>c1d30</td>
<td>SEAGATE</td>
<td>ST373455SSUN72G</td>
<td>1</td>
<td>sas</td>
<td>HDD</td>
<td>73</td>
<td>0791</td>
</tr>
<tr>
<td>c1d31</td>
<td>SEAGATE</td>
<td>ST373455SSUN72G</td>
<td>1</td>
<td>sas</td>
<td>HDD</td>
<td>73</td>
<td>0791</td>
</tr>
<tr>
<td>c1d32</td>
<td>SEAGATE</td>
<td>ST373455SSUN72G</td>
<td>1</td>
<td>sas</td>
<td>HDD</td>
<td>73</td>
<td>0791</td>
</tr>
<tr>
<td>c1d33</td>
<td>SEAGATE</td>
<td>ST373455SSUN72G</td>
<td>1</td>
<td>sas</td>
<td>HDD</td>
<td>73</td>
<td>0791</td>
</tr>
<tr>
<td>c1d34</td>
<td>SEAGATE</td>
<td>ST373455SSUN72G</td>
<td>1</td>
<td>sas</td>
<td>HDD</td>
<td>73</td>
<td>0791</td>
</tr>
<tr>
<td>c1d35</td>
<td>SEAGATE</td>
<td>ST35000N</td>
<td>1</td>
<td>sata</td>
<td>HDD</td>
<td>500</td>
<td>3AZQ</td>
</tr>
<tr>
<td>c1d36</td>
<td>SEAGATE</td>
<td>ST373455SSUN72G</td>
<td>1</td>
<td>sas</td>
<td>HDD</td>
<td>73</td>
<td>0791</td>
</tr>
<tr>
<td>c1d37</td>
<td>SEAGATE</td>
<td>ST373455SSUN72G</td>
<td>1</td>
<td>sas</td>
<td>HDD</td>
<td>73</td>
<td>0791</td>
</tr>
<tr>
<td>c1d38</td>
<td>SEAGATE</td>
<td>ST35000N</td>
<td>1</td>
<td>sata</td>
<td>HDD</td>
<td>500</td>
<td>3AZQ</td>
</tr>
<tr>
<td>c1d39</td>
<td>SEAGATE</td>
<td>ST373455SSUN72G</td>
<td>1</td>
<td>sas</td>
<td>HDD</td>
<td>73</td>
<td>0791</td>
</tr>
<tr>
<td>c1d40</td>
<td>SEAGATE</td>
<td>ST373455SSUN72G</td>
<td>1</td>
<td>sas</td>
<td>HDD</td>
<td>73</td>
<td>0791</td>
</tr>
<tr>
<td>c1d41</td>
<td>SEAGATE</td>
<td>ST35000N</td>
<td>1</td>
<td>sata</td>
<td>HDD</td>
<td>500</td>
<td>3AZQ</td>
</tr>
<tr>
<td>c1d42</td>
<td>SEAGATE</td>
<td>ST35000N</td>
<td>1</td>
<td>sata</td>
<td>HDD</td>
<td>500</td>
<td>3AZQ</td>
</tr>
<tr>
<td>c1d43</td>
<td>SEAGATE</td>
<td>ST35000N</td>
<td>1</td>
<td>sata</td>
<td>HDD</td>
<td>500</td>
<td>3AZQ</td>
</tr>
<tr>
<td>c1d44</td>
<td>SEAGATE</td>
<td>ST35000N</td>
<td>1</td>
<td>sata</td>
<td>HDD</td>
<td>500</td>
<td>3AZQ</td>
</tr>
<tr>
<td>c1d45</td>
<td>SEAGATE</td>
<td>ST35000N</td>
<td>1</td>
<td>sata</td>
<td>HDD</td>
<td>500</td>
<td>3AZQ</td>
</tr>
<tr>
<td>c1d46</td>
<td>SEAGATE</td>
<td>ST35000N</td>
<td>1</td>
<td>sata</td>
<td>HDD</td>
<td>500</td>
<td>3AZQ</td>
</tr>
</tbody>
</table>

See also:
- "CLI Tools Command Syntax" on page 39
Using the biosconfig Tool

biosconfig is an application that runs on the host’s OS and configures that host’s BIOS CMOS settings, host boot order, and some service processor settings.

biosconfig allows you to manipulate BIOS configurations from the OS command line. Due to the nature of this utility, it must be run with administrative access. You should also close all other applications and quiesce your system when running biosconfig. The configuration files and command-line interfaces are compatible with the Solaris, Windows, and Linux versions. Solaris biosconfig can be used to configure the BIOS settings.

biosconfig enables you to configure settings across multiple like systems where distributions of biosconfig spans multiple like systems. biosconfig enables you to configure BIOS CMOS settings on like machines using the same XML file. However, if the configuration that is being modified refers to a peripheral or component that is not on both systems, then you need to customize the XML file.

This section shows sample XML configurations and specific configurations needed to change BIOS or BIOS CMOS settings. These XML configurations can be used to make changes to your configuration using biosconfig. The XML files are edited by the editor of your choice, such as vi.

biosconfig is supported on several operating systems on various platforms with common functionality. For more information, see: "Installing Components Using the Oracle Hardware Management Pack Installer” on page 9.

This section covers the following topics:
- "biosconfig Dependencies" on page 44
- "biosconfig Terminology" on page 44
- "Using biosconfig" on page 45
- "biosconfig for Solaris OS" on page 45
- "biosconfig for Windows" on page 46
- "biosconfig Command Overview" on page 54
- "What Changes the Boot List" on page 56
- "Important Notes on Devices" on page 56
- "Configuring the Device Boot Order" on page 57
- "BIOS CMOS Configuration" on page 63
- "Configuring Individual CMOS Settings" on page 65
biosconfig Dependencies

You must run bosconfig as root (Linux, Solaris) or Administrator (Windows) because it needs to use drivers that are in read— and write-protected physical address space.

For more on bosconfig for Solaris, see: “biosconfig for Solaris OS” on page 45.

Linux versions of bosconfig also depend on access to /dev/nvram to guarantee serialized access to the CMOS. RHEL4 distributions do not seem to include this device by default, RHEL5 and SLES do. For you to use /dev/nvram, the driver needs to be compiled into the kernel (or loaded as a module), and /dev/nvram must exist (root can create it using mknod /dev/nvram c 10 144).

For information on bosconfig for Windows, see: “biosconfig for Windows” on page 46.

See also:
- “biosconfig Terminology” on page 44
- “Using biosconfig” on page 45
- “biosconfig Command Overview” on page 54

biosconfig Terminology

- BIOS is the software that initializes the computer hardware and then boots the operating system.
- CMOS in this context means the 128 or 256 bytes of battery-backed-up RAM that holds the state that was configured through the BIOS setup menus (or bosconfig).
- IPMI is a standard interface used to manage servers. For more information, go to: http://www.intel.com/design/servers/ipmi
- ipmitool is an open-source tool used to manage a system. ipmitool is distributed on the Tools and Drivers CD for each Oracle platform. You can find documentation (for example, on the ipmitool chassis bootdev command) at: http://ipmitool.sourceforge.net/manpage.html.
- NVRAM in this context means the portion of the BIOS ROM that holds the BIOS’s boot information.

See also:
- “biosconfig Terminology” on page 44
- “biosconfig Dependencies” on page 44
- “biosconfig Command Overview” on page 54
Using biosconfig

Caution – Do not use biosconfig to change BIOS settings that are not visible in the normal BIOS setup menu.

To use biosconfig, you must have a working knowledge of editing XML files. The process of editing the BIOS includes using biosconfig to do the following tasks:

1. Run BIOSconfig to create an XML file.
2. Review the XML file and modify it, if necessary, to configure the system to your specific needs.
3. Write the XML file back to the system (or another system) using BIOSconfig.

The following sections describe how to execute a detailed configuration.

Note – In the output examples in this section, all white space outside the XML elements, such as indentation, is optional. For example, see output in “How to Make a Persistent Change to Boot Order” on page 58.

For installation instructions on Component Manager, see: “Getting Started” on page 9.

See also:

■ “biosconfig Dependencies” on page 44
■ “biosconfig Command Overview” on page 54
■ “biosconfig Error Codes” on page 114

biosconfig for Solaris OS

The BIOS configuration tool for Solaris (biosconfig) is a utility that runs on the OS of the host system and configures the host’s BIOS CMOS settings, host boot order, and some service processor settings.

Solaris biosconfig consists of a Solaris biosdrv driver and the BIOSconfig application.
This section covers the following:

- “How to Obtain the BMC Driver” on page 46

▼ **How to Obtain the BMC Driver**

Baseboard management controller firmware enables communication over the Intelligent Platform Management Interface (IPMI) controller on the alarm card.

Note – Legal considerations prevent the unrestricted redistribution of the Baseboard Management Controller (BMC) driver on the OpenSolaris OS.

1. **Access the SUNWckr package from your Solaris builds:**

2. **Copy the following files:**

 - `/kernel/driv/amd64/bmc f none 0755 root sys 35984 42138 1225816778 SUNWckr`
 - `/kernel/driv/bmc f none 0755 root sys 23684 5173 1225816787 SUNWckr`
 - `/kernel/driv/bmc.conf f none 0644 root sys 177 14089 1225787326 SUNWckr`

3. **Use the network interface.**

 Instead of using `ipmitool -I bmc fru list`, use `ipmitool -I lan -H SP’s_IP_address -U root`.

See Also
- “Using the biosconfig Tool” on page 43

biosconfig for Windows

biosconfig for Windows is a BIOS configuration tool that runs on the host’s OS and configures that host’s BIOS CMOS settings and host boot order. This tool is supported on several operating systems on various platforms.

With biosconfig version 2.2.1 for Windows, biosconfig.exe is run only in its installation directory so it can access its low-level management driver.

The Oracle System Management driver is required in order to run biosconfig on Windows Server 2008 SP2 64–bit or Windows Server 2008 R2 systems. This driver is not required for Windows 2008 32–bit.
Note – On some systems, when using the Oracle System Management Driver, biosconfig might take several minutes to complete some operations.

The Oracle System Management driver is not needed for other applications. The driver should be uninstalled to free system resources if biosconfig is not going be used, but deinstallation is not mandatory. When biosconfig is uninstalled, the driver must be uninstalled manually.

This section covers the following procedures:

- “How to Install the biosconfig Oracle System Management Driver on Windows 2008 R2 and Windows 2008 64-bit” on page 48
- “How to Uninstall the biosconfig Oracle System Management Driver on Windows 2008 R2 and Windows 2008 64-bit” on page 52
How to Install the biosconfig Oracle System Management Driver on Windows 2008 R2 and Windows 2008 64–bit

1. In an Administrator terminal window (cmd.exe), run the Hardware Wizard executable file, hdwiz.exe.

2. Read the Welcome screen and click Next.
3 To install the hardware device manually, select Install the hardware that I manually select from a list.

4 Click Have Disk.
5 Select the path of the driver you want and click OK. The driver is located in the 2008_xx2_x64 directory in the biosconfig installation directory. Use the 2008_R2_x64 directory for Windows Server 2008 R2, and the 2008_SP2_x64 directory is for Windows Server 2008 SP2 64-bit.

6 Select the Oracle System Manager Device Driver, and click Next.
7 Click Next to start installing.

8 When the installation is complete, click Finish.

Next Steps "biosconfig Command Overview" on page 54
How to Uninstall the biosconfig Oracle System Management Driver on Windows 2008 R2 and Windows 2008 64–bit

1. Open the Windows Control Panel and select Hardware.

2. In the hardware window, select Device Manager.
3 Right click on the Oracle System management Device Driver and select Uninstall.

![Device Manager](image)

4 Check Delete the driver software for this device and click OK.

![Confirm Device Uninstall](image)

The driver is removed from the system.
biosconfig Command Overview

The biosconfig command can be used to get current configuration settings or set configuration settings. When used to get configuration settings, biosconfig generates XML output showing the configuration. When used to set configuration settings, biosconfig reads XML input describing the configuration settings to be made.

Examples of biosconfig commands and their outputs are shown in the following table:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td># biosconfig -get_version</td>
<td>Outputs to screen.</td>
</tr>
<tr>
<td># biosconfig -get_version file.xml</td>
<td>Outputs to file.xml.</td>
</tr>
<tr>
<td># biosconfig -get_versions > file.xml</td>
<td>Outputs to file.xml.</td>
</tr>
<tr>
<td># biosconfig -get_version</td>
<td>Pipes the output to another command.</td>
</tr>
<tr>
<td># biosconfig -set_bios_settings</td>
<td>Takes input from standard in.</td>
</tr>
<tr>
<td># biosconfig -set_bios_settings file.xml</td>
<td>Takes input from file.xml.</td>
</tr>
<tr>
<td># biosconfig -set_bios_settings < file.xml</td>
<td>Takes input from file.xml.</td>
</tr>
</tbody>
</table>

When a command fails, it returns one of several failure codes listed in "biosconfig Error Codes" on page 114.

See also:

▼ How to View biosconfig Command Options

If you run biosconfig without arguments, you get the help output including the biosconfig command options:

- Issue the biosconfig command without arguments:
  ```
  # biosconfig
  Copyright (C) SUN Microsystems 2009.
  BIOSconfig Utility Version 2.2.5
  Build Date: Jan 11 2010
  Build Time: 01:22:05
  BIOSconfig Specification Version 2.4
  
  Usage: biosconfig [-v] option [filename]
  Example: biosconfig -get_version output.xml
  [-v] Verbose on. Only valid if a xml input/output filename is provided
  [Filename] Name of the XML output (or input) file for get (or set) command (optional).
  ```
get commands will output to the console if the filename is not provided
set commands will get input from the console if the filename is not provided

Available options (Required):
- get_version Get version of this tool
- get_boot_order Get the BOOT Devices list
- set_boot_order Set the BOOT Devices list
- get_bios_settings Get setup configuration from BIOS
- set_bios_settings Set setup configuration to BIOS ROM
- get_CMOS_dump Get 256 bytes CMOS setup data from BIOS
- set_CMOS_dump Set 256 bytes of CMOS setup data to BIOS

Note – When a command is used with a -get option, the information is output as standard I/O. When the -set option is used, the information is output to a file.

See Also
 ▼ “How to View biosconfig Version Information” on page 55

How to View biosconfig Version Information

1 Run biosconfig -get_version ver.xml, to get the following output:

```
# biosconfig -get_version ver.xml

Copyright (C) SUN Microsystems 2009.
BIOSconfig Utility Version 2.1
Build Date: Jul 16 2009
Build Time: 15:55:12

BIOSconfig Specification Version 2.4
```
Success

2 View the created ver.xml file, for example:

```
<?xml version="1.0" encoding="UTF-8"?>
<BIOSCONFIG>
  <BIOSCONFIG_VERSION>2.1</BIOSCONFIG_VERSION>
  <SPEC_VERSION>2.4</SPEC_VERSION>
  <SP_NETWORK_CONFIG>
    <DISCOVERY/>
    <IP/>
    <NETMASK/>
    <GATEWAY/>
  </SP_NETWORK_CONFIG>
  <PASSWORD_CONFIG>
    <PASSWORD/>
  </PASSWORD_CONFIG>
  <BOOT_ORDER_OVERRIDE>
    <HELP_STRING>HELP_STRING-FIRST=Choose one of: pxe, cdrom, disk, floppy, bios_none</HELP_STRING>
    <FIRST/>
    <HELP_STRING>CLEAR_CMOS=Choose Yes, No or leave it
```
What Changes the Boot List

The boot list can be changed in any of the following ways:

- Changing the order in BIOS setup.
- When changing the boot order using `biosconfig` manipulates the contents of CMOS and the BIOS boot block structures stored in NVRAM, which is a dedicated part of the BIOS ROM.
- Reordering the categories using the IPMI boot flags that the SP offers to the (compatible) BIOS during POST. The default priority order for categories is CD/DVD, disk, removable, and network.

See also:

- "Important Notes on Devices" on page 56

Important Notes on Devices

There are a few important `biosconfig` notes on devices:

- Floppy means whatever the BIOS considers a removable device. For example, this could be a USB flash drive.
- A USB flash drive bigger than 512 MB defaults to being a disk.
- A USB/CD-ROM is classed as a CD and not a removable device.
- PXE means a bootable network device, for example, an Ethernet controller, or an InfiniBand interface that has booting support in its expansion ROM.

See also:

- "Configuring the Device Boot Order" on page 57
Configuring the Device Boot Order

During BIOS power-on self-test (POST), BIOS scans the hardware and accumulates a list of bootable devices. That list is then ordered into categories and presented as a boot list, which is the ordered list of bootable devices on which a boot is attempted.

This boot list changes as devices are installed and removed, for example, when you are doing the following:

- Changing a disk drive, which might change the string used to represent that bootable device.
- Installing and removing USB devices.
- Starting and stopping the javaConsole floppy and CD redirection.
- Adding or removing PCI cards or express modules.

This section covers the following topics:

- "How to Set the First Boot Device for the Next Boot" on page 57
- "How to Make a Persistent Change to Boot Order" on page 58
- "How to Switch Boot Devices" on page 59
- "How to Specify a Subset of Strings and a Subset of the Boot List" on page 61
- "How to Move Boot List Entries" on page 61
- "How to Change Boot Order Based on the PCI Bus, Device, or Function" on page 62

How to Set the First Boot Device for the Next Boot

`biosconfig` enables you to configure the first device to boot at the next reboot. `biosconfig` can manipulate the bootable devices individually (not by category) through specification of (subsets of) the strings that BIOS expansion ROMs use to identify their devices. `biosconfig` does this by reading the boot-related tables that the BIOS stores in NVRAM, which is a dedicated part of the BIOS ROM, and then by manipulating the contents of CMOS where the boot order is stored.

Here is an example of using the `-set_boot_override` command that specifies the first boot device as the PXE server on only the next boot:

```plaintext
1 Determine the current boot order of your system by using the `biosconfig -get_boot_order` command option.
2 Modify the boot order by using the `biosconfig -set_boot_override` command. Set XML text similar to the following:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<BIOSCONFIG>
 <BIOSCONFIG_VERSION>2.1</BIOSCONFIG_VERSION>
 <SPEC_VERSION>2.4</SPEC_VERSION>
 <SP_NETWORK_CONFIG>
 <DISCOVERY/>
 <IP/>
</BIOSCONFIG>
```
Configuring the Device Boot Order

See Also
- “How to Make a Persistent Change to Boot Order” on page 58
- “How to Switch Boot Devices” on page 59
- “How to Specify a Subset of Strings and a Subset of the Boot List” on page 61
- “How to Move Boot List Entries” on page 61
- “How to Change Boot Order Based on the PCI Bus, Device, or Function” on page 62

How to Make a Persistent Change to Boot Order

`biosconfig` can manipulate the bootable devices individually (not by category) through specification of (subsets of) the strings that BIOS expansion ROMs use to identify their devices. `biosconfig` does this by reading the boot-related tables that the BIOS stores in NVRAM, which is a dedicated part of the BIOS ROM, and then by manipulating the contents of CMOS where the boot order is stored.

Here is an example output of the `-get_boot_order` command option from a Sun Blade X6275 server module (which has a built-in bootable InfiniBand interface) set to optimal defaults with a 1-GByte USB flash, a USB CD, and a dual Gig-Ethernet Express Module plugged in:
Set XML text similar to the following:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<BIOSCONFIG>
 <BIOSCONFIG_VERSION>2.1</BIOSCONFIG_VERSION>
 <SPEC_VERSION>2.4</SPEC_VERSION>
 <SP_NETWORK_CONFIG>
 <DISCOVERY/></DISCOVERY>
 <IP/></IP>
 <NETMASK/></NETMASK>
 <GATEWAY/></GATEWAY>
 </SP_NETWORK_CONFIG>
 <PASSWORD_CONFIG>
 <PASSWORD></PASSWORD>
 </PASSWORD_CONFIG>
 <BOOT_ORDER_OVERRIDE>
 <HELP_STRING>FIRST=Choose one of: pxe, cdrom, disk, floppy, bios, none</HELP_STRING>
 <FIRST/></FIRST>
 <HELP_STRING>CLEAR_CMOS=Choose Yes, No or leave it empty,</HELP_STRING>
 <CLEAR_CMOS/></CLEAR_CMOS>
 </BOOT_ORDER_OVERRIDE>
 <BOOT_DEVICE_PRIORITY>
 <Boot_Device_01>
 <DEVICE_NAME>USB:Port1:Memorex DVD+-RAM 510L v1</DEVICE_NAME>
 </Boot_Device_01>
 <Boot_Device_02>
 <DEVICE_NAME>SATA:3M-MRVLRD 200254-01SUN24G 0801</DEVICE_NAME>
 </Boot_Device_02>
 <Boot_Device_03>
 <DEVICE_NAME>USB:Port0:SanDisk Cruzer Contour</DEVICE_NAME>
 </Boot_Device_03>
 <Boot_Device_04>
 <DEVICE_NAME>IB:Slot2.F0:PXE:MLNX HCA IB 1.9.972 (PCI 07:00.0)</DEVICE_NAME>
 </Boot_Device_04>
 <Boot_Device_05>
 <DEVICE_NAME>PXE:IBA GE Slot 00C8 v1324</DEVICE_NAME>
 </Boot_Device_05>
 </BOOT_DEVICE_PRIORITY>
</BIOSCONFIG>
```

See Also
- “How to Set the First Boot Device for the Next Boot” on page 57
- “How to Switch Boot Devices” on page 59
- “How to Specify a Subset of Strings and a Subset of the Boot List” on page 61
- “How to Move Boot List Entries” on page 61
- “How to Change Boot Order Based on the PCI Bus, Device, or Function” on page 62

How to Switch Boot Devices

You can switching boot device 1 and 2 by using the `-set_boot_order` command option with this XML input.
Note – The boot order is sent by the boot device tag number and not in the order in which the devices appear in this file, for example, `Boot_Device_01` boots before `Boot_Device_02`.

- **View the following XML code:**

```xml
<BIOCONFIG>
 <BOOT_DEVICE_PRIORITY>
 <Device Name>SATA:3M-MRVL RD 200254-01SUN24G 0801</Device Name>
 <Device Name>USB:Port1:Memorex DVD+-RAM 510L</Device Name>
 <Device Name>USB:Port0:SanDisk Cruzer Contour</Device Name>
 <Device Name>IB:Slot2.F0:PXE:MLNX HCA IB 1.9.972 (PCI 07:00.</Device Name>
 <PCI-B-D-F>07,00,00</PCI-B-D-F>
 <Device Name>PXE:IBA GE Slot 00C8 v1324</Device Name>
 <PCI-B-D-F>00,19,00</PCI-B-D-F>
 </BOOT_DEVICE_PRIORITY>
</BIOCONFIG>
```

- **In the previous output, the specified hardware is described as follows:**

<table>
<thead>
<tr>
<th>Output Text</th>
<th>Description of Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>SATA:3M-MRVL RD 200254-01SUN24G 0801</td>
<td>Flash mini-DIMM SATA (which is disk-like)</td>
</tr>
<tr>
<td>USB:Port1:Memorex DVD+-RAM 510L</td>
<td>USB DVD drive (which is CD-like)</td>
</tr>
<tr>
<td>USB:Port0:SanDisk Cruzer Contour</td>
<td>1 GB USB flash drive (which is disk-like)</td>
</tr>
<tr>
<td>IB:Slot2.F0:PXE:MLNX HCA IB 1.9.972</td>
<td>InfiniBand PXE (which is network-like)</td>
</tr>
<tr>
<td>PXE:IBA GE Slot 00C8 v1324</td>
<td>On-board GigEthernet NIC (which is a network interface)</td>
</tr>
</tbody>
</table>

**See Also**
- "How to Set the First Boot Device for the Next Boot" on page 57
- "How to Make a Persistent Change to Boot Order" on page 58
- "How to Specify a Subset of Strings and a Subset of the Boot List" on page 61
- "How to Move Boot List Entries" on page 61
- "How to Change Boot Order Based on the PCI Bus, Device, or Function" on page 62
How to Specify a Subset of Strings and a Subset of the Boot List

`biosconfig` permits specifying a subset of the strings and a subset of the boot list. For example, using `biosconfig -set_boot_order` with this XML input results in moving the InfiniBand device boot list entry number to number 1.

- Set XML code similar to the following:

```xml
<BIOCONFIG>
 <BOOT_DEVICE_PRIORITY>
 <Boot_Device_01>
 <DEVICE_NAME>MLNX HCA IB</DEVICE_NAME>
 </Boot_Device_01>
 </BOOT_DEVICE_PRIORITY>
</BIOCONFIG>
```

See Also
- “How to Set the First Boot Device for the Next Boot” on page 57
- “How to Make a Persistent Change to Boot Order” on page 58
- “How to Switch Boot Devices” on page 59
- “How to Move Boot List Entries” on page 61
- “How to Change Boot Order Based on the PCI Bus, Device, or Function” on page 62

How to Move Boot List Entries

The `biosconfig -set_boot_order` command also moves down the other boot list entries so that the boot list order becomes as follows:

- Set similar XML code:

```xml
<BOOT_DEVICE_PRIORITY>
 <Boot_Device_01>
 <DEVICE_NAME>IB:Slot2.F0:PXE:MLNX HCA IB 1.9.972 (PCI 07:00.0</DEVICE_NAME>
 </Boot_Device_01>
 <Boot_Device_02>
 <DEVICE_NAME>PXE:IBA GE Slot 00C8 v1324</DEVICE_NAME>
 </Boot_Device_02>
 <Boot_Device_03>
 <DEVICE_NAME>USB:Port1:Memorex DVD+-RAM 510L v1</DEVICE_NAME>
 </Boot_Device_03>
 <Boot_Device_04>
 <DEVICE_NAME>USB:Port0:SanDisk Cruzer Contour</DEVICE_NAME>
 </Boot_Device_04>
 <Boot_Device_05>
 <DEVICE_NAME>SATA:3M-MRVLRD 200254-01SUN24G 0801</DEVICE_NAME>
 </Boot_Device_05>
</BOOT_DEVICE_PRIORITY>
```

See Also
- “How to Set the First Boot Device for the Next Boot” on page 57
- “How to Make a Persistent Change to Boot Order” on page 58
How to Change Boot Order Based on the PCI Bus, Device, or Function

biosconfig alters the boot order based on the PCI bus, device, or function if the boot order list contains that information. (USB devices do not have this information, but PCI devices do.)

For example, using `biosconfig -set_boot_order` with this XML input moves the specified Ethernet NIC to the top of the boot list:

```
<BIOSCONFIG>
 <BOOT_DEVICE_PRIORITY>
 <Boot_Device_01>
 <PCI-B-D-F>00,19,00</PCI-B-D-F>
 </Boot_Device_01>
 </BOOT_DEVICE_PRIORITY>
</BIOSCONFIG>
```

As a result, the boot list now becomes:

```
<BOOT_DEVICE_PRIORITY>
 <Boot_Device_01>
 <DEVICE_NAME>PXE:IBA GE Slot 00C8 v1324</DEVICE_NAME>
 <PCI-B-D-F>00,19,00</PCI-B-D-F>
 </Boot_Device_01>
 <Boot_Device_02>
 <DEVICE_NAME>IB:Slot2.F0:PX:MLNX HCA IB 1.9.972 (PCI 07:00.
 <PCI-B-D-F>07,00,00</PCI-B-D-F>
 </Boot_Device_02>
 <Boot_Device_03>
 <DEVICE_NAME>USB:Port1:Memorex DVD+-RAM 510L v1</DEVICE_NAME>
 </Boot_Device_03>
 <Boot_Device_04>
 <DEVICE_NAME>USB:Port0:SanDisk Cruzer Contour</DEVICE_NAME>
 </Boot_Device_04>
 <Boot_Device_05>
 <DEVICE_NAME>SATA:3M-MRVLRD 200254-01SUN24G 0801</DEVICE_NAME>
 </Boot_Device_05>
</BOOT_DEVICE_PRIORITY>
```

See Also
- “How to Set the First Boot Device for the Next Boot” on page 57
- “How to Make a Persistent Change to Boot Order” on page 58
- “How to Switch Boot Devices” on page 59
- “How to Specify a Subset of Strings and a Subset of the Boot List” on page 61
- “How to Move Boot List Entries” on page 61
BIOS CMOS Configuration

The BIOS configuration information is stored in the CMOS memory, battery back-up, in the host’s chipset. Through the BIOS setup interface at BIOS POST, you can configure many of the CMOS settings. biosconfig is an alternative interface to modify these settings with a program on the host OS. biosconfig configures the BIOS CMOS settings using two methods:

- Copying and using a golden (known reliable) image
- Controlling each setting individually

This section covers the following topics:

- “How to Configure the BIOS CMOS Using a Golden CMOS Image” on page 63
- “How to Apply the Golden Image” on page 64
- “Configuring Individual CMOS Settings” on page 65

How to Configure the BIOS CMOS Using a Golden CMOS Image

The BIOS configuration consists of the contents of the CMOS and the boot tables in the NVRAM. The command biosconfig -get_CMOS_dump captures the 256 bytes of CMOS, but it does not gather the boot table information from NVRAM. So this command might not capture the boot-order information, unless the bootable I/O configurations for the source and destination machines are the same. To generate a golden (known reliable) CMOS image, use BIOS setup to configure the host as you want.

1. Use the biosconfig -get_CMOS_dump to capture the 256 bytes of CMOS holding the configuration information:

```bash
biosconfig -get_CMOS_dump golden.xml
Copyright (C) SUN Microsystems 2009.
BIOSconfig Utility Version 2.1
Build Date: Jul 16 2009
Build Time: 15:55:12
BIOSconfig Specification Version 2.4
Success
```

2. To view the XML file, type:

Note – The data between the <CMOS_DUMP> element tags contains raw CMOS data.

```xml
<BIOSCONFIG>
 <BIOSCONFIG_VERSION>2.1</BIOSCONFIG_VERSION>
 <SPEC_VERSION>2.4</SPEC_VERSION>
 <SP_NETWORK_CONFIG>
 <DISCOVERY/>
 <IP> </IP>
 <NETMASK> </NETMASK>
 <GATEWAY> </GATEWAY>
 </SP_NETWORK_CONFIG>
</BIOSCONFIG>
```
How to Apply the Golden Image

You can apply the golden image to similar hardware by copying the golden image from your system to a second system with the same BIOS revision, as shown using set_CMOS_dump:

- Use the following command:
  
  ```
 # biosconfig -set_CMOS_dump golden.xml
  ```
  
See Also

- "How to Apply the Golden Image" on page 64
Configuring Individual CMOS Settings

biosconfig provides two commands to manage individual CMOS settings:

- `get_bios_settings`
  
  Gets CMOS settings from the platform.

- `set_bios_settings`
  
  Sets CMOS settings on the platform.

To use these commands you can:

1. Use `-get_bios_settings` to generate an XML file that describes the current settings.
2. Edit that XML file so that it specifies the settings.
3. Use `-set_bios_settings` to change settings in CMOS.

Note – Values for the settings vary depending on your server type. biosconfig reads the host’s BIOS image and the platform’s CMOS to find the setup questions (the strings displayed in BIOS setup), the optimal default values, the current settings, and the permitted settings. The XML file structure matches the menu hierarchy in BIOS setup. When using `-set_bios_settings`, you can provide a subset of the XML file output by using `-get_bios_settings` so that it includes only the settings that you wish to make.

The names in the output XML file match the names in the setup menus; the only difference is that the spaces are replaced with underscores (_). For example, the Quick Boot entry in the Boot Settings Configuration submenu in the Boot menu of BIOS setup is specified like this:

```
<BIOSCONFIG>
 <SETUP_CONFIG>
 <Boot>
 <Boot_Settings_Configuration>
 <Quick_Boot>
 </Quick_Boot>
 </Boot_Settings_Configuration>
 </SETUP_CONFIG>
</BIOSCONFIG>
```

This section includes the following procedures:

- “How to Retrieve Static CMOS Settings” on page 66
- "How to Configure a Dynamic Setting” on page 67
- “How to Configure NET0_Option_ROM” on page 68
- “How to View Chipset-Related Settings” on page 68
- “How to Configure System Powered Off” on page 69
How to Retrieve Static CMOS Settings

There are two types of CMOS settings: static and dynamic. The following static settings are determined at runtime by the BIOS:

- The value in CMOS
- The behavior determined by that value
- The BIOS setup strings displayed

For example, for the BIOS setup question in the Quick Boot, in the Boot Settings Configuration menu, under the Boot menu, there are two choices, Enabled and Disabled, and the optimal default is Enabled.

The following are subsets of the output XML file:

- **View the following XML code examples:**

  ```xml
 <BIOSCONFIG>
 <SETUP_CONFIG>
 <Boot>
 <Boot_Settings_Configuration>
 <Quick_Boot>
 <HELP_STRING>Allows BIOS to skip certain....</HELP_STRING>
 <DEFAULT_OPTION>Enabled</DEFAULT_OPTION>
 <SELECTED_OPTION>Enabled</SELECTED_OPTION>
 <OPTION-0>Disabled</OPTION-0>
 <OPTION-1>Enabled</OPTION-1>
 </Quick_Boot>
 <Onboard_IB gPXE boot first >
 <HELP_STRING>Set Onboard Infiniband gPXE</HELP_STRING>
 <DEFAULT_OPTION>Disabled</DEFAULT_OPTION>
 <SELECTED_OPTION>Disabled</SELECTED_OPTION>
 <OPTION-0>Disabled</OPTION-0>
 <OPTION-1>Enabled</OPTION-1>
 </Onboard_IB gPXE boot first >
 </Boot_Settings_Configuration>
 </Boot>
 </SETUP_CONFIG>
 </BIOSCONFIG>
  ```

  or

  ```xml
 <BIOSCONFIG>
 <SETUP_CONFIG>
 <Chipset>
 <South_Bridge_Configuration>
 <Restore on AC Power Loss>
 <HELP_STRING>Set Onboard Infiniband gPXE</HELP_STRING>
 <DEFAULT_OPTION>Power On</DEFAULT_OPTION>
 <SELECTED_OPTION>Power On</SELECTED_OPTION>
 <OPTION-0>Power Off</OPTION-0>
 </Restore on AC Power Loss>
 </South_Bridge_Configuration>
 </Chipset>
 </SETUP_CONFIG>
 </BIOSCONFIG>
  ```
See Also

- “How to Configure a Dynamic Setting” on page 67
- “How to Configure NET0_Option_ROM” on page 68
- “How to View Chipset-Related Settings” on page 68
- “How to Configure System Powered Off” on page 69
- “How to Turn Off Quick Boot and Power Off Options” on page 69

How to Configure a Dynamic Setting

There are two types of CMOS settings: static and dynamic. The following dynamic settings are determined at runtime by the BIOS:

- Value in CMOS
- Behavior determined by that value
- BIOS setup strings displayed

biosconfig cannot retrieve the strings and the mapping between the values in CMOS. This behavior is BIOS dependent; the ability to retrieve this information depends on the BIOS revision and the platform type.

To configure dynamic settings, you need to discover the setting that you wish to use by following these steps:

1. Enter the BIOS setup.
2. Configure this setting manually and save.
3. Run biosconfig-get_bios_settings and examine the resulting XML output to find the value that the BIOS is using for the setting you wish to specify.

This is an example of a dynamic CMOS setting:

```xml
<BIOSCONFIG>
 <SETUP_CONFIG>
 <Boot>
 <Option ROM Enable>
 <NET0 Option ROM>
 <HELP_STRING>This Option enables execut....
 <DEFAULT OPTION> 0000 </DEFAULT OPTION>
 <SELECTED OPTION> 0000 </SELECTED OPTION>
 <OPTION RANGE> 0000 - 0001 </OPTION RANGE>
 <OPTION-0>Not Available</OPTION-0>
 </NET0 Option ROM>
 </Boot>
 </SETUP_CONFIG>
</BIOSCONFIG>
```
In the preceding code, there are no string-to-value mappings offered by the biosconfig output.

4 Use this setting with -set BIOS Settings to configure other machines.

See Also
- "How to Configure NET0 Option-ROM" on page 68
- "How to Retrieve Static CMOS Settings" on page 66
- "How to View Chipset-Related Settings" on page 68
- "How to Configure System Powered Off" on page 69
- "How to Turn Off Quick Boot and Power Off Options" on page 69

How to Configure NET0 Option-ROM
If you do this, for this particular entry, the optimal default is Enabled which has the value 0. Disabled has the value 1.

Set the following XML code:

```xml
<Biosconfig>
 <Setup_Config>
 <Boot>
 <option_ROM_Enable>
 <NET0 Option_rom >
 <SELECTED_OPTION> 1 </SELECTED_OPTION>
 </NET0 OptionRom>
 </option_ROM_Enable>
 </Boot>
 </Setup_Config>
</Biosconfig>
```

See Also
- "How to View Chipset-Related Settings" on page 68
- "How to Retrieve Static CMOS Settings" on page 66
- "How to Configure a Dynamic Setting" on page 67
- "How to Configure System Powered Off" on page 69
- "How to Turn Off Quick Boot and Power Off Options" on page 69

How to View Chipset-Related Settings
During BIOS development, many chipset-related settings that are not relevant to the platform under development are hidden in the BIOS setup; however, some of those appear in the biosconfig -get setup_config output.

To view chipset-related settings, use the biosconfig -get setup_config command:

```xml
<BIOSCONFIG>
 <NET1 Option ROM >
 <HELP_STRING>This Option enables execution of the
</BIOSCONFIG>
```
This example describes an on-board network interface card (NIC) that is not used. To avoid confusion, look in the BIOS setup to determine the name of options that you can control.

**See Also**
- “How to Configure System Powered Off” on page 69
- “How to Retrieve Static CMOS Settings” on page 66
- “How to Configure a Dynamic Setting” on page 67
- “How to Configure NET0_Option_ROM” on page 68
- “How to Turn Off Quick Boot and Power Off Options” on page 69

**How to Configure System Powered Off**

To change the behavior of the system so that it remains off after AC power is restored, you can use this minimal XML file to change the setting from the default of Power On to Power Off:

- Set the following XML code:

```xml
<BIOSCONFIG>
 <SETUP_CONFIG>
 <Chipset>
 <South_Bridge_Configuration>
 <Restore on AC Power Loss>
 <SELECTED_OPTION>Power Off</SELECTED_OPTION>
 </Restore on AC Power Loss>
 </South_Bridge_Configuration>
 </Chipset>
 </SETUP_CONFIG>
</BIOSCONFIG>
```

**See Also**
- “How to Turn Off Quick Boot and Power Off Options” on page 69
- “How to Retrieve Static CMOS Settings” on page 66
- “How to Configure a Dynamic Setting” on page 67
- “How to Configure NET0_Option_ROM” on page 68
- “How to View Chipset-Related Settings” on page 68

**How to Turn Off Quick Boot and Power Off Options**

You can combine changes into a single file. For example, to turn off Quick Boot and Power Off after AC power is restored you could use this:

- Set the following XML code:

```xml
<BIOSCONFIG>
 <SETUP_CONFIG>
```


<Chipset>
  <South_Bridge_Configuration>
  </South_Bridge_Configuration>
</Chipset>

<Boot>
  <Boot_Settings_Configuration>
    <Quick_Boot>
      <SELECTED_OPTION>Disabled</SELECTED_OPTION>
    </Quick_Boot>
  </Boot_Settings_Configuration>
</Boot>
</SETUP_CONFIG>
</BIOSCONFIG>

See Also
- "How to Retrieve Static CMOS Settings" on page 66
- "How to Configure a Dynamic Setting" on page 67
- "How to Configure NET0_Option_ROM" on page 68
- "How to View Chipset-Related Settings" on page 68
- "How to Configure System Powered Off" on page 69

Commands That Produce Unrelated, Innocuous, Extra Output

The following is a known issue with biosconfig.

Some commands have extraneous output in the XML file. For example, the following is the extra output from -get_cmos_dump.

<SP_NETWORK_CONFIG>
  <DISCOVERY/>
  <IP/>
  <NETMASK/>
  <GATEWAY/>
</SP_NETWORK_CONFIG>

<PASSWORD_CONFIG>
  <PASSWORD/>
</PASSWORD_CONFIG>

<BOOT_ORDER_OVERRIDE>
  <HELP_STRING>FIRST=Choose one of: pxe, cdrom, disk, floppy, bios, none</HELP_STRING>
  <FIRST/>
  <HELP_STRING>CLEAR_CMS=Choose Yes, No or leave it empty, empty means No</HELP_STRING>
  <CLEAR_CMS/>
</BOOT_ORDER_OVERRIDE>

<BOOT_DEVICE_PRIORITY>
  <B0>
    <DEVICE_NAME/>
    <PCI-B-D-F/>
  </B0>
</BOOT_DEVICE_PRIORITY>
See also:

- “How to Retrieve Static CMOS Settings” on page 66
- "How to Configure a Dynamic Setting" on page 67
- “How to Configure NET0_Option_ROM” on page 68
- “How to View Chipset-Related Settings” on page 68
- “How to Configure System Powered Off” on page 69
- “How to Turn Off Quick Boot and Power Off Options” on page 69
Using the `fwupdate` Tool

The `fwupdate` tool is one of the CLI components of the Oracle Hardware Management Pack. `fwupdate` is a cross-OS utility that enables you to query, update, and validate the firmware of storage devices such as HBA, expanders, and disks on Oracle servers. `fwupdate` is supported on Linux, the Solaris OS, and Windows for x86 servers and Solaris OS for SPARC servers.

The `fwupdate` tool updates a storage component's (SAS controller, SAS expander, disk drive, SAS bridge) firmware images when an update is made to that firmware. The tool displays the inventory of storage components that can be seen by a host and can show all of the available firmware versions.

The `fwupdate` tool uses a general-purpose cross-OS storage management library to access specific hardware information and provides exploration, monitoring, and configuration of on-board (local disks) and external storage resources (JBODs) connected to the host system.

With Oracle Hardware Management Pack 2.1, there are two modes available for the `fwupdate` tool: automatic mode and manual mode.

- Automatic mode uses information from the XML metadata file that is packaged with the platform firmware downloads to update the storage device firmware. This is the most accurate method to use, and it is recommended by Oracle.
- Manual mode allows you to update the firmware directly. This mode should only be used if the XML metadata file is not available for the platform that you want to update.

Check the documentation and release notes for your product to determine whether or not an XML metadata file is available. The product release notes will also contain upgrade information that is specific to the platform.

The `fwupdate` CLI commands are run on the host machine and supports the target devices. `fwupdate` supports the following storage subsystems:

- Disk drives (spinning media and Flash drives)
- HBA and embedded storage controllers, SAS1 and SAS2
- LSI SAS expander devices, SAS1 and SAS2

This section covers the following topics:

- "`fwupdate Command-Line Interface` on page 74"
- "`list Subcommand` on page 79"
Automatic Mode fwupdate Command-Line Interface

Automatic command-line mode uses an XML metadata file that is included in the platform firmware downloads.

The following restrictions apply when using the fwupdate command:

- You must be in root permission level to run fwupdate commands on Unix-based platforms, or administrator permission level for Windows platforms.
- An XML metadata file containing information on platform firmware must be available. Check your firmware release notes for information on availability of the metadata file.
- For Solaris systems, after hot-plugging any device, run the devfsadm -C command to reenumerate all of the system device nodes before running the fwupdate command.

When a command fails, it returns one of several failure codes listed in “fwupdate Error Codes” on page 117.

---

Note – Default (noarg) behavior of the tool lists the help options. Incomplete command-line arguments result in an error, and context-sensitive help is displayed.

Automatic fwupdate mode uses the following syntax:

```
fwupdate subcommand target -x filename.xml options
```

where target is the type of device that is being listed or updated, filename is the .xml file that contains the firmware update metadata, and subcommand is one of the options shown in the following table.

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>update</td>
<td>Update mode allows updating a single component based on command-line directives.</td>
</tr>
</tbody>
</table>
Manual Mode fwupdate Command-Line Interface

Manual command-line mode is designed to update a single component with a user-specified firmware file.

The following restrictions apply when using the fwupdate command:

- You must be in root permission level to run fwupdate commands on Unix-based platforms, or administrator permission level for Windows platforms.
- Only one target device can be upgraded per command-line execution.
- Only one file type and file may be specified by the command line.
- Components with multiple and different firmware files require a separate command-line execution to be upgraded.
- For Solaris systems, after hot-plugging any device, run the devfsadm -C command to reenumerate all of the system device nodes before running the fwupdate command.

When a command fails, it returns one of several failure codes listed in “fwupdate Error Codes” on page 117.

Note – Default (noarg) behavior of the tool lists the help options. Incomplete command-line arguments result in an error, and context-sensitive help is displayed.

The tool uses the following syntax:

fwupdate subcommand target options

where target is the type of device that is being listed or updated, options are options specific to the subcommand, and subcommand is one of the options shown in the following table.

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>list</td>
<td>Listing mode displays system data and helps select components for upgrade.</td>
</tr>
<tr>
<td>update</td>
<td>Update mode allows updating a single component based on command-line directives.</td>
</tr>
<tr>
<td>reset</td>
<td>Reset mode allows resetting of individual components.</td>
</tr>
</tbody>
</table>

See also:

- “update Subcommand” on page 76
- “list Subcommand” on page 79
- “reset Subcommand” on page 80
The following topics are covered in this section:

- "Automatic Mode update Subcommand" on page 76
- "Manual Mode update Subcommand" on page 77

## Automatic Mode update Subcommand

The automatic mode update command updates the specified target device by using the firmware update information contained in the XML metadata file provided in the platform firmware download.

The update subcommand supports the following targets:

- all
- expander
- disk
- bridge
- controller
- expander-firmware
- expander-manufacturing_image
- disk-firmware
- sas-bridge-firmware
- sas-controller-firmware
- sas-controller-bios
- sas-controller-fcode

Options for the update subcommand are shown in the following table.

<table>
<thead>
<tr>
<th>Short Options</th>
<th>Long Option</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n</td>
<td>--device_name</td>
<td>A mandatory option, with a mandatory parameter, to designate the device to update. The name is the mapped name, which you can retrieve by using the list command.</td>
</tr>
<tr>
<td>-o</td>
<td>--filename filename</td>
<td>A mandatory option, with a mandatory parameter, designating the name of the firmware image file that is to be applied.</td>
</tr>
<tr>
<td>-r</td>
<td>--reset</td>
<td>Do not use this option. If you need to reset, use the reset subcommand. See &quot;reset Subcommand&quot; on page 80.</td>
</tr>
</tbody>
</table>
The following are automatic mode update command examples:

- `fwupdate update all -x filename.xml`
- `fwupdate update disk -x filename.xml -n c0d1`

The following is example output from the `fwupdate update all -x filename.xml` command:

```
The following components will be upgraded as shown:
==
--
c0d0 1 Check FW Success 0768 0868 N/A None
c0d1 1 Check FW Success 0768 0868 N/A None
c0d2 1 Check FW Success 0768 0868 N/A None
c0d3 1 Check FW Success 0768 0868 N/A None
--
Do you wish to process all of the above component upgrades? [y/n]?
If you want to update the listed components, type y when prompted.
```

As the firmware updates, you will see output similar to the following:

```
Updating c0d0: Success
Updating c0d1: Success
Updating c0d2: Success
Verifying all priority 1 updates
```

```
Execution Summary
==
--
c0d0 1 Validate Success 0768 0868 0868 None
c0d1 1 Validate Success 0768 0868 0868 None
c0d2 1 Validate Success 0768 0868 0868 None
c0d3 1 Validate Success 0768 0868 0868 None
--
```

See also:

- “Manual Mode update Subcommand” on page 77
- “list Subcommand” on page 79
- “reset Subcommand” on page 80

**Manual Mode update Subcommand**

The target set for the update command maps one target to one supported firmware image type that is supported by the tool.

The update subcommand supports the following targets:
Manual Mode updatE Subcommand

- expander-firmware
- expander-manufacturing_image
- disk-firmware
- sas-bridge-firmware
- sas-controller-firmware
- sas-controller-bios
- sas-controller-fcode

Only one firmware image and one component can be specified per execution of this command.

Options for the update subcommand are shown in the following table.

<table>
<thead>
<tr>
<th>Short Option</th>
<th>Long Option</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n</td>
<td>--device_name</td>
<td>A mandatory option, with a mandatory parameter, to designate the device to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>update. The name is the mapped name, which you can retrieve by using the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>list command.</td>
</tr>
<tr>
<td>-o</td>
<td>--filename</td>
<td>A mandatory option, with a mandatory parameter, designating the name of the</td>
</tr>
<tr>
<td></td>
<td>filename</td>
<td>firmware image file that is to be applied.</td>
</tr>
<tr>
<td>-r</td>
<td>--reset</td>
<td>Do not use this option. If you need to reset, use the reset subcommand. See</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“reset Subcommand” on page 80.</td>
</tr>
<tr>
<td>-d</td>
<td>--dry-run</td>
<td>Optional. Checks all input, executes an available dry-run check command on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the firmware and component, but makes no permanent changes.</td>
</tr>
</tbody>
</table>

The following are update command examples:

- `fwupdate update disk-firmware -n c1d1 -f diskfirmware.file`
- `fwupdate update expander-fpga -n c1x2 -f expander.fpga -d -r`

Note – Only one device can be specified per fwupdate execution. Every device that needs to be updated will have to be run as a separate fwupdate command.

See also:

- “Automatic Mode update Subcommand” on page 76
- “list Subcommand” on page 79
- “reset Subcommand” on page 80
**list Subcommand**

The `list` command displays the version of firmware for all components, tells you whether the target device can be updated with the XML metadata file, or prints the configuration information to a specified XML file.

The `list` options are shown in the following table.

<table>
<thead>
<tr>
<th>Short Option</th>
<th>Long Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n</td>
<td>-device_name</td>
<td>These options must have a mandatory parameter to designate a single device to list. The <code>-device_name</code> option is the common-mapped device name.</td>
</tr>
<tr>
<td>-v</td>
<td>-verbose</td>
<td>Displays much more information about each component listed. Verbose is off by default.</td>
</tr>
<tr>
<td>-x</td>
<td>-xml=file</td>
<td>Uses the provided XML metadata file to determine which components are supported.</td>
</tr>
<tr>
<td>-o</td>
<td>-output_xml=file</td>
<td>Prints the configuration information in XML format to the given file.</td>
</tr>
</tbody>
</table>

The supported targets for the `list` command are:

- `all`
- `disk`
- `expander`
- `controller`
- `bridge`

These targets represent all of the supported component types that can be upgraded by this tool. Use the `all` option to view all of the devices that can be updated using the XML metadata file.

The following are `fwupdate list` command examples:

- `fwupdate list disk`
  Executes a listing of all the disks on the system.

- `fwupdate list expander -n c1x0 -v`
  Shows verbose information about the expander mapped to c1x0.

- `fwupdate list all -x filename.xml`

The following is sample output for the `fwupdate list all -x filename.xml` command:

```
CONTROLLER
```

---

79
reset Subcommand

EXPANDERS

<table>
<thead>
<tr>
<th>ID</th>
<th>Manufacturer</th>
<th>Model</th>
<th>Product Name</th>
<th>FW Version</th>
<th>BIOS Version</th>
<th>XML Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0</td>
<td>LSI Logic</td>
<td>0x0072</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

DISKS

<table>
<thead>
<tr>
<th>ID</th>
<th>Manufacturer</th>
<th>Model</th>
<th>Chassis Slot</th>
<th>Type</th>
<th>Media</th>
<th>Size (GB)</th>
<th>FW Version</th>
<th>XML Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0d0</td>
<td>SEAGATE</td>
<td>ST914603SSUN146G</td>
<td>-</td>
<td>HDD</td>
<td>146</td>
<td>0768</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>c0d1</td>
<td>SEAGATE</td>
<td>ST914603SSUN146G</td>
<td>-</td>
<td>HDD</td>
<td>146</td>
<td>0768</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>c0d2</td>
<td>SEAGATE</td>
<td>ST914603SSUN146G</td>
<td>-</td>
<td>HDD</td>
<td>146</td>
<td>0768</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>c0d3</td>
<td>HITACHI</td>
<td>H103014SCSUN146G</td>
<td>0</td>
<td>sas</td>
<td>146</td>
<td>A160</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>c0d4</td>
<td>HITACHI</td>
<td>H103030SCSUN300G</td>
<td>2</td>
<td>sas</td>
<td>299</td>
<td>A160</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>c0d5</td>
<td>SEAGATE</td>
<td>ST930003SSUN300G</td>
<td>3</td>
<td>sas</td>
<td>299</td>
<td>0868</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>c0d6</td>
<td>SEAGATE</td>
<td>ST930003SSUN300G</td>
<td>3</td>
<td>sas</td>
<td>299</td>
<td>0868</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

See also:
- “update Subcommand” on page 76
- “reset Subcommand” on page 80

reset Subcommand

After firmware for a device has been updated, the device might need to be reset. This requirement is different with each device; therefore, the reset functionality might be part of the update procedure or a separate function. To determine if your device requires a reset after a firmware upgrade, consult the release notes of your firmware.

The supported targets for the fwupdate reset command are:

- all
- disk
- expander
- bridge
- controller

Options for the update subcommand are shown in the following table.

### Options Table

<table>
<thead>
<tr>
<th>Short Option</th>
<th>Long Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n</td>
<td>--device_name</td>
<td>A mandatory option, with a mandatory parameter, to designate a single device to show. device_name is the common-mapped device name.</td>
</tr>
</tbody>
</table>
The following is a `fwupdate reset` subcommand example. This example resets the disk mapped to c2d2.

```
fwupdate reset disk -n c2d2
```

See also:
- “update Subcommand” on page 76
- “list Subcommand” on page 79

## Device-Naming Convention

Device naming is shared with other CLI tools based on the storage library.

For a full description of the naming convention, see: “CLI Tools Device-Naming Convention” on page 40.

## Execution Summary

After the `fwupdate` tool is used to upgrade firmware, an execution summary provides information on whether or not the upgrade was successful. This information is also written to the log file.

The following are examples of the possible execution summary messages:

- Message printed after successful a dry-run/check function:
  
  Check firmware successful for device: `device_name`

- The upgrade was successful, but no firmware version information is available for this component:

  Upgrade of firmware for `device_name` succeeded. Version information was not available.

  Consult your product release notes for information on how to verify the upgrade.

- Upgrade was successful:

  Upgrade of `device_name` from `old_fw` to `new_fw` succeeded.

- The version number of the software did not change after a successful upgrade:

  Upgrade of `device_name` from `old_fw` succeeded, but is not yet active.

  This might mean that the machine needs to be reset, or other instructions need to be followed. Consult your product release notes for information on what needs to be done to update the version number.

- Upgrade failed:
Upgrade of *device_name* failed: *error_message*

Where:
- *device_name* is the logical name of the device that is being upgraded.
- *old_fw* is the old firmware version.
- *new_fw* is the new firmware version.
- *error_message* is the error message that explains why the firmware update did not succeed.

See also:
- “update Subcommand” on page 76
- “list Subcommand” on page 79
- “reset Subcommand” on page 80
Using the raidconfig Tool

raidconfig is part of the Oracle Hardware Management Pack and uses a general-purpose cross-OS storage management library to configure attributes to RAID volumes using XML files.

This section covers the following topics:

- “raidconfig Overview” on page 83
- “raidconfig Command Overview” on page 84
- “list Subcommand” on page 85
- “create raid Subcommand” on page 89
- “delete raid Subcommand” on page 90
- “add spare Subcommand” on page 91
- “remove spare Subcommand and Options” on page 92
- “modify Subcommand” on page 93
- “export Subcommand” on page 94
- “raidconfig export Options” on page 94
- “import Subcommand” on page 95

raidconfig Overview

raidconfig provides exploration, monitoring, and configuration of on-board (local disks) and external storage resources (JBODs) connected to the system. It uses a set of storage libraries to access specific information about the host system. These libraries and packages are distributed and installed automatically with raidconfig. Supported components of raidconfig include those devices supported by the library. raidconfig is supported on Linux, the Solaris OS, and Windows platforms. raidconfig is capable of the following functions:

- Shows, creates, deletes, and modifies RAID volumes.
- Facilitates scripting by using command-line options.
- Configures many similar and dissimilar platforms in a data center. This is accomplished by the ability to read from an XML file based on a command-line option. The XML file can be edited to fit various platform configurations. The tool allows the configuration to be easily written to a file in XML format.
- Displays the current RAID configuration and writes it to an XML file so it can be edited and used to configure the same or a different platform.
raidconfig Command Overview

- Represents a logical disk in a portable manner. For example, using a unique enumeration per controller, instead of a SAS address, facilitates moving the XML file to other platforms.
- Provides a super-set of all configuration options provided by the Adaptec and LSI CLI commands.
- Uses capability checking, for example, on supported RAID types, for particular adapters based on data retrieved from the API.

raidconfig has the following restrictions:

- You must be in root permission level to run raidconfig commands on Unix-based platforms, or Administrator permission level for Windows platforms.
- raidconfig cannot create nested RAID volumes (a RAID volume as part of another RAID volume).
- On Oracle Solaris, raidconfig is not compatible with the raidctl CLI tool. (raidconfig supports SAS2, but the raidctl tool does not.)

See also "raidconfig Command Overview" on page 84.

raidconfig Command Overview

The raidconfig commands adhere to the following command syntax:

```
raidconfig subcommand device-type -option(s)
```

For Solaris, after hot-plugging any device, run the `devfsadm -C` command to reenumerate all of the system device nodes before running the raidconfig command.

When a command fails, it returns one of several failure codes listed in "raidconfig Error Codes" on page 115.

The following options apply to all CLI tools commands including raidconfig:

<table>
<thead>
<tr>
<th>Short Option</th>
<th>Long Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-?</td>
<td>--help</td>
<td>Help—Displays help information.</td>
</tr>
<tr>
<td>-V</td>
<td>--version</td>
<td>Version—Displays the tool version.</td>
</tr>
<tr>
<td>-q</td>
<td>--quiet</td>
<td>Quiet—Suppress informational message output and only returns error codes.</td>
</tr>
<tr>
<td>-y</td>
<td>--yes</td>
<td>Yes—Confirms operation. Does not prompt user for confirmation on the operation when running.</td>
</tr>
</tbody>
</table>

If you use the `-help` or `--version` options, the raidconfig command does not require subcommands, otherwise one or more subcommands are mandatory to the raidconfig command.
The following are subcommands for `raidconfig`:

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>list</td>
<td>Lists information on controllers, RAID Volumes and disks, including disks not in a RAID volume. Specific devices can be selected for display.</td>
</tr>
<tr>
<td>create</td>
<td>Create a RAID volume.</td>
</tr>
<tr>
<td>delete</td>
<td>Delete a RAID volume.</td>
</tr>
<tr>
<td>modify</td>
<td>Modify a RAID volume or a disk.</td>
</tr>
<tr>
<td>add</td>
<td>Add a spare disk.</td>
</tr>
<tr>
<td>remove</td>
<td>Remove a spare disk.</td>
</tr>
<tr>
<td>export</td>
<td>Generate an XML file from a RAID configuration.</td>
</tr>
<tr>
<td>import</td>
<td>Read in a RAID configuration and create RAID volumes and spares.</td>
</tr>
</tbody>
</table>

The subcommands are discussed below. Whenever devices (controllers, RAID volumes, and disks) are used with commands, they must be uniquely identified. For information on how to do so, see the device-naming scheme at “CLI Tools Device-Naming Convention” on page 40.

Device naming is shared with other CLI tools based on the storage library.

See also “CLI Tools Command Syntax and Conventions” on page 39.

**list Subcommand**

This section covers the following topics:

- “list Subcommand Overview” on page 85
- “list Options” on page 87
- “How To Show a Brief Listing” on page 88
- “How To Show a Detailed Listing” on page 88
- “How To Show a Brief Listing of a Disk” on page 89

**list Subcommand Overview**

The list subcommand displays controller, RAID volume, and disk data. The following subcommands are available to the list subcommand:

The following are command options to the `raidconfig list` command:
## List Subcommand Overview

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>All — Shows details on all controllers, physical disks, and RAID volumes.</td>
</tr>
<tr>
<td>controller</td>
<td>Controller — Shows details on all controllers. Use the -c option for details on a specific controller.</td>
</tr>
<tr>
<td>disk</td>
<td>Disks — Shows the physical disks.</td>
</tr>
<tr>
<td>raid</td>
<td>RAID — Shows all RAID details.</td>
</tr>
</tbody>
</table>

The following data is displayed. Items marked with an asterisk (*) show a brief listing; all other items show a verbose listing:

### Controllers:
- Logical ID (0-based)
- Node ID
- Manufacturer*
- Model*
- Firmware version*
- PCI address
- PCI vendor ID
- RAID levels supported
- Current number of RAID volumes*
- Current number of disks*
- Max disks
- Max RAID volumes
- Dedicated spares (per RAID volume)
- Max global spares
- Stripe size minimum
- Stripe size minimum
- PCI device ID
- PCI subvendor ID
- PCI subdevice ID
- Battery backup status

### Disks:
- Logical ID (0-based)*
- Node ID
- Chassis ID*
- Slot ID*
- Device name
- Disable
- Disk type*
- Mapped (true/false)
- Status*
- Capacity*
- Manufacturer
- Model
- Serial number
- RAID volumes that the disk* is part of.
- Spare state (global, dedicated, or N/A)*
- Media*

RAID volumes:
- Logical ID (0-based)*
- Node ID
- Device name*
- Name (user assigned)*
- Status*
- In-resync (true/false)
- RAID level*
- Number of disks*
- Capacity*
- Mounted
- Stripe size
- Leg size
- Read-cache
- Write-cache

See also:
- “list Options” on page 87

## list Options

The following options apply to the raidconfig list command:

<table>
<thead>
<tr>
<th>Short Option</th>
<th>Long Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c</td>
<td>--controller</td>
<td>Controller ID — This option is followed by the controller ID string. Shows details about a particular controller.</td>
</tr>
<tr>
<td>-r</td>
<td>--raid</td>
<td>RAID ID — This option is followed by the RAID ID string. Shows details about a particular RAID volume.</td>
</tr>
<tr>
<td>-d</td>
<td>--disks</td>
<td>Disk ID Numbers — This option is followed by the disk ID string(s). Comma-separated list of disks using the disk’s ID. Shows details about particular disk(s). Valid only when using the raidconfig list disk data command.</td>
</tr>
</tbody>
</table>
### List Options

<table>
<thead>
<tr>
<th>Short Option</th>
<th>Long Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-v</td>
<td>--verbose</td>
<td>Verbose — Lists all fields. By default, a brief listing shows only a subset of the fields.</td>
</tr>
</tbody>
</table>

See also:
- “list Subcommand” on page 85

#### How To Show a Brief Listing

To show a brief listing of all available controllers, RAID volumes, disks in use, and available disks:

- **Issue the following command:**
  ```
 # ./raidconfig list all
 CONTROLLER c0
 ...
 CONTROLLER c1
 ...
 ...
 CONTROLLER c7
 ...
 RAID Volumes
 ...
 DISKS In Use
 ...
  ```

See Also
- “list Subcommand” on page 85
- “list Options” on page 87

#### How To Show a Detailed Listing

To show a detailed listing of RAID volume 1 in controller 1, along with the disks that this volume is using:

- **See Also**
  - “list Subcommand” on page 85
  - “list Options” on page 87
create raid Subcommand

The create raid subcommand can be used to create RAID volumes. This subcommand must take at least one of the following required options:

<table>
<thead>
<tr>
<th>Short Option</th>
<th>Long Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-d</td>
<td>--disks</td>
<td>List of disks — A list of disks with a comma separating the disk ID numbers.</td>
</tr>
<tr>
<td>-c</td>
<td>--controller</td>
<td>The controller ID number — When specific disks are not supplied, this option indicates which controller to use.</td>
</tr>
<tr>
<td>-n</td>
<td>--number-disks</td>
<td>Number of disks — The number of disks in the array. The tool chooses from the available disks. If there are not enough disks available to match the number, the command fails.</td>
</tr>
<tr>
<td>N/A</td>
<td>--level</td>
<td>Level — The RAID level supported by the controller. For example, 0, 1, 1E, 5, 10, 50, 60, etc. The levels supported for a particular controller can be seen in the raid levels supported field of the show command. Not all controllers support all RAID levels. For example, Adaptec supports 0, 1, 5, 10, and 50. Since any RAID level can be set, it is possible that the command results in an error if the RAID level is not supported. If no RAID level is supplied, level 0 is assumed.</td>
</tr>
<tr>
<td>N/A</td>
<td>--stripe-size</td>
<td>Stripe size — In kilobytes, the stripe size of the RAID volume to be created. If this option is not supplied, a stripe size of 128 K is used.</td>
</tr>
<tr>
<td>N/A</td>
<td>--legs</td>
<td>Leg size in number of disks — For nested RAID levels (10, 50), specifies the size of the RAID components in number of physical disks.</td>
</tr>
</tbody>
</table>

See Also
- “list Subcommand” on page 85
- “list Options” on page 87

How To Show a Brief Listing of a Disk
To show a brief listing of disk 2 on controller 1:

- Issue the following command:
  `raidconfig list disks -d c1d2`

See Also
- “list Subcommand” on page 85
- “list Options” on page 87
delete raid Subcommand

The maximum capacity of the RAID volume is not configurable. The storage library does not currently support configuring RAID from partial disks. You can only create RAID volumes from full disks not partial and the disks must all be of the same size.

▼ How To Create a RAID Volume

The following are command examples for the create subcommand:

1 To create a RAID 0 volume with capacity 2 Gb and stripe size 128K on controller 1, issue the following command:
   `raidconfig create raid --stripe-size 128 -d c1d0,c1d1`

2 To create a RAID 1 volume on controller 2 using 2 available disks, issue the following command:
   `raidconfig create raid -c c2 --raid-level 1 --number-disks 2`

See Also  “create raid Subcommand” on page 89

delete raid Subcommand

The delete raid subcommand can be used to delete RAID volumes. This subcommand must take at least one of the following required options:

<table>
<thead>
<tr>
<th>Short Option</th>
<th>Long Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-r</td>
<td>--raid</td>
<td>The RAID volume ID number — Deletes the volume listed by ID number.</td>
</tr>
<tr>
<td>N/A</td>
<td>-all</td>
<td>All Volumes — Deletes all RAID volumes on all controllers. RAIDconfig queries the storage management library to determine if the RAID disks have been mounted. If so, it generates a warning message to the user and queries the user to delete the RAID volume.</td>
</tr>
</tbody>
</table>

▼ How To Delete a RAID Volume

The following are command examples for the delete subcommand:

1 To delete RAID volume 1 created on controller 1, issue the following command:
   `raidconfig delete raid -r c1r1`
To delete all RAID volumes, issue the following command:
```
raidconfig delete raid --all
```

See Also
- “delete raid Subcommand” on page 90

### add spare Subcommand

The `add spare` subcommand can be used to add global or dedicated spare disks:

```
#raidconfig add spare
```

This section covers the following topics:
- “add spare Options” on page 91
- “How to Add a Spare” on page 91

### add spare Options

The `add spare` subcommand takes one of the following required options:

<table>
<thead>
<tr>
<th>Short Option</th>
<th>Long Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-d</td>
<td>--disks</td>
<td>List of disks — Adds disks where a list of disk ID numbers are separated by commas. If the -r option is not defined, the disks are added as global spares.</td>
</tr>
<tr>
<td>-c</td>
<td>--controller</td>
<td>Controllers — Identifies which controller the disks are with so that the disk can be identified and added. Whenever the specific disks are not specified, this option specifies the controller to use.</td>
</tr>
<tr>
<td>-n</td>
<td>--number-disks</td>
<td>Number of disks — The number of disks to be added as spares. The tool chooses from the available disks. If not enough disks are available to match the number, the command fails. If the -r command option is not defined, the disks are added as global spares.</td>
</tr>
<tr>
<td>-r</td>
<td>--raid</td>
<td>RAID volume ID number — If a RAID Volume ID is specified, the spares should be added as dedicated spares for this RAID Volume. Note that some controllers do not support dedicated spares and the command may fail because of this reason.</td>
</tr>
</tbody>
</table>

#### How to Add a Spare

The following are command examples for the `add spare` subcommand.

To create two global spares using the specified disks, issue the following command:
```
raidconfig add spare -d c1d0,c1d1
```
To create two global spares from available disks on controller 1, issue the following command:

```
raidconfig add spare -c c1 --number-disks 2
```

To create two dedicated spares on RAID volume 0 using the specified disks, issue the following command:

```
raidconfig add spare -d c1d0,c1d1 -r c1r0
```

See Also

- “add spare Subcommand” on page 91
- “add spare Options” on page 91

**remove spare Subcommand and Options**

The `remove spare` subcommand can be used to remove disks as spares or RAID volumes. This subcommand takes the following required options:

<table>
<thead>
<tr>
<th>Short Option</th>
<th>Long Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-d</td>
<td>--disks</td>
<td>List of disks — Adds disks where ID numbers are separated by commas. If the --r option is not defined, the disks are added as global spares.</td>
</tr>
<tr>
<td>-r</td>
<td>--raid</td>
<td>RAID volume ID — If a RAID volume ID is specified, the disks should be removed as dedicated spares from this RAID volume.</td>
</tr>
</tbody>
</table>

See also:

“How to Remove a Spare Disk or a RAID Volume” on page 92

**How to Remove a Spare Disk or a RAID Volume**

1. To remove two disks as global spares, issue the following command:

```
raidconfig remove spare -d c1d0,c1d1
```

2. To remove two disks as dedicated spares on RAID volume 0, issue the following command:

```
raidconfig remove spare -d c1d0,c1d1 -r c1r0
```

See Also

- “remove spare Subcommand and Options” on page 92
modify Subcommand

The modify subcommand is used to modify the attributes of a RAID volume. The modify subcommand must take the following required option:

<table>
<thead>
<tr>
<th>Short Option</th>
<th>Long Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-r</td>
<td>--raid</td>
<td>RAID volume — The RAID volume to modify.</td>
</tr>
</tbody>
</table>

This section covers the following topics:

- "modify Options" on page 93
- "How to Modify a RAID Volume Name" on page 94

modify Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--raid</td>
<td>RAID volume — Specifies the RAID volume to modify.</td>
</tr>
</tbody>
</table>
| --name          | Name — The user-defined name to identify the RAID volume. Can be set to an empty string ("").
| --read-cache    | Read cache — Disabled or enabled. Enables or disables RAID read caching. |
| --write-cache   | Write cache: enabled — Enables RAID write caching. disabled_protect — Enables caching only if the battery is available. |

See also:

- "How to Modify a RAID Volume Name" on page 94
How to Modify a RAID Volume Name

To modify the user-specified name of a RAID volume:

- To change the user-specified name of a RAID volume, issue the following command:

```
raidconfig modify raid -r c0r0 --name engineering
```

See Also
- “modify Options” on page 93

export Subcommand

The export subcommand can be used to write XML-formatted configuration or inventory data to a file. Configuration data contains only settable attributes that can be imported onto another system to configure that system's RAID volumes in the same manner. Inventory data is a snapshot of all the fields for the controllers, RAID volumes, and disks.

The export subcommand takes a required file name as a modifier. If a file by that name exists, the tool prompts to overwrite the file (unless the -y option is used). If the hyphen ("-" ) is given for the filename, then the XML-formatted configuration is written to the screen.

See also:
- “raidconfig export Options” on page 94
- “How to Export an Inventory to a File” on page 95

raidconfig export Options

The export subcommand can be used to write the inventory or configuration to an XML file.

This subcommand must take at least one of the following required subcommands:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>inventory</td>
<td>Inventory — Exports and writes all controller, RAID volume, and physical disk information to an XML file.</td>
</tr>
<tr>
<td>config</td>
<td>Configuration — Exports and writes only configuration fields to an XML file in a format that can be imported.</td>
</tr>
</tbody>
</table>

This subcommand must take one or more of the following required options:
### How to Export an Inventory to a File

To export the inventory or a configuration and write it to a file:

1. To export the inventory and write it to a file, issue the following command:
   
   ```bash
 raidconfig export inventory raid_inv.xml
   ```

2. To export a configuration and write it to a file, issue the following command:
   
   ```bash
 raidconfig export config raid_config.xml
   ```

### import Subcommand

The `import` subcommand is used to read an XML-formatted configuration file and to configure RAID volumes based on the file. If creating a specific RAID volume fails, the error is logged and the next RAID volume in the file is created. The `import` subcommand takes the `config` type and a required file name as the operand (modifier).

See also:

- “How to Configure RAID Volumes from a File” on page 95

### How to Configure RAID Volumes from a File

The following is an example command to read the RAID configuration from a file and configure the RAID volumes according to that file:

- To configure the RAID volumes according to a configuration file, issue the following command:
  
  ```bash
 raidconfig import config raid_config.xml
  ```

See Also

- “import Subcommand” on page 95
Using the `ilomconfig` Tool

`ilomconfig` allows you to configure ILOM from the host OS without having to first connect to the management network. It also serves as an XML builder as it helps you construct an XML file for a subsequent restore operation.

You can also use `ilomconfig` to configure a high-speed USB interconnect to ILOM.

This section covers the following topics:

- "`ilomconfig` Overview" on page 97
- "`ilomconfig` Commands" on page 99

**ilomconfig Overview**

This section covers the following topics:

- "Restoring and Modifying ILOM XML Configuration Files" on page 97
- "Local Interconnect Interface (LAN over USB)" on page 99

**Restoring and Modifying ILOM XML Configuration Files**

`ilomconfig` can restore configuration (with some limitations) from an XML file and allows parameters to be specified using the command line. `ilomconfig` can modify an XML file that has been generated from the ILOM backup feature; Starting with Hardware Management Pack 2.1, `ilomconfig` can generate a backup ILOM configuration file with the `export config` command. Use the `create` or `modify` subcommand to create or modify XML files.

You must be in root permission level to run `ilomconfig` commands on Unix-based platforms, or Administrator permission level for Windows platforms.

In summary, `ilomconfig` can perform the following functions:

- Backs up and restores from an ILOM backup XML file.
- Modifies the XML file using convenience sub-commands.
- Sets the network, including DHCP and sideband.
Lists and configures identification information, including hostname, contact, location, and description.

Lists and configures DNS.

Lists and configures clock including time zone.

Lists and configures user management.

Lists and configures SNMP community.

You can use an XML file to perform either one of the following functions:

- Create a new XML file for functions that have an `ilomconfig` command.
- Modify an existing XML file that was generated by ILOM; however, some parts of the XML file cannot be restored.

The `ilomconfig` subcommands can modify already existing settings in the XML file or create new settings.

The `list` commands, with the `--xmlfile` argument, can be used to view the contents of the XML file.

**Note** – If the `--xmlfile` option is specified, the commands operate on that XML file. If the XML file option is omitted, the changes are made directly to the ILOM.

All ILOM settings can be restored from an XML file starting with Management Pack 2.1 and ILOM 3.0.12. ILOM settings that can be restored include:

- SSH private keys
- User SSH keys
- SSL cert
- COD license
- LDAP and AD certs
- Platform binary data (currently limited to SPARC LDOMS config)
- User passwords
- SNMP users
- LDAP/LDAPSSL/RADIUS passwords
- Servicetag passphrase

See also:

- “XML File Configuration Commands” on page 100
- “ilomconfig Error Codes” on page 116
Local Interconnect Interface (LAN over USB)

Local Interconnect Interface is a new feature in Management Pack 2.1 that provides an interface to the host, which allows the host to communicate with ILOM over a high-speed channel.

Note – In the ILOM interface, this feature is referred to as “Local Host Interconnect”. In the Oracle Hardware Management Pack Installer interface, this feature is referred to as the “Local ILOM Interconnect”.

The assignment of the IP address for the internal USB Ethernet device (host IP address) can be automatically configured when you install the Oracle Hardware Management Pack 2.1 or later. Alternatively, you can configure the host IP address at any time using the ilomconfig tool from the Management Pack. The Local Interconnect can also be configured through ILOM, but this is considered advanced configuration. Oracle Hardware Management Pack is the recommended tool for configuring this feature.

See the following documentation for more information on enabling the Local Interconnect Interface:

- For further information on this feature and instructions on enabling it during the Oracle Hardware Management Pack installation, see “Enabling the Local Interconnect Interface” in Oracle Hardware Management Pack 2.1 Installation Guide.
- For instructions on enabling this feature through ILOM, refer to the ILOM 3.0 documentation collection at: http://download.oracle.com/docs/cd/E19860-01/index.html
- For instructions on manually configuring Local Interconnect Interface using ilomconfig commands, see “Local ILOM Interconnect Configuration Commands” on page 107.

ilomconfig Commands

This section covers the following topics:

- “ilomconfig Command Usage” on page 99
- “XML File Configuration Commands” on page 100
- “Local ILOM Interconnect Configuration Commands” on page 107

ilomconfig Command Usage

The ilomconfig commands must be run in administrator mode.

When a command fails, it returns one of several failure codes listed in “ilomconfig Error Codes” on page 116.
The following options are available to all CLI tools commands including `ilomconfig`:

<table>
<thead>
<tr>
<th>Short Option</th>
<th>Long Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-?</td>
<td><code>--help</code></td>
<td>Help — Displays help information.</td>
</tr>
<tr>
<td>-V</td>
<td><code>--version</code></td>
<td>Version — Displays the tool version.</td>
</tr>
<tr>
<td>-q</td>
<td><code>--quiet</code></td>
<td>Quiet — Suppresses informational message output and returns only error codes.</td>
</tr>
<tr>
<td>-y</td>
<td><code>--yes</code></td>
<td>Yes — Confirms operation. Does not prompt user for confirmation on the operation when running.</td>
</tr>
</tbody>
</table>

**XML File Configuration Commands**

This section covers the following topics:

- “How to Import an XML Configuration” on page 100
- “How to Export an XML Configuration” on page 101
- “How to Restore ILOM to Defaults by Using an XML Configuration” on page 101
- “How to List a System Summary” on page 101
- “How to Create a User” on page 102
- “How to Delete a User” on page 102
- “How to Modify a User Password or Role” on page 102
- “How to List Users” on page 102
- “How to List an SNMP Community” on page 103
- “How to Create an SNMP Community” on page 103
- “How to List Network Settings” on page 103
- “How to Modify Network Settings” on page 104
- “How to List SP Identification Information” on page 104
- “How to Modify Identification Information” on page 105
- “How to List DNS Information” on page 105
- “How to Modify DNS Information” on page 105
- “How to List Clock Information” on page 106
- “How to Modify Clock Information” on page 106

▼ **How to Import an XML Configuration**

To import an XML configuration file to configure ILOM, use the `ilomconfig import config` command. Use the `-y` option to bypass the yes/no confirmation prompt.

You can also use this command to restore the system configuration by importing a known reliable XML file.
Issue one of the following commands:

- If an encryption phrase was used to generate the XML file:
  ilomconfig import config [-xmlfile file_name] [-passphrase passphrase] [-y]

- If an encryption phrase was not used to generate the XML file:
  ilomconfig import config [-xmlfile file_name] [-y]

Where file_name is the name of the XML configuration file you want to use to configure ILOM and passphrase is the encryption phrase used to generate the XML file.

See Also

- “How to Import an XML Configuration” on page 100

How to Export an XML Configuration

To export an entire config to XML, use the ilomconfig export config command.

Issue the following command:

ilomconfig export config [-xmlfile file_name] [-passphrase passphrase]

Where file_name is the name of the XML configuration file you want to use to configure ILOM and passphrase is the encryption phrase used to generate the XML file.

See Also

- “How to Import an XML Configuration” on page 100

How to Restore ILOM to Defaults by Using an XML Configuration

To restore the ILOM configuration to the factory defaults, use the ilomconfig reset config command. Use the -y option to bypass the yes/no confirmation prompt. This results in the reboot of the ILOM.

Issue the following command:

ilomconfig reset config [-y]

See Also

- “How to Import an XML Configuration” on page 100

How to List a System Summary

To list system summary information including the product name, part number, serial number, ILOM host name, and ILOM version information, use the ilomconfig list system-summary command. This functionality is equivalent to the Summary tab in the web interface.

Issue the following command:

ilomconfig list system-summary
See Also  ▪ “How to Import an XML Configuration” on page 100

▼ How to Create a User
To create a user, use the ilomconfig create user command. The -y option prevents the yes/no confirmation prompt. When you specify an XML file name, the command modifies the XML file accordingly rather than modifying ILOM itself.

- Issue the following command:
  
ilomconfig create user [username] [--password password] [--role role] [--xmlfile filename.xml]

  where --role is the role of the ILOM user.

See Also  ▪ “How to Create a User” on page 102

▼ How to Delete a User
To delete a user, use the ilomconfig delete user command. The -y option prevents the yes/no confirmation prompt. When you specify an XML file name, the command modifies the XML file accordingly rather than modifying ILOM itself.

- Issue the following command:
  
ilomconfig delete user [username] [-y] [--xmlfile filename.xml]

See Also  ▪ “How to Create a User” on page 102

▼ How to Modify a User Password or Role
To modify a user password or role, use the ilomconfig modify user command. When you specify an XML file name, the command modifies the XML file accordingly rather than modifying ILOM itself.

- Issue the following command:
  
ilomconfig modify user [username] [--password password] [--role role] [--xmlfile filename.xml]

See Also  ▪ “How to List Users” on page 102

▼ How to List Users
To list one or all users, use the ilomconfig list user command. When you specify an XML file name, this command lists users defined in the XML file rather than querying ILOM itself.
Issue the following command:

```
ilomconfig list user [username] [--xmlfile filename.xml]
```

See Also  
“How to Modify a User Password or Role” on page 102

**How to List an SNMP Community**

To list one or all SNMP communities, use the `ilomconfig snmp-community` command. If an XML filename is specified, the command lists SNMP communities defined in the XML file rather than querying ILOM itself.

Issue the following command:

```
ilomconfig list snmp-community [communityname] [--xmlfile filename]
```

See Also  
“How to Create an SNMP Community” on page 103

**How to Create an SNMP Community**

To create an SNMP community, use the `ilomconfig create snmp-community` command. When you specify an XML file name, the command modifies the XML file accordingly rather than modifying ILOM itself.

Issue the following command:

```
ilomconfig create snmp-community [communityname] [--permission ro|rw] [--xmlfile filename.xml]
```

where `--permission` is either read-only or read-write (`ro`|`rw`).

See Also  
“How to List an SNMP Community” on page 103

**How to List Network Settings**

To list network settings, use the `ilomconfig list network` command. This command lists IP address, netmask, gateway, DHCP settings, sideband, and MAC. When you specify an XML file name, this command lists users defined in the XML file rather than querying ILOM itself.

Issue the following command:

```
ilomconfig list network [--xmlfile filename.xml]
```

See Also  
“How to Modify Network Settings” on page 104
**How to Modify Network Settings**

To modify settings, use the `ilomconfig modify network` command. This command lists IP address, netmask, gateway, DHCP settings, and sideband. When you specify an XML file name, the command modifies the XML file accordingly rather than modifying ILOM itself.

**Issue the following command:**

```
```

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--ipdiscovery</code></td>
<td>Network discovery mechanism. Can be either static or DHCP.</td>
<td><code>ro</code> or <code>rw</code></td>
</tr>
<tr>
<td><code>--ipaddress</code></td>
<td>ILOM IP address.</td>
<td><code>255.255.255.0</code></td>
</tr>
<tr>
<td><code>--netmask</code></td>
<td>ILOM netmask.</td>
<td><code>255.255.255.0</code></td>
</tr>
<tr>
<td><code>--gateway</code></td>
<td>ILOM gateway.</td>
<td><code>255.255.255.0</code></td>
</tr>
<tr>
<td><code>--state</code></td>
<td>ILOM management port path.</td>
<td><code>/SP/SP/NET0</code></td>
</tr>
<tr>
<td><code>--mgmtport</code></td>
<td>ILOM management port state.</td>
<td><code>enabled</code> or <code>disabled</code></td>
</tr>
<tr>
<td><code>--xmlfile</code></td>
<td>Modify specified XML file rather than ILOM.</td>
<td><code>file.xml</code></td>
</tr>
</tbody>
</table>

**See Also**  
- “How to List Network Settings” on page 103

**How to List SP Identification Information**

To list identification information for the SP, use the `ilomconfig list identification` command. This command lists SP host name, system contact, system location, and system description, which is equivalent to the Identification tab on web interface. When you specify an XML file name, the command lists identification information defined in the XML file rather than querying ILOM itself.

**Issue the following command:**

```
ilomconfig list identification [--xmlfile filename.xml]
```

**See Also**  
- “How to Modify Identification Information” on page 105
How to Modify Identification Information

To modify identification information, use the `ilomconfig modify identification` command. This command modifies the host name, system contact, system location, and system description. When you specify an XML file name, the command modifies the XML file accordingly rather than modifying ILOM itself.

**Issue the following command:**

```
ilomconfig modify identification [--hostname hostname] [--system-contact system_contact] [--system-location system_location] [--system-identifier system_identifier]
```

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>--hostname</td>
<td>ILOM host name.</td>
<td>ro or rw</td>
</tr>
<tr>
<td>--system-contact</td>
<td>ILOM system contact field.</td>
<td>user</td>
</tr>
<tr>
<td>--system-location</td>
<td>ILOM system location field.</td>
<td>west</td>
</tr>
<tr>
<td>--system-identifier</td>
<td>ILOM system identifier field.</td>
<td>x4800</td>
</tr>
<tr>
<td>--xmlfile</td>
<td>Modify specified XML file rather than ILOM.</td>
<td>file.xml</td>
</tr>
</tbody>
</table>

See Also

- “How to List DNS Information” on page 105

How to List DNS Information

To list DNS information, use the `ilomconfig list dns` command. If an XML file name is specified, the command lists DNS information defined in the XML file rather than querying ILOM itself.

**Issue the following command:**

```
ilomconfig list dns [--xmlfile filename.xml]
```

See Also

- “How to Modify DNS Information” on page 105

How to Modify DNS Information

To modify DNS information, use the `ilomconfig modify dns` command. If an XML file name is specified, the command modifies the XML file accordingly rather than modifying ILOM itself.
XML File Configuration Commands

● **Issue the following command:**

```
```

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>--nameservers</td>
<td>List of DNS nameserver IP addresses for ILOM separated by commas.</td>
<td>ro or rw</td>
</tr>
<tr>
<td>--auto-dns</td>
<td>ILOM Auto-DNS state.</td>
<td>enabled or disabled</td>
</tr>
<tr>
<td>--searchpath</td>
<td>List of search suffixes in preferred order and separated by commas.</td>
<td></td>
</tr>
<tr>
<td>--retries</td>
<td>Number of retry attempts for DNS.</td>
<td>Integer between 0 and 5.</td>
</tr>
<tr>
<td>--timeout</td>
<td>Number of seconds to wait for a DNS response. This can be used with up to six search suffixes, each separated by a comma.</td>
<td>2</td>
</tr>
<tr>
<td>--xmlfile</td>
<td>Modify specified XML file rather than ILOM.</td>
<td>file.xml</td>
</tr>
</tbody>
</table>

**See Also**

● “How to List DNS Information” on page 105

▼ **How to List Clock Information**

To list clock information, use the `ilomconfig list clock` command. When you specify an XML file name, the command lists clock information defined in the XML file rather than querying ILOM itself.

● **Issue the following command:**

```
ilomconfig list clock [--xmlfile filename.xml]
```

**See Also**

● “How to Modify Clock Information” on page 106

▼ **How to Modify Clock Information**

To modify clock information, use the `ilomconfig modify clock` command. When you specify an XML file name, the command modifies the XML file accordingly rather than modifying ILOM itself.

● **Issue the following command:**

```
```
Local ILOM Interconnect Configuration Commands

The following procedures are covered in this section:

- "How to Enable the Local Interconnect Interface" on page 107
- "How to Disable the Local Interconnect Interface" on page 108
- "How to Modify the Local Interconnect Interface" on page 108
- "How to List the Local Interconnect Interface Settings" on page 108

▼ How to Enable the Local Interconnect Interface

Local Interconnect Interface (known as Local ILOM Interconnect in the Installer interface) can be enabled when the Hardware Management Pack is installed. To enable the Local ILOM Interconnect manually, use the `ilomconfig enable interconnect` command. See "Enabling the Local Interconnect Interface" in Oracle Hardware Management Pack 2.1 Installation Guide for a further description of this feature.

It is recommended that you use this command without any arguments and let the command choose the settings. You can override the defaults with different IP and netmask addresses, but this is for advanced users only.

- Issue the following command:

```
 ilomconfig enable interconnect [--ipaddress ipaddress] [--netmask netmask]
 [--hostipaddress hostipaddress]
```

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>--ipaddress</td>
<td>ILOM IP address. This address must be in the format: 169.254.x.x</td>
<td>169.254.175.72</td>
</tr>
</tbody>
</table>

See Also
- "How to List Clock Information" on page 106

Local ILOM Interconnect Configuration Commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>--datetime</td>
<td>ILOM date in MMDDhhmmYYYY format or MMDDhhmmYYYY.ss format.</td>
<td>032514272010</td>
</tr>
<tr>
<td>--timezone</td>
<td>ILOM clock time zone, such as GMT.</td>
<td>enabled or disabled</td>
</tr>
<tr>
<td>--usentp</td>
<td>ILOM NTP client state.</td>
<td>enabled or disabled</td>
</tr>
<tr>
<td>--ntp-server1</td>
<td>ILOM NTP server 1 IP address.</td>
<td>aaa.bbb.ccc.ddd</td>
</tr>
<tr>
<td>--ntp-server2</td>
<td>ILOM NTP server 2 IP address.</td>
<td>aaa.bbb.ccc.ddd</td>
</tr>
<tr>
<td>--xmlfile</td>
<td>Modify specified XML file rather than ILOM.</td>
<td>file.xml</td>
</tr>
</tbody>
</table>
## How to Disable the Local Interconnect Interface

To disable the LAN interconnect between the host and ILOM, use the `ilomconfig disable interconnect` command.

- Issue the following command:
  ```bash
 ilomconfig disable interconnect
  ```

## How to Modify the Local Interconnect Interface

To modify the LAN interconnect between the host and ILOM, use the `ilomconfig modify interconnect` command. This works only when the interconnect is enabled. At least one option must be specified.

- Issue the following command:
  ```bash
 ilomconfig enable interconnect [-ipaddress ipaddress] [-netmask netmask] [-hostipaddress hostipaddress]
  ```

### Option Description Example

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-ipaddress</code></td>
<td>ILOM IP address. This address must be in the format: 169.254.x.x</td>
<td>169.254.175.72</td>
</tr>
<tr>
<td><code>-netmask</code></td>
<td>ILOM netmask.</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td><code>-hostipaddress</code></td>
<td>Host IP address. This address must be in the format: 169.254.x.x</td>
<td>169.254.175.73</td>
</tr>
</tbody>
</table>

## How to List the Local Interconnect Interface Settings

To list the interconnect state and IP settings on both the ILOM and host side of the interconnect, use `ilomconfig list interconnect`.

- Issue the following command:
  ```bash
 ilomconfig list interconnect
  ```
Using `ipmitool` for Windows

This section describes `ipmitool` and how to install `ipmitool` on systems running the Windows operating system.

Before beginning the procedures in this section, you must complete the following procedures:

- Install the Microsoft Windows Server 2003 or Windows Server 2008 operating system.
- Download `Windows.zip` and extracted `InstallPack_x_x_x.exe`
- Run `InstallPack_x_x_x.exe` to install supplemental software on the server

This section covers the following topics:

- "ipmitool Overview" on page 109
- "Sun IPMI System Management Driver 2.1" on page 110
- "Using ipmitool for Configuration Tasks" on page 110

**ipmitool Overview**

IPMI configuration CLI tool (`ipmitool`), as part of the Oracle Hardware Management Pack, is a utility that reads the sensor data repository (SDR) and displays the following information:

- Sensor values
- System event log (SEL)
- Field-replaceable unit (FRU) information
- Inventory information

`ipmitool` also gets and sets LAN configuration parameters, and performs chassis power control operations through the server's service processor.

`ipmitool` is supplemental software that you can install using the server's Tools and Drivers CD or using the `InstallPack_x_x_x.exe` executable file, where the `x_x_x` number identifies the version of the package (for example, `InstallPack_1_1_4.zip`).

For information about using `ipmitool` with the Management Agents, see "Generating SNMP Traps" in Oracle Server Management Agents 2.1 User's Guide.
Sun IPMI System Management Driver 2.1

**Note** – See the OS support matrix in “Installing Components Using the Oracle Hardware Management Pack Installer” on page 9 to determine if you need this driver.

The Sun IPMI System Management Driver 2.1 allows communication between the Microsoft Windows host operating system and the ILOM service processor over an internal Keyboard Controller Style (KCS) interface. This driver is required for Microsoft Windows Server 2003 SP2 and earlier.

For later OS versions (including Microsoft Windows Server 2003 R2) the Microsoft-provided IPMI driver included in their Hardware Management Module provides the same functionality.

This driver must be installed before installing ipmitool. Refer to “Installing the Sun IPMI System Management Driver 2.1” in Oracle Hardware Management Pack 2.1 Installation Guide for information on installing the driver.

### Using ipmitool for Configuration Tasks

The following procedures are included in this section:

- “How to Configure for PXE to Boot First” on page 110
- “How to Configure for Any CD/DVD to Boot First” on page 111
- ”How to Configure for Any Floppy or Removable Media to Boot First” on page 111
- “How to Configure for the Hard Drive to Boot First” on page 112

#### How to Configure for PXE to Boot First

On some platforms, the alternative to using biosconfig to control the boot order is IPMI commands, which can also make persistent changes to the boot order through the service processor. This interface can specify which is the highest-priority category of boot device. This operation is equivalent to entering BIOS setup and moving an entire category of devices to the top of the boot list (for example, moving all disks to boot before CD-ROMs).

The following ipmitool raw commands work like the ipmitool chassis bootdev commands. During BIOS POST, the BIOS asks the SP for boot flags. The raw commands have an extra bit set (the persistent bit), which causes the BIOS to reorder the boot list and save that order in CMOS. These ipmitool commands can also be issued through the host SP Keyboard Controller Style (KCS) interface if you have the IPMI drivers installed on a host Linux system.

**Use the following command:**

`ipmitool -H ... -U root -P ... raw 0x0 0x8 0x5 0xC0 0x4 0x0 0x0`
The BIOS boot order changes so that PXE attempts to boot first. Sun Blade X6275 has both IB and Gigabit Ethernet interfaces, and this moves both to the top of the boot list with the InfiniBand gPXE first followed by GE if IB fails over. The BIOS setup reflects the change in the boot order.

See Also
- “How to Configure for the Hard Drive to Boot First” on page 112
- “How to Configure for Any CD/DVD to Boot First” on page 111
- “How to Configure for Any Floppy or Removable Media to Boot First” on page 111

How to Configure for Any CD/DVD to Boot First
On some platforms, the alternative to using biosconfig to control the boot order is IPMI commands, which can also make persistent changes to the boot order through the service processor. This interface can only specify which is the highest priority category of boot devices. This operation is equivalent to entering BIOS setup and moving an entire category of devices to the top of the boot list (for example, moving all disks to boot before CD-ROMs).

The following ipmitool raw commands work just like the ipmitool chassis bootdev commands. During BIOS POST, the BIOS asks the SP for boot flags. The raw commands have just one extra bit set (the persistent bit), which causes the BIOS to reorder the boot list and save that order in CMOS. These ipmitool commands can also be issued through the host SP Keyboard Controller Style (KCS) interface if you have the IPMI drivers installed on the host Linux system.

- **Use the following command:**
  
  ipmitool -H ... -U root -P ... raw 0x0 0x8 0x5 0xC0 0x14 0x0 0x0

  The BIOS boot order changes so that any CD/DVD attempts to boot first. On Sun Blade X6275 this could be a USB external CD/DVD-ROM drive or a JavaConsole-redirected CD. The BIOS setup reflects the change in the boot order.

See Also
- “How to Configure for PXE to Boot First” on page 110
- “How to Configure for the Hard Drive to Boot First” on page 112
- “How to Configure for Any Floppy or Removable Media to Boot First” on page 111

How to Configure for Any Floppy or Removable Media to Boot First
On some platforms, the alternative to using biosconfig to control the boot order is IPMI commands, which can also make persistent changes to the boot order through the service processor. This interface can only specify which is the highest priority category of boot devices. This operation is equivalent to entering BIOS setup and moving an entire category of devices to the top of the boot list (for example, moving all disks to boot before CD-ROMs).

The following ipmitool raw commands work just like the ipmitool chassis bootdev commands. During BIOS POST, the BIOS asks the SP for boot flags. The raw commands have
just one extra bit set (the persistent bit), which causes the BIOS to reorder the boot list and save that order in CMOS. These ipmitool commands can also be issued through the host SP
Keyboard Controller Style (KCS) interface if you have the IPMI drivers installed on the host Linux system.

● **Use the following command:**

```bash
ipmitool -H ... -U root -P ... raw 0x0 0x8 0x5 0xC0 0x3C 0x0 0x0
```

The BIOS boot order changes so that any floppy or removable media (such as USB flash) attempts to boot first. On Sun Blade X6275 this could be a USB flash drive or a JavaConsole-redirected floppy. The BIOS setup reflects the change in the boot order.

**See Also**
- “How to Configure for PXE to Boot First” on page 110
- “How to Configure for the Hard Drive to Boot First” on page 112
- “How to Configure for Any CD/DVD to Boot First” on page 111

▼ **How to Configure for the Hard Drive to Boot First**

On some platforms, the alternative to using biosconfig to control the boot order is IPMI commands, which can also make persistent changes to the boot order through the service processor. This interface can only specify which is the highest priority category of boot devices. This operation is equivalent to entering BIOS setup and moving an entire category of devices to the top of the boot list (for example, moving all disks to boot before CD-ROMs).

The following ipmitool raw commands work just like the ipmitool chassis bootdev commands. During BIOS POST, the BIOS asks the SP for boot flags. The raw commands have just one extra bit set (the persistent bit), which causes the BIOS to reorder the boot list and save that order in CMOS. These ipmitool commands can also be issued through the host SP Keyboard Controller Style (KCS) interface if you have the IPMI drivers installed on the host Linux system.

● **Use the following command:**

```bash
ipmitool -H ... -U root -P ... raw 0x0 0x8 0x5 0xC0 0x8 0x0 0x0
```

The BIOS boot order changes so that the hard drive attempts to boot first. Sun Blade X6275 has a flash mini-DIMM SATA that boots first. The BIOS setup reflects the change in the boot order.

**See Also**
- “How to Configure for PXE to Boot First” on page 110
- “How to Configure for Any CD/DVD to Boot First” on page 111
- “How to Configure for Any Floppy or Removable Media to Boot First” on page 111
This section covers the following topics:
- “Common Error Codes” on page 113
- “biosconfig Error Codes” on page 114
- “raidconfig Error Codes” on page 115
- “ilomconfig Error Codes” on page 116
- “fwupdate Error Codes” on page 117

## Common Error Codes

The following is the list of common command error codes. Each error code has a string associated with it. The error code is printed to the log file and to the stdout file.

**TABLE 1** Common Error Codes

<table>
<thead>
<tr>
<th>Code Number</th>
<th>Error Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>1</td>
<td>Invalid option.</td>
</tr>
<tr>
<td>2</td>
<td>Invalid subcommand.</td>
</tr>
<tr>
<td>3</td>
<td>Subcommand not supported.</td>
</tr>
<tr>
<td>4</td>
<td>Invalid device format.</td>
</tr>
<tr>
<td>5</td>
<td>Cannot create XML file.</td>
</tr>
<tr>
<td>6</td>
<td>Cannot read XML file.</td>
</tr>
<tr>
<td>7</td>
<td>Cannot retrieve application data.</td>
</tr>
<tr>
<td>8</td>
<td>Internal error.</td>
</tr>
<tr>
<td>9</td>
<td>Insufficient memory.</td>
</tr>
<tr>
<td>10</td>
<td>Invalid boolean argument.</td>
</tr>
<tr>
<td>11</td>
<td>Option not supported.</td>
</tr>
</tbody>
</table>
TABLE 1 Common Error Codes (Continued)

<table>
<thead>
<tr>
<th>Code Number</th>
<th>Error Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Storage init failed.</td>
</tr>
<tr>
<td>13</td>
<td>Name too long.</td>
</tr>
<tr>
<td>14</td>
<td>Invalid string after subcommand.</td>
</tr>
<tr>
<td>15</td>
<td>XML filename required.</td>
</tr>
<tr>
<td>16</td>
<td>Invalid argument.</td>
</tr>
<tr>
<td>17</td>
<td>Failure writing XML file.</td>
</tr>
<tr>
<td>18</td>
<td>Device is busy, command cannot be completed.</td>
</tr>
</tbody>
</table>

See also:
- "biosconfig Error Codes" on page 114
- "raidconfig Error Codes" on page 115
- "ilomconfig Error Codes" on page 116
- "fwupdate Error Codes" on page 117

**biosconfig Error Codes**

This section lists possible biosconfig errors and action to take when they occur.

<table>
<thead>
<tr>
<th>Error Number(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Errors 36-49</td>
<td>Verify that either Microsoft IPMI driver (2003 R2) or Sun ISM driver (Pre–2003 R2) is installed correctly. For information about how to install one of these drivers onto your system, refer to your system's Windows OS documentation on updating your specific driver, or go to your systems software download site.</td>
</tr>
<tr>
<td>Errors 57-63</td>
<td>Verify that either Microsoft IPMI driver (2003 R2) or Sun ISM driver (Pre 2003 R2) is installed correctly. Verify that only one of these is installed on your system.</td>
</tr>
<tr>
<td>Error 64</td>
<td>Execute biosconfig as root on Linux/Solaris or as Administrator on Windows. Do not run more than one instance of biosconfig at the same time. There are no locks in place (for any OS) to allow for multiple simultaneous accesses.</td>
</tr>
</tbody>
</table>

See also:
- “Using biosconfig” on page 45
- “biosconfig Command Overview” on page 54
Errors might be returned if you are attempting to configure the RAID entry to an unsupported parameter. For example, if the RAID controller does not support the configured RAID level, the CLI displays a user-friendly error string identifying the misconfiguration and returns a matching error code.

The list of error codes and strings specific to this tool are shown in the following table.

<table>
<thead>
<tr>
<th>Code Number</th>
<th>Error Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>No controllers available.</td>
</tr>
<tr>
<td>101</td>
<td>Controller does not support RAID.</td>
</tr>
<tr>
<td>102</td>
<td>No physical disks associated with controller.</td>
</tr>
<tr>
<td>103</td>
<td>Invalid controller.</td>
</tr>
<tr>
<td>104</td>
<td>Invalid disk.</td>
</tr>
<tr>
<td>105</td>
<td>Invalid RAID volume.</td>
</tr>
<tr>
<td>106</td>
<td>RAID level not supported by controller.</td>
</tr>
<tr>
<td>107</td>
<td>Default RAID level not supported.</td>
</tr>
<tr>
<td>108</td>
<td>A defined disk is in use.</td>
</tr>
<tr>
<td>109</td>
<td>Number of disks exceeds allowed number for this level.</td>
</tr>
<tr>
<td>110</td>
<td>Failure retrieving internal data.</td>
</tr>
<tr>
<td>111</td>
<td>Number of disks requested exceeds the number of available disks.</td>
</tr>
<tr>
<td>112</td>
<td>Cannot define both actual and requested number of disks.</td>
</tr>
<tr>
<td>113</td>
<td>Option not supported by controller.</td>
</tr>
<tr>
<td>114</td>
<td>Invalid stripe size for controller.</td>
</tr>
<tr>
<td>115</td>
<td>Invalid leg size for controller.</td>
</tr>
<tr>
<td>116</td>
<td>Cannot retrieve RAID data.</td>
</tr>
<tr>
<td>118</td>
<td>RAID creation failure.</td>
</tr>
<tr>
<td>119</td>
<td>RAID deletion failure.</td>
</tr>
<tr>
<td>120</td>
<td>Disk defined multiple times.</td>
</tr>
<tr>
<td>121</td>
<td>Disks must be in the same controller.</td>
</tr>
</tbody>
</table>
### ilomconfig Error Codes

The following are ilomconfig error codes:

<table>
<thead>
<tr>
<th>Code Number</th>
<th>Error Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Cannot connect to BMC.</td>
</tr>
<tr>
<td>51</td>
<td>Missing -username option.</td>
</tr>
<tr>
<td>52</td>
<td>Missing -password option.</td>
</tr>
<tr>
<td>54</td>
<td>Missing -communityname option.</td>
</tr>
<tr>
<td>55</td>
<td>Specified community already exists.</td>
</tr>
<tr>
<td>57</td>
<td>Community name does not exist.</td>
</tr>
</tbody>
</table>

---

See also:
- "Using the raidconfig Tool" on page 83
**ilomconfig Error Codes** (Continued)

<table>
<thead>
<tr>
<th>Code Number</th>
<th>Error Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>Delete failed.</td>
</tr>
<tr>
<td>59</td>
<td>Failures occurred during restore.</td>
</tr>
<tr>
<td>60</td>
<td>Must specify option to modify.</td>
</tr>
<tr>
<td>61</td>
<td>No such property.</td>
</tr>
<tr>
<td>62</td>
<td>Invalid user name length.</td>
</tr>
<tr>
<td>63</td>
<td>Invalid role value.</td>
</tr>
<tr>
<td>64</td>
<td>Invalid permission value.</td>
</tr>
<tr>
<td>65</td>
<td>Invalid password length.</td>
</tr>
<tr>
<td>66</td>
<td>Invalid IP discovery value.</td>
</tr>
<tr>
<td>67</td>
<td>Invalid IP state value.</td>
</tr>
<tr>
<td>68</td>
<td>Invalid IP address.</td>
</tr>
<tr>
<td>69</td>
<td>Invalid auto DNS value.</td>
</tr>
<tr>
<td>70</td>
<td>Invalid Use NTP value.</td>
</tr>
<tr>
<td>71</td>
<td>Product serial number does not match current system.</td>
</tr>
<tr>
<td>72</td>
<td>User does not exist.</td>
</tr>
<tr>
<td>73</td>
<td>User already exists.</td>
</tr>
<tr>
<td>74</td>
<td>ILOM error occurred.</td>
</tr>
</tbody>
</table>

See also:
- “Common Error Codes” on page 113
- “Using the ilomconfig Tool” on page 97

**fwupdate Error Codes**

The following is the list of fwupdate command error codes. Each error code has a string associated with it. The error code is printed to the log file and to the stdout file.

**TABLE 4 fwupdate Error Codes**

<table>
<thead>
<tr>
<th>Code Number</th>
<th>Error Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>Invalid device type.</td>
</tr>
</tbody>
</table>
### fupdate Error Codes (Continued)

<table>
<thead>
<tr>
<th>Code Number</th>
<th>Error Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>Invalid image type.</td>
</tr>
<tr>
<td>202</td>
<td>Invalid device ID.</td>
</tr>
<tr>
<td>203</td>
<td>Reset failed.</td>
</tr>
<tr>
<td>204</td>
<td>Firmware check failed.</td>
</tr>
<tr>
<td>205</td>
<td>Firmware download failed.</td>
</tr>
<tr>
<td>206</td>
<td>Component mismatch.</td>
</tr>
<tr>
<td>207</td>
<td>No file name.</td>
</tr>
<tr>
<td>208</td>
<td>Invalid image file.</td>
</tr>
<tr>
<td>209</td>
<td>Cannot reset.</td>
</tr>
<tr>
<td>210</td>
<td>Reset mismatch.</td>
</tr>
<tr>
<td>211</td>
<td>No device specified.</td>
</tr>
<tr>
<td>212</td>
<td>Update canceled.</td>
</tr>
</tbody>
</table>

See also:
- “Common Error Codes” on page 113
- “Using the fupdate Tool” on page 73
Index

A
add spare subcommand, raidconfig, 91
adding a spare disk, 91–92
automatic mode
fwupdate
command-line interface, 74
update subcommand, 76, 77

B
biosconfig
commands, 54
dependencies, 44
switching boot devices, 59–60
biosconfig terminology, 44
BMC driver, 46
boot list, 57
boot list entries, moving, 61–62
boot order, 62
configuring, 57

C
CD/DVD boot order, 111
changing boot order, 62
chipset-related settings, 68–69
clock information
listing, 106
modifying, 106–107
CMOS, 44, 57
CMOS (Continued)
configuring, 65
golden image
applying, 64–65
configuring, 63–64
CMOS settings, 66–67
CMOS values, 67–68
command usage, ilomconfig, 99
configuring boot order
CD/DVD, 111
floppy, 111–112
hard drive, 112
persistent change, 58–59
PXE, 110–111
configuring RAID volumes, from file, 95
console mode installation, 29–34
console mode uninstall, 34–35
creating a RAID volume, 90
creating an ILOM user, using an XML file, 102
creating an SNMP community, using an XML file, 103

delete raid subcommand, raidconfig, 90
deleting a RAID volume, 90–91
deleting an ILOM user, using an XML file, 102
device naming, fwupdate, 81
devices, 57
DNS information
listing, 105
modifying, 105–106

119
Index

documentation links, 5
driver, Windows 2003 SP1, 110
dynamic setting, 67–68

E
error codes
biosconfig, 114
common, 113
fwupdate, 117
ilomconfig, 116
raidconfig, 115
export subcommand, raidconfig, 94
exporting an inventory, 95

F
feedback, 5
floppy boot order, 111–112
FRUs, 109
functions, 109
fwupdate
automatic mode
command-line interface, 74
manual mode
command-line interface, 75

G
golden CMOS image
applying, 64–65
configuring, 63–64
GUI mode installation, 12–22
GUI mode uninstall, 22–29

H
hard drive boot order, 112

I
ILOM defaults, restoring, 101
ILOM ID information, modifying, 105
ILOM network settings, modifying, 104
ILOM password, modifying, 102
ILOM user
creating, 102
deleting, 102
ILOM users, listing, 102–103
ilomconfig, command usage, 99
import subcommand, raidconfig, 95
InfiniBand, 58–59
Installer
getting software, 11
prerequisites, 9
installing
Hardware Management Pack
using console mode, 29–34
using GUI mode, 12–22
using silent mode, 35–36
system management driver, 48–51
inventory, 109
exporting to a file, 95
IPMI, 44
ipmitool, requirements, 109–112
ipmitool driver, installing for Windows 2003 SP1, 110

K
KCS interface, 110–111, 111, 112
known issues, 70
OpenSolaris, 46

L
LAN over USB, See local interconnect interface
list
clock information, 106
DNS information, 105
ILOM users, 102–103
network settings, 103
SNMP community, 103
SP information, 104

list (Continued)
  system summary, 101–102
list subcommand
  fwupdate, 79
  raidconfig, 85, 89
local ILOM interconnect, See local interconnect interface
local interconnect interface
description, 99
disabling, 108
enabling, 107–108
listing, 108
modifying, 108
management library, fwupdate, 73–82
manual mode
  fwupdate
    command-line interface, 75
modify subcommand, raidconfig, 93
modifying a RAID volume, 94
modifying with XML file
clock information, 106–107
description, 97
DNS information, 105–106
ILOM ID information, 105
ILOM network settings, 104
ILOM password, 102
network settings, listing, 103
next boot, 57–58
on-board network interface card (NIC), 68–69
OpenSolaris, 45
PCI Bus, 62
PCI devices, 58–59
POST, 57
power off, 69
Prerequisites for installation, 9
PXE, 56
PXE boot order, 110–111
quick boot, 69–70
RAID volume
  creating, 90
deleting, 90–91
modifying, 94
removing, 92
RAID volumes, configuring from a file, 95
raidconfig
  command overview, 84
  overview, 83
remove spare subcommand, raidconfig, 92
removing a RAID volume, 92
removing a spare disk, 92
reset subcommand, fwupdate, 80
restore ILOM defaults, using XML configuration, 101
restoring ILOM XML configuration files,
description, 97
SAS, fwupdate, 73–82
SEL log, 109
sensor values, 109
setup strings, 67–68
silent mode installation, 35–36
silent mode installation options, 35
silent mode uninstall, 37
Index

SNMP community
   listing, 103
   modifying, 103
Solaris SUNWssm, 45
SP information, listing, 104
spare disk
   adding, 91–92
   removing, 92
static settings, 66–67
subset of strings, 61
subset of the boot list, 61
switching boot devices, 59–60
system management driver
   installing, 48–51
   uninstalling, 52–53

U
uninstalling
   Hardware Management Pack
      using console mode, 34–35
      using GUI mode, 22–29
      using silent mode, 37
      system management driver, 52–53
update subcommand
   fwupdate
      automatic mode, 76, 77
USB/CD-ROM, 56
USB devices, 58–59
USB flash drive, 56

V
ver.xml, 55–56
view version, 55–56

W
Windows, ipmitool, 109–112

X
XML configuration
   exporting from ILOM, 101
   importing to ILOM, 100–101