This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Copyright © 2000, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Copyright © 2000, 2010, Oracle and/or its affiliates. All rights reserved.
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Overview of Oracle Solaris System Tuning</td>
<td>17</td>
</tr>
<tr>
<td>What's New in Oracle Solaris System Tuning?</td>
<td>17</td>
</tr>
<tr>
<td>Tuning a Solaris System</td>
<td>19</td>
</tr>
<tr>
<td>Tuning Format of Tunable Parameters Descriptions</td>
<td>20</td>
</tr>
<tr>
<td>Tuning the Solaris Kernel</td>
<td>21</td>
</tr>
<tr>
<td>/etc/system File</td>
<td>22</td>
</tr>
<tr>
<td>kmdb Command</td>
<td>23</td>
</tr>
<tr>
<td>mdb Command</td>
<td>23</td>
</tr>
<tr>
<td>Special Solaris tune and var Structures</td>
<td>24</td>
</tr>
<tr>
<td>Viewing Solaris System Configuration Information</td>
<td>24</td>
</tr>
<tr>
<td>sysdef Command</td>
<td>24</td>
</tr>
<tr>
<td>kstat Utility</td>
<td>25</td>
</tr>
</tbody>
</table>

<p>| 2 Oracle Solaris Kernel Tunable Parameters | 27 |
| Where to Find Tunable Parameter Information | 28 |
| General Kernel and Memory Parameters | 28 |
| physmem | 28 |
| zfs_arc_min | 29 |
| zfs_arc_max | 29 |
| default_stksize | 30 |
| lwp_default_stksize | 31 |
| logevent_max_q_sz | 32 |
| segkpsize | 33 |
| noexec_user_stack | 33 |
| fsflush and Related Parameters | 34 |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>fsflush</td>
<td>34</td>
</tr>
<tr>
<td>tune_t_fsflushr</td>
<td>35</td>
</tr>
<tr>
<td>autoup</td>
<td>36</td>
</tr>
<tr>
<td>dopageflush</td>
<td>37</td>
</tr>
<tr>
<td>doiflush</td>
<td>37</td>
</tr>
<tr>
<td>Process-Sizing Parameters</td>
<td></td>
</tr>
<tr>
<td>maxusers</td>
<td>38</td>
</tr>
<tr>
<td>reserved_procs</td>
<td>39</td>
</tr>
<tr>
<td>pidmax</td>
<td>40</td>
</tr>
<tr>
<td>max_nprocs</td>
<td>41</td>
</tr>
<tr>
<td>maxuprc</td>
<td>41</td>
</tr>
<tr>
<td>ngroups_max</td>
<td>42</td>
</tr>
<tr>
<td>Paging-Related Parameters</td>
<td>42</td>
</tr>
<tr>
<td>lotsfree</td>
<td>44</td>
</tr>
<tr>
<td>desfree</td>
<td>45</td>
</tr>
<tr>
<td>minfree</td>
<td>46</td>
</tr>
<tr>
<td>throttlefree</td>
<td>47</td>
</tr>
<tr>
<td>pageout_reserve</td>
<td>47</td>
</tr>
<tr>
<td>pages_pp_maximum</td>
<td>48</td>
</tr>
<tr>
<td>tune_t_minarmem</td>
<td>49</td>
</tr>
<tr>
<td>fastscan</td>
<td>50</td>
</tr>
<tr>
<td>slowscan</td>
<td>50</td>
</tr>
<tr>
<td>min_percent_cpu</td>
<td>51</td>
</tr>
<tr>
<td>handspreadpages</td>
<td>51</td>
</tr>
<tr>
<td>pages_before_pager</td>
<td>52</td>
</tr>
<tr>
<td>maxpgio</td>
<td>53</td>
</tr>
<tr>
<td>Swapping-Related Parameters</td>
<td>54</td>
</tr>
<tr>
<td>swapfs_reserve</td>
<td>54</td>
</tr>
<tr>
<td>swapfs_minfree</td>
<td>54</td>
</tr>
<tr>
<td>Kernel Memory Allocator</td>
<td>55</td>
</tr>
<tr>
<td>kmem_flags</td>
<td>55</td>
</tr>
<tr>
<td>kmem_stackinfo</td>
<td>57</td>
</tr>
<tr>
<td>General Driver Parameters</td>
<td>58</td>
</tr>
<tr>
<td>moddebug</td>
<td>58</td>
</tr>
<tr>
<td>ddi_msix_alloc_limit</td>
<td>59</td>
</tr>
<tr>
<td>Network Driver Parameters</td>
<td>60</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Scheduling</td>
<td>85</td>
</tr>
<tr>
<td>rechoose_interval</td>
<td>85</td>
</tr>
<tr>
<td>Timers</td>
<td>85</td>
</tr>
<tr>
<td>hires_tick</td>
<td>85</td>
</tr>
<tr>
<td>timer_max</td>
<td>86</td>
</tr>
<tr>
<td>sun4u or sun4v Specific Parameters</td>
<td>86</td>
</tr>
<tr>
<td>consistent_coloring</td>
<td>86</td>
</tr>
<tr>
<td>tsb_alloc_hiwater_factor</td>
<td>87</td>
</tr>
<tr>
<td>default_tsb_size</td>
<td>88</td>
</tr>
<tr>
<td>enable_tsb_rss_sizing</td>
<td>89</td>
</tr>
<tr>
<td>tsb_rss_factor</td>
<td>89</td>
</tr>
<tr>
<td>Locality Group Parameters</td>
<td>90</td>
</tr>
<tr>
<td>lpg Alloc prefer</td>
<td>90</td>
</tr>
<tr>
<td>lgrp_mem_default_policy</td>
<td>91</td>
</tr>
<tr>
<td>lgrp_mem_pset_aware</td>
<td>92</td>
</tr>
<tr>
<td>3 NFS Tunable Parameters</td>
<td>95</td>
</tr>
<tr>
<td>Where to Find Tunable Parameter Information</td>
<td>95</td>
</tr>
<tr>
<td>Tuning the NFS Environment</td>
<td>95</td>
</tr>
<tr>
<td>NFS Module Parameters</td>
<td>96</td>
</tr>
<tr>
<td>nfs:nfs3_pathconf_disable_cache</td>
<td>96</td>
</tr>
<tr>
<td>nfs:nfs4_pathconf_disable_cache</td>
<td>96</td>
</tr>
<tr>
<td>nfs:nfs_allow_preepoch_time</td>
<td>97</td>
</tr>
<tr>
<td>nfs:nfs_cots_timeo</td>
<td>98</td>
</tr>
<tr>
<td>nfs:nfs3_cots_timeo</td>
<td>98</td>
</tr>
<tr>
<td>nfs:nfs4_cots_timeo</td>
<td>99</td>
</tr>
<tr>
<td>nfs:nfs_do_symlink_cache</td>
<td>100</td>
</tr>
<tr>
<td>nfs:nfs3_do_symlink_cache</td>
<td>100</td>
</tr>
<tr>
<td>nfs:nfs4_do_symlink_cache</td>
<td>101</td>
</tr>
<tr>
<td>nfs:nfs_dynamic</td>
<td>102</td>
</tr>
<tr>
<td>nfs:nfs3_dynamic</td>
<td>102</td>
</tr>
<tr>
<td>nfs:nfs_lookup_neg_cache</td>
<td>103</td>
</tr>
<tr>
<td>nfs:nfs3_lookup_neg_cache</td>
<td>103</td>
</tr>
<tr>
<td>nfs:nfs4_lookup_neg_cache</td>
<td>104</td>
</tr>
<tr>
<td>nfs:nfs_max_threads</td>
<td>105</td>
</tr>
<tr>
<td>Parameter</td>
<td>Line</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------</td>
</tr>
<tr>
<td><code>nfs:nfs3_max_threads</code></td>
<td>106</td>
</tr>
<tr>
<td><code>nfs:nfs4_max_threads</code></td>
<td>107</td>
</tr>
<tr>
<td><code>nfs:nfs_nra</code></td>
<td>107</td>
</tr>
<tr>
<td><code>nfs:nfs3_nra</code></td>
<td>108</td>
</tr>
<tr>
<td><code>nfs:nfs4_nra</code></td>
<td>109</td>
</tr>
<tr>
<td><code>nfs:nfs_shrinkreaddir</code></td>
<td>109</td>
</tr>
<tr>
<td><code>nfs:nfs3_shrinkreaddir</code></td>
<td>110</td>
</tr>
<tr>
<td><code>nfs:nfs_write_error_interval</code></td>
<td>110</td>
</tr>
<tr>
<td><code>nfs:nfs_write_error_to_cons_only</code></td>
<td>112</td>
</tr>
<tr>
<td><code>nfs:nfs_disable_rddir_cache</code></td>
<td>112</td>
</tr>
<tr>
<td><code>nfs:nfs_bsize</code></td>
<td>113</td>
</tr>
<tr>
<td><code>nfs:nfs3_bsize</code></td>
<td>114</td>
</tr>
<tr>
<td><code>nfs:nfs4_bsize</code></td>
<td>114</td>
</tr>
<tr>
<td><code>nfs:nfs_async_clusters</code></td>
<td>115</td>
</tr>
<tr>
<td><code>nfs:nfs3_async_clusters</code></td>
<td>116</td>
</tr>
<tr>
<td><code>nfs:nfs4_async_clusters</code></td>
<td>117</td>
</tr>
<tr>
<td><code>nfs:nfs_async_timeout</code></td>
<td>118</td>
</tr>
<tr>
<td><code>nfs:nacache</code></td>
<td>119</td>
</tr>
<tr>
<td><code>nfs:nfs3_jukebox_delay</code></td>
<td>120</td>
</tr>
<tr>
<td><code>nfs:nfs3_max_transfer_size</code></td>
<td>120</td>
</tr>
<tr>
<td><code>nfs:nfs4_max_transfer_size</code></td>
<td>121</td>
</tr>
<tr>
<td><code>nfs:nfs3_max_transfer_size_clts</code></td>
<td>122</td>
</tr>
<tr>
<td><code>nfs:nfs3_max_transfer_size_cots</code></td>
<td>123</td>
</tr>
<tr>
<td><code>nfssrv:Module Parameters</code></td>
<td>123</td>
</tr>
<tr>
<td><code>nfssrv:nfs_portmon</code></td>
<td>123</td>
</tr>
<tr>
<td><code>nfssrv:rfs_write_async</code></td>
<td>124</td>
</tr>
<tr>
<td><code>nfssrv:nfsauth_ch_cache_max</code></td>
<td>125</td>
</tr>
<tr>
<td><code>nfssrv:exi_cache_time</code></td>
<td>126</td>
</tr>
<tr>
<td><code>rpcmod:Module Parameters</code></td>
<td>126</td>
</tr>
<tr>
<td><code>rpcmod:clnt_max_conns</code></td>
<td>126</td>
</tr>
<tr>
<td><code>rpcmod:clnt_idle_timeout</code></td>
<td>127</td>
</tr>
<tr>
<td><code>rpcmod:svc_idle_timeout</code></td>
<td>127</td>
</tr>
<tr>
<td><code>rpcmod:svc_default_stksize</code></td>
<td>128</td>
</tr>
<tr>
<td><code>rpcmod:svc_default_max_same_xprt</code></td>
<td>129</td>
</tr>
<tr>
<td><code>rpcmod:maxdupreqs</code></td>
<td>129</td>
</tr>
</tbody>
</table>
4 Internet Protocol Suite Tunable Parameters ... 133
Where to Find Tunable Parameter Information .. 133
Overview of Tuning IP Suite Parameters ... 133
IP Suite Parameter Validation ... 134
Internet Request for Comments (RFCs) ... 134
IP Tunable Parameters .. 134
 icmp_err_interval and icmp_err_burst .. 134
 respond_to_echo_broadcast .. 135
 addr_per_if .. 135
 ip_squeue_fanout ... 136
TCP Tunable Parameters ... 136
 deferred_ack_interval .. 136
 local_dack_interval .. 137
 deferred_acks_max .. 137
 local_dacks_max ... 138
 wscale_always .. 138
 tstamp_always .. 139
 send_maxbuf .. 139
 recv_maxbuf .. 139
 max_buf .. 140
 cwnd_max .. 140
 slow_start_initial .. 141
 slow_start_after_idle .. 141
 sack ... 141
 rev_src_routes .. 142
 time_wait_interval .. 142
 ecn ... 143
 conn_req_max_q .. 144
 conn_req_max_q0 ... 144
 conn_req_min .. 145
 rst_sent_rate_enabled .. 145
 rst_sent_rate .. 146
TCP/IP Parameters Set in the /etc/system File .. 146
TCP Parameters With Additional Cautions ... 147
UDP Tunable Parameters .. 151
 send_maxbuf ... 151
 recv_maxbuf .. 151
IPQoS Tunable Parameter ... 152
 _policy_mask ... 152
SCTP Tunable Parameters ... 153
 _max_init_retr .. 153
 _pa_max_retr .. 153
 _pp_max_retr .. 154
 _cwnd_max ... 154
 _ipv4_ttl .. 154
 _heartbeat_interval ... 155
 _new_secret_interval ... 155
 _initial_mtu ... 155
 _deferred_ack_interval ... 156
 _ignore_path_mtu ... 156
 _initial_ssthresh ... 156
 _max_buf .. 157
 _ipv6_hoplimit ... 157
 _rto_min .. 157
 _rto_max .. 158
 _rto_initial .. 158
 _cookie_life ... 158
 _max_in_streams ... 158
 _initial_out_streams ... 159
 _shutack_wait_bound .. 159
 _maxburst ... 159
 _addip_enabled ... 160
 _prscpt_enabled ... 160
Per-Route Metrics ... 160

5 Network Cache and Accelerator Tunable Parameters ... 163
Where to Find Tunable Parameters Information .. 163
Tuning NCA Parameters ... 163
6 System Facility Parameters ... 169

System Default Parameters .. 170

autofs .. 170
cron .. 170
devfsadm .. 170
dhcpagent .. 170
fs .. 170
ftp .. 171
inetinit .. 171
init .. 171
ipsec .. 171
kbd .. 171
keyserv ... 171
login ... 171
mpathd .. 172
nfs .. 172
nfslogd .. 172
nss .. 172
passwd .. 172
power .. 172
su .. 172
syslog .. 172
sys-suspend ... 173
tar .. 173
utmpd .. 173
yppasswdd ... 173
A Tunable Parameters Change History .. 175
 Kernel Parameters .. 175
 Process-Sizing Tunables ... 175
 General Driver Parameter ... 175
 Network Driver Parameters ... 176
 General Kernel and Memory Parameters ... 176
 fsflush and Related Parameters ... 176
 Parameters That Are Obsolete or Have Been Removed ... 176
 TCP/IP Module Parameters ... 176

B Revision History for This Manual .. 179
 Current Version: Oracle Solaris 11 Express Release .. 179
 New or Changed Parameters in the Oracle Solaris Release ... 179

Index .. 181
Preface

The Oracle Solaris Tunable Parameters Reference Manual provides reference information about Oracle Solaris OS kernel and network tunable parameters. This manual does not provide tunable parameter information about desktop systems or Java environments.

This manual contains information for both SPARC based and x86 based systems.

Note – This Oracle Solaris release supports systems that use the SPARC and x86 families of processor architectures. The supported systems appear in the Oracle Solaris Hardware Compatibility List at http://www.sun.com/bigadmin/hcl. This document cites any implementation differences between the platform types.

In this document these x86 terms mean the following:

- “x86” refers to the larger family of 64-bit and 32-bit x86 compatible products.
- “x64” relates specifically to 64-bit x86 compatible CPUs.
- “32-bit x86” points out specific 32-bit information about x86 based systems.

For supported systems, see Oracle Solaris Hardware Compatibility List at http://www.sun.com/bigadmin/hcl.

Who Should Use This Book

This book is intended for experienced Solaris system administrators who might need to change kernel tunable parameters in certain situations. For guidelines on changing Solaris tunable parameters, refer to “Tuning a Solaris System” on page 19.

How This Book Is Organized

The following table describes the chapters and appendixes in this book.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1, “Overview of Oracle Solaris System Tuning”</td>
<td>An overview of tuning a Solaris system. Also provides a description of the format used in the book to describe the kernel tunables.</td>
</tr>
</tbody>
</table>
Other Resources for Solaris Tuning Information

This table describes other resources for Solaris tuning information.

<table>
<thead>
<tr>
<th>Tuning Resource</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online performance tuning information</td>
<td>http://www.solarisinternals.com/si/index.php</td>
</tr>
<tr>
<td>In-depth technical white papers</td>
<td>http://developers.sun.com/solaris/</td>
</tr>
</tbody>
</table>

Documentation, Support, and Training

See the following web sites for additional resources:

- [Documentation](http://www.oracle.com/technetwork/indexes/documentation/index.html)
- [Support](http://www.oracle.com/us/support/systems/index.html)
- [Training](http://education.oracle.com) – Click the Sun link in the left navigation bar.
Oracle Software Resources

Oracle Technology Network (http://www.oracle.com/technetwork/index.html) offers a range of resources related to Oracle software:

- Discuss technical problems and solutions on the Discussion Forums (http://forums.oracle.com).

Typographic Conventions

The following table describes the typographic conventions that are used in this book.

<table>
<thead>
<tr>
<th>Typeface</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories, and onscreen computer output</td>
<td>Edit your .login file. Use ls -a to list all files. machine_name% you have mail.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>What you type, contrasted with onscreen computer output</td>
<td>machine_name% su Password:</td>
</tr>
<tr>
<td>aabbcc123</td>
<td>Placeholder: replace with a real name or value</td>
<td>The command to remove a file is rm filename.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Book titles, new terms, and terms to be emphasized</td>
<td>Read Chapter 6 in the User’s Guide. A cache is a copy that is stored locally. Do not save the file.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Some emphasized items appear bold online.</td>
</tr>
</tbody>
</table>
Shell Prompts in Command Examples

The following table shows the default UNIX system prompt and superuser prompt for shells that are included in the Oracle Solaris OS. Note that the default system prompt that is displayed in command examples varies, depending on the Oracle Solaris release.

<table>
<thead>
<tr>
<th>Shell</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bash shell, Korn shell, and Bourne shell</td>
<td>$</td>
</tr>
<tr>
<td>Bash shell, Korn shell, and Bourne shell for superuser</td>
<td>#</td>
</tr>
<tr>
<td>C shell</td>
<td>machine_name%</td>
</tr>
<tr>
<td>C shell for superuser</td>
<td>machine_name#</td>
</tr>
</tbody>
</table>
Overview of Oracle Solaris System Tuning

This section provides overview information about the format of the tuning information in this manual. This section also describes the different ways to tune a Solaris system.

■ “What’s New in Oracle Solaris System Tuning?” on page 17
■ “Tuning a Solaris System” on page 19
■ “Tuning Format of Tunable Parameters Descriptions” on page 20
■ “Tuning the Solaris Kernel” on page 21
■ “Special Solaris tune and var Structures” on page 24
■ “Viewing Solaris System Configuration Information” on page 24
■ “kstat Utility” on page 25

What’s New in Oracle Solaris System Tuning?

This section describes new or changed parameters in the Oracle Solaris 11 Express release.

■ The ipadm command replaces the ndd command for setting TCP/IP properties. TCP, IP, UDP, and SCTP properties are set as follows:
 ■ Display or set an IP property:

 # ipadm set-prop -p property-name ipv4
 # ipadm set-prop -p property-name ipv6
 # ipadm show-prop -p property-name ipv4
 # ipadm show-prop -p property-name ipv6
 ■ Display or set a TCP property:

 # ipadm set-prop -p property-name tcp
 # ipadm show-prop -p property-name tcp
 ■ Display or set a UDP property:

 # ipadm set-prop -p property-name udp
 # ipadm show-prop -p property-name udp
 ■ Display or set a SCTP property:
ipadm set-prop -p property-name sctp
ipadm show-prop -p property-name sctp

For more information, see “Overview of Tuning IP Suite Parameters” on page 133.

- This release includes the ngroups_max parameter description. For more information, see “ngroups_max” on page 42.

- This release includes the zfs_arc_min and zfs_arc_max parameter descriptions. For more information, see “zfs_arc_min” on page 29 and “zfs_arc_max” on page 29.

- This release includes several igb and ixgbe network driver parameters. For more information, see “igb Parameters” on page 60 and “ixgbe Parameters” on page 61.

- This release includes the ddi_msix Alloc Limit parameter that can be used to increase the number of MSI-X interrupts that a device instance can allocate. For more information, see “ddi_msix Alloc Limit” on page 59.

- A previous version of this manual incorrectly identified the range of the tcp_local_dack_interval parameter as 1 millisecond to 1 minute. The correct range is 10 milliseconds to 1 minute. For more information, see “tcp_local_dack_interval” on page 137.

- This release includes the kmem_stackinfo parameter, which can be enabled to monitor kernel thread stack usage. For more information, see “kmem_stackinfo” on page 57.

- For information about tuning ZFS file systems, see the following site:

- Memory locality group parameters are provided in this release. For more information about these parameters, see “Locality Group Parameters” on page 90.

- Parameter information was updated to include sun4v systems. For more information, see the following references:

 - ”maxphys” on page 65
 - “tmpfs:tmpfs_maxkmem” on page 78
 - “sun4u or sun4v Specific Parameters” on page 86

- The IP instances project enables you to configure a zone as an exclusive-IP zone and assign exclusive access of some LANs or VLANs to that zone.

 The previous behavior of shared-IP zones remains the default behavior. The exclusive-IP zone means that all aspects of the TCP/IP state and policy are per exclusive-IP zone, including TCP/IP tunable parameters.

 The introduction of the IP instances feature means that the following TCP parameters can only be set in the global zone because they require the PRIV_SYS_NET_CONFIG privilege:

 - “ip_squeue_fanout” on page 136
 - “ip_squeue_worker_wait” on page 147

 The other TCP, IP, and SCTP parameters and route metrics only require the PRIV_SYS_IP_CONFIG privilege. Each exclusive-IP zone controls its own set of these
parameters. For shared-IP zones, TCP, IP, SCTP, and route parameters are controlled by the global zone since the settings of these parameters are shared between the global zone and all shared IP zones.

Tuning a Solaris System

The Solaris OS is a multi-threaded, scalable UNIX operating system that runs on SPARC and x86 processors. It is self-adjusting to system load and demands minimal tuning. In some cases, however, tuning is necessary. This book provides details about the officially supported kernel tuning options available for the Solaris OS.

The Solaris kernel is composed of a core portion, which is always loaded, and a number of loadable modules that are loaded as references are made to them. Many variables referred to in the kernel portion of this guide are in the core portion. However, a few variables are located in loadable modules.

A key consideration in system tuning is that setting system parameters (or system variables) is often the least effective action that can be done to improve performance. Changing the behavior of the application is generally the most effective tuning aid available. Adding more physical memory and balancing disk I/O patterns are also useful. In a few rare cases, changing one of the variables described in this guide will have a substantial effect on system performance.

Remember that one system's /etc/system settings might not be applicable, either wholly or in part, to another system's environment. Carefully consider the values in the file with respect to the environment in which they will be applied. Make sure that you understand the behavior of a system before attempting to apply changes to the system variables that are described here.

We recommend that you start with an empty /etc/system file when moving to a new Solaris release. As a first step, add only those tunables that are required by in-house or third-party applications. After baseline testing has been established, evaluate system performance to determine if additional tunable settings are required.

Caution – The tunable parameters described in this book can and do change from Solaris release to Solaris release. Publication of these tunable parameters does not preclude changes to the tunable parameters and their descriptions without notice.
Tuning Format of Tunable Parameters Descriptions

The format for the description of each tunable parameter is as follows:

- Parameter Name
- Description
- Data Type
- Default
- Range
- Units
- Dynamic?
- Validation
- Implicit
- When to Change
- Zone Configuration
- Commitment Level
- Change History

Parameter Name

Is the exact name that is typed in the `/etc/system` file, or found in the `/etc/default/facility` file.

Most parameter names are of the form `parameter` where the parameter name does not contain a colon (:`). These names refer to variables in the core portion of the kernel. If the name does contain a colon, the characters to the left of the colon reference the name of a loadable module. The name of the parameter within the module consists of the characters to the right of the colon. For example:

```plaintext
module_name:variable
```

Description

Briefly describes what the parameter does or controls.

Data Type

Indicates the signed or unsigned short integer or long integer with the following distinctions:

- On a system that runs a 32-bit kernel, a long integer is the same size as an integer.
- On a system that runs a 64-bit kernel, a long integer is twice the width in bits as an integer. For example, an unsigned integer = 32 bits, an unsigned long integer = 64 bits.

Units

(Optional) Describes the unit type.

Default

What the system uses as the default value.

Range

Specifies the possible range allowed by system validation or the bounds of the data type.
Tuning the Solaris Kernel

The following table describes the different ways tunable parameters can be applied.

<table>
<thead>
<tr>
<th>Apply Tunable Parameters in These Ways</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modify the <code>/etc/system</code> file</td>
<td>“/etc/system File” on page 22</td>
</tr>
<tr>
<td>Use the kernel debugger (kmdb)</td>
<td>“kmdb Command” on page 23</td>
</tr>
<tr>
<td>Use the modular debugger (mdb)</td>
<td>“mdb Command” on page 23</td>
</tr>
<tr>
<td>Use the <code>ipadm</code> command to set TCP/IP parameters</td>
<td>Chapter 4, “Internet Protocol Suite Tunable Parameters”</td>
</tr>
<tr>
<td>Modify the <code>/etc/default</code> files</td>
<td>“Tuning NCA Parameters” on page 163</td>
</tr>
</tbody>
</table>

MAXINT – A shorthand description for the maximum value of a signed integer (2,147,483,647)

MAXUINT – A shorthand description for the maximum value of an unsigned integer (4,294,967,295)

Dynamic? Yes, if the parameter can be changed on a running system with the mdb or kmdb debugger. No, if the parameter is a boot time initialization only.

Validation Checks that the system applies to the value of the variable either as specified in the `/etc/system` file or the default value, as well as when the validation is applied.

Implicit (Optional) Provides unstated constraints that might exist on the parameter, especially in relation to other parameters.

When to Change Explains why someone might want to change this value. Includes error messages or return codes.

Zone Configuration Identifies whether the parameter can be set in a exclusive-IP zone or must be set in the global zone. None of the parameters can be set in shared-IP zones.

Commitment Level Identifies the stability of the interface. Many of the parameters in this manual are still evolving and are classified as unstable. For more information, see attributes(5).

Change History (Optional) Contains a link to the Change History appendix, if applicable.
The `/etc/system` file provides a static mechanism for adjusting the values of kernel parameters. Values specified in this file are read at boot time and are applied. Any changes that are made to the file are not applied to the operating system until the system is rebooted.

Prior to the Solaris 8 release, `/etc/system` entries that set the values of parameters were applied in two phases:

- The first phase obtains various bootstrap parameters (for example, `maxusers`) to initialize key system parameters.
- The second phase calculates the base configuration by using the bootstrap parameters, and all values specified in the `/etc/system` file are applied. In the case of the bootstrap parameters, reapplied values replace the values that are calculated or reset in the initialization phase.

The second phase sometimes caused confusion to users and administrators by setting parameters to values that seem to be impermissible or by assigning values to parameters (for example, `max_nprocs`) that have a value overridden during the initial configuration.

Starting in the Solaris 8 release, one pass is made to set all the values before the configuration parameters are calculated.

Example—Setting a Parameter in `/etc/system`

The following `/etc/system` entry sets the ZFS ARC maximum (`zfs_arc_max`) to 30 GB.

```
set zfs:zfs_arc_max = 0x780000000
```

Recovering From an Incorrect Value

Make a copy of the `/etc/system` file before modifying it so that you can easily recover from incorrect value. For example:

```
# cp /etc/system /etc/system.good
```

If a value specified in the `/etc/system` file causes the system to become unbootable, you can recover with the following command:

```
ok boot -a
```

This command causes the system to ask for the name of various files used in the boot process. Press the Return key to accept the default values until the name of the `/etc/system` file is requested. When the `Name of system file [/etc/system]` prompt is displayed, type the name of the good `/etc/system` file or `/dev/null`:

```
Name of system file [/etc/system]: /etc/system.good
```
If `/dev/null` is specified, this path causes the system to attempt to read from `/dev/null` for its configuration information. Because this file is empty, the system uses the default values. After the system is booted, the `/etc/system` file can be corrected.

For more information on system recovery, see *System Administration Guide: Basic Administration*.

kmdb Command

`kmdb` is an interactive kernel debugger with the same general syntax as `mdb`. An advantage of interactive kernel debugger is that you can set breakpoints. When a breakpoint is reached, you can examine data or step through the execution of kernel code.

`kmdb` can be loaded and unloaded on demand. You do not have to reboot the system to perform interactive kernel debugging, as was the case with `kadb`.

For more information, see *kmdb(1)*.

mdb Command

Starting with the Solaris 8 release is the modular debugger, `mdb`, is unique among Solaris debuggers because it is easily extensible. A programming API is available that allows compilation of modules to perform desired tasks within the context of the debugger.

`mdb` also includes a number of desirable usability features, including command-line editing, command history, built-in output pager, syntax checking, and command pipelining. `mdb` is the recommended post-mortem debugger for the kernel.

For more information, see *mdb(1)*.

Example—Using mdb to Change a Value

To change the value of the integer parameter `maxusers` from 495 to 512, do the following:

```
# mdb -kw
Loading modules: [ unix krtld genunix ip logindmux ptm nfs ipc lofs ]
> maxusers/D
maxusers: 495
> maxusers/W 200
maxusers: 0x1ef = 0x200
> $q
```

Replace `maxusers` with the actual address of the item to be changed, as well as the value the parameter is to be set to.

For more information on using the modular debugger, see the *Solaris Modular Debugger Guide*.
When using either kmdb or mdb debugger, the module name prefix is not required. After a module is loaded, its symbols form a common name space with the core kernel symbols and any other previously loaded module symbols.

For example, `ufs:ufs_Writes` would be accessed as `ufs_Writes` in each debugger (assuming the UFS module is loaded). The `ufs:` prefix is required when set in the `/etc/system` file.

Special Solaris tune and var Structures

Solaris tunable parameters come in a variety of forms. The `tune` structure defined in the `/usr/include/sys/tuneable.h` file is the runtime representation of `tune_t_fsflushr`, `tune_t_minarmem`, and `tune_t_flkrec`. After the kernel is initialized, all references to these variables are found in the appropriate field of the `tune` structure.

Various documents (for example, previous versions of *Solaris System Administration Guide, Volume 2*) have stated that the proper way to set parameters in the `tune` structure is to use the syntax, `tune:field-name` where `field-name` is replaced by the actual parameter name listed above. This process silently fails. The proper way to set parameters for this structure at boot time is to initialize the special parameter that corresponds to the desired field name. The system initialization process then loads these values into the `tune` structure.

A second structure into which various tunable parameters are placed is the `var` structure named `v`. You can find the definition of a `var` structure in the `/usr/include/sys/var.h` file. The runtime representation of variables such as `autoup` and `bufhwm` is stored here.

Do not change either the `tune` or `var` structure on a running system. Changing any field in these structures on a running system might cause the system to panic.

Viewing Solaris System Configuration Information

Several tools are available to examine system configuration information. Some tools require superuser privilege. Other tools can be run by a non-privileged user. Every structure and data item can be examined with the kernel debugger by using `mdb` on a running system or by booting under `kmdb`.

For more information, see `mdb(1)` or `kadb(1M)`.

sysdef Command

The `sysdef` command provides the values of System V IPC settings, STREAMS tunables, process resource limits, and portions of the `tune` and `v` structures. For example, the `sysdef` “Tunable Parameters” section from on a 512- MB Sun Ultra 80 system is as follows:
334561280 maximum memory allowed in buffer cache (bufhwm)
30000 maximum number of processes (v.v proc)
99 maximum global priority in sys class (MAXCLSPRI)
29995 maximum processes per user id (v.v maxup)
30 auto update time limit in seconds (NAUTOUP)
25 page stealing low water mark (GPGSLO)
1 fsflush run rate (FSFLUSHR)
25 minimum resident memory for avoiding deadlock (MINARMEM)
25 minimum swapable memory for avoiding deadlock (MINASMEM)

For more information, see sysdef(1M).

kstat Utility

kstats are data structures maintained by various kernel subsystems and drivers. They provide a mechanism for exporting data from the kernel to user programs without requiring that the program read kernel memory or have superuser privilege. For more information, see kstat(1M) or kstat(3KSTAT).

Note – kstat data structures with system_pages name in the unix module do not report statistics for cachefree. cachefree is not supported, starting in the Solaris 9 release.
This chapter describes most of the Oracle Solaris kernel tunable parameters.

- “General Kernel and Memory Parameters” on page 28
- “fsflush and Related Parameters” on page 34
- “Process-Sizing Parameters” on page 38
- “Paging-Related Parameters” on page 42
- “Swapping-Related Parameters” on page 54
- “Kernel Memory Allocator” on page 55
- “General Driver Parameters” on page 58
- “Network Driver Parameters” on page 60
- “General I/O Parameters” on page 65
- “General File System Parameters” on page 67
- “UFS Parameters” on page 71
- “TMPFS Parameters” on page 78
- “Pseudo Terminals” on page 79
- “STREAMS Parameters” on page 82
- “System V Message Queues” on page 83
- “System V Semaphores” on page 83
- “System V Shared Memory” on page 84
- “Scheduling” on page 85
- “Timers” on page 85
- “sun4u or sun4v Specific Parameters” on page 86
- “Locality Group Parameters” on page 90
General Kernel and Memory Parameters

This section describes general kernel parameters that are related to physical memory and stack configuration.

physmem

<table>
<thead>
<tr>
<th>Description</th>
<th>Modifies the system’s configuration of the number of physical pages of memory after the Solaris OS and firmware are accounted for.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Unsigned long</td>
</tr>
<tr>
<td>Default</td>
<td>Number of usable pages of physical memory available on the system, not counting the memory where the core kernel and data are stored</td>
</tr>
<tr>
<td>Range</td>
<td>1 to amount of physical memory on system</td>
</tr>
<tr>
<td>Units</td>
<td>Pages</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>Whenever you want to test the effect of running the system with less physical memory. Because this parameter does not take into account the memory used by the core kernel and data, as well as various other data structures allocated early in the startup process, the value of physmem should be less than the actual number of pages that represent the smaller amount of memory.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>
zfs_arc_min

Description: Determines the minimum size of the ZFS Adjustable Replacement Cache (ARC). See also “zfs_arc_max” on page 29.

Data Type: Unsigned Integer (64-bit)

Default: 1/32nd of physical memory or 64 MB, whichever value is larger.

Range: 64 MB to zfs_arc_max

Units: Bytes

Dynamic?: No

Validation: Yes, the range is validated.

When to Change: When a system’s workload demand for memory fluctuates, the ZFS ARC caches data at a period of weak demand and then shrinks at a period of strong demand. However, ZFS does not shrink below the value of zfs_arc_min. The default value of zfs_arc_min is 12% of memory on large memory systems and so, can be a significant amount of memory. If a workload’s highest memory usage requires more than 88% of system memory, consider tuning this parameter.

Commitment Level: Unstable

Change History: For information, see “zfs_arc_min (Oracle Solaris 11 Express)” on page 176.

zfs_arc_max

Description: Determines the maximum size of the ZFS Adjustable Replacement Cache (ARC). See also “zfs_arc_min” on page 29.

Data Type: Unsigned Integer (64-bit)

Default: Three-fourths of memory on systems with less than 4 GB of memory minus 1 GB on systems with greater than 4 GB of memory.

Range: 64 MB to physmem

Units: Bytes

Dynamic?: No

Validation: Yes, the range is validated.

When to Change: If a future memory requirement is significantly large and well defined, you might consider reducing the value of this parameter to cap the
ARC so that it does not compete with the memory requirement. For example, if you know that a future workload requires 20% of memory, it makes sense to cap the ARC such that it does not consume more than the remaining 80% of memory.

Commitment Level	Unstable
Change History | For information, see “zfs_arc_max (Oracle Solaris 11 Express)” on page 176.

default_stksize

Description: Specifies the default stack size of all threads. No thread can be created with a stack size smaller than default_stksize. If default_stksize is set, it overrides lwp_default_stksize. See also “lwp_default_stksize” on page 31.

Data Type: Integer

Default:
- 3 x PAGESIZE on SPARC systems
- 2 x PAGESIZE on x86 systems
- 5 x PAGESIZE on AMD64 systems

Range: Minimum is the default values:
- 3 x PAGESIZE on SPARC systems
- 2 x PAGESIZE on x86 systems
- 5 x PAGESIZE on AMD64 systems

Units: Bytes in multiples of the value returned by the getpagesize parameter. For more information, see getpagesize(3C).

Dynamic?: Yes. Affects threads created after the variable is changed.

Validation: Must be greater than or equal to 8192 and less than or equal to 262,144 (256 x 1024). Also must be a multiple of the system page size. If these conditions are not met, the following message is displayed:

Illegal stack size, Using N

The value of N is the default value of default_stksize.

When to Change: When the system panics because it has run out of stack space. The best solution for this problem is to determine why the system is running out of space and then make a correction.
Increasing the default stack size means that almost every kernel thread will have a larger stack, resulting in increased kernel memory consumption for no good reason. Generally, that space will be unused. The increased consumption means other resources that are competing for the same pool of memory will have the amount of space available to them reduced, possibly decreasing the system's ability to perform work. Among the side effects is a reduction in the number of threads that the kernel can create. This solution should be treated as no more than an interim workaround until the root cause is remedied.

Commitment Level Unstable

lwp_default_stksize

Description Specifies the default value of the stack size to be used when a kernel thread is created, and when the calling routine does not provide an explicit size to be used.

Data Type Integer

Default

- 8192 for x86 platforms
- 24,576 for SPARC platforms
- 20,480 for AMD64 platforms

Range Minimum is the default values:

- 3 x PAGESIZE on SPARC systems
- 2 x PAGESIZE on x86 systems
- 5 x PAGESIZE on AMD64 systems

Maximum is 32 times the default value.

Units Bytes in multiples of the value returned by the getpagesize parameter. For more information, see getpagesize(3C).

Dynamic? Yes. Affects threads created after the variable is changed.

Validation Must be greater than or equal to 8192 and less than or equal to 262,144 (256 x 1024). Also must be a multiple of the system page size. If these conditions are not met, the following message is displayed:

Illegal stack size, Using N

The value of N is the default value of lwp_default_stksize.
When to Change When the system panics because it has run out of stack space. The best solution for this problem is to determine why the system is running out of space and then make a correction.

Increasing the default stack size means that almost every kernel thread will have a larger stack, resulting in increased kernel memory consumption for no good reason. Generally, that space will be unused. The increased consumption means other resources that are competing for the same pool of memory will have the amount of space available to them reduced, possibly decreasing the system’s ability to perform work. Among the side effects is a reduction in the number of threads that the kernel can create. This solution should be treated as no more than an interim workaround until the root cause is remedied.

Commitment Level Unstable

logevent_max_q_sz

Description Maximum number of system events allowed to be queued and waiting for delivery to the syseventd daemon. Once the size of the system event queue reaches this limit, no other system events are allowed on the queue.

Data Type Integer

Default 5000

Range 0 to MAXINT

Units System events

Dynamic? Yes

Validation The system event framework checks this value every time a system event is generated by ddi_log_sysevent and sysevent_post_event.

For more information, see ddi_log_sysevent(9F) and sysevent_post_event(3SYSEVENT).

When to Change When error log messages indicate that a system event failed to be logged, generated, or posted.

Commitment Level Unstable
segkpsize

Description
Specifies the amount of kernel pageable memory available. This memory is used primarily for kernel thread stacks. Increasing this number allows either larger stacks for the same number of threads or more threads. This parameter can only be set on a system running a 64-bit kernel. A system running a 64-bit kernel uses a default stack size of 24 KB.

Data Type
Unsigned long

Default
64-bit kernels, 2 GB
32-bit kernels, 512 MB

Range
64-bit kernels, 512 MB to 24 GB

Units
8-KB pages

Dynamic?
No

Validation
Value is compared to minimum and maximum sizes (512 MB and 24 GB for 64-bit systems). If smaller than the minimum or larger than the maximum, it is reset to 2 GB. A message to that effect is displayed.

The actual size used in creation of the cache is the lesser of the value specified in segkpsize after the validation checking or 50 percent of physical memory.

When to Change
Required to support large numbers of processes on a system. The default size of 2 GB, assuming at least 1 GB of physical memory is present. This default size allows creation of 24-KB stacks for more than 87,000 kernel threads. The size of a stack in a 64-bit kernel is the same, whether the process is a 32-bit process or a 64-bit process. If more than this number is needed, segkpsize can be increased, assuming sufficient physical memory exists.

Commitment Level
Unstable

noexec_user_stack

Description
Enables the stack to be marked as nonexecutable, which helps make buffer-overflow attacks more difficult.
A Solaris system running a 64-bit kernel makes the stacks of all 64-bit applications nonexecutable by default. Setting this parameter is necessary to make 32-bit applications nonexecutable on systems running 64-bit or 32-bit kernels.

Note – This parameter exists on all systems running the Solaris 2.6, 7, 8, 9, or 10 releases, but it is only effective on 64-bit SPARC and AMD64 architectures.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Signed integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>0 (disabled)</td>
</tr>
<tr>
<td>Range</td>
<td>0 (disabled) or 1 (enabled)</td>
</tr>
<tr>
<td>Units</td>
<td>Toggle (on/off)</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes. Does not affect currently running processes, only processes created after the value is set.</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>Should be enabled at all times unless applications are deliberately placing executable code on the stack without using <code>mprotect</code> to make the stack executable. For more information, see <code>mprotect(2)</code>.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

fsflush and Related Parameters

This section describes `fsflush` and related tunables.

fsflush

The system daemon, `fsflush`, runs periodically to do three main tasks:

1. On every invocation, `fsflush` flushes dirty file system pages over a certain age to disk.
2. On every invocation, `fsflush` examines a portion of memory and causes modified pages to be written to their backing store. Pages are written if they are modified and if they do not meet one of the following conditions:
 - Pages are kernel page
 - Pages are free
 - Pages are locked
Pages are associated with a swap device
Pages are currently involved in an I/O operation

The net effect is to flush pages from files that are mapped with \texttt{mmap} with write permission and that have actually been changed.

Pages are flushed to backing store but left attached to the process using them. This will simplify page reclamation when the system runs low on memory by avoiding delay for writing the page to backing store before claiming it, if the page has not been modified since the flush.

3. \texttt{fsflush} writes file system metadata to disk. This write is done every nth invocation, where n is computed from various configuration variables. See \texttt{tune\textunderscore t\textunderscore fsflushr} on page 35 and \texttt{autoup} on page 36 for details.

The following features are configurable:

- Frequency of invocation (\texttt{tune\textunderscore t\textunderscore fsflushr})
- Whether memory scanning is executed (\texttt{dopageflush})
- Whether file system data flushing occurs (\texttt{doiflush})
- The frequency with which file system data flushing occurs (\texttt{autoup})

For most systems, memory scanning and file system metadata synchronizing are the dominant activities for \texttt{fsflush}. Depending on system usage, memory scanning can be of little use or consume too much CPU time.

\begin{tabular}{|l|l|}
\hline
\textbf{tune\textunderscore t\textunderscore fsflushr} & \\
\hline
\textbf{Description} & Specifies the number of seconds between \texttt{fsflush} invocations \\
\textbf{Data Type} & Signed integer \\
\textbf{Default} & 1 \\
\textbf{Range} & 1 to MAXINT \\
\textbf{Units} & Seconds \\
\textbf{Dynamic?} & No \\
\textbf{Validation} & If the value is less than or equal to zero, the value is reset to 1 and a warning message is displayed. This check is done only at boot time. \\
\textbf{When to Change} & See the \texttt{autoup} parameter. \\
\textbf{Commitment Level} & Unstable \\
\hline
\end{tabular}
autoup

Description
Along with `tune_t_flushr`, `autoup` controls the amount of memory examined for dirty pages in each invocation and frequency of file system synchronizing operations.

The value of `autoup` is also used to control whether a buffer is written out from the free list. Buffers marked with the `B_DELWRI` flag (which identifies file content pages that have changed) are written out whenever the buffer has been on the list for longer than `autoup` seconds. Increasing the value of `autoup` keeps the buffers in memory for a longer time.

Data Type
Signed integer

Default
30

Range
1 to MAXINT

Units
Seconds

Dynamic?
No

Validation
If `autoup` is less than or equal to zero, it is reset to 30 and a warning message is displayed. This check is done only at boot time.

Implicit
`autoup` should be an integer multiple of `tune_t FsFlushr`. At a minimum, `autoup` should be at least 6 times the value of `tune_t FsFlushr`. If not, excessive amounts of memory are scanned each time `fsflush` is invoked.

The total system pages multiplied by `tune_t FsFlushr` should be greater than or equal to `autoup` to cause memory to be checked if `dopageflush` is non-zero.

When to Change
Here are several potential situations for changing `autoup`, `tune_t FsFlushr`, or both:

- **Systems with large amounts of memory** – In this case, increasing `autoup` reduces the amount of memory scanned in each invocation of `fsflush`.

- **Systems with minimal memory demand** – Increasing both `autoup` and `tune_t FsFlushr` reduces the number of scans made. `autoup` should be increased also to maintain the current ratio of `autoup / tune_t FsFlushr`.

Systems with large numbers of transient files (for example, mail servers or software build machines) – If large numbers of files are created and then deleted, fsflush might unnecessarily write data pages for those files to disk.

Commitment Level Unstable

dopageflush

Description Controls whether memory is examined for modified pages during fsflush invocations. In each invocation of fsflush, the number of physical memory pages in the system is determined. This number might have changed because of a dynamic reconfiguration operation. Each invocation scans by using this algorithm: total number of pages x tune_t_fsflushr / autoup pages

Data Type Signed integer
Default 1 (enabled)
Range 0 (disabled) or 1 (enabled)
Units Toggle (on/off)
Dynamic? Yes
Validation None
When to Change If the system page scanner rarely runs, which is indicated by a value of 0 in the sr column of vmstat output.

Commitment Level Unstable
Change History For information, see “dopageflush (All Solaris Releases)” on page 176.

doiflush

Description Controls whether file system metadata syncs will be executed during fsflush invocations. This synchronization is done every Nth invocation of fsflush where N= (autoup / tune_t_fsflushr).

Because this algorithm is integer division, if tune_t_fsflushr is greater than autoup, a synchronization is done on every invocation of fsflush because the code checks to see if its iteration counter is greater than or equal to N. Note that N is computed once on invocation of fsflush. Later changes to tune_t_fsflushr or autoup have no effect on the frequency of synchronization operations.
Process-Sizing Parameters

Several parameters (or variables) are used to control the number of processes that are available on the system and the number of processes that an individual user can create. The foundation parameter is `maxusers`. This parameter drives the values assigned to `max_nprocs` and `maxuprc`.

maxusers

Description

Originally, `maxusers` defined the number of logged in users the system could support. When a kernel was generated, various tables were sized based on this setting. Current Solaris releases do much of its sizing based on the amount of memory on the system. Thus, much of the past use of `maxusers` has changed. A number of subsystems that are still derived from `maxusers`:

- The maximum number of processes on the system
- The number of quota structures held in the system
- The size of the directory name look-up cache (DNLC)
reserved_procs

Specifies the number of system process slots to be reserved in the process table for processes with a UID of root (0). For example, `fsflush` has a UID of root (0).

Data Type: Signed integer
Default: 5
Range: 5 to MAXINT
Units: Processes
Dynamic?: No. Not used after the initial parameter computation.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validation</td>
<td>Starting in the Solaris 8 release, any <code>/etc/system</code> setting is honored.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
<tr>
<td>When to Change</td>
<td>Consider increasing to 10 + the normal number of UID 0 (root) processes on system. This setting provides some cushion should it be necessary to obtain a root shell when the system is otherwise unable to create user-level processes.</td>
</tr>
</tbody>
</table>

pidmax

- **Description**: Specifies the value of the largest possible process ID. Valid for Solaris 8 and later releases.

 `pidmax` sets the value for the `maxpid` variable. Once `maxpid` is set, `pidmax` is ignored. `maxpid` is used elsewhere in the kernel to determine the maximum process ID and for validation checking.

 Any attempts to set `maxpid` by adding an entry to the `/etc/system` file have no effect.

- **Data Type**: Signed integer
- **Default**: 30,000
- **Range**: 266 to 999,999
- **Units**: Processes
- **Dynamic?**: No. Used only at boot time to set the value of `pidmax`.
- **Validation**: Yes. Value is compared to the value of `reserved_procs` and 999,999. If less than `reserved_procs` or greater than 999,999, the value is set to 999,999.

 Implicit `max_nprocs` range checking ensures that `max_nprocs` is always less than or equal to this value.

- **When to Change**: Required to enable support for more than 30,000 processes on a system.
- **Commitment Level**: Unstable
max_nprocs

Description
Specifies the maximum number of processes that can be created on a system. Includes system processes and user processes. Any value specified in /etc/system is used in the computation of maxuprc.

This value is also used in determining the size of several other system data structures. Other data structures where this parameter plays a role are as follows:
- Determining the size of the directory name lookup cache (if ncsiz is not specified)
- Allocating disk quota structures for UFS (if ndquot is not specified)
- Verifying that the amount of memory used by configured system V semaphores does not exceed system limits
- Configuring Hardware Address Translation resources for x86 platforms.

Data Type
Signed integer

Default
10 + (16 x maxusers)

Range
266 to value of maxpid

Dynamic?
No

Validation
Yes. The value is compared to maxpid and set to maxpid if it is larger. On x86 platforms, an additional check is made against a platform-specific value. max_nprocs is set to the smallest value in the triplet (max_nprocs, maxpid, platform value). Both SPARC and x86 platforms use 65,534 as the platform value.

When to Change
Changing this parameter is one of the steps necessary to enable support for more than 30,000 processes on a system.

Commitment Level
Unstable

maxuprc

Description
Specifies the maximum number of processes that can be created on a system by any one user.

Data Type
Signed integer

Default
max_nprocs - reserved_procs

Range
1 to max_nprocs - reserved_procs
Paging-Related Parameters

The Solaris OS uses a demand paged virtual memory system. As the system runs, pages are brought into memory as needed. When memory becomes occupied above a certain threshold and demand for memory continues, paging begins. Paging goes through several levels that are controlled by certain parameters.

ngroups_max

Specifies the maximum number of supplemental groups per process.

Description
Signed integer
Data Type
16
Default
0 to 1024
Range
Groups
Units
No
Dynamic?
No
Validation
No
When to Change
When you want to increase the maximum number of groups.

Keep in mind that if a particular user is assigned to more than 16 groups, the user might experience problems with AUTH_SYS credentials in an NFS environment.

Commitment Level
Unstable

Units Processes
Dynamic? No
Validation Yes. This value is compared to max_nprocs - reserved_procs and set to the smaller of the two values.
When to Change When you want to specify a hard limit for the number of processes a user can create that is less than the default value of however many processes the system can create. Attempting to exceed this limit generates the following warning messages on the console or in the messages file:

out of per-user processes for uid N

Commitment Level Unstable
The general paging algorithm is as follows:

- A memory deficit is noticed. The page scanner thread runs and begins to walk through memory. A two-step algorithm is employed:
 1. A page is marked as unused.
 2. If still unused after a time interval, the page is viewed as a subject for reclaim.

If the page has been modified, a request is made to the pageout thread to schedule the page for I/O. Also, the page scanner continues looking at memory. Pageout causes the page to be written to the page's backing store and placed on the free list. When the page scanner scans memory, no distinction is made as to the origin of the page. The page might have come from a data file, or it might represent a page from an executable's text, data, or stack.

- As memory pressure on the system increases, the algorithm becomes more aggressive in the pages it will consider as candidates for reclamation and in how frequently the paging algorithm runs. (For more information, see “fastscan” on page 50 and “slowscan” on page 50.) As available memory falls between the range `lotsfree` and `minfree`, the system linearly increases the amount of memory scanned in each invocation of the pageout thread from the value specified by `slowscan` to the value specified by `fastscan`. The system uses the `desfree` parameter to control a number of decisions about resource usage and behavior.

The system initially constrains itself to use no more than 4 percent of one CPU for pageout operations. As memory pressure increases, the amount of CPU time consumed in support of pageout operations linearly increases until a maximum of 80 percent of one CPU is consumed. The algorithm looks through some amount of memory between `slowscan` and `fastscan`, then stops when one of the following occurs:

- Enough pages have been found to satisfy the memory shortfall.
- The planned number of pages have been looked at.
- Too much time has elapsed.

If a memory shortfall is still present when pageout finishes its scan, another scan is scheduled for 1/4 second in the future.

The configuration mechanism of the paging subsystem was changed, starting in the Solaris 9 release. Instead of depending on a set of predefined values for `fastscan`, `slowscan`, and `handspreadpages`, the system determines the appropriate settings for these parameters at boot time. Setting any of these parameters in the `/etc/system` file can cause the system to use less than optimal values.

Caution – Remove all tuning of the VM system from the `/etc/system` file. Run with the default settings and determine if it is necessary to adjust any of these parameters. Do not set either `cachefree` or `priority_paging`. They have been removed, starting in the Solaris 9 release.
Beginning in the Solaris 7 5/99 release, dynamic reconfiguration (DR) for CPU and memory is supported. A system in a DR operation that involves the addition or deletion of memory recalculates values for the relevant parameters, unless the parameter has been explicitly set in /etc/system. In that case, the value specified in /etc/system is used, unless a constraint on the value of the variable has been violated. In this case, the value is reset.

lotsfree

Description
Serves as the initial trigger for system paging to begin. When this threshold is crossed, the page scanner wakes up to begin looking for memory pages to reclaim.

Data Type
Unsigned long

Default
The greater of 1/64th of physical memory or 512 KB

Range
The minimum value is 512 KB or 1/64th of physical memory, whichever is greater, expressed as pages using the page size returned by getpagesize. For more information, see `getpagesize(3C)`.

The maximum value is the number of physical memory pages. The maximum value should be no more than 30 percent of physical memory. The system does not enforce this range, other than that described in the Validation section.

Units
Pages

Dynamic?
Yes, but dynamic changes are lost if a memory-based DR operation occurs.

Validation
If lotsfree is greater than the amount of physical memory, the value is reset to the default.

Implicit
The relationship of lotsfree being greater than desfree, which is greater than minfree, should be maintained at all times.

When to Change
When demand for pages is subject to sudden sharp spikes, the memory algorithm might be unable to keep up with demand. One workaround is to start reclaiming memory at an earlier time. This solution gives the paging system some additional margin.

A rule of thumb is to set this parameter to 2 times what the system needs to allocate in a few seconds. This parameter is workload dependent. A DBMS server can probably work fine with the default settings. However, you might need to adjust this parameter for a system doing heavy file system I/O.
For systems with relatively static workloads and large amounts of memory, lower this value. The minimum acceptable value is 512 KB, expressed as pages using the page size returned by `getpagesize`.

Commitment Level Unstable

desfree

Description Specifies the preferred amount of memory to be free at all times on the system.

Data Type Unsigned integer

Default `lotsfree` / 2

Range The minimum value is 256 KB or 1/128th of physical memory, whichever is greater, expressed as pages using the page size returned by `getpagesize`.

The maximum value is the number of physical memory pages. The maximum value should be no more than 15 percent of physical memory. The system does not enforce this range other than that described in the Validation section.

Units Pages

Dynamic? Yes, unless dynamic reconfiguration operations that add or delete memory occur. At that point, the value is reset to the value provided in the `/etc/system` file or calculated from the new physical memory value.

Validation If `desfree` is greater than `lotsfree`, `desfree` is set to `lotsfree` / 2. No message is displayed.

Implicit The relationship of `lotsfree` being greater than `desfree`, which is greater than `minfree`, should be maintained at all times.

Side Effects Several side effects can arise from increasing the value of this parameter. When the new value nears or exceeds the amount of available memory on the system, the following can occur:

- Asynchronous I/O requests are not processed, unless available memory exceeds `desfree`. Increasing the value of `desfree` can result in rejection of requests that otherwise would succeed.
- NFS asynchronous writes are executed as synchronous writes.
- The swapper is awakened earlier, and the behavior of the swapper is biased towards more aggressive actions.
The system might not prefault as many executable pages into the system. This side effect results in applications potentially running slower than they otherwise would.

When to Change

For systems with relatively static workloads and large amounts of memory, lower this value. The minimum acceptable value is 256 KB, expressed as pages using the page size returned by `getpagesize`.

Commitment Level

Unstable

minfree

Description

Specifies the minimum acceptable memory level. When memory drops below this number, the system biases allocations toward allocations necessary to successfully complete pageout operations or to swap processes completely out of memory. Either allocation denies or blocks other allocation requests.

Data Type

Unsigned integer

Default

desfree / 2

Range

The minimum value is 128 KB or \(\frac{1}{256} \)th of physical memory, whichever is greater, expressed as pages using the page size returned by `getpagesize`.

The maximum value is the number of physical memory pages. The maximum value should be no more than 7.5 percent of physical memory. The system does not enforce this range other than that described in the Validation section.

Units

Pages

Dynamic?

Yes, unless dynamic reconfiguration operations that add or delete memory occur. At that point, the value is reset to the value provided in the `/etc/system` file or calculated from the new physical memory value.

Validation

If `minfree` is greater than `desfree`, `minfree` is set to `desfree` / 2. No message is displayed.

Implicit

The relationship of `lotsfree` being greater than `desfree`, which is greater than `minfree`, should be maintained at all times.

When to Change

The default value is generally adequate. For systems with relatively static workloads and large amounts of memory, lower this value. The minimum acceptable value is 128 KB, expressed as pages using the page size returned by `getpagesize`.
Commitment Level Unstable

throttlefree

Description Specifies the memory level at which blocking memory allocation requests are put to sleep, even if the memory is sufficient to satisfy the request.

Data Type Unsigned integer

Default minfree

Range The minimum value is 128 KB or 1/256th of physical memory, whichever is greater, expressed as pages using the page size returned by `getpagesize`.

The maximum value is the number of physical memory pages. The maximum value should be no more than 4 percent of physical memory. The system does not enforce this range other than that described in the Validation section.

Units Pages

Dynamic? Yes, unless dynamic reconfiguration operations that add or delete memory occur. At that point, the value is reset to the value provided in the `/etc/system` file or calculated from the new physical memory value.

Validation If `throttlefree` is greater than `desfree`, `throttlefree` is set to `minfree`. No message is displayed.

Implicit The relationship of `lotsfree` is greater than `desfree`, which is greater than `minfree`, should be maintained at all times.

When to Change The default value is generally adequate. For systems with relatively static workloads and large amounts of memory, lower this value. The minimum acceptable value is 128 KB, expressed as pages using the page size returned by `getpagesize`. For more information, see `getpagesize(3C)`.

Commitment Level Unstable

pageout_reserve

Description Specifies the number of pages reserved for the exclusive use of the pageout or scheduler threads. When available memory is less than this
value, nonblocking allocations are denied for any processes other than pageout or the scheduler. Pageout needs to have a small pool of memory for its use so it can allocate the data structures necessary to do the I/O for writing a page to its backing store. This variable was introduced in the Solaris 2.6 release to ensure that the system would be able to perform a pageout operation in the face of the most severe memory shortage.

Data Type
Unsigned integer

Default
throttlefree / 2

Range
The minimum value is 64 KB or 1/512th of physical memory, whichever is greater, expressed as pages using the page size returned by `getpagesize(3C)`.

The maximum is the number of physical memory pages. The maximum value should be no more than 2 percent of physical memory. The system does not enforce this range, other than that described in the Validation section.

Units
Pages

Dynamic?
Yes, unless dynamic reconfiguration operations that add or delete memory occur. At that point, the value is reset to the value provided in the `/etc/system` file or calculated from the new physical memory value.

Validation
If `pageout_reserve` is greater than `throttlefree / 2`, `pageout_reserve` is set to `throttlefree / 2`. No message is displayed.

Implicit
The relationship of `lotsfree` being greater than `desfree`, which is greater than `minfree`, should be maintained at all times.

When to Change
The default value is generally adequate. For systems with relatively static workloads and large amounts of memory, lower this value. The minimum acceptable value is 64 KB, expressed as pages using the page size returned by `getpagesize`.

Commitment Level
Unstable

pages_pp_max

Description
Defines the number of pages that must be unlocked. If a request to lock pages would force available memory below this value, that request is refused.

Data Type
Unsigned long
Default The greater of \(\text{tune}_t_\text{minarmem} + 100 \) and \([4\% \text{ of memory available at boot time} + 4 \text{ MB}]\)

Range Minimum value enforced by the system is \(\text{tune}_t_\text{minarmem} + 100 \). The system does not enforce a maximum value.

Units Pages

Dynamic? Yes, unless dynamic reconfiguration operations that add or delete memory occur. At that point, the value is reset to the value provided in the \(/\text{etc/system}\) file or was calculated from the new physical memory value.

Validation If the value specified in the \(/\text{etc/system}\) file or the calculated default is less than \(\text{tune}_t_\text{minarmem} + 100 \), the value is reset to \(\text{tune}_t_\text{minarmem} + 100 \).

No message is displayed if the value from the \(/\text{etc/system}\) file is increased. Validation is done only at boot time and during dynamic reconfiguration operations that involve adding or deleting memory.

When to Change When memory-locking requests fail or when attaching to a shared memory segment with the \SHARE_MMU flag fails, yet the amount of memory available seems to be sufficient.

Excessively large values can cause memory locking requests (\text{mlock}, \text{mlockall}, and \text{memcntl}) to fail unnecessarily. For more information, see \text{mlock}(3C), \text{mlockall}(3C), and \text{memcntl}(2).

Commitment Level Unstable

tune_t_minarmem

Description Defines the minimum available resident (not swappable) memory to maintain necessary to avoid deadlock. Used to reserve a portion of memory for use by the core of the OS. Pages restricted in this way are not seen when the OS determines the maximum amount of memory available.

Data Type Signed integer

Default 25

Range 1 to physical memory

Units Pages

Dynamic? No
Validation None. Large values result in wasted physical memory.
When to Change The default value is generally adequate. Consider increasing the default value if the system locks up and debugging information indicates that no memory was available.
Commitment Level Unstable

fastscan

Description: Defines the maximum number of pages per second that the system looks at when memory pressure is highest.

Data Type: Signed integer

Default: After the system is booted, fastscan is set to 64 MB. Then this value is automatically reset to the number of pages that the scanner can scan in one second by using 10% of a CPU. If this derived value is more than half the system’s physical memory, the default value is limited to half the system’s physical memory.

Range: 64 MB to half the system’s physical memory

Units: Pages

Dynamic? Yes, unless dynamic reconfiguration operations that add or delete memory occur. At that point, the value is reset to the value provided by `/etc/system` or calculated from the new physical memory value.

Validation: The maximum value is the lesser of 64 MB and 1/2 of physical memory.

When to Change: When more aggressive scanning of memory is preferred during periods of memory shortfall, especially when the system is subject to periods of intense memory demand or when performing heavy file I/O.

Commitment Level: Unstable

slowscan

Description: Defines the minimum number of pages per second that the system looks at when attempting to reclaim memory.

Data Type: Signed integer

Default: The smaller of 1/20th of physical memory in pages and 100.

Range: 1 to `fastscan` / 2
Units Pages
Dynamic? Yes, unless dynamic reconfiguration operations that add or delete memory occur. At that point, the value is reset to the value provided in the /etc/system file or calculated from the new physical memory value.
Validation If slowscan is larger than fastscan / 2, slowscan is reset to fastscan / 2. No message is displayed.
When to Change When more aggressive scanning of memory is preferred during periods of memory shortfall, especially when the system is subject to periods of intense memory demand.
Commitment Level Unstable

min_percent_cpu

Description Defines the minimum percentage of CPU that pageout can consume. This parameter is used as the starting point for determining the maximum amount of time that can be consumed by the page scanner.

Data Type Signed integer
Default 4
Range 1 to 80
Units Percentage
Dynamic? Yes
Validation None
When to Change Increasing this value on systems with multiple CPUs and lots of memory, which are subject to intense periods of memory demand, enables the pager to spend more time attempting to find memory.
Commitment Level Unstable

handspreadpages

Description The Solaris OS uses a two-handed clock algorithm to look for pages that are candidates for reclaiming when memory is low. The first hand of the clock walks through memory marking pages as unused. The second hand walks through memory some distance after the first hand,
checking to see if the page is still marked as unused. If so, the page is subject to being reclaimed. The distance between the first hand and the second hand is **handspreadpages**.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Unsigned long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>fastscan</td>
</tr>
<tr>
<td>Range</td>
<td>1 to maximum number of physical memory pages on the system</td>
</tr>
<tr>
<td>Units</td>
<td>Pages</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes. This parameter requires that the kernel reset_hands parameter also be set to a non-zero value. Once the new value of handspreadpages has been recognized, reset_hands is set to zero.</td>
</tr>
<tr>
<td>Validation</td>
<td>The value is set to the lesser of either the amount of physical memory and the handspreadpages value.</td>
</tr>
<tr>
<td>When to Change</td>
<td>When you want to increase the amount of time that pages are potentially resident before being reclaimed. Increasing this value increases the separation between the hands, and therefore, the amount of time before a page can be reclaimed.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

pages_beforePager

Description: Defines part of a system threshold that immediately frees pages after an I/O completes instead of storing the pages for possible reuse. The threshold is \(\text{lotsfree} + \text{pages_before_pager} \). The NFS environment also uses this threshold to curtail its asynchronous activities as memory pressure mounts.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Signed integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>200</td>
</tr>
<tr>
<td>Range</td>
<td>1 to amount of physical memory</td>
</tr>
<tr>
<td>Units</td>
<td>Pages</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>You might change this parameter when the majority of I/O is done for pages that are truly read or written once and never referenced again. Setting this variable to a larger amount of memory keeps adding pages to the free list.</td>
</tr>
</tbody>
</table>
You might also change this parameter when the system is subject to bursts of severe memory pressure. A larger value here helps maintain a larger cushion against the pressure.

Commitment Level Unstable

maxpgio

Description Defines the maximum number of page I/O requests that can be queued by the paging system. This number is divided by 4 to get the actual maximum number used by the paging system. This parameter is used to throttle the number of requests as well as to control process swapping.

Data Type Signed integer

Default 40

Range 1 to a variable maximum that depends on the system architecture, but mainly by the I/O subsystem, such as the number of controllers, disks, and disk swap size

Units I/Os

Dynamic? No

Validation None

Implicit The maximum number of I/O requests from the pager is limited by the size of a list of request buffers, which is currently sized at 256.

When to Change Increase this parameter to page out memory faster. A larger value might help to recover faster from memory pressure if more than one swap device is configured or if the swap device is a striped device. Note that the existing I/O subsystem should be able to handle the additional I/O load. Also, increased swap I/O could degrade application I/O performance if the swap partition and application files are on the same disk.

Commitment Level Unstable
Swapping-Related Parameters

Swapping in the Solaris OS is accomplished by the swapfs pseudo file system. The combination of space on swap devices and physical memory is treated as the pool of space available to support the system for maintaining backing store for anonymous memory. The system attempts to allocate space from disk devices first, and then uses physical memory as backing store. When swapfs is forced to use system memory for backing store, limits are enforced to ensure that the system does not deadlock because of excessive consumption by swapfs.

swapfs_reserve

Description: Defines the amount of system memory that is reserved for use by system (UID = 0) processes.

Data Type: Unsigned long

Default: The smaller of 4 MB and 1/16th of physical memory

Range: The minimum value is 4 MB or 1/16th of physical memory, whichever is smaller, expressed as pages using the page size returned by `getpagesize`.

The maximum value is the number of physical memory pages. The maximum value should be no more than 10 percent of physical memory. The system does not enforce this range, other than that described in the Validation section.

Units: Pages

Dynamic?: No

Validation: None

When to Change: Generally not necessary. Only change when recommended by a software provider, or when system processes are terminating because of an inability to obtain swap space. A much better solution is to add physical memory or additional swap devices to the system.

Commitment Level: Unstable

swapfs_minfree

Description: Defines the desired amount of physical memory to be kept free for the rest of the system. Attempts to reserve memory for use as swap space by any process that causes the system's perception of available memory to
Kernel Memory Allocator

The Solaris kernel memory allocator distributes chunks of memory for use by clients inside the kernel. The allocator creates a number of caches of varying size for use by its clients. Clients can also request the allocator to create a cache for use by that client (for example, to allocate structures of a particular size). Statistics about each cache that the allocator manages can be seen by using the `kstat -c kmem_cache` command.

Occasionally, systems might panic because of memory corruption. The kernel memory allocator supports a debugging interface (a set of flags), that performs various integrity checks on the buffers. The kernel memory allocator also collects information on the allocators. The integrity checks provide the opportunity to detect errors closer to where they actually occurred. The collected information provides additional data for support people when they try to ascertain the reason for the panic.

Use of the flags incurs additional overhead and memory usage during system operations. The flags should only be used when a memory corruption problem is suspected.

kmem_flags

Description

The Solaris kernel memory allocator has various debugging and test options that were extensively used during the internal development cycle of the Solaris OS. Starting in the Solaris 2.5 release, a subset of these options became available. They are controlled by the `kmem_flags` variable, which was set with a kernel debugger, and then rebooting the system.

Table: Memory Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Unsigned long</td>
</tr>
<tr>
<td>Default</td>
<td>The larger of 2 MB and 1/8th of physical memory</td>
</tr>
<tr>
<td>Range</td>
<td>1 to amount of physical memory</td>
</tr>
<tr>
<td>Units</td>
<td>Pages</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>When processes are failing because of an inability to obtain swap space, yet the system has memory available.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>
system. Because of issues with the timing of the instantiation of the kernel memory allocator and the parsing of the /etc/system file, it was not possible to set these flags in the /etc/system file until the Solaris 8 release.

Five supported flag settings are described here.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUDIT</td>
<td>0x1</td>
<td>The allocator maintains a log that contains recent history of its activity. The number of items logged depends on whether CONTENTS is also set. The log is a fixed size. When space is exhausted, earlier records are reclaimed.</td>
</tr>
<tr>
<td>TEST</td>
<td>0x2</td>
<td>The allocator writes a pattern into freed memory and checks that the pattern is unchanged when the buffer is next allocated. If some portion of the buffer is changed, then the memory was probably used by a client that had previously allocated and freed the buffer. If an overwrite is identified, the system panics.</td>
</tr>
<tr>
<td>REDZONE</td>
<td>0x4</td>
<td>The allocator provides extra memory at the end of the requested buffer and inserts a special pattern into that memory. When the buffer is freed, the pattern is checked to see if data was written past the end of the buffer. If an overwrite is identified, the kernel panics.</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>0x8</td>
<td>The allocator logs up to 256 bytes of buffer contents when the buffer is freed. This flag requires that AUDIT also be set. The numeric value of these flags can be logically added together and set by the /etc/system file, starting in the Solaris 8 release, or for previous releases, by booting kadb and setting the flags before starting the kernel.</td>
</tr>
<tr>
<td>LITE</td>
<td>0x100</td>
<td>Does minimal integrity checking when a buffer is allocated and freed. When enabled, the allocator checks that the redzone has not been written into, that a freed buffer is not being freed again, and that the buffer being freed is the size that was allocated. This flag is available as of the Solaris 7 3/99 release. Do not combine this flag with any other flags.</td>
</tr>
</tbody>
</table>
kmem_stackinfo

Description
If the `kmem_stackinfo` variable is enabled in the `/etc/system` file at kernel thread creation time, the kernel thread stack is filled with a specific pattern instead of filled with zeros. During kernel thread execution, this kernel thread stack pattern is progressively overwritten. A simple count from the stack top until the pattern is not found gives a high watermark value, which is the maximum kernel stack space used by a kernel thread. This mechanism allows the following features:

- Compute the percentage of kernel thread stack really used (a high watermark) for current kernel threads in the system
- When a kernel thread ends, the system logs the last kernel threads that have used the most of their kernel thread stacks before dying to a small circular memory buffer

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Signed integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>0 (disabled)</td>
</tr>
<tr>
<td>Range</td>
<td>0 (disabled) or 1 - 15 or 256 (0x100)</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes. Changes made during runtime only affect new kernel memory caches. After system initialization, the creation of new caches is rare.</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>When memory corruption is suspected</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

Zone Configuration
This parameter must be set in the global zone.

Commitment Level
Unstable

Chapter 2 • Oracle Solaris Kernel Tunable Parameters 57
General Driver Parameters

moddebug

Description
When this parameter is enabled, messages about various steps in the module loading process are displayed.

Data Type
Signed integer

Default
0 (messages off)

Range
Here are the most useful values:

- **0x80000000** – Prints [un] loading... message. For every module loaded, messages such as the following appear on the console and in the /var/adm/messages file:

```
Nov 5 16:12:28 sys genunix: [ID 943528 kern.notice]
load 'sched/TS_DPTBL' id 9 loaded @ 0x10126438/0x10438dd8 size 132/2064
Nov 5 16:12:28 sys genunix: [ID 131579 kern.notice]
installing TS_DPTBL, module id 9.
```

- **0x40000000** – Prints detailed error messages. For every module loaded, messages such as the following appear on the console and in the /var/adm/messages file:

```
Nov 5 16:16:50 sys krtld: [ID 284770 kern.notice]
kobj_open: can't open /platform/SUNW,Ultra-80/kernel/sched/TS_DPTBL
Nov 5 16:16:50 sys krtld: [ID 284770 kern.notice]
kobj_open: can't open /platform/sun4u/kernel/sched/TS_DPTBL
Nov 5 16:16:50 sys krtld: [ID 797008 kern.notice]
kobj_open: '/kernel/sch...
Nov 5 16:16:50 sys krtld: [ID 605504 kern.notice]
descr = 0x2a
Nov 5 16:16:50 sys krtld: [ID 642728 kern.notice]
kobj_read_file: size=34,
Nov 5 16:16:50 sys krtld: [ID 217760 kern.notice]
offset=0
Nov 5 16:16:50 sys krtld: [ID 136382 kern.notice]
kobj_read: req 8192 bytes,
Nov 5 16:16:50 sys krtld: [ID 295989 kern.notice]
got 4224
Nov 5 16:16:50 sys krtld: [ID 426732 kern.notice]
read 1080 bytes
Nov 5 16:16:50 sys krtld: [ID 720464 kern.notice]
copying 34 bytes
Nov 5 16:16:50 sys krtld: [ID 234587 kern.notice]
count = 34
[33 lines elided]
Nov 5 16:16:50 sys genunix: [ID 943528 kern.notice]
```
General Driver Parameters

ddi_msix_alloc_limit

Description
This parameter, available on x86 systems only, controls the number of Extended Message Signaled Interrupts (MSI-X) that a device instance can allocate. Due to an existing system limitation, the default value is 2. You can increase the number of MSI-X interrupts that a device instance can allocate by increasing the value of this parameter. This parameter can be set either by editing the `/etc/system` file or by setting it with `mdb` before the device driver attach occurs.

Data Type
Signed integer

Default
2

Range
1 to 16

Dynamic?
Yes

Validation
None

When to Change
To increase the number of MSI-X interrupts that a device instance can allocate. However, if you increase the number of MSI-X interrupts that a device instance can allocate, adequate interrupts might not be
available to satisfy all allocation requests. If this happens, some devices might stop functioning or the system might fail to boot. Reduce the value or remove the parameter in this case.

Commitment Level Unstable

Network Driver Parameters

igb Parameters

mr_enable

Description
This parameter enables or disables multiple receive and transmit queues that are used by the igb network driver. This parameter can be set by editing the /kernel/drv/igb.conf file before the igb driver attach occurs.

Data Type Boolean
Default 1 (disable multiple queues)
Range 0 (enable multiple queues) or 1 (disable multiple queues)
Dynamic? No
Validation None
When to Change To enable or disable multiple receive and transmit queues that are used by the igb network driver.

Commitment Level Unstable

intr_force

Description
This parameter is used to force an interrupt type, such as MSI, MSI-X, or legacy, that is used by the igb network driver. This parameter can be set by editing the /kernel/drv/igb.conf file before the igb driver attach occurs.

Data Type Unsigned integer
Default 0 (do not force an interrupt type)
Range 0 (do not force an interrupt type)

1 (force MSI-X interrupt type)
2 (force MSI interrupt type)
3 (force legacy interrupt type)

Dynamic? No
Validation None
When to Change To force an interrupt type that is used by the i9b network driver.
Commitment Level Unstable

ixgbe Parameters

tx_queue_number

Description This parameter controls the number of transmit queues that are used by the ixgbe network driver. You can increase the number of transmit queues by increasing the value of this parameter. This parameter can be set by editing the `/kernel/drv/ixgbe.conf` file before the ixgbe driver attach occurs.

Data Type Unsigned integer
Default 8
Range 1 to 32
Dynamic? No
Validation None
When to Change To change the number of transmit queues that are used by the ixgbe network driver.
Commitment Level Unstable

rx_queue_number

Description This parameter controls the number of receive queues that are used by the ixgbe network driver. You can increase the number of receive queues by increasing the value of this parameter. This parameter can be set by editing the `/kernel/drv/ixgbe.conf` file before the ixgbe driver attach occurs.

Data Type Unsigned integer
Default 8
intr_throttling

Description
This parameter controls the interrupt throttling rate of the ixgbe network driver. You can increase the rate of interrupt by decreasing the value of this parameter. This parameter can be set by editing the `/kernel/drv/ixgbe.conf` file before the ixgbe driver attach occurs.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Unsigned integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>200</td>
</tr>
<tr>
<td>Range</td>
<td>0 to 65535</td>
</tr>
</tbody>
</table>

rx_limit_per_intr

Description
This parameter controls the maximum number of receive queue buffer descriptors per interrupt that are used by the ixgbe network driver. You can increase the number of receive queue buffer descriptors by increasing the value of this parameter. This parameter can be set by editing the `/kernel/drv/ixgbe.conf` file before the ixgbe driver attach occurs.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Unsigned integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>256</td>
</tr>
<tr>
<td>Range</td>
<td>16 to 4096</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
</tbody>
</table>
When to Change: To change the number of receive queue buffer descriptors that are handled per interrupt by the ixgbe network driver.

Commitment Level: Unstable

tx_ring_size
- Description: This parameter controls the transmit queue size that is used by the ixgbe network driver. You can increase the transmit queue size by increasing the value of this parameter. This parameter can be set by editing the `/kernel/drv/ixgbe.conf` file before the ixgbe driver attach occurs.
- Data Type: Unsigned integer
- Default: 1024
- Range: 64 to 4096
- Dynamic?: No
- Validation: None

When to Change: To change the transmit queue size that is used by the ixgbe network driver.

Commitment Level: Unstable

rx_ring_size
- Description: This parameter controls the receive queue size that is used by the ixgbe network driver. You can increase the receive queue size by increasing the value of this parameter. This parameter can be set by editing the `/kernel/drv/ixgbe.conf` file before the ixgbe driver attach occurs.
- Data Type: Unsigned integer
- Default: 1024
- Range: 64 to 4096
- Dynamic?: No
- Validation: None

When to Change: To change the receive queue size that is used by the ixgbe network driver.

Commitment Level: Unstable
tx_copy_threshold

Description: This parameter controls the transmit buffer copy threshold that is used by the ixgbe network driver. You can increase the transmit buffer copy threshold by increasing the value of this parameter. This parameter can be set by editing the `/kernel/drv/ixgbe.conf` file before the ixgbe driver attach occurs.

Data Type: Unsigned integer
Default: 512
Range: 0 to 9126
Dynamic?: No
Validation: None
When to Change: To change the transmit buffer copy threshold that is used by the ixgbe network driver.
Commitment Level: Unstable

rx_copy_threshold

Description: This parameter controls the receive buffer copy threshold that is used by the ixgbe network driver. You can increase the receive buffer copy threshold by increasing the value of this parameter. This parameter can be set by editing the `/kernel/drv/ixgbe.conf` file before the ixgbe driver attach occurs.

Data Type: Unsigned integer
Default: 128
Range: 0 to 9126
Dynamic?: No
Validation: None
When to Change: To change the receive buffer copy threshold that is used by the ixgbe network driver.
Commitment Level: Unstable
General I/O Parameters

maxphys

Description
Defines the maximum size of physical I/O requests. If a driver encounters a request larger than this size, the driver breaks the request into `maxphys` sized chunks. File systems can and do impose their own limit.

Data Type
Signed integer

Default
131,072 (sun4u or sun4v) or 57,344 (x86). The sd driver uses the value of 1,048,576 if the drive supports wide transfers. The ssd driver uses 1,048,576 by default.

Range
Machine-specific page size to `MAXINT`

Units
Bytes

Dynamic?
Yes, but many file systems load this value into a per-mount point data structure when the file system is mounted. A number of drivers load the value at the time a device is attached to a driver-specific data structure.

Validation
None

When to Change
When doing I/O to and from raw devices in large chunks. Note that a DBMS doing OLTP operations issues large numbers of small I/Os. Changing `maxphys` does not result in any performance improvement in that case.

You might also consider changing this parameter when doing I/O to and from a UFS file system where large amounts of data (greater than 64 KB) are being read or written at any one time. The file system should be optimized to increase contiguity. For example, increase the size of the cylinder groups and decrease the number of inodes per cylinder group. UFS imposes an internal limit of 1 MB on the maximum I/O size it transfers.

Commitment Level
Unstable

rlim_fd_max

Description
Specifies the “hard” limit on file descriptors that a single process might have open. Overriding this limit requires superuser privilege.
When the maximum number of open files for a process is not enough. Other limitations in system facilities can mean that a larger number of file descriptors is not as useful as it might be. For example:

- A 32-bit program using standard I/O is limited to 256 file descriptors. A 64-bit program using standard I/O can use up to 2 billion descriptors. Specifically, standard I/O refers to the \texttt{stdio(3C)} functions in \texttt{libc(3LIB)}.

- \texttt{select} is by default limited to 1024 descriptors per \texttt{fd_set}. For more information, see \texttt{select(3C)}. Starting with the Solaris 7 release, 32-bit application code can be recompiled with a larger \texttt{fd_set} size (less than or equal to 65,536). A 64-bit application uses an \texttt{fd_set} size of 65,536, which cannot be changed.

An alternative to changing this on a system wide basis is to use the \texttt{pulimit(1)} command. If a parent process has its limits changed by \texttt{pulimit}, all children inherit the increased limit. This alternative is useful for daemons such as \texttt{inetd}.

Commitment Level: Unstable

rlim_fd_cur

Description: Defines the "soft" limit on file descriptors that a single process can have open. A process might adjust its file descriptor limit to any value up to the "hard" limit defined by \texttt{rlim_fd_max} by using the \texttt{setrlimit()} call or by issuing the \texttt{limit} command in whatever shell it is running. You do not require superuser privilege to adjust the limit to any value less than or equal to the hard limit.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Signed integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>256</td>
</tr>
<tr>
<td>Range</td>
<td>1 to MAXINT</td>
</tr>
</tbody>
</table>
Units Filedescriptors
Dynamic? No
Validation Compared to rlim_fd_max. If rlim_fd_cur is greater than rlim_fd_max, rlim_fd_cur is reset to rlim_fd_max.
When to Change When the default number of open files for a process is not enough. Increasing this value means only that it might not be necessary for a program to use setrlimit to increase the maximum number of file descriptors available to it.
Commitment Level Unstable

General File System Parameters

ncsize

Description Defines the number of entries in the directory name look-up cache (DNLC). This parameter is used by UFS, NFS, and ZFS to cache elements of pathname that have been resolved.

Starting with the Solaris 8 6/00 release, the DNLC also caches negative look-up information, which means it caches a name not found in the cache.

Data Type Signed integer
Default $(4 \times (v.v_proc + \text{maxusers}) + 320) + (4 \times (v.v_proc + \text{maxusers}) + 320) / 100$
Range 0 to MAXINT
Units DNLC entries
Dynamic? No
Validation None. Larger values cause the time it takes to unmount a file system to increase as the cache must be flushed of entries for that file system during the unmount process.
When to Change Prior to the Solaris 8 6/00 release, it was difficult to determine whether the cache was too small. You could make this inference by noting the number of entries returned by kstat -n ncstats. If the number seems high, given the system workload and file access pattern, this might be due to the size of the DNLC.
Starting with the Solaris 8 6/00 release, you can use the `kstat -n dnlcstats` command to determine when entries have been removed from the DNLC because it was too small. The sum of the `pick_heuristic` and the `pick_last` parameters represents otherwise valid entries that were reclaimed because the cache was too small.

Excessive values of `ncsize` have an immediate impact on the system because the system allocates a set of data structures for the DNLC based on the value of `ncsize`. A system running a 32-bit kernel allocates 36-byte structures for `ncsize`, while a system running a 64-bit kernel allocates 64-byte structures for `ncsize`. The value has a further effect on UFS and NFS, unless `ufs_ninode` and `nfs:ninode` are explicitly set.

Commitment Level Unstable

rstchown

Description
Indicates whether the POSIX semantics for the `chown` system call are in effect. POSIX semantics are as follows:
- A process cannot change the owner of a file, unless it is running with UID 0.
- A process cannot change the group ownership of a file to a group in which it is not currently a member, unless it is running as UID 0.

For more information, see `chown(2)`.

Data Type Signed integer

Default 1, indicating that POSIX semantics are used

Range 0 = POSIX semantics not in force or 1 = POSIX semantics used

Units Toggle (on/off)

Dynamic? Yes

Validation None

When to Change When POSIX semantics are not wanted. Note that turning off POSIX semantics opens the potential for various security holes. Doing so also opens the possibility of a user changing ownership of a file to another user and being unable to retrieve the file without intervention from the user or the system administrator.

Commitment Level Obsolete
dnlc_dir_enable

Description: Enables large directory caching

Note – This parameter has no effect on NFS or ZFS file systems.

Data Type: Unsigned integer
Default: 1 (enabled)
Range: 0 (disabled) or 1 (enabled)
Dynamic?: Yes, but do not change this tunable dynamically. You can enable this parameter if it was originally disabled. Or, you can disable this parameter if it was originally enabled. However, enabling, disabling, and then enabling this parameter might lead to stale directory caches.
Validation: No

When to Change: Directory caching has no known problems. However, if problems occur, then set `dnlc_dir_enable` to 0 to disable caching.

Commitment Level: Unstable

dnlc_dir_min_size

Description: Specifies the minimum number of entries cached for one directory.

Note – This parameter has no effect on NFS or ZFS file systems.

Data Type: Unsigned integer
Default: 40
Range: 0 to MAXUINT (no maximum)
Units: Entries
Dynamic?: Yes, this parameter can be changed at any time.
Validation: None

When to Change: If performance problems occur with caching small directories, then increase `dnlc_dir_min_size`. Note that individual file systems might have their own range limits for caching directories. For instance, UFS
limits directories to a minimum of ufs_min_dir_cache bytes (approximately 1024 entries), assuming 16 bytes per entry.

Commitment Level Unstable

dnlc_dir_max_size

Description Specifies the maximum number of entries cached for one directory.

Note – This parameter has no effect on NFS or ZFS file systems.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Unsigned integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>MAXUINT (no maximum)</td>
</tr>
<tr>
<td>Range</td>
<td>0 to MAXUINT</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes, this parameter can be changed at any time.</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>If performance problems occur with large directories, then decrease dnlc_dir_max_size.</td>
</tr>
</tbody>
</table>

Commitment Level Unstable

semap_map_percent

Description Defines the maximum amount of memory that is used for the fast-access file system cache. This pool of memory is subtracted from the free memory list.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Unsigned integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>12 percent of free memory at system startup time</td>
</tr>
<tr>
<td>Range</td>
<td>2 MB to 100 percent of physmem</td>
</tr>
<tr>
<td>Units</td>
<td>% of physical memory</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>If heavy file system activity is expected, and sufficient free memory is available, you should increase the value of this parameter.</td>
</tr>
</tbody>
</table>
Commitment Level Unstable

UFS Parameters

bufhwm and bufhwm_pct

Description
Defines the maximum amount of memory for caching I/O buffers. The buffers are used for writing file system metadata (superblocks, inodes, indirect blocks, and directories). Buffers are allocated as needed until the amount of memory (in KB) to be allocated exceed bufhwm. At this point, metadata is purged from the buffer cache until enough buffers are reclaimed to satisfy the request.

For historical reasons, bufhwm does not require the ufs: prefix.

Data Type
Signed integer

Default
2 percent of physical memory

Range
80 KB to 20 percent of physical memory, or 2 TB, whichever is less. Consequently, bufhwm_pct can be between 1 and 20.

Units
bufhwm: KB
bufhwm_pct: percent of physical memory

Dynamic?
No. bufhwm and bufhwm_pct are only evaluated at system initialization to compute hash bucket sizes. The limit in bytes calculated from these parameters is then stored in a data structure that adjusts this value as buffers are allocated and deallocated.

Attempting to adjust this value without following the locking protocol on a running system can lead to incorrect operation.

Modifying bufhwm or bufhwm_pct at runtime has no effect.

Validation
If bufhwm is less than its lower limit of 80 KB or greater than its upper limit (the lesser of 20 percent of physical memory, 2 TB, or one quarter (1/4) of the maximum amount of kernel heap), it is reset to the upper limit. The following message appears on the system console and in the /var/adm/messages file if an invalid value is attempted:

"binit: bufhwm (value attempted) out of range (range start..range end). Using N as default."
“Value attempted” refers to the value specified in the /etc/system file or by using a kernel debugger. N is the value computed by the system based on available system memory.

Likewise, if(bufhwm_pct) is set to a value that is outside the allowed range of 1 percent to 20 percent, it is reset to the default of 2 percent. And, the following message appears on the system console and in the /var/adm/messages file:

“binit: bufhwm_pct(value attempted) out of range(0..20). Using 2 as default.”

If both(bufhwm or bufhwm_pct) are set to non-zero values, bufhwm takes precedence.

When to Change

Because buffers are only allocated as they are needed, the overhead from the default setting is the required allocation of control structures for the buffer hash headers. These structures consume 52 bytes per potential buffer on a 32-bit kernel and 96 bytes per potential buffer on a 64-bit kernel.

On a 512-MB 64-bit kernel, the number of hash chains calculates to 10316 / 32 == 322, which scales up to next power of 2, 512. Therefore, the hash headers consume 512 x 96 bytes, or 48 KB. The hash header allocations assume that buffers are 32 KB.

The amount of memory, which has not been allocated in the buffer pool, can be found by looking at the bfreelist structure in the kernel with a kernel debugger. The field of interest in the structure is b_bufsize, which is the possible remaining memory in bytes. Looking at it with the buf macro by using the mdb command:

mdb -k
Loading modules: [unix krtld genunix ip nfs ipc]
> bfreelist::print "struct buf" b_bufsize
b_bufsize = 0x225800

The default value for bufhwm on this system, with 6 GB of memory, is 122277. You cannot determine the number of header structures used because the actual buffer size requested is usually larger than 1 KB. However, some space might be profitably reclaimed from control structure allocation for this system.

The same structure on a 512-MB system shows that only 4 KB of 10144 KB has not been allocated. When the biostats kstat is examined with kstat -n biostats, it is determined that the system had a reasonable ratio of buffer_cache_hits to buffer_cache_lookups as well. As such, the default setting is reasonable for that system.
<table>
<thead>
<tr>
<th>Commitment Level</th>
<th>Unstable</th>
</tr>
</thead>
</table>

ndquot

Description
Defines the number of quota structures for the UFS file system that should be allocated. Relevant only if quotas are enabled on one or more UFS file systems. Because of historical reasons, the `ufs:` prefix is not needed.

Data Type
Signed integer

Default
\(((\text{maxusers} \times 40) / 4) + \text{max_nprocs}\)

Range
0 to MAXINT

Units
Quota structures

Dynamic?
No

Validation
None. Excessively large values hang the system.

When to Change
When the default number of quota structures is not enough. This situation is indicated by the following message displayed on the console or written in the message log:

```
dquot table full
```

<table>
<thead>
<tr>
<th>Commitment Level</th>
<th>Unstable</th>
</tr>
</thead>
</table>

ufs_ninode

Description
Specifies the number of inodes to be held in memory. Inodes are cached globally for UFS, not on a per-file system basis.

A key parameter in this situation is `ufs_ninode`. This parameter is used to compute two key limits that affect the handling of inode caching. A high watermark of `ufs_ninode / 2` and a low watermark of `ufs_ninode / 4` are computed.

When the system is done with an inode, one of two things can happen:

- The file referred to by the inode is no longer on the system so the inode is deleted. After it is deleted, the space goes back into the inode cache for use by another inode (which is read from disk or created for a new file).
The file still exists but is no longer referenced by a running process. The inode is then placed on the idle queue. Any referenced pages are still in memory.

When inodes are idled, the kernel defers the idling process to a later time. If a file system is a logging file system, the kernel also defers deletion of inodes. Two kernel threads handle this deferred processing. Each thread is responsible for one of the queues.

When the deferred processing is done, the system drops the inode onto either a delete queue or an idle queue, each of which has a thread that can run to process it. When the inode is placed on the queue, the queue occupancy is checked against the low watermark. If the queue occupancy exceeds the low watermark, the thread associated with the queue is awakened. After the queue is awakened, the thread runs through the queue and forces any pages associated with the inode out to disk and frees the inode. The thread stops when it has removed 50 percent of the inodes on the queue at the time it was awakened.

A second mechanism is in place if the idle thread is unable to keep up with the load. When the system needs to find a vnode, it goes through the \texttt{ufs_vget} routine. The \textit{first} thing \texttt{vget} does is check the length of the idle queue. If the length is above the high watermark, then it takes two inodes off the idle queue and “idles” them (flushes pages and frees inodes). \texttt{vget} does this \textit{before} it gets an inode for its own use.

The system does attempt to optimize by placing inodes with no in-core pages at the head of the idle list and inodes with pages at the end of the idle list. However, the system does no other ordering of the list. Inodes are always removed from the front of the idle queue.

The only time that inodes are removed from the queues as a whole is when a synchronization, unmount, or remount occur.

For historical reasons, this parameter does not require the \texttt{ufs:} prefix.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Signed integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>\texttt{ncsize}</td>
</tr>
<tr>
<td>Range</td>
<td>0 to \texttt{MAXINT}</td>
</tr>
<tr>
<td>Units</td>
<td>Inodes</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>Validation</td>
<td>If \texttt{ufs_ninode} is less than or equal to zero, the value is set to \texttt{ncsize}.</td>
</tr>
</tbody>
</table>
When to Change

When the default number of inodes is not enough. If the maxsize field as reported by kstat -n inode_cache is larger than the maxsize field in the kstat, the value of ufs_ninode might be too small. Excessive inode idling can also be a problem.

You can identify excessive inode idling by using kstat -n inode_cache to look at the inode_cache kstat. Thread idles are inodes idled by the background threads while vget idles are idles by the requesting process before using an inode.

Commitment Level

Unstable

ufs_WRITES

Description

If ufs_WRITES is non-zero, the number of bytes outstanding for writes on a file is checked. See ufs_HW to determine whether the write should be issued or deferred until only ufs_LW bytes are outstanding. The total number of bytes outstanding is tracked on a per-file basis so that if the limit is passed for one file, it won’t affect writes to other files.

Data Type

Signed integer

Default

1 (enabled)

Range

0 (disabled) or 1 (enabled)

Units

Toggle (on/off)

Dynamic?

Yes

Validation

None

When to Change

When you want UFS write throttling turned off entirely. If sufficient I/O capacity does not exist, disabling this parameter can result in long service queues for disks.

Commitment Level

Unstable

ufs_LW and ufs_HW

Description

ufs_HW specifies the number of bytes outstanding on a single file barrier value. If the number of bytes outstanding is greater than this value and ufs_WRITES is set, then the write is deferred. The write is deferred by putting the thread issuing the write to sleep on a condition variable.
ufs_LW is the barrier for the number of bytes outstanding on a single file below which the condition variable on which other sleeping processes are toggled. When a write completes and the number of bytes is less than ufs_LW, then the condition variable is toggled, which causes all threads waiting on the variable to awaken and try to issue their writes.

Data Type
Signed integer

Default
8 x 1024 x 1024 for ufs_LW and 16 x 1024 x 1024 for ufs_HW

Range
0 to MAXINT

Units
Bytes

Dynamic?
Yes

Validation
None

ufs_LW and ufs_HW have meaning only if ufs_WRITES is not equal to zero. ufs_HW and ufs_LW should be changed together to avoid needless churning when processes awaken and find that either they cannot issue a write (when ufs_LW and ufs_HW are too close) or they might have waited longer than necessary (when ufs_LW and ufs_HW are too far apart).

When to Change
Consider changing these values when file systems consist of striped volumes. The aggregate bandwidth available can easily exceed the current value of ufs_HW. Unfortunately, this parameter is not a per-file system setting.

You might also consider changing this parameter when ufs_throttles is a non-trivial number. Currently, ufs_throttles can only be accessed with a kernel debugger.

Commitment Level
Unstable

freebehind

Description
Enables the freebehind algorithm. When this algorithm is enabled, the system bypasses the file system cache on newly read blocks when sequential I/O is detected during times of heavy memory use.

Data Type
Boolean

Default
1 (enabled)

Range
0 (disabled) or 1 (enabled)
The `freebehind` algorithm can occur too easily. If no significant sequential file system activity is expected, disabling `freebehind` makes sure that all files, no matter how large, will be candidates for retention in the file system page cache. For more fine-grained tuning, see `smallfile`.

smallfile

Determined the size threshold of files larger than this value are candidates for no cache retention under the `freebehind` algorithm. Large memory systems contain enough memory to cache thousands of 10-MB files without making severe memory demands. However, this situation is highly application dependent.

The goal of the `smallfile` and `freebehind` parameters is to reuse cached information, without causing memory shortfalls by caching too much.

Data Type: Signed integer

Default: 32,768

Range: 0 to 2,147,483,647

Dynamic?: Yes

Validation: None

Increase `smallfile` if an application does sequential reads on medium-sized files and can most likely benefit from buffering, and the system is not otherwise under pressure for free memory. Medium-sized files are 32 KB to 2 GB in size.

Commitment Level: Unstable
TMPFS Parameters

tmpfs:tmpfs_maxkmem

- **Description**: Defines the maximum amount of kernel memory that TMPFS can use for its data structures (tmpnodes and directory entries).
- **Data Type**: Unsigned long
- **Default**: One page or 4 percent of physical memory, whichever is greater.
- **Range**: Number of bytes in one page (8192 for sun4u or sun4v systems, 4096 for all other systems) to 25 percent of the available kernel memory at the time TMPFS was first used.
- **Units**: Bytes
- **Dynamic?**: Yes
- **Validation**: None
- **When to Change**: Increase if the following message is displayed on the console or written in the messages file:
  ```
tmp_memalloc: tmpfs over memory limit
  ```
- **Commitment Level**: Unstable

The current amount of memory used by TMPFS for its data structures is held in the `tmp_kmemspace` field. This field can be examined with a kernel debugger.

tmpfs:tmpfs_minfree

- **Description**: Defines the minimum amount of swap space that TMPFS leaves for the rest of the system.
- **Data Type**: Signed long
- **Default**: 256
- **Range**: 0 to maximum swap space size
- **Units**: Pages
- **Dynamic?**: Yes
- **Validation**: None
When to Change
To maintain a reasonable amount of swap space on systems with large amounts of TMPFS usage, you can increase this number. The limit has been reached when the console or messages file displays the following message:

```plaintext
fs-name: File system full, swap space limit exceeded
```

Commitment Level
Unstable

Pseudo Terminals

Pseudo terminals, pty’s, are used for two purposes in Solaris software:

- Supporting remote logins by using the `telnet`, `rlogin`, or `rsh` commands
- Providing the interface through which the X Window system creates command interpreter windows

The default number of pseudo-terminals is sufficient for a desktop workstation. So, tuning focuses on the number of pty’s available for remote logins.

Previous versions of Solaris required that steps be taken to explicitly configure the system for the preferred number of pty’s. Starting with the Solaris 8 release, a new mechanism removes the necessity for tuning in most cases. The default number of pty’s is now based on the amount of memory on the system. This default should be changed only to restrict or increase the number of users who can log in to the system.

Three related variables are used in the configuration process:

- `pt_cnt` – Default maximum number of pty’s.
- `pt_pctofmem` – Percentage of kernel memory that can be dedicated to pty support structures. A value of zero means that no remote users can log in to the system.
- `pt_max_pty` – Hard maximum for number of pty’s.

`pt_cnt` has a default value of zero, which tells the system to limit logins based on the amount of memory specified in `pt_pctofmem`, unless `pt_max_pty` is set. If `pt_cnt` is non-zero, pty’s are allocated until this limit is reached. When that threshold is crossed, the system looks at `pt_max_pty`. If `pt_max_pty` has a non-zero value, it is compared to `pt_cnt`. The pty allocation is allowed if `pt_cnt` is less than `pt_max_pty`. If `pt_max_pty` is zero, `pt_cnt` is compared to the number of pty’s supported based on `pt_pctofmem`. If `pt_cnt` is less than this value, the pty allocation is allowed. Note that the limit based on `pt_pctofmem` only comes into play if both `pt_cnt` and `ptms_ptymax` have default values of zero.

To put a hard limit on pty’s that is different than the maximum derived from `pt_pctofmem`, set `pt_cnt` and `ptms_ptymax` in `/etc/system` to the preferred number of pty’s. The setting of `ptms_pctofmem` is not relevant in this case.
To dedicate a different percentage of system memory to pty support and let the operating system manage the explicit limits, do the following:

- Do not set pt_cnt or ptms_ptymax in /etc/system.
- Set pt_pctofmem in /etc/system to the preferred percentage. For example, set pt_pctofmem=10 for a 10 percent setting.

Note that the memory is not actually allocated until it is used in support of a pty. Once memory is allocated, it remains allocated.

pt_cnt

Description
The number of available /dev/pts entries is dynamic up to a limit determined by the amount of physical memory available on the system. pt_cnt is one of three variables that determines the minimum number of logins that the system can accommodate. The default maximum number of /dev/pts devices the system can support is determined at boot time by computing the number of pty structures that can fit in a percentage of system memory (see pt_pctofmem). If pt_cnt is zero, the system allocates up to that maximum. If pt_cnt is non-zero, the system allocates to the greater of pt_cnt and the default maximum.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Unsigned integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>0</td>
</tr>
<tr>
<td>Range</td>
<td>0 to maxpid</td>
</tr>
<tr>
<td>Units</td>
<td>Logins/windows</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>No</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>When you want to explicitly control the number of users who can remotely log in to the system.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

pt_pctofmem

Description
Specifies the maximum percentage of physical memory that can be consumed by data structures to support /dev/pts entries. A system running a 64-bit kernel consumes 176 bytes per /dev/pts entry. A system running a 32-bit kernel consumes 112 bytes per /dev/pts entry.
Data Type: Unsigned integer
Default: 5
Range: 0 to 100
Units: Percentage
Dynamic?: No
Validation: None
When to Change: When you want to either restrict or increase the number of users who can log in to the system. A value of zero means that no remote users can log in to the system.

Commitment Level: Unstable

pt_max_pty

Description: Defines the maximum number of pty s the system offers
Data Type: Unsigned integer
Default: 0 (Uses system-defined maximum)
Range: 0 to MAXUINT
Units: Logins/windows
Dynamic?: Yes
Validation: None
Implicit: Should be greater than or equal to pt_cnt. Value is not checked until the number of pty s allocated exceeds the value of pt_cnt.
When to Change: When you want to place an absolute ceiling on the number of logins supported, even if the system could handle more based on its current configuration values.

Commitment Level: Unstable
STREAMS Parameters

nstrpush

Description: Specifies the number of modules that can be inserted into (pushed onto) a STREAM.

Data Type: Signed integer
Default: 9
Range: 9 to 16
Units: Modules
Dynamic?: Yes
Validation: None
When to Change: At the direction of your software vendor. No messages are displayed when a STREAM exceeds its permitted push count. A value of EINVAL is returned to the program that attempted the push.

Commitment Level: Unstable

strmsgsz

Description: Specifies the maximum number of bytes that a single system call can pass to a STREAM to be placed in the data part of a message. Any write exceeding this size is broken into multiple messages. For more information, see write(2).

Data Type: Signed integer
Default: 65,536
Range: 0 to 262,144
Units: Bytes
Dynamic?: Yes
Validation: None
When to Change: When putmsg calls return ERANGE. For more information, see putmsg(2).

Commitment Level: Unstable
strctlsz

Description: Specifies the maximum number of bytes that a single system call can pass to a STREAM to be placed in the control part of a message.

- **Data Type**: Signed integer
- **Default**: 1024
- **Range**: 0 to MAXINT
- **Units**: Bytes
- **Dynamic?**: Yes
- **Validation**: None
- **When to Change**: At the direction of your software vendor. `putmsg(2)` calls return ERANGE if they attempt to exceed this limit.
- **Commitment Level**: Unstable

System V Message Queues

System V message queues provide a message-passing interface that enables the exchange of messages by queues created in the kernel. Interfaces are provided in the Solaris environment to enqueue and dequeue messages. Messages can have a type associated with them. Enqueueing places messages at the end of a queue. Dequeueing removes the first message of a specific type from the queue or the first message if no type is specified.

For detailed information on tuning these system resources, see Chapter 6, "Resource Controls (Overview)," in *System Administration Guide: Oracle Solaris Zones, Oracle Solaris 10 Containers, and Resource Management*.

System V Semaphores

System V semaphores provide counting semaphores in the Solaris OS. A *semaphore* is a counter used to provide access to a shared data object for multiple processes. In addition to the standard set and release operations for semaphores, System V semaphores can have values that are incremented and decremented as needed (for example, to represent the number of resources available). System V semaphores also provide the ability to do operations on a group of semaphores simultaneously as well as to have the system undo the last operation by a process if the process dies.
System V Shared Memory

System V shared memory allows the creation of a segment by a process. Cooperating processes can attach to the memory segment (subject to access permissions on the segment) and gain access to the data contained in the segment. This capability is implemented as a loadable module. Entries in the `/etc/system` file must contain the `shmsys:` prefix. Starting with the Solaris 7 release, the `keyserv` daemon uses System V shared memory.

A special kind of shared memory known as *intimate shared memory* (ISM) is used by DBMS vendors to maximize performance. When a shared memory segment is made into an ISM segment, the memory for the segment is locked. This feature enables a faster I/O path to be followed and improves memory usage. A number of kernel resources describing the segment are then shared between all processes that attach to the segment in ISM mode.

segspt_minfree

<table>
<thead>
<tr>
<th>Description</th>
<th>Identifies pages of system memory that cannot be allocated for ISM shared memory.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Unsigned long</td>
</tr>
<tr>
<td>Default</td>
<td>5 percent of available system memory when the first ISM segment is created</td>
</tr>
<tr>
<td>Range</td>
<td>0 to 50 percent of physical memory</td>
</tr>
<tr>
<td>Units</td>
<td>Pages</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>Validation</td>
<td>None. Values that are too small can cause the system to hang or performance to severely degrade when memory is consumed with ISM segments.</td>
</tr>
<tr>
<td>When to Change</td>
<td>On database servers with large amounts of physical memory using ISM, the value of this parameter can be decreased. If ISM segments are not used, this parameter has no effect. A maximum value of 128 MB (0x4000) is almost certainly sufficient on large memory machines.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>
Scheduling

rechoose_interval

Description: Specifies the number of clock ticks before a process is deemed to have lost all affinity for the last CPU it ran on. After this interval expires, any CPU is considered a candidate for scheduling a thread. This parameter is relevant only for threads in the timesharing class. Real-time threads are scheduled on the first available CPU.

Data Type: Signed integer
Default: 3
Range: 0 to MAXINT
Dynamic?: Yes
Validation: None
When to Change: When caches are large, or when the system is running a critical process or a set of processes that seem to suffer from excessive cache misses not caused by data access patterns.

Consider using the processor set capabilities available as of the Solaris 2.6 release or processor binding before changing this parameter. For more information, see `psrset(1M)` or `pbind(1M)`.

Commitment Level: Unstable

Timers

hires_tick

Description: When set, this parameter causes the Solaris OS to use a system clock rate of 1000 instead of the default value of 100.

Data Type: Signed integer
Default: 0
Range: 0 (disabled) or 1 (enabled)
Dynamic?: No. Causes new system timing variable to be set at boot time. Not referenced after boot.
Validation: None
When to Change: When you want timeouts with a resolution of less than 10 milliseconds, and greater than or equal to 1 millisecond.
Commitment Level: Unstable

timer_max
Description: Specifies the number of POSIX timers available.
Data Type: Signed integer
Default: 32
Range: 0 to MAXINT
Dynamic?: No. Increasing the value can cause a system crash.
Validation: None
When to Change: When the default number of timers offered by the system is inadequate. Applications receive an EAGAIN error when executing timer_create system calls.
Commitment Level: Unstable

sun4u or sun4v Specific Parameters

consistent_coloring
Description: Starting with the Solaris 2.6 release, the ability to use different page placement policies on the UltraSPARC (sun4u) platform was introduced. A page placement policy attempts to allocate physical page addresses to maximize the use of the L2 cache. Whatever algorithm is chosen as the default algorithm, that algorithm can potentially provide less optimal results than another algorithm for a particular application set. This parameter changes the placement algorithm selected for all processes on the system.

Based on the size of the L2 cache, memory is divided into bins. The page placement code allocates a page from a bin when a page fault first occurs on an unmapped page. The page chosen depends on which of the three possible algorithms are used:
Page coloring – Various bits of the virtual address are used to
determine the bin from which the page is selected. This is the
default algorithm in the Solaris 8 release. consistent_coloring is
set to zero to use this algorithm. No per-process history exists for
this algorithm.

Virtual addr=physical address – Consecutive pages in the program
selects pages from consecutive bins. consistent_coloring is set to
1 to use this algorithm. No per-process history exists for this
algorithm.

Bin-hopping – Consecutive pages in the program generally allocate
pages from every other bin, but the algorithm occasionally skips
more bins. consistent_coloring is set to 2 to use this algorithm.
Each process starts at a randomly selected bin, and a per-process
memory of the last bin allocated is kept.

Dynamic? Yes
Validation None. Values larger than 2 cause a number of WARNING: AS_2_BIN:
bad consistent coloring value messages to appear on the console.
The system hangs immediately thereafter. A power-cycle is required to
recover.

When to Change When the primary workload of the system is a set of long-running
high-performance computing (HPC) applications. Changing this value
might provide better performance. File servers, database servers, and
systems with a number of active processes (for example, compile or
time sharing servers) do not benefit from changes.

Commitment Level Unstable

tsb_alloc_hiwater_factor

Description Initializes tsb_alloc_hiwater to impose an upper limit on the amount
of physical memory that can be allocated for translation storage buffers
(TSBs) as follows:

\[
\text{tsb_alloc_hiwater} = \frac{\text{physical memory (bytes)}}{\text{tsb_alloc_hiwater_factor}}
\]

When the memory that is allocated to TSBs is equal to the value of
\text{tsb_alloc_hiwater}, the TSB memory allocation algorithm attempts
to reclaim TSB memory as pages are unmapped.
Exercise caution when using this factor to increase the value of `tsb_alloc_hiwater`. To prevent system hangs, the resulting high water value must be considerably lower than the value of `swapfs_minfree` and `segspt_minfree`.

default_tsb_size

Description: Selects size of the initial translation storage buffers (TSBs) allocated to all processes.

Data Type: Integer

Default: Default is 0 (8 KB), which corresponds to 512 entries

Range:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8 KB</td>
</tr>
<tr>
<td>1</td>
<td>16 KB</td>
</tr>
<tr>
<td>3</td>
<td>32 KB</td>
</tr>
<tr>
<td>4</td>
<td>128 KB</td>
</tr>
<tr>
<td>5</td>
<td>256 KB</td>
</tr>
<tr>
<td>6</td>
<td>512 KB</td>
</tr>
</tbody>
</table>
sun4u or sun4v Specific Parameters

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1 Mbyte</td>
</tr>
</tbody>
</table>

Dynamic? Yes
Validation None
When to Change Generally, you do not need to change this value. However, doing so might provide some advantages if the majority of processes on the system have a larger than average working set, or if resident set size (RSS) sizing is disabled.

Commitment Level Unstable

enable_tsb_rss_sizing

Description Enables a resident set size (RSS) based TSB sizing heuristic.
Data Type Boolean
Default 1 (TSBs can be resized)
Range 0 (TSBs remain at tsb_default_size) or 1 (TSBs can be resized)
If set to 0, then tsb_rss_factor is ignored.
Dynamic? Yes
Validation Yes
When to Change Can be set to 0 to prevent growth of the TSBs. Under most circumstances, this parameter should be left at the default setting.
Commitment Level Unstable

tsb_rss_factor

Description Controls the RSS to TSB span ratio of the RSS sizing heuristic. This factor divided by 512 yields the percentage of the TSB span which must be resident in memory before the TSB is considered as a candidate for resizing.
Data Type Integer
384, resulting in a value of 75%. Thus, when the TSB is 3/4 full, its size will be increased. Note that some virtual addresses typically map to the same slot in the TSB. Therefore, conflicts can occur before the TSB is at 100% full.

Range 0 to 512

Dynamic? Yes

Validation None

When to Change If the system is experiencing an excessive number of traps due to TSB misses, for example, due to virtual address conflicts in the TSB, you might consider decreasing this value toward 0.

For example, changing `tsb_rss_factor` to 256 (effectively, 50%) instead of 384 (effectively, 75%) might help eliminate virtual address conflicts in the TSB in some cases, but will use more kernel memory, particularly on a heavily loaded system.

TSB activity can be monitored with the `trapstat -T` command.

Commitment Level Unstable

Locality Group Parameters

This section provides generic memory tunables, which apply to any SPARC or x86 system that uses a Non-Uniform Memory Architecture (NUMA).

lpg_alloc_prefer

Description Controls a heuristic for allocation of large memory pages when the requested page size is not immediately available in the local memory group, but could be satisfied from a remote memory group.

By default, the Solaris OS allocates a remote large page if local free memory is fragmented, but remote free memory is not. Setting this parameter to 1 indicates that additional effort should be spent attempting to allocate larger memory pages locally, potentially moving smaller pages around to coalesce larger pages in the local memory group.

Data Type Boolean
Locality Group Parameters

Default

0 (Prefer remote allocation if local free memory is fragmented and remote free memory is not)

Range

0 (Prefer remote allocation if local free memory is fragmented and remote free memory is not)

1 (Prefer local allocation whenever possible, even if local free memory is fragmented and remote free memory is not)

Dynamic? No

Validation None

When to Change This parameter might be set to 1 if long-running programs on the system tend to allocate memory that is accessed by a single program, or if memory that is accessed by a group of programs is known to be running in the same locality group (lgroup). In these circumstances, the extra cost of page coalesce operations can be amortized over the long run of the programs.

This parameter might be left at the default value (0) if multiple programs tend to share memory across different locality groups, or if pages tend to be used for short periods of time. In these circumstances, quick allocation of the requested size tends to be more important than allocation in a particular location.

Page locations and sizes might be observed by using the NUMA observability tools, available at http://hub.opensolaris.org/bin/view/Main/. TLB miss activity might be observed by using the trapstat -T command.

Commitment Level Uncommitted

lgrp_mem_default_policy

Description This variable reflects the default memory allocation policy used by the Solaris OS. This variable is an integer, and its value should correspond to one of the policies listed in the sys/lgrp.h file.

Data Type Integer

Default 1, LGRP_MEM_POLICY_NEXT indicating that memory allocation defaults to the home lgroup of the thread performing the memory allocation.

Range Possible values are:
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>LGRP_MEM_POLICY_DEFAULT</td>
<td>use system default policy</td>
</tr>
<tr>
<td>1</td>
<td>LGRP_MEM_POLICY_NEXT</td>
<td>next to allocating thread’s home lgroup</td>
</tr>
<tr>
<td>2</td>
<td>LGRP_MEM_POLICY_RANDOM_PROC</td>
<td>randomly across process</td>
</tr>
<tr>
<td>3</td>
<td>LGRP_MEM_POLICY_RANDOM_PSET</td>
<td>randomly across processor set</td>
</tr>
<tr>
<td>4</td>
<td>LGRP_MEM_POLICY_RANDOM</td>
<td>randomly across all lgroups</td>
</tr>
<tr>
<td>5</td>
<td>LGRP_MEM_POLICY_ROUNDROBIN</td>
<td>round robin across all lgroups</td>
</tr>
<tr>
<td>6</td>
<td>LGRP_MEM_POLICY_NEXT_CPU</td>
<td>near next CPU to touch memory</td>
</tr>
</tbody>
</table>

Dynamic? No
Validation None
When to Change For applications that are sensitive to memory latencies due to allocations that occur from remote versus local memory on systems that use NUMA.
Commitment Level Uncommitted

lgrp_mem_pset_aware

Description If a process is running within a user processor set, this variable determines whether randomly placed memory for the process is selected from among all the lgroups in the system or only from those lgroups that are spanned by the processors in the processor set.

For more information about creating processor sets, see `psrset(1M)`.

Data Type Boolean
Default 0, the Solaris OS selects memory from all the lgroups in the system
Range
- 0, the Solaris OS selects memory from all the lgroups in the system (default)
- 1, try selecting memory only from those lgroups that are spanned by the processors in the processor set. If the first attempt fails, memory can be allocated in any lgroup.
Dynamic? No
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>Setting this value to a value of one (1) might lead to more reproducible performance when processor sets are used to isolate applications from one another.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Uncommitted</td>
</tr>
</tbody>
</table>
This section describes the NFS tunable parameters.

- “Tuning the NFS Environment” on page 95
- “NFS Module Parameters” on page 96
- “nfssrv Module Parameters” on page 123
- “rpcmod Module Parameters” on page 126

Where to Find Tunable Parameter Information

<table>
<thead>
<tr>
<th>Tunable Parameter</th>
<th>For Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris kernel tunables</td>
<td>Chapter 2, “Oracle Solaris Kernel Tunable Parameters”</td>
</tr>
<tr>
<td>Internet Protocol Suite tunable parameters</td>
<td>Chapter 4, “Internet Protocol Suite Tunable Parameters”</td>
</tr>
<tr>
<td>Network Cache and Accelerator (NCA) tunable parameters</td>
<td>Chapter 5, “Network Cache and Accelerator Tunable Parameters”</td>
</tr>
</tbody>
</table>

Tuning the NFS Environment

You can define NFS parameters in the `/etc/system` file, which is read during the boot process. Each parameter includes the name of its associated kernel module. For more information, see “Tuning a Solaris System” on page 19.
Caution – The names of the parameters, the modules that they reside in, and the default values can change between releases. Check the documentation for the version of the active SunOS release before making changes or applying values from previous releases.

NFS Module Parameters

This section describes parameters related to the NFS kernel module.

nfs:nfs3_pathconf_disable_cache

Description
Controls the caching of pathconf information for NFS Version 3 mounted file systems.

Data Type
Integer (32-bit)

Default
0 (caching enabled)

Range
0 (caching enabled) or 1 (caching disabled)

Units
Boolean values

Dynamic?
Yes

Validation
None

When to Change
The pathconf information is cached on a per file basis. However, if the server can change the information for a specific file dynamically, use this parameter to disable caching. There is no mechanism for the client to validate its cache entry.

Commitment Level
Unstable

nfs:nfs4_pathconf_disable_cache

Description
Controls the caching of pathconf information for NFS Version 4 mounted file systems.

Data Type
Integer (32-bit)

Default
0 (caching enabled)

Range
0 (caching enabled) or 1 (caching disabled)

Units
Boolean values

Dynamic?
Yes
Validation | None
When to Change | The `pathconf` information is cached on a per file basis. However, if the server can change the information for a specific file dynamically, use this parameter to disable caching. There is no mechanism for the client to validate its cache entry.
Commitment Level | Unstable

nfs:nfs_allow_preepoch_time

Description | Controls whether files with incorrect or negative time stamps should be made visible on the client.

Historically, neither the NFS client nor the NFS server would do any range checking on the file times being returned. The over-the-wire timestamp values are unsigned and 32-bits long. So, all values have been legal.

However, on a system running a 32-bit Solaris kernel, the timestamp values are signed and 32-bits long. Thus, it would be possible to have a timestamp representation that appeared to be prior to January 1, 1970, or *pre-epoch*.

The problem on a system running a 64-bit Solaris kernel is slightly different. The timestamp values on the 64-bit Solaris kernel are signed and 64-bits long. It is impossible to determine whether a time field represents a full 32-bit time or a negative time, that is, a time prior to January 1, 1970.

It is impossible to determine whether to sign extend a time value when converting from 32 bits to 64 bits. The time value should be sign extended if the time value is truly a negative number. However, the time value should not be sign extended if it does truly represent a full 32-bit time value. This problem is resolved by simply disallowing full 32-bit time values.

Data Type	Integer (32-bit)
Default	0 (32-bit time stamps disabled)
Range	0 (32-bit time stamps disabled) or 1 (32-bit time stamps enabled)
Units	Boolean values
Dynamic?	Yes
Validation | None
---|---
When to Change | Even during normal operation, it is possible for the timestamp values on some files to be set very far in the future or very far in the past. If access to these files is preferred using NFS mounted file systems, set this parameter to 1 to allow the timestamp values to be passed through unchecked.
Commitment Level | Unstable

nfs:nfs_cots_timeo

Description
Controls the default RPC timeout for NFS version 2 mounted file systems using connection-oriented transports such as TCP for the transport protocol.

Data Type
Signed integer (32-bit)

Default
600 (60 seconds)

Range
0 to \(2^{31} - 1\)

Units
10th of seconds

Dynamic?
Yes, but the RPC timeout for a file system is set when the file system is mounted. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation | None

When to Change
TCP does a good job ensuring requests and responses are delivered appropriately. However, if the round-trip times are very large in a particularly slow network, the NFS version 2 client might time out prematurely.

Increase this parameter to prevent the client from timing out incorrectly. The range of values is very large, so increasing this value too much might result in situations where a retransmission is not detected for long periods of time.

Commitment Level | Unstable

nfs:nfs3_cots_timeo

Description
Controls the default RPC timeout for NFS version 3 mounted file systems using connection-oriented transports such as TCP for the transport protocol.
<table>
<thead>
<tr>
<th>Data Type</th>
<th>Signed integer (32-bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>600 (60 seconds)</td>
</tr>
<tr>
<td>Range</td>
<td>0 to $2^{31} - 1$</td>
</tr>
<tr>
<td>Units</td>
<td>10th of seconds</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes, but the RPC timeout for a file system is set when the file system is mounted. To affect a particular file system, unmount and mount the file system after changing this parameter.</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>TCP does a good job ensuring requests and responses are delivered appropriately. However, if the round-trip times are very large in a particularly slow network, the NFS version 3 client might time out prematurely. Increase this parameter to prevent the client from timing out incorrectly. The range of values is very large, so increasing this value too much might result in situations where a retransmission is not detected for long periods of time.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

nfs:nfs4_cots_timeo

Description

Controls the default RPC timeout for NFS version 4 mounted file systems using connection-oriented transports such as TCP for the transport protocol.

The NFS Version 4 protocol specification disallows retransmission over the same TCP connection. Thus, this parameter primarily controls how quickly the client responds to certain events, such as detecting a forced unmount operation or detecting how quickly the server fails over to a new server.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Signed integer (32-bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>600 (60 seconds)</td>
</tr>
<tr>
<td>Range</td>
<td>0 to $2^{31} - 1$</td>
</tr>
<tr>
<td>Units</td>
<td>10th of seconds</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes, but this parameter is set when the file system is mounted. To affect a particular file system, unmount and mount the file system after changing this parameter.</td>
</tr>
</tbody>
</table>
Validation: None

When to Change: TCP does a good job ensuring requests and responses are delivered appropriately. However, if the round-trip times are very large in a particularly slow network, the NFS version 4 client might time out prematurely.

Increase this parameter to prevent the client from timing out incorrectly. The range of values is very large, so increasing this value too much might result in situations where a retransmission is not detected for long periods of time.

Commitment Level: Unstable

nfs:nfs_do_symmlink_cache

Description: Controls whether the contents of symbolic link files are cached for NFS version 2 mounted file systems.

Data Type: Integer (32-bit)

Default: 1 (caching enabled)

Range: 0 (caching disabled) or 1 (caching enabled)

Units: Boolean values

Dynamic?: Yes

Validation: None

When to Change: If a server changes the contents of a symbolic link file without updating the modification timestamp on the file or if the granularity of the timestamp is too large, then changes to the contents of the symbolic link file might not be visible on the client for extended periods. In this case, use this parameter to disable the caching of symbolic link contents. Doing so makes the changes immediately visible to applications running on the client.

Commitment Level: Unstable

nfs:nfs3_do_symmlink_cache

Description: Controls whether the contents of symbolic link files are cached for NFS version 3 mounted file systems.

Data Type: Integer (32-bit)
nfs:nfs4_do_symlink_cache

Description Controls whether the contents of symbolic link files are cached for NFS version 4 mounted file systems.

Data Type Integer (32-bit)

Default 1 (caching enabled)

Range 0 (caching disabled) or 1 (caching enabled)

Units Boolean values

Dynamic? Yes

Validation None

When to Change If a server changes the contents of a symbolic link file without updating the modification timestamp on the file or if the granularity of the timestamp is too large, then changes to the contents of the symbolic link file might not be visible on the client for extended periods. In this case, use this parameter to disable the caching of symbolic link contents. Doing so makes the changes immediately visible to applications running on the client.

Commitment Level Unstable
nfs:nfs_dynamic

Description
Controls whether a feature known as *dynamic retransmission* is enabled for NFS version 2 mounted file systems using connectionless transports such as UDP. This feature attempts to reduce retransmissions by monitoring server response times and then adjusting RPC timeouts and read- and write- transfer sizes.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Integer (32-bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>1 (enabled)</td>
</tr>
<tr>
<td>Range</td>
<td>0 (disabled) or 1 (enabled)</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes, but this parameter is set per file system at mount time. To affect a particular file system, unmount and mount the file system after changing this parameter.</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>Do not change this parameter.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

nfs:nfs3_dynamic

Description
Controls whether a feature known as *dynamic retransmission* is enabled for NFS version 3 mounted file systems using connectionless transports such as UDP. This feature attempts to reduce retransmissions by monitoring server response times and then adjusting RPC timeouts and read- and write- transfer sizes.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Integer (32-bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>0 (disabled)</td>
</tr>
<tr>
<td>Range</td>
<td>0 (disabled) or 1 (enabled)</td>
</tr>
<tr>
<td>Units</td>
<td>Boolean values</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes, but this parameter is set per file system at mount time. To affect a particular file system, unmount and mount the file system after changing this parameter.</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>Do not change this parameter.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>
nfs:nfs_lookup_neg_cache

Description Controls whether a negative name cache is used for NFS version 2 mounted file systems. This negative name cache records file names that were looked up, but not found. The cache is used to avoid over-the-network look-up requests made for file names that are already known to not exist.

Data Type Integer (32-bit)

Default 1 (enabled)

Range 0 (disabled) or 1 (enabled)

Units Boolean values

Dynamic? Yes

Validation None

When to Change For the cache to perform correctly, negative entries must be strictly verified before they are used. This consistency mechanism is relaxed slightly for read-only mounted file systems. It is assumed that the file system on the server is not changing or is changing very slowly, and that it is okay for such changes to propagate slowly to the client. The consistency mechanism becomes the normal attribute cache mechanism in this case.

If file systems are mounted read-only on the client, but are expected to change on the server and these changes need to be seen immediately by the client, use this parameter to disable the negative cache.

If you disable the `nfs:nfs_disable_rddir_cache` parameter, you should probably also disable this parameter. For more information, see “nfs:nfs_disable_rddir_cache” on page 113.

Commitment Level Unstable

nfs:nfs3_lookup_neg_cache

Description Controls whether a negative name cache is used for NFS version 3 mounted file systems. This negative name cache records file names that were looked up, but were not found. The cache is used to avoid over-the-network look-up requests made for file names that are already known to not exist.

Data Type Integer (32-bit)
Default: 1 (enabled)
Range: 0 (disabled) or 1 (enabled)
Units: Boolean values
Dynamic?: Yes
Validation: None
When to Change: For the cache to perform correctly, negative entries must be strictly verified before they are used. This consistency mechanism is relaxed slightly for read-only mounted file systems. It is assumed that the file system on the server is not changing or is changing very slowly, and that it is okay for such changes to propagate slowly to the client. The consistency mechanism becomes the normal attribute cache mechanism in this case.
If file systems are mounted read-only on the client, but are expected to change on the server and these changes need to be seen immediately by the client, use this parameter to disable the negative cache.
If you disable the nfs:nfs_disable_rddir_cache parameter, you should probably also disable this parameter. For more information, see “nfs:nfs_disable_rddir_cache” on page 113.
Commitment Level: Unstable

nfs:nfs4_lookup_neg_cache
Description: Controls whether a negative name cache is used for NFS version 4 mounted file systems. This negative name cache records file names that were looked up, but were not found. The cache is used to avoid over-the-network look-up requests made for file names that are already known to not exist.
Data Type: Integer (32-bit)
Default: 1 (enabled)
Range: 0 (disabled) or 1 (enabled)
Units: Boolean values
Dynamic?: Yes
Validation: None
When to Change For the cache to perform correctly, negative entries must be strictly verified before they are used. This consistency mechanism is relaxed slightly for read-only mounted file systems. It is assumed that the file system on the server is not changing or is changing very slowly, and that it is okay for such changes to propagate slowly to the client. The consistency mechanism becomes the normal attribute cache mechanism in this case.

If file systems are mounted read-only on the client, but are expected to change on the server and these changes need to be seen immediately by the client, use this parameter to disable the negative cache.

If you disable the `nfs:nfs_disable_rddir_cache` parameter, you should probably also disable this parameter. For more information, see “nfs:nfs_disable_rddir_cache” on page 113.

Commitment Level Unstable

nfs:nfs_max_threads

Description Controls the number of kernel threads that perform asynchronous I/O for the NFS version 2 client. Because NFS is based on RPC and RPC is inherently synchronous, separate execution contexts are required to perform NFS operations that are asynchronous from the calling thread.

The operations that can be executed asynchronously are read for read-ahead, readdir for readdir read-ahead, write for putpage and pageio operations, commit, and inactive for cleanup operations that the client performs when it stops using a file.

Data Type Integer (16-bit)

Default 8

Range 0 to $2^{15} - 1$

Units Threads

Dynamic? Yes, but this parameter is set per file system at mount time. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation None

When to Change To increase or reduce the number of simultaneous I/O operations that are outstanding at any given time. For example, for a very low bandwidth network, you might want to decrease this value so that the
NFS client does not overload the network. Alternately, if the network is very high bandwidth, and the client and server have sufficient resources, you might want to increase this value. Doing so can more effectively utilize the available network bandwidth, and the client and server resources.

Commitment Level Unstable

nfs:nfs3_max_threads

Description Controls the number of kernel threads that perform asynchronous I/O for the NFS version 3 client. Because NFS is based on RPC and RPC is inherently synchronous, separate execution contexts are required to perform NFS operations that are asynchronous from the calling thread.

The operations that can be executed asynchronously are read for read-ahead, readdir for readdir read-ahead, write for putpage and pageio requests, and commit.

Data Type Integer (16-bit)

Default 8

Range 0 to $2^{15} - 1$

Units Threads

Dynamic? Yes, but this parameter is set per file system at mount time. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation None

When to Change To increase or reduce the number of simultaneous I/O operations that are outstanding at any given time. For example, for a very low bandwidth network, you might want to decrease this value so that the NFS client does not overload the network. Alternately, if the network is very high bandwidth, and the client and server have sufficient resources, you might want to increase this value. Doing so can more effectively utilize the available network bandwidth, and the client and server resources.

Commitment Level Unstable
nfs:nfs4_max_threads

Description
Controls the number of kernel threads that perform asynchronous I/O for the NFS version 4 client. Because NFS is based on RPC and RPC is inherently synchronous, separate execution contexts are required to perform NFS operations that are asynchronous from the calling thread.

The operations that can be executed asynchronously are read for read-ahead, write-behind, directory read-ahead, and cleanup operations that the client performs when it stops using a file.

Data Type
Integer (16-bit)

Default
8

Range
0 to $2^{15} - 1$

Units
Threads

Dynamic?
Yes, but this parameter is set per file system at mount time. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation
None

When to Change
To increase or reduce the number of simultaneous I/O operations that are outstanding at any given time. For example, for a very low bandwidth network, you might want to decrease this value so that the NFS client does not overload the network. Alternately, if the network is very high bandwidth, and the client and server have sufficient resources, you might want to increase this value. Doing so can more effectively utilize the available network bandwidth, and the client and server resources.

Commitment Level
Unstable

nfs:nfs_nra

Description
Controls the number of read-ahead operations that are queued by the NFS version 2 client when sequential access to a file is discovered. These read-ahead operations increase concurrency and read throughput. Each read-ahead request is generally for one logical block of file data.

Data Type
Integer (32-bit)

Default
4
nfs:nfs3_nra

Description
Controls the number of read-ahead operations that are queued by the NFS version 3 client when sequential access to a file is discovered. These read-ahead operations increase concurrency and read throughput. Each read-ahead request is generally for one logical block of file data.

Data Type
Integer (32-bit)

Default
4

Range
0 to \(2^{31} - 1\)

Units
Logical blocks. (See "nfs:nfs3_bsize" on page 114.)

Dynamic?
Yes

Validation
None

When to Change
To increase or reduce the number of read-ahead requests that are outstanding for a specific file at any given time. For example, for a very low bandwidth network or on a low memory client, you might want to decrease this value so that the NFS client does not overload the network or the system memory. Alternately, if the network is very high bandwidth, and the client and server have sufficient resources, you might want to increase this value. Doing so can more effectively utilize the available network bandwidth, and the client and server resources.

Commitment Level
Unstable
nfs:nfs4_nra

Description
Controls the number of read-ahead operations that are queued by the NFS version 4 client when sequential access to a file is discovered. These read-ahead operations increase concurrency and read throughput. Each read-ahead request is generally for one logical block of file data.

Data Type
Integer (32-bit)

Default
4

Range
0 to $2^{31} - 1$

Units
Logical blocks. (See “nfs:nfs4_bsize” on page 115.)

Dynamic?
Yes

Validation
None

When to Change
To increase or reduce the number of read-ahead requests that are outstanding for a specific file at any given time. For example, for a very low bandwidth network or on a low memory client, you might want to decrease this value so that the NFS client does not overload the network or the system memory. Alternately, if the network is very high bandwidth, and the client and server have sufficient resources, you might want to increase this value. Doing so can more effectively utilize the available network bandwidth, and the client and server resources.

Commitment Level
Unstable

nfs:nrnode

Description
Controls the size of the rnode cache on the NFS client.

The rnode, used by both NFS version 2, 3, and 4 clients, is the central data structure that describes a file on the NFS client. The rnode contains the file handle that identifies the file on the server. The rnode also contains pointers to various caches used by the NFS client to avoid network calls to the server. Each rnode has a one-to-one association with a vnode. The vnode caches file data.

The NFS client attempts to maintain a minimum number of rnodes to attempt to avoid destroying cached data and metadata. When an rnode is reused or freed, the cached data and metadata must be destroyed.

Data Type
Integer (32-bit)
Default

The default setting of this parameter is 0, which means that the value of `nrnode` should be set to the value of the `ncsiz` parameter. Actually, any non positive value of `nrnode` results in `nrnode` being set to the value of `ncsiz`.

Range

1 to $2^{31} - 1$

Units

rnodes

Dynamic?

No. This value can only be changed by adding or changing the parameter in the `/etc/system` file, and then rebooting the system.

Validation

The system enforces a maximum value such that the `rnode` cache can only consume 25 percent of available memory.

When to Change

Because rnodes are created and destroyed dynamically, the system tends to settle upon a `rnode-size` cache, automatically adjusting the size of the cache as memory pressure on the system increases or as more files are simultaneously accessed. However, in certain situations, you could set the value of `nrnode` if the mix of files being accessed can be predicted in advance. For example, if the NFS client is accessing a few very large files, you could set the value of `nrnode` to a small number so that system memory can cache file data instead of `rnodes`. Alternately, if the client is accessing many small files, you could increase the value of `nrnode` to optimize for storing file metadata to reduce the number of network calls for metadata.

Although it is not recommended, the `rnode` cache can be effectively disabled by setting the value of `nrnode` to 1. This value instructs the client to only cache 1 `rnode`, which means that it is reused frequently.

Commitment Level

Unstable

nfs:nfs_shrinkreaddir

Description

Some older NFS servers might incorrectly handle NFS version 2 `READDIR` requests for more than 1024 bytes of directory information. This problem is due to a bug in the server implementation. However, this parameter contains a workaround in the NFS version 2 client.

When this parameter is enabled, the client does not generate a `READDIR` request for larger than 1024 bytes of directory information. If this parameter is disabled, then the over-the-wire size is set to the lesser of either the size passed in by using the `getdents` system call or by using `NFS_MAXDATA`, which is 8192 bytes. For more information, see `getdents(2)`.
Data Type Integer (32-bit)
Default 0 (disabled)
Range 0 (disabled) or 1 (enabled)
Units Boolean values
Dynamic? Yes
Validation None
When to Change Examine the value of this parameter if an older NFS version 2 only server is used and interoperability problems occur when the server tries to read directories. Enabling this parameter might cause a slight decrease in performance for applications that read directories.

Commitment Level Unstable

nfs:nfs3_shrinkreaddir

Description Some older NFS servers might incorrectly handle NFS version 3 READDIR requests for more than 1024 bytes of directory information. This problem is due to a bug in the server implementation. However, this parameter contains a workaround in the NFS version 3 client.

When this parameter is enabled, the client does not generate a READDIR request for larger than 1024 bytes of directory information. If this parameter is disabled, then the over-the-wire size is set to the minimum of either the size passed in by using the getdents system call or by using MAXBSIZE, which is 8192 bytes. For more information, see `getdents(2)`.

Data Type Integer (32-bit)
Default 0 (disabled)
Range 0 (disabled) or 1 (enabled)
Units Boolean values
Dynamic? Yes
Validation None
When to Change Examine the value of this parameter if an older NFS version 3 only server is used and interoperability problems occur when the server tries to read directories. Enabling this parameter might cause a slight decrease in performance for applications that read directories.
NFS Module Parameters

<table>
<thead>
<tr>
<th>Commitment Level</th>
<th>Unstable</th>
</tr>
</thead>
</table>

nfs:nfs_write_error_interval

- **Description**: Controls the time duration in between logging ENOSPC and EDQUOT write errors received by the NFS client. This parameter affects NFS version 2, 3, and 4 clients.
- **Data Type**: Long integer (32 bits on 32-bit platforms and 64 bits on 64-bit platforms)
- **Default**: 5 seconds
- **Range**: 0 to $2^{31} - 1$ on 32-bit platforms

 0 to $2^{63} - 1$ on 64-bit platforms
- **Units**: Seconds
- **Dynamic?**: Yes
- **Validation**: None
- **When to Change**: Increase or decrease the value of this parameter in response to the volume of messages being logged by the client. Typically, you might want to increase the value of this parameter to decrease the number of out of space messages being printed when a full file system on a server is being actively used.

<table>
<thead>
<tr>
<th>Commitment Level</th>
<th>Unstable</th>
</tr>
</thead>
</table>

nfs:nfs_write_error_to_cons_only

- **Description**: Controls whether NFS write errors are logged to the system console and syslog or to the system console only. This parameter affects messages for NFS version 2, 3, and 4 clients.
- **Data Type**: Integer (32-bit)
- **Default**: 0 (system console and syslog)
- **Range**: 0 (system console and syslog) or 1 (system console)
- **Units**: Boolean values
- **Dynamic?**: Yes
- **Validation**: None
When to Change
Examine the value of this parameter to avoid filling up the file system containing the messages logged by the syslogd daemon. When this parameter is enabled, messages are printed on the system console only and are not copied to the syslog messages file.

Commitment Level
Unstable

nfs:nfs_disable_rddir_cache

Description
Controls the use of a cache to hold responses from READDIR and READDIRPLUS requests. This cache avoids over-the-wire calls to the server to retrieve directory information.

Data Type
Integer (32-bit)

Default
0 (caching enabled)

Range
0 (caching enabled) or 1 (caching disabled)

Units
Boolean values

Dynamic?
Yes

Validation
None

When to Change
Examine the value of this parameter if interoperability problems develop due to a server that does not update the modification time on a directory when a file or directory is created in it or removed from it. The symptoms are that new names do not appear in directory listings after they have been added to the directory or that old names do not disappear after they have been removed from the directory.

This parameter controls the caching for NFS version 2, 3, and 4 mounted file systems. This parameter applies to all NFS mounted file systems, so caching cannot be disabled or enabled on a per file system basis.

If you disable this parameter, you should also disable the following parameters to to prevent bad entries in the DNLC negative cache:

- “nfs:nfs_lookup_neg_cache” on page 103
- “nfs:nfs3_lookup_neg_cache” on page 103
- “nfs:nfs4_lookup_neg_cache” on page 104

Commitment Level
Unstable
nfs:nfs_bsize

Description
Controls the logical block size used by the NFS version 2 client. This block size represents the amount of data that the client attempts to read from or write to the server when it needs to do an I/O.

Data Type
Unsigned integer (32-bit)

Default
8192 bytes

Range
0 to 2^{31} - 1

Units
Bytes

Dynamic?
Yes, but the block size for a file system is set when the file system is mounted. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation
None. Setting this parameter too low or too high might cause the system to malfunction. Do not set this parameter to anything less than \(\text{PAGE}_\text{SIZE}\) for the specific platform. Do not set this parameter too high because it might cause the system to hang while waiting for memory allocations to be granted.

When to Change
Do not change this parameter.

Commitment Level
Unstable

nfs:nfs3_bsize

Description
Controls the logical block size used by the NFS version 3 client. This block size represents the amount of data that the client attempts to read from or write to the server when it needs to do an I/O.

Data Type
Unsigned integer (32-bit)

Default
32,768 (32 KB)

Range
0 to 2^{31} - 1

Units
Bytes

Dynamic?
Yes, but the block size for a file system is set when the file system is mounted. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation
None. Setting this parameter too low or too high might cause the system to malfunction. Do not set this parameter to anything less than \(\text{PAGE}_\text{SIZE}\) for the specific platform. Do not set this parameter too high because it might cause the system to hang while waiting for memory allocations to be granted.
PAGESIZE for the specific platform. Do not set this parameter too high because it might cause the system to hang while waiting for memory allocations to be granted.

When to Change
Examine the value of this parameter when attempting to change the maximum data transfer size. Change this parameter in conjunction with the nfs:nfs3_max_transfer_size parameter. If larger transfers are preferred, increase both parameters. If smaller transfers are preferred, then just reducing this parameter should suffice.

Commitment Level Unstable

nfs:nfs4_bsize

Description
Controls the logical block size used by the NFS version 4 client. This block size represents the amount of data that the client attempts to read from or write to the server when it needs to do an I/O.

Data Type
Unsigned integer (32-bit)

Default
32,768 (32 KB)

Range
0 to $2^{31} - 1$

Units
Bytes

Dynamic?
Yes, but the block size for a file system is set when the file system is mounted. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation
None. Setting this parameter too low or too high might cause the system to malfunction. Do not set this parameter to anything less than PAGESIZE for the specific platform. Do not set this parameter too high because it might cause the system to hang while waiting for memory allocations to be granted.

When to Change
Examine the value of this parameter when attempting to change the maximum data transfer size. Change this parameter in conjunction with the nfs:nfs4_max_transfer_size parameter. If larger transfers are preferred, increase both parameters. If smaller transfers are preferred, then just reducing this parameter should suffice.

Commitment Level Unstable
Description
Controls the mix of asynchronous requests that are generated by the NFS version 2 client. The four types of asynchronous requests are read-ahead, putpage, pageio, and readdir-ahead. The client attempts to round-robin between these different request types to attempt to be fair and not starve one request type in favor of another.

However, the functionality in some NFS version 2 servers such as write gathering depends upon certain behaviors of existing NFS Version 2 clients. In particular, this functionality depends upon the client sending out multiple WRITE requests at about the same time. If one request is taken out of the queue at a time, the client would be defeating this server functionality designed to enhance performance for the client.

Thus, use this parameter to control the number of requests of each request type that are sent out before changing types.

Data Type
Unsigned integer (32-bit)

Default
1

Range
0 to $2^{31} - 1$

Units
Asynchronous requests

Dynamic?
Yes, but the cluster setting for a file system is set when the file system is mounted. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation
None. However, setting the value of this parameter to 0 causes all of the queued requests of a particular request type to be processed before moving on to the next type. This effectively disables the fairness portion of the algorithm.

When to Change
To increase the number of each type of asynchronous request that is generated before switching to the next type. Doing so might help with server functionality that depends upon clusters of requests coming from the client.

Commitment Level
Unstable

nfs:nfs3_async_clusters

Description
Controls the mix of asynchronous requests that are generated by the NFS version 3 client. The five types of asynchronous requests are read-ahead, putpage, pageio, readdir-ahead, and commit. The client...
attempts to round-robin between these different request types to attempt to be fair and not starve one request type in favor of another.

However, the functionality in some NFS version 3 servers such as write gathering depends upon certain behaviors of existing NFS version 3 clients. In particular, this functionality depends upon the client sending out multiple WRITE requests at about the same time. If one request is taken out of the queue at a time, the client would be defeating this server functionality designed to enhance performance for the client.

Thus, use this parameter to control the number of requests of each request type that are sent out before changing types.

nfs:nfs4_async_clusters

Description
Controls the mix of asynchronous requests that are generated by the NFS version 4 client. The six types of asynchronous requests are read-ahead, putpage, pageio, readdir-ahead, commit, and inactive. The client attempts to round-robin between these different request types to attempt to be fair and not starve one request type in favor of another.

However, the functionality in some NFS version 4 servers such as write gathering depends upon certain behaviors of existing NFS version 4
clients. In particular, this functionality depends upon the client sending out multiple WRITE requests at about the same time. If one request is taken out of the queue at a time, the client would be defeating this server functionality designed to enhance performance for the client.

Thus, use this parameter to control the number of requests of each request type that are sent out before changing types.

Data Type
Unsigned integer (32-bit)

Default
1

Range
0 to $2^{31} - 1$

Units
Asynchronous requests

Dynamic?
Yes, but the cluster setting for a file system is set when the file system is mounted. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation
None. However, setting the value of this parameter to 0 causes all of the queued requests of a particular request type to be processed before moving on to the next type. This effectively disables the fairness portion of the algorithm.

When to Change
To increase the number of each type of asynchronous request that is generated before switching to the next type. Doing so might help with server functionality that depends upon clusters of requests coming from the client.

Commitment Level
Unstable

nfs:nfs_async_timeout

Description
Controls the duration of time that threads, which execute asynchronous I/O requests, sleep with nothing to do before exiting. When there are no more requests to execute, each thread goes to sleep. If no new requests come in before this timer expires, the thread wakes up and exits. If a request does arrive, a thread is woken up to execute requests until there are none again. Then, the thread goes back to sleep waiting for another request to arrive, or for the timer to expire.

Data Type
Integer (32-bit)

Default
6000 (1 minute expressed as 60 sec * 100Hz)

Range
0 to $2^{31} - 1$

Units
Hz. (Typically, the clock runs at 100Hz.)
Dynamic? Yes
Validation None. However, setting this parameter to a non positive value causes these threads exit as soon as there are no requests in the queue for them to process.

When to Change If the behavior of applications in the system is known precisely and the rate of asynchronous I/O requests can be predicted, it might be possible to tune this parameter to optimize performance slightly in either of the following ways:

- By making the threads expire more quickly, thus freeing up kernel resources more quickly
- By making the threads expire more slowly, thus avoiding thread create and destroy overhead

Commitment Level Unstable

nfs:nacache

Description Tunes the number of hash queues that access the file access cache on the NFS client. The file access cache stores file access rights that users have with respect to files that they are trying to access. The cache itself is dynamically allocated. However, the hash queues used to index into the cache are statically allocated. The algorithm assumes that there is one access cache entry per active file and four of these access cache entries per hash bucket. Thus, by default, the value of this parameter is set to the value of the \texttt{nrnode} parameter.

Data Type Integer (32-bit)
Default The default setting of this parameter is 0. This value means that the value of nacache should be set to the value of the \texttt{nrnode} parameter.
Range 1 to $2^{31} - 1$
Units Access cache entries
Dynamic? No. This value can only be changed by adding or changing the parameter in the \texttt{/etc/system} file, and then rebooting system.
Validation None. However, setting this parameter to a negative value will probably cause the system to try to allocate a very large set of hash queues. While trying to do so, the system is likely to hang.

When to Change Examine the value of this parameter if the basic assumption of one access cache entry per file would be violated. This violation could occur for systems in a timesharing mode where multiple users are accessing
the same file at about the same time. In this case, it might be helpful to increase the expected size of the access cache so that the hashed access to the cache stays efficient.

Commitment Level Unstable

nfs:nfs3_jukebox_delay

Description Controls the duration of time that the NFS version 3 client waits to transmit a new request after receiving the NFS3ERR_JUKEBOX error from a previous request. The NFS3ERR_JUKEBOX error is generally returned from the server when the file is temporarily unavailable for some reason. This error is generally associated with hierarchical storage, and CD or tape jukeboxes.

Data Type Long integer (32 bits on 32-bit platforms and 64 bits on 64-bit platforms)

Default 1000 (10 seconds expressed as 10 sec * 100Hz)

Range 0 to $2^{31} - 1$ on 32-bit platforms

Range 0 to $2^{63} - 1$ on 64-bit platforms

Units Hz. (Typically, the clock runs at 100Hz.)

Dynamic? Yes

Validation None

When to Change Examine the value of this parameter and perhaps adjust it to match the behaviors exhibited by the server. Increase this value if the delays in making the file available are long in order to reduce network overhead due to repeated retransmissions. Decrease this value to reduce the delay in discovering that the file has become available.

Commitment Level Unstable

nfs:nfs3_max_transfer_size

Description Controls the maximum size of the data portion of an NFS version 3 READ, WRITE, READDIR, or READDIRPLUS request. This parameter controls both the maximum size of the request that the server returns as well as the maximum size of the request that the client generates.

Data Type Integer (32-bit)
Default: 1,048,576 (1 Mbyte)
Range: 0 to $2^{31} - 1$
Units: Bytes
Dynamic?: Yes, but this parameter is set per file system at mount time. To affect a particular file system, unmount and mount the file system after changing this parameter.
Validation: None. However, setting the maximum transfer size on the server to 0 is likely to cause clients to malfunction or just decide not to attempt to talk to the server.

There is also a limit on the maximum transfer size when using NFS over the UDP transport. UDP has a hard limit of 64 KB per datagram. This 64 KB must include the RPC header as well as other NFS information, in addition to the data portion of the request. Setting the limit too high might result in errors from UDP and communication problems between the client and the server.

When to Change: To tune the size of data transmitted over the network. In general, the `nfs:nfs3_bsize` parameter should also be updated to reflect changes in this parameter.

For example, when you attempt to increase the transfer size beyond 32 KB, update `nfs:nfs3_bsize` to reflect the increased value. Otherwise, no change in the over-the-wire request size is observed. For more information, see "nfs:nfs3_bsize" on page 114.

If you want to use a smaller transfer size than the default transfer size, use the `mount` command's `-wsize` or `-rsize` option on a per-file system basis.

Commitment Level: Unstable

nfs:nfs4_max_transfer_size

Description: Controls the maximum size of the data portion of an NFS version 4 READ, WRITE, REaddir, or REaddirplus request. This parameter controls both the maximum size of the request that the server returns as well as the maximum size of the request that the client generates.

Data Type: Integer (32-bit)
Default: 32,768 (32 KB)
Range: 0 to $2^{31} - 1$
Units Bytes
Dynamic? Yes, but this parameter is set per file system at mount time. To affect a particular file system, unmount and mount the file system after changing this parameter.
Validation None. However, setting the maximum transfer size on the server to 0 is likely to cause clients to malfunction or just decide not to attempt to talk to the server.

There is also a limit on the maximum transfer size when using NFS over the UDP transport. For more information on the maximum for UDP, see "nfs:nfs3_max_transfer_size" on page 120.

When to Change To tune the size of data transmitted over the network. In general, the nfs:nfs4_bsize parameter should also be updated to reflect changes in this parameter.

For example, when you attempt to increase the transfer size beyond 32 KB, update nfs:nfs4_bsize to reflect the increased value. Otherwise, no change in the over-the-wire request size is observed. For more information, see "nfs:nfs4_bsize" on page 115.

If you want to use a smaller transfer size than the default transfer size, use the mount command's -wsize or -rsize option on a per-file system basis.
Commitment Level Unstable

nfs:nfs3_max_transfer_size_clts
Description Controls the maximum size of the data portion of an NFS version 3 READ, WRITE, READDIR, or READDIRPLUS request over UDP. This parameter controls both the maximum size of the request that the server returns as well as the maximum size of the request that the client generates.

Data Type Integer (32-bit)
Default 32,768 (32 KB)
Range 0 to 2^{31} - 1
Units Bytes
Dynamic? Yes, but this parameter is set per file system at mount time. To affect a particular file system, unmount and mount the file system after changing this parameter.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Data Type</th>
<th>Default</th>
<th>Range</th>
<th>Units</th>
<th>Dynamic?</th>
<th>Validation</th>
<th>When to Change</th>
<th>Commitment Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validity</td>
<td>None. However, setting the maximum transfer size on the server to 0 is likely to cause clients to malfunction or just decide not to attempt to talk to the server.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stable</td>
</tr>
<tr>
<td>When to Change</td>
<td>Do not change this parameter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stable</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stable</td>
</tr>
</tbody>
</table>

nfssrv:nfs3_max_transfer_size_cots

Description
Controls the maximum size of the data portion of an NFS version 3 READ, WRITE, REaddir, or REaddirPlus request over TCP. This parameter controls both the maximum size of the request that the server returns as well as the maximum size of the request that the client generates.

Data Type
Integer (32-bit)

Default
1048576 bytes

Range
0 to $2^{31} - 1$

Units
Bytes

Dynamic?
Yes, but this parameter is set per file system at mount time. To affect a particular file system, unmount and mount the file system after changing this parameter.

Validation
None. However, setting the maximum transfer size on the server to 0 is likely to cause clients to malfunction or just decide not to attempt to talk to the server.

When to Change
Do not change this parameter unless transfer sizes larger than 1 Mbyte are preferred.

Commitment Level
Unstable

nfssrv Module Parameters

This section describes NFS parameters for the nfssrv module.

nfssrv:nfs_portmon

Description
Controls some security checking that the NFS server attempts to do to enforce integrity on the part of its clients. The NFS server can check
whether the source port from which a request was sent was a reserved port. A reserved port has a number less than 1024. For BSD-based systems, these ports are reserved for processes being run by root. This security checking can prevent users from writing their own RPC-based applications that defeat the access checking that the NFS client uses.

DataType Integer (32-bit)

Default 0 (security checking disabled)

Range 0 (security checking disabled) or 1 (security checking enabled)

Units Boolean values

Dynamic? Yes

Validation None

When to Change Use this parameter to prevent malicious users from gaining access to files by using the NFS server that they would not ordinarily have access to. However, the reserved port notion is not universally supported. Thus, the security aspects of the check are very weak. Also, not all NFS client implementations bind their transport endpoints to a port number in the reserved range. Thus, interoperability problems might result if the security checking is enabled.

Commitment Level Unstable

nfssrv:rfs_write_async

Description Controls the behavior of the NFS version 2 server when it processes WRITE requests. The NFS version 2 protocol mandates that all modified data and metadata associated with the WRITE request reside on stable storage before the server can respond to the client. NFS version 2 WRITE requests are limited to 8192 bytes of data. Thus, each WRITE request might cause multiple small writes to the storage subsystem. This can cause a performance problem.

One method to accelerate NFS version 2 WRITE requests is to take advantage of a client behavior. Clients tend to send WRITE requests in batches. The server can take advantage of this behavior by clustering together the different WRITE requests into a single request to the underlying file system. Thus, the data to be written to the storage subsystem can be written in fewer, larger requests. This method can significantly increase the throughput for WRITE requests.

DataType Integer (32-bit)
nfssrv: nfsauth_ch_cache_max

<table>
<thead>
<tr>
<th>Description</th>
<th>Controls the size of the cache of client handles that contact the NFS authentication server. This server authenticates NFS clients to determine whether they are allowed access to the file handle that they are trying to use.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Integer (32-bit)</td>
</tr>
<tr>
<td>Default</td>
<td>16</td>
</tr>
<tr>
<td>Range</td>
<td>0 to $2^{31} - 1$</td>
</tr>
<tr>
<td>Units</td>
<td>Client handles</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>This cache is not dynamic, so attempts to allocate a client handle when all are busy will fail. This failure results in requests being dropped by the NFS server because they could not be authenticated. Most often, this result is not a problem because the NFS client just times out and retransmits the request. However, for soft-mounted file systems on the client, the client might time out, not retry the request, and then return an error to the application. This situation might be avoided if you ensure that the size of the cache on the server is large enough to handle the load.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>
nfssrv:exi_cache_time

Description
Controls the duration of time that entries are held in the NFS authentication cache before being purged due to memory pressure in the system.

Data Type
Long integer (32 bits on 32-bit platforms and 64 bits on 64-bit platforms)

Default
3600 seconds (1 hour)

Range
0 to 2^{31} - 1 on 32-bit platforms
0 to 2^{63} - 1 on 64-bit platforms

Units
Seconds

Dynamic?
Yes

Validation
None

When to Change
The size of the NFS authentication cache can be adjusted by varying the minimum age of entries that can get purged from the cache. The size of the cache should be controlled so that it is not allowed to grow too large, thus using system resources that are not allowed to be released due to this aging process.

Commitment Level
Unstable

rpcmod Module Parameters

This section describes NFS parameters for the *rpcmod* module.

rpcmod:clnt_max_conns

Description
Controls the number of TCP connections that the NFS client uses when communicating with each NFS server. The kernel RPC is constructed so that it can multiplex RPCs over a single connection. However, multiple connections can be used, if preferred.

Data Type
Integer (32-bit)

Default
1

Range
1 to 2^{31} - 1

Units
Connections
Dynamic? Yes
Validation None
When to Change In general, one connection is sufficient to achieve full network bandwidth. However, if TCP cannot utilize the bandwidth offered by the network in a single stream, then multiple connections might increase the throughput between the client and the server.

Increasing the number of connections doesn’t come without consequences. Increasing the number of connections also increases kernel resource usage needed to keep track of each connection.

Commitment Level Unstable

rpcmod:clnt_idle_timeout

Description Controls the duration of time on the client that a connection between the client and server is allowed to remain idle before being closed.

Data Type Long integer (32 bits on 32-bit platforms and 64 bits on 64-bit platforms)

Default 300,000 milliseconds (5 minutes)

Range 0 to $2^{31} - 1$ on 32-bit platforms

Range 0 to $2^{63} - 1$ on 64-bit platforms

Units Milliseconds

Dynamic? Yes
Validation None
When to Change Use this parameter to change the time that idle connections are allowed to exist on the client before being closed. You might want to close connections at a faster rate to avoid consuming system resources.

Commitment Level Unstable

rpcmod:svc_idle_timeout

Description Controls the duration of time on the server that a connection between the client and server is allowed to remain idle before being closed.

Data Type Long integer (32 bits on 32-bit platforms and 64 bits on 64-bit platforms)
rpcmod Module Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>360,000 milliseconds (6 minutes)</td>
</tr>
<tr>
<td>Range</td>
<td>0 to 2^{31} - 1 on 32-bit platforms</td>
</tr>
<tr>
<td></td>
<td>0 to 2^{63} - 1 on 64-bit platforms</td>
</tr>
<tr>
<td>Units</td>
<td>Milliseconds</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>Use this parameter to change the time that idle connections are allowed to exist on the server before being closed. You might want to close connections at a faster rate to avoid consuming system resources.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

rpcmod: svc_default_stksize

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sets the size of the kernel stack for kernel RPC service threads.</td>
</tr>
<tr>
<td>Data Type</td>
<td>Integer (32-bit)</td>
</tr>
<tr>
<td>Default</td>
<td>The default value is 0. This value means that the stack size is set to the system default.</td>
</tr>
<tr>
<td>Range</td>
<td>0 to 2^{31} - 1</td>
</tr>
<tr>
<td>Units</td>
<td>Bytes</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes, for all new threads that are allocated. The stack size is set when the thread is created. Therefore, changes to this parameter do not affect existing threads but are applied to all new threads that are allocated.</td>
</tr>
<tr>
<td>Validation</td>
<td>None</td>
</tr>
<tr>
<td>When to Change</td>
<td>Very deep call depths can cause the stack to overflow and cause red zone faults. The combination of a fairly deep call depth for the transport, coupled with a deep call depth for the local file system, can cause NFS service threads to overflow their stacks. Set this parameter to a multiple of the hardware psize on the platform.</td>
</tr>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>
rpcmod:svc_default_max_same_xprt

Description
Controls the maximum number of requests that are processed for each transport endpoint before switching transport endpoints. The kernel RPC works by having a pool of service threads and a pool of transport endpoints. Any one of the service threads can process requests from any one of the transport endpoints. For performance, multiple requests on each transport endpoint are consumed before switching to a different transport endpoint. This approach offers performance benefits while avoiding starvation.

Data Type
Integer (32-bit)

Default
8

Range
0 to \(2^{31} - 1\)

Units
Requests

Dynamic?
Yes, but the maximum number of requests to process before switching transport endpoints is set when the transport endpoint is configured into the kernel RPC subsystem. Changes to this parameter only affect new transport endpoints, not existing transport endpoints.

Validation
None

When to Change
Tune this parameter so that services can take advantage of client behaviors such as the clustering that accelerate NFS version 2 WRITE requests. Increasing this parameter might result in the server being better able to take advantage of client behaviors.

Commitment Level
Unstable

rpcmod:maxdupreqs

Description
Controls the size of the duplicate request cache that detects RPC-level retransmissions on connectionless transports. This cache is indexed by the client network address and the RPC procedure number, program number, version number, and transaction ID. This cache avoids processing retransmitted requests that might not be idempotent.

Data Type
Integer (32-bit)

Default
1024

Range
1 to \(2^{31} - 1\)

Units
Requests
Dynamic?
The cache is dynamically sized, but the hash queues that provide fast access to the cache are statically sized. Making the cache very large might result in long search times to find entries in the cache.

Do not set the value of this parameter to 0. This value prevents the NFS server from handling non-idempotent requests.

Validation
None

When to Change
Examine the value of this parameter if false failures are encountered by NFS clients. For example, if an attempt to create a directory fails, but the directory is actually created, perhaps that retransmitted `MKDIR` request was not detected by the server.

The size of the cache should match the load on the server. The cache records non-idempotent requests and so only needs to track a portion of the total requests. The cache does need to hold the information long enough to be able to detect a retransmission by the client. Typically, the client timeout for connectionless transports is relatively short, starting around 1 second and increasing to about 20 seconds.

Commitment Level
Unstable

`rpcmod: cotsmaxdupreqs`

Description
Controls the size of the duplicate request cache that detects RPC-level retransmissions on connection-oriented transports. This cache is indexed by the client network address and the RPC procedure number, program number, version number, and transaction ID. This cache avoids processing retransmitted requests that might not be idempotent.

Data Type
Integer (32-bit)

Default
1024

Range
1 to \(2^{31} - 1\)

Units
Requests

Dynamic?
Yes

Validation
The cache is dynamically sized, but the hash queues that provide fast access to the cache are statically sized. Making the cache very large might result in long search times to find entries in the cache.

Do not set the value of this parameter to 0. It prevents the NFS server from handling non-idempotent requests.
When to Change

Examine the value of this parameter if false failures are encountered by NFS clients. For example, if an attempt to create a directory fails, but the directory is actually created, it is possible that a retransmitted `MKDIR` request was not detected by the server.

The size of the cache should match the load on the server. The cache records non-idempotent requests and so only needs to track a portion of the total requests. It does need to hold the information long enough to be able to detect a retransmission on the part of the client. Typically, the client timeout for connection oriented transports is very long, about 1 minute. Thus, entries need to stay in the cache for fairly long times.

Commitment Level

Unstable
Internet Protocol Suite Tunable Parameters

This chapter describes various Internet Protocol suite parameters or properties.

- “IP Tunable Parameters” on page 134
- “TCP Tunable Parameters” on page 136
- “UDP Tunable Parameters” on page 151
- “IPQoS Tunable Parameter” on page 152
- “SCTP Tunable Parameters” on page 153
- “Per-Route Metrics” on page 160

Where to Find Tunable Parameter Information

<table>
<thead>
<tr>
<th>Tunable Parameter</th>
<th>For Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris kernel tunables</td>
<td>Chapter 2, “Oracle Solaris Kernel Tunable Parameters”</td>
</tr>
<tr>
<td>NFS tunable parameters</td>
<td>Chapter 3, “NFS Tunable Parameters”</td>
</tr>
<tr>
<td>Network Cache and Accelerator (NCA) tunable parameters</td>
<td>Chapter 5, “Network Cache and Accelerator Tunable Parameters”</td>
</tr>
</tbody>
</table>

Overview of Tuning IP Suite Parameters

You can set all of the tuning parameters described in this chapter by using the ipadm command except for the following parameters:

- “ipcl_conn_hash_size” on page 146
- “ip_squeue_worker_wait” on page 147
- “ip_squeue_fanout” on page 136

These parameters can only be set in the /etc/system file.
Use the following syntax to set TCP/IP parameters by using the `ipadm` command:

```
# ipadm set-prop -p parameter tcp|ip
```

For example:

```
# ipadm set-prop -p extra_priv_ports=1047 tcp
# ipadm show-prop -p extraPrivPorts tcp
```

<table>
<thead>
<tr>
<th>PROTO</th>
<th>PROPERTY</th>
<th>PERM</th>
<th>CURRENT</th>
<th>PERSISTENT</th>
<th>DEFAULT</th>
<th>POSSIBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcp</td>
<td>extra_priv_ports</td>
<td>rw</td>
<td>1047</td>
<td>1047</td>
<td>2049,4045</td>
<td>1-65535</td>
</tr>
</tbody>
</table>

For more information, see `ipadm(1M)`.

Use the following syntax to set TCP/IP parameters by using the `ndd` command:

```
# ndd -set driver parameter
```

For more information, see `ndd(1M)`.

Although the SMF framework provides a method for managing system services, `ipadm` commands are still included in system startup scripts. For more information on creating a startup script, see “Using Run Control Scripts” in System Administration Guide: Basic Administration.

IP Suite Parameter Validation

All parameters described in this section are checked to verify that they fall in the parameter range. The parameter’s range is provided with the description for each parameter.

Internet Request for Comments (RFCs)

Internet protocol and standard specifications are described in RFC documents. You can get copies of RFCs from ftp://ftp.rfc-editor.org/in-notes. Browse RFC topics by viewing the rfc-index.txt file at this site.

IP Tunable Parameters

_icmp_err_interval and _icmp_err_burst

Description: Controls the rate of IP in generating IPv4 ICMP error messages. IP generates only up to _icmp_err_burst IPv4 error messages in any _icmp_err_interval.
The _icmp_err_interval parameter protects IP from denial of service attacks. Setting this parameter to 0 disables rate limiting. It does not disable the generation of error messages.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Range</th>
<th>Dynamic?</th>
<th>When to Change</th>
<th>Commitment Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>_icmp_err_interval</td>
<td>100 milliseconds for _icmp_err_interval</td>
<td>0 – 99,999 milliseconds for _icmp_err_interval</td>
<td>Yes</td>
<td>If you need a higher error message generation rate for diagnostic purposes.</td>
<td>Unstable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 – 99,999 error messages for _icmp_err_burst</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_respond_to_echo_broadcast</td>
<td>Controlled whether IPv4 responds to a broadcast ICMPv4 echo request.</td>
<td>1 (enabled)</td>
<td>Yes</td>
<td>If you do not want this behavior for security reasons, disable it.</td>
<td>Unstable</td>
</tr>
<tr>
<td>_addr_s_per_if</td>
<td>Defined the maximum number of logical interfaces associated with a real interface.</td>
<td>256</td>
<td>Yes</td>
<td>Do not change the value. If more logical interfaces are required, you might consider increasing the value. However, recognize that this change might have a negative impact on IP’s performance.</td>
<td>Unstable</td>
</tr>
</tbody>
</table>
ip_queue_fanout

Description
Determines the mode of associating TCP/IP connections with queues

A value of 0 associates a new TCP/IP connection with the CPU that creates the connection. A value of 1 associates the connection with multiple queues that belong to different CPUs.

Default
0

Range
0 or 1

Dynamic?
Yes

When to Change
Consider setting this parameter to 1 to spread the load across all CPUs in certain situations. For example, when the number of CPUs exceed the number of NICs, and one CPU is not capable of handling the network load of a single NIC, change this parameter to 1.

This property can only be set in the `/etc/system` file.

Zone Configuration
This parameter can only be set in the global zone.

Commitment Level
Unstable

TCP Tunable Parameters

_deferred_ack_interval

Description
Specifies the time-out value for the TCP-delayed acknowledgment (ACK) timer for hosts that are not directly connected.

Refer to RFC 1122, 4.2.3.2.

Default
100 milliseconds

Range
1 millisecond to 1 minute

Dynamic?
Yes

When to Change
Do not increase this value to more than 500 milliseconds.

Increase the value under the following circumstances:

- Slow network links (less than 57.6 Kbps) with greater than 512 bytes maximum segment size (MSS)
- The interval for receiving more than one TCP segment is short
Commitment Level Unstable

_local_dack_interval_

Description: Specifies the time-out value for TCP-delayed acknowledgment (ACK) timer for hosts that are directly connected.

Refer to RFC 1122, 4.2.3.2.

Default: 50 milliseconds

Range: 10 milliseconds to 500 milliseconds

Dynamic?: Yes

When to Change: Do not increase this value to more than 500 milliseconds.

Increase the value under the following circumstances:

- Slow network links (less than 57.6 Kbps) with greater than 512 bytes maximum segment size (MSS)
- The interval for receiving more than one TCP segment is short

Commitment Level Unstable

_deferred_acks_max_

Description: Specifies the maximum number of TCP segments received from remote destinations (not directly connected) before an acknowledgment (ACK) is generated. TCP segments are measured in units of maximum segment size (MSS) for individual connections. If set to 0 or 1, no ACKs are delayed, assuming all segments are 1 MSS long. The actual number is dynamically calculated for each connection. The value is the default maximum.

Default: 2

Range: 0 to 16

Dynamic?: Yes

When to Change: Do not change the value. In some circumstances, when the network traffic becomes very bursty because of the delayed ACK effect, decrease the value. Do not decrease this value below 2.

Commitment Level Unstable
_local_dacks_max

Description: Specifies the maximum number of TCP segments received from directly connected destinations before an acknowledgment (ACK) is generated. TCP segments are measured in units of maximum segment size (MSS) for individual connections. If set to 0 or 1, it means no ACKs are delayed, assuming all segments are 1 MSS long. The actual number is dynamically calculated for each connection. The value is the default maximum.

Default: 8
Range: 0 to 16
Dynamic?: Yes
When to Change: Do not change the value. In some circumstances, when the network traffic becomes very bursty because of the delayed ACK effect, decrease the value. Do not decrease this value below 2.
Commitment Level: Unstable

_wscale_always

Description: When this parameter is enabled, which is the default setting, TCP always sends a SYN segment with the window scale option, even if the window scale option value is 0. Note that if TCP receives a SYN segment with the window scale option, even if the parameter is disabled, TCP responds with a SYN segment with the window scale option. In addition, the option value is set according to the receive window size.

Refer to RFC 1323 for the window scale option.

Default: 1 (enabled)
Range: 0 (disabled) or 1 (enabled)
Dynamic?: Yes
When to Change: If there is an interoperability problem with an old TCP stack that does not support the window scale option, disable this parameter.
Commitment Level: Unstable
_tstamp_always_

Description: If set to 1, TCP always sends a SYN segment with the timestamp option. Note that if TCP receives a SYN segment with the timestamp option, TCP responds with a SYN segment with the timestamp option even if the parameter is set to 0.

Default: 0 (disabled)

Range: 0 (disabled) or 1 (enabled)

Dynamic?: Yes

When to Change: If getting an accurate measurement of round-trip time (RTT) and TCP sequence number wraparound is a problem, enable this parameter.

Commitment Level: Unstable

Refer to RFC 1323 for more reasons to enable this option.

send_maxbuf

Description: Defines the default send window size in bytes. Refer to “Per-Route Metrics” on page 160 for a discussion of setting a different value on a per-route basis. See also “_max_buf” on page 140.

Default: 49,152

Range: 4096 to 1,073,741,824

Dynamic?: Yes

When to Change: An application can use `setsockopt(3XNET) SO_SNDBUF` to change the individual connection’s send buffer.

Commitment Level: Unstable

recv_maxbuf

Description: Defines the default receive window size in bytes. Refer to “Per-Route Metrics” on page 160 for a discussion of setting a different value on a per-route basis. See also “_max_buf” on page 140 and “_recv_hiwat_minmss” on page 151.

Default: 128,000

Range: 2048 to 1,073,741,824
_max_buf

Description
Defines the maximum buffer size in bytes. This parameter controls how large the send and receive buffers are set to by an application that uses `setsockopt(3XNET)`.

Default
1,048,576

Range
8192 to 1,073,741,824

Dynamic?
Yes

When to Change
If TCP connections are being made in a high-speed network environment, increase the value to match the network link speed.

Commitment Level
Unstable

_cwnd_max

Description
Defines the maximum value of the TCP congestion window (cwnd) in bytes.

For more information on the TCP congestion window, refer to RFC 1122 and RFC 2581.

Default
1,048,576

Range
128 to 1,073,741,824

Dynamic?
Yes

When to Change
Even if an application uses `setsockopt(3XNET)` to change the window size to a value higher than _cwnd_max, the actual window used can never grow beyond _cwnd_max. Thus, _max_buf should be greater than _cwnd_max.

Commitment Level
Unstable
_slow_start_initial

Description
Defines the maximum initial congestion window (cwnd) size in the maximum segment size (MSS) of a TCP connection.

Refer to RFC 2414 on how the initial congestion window size is calculated.

Default
4

Range
1 to 4

Dynamic?
Yes

When to Change
Do not change the value.

If the initial cwnd size causes network congestion under special circumstances, decrease the value.

Commitment Level
Unstable

__slow_start_after_idle

Description
The congestion window size in the maximum segment size (MSS) of a TCP connection after it has been idled (no segment received) for a period of one retransmission timeout (RTO).

Refer to RFC 2414 on how the initial congestion window size is calculated.

Default
4

Range
1 to 16,384

Dynamic?
Yes

When to Change
For more information, see “_slow_start_initial” on page 141.

Commitment Level
Unstable

sack

Description
If set to 2, TCP always sends a SYN segment with the selective acknowledgment (SACK) permitted option. If TCP receives a SYN segment with a SACK-permitted option and this parameter is set to 1, TCP responds with a SACK-permitted option. If the parameter is set to
TCPTunableParameters

0, TCP does not send a SACK-permitted option, regardless of whether the incoming segment contains the SACK permitted option.

Refer to RFC 2018 for information on the SACK option.

Default 2 (active enabled)
Range 0 (disabled), 1 (passive enabled), or 2 (active enabled)
Dynamic? Yes
When to Change SACK processing can improve TCP retransmission performance so it should be actively enabled. Sometimes, the other side can be confused with the SACK option actively enabled. If this confusion occurs, set the value to 1 so that SACK processing is enabled only when incoming connections allow SACK processing.

Commitment Level Unstable

_rev_src_routes

Description If set to 0, TCP does not reverse the IP source routing option for incoming connections for security reasons. If set to 1, TCP does the normal reverse source routing.

Default 0 (disabled)
Range 0 (disabled) or 1 (enabled)
Dynamic? Yes
When to Change If IP source routing is needed for diagnostic purposes, enable it.
Commitment Level Unstable

_time_wait_interval

Description Specifies the time in milliseconds that a TCP connection stays in TIME-WAIT state.

For more information, refer to RFC 1122, 4.2.2.13.

Default 60,000 (60 seconds)
Range 1 second to 10 minutes
Dynamic? Yes
When to Change Do not set the value lower than 60 seconds.
For information on changing this parameter, refer to RFC 1122, 4.2.2.13.

Commitment Level Unstable

ecn

Description Controls Explicit Congestion Notification (ECN) support.

If this parameter is set to 0, TCP does not negotiate with a peer that supports the ECN mechanism.

If this parameter is set to 1 when initiating a connection, TCP does not tell a peer that it supports ECN mechanism.

However, TCP tells a peer that it supports ECN mechanism when accepting a new incoming connection request if the peer indicates that it supports ECN mechanism in the SYN segment.

If this parameter is set to 2, in addition to negotiating with a peer on the ECN mechanism when accepting connections, TCP indicates in the outgoing SYN segment that it supports the ECN mechanism when TCP makes active outgoing connections.

Refer to RFC 3168 for information on ECN.

Default 1 (passive enabled)

Range 0 (disabled), 1 (passive enabled), or 2 (active enabled)

Dynamic? Yes

When to Change ECN can help TCP better handle congestion control. However, there are existing TCP implementations, firewalls, NATs, and other network devices that are confused by this mechanism. These devices do not comply to the IETF standard.

Because of these devices, the default value of this parameter is set to 1. In rare cases, passive enabling can still cause problems. Set the parameter to 0 only if absolutely necessary.

Commitment Level Unstable
_conn_req_max_q

Description
Specifies the default maximum number of pending TCP connections for a TCP listener waiting to be accepted by `accept(SOCKET)`. See also “_conn_req_max_q0” on page 144.

Default
128

Range
1 to 4,294,967,295

Dynamic?
Yes

When to Change
For applications such as web servers that might receive several connection requests, the default value might be increased to match the incoming rate.

Do not increase the parameter to a very large value. The pending TCP connections can consume excessive memory. Also, if an application cannot handle that many connection requests fast enough because the number of pending TCP connections is too large, new incoming requests might be denied.

Note that increasing `_conn_req_max_q` does not mean that applications can have that many pending TCP connections. Applications can use `listen(SOCKET)` to change the maximum number of pending TCP connections for each socket. This parameter is the maximum an application can use `listen()` to set the number to. Thus, even if this parameter is set to a very large value, the actual maximum number for a socket might be much less than `_conn_req_max_q`, depending on the value used in `listen()`.

Commitment Level
Unstable

_conn_req_max_q0

Description
Specifies the default maximum number of incomplete (three-way handshake not yet finished) pending TCP connections for a TCP listener.

For more information on TCP three-way handshake, refer to RFC 793. See also “_conn_req_max_q” on page 144.

Default
1024

Range
0 to 4,294,967,296

Dynamic?
Yes
When to Change: For applications such as web servers that might receive excessive connection requests, you can increase the default value to match the incoming rate.

The following explains the relationship between _conn_req_max_q0 and the maximum number of pending connections for each socket.

When a connection request is received, TCP first checks if the number of pending TCP connections (three-way handshake is done) waiting to be accepted exceeds the maximum (N) for the listener. If the connections are excessive, the request is denied. If the number of connections is allowable, then TCP checks if the number of incomplete pending TCP connections exceeds the sum of N and _conn_req_max_q0. If it does not, the request is accepted. Otherwise, the oldest incomplete pending TCP request is dropped.

Commitment Level: Unstable

_conn_req_min

Description: Specifies the default minimum value for the maximum number of pending TCP connection requests for a listener waiting to be accepted. This is the lowest maximum value of listen(3SOCKET) that an application can use.

Default: 1
Range: 1 to 1024
Dynamic?: Yes

When to Change: This parameter can be a solution for applications that use listen(3SOCKET) to set the maximum number of pending TCP connections to a value too low. Increase the value to match the incoming connection request rate.

Commitment Level: Unstable

_rst_sent_rate_enabled

Description: If this parameter is set to 1, the maximum rate of sending a RST segment is controlled by the ipmadm parameter, _rst_sent_rate. If this parameter is set to 0, no rate control when sending a RST segment is available.
TCP Tunable Parameters

Default 1 (enabled)
Range 0 (disabled) or 1 (enabled)
Dynamic? Yes
When to Change This tunable helps defend against denial of service attacks on TCP by limiting the rate by which a RST segment is sent out. The only time this rate control should be disabled is when strict conformance to RFC 793 is required.
Commitment Level Unstable

_rst_sent_rate
Description Sets the maximum number of RST segments that TCP can send out per second.
Default 40
Range 0 to 4,294,967,295
Dynamic? Yes
When to Change In a TCP environment, there might be a legitimate reason to generate more RSTs than the default value allows. In this case, increase the default value of this parameter.
Commitment Level Unstable

TCP/IP Parameters Set in the /etc/system File

The following parameters can be set only in the /etc/system file. After the file is modified, reboot the system.

For example, the following entry sets the ipcl_conn_hash_size parameter:

```
set ip:ipcl_conn_hash_sizes=value
```

_ipcl_conn_hash_size
Description Controls the size of the connection hash table used by IP. The default value of 0 means that the system automatically sizes an appropriate value for this parameter at boot time, depending on the available memory.
Data Type Unsigned integer
Default: 0
Range: 0 to 82,500
Dynamic?: No. The parameter can only be changed at boot time.
When to Change: If the system consistently has tens of thousands of TCP connections, the value can be increased accordingly. Increasing the hash table size means that more memory is wired down, thereby reducing available memory to user applications.
Commitment Level: Unstable

ip_squeue_worker_wait

Description: Governs the maximum delay in waking up a worker thread to process TCP/IP packets that are enqueued on an squeue. An squeue is a serialization queue that is used by the TCP/IP kernel code to process TCP/IP packets.

Default: 10 milliseconds
Range: 0 – 50 milliseconds
Dynamic?: Yes
When to Change: Consider tuning this parameter if latency is an issue, and network traffic is light. For example, if the machine serves mostly interactive network traffic.

The default value usually works best on a network file server, a web server, or any server that has substantial network traffic.

Zone Configuration: This parameter can only be set in the global zone.
Commitment Level: Unstable

TCP Parameters With Additional Cautions

Changing the following parameters is not recommended.

_keepalive_interval

Description: This ipadm parameter sets a probe interval that is first sent out after a TCP connection is idle on a system-wide basis.
Solaris supports the TCP keep-alive mechanism as described in RFC 1122. This mechanism is enabled by setting the SO_KEEPALIVE socket option on a TCP socket.

If SO_KEEPALIVE is enabled for a socket, the first keep-alive probe is sent out after a TCP connection is idle for two hours, the default value of the tcp_keepalive_interval parameter. If the peer does not respond to the probe after eight minutes, the TCP connection is aborted. For more information, refer to "_rexmit_interval_initial" on page 149.

You can also use the TCP_KEEPALIVE_THRESHOLD socket option on individual applications to override the default interval so that each application can have its own interval on each socket. The option value is an unsigned integer in milliseconds. See also tcp(7P).

<table>
<thead>
<tr>
<th>Default</th>
<th>2 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>10 seconds to 10 days</td>
</tr>
<tr>
<td>Units</td>
<td>Unsigned integer (milliseconds)</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>When to Change</td>
<td>Do not change the value. Lowering it may cause unnecessary network traffic and might also increase the chance of premature termination of the connection because of a transient network problem.</td>
</tr>
</tbody>
</table>

Commitment Level Unstable

_ip_abort_interval

Description Specifies the default total retransmission timeout value for a TCP connection. For a given TCP connection, if TCP has been retransmitting for _ip_abort_interval period of time and it has not received any acknowledgment from the other endpoint during this period, TCP closes this connection.

For TCP retransmission timeout (RTO) calculation, refer to RFC 1122, 4.2.3. See also "_rexmit_interval_max" on page 149.

<table>
<thead>
<tr>
<th>Default</th>
<th>8 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>500 milliseconds to 1193 hours</td>
</tr>
<tr>
<td>Dynamic?</td>
<td>Yes</td>
</tr>
<tr>
<td>When to Change</td>
<td>Do not change this value. See "_rexmit_interval_max" on page 149 for exceptions.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>_rexmit_interval_initial</td>
<td>Specifies the default initial retransmission timeout (RTO) value for a TCP connection. Refer to “Per-Route Metrics” on page 160 for a discussion of setting a different value on a per-route basis.</td>
</tr>
<tr>
<td>_rexmit_interval_max</td>
<td>Defines the default maximum retransmission timeout value (RTO). The calculated RTO for all TCP connections cannot exceed this value. See also “_ip_abort_interval” on page 148.</td>
</tr>
<tr>
<td>_rexmit_interval_min</td>
<td>Specifies the default minimum retransmission timeout (RTO) value. The calculated RTO for all TCP connections cannot be lower than this value. See also “_rexmit_interval_max” on page 149.</td>
</tr>
</tbody>
</table>
TCP's RTO calculation should cope with most RTT fluctuations. If, in some very special circumstances, the round-trip time (RTT) for a connection is about 10 seconds, increase this value. If you change this value, you should change the _rexmit_interval_max parameter. Change the value of _rexmit_interval_max to at least eight times the value of _rexmit_interval_min.

Commitment Level: Unstable

__*rexmit_interval_extra*

Description: Specifies a constant added to the calculated retransmission timeout value (RTO).

Default: 0 milliseconds
Range: 0 to 2 hours

Dynamic?: Yes
When to Change: Do not change the value.

When the RTO calculation fails to obtain a good value for a connection, you can change this value to avoid unnecessary retransmissions.

Commitment Level: Unstable

__*tstamp_if_wscale*

Description: If this parameter is set to 1, and the window scale option is enabled for a connection, TCP also enables the timestamp option for that connection.

Default: 1 (enabled)
Range: 0 (disabled) or 1 (enabled)

Dynamic?: Yes
When to Change: Do not change this value. In general, when TCP is used in high-speed network, protection against sequence number wraparound is essential. Thus, you need the timestamp option.

Commitment Level: Unstable
_recv_hiwat_minmss_

Description Controls the default minimum receive window size. The minimum is _recv_hiwat_minmss_ times the size of maximum segment size (MSS) of a connection.

Default 8

Range 1 to 65,536

Dynamic? Yes

When to Change Do not change the value. If changing it is necessary, do not change the value lower than 4.

Commitment Level Unstable

UDP Tunable Parameters

send_maxbuf

Description Defines the default maximum UDP socket datagram size.

Default 57,344 bytes

Range 1,024 to 1,073,741,824 bytes

Dynamic? Yes

When to Change Note that an application can use `setsockopt(3XNET) SO_SNDBUF` to change the size for an individual socket. In general, you do not need to change the default value.

Commitment Level Unstable

recv_maxbuf

Description Defines the default maximum UDP socket receive buffer size.

Default 57,344 bytes

Range 128 to 1,073,741,824 bytes

Dynamic? Yes
When to Change Note that an application can use `setsockopt(3XNET)` `SO_RCVBUF` to change the size for an individual socket. In general, you do not need to change the default value.

Commitment Level Unstable

IPQoS Tunable Parameter

_policy_mask_

Description Enables or disables IPQoS processing in any of the following callout positions: forward outbound, forward inbound, local outbound, and local inbound. This parameter is a bitmask as follows:

<table>
<thead>
<tr>
<th>Not Used</th>
<th>Not Used</th>
<th>Not Used</th>
<th>Forward Outbound</th>
<th>Forward Inbound</th>
<th>Local Outbound</th>
<th>Local Inbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

A 1 in any of the position masks or disables IPQoS processing in that particular callout position. For example, a value of 0x01 disables IPQoS processing for all the local inbound packets.

Default The default value is 0, meaning that IPQoS processing is enabled in all the callout positions.

Range 0 (0x00) to 15 (0x0F). A value of 15 indicates that IPQoS processing is disabled in all the callout positions.

Dynamic? Yes

When to Change If you want to enable or disable IPQoS processing in any of the callout positions.

Commitment Level Unstable
SCTP Tunable Parameters

_max_init_retr

Description
Controls the maximum number of attempts an SCTP endpoint should make at resending an INIT chunk. The SCTP endpoint can use the SCTP initiation structure to override this value.

Default
8

Range
0 to 128

Dynamic?
Yes

When to Change
The number of INIT retransmissions depend on `_pa_max_retr` on page 153. Ideally, _max_init_retr should be less than or equal to _pa_max_retr.

Commitment Level
Unstable

_pa_max_retr

Description
Controls the maximum number of retransmissions (over all paths) for an SCTP association. The SCTP association is aborted when this number is exceeded.

Default
10

Range
1 to 128

Dynamic?
Yes

When to Change
The maximum number of retransmissions over all paths depend on the number of paths and the maximum number of retransmission over each path. Ideally, sctp_pa_max_retr should be set to the sum of _pp_max_retr on page 154 over all available paths. For example, if there are 3 paths to the destination and the maximum number of retransmissions over each of the 3 paths is 5, then _pa_max_retr should be set to less than or equal to 15. (See the Note in Section 8.2, RFC 2960.)

Commitment Level
Unstable
_pp_max_retr_

Description
Controls the maximum number of retransmissions over a specific path. When this number is exceeded for a path, the path (destination) is considered unreachable.

Default
5

Range
1 to 128

Dynamic?
Yes

When to Change
Do not change this value to less than 5.

Commitment Level
Unstable

_cwnd_max_

Description
Controls the maximum value of the congestion window for an SCTP association.

Default
1,048,576

Range
128 to 1,073,741,824

Dynamic?
Yes

When to Change
Even if an application uses `setsockopt(3XNET)` to change the window size to a value higher than _cwnd_max_, the actual window used can never grow beyond _cwnd_max_. Thus, “_max_buf_” on page 157 should be greater than _cwnd_max_.

Commitment Level
Unstable

_ipv4_ttl_

Description
Controls the time to live (TTL) value in the IP version 4 header for the outbound IP version 4 packets on an SCTP association.

Default
64

Range
1 to 255

Dynamic?
Yes

When to Change
Generally, you do not need to change this value. Consider increasing this parameter if the path to the destination is likely to span more than 64 hops.

Commitment Level
Unstable
_heartbeat_interval

Description: Computes the interval between HEARTBEAT chunks to an idle destination, that is allowed to heartbeat.

An SCTP endpoint periodically sends an HEARTBEAT chunk to monitor the reachability of the idle destinations transport addresses of its peer.

Default: 30 seconds
Range: 0 to 86,400 seconds
Dynamic?: Yes
When to Change: Refer to RFC 2960, section 8.3.
Commitment Level: Unstable

_new_secret_interval

Description: Determines when a new secret needs to be generated. The generated secret is used to compute the MAC for a cookie.

Default: 2 minutes
Range: 0 to 1,440 minutes
Dynamic?: Yes
When to Change: Refer to RFC 2960, section 5.1.3.
Commitment Level: Unstable

_initial_mtu

Description: Determines the initial maximum send size for an SCTP packet including the length of the IP header.

Default: 1500 bytes
Range: 68 to 65,535
Dynamic?: Yes
When to Change: Increase this parameter if the underlying link supports frame sizes that are greater than 1500 bytes.
Commitment Level: Unstable
_deferred_ack_interval

Description
Sets the time-out value for SCTP delayed acknowledgment (ACK) timer in milliseconds.

Default
100 milliseconds

Range
1 to 60,000 milliseconds

Dynamic?
Yes

When to Change
Refer to RFC 2960, section 6.2.

Commitment Level
Unstable

_ignore_path_mtu

Description
Enables or disables path MTU discovery.

Default
0 (disabled)

Range
0 (disabled) or 1 (enabled)

Dynamic?
Yes

When to Change
Enable this parameter if you want to ignore MTU changes along the path. However, doing so might result in IP fragmentation if the path MTU decreases.

Commitment Level
Unstable

_initial_ssthresh

Description
Sets the initial slow start threshold for a destination address of the peer.

Default
102,400

Range
1024 to 4,294,967,295

Dynamic?
Yes

When to Change
Refer to RFC 2960, section 7.2.1.

Commitment Level
Unstable
_max_buf_

Description
Controls the maximum buffer size in bytes. It controls how large the send and receive buffers are set to by an application that uses `getsockopt(3SOCKET)`.

Default
1,048,576

Range
8,192 to 1,073,741,824

Dynamic?
Yes

When to Change
Increase the value of this parameter to match the network link speed if associations are being made in a high-speed network environment.

Commitment Level
Unstable

_ipv6_hoplimit_

Description
Sets the value of the hop limit in the IP version 6 header for the outbound IP version 6 packets on an SCTP association.

Default
60

Range
0 to 255

Dynamic?
Yes

When to Change
Generally, you do not need to change this value. Consider increasing this parameter if the path to the destination is likely to span more than 60 hops.

Commitment Level
Unstable

_rto_min_

Description
Sets the lower bound for the retransmission timeout (RTO) in milliseconds for all the destination addresses of the peer.

Default
1,000

Range
500 to 60,000

Dynamic?
Yes

When to Change
Refer to RFC 2960, section 6.3.1.

Commitment Level
Unstable
_rto_max_

Description: Controls the upper bound for the retransmission timeout (RTO) in milliseconds for all the destination addresses of the peer.

Default: 60,000
Range: 1,000 to 60,000,000
Dynamic?: Yes
When to Change: Refer to RFC 2960, section 6.3.1.
Commitment Level: Unstable

_rto_initial_

Description: Controls the initial retransmission timeout (RTO) in milliseconds for all the destination addresses of the peer.

Default: 3,000
Range: 1,000 to 60,000,000
Dynamic?: Yes
When to Change: Refer to RFC 2960, section 6.3.1.
Commitment Level: Unstable

_cookie_life_

Description: Sets the lifespan of a cookie in milliseconds.

Default: 60,000
Range: 10 to 60,000,000
Dynamic?: Yes
When to Change: Generally, you do not need to change this value. This parameter might be changed in accordance with "_rto_max_" on page 158.
Commitment Level: Unstable

_max_in_streams_

Description: Controls the maximum number of inbound streams permitted for an SCTP association.
_initial_out_streams_

Description: Controls the maximum number of outbound streams permitted for an SCTP association.

Default: 32
Range: 1 to 65,535
Dynamic?: Yes
When to Change: Refer to RFC 2960, section 5.1.1.
Commitment Level: Unstable

_shutack_wait_bound_

Description: Controls the maximum time, in milliseconds, to wait for a SHUTDOWN ACK after having sent a SHUTDOWN chunk.

Default: 60,000
Range: 0 to 300,000
Dynamic?: Yes
When to Change: Generally, you do not need to change this value. This parameter might be changed in accordance with “_rto_max_” on page 158.
Commitment Level: Unstable

maxburst

Description: Sets the limit on the number of segments to be sent in a burst.

Default: 4
Range: 2 to 8
Dynamic?: Yes
Per-Route Metrics

Starting in the Solaris 8 release, you can use per-route metrics to associate some properties with IPv4 and IPv6 routing table entries.

For example, a system has two different network interfaces, a fast Ethernet interface and a gigabit Ethernet interface. The system default `recv_hiwat` is 24,576 bytes. This default is sufficient for the fast Ethernet interface, but may not be sufficient for the gigabit Ethernet interface.

<table>
<thead>
<tr>
<th>When to Change</th>
<th>You do not need to change this parameter. You might change it for testing purposes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commitment Level</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>_addip_enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Default</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Dynamic?</td>
</tr>
<tr>
<td>When to Change</td>
</tr>
<tr>
<td>Commitment Level</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>_prsctp_enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Default</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Dynamic?</td>
</tr>
<tr>
<td>When to Change</td>
</tr>
<tr>
<td>Commitment Level</td>
</tr>
</tbody>
</table>
Instead of increasing the system's default for \texttt{recv_hiwat}, you can associate a different default TCP receive window size to the gigabit Ethernet interface routing entry. By making this association, all TCP connections going through the route will have the increased receive window size.

For example, the following is in the routing table (\texttt{netstat -rn}), assuming IPv4:

\begin{verbatim}
192.123.123.0 192.123.123.4 U 1 4 hme0
192.123.124.0 192.123.124.4 U 1 4 ge0
default 192.123.123.1 UG 1 8
\end{verbatim}

In this example, do the following:

\begin{verbatim}
route change -net 192.123.124.0 -recvpipe x
\end{verbatim}

Then, all connections going to the 192.123.124.0 network, which is on the ge0 link, use the receive buffer size \(x \), instead of the default 24567 receive window size.

If the destination is in the a.b.c.d network, and no specific routing entry exists for that network, you can add a prefix route to that network and change the metric. For example:

\begin{verbatim}
route add -net a.b.c.d 192.123.123.1 -netmask w.x.y.z
route change -net a.b.c.d -recvpipe y
\end{verbatim}

Note that the prefix route's gateway is the default router. Then, all connections going to that network use the receive buffer size \(y \). If you have more than one interface, use the \texttt{-ifp} argument to specify which interface to use. This way, you can control which interface to use for specific destinations. To verify the metric, use the \texttt{route(1M)} get command.
Network Cache and Accelerator Tunable Parameters

This chapter describes some of the Network Cache and Accelerator (NCA) tunable parameters.

- “nca:nca_conn_hash_size” on page 164
- “nca:nca_conn_req_max_q” on page 164
- “nca:nca_conn_req_max_q0” on page 164
- “nca:nca_pqmax” on page 165
- “nca:nca_vqmax” on page 165
- “sq_max_size” on page 166
- “ge:ge_intr_mode” on page 167

Where to Find Tunable Parameters Information

<table>
<thead>
<tr>
<th>Tunable Parameter</th>
<th>For Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris kernel tunables</td>
<td>Chapter 2, “Oracle Solaris Kernel Tunable Parameters”</td>
</tr>
<tr>
<td>NFS tunable parameters</td>
<td>Chapter 3, “NFS Tunable Parameters”</td>
</tr>
<tr>
<td>Internet Protocol Suite tunable params</td>
<td>Chapter 4, “Internet Protocol Suite Tunable Parameters”</td>
</tr>
</tbody>
</table>

Tuning NCA Parameters

Setting these parameters is appropriate on a system that is a dedicated web server. These parameters allocate more memory for caching pages. You can set all of the tuning parameters described in this chapter in the /etc/system file.

For information on adding tunable parameters to the /etc/system file, see “Tuning the Solaris Kernel” on page 21.
nca:nca_conn_hash_size

Description
Controls the hash table size in the NCA module for all TCP connections, adjusted to the nearest prime number.

Default
383 hash table entries

Range
0 to 201,326,557

Dynamic?
No

When to Change
When the NCA’s TCP hash table is too small to keep track of the incoming TCP connections. This situation causes many TCP connections to be grouped together in the same hashtable entry. This situation is indicated when NCA is receiving many TCP connections, and system performance decreases.

Commitment Level
Unstable

nca:nca_conn_req_max_q

Description
Defines the maximum number of pending TCP connections for NCA to listen on.

Default
256 connections

Range
0 to 4,294,967,295

Dynamic?
No

When to Change
When NCA closes a connection immediately after it is established because it already has too many established TCP connections. If NCA is receiving many TCP connections and can handle a larger load, but is refusing any more connections, increase this parameter. Doing so allows NCA to handle more simultaneous TCP connections.

Commitment Level
Unstable

nca:nca_conn_req_max_q0

Description
Defines the maximum number of incomplete (three-way handshake not yet finished) pending TCP connections for NCA to listen on.

Default
1024 connections

Range
0 to 4,294,967,295

Dynamic?
No
When to Change: When NCA refuses to accept any more TCP connections because it already has too many pending TCP connections. If NCA is receiving many TCP connections and can handle a larger load, but is refusing any more connections, increase this parameter. Doing so allows NCA to handle more simultaneous TCP connections.

Commitment Level: Unstable

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>Range</th>
<th>Dynamic?</th>
<th>When to Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>nca:nca_ppmax</td>
<td>Specifies the maximum amount of physical memory (in pages) used by NCA for caching the pages. This value should not be more than 75 percent of total memory.</td>
<td>25 percent of physical memory</td>
<td>1 percent to maximum amount of physical memory</td>
<td>No</td>
<td>When using NCA on a system with more than 512 MB of memory. If a system has a lot of physical memory that is not being used, increase this parameter. Then, NCA will efficiently use this memory to cache new objects. As a result, system performance will increase. This parameter should be increased in conjunction with nca_vpmx, unless you have a system with more physical memory than virtual memory (a 32-bit kernel that has greater than 4 GB memory). Use pagesize(1) to determine your system's page size.</td>
</tr>
<tr>
<td>nca:nca_vpmax</td>
<td>Specifies the maximum amount of virtual memory (in pages) used by NCA for caching pages. This value should not be more than 75 percent of the total memory.</td>
<td>25 percent of virtual memory</td>
<td>1 percent to maximum amount of virtual memory</td>
<td>No</td>
<td>When using NCA on a system with more than 512 MB of memory. If a system has a lot of virtual memory that is not being used, increase this</td>
</tr>
</tbody>
</table>
parameter. Then, NCA will efficiently use this memory to cache new objects. As a result, system performance will increase.

This parameter should be increased in conjunction with \texttt{nca_ppmax}. Set this parameter about the same value as \texttt{nca_vpmax}, unless you have a system with more physical memory than virtual memory.

Commitment Level Unstable

General System Tuning for the NCA

In addition to setting the NCA parameters, you can do some general system tuning to benefit NCA performance. If you are using gigabit Ethernet (\texttt{ge} driver), you should set the interface in interrupt mode for better results.

For example, a system with 4 GB of memory that is booted under 64-bit kernel should have the following parameters set in the \texttt{/etc/system} file. Use \texttt{pagesize} to determine your system’s page size.

\begin{verbatim}
set sq_max_size=0
set ge:ge_intr_mode=1
set nca:nca_conn_hash_size=82500
set nca:nca_conn_req_max_q=100000
set nca:nca_conn_req_max_q0=100000
set nca:nca_ppmax=393216
set nca:nca_vpmax=393216
\end{verbatim}

sq_max_size

Description	Sets the depth of the syncq (number of messages) before a destination STREAMS queue generates a QFULL message.
Default	10000 messages
Range	0 (unlimited) to MAXINT
Dynamic?	No
When to Change	When NCA is running on a system with a lot of memory, increase this parameter to allow drivers to queue more packets of data. If a server is under heavy load, increase this parameter so that modules and drivers can process more data without dropping packets or getting backlogged.

Commitment Level Unstable
<table>
<thead>
<tr>
<th>ge:ge_intr_mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Default</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Dynamic?</td>
</tr>
<tr>
<td>When to Change</td>
</tr>
<tr>
<td>Commitment Level</td>
</tr>
</tbody>
</table>
This chapter describes most of the parameters default values for various system facilities.

- “autofs” on page 170
- “cron” on page 170
- “devfsadm” on page 170
- “dhcpagent” on page 170
- “fs” on page 170
- “ftp” on page 171
- “inetinit” on page 171
- “init” on page 171
- “ipsec” on page 171
- “kbd” on page 171
- “keyserv” on page 171
- “login” on page 171
- “mpathd” on page 172
- “nfs” on page 172
- “nfslogd” on page 172
- “nss” on page 172
- “passwd” on page 172
- “power” on page 172
- “su” on page 172
- “syslog” on page 172
- “tar” on page 173
- “utmpd” on page 173
- “yppasswdd” on page 173
The functioning of various system facilities is governed by a set of values that are read by each facility on startup. The values stored in a file for each facility are located in the `/etc/default` directory. Not every system facility has a file located in this directory.

autofs

This facility enables you to configure autofs parameters such as automatic timeout, displaying or logging status messages, browsing autofs mount points, and tracing. For details, see `autofs(4)`.

cron

This facility enables you to disable or enable cron logging.

devfsadm

This file is not currently used.

dhcpcagent

Client usage of DHCP is provided by the dhcpcagent daemon. When `ipadm` is used to create a DHCP address object, or when `ifconfig` identifies an interface that has been configured to receive its network configuration from DHCP, dhcpcagent is started to manage an address on that interface.

For more information, see the `/etc/default/dhcpcagent` information in the FILES section of `dhcpcagent(1M)`.

fs

File system administrative commands have a generic and file system-specific portion. If the file system type is not explicitly specified with the `-F` option, a default is applied. The value is specified in this file. For more information, see the Description section of `default_fs(4)`.
ftp

This facility enables you to set the `ls` command behavior to the RFC 959 NLST command. The default `ls` behavior is the same as in the previous Solaris release.

For details, see `ftp(4)`.

inetinit

This facility enables you to configure TCP sequence numbers and to enable or disable support for 6to4 relay routers.

init

For details, see the `/etc/default/init` information in the FILES section of `init(1M)`.

All values in the file are placed in the environment of the shell that `init` invokes in response to a single user boot request. The `init` process also passes these values to any commands that it starts or restarts from the `/etc/inittab` file.

ipsec

This facility enables you to configure parameters, such as IKE daemon debugging information and the `ikeadm` privilege level.

kbd

For details, see the Extended Description section of `kbd(1)`.

keyserv

For details, see the `/etc/default/keyserv` information in the FILES section of `keyserv(1M)`.

login

For details, see the `/etc/default/login` information in the FILES section of `login(1)`.
mpathd

This facility enables you to set `in.mpathd` configuration parameters.

For details, see `in.mpathd(1M)`.

nfs

This facility enables you to set NFS daemon configuration parameters.

For details, see `nfs(4)`.

nfslogd

For details, see the Description section of `nfslogd(1M)`.

nss

This facility enables you to configure `initgroups(3C)` lookup parameters.

For details, see `nss(4)`.

passwd

For details, see the `/etc/default/passwd` information in the FILES section of `passwd(1)`.

power

For details, see the `/etc/default/power` information in the FILES section of `pmconfig(1M)`.

su

For details, see the `/etc/default/su` information in the FILES section of `su(1M)`.

syslog

For details, see the `/etc/default/syslogd` information in the FILES section of `syslogd(1M)`.
sys-suspend

For details, see the /etc/default/sys-suspend information in the FILES section of sys-suspend(1M).

tar

For a description of the -f function modifier, see tar(1).

If the TAPE environment variable is not present and the value of one of the arguments is a number and -f is not specified, the number matching the archiveN string is looked up in the /etc/default/tar file. The value of the archiveN string is used as the output device with the blocking and size specifications from the file.

For example:

% tar -c 2 /tmp/*

This command writes the output to the device specified as archive2 in the /etc/default/tar file.

utmpd

The utmpd daemon monitors /var/adm/utmp (and /var/adm/utmp in earlier Solaris versions) to ensure that utmp entries inserted by non-root processes by pututxline(3C) are cleaned up on process termination.

Two entries in /etc/default/utmpd are supported:

- SCAN_PERIOD – The number of seconds that utmpd sleeps between checks of /proc to see if monitored processes are still alive. The default is 300.
- MAX_FDS – The maximum number of processes that utmpd attempts to monitor. The default value is 4096 and should never need to be changed.

yppasswdd

This facility enables you to configure whether a user can successfully set a login shell to a restricted shell when using the passwd -r nis -e command.

For details, see rpc.yppasswdd(1M).
This chapter describes the change history of specific tunable parameters. If a parameter is in this section, it has changed from a previous release. Parameters whose functionality has been removed are listed also.

- "Kernel Parameters" on page 175
- "Parameters That Are Obsolete or Have Been Removed" on page 176

Kernel Parameters

Process-Sizing Tunables

`ngroups_max (Oracle Solaris 11 Express)`

This parameter was undocumented in previous Solaris releases. In this Solaris release, the default maximum has been increased to 1024 groups. For more information, see "`ngroups_max`" on page 42.

General Driver Parameter

`ddi_msix_alloc_limit (Solaris 10 Release and Oracle Solaris 11 Express Release)`

This parameter is new starting in the Solaris 10 10/09 release and the Oracle Solaris 11 Express release. For more information, see "`ddi_msix_alloc_limit`" on page 59.
Network Driver Parameters

igb Parameters (Oracle Solaris 11 Express Release)

The igb network driver parameters are provided in the Oracle Solaris 11 Express release. For more information, see “igb Parameters” on page 60.

ixgbe Parameters (Oracle Solaris 11 Express Release)

The ixgbe network driver parameters are provided in the Oracle Solaris 11 Express release. For more information, see “ixgbe Parameters” on page 61.

General Kernel and Memory Parameters

zfs_arc_min (Oracle Solaris 11 Express)

This parameter description is newly documented in the Solaris 10 10/09 release. For more information, see “zfs_arc_min” on page 29.

zfs_arc_max (Oracle Solaris 11 Express)

This parameter description is newly documented in the Solaris 10 10/09 release. For more information, see “zfs_arc_max” on page 29.

fsflush and Related Parameters

dopageflush (All Solaris Releases)

The description was clarified by including that number of physical memory pages are examined.

Parameters That Are Obsolete or Have Been Removed

The following section describes parameters that are obsolete or have been removed from more recent Solaris releases.

TCP/IP Module Parameters

ip_multidata_outbound (Oracle Solaris 11 Express)

This parameter is obsolete in the Oracle Solaris 11 Express release.
tcp_mdt_max_pbufs (Oracle Solaris 11 Express)
This parameter is obsolete in the Oracle Solaris 11 Express release.
Revision History for This Manual

This section describes the revision history for this manual.

- “Current Version: Oracle Solaris 11 Express Release” on page 179

Current Version: Oracle Solaris 11 Express Release

The current version of this manual applies to the Oracle Solaris 11 Express release.

New or Changed Parameters in the Oracle Solaris Release

The following sections describe new, changed, or obsolete kernel tunables.

- Oracle Solaris 11 Express: The ip_multidata_outbound parameter and the tcp_mdt_max_pbufs parameter for devices that support multidata transport (MDT) are obsolete in this release.

- Oracle Solaris 11 Express: This release includes the ngroups_max parameter description. For more information, see “ngroups_max” on page 42.

- Oracle Solaris 11 Express: This release includes the zfs_arc_min and zfs_arc_max parameter descriptions. For more information, see “zfs_arc_min” on page 29 and “zfs_arc_max” on page 29.

- Oracle Solaris 11 Express: This release includes several 1gb and ixgbe network driver parameters. For more information, see “1gb Parameters” on page 60 and “ixgbe Parameters” on page 61.

- Oracle Solaris 11 Express: This release includes the ddi_msix_alloc_limit parameter that can be used to increase the number of MSI-X interrupts that a device instance can allocate. For more information, see “ddi_msix_alloc_limit” on page 59.

- Oracle Solaris 11 Express: This release includes corrected range information for the tcp_local_dack_interval parameter. For more information, see “tcp_local_dack_interval” on page 137.
Oracle Solaris 11 Express: This release includes the `kmem_stackinfo` parameter, which can be enabled to monitor kernel thread stack usage. For more information, see “kmem_stackinfo” on page 57.

Oracle Solaris 11 Express: For information about tuning ZFS file systems, see the following site:

Oracle Solaris 11 Express: Memory locality group parameters are provided in this release. For more information about these parameters, see “Locality Group Parameters” on page 90.

Oracle Solaris 11 Express: Parameter information was updated to include sun4v systems. For more information, see the following references:
- “maxphys” on page 65
- “tmpfs:tmpfs_maxkmem” on page 78
- “sun4u or sun4v Specific Parameters” on page 86
Index

<table>
<thead>
<tr>
<th>A</th>
<th>_addip_enabled, 160</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>_addrs_per_if, 135</td>
</tr>
<tr>
<td></td>
<td>autofs, 170</td>
</tr>
<tr>
<td></td>
<td>autoup, 36</td>
</tr>
<tr>
<td>B</td>
<td>bufhwm, 71</td>
</tr>
<tr>
<td></td>
<td>bufhwm_pct, 71</td>
</tr>
<tr>
<td>C</td>
<td>_conn_req_max_q, 144</td>
</tr>
<tr>
<td></td>
<td>_conn_req_max_q0, 144</td>
</tr>
<tr>
<td></td>
<td>_conn_req_min, 145</td>
</tr>
<tr>
<td></td>
<td>consistent_coloring, 86</td>
</tr>
<tr>
<td></td>
<td>_cookie_life, 158</td>
</tr>
<tr>
<td></td>
<td>cron, 170</td>
</tr>
<tr>
<td></td>
<td>_cwnd_max, 140,154</td>
</tr>
<tr>
<td>D</td>
<td>ddi_msix_alloc_limit parameter, 59</td>
</tr>
<tr>
<td></td>
<td>default_stksize, 30</td>
</tr>
<tr>
<td></td>
<td>default_tsb_size, 88</td>
</tr>
<tr>
<td></td>
<td>_deferred_ack_interval, 136,156</td>
</tr>
<tr>
<td></td>
<td>_deferred_acks_max, 137</td>
</tr>
<tr>
<td></td>
<td>desfree, 45</td>
</tr>
<tr>
<td></td>
<td>dhcpagent, 170</td>
</tr>
<tr>
<td></td>
<td>dnlc_dir_enable, 69</td>
</tr>
<tr>
<td></td>
<td>dnlc_dir_max_size, 70</td>
</tr>
<tr>
<td></td>
<td>dnlc_dir_min_size, 69</td>
</tr>
<tr>
<td></td>
<td>doiflush, 37</td>
</tr>
<tr>
<td></td>
<td>dopageflush, 37,176</td>
</tr>
<tr>
<td></td>
<td>ecn, 143</td>
</tr>
<tr>
<td></td>
<td>enable_tsb_rss_sizing, 89</td>
</tr>
<tr>
<td></td>
<td>fastscan, 50</td>
</tr>
<tr>
<td></td>
<td>freebehind, 76</td>
</tr>
<tr>
<td></td>
<td>fs, 170</td>
</tr>
<tr>
<td></td>
<td>fsflush, 34</td>
</tr>
<tr>
<td></td>
<td>ftp, 171</td>
</tr>
<tr>
<td>G</td>
<td>ge_intr_mode, 167</td>
</tr>
<tr>
<td>H</td>
<td>handspreadpages, 51</td>
</tr>
<tr>
<td></td>
<td>_heartbeat_interval, 155</td>
</tr>
<tr>
<td></td>
<td>hires_tick, 85</td>
</tr>
</tbody>
</table>
I
_icmp_err_burst, 135
_icmp_err_interval, 135
_ignore_path_mtu, 156
_inetinit, 171
_init, 171
_initial_mtu, 155
_initial_out_streams, 159
_initial_ssthresh, 156
_intr_force, 60
_intr_throttling, 62
_ip_abort_interval, 148
_ip_squeue_fanout, 136
_ip_squeue_worker_wait, 147
_ipcl_conn_hash_size, 146
_ipsec, 171
_ipv4_ttl, 154
_ipv6_hoplimit, 157

K
_kbd, 171
_keepalive_interval, 148
_keyserv, 171
_kmem_flags, 55
_kmem_stackinfo, 57

L
_lgrp_mem_pset_aware, 92
_local_dack_interval, 137
_local_dacks_max, 138
_logevent_max_q_sz, 32
_login, 171
_lotsfree, 44
_lpg_alloc_prefer, 90
_lpg_mem_default_policy, 91
_lwp_default_stksize, 31
_max_in_streams, 158
_max_init_retr, 153
_max_nprocs, 41
_maxpgio, 53
_maxphys, 65
_maxpid, 40
_maxuprc, 41
_maxusers, 38
_min_percent_cpu, 51
_minfree, 46
_moddebug, 58
_mpathd, 172
_mr_enable, 60

N
_nca_conn_hash_size, 164
_nca_conn_req_max_q, 164
_nca_conn_req_max_q0, 164
_nca_ppmax, 165
_nca_vpmx, 165
_ncsize, 67
_ndd, 134
_ndquot, 73
_new_secret_interval, 155
_nfs_max_threads, 105
_nfs:nacache, 119
_nfs:nfs_allow_preePOCH_time, 97
_nfs:nfs_async_clusters, 116
_nfs:nfs_async_timeout, 118
_nfs:nfs_bsize, 114
_nfs:nfs_cots_timeo, 98
_nfs:nfs_disable_rddir_cache, 113
_nfs:nfs_do_symlink_cache, 100
_nfs:nfs_dynamic, 102
_nfs:nfs_lookup_neg_cache, 103
_nfs:nfs_nra, 107
_nfs:nfs_shrinkreaddir, 110
_nfs:nfs_write_error_interval, 112
_nfs:nfs_write_error_to_cons_only, 112
_nfs:nfs3_async_clusters, 117
_nfs:nfs3_bsize, 114
_nfs:nfs3_cots_timeo, 98
_nfs:nfs3_do_symlink_cache, 100

M
_max_buf, 140, 157

Index
nfs:nfs3_dynamic, 102
nfs:nfs3_jukebox_delay, 120
nfs:nfs3_lookup_neg_cache, 103
nfs:nfs3_max_threads, 106
nfs:nfs3_max_transfer_size, 120
nfs:nfs3_max_transfer_size_clts, 122
nfs:nfs3_max_transfer_size_cots, 123
nfs:nfs3_nra, 108
nfs:nfs3_pathconf_disable_cache, 96
nfs:nfs3_shrinkreaddir, 111
nfs:nfs4_async_clusters, 118
nfs:nfs4_bsizer, 115
nfs:nfs4_cots_timeo, 99
nfs:nfs4_do_symlink_cache, 101
nfs:nfs4_lookup_neg_cache, 104
nfs:nfs4_max_threads, 107
nfs:nfs4_max_transfer_size, 121
nfs:nfs4_nra, 109
nfs:nfs4_pathconf_disable_cache, 96
nfs:nrnode, 109
nfslogd, 172
nfssrv:exi_cache_time, 126
nfssrv:nfs_portmon, 123
nfssrv:nfsauth_ch_cache_max, 125
nfssrv:nfs_write_async, 124
ngroups_max, 42, 175
noexec_user_stack, 34
nss, 172
nstrpush, 82

P
pageout_reserve, 47
pages_before_pager, 52
pages_pp_maximum, 48
passwd, 172
physmem, 28
pidmax, 40
_policy_mask, 152
power, 172
_pp_max_retr, 154
_prscp_enabled, 160
pt_cnt, 80
pt_max_pty, 81
pt_pctofmem, 80

R
rechoose_interval, 85
__recv_hiwat_minnss, 151
recv_maxbuf, 139, 151
reserved_procs, 39
__respond_to_echo_broadcast, 135
__rev_src_routes, 142
__rexmit_interval_extra, 150
__rexmit_interval_initial, 149
__rexmit_interval_max, 149
__rexmit_interval_min, 149
rlim_fd_cur, 66
rlim_fd_max, 65
rpcmod:clnt_idle_timeout, 127
rpcmod:clnt_max_conns, 126
rpcmod:cosmaxdupreqs, 130
rpcmod:maxdupreqs, 129
rpcmod:svc_default_stksize, 128
rpcmod:svc_idle_timeout, 127
__rst_sent_rate, 146
__rst_sent_rate_enabled, 145
rstchown, 68
__rto_max, 158
__rto_min, 157
rx_copy_threshold, 64
rx_limit_per_intr, 62
rx_queue_number, 61
rx_ring_size, 63

S
sack, 141
sctp_maxburst, 159
segmap_percent, 70
segspt_minfree, 84
send_maxbuf, 139, 151
__shutack_wait_bound, 159
__slow_start_after_idle, 141
__slow_start_initial, 141
slowscan, 50
Index

smallfile, 77
sq_max_size, 166
strmsgsz, 82, 83
su, 172
sun4u, 86
sun4v, 86
swapfs_minfree, 54
swapfs_reserve, 54
sys-suspend, 173
syslog, 172

Y

yppasswd, 173

Z

zfs_arc_max, 29, 176
zfs_arc_min, 29, 176

T

tar, 173
throttlefree, 47
_time_wait_interval, 142
timer_max, 86
tmpfs_maxkmem, 78
tmpfs_minfree, 78
tsb_alloc_hiwater, 87
tsb_rss_size, 89
tstamp_always, 139
tstamp_if_wscale, 150
tune_t_fsflushr, 35
tune_t_minarmem, 49
tx_copy_threshold, 64
tx_queue_number, 61
tx_ring_size, 63

U

ufs_HW, 75
ufs_LW, 75
ufs_ninode, 73
ufs:ufs_WRITES, 75
utmpd, 173

W

_wscale_always, 138