
man pages section 3: Extended Library
Functions, Volume 4
Beta

Part No: 821–1470–06
November 2010



Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
“commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are
trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

110425@25097



Contents

Preface ...................................................................................................................................................11

Extended Library Functions, Volume 4 ............................................................................................ 15
acl_check(3SEC) ................................................................................................................................ 16
aclcheck(3SEC) .................................................................................................................................. 17
acl_free(3SEC) .................................................................................................................................. 19
acl_get(3SEC) .................................................................................................................................... 20
aclsort(3SEC) .................................................................................................................................... 22
acl_strip(3SEC) ................................................................................................................................ 23
acltomode(3SEC) ................................................................................................................................ 24
acl_totext(3SEC) .............................................................................................................................. 26
acltotext(3SEC) ................................................................................................................................ 31
acl_trivial(3SEC) ............................................................................................................................ 33
blcompare(3TSOL) ............................................................................................................................. 34
blminmax(3TSOL) ............................................................................................................................... 35
bltocolor(3TSOL) ............................................................................................................................. 36
bltos(3TSOL) ..................................................................................................................................... 38
btohex(3TSOL) ................................................................................................................................... 41
cpl_complete_word(3TECLA) ......................................................................................................... 43
ef_expand_file(3TECLA) ............................................................................................................... 49
getauthattr(3SECDB) ...................................................................................................................... 53
getexecattr(3SECDB) ...................................................................................................................... 56
getpathbylabel(3TSOL) .................................................................................................................. 59
getplabel(3TSOL) ............................................................................................................................. 61
getprofattr(3SECDB) ...................................................................................................................... 62
getuserattr(3SECDB) ...................................................................................................................... 64
getuserrange(3TSOL) ....................................................................................................................... 66
getzonelabelbyid(3TSOL) .............................................................................................................. 68

3



getzonerootbyid(3TSOL) ................................................................................................................ 70
gl_get_line(3TECLA) ...................................................................................................................... 72
gl_io_mode(3TECLA) ........................................................................................................................ 99
hextob(3TSOL) ................................................................................................................................. 106
kva_match(3SECDB) ........................................................................................................................ 107
labelclipping(3TSOL) ................................................................................................................... 108
label_to_str(3TSOL) ..................................................................................................................... 110
libtecla_version(3TECLA) ......................................................................................................... 112
libtnfctl(3TNF) ............................................................................................................................. 113
media_findname(3VOLMGT) ........................................................................................................ 118
media_getattr(3VOLMGT) .......................................................................................................... 120
media_getid(3VOLMGT) ............................................................................................................... 122
m_label(3TSOL) ............................................................................................................................... 124
pca_lookup_file(3TECLA) ........................................................................................................... 126
sbltos(3TSOL) ................................................................................................................................. 131
scf_entry_create(3SCF) ............................................................................................................... 133
scf_error(3SCF) .............................................................................................................................. 135
scf_handle_create(3SCF) ............................................................................................................. 137
scf_handle_decode_fmri(3SCF) ................................................................................................... 140
scf_instance_create(3SCF) ......................................................................................................... 143
scf_iter_create(3SCF) ................................................................................................................. 147
scf_limit(3SCF) .............................................................................................................................. 153
scf_pg_create(3SCF) ...................................................................................................................... 154
scf_property_create(3SCF) ......................................................................................................... 161
scf_scope_create(3SCF) ............................................................................................................... 165
scf_service_create(3SCF) ........................................................................................................... 167
scf_simple_prop_get(3SCF) ......................................................................................................... 171
scf_simple_walk_instances(3SCF) ............................................................................................ 178
scf_snaplevel_create(3SCF) ....................................................................................................... 179
scf_snapshot_create(3SCF) ......................................................................................................... 182
scf_tmpl_pg_create(3SCF) ........................................................................................................... 186
scf_tmpl_pg_name(3SCF) ............................................................................................................... 189
scf_tmpl_prop_create(3SCF) ....................................................................................................... 192
scf_tmpl_prop_name(3SCF) ........................................................................................................... 194
scf_tmpl_validate_fmri(3SCF) ................................................................................................... 201
scf_transaction_create(3SCF) ................................................................................................... 207

Contents

man pages section 3: Extended Library Functions, Volume 4 • November 2010 (Beta)4



scf_value_create(3SCF) ............................................................................................................... 213
setflabel(3TSOL) ........................................................................................................................... 218
smf_enable_instance(3SCF) ......................................................................................................... 220
smf_notify_set_params(3SCF) ..................................................................................................... 223
srpt_SetDefaultState(3SRPT) .................................................................................................... 226
srpt_SetTargetState(3SRPT) ...................................................................................................... 227
SSAAgentIsAlive(3SNMP) ............................................................................................................. 229
SSAOidCmp(3SNMP) .......................................................................................................................... 232
SSAStringCpy(3SNMP) ................................................................................................................... 234
stmfAddToHostGroup(3STMF) ....................................................................................................... 235
stmfAddToTargetGroup(3STMF) ................................................................................................... 236
stmfAddViewEntry(3STMF) ............................................................................................................ 237
stmfClearProviderData(3STMF) ................................................................................................. 238
stmfCreateHostGroup(3STMF) ..................................................................................................... 239
stmfCreateLu(3STMF) .................................................................................................................... 240
stmfCreateLuResource(3STMF) ................................................................................................... 242
stmfCreateTargetGroup(3STMF) ................................................................................................. 243
stmfDeleteHostGroup(3STMF) ..................................................................................................... 244
stmfDeleteLu(3STMF) .................................................................................................................... 245
stmfDeleteTargetGroup(3STMF) ................................................................................................. 246
stmfDestroyProxyDoor(3STMF) ................................................................................................... 247
stmfDevidFromIscsiName(3STMF) ............................................................................................... 248
stmfDevidFromWwn(3STMF) ............................................................................................................ 249
stmfFreeLuResource(3STMF) ....................................................................................................... 250
stmfFreeMemory(3STMF) ................................................................................................................ 251
stmfGetAluaState(3STMF) ............................................................................................................ 252
stmfGetHostGroupList(3STMF) ................................................................................................... 253
stmfGetHostGroupMembers(3STMF) ............................................................................................. 254
stmfGetLogicalUnitList(3STMF) ............................................................................................... 255
stmfGetLogicalUnitProperties(3STMF) .................................................................................. 256
stmfGetLuResource(3STMF) ......................................................................................................... 257
stmfGetPersistMethod(3STMF) ................................................................................................... 258
stmfGetProviderData(3STMF) ..................................................................................................... 259
stmfGetProviderDataProt(3STMF) ............................................................................................. 260
stmfGetState(3STMF) .................................................................................................................... 261
stmfGetStmfProp(3STMF) .............................................................................................................. 262

Contents

5



stmfGetTargetGroupList(3STMF) ............................................................................................... 263
stmfGetTargetGroupMembers(3STMF) ......................................................................................... 264
stmfGetTargetList(3STMF) ......................................................................................................... 265
stmfGetTargetProperties(3STMF) ............................................................................................. 266
stmfGetViewEntryList(3STMF) ................................................................................................... 267
stmfImportLu(3STMF) .................................................................................................................... 268
stmfInitProxyDoor(3STMF) ......................................................................................................... 269
stmfLuStandby(3STMF) .................................................................................................................. 271
stmfModifyLu(3STMF) .................................................................................................................... 272
stmfOfflineLogicalUnit(3STMF) ............................................................................................... 274
stmfOfflineTarget(3STMF) ......................................................................................................... 275
stmfOnlineLogicalUnit(3STMF) ................................................................................................. 276
stmfOnlineTarget(3STMF) ............................................................................................................ 277
stmfPostProxyMsg(3STMF) ............................................................................................................ 278
stmfRemoveFromHostGroup(3STMF) ............................................................................................. 279
stmfRemoveFromTargetGroup(3STMF) ......................................................................................... 280
stmfRemoveViewEntry(3STMF) ..................................................................................................... 281
stmfSetAluaState(3STMF) ............................................................................................................ 282
stmfSetLuProp(3STMF) .................................................................................................................. 283
stmfSetPersistMethod(3STMF) ................................................................................................... 286
stmfSetProviderData(3STMF) ..................................................................................................... 287
stmfSetProviderDataProt(3STMF) ............................................................................................. 288
stmfSetStmfProp(3STMF) .............................................................................................................. 289
stmfValidateView(3STMF) ............................................................................................................ 290
stobl(3TSOL) ................................................................................................................................... 291
str_to_label(3TSOL) ..................................................................................................................... 294
sysevent_bind_handle(3SYSEVENT) ......................................................................................... 296
sysevent_free(3SYSEVENT) ........................................................................................................ 298
sysevent_get_attr_list(3SYSEVENT) ..................................................................................... 299
sysevent_get_class_name(3SYSEVENT) ................................................................................... 300
sysevent_get_vendor_name(3SYSEVENT) ................................................................................. 302
sysevent_post_event(3SYSEVENT) ........................................................................................... 304
sysevent_subscribe_event(3SYSEVENT) ................................................................................. 306
tnfctl_buffer_alloc(3TNF) ........................................................................................................ 310
tnfctl_close(3TNF) ....................................................................................................................... 312
tnfctl_indirect_open(3TNF) ...................................................................................................... 314

Contents

man pages section 3: Extended Library Functions, Volume 4 • November 2010 (Beta)6



tnfctl_internal_open(3TNF) ...................................................................................................... 317
tnfctl_kernel_open(3TNF) .......................................................................................................... 319
tnfctl_pid_open(3TNF) ................................................................................................................ 320
tnfctl_probe_apply(3TNF) .......................................................................................................... 326
tnfctl_probe_state_get(3TNF) .................................................................................................. 329
tnfctl_register_funcs(3TNF) .................................................................................................... 333
tnfctl_strerror(3TNF) ................................................................................................................ 334
tnfctl_trace_attrs_get(3TNF) .................................................................................................. 335
tnfctl_trace_state_set(3TNF) .................................................................................................. 337
TNF_DECLARE_RECORD(3TNF) .......................................................................................................... 340
TNF_PROBE(3TNF) ............................................................................................................................. 343
tnf_process_disable(3TNF) ........................................................................................................ 348
tracing(3TNF) ................................................................................................................................. 350
tsol_getrhtype(3TSOL) ................................................................................................................ 354
uuid_clear(3UUID) ........................................................................................................................ 355
volmgt_acquire(3VOLMGT) ........................................................................................................ 357
volmgt_check(3VOLMGT) ............................................................................................................. 360
volmgt_feature_enabled(3VOLMGT) ........................................................................................ 362
volmgt_inuse(3VOLMGT) ............................................................................................................. 363
volmgt_ownspath(3VOLMGT) ...................................................................................................... 364
volmgt_release(3VOLMGT) ........................................................................................................ 365
volmgt_root(3VOLMGT) ............................................................................................................... 367
volmgt_running(3VOLMGT) ........................................................................................................ 368
volmgt_symname(3VOLMGT) ........................................................................................................ 369
wsreg_add_child_component(3WSREG) ..................................................................................... 371
wsreg_add_compatible_version(3WSREG) ............................................................................... 373
wsreg_add_dependent_component(3WSREG) ............................................................................ 375
wsreg_add_display_name(3WSREG) ........................................................................................... 377
wsreg_add_required_component(3WSREG) ............................................................................... 379
wsreg_can_access_registry(3WSREG) ..................................................................................... 381
wsreg_clone_component(3WSREG) ............................................................................................. 383
wsreg_components_equal(3WSREG) ........................................................................................... 384
wsreg_create_component(3WSREG) ........................................................................................... 385
wsreg_get(3WSREG) ....................................................................................................................... 386
wsreg_initialize(3WSREG) ........................................................................................................ 387
wsreg_query_create(3WSREG) .................................................................................................... 388

Contents

7



wsreg_query_set_id(3WSREG) .................................................................................................... 389
wsreg_query_set_instance(3WSREG) ....................................................................................... 390
wsreg_query_set_location(3WSREG) ....................................................................................... 391
wsreg_query_set_unique_name(3WSREG) ................................................................................. 392
wsreg_query_set_version(3WSREG) ......................................................................................... 393
wsreg_register(3WSREG) ............................................................................................................ 394
wsreg_set_data(3WSREG) ............................................................................................................ 396
wsreg_set_id(3WSREG) ................................................................................................................ 398
wsreg_set_instance(3WSREG) .................................................................................................... 399
wsreg_set_location(3WSREG) .................................................................................................... 401
wsreg_set_parent(3WSREG) ........................................................................................................ 402
wsreg_set_type(3WSREG) ............................................................................................................ 403
wsreg_set_uninstaller(3WSREG) ............................................................................................. 404
wsreg_set_unique_name(3WSREG) ............................................................................................. 405
wsreg_set_vendor(3WSREG) ........................................................................................................ 406
wsreg_set_version(3WSREG) ...................................................................................................... 407
wsreg_unregister(3WSREG) ........................................................................................................ 408
XTSOLgetClientAttributes(3XTSOL) ........................................................................................ 411
XTSOLgetPropAttributes(3XTSOL) ............................................................................................. 412
XTSOLgetPropLabel(3XTSOL) ....................................................................................................... 414
XTSOLgetPropUID(3XTSOL) ........................................................................................................... 415
XTSOLgetResAttributes(3XTSOL) ............................................................................................... 417
XTSOLgetResLabel(3XTSOL) ......................................................................................................... 419
XTSOLgetResUID(3XTSOL) .............................................................................................................. 420
XTSOLgetSSHeight(3XTSOL) ......................................................................................................... 422
XTSOLgetWorkstationOwner(3XTSOL) ........................................................................................ 423
XTSOLIsWindowTrusted(3XTSOL) ................................................................................................. 424
XTSOLMakeTPWindow(3XTSOL) ....................................................................................................... 425
XTSOLsetPolyInstInfo(3XTSOL) ................................................................................................. 426
XTSOLsetPropLabel(3XTSOL) ....................................................................................................... 427
XTSOLsetPropUID(3XTSOL) ........................................................................................................... 428
XTSOLsetResLabel(3XTSOL) ......................................................................................................... 429
XTSOLsetResUID(3XTSOL) .............................................................................................................. 430
XTSOLsetSessionHI(3XTSOL) ....................................................................................................... 431
XTSOLsetSessionLO(3XTSOL) ....................................................................................................... 432
XTSOLsetSSHeight(3XTSOL) ......................................................................................................... 433

Contents

man pages section 3: Extended Library Functions, Volume 4 • November 2010 (Beta)8



XTSOLsetWorkstationOwner(3XTSOL) ........................................................................................ 434

Contents

9



10



Preface

Both novice users and those familar with the SunOS operating system can use online man pages
to obtain information about the system and its features. A man page is intended to answer
concisely the question “What does it do?” The man pages in general comprise a reference
manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the information it
references:

■ Section 1 describes, in alphabetical order, commands available with the operating system.
■ Section 1M describes, in alphabetical order, commands that are used chiefly for system

maintenance and administration purposes.
■ Section 2 describes all of the system calls. Most of these calls have one or more error returns.

An error condition is indicated by an otherwise impossible returned value.
■ Section 3 describes functions found in various libraries, other than those functions that

directly invoke UNIX system primitives, which are described in Section 2.
■ Section 4 outlines the formats of various files. The C structure declarations for the file

formats are given where applicable.
■ Section 5 contains miscellaneous documentation such as character-set tables.
■ Section 7 describes various special files that refer to specific hardware peripherals and device

drivers. STREAMS software drivers, modules and the STREAMS-generic set of system calls
are also described.

■ Section 9E describes the DDI (Device Driver Interface)/DKI (Driver/Kernel Interface),
DDI-only, and DKI-only entry-point routines a developer can include in a device driver.

■ Section 9F describes the kernel functions available for use by device drivers.
■ Section 9S describes the data structures used by drivers to share information between the

driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section generally
follow this order, but include only needed headings. For example, if there are no bugs to report,

11



there is no BUGS section. See the intro pages for more information and detail about each
section, and man(1) for more information about man pages in general.

NAME This section gives the names of the commands or functions
documented, followed by a brief description of what they
do.

SYNOPSIS This section shows the syntax of commands or functions.
When a command or file does not exist in the standard
path, its full path name is shown. Options and arguments
are alphabetized, with single letter arguments first, and
options with arguments next, unless a different argument
order is required.

The following special characters are used in this section:

[ ] Brackets. The option or argument enclosed in
these brackets is optional. If the brackets are
omitted, the argument must be specified.

. . . Ellipses. Several values can be provided for the
previous argument, or the previous argument
can be specified multiple times, for example,
"filename . . ." .

| Separator. Only one of the arguments
separated by this character can be specified at a
time.

{ } Braces. The options and/or arguments
enclosed within braces are interdependent,
such that everything enclosed must be treated
as a unit.

PROTOCOL This section occurs only in subsection 3R to indicate the
protocol description file.

DESCRIPTION This section defines the functionality and behavior of the
service. Thus it describes concisely what the command
does. It does not discuss OPTIONS or cite EXAMPLES.
Interactive commands, subcommands, requests, macros,
and functions are described under USAGE.

IOCTL This section appears on pages in Section 7 only. Only the
device class that supplies appropriate parameters to the
ioctl(2) system call is called ioctl and generates its own
heading. ioctl calls for a specific device are listed
alphabetically (on the man page for that specific device).

Preface

man pages section 3: Extended Library Functions, Volume 4 • November 2010 (Beta)12

http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=man-1
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=ioctl-2


ioctl calls are used for a particular class of devices all of
which have an io ending, such as mtio(7I).

OPTIONS This secton lists the command options with a concise
summary of what each option does. The options are listed
literally and in the order they appear in the SYNOPSIS
section. Possible arguments to options are discussed under
the option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and describes
how they affect the actions of the command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

RETURN VALUES If the man page documents functions that return values,
this section lists these values and describes the conditions
under which they are returned. If a function can return
only constant values, such as 0 or –1, these values are listed
in tagged paragraphs. Otherwise, a single paragraph
describes the return values of each function. Functions
declared void do not return values, so they are not
discussed in RETURN VALUES.

ERRORS On failure, most functions place an error code in the global
variable errno indicating why they failed. This section lists
alphabetically all error codes a function can generate and
describes the conditions that cause each error. When more
than one condition can cause the same error, each
condition is described in a separate paragraph under the
error code.

USAGE This section lists special rules, features, and commands
that require in-depth explanations. The subsections listed
here are used to explain built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of how to use a
command or function. Wherever possible a complete

Preface

13

http://www.oracle.com/pls/topic/lookup?ctx=821-1475&id=mtio-7i


example including command-line entry and machine
response is shown. Whenever an example is given, the
prompt is shown as example%, or if the user must be
superuser, example#. Examples are followed by
explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the
SYNOPSIS, DESCRIPTION, OPTIONS, and USAGE
sections.

ENVIRONMENT VARIABLES This section lists any environment variables that the
command or function affects, followed by a brief
description of the effect.

EXIT STATUS This section lists the values the command returns to the
calling program or shell and the conditions that cause these
values to be returned. Usually, zero is returned for
successful completion, and values other than zero for
various error conditions.

FILES This section lists all file names referred to by the man page,
files of interest, and files created or required by commands.
Each is followed by a descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands, utilities,
and device drivers by defining the attribute type and its
corresponding value. See attributes(5) for more
information.

SEE ALSO This section lists references to other man pages, in-house
documentation, and outside publications.

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions which
could seriously affect your working conditions. This is not
a list of diagnostics.

NOTES This section lists additional information that does not
belong anywhere else on the page. It takes the form of an
aside to the user, covering points of special interest.
Critical information is never covered here.

BUGS This section describes known bugs and, wherever possible,
suggests workarounds.

Preface

man pages section 3: Extended Library Functions, Volume 4 • November 2010 (Beta)14

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


Extended Library Functions, Volume 4

R E F E R E N C E

15



acl_check – check the validity of an ACL

cc [ flag... ] file... -lsec [ library... ]

#include <sys/acl.h>

int acl_check(acl_t *aclp, int isdir);

The acl_check() function checks the validity of an ACL pointed to by aclp. The isdir
argument checks the validity of an ACL that will be applied to a directory. The ACL can be
either a POSIX draft ACL as supported by UFS or NFSv4 ACL as supported by ZFS or NFSV4.

When the function verifies a POSIX draft ACL, the rules followed are described in
aclcheck(3SEC). For NFSv4 ACL, the ACL is verified against the following rules:

■ The inheritance flags are valid.
■ The ACL must have at least one ACL entry and no more than {MAX_ACL_ENTRIES}.
■ The permission field contains only supported permissions.
■ The entry type is valid.
■ The flag fields contain only valid flags as supported by NFSv4/ZFS.

If any of the above rules are violated, the function fails with errno set to EINVAL.

If the ACL is valid, acl_check() returns 0. Otherwise errno is set to EINVAL and the return
value is set to one of the following:

EACL_INHERIT_ERROR There are invalid inheritance flags specified.

EACL_FLAGS_ERROR There are invalid flags specified on the ACL that don't map to
supported flags in NFSV4/ZFS ACL model.

EACL_ENTRY_ERROR The ACL contains an unknown value in the type field.

EACL_MEM_ERROR The system cannot allocate any memory.

EACL_INHERIT_NOTDIR Inheritance flags are only allowed for ACLs on directories.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

acl(2), aclcheck(3SEC), aclsort(3SEC), acl(5), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

acl_check(3SEC)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Apr 200816

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=acl-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=acl-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


aclcheck – check the validity of an ACL

cc [ flag... ] file... -lsec [ library... ]

#include <sys/acl.h>

int aclcheck(aclent_t *aclbufp, int nentries, int *which);

The aclcheck() function checks the validity of an ACL pointed to by aclbufp. The nentries
argument is the number of entries contained in the buffer. The which parameter returns the
index of the first entry that is invalid.

The function verifies that an ACL pointed to by aclbufp is valid according to the following
rules:

■ There must be exactly one GROUP_OBJ ACL entry.
■ There must be exactly one USER_OBJ ACL entry.
■ There must be exactly one OTHER_OBJ ACL entry.
■ If there are any GROUP ACL entries, then the group ID in each group ACL entry must be

unique.
■ If there are any USER ACL entries, then the user ID in each user ACL entry must be unique.
■ If there are any GROUP or USER ACL entries, then there must be exactly one CLASS_OBJ

(ACL mask) entry.
■ If there are any default ACL entries, then the following apply:

■ There must be exactly one default GROUP_OBJ ACL entry.
■ There must be exactly one default OTHER_OBJ ACL entry.
■ There must be exactly one default USER_OBJ ACL entry.
■ If there are any DEF_GROUP entries, then the group ID in each DEF_GROUP ACL entry

must be unique.
■ If there are any DEF_USER entries, then the user ID in each DEF_USER ACL entry must be

unique.
■ If there are any DEF_GROUP or DEF_USER entries, then there must be exactly one

DEF_CLASS_OBJ (default ACL mask) entry.
■ If any of the above rules are violated, then the function fails with errno set to EINVAL.

If the ACL is valid, alcheck() will return 0. Otherwise errno is set to EINVAL and return code
is set to one of the following:

GRP_ERROR There is more than one GROUP_OBJ or DEF_GROUP_OBJ ACL entry.

USER_ERROR There is more than one USER_OBJ or DEF_USER_OBJ ACL entry.

CLASS_ERROR There is more than one CLASS_OBJ (ACL mask) or DEF_CLASS_OBJ
(default ACL mask) entry.

Name

Synopsis

Description

Return Values

aclcheck(3SEC)

Extended Library Functions, Volume 4 17



OTHER_ERROR There is more than one OTHER_OBJ or DEF_OTHER_OBJ ACL entry.

DUPLICATE_ERROR Duplicate entries of USER, GROUP, DEF_USER, or DEF_GROUP.

ENTRY_ERROR The entry type is invalid.

MISS_ERROR Missing an entry. The which parameter returns −1 in this case.

MEM_ERROR The system cannot allocate any memory. The which parameter returns
−1 in this case.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

acl(2), aclsort(3SEC), attributes(5)

Attributes

See Also

aclcheck(3SEC)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 10 Dec 200118

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=acl-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


acl_free – free memory associated with an acl_t structure

cc [ flag... ] file... -lsec [ library... ]

#include <sys/acl.h>

void acl_free(acl_t *aclp);

The acl_free() function frees memory allocated for the acl_t structure pointed to by the aclp
argument.

The acl_free() function does not return a value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

acl_get(3SEC), acl(5), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

acl_free(3SEC)

Extended Library Functions, Volume 4 19

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=acl-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


acl_get, facl_get, acl_set, facl_set – get or set a file's Access Control List (ACL)

cc [ flag... ] file... -lsec [ library... ]

#include <sys/acl.h>

int acl_get(const char *path, int flag, acl_t **aclp);

int facl_get(int fd, int flag, acl_t **aclp);

int acl_set(const char *path, acl_t *aclp);

int facl_set(int fd, acl_t *aclp);

The acl_get() and facl_get() functions retrieve an Access Control List (ACL) of a file
whose name is given by path or referenced by the open file descriptor fd. The flag argument
specifies whether a trivial ACL should be retrieved. When the flag argument is
ACL_NO_TRIVIAL, only ACLs that are not trivial will be retrieved. The ACL is returned in the
aclp argument.

The acl_set() and facl_set() functions are used for setting an ACL of a file whose name is
given by path or referenced by the open file descriptor fd. The aclp argument specifies the ACL
to set.

The acl_get() and acl_set() functions support multiple types of ACLs. When possible, the
acl_set() function translates an ACL to the target file's style of ACL. Currently this is only
possible when translating from a POSIX-draft ACL such as on UFS to a file system that
supports NFSv4 ACL semantics such as ZFS or NFSv4.

The caller is responsible for freeing the returned acl_t structure using acl_free(3SEC).

Upon successful completion, acl_get() and facl_get() return 0 and aclp is non-NULL. The
aclp argument can be NULL after successful completion if the file had a trivial ACL and the flag
argument was ACL_NO_TRIVIAL. Otherwise, -1 is returned and errno is set to indicate the
error.

Upon successful completion, acl_set() and facl_set() return 0. Otherwise, -1 is returned
and errno is set to indicate the error.

These functions will fail if:

EACCES The caller does not have access to a component of path.

EIO A disk I/O error has occured while retrieving the ACL.

ENOENT A component of the path does not exist.

ENOSYS The file system does not support ACLs.

ENOTSUP The ACL supplied could not be translated to an NFSv4 ACL.

Name

Synopsis

Description

Return Values

Errors

acl_get(3SEC)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 4 Jun 201020



See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

chmod(1), acl(2), acl_free(3SEC), acl(5), attributes(5)

Attributes

See Also

acl_get(3SEC)

Extended Library Functions, Volume 4 21

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=chmod-1
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=acl-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=acl-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


aclsort – sort an ACL

cc [ flag ... ] file ... -lsec [ library ... ]

#include <sys/acl.h>

int aclsort(int nentries, int calclass, aclent_t *aclbufp);

The aclbufp argument points to a buffer containing ACL entries. The nentries argument
specifies the number of ACL entries in the buffer. The calclass argument, if non-zero, indicates
that the CLASS_OBJ (ACL mask) permissions should be recalculated. The union of the
permission bits associated with all ACL entries in the buffer other than CLASS_OBJ,
OTHER_OBJ, and USER_OBJ is calculated. The result is copied to the permission bits associated
with the CLASS_OBJ entry.

The aclsort() function sorts the contents of the ACL buffer as follows:

■ Entries will be in the order USER_OBJ, USER, GROUP_OBJ, GROUP, CLASS_OBJ (ACL mask),
OTHER_OBJ, DEF_USER_OBJ, DEF_USER, DEF_GROUP_OBJ, DEF_GROUP, DEF_CLASS_OBJ
(default ACL mask), and DEF_OTHER_OBJ.

■ Entries of type USER, GROUP, DEF_USER, and DEF_GROUP will be sorted in increasing order by
ID.

The aclsort() function will succeed if all of the following are true:

■ There is exactly one entry each of type USER_OBJ, GROUP_OBJ, CLASS_OBJ (ACL mask), and
OTHER_OBJ.

■ There is exactly one entry each of type DEF_USER_OBJ, DEF_GROUP_OBJ, DEF_CLASS_OBJ
(default ACL mask), and DEF_OTHER_OBJ if there are any default entries.

■ Entries of type USER, GROUP, DEF_USER, or DEF_GROUP may not contain duplicate entries. A
duplicate entry is one of the same type containing the same numeric ID.

Upon successful completion, the function returns 0. Otherwise, it returns −1.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

acl(2), aclcheck(3SEC), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

aclsort(3SEC)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 10 Dec 200122

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=acl-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


acl_strip – remove all ACLs from a file

cc [ flag... ] file... -lsec [ library... ]

#include <sys/acl.h>

int acl_strip(const char *path, uid_t uid, gid_t gid, mode_t mode);

The acl_strip() function removes all ACLs from a file and replaces them with a trivial ACL
based on the mode argument. After replacing the ACL, the owner and group of the file are set
to the values specified by the uid and gid arguments.

Upon successful completion, acl_strip() returns 0. Otherwise it returns –1 and sets errno to
indicate the error.

The acl_strip() function will fail if:

EACCES Search permission is denied on a component of the path prefix of path.

EFAULT The path argument points to an illegal address.

EINVAL The uid or gid argument is out of range.

EIO A disk I/O error has occurred while storing or retrieving the ACL.

ELOOP A loop exists in symbolic links encountered during the resolution of the
path argument.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the length of a
path component exceeds {NAME_MAX} while _POSIX_NO_TRUNC is in effect.

ENOENT A component of path does not exist.

ENOTDIR A component of the prefix of path is not a directory.

EPERM The effective user ID does not match the owner of the file and the process
does not have appropriate privileges.

EROFS The file system is mounted read-only.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

acl_get(3SEC), acl_trivial(3SEC), acl(5), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

acl_strip(3SEC)

Extended Library Functions, Volume 4 23

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=acl-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


acltomode, aclfrommode – convert an ACL to or from permission bits

cc [ flag... ] file... -lsec [ library... ]

#include <sys/types.h>

#include <sys/acl.h>

int acltomode(aclent_t *aclbufp, int nentries, mode_t *modep);

int aclfrommode(aclent_t *aclbufp, int nentries, mode_t *modep);

The acltomode() function converts an ACL pointed to by aclbufp into the permission bits
buffer pointed to by modep. If the USER_OBJ ACL entry, GROUP_OBJ ACL entry, or the
OTHER_OBJ ACL entry cannot be found in the ACL buffer, then the function fails with errno

set to EINVAL.

The USER_OBJ ACL entry permission bits are copied to the file owner class bits in the
permission bits buffer. The OTHER_OBJ ACL entry permission bits are copied to the file other
class bits in the permission bits buffer. If there is a CLASS_OBJ (ACL mask) entry, the
CLASS_OBJ ACL entry permission bits are copied to the file group class bits in the permission
bits buffer. Otherwise, the GROUP_OBJ ACL entry permission bits are copied to the file group
class bits in the permission bits buffer.

The aclfrommode() function converts the permission bits pointed to by modep into an ACL
pointed to by aclbufp. If the USER_OBJ ACL entry, GROUP_OBJ ACL entry, or the OTHER_OBJ
ACL entry cannot be found in the ACL buffer, the function fails with errno set to EINVAL.

The file owner class bits from the permission bits buffer are copied to the USER_OBJ ACL entry.
The file other class bits from the permission bits buffer are copied to the OTHER_OBJ ACL
entry. If there is a CLASS_OBJ (ACL mask) entry, the file group class bits from the permission
bits buffer are copied to the CLASS_OBJ ACL entry, and the GROUP_OBJ ACL entry is not
modified. Otherwise, the file group class bits from the permission bits buffer are copied to the
GROUP_OBJ ACL entry.

The nentries argument represents the number of ACL entries in the buffer pointed to by
aclbufp.

Upon successful completion, the function returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Name

Synopsis

Description

Return Values

Attributes

acltomode(3SEC)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 10 Dec 200124

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


acl(2), attributes(5)See Also

acltomode(3SEC)

Extended Library Functions, Volume 4 25

http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=acl-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


acl_totext, acl_fromtext – convert internal representation to or from external representation

cc [ flag... ] file... -lsec [ library... ]

#include <sys/acl.h>

char *acl_totext(acl_t *aclp, int flags);

int acl_fromtext(char *acltextp, acl_t **aclp);

The acl_totext() function converts an internal ACL representation pointed to by aclp into
an external ACL representation. The memory for the external text string is obtained using
malloc(3C). The caller is responsible for freeing the memory upon completion.

The format of the external ACL is controlled by the flags argument. Values for flags are
constructed by a bitwise-inclusive-OR of flags from the following list, defined in
<sys/acl.h>.

ACL_COMPACT_FMT For NFSv4 ACLs, the ACL entries will be formatted using the compact
ACL format detailed in ls(1) for the -V option.

ACL_APPEND_ID Append the uid or gid for additional user or group entries. This flag is
used to construt ACL entries in a manner that is suitable for archive
utilities such as tar(1). When the ACL is translated from the external
format to internal representation using acl_fromtext(), the appended
ID will be used to populate the uid or gid field of the ACL entry when
the user or group name does not exist on the host system. The
appended id will be ignored when the user or group name does exist on
the system.

ACL_SID_FMT For NFSv4 ACLs, the ACL entries for user or group entries will use the
usersid or groupsid format when the “id” field in the ACL entry is an
ephemeral uid or gid. The raw sid format will only be used when the
“id” cannot be resolved to a windows name.

The acl_fromtext() function converts an external ACL representation pointed to by acltextp
into an internal ACL representation. The memory for the list of ACL entries is obtained using
malloc(3C). The caller is responsible for freeing the memory upon completion. Depending on
type of ACLs a file system supports, one of two external external representations are possible.
For POSIX draft file systems such as ufs, the external representation is described in
acltotext(3SEC). The external ACL representation For NFSv4–style ACLs is detailed as
follows.

Each acl_entry contains one ACL entry. The external representation of an ACL entry
contains three, four or five colon separated fields. The first field contains the ACL entry type.
The entry type keywords are defined as:

everyone@ This ACL entry specifies the access granted to any user or group that does not
match any previous ACL entry.

Name

Synopsis

Description

acl_totext(3SEC)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Mar 201026

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=ls-1
http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=tar-1
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=malloc-3c


group This ACL entry with a GID specifies the access granted to a additional group of
the object.

group@ This ACL entry with no GID specified in the ACL entry field specifies the
access granted to the owning group of the object.

groupsid This ACL entry with a SID or Windows name specifies the access granted to a
Windows group. This type of entry is for a SMB server created file.

owner@ This ACL entry with no UID specified in the ACL entry field specifies the
access granted to the owner of the object.

sid This ACL entry with a SID or Windows name when the entry could be either a
group or a user.

user This ACL entry with a UID specifies the access granted to a additional user of
the object.

usersid This ACL entry with a SID or Windows name specifies the access granted to a
Windows user. This type of entry is for a SMB server created file.

The second field contains the ACL entry ID, and is used only for user or group ACL entries.
This field is not used for owner@, group@, or everyone@ entries.

uid This field contains a user-name or user-ID. If the user-name cannot be resolved to a
UID, then the entry is assumed to be a numeric UID.

gid This field contains a group-name or group-ID. If the group-name can't be resolved to
a GID, then the entry is assumed to be a numeric GID.

The third field contains the discretionary access permissions. The format of the permissions
depends on whether ACL_COMPACT_FMT is specified. When the flags field does not request
ACL_COMPACT_FMT, the following format is used with a forward slash (/) separating the
permissions.

add_file Add a file to a directory.

add_subdirectory Add a subdirectory.

append Append data.

delete Delete.

delete_child Delete child.

execute Execute permission.

list_directory List a directory.

read_acl Read ACL.

read_data Read permission.

acl_totext(3SEC)

Extended Library Functions, Volume 4 27



read_attributes Read attributes.

read_xattr Read named attributes.

synchronize Synchronize.

write_acl Write ACL.

write_attributes Write attributes.

write_data Write permission.

write_owner Write owner.

write_xattr Write named attributes.

This format allows permissions to be specified as, for example:
read_data/read_xattr/read_attributes.

When ACL_COMPACT_FMT is specified, the permissions consist of 14 unique letters. A hyphen
(-) character is used to indicate that the permission at that position is not specified.

a read attributes

A write attributes

c read ACL

C write ACL

d delete

D delete child

o write owner

p append

r read_data

R read named attributes

s synchronize

w write_data

W write named attributes

x execute

This format allows compact permissions to be represented as, for example: rw--d-a-------

The fourth field is optional when ACL_COMPACT_FMT is not specified, in which case the field will
be present only when the ACL entry has inheritance flags set. The following is the list of
inheritance flags separated by a slash (/) character.

acl_totext(3SEC)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Mar 201028



dir_inherit ACE_DIRECTORY_INHERIT_ACE

file_inherit ACE_FILE_INHERIT_ACE

inherit_only ACE_INHERIT_ONLY_ACE

no_propagate ACE_NO_PROPAGATE_INHERIT_ACE

When ACL_COMPACT_FMT is specified the inheritance will always be present and is represented
as positional arguments. A hyphen (-) character is used to indicate that the inheritance flag at
that position is not specified.

d dir_inherit

f file_inherit

F failed access (not currently supported)

i inherit_only

n no_propagate

S successful access (not currently supported)

The fifth field contains the type of the ACE (allow or deny):

allow The mask specified in field three should be allowed.

deny The mask specified in field three should be denied.

Upon successful completion, the acl_totext() function returns a pointer to a text string.
Otherwise, it returns NULL.

Upon successful completion, the acl_fromtext() function returns 0. Otherwise, the return
value is set to one of the following:

EACL_FIELD_NOT_BLANK A field that should be blank is not blank.

EACL_FLAGS_ERROR An invalid ACL flag was specified.

EACL_INHERIT_ERROR An invalid inheritance field was specified.

EACL_INVALID_ACCESS_TYPE An invalid access type was specified.

EACL_INVALID_STR The string is NULL.

EACL_INVALID_USER_GROUP The required user or group name not found.

EACL_MISSING_FIELDS The ACL needs more fields to be specified.

EACL_PERM_MASK_ERROR The permission mask is invalid.

EACL_UNKNOWN_DATA Unknown data was found in the ACL.

Return Values

acl_totext(3SEC)

Extended Library Functions, Volume 4 29



EXAMPLE 1 Examples of permissions when ACL_COMPACT_FMT is not specified.

user:joe:read_data/write_data:file_inherit/dir_inherit:allow

owner@:read_acl:allow,user:tom:read_data:file_inherit/inherit_only:deny

EXAMPLE 2 Examples of permissions when ACL_COMPACT_FMT is specified.

user:joe:rw------------:fd----:allow

owner@:----------c---:------allow,user:tom:r-------------:f-i---:deny

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

ls(1), tar(1), acl(2), malloc(3C), aclfromtext(3SEC), acl(5), attributes(5)

Examples

Attributes

See Also

acl_totext(3SEC)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Mar 201030

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=ls-1
http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=tar-1
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=acl-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=acl-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


acltotext, aclfromtext – convert internal representation to or from external representation

cc [ flag... ] file... -lsec [ library... ]

#include <sys/acl.h>

char *acltotext(aclent_t *aclbufp, int aclcnt);

aclent_t *aclfromtext(char *acltextp, int *aclcnt);

The acltotext() function converts an internal ACL representation pointed to by aclbufp into
an external ACL representation. The space for the external text string is obtained using
malloc(3C). The caller is responsible for freeing the space upon completion..

The aclfromtext() function converts an external ACL representation pointed to by acltextp
into an internal ACL representation. The space for the list of ACL entries is obtained using
malloc(3C). The caller is responsible for freeing the space upon completion. The aclcnt
argument indicates the number of ACL entries found.

An external ACL representation is defined as follows:

<acl_entry>[,<acl_entry>] . . .

Each <acl_entry> contains one ACL entry. The external representation of an ACL entry
contains two or three colon-separated fields. The first field contains the ACL entry tag type.
The entry type keywords are defined as:

user This ACL entry with no UID specified in the ACL entry ID field specifies
the access granted to the owner of the object. Otherwise, this ACL entry
specifies the access granted to a specific user-name or user-id number.

group This ACL entry with no GID specified in the ACL entry ID field specifies
the access granted to the owning group of the object. Otherwise, this ACL
entry specifies the access granted to a specific group-name or group-id
number.

other This ACL entry specifies the access granted to any user or group that does
not match any other ACL entry.

mask This ACL entry specifies the maximum access granted to user or group
entries.

default:user This ACL entry with no uid specified in the ACL entry ID field specifies
the default access granted to the owner of the object. Otherwise, this ACL
entry specifies the default access granted to a specific user-name or
user-ID number.

default:group This ACL entry with no gid specified in the ACL entry ID field specifies
the default access granted to the owning group of the object. Otherwise,
this ACL entry specifies the default access granted to a specific
group-name or group-ID number.

Name

Synopsis

Description

acltotext(3SEC)

Extended Library Functions, Volume 4 31

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=malloc-3c


default:other This ACL entry specifies the default access for other entry.

default:mask This ACL entry specifies the default access for mask entry.

The second field contains the ACL entry ID, as follows:

uid This field specifies a user-name, or user-ID if there is no user-name associated with
the user-ID number.

gid This field specifies a group-name, or group-ID if there is no group-name associated
with the group-ID number.

empty This field is used by the user and group ACL entry types.

The third field contains the following symbolic discretionary access permissions:

r read permission

w write permission

x execute/search permission

− no access

Upon successful completion, the acltotext() function returns a pointer to a text string.
Otherwise, it returns NULL.

Upon successful completion, the aclfromtext() function returns a pointer to a list of ACL
entries. Otherwise, it returns NULL.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

acl(2), malloc(3C), attributes(5)

Return Values

Attributes

See Also

acltotext(3SEC)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 10 Dec 200132

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=acl-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


acl_trivial – determine whether a file has a trivial ACL

cc [ flag... ] file... -lsec [ library... ]

#include <sys/acl.h>

int acl_trivial(char *path);

The acl_trivial() function is used to determine whether a file has a trivial ACL. Whether an
ACL is trivial depends on the type of the ACL. A POSIX draft ACL is trivial if it has greater
than MIN_ACL_ENTRIES. An NFSv4/ZFS-style ACL is trivial if it either has entries other than
owner@, group@, and everyone@, has inheritance flags set, or is not ordered in a manner that
meets POSIX access control requirements.

Upon successful completion, acl_trivial() returns 0 if the file's ACL is trivial and 1 if the
file's ACL is not trivial. If it could not be determined whether a file's ACL is trivial, -1 is
returned and errno is set to indicate the error.

The acl_trivial() function will fail if:

EACCES A file's ACL could not be read.

ENOENT A component of path does not name an existing file or path is an empty string.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

acl(5), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

acl_trivial(3SEC)

Extended Library Functions, Volume 4 33

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=acl-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


blcompare, blequal, bldominates, blstrictdom, blinrange – compare binary labels

cc [flag...] file... -ltsol [library...]
#include <tsol/label.h>

int blequal(const m_label_t *label1, const m_label_t *label2);

int bldominates(const m_label_t *label1, const m_label_t *label2);

int blstrictdom(const m_label_t *label1, const m_label_t *label2);

int blinrange(const m_label_t *label, const brange_t *range);

These functions compare binary labels for meeting a particular condition.

The blequal() function compares two labels for equality.

The bldominates() function compares label label1 for dominance over label label2.

The blstrictdom() function compares label label1 for strict dominance over label label2.

The blinrange() function compares label label for dominance over range→lower_bound and
range→upper_bound for dominance over level label.

These functions return non-zero if their respective conditions are met, otherwise zero is
returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

getplabel(3TSOL), label_to_str(3TSOL), libtsol(3LIB), ucred_getlabel(3C),
label_encodings(4), attributes(5), labels(5)

“Determining the Relationship Between Two Labels” in Oracle Solaris Trusted Extensions
Developer’s Guide

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Name

Synopsis

Description

Return Values

Attributes

See Also

Notes

blcompare(3TSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 200734

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=ucred-getlabel-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=label-encodings-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=labels-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=labelcode-8
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=labelcode-8


blminmax, blmaximum, blminimum – bound of two labels

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

void blmaximum(m_label_t *maximum_label,
const m_label_t *bounding_label);

void blminimum(m_label_t *minimum_label,
const m_label_t *bounding_label);

The blmaximum() function replaces the contents of label maximum_label with the least upper
bound of the labels maximum_label and bounding_label. The least upper bound is the greater
of the classifications and all of the compartments of the two labels. This is the least label that
dominates both of the original labels.

The blminimum() function replaces the contents of label minimum_label with the greatest
lower bound of the labels minimum_label and bounding_label. The greatest lower bound is the
lower of the classifications and only the compartments that are contained in both labels. This
is the greatest label that is dominated by both of the original labels.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

label_to_str(3TSOL), libtsol(3LIB), sbltos(3TSOL), attributes(5)

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Name

Synopsis

Description

Attributes

See Also

Notes

blminmax(3TSOL)

Extended Library Functions, Volume 4 35

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


bltocolor, bltocolor_r – get character-coded color name of label

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

char *bltocolor(const m_label_t *label);

char *bltocolor_r(const m_label_t *label, const int size,
char *color_name);

The bltocolor() and bltocolor_r() functions get the character-coded color name
associated with the binary label label.

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective privileges to get
color names of labels that dominate the current process's sensitivity label.

The bltocolor() function returns a pointer to a statically allocated string that contains the
character-coded color name specified for the label or returns (char *)0 if, for any reason, no
character-coded color name is available for this binary label.

The bltocolor_r() function returns a pointer to the color_name string which contains the
character-coded color name specified for the label or returns (char *)0 if, for any reason, no
character-coded color name is available for this binary label. color_name must provide for a
string of at least size characters.

/etc/security/tsol/label_encodings

The label encodings file contains the classification names, words, constraints, and values
for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

MT-Level MT-Safe with exceptions

These functions are obsolete and retained for ease of porting. They might be removed in a
future Solaris Trusted Extensions release. Use the label_to_str(3TSOL) function instead.

The bltocolor() function returns a pointer to a statically allocated string. Subsequent calls to
it will overwrite that string with a new character-coded color name. It is not MT-Safe. The
bltocolor_r() function should be used in multithreaded applications.

label_to_str(3TSOL), libtsol(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Files

Attributes

See Also

bltocolor(3TSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 200736

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

If label includes a specified word or words, the character-coded color name associated with the
first word specified in the label encodings file is returned. Otherwise, if no character-coded
color name is specified for label, the first character-coded color name specified in the label
encodings file with the same classification as the binary label is returned.

Notes

bltocolor(3TSOL)

Extended Library Functions, Volume 4 37



bltos, bsltos, bcleartos – translate binary labels to character coded labels

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

int bsltos(const m_label_t *label, char **string,
const int str_len, const int flags);

int bcleartos(const m_label_t *label, char **string,
const int str_len, const int flags);

These functions translate binary labels into strings controlled by the value of the flags
parameter.

The bsltos() function translates a binary sensitivity label into a string. The applicable flags
are LONG_CLASSIFICATION or SHORT_CLASSIFICATION, LONG_WORDS or SHORT_WORDS,
VIEW_EXTERNAL or VIEW_INTERNAL, and NO_CLASSIFICATION. A flags value 0 is equivalent to
(SHORT_CLASSIFICATION | LONG_WORDS).

The bcleartos() function translates a binary clearance into a string. The applicable flags are
LONG_CLASSIFICATION or SHORT_CLASSIFICATION, LONG_WORDS or SHORT_WORDS,
VIEW_EXTERNAL or VIEW_INTERNAL, and NO_CLASSIFICATION. A flags value 0 is equivalent to
(SHORT_CLASSIFICATION | LONG_WORDS). The translation of a clearance might not be the same
as the translation of a sensitivity label. These functions use different label_encodings file
tables that might contain different words and constraints.

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective privileges to
perform label translation on labels that dominate the current process's sensitivity label.

The generic form of an output character-coded label is:

CLASSIFICATION WORD1 WORD2 WORD3/WORD4 SUFFIX PREFIX WORD5/WORD6

Capital letters are used to display all CLASSIFICATION names and WORDs. The ‘ ' (space)
character separates classifications and words from other words in all character-coded labels
except where multiple words that require the same PREFIX or SUFFIX are present, in which
case the multiple words are separated from each other by the ‘/' (slash) character.

The string argument can point to either a pointer to pre-allocated memory, or the value (char
*)0. If string points to a pointer to pre-allocated memory, then str_len indicates the size of that
memory. If string points to the value (char *)0, memory is allocated using malloc() to
contain the translated character-coded labels. The translated label is copied into allocated or
pre-allocated memory.

The flags argument is 0 or the logical sum of the following:

LONG_WORDS Translate using long names of words defined in label.

Name

Synopsis

Description

bltos(3TSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 200738



SHORT_WORDS Translate using short names of words defined in label. If no short
name is defined in the label_encodings file for a word, the long
name is used.

LONG_CLASSIFICATION Translate using long name of classification defined in label.

SHORT_CLASSIFICATION Translate using short name of classification defined in label.

ACCESS_RELATED Translate only access-related entries defined in information label
label.

VIEW_EXTERNAL Translate ADMIN_LOW and ADMIN_HIGH labels to the lowest and
highest labels defined in the label_encodings file.

VIEW_INTERNAL Translate ADMIN_LOW and ADMIN_HIGH labels to the admin low
name and admin high name strings specified in the
label_encodings file. If no strings are specified, the strings
“ADMIN_LOW” and “ADMIN_HIGH” are used.

NO_CLASSIFICATION Do not translate classification defined in label.

If the VIEW_EXTERNAL or VIEW_INTERNAL flags are not specified, translation of ADMIN_LOW and
ADMIN_HIGH labels is controlled by the label view process attribute flags. If no label view
process attribute flags are defined, their translation is controlled by the label view configured
in the label_encodings file. A value of External specifies that ADMIN_LOW and ADMIN_HIGH

labels are mapped to the lowest and highest labels defined in the label_encodings file. A
value of Internal specifies that the ADMIN_LOW and ADMIN_HIGH labels are translated to the
admin low and admin high name strings specified in the label_encodings file. If no such
names are specified, the strings “ADMIN_LOW” and “ADMIN_HIGH” are used.

Upon successful completion, the bsltos() and bcleartos() functions return the length of
the character-coded label, including the NULL terminator.

If the label is not of the valid defined required type, if the label is not dominated by the process
sensitivity label and the process does not have PRIV_SYS_TRANS_LABEL in its set of effective
privileges, or if the label_encodings file is inaccessible, these functions return −1.

If memory cannot be allocated for the return string or if the pre-allocated return string
memory is insufficient to hold the string, these functions return 0. The value of the
pre-allocated string is set to the NULL string (*string[0]=’\\00’;).

/etc/security/tsol/label_encodings

The label encodings file contains the classification names, words, constraints, and values
for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

Process Attributes

Return Values

Files

Attributes

bltos(3TSOL)

Extended Library Functions, Volume 4 39

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

MT-Level MT-Safe with exceptions

The bsltos() and bcleartos() functions are Obsolete. Use the label_to_str(3TSOL)
function instead.

free(3C), label_to_str(3TSOL), libtsol(3LIB), malloc(3C), label_encodings(4),
attributes(5)

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

If memory is allocated by these functions, the caller must free the memory with free(3C)
when the memory is no longer in use.

See Also

Notes

bltos(3TSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 200740

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=free-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=label-encodings-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=free-3c


btohex, bsltoh, bcleartoh, bsltoh_r, bcleartoh_r, h_alloc, h_free – convert binary label to
hexadecimal

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

char *bsltoh(const m_label_t *label);

char *bcleartoh(const m_label_t *clearance);

char *bsltoh_r(const m_label_t *label, char *hex);

char *bcleartoh_r(const m_label_t *clearance, char *hex);

char *h_alloc(const unsigned char type);

void h_free(char *hex);

These functions convert binary labels into hexadecimal strings that represent the internal
value.

The bsltoh() and bsltoh_r() functions convert a binary sensitivity label into a string of the
form:

[0xsensitivity_label_hexadecimal_value]

The bcleartoh() and bcleartoh_r() functions convert a binary clearance into a string of the
form:

0xclearance_hexadecimal_value

The h_alloc() function allocates memory for the hexadecimal value type for use by
bsltoh_r() and bcleartoh_r().

Valid values for type are:

SUN_SL_ID label is a binary sensitivity label.

SUN_CLR_ID label is a binary clearance.

The h_free() function frees memory allocated by h_alloc().

These functions return a pointer to a string that contains the result of the translation, or (char
*)0 if the parameter is not of the required type.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

MT-Level MT-Safe with exceptions

Name

Synopsis

Description

Return Values

Attributes

btohex(3TSOL)

Extended Library Functions, Volume 4 41

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


The bsltoh(), bcleartoh(), bsltoh_r(), bcleartoh_r(), h_alloc(), and h_free()

functions are Obsolete. Use the label_to_str(3TSOL) function instead.

The bsltoh() and bcleartoh() functions share the same statically allocated string storage.
They are not MT-Safe. Subsequent calls to any of these functions will overwrite that string
with the newly translated string. The bsltoh_r() and bcleartoh_r() functions should be
used in multithreaded applications.

atohexlabel(1M), hextoalabel(1M),label_to_str(3TSOL), libtsol(3LIB),
attributes(5), labels(5)

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

See Also

Notes

btohex(3TSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 200742

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=atohexlabel-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=hextoalabel-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=labels-5


cpl_complete_word, cfc_file_start, cfc_literal_escapes, cfc_set_check_fn,
cpl_add_completion, cpl_file_completions, cpl_last_error, cpl_list_completions,
cpl_recall_matches, cpl_record_error, del_CplFileConf, cpl_check_exe,
del_WordCompletion, new_CplFileConf, new_WordCompletion – look up possible
completions for a word

cc [ flag... ] file... -ltecla [ library... ]

#include <stdio.h>

#include <libtecla.h>

WordCompletion *new_WordCompletion(void);

WordCompletion *del_WordCompletion(WordCompletion *cpl);

CPL_MATCH_FN(cpl_file_completions);

CplFileConf *new_CplFileConf(void);

void cfc_file_start((CplFileConf *cfc, int start_index);

void cfc_literal_escapes(CplFileConf *cfc, int literal);

void cfc_set_check_fn(CplFileConf *cfc, CplCheckFn *chk_fn,
void *chk_data);

CPL_CHECK_FN(cpl_check_exe);

CplFileConf *del_CplFileConf(CplFileConf *cfc);

CplMatches *cpl_complete_word(WordCompletion *cpl, const char *line,
int word_end, void *data, CplMatchFn *match_fn);

CplMatches *cpl_recall_matches(WordCompletion *cpl);

int cpl_list_completions(CplMatches *result, FILE *fp, int term_width);

int cpl_add_completion(WordCompletion *cpl, const char *line,
int word_start, int word_end, const char *suffix,
const char *type_suffix, const char *cont_suffix);

void cpl_record_error(WordCompletion *cpl, const char *errmsg);

const char *cpl_last_error(WordCompletion *cpl);

The cpl_complete_word() function is part of the libtecla(3LIB) library. It is usually called
behind the scenes by gl_get_line(3TECLA), but can also be called separately.

Given an input line containing an incomplete word to be completed, it calls a user-provided
callback function (or the provided file-completion callback function) to look up all possible
completion suffixes for that word. The callback function is expected to look backward in the
line, starting from the specified cursor position, to find the start of the word to be completed,
then to look up all possible completions of that word and record them, one at a time, by calling
cpl_add_completion().

Name

Synopsis

Description

cpl_complete_word(3TECLA)

Extended Library Functions, Volume 4 43

http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtecla-3lib


The new_WordCompletion() function creates the resources used by the
cpl_complete_word() function. In particular, it maintains the memory that is used to return
the results of calling cpl_complete_word().

The del_WordCompletion() function deletes the resources that were returned by a previous
call to new_WordCompletion(). It always returns NULL (that is, a deleted object). It takes no
action if the cpl argument is NULL.

The callback functions that look up possible completions should be defined with the
CPL_MATCH_FN() macro, which is defined in <libtecla.h>. Functions of this type are called
by cpl_complete_word(), and all of the arguments of the callback are those that were passed
to said function. In particular, the line argument contains the input line containing the word
to be completed, and word_end is the index of the character that follows the last character of
the incomplete word within this string. The callback is expected to look backwards from
word_end for the start of the incomplete word. What constitutes the start of a word clearly
depends on the application, so it makes sense for the callback to take on this responsibility. For
example, the builtin filename completion function looks backwards until it encounters an
unescaped space or the start of the line. Having found the start of the word, the callback should
then lookup all possible completions of this word, and record each completion with separate
calls to cpl_add_completion(). If the callback needs access to an application-specific symbol
table, it can pass it and any other data that it needs using the data argument. This removes any
need for global variables.

The callback function should return 0 if no errors occur. On failure it should return 1 and
register a terse description of the error by calling cpl_record_error().

The last error message recorded by calling cpl_record_error() can subsequently be queried
by calling cpl_last_error().

The cpl_add_completion() function is called zero or more times by the completion callback
function to record each possible completion in the specified WordCompletion object. These
completions are subsequently returned by cpl_complete_word(). The cpl, line, and word_end
arguments should be those that were passed to the callback function. The word_start
argument should be the index within the input line string of the start of the word that is being
completed. This should equal word_end if a zero-length string is being completed. The suffix
argument is the string that would have to be appended to the incomplete word to complete it.
If this needs any quoting (for example, the addition of backslashes before special charaters) to
be valid within the displayed input line, this should be included. A copy of the suffix string is
allocated internally, so there is no need to maintain your copy of the string after
cpl_add_completion() returns.

In the array of possible completions that the cpl_complete_word() function returns, the
suffix recorded by cpl_add_completion() is listed along with the concatentation of this suffix
with the word that lies between word_start and word_end in the input line.

cpl_complete_word(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Jun 200444



The type_suffix argument specifies an optional string to be appended to the completion if it is
displayed as part of a list of completions by cpl_list_completions. The intention is that this
indicate to the user the type of each completion. For example, the file completion function
places a directory separator after completions that are directories, to indicate their nature to
the user. Similary, if the completion were a function, you could indicate this to the user by
setting type_suffix to “()”. Note that the type_suffix string is not copied, so if the argument is
not a literal string between speech marks, be sure that the string remains valid for at least as
long as the results of cpl_complete_word() are needed.

The cont_suffix argument is a continuation suffix to append to the completed word in the
input line if this is the only completion. This is something that is not part of the completion
itself, but that gives the user an indication about how they might continue to extend the token.
For example, the file-completion callback function adds a directory separator if the completed
word is a directory. If the completed word were a function name, you could similarly aid the
user by arranging for an open parenthesis to be appended.

The cpl_complete_word() is normally called behind the scenes by gl_get_line(3TECLA),
but can also be called separately if you separately allocate a WordCompletion object. It
performs word completion, as described at the beginning of this section. Its first argument is a
resource object previously returned by new_WordCompletion(). The line argument is the
input line string, containing the word to be completed. The word_end argument contains the
index of the character in the input line, that just follows the last character of the word to be
completed. When called by gl_get_line(), this is the character over which the user pressed
TAB. The match_fn argument is the function pointer of the callback function which will
lookup possible completions of the word, as described above, and the data argument provides
a way for the application to pass arbitrary data to the callback function.

If no errors occur, the cpl_complete_word() function returns a pointer to a CplMatches
container, as defined below. This container is allocated as part of the cpl object that was passed
to cpl_complete_word(), and will thus change on each call which uses the same cpl
argument.

typedef struct {

char *completion; /* A matching completion */

/* string */

char *suffix; /* The part of the */

/* completion string which */

/* would have to be */

/* appended to complete the */

/* original word. */

const char *type_suffix; /* A suffix to be added when */

/* listing completions, to */

/* indicate the type of the */

/* completion. */

} CplMatch;

typedef struct {

cpl_complete_word(3TECLA)

Extended Library Functions, Volume 4 45



char *suffix; /* The common initial part */

/* of all of the completion */

/* suffixes. */

const char *cont_suffix; /* Optional continuation */

/* string to be appended to */

/* the sole completion when */

/* nmatch==1. */

CplMatch *matches; /* The array of possible */

/* completion strings, */

/* sorted into lexical */

/* order. */

int nmatch; /* The number of elements in */

/* the above matches[] */

/* array. */

} CplMatches;

If an error occurs during completion, cpl_complete_word() returns NULL. A description of
the error can be acquired by calling the cpl_last_error() function.

The cpl_last_error() function returns a terse description of the error which occurred on
the last call to cpl_com plete_word() or cpl_add_completion().

As a convenience, the return value of the last call to cpl_complete_word() can be recalled at a
later time by calling cpl_recall_matches(). If cpl_complete_word() returned NULL, so will
cpl_recall_matches().

When the cpl_complete_word() function returns multiple possible completions, the
cpl_list_completions() function can be called upon to list them, suitably arranged across
the available width of the terminal. It arranges for the displayed columns of completions to all
have the same width, set by the longest completion. It also appends the type_suffix strings that
were recorded with each completion, thus indicating their types to the user.

By default the gl_get_line() function, passes the CPL_MATCH_FN(cps_file_completions)
completion callback function to cpl_complete_word(). This function can also be used
separately, either by sending it to cpl_complete_word(), or by calling it directly from your
own completion callback function.

#define CPL_MATCH_FN(fn) int (fn)(WordCompletion *cpl, \

void *data, const char *line, \

int word_end)

typedef CPL_MATCH_FN(CplMatchFn);

CPL_MATCH_FN(cpl_file_completions);

Certain aspects of the behavior of this callback can be changed via its data argument. If you are
happy with its default behavior you can pass NULL in this argument. Otherwise it should be a
pointer to a CplFileConf object, previously allocated by calling new_CplFileConf().

Builtin Filename
completion Callback

cpl_complete_word(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Jun 200446



CplFileConf objects encapsulate the configuration parameters of cpl_file_completions().
These parameters, which start out with default values, can be changed by calling the accessor
functions described below.

By default, the cpl_file_completions() callback function searches backwards for the start of
the filename being completed, looking for the first unescaped space or the start of the input
line. If you wish to specify a different location, call cfc_file_start() with the index at which
the filename starts in the input line. Passing start_index=-1 reenables the default behavior.

By default, when cpl_file_completions() looks at a filename in the input line, each lone
backslash in the input line is interpreted as being a special character which removes any
special significance of the character which follows it, such as a space which should be taken as
part of the filename rather than delimiting the start of the filename. These backslashes are thus
ignored while looking for completions, and subsequently added before spaces, tabs and literal
back slashes in the list of completions. To have unescaped back slashes treated as normal
characters, call cfc_literal_escapes() with a non-zero value in its literal argument.

By default, cpl_file_completions() reports all files whose names start with the prefix that is
being completed. If you only want a selected subset of these files to be reported in the list of
completions, you can arrange this by providing a callback function which takes the full
pathname of a file, and returns 0 if the file should be ignored, or 1 if the file should be included
in the list of completions. To register such a function for use by cpl_file_completions(),
call cfc_set_check_fn(), and pass it a pointer to the function, together with a pointer to any
data that you would like passed to this callback whenever it is called. Your callback can make
its decisions based on any property of the file, such as the filename itself, whether the file is
readable, writable or executable, or even based on what the file contains.

#define CPL_CHECK_FN(fn) int (fn)(void *data, \

const char *pathname)

typedef CPL_CHECK_FN(CplCheckFn);

void cfc_set_check_fn(CplFileConf *cfc, CplCheckFn *chk_fn, \

void *chk_data);

The cpl_check_exe() function is a provided callback of the above type, for use with
cpl_file_completions(). It returns non-zero if the filename that it is given represents a
normal file that the user has execute permission to. You could use this to have
cpl_file_completions() only list completions of executable files.

When you have finished with a CplFileConf variable, you can pass it to the
del_CplFileConf() destructor function to reclaim its memory.

It is safe to use the facilities of this module in multiple threads, provided that each thread uses
a separately allocated WordCompletion object. In other words, if two threads want to do word
completion, they should each call new_WordCompletion() to allocate their own completion
objects.

Thread Safety

cpl_complete_word(3TECLA)

Extended Library Functions, Volume 4 47



See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

ef_expand_file(3TECLA), gl_get_line(3TECLA), libtecla(3LIB),
pca_lookup_file(3TECLA), attributes(5)

Attributes

See Also

cpl_complete_word(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Jun 200448

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtecla-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


ef_expand_file, del_ExpandFile, ef_last_error, ef_list_expansions, new_ExpandFile – expand
filename and wildcard expressions

cc [ flag... ] file... -ltecla [ library... ]

#include <libtecla.h>

ExpandFile *ef_expand_file(void);

ExpandFile *del_ExpandFile(ExpandFile *ef);

FileExpansion *ef_last_error(ExpandFile *ef, const char *path,
int pathlen);

int ef_list_expansions(FileExpansion *result, FILE *fp, int term_width);

const char *new_ExpandFile(ExpandFile *ef);

The ef_expand_file() function is part of the libtecla(3LIB) library. It expands a specified
filename, converting ~user/ and ~/ expressions at the start of the filename to the
corresponding home directories, replacing $envvar with the value of the corresponding
environment variable, and then, if there are any wildcards, matching these against existing
filenames. Backslashes in the input filename are interpreted as escaping any special meanings
of the characters that follow them. Only backslashes that are themselves preceded by
backslashes are preserved in the expanded filename.

In the presence of wildcards, the returned list of filenames includes only the names of existing
files which match the wildcards. Otherwise, the original filename is returned after expansion
of tilde and dollar expressions, and the result is not checked against existing files. This mimics
the file-globbing behavior of the UNIX tcsh shell.

The supported wildcards and their meanings are:

* Match any sequence of zero or more characters.

? Match any single character.

[chars] Match any single character that appears in chars. If chars contains an expression
of the form a-b, then any character between a and b, including a and b, matches.
The '-' character loses its special meaning as a range specifier when it appears at
the start of the sequence of characters. The ']' character also looses its significance
as the terminator of the range expression if it appears immediately after the
opening '[', at which point it is treated one of the characters of the range. If you
want both '-' and ']' to be part of the range, the '-' should come first and the ']'
second.

[^chars] The same as [chars] except that it matches any single character that does not
appear in chars.

Note that wildcards never match the initial dot in filenames that start with '.'. The initial '.'
must be explicitly specified in the filename. This again mimics the globbing behavior of most

Name

Synopsis

Description

ef_expand_file(3TECLA)

Extended Library Functions, Volume 4 49

http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtecla-3lib


UNIX shells, and its rational is based in the fact that in UNIX, files with names that start with '.'
are usually hidden configuration files, which are not listed by default by the ls(1) command.

The new_ExpandFile() function creates the resources used by the ef_expand_file()
function. In particular, it maintains the memory that is used to record the array of matching
file names that is returned by ef_expand_file(). This array is expanded as needed, so there is
no builtin limit to the number of files that can be matched.

The del_ExpandFile() function deletes the resources that were returned by a previous call to
new_ExpandFile(). It always returns NULL (that is, a deleted object). It does nothing if the ef
argument is NULL.

The ef_expand_file() function performs filename expansion. Its first argument is a resource
object returned by new_ExpandFile(). A pointer to the start of the filename to be matched is
passed by the path argument. This must be a normal null-terminated string, but unless a
length of -1 is passed in pathlen, only the first pathlen characters will be used in the filename
expansion. If the length is specified as -1, the whole of the string will be expanded. A container
of the following type is returned by ef_expand_file().

typedef struct {

int exists; /* True if the files in files[] exist */

int nfile; /* The number of files in files[] */

char **files; /* An array of ’nfile’ filenames. */

} FileExpansion;

The ef_expand_file() function returns a pointer to a container whose contents are the
results of the expansion. If there were no wildcards in the filename, the nfile member will be 1,
and the exists member should be queried if it is important to know if the expanded file
currently exists. If there were wild cards, then the contained files[] array will contain the
names of the nfile existing files that matched the wild-carded filename, and the exists member
will have the value 1. Note that the returned container belongs to the specified ef object, and its
contents will change on each call, so if you need to retain the results of more than one call to
ef_expand_file(), you should either make a private copy of the returned results, or create
multiple file-expansion resource objects with multiple calls to new_ExpandFile().

On error, NULL is returned, and an explanation of the error can be determined by calling
ef_last_error(ef).

The ef_last_error() function returns the message which describes the error that occurred
on the last call to ef_expand_file(), for the given (ExpandFile *ef) resource object.

The ef_list_expansions() function provides a convenient way to list the filename
expansions returned by ef_expand_file(). Like the ls utility, it arranges the filenames into
equal width columns, each column having the width of the largest file. The number of
columns used is thus determined by the length of the longest filename, and the specified
terminal width. Beware that filenames that are longer than the specified terminal width are

ef_expand_file(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Jun 200450

http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=ls-1


printed without being truncated, so output longer than the specified terminal width can occur.
The list is written to the stdio stream specified by the fp argument.

It is safe to use the facilities of this module in multiple threads, provided that each thread uses
a separately allocated ExpandFile object. In other words, if two threads want to do file
expansion, they should each call new_ExpandFile() to allocate their own file-expansion
objects.

EXAMPLE 1 Use of file expansion function.

The following is a complete example of how to use the file expansion function.

#include <stdio.h>

#include <libtecla.h>

int main(int argc, char *argv[])

{

ExpandFile *ef; /* The expansion resource object */

char *filename; /* The filename being expanded */

FileExpansion *expn; /* The results of the expansion */

int i;

ef = new_ExpandFile();

if(!ef)

return 1;

for(arg = *(argv++); arg; arg = *(argv++)) {

if((expn = ef_expand_file(ef, arg, -1)) == NULL) {

fprintf(stderr, "Error expanding %s (%s).\n", arg,

ef_last_error(ef));

} else {

printf("%s matches the following files:\n", arg);

for(i=0; i<expn->nfile; i++)

printf(" %s\n", expn->files[i]);

}

}

ef = del_ExpandFile(ef);

return 0;

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Thread Safety

Examples

Attributes

ef_expand_file(3TECLA)

Extended Library Functions, Volume 4 51

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

cpl_complete_word(3TECLA), gl_get_line(3TECLA), libtecla(3LIB),
pca_lookup_file(3TECLA), attributes(5)

See Also

ef_expand_file(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Jun 200452

http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtecla-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


getauthattr, getauthnam, free_authattr, setauthattr, endauthattr, chkauthattr – get
authorization entry

cc [ flag... ] file... –lsecdb –lsocket –lnsl [ library... ]

#include <auth_attr.h>

#include <secdb.h>

authattr_t *getauthattr(void);

authattr_t *getauthnam(const char *name);

void free_authattr(authattr_t *auth);

void setauthattr(void);

void endauthattr(void);

int chkauthattr(const char *authname, const char *username);

The getauthattr() and getauthnam() functions each return an auth_attr(4) entry. Entries
can come from any of the sources specified in the nsswitch.conf(4) file.

The getauthattr() function enumerates auth_attr entries. The getauthnam() function
searches for an auth_attr entry with a given authorization name name. Successive calls to
these functions return either successive auth_attr entries or NULL.

Th internal representation of an auth_attr entry is an authattr_t structure defined in
<auth_attr.h> with the following members:

char *name; /* name of the authorization */

char *res1; /* reserved for future use */

char *res2; /* reserved for future use */

char *short_desc; /* short description */

char *long_desc; /* long description */

kva_t *attr; /* array of key-value pair attributes */

The setauthattr() function “rewinds” to the beginning of the enumeration of auth_attr
entries. Calls to getauthnam() can leave the enumeration in an indeterminate state.
Therefore, setauthattr() should be called before the first call to getauthattr().

The endauthattr() function may be called to indicate that auth_attr processing is complete;
the system may then close any open auth_attr file, deallocate storage, and so forth.

The chkauthattr() function verifies whether or not a user has a given authorization. It first
reads the user_attr(4) database and returns 1 if it finds a match for the given authorization. If
it does not find a match in user_attr, chkauthattr() reads the prof_attr(4) database using
the list of profiles assigned to the user and checks if any of the profiles assigned to the user has
the given authorization. When chkauthattr() finds a profile called “Stop”, further profiles
are ignored, the authorizations and profiles mentioned in /etc/security/policy.conf are
ignored and it returns 0. If it does not find a match in the user's profiles, chkauthattr() reads
the AUTHS_GRANTED key in the /etc/security/policy.conf file and returns 1 if it finds a

Name

Synopsis

Description

getauthattr(3SECDB)

Extended Library Functions, Volume 4 53

http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=auth-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=user-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=prof-attr-4


match for the given authorization. If chkauthattr() does not find a match and the username
is the name of the “console user”, defined as the owner of /dev/console, it first reads the
CONSOLE_USER key in /etc/security/policy.conf and returns 1 if the given authorization is
in any of the profiles specified in the CONSOLE_USER keyword, then reads the PROFS_GRANTED
key in /etc/security/policy.conf and returns 1 if the given authorization is in any profiles
specified with the PROFS_GRANTED keyword. The chkauthattr() function returns 0 if it does
not find a match in any of the three sources or if the user does not exist.

Authorization names consist of a hierarchical set of dot (.)-separated words, called the
predicate, and an optional object qualifier preceded by a slash character (/). Authorizations
listed in user_attr and prof_attr may contain an asterisk (*) following the final dot in the
predicate to indicate a wildcard. The reserved word grant, used for delegating authorizations,
is not matched by *.

A user is considered to have been assigned an authorization if all of the following are true:

■ The authorization name matches exactly any authorization assigned in the user_attr or
prof_attr databases (authorization names are case-sensitive).

■ The predicate of authname matches the predicate of an authorization completely, or the
predicate does not end in grant and matches up to the * if present.

■ The authorization name suffix is not the key word grant and the authorization name
matches any authorization up to the asterisk (*) character assigned in the user_attr or
prof_attr databases.

■ If the authorization includes an object qualifier, then authname must include the same
object qualifier.

The examples in the following table illustrate the conditions under which a user is assigned an
authorization.

/etc/security/policy.conf or Is user

Authorization name user_attr or prof_attr entry authorized?

solaris.printer.postscript solaris.printer.postscript Yes

solaris.printer.postscript solaris.printer.* Yes

solaris.printer.grant solaris.printer.* No

solaris.zone.login/z1 solaris.zone.* Yes

solaris.zone.login solaris.zone.*/z1 No

The free_authattr() function releases memory allocated by the getauthnam() and
getauthattr() functions.

getauthattr(3SECDB)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 3 Jun 201054



The getauthattr() function returns a pointer to an authattr_t if it successfully enumerates
an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getauthnam() function returns a pointer to an authattr_t if it successfully locates the
requested entry; otherwise it returns NULL.

The chkauthattr() function returns 1 if the user is authorized and 0 if the user does not exist
or is not authorized.

The getauthattr() and getauthnam() functions both allocate memory for the pointers they
return. This memory should be deallocated with the free_authattr() call.

Individual attributes in the attr structure can be referred to by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, code must be written to ignore unknown
key-value pairs without error.

/etc/nsswitch.conf configuration file lookup information for the name server
switch

/etc/user_attr extended user attributes

/etc/security/auth_attr authorization attributes

/etc/security/policy.conf policy definitions

/etc/security/prof_attr profile information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getexecattr(3SECDB), getprofattr(3SECDB), getuserattr(3SECDB), auth_attr(4),
nsswitch.conf(4), prof_attr(4), user_attr(4), attributes(5), rbac(5)

Return Values

Usage

Warnings

Files

Attributes

See Also

getauthattr(3SECDB)

Extended Library Functions, Volume 4 55

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=auth-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=prof-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=user-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=rbac-5


getexecattr, free_execattr, setexecattr, endexecattr, getexecuser, getexecprof, match_execattr –
get execution profile entry

cc [ flag... ] file... –lsecdb –lsocket –lnsl [ library... ]

#include <exec_attr.h>

#include <secdb.h>

execattr_t *getexecattr(void);

void free_execattr(execattr_t *ep);

void setexecattr(void);

void endexecattr(void);

execattr_t *getexecuser(const char *username, const char *type,
const char *id, int search_flag);

execattr_t *getexecprof(const char *profname, const char *type,
const char *id, int search_flag);

execattr_t *match_execattr(execattr_t *ep, char *profname,
char *type, char *id);

The getexecattr() function returns a single exec_attr(4) entry. Entries can come from any
of the sources specified in the nsswitch.conf(4) file.

Successive calls to getexecattr() return either successive exec_attr entries or NULL. Because
getexecattr() always returns a single entry, the next pointer in the execattr_t data
structure points to NULL.

The internal representation of an exec_attr entry is an execattr_t structure defined in
<exec_attr.h> with the following members:

char *name; /* name of the profile */

char *policy; /* policy under which the attributes are */

/* relevant*/

char *type; /* type of profile */

char *res1; /* reserved for future use */

char *res2; /* reserved for future use */

char *id; /* unique identifier */

kva_t *attr; /* attributes */

struct execattr_s *next; /* optional pointer to next profile */

The free_execattr() function releases memory. It follows the next pointers in the
execattr_t structure so that the entire linked list is released.

The setexecattr() function “rewinds” to the beginning of the enumeration of exec_attr
entries. Calls to getexecuser() can leave the enumeration in an indeterminate state.
Therefore, setexecattr() should be called before the first call to getexecattr().

Name

Synopsis

Description

getexecattr(3SECDB)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 30 Jul 201056

http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=exec-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=nsswitch.conf-4


The endexecattr() function can be called to indicate that exec_attr processing is complete;
the library can then close any open exec_attr file, deallocate any internal storage, and so
forth.

The getexecuser() function returns a linked list of entries that match the type and id
arguments and have a profile that has been assigned to the user specified by username, as
described in passwd(4). Profiles for the user are obtained from the list of default profiles in
/etc/security/policy.conf (see policy.conf(4)) and the user_attr(4) database. Only
entries in the name service scope for which the corresponding profile entry is found in the
prof_attr(4) database are returned.

The getexecprof() function returns a linked list of entries that match the type and id
arguments and have the profile specified by the profname argument. Only entries in the name
service scope for which the corresponding profile entry is found in the prof_attr database are
returned.

Using getexecuser() and getexecprof(), programmers can search for any type argument,
such as the manifest constant KV_COMMAND. The arguments are logically AND-ed together so
that only entries exactly matching all of the arguments are returned. Wildcard matching
applies if there is no exact match for an ID. Any argument can be assigned the NULL value to
indicate that it is not used as part of the matching criteria. The search_flag controls whether
the function returns the first match (GET_ONE), setting the next pointer to NULL or all matching
entries (GET_ALL), using the next pointer to create a linked list of all entries that meet the
search criteria. See EXAMPLES.

Once a list of entries is returned by getexecuser() or getexecprof(), the convenience
function match_execattr() can be used to identify an individual entry. It returns a pointer to
the individual element with the same profile name ( profname), type name ( type), and id.
Function parameters set to NULL are not used as part of the matching criteria. In the event that
multiple entries meet the matching criteria, only a pointer to the first entry is returned. The
kva_match(3SECDB) function can be used to look up a key in a key-value array.

Those functions returning data only return data related to the active policy. The
getexecattr() function returns a pointer to a execattr_t if it successfully enumerates an
entry; otherwise it returns NULL, indicating the end of the enumeration.

The getexecattr(), getexecuser(), and getexecprof() functions all allocate memory for
the pointers they return. This memory should be deallocated with the free_execattr() call.
The match_execattr()( function does not allocate any memory. Therefore, pointers returned
by this function should not be deallocated.

Individual attributes may be referenced in the attr structure by calling the
kva_match(3SECDB) function.

Return Values

Usage

getexecattr(3SECDB)

Extended Library Functions, Volume 4 57

http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=policy.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=user-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=prof-attr-4


EXAMPLE 1 Find all profiles that have the ping command.

if ((execprof=getexecprof(NULL, KV_COMMAND, "/usr/sbin/ping",
GET_ONE)) == NULL) {

/* do error */

}

EXAMPLE 2 Find the entry for the ping command in the Network Administration Profile.

if ((execprof=getexecprof("Network Administration", KV_COMMAND,

"/usr/sbin/ping", GET_ALL))==NULL) {

/* do error */

}

EXAMPLE 3 Tell everything that can be done in the Filesystem Security profile.

if ((execprof=getexecprof("Filesystem Security", KV_NULL, NULL,

GET_ALL))==NULL)) {

/* do error */

}

EXAMPLE 4 Tell if the tar utility is in a profile assigned to user wetmore. If there is no exact profile entry,
the wildcard (*), if defined, is returned.

The following tells if the tar utility is in a profile assigned to user wetmore. If there is no exact
profile entry, the wildcard (*), if defined, is returned.

if ((execprof=getexecuser("wetmore", KV_COMMAND, "/usr/bin/tar",
GET_ONE))==NULL) {

/* do error */

}

/etc/nsswitch.conf configuration file lookup information for the name server
switch

/etc/user_attr extended user attributes

/etc/security/exec_attr execution profiles

/etc/security/policy.conf policy definitions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getauthattr(3SECDB), getuserattr(3SECDB), kva_match(3SECDB), exec_attr(4),
passwd(4), policy.conf(4), prof_attr(4), user_attr(4), attributes(5)

Examples

Files

Attributes

See Also

getexecattr(3SECDB)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 30 Jul 201058

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=exec-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=policy.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=prof-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=user-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


getpathbylabel – return the zone pathname

cc [flags...] file... -ltsol [library...]

#include <tsol/label.h>

char *getpathbylabel(const char *path, char *resolved_path,
size_t bufsize, const m_label_t *sl);

The getpathbylabel() function expands all symbolic links and resolves references to '/./',
'/../', extra '/' characters, and stores the zone pathname in the buffer named by resolved_path.
The bufsize argument specifies the size in bytes of this buffer. The resulting path will have no
symbolic links components, nor any '/./', '/. ./'. This function can only be called from the global
zone.

The zone pathname is relative to the sensitivity label sl. To specify a sensitivity label for a zone
name which does not exist, the process must assert either the PRIV_FILE_UPGRADE_SL or
PRIV_FILE_DOWNGRADE_SL privilege depending on whether the specified sensitivity label
dominates or does not dominate the process sensitivity label.

The getpathbylabel() function returns a pointer to the resolved_path on success. Otherwise
it returns NULL and sets errno to indicate the error.

The getpathbylabel() function will fail if:

EACCES Search permission is denied for a component of the path prefix of path.

EFAULT resolved_path extends outside the process's allocated address space or
beyond bufsize bytes.

EINVAL path or resolved_path was NULL, current zone is not the global zone, or sl is
invalid.

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or a pathname
component is longer than NAME_MAX (see sysconf(3C)) while
_POSIX_NO_TRUNC is in effect (see pathconf(2)).

ENOENT The named file does not exist.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Name

Synopsis

Description

Return Values

Errors

Attributes

getpathbylabel(3TSOL)

Extended Library Functions, Volume 4 59

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=sysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=pathconf-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


readlink(2), getzonerootbyid(3TSOL), libtsol(3LIB), attributes(5), labels(5)

The getpathbylabel() function indirectly invokes the readlink(2) system call, and hence
inherits the possibility of hanging due to inaccessible file system resources.

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

See Also

Warnings

Notes

getpathbylabel(3TSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 200760

http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=readlink-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=labels-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=readlink-2


getplabel – get process label

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

int getplabel(m_label_t *label_p);

The getplabel() function obtains the sensitivity label of the calling process.

Upon successful completion, getplabel() returns 0. Otherwise it returns -1, label_p is
unchanged, and errno is set to indicate the error.

The getplabel() function fails and label_p does not refer to a valid sensitivity label if:

EFAULT label_p points to an invalid address.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

ucred_getlabel(3C), libtsol(3LIB), m_label_alloc(3TSOL), m_label_free(3TSOL),
attributes(5)

“Obtaining a Process Label” in Oracle Solaris Trusted Extensions Developer’s Guide

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

This function returns different values for system processes than ucred_getlabel(3C) returns.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

getplabel(3TSOL)

Extended Library Functions, Volume 4 61

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=ucred-getlabel-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=labelcode-9
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=ucred-getlabel-3c


getprofattr, getprofnam, free_profattr, setprofattr, endprofattr, getproflist, free_proflist – get
profile description and attributes

cc [ flag... ] file... –lsecdb –lsocket –lnsl [ library... ]

#include <prof_attr.h>

profattr_t *getprofattr(void);

profattr_t *getprofnam(const char *name);

void free_profattr(profattr_t *pd);

void setprofattr(void);

void endprofattr(void);

void getproflist(const char *profname, char **proflist, int *profcnt);

void free_proflist(char **proflist, int profcnt);

The getprofattr() and getprofnam() functions each return a prof_attr entry. Entries can
come from any of the sources specified in the nsswitch.conf(4) file.

The getprofattr() function enumerates prof_attr entries. The getprofnam() function
searches for a prof_attr entry with a given name. Successive calls to these functions return
either successive prof_attr entries or NULL.

The internal representation of a prof_attr entry is a profattr_t structure defined in
<prof_attr.h> with the following members:

char *name; /* Name of the profile */

char *res1; /* Reserved for future use */

char *res2; /* Reserved for future use */

char *desc; /* Description/Purpose of the profile */

kva_t *attr; /* Profile attributes */

The free_profattr() function releases memory allocated by the getprofattr() and
getprofnam() functions.

The setprofattr() function “rewinds” to the beginning of the enumeration of prof_attr
entries. Calls to getprofnam() can leave the enumeration in an indeterminate state.
Therefore, setprofattr() should be called before the first call to getprofattr().

The endprofattr() function may be called to indicate that prof_attr processing is complete;
the system may then close any open prof_attr file, deallocate storage, and so forth.

The getproflist() function searches for the list of sub-profiles found in the given profname
and allocates memory to store this list in proflist. The given profname will be included in the
list of sub-profiles. The profcnt argument indicates the number of items currently valid in
proflist. Memory allocated by getproflist() should be freed using the free_proflist()
function.

Name

Synopsis

Description

getprofattr(3SECDB)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 31 Mar 200562

http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=nsswitch.conf-4


The free_proflist() function frees memory allocated by the getproflist() function. The
profcnt argument specifies the number of items to free from the proflist argument.

The getprofattr() function returns a pointer to a profattr_t if it successfully enumerates
an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getprofnam() function returns a pointer to a profattr_t if it successfully locates the
requested entry; otherwise it returns NULL.

Individual attributes in the prof_attr_t structure can be referred to by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, any code must be written to ignore unknown
key-value pairs without error.

The getprofattr() and getprofnam() functions both allocate memory for the pointers they
return. This memory should be deallocated with the free_profattr() function.

/etc/security/prof_attr profiles and their descriptions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

auths(1), profiles(1), getexecattr(3SECDB), getauthattr(3SECDB), prof_attr(4)

Return Values

Usage

Files

Attributes

See Also

getprofattr(3SECDB)

Extended Library Functions, Volume 4 63

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=auths-1
http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=profiles-1
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=prof-attr-4


getuserattr, getusernam, getuseruid, free_userattr, setuserattr, enduserattr, fgetuserattr – get
user_attr entry

cc [ flag... ] file... –lsecdb –lsocket –lnsl [ library... ]

#include <user_attr.h>

userattr_t *getuserattr(void);

userattr_t *getusernam(const char *name);

userattr_t *getuseruid(uid_t uid);

void free_userattr(userattr_t *userattr);

void setuserattr(void);

void enduserattr(void);

userattr_t *fgetuserattr(FILE *f);

The getuserattr(), getusernam(), and getuseruid() functions each return a user_attr(4)
entry. Entries can come from any of the sources specified in the nsswitch.conf(4) file. The
getuserattr() function enumerates user_attr entries. The getusernam() function searches
for a user_attr entry with a given user name name. The getuseruid() function searches for
a user_attr entry with a given user ID uid. Successive calls to these functions return either
successive user_attr entries or NULL.

The fgetuserattr() function does not use nsswitch.conf but reads and parses the next line
from the stream f. This stream is assumed to have the format of the user_attr files.

The free_userattr() function releases memory allocated by the getusernam(),
getuserattr(), and fgetuserattr() functions.

The internal representation of a user_attr entry is a userattr_t structure defined in
<user_attr.h> with the following members:

char *name; /* name of the user */

char *qualifier; /* reserved for future use */

char *res1; /* reserved for future use */

char *res2; /* reserved for future use */

kva_t *attr; /* list of attributes */

The setuserattr() function “rewinds” to the beginning of the enumeration of user_attr
entries. Calls to getusernam() may leave the enumeration in an indeterminate state, so
setuserattr() should be called before the first call to getuserattr().

The enduserattr() function may be called to indicate that user_attr processing is complete;
the library may then close any open user_attr file, deallocate any internal storage, and so
forth.

Name

Synopsis

Description

getuserattr(3SECDB)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 31 Mar 200564

http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=user-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=nsswitch.conf-4


The getuserattr() function returns a pointer to a userattr_t if it successfully enumerates
an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getusernam() function returns a pointer to a userattr_t if it successfully locates the
requested entry; otherwise it returns NULL.

The getuserattr() and getusernam() functions both allocate memory for the pointers they
return. This memory should be deallocated with the free_userattr() function.

Individual attributes can be referenced in the attr structure by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, code must be written to ignore unknown
key-value pairs without error.

/etc/user_attr extended user attributes

/etc/nsswitch.conf configuration file lookup information for the name server switch

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getauthattr(3SECDB), getexecattr(3SECDB), getprofattr(3SECDB), user_attr(4),
attributes(5)

Return Values

Usage

Warinings

Files

Attributes

See Also

getuserattr(3SECDB)

Extended Library Functions, Volume 4 65

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=user-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


getuserrange – get the label range of a user

cc [flags...] file... -ltsol [library...]

#include <tsol/label.h>

m_range_t *getuserrange(const char *username);

The getuserrange() function returns the label range of username. The lower bound in the
range is used as the initial workspace label when a user logs into a multilevel desktop. The
upper bound, or clearance, is used as an upper limit to the available labels that a user can
assign to labeled workspaces.

The default value for a user's label range is specified in label_encodings(4). Overriding
values for individual users are specified in user_attr(4).

The getuserrange() function returns NULL if the memory allocation fails. Otherwise, the
function returns a structure which must be freed by the caller, as follows:

m_range_t *range;

...

m_label_free(range->lower_bound);

m_label_free(range->upper_bound);

free(range);

The getuserrange() function will fail if:

ENOMEM The physical limits of the system are exceeded by size bytes of memory which
cannot be allocated.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below.

MT-Level MT-Safe

The getuserrange() function is Committed for systems that implement the Defense
Intelligence Agency (DIA) MAC policy of label_encodings(4). Other policies might exist in
a future release of Trusted Extensions that might make obsolete or supplement
label_encodings.

free(3C), libtsol(3LIB), m_label_free(3TSOL), label_encodings(4), user_attr(4),
attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

getuserrange(3TSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 200766

http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=label-encodings-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=user-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=label-encodings-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=free-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=label-encodings-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=user-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Notes

getuserrange(3TSOL)

Extended Library Functions, Volume 4 67



getzonelabelbyid, getzonelabelbyname, getzoneidbylabel – map between zones and labels

cc [flags...] file... -ltsol [library...]

#include <tsol/label.h>

m_label_t *getzonelabelbyid(zoneid_t zoneid);

m_label_t *getzonelabelbyname(const char *zonename);

zoneid_t *getzoneidbylabel(const m_label_t *label);

The getzonelabelbyid() function returns the mandatory access control (MAC) label of
zoneid.

The getzonelabelbyname() function returns the MAC label of the zone whose name is
zonename.

The getzoneidbylabel() function returns the zone ID of the zone whose label is label.

All of these functions require that the specified zone's state is at least ZONE_IS_READY. The
zone of the calling process must dominate the specified zone's label, or the calling process
must be in the global zone.

On successful completion, the getzonelabelbyid() and getzonelabelbyname() functions
return a pointer to a sensitivity label that is allocated within these functions. To free the
storage, use m_label_free(3TSOL). If the zone does not exist, NULL is returned.

On successful completion, the getzoneidbylabel() function returns the zone ID with the
matching label. If there is no matching zone, the function returns -1.

The getzonelabelbyid() and getzonelabelbyname() functions will fail if:

ENOENT The specified zone does not exist.

The getzonelabelbyid() function will fail if:

ENOENT No zone corresponds to the specified label.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Intro(2), getzonenamebyid(3C), getzoneidbyname(3C), libtsol(3LIB),
m_label_free(3TSOL), attributes(5), labels(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

getzonelabelbyid(3TSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 200768

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=intro-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=getzonenamebyid-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=getzoneidbyname-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=labels-5


The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Notes

getzonelabelbyid(3TSOL)

Extended Library Functions, Volume 4 69



getzonerootbyid, getzonerootbylabel, getzonerootbyname – map between zone root
pathnames and labels

cc [flags...] file... -ltsol [library...]

#include <tsol/label.h>

char *getzonerootbyid(zoneid_t zoneid);

char *getzonerootbylabel(const m_label_t *label);

char *getzonerootbyname(const char *zonename);

The getzonerootbyid() function returns the root pathname of zoneid.

The getzonerootbylabel() function returns the root pathname of the zone whose label is
label.

The getzonerootbyname() function returns the root pathname of zonename.

All of these functions require that the specified zone's state is at least ZONE_IS_READY. The
zone of the calling process must dominate the specified zone's label, or the calling process
must be in the global zone. The returned pathname is relative to the root path of the caller's
zone.

On successful completion, the getzonerootbyid(), getzonerootbylabel(), and
getzonerootbyname() functions return a pointer to a pathname that is allocated within these
functions. To free the storage, use free(3C). On failure, these functions return NULL and set
errno to indicate the error.

These functions will fail if:

EFAULT Invalid argument; pointer location is invalid.

EINVAL zoneid invalid, or zone not found or not ready.

ENOENT Zone does not exist.

ENOMEM Unable to allocate pathname.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Intro(2), free(3C), getzonenamebyid(3C), libtsol(3LIB), attributes(5), labels(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

getzonerootbyid(3TSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 200770

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=free-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=intro-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=free-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=getzonenamebyid-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=labels-5


The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Notes

getzonerootbyid(3TSOL)

Extended Library Functions, Volume 4 71



gl_get_line, new_GetLine, del_GetLine, gl_customize_completion, gl_change_terminal,
gl_configure_getline, gl_load_history, gl_save_history, gl_group_history, gl_show_history,
gl_watch_fd, gl_inactivity_timeout, gl_terminal_size, gl_set_term_size, gl_resize_history,
gl_limit_history, gl_clear_history, gl_toggle_history, gl_lookup_history, gl_state_of_history,
gl_range_of_history, gl_size_of_history, gl_echo_mode, gl_replace_prompt,
gl_prompt_style, gl_ignore_signal, gl_trap_signal, gl_last_signal, gl_completion_action,
gl_register_action, gl_display_text, gl_return_status, gl_error_message, gl_catch_blocked,
gl_list_signals, gl_bind_keyseq, gl_erase_terminal, gl_automatic_history, gl_append_history,
gl_query_char, gl_read_char – allow the user to compose an input line

cc [ flag... ] file... -ltecla [ library... ]

#include <stdio.h>

#include <libtecla.h>

GetLine *new_GetLine(size_t linelen, size_t histlen);

GetLine *del_GetLine(GetLine *gl);

char *gl_get_line(GetLine *gl, const char *prompt,
const char *start_line, int start_pos);

int gl_query_char(GetLine *gl, const char *prompt, char defchar);

int gl_read_char(GetLine *gl);

int gl_customize_completion(GetLine *gl, void *data,
CplMatchFn *match_fn);

int gl_change_terminal(GetLine *gl, FILE *input_fp,
FILE *output_fp, const char *term);

int gl_configure_getline(GetLine *gl, const char *app_string,
const char *app_file, const char *user_file);

int gl_bind_keyseq(GetLine *gl, GlKeyOrigin origin,
const char *keyseq, const char *action);

int gl_save_history(GetLine *gl, const char *filename,
const char *comment, int max_lines);

int gl_load_history(GetLine *gl, const char *filename,
const char *comment);

int gl_watch_fd(GetLine *gl, int fd, GlFdEvent event,
GlFdEventFn *callback, void *data);

int gl_inactivity_timeout(GetLine *gl, GlTimeoutFn *callback,
void *data, unsigned long sec, unsigned long nsec);

int gl_group_history(GetLine *gl, unsigned stream);

int gl_show_history(GetLine *gl, FILE *fp, const char *fmt,
int all_groups, int max_lines);

int gl_resize_history(GetLine *gl, size_t bufsize);

Name

Synopsis

gl_get_line(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Nov 200772



void gl_limit_history(GetLine *gl, int max_lines);

void gl_clear_history(GetLine *gl, int all_groups);

void gl_toggle_history(GetLine *gl, int enable);

GlTerminalSize gl_terminal_size(GetLine *gl, int def_ncolumn,
int def_nline);

int gl_set_term_size(GetLine *gl, int ncolumn, int nline);

int gl_lookup_history(GetLine *gl, unsigned long id,
GlHistoryLine *hline);

void gl_state_of_history(GetLine *gl, GlHistoryState *state);

void gl_range_of_history(GetLine *gl, GlHistoryRange *range);

void gl_size_of_history(GetLine *gl, GlHistorySize *size);

void gl_echo_mode(GetLine *gl, int enable);

void gl_replace_prompt(GetLine *gl, const char *prompt);

void gl_prompt_style(GetLine *gl, GlPromptStyle style);

int gl_ignore_signal(GetLine *gl, int signo);

int gl_trap_signal(GetLine *gl, int signo, unsigned flags,
GlAfterSignal after, int errno_value);

int gl_last_signal(GetLine *gl);

int gl_completion_action(GetLine *gl, void *data,
CplMatchFn *match_fn, int list_only, const char *name,
const char *keyseq);

int gl_register_action(GetLine *gl, void *data, GlActionFn *fn,
const char *name, const char *keyseq);

int gl_display_text(GetLine *gl, int indentation,
const char *prefix, const char *suffix, int fill_char,
int def_width, int start, const char *string);

GlReturnStatus gl_return_status(GetLine *gl);

const char *gl_error_message(GetLine *gl, char *buff, size_t n);

void gl_catch_blocked(GetLine *gl);

int gl_list_signals(GetLine *gl, sigset_t *set);

int gl_append_history(GetLine *gl, const char *line);

int gl_automatic_history(GetLine *gl, int enable);

int gl_erase_terminal(GetLine *gl);

gl_get_line(3TECLA)

Extended Library Functions, Volume 4 73



The gl_get_line() function is part of the libtecla(3LIB) library. If the user is typing at a
terminal, each call prompts them for an line of input, then provides interactive editing
facilities, similar to those of the UNIX tcsh shell. In addition to simple command-line editing,
it supports recall of previously entered command lines, TAB completion of file names, and
in-line wild-card expansion of filenames. Documentation of both the user-level
command-line editing features and all user configuration options can be found on the
tecla(5) manual page.

The following shows a complete example of how to use the gl_get_line() function to get
input from the user:

#include <stdio.h>

#include <locale.h>

#include <libtecla.h>

int main(int argc, char *argv[])

{

char *line; /* The line that the user typed */

GetLine *gl; /* The gl_get_line() resource object */

setlocale(LC_CTYPE, ""); /* Adopt the user’s choice */

/* of character set. */

gl = new_GetLine(1024, 2048);

if(!gl)

return 1;

while((line=gl_get_line(gl, "$ ", NULL, -1)) != NULL &&

strcmp(line, "exit\n") != 0)

printf("You typed: %s\n", line);

gl = del_GetLine(gl);

return 0;

}

In the example, first the resources needed by the gl_get_line() function are created by
calling new_GetLine(). This allocates the memory used in subsequent calls to the
gl_get_line() function, including the history buffer for recording previously entered lines.
Then one or more lines are read from the user, until either an error occurs, or the user types
exit. Then finally the resources that were allocated by new_GetLine(), are returned to the
system by calling del_GetLine(). Note the use of the NULL return value of del_GetLine() to
make gl NULL. This is a safety precaution. If the program subsequently attempts to pass gl to
gl_get_line(), said function will complain, and return an error, instead of attempting to use
the deleted resource object.

The new_GetLine() function creates the resources used by the gl_get_line() function and
returns an opaque pointer to the object that contains them. The maximum length of an input
line is specified by the linelen argument, and the number of bytes to allocate for storing history
lines is set by the histlen argument. History lines are stored back-to-back in a single buffer of

Description

An Example

The Functions Used In
The Example

gl_get_line(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Nov 200774

http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtecla-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=tecla-5


this size. Note that this means that the number of history lines that can be stored at any given
time, depends on the lengths of the individual lines. If you want to place an upper limit on the
number of lines that can be stored, see the description of the gl_limit_history() function. If
you do not want history at all, specify histlen as zero, and no history buffer will be allocated.

On error, a message is printed to stderr and NULL is returned.

The del_GetLine() function deletes the resources that were returned by a previous call to
new_GetLine(). It always returns NULL (for example, a deleted object). It does nothing if the gl
argument is NULL.

The gl_get_line() function can be called any number of times to read input from the user.
The gl argument must have been previously returned by a call to new_GetLine(). The prompt
argument should be a normal null-terminated string, specifying the prompt to present the
user with. By default prompts are displayed literally, but if enabled with the
gl_prompt_style() function, prompts can contain directives to do underlining, switch to
and from bold fonts, or turn highlighting on and off.

If you want to specify the initial contents of the line for the user to edit, pass the desired string
with the start_line argument. You can then specify which character of this line the cursor is
initially positioned over by using the start_pos argument. This should be -1 if you want the
cursor to follow the last character of the start line. If you do not want to preload the line in this
manner, send start_line as NULL, and set start_pos to -1.

The gl_get_line() function returns a pointer to the line entered by the user, or NULL on error
or at the end of the input. The returned pointer is part of the specified gl resource object, and
thus should not be freed by the caller, or assumed to be unchanging from one call to the next.
When reading from a user at a terminal, there will always be a newline character at the end of
the returned line. When standard input is being taken from a pipe or a file, there will similarly
be a newline unless the input line was too long to store in the internal buffer. In the latter case
you should call gl_get_line() again to read the rest of the line. Note that this behavior makes
gl_get_line() similar to fgets(3C). When stdin is not connected to a terminal,
gl_get_line() simply calls fgets().

The gl_get_line() function has two possible return values: a pointer to the completed input
line, or NULL. Additional information about what caused gl_get_line() to return is available
both by inspecting errno and by calling the gl_return_status() function.

The following are the possible enumerated values returned by gl_return_status():

GLR_NEWLINE The last call to gl_get_line() successfully returned a completed input line.

GLR_BLOCKED The gl_get_line() function was in non-blocking server mode, and
returned early to avoid blocking the process while waiting for terminal I/O.
The gl_pending_io() function can be used to see what type of I/O
gl_get_line() was waiting for. See the gl_io_mode(3TECLA).

The Return Status Of
gl_get_line()

gl_get_line(3TECLA)

Extended Library Functions, Volume 4 75

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=fgets-3c


GLR_SIGNAL A signal was caught by gl_get_line() that had an after-signal disposition
of GLS_ABORT. See gl_trap_signal().

GLR_TIMEOUT The inactivity timer expired while gl_get_line() was waiting for input,
and the timeout callback function returned GLTO_ABORT. See
gl_inactivity_timeout() for information about timeouts.

GLR_FDABORT An application I/O callback returned GLFD_ABORT. Ssee gl_watch_fd().

GLR_EOF End of file reached. This can happen when input is coming from a file or a
pipe, instead of the terminal. It also occurs if the user invokes the list-or-eof
or del-char-or-list-or-eof actions at the start of a new line.

GLR_ERROR An unexpected error caused gl_get_line() to abort (consult errno and/or
gl_error_message() for details.

When gl_return_status() returns GLR_ERROR and the value of errno is not sufficient to
explain what happened, you can use the gl_error_message() function to request a
description of the last error that occurred.

The return value of gl_error_message() is a pointer to the message that occurred. If the buff
argument is NULL, this will be a pointer to a buffer within gl whose value will probably change
on the next call to any function associated with gl_get_line(). Otherwise, if a non-null buff
argument is provided, the error message, including a '\0' terminator, will be written within the
first n elements of this buffer, and the return value will be a pointer to the first element of this
buffer. If the message will not fit in the provided buffer, it will be truncated to fit.

Whereas by default the prompt string that you specify is displayed literally without any special
interpretation of the characters within it, the gl_prompt_style() function can be used to
enable optional formatting directives within the prompt.

The style argument, which specifies the formatting style, can take any of the following values:

GL_FORMAT_PROMPT In this style, the formatting directives described below, when
included in prompt strings, are interpreted as follows:

%B Display subsequent characters with a bold font.

%b Stop displaying characters with the bold font.

%F Make subsequent characters flash.

%f Turn off flashing characters.

%U Underline subsequent characters.

%u Stop underlining characters.

%P Switch to a pale (half brightness) font.

%p Stop using the pale font.

Optional Prompt
Formatting

gl_get_line(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Nov 200776



%S Highlight subsequent characters (also known as standout
mode).

%s Stop highlighting characters.

%V Turn on reverse video.

%v Turn off reverse video.

%% Display a single % character.

For example, in this mode, a prompt string like “%UOK%u$” would
display the prompt “OK$”, but with the OK part underlined.

Note that although a pair of characters that starts with a % character,
but does not match any of the above directives is displayed literally, if
a new directive is subsequently introduced which does match, the
displayed prompt will change, so it is better to always use %% to
display a literal %.

Also note that not all terminals support all of these text attributes,
and that some substitute a different attribute for missing ones.

GL_LITERAL_PROMPT In this style, the prompt string is printed literally. This is the default
style.

By default users have the option of configuring the behavior of gl_get_line() with a
configuration file called .teclarc in their home directories. The fact that all applications
share this same configuration file is both an advantage and a disadvantage. In most cases it is
an advantage, since it encourages uniformity, and frees the user from having to configure each
application separately. In some applications, however, this single means of configuration is a
problem. This is particularly true of embedded software, where there's no filesystem to read a
configuration file from, and also in applications where a radically different choice of
keybindings is needed to emulate a legacy keyboard interface. To cater for such cases, the
gl_configure_getline() function allows the application to control where configuration
information is read from.

The gl_configure_getline() function allows the configuration commands that would
normally be read from a user's ~/.teclarc file, to be read from any or none of, a string, an
application specific configuration file, and/or a user-specific configuration file. If this function
is called before the first call to gl_get_line(), the default behavior of reading ~/.teclarc on
the first call to gl_get_line() is disabled, so all configurations must be achieved using the
configuration sources specified with this function.

If app_string != NULL, then it is interpreted as a string containing one or more configuration
commands, separated from each other in the string by embedded newline characters. If
app_file != NULL then it is interpreted as the full pathname of an application-specific

Alternate
Configuration Sources

gl_get_line(3TECLA)

Extended Library Functions, Volume 4 77



configuration file. If user_file != NULL then it is interpreted as the full path name of a
user-specific configuration file, such as ~/.teclarc. For example, in the call

gl_configure_getline(gl, "edit-mode vi \

nobeep",
"/usr/share/myapp/teclarc", "~/.teclarc");

The app_string argument causes the calling application to start in vi(1) edit-mode, instead of
the default emacs mode, and turns off the use of the terminal bell by the library. It then
attempts to read system-wide configuration commands from an optional file called
/usr/share/myapp/teclarc, then finally reads user-specific configuration commands from
an optional .teclarc file in the user's home directory. Note that the arguments are listed in
ascending order of priority, with the contents of app_string being potentially over riden by
commands in app_file, and commands in app_file potentially being overriden by commands
in user_file.

You can call this function as many times as needed, the results being cumulative, but note that
copies of any file names specified with the app_file and user_file arguments are recorded
internally for subsequent use by the read-init-files key-binding function, so if you plan to call
this function multiple times, be sure that the last call specifies the filenames that you want
re-read when the user requests that the configuration files be re-read.

Individual key sequences can also be bound and unbound using the gl_bind_keyseq()
function. The origin argument specifies the priority of the binding, according to whom it is
being established for, and must be one of the following two values.

GL_USER_KEY The user requested this key-binding.

GL_APP_KEY This is a default binding set by the application.

When both user and application bindings for a given key sequence have been specified, the
user binding takes precedence. The application's binding is subsequently reinstated if the
user's binding is later unbound with either another call to this function, or a call to
gl_configure_getline().

The keyseq argument specifies the key sequence to be bound or unbound, and is expressed in
the same way as in a ~/.teclarc configuration file. The action argument must either be a
string containing the name of the action to bind the key sequence to, or it must be NULL or "" to
unbind the key sequence.

If in your application you would like to have TAB completion complete other things in
addition to or instead of filenames, you can arrange this by registering an alternate completion
callback function with a call to the gl_customize_completion() function.

The data argument provides a way for your application to pass arbitrary, application-specific
information to the callback function. This is passed to the callback every time that it is called.
It might for example point to the symbol table from which possible completions are to be

Customized Word
Completion

gl_get_line(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Nov 200778

http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=vi-1


sought. The match_fn argument specifies the callback function to be called. The CplMatchFn
function type is defined in <libtecla.h>, as is a CPL_MATCH_FN() macro that you can use to
declare and prototype callback functions. The declaration and responsibilities of callback
functions are described in depth on the cpl_complete_word(3TECLA) manual page.

The callback function is responsible for looking backwards in the input line from the point at
which the user pressed TAB, to find the start of the word being completed. It then must lookup
possible completions of this word, and record them one by one in the WordCompletion object
that is passed to it as an argument, by calling the cpl_add_completion() function. If the
callback function wants to provide filename completion in addition to its own specific
completions, it has the option of itself calling the builtin filename completion callback. This
also is documented on the cpl_complete_word(3TECLA) manual page.

If you would like gl_get_line() to return the current input line when a successful
completion is been made, you can arrange this when you call cpl_add_completion() by
making the last character of the continuation suffix a newline character. The input line will be
updated to display the completion, together with any contiuation suffix up to the newline
character, and gl_get_line() will return this input line.

If your callback function needs to write something to the terminal, it must call
gl_normal_io() before doing so. This will start a new line after the input line that is currently
being edited, reinstate normal terminal I/O, and notify gl_get_line() that the input line will
need to be redrawn when the callback returns.

In the previous section the ability to customize the behavior of the only default completion
action, complete-word, was described. In this section the ability to install additional action
functions, so that different types of word completion can be bound to different key sequences,
is described. This is achieved by using the gl_completion_action() function.

The data and match_fn arguments are as described on the cpl_complete_word(3TECLA)
manual page, and specify the callback function that should be invoked to identify possible
completions. The list_only argument determines whether the action that is being defined
should attempt to complete the word as far as possible in the input line before displaying any
possible ambiguous completions, or whether it should simply display the list of possible
completions without touching the input line. The former option is selected by specifying a
value of 0, and the latter by specifying a value of 1. The name argument specifies the name by
which configuration files and future invocations of this function should refer to the action.
This must either be the name of an existing completion action to be changed, or be a new
unused name for a new action. Finally, the keyseq argument specifies the default key sequence
to bind the action to. If this is NULL, no new key sequence will be bound to the action.

Beware that in order for the user to be able to change the key sequence that is bound to actions
that are installed in this manner, you shouldcall gl_completion_action() to install a given
action for the first time between calling new_GetLine() and the first call to gl_get_line().

Adding Completion
Actions

gl_get_line(3TECLA)

Extended Library Functions, Volume 4 79



Otherwise, when the user's configuration file is read on the first call to gl_get_line(), the
name of the your additional action will not be known, and any reference to it in the
configuration file will generate an error.

As discussed for gl_customize_completion(), if your callback function needs to write
anything to the terminal, it must call gl_normal_io() before doing so.

Although the built-in key-binding actions are sufficient for the needs of most applications,
occasionally a specialized application may need to define one or more custom actions, bound
to application-specific key sequences. For example, a sales application would benefit from
having a key sequence that displayed the part name that corresponded to a part number
preceding the cursor. Such a feature is clearly beyond the scope of the built-in action
functions. So for such special cases, the gl_register_action() function is provided.

The gl_register_action() function lets the application register an external function, fn,
that will thereafter be called whenever either the specified key sequence, keyseq, is entered by
the user, or the user enters any other key sequence that the user subsequently binds to the
specified action name, name, in their configuration file. The data argument can be a pointer to
anything that the application wants to have passed to the action function, fn, whenever that
function is invoked.

The action function, fn, should be declared using the GL_ACTION_FN() macro, which is defined
in <libtecla.h>.

#define GL_ACTION_FN(fn) GlAfterAction (fn)(GetLine *gl, \

void *data, int count, size_t curpos, \

const char *line)

The gl and data arguments are those that were previously passed to gl_register_action()

when the action function was registered. The count argument is a numeric argument which
the user has the option of entering using the digit-argument action, before invoking the
action. If the user does not enter a number, then the count argument is set to 1. Nominally this
argument is interpreted as a repeat count, meaning that the action should be repeated that
many times. In practice however, for some actions a repeat count makes little sense. In such
cases, actions can either simply ignore the count argument, or use its value for a different
purpose.

A copy of the current input line is passed in the read-only line argument. The current cursor
position within this string is given by the index contained in the curpos argument. Note that
direct manipulation of the input line and the cursor position is not permitted because the rules
dictated by various modes (such as vi mode versus emacs mode, no-echo mode, and insert
mode versus overstrike mode) make it too complex for an application writer to write a
conforming editing action, as well as constrain future changes to the internals of
gl_get_line(). A potential solution to this dilemma would be to allow the action function to
edit the line using the existing editing actions. This is currently under consideration.

Defining Custom
Actions

gl_get_line(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Nov 200780



If the action function wishes to write text to the terminal without this getting mixed up with
the displayed text of the input line, or read from the terminal without having to handle raw
terminal I/O, then before doing either of these operations, it must temporarily suspend line
editing by calling the gl_normal_io() function. This function flushes any pending output to
the terminal, moves the cursor to the start of the line that follows the last terminal line of the
input line, then restores the terminal to a state that is suitable for use with the C stdio

facilities. The latter includes such things as restoring the normal mapping of \n to \r\n, and,
when in server mode, restoring the normal blocking form of terminal I/O. Having called this
function, the action function can read from and write to the terminal without the fear of
creating a mess. It is not necessary for the action function to restore the original editing
environment before it returns. This is done automatically by gl_get_line() after the action
function returns. The following is a simple example of an action function which writes the
sentence “Hello world” on a new terminal line after the line being edited. When this function
returns, the input line is redrawn on the line that follows the “Hello world” line, and line
editing resumes.

static GL_ACTION_FN(say_hello_fn)

{

if(gl_normal_io(gl)) /* Temporarily suspend editing */

return GLA_ABORT;

printf("Hello world\n");
return GLA_CONTINUE;

}

Action functions must return one of the following values, to tell gl_get_line() how to
proceed.

GLA_ABORT Cause gl_get_line() to return NULL.

GLA_RETURN Cause gl_get_line() to return the completed input line

GLA_CONTINUE Resume command-line editing.

Note that the name argument of gl_register_action() specifies the name by which a user
can refer to the action in their configuration file. This allows them to re-bind the action to an
alternate key-seqeunce. In order for this to work, it is necessary to call gl_register_action()
between calling new_GetLine() and the first call to gl_get_line().

To save the contents of the history buffer before quitting your application and subsequently
restore them when you next start the application, the gl_save_history() and
gl_load_history() functions are provided.

The filename argument specifies the name to give the history file when saving, or the name of
an existing history file, when loading. This may contain home directory and environment
variable expressions, such as ~/.myapp_history or $HOME/.myapp_history.

History Files

gl_get_line(3TECLA)

Extended Library Functions, Volume 4 81



Along with each history line, additional information about it, such as its nesting level and
when it was entered by the user, is recorded as a comment preceding the line in the history file.
Writing this as a comment allows the history file to double as a command file, just in case you
wish to replay a whole session using it. Since comment prefixes differ in different languages,
the comment argument is provided for specifying the comment prefix. For example, if your
application were a UNIX shell, such as the Bourne shell, you would specify “#” here. Whatever
you choose for the comment character, you must specify the same prefix to
gl_load_history() that you used when you called gl_save_history() to write the history
file.

The max_lines argument must be either -1 to specify that all lines in the history list be saved,
or a positive number specifying a ceiling on how many of the most recent lines should be
saved.

Both fuctions return non-zero on error, after writing an error message to stderr. Note that
gl_load_history() does not consider the non-existence of a file to be an error.

If your application uses a single GetLine object for entering many different types of input
lines, you might want gl_get_line() to distinguish the different types of lines in the history
list, and only recall lines that match the current type of line. To support this requirement,
gl_get_line() marks lines being recorded in the history list with an integer identifier chosen
by the application. Initially this identifier is set to 0 by new_GetLine(), but it can be changed
subsequently by calling gl_group_history().

The integer identifier ID can be any number chosen by the application, but note that
gl_save_history() and gl_load_history() preserve the association between identifiers
and historical input lines between program invocations, so you should choose fixed identifiers
for the different types of input line used by your application.

Whenever gl_get_line() appends a new input line to the history list, the current history
identifier is recorded with it, and when it is asked to recall a historical input line, it only recalls
lines that are marked with the current identifier.

The history list can be displayed by calling gl_show_history(). This function displays the
current contents of the history list to the stdio output stream fp. If the max_lines argument is
greater than or equal to zero, then no more than this number of the most recent lines will be
displayed. If the all_groups argument is non-zero, lines from all history groups are displayed.
Otherwise only those of the currently selected history group are displayed. The format string
argument, fmt, determines how the line is displayed. This can contain arbitrary characters
which are written verbatim, interleaved with any of the following format directives:

%D The date on which the line was originally entered, formatted like 2001-11-20.

%T The time of day when the line was entered, formatted like 23:59:59.

%N The sequential entry number of the line in the history buffer.

Multiple History Lists

Displaying History

gl_get_line(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Nov 200782



%G The number of the history group which the line belongs to.

%% A literal % character.

%H The history line itself.

Thus a format string like “%D %T %H0” would output something like:

2001-11-20 10:23:34 Hello world

Note the inclusion of an explicit newline character in the format string.

The gl_lookup_history() function allows the calling application to look up lines in the
history list.

The id argument indicates which line to look up, where the first line that was entered in the
history list after new_GetLine() was called is denoted by 0, and subsequently entered lines are
denoted with successively higher numbers. Note that the range of lines currently preserved in
the history list can be queried by calling the gl_range_of_history() function. If the
requested line is in the history list, the details of the line are recorded in the variable pointed to
by the hline argument, and 1 is returned. Otherwise 0 is returned, and the variable pointed to
by hline is left unchanged.

Beware that the string returned in hline->line is part of the history buffer, so it must not be
modified by the caller, and will be recycled on the next call to any function that takes gl as its
argument. Therefore you should make a private copy of this string if you need to keep it.

By default, whenever a line is entered by the user, it is automatically appended to the history
list, just before gl_get_line() returns the line to the caller. This is convenient for the
majority of applications, but there are also applications that need finer-grained control over
what gets added to the history list. In such cases, the automatic addition of entered lines to the
history list can be turned off by calling the gl_automatic_history() function.

If this function is called with its enable argument set to 0, gl_get_line() will not
automatically archive subsequently entered lines. Automatic archiving can be reenabled at a
later time by calling this function again, with its enable argument set to 1. While automatic
history archiving is disabled, the calling application can use the gl_append_history() to
append lines to the history list as needed.

The line argument specifies the line to be added to the history list. This must be a normal '\0 '
terminated string. If this string contains any newline characters, the line that gets archived in
the history list will be terminated by the first of these. Otherwise it will be terminated by the '\0
' terminator. If the line is longer than the maximum input line length that was specified when
new_GetLine() was called, it will be truncated to the actual gl_get_line() line length when
the line is recalled.

Looking Up History

Manual History
Archival

gl_get_line(3TECLA)

Extended Library Functions, Volume 4 83



If successful, gl_append_history() returns 0. Otherwise it returns non-zero and sets errno
to one of the following values.

EINVAL One of the arguments passed to gl_append_history() was NULL.

ENOMEM The specified line was longer than the allocated size of the history buffer (as
specified when new_GetLine() was called), so it could not be archived.

A textual description of the error can optionally be obtained by calling gl_error_message().
Note that after such an error, the history list remains in a valid state to receive new history
lines, so there is little harm in simply ignoring the return status of gl_append_history().

If you wish to change the size of the history buffer that was originally specified in the call to
new_GetLine(), you can do so with the gl_resize_history() function.

The histlen argument specifies the new size in bytes, and if you specify this as 0, the buffer will
be deleted.

As mentioned in the discussion of new_GetLine(), the number of lines that can be stored in
the history buffer, depends on the lengths of the individual lines. For example, a 1000 byte
buffer could equally store 10 lines of average length 100 bytes, or 20 lines of average length 50
bytes. Although the buffer is never expanded when new lines are added, a list of pointers into
the buffer does get expanded when needed to accomodate the number of lines currently stored
in the buffer. To place an upper limit on the number of lines in the buffer, and thus a ceiling on
the amount of memory used in this list, you can call the gl_limit_history() function.

The max_lines should either be a positive number >= 0, specifying an upper limit on the
number of lines in the buffer, or be -1 to cancel any previously specified limit. When a limit is
in effect, only the max_lines most recently appended lines are kept in the buffer. Older lines
are discarded.

To discard lines from the history buffer, use the gl_clear_history() function.

The all_groups argument tells the function whether to delete just the lines associated with the
current history group (see gl_group_history()) or all historical lines in the buffer.

The gl_toggle_history() function allows you to toggle history on and off without losing the
current contents of the history list.

Setting the enable argument to 0 turns off the history mechanism, and setting it to 1 turns it
back on. When history is turned off, no new lines will be added to the history list, and history
lookup key-bindings will act as though there is nothing in the history buffer.

The configured state of the history list can be queried with the gl_history_state() function.
On return, the status information is recorded in the variable pointed to by the state argument.

Miscellaneous History
Configuration

Querying History
Information

gl_get_line(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Nov 200784



The gl_range_of_history() function returns the number and range of lines in the history
list. The return values are recorded in the variable pointed to by the range argument. If the
nlines member of this structure is greater than zero, then the oldest and newest members
report the range of lines in the list, and newest=oldest+nlines-1. Otherwise they are both zero.

The gl_size_of_history() function returns the total size of the history buffer and the
amount of the buffer that is currently occupied.

On return, the size information is recorded in the variable pointed to by the size argument.

The new_GetLine() constructor function assumes that input is to be read from stdin and
output written to stdout. The following function allows you to switch to different input and
output streams.

The gl argument is the object that was returned by new_GetLine(). The input_fp argument
specifies the stream to read from, and output_fp specifies the stream to be written to. Only if
both of these refer to a terminal, will interactive terminal input be enabled. Otherwise
gl_get_line() will simply call fgets() to read command input. If both streams refer to a
terminal, then they must refer to the same terminal, and the type of this terminal must be
specified with the term argument. The value of the term argument is looked up in the terminal
information database (terminfo or termcap), in order to determine which special control
sequences are needed to control various aspects of the terminal. new_GetLine() for example,
passes the return value of getenv(“TERM”) in this argument. Note that if one or both of
input_fp and output_fp do not refer to a terminal, then it is legal to pass NULL instead of a
terminal type.

Note that if you want to pass file descriptors to gl_change_terminal(), you can do this by
creating stdio stream wrappers using the POSIX fdopen(3C) function.

By default, gl_get_line() does not return until either a complete input line has been entered
by the user, or an error occurs. In programs that need to watch for I/O from other sources than
the terminal, there are two options.

■ Use the functions described in the gl_io_mode(3TECLA) manual page to switch
gl_get_line() into non-blocking server mode. In this mode, gl_get_line() becomes a
non-blocking, incremental line-editing function that can safely be called from an external
event loop. Although this is a very versatile method, it involves taking on some
responsibilities that are normally performed behind the scenes by gl_get_line().

■ While gl_get_line() is waiting for keyboard input from the user, you can ask it to also
watch for activity on arbitrary file descriptors, such as network sockets or pipes, and have it
call functions of your choosing when activity is seen. This works on any system that has the
select system call, which is most, if not all flavors of UNIX.

Changing Terminals

External Event
Handling

gl_get_line(3TECLA)

Extended Library Functions, Volume 4 85

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=fdopen-3c


Registering a file descriptor to be watched by gl_get_line() involves calling the
gl_watch_fd() function. If this returns non-zero, then it means that either your arguments
are invalid, or that this facility is not supported on the host system.

The fd argument is the file descriptor to be watched. The event argument specifies what type of
activity is of interest, chosen from the following enumerated values:

GLFD_READ Watch for the arrival of data to be read.

GLFD_WRITE Watch for the ability to write to the file descriptor without blocking.

GLFD_URGENT Watch for the arrival of urgent out-of-band data on the file descriptor.

The callback argument is the function to call when the selected activity is seen. It should be
defined with the following macro, which is defined in libtecla.h.

#define GL_FD_EVENT_FN(fn) GlFdStatus (fn)(GetLine *gl, \\

void *data, int fd, GlFdEvent event)

The data argument of the gl_watch_fd() function is passed to the callback function for its
own use, and can point to anything you like, including NULL. The file descriptor and the event
argument are also passed to the callback function, and this potentially allows the same callback
function to be registered to more than one type of event and/or more than one file descriptor.
The return value of the callback function should be one of the following values.

GLFD_ABORT Tell gl_get_line() to abort. When this happens, gl_get_line() returns
NULL, and a following call to gl_return_status() will return
GLR_FDABORT. Note that if the application needs errno always to have a
meaningful value when gl_get_line() returns NULL, the callback
function should set errno appropriately.

GLFD_REFRESH Redraw the input line then continue waiting for input. Return this if your
callback wrote to the terminal.

GLFD_CONTINUE Continue to wait for input, without redrawing the line.

Note that before calling the callback, gl_get_line() blocks most signals and leaves its own
signal handlers installed, so if you need to catch a particular signal you will need to both
temporarily install your own signal handler, and unblock the signal. Be sure to re-block the
signal (if it was originally blocked) and reinstate the original signal handler, if any, before
returning.

Your callback should not try to read from the terminal, which is left in raw mode as far as
input is concerned. You can write to the terminal as usual, since features like conversion of
newline to carriage-return/linefeed are re-enabled while the callback is running. If your
callback function does write to the terminal, be sure to output a newline first, and when your
callback returns, tell gl_get_line() that the input line needs to be redrawn, by returning the
GLFD_REFRESH status code.

gl_get_line(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Nov 200786



To remove a callback function that you previously registered for a given file descriptor and
event, simply call gl_watch_fd() with the same fd and event arguments, but with a callback
argument of 0. The data argument is ignored in this case.

The gl_inactivity_timeout() function can be used to set or cancel an inactivity timeout.
Inactivity in this case refers both to keyboard input, and to I/O on any file descriptors
registered by prior and subsequent calls to gl_watch_fd().

The timeout is specified in the form of an integral number of seconds and an integral number
of nanoseconds, specified by the sec and nsec arguments, respectively. Subsequently, whenever
no activity is seen for this time period, the function specified by the callback argument is
called. The data argument of gl_inactivity_timeout() is passed to this callback function
whenever it is invoked, and can thus be used to pass arbitrary application-specific information
to the callback. The following macro is provided in <libtecla.h> for applications to use to
declare and prototype timeout callback functions.

#define GL_TIMEOUT_FN(fn) GlAfterTimeout (fn)(GetLine *gl, void *data)

On returning, the application's callback is expected to return one of the following
enumerators to tell gl_get_line() how to procede after the timeout has been handled by the
callback.

GLTO_ABORT Tell gl_get_line() to abort. When this happens, gl_get_line() will
return NULL, and a following call to gl_return_status() will return
GLR_TIMEOUT. Note that if the application needs errno always to have a
meaningful value when gl_get_line() returns NULL, the callback
function should set errno appropriately.

GLTO_REFRESH Redraw the input line, then continue waiting for input. You should return
this value if your callback wrote to the terminal.

GLTO_CONTINUE In normal blocking-I/O mode, continue to wait for input, without
redrawing the user's input line. In non-blocking server I/O mode (see
gl_io_mode(3TECLA)), gl_get_line() acts as though I/O blocked. This
means that gl_get_line() will immediately return NULL, and a following
call to gl_return_status() will return GLR_BLOCKED.

Note that before calling the callback, gl_get_line() blocks most signals and leaves its own
signal handlers installed, so if you need to catch a particular signal you will need to both
temporarily install your own signal handler and unblock the signal. Be sure to re-block the
signal (if it was originally blocked) and reinstate the original signal handler, if any, before
returning.

Your callback should not try to read from the terminal, which is left in raw mode as far as
input is concerned. You can however write to the terminal as usual, since features like
conversion of newline to carriage-return/linefeed are re-enabled while the callback is running.

Setting An Inactivity
Timeout

gl_get_line(3TECLA)

Extended Library Functions, Volume 4 87



If your callback function does write to the terminal, be sure to output a newline first, and when
your callback returns, tell gl_get_line() that the input line needs to be redrawn, by
returning the GLTO_REFRESH status code.

Finally, note that although the timeout arguments include a nanosecond component, few
computer clocks presently have resolutions that are finer than a few milliseconds, so asking for
less than a few milliseconds is equivalent to requesting zero seconds on many systems. If this
would be a problem, you should base your timeout selection on the actual resolution of the
host clock (for example, by calling sysconf(_SC_CLK_TCK)).

To turn off timeouts, simply call gl_inactivity_timeout() with a callback argument of 0.
The data argument is ignored in this case.

By default, the gl_get_line() function intercepts a number of signals. This is particularly
important for signals that would by default terminate the process, since the terminal needs to
be restored to a usable state before this happens. This section describes the signals that are
trapped by default and how gl_get_line() responds to them. Changing these defaults is the
topic of the following section.

When the following subset of signals are caught, gl_get_line() first restores the terminal
settings and signal handling to how they were before gl_get_line() was called, resends the
signal to allow the calling application's signal handlers to handle it, then, if the process still
exists, returns NULL and sets errno as specified below.

SIGINT This signal is generated both by the keyboard interrupt key (usually ^C), and the
keyboard break key. The errno value is EINTR.

SIGHUP This signal is generated when the controlling terminal exits. The errno value is
ENOTTY.

SIGPIPE This signal is generated when a program attempts to write to a pipe whose
remote end is not being read by any process. This can happen for example if you
have called gl_change_terminal() to redirect output to a pipe hidden under a
pseudo terminal. The errno value is EPIPE.

SIGQUIT This signal is generated by the keyboard quit key (usually ^\\). The errno value
is EINTR.

SIGABRT This signal is generated by the standard C, abort function. By default it both
terminates the process and generates a core dump. The errno value is EINTR.

SIGTERM This is the default signal that the UNIX kill command sends to processes. The
errno value is EINTR.

Note that in the case of all of the above signals, POSIX mandates that by default the process is
terminated, with the addition of a core dump in the case of the SIGQUIT signal. In other words,

Signal Handling
Defaults

gl_get_line(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Nov 200788



if the calling application does not override the default handler by supplying its own signal
handler, receipt of the corresponding signal will terminate the application before
gl_get_line() returns.

If gl_get_line() aborts with errno set to EINTR, you can find out what signal caused it to
abort, by calling the gl_last_signal() function. This returns the numeric code (for example,
SIGINT) of the last signal that was received during the most recent call to gl_get_line(), or -1
if no signals were received.

On systems that support it, when a SIGWINCH (window change) signal is received,
gl_get_line() queries the terminal to find out its new size, redraws the current input line to
accomodate the new size, then returns to waiting for keyboard input from the user. Unlike
other signals, this signal is not resent to the application.

Finally, the following signals cause gl_get_line() to first restore the terminal and signal
environment to that which prevailed before gl_get_line() was called, then resend the signal
to the application. If the process still exists after the signal has been delivered, then
gl_get_line() then re-establishes its own signal handlers, switches the terminal back to raw
mode, redisplays the input line, and goes back to awaiting terminal input from the user.

SIGCONT This signal is generated when a suspended process is resumed.

SIGPOLL On SVR4 systems, this signal notifies the process of an asynchronous I/O
event. Note that under 4.3+BSD, SIGIO and SIGPOLL are the same. On other
systems, SIGIO is ignored by default, so gl_get_line() does not trap it by
default.

SIGPWR This signal is generated when a power failure occurs (presumably when the
system is on a UPS).

SIGALRM This signal is generated when a timer expires.

SIGUSR1 An application specific signal.

SIGUSR2 Another application specific signal.

SIGVTALRM This signal is generated when a virtual timer expires. See setitimer(2).

SIGXCPU This signal is generated when a process exceeds its soft CPU time limit.

SIGXFSZ This signal is generated when a process exceeds its soft file-size limit.

SIGTSTP This signal is generated by the terminal suspend key, which is usually ^Z, or the
delayed terminal suspend key, which is usually ^Y.

SIGTTIN This signal is generated if the program attempts to read from the terminal
while the program is running in the background.

SIGTTOU This signal is generated if the program attempts to write to the terminal while
the program is running in the background.

gl_get_line(3TECLA)

Extended Library Functions, Volume 4 89

http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=setitimer-2


Obviously not all of the above signals are supported on all systems, so code to support them is
conditionally compiled into the tecla library.

Note that if SIGKILL or SIGPOLL, which by definition cannot be caught, or any of the hardware
generated exception signals, such as SIGSEGV, SIGBUS, and SIGFPE, are received and
unhandled while gl_get_line() has the terminal in raw mode, the program will be
terminated without the terminal having been restored to a usable state. In practice,
job-control shells usually reset the terminal settings when a process relinquishes the
controlling terminal, so this is only a problem with older shells.

The previous section listed the signals that gl_get_line() traps by default, and described
how it responds to them. This section describes how to both add and remove signals from the
list of trapped signals, and how to specify how gl_get_line() should respond to a given
signal.

If you do not need gl_get_line() to do anything in response to a signal that it normally traps,
you can tell to gl_get_line() to ignore that signal by calling gl_ignore_signal().

The signo argument is the number of the signal (for example, SIGINT) that you want to have
ignored. If the specified signal is not currently one of those being trapped, this function does
nothing.

The gl_trap_signal() function allows you to either add a new signal to the list that
gl_get_line() traps or modify how it responds to a signal that it already traps.

The signo argument is the number of the signal that you want to have trapped. The flags
argument is a set of flags that determine the environment in which the application's signal
handler is invoked. The after argument tells gl_get_line() what to do after the application's
signal handler returns. The errno_value tells gl_get_line() what to set errno to if told to
abort.

The flags argument is a bitwise OR of zero or more of the following enumerators:

GLS_RESTORE_SIG Restore the caller's signal environment while handling the signal.

GLS_RESTORE_TTY Restore the caller's terminal settings while handling the signal.

GLS_RESTORE_LINE Move the cursor to the start of the line following the input line before
invoking the application's signal handler.

GLS_REDRAW_LINE Redraw the input line when the application's signal handler returns.

GLS_UNBLOCK_SIG Normally, if the calling program has a signal blocked (see
sigprocmask(2)), gl_get_line() does not trap that signal. This flag
tells gl_get_line() to trap the signal and unblock it for the duration
of the call to gl_get_line().

Customized Signal
Handling

gl_get_line(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Nov 200790

http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=sigprocmask-2


GLS_DONT_FORWARD If this flag is included, the signal will not be forwarded to the signal
handler of the calling program.

Two commonly useful flag combinations are also enumerated as follows:

GLS_RESTORE_ENV GLS_RESTORE_SIG | GLS_RESTORE_TTY |GLS_REDRAW_LINE

GLS_SUSPEND_INPUT GLS_RESTORE_ENV | GLS_RESTORE_LINE

If your signal handler, or the default system signal handler for this signal, if you have not
overridden it, never either writes to the terminal, nor suspends or terminates the calling
program, then you can safely set the flags argument to 0.

■ The cursor does not get left in the middle of the input line.
■ So that the user can type in input and have it echoed.
■ So that you do not need to end each output line with \r\n, instead of just \n.

The GL_RESTORE_ENV combination is the same as GL_SUSPEND_INPUT, except that it does not
move the cursor. If your signal handler does not read or write anything to the terminal, the
user will not see any visible indication that a signal was caught. This can be useful if you have a
signal handler that only occasionally writes to the terminal, where using GL_SUSPEND_LINE
would cause the input line to be unnecessarily duplicated when nothing had been written to
the terminal. Such a signal handler, when it does write to the terminal, should be sure to start a
new line at the start of its first write, by writing a new line before returning. If the signal arrives
while the user is entering a line that only occupies a signal terminal line, or if the cursor is on
the last terminal line of a longer input line, this will have the same effect as GL_SUSPEND_INPUT.
Otherwise it will start writing on a line that already contains part of the displayed input line.
This does not do any harm, but it looks a bit ugly, which is why the GL_SUSPEND_INPUT
combination is better if you know that you are always going to be writting to the terminal.

The after argument, which determines what gl_get_line() does after the application's signal
handler returns (if it returns), can take any one of the following values:

GLS_RETURN Return the completed input line, just as though the user had pressed the
return key.

GLS_ABORT Cause gl_get_line() to abort. When this happens, gl_get_line()
returns NULL, and a following call to gl_return_status() will return
GLR_SIGNAL. Note that if the application needs errno always to have a
meaningful value when gl_get_line() returns NULL, the callback function
should set errno appropriately.

GLS_CONTINUE Resume command line editing.

The errno_value argument is intended to be combined with the GLS_ABORT option, telling
gl_get_line() what to set the standard errno variable to before returning NULL to the calling

gl_get_line(3TECLA)

Extended Library Functions, Volume 4 91



program. It can also, however, be used with the GL_RETURN option, in case you want to have a
way to distinguish between an input line that was entered using the return key, and one that
was entered by the receipt of a signal.

Signal handling is suprisingly hard to do reliably without race conditions. In gl_get_line() a
lot of care has been taken to allow applications to perform reliable signal handling around
gl_get_line(). This section explains how to make use of this.

As an example of the problems that can arise if the application is not written correctly,
imagine that one's application has a SIGINT signal handler that sets a global flag. Now suppose
that the application tests this flag just before invoking gl_get_line(). If a SIGINT signal
happens to be received in the small window of time between the statement that tests the value
of this flag, and the statement that calls gl_get_line(), then gl_get_line() will not see the
signal, and will not be interrupted. As a result, the application will not be able to respond to the
signal until the user gets around to finishing entering the input line and gl_get_line()

returns. Depending on the application, this might or might not be a disaster, but at the very
least it would puzzle the user.

The way to avoid such problems is to do the following.

1. If needed, use the gl_trap_signal() function to configure gl_get_line() to abort when
important signals are caught.

2. Configure gl_get_line() such that if any of the signals that it catches are blocked when
gl_get_line() is called, they will be unblocked automatically during times when
gl_get_line() is waiting for I/O. This can be done either on a per signal basis, by calling
the gl_trap_signal() function, and specifying the GLS_UNBLOCK attribute of the signal, or
globally by calling the gl_catch_blocked() function. This function simply adds the
GLS_UNBLOCK attribute to all of the signals that it is currently configured to trap.

3. Just before calling gl_get_line(), block delivery of all of the signals that gl_get_line()
is configured to trap. This can be done using the POSIX sigprocmask function in
conjunction with the gl_list_signals() function. This function returns the set of signals
that it is currently configured to catch in the set argument, which is in the form required by
sigprocmask(2).

4. In the example, one would now test the global flag that the signal handler sets, knowing
that there is now no danger of this flag being set again until gl_get_line() unblocks its
signals while performing I/O.

5. Eventually gl_get_line() returns, either because a signal was caught, an error occurred,
or the user finished entering their input line.

6. Now one would check the global signal flag again, and if it is set, respond to it, and zero the
flag.

7. Use sigprocmask() to unblock the signals that were blocked in step 3.

Reliable Signal
Handling

gl_get_line(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Nov 200792

http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=sigprocmask-2


The same technique can be used around certain POSIX signal-aware functions, such as
sigsetjmp(3C) and sigsuspend(2), and in particular, the former of these two functions can
be used in conjunction with siglongjmp(3C) to implement race-condition free signal
handling around other long-running system calls. The gl_get_line() function manages to
reliably trap signals around calls to functions like read(2) and select(3C) without race
conditions.

The gl_get_line() function first uses the POSIX sigprocmask() function to block the
delivery of all of the signals that it is currently configured to catch. This is redundant if the
application has already blocked them, but it does no harm. It undoes this step just before
returning.

Whenever gl_get_line() needs to call read or select to wait for input from the user, it first
calls the POSIX sigsetjmp() function, being sure to specify a non-zero value for its savemask
argument.

If sigsetjmp() returns zero, gl_get_line() then does the following.

1. It uses the POSIX sigaction(2) function to register a temporary signal handler to all of the
signals that it is configured to catch. This signal handler does two things.
a. It records the number of the signal that was received in a file-scope variable.
b. It then calls the POSIX siglongjmp() function using the buffer that was passed to

sigsetjmp() for its first argument and a non-zero value for its second argument.

When this signal handler is registered, the sa_mask member of the struct sigaction act
argument of the call to sigaction() is configured to contain all of the signals that
gl_get_line() is catching. This ensures that only one signal will be caught at once by our
signal handler, which in turn ensures that multiple instances of our signal handler do not
tread on each other's toes.

2. Now that the signal handler has been set up, gl_get_line() unblocks all of the signals that
it is configured to catch.

3. It then calls the read() or select() function to wait for keyboard input.
4. If this function returns (that is, no signal is received), gl_get_line() blocks delivery of the

signals of interest again.
5. It then reinstates the signal handlers that were displaced by the one that was just installed.

Alternatively, if sigsetjmp() returns non-zero, this means that one of the signals being
trapped was caught while the above steps were executing. When this happens, gl_get_line()
does the following.

First, note that when a call to siglongjmp() causes sigsetjmp() to return, provided that the
savemask argument of sigsetjmp() was non-zero, the signal process mask is restored to how
it was when sigsetjmp() was called. This is the important difference between sigsetjmp()

gl_get_line(3TECLA)

Extended Library Functions, Volume 4 93

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=sigsetjmp-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=sigsuspend-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=siglongjmp-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=read-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=select-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=sigaction-2


and the older problematic setjmp(3C), and is the essential ingredient that makes it possible to
avoid signal handling race conditions. Because of this we are guaranteed that all of the signals
that we blocked before calling sigsetjmp() are blocked again as soon as any signal is caught.
The following statements, which are then executed, are thus guaranteed to be executed
without any further signals being caught.

1. If so instructed by the gl_get_line() configuration attributes of the signal that was
caught, gl_get_line() restores the terminal attributes to the state that they had when
gl_get_line() was called. This is particularly important for signals that suspend or
terminate the process, since otherwise the terminal would be left in an unusable state.

2. It then reinstates the application's signal handlers.
3. Then it uses the C standard-library raise(3C) function to re-send the application the

signal that was caught.
4. Next it unblocks delivery of the signal that we just sent. This results in the signal that was

just sent by raise() being caught by the application's original signal handler, which can
now handle it as it sees fit.

5. If the signal handler returns (that is, it does not terminate the process), gl_get_line()
blocks delivery of the above signal again.

6. It then undoes any actions performed in the first of the above steps and redisplays the line,
if the signal configuration calls for this.

7. gl_get_line() then either resumes trying to read a character, or aborts, depending on the
configuration of the signal that was caught.

What the above steps do in essence is to take asynchronously delivered signals and handle
them synchronously, one at a time, at a point in the code where gl_get_line() has complete
control over its environment.

On most systems the combination of the TIOCGWINSZ ioctl and the SIGWINCH signal is used to
maintain an accurate idea of the terminal size. The terminal size is newly queried every time
that gl_get_line() is called and whenever a SIGWINCH signal is received.

On the few systems where this mechanism is not available, at startup new_GetLine() first
looks for the LINES and COLUMNS environment variables. If these are not found, or they contain
unusable values, then if a terminal information database like terminfo or termcap is available,
the default size of the terminal is looked up in this database. If this too fails to provide the
terminal size, a default size of 80 columns by 24 lines is used.

Even on systems that do support ioctl(TIOCGWINSZ), if the terminal is on the other end of a
serial line, the terminal driver generally has no way of detecting when a resize occurs or of
querying what the current size is. In such cases no SIGWINCH is sent to the process, and the
dimensions returned by ioctl(TIOCGWINSZ) are not correct. The only way to handle such

The Terminal Size

gl_get_line(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Nov 200794

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=setjmp-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=raise-3c


instances is to provide a way for the user to enter a command that tells the remote system what
the new size is. This command would then call the gl_set_term_size() function to tell
gl_get_line() about the change in size.

The ncolumn and nline arguments are used to specify the new dimensions of the terminal, and
must not be less than 1. On systems that do support ioctl(TIOCGWINSZ), this function first calls
ioctl(TIOCSWINSZ) to tell the terminal driver about the change in size. In non-blocking
server-I/O mode, if a line is currently being input, the input line is then redrawn to
accomodate the changed size. Finally the new values are recorded in gl for future use by
gl_get_line().

The gl_terminal_size() function allows you to query the current size of the terminal, and
install an alternate fallback size for cases where the size is not available. Beware that the
terminal size will not be available if reading from a pipe or a file, so the default values can be
important even on systems that do support ways of finding out the terminal size.

This function first updates gl_get_line()'s fallback terminal dimensions, then records its
findings in the return value.

The def_ncolumn and def_nline arguments specify the default number of terminal columns
and lines to use if the terminal size cannot be determined by ioctl(TIOCGWINSZ) or
environment variables.

When entering sensitive information, such as passwords, it is best not to have the text that you
are entering echoed on the terminal. Furthermore, such text should not be recorded in the
history list, since somebody finding your terminal unattended could then recall it, or
somebody snooping through your directories could see it in your history file. With this in
mind, the gl_echo_mode() function allows you to toggle on and off the display and archival of
any text that is subsequently entered in calls to gl_get_line().

The enable argument specifies whether entered text should be visible or not. If it is 0, then
subsequently entered lines will not be visible on the terminal, and will not be recorded in the
history list. If it is 1, then subsequent input lines will be displayed as they are entered, and
provided that history has not been turned off with a call to gl_toggle_history(), then they
will also be archived in the history list. Finally, if the enable argument is -1, then the echoing
mode is left unchanged, which allows you to non-destructively query the current setting
through the return value. In all cases, the return value of the function is 0 if echoing was
disabled before the function was called, and 1 if it was enabled.

When echoing is turned off, note that although tab completion will invisibly complete your
prefix as far as possible, ambiguous completions will not be displayed.

Hiding What You Type

gl_get_line(3TECLA)

Extended Library Functions, Volume 4 95



Using gl_get_line() to query the user for a single character reply, is inconvenient for the
user, since they must hit the enter or return key before the character that they typed is
returned to the program. Thus the gl_query_char() function has been provided for single
character queries like this.

This function displays the specified prompt at the start of a new line, and waits for the user to
type a character. When the user types a character, gl_query_char() displays it to the right of
the prompt, starts a newline, then returns the character to the calling program. The return
value of the function is the character that was typed. If the read had to be aborted for some
reason, EOF is returned instead. In the latter case, the application can call the previously
documented gl_return_status(), to find out what went wrong. This could, for example,
have been the reception of a signal, or the optional inactivity timer going off.

If the user simply hits enter, the value of the defchar argument is substituted. This means that
when the user hits either newline or return, the character specified in defchar, is displayed after
the prompt, as though the user had typed it, as well as being returned to the calling
application. If such a replacement is not important, simply pass '\n' as the value of defchar.

If the entered character is an unprintable character, it is displayed symbolically. For example,
control-A is displayed as ^A, and characters beyond 127 are displayed in octal, preceded by a
backslash.

As with gl_get_line(), echoing of the entered character can be disabled using the
gl_echo_mode() function.

If the calling process is suspended while waiting for the user to type their response, the cursor
is moved to the line following the prompt line, then when the process resumes, the prompt is
redisplayed, and gl_query_char() resumes waiting for the user to type a character.

Note that in non-blocking server mode, if an incomplete input line is in the process of being
read when gl_query_char() is called, the partial input line is discarded, and erased from the
terminal, before the new prompt is displayed. The next call to gl_get_line() will thus start
editing a new line.

Whereas the gl_query_char() function visibly prompts the user for a character, and displays
what they typed, the gl_read_char() function reads a signal character from the user, without
writing anything to the terminal, or perturbing any incompletely entered input line. This
means that it can be called not only from between calls to gl_get_line(), but also from
callback functions that the application has registered to be called by gl_get_line().

On success, the return value of gl_read_char() is the character that was read. On failure,
EOF is returned, and the gl_return_status() function can be called to find out what went
wrong. Possibilities include the optional inactivity timer going off, the receipt of a signal that is
configured to abort gl_get_line(), or terminal I/O blocking, when in non-blocking
server-I/O mode.

Single Character
Queries

Reading Raw
Characters

gl_get_line(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Nov 200796



Beware that certain keyboard keys, such as function keys, and cursor keys, usually generate at
least three characters each, so a single call to gl_read_char() will not be enough to identify
such keystrokes.

The calling program can clear the terminal by calling gl_erase_terminal(). In non-blocking
server-I/O mode, this function also arranges for the current input line to be redrawn from
scratch when gl_get_line() is next called.

Between calls to gl_get_line(), the gl_display_text() function provides a convenient way
to display paragraphs of text, left-justified and split over one or more terminal lines according
to the constraints of the current width of the terminal. Examples of the use of this function
may be found in the demo programs, where it is used to display introductions. In those
examples the advanced use of optional prefixes, suffixes and filled lines to draw a box around
the text is also illustrated.

If gl is not currently connected to a terminal, for example if the output of a program that uses
gl_get_line() is being piped to another program or redirected to a file, then the value of the
def_width parameter is used as the terminal width.

The indentation argument specifies the number of characters to use to indent each line of
ouput. The fill_char argument specifies the character that will be used to perform this
indentation.

The prefix argument can be either NULL or a string to place at the beginning of each new line
(after any indentation). Similarly, the suffix argument can be either NULL or a string to place at
the end of each line. The suffix is placed flush against the right edge of the terminal, and any
space between its first character and the last word on that line is filled with the character
specified by the fill_char argument. Normally the fill-character is a space.

The start argument tells gl_display_text() how many characters have already been written
to the current terminal line, and thus tells it the starting column index of the cursor. Since the
return value of gl_display_text() is the ending column index of the cursor, by passing the
return value of one call to the start argument of the next call, a paragraph that is broken
between more than one string can be composed by calling gl_display_text() for each
successive portion of the paragraph. Note that literal newline characters are necessary at the
end of each paragraph to force a new line to be started.

On error, gl_display_text() returns -1.

Unless otherwise stated, callback functions such as tab completion callbacks and event
callbacks should not call any functions in this module. The following functions, however, are
designed specifically to be used by callback functions.

Calling the gl_replace_prompt() function from a callback tells gl_get_line() to display a
different prompt when the callback returns. Except in non-blocking server mode, it has no
effect if used between calls to gl_get_line(). In non-blocking server mode, when used

Clearing The Terminal

Displaying Text
Dynamically

Callback Function
Facilities

gl_get_line(3TECLA)

Extended Library Functions, Volume 4 97



between two calls to gl_get_line() that are operating on the same input line, the current
input line will be re-drawn with the new prompt on the following call to gl_get_line().

Since libtecla(3LIB) version 1.4.0, gl_get_line() has been 8-bit clean. This means that all
8-bit characters that are printable in the user's current locale are now displayed verbatim and
included in the returned input line. Assuming that the calling program correctly contains a
call like the following,

setlocale(LC_CTYPE, "")

then the current locale is determined by the first of the environment variables LC_CTYPE,
LC_ALL, and LANG that is found to contain a valid locale name. If none of these variables are
defined, or the program neglects to call setlocale(3C), then the default C locale is used,
which is US 7-bit ASCII. On most UNIX-like platforms, you can get a list of valid locales by
typing the command:

locale -a

at the shell prompt. Further documentation on how the user can make use of this to enter
international characters can be found in the tecla(5) man page.

Unfortunately neither terminfo nor termcap were designed to be reentrant, so you cannot
safely use the functions of the getline module in multiple threads (you can use the separate
file-expansion and word-completion modules in multiple threads, see the corresponding man
pages for details). However due to the use of POSIX reentrant functions for looking up home
directories, it is safe to use this module from a single thread of a multi-threaded program,
provided that your other threads do not use any termcap or terminfo functions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

cpl_complete_word(3TECLA), ef_expand_file(3TECLA), gl_io_mode(3TECLA),
libtecla(3LIB), pca_lookup_file(3TECLA), attributes(5), tecla(5)

International Character
Sets

Thread Safety

Attributes

See Also

gl_get_line(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Nov 200798

http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtecla-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=setlocale-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=tecla-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtecla-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=tecla-5


gl_io_mode, gl_raw_io, gl_normal_io, gl_tty_signals, gl_abandon_line, gl_handle_signal,
gl_pending_io – use gl_get_line() from an external event loop

cc [ flag... ] file... -ltecla [ library... ]

#include <libtecla.h>

int gl_io_mode(GetLine *gl, GlIOMode mode);

int gl_raw_io(GetLine *gl);

int gl_normal_io(GetLine *gl);

int gl_tty_signals(void (*term_handler)(int), void (*susp_handler)(int),
void (*cont_handler)(int), void (*size_handler)(int));

void gl_abandon_line(GetLine *gl);

void gl_handle_signal(int signo, GetLine *gl, int ngl);

GlPendingIO gl_pending_io(GetLine *gl);

The gl_get_line(3TECLA) function supports two different I/O modes. These are selected by
calling the gl_io_mode() function. The mode argument of gl_io_mode() specifies the new
I/O mode and must be one of the following.

GL_NORMAL_MODE Select the normal blocking-I/O mode. In this mode gl_get_line() does
not return until either an error occurs of the user finishes entering a new
line.

GL_SERVER_MODE Select non-blocking server I/O mode. In this mode, since non-blocking
terminal I/O is used, the entry of each new input line typically requires
many calls to gl_get_line() from an external I/O-driven event loop.

Newly created GetLine objects start in normal I/O mode, so to switch to non-blocking server
mode requires an initial call to gl_io_mode().

In non-blocking server I/O mode, the application is required to have an event loop that calls
gl_get_line() whenever the terminal file descriptor can perform the type I/O that
gl_get_line() is waiting for. To determine which type of I/O gl_get_line() is waiting for,
the application calls the gl_pending_io() function. The return value is one of the following
two enumerated values.

GLP_READ gl_get_line() is waiting to write a character to the terminal.

GLP_WRITE gl_get_line() is waiting to read a character from the keyboad.

If the application is using either the select(3C) or poll(2) function to watch for I/O on a
group of file descriptors, then it should call the gl_pending_io() function before each call to
these functions to determine which direction of I/O it should tell them to watch for, and
configure their arguments accordingly. In the case of the select() function, this means using

Name

Synopsis

Description

Server I/O Mode

gl_io_mode(3TECLA)

Extended Library Functions, Volume 4 99

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=select-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=poll-2


the FD_SET() macro to add the terminal file descriptor either to the set of file descriptors to be
watched for readability or the set to be watched for writability.

As in normal I/O mode, the return value of gl_get_line() is either a pointer to a completed
input line or NULL. However, whereas in normal I/O mode a NULL return value always means
that an error occurred, in non-blocking server mode, NULL is also returned when
gl_get_line() cannot read or write to the terminal without blocking. Thus in non-blocking
server mode, in order to determine when a NULL return value signifies that an error occurred
or not, it is necessary to call the gl_return_status() function. If this function returns the
enumerated value GLR_BLOCKED, gl_get_line() is waiting for I/O and no error has occurred.

When gl_get_line() returns NULL and gl_return_status() indicates that this is due to
blocked terminal I/O, the application should call gl_get_line() again when the type of I/O
reported by gl_pending_io() becomes possible. The prompt, start_line and start_pos
arguments of gl_get_line() will be ignored on these calls. If you need to change the prompt
of the line that is currently being edited, you can call the gl_replace_prompt(3TECLA)
function between calls to gl_get_line().

A complication that is unique to non-blocking server mode is that it requires that the terminal
be left in raw mode between calls to gl_get_line(). If this were not the case, the external
event loop would not be able to detect individual key-presses, and the basic line editing
implemented by the terminal driver would clash with the editing provided by gl_get_line().
When the terminal needs to be used for purposes other than entering a new input line with
gl_get_line(), it needs to be restored to a usable state. In particular, whenever the process is
suspended or terminated, the terminal must be returned to a normal state. If this is not done,
then depending on the characteristics of the shell that was used to invoke the program, the
user could end up with a hung terminal. To this end, the gl_normal_io() function is provided
for switching the terminal back to the state that it was in when raw mode was last established.

The gl_normal_io() function first flushes any pending output to the terminal, then moves
the cursor to the start of the terminal line which follows the end of the incompletely entered
input line. At this point it is safe to suspend or terminate the process, and it is safe for the
application to read and write to the terminal. To resume entry of the input line, the application
should call the gl_raw_io() function.

The gl_normal_io() function starts a new line, redisplays the partially completed input line
(if any), restores the cursor position within this line to where it was when gl_normal_io()

was called, then switches back to raw, non-blocking terminal mode ready to continue entry of
the input line when gl_get_line() is next called.

Note that in non-blocking server mode, if gl_get_line() is called after a call to
gl_normal_io(), without an intervening call to gl_raw_io(), gl_get_line() will call
gl_raw_mode() itself, and the terminal will remain in this mode when gl_get_line()

returns.

Giving Up The Terminal

gl_io_mode(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Jun 2004100



In the previous section it was pointed out that in non-blocking server mode, the terminal must
be restored to a sane state whenever a signal is received that either suspends or terminates the
process. In normal I/O mode, this is done for you by gl_get_line(), but in non-blocking
server mode, since the terminal is left in raw mode between calls to gl_get_line(), this signal
handling has to be done by the application. Since there are many signals that can suspend or
terminate a process, as well as other signals that are important to gl_get_line(), such as the
SIGWINCH signal, which tells it when the terminal size has changed, the gl_tty_signals()
function is provided for installing signal handlers for all pertinent signals.

The gl_tty_signals() function uses gl_get_line()'s internal list of signals to assign
specified signal handlers to groups of signals. The arguments of this function are as follows.

term_handler This is the signal handler that is used to trap signals that by default
terminate any process that receives them (for example, SIGINT or SIGTERM).

susp_handler This is the signal handler that is used to trap signals that by default suspend
any process that receives them, (for example, SIGTSTP or SIGTTOU).

cont_handler This is the signal handler that is used to trap signals that are usually sent
when a process resumes after being suspended (usually SIGCONT). Beware
that there is nothing to stop a user from sending one of these signals at other
times.

size_handler This signal handler is used to trap signals that are sent to processes when
their controlling terminals are resized by the user (for example, SIGWINCH).

These arguments can all be the same, if so desired, and SIG_IGN (ignore this signal) or SIG_DFL
(use the system-provided default signal handler) can be specified instead of a function where
pertinent. In particular, it is rarely useful to trap SIGCONT, so the cont_handler argument will
usually be SIG_DFL or SIG_IGN.

The gl_tty_signals() function uses the POSIX sigaction(2) function to install these signal
handlers, and it is careful to use the sa_mask member of each sigaction structure to ensure
that only one of these signals is ever delivered at a time. This guards against different instances
of these signal handlers from simultaneously trying to write to common global data, such as a
shared sigsetjmp(3C) buffer or a signal-received flag. The signal handlers installed by this
function should call the gl_handle_signal().

The signo argument tells this function which signal it is being asked to respond to, and the gl
argument should be a pointer to the first element of an array of ngl GetLine objects. If your
application has only one of these objects, pass its pointer as the gl argument and specify ngl as
1.

Depending on the signal that is being handled, this function does different things.

Signal Handling

gl_io_mode(3TECLA)

Extended Library Functions, Volume 4 101

http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=sigsetjmp-3c


If the signal that was caught is one of those that by default terminates any process that receives
it, then gl_handle_signal() does the following steps.

1. First it blocks the delivery of all signals that can be blocked (ie. SIGKILL and SIGSTOP

cannot be blocked).
2. Next it calls gl_normal_io() for each of the ngl GetLine objects. Note that this does

nothing to any of the GetLine objects that are not currently in raw mode.
3. Next it sets the signal handler of the signal to its default, process-termination disposition.
4. Next it re-sends the process the signal that was caught.
5. Finally it unblocks delivery of this signal, which results in the process being terminated.

If the default disposition of the signal is to suspend the process, the same steps are executed as
for process termination signals, except that when the process is later resumed,
gl_handle_signal() continues, and does the following steps.

1. It re-blocks delivery of the signal.
2. It reinstates the signal handler of the signal to the one that was displaced when its default

disposition was substituted.
3. For any of the GetLine objects that were in raw mode when gl_handle_signal() was

called, gl_handle_signal() then calls gl_raw_io(), to resume entry of the input lines on
those terminals.

4. Finally, it restores the signal process mask to how it was when gl_handle_signal() was
called.

Note that the process is suspended or terminated using the original signal that was caught,
rather than using the uncatchable SIGSTOP and SIGKILL signals. This is important, because
when a process is suspended or terminated, the parent of the process may wish to use the
status value returned by the wait system call to figure out which signal was responsible. In
particular, most shells use this information to print a corresponding message to the terminal.
Users would be rightly confused if when their process received a SIGPIPE signal, the program
responded by sending itself a SIGKILL signal, and the shell then printed out the provocative
statement, "Killed!".

If a signal is caught and handled when the application's event loop is waiting in select() or
poll(), these functions will be aborted with errno set to EINTR. When this happens the event
loop should call gl_pending_io() before calling select() or poll() again. It should then
arrange for select() or poll() to wait for the type of I/O that gl_pending_io() reports. This
is necessary because any signal handler that calls gl_handle_signal() will frequently change
the type of I/O that gl_get_line() is waiting for.

If a signal arrives between the statements that configure the arguments of select() or poll()
and the calls to these functions, the signal will not be seen by these functions, which will then
not be aborted. If these functions are waiting for keyboard input from the user when the signal

Process termination
signals

Process suspension
signals

Interrupting The Event
Loop

gl_io_mode(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Jun 2004102



is received, and the signal handler arranges to redraw the input line to accommodate a
terminal resize or the resumption of the process. This redisplay will be delayed until the user
presses the next key. Apart from puzzling the user, this clearly is not a serious problem.
However there is a way, albeit complicated, to completely avoid this race condition. The
following steps illustrate this.

1. Block all of the signals that gl_get_line() catches, by passing the signal set returned by
gl_list_signals() to sigprocmask(2).

2. Call gl_pending_io() and set up the arguments of select() or poll() accordingly.
3. Call sigsetjmp(3C) with a non-zero savemask argument.
4. Initially this sigsetjmp() statement will return zero, indicating that control is not

resuming there after a matching call to siglongjmp(3C).
5. Replace all of the handlers of the signals that gl_get_line() is configured to catch, with a

signal handler that first records the number of the signal that was caught, in a file-scope
variable, then calls siglongjmp() with a non-zero val argument, to return execution to the
above sigsetjmp() statement. Registering these signal handlers can conveniently be done
using the gl_tty_signals() function.

6. Set the file-scope variable that the above signal handler uses to record any signal that is
caught to -1, so that we can check whether a signal was caught by seeing if it contains a
valid signal number.

7. Now unblock the signals that were blocked in step 1. Any signal that was received by the
process in between step 1 and now will now be delivered, and trigger our signal handler, as
will any signal that is received until we block these signals again.

8. Now call select() or poll().
9. When select returns, again block the signals that were unblocked in step 7.

If a signal is arrived any time during the above steps, our signal handler will be triggered
and cause control to return to the sigsetjmp() statement, where this time, sigsetjmp()
will return non-zero, indicating that a signal was caught. When this happens we simply
skip the above block of statements, and continue with the following statements, which are
executed regardless of whether or not a signal is caught. Note that when sigsetjmp()

returns, regardless of why it returned, the process signal mask is returned to how it was
when sigsetjmp() was called. Thus the following statements are always executed with all
of our signals blocked.

10. Reinstate the signal handlers that were displaced in step 5.
11. Check wether a signal was caught, by checking the file-scope variable that the signal

handler records signal numbers in.
12. If a signal was caught, send this signal to the application again and unblock only this signal

so that it invokes the signal handler which was just reinstated in step 10.
13. Unblock all of the signals that were blocked in step 7.

gl_io_mode(3TECLA)

Extended Library Functions, Volume 4 103

http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=sigprocmask-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=sigsetjmp-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=siglongjmp-3c


Since the application is expected to handle signals in non-blocking server mode,
gl_get_line() does not attempt to duplicate this when it is being called. If one of the signals
that it is configured to catch is sent to the application while gl_get_line() is being called,
gl_get_line() reinstates the caller's signal handlers, then immediately before returning,
re-sends the signal to the process to let the application's signal handler handle it. If the process
is not terminated by this signal, gl_get_line() returns NULL, and a following call to
gl_return_status() returns the enumerated value GLR_SIGNAL.

Often, rather than letting it terminate the process, applications respond to the SIGINT
user-interrupt signal by aborting the current input line. This can be accomplished in
non-blocking server-I/O mode by not calling gl_handle_signal() when this signal is caught,
but by calling instead the gl_abandon_line() function. This function arranges that when
gl_get_line() is next called, it first flushes any pending output to the terminal, discardes the
current input line, outputs a new prompt on the next line, and finally starts accepting input of
a new input line from the user.

Provided that certain rules are followed, the gl_normal_io(), gl_raw_io(),
gl_handle_signal(), and gl_abandon_line() functions can be written to be safely callable
from signal handlers. Other functions in this library should not be called from signal handlers.
For this to be true, all signal handlers that call these functions must be registered in such a way
that only one instance of any one of them can be running at one time. The way to do this is to
use the POSIX sigaction() function to register all signal handlers, and when doing this, use
the sa_mask member of the corresponding sigaction structure to indicate that all of the
signals whose handlers invoke the above functions should be blocked when the current signal
is being handled. This prevents two signal handlers from operating on a GetLine object at the
same time.

To prevent signal handlers from accessing a GetLine object while gl_get_line() or any of its
associated public functions are operating on it, all public functions associated with
gl_get_line(), including gl_get_line() itself, temporarily block the delivery of signals
when they are accessing GetLine objects. Beware that the only signals that they block are the
signals that gl_get_line() is currently configured to catch, so be sure that if you call any of
the above functions from signal handlers, that the signals that these handlers are assigned to
are configured to be caught by gl_get_line(). See gl_trap_signal(3TECLA).

If instead of using select() or poll() to wait for I/O your application needs only to get out of
gl_get_line() periodically to briefly do something else before returning to accept input from
the user, use the gl_inactivity_timeout(3TECLA) function in non-blocking server mode to
specify that a callback function that returns GLTO_CONTINUE should be called whenever
gl_get_line() has been waiting for I/O for more than a specified amount of time. When this
callback is triggered, gl_get_line() will return NULL and a following call to
gl_return_status() will return GLR_BLOCKED.

The gl_get_line() function will not return until the user has not typed a key for the specified
interval, so if the interval is long and the user keeps typing, gl_get_line() might not return

Signals Caught By
gl_get_line()

Aborting Line Input

Signal Safe Functions

Using Timeouts To Poll

gl_io_mode(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Jun 2004104



for a while. There is no guarantee that it will return in the time specified.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

cpl_complete_word(3TECLA), ef_expand_file(3TECLA), gl_get_line(3TECLA),
libtecla(3LIB), pca_lookup_file(3TECLA), attributes(5), tecla(5)

Attributes

See Also

gl_io_mode(3TECLA)

Extended Library Functions, Volume 4 105

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtecla-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=tecla-5


hextob, htobsl, htobclear – convert hexadecimal string to binary label

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

int htobsl(const char *s, m_label_t *label);

int htobclear(const char *s, m_label_t *clearance);

These functions convert hexadecimal string representations of internal label values into
binary labels.

The htobsl() function converts into a binary sensitivity label, a hexadecimal string of the
form:

0xsensitivity_label_hexadecimal_value

The htobclear() function converts into a binary clearance, a hexadecimal string of the form:

0xclearance_hexadecimal_value

These functions return non-zero if the conversion was successful, otherwise zero is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

MT-Level MT-Safe

These functions are obsolete and retained for ease of porting. They might be removed in a
future Solaris Trusted Extensions release. Use the str_to_label(3TSOL) function instead.

libtsol(3LIB), str_to_label(3TSOL), attributes(5), labels(5)

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Name

Synopsis

Description

Return Values

Attributes

See Also

Notes

hextob(3TSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 2007106

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=labels-5


kva_match – look up a key in a key-value array

cc [ flag... ] file...– lsecdb [ library... ]

#include <secdb.h>

char *kva_match(kva_t *kva, char *key);

The kva_match() function searches a kva_t structure, which is part of the authattr_t,
execattr_t, profattr_t, or userattr_t structures. The function takes two arguments: a
pointer to a key value array, and a key. If the key is in the array, the function returns a pointer
to the first corresponding value that matches that key. Otherwise, the function returns NULL.

Upon successful completion, the function returns a pointer to the value sought. Otherwise, it
returns NULL.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getauthattr(3SECDB), getexecattr(3SECDB), getprofattr(3SECDB),
getuserattr(3SECDB)

The kva_match() function returns a pointer to data that already exists in the key-value array.
It does not allocate its own memory for this pointer but obtains it from the key-value array
that is passed as its first argument.

Name

Synopsis

Description

Return Values

Attributes

See Also

Notes

kva_match(3SECDB)

Extended Library Functions, Volume 4 107

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


labelclipping, Xbsltos, Xbcleartos – translate a binary label and clip to the specified width

cc [flag...] file... -ltsol -lDtTsol [library...]

#include <Dt/label_clipping.h>

XmString Xbsltos(Display *display, const m_label_t *senslabel,
Dimension width, const XmFontList fontlist, const int flags);

XmString Xbcleartos(Display *display, const m_label_t *clearance,
Dimension width, const XmFontList fontlist, const int flags);

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective privileges to
translate labels or clearances that dominate the current process' sensitivity label.

display The structure controlling the connection to an X Window System display.

senslabel The sensitivity label to be translated.

clearance The clearance to be translated.

width The width of the translated label or clearance in pixels. If the specified width is
shorter than the full label, the label is clipped and the presence of clipped letters
is indicated by an arrow. In this example, letters have been clipped to the right of:
TS<-. See the sbltos(3TSOL) manual page for more information on the clipped
indicator. If the specified width is equal to the display width (display), the label is
not truncated, but word-wrapped using a width of half the display width.

fontlist A list of fonts and character sets where each font is associated with a character
set.

flags The value of flags indicates which words in the label_encodings(4) file are used
for the translation. See the bltos(3TSOL) manual page for a description of the
flag values: LONG_WORDS, SHORT_WORDS, LONG_CLASSIFICATION,
SHORT_CLASSIFICATION, ALL_ENTRIES, ACCESS_RELATED, VIEW_EXTERNAL,
VIEW_INTERNAL, NO_CLASSIFICATION. BRACKETED is an additional flag that can be
used with Xbsltos() only. It encloses the sensitivity label in square brackets as
follows: [C].

These functions return a compound string that represents the character-coded form of the
sensitivity label or clearance that is translated. The compound string uses the language and
fonts specified in fontlist and is clipped to width. These functions return NULL if the label or
clearance is not a valid, required type as defined in the label_encodings(4) file, or not
dominated by the process' sensitivity label and the PRIV_SYS_TRANS_LABEL privilege is not
asserted.

/usr/dt/include/Dt/label_clipping.h

Header file for label clipping functions

Name

Synopsis

Description

Return Values

Files

labelclipping(3TSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 2007108

http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=label-encodings-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=label-encodings-4


/etc/security/tsol/label_encodings

The label encodings file contains the classification names, words, constraints, and values
for the defined labels of this system.

EXAMPLE 1 Translate and Clip a Clearance.

This example translates a clearance to text using the long words specified in the
label_encodings(4) file, a font list, and clips the translated clearance to a width of 72 pixels.

xmstr = Xbcleartos(XtDisplay(topLevel),

&clearance, 72, fontlist, LONG_WORDS

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

MT-Level MT-Safe

The labelclipping functions, Xbsltos() and Xbcleartos(), are obsolete. Use the
label_to_str(3TSOL) function instead.

bltos(3TSOL), label_to_str(3TSOL), libtsol(3LIB), label_encodings(4),
attributes(5)

See XmStringDraw(3) and FontList(3) for information on the creation and structure of a font
list.

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Examples

Attributes

See Also

Notes

labelclipping(3TSOL)

Extended Library Functions, Volume 4 109

http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=label-encodings-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=label-encodings-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


label_to_str – convert labels to human readable strings

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

int label_to_str(const m_label_t *label, char **string,
const m_label_str_t conversion_type, uint_t flags);

label_to_str() is a simple function to convert various mandatory label types to human
readable strings.

label is the mandatory label to convert. string points to memory that is allocated by
label_to_str() that contains the converted string. The caller is responsible for calling
free(3C) to free allocated memory.

The calling process must have mandatory read access to the resulting human readable string.
Or the calling process must have the sys_trans_label privilege.

The conversion_type parameter controls the type of label conversion. Not all types of
conversion are valid for all types of label:

M_LABEL Converts label to a human readable string based on its type.

M_INTERNAL Converts label to an internal text representation that is safe for
storing in a public object. Internal conversions can later be parsed
to their same value.

M_COLOR Converts label to a string that represents the color name that the
administrator has associated with the label.

PRINTER_TOP_BOTTOM Converts label to a human readable string that is appropriate for
use as the top and bottom label of banner and trailer pages in the
Defense Intelligence Agency (DIA) encodings printed output
schema.

PRINTER_LABEL Converts label to a human readable string that is appropriate for
use as the banner page downgrade warning in the DIA encodings
printed output schema.

PRINTER_CAVEATS Converts label to a human readable string that is appropriate for
use as the banner page caveats section in the DIA encodings printed
output schema.

PRINTER_CHANNELS Converts label to a human readable string that is appropriate for
use as the banner page handling channels in the DIA encodings
printed output schema.

The flags parameter provides a hint to the label conversion:

DEF_NAMES The default names are preferred.

Name

Synopsis

Description

label_to_str(3TSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 2007110

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=free-3c


SHORT_NAMES Short names are preferred where defined.

LONG_NAMES Long names are preferred.

Upon successful completion, the label_to_str() function returns 0. Otherwise, -1 is
returned, errno is set to indicate the error and the string pointer is set to NULL.

The label_to_str() function will fail if:

EINVAL Invalid parameter.

ENOTSUP The system does not support label translations.

ENOMEM The physical limits of the system are exceeded by size bytes of memory which
cannot be allocated.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below.

MT-Level MT-Safe

Standard See below.

The label_to_str() function is Committed. The returned string is Not-an-Interface and is
dependent on the specific label_encodings file. The conversion type INTERNAL is
Uncommitted, but is always accepted as input to str_to_label(3TSOL).

Conversion types that are relative to the DIA encodings schema are Standard. Standard is
specified in label_encodings(4).

free(3C), libtsol(3LIB), str_to_label(3TSOL), label_encodings(4), attributes(5),
labels(5)

“Using the label_to_str Function” in Oracle Solaris Trusted Extensions Developer’s Guide

A number of these conversions rely on the DIA label encodings schema. They might not be
valid for other label schemata.

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Return Values

Errors

Attributes

See Also

Warnings

Notes

label_to_str(3TSOL)

Extended Library Functions, Volume 4 111

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=label-encodings-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=free-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=label-encodings-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=labels-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=labelprint-10


libtecla_version – query libtecla version number

cc [ flag... ] file... -ltecla [ library... ]

#include <libtecla.h>

void libtecla_version(int *major, int *minor, int *micro);

The libtecla_version() function queries for the version number of the library.

On return, this function records the three components of the libtecla version number in
*major, *minor, *micro. The formal meaning of the three components is as follows:

major Incrementing this number implies that a change has been made to the library's
public interface that makes it binary incompatible with programs that were linked
with previous shared versions of libtecla.

minor This number is incremented by one whenever additional functionality, such as new
functions or modules, are added to the library.

micro This number is incremented whenever modifications to the library are made that
make no changes to the public interface, but which fix bugs and/or improve the
behind-the-scenes implementation.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libtecla(3LIB), attributes(5)

Name

Synopsis

Description

Attributes

See Also

libtecla_version(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Jun 2004112

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtecla-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


libtnfctl – library for TNF probe control in a process or the kernel

cc [ flag ... ] file ... -ltnfctl [ library ... ]

#include <tnf/tnfctl.h>

The libtnfctl library provides an API to control TNF ("Trace Normal Form") probes within
a process or the kernel. See tracing(3TNF) for an overview of the Solaris tracing architecture.
The client of libtnfctl controls probes in one of four modes:

internal mode The target is the controlling process itself; that is, the client controls its own
probes.

direct mode The target is a separate process; a client can either exec(2) a program or
attach to a running process for probe control. The libtnfctl library uses
proc(4) on the target process for probe and process control in this mode,
and additionally provides basic process control features.

indirect mode The target is a separate process, but the controlling process is already using
proc(4) to control the target, and hence libtnfctl cannot use those
interfaces directly. Use this mode to control probes from within a
debugger. In this mode, the client must provide a set of functions that
libtnfctl can use to query and update the target process.

kernel mode The target is the Solaris kernel.

A process is controlled "externally" if it is being controlled in either direct mode or indirect
mode. Alternatively, a process is controlled "internally" when it uses internal mode to control
its own probes.

There can be only one client at a time doing probe control on a given process. Therefore, it is
not possible for a process to be controlled internally while it is being controlled externally. It is
also not possible to have a process controlled by multiple external processes. Similarly, there
can be only one process at a time doing kernel probe control. Note, however, that while a given
target may only be controlled by one libtnfctl client, a single client may control an arbitrary
number of targets. That is, it is possible for a process to simultaneously control its own probes,
probes in other processes, and probes in the kernel.

The following tables denotes the modes applicable to all libtnfctl interfaces (INT = internal
mode; D = direct mode; IND = indirect mode; K = kernel mode).

These interfaces create handles in the specified modes:

tnfctl_internal_open() INT

tnfctl_exec_open() D

tnfctl_pid_open() D

Name

Synopsis

Description

libtnfctl(3TNF)

Extended Library Functions, Volume 4 113

http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=exec-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=proc-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=proc-4


tnfctl_indirect_open() IND

tnfctl_kernel_open() K

These interfaces are used with the specified modes:

tnfctl_continue() D

tnfctl_probe_connect() INT D IND

tnfctl_probe_disconnect_all () INT D IND

tnfctl_trace_attrs_get() INT D IND K

tnfctl_buffer_alloc() INT D IND K

tnfctl_register_funcs() INT D IND K

tnfctl_probe_apply() INT D IND K

tnfctl_probe_apply_ids() INT D IND K

tnfctl_probe_state_get () INT D IND K

tnfctl_probe_enable() INT D IND K

tnfctl_probe_disable() INT D IND K

tnfctl_probe_trace() INT D IND K

tnfctl_probe_untrace() INT D IND K

tnfctl_check_libs() INT D IND K

tnfctl_close() INT D IND K

tnfctl_strerror() INT D IND K

tnfctl_buffer_dealloc() K

tnfctl_trace_state_set() K

tnfctl_filter_state_set() K

tnfctl_filter_list_get() K

tnfctl_filter_list_add() K

tnfctl_filter_list_delete() K

When using libtnfctl, the first task is to create a handle for controlling probes. The
tnfctl_internal_open() function creates an internal mode handle for controlling probes in
the same process, as described above. The tnfctl_pid_open() and tnfctl_exec_open()

functions create handles in direct mode. The tnfctl_indirect_open() function creates an

libtnfctl(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Mar 2004114



indirect mode handle, and the tnfctl_kernel_open() function creates a kernel mode handle.
A handle is required for use in nearly all other libtnfctl functions. The tnfctl_close()
function releases the resources associated with a handle.

The tnfctl_continue() function is used in direct mode to resume execution of the target
process.

The tnfctl_buffer_alloc() function allocates a trace file or, in kernel mode, a trace buffer.

The tnfctl_probe_apply() and tnfctl_probe_apply_ids() functions call a specified
function for each probe or for a designated set of probes.

The tnfctl_register_funcs() function registers functions to be called whenever new
probes are seen or probes have disappeared, providing an opportunity to do one-time
processing for each probe.

The tnfctl_check_libs() function is used primarily in indirect mode to check whether any
new probes have appeared, that is, they have been made available by dlopen(3C), or have
disappeared, that is, they have disassociated from the process by dlclose(3C).

The tnfctl_probe_enable() and tnfctl_probe_disable() functions control whether the
probe, when hit, will be ignored.

The tnfctl_probe_trace() and tnfctl_probe_untrace() functions control whether an
enabled probe, when hit, will cause an entry to be made in the trace file.

The tnfctl_probe_connect() and tnfctl_probe_disconnect_all() functions control
which functions, if any, are called when an enabled probe is hit.

The tnfctl_probe_state_get() function returns information about the status of a probe,
such as whether it is currently enabled.

The tnfctl_trace_attrs_get() function returns information about the tracing session,
such as the size of the trace buffer or trace file.

The tnfctl_strerror() function maps a tnfctl error code to a string, for reporting
purposes.

The remaining functions apply only to kernel mode.

The tnfctl_trace_state_set() function controls the master switch for kernel tracing. See
prex(1) for more details.

The tnfctl_filter_state_set(), tnfctl_filter_list_get(),
tnfctl_filter_list_add(), and tnfctl_filter_list_delete() functions allow a set of
processes to be specified for which probes will not be ignored when hit. This prevents kernel
activity caused by uninteresting processes from cluttering up the kernel's trace buffer.

The tnfctl_buffer_dealloc() function deallocates the kernel's internal trace buffer.

libtnfctl(3TNF)

Extended Library Functions, Volume 4 115

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlclose-3c


Upon successful completion, these functions returnTNFCTL_ERR_NONE.

The error codes for libtnfctl are:

TNFCTL_ERR_ACCES Permission denied.

TNFCTL_ERR_NOTARGET The target process completed.

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_INTERNAL An internal error occurred.

TNFCTL_ERR_SIZETOOSMALL The requested trace size is too small.

TNFCTL_ERR_SIZETOOBIG The requested trace size is too big.

TNFCTL_ERR_BADARG Bad input argument.

TNFCTL_ERR_NOTDYNAMIC The target is not a dynamic executable.

TNFCTL_ERR_NOLIBTNFPROBE libtnfprobe.so not linked in target.

TNFCTL_ERR_BUFBROKEN Tracing is broken in the target.

TNFCTL_ERR_BUFEXISTS A buffer already exists.

TNFCTL_ERR_NOBUF No buffer exists.

TNFCTL_ERR_BADDEALLOC Cannot deallocate buffer.

TNFCTL_ERR_NOPROCESS No such target process exists.

TNFCTL_ERR_FILENOTFOUND File not found.

TNFCTL_ERR_BUSY Cannot attach to process or kernel because it is already
tracing.

TNFCTL_ERR_INVALIDPROBE Probe no longer valid.

TNFCTL_ERR_USR1 Error code reserved for user.

TNFCTL_ERR_USR2 Error code reserved for user.

TNFCTL_ERR_USR3 Error code reserved for user.

TNFCTL_ERR_USR4 Error code reserved for user.

TNFCTL_ERR_USR5 Error code reserved for user.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/tnf

Return Values

Errors

Attributes

libtnfctl(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Mar 2004116

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level MT-Safe with exceptions

prex(1), exec(2), dlclose(3C), dlopen(3C), TNF_PROBE(3TNF),
tnfctl_buffer_alloc(3TNF), tnfctl_buffer_dealloc(3TNF),
tnfctl_check_libs(3TNF), tnfctl_close(3TNF), tnfctl_continue(3TNF),
tnfctl_internal_open(3TNF), tnfctl_exec_open(3TNF),
tnfctl_filter_list_add(3TNF), tnfctl_filter_list_delete(3TNF),
tnfctl_filter_list_get(3TNF), tnfctl_filter_state_set(3TNF),
tnfctl_kernel_open(3TNF), tnfctl_pid_open(3TNF), tnfctl_probe_apply(3TNF),
tnfctl_probe_apply_ids(3TNF), tnfctl_probe_connect(3TNF),
tnfctl_probe_disable(3TNF), tnfctl_probe_enable(3TNF),
tnfctl_probe_state_get(3TNF), tnfctl_probe_trace(3TNF),
tnfctl_probe_untrace(3TNF), tnfctl_indirect_open(3TNF),
tnfctl_register_funcs(3TNF), tnfctl_strerror(3TNF),
tnfctl_trace_attrs_get(3TNF), tnfctl_trace_state_set(3TNF), libtnfctl(3LIB),
proc(4), attributes(5)

Linker and Libraries Guide

This API is MT-Safe. Multiple threads may concurrently operate on independent tnfctl
handles, which is the typical behavior expected. The libtnfctl library does not support
multiple threads operating on the same tnfctl handle. If this is desired, it is the client's
responsibility to implement locking to ensure that two threads that use the same tnfctl
handle are not simultaneously in a libtnfctl interface.

See Also

Notes

libtnfctl(3TNF)

Extended Library Functions, Volume 4 117

http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=exec-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlclose-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=proc-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=819-0690&id=llm


media_findname – convert a supplied name into an absolute pathname that can be used to
access removable media

cc [ flag ... ] file ... -lvolmgt [ library ... ]

#include <volmgt.h>

char *media_findname(char *start);

This function is obsolete. The management of removable media by the Volume Management
feature, including vold, has been replaced by software that supports the Hardware
Abstraction Layer (HAL). Programmatic support for HAL is through the HAL APIs, which are
documented on the HAL web site. See hal(5). The return value of this function is undefined.

media_findname() converts the supplied start string into an absolute pathname that can then
be used to access a particular piece of media.

The start parameter can be one of the following types of specifications:

/dev/ . . . An absolute pathname in /dev, such as /dev/rdiskette0, in which case
a copy of that string is returned (see NOTES on this page).

volume_name The volume name for a particular volume, such as fred (see
fdformat(1) for a description of how to label floppies).

volmgt_symname The symbolic name for a device, such as floppy0 or cdrom2.

media_type The generic media type name. For example, floppy or cdrom. In this
case media_findname() looks for the first piece of media that matches
that media type, starting at 0 (zero) and continuing on until a match is
found (or some fairly large maximum number is reached). In this case,
if a match is found, a copy of the pathname to the volume found is
returned.

The return from this function is undefined.

For cases where the supplied start parameter is an absolute pathname, media_findname() can
fail, returning a null string pointer, if an lstat(2) of that supplied pathname fails. Also, if the
supplied absolute pathname is a symbolic link, media_findname() can fail if a readlink(2) of
that symbolic link fails, or if a stat(2) of the pathname pointed to by that symbolic link fails,
or if any of the following is true:

ENXIO The specified absolute pathname was not a character special device, and it was not a
directory with a character special device in it.

EXAMPLE 1 Sample programs of the media_findname() function.

The following example attempts to find what the pathname is to a piece of media called fred.
Notice that a volmgt_check() is done first (see the NOTES section on this page).

Name

Synopsis

Description

Return Values

Errors

Examples

media_findname(3VOLMGT)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 2 Mar 2007118

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=fdformat-1
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=lstat-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=readlink-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=stat-2


EXAMPLE 1 Sample programs of the media_findname() function. (Continued)

(void) volmgt_check(NULL);

if ((nm = media_findname("fred")) != NULL) {

(void) printf("media named \"fred\" is at \"%s\"\n", nm);

} else {

(void) printf("media named \"fred\" not found\n");
}

This example looks for whatever volume is in the first floppy drive, letting media_findname()
call volmgt_check() if and only if no floppy is currently known to be the first floppy drive.

if ((nm = media_findname("floppy0")) != NULL) {

(void) printf("path to floppy0 is \"%s\"\n", nm);

} else {

(void) printf("nothing in floppy0\n");
}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Unsafe

Interface Stability Obsolete

fdformat(1), lstat(2), readlink(2), stat(2), free(3C), malloc(3C),
volmgt_check(3VOLMGT), volmgt_inuse(3VOLMGT), volmgt_root(3VOLMGT),
volmgt_running(3VOLMGT), volmgt_symname(3VOLMGT), attributes(5), hal(5)

If media_findname() cannot find a match for the supplied name, it performs a
volmgt_check(3VOLMGT) and tries again, so it can be more efficient to perform
volmgt_check() before calling media_findname().

Upon success media_findname() returns a pointer to string which has been allocated; this
should be freed when no longer in use (see free(3C)).

Attributes

See Also

Notes

media_findname(3VOLMGT)

Extended Library Functions, Volume 4 119

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=fdformat-1
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=lstat-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=readlink-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=stat-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=free-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=free-3c


media_getattr, media_setattr – get and set media attributes

cc [ flag ... ] file ... -lvolmgt [ library ... ]

#include <volmgt.h>

char *media_getattr(char *vol_path, char *attr);

int media_setattr(char *vol_path, char *attr, char *value);

This function is obsolete. The management of removable media by the Volume Management
feature, including vold, has been replaced by software that supports the Hardware
Abstraction Layer (HAL). Programmatic support for HAL is through the HAL APIs, which are
documented on the HAL web site. See hal(5). The return value of this function is undefined.

media_setattr() and media_getattr() respectively set and get attribute-value pairs (called
properties) on a per-volume basis.

Volume management supports system properties and user properties. System properties are
ones that volume management predefines. Some of these system properties are writable, but
only by the user that owns the volume being specified, and some system properties are read
only:

Attribute Writable Value Description

s-access RO "seq", "rand" sequential or random access

s-density RO "low", "medium",
"high"

media density

s-parts RO comma separated list
of slice numbers

list of partitions on this volume

s-location RO pathname volume management pathname to media

s-mejectable RO "true", "false" whether or not media is manually ejectable

s-rmoneject R/W "true", "false" should media access points be removed from
database upon ejection

s-enxio R/W "true", "false" if set return ENXIO when media access attempted

Properties can also be defined by the user. In this case the value can be any string the user
wishes.

The return from this function is undefined.

Name

Synopsis

Description

Return Values

media_getattr(3VOLMGT)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 8 Mar 2007120

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5


Both media_getattr() and media_setattr() can fail returning a null pointer if an open(2) of
the specified vol_path fails, if an fstat(2) of that pathname fails, or if that pathname is not a
block or character special device.

media_getattr() can also fail if the specified attribute was not found, and media_setattr()

can also fail if the caller doesn't have permission to set the attribute, either because it's is a
system attribute, or because the caller doesn't own the specified volume.

EXAMPLE 1 Usingmedia_getattr()

The following example checks to see if the volume called fred that volume management is
managing can be ejected by means of software, or if it can only be manually ejected:

if (media_getattr("/rdsk/fred", "s-mejectable") != NULL) {

(void) printf("\"fred\" must be manually ejected\n");
} else {

(void) printf("software can eject \"fred\"\n");
}

This example shows setting the s-enxio property for the floppy volume currently in the first
floppy drive:

int res;

if ((res = media_setattr("/dev/aliases/floppy0", "s-enxio",
"true")) == 0) {

(void) printf("can’t set s-enxio flag for floppy0\n");
}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Obsolete

lstat(2), open(2), readlink(2), stat(2), free(3C), malloc(3C),
media_findname(3VOLMGT), volmgt_check(3VOLMGT), volmgt_inuse(3VOLMGT),
volmgt_root(3VOLMGT), volmgt_running(3VOLMGT), volmgt_symname(3VOLMGT),
attributes(5), hal(5)

Errors

Examples

Attributes

See Also

media_getattr(3VOLMGT)

Extended Library Functions, Volume 4 121

http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=open-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=fstat-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=lstat-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=open-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=readlink-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=stat-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=free-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5


media_getid – return the id of a piece of media

cc [flag ...] file ...−lvolgmt [library ...]

#include <volmgt.h>

ulonglong_t media_getid(char *vol_path);

This function is obsolete. The management of removable media by the Volume Management
feature, including vold, has been replaced by software that supports the Hardware
Abstraction Layer (HAL). Programmatic support for HAL is through the HAL APIs, which are
documented on the HAL web site. See hal(5). The return value of this function is undefined.

media_getid() returns the id of a piece of media. Volume management must be running. See
volmgt_running(3VOLMGT).

vol_path Path to the block or character special device.

The return from this function is undefined.

EXAMPLE 1 Usingmedia_getid()

The following example first checks if volume management is running, then checks the volume
management name space for path, and then returns the id for the piece of media.

char *path;

...

if (volmgt_running()) {

if (volmgt_ownspath(path)) {

(void) printf("id of %s is %lld\n",
path, media_getid(path));

}

}

If a program using media_getid() does not check whether or not volume management is
running, then any NULL return value will be ambiguous, as it could mean that either volume
management does not have path in its name space, or volume management is not running.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

Interface Stability Obsolete

Name

Synopsis

Description

Parameters

Return Values

Examples

Attributes

media_getid(3VOLMGT)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 8 Mar 2007122

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


volmgt_ownspath(3VOLMGT),volmgt_running(3VOLMGT),attributes(5), hal(5)See Also

media_getid(3VOLMGT)

Extended Library Functions, Volume 4 123

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5


m_label, m_label_alloc, m_label_dup, m_label_free – m_label functions

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

m_label_t *m_label_alloc(const m_label_type_t label_type);

int m_label_dup(m_label_t **dst, const m_label_t *src);

void m_label_free(m_label_t *label);

The m_label_alloc() function allocates resources for a new label. The label_type argument
defines the type for a newly allocated label. The label type can be:

MAC_LABEL A Mandatory Access Control (MAC) label.

USER_CLEAR A user clearance.

The m_label_dup() function allocates resources for a new dst label. The function returns a
pointer to the allocated label, which is an exact copy of the src label. The caller is responsible
for freeing the allocated resources by calling m_label_free().

The m_label_free() function frees resources that are associated with the previously allocated
label.

Upon successful completion, the m_label_alloc() function returns a pointer to the newly
allocated label. Otherwise, m_label_alloc() returns NULL and errno is set to indicate the
error.

Upon successful completion, the m_label_dup() function returns 0. Otherwise, -1 is returned
and errno is set to indicate the error.

The m_label_alloc() function will fail if:

EINVAL Invalid parameter.

ENOMEM The physical limits of the system are exceeded by size bytes of memory which
cannot be allocated.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

label_to_str(3TSOL), libtsol(3LIB), str_to_label(3TSOL), label_encodings(4),
attributes(5), labels(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

m_label(3TSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 2007124

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=label-encodings-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=labels-5


“Determining Whether the Printing Service Is Running in a Labeled Environment” in Oracle
Solaris Trusted Extensions Developer’s Guide

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Notes

m_label(3TSOL)

Extended Library Functions, Volume 4 125

http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=labelprint-7
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=labelprint-7


pca_lookup_file, del_PathCache, del_PcaPathConf, new_PathCache, new_PcaPathConf,
pca_last_error, pca_path_completions, pca_scan_path, pca_set_check_fn, ppc_file_start,
ppc_literal_escapes – lookup a file in a list of directories

cc [ flag... ] file... -ltecla [ library... ]

#include <libtecla.h>

char *pca_lookup_file(PathCache *pc, const char *name,
int name_len, int literal);

PathCache *del_PathCache(PathCache *pc);

PcaPathConf *del_PcaPathConf(PcaPathConf *ppc);

PathCache *new_PathCache(void);

PcaPathConf *new_PcaPathConf(PathCache *pc);

const char *pca_last_error(PathCache *pc);

CPL_MATCH_FN(pca_path_completions);

int pca_scan_path(PathCache *pc, const char *path);

void pca_set_check_fn(PathCache *pc, CplCheckFn *check_fn,
void *data);

void ppc_file_start(PcaPathConf *ppc, int start_index);

void ppc_literal_escapes(PcaPathConf *ppc, int literal);

The PathCache object is part of the libtecla(3LIB) library. PathCache objects allow an
application to search for files in any colon separated list of directories, such as the UNIX
execution PATH environment variable. Files in absolute directories are cached in a PathCache
object, whereas relative directories are scanned as needed. Using a PathCache object, you can
look up the full pathname of a simple filename, or you can obtain a list of the possible
completions of a given filename prefix. By default all files in the list of directories are targets
for lookup and completion, but a versatile mechanism is provided for only selecting specific
types of files. The obvious application of this facility is to provide Tab-completion and lookup
of executable commands in the UNIX PATH, so an optional callback which rejects all but
executable files, is provided.

Under UNIX, the following example program looks up and displays the full pathnames of
each of the command names on the command line.

#include <stdio.h>

#include <stdlib.h>

#include <libtecla.h>

int main(int argc, char *argv[])

{

int i;

/*

Name

Synopsis

Description

An Example

pca_lookup_file(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 13 Aug 2007126

http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtecla-3lib


* Create a cache for executable files.

*/

PathCache *pc = new_PathCache();

if(!pc)

exit(1);

/*

* Scan the user’s PATH for executables.

*/

if(pca_scan_path(pc, getenv("PATH"))) {

fprintf(stderr, "%s\n", pca_last_error(pc));

exit(1);

}

/*

* Arrange to only report executable files.

*/

pca_set_check_fn(pc, cpl_check_exe, NULL);

/*

* Lookup and display the full pathname of each of the

* commands listed on the command line.

*/

for(i=1; i<argc; i++) {

char *cmd = pca_lookup_file(pc, argv[i], -1, 0);

printf("The full pathname of ’%s’ is %s\\n", argv[i],

cmd ? cmd : "unknown");
}

pc = del_PathCache(pc); /* Clean up */

return 0;

}

The following is an example of what this does on a laptop under LINUX:

$ ./example less more blob

The full pathname of ’less’ is /usr/bin/less

The full pathname of ’more’ is /bin/more

The full pathname of ’blob’ is unknown

$

To use the facilities of this module, you must first allocate a PathCache object by calling the
new_PathCache() constructor function. This function creates the resources needed to cache
and lookup files in a list of directories. It returns NULL on error.

Once you have created a cache, it needs to be populated with files. To do this, call the
pca_scan_path() function. Whenever this function is called, it discards the current contents
of the cache, then scans the list of directories specified in its path argument for files. The path
argument must be a string containing a colon-separated list of directories, such as
“/usr/bin:/home/mcs/bin:”. This can include directories specified by absolute pathnames
such as “/usr/bin”, as well as sub-directories specified by relative pathnames such as “.” or
“bin”. Files in the absolute directories are immediately cached in the specified PathCache

Function Descriptions

Populating The Cache

pca_lookup_file(3TECLA)

Extended Library Functions, Volume 4 127



object, whereas subdirectories, whose identities obviously change whenever the current
working directory is changed, are marked to be scanned on the fly whenever a file is looked up.

On success this function return 0. On error it returns 1, and a description of the error can be
obtained by calling pca_last_error(pc).

Once the cache has been populated with files, you can look up the full pathname of a file,
simply by specifying its filename to pca_lookup_file().

To make it possible to pass this function a filename which is actually part of a longer string, the
name_len argument can be used to specify the length of the filename at the start of the name[]
argument. If you pass -1 for this length, the length of the string will be determined with strlen.
If the name[] string might contain backslashes that escape the special meanings of spaces and
tabs within the filename, give the literal argument the value 0. Otherwise, if backslashes should
be treated as normal characters, pass 1 for the value of the literal argument.

Looking up the potential completions of a filename-prefix in the filename cache is achieved by
passing the provided pca_path_completions() callback function to the
cpl_complete_word(3TECLA) function.

This callback requires that its data argument be a pointer to a PcaPathConf object.
Configuration objects of this type are allocated by calling new_PcaPathConf().

This function returns an object initialized with default configuration parameters, which
determine how the cpl_path_completions() callback function behaves. The functions which
allow you to individually change these parameters are discussed below.

By default, the pca_path_completions() callback function searches backwards for the start of
the filename being completed, looking for the first un-escaped space or the start of the input
line. If you wish to specify a different location, call ppc_file_start() with the index at which
the filename starts in the input line. Passing start_index=-1 re-enables the default behavior.

By default, when pca_path_completions() looks at a filename in the input line, each lone
backslash in the input line is interpreted as being a special character which removes any
special significance of the character which follows it, such as a space which should be taken as
part of the filename rather than delimiting the start of the filename. These backslashes are thus
ignored while looking for completions, and subsequently added before spaces, tabs and literal
backslashes in the list of completions. To have unescaped backslashes treated as normal
characters, call ppc_literal_escapes() with a non-zero value in its literal argument.

When you have finished with a PcaPathConf variable, you can pass it to the
del_PcaPathConf() destructor function to reclaim its memory.

If you are only interested in certain types or files, such as, for example, executable files, or files
whose names end in a particular suffix, you can arrange for the file completion and lookup
functions to be selective in the filenames that they return. This is done by registering a callback
function with your PathCache object. Thereafter, whenever a filename is found which either

Looking Up Files

Filename Completion

Being Selective

pca_lookup_file(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 13 Aug 2007128



matches a filename being looked up or matches a prefix which is being completed, your
callback function will be called with the full pathname of the file, plus any application-specific
data that you provide. If the callback returns 1 the filename will be reported as a match. If it
returns 0, it will be ignored. Suitable callback functions and their prototypes should be
declared with the following macro. The CplCheckFn typedef is also provided in case you wish
to declare pointers to such functions

#define CPL_CHECK_FN(fn) int (fn)(void *data, const char *pathname)

typedef CPL_CHECK_FN(CplCheckFn);

Registering one of these functions involves calling the pca_set_check_fn() function. In
addition to the callback function passed with the check_fn argument, you can pass a pointer to
anything with the data argument. This pointer will be passed on to your callback function by
its own data argument whenever it is called, providing a way to pass application-specific data
to your callback. Note that these callbacks are passed the full pathname of each matching file,
so the decision about whether a file is of interest can be based on any property of the file, not
just its filename. As an example, the provided cpl_check_exe() callback function looks at the
executable permissions of the file and the permissions of its parent directories, and only
returns 1 if the user has execute permission to the file. This callback function can thus be used
to lookup or complete command names found in the directories listed in the user's PATH
environment variable. The example program above provides a demonstration of this.

Beware that if somebody tries to complete an empty string, your callback will get called once
for every file in the cache, which could number in the thousands. If your callback does
anything time consuming, this could result in an unacceptable delay for the user, so callbacks
should be kept short.

To improve performance, whenever one of these callbacks is called, the choice that it makes is
cached, and the next time the corresponding file is looked up, instead of calling the callback
again, the cached record of whether it was accepted or rejected is used. Thus if somebody tries
to complete an empty string, and hits tab a second time when nothing appears to happen,
there will only be one long delay, since the second pass will operate entirely from the cached
dispositions of the files. These cached dipositions are discarded whenever pca_scan_path() is
called, and whenever pca_set_check_fn() is called with changed callback function or data
arguments.

If pca_scan_path() reports that an error occurred by returning 1, you can obtain a terse
description of the error by calling pca_last_error(pc). This returns an internal string
containing an error message.

Once you have finished using a PathCache object, you can reclaim its resources by passing it to
the del_PathCache() destructor function. This takes a pointer to one of these objects, and
always returns NULL.

Error Handling

Cleaning Up

pca_lookup_file(3TECLA)

Extended Library Functions, Volume 4 129



It is safe to use the facilities of this module in multiple threads, provided that each thread uses
a separately allocated PathCache object. In other words, if two threads want to do path
searching, they should each call new_PathCache() to allocate their own caches.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

cpl_complete_word(3TECLA), ef_expand_file(3TECLA), gl_get_line(3TECLA),
libtecla(3LIB), attributes(5)

Thread Safety

Attributes

See Also

pca_lookup_file(3TECLA)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 13 Aug 2007130

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtecla-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


sbltos, sbsltos, sbcleartos – translate binary labels to canonical character-coded labels

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

char *sbsltos(const m_label_t *label, const int len);

char *sbcleartos(const m_label_t *clearance, const int len);

These functions translate binary labels into canonical strings that are clipped to the number of
printable characters specified in len. Clipping is required if the number of characters of the
translated string is greater than len. Clipping is done by truncating the label on the right to two
characters less than the specified number of characters. A clipped indicator, “<−”, is appended
to sensitivity labels and clearances. The character-coded label begins with a classification
name separated with a single space character from the list of words making up the remainder
of the label. The binary labels must be of the proper defined type and dominated by the
process's sensitivity label. A len of 0 (zero) returns the entire string with no clipping.

The sbsltos() function translates a binary sensitivity label into a clipped string using the long
form of the words and the short form of the classification name. If len is less than the
minimum number of characters (three), the translation fails.

The sbcleartos() function translates a binary clearance into a clipped string using the long
form of the words and the short form of the classification name. If len is less than the
minimum number of characters (three), the translation fails. The translation of a clearance
might not be the same as the translation of a sensitivity label. These functions use different
tables of the label_encodings file which might contain different words and constraints.

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective privileges to
perform label translation on labels that dominate the current process's sensitivity label.

If the VIEW_EXTERNAL or VIEW_INTERNAL flags are not specified, translation of ADMIN_LOW and
ADMIN_HIGH labels is controlled by the label view process attribute flags. If no label view
process attribute flags are defined, their translation is controlled by the label view configured
in the label_encodings file. A value of External specifies that ADMIN_LOW and ADMIN_HIGH

labels are mapped to the lowest and highest labels defined in the label_encodings file. A
value of Internal specifies that the ADMIN_LOW and ADMIN_HIGH labels are translated to the
admin low name and admin high name strings specified in the label_encodings file. If no
such names are specified, the strings “ADMIN_LOW” and “ADMIN_HIGH” are used.

These functions return a pointer to a statically allocated string that contains the result of the
translation, or (char *)0 if the translation fails for any reason.

Name

Synopsis

Description

Process Attributes

Return Values

Examples

sbltos(3TSOL)

Extended Library Functions, Volume 4 131



Assume that a sensitivity label is:

UN TOP/MIDDLE/LOWER DRAWER

When clipped to ten characters it is:

UN TOP/M<−

Assume that a clearance is:

UN TOP/MIDDLE/LOWER DRAWER

When clipped to ten characters it is:

UN TOP/M<−

/etc/security/tsol/label_encodings

The label encodings file contains the classification names, words, constraints, and values
for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

MT-Level Unsafe

These functions are obsolete and retained for ease of porting. They might be removed in a
future Solaris Trusted Extensions release. Use the label_to_str(3TSOL) function instead.

label_to_str(3TSOL), libtsol(3LIB), attributes(5), labels(5)

All these functions share the same statically allocated string storage. They are not MT-Safe.
Subsequent calls to any of these functions will overwrite that string with the newly translated
string.

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

sbsltos()

sbcleartos()

Files

Attributes

See Also

Warnings

Notes

sbltos(3TSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 2007132

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=labels-5


scf_entry_create, scf_entry_handle, scf_entry_destroy, scf_entry_destroy_children,
scf_entry_reset, scf_entry_add_value – create and manipulate transaction in the Service
Configuration Facility

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

scf_transaction_entry_t *scf_entry_create(scf_handle_t *handle);

scf_handle_t *scf_entry_handle(scf_transaction_entry_t *entry);

void scf_entry_destroy(scf_transaction_entry_t *entry);

void scf_entry_destroy_children(scf_transaction_entry_t *entry);

void scf_entry_reset(scf_transaction_entry_t *entry);

int scf_entry_add_value(scf_transaction_entry_t *entry,
scf_value_t *value);

The scf_entry_create() function allocates a new transaction entry handle. The
scf_entry_destroy() function destroys the transaction entry handle.

The scf_entry_handle() function retrieves the handle associated with entry.

A transaction entry represents a single action on a property in a property group. If an entry is
added to a transaction using scf_transaction_property_new(3SCF),
scf_transaction_property_change(3SCF), or
scf_transaction_property_change_type(3SCF), scf_entry_add_value() can be called
zero or more times to set up the set of values for that property. Each value must be set and of a
compatible type to the type associated with the entry. When later retrieved from the property,
the values will have the type of the entry. If the values are committed successfully with
scf_transaction_commit(3SCF), they will be set in the order in which they were added with
scf_entry_add_value().

The scf_entry_reset() function resets a transaction entry, disassociating it from any
transaction it is a part of (invalidating the transaction in the process), and disassociating any
values that were added to it.

The scf_entry_destroy_children() function destroys all values associated with the
transaction entry. The entry itself is not destroyed.

Upon successful completion, scf_entry_create() returns a new
scf_transaction_entry_t. Otherwise, it returns NULL.

Upon successful completion, scf_entry_handle() returns the handle associated with the
transaction entry. Otherwise, it returns NULL.

Upon successful completion, scf_entry_add_value() returns 0. Otherwise, it returns -1.

Name

Synopsis

Description

Return Values

scf_entry_create(3SCF)

Extended Library Functions, Volume 4 133



The scf_entry_create() function will fail if:

SCF_ERROR_INVALID_ARGUMENT The handle argument is NULL.

SCF_ERROR_NO_MEMORY There is not enough memory to allocate an
scf_transaction_entry_t.

The scf_entry_handle() function will fail if:

SCF_ERROR_HANDLE_DESTROYED The handle associated with entry has been destroyed.

The scf_entry_add_value() function will fail if:

SCF_ERROR_HANDLE_MISMATCH The value and entry arguments are not derived from the
same handle.

SCF_ERROR_IN_USE The value has been added to another entry.

SCF_ERROR_INTERNAL An internal error occurred.

SCF_ERROR_INVALID_ARGUMENT The value argument is not set, or the entry was added to
the transaction using
scf_transaction_property_delete(3SCF).

SCF_ERROR_NOT_SET The transaction entry is not associated with a transaction.

SCF_ERROR_TYPE_MISMATCH The type of the value argument does not match the type
that was set using scf_transaction_property_new(),
scf_transaction_property_change(), or
scf_transaction_property_change_type().

The scf_error(3SCF) function can be used to retrieve the error value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libscf(3LIB), scf_error(3SCF), scf_transaction_commit(3SCF),
scf_transaction_property_change(3SCF),
scf_transaction_property_change_type(3SCF),
scf_transaction_property_delete(3SCF), scf_transaction_property_new(3SCF),
scf_transaction_reset(3SCF), attributes(5)

Errors

Attributes

See Also

scf_entry_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 17 Jul 2008134

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libscf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


scf_error, scf_strerror – error interface to Service Configuration Facility

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

scf_error_t scf_error(void);

const char *scf_strerror(scf_error_t error);

The scf_error() function returns the current libscf(3LIB) error value for the current
thread. If the immediately previous call to a libscf function failed, the error value will reflect
the reason for that failure.

The scf_strerror() function takes an error code previously returned by scf_error() and
returns a human-readable, localized description of the error.

The error values are as follows:

SCF_ERROR_BACKEND_ACCESS The storage mechanism that the repository server
(svc.configd(1M)) chose for the operation denied
access.

SCF_ERROR_BACKEND_READONLY The storage mechanism that the repository server
(svc.configd) chose for the operation is read-only.
For the local filesystem storage mechanism (currently
/etc/svc/repository.db), this usually occurs
because the filesystem that contains it is mounted
read-only. See mount(1M)

SCF_ERROR_CONNECTION_BROKEN The connection to repository is broken.

SCF_ERROR_CONSTRAINT_VIOLATED A required constraint was not met.

SCF_ERROR_DELETED Object was deleted.

SCF_ERROR_EXISTS The object already exists.

SCF_ERROR_HANDLE_DESTROYED An object was bound to a destroyed handle.

SCF_ERROR_HANDLE_MISMATCH Objects from different SCF handles were used.

SCF_ERROR_IN_USE The object is currently in use.

SCF_ERROR_INTERNAL An internal error occurred.

SCF_ERROR_INVALID_ARGUMENT An argument is invalid.

SCF_ERROR_NO_MEMORY No memory is available.

SCF_ERROR_NO_RESOURCES The repository server is out of resources.

SCF_ERROR_NO_SERVER The repository server is unavailable.

SCF_ERROR_NONE No error occurred.

Name

Synopsis

Description

scf_error(3SCF)

Extended Library Functions, Volume 4 135

http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libscf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.configd-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=mount-1m


SCF_ERROR_NOT_BOUND The handle is not bound.

SCF_ERROR_NOT_FOUND Nothing of that name was found.

SCF_ERROR_NOT_SET Cannot use unset value.

SCF_ERROR_PERMISSION_DENIED The user lacks sufficient authority to conduct the
requested operation. See smf_security(5).

SCF_ERROR_TYPE_MISMATCH The type does not match value.

SCF_ERROR_VERSION_MISMATCH The SCF version is incompatible.

The scf_error() function returns SCF_ERROR_NONE if there have been no calls from libscf

functions from the current thread. The return value is undefined if the immediately previous
call to a libscf function did not fail.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

svc.configd(1M), libscf(3LIB), attributes(5), svc.configd(1M)

Return Values

Attributes

See Also

scf_error(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Aug 2007136

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-security-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.configd-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libscf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.configd-1m


scf_handle_create, scf_handle_destroy, scf_handle_decorate, scf_handle_bind,
scf_handle_unbind, scf_myname – Service Configuration Facility handle functions

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

scf_handle_t *scf_handle_create(scf_version_t version);

void scf_handle_destroy(scf_handle_t *handle);

int scf_handle_decorate(scf_handle_t *handle, const char *param,

scf_value_t *value);

int scf_handle_bind(scf_handle_t *handle);

int scf_handle_unbind(scf_handle_t *handle);

ssize_t scf_myname(scf_handle_t *handle, char *out, size_t sz);

The scf_handle_create() function creates a new Service Configuration Facility handle that
is used as the base for all communication with the configuration repository. The version
argument must be SCF_VERSION.

The scf_handle_decorate() function sets a single connection-level parameter, param, to the
supplied value. If value is SCF_DECORATE_CLEAR, param is reset to its default state. Values
passed to scf_handle_decorate() can be reset, reused, or destroyed. The values set do not
take effect until scf_handle_bind() is called. Any invalid values will not cause errors prior to
the call to scf_handle_bind(). The only available decorations is:

debug (count) Set the debugging flags.

The scf_handle_bind() function binds the handle to a running svc.configd(1M) daemon,
using the current decorations to modify the connection. All states derived from the handle are
reset immediately after a successful binding.

The scf_handle_unbind() function severs an existing repository connection or clears the
in-client state for a broken connection.

The scf_handle_destroy() function destroys and frees an SCF handle. It is illegal to use the
handle after calling scf_handle_destroy(). Actions on subordinate objects act as if the
handle is unbound.

The scf_myname() function retrieves the FMRI for the service of which the connecting
process is a part. If the full FMRI does not fit in the provided buffer, it is truncated and, if sz >
0, zero-terminated.

Upon successful completion, scf_handle_create() returns the new handle. Otherwise, it
returns NULL.

Name

Synopsis

Description

Return Values

scf_handle_create(3SCF)

Extended Library Functions, Volume 4 137

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.configd-1m


Upon successful completion, scf_handle_decorate(), scf_handle_bind(), and
scf_handle_unbind() return 0. Otherwise, they return -1.

The scf_myname() function returns the length of the full FMRI. Otherwise, it returns –1.

The scf_handle_create() function will fail if:

SCF_ERROR_NO_MEMORY There is no memory available.

SCF_ERROR_VERSION_MISMATCH The version is invalid, or the application was compiled
against a version of the library that is more recent than the
one on the system.

The scf_handle_decorate() function will fail if:

SCF_ERROR_INVALID_ARGUMENT The param argument is not a recognized parameter.

SCF_ERROR_TYPE_MISMATCH The value argument does not match the expected type for
param.

SCF_ERROR_NOT_SET The value argument is not set.

SCF_ERROR_IN_USE The handle is currently bound.

SCF_ERROR_HANDLE_MISMATCH The value argument is not derived from handle.

The scf_handle_bind() function will fail if:

SCF_ERROR_INVALID_ARGUMENT One of the decorations was invalid.

SCF_ERROR_NO_SERVER The repository server is not running.

SCF_ERROR_NO_RESOURCES The server does not have adequate resources for a new
connection.

SCF_ERROR_IN_USE The handle is already bound.

The scf_handle_unbind() function will fail if:

SCF_ERROR_NOT_BOUND The handle is not bound.

The scf_handle_myname() function will fail if:

SCF_ERROR_CONNECTION_BROKEN The connection to the repository was lost.

SCF_ERROR_NOT_BOUND The handle is not bound.

SCF_ERROR_NOT_SET This process is not marked as a SMF service.

The scf_error(3SCF) function can be used to retrieve the error value.

Errors

scf_handle_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 17 Aug 2007138



See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level See below.

Operations on a single handle (and the objects associated with it) are Safe. Operations on
different handles are MT-Safe. Objects associated with different handles cannot be mixed, as
this will lead to an SCF_ERROR_HANDLE_MISMATCH error.

libscf(3LIB), scf_error(3SCF), attributes(5)

Attributes

See Also

scf_handle_create(3SCF)

Extended Library Functions, Volume 4 139

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libscf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


scf_handle_decode_fmri, scf_scope_to_fmri, scf_service_to_fmri, scf_instance_to_fmri,
scf_pg_to_fmri, scf_property_to_fmri – convert between objects and FMRIs in the Service
Configuration Facility

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

int scf_handle_decode_fmri(scf_handle_t *handle, const char *fmri,
scf_scope_t *scope, scf_service_t *service,
scf_instance_t *instance, scf_propertygroup_t *pg,
scf_property_t *property, int flag);

ssize_t scf_scope_to_fmri(const scf_scope_t *object,
char *buffer, size_t sz);

ssize_t scf_service_to_fmri(const scf_scope_t *object,
char *buffer, size_t sz);

ssize_t scf_instance_to_fmri(const scf_instance_t *inst,
char *buffer, size_t sz);

ssize_t scf_pg_to_fmri(const scf_propertygroup_t *pg, char *out,
size_t sz);

ssize_t scf_property_to_fmri(const scf_scope_t *object,
char *buffer, size_t sz);

The scf_handle_decode_fmri() function decodes an FMRI string into a set of repository
entries. Any number of the entity handles can be NULL. The validation and decoding of the
FMRI are determined by the flags argument and by those arguments that are NULL.

If flags == 0, any FMRI is accepted as long as it is well-formed and exists in the repository.

If SCF_DECODE_FMRI_EXACT is set in flags, the last part of the FMRI must match the last
non-null entity handle. For example, if property is NULL and pg is non-null, the FMRI must be
a property group FMRI.

If SCF_DECODE_FMRI_TRUNCATE is set in flags, there is no check for the existence of any objects
specified in the FMRI that follow the last non-null entity handle. For example, if property is
NULL, pg is non-null, and a property FMRI is passed in, scf_handle_decode_fmri() succeeds
as long as the property group exists, even if the referenced property does not exist.

If SCF_DECODE_FMRI_REQUIRE_INSTANCE (or SCF_FMRI_REQUIRE_NO_INSTANCE) is set in flags,
then the FMRI must (or must not) specify an instance.

If an error occurs, all of the entity handles that were passed to the function are reset.

The scf_scope_to_fmri(), scf_service_to_fmri(), scf_instance_to_fmri(),
scf_pg_to_fmri(), and scf_property_to_fmri() functions convert an entity handle to an
FMRI.

Upon successful completion, scf_handle_decode_fmri() returns 0. Otherwise, it returns -1.

Name

Synopsis

Description

Return Values

scf_handle_decode_fmri(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 4 Jun 2009140



Upon successful completion, scf_scope_to_fmri(), scf_service_to_fmri(),
scf_instance_to_fmri(), scf_pg_to_fmri(), and scf_property_to_fmri() return the
length of the FMRI. The buffer will be null-terminated if sz > 0, similar to strlcpy(3C).
Otherwise, they return -1 and the contents of buffer are undefined.

The scf_handle_decode_fmri() function will fail if:

SCF_ERROR_BACKEND_ACCESS The storage mechanism that the repository server
(svc.configd(1M)) chose for the operation denied
access.

SCF_ERROR_CONNECTION_BROKEN The connection to the repository was lost.

SCF_ERROR_CONSTRAINT_VIOLATED The FMRI does not meet the restrictions requested in
the flag argument.

SCF_ERROR_DELETED The object argument refers to an object that has been
deleted.

SCF_ERROR_HANDLE_MISMATCH One or more of the entity handles was not derived
from handle.

SCF_ERROR_INTERNAL An internal error occurred.

SCF_ERROR_INVALID_ARGUMENT The fmri argument is not a valid FMRI.

SCF_ERROR_NO_RESOURCES The server does not have adequate resources to
complete the request.

SCF_ERROR_NOT_BOUND The handle is not currently bound.

SCF_ERROR_NOT_FOUND The FMRI is well-formed but there is no object in the
repository matching it.

SCF_ERROR_NOT_SET Cannot use unset value.

The scf_scope_to_fmri(), scf_service_to_fmri(), scf_instance_to_fmri(),
scf_pg_to_fmri(), and scf_property_to_fmri() functions will fail if:

SCF_ERROR_NOT_SET The object argument is not currently set.

SCF_ERROR_DELETED The object argument refers to an object that has been
deleted.

SCF_ERROR_NOT_BOUND The handle is not currently bound.

SCF_ERROR_CONNECTION_BROKEN The connection to the repository was lost.

The scf_error(3SCF) function can be used to retrieve the error value.

Errors

scf_handle_decode_fmri(3SCF)

Extended Library Functions, Volume 4 141

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.configd-1m


See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libscf(3LIB), scf_error(3SCF), attributes(5)

Attributes

See Also

scf_handle_decode_fmri(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 4 Jun 2009142

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libscf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


scf_instance_create, scf_instance_handle, scf_instance_destroy, scf_instance_get_parent,
scf_instance_get_name, scf_service_get_instance, scf_service_add_instance,
scf_instance_delete – create and manipulate instance handles and instances in the Service
Configuration Facility

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

scf_instance_t *scf_instance_create(scf_handle_t *handle);

scf_handle_t *scf_instance_handle(scf_instance_t *inst);

void scf_instance_destroy(scf_instance_t *inst);

int scf_instance_get_parent(const scf_instance_t *inst,
scf_service_t *svc);

ssize_t scf_instance_get_name(const scf_instance_t *inst,
char *name, size_t size);

int scf_service_get_instance(const scf_service_t *svc,
const char *name, scf_instance_t *inst);

int scf_service_add_instance(const scf_service_t *svc,
const char *name, scf_instance_t *inst);

int scf_instance_delete(scf_instance_t *inst);

Instances form the bottom layer of the Service Configuration Facility repository tree. An
instance is the child of a service and has two sets of children:

Property Groups These hold configuration information specific to this instance. See
scf_pg_create(3SCF), scf_iter_instance_pgs(3SCF), and
scf_iter_instance_pgs_typed(3SCF).

Snapshots These are complete configuration snapshots that hold unchanging
copies of all of the property groups necessary to run the instance. See
scf_snapshot_create(3SCF) and
scf_iter_instance_snapshots(3SCF).

See smf(5) for information about instances.

An scf_instance_t is an opaque handle that can be set to a single instance at any given time.
The scf_instance_create() function allocates and initializes a new scf_instance_t bound
to handle. The scf_instance_destroy() function destroys and frees inst.

The scf_instance_handle() function retrieves the handle to which inst is bound.

The scf_inst_get_parent() function sets svc to the service that is the parent of inst.

The scf_instance_get_name() function retrieves the name of the instance to which inst is
set.

Name

Synopsis

Description

scf_instance_create(3SCF)

Extended Library Functions, Volume 4 143

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-5


The scf_service_get_instance() function sets inst to the child instance of the service svc
specified by name.

The scf_service_add_instance() function sets inst to a new child instance of the service svc
specified by name.

The scf_instance_delete() function deletes the instance to which inst is set, as well all of
the children of the instance.

Upon successful completion, scf_instance_create() returns a new scf_instance_t.
Otherwise it returns NULL.

Upon successful completion, scf_instance_handle() returns the handle to which inst is
bound. Otherwise, it returns NULL.

Upon successful completion, scf_instance_get_name() returns the length of the string
written, not including the terminating null character. Otherwise it returns -1.

Upon successful completion, scf_instance_get_parent(), scf_service_get_instance(),
scf_service_add_instance(), and scf_instance_delete() functions return 0. Otherwise,
they return -1.

The scf_instance_create() function will fail if:

SCF_ERROR_HANDLE_DESTROYED

An object was bound to a destroyed handle.

SCF_ERROR_INTERNAL

An internal error occurred.

SCF_ERROR_INVALID_ARGUMENT

The handle argument is NULL.

SCF_ERROR_NO_MEMORY

There is not enough memory to allocate an scf_instance_t.

SCF_ERROR_NO_RESOURCES

The server does not have adequate resources for a new instance handle.

The scf_instance_handle() function will fail if:

SCF_ERROR_HANDLE_DESTROYED

The handle associated with inst has been destroyed.

The scf_instance_get_name(), scf_instance_get_parent(), and
scf_instance_delete() functions will fail if:

SCF_ERROR_DELETED The instance has been deleted.

SCF_ERROR_NOT_SET The instance is not set.

Return Values

Errors

scf_instance_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 24 Sep 2007144



SCF_ERROR_NOT_BOUND The repository handle is not bound.

SCF_ERROR_CONNECTION_BROKEN The connection to the repository was lost.

The scf_service_add_instance() function will fail if:

SCF_ERROR_EXISTS

An instance named name already exists.

SCF_ERROR_INTERNAL

An internal error occurred.

SCF_ERROR_NO_RESOURCES

The server does not have the resources to complete the request.

SCF_ERROR_NOT_BOUND

The handle is not bound.

The scf_service_get_instance() function will fail if:

SCF_ERROR_BACKEND_ACCESS The storage mechanism that the repository server
(svc.configd(1M)) chose for the operation denied access.

SCF_ERROR_INTERNAL An internal error occurred.

SCF_ERROR_NOT_BOUND The handle is not bound.

SCF_ERROR_NOT_FOUND No instance specified by name was found.

SCF_ERROR_NO_RESOURCES The repository server is out of resources.

The scf_service_add_instance() and scf_service_get_instance() functions will fail if:

SCF_ERROR_NOT_SET

The service is not set.

SCF_ERROR_DELETED

The service has been deleted.

SCF_ERROR_INVALID_ARGUMENT

The name argument is not a valid instance name.

SCF_ERROR_HANDLE_MISMATCH

The service and instance are not derived from the same handle.

SCF_ERROR_CONNECTION_BROKEN

The connection to the repository was lost.

The scf_instance_get_parent() function will fail if:

SCF_ERROR_HANDLE_MISMATCH

The service and instance arguments are not derived from the same handle.

The scf_service_add_instance() and scf_instance_delete() functions will fail if:

scf_instance_create(3SCF)

Extended Library Functions, Volume 4 145

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.configd-1m


SCF_ERROR_PERMISSION_DENIED

The user does not have sufficient privileges to create or delete an instance.

SCF_ERROR_BACKEND_READONLY

The repository backend is read-only.

SCF_ERROR_BACKEND_ACCESS

The repository backend refused the modification.

The scf_instance_delete() function will fail if:

SCF_ERROR_NO_RESOURCES The server does not have adequate resources for a new
instance handle.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libscf(3LIB), scf_error(3SCF), scf_iter_instance_pgs(3SCF),
scf_iter_instance_pgs_typed(3SCF), scf_iter_instance_snapshots(3SCF),
scf_pg_create(3SCF), scf_snapshot_create(3SCF), attributes(5), smf(5)

Instance names are of the form:

[domain,]identifier

where domain is either a stock ticker symbol such as SUNW or a Java-style reversed domain
name such as com.sun. Identifiers begin with a letter or underscore and contain only letters,
digits, underscores, and dashes.

Attributes

See Also

Notes

scf_instance_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 24 Sep 2007146

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libscf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-5


scf_iter_create, scf_iter_handle, scf_iter_destroy, scf_iter_reset, scf_iter_handle_scopes,
scf_iter_scope_services, scf_iter_service_instances, scf_iter_service_pgs,
scf_iter_service_pgs_typed, scf_iter_instance_snapshots, scf_iter_snaplevel_pgs,
scf_iter_snaplevel_pgs_typed, scf_iter_instance_pgs, scf_iter_instance_pgs_typed,
scf_iter_instance_pgs_composed, scf_iter_instance_pgs_typed_composed,
scf_iter_pg_properties, scf_iter_property_values, scf_iter_next_scope, scf_iter_next_service,
scf_iter_next_instance, scf_iter_next_snapshot, scf_iter_next_pg, scf_iter_next_property,
scf_iter_next_value – iterate through the Service Configuration Facility repository

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

scf_iter_t *scf_iter_create(scf_handle_t *handle);

scf_handle_t *scf_iter_handle(scf_iter_t *iter);

void scf_iter_destroy(scf_iter_t *iter);

void scf_iter_reset(scf_iter_t *iter);

int scf_iter_handle_scopes(scf_iter_t *iter, const scf_handle_t *h);

int scf_iter_scope_services(scf_iter_t *iter, const scf_scope_t *parent);

int scf_iter_service_instances(scf_iter_t *iter,
const scf_service_t *parent);

int scf_iter_service_pgs(scf_iter_t *iter, const scf_service_t *parent);

int scf_iter_service_pgs_typed(scf_iter_t *iter,
const scf_service_t *parent, const char *pgtype);

int scf_iter_instance_snapshots(scf_iter_t *iter,
const scf_instance_t *parent);

int scf_iter_snaplevel_pgs(scf_iter_t *iter,
const scf_snaplevel_t *parent);

int scf_iter_snaplevel_pgs_typed(scf_iter_t *iter,
const scf_snaplevel_t *parent, const char *pgtype);

int scf_iter_instance_pgs(scf_iter_t *iter, scf_instance_t *parent);

int scf_iter_instance_pgs_typed(scf_iter_t *iter,
scf_instance_t *parent, const char *pgtype);

int scf_iter_instance_pgs_composed(scf_iter_t *iter,
const scf_instance_t *instance, const scf_snapshot_t *snapshot);

int scf_iter_instance_pgs_typed_composed(scf_iter_t *iter,
const scf_instance_t *instance, const scf_snapshot_t *snapshot,
const char *pgtype);

int scf_iter_pg_properties(scf_iter_t *iter,
const scf_propertygroup_t *parent);

Name

Synopsis

scf_iter_create(3SCF)

Extended Library Functions, Volume 4 147



int scf_iter_property_values(scf_iter_t *iter,
const scf_property_t *parent);

int scf_iter_next_scope(scf_iter_t *iter, scf_scope_t *out);

int scf_iter_next_service(scf_iter_t *iter, scf_service_t *out);

int scf_iter_next_instance(scf_iter_t *iter, scf_instance_t *out);

int scf_iter_next_snapshot(scf_iter_t *iter, scf_snapshot_t *out);

int scf_iter_next_pg(scf_iter_t *iter, scf_propertygroup_t *out);

int scf_iter_next_property(scf_iter_t *iter, scf_property_t *out);

int scf_iter_next_value(scf_iter_t *iter, scf_value_t *out);

The scf_iter_create() function creates a new iterator associated with handle. The
scf_iter_destroy() function destroys an iteration.

The scf_iter_reset() function releases any resources involved with an active iteration and
returns the iterator to its initial state.

The scf_iter_handle_scopes(), scf_iter_scope_services(),
scf_iter_service_instances(), scf_iter_instance_snapshots(),
scf_iter_service_pgs(), scf_iter_instance_pgs(), scf_iter_snaplevel_pgs(),
scf_iter_pg_properties(), and scf_iter_property_values() functions set up a new
iteration of all the children parent of a particular type. The scf_iter_property_values()
function will iterate over values in the order in which they were specified with
scf_entry_add_value(3SCF).

The scf_iter_service_pgs_typed(), scf_iter_instance_pgs_typed(), and
scf_iter_snaplevel_pgs_typed() functions iterate over the child property groups of
parent, but restrict them to a particular property group type.

The scf_iter_instance_pgs_composed() function sets up a new iteration of the composed
view of instance's children at the time snapshot was taken. If snapshot is NULL, the current
properties are used. The composed view of an instance's properties is the union of the
properties of the instance and its ancestors. Properties of the instance take precedence over
properties of the service with the same name, including property group name. Property
groups retrieved with this iterator might not have instance as their parent and properties
retrieved from such property groups might not have the indicated property group as their
parent. If instance and its parent have property groups with the same name but different types,
the properties in the property group of the parent are excluded. The
scf_iter_instance_pgs_typed_composed() function behaves as
scf_iter_instance_pgs_composed(), except the property groups of the type pgtype are
returned.

The scf_iter_next_scope(), scf_iter_next_service(), scf_iter_next_instance(),
scf_iter_next_snapshot(), scf_iter_next_pg(), scf_iter_next_property(), and
scf_iter_next_value() functions retrieve the next element of the iteration.

Description

scf_iter_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 4 Dec 2008148



Upon successful completion, scf_iter_create() returns a pointer to a new iterator.
Otherwise, it returns NULL.

Upon successful completion, scf_iter_handle() returns the handle associated with iter.
Otherwise it returns NULL.

Upon successful completion, scf_iter_handle_scopes(), scf_iter_scope_services(),
scf_iter_service_instances(), scf_iter_instance_snapshots(),
scf_iter_service_pgs(), scf_iter_instance_pgs(), scf_iter_snaplevel_pgs(),
scf_iter_pg_properties(), scf_iter_property_values(),
scf_iter_service_pgs_typed(), scf_iter_instance_pgs_composed(),
scf_iter_instance_pgs_typed(), scf_iter_instance_pgs_typed_composed(), and
scf_iter_snaplevel_pgs_typed() return 0. Otherwise, they return -1.

Upon successful completion, scf_iter_next_scope(), scf_iter_next_service(),
scf_iter_next_instance(), scf_iter_next_snapshot(), scf_iter_next_pg(),
scf_iter_next_property(), and scf_iter_next_value() return 1. If the iterator is
complete, they return 0. Otherwise, they return -1.

The scf_iter_create() function will fail if:

SCF_ERROR_INVALID_ARGUMENT The handle argument is NULL.

SCF_ERROR_NO_MEMORY There is no memory available.

SCF_ERROR_NO_RESOURCES The server does not have adequate resources for a new
iteration.

The scf_iter_handle() function will fail if:

SCF_ERROR_HANDLE_DESTROYED The handle associated with iter has been destroyed.

The scf_iter_next_value() function will fail if:

SCF_ERROR_PERMISSION_DENIED The value could not be read due to access restrictions.

The scf_iter_handle_scopes(), scf_iter_scope_services(),
scf_iter_service_instances(), scf_iter_instance_snapshots(),
scf_iter_service_pgs(), scf_iter_instance_pgs(),
scf_iter_instance_pgs_composed(), scf_iter_snaplevel_pgs(),
scf_iter_pg_properties(), scf_iter_property_values(),
scf_iter_service_pgs_typed(), scf_iter_instance_pgs_typed(),
scf_iter_instance_pgs_typed_composed(), and scf_iter_snaplevel_pgs_typed()

functions will fail if:

SCF_ERROR_DELETED The parent has been deleted.

SCF_ERROR_NOT_SET The parent is not set.

SCF_ERROR_NOT_BOUND The handle is not bound.

Return Values

Errors

scf_iter_create(3SCF)

Extended Library Functions, Volume 4 149



SCF_ERROR_CONNECTION_BROKEN The connection to the repository was lost.

SCF_ERROR_HANDLE_MISMATCH The iter and parent arguments are not derived from the
same handle.

The scf_iter_service_pgs_typed(), scf_iter_instance_pgs_typed(),
scf_iter_instance_pgs_typed_composed(), and scf_iter_snaplevel_pgs_typed()

functions will fail if:

SCF_ERROR_INVALID_ARGUMENT The pgtype argument is not a valid property group type.

The scf_iter_next_service(), scf_iter_next_instance(), scf_iter_next_snapshot(),
scf_iter_next_pg(), scf_iter_next_property(), and scf_iter_next_value() functions
will fail if:

SCF_ERROR_DELETED The parent the iterator is attached to has been deleted.

The scf_iter_next_scope(), scf_iter_next_service(), scf_iter_next_instance(),
scf_iter_next_snapshot(), scf_iter_next_pg(),scf_iter_next_property(), and
scf_iter_next_value() functions will fail if:

SCF_ERROR_NOT_SET The iterator is not set.

SCF_ERROR_INVALID_ARGUMENT The requested object type does not match the type the
iterator is walking.

SCF_ERROR_NOT_BOUND The handle is not bound.

SCF_ERROR_HANDLE_MISMATCH The iter and parent arguments are not derived from the
same handle.

SCF_ERROR_CONNECTION_BROKEN The connection to the repository was lost.

The scf_iter_scope_services(), scf_iter_service_instances(),
scf_iter_service_pgs(), scf_iter_instance_snapshots(), scf_iter_instance_pgs(),
scf_iter_instance_pgs_composed(), scf_iter_snaplevel_pgs(),
scf_iter_pg_properties(), scf_iter_property_values(),
scf_iter_service_pgs_typed(), scf_iter_instance_pgs_typed(),
scf_iter_instance_pgs_typed_composed(), scf_iter_snaplevel_pgs_typed(),
scf_iter_next_service(), scf_iter_next_instance(), scf_iter_next_snapshot(),
scf_iter_next_pg(), and scf_iter_next_property() functions will fail if:

SCF_ERROR_NO_RESOURCES The server does not have the resources to complete the
request.

The scf_error(3SCF) function can be used to retrieve the error value.

scf_iter_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 4 Dec 2008150



EXAMPLE 1 Iterate over all instances under a service.

scf_iter_t *iter = scf_iter_create(handle);

if (iter == NULL || scf_iter_service_instances(iter, parent) == -1) {

/* failure */

}

while ((r = scf_iter_next_instance(iter, child)) > 0) {

/* process child */

}

if (r < 0) {

/* failure */

}

scf_iter_destroy(iter);

EXAMPLE 2 Connect to the repository, walk all services and instances and print their FMRIs.

scf_handle_t *handle = scf_handle_create(SCF_VERSION);

scf_scope_t *scope = scf_scope_create(handle);

scf_service_t *svc = scf_service_create(handle);

scf_instance_t *inst = scf_instance_create(handle);

scf_iter_t *svc_iter = scf_iter_create(handle);

scf_iter_t *inst_iter = scf_iter_create(handle);

size_t sz = scf_limit(SCF_LIMIT_MAX_FMRI_LENGTH) + 1;

char *fmri = malloc(sz + 1);

int r;

if (handle == NULL || scope == NULL || svc == NULL ||

inst == NULL || svc_iter == NULL || inst_iter == NULL ||

fmri == NULL) {

/* failure */

}

if (scf_handle_bind(handle) == -1 ||

scf_handle_get_scope(handle, SCF_SCOPE_LOCAL, scope) == -1 ||

scf_iter_scope_services(svc_iter, scope) == -1) {

/* failure */

}

while ((r = scf_iter_next_service(svc_iter, svc)) > 0) {

if (scf_service_to_fmri(svc, fmri, sz) < 0) {

/* failure */

}

puts(fmri);

if (scf_iter_service_instances(inst_iter, svc) < 0) {

/* failure */

}

while ((r = scf_iter_next_instance(inst_iter, inst)) > 0) {

Examples

scf_iter_create(3SCF)

Extended Library Functions, Volume 4 151



EXAMPLE 2 Connect to the repository, walk all services and instances and print their FMRIs.
(Continued)

if (scf_instance_to_fmri(inst, fmri, sz) < 0) {

/* failure */

}

puts(fmri);

}

if (r < 0)

break;

}

if (r < 0) {

/* failure */

}

scf_handle_destroy(handle);

scf_scope_destroy(scope);

scf_service_destroy(svc);

scf_instance_destroy(inst);

scf_iter_destroy(svc_iter);

scf_iter_destroy(inst_iter);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libscf(3LIB), scf_entry_add_value(3SCF), scf_error(3SCF), scf_handle_create(3SCF),
attributes(5)

Attributes

See Also

scf_iter_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 4 Dec 2008152

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libscf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


scf_limit – limit information for Service Configuration Facility

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

ssize_t scf_limit(uint32_t name);

The scf_limit() function returns information about implementation-defined limits in the
service configuration facility. These limits are generally maximum lengths for various strings.
The values returned do not change during the execution of a program, but they should not be
cached between executions.

The available values for name are:

SCF_LIMIT_MAX_FMRI_LENGTH Return the maximum length of an FMRI the service
configuration facility accepts.

SCF_LIMIT_MAX_PG_TYPE_LENGTH Return the maximum length for property group types
in the service configuration facility.

SCF_LIMIT_MAX_NAME_LENGTH Return the maximum length for names in the service
configuration facility. This value does not include space
for the required terminating null byte.

SCF_LIMIT_MAX_VALUE_LENGTH Return the maximum string length a scf_value_t can
hold, not including the terminating null byte.

Lengths do not include space for the required terminating null byte.

Upon successful completion, scf_limit() returns the requested value. Otherwise, it returns
-1.

The scf_limit() function will fail if:

SCF_ERROR_INVALID_ARGUMENT The name argument is not a recognized request.

The scf_error(3SCF) function can be used to retrieve the error value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libscf(3LIB), scf_error(3SCF), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

scf_limit(3SCF)

Extended Library Functions, Volume 4 153

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libscf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


scf_pg_create, scf_pg_handle, scf_pg_destroy, scf_pg_get_parent_service,
scf_pg_get_parent_instance, scf_pg_get_parent_snaplevel, scf_pg_get_name,
scf_pg_get_type, scf_pg_get_flags, scf_pg_update, scf_service_get_pg, scf_service_add_pg,
scf_instance_get_pg, scf_instance_get_pg_composed, scf_instance_add_pg,
scf_snaplevel_get_pg, scf_pg_delete, scf_pg_get_underlying_pg – create and manipulate
property group handles and property groups in the Service Configuration Facility

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

scf_propertygroup_t *scf_pg_create(scf_handle_t *handle);

scf_handle_t *scf_pg_handle(scf_propertygroup_t *pg);

void scf_pg_destroy(scf_propertygroup_t *pg);

int scf_pg_get_parent_service(const scf_propertygroup_t *pg,
scf_service_t *svc);

int scf_pg_get_parent_instance(const scf_propertygroup_t *pg,
scf_instance_t *inst);

int scf_pg_get_parent_snaplevel(const scf_propertygroup_t *pg,
scf_snaplevel_t *level);

ssize_t scf_pg_get_name(const scf_propertygroup_t *pg, char *buf,
size_t size);

ssize_t scf_pg_get_type(const scf_propertygroup_t *pg, char *buf,
size_t size);

int scf_pg_get_flags(const scf_propertygroup_t *pg, uint32_t *out);

int scf_pg_update(const scf_propertygroup_t *pg);

int scf_service_get_pg(const scf_service_t *svc, const char *name,
scf_propertygroup_t *pg);

int scf_service_add_pg(const scf_service_t *svc,
const char *name, const char *group_type,
uint32_t flags, scf_propertygroup_t *pg);

int scf_instance_get_pg(const scf_instance_t *inst,
const char *name, scf_propertygroup_t *pg);

int scf_instance_get_pg_composed(const scf_instance_t *inst,
const scf_snapshot_t *snapshot, const char *name,
scf_propertygroup_t *pg);

int scf_instance_add_pg(const scf_instance_t *inst,
const char *name, const char *group_type, uint32_t flags,
scf_propertygroup_t *pg);

int scf_snaplevel_get_pg(const scf_snaplevel_t *level,
const char *name, scf_propertygroup_t *pg);

Name

Synopsis

scf_pg_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 29 Jun 2009154



int scf_pg_delete(scf_propertygroup_t *pg);

int scf_pg_get_underlying_pg(const scf_propertygroup_t *pg,
scf_propertygroup_t *out);

Property groups are an atomically-updated group of typed properties. Property groups of
services (see scf_service_create(3SCF)) or instances (see scf_instance_create(3SCF))
are modifiable. Property groups of snaplevels (see scf_snaplevel_create(3SCF)) are not
modifiable.

An scf_propertygroup_t is an opaque handle that can be set to a single property group at
any given time. When an scf_propertygroup_t is set, it references a frozen-in-time version
of the property group to which it is set. Updates to the property group will not be visible until
either scf_pg_update() is called or the property group is set again.

This static view is propagated to the scf_property_ts set to children of the property group.
They will not see updates, even if the scf_propertygroup_t is updated.

The scf_pg_create() function allocates and initializes a new scf_propertygroup_t bound
to handle. The scf_pg_destroy() function destroys and frees pg.

The scf_pg_handle() function retrieves the handle to which pg is bound.

The scf_pg_get_parent_service(), scf_pg_get_parent_instance(), and
scf_pg_get_parent_snaplevel() functions retrieve the property group's parent, if it is of the
requested type.

The scf_pg_get_name() and scf_pg_get_type() functions retrieve the name and type,
respectively, of the property group to which pg is set.

The scf_pg_get_flags() function retrieves the flags for the property group to which pg is set.
If SCF_PG_FLAG_NONPERSISTENT is set, the property group is not included in snapshots and
will lose its contents upon system shutdown or reboot. Non-persistent property groups are
mainly used for smf-internal state. See smf(5).

The scf_pg_update() function ensures that pg is attached to the most recent version of the pg
to which it is set.

The scf_service_get_pg(), scf_instance_get_pg(), and scf_snaplevel_get_pg()

functions set pg to the property group specified by name in the service specified by svc, the
instance specified by inst, or the snaplevel specified by level, respectively.

The scf_instance_get_pg_composed() function sets pg to the property group specified by
name in the composed view of inst at the time snapshot was taken. If snapshot is NULL, the
current properties are used. The composed view of an instance's properties is the union of the
properties of the instance and its ancestors. Properties of the instance take precedence over
properties of the service with the same name (including the property group name). After a
successful call to scf_instance_get_pg_composed(), the parent of pg might not be inst, and

Description

scf_pg_create(3SCF)

Extended Library Functions, Volume 4 155

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-5


the parents of properties obtained from pg might not be pg. If inst and its parent have property
groups with the same name but different types, the properties in the property group of the
parent are excluded.

The scf_service_add_pg() and scf_instance_add_pg() functions create a new property
group specified by name whose type is group_type, and attach the pg handle (if non-null) to
the new object. The flags argument must be either 0 or SCF_PG_FLAG_NONPERSISTENT.

The scf_pg_delete() function deletes the property group. Versions of the property group in
snapshots are not affected.

The scf_pg_get_underlying_pg() function gets the first existing underlying property group.
If the property group specified by pg is an instance property group, out is set to the property
group of the same name in the instance's parent.

Applications can use a transaction to modify a property group. See
scf_transaction_create(3SCF).

Upon successful completion, scf_pg_create() returns a new scf_propertygroup_t.
Otherwise, it returns NULL.

Upon successful completion, scf_pg_handle() returns a pointer to the handle to which pg is
bound. Otherwise, it returns NULL.

Upon successful completion, scf_instance_handle() returns the handle instance with
which it is associated. Otherwise, it returns NULL.

Upon successful completion, scf_pg_get_name() and scf_pg_get_type() return the length
of the string written, not including the terminating null byte. Otherwise, they return -1.

The scf_pg_update() function returns 1 if the object was updated, 0 if the object was already
up to date, and -1 on failure.

Upon successful completion, scf_pg_get_parent_service(),
scf_pg_get_parent_snaplevel(), scf_pg_get_flags(), scf_service_get_pg(),
scf_service_add_pg(), scf_pg_get_parent_instance(), scf_instance_get_pg(),
scf_instance_get_pg_composed(), scf_instance_add_pg(), scf_snaplevel_get_pg(),
scf_pg_delete(), and scf_pg_get_underlying_pg() return 0. Otherwise, they return -1.

The scf_pg_create() function will fail if:

SCF_ERROR_INVALID_ARGUMENT

The handle argument is NULL.

SCF_ERROR_NO_MEMORY

There is not enough memory to allocate an scf_propertygroup_t.

SCF_ERROR_NO_RESOURCES

The server does not have adequate resources for a new property group handle.

Return Values

Errors

scf_pg_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 29 Jun 2009156



The scf_pg_handle() function will fail if:

SCF_ERROR_HANDLE_DESTROYED

The handle associated with pg has been destroyed.

The scf_pg_update() function will fail if:

SCF_ERROR_CONNECTION_BROKEN

The connection to the repository was lost.

SCF_ERROR_DELETED

An ancestor of the property group specified by pg has been deleted.

SCF_ERROR_INTERNAL

An internal error occurred. This can happen if pg has been corrupted.

SCF_ERROR_INVALID_ARGUMENT

The pg argument refers to an invalid scf_propertygroup_t.

SCF_ERROR_NOT_BOUND

The handle is not bound.

SCF_ERROR_NOT_SET

The property group specified by pg is not set.

The scf_service_get_pg(), scf_instance_get_pg(), scf_instance_get_pg_composed(),
scf_snaplevel_get_pg(), and scf_pg_get_underlying_pg() functions will fail if:

SCF_ERROR_BACKEND_ACCESS

The storage mechanism that the repository server (svc.configd(1M)) chose for the
operation denied access.

SCF_ERROR_INTERNAL

An internal error occurred.

SCF_ERROR_NO_RESOURCES

The server does not have the resources to complete the request.

The scf_pg_get_name(), scf_pg_get_type(), scf_pg_get_flags(),
scf_pg_get_parent_service(), scf_pg_get_parent_snaplevel(), and
scf_pg_get_parent_instance() functions will fail if:

SCF_ERROR_DELETED

The property group specified by pg has been deleted.

SCF_ERROR_NOT_SET

The property group specified by pg is not set.

SCF_ERROR_NOT_BOUND

The handle is not bound.

scf_pg_create(3SCF)

Extended Library Functions, Volume 4 157

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.configd-1m


SCF_ERROR_CONNECTION_BROKEN

The connection to the repository was lost.

The scf_pg_get_parent_service(), scf_pg_get_parent_snaplevel(), and
scf_pg_get_parent_instance() functions will fail if:

SCF_ERROR_CONSTRAINT_VIOLATED

The requested parent type does not match the actual type of the parent of the property
group specified by pg.

SCF_ERROR_HANDLE_MISMATCH

The property group and either the instance, the service, or the snaplevel are not derived
from the same handle.

The scf_instance_get_pg(), scf_instance_get_pg_composed(), scf_service_get_pg(),
scf_pg_get_underlying_pg(), and scf_snaplevel_get_pg() functions will fail if:

SCF_ERROR_NOT_FOUND

The property group specified by name was not found.

The scf_service_add_pg(), scf_service_get_pg(), scf_instance_add_pg(),
scf_instance_get_pg(), scf_instance_get_pg_composed(), and
scf_snaplevel_get_pg() functions will fail if:

SCF_ERROR_DELETED

The service or instance has been deleted.

SCF_ERROR_NOT_SET

The instance is not set.

SCF_ERROR_INVALID_ARGUMENT

The value of the name argument is not a valid property group name.

SCF_ERROR_HANDLE_MISMATCH

The property group and either the instance, the service, or the level are not derived from
the same handle.

SCF_ERROR_NOT_BOUND

The handle is not bound.

SCF_ERROR_CONNECTION_BROKEN

The connection to the repository was lost.

The scf_service_add_pg() and scf_instance_add_pg() functions will fail if:

SCF_ERROR_PERMISSION_DENIED

The caller does not have permission to create the requested property group.

SCF_ERROR_BACKEND_READONLY

The repository backend is read-only.

scf_pg_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 29 Jun 2009158



SCF_ERROR_BACKEND_ACCESS

The repository backend refused the modification.

SCF_ERROR_EXISTS

A {service,instance,property group} named name already exists.

SCF_ERROR_NO_RESOURCES

The server does not have the resources to complete the request.

The scf_pg_delete() function will fail if:

SCF_ERROR_BACKEND_ACCESS

The repository backend refused the modification.

SCF_ERROR_BACKEND_READONLY

The repository backend is read-only.

SCF_ERROR_CONNECTION_BROKEN

The connection to the repository was lost.

SCF_ERROR_DELETED

The property group has been deleted by someone else.

SCF_ERROR_NO_RESOURCES

The server does not have adequate resources for a new property group handle.

SCF_ERROR_NOT_SET

The property group has not been set.

SCF_ERROR_PERMISSION_DENIED

The caller does not have permission to delete this property group.

The scf_pg_get_underlying_pg() function will fail if:

SCF_ERROR_CONNECTION_BROKEN

The connection to the repository was lost.

SCF_ERROR_CONSTRAINT_VIOLATED

A required constraint was not met.

SCF_ERROR_DELETED

The property group has been deleted.

SCF_ERROR_HANDLE_MISMATCH

The property group and out are not derived from the same handle.

SCF_ERROR_INVALID_ARGUMENT

An argument is invalid.

SCF_ERROR_NOT_BOUND

The handle is not bound.

scf_pg_create(3SCF)

Extended Library Functions, Volume 4 159



SCF_ERROR_NOT_SET

The property group has not been set.

The scf_error(3SCF) function can be used to retrieve the error value.

EXAMPLE 1 Perform a layered lookup of name in pg.

int layered_lookup(scf_propertygroup_t *pg, const char *name,

scf_property_t *out) {

scf_handle_t *handle = scf_pg_handle(out);

scf_propertygroup_t *new_pg;

scf_propertygroup_t *cur, *other;

int state = 0;

if (handle == NULL) {

return (-1);

}

new_pg = scf_pg_create(handle);

if (new_pg == NULL) {

return (-1);

}

for (;;) {

cur = state ? pg : new_pg;

other = state ? new_pg : pg;

state = !state;

if (scf_pg_get_property(cur, name, out) != -1) {

scf_pg_destroy(new_pg);

return (SUCCESS);

}

if (scf_pg_get_underlying_pg(cur, other) == -1)

break;

}

scf_pg_destroy(new_pg);

return (NOT_FOUND);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libscf(3LIB), scf_error(3SCF), scf_handle_decode_fmri(3SCF),
scf_instance_create(3SCF), scf_pg_to_fmri(3SCF), scf_service_create(3SCF),
scf_snaplevel_create(3SCF), scf_transaction_create(3SCF), attributes(5), smf(5)

Examples

Attributes

See Also

scf_pg_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 29 Jun 2009160

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libscf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-5


scf_property_create, scf_property_handle, scf_property_destroy, scf_property_get_name,
scf_property_type, scf_property_is_type, scf_type_to_string, scf_string_to_type,
scf_property_get_value, scf_pg_get_property – create and manipulate property handles in the
Service Configuration Facility

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

scf_property_t *scf_property_create(scf_handle_t *handle);

scf_handle_t *scf_property_handle(scf_property_t *prop);

void scf_property_destroy(scf_property_t *prop);

ssize_t scf_property_get_name(const scf_property_t *prop,
char *buf, size_t size);

int scf_property_type(const scf_property_t *prop,
scf_type_t *type);

int scf_property_is_type(const scf_property_t *prop,
scf_type_t type);

const char *scf_type_to_string(scf_type_t type);

scf_type_t scf_string_to_type(const char *type);

int scf_property_get_value(const scf_property_t *prop,
scf_value_t *value);

int scf_pg_get_property(const scf_propertygroup_t *pg,
const char *name, scf_property_t *prop);

Properties are named sets of values of one type. They are grouped into property groups (see
scf_pg_create(3SCF)) that are updated atomically using transactions (see
scf_transaction_create(3SCF)).

An scf_property_t is an opaque handle that can be set to a single property at any given time.
When set, it inherits the point-in-time from the source scf_propertygroup_t and does not
change until reset.

The scf_property_create() function allocates and initializes a new scf_property_t bound
to handle. The scf_property_destroy() function destroys and frees prop.

The scf_property_handle() function returns the handle to which prop is bound.

The scf_property_type() function retrieves the type of the property to which prop is set.

The scf_property_is_type() function determines if the property is compatible with type.
See scf_value_create(3SCF).

The scf_type_to_string() function returns the string name of the type supplied. If the type
is invalid or unknown, it returns “unknown”.

Name

Synopsis

Description

scf_property_create(3SCF)

Extended Library Functions, Volume 4 161



The scf_string_to_type() function returns the scf_type_t definition of the string
supplied. If the string does not translate to an existing type, it returns SCF_TYPE_INVALID.

The scf_property_get_value() function retrieves the single value that the property to
which prop is set contains. If the property has more than one value, the value argument is set to
one of the values. To retrieve all values associated with a property, see
scf_iter_property_values(3SCF).

The scf_pg_get_property() function sets prop to the property specified by name in the
property group specified by pg.

Upon successful completion, scf_property_create() returns a new scf_property_t.
Otherwise, it returns NULL.

Upon successful completion, scf_property_get_name() function returns the length of the
string written, not including the terminating null byte. Otherwise, it returns -1.

Upon successful completion, scf_pg_get_property(), scf_property_type(),
scf_property_is_type(), and scf_property_get_value() functions return 0. Otherwise,
they return -1.

Upon successful completion, scf_type_to_string() returns a string of the type supplied.

Upon successful completion, scf_string_to_type() returns the scf_type_t definition of
the string supplied

The scf_property_create() function will fail if:

SCF_ERROR_INVALID_ARGUMENT The value of the handle argument is NULL.

SCF_ERROR_NO_MEMORY There is not enough memory to allocate an
scf_property_t.

SCF_ERROR_NO_RESOURCES The server does not have adequate resources for a new
property handle.

The scf_property_handle() function will fail if:

SCF_ERROR_HANDLE_DESTROYED The handle associated with prop has been destroyed.

The scf_property_get_name(), scf_property_type(), scf_property_is_type(), and
scf_property_get_value() functions will fail if:

SCF_ERROR_CONNECTION_BROKEN The connection to the repository was lost.

SCF_ERROR_DELETED The property's parent property group or an ancestor has
been deleted.

SCF_ERROR_NOT_BOUND The handle was never bound or has been unbound.

Return Values

Errors

scf_property_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 8 Oct 2010162



SCF_ERROR_NOT_SET The property is not set.

The scf_property_is_type() function will fail if:

SCF_ERROR_INVALID_ARGUMENT The type argument is not a valid type.

SCF_ERROR_TYPE_MISMATCH The prop argument is not of a type compatible with type.

The scf_pg_get_property() function will fail if:

SCF_ERROR_BACKEND_ACCESS The storage mechanism that the repository server
(svc.configd(1M)) chose for the operation denied
access.

SCF_ERROR_CONNECTION_BROKEN The connection to the repository was lost.

SCF_ERROR_DELETED The property group or an ancestor has been deleted.

SCF_ERROR_HANDLE_MISMATCH The property group and property are not derived from
the same handle.

SCF_ERROR_INTERNAL An internal error occurred.

SCF_ERROR_INVALID_ARGUMENT The value of the name argument is not a valid property
name.

SCF_ERROR_NO_RESOURCES The server does not have the resources to complete the
request.

SCF_ERROR_NOT_BOUND The handle was never bound or has been unbound.

SCF_ERROR_NOT_FOUND The property specified by name was not found.

SCF_ERROR_NOT_SET The property group specified by pg is not set.

The scf_property_get_value() function will fail if:

SCF_ERROR_CONSTRAINT_VIOLATED The property has more than one value associated with
it. The value argument will be set to one of the values.

SCF_ERROR_HANDLE_MISMATCH The property and value are derived from different
handles.

SCF_ERROR_NOT_FOUND The property has no values associated with it. The
value argument will be reset.

SCF_ERROR_PERMISSION_DENIED The value could not be read due to access restrictions.

The scf_error(3SCF) function can be used to retrieve the error value.

See attributes(5) for descriptions of the following attributes:Attributes

scf_property_create(3SCF)

Extended Library Functions, Volume 4 163

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.configd-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libscf(3LIB), scf_error(3SCF), scf_handle_decode_fmri(3SCF),
scf_iter_property_values(3SCF), scf_pg_create(3SCF), scf_property_to_fmri(3SCF),
scf_transaction_create(3SCF), scf_value_create(3SCF), attributes(5)

See Also

scf_property_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 8 Oct 2010164

http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libscf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


scf_scope_create, scf_scope_handle, scf_scope_destroy, scf_scope_get_name,
scf_handle_get_scope – create and manipulate scope handles in the Service Configuration
Facility

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

scf_scope_t *scf_scope_create(scf_handle_t *handle);

scf_handle_t *scf_scope_handle(scf_scope_t *sc);

void scf_scope_destroy(scf_scope_t *sc);

ssize_t scf_scope_get_name(scf_scope_t *sc, char *buf, size_t size);

int scf_handle_get_scope(scf_handle_t *handle, const char *name,
scf_scope_t *out);

Scopes are the top level of the Service Configuration Facility's repository tree. The children of
a scope are services (see scf_service_create(3SCF)) and can be walked using
scf_iter_scope_services(3SCF).

There is a distinguished scope with the name SCF_SCOPE_LOCAL that is the root for all available
services on the local machine. In the current implementation, there are no other scopes.

An scf_scope_t is an opaque handle that can be set to a single scope at any given time. The
scf_scope_create() function allocates a new scf_scope_t bound to handle. The
scf_scope_destroy() function destroys and frees sc.

The scf_scope_handle() function retrieves the handle to which sc is bound.

The scf_scope_get_name() function retrieves the name of the scope to which sc is set.

The scf_handle_get_scope() function sets out to the scope specified by name for the
repository handle specified by handle. The scf_iter_handle_scopes(3SCF) and
scf_iter_next_scope(3SCF) calls can be used to iterate through all available scopes.

Upon successful completion, scf_scope_create() returns a new scf_scope_t. Otherwise, it
returns NULL.

Upon successful completion, scf_scope_handle() returns the handle to which sc is bound.
Otherwise, it returns NULL.

Upon successful completion, scf_scope_get_name() returns the length of the string written,
not including the terminating null byte. Otherwise, it returns -1.

Upon successful completion, scf_handle_get_scope() returns 0. Otherwise, it returns -1.

Name

Synopsis

Description

Return Values

scf_scope_create(3SCF)

Extended Library Functions, Volume 4 165



The scf_scope_create() function will fail if:

SCF_ERROR_INVALID_ARGUMENT The value of the handle argument is NULL.

SCF_ERROR_NO_MEMORY There is not enough memory to allocate an scf_scope_t.

SCF_ERROR_NO_RESOURCES The server does not have adequate resources for a new
scope handle.

The scf_scope_handle() function will fail if:

SCF_ERROR_HANDLE_DESTROYED The handle associated with sc has been destroyed.

The scf_scope_get_name() function will fail if:

SCF_ERROR_NOT_SET The scope is not set.

SCF_ERROR_NOT_BOUND The handle is not bound.

SCF_ERROR_CONNECTION_BROKEN The connection to the repository was lost.

The scf_handle_get_scope() function will fail if:

SCF_ERROR_NOT_FOUND No scope named name was found.

SCF_ERROR_INVALID_ARGUMENT The name argument is not a valid scope name.

SCF_ERROR_NOT_BOUND The handle is not bound.

SCF_ERROR_CONNECTION_BROKEN The connection to the repository was lost.

SCF_ERROR_HANDLE_MISMATCH The value of the out argument is not derived from
handle.

The scf_error(3SCF) function can be used to retrieve the error value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libscf(3LIB), scf_error(3SCF), scf_handle_decode_fmri(3SCF),
scf_iter_handle_scopes(3SCF), scf_iter_next_scope(3SCF),
scf_iter_scope_services(3SCF), scf_scope_to_fmri(3SCF),
scf_service_create(3SCF), attributes(5)

Errors

Attributes

See Also

scf_scope_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 9 Sep 2004166

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libscf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


scf_service_create, scf_service_handle, scf_service_destroy, scf_service_get_parent,
scf_service_get_name, scf_scope_get_service, scf_scope_add_service, scf_service_delete –
create and manipulate service handles and services in the Service Configuration Facility

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

scf_service_t *scf_service_create(scf_handle_t *handle);

scf_handle_t *scf_service_handle(scf_service_t *svc);

void scf_service_destroy(scf_service_t *svc);

int scf_service_get_parent(scf_service_t *svc, scf_scope_t *sc);

ssize_t scf_service_get_name(const scf_service_t *svc, char *buf,
size_t size);

int scf_scope_get_service(const scf_scope_t *sc, const char *name,
scf_service_t *svc);

int scf_scope_add_service(const scf_scope_t *sc, const char *name,
scf_service_t *svc);

int scf_service_delete(scf_service_t *svc);

Services form the middle layer of the Service Configuration Facility repository tree. Services
are children of a scope (see scf_scope_create(3SCF)) and have three sets of children:

Property groups These hold configuration information shared by all of the instances of the
service. See scf_pg_create(3SCF), scf_iter_service_pgs(3SCF), and
scf_iter_service_pgs_typed(3SCF).

Instances A particular instantiation of the service. See
scf_instance_create(3SCF).

A service groups one or more related instances and provides a shared configuration for them.

An scf_service_t is an opaque handle that can be set to a single service at any given time.
The scf_service_create() function allocates and initializes a new scf_service_t bound to
handle. The scf_service_destroy() function destroys and frees svc.

The scf_service_handle() function retrieves the handle to which svc is bound.

The scf_service_get_parent() function sets sc to the scope that is the parent of svc.

The scf_service_get_name() function retrieves the name of the service to which svc is set.

The scf_scope_get_service() function sets svc to the service specified by name in the scope
specified by sc.

Name

Synopsis

Description

scf_service_create(3SCF)

Extended Library Functions, Volume 4 167



The scf_scope_add_service() function sets svc to a new service specified by name in the
scope specified by sc.

The scf_service_delete() function deletes the service to which svc is set, as well as all of its
children.

Upon successful completion, scf_service_create() returns a new scf_service_t.
Otherwise, it returns NULL.

Upon successful completion, scf_service_handle() returns the handle to which svc is
bound. Otherwise, it returns NULL.

Upon successful completion, scf_service_get_name() returns the length of the string
written, not including the terminating null byte. Otherwise, it returns -1.

Upon successful completion, scf_service_get_parent(), scf_scope_get_service(),
scf_scope_add_service(), and scf_service_delete() return 0. Otherwise, it returns -1.

The scf_service_create() function will fail if:

SCF_ERROR_INVALID_ARGUMENT The value of the handle argument is NULL.

SCF_ERROR_NO_MEMORY There is not enough memory to allocate an
scf_service_t.

SCF_ERROR_NO_RESOURCES The server does not have adequate resources for a new
scope handle.

The scf_service_handle() function will fail if:

SCF_ERROR_HANDLE_DESTROYED The handle associated with svc has been destroyed.

The scf_service_get_name(), scf_service_get_parent(), and scf_service_delete()

functions will fail if:

SCF_ERROR_DELETED The service has been deleted by someone else.

SCF_ERROR_NOT_SET The service is not set.

SCF_ERROR_NOT_BOUND The handle is not bound.

SCF_ERROR_CONNECTION_BROKEN The connection to the repository was lost.

The scf_service_delete() function will fail if:

SCF_ERROR_EXISTS The service contains instances.

SCF_ERROR_NO_RESOURCES The server does not have adequate resources for a new scope
handle.

The scf_scope_add_service() function will fail if:

Return Values

Errors

scf_service_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 27 Aug 2007168



SCF_ERROR_EXISTS A {service,instance,property group} named name already exists.

The scf_scope_get_service() function will fail if:

SCF_ERROR_BACKEND_ACCESS The storage mechanism that the repository server
(svc.configd(1M)) chose for the operation denied access.

SCF_ERROR_INTERNAL An internal error occurred.

The scf_scope_add_service() and scf_scope_get_service() functions will fail if:

SCF_ERROR_CONNECTION_BROKEN The connection to the repository was lost.

SCF_ERROR_DELETED The parent entity has been deleted.

SCF_ERROR_HANDLE_MISMATCH The scope and service are not derived from the same
handle.

SCF_ERROR_INVALID_ARGUMENT The value of the name argument is not a valid service
name.

SCF_ERROR_NO_RESOURCES The server does not have the resources to complete the
request.

SCF_ERROR_NOT_BOUND The handle is not bound.

SCF_ERROR_NOT_FOUND The service specified by name was not found.

SCF_ERROR_NOT_SET The scope is not set.

The scf_scope_add_service() and scf_service_delete() functions will fail if:

SCF_ERROR_PERMISSION_DENIED The user does not have sufficient privileges to create or
delete a service.

SCF_ERROR_BACKEND_READONLY The repository backend is read-only.

SCF_ERROR_BACKEND_ACCESS The repository backend refused the modification.

The scf_error(3SCF) function can be used to retrieve the error value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libscf(3LIB), scf_error(3SCF), scf_handle_decode_fmri(3SCF),
scf_iter_service_pgs(3SCF), scf_iter_service_pgs_typed(3SCF),

Attributes

See Also

scf_service_create(3SCF)

Extended Library Functions, Volume 4 169

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.configd-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libscf-3lib


scf_instance_create(3SCF), scf_pg_create(3SCF), scf_scope_create(3SCF),
scf_service_to_fmri(3SCF), attributes(5), smf(5)

scf_service_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 27 Aug 2007170

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-5


scf_simple_prop_get, scf_simple_prop_free, scf_simple_app_props_get,
scf_simple_app_props_free, scf_simple_app_props_next, scf_simple_app_props_search,
scf_simple_prop_numvalues, scf_simple_prop_type, scf_simple_prop_name,
scf_simple_prop_pgname, scf_simple_prop_next_boolean, scf_simple_prop_next_count,
scf_simple_prop_next_integer, scf_simple_prop_next_time, scf_simple_prop_next_astring,
scf_simple_prop_next_ustring, scf_simple_prop_next_opaque, scf_simple_prop_next_reset
– simplified property read interface to Service Configuration Facility

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

scf_simple_prop_t *scf_simple_prop_get(scf_handle_t *handle,
const char *instance, const char *pgname, const char *propname);

void scf_simple_prop_free(scf_simple_prop_t *prop);

scf_simple_app_props_t *scf_simple_app_props_get(scf_handle_t *handle,
const char *instance);

void scf_simple_app_props_free(scf_simple_app_props_t *propblock);

const scf_simple_prop_t *scf_simple_app_props_next

(const scf_simple_app_props_t *propblock,scf_simple_prop_t *last);

const scf_simple_prop_t *scf_simple_app_props_search

(const scf_simple_app_props_t *propblock, const char *pgname,
const char *propname);

ssize_t scf_simple_prop_numvalues(const scf_simple_prop_t *prop);

scf_type_t scf_simple_prop_type(const scf_simple_prop_t *prop);

const char *scf_simple_prop_name(const scf_simple_prop_t *prop);

const char *scf_simple_prop_pgname(const scf_simple_prop_t *prop);

uint8_t *scf_simple_prop_next_boolean(const scf_simple_prop_t *prop);

uint64_t *scf_simple_prop_next_count(const scf_simple_prop_t *prop);

int64_t *scf_simple_prop_next_integer(const scf_simple_prop_t *prop);

int64_t *scf_simple_prop_next_time(const scf_simple_prop_t *prop,
int32_t *nsec);

char *scf_simple_prop_next_astring(const scf_simple_prop_t *prop);

char *scf_simple_prop_next_ustring(const scf_simple_prop_t *prop);

void *scf_simple_prop_next_opaque(const scf_simple_prop_t *prop,
size_t *length);

void *scf_simple_prop_next_reset(const scf_simple_prop_t *prop);

Name

Synopsis

scf_simple_prop_get(3SCF)

Extended Library Functions, Volume 4 171



The simplified read interface to the Service Configuration Facility deals with properties and
blocks of properties.

The scf_simple_prop_get() function pulls a single property. The scf_simple_prop_*()
functions operate on the resulting scf_simple_prop_t.

The application might need to get many properties or iterate through all properties. The
scf_simple_app_props_get() function gets all properties from the service instance that are
in property groups of type 'application'. Individual properties are pulled from the block using
the scf_simple_app_props_next() function for iteration or
scf_simple_app_props_search() to search. The pointer to the scf_simple_prop_t
returned from iteration or searching can be acted upon using the scf_simple_prop_*()
functions. Each scf_*_get() function has an accompanying scf_*_free function. The
application does not free the pointer to the scf_simple_prop_t returned from the
scf_simple_app_props_next() and scf_simple_app_props_search() calls. A free call is
only used with a corresponding get call.

The scf_simple_prop_*() functions return references to the read-only in-memory copy of
the property information. Any changes to this information results in unstable behavior and
inaccurate results. The simplified read interface provides read access only, with no provisions
to modify data in the service configuration facility repository.

The scf_simple_prop_get() function takes as arguments a bound handle, a service instance
FMRI, and the property group and property name of a property. If handle is NULL, the library
uses a temporary handle created for the purpose. If instance is NULL the library automatically
finds the FMRI of the calling process. If pgname is NULL, the library uses the default application
property group. The caller is responsible for freeing the returned property with
scf_simple_prop_free().

The scf_simple_prop_free() function frees the scf_simple_prop_t allocated by
scf_simple_prop_get().

The scf_simple_app_props_get() function takes a bound handle and a service instance
FMRI and pulls all the application properties into an scf_simple_app_props_t. If handle is
NULL, the library uses a temporary handle created for the purpose. If instance is NULL, the
library looks up the instance FMRI of the process calling the function. The caller is responsible
for freeing the scf_simple_app_props_t with scf_simple_app_props_free().

The scf_simple_app_props_free() function frees the scf_simple_app_props_t allocated
by scf_simple_app_props_get().

The scf_simple_app_props_next() function iterates over each property in an
scf_simple_app_props_t. It takes an scf_simple_app_props_t pointer and the last
property returned from the previous call and returns the next property in the
scf_simple_app_props_t. Because the property is a reference into the
scf_simple_app_props_t, its lifetime extends only until that structure is freed.

Description

scf_simple_prop_get(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 7 Nov 2007172



Thescf_simple_app_props_search() function queries for an exact match on a property in a
property group. It takes an apps prop object, a property group name, and a property name,
and returns a property pointer. Because the property is a reference into the
scf_simple_app_props_t, its lifetime extends only until that structure is freed. If the
property group name, pgname, is NULL, “application” is used.

The scf_simple_prop_numvalues() function takes a pointer to a property and returns the
number of values in that property.

The scf_simple_prop_type() function takes a pointer to a property and returns the type of
the property in an scf_type_t.

The scf_simple_prop_name() function takes a pointer to a property and returns a pointer to
the property name string.

The scf_simple_prop_pgname() function takes a pointer to a property and returns a pointer
to the property group name string. The scf_simple_prop_next_boolean(),
scf_simple_prop_next_count(), scf_simple_prop_next_integer(),
scf_simple_prop_next_astring(), and scf_simple_prop_next_ustring() functions take
a pointer to a property and return the first value in the property. Subsequent calls iterate over
all the values in the property. The property's internal iteration can be reset with
scf_simple_prop_next_reset().

The scf_simple_prop_next_time() function takes a pointer to a property and the address of
an allocated int32_t to hold the nanoseconds field, and returns the first value in the property.
Subsequent calls iterate over the property values.

The scf_simple_prop_next_opaque() function takes a pointer to a property and the address
of an allocated integer to hold the size of the opaque buffer. It returns the first value in the
property. Subsequent calls iterate over the property values, as do the
scf_simple_prop_next_*() functions. The scf_simple_prop_next_opaque() function
writes the size of the opaque buffer into the allocated integer.

The scf_simple_prop_next_reset() function resets iteration on a property, so that a call to
one of the scf_simple_prop_next_*() functions returns the first value in the property.

Upon successful completion, scf_simple_prop_get() returns a pointer to an allocated
scf_simple_prop_t. Otherwise, it returns NULL.

Upon successful completion, scf_simple_app_props_get() returns a pointer to an allocated
scf_simple_app_props_t. Otherwise, it returns NULL.

Upon successful completion, scf_simple_app_props_next() returns a pointer to an
scf_simple_prop_t. Otherwise, it returns NULL.

Upon successful completion, scf_simple_app_props_search() returns a pointer to an
scf_simple_prop_t. Otherwise, it returns NULL.

Return Values

scf_simple_prop_get(3SCF)

Extended Library Functions, Volume 4 173



Upon successful completion, scf_simple_prop_numvalues() returns the number of values
in a property. Otherwise, it returns -1.

Upon successful completion, scf_simple_prop_type() returns an scf_type_t. Otherwise, it
returns -1.

Upon successful completion, scf_simple_prop_name() and scf_simple_prop_pgname()

return character pointers. Otherwise, they return NULL.

Upon successful completion, scf_simple_prop_next_boolean(),
scf_simple_prop_next_count(), scf_simple_prop_next_integer(),
scf_simple_prop_next_time(), scf_simple_prop_next_astring(),
scf_simple_prop_next_ustring(), and scf_simple_prop_next_opaque() return a pointer
to the next value in the property. After all values have been returned, NULL is returned and
SCF_ERROR_NONE is set. On failure, NULL is returned and the appropriate error value is set.

The scf_simple_prop_get() and scf_simple_app_props_get() functions will fail if:

SCF_ERROR_CONNECTION_BROKEN The connection to the datastore is broken.

SCF_ERROR_INVALID_ARGUMENT The instance FMRI is invalid or property name is NULL.

SCF_ERROR_NO_MEMORY The memory allocation failed.

SCF_ERROR_NOT_BOUND The connection handle is not bound.

SCF_ERROR_NOT_FOUND The specified instance or property does not exist.

SCF_ERROR_PERMISSION_DENIED The caller is not authorized to read the property's
value(s).

The scf_simple_app_props_next() function will fail if:

SCF_ERROR_NOT_SET The value of the propblock argument is NULL.

The scf_simple_app_props_search() function will fail if:

SCF_ERROR_NOT_FOUND The property was not found.

SCF_ERROR_NOT_SET The value of the propblock or propname argument is NULL.

The scf_simple_prop_numvalues(), scf_simple_prop_type(), scf_simple_prop_name(),
and scf_simple_prop_pgname() functions will fail if:

SCF_ERROR_NOT_SET The property is NULL.

The scf_simple_prop_next_boolean(), scf_simple_prop_next_count(),
scf_simple_prop_next_integer(), scf_simple_prop_next_time(),
scf_simple_prop_next_astring(), scf_simple_prop_next_ustring(), and
scf_simple_prop_next_opaque() functions will fail if:

SCF_ERROR_NOT_SET The property is NULL.

Errors

scf_simple_prop_get(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 7 Nov 2007174



SCF_ERROR_TYPE_MISMATCH The requested type does not match the property type.

EXAMPLE 1 Simple Property Get

/*

* In this example, we pull the property named "size" from the

* default property group. We make sure that the property

* isn’t empty, and then copy it into the sizeval variable.

*/

scf_simple_prop_t *prop;

ssize_t numvals;

int64_t *sizeval;

prop = scf_simple_prop_get(

"svc://localhost/category/service/instance",
NULL, "size");

numvals = scf_simple_prop_numvalues(prop);

if(numvals > 0){

sizeval = scf_simple_prop_next_integer(prop);

}

scf_simple_prop_free(prop);

EXAMPLE 2 Property Iteration

scf_simple_prop_t *prop;

scf_simple_app_props_t *appprops;

appprops = scf_simple_app_props_get(

"svc://localhost/category/service/instance");

prop = scf_simple_app_props_next(appprops, NULL);

while(prop != NULL)

{

/*

* This iteration will go through every property in the

* instance’s application block. The user can use

* the set of property functions to pull the values out

* of prop, as seen in other examples.

*/

(...code acting on each property...)

Examples

scf_simple_prop_get(3SCF)

Extended Library Functions, Volume 4 175



EXAMPLE 2 Property Iteration (Continued)

prop = scf_simple_app_props_next(appprops, prop);

}

scf_simple_app_props_free(appprops);

EXAMPLE 3 Property Searching

/*

* In this example, we pull the property block from the instance,

* and then query it. Generally speaking, the simple get would

* be used for an example like this, but for the purposes of

* illustration, the non-simple approach is used. The property

* is a list of integers that are pulled into an array.

* Note how val is passed back into each call, as described above.

*/

scf_simple_app_props_t *appprops;

scf_simple_prop_t *prop;

int i;

int64_t *intlist;

ssize_t numvals;

appprops = scf_simple_app_props_get(

"svc://localhost/category/service/instance");

prop = scf_simple_app_props_search(appprops, "appname", "numlist");

if(prop != NULL){

numvals = scf_simple_prop_numvalues(prop);

if(numvals > 0){

intlist = malloc(numvals * sizeof(int64_t));

val = scf_simple_prop_next_integer(prop);

for(i=0, i < numvals, i++){

intlist[i] = *val;

val = scf_simple_prop_next_integer(prop);

}

}

}

scf_simple_app_props_free(appprops);

scf_simple_prop_get(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 7 Nov 2007176



See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libscf(3LIB), scf_error(3SCF), attributes(5)

Attributes

See Also

scf_simple_prop_get(3SCF)

Extended Library Functions, Volume 4 177

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libscf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


scf_simple_walk_instances – observational interface for Service Configuration Facility

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

int scf_simple_walk_instances(uint_t flags, void *private,
int (*inst_callback)(scf_handle_t *, scf_instance_t *, void *));

The scf_simple_walk_instances() function iterates over every service instance in a
specified state and calls a callback function provided by the user on each specified instance.

The function takes a flags argument to indicate which instance states are involved in the
iteration, an opaque buffer to be passed to the callback function, and a callback function with
three arguments, a handle, an instance pointer, and an opaque buffer. If the callback function
returns a value other than success, iteration is ended, an error is set, and the function returns
-1.

The handle passed to the callback function is provided to the callback function by the library.
This handle is used by the callback function for all low-level allocation involved in the
function.

The simplified library provides defined constants for the flags argument. The user can use a
bitwise OR to apply more than one flag. The SCF_STATE_ALL flag is a bitwise OR of all the
other states.The flags are:

■ SCF_STATE_UNINIT

■ SCF_STATE_MAINT

■ SCF_STATE_OFFLINE

■ SCF_STATE_DISABLED

■ SCF_STATE_ONLINE

■ SCF_STATE_DEGRADED

■ SCF_STATE_ALL

Upon successful completion, scf_simple_walk_instances() returns 0. Otherwise, it returns
-1.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libscf(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

scf_simple_walk_instances(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 17 Aug 2004178

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libscf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


scf_snaplevel_create, scf_snaplevel_handle, scf_snaplevel_destroy, scf_snaplevel_get_parent,
scf_snaplevel_get_scope_name, scf_snaplevel_get_service_name,
scf_snaplevel_get_instance_name, scf_snapshot_get_base_snaplevel,
scf_snaplevel_get_next_snaplevel – create and manipulate snaplevel handles in the Service
Configuration Facility

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

scf_snaplevel_t *scf_snaplevel_create(scf_handle_t *handle);

scf_handle_t *scf_snaplevel_handle(scf_snaplevel_t *level);

void scf_snaplevel_destroy(scf_snaplevel_t *level);

int scf_snaplevel_get_parent(const scf_snaplevel_t *level,
const scf_snapshot_t *snap);

ssize_t scf_snaplevel_get_scope_name(const scf_snaplevel_t *level,
char *buf, size_t size);

ssize_t scf_snaplevel_get_service_name(const scf_snaplevel_t *level,
char *buf, size_t size);

ssize_t scf_snaplevel_get_instance_name(const scf_snaplevel_t *level,
char *buf, size_t size);

int scf_snapshot_get_base_snaplevel(const scf_snapshot_t *snap,
scf_snaplevel_t *level);

int scf_snaplevel_get_next_snaplevel(scf_snaplevel_t *in,
scf_snaplevel_t *out);

A snaplevel holds all of the property groups associated with either a service or an instance.
Each snapshot has an ordered list of snaplevels. Snaplevels contain the names of the instance
or service from which they are derived.

An scf_snaplevel_t is an opaque handle that can be set to a single snaplevel at any given
time. When set, the scf_snaplevel_t inherits the point in time from the scf_snapshot_t
from which it comes.

The scf_snaplevel_create() function allocates and initializes a new scf_snaplevel_t

bound to handle. The scf_snaplevel_destroy() function destroys and frees level.

The scf_snaplevel_handle() function retrieves the handle to which level is bound.

The scf_snaplevel_get_parent() function sets snap to the parent snapshot of the snaplevel
to which level is set. The snapshot specified by snap is attached to the same point in time as
level.

The scf_snaplevel_get_scope_name(), scf_snaplevel_get_service_name(), and
scf_snaplevel_get_instance_name() functions retrieve the name of the scope, service, and

Name

Synopsis

Description

scf_snaplevel_create(3SCF)

Extended Library Functions, Volume 4 179



instance for the snapshot to which snap is set. If the snaplevel is from an instance, all three
succeed. If the snaplevel is from a service, scf_snaplevel_get_instance_name() fails.

The scf_snapshot_get_base_snaplevel() function sets level to the first snaplevel in the
snapshot to which snap is set. The scf_snaplevel_get_next_snaplevel() function sets out
to the next snaplevel after the snaplevel to which in is set. Both the in and out arguments can
point to the same scf_snaplevel_t.

To retrieve the property groups associated with a snaplevel, see
scf_iter_snaplevel_pgs(3SCF), scf_iter_snaplevel_pgs_typed(3SCF), and
scf_snaplevel_get_pg(3SCF).

Upon successful completion, scf_snaplevel_create() returns a new scf_snaplevel_t.
Otherwise, it returns NULL.

Upon successful completion, scf_snaplevel_get_scope_name(),
scf_snaplevel_get_service_name(), and scf_snaplevel_get_instance_name() return
the length of the string written, not including the terminating null byte. Otherwise, they
return -1.

Upon successful completion, scf_snaplevel_get_parent(),
scf_snapshot_get_base_snaplevel(), and scf_snaplevel_get_next_snaplevel()

return. Otherwise, they return -1.

The scf_snaplevel_create() function will fail if:

SCF_ERROR_INVALID_ARGUMENT The handle argument is NULL.

SCF_ERROR_NO_MEMORY There is not enough memory to allocate an
scf_snaplevel_t.

SCF_ERROR_NO_RESOURCES The server does not have adequate resources for a new
snapshot handle.

The scf_snaplevel_get_scope_name(), scf_snaplevel_get_service_name(),
scf_snaplevel_get_instance_name(), and scf_snaplevel_get_parent() functions will
fail if:

SCF_ERROR_DELETED The object referred to by level has been deleted.

SCF_ERROR_NOT_SET The snaplevel is not set.

SCF_ERROR_NOT_BOUND The handle is not bound.

SCF_ERROR_CONNECTION_BROKEN The connection to the repository was lost.

The scf_snaplevel_get_instance_name() function will fail if:

SCF_ERROR_CONSTRAINT_VIOLATED The snaplevel is derived from a service.

The scf_snapshot_get_base_snaplevel() function will fail if:

Return Values

Errors

scf_snaplevel_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 27 Aug 2007180



SCF_ERROR_CONNECTION_BROKEN The connection to the repository was lost.

SCF_ERROR_DELETED The snapshot has been deleted.

SCF_ERROR_HANDLE_MISMATCH The snapshot and snaplevel are not derived from the
same handle.

SCF_ERROR_NO_RESOURCES The server does not have the resources to complete the
request.

SCF_ERROR_NOT_BOUND The handle is not bound.

SCF_ERROR_NOT_FOUND There are no snaplevels in this snapshot.

SCF_ERROR_NOT_SET The snapshot is not set.

The scf_snaplevel_get_next_snaplevel() function will fail if:

SCF_ERROR_DELETED The snaplevel has been deleted.

SCF_ERROR_NOT_SET The snaplevel is not set.

SCF_ERROR_HANDLE_MISMATCH The in and out arguments are not derived from the same
handle.

SCF_ERROR_NOT_BOUND The handle is not bound.

SCF_ERROR_CONNECTION_BROKEN The connection to the repository was lost.

SCF_ERROR_NOT_FOUND There are no more snaplevels in this snapshot.

The scf_error(3SCF) function can be used to retrieve the error value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libscf(3LIB), scf_error(3SCF), scf_iter_snaplevel_pgs(3SCF),
scf_iter_snaplevel_pgs_typed(3SCF), scf_snaplevel_get_pg(3SCF), attributes(5)

Attributes

See Also

scf_snaplevel_create(3SCF)

Extended Library Functions, Volume 4 181

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libscf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


scf_snapshot_create, scf_snapshot_handle, scf_snapshot_destroy, scf_snapshot_get_parent,
scf_snapshot_get_name, scf_snapshot_update, scf_instance_get_snapshot – create and
manipulate snapshot handles and snapshots in the Service Configuration Facility

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

scf_snapshot_t *scf_snapshot_create(scf_handle_t *handle);

scf_handle_t *scf_snapshot_handle(scf_snapshot_t *snap);

void scf_snapshot_destroy(scf_snapshot_t *snap);

int scf_snapshot_get_parent(const scf_snapshot_t *snap,
scf_instance_t *inst);

ssize_t scf_snapshot_get_name(const scf_snapshot_t *snap,
char *buf, size_t size);

int scf_snapshot_update(scf_snapshot_t *snap);

int scf_instance_get_snapshot(const scf_instance_t *inst,
const char *name, scf_snapshot_t *snap);

A snapshot is an unchanging picture of the full set of property groups associated with an
instance. Snapshots are automatically created and managed by the Solaris Management
Facility. See smf(5).

A snapshot consists of a set of snaplevels, each of which holds copies of the property groups
associated with an instance or service in the resolution path of the base instance. Typically,
there is one snaplevel for the instance and one for the instance's parent service.

The scf_snapshot_create() function allocates and initializes a new scf_snapshot_t bound
to handle. The scf_snapshot_destroy() function destroys and frees snap.

The scf_snapshot_handle() function retrieves the handle to which snap is bound.

The scf_snapshot_get_parent() function sets inst to the parent of the snapshot to which
snap is set.

The scf_snapshot_get_name() function retrieves the name of the snapshot to which snap is
set.

The scf_snapshot_update() function reattaches snap to the latest version of the snapshot to
which snap is set.

The scf_instance_get_snapshot() function sets snap to the snapshot specified by name in
the instance specified by inst. To walk all of the snapshots, see
scf_iter_instance_snapshots(3SCF).

To access the snaplevels of a snapshot, see scf_snapshot_get_base_snaplevel(3SCF).

Name

Synopsis

Description

scf_snapshot_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 27 Aug 2007182

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-5


Upon successful completion, scf_snapshot_create() returns a new scf_snapshot_t.
Otherwise, it returns NULL.

Upon successful completion, scf_snapshot_handle() returns the handle to which snap is
bound. Otherwise, it returns NULL.

Upon successful completion, scf_snapshot_get_name() returns the length of the string
written, not including the terminating null byte. Otherwise, it returns NULL.

The scf_snapshot_update() function returns 1 if the snapshot was updated, 0 if the snapshot
had not been updated, and -1 on failure.

Upon successful completion, scf_snapshot_get_parent() and
scf_instance_get_snapshot() return 0. Otherwise, they return -1.

The scf_snapshot_create() function will fail if:

SCF_ERROR_INVALID_ARGUMENT

The handle argument is NULL.

SCF_ERROR_NO_MEMORY

There is not enough memory to allocate an scf_snapshot_t.

SCF_ERROR_NO_RESOURCES

The server does not have adequate resources for a new instance handle.

The scf_snapshot_handle() function will fail if:

SCF_ERROR_HANDLE_DESTROYED

The handle associated with snap has been destroyed.

The scf_snapshot_get_name() and scf_snapshot_get_parent() functions will fail if:

SCF_ERROR_DELETED

The snapshot has been deleted.

SCF_ERROR_NOT_SET

The snapshot is not set.

SCF_ERROR_NOT_BOUND

The handle is not bound.

SCF_ERROR_CONNECTION_BROKEN

The connection to the repository was lost.

The scf_snapshot_update() function will fail if:

SCF_ERROR_CONNECTION_BROKEN

The connection to the repository was lost.

SCF_ERROR_DELETED

An ancestor of the snapshot specified by snap has been deleted.

Return Values

Errors

scf_snapshot_create(3SCF)

Extended Library Functions, Volume 4 183



SCF_ERROR_INTERNAL

An internal error occurred. This can happen if snap has been corrupted.

SCF_ERROR_INVALID_ARGUMENT

The snap argument refers to an invalid scf_snapshot_t.

SCF_ERROR_NOT_BOUND

The handle is not bound.

SCF_ERROR_NOT_SET

The snapshot specified by snap is not set.

The scf_instance_get_snapshot() function will fail if:

SCF_ERROR_BACKEND_ACCESS

The storage mechanism that the repository server (svc.configd(1M)) chose for the
operation denied access.

SCF_ERROR_CONNECTION_BROKEN

The connection to the repository was lost.

SCF_ERROR_DELETED

The instance has been deleted.

SCF_ERROR_HANDLE_MISMATCH

The instance and snapshot are not derived from the same handle.

SCF_ERROR_INTERNAL

An internal error occurred.

SCF_ERROR_INVALID_ARGUMENT

The value of the name argument is not a valid snapshot name.

SCF_ERROR_NO_RESOURCES

The server does not have the resources to complete the request.

SCF_ERROR_NOT_BOUND

The handle is not bound.

SCF_ERROR_NOT_FOUND

The snapshot specified by name was not found.

SCF_ERROR_NOT_SET

The instance is not set.

The scf_error(3SCF) function can be used to retrieve the error value.

See attributes(5) for descriptions of the following attributes:Attributes

scf_snapshot_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 27 Aug 2007184

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.configd-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libscf(3LIB), scf_error(3SCF), scf_iter_instance_snapshots(3SCF),
scf_snapshot_get_base_snaplevel(3SCF), attributes(5), smf(5)

See Also

scf_snapshot_create(3SCF)

Extended Library Functions, Volume 4 185

http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libscf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-5


scf_tmpl_pg_create, scf_tmpl_pg_reset, scf_tmpl_pg_destroy, scf_tmpl_get_by_pg_name,
scf_tmpl_get_by_pg, scf_tmpl_iter_pgs – template property group functions

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

scf_pg_tmpl_t *scf_tmpl_pg_create(scf_handle_t *handle);

void scf_tmpl_pg_reset(scf_pg_tmpl_t *pg_tmpl);

void scf_tmpl_pg_destroy(scf_pg_tmpl_t *pg_tmpl);

int scf_tmpl_get_by_pg_name(const char *instance_fmri,
const char *snapshot, const char *pg_name,
const char *pg_type, scf_pg_tmpl_t *pg_tmpl, int flags);

int scf_tmpl_get_by_pg(scf_propertygroup_t *pg,
scf_pg_tmpl_t *pg_tmpl, int flags)

int scf_tmpl_iter_pgs(scf_pg_tmpl_t *pg_tmpl, const char *fmri,
const char *snapshot, const char *pg_type, int flags);

The template property group functions locate and give access to metadata about SMF
configuration for service instances. They are used to directly access property group metadata
and explore metadata for properties contained in those property groups.

A property group does not need to be currently defined in order to explore metadata about it,
as long as the metadata is defined. Thus, the property group template functions operate on
strings rather than scf_propertygroup_t entities.

By default, when an instance FMRI is specified, scf_tmpl_get_by_pg_name() and
scf_tmpl_iter_pgs() lookup composed data from the running snapshot of the instance. A
different snapshot may be explicitly selected by specifying a valid snapshot name rather than
NULL for the snapshot argument. If a service FMRI is specified, the current properties are
used.

By default, these functions also explore template data defined by the service or instance itself,
the service's restarter, and global template data. See smf_template(5) for more information
about this composition.

Once retrieved, the scf_pg_tmpl_t can be explored using the scf_tmpl_pg_name(3SCF) and
scf_tmpl_prop_create(3SCF) suite of functions.

Before calling scf_tmpl_get_by_pg(), scf_tmpl_get_by_pg_name(), or
scf_tmpl_iter_pgs(), the scf_pg_tmpl_t must be allocated by scf_tmpl_pg_create().
The scf_pg_tmpl_t can be reset to contain no template information with
scf_tmpl_pg_reset(), so that it can be used to start an iteration from scratch. All associated
memory can be freed with scf_tmpl_pg_destroy().

Name

Synopsis

Description

scf_tmpl_pg_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Oct 2008186

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-template-5


The scf_tmpl_get_by_pg() function locates the most specific matching template for the
property group supplied. The parent of that property group can be either a service or an
instance.

The scf_tmpl_get_by_pg_name() function locates the most specific matching template for
the property group as specified. As described above, when the snapshot argument is NULL the
default running snapshot is used. If flags includes SCF_PG_TMPL_FLAG_CURRENT, the snapshot
argument is ignored and the current configuration is used. If flags includes
SCF_PG_TMPL_FLAG_EXACT, only the exact FMRI is looked up. Either or both of the pg_name
and pg_type arguments may be specified as NULL. In this case, pg_name and/or pg_type is
wildcarded and matches any value. The most specific snapshot matching those arguments is
returned.

The scf_tmpl_iter_pgs() function iterates across all templates defined for the specified
FMRI, snapshot, and optional property group type. It also takes an optional flags argument. If
flags includes SCF_PG_TMPL_FLAG_CURRENT, the snapshot argument is ignored and the
“running” snapshot is used. SCF_PG_TMPL_FLAG_REQUIRED searches only for required
property groups. SCF_PG_TMPL_FLAG_EXACT looks only at the exact FMRI provided for
templates, and not for templates defined on its restarter or globally.

The iterator state for scf_tmpl_iter_pgs() is stored on the template data structure. The data
structure should be allocated with scf_tmpl_pg_create() and to continue the iteration the
previously returned structure should be passed in as an argument.

The scf_tmpl_pg_create() function returns NULL on failure and a pointer to an allocated
and populated scf_pg_tmpl_t on success. The caller is responsible for freeing the memory
with scf_tmpl_pg_destroy().

The scf_tmpl_get_by_pg() and scf_tmpl_get_by_pg_name() functions return 0 on success
and -1 on failure.

The scf_tmpl_iter_pgs() function returns 1 on successful completion. If the iteration is
complete, it returns 0. It returns -1 on error.

The scf_tmpl_get_by_pg(), scf_tmpl_get_by_pg_name(), and scf_tmpl_iter_pgs()

functions will fail if:

SCF_ERROR_BACKEND_ACCESS The storage mechanism that the repository server
(svc.configd(1M)) chose for the operation denied
access.

SCF_ERROR_CONNECTION_BROKEN The connection to the repository was lost.

SCF_ERROR_DELETED The instance or its template property group has been
deleted.

SCF_ERROR_HANDLE_DESTROYED The handle passed in has been destroyed.

SCF_ERROR_INTERNAL An internal error occurred.

Return Values

Errors

scf_tmpl_pg_create(3SCF)

Extended Library Functions, Volume 4 187

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.configd-1m


SCF_ERROR_INVALID_ARGUMENT The handle argument, fmri argument, snapshot name,
pg_name, or pg is invalid.

SCF_ERROR_NO_MEMORY There is not enough memory to populate the
scf_pg_tmpl_t.

SCF_ERROR_NO_RESOURCES The server does not have adequate resources to complete
the request.

SCF_ERROR_NOT_BOUND The handle is not currently bound.

SCF_ERROR_NOT_FOUND The object matching FMRI does not exist in the
repository, or the snapshot does not exist.

SCF_ERROR_PERMISSION_DENIED The template could not be read due to access
restrictions.

The scf_tmpl_get_by_pg() function will fail if:

SCF_ERROR_NOT_SET The property group specified by pg is not set.

The scf_tmpl_pg_create() function will fail if:

SCF_ERROR_INVALID_ARGUMENT The handle argument is NULL.

SCF_ERROR_NO_MEMORY There is no memory available.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

svc.configd(1M), scf_tmpl_pg_name(3SCF), scf_tmpl_prop_create(3SCF),
attributes(5), smf_template(5)

Attributes

See Also

scf_tmpl_pg_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Oct 2008188

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.configd-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-template-5


scf_tmpl_pg_name, scf_tmpl_pg_type, scf_tmpl_pg_target, scf_tmpl_pg_required,
scf_tmpl_pg_common_name, scf_tmpl_pg_description – retrieve the metadata about a
specific property group

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

ssize_t scf_tmpl_pg_name(const scf_pg_tmpl_t *pg_tmpl,
char **out);

ssize_t scf_tmpl_pg_type(const scf_pg_tmpl_t *pg_tmpl,
char **out);

ssize_t scf_tmpl_pg_target(const scf_pg_tmpl_t *pg_tmpl,
char **out);

int scf_tmpl_pg_required(const scf_pg_tmpl_t *pg_tmpl,
uint8_t *out)

ssize_t scf_tmpl_pg_common_name(const scf_pg_tmpl_t *pg_tmpl,
char * locale, char **out);

ssize_t scf_tmpl_pg_description(const scf_pg_tmpl_t *pg_tmpl,
char * locale, char **out);

These functions retrieve the metadata about a specific property group. They require that the
template for the property group has already been located by one of the
scf_tmpl_pg_create(3SCF) suite of functions.

The scf_tmpl_pg_name() function retrieves the name of the property group template and
place it in *out. If the property group name is implicitly wildcarded (see smf_template(5)) in
the template, this function will return a string containing SCF_TMPL_WILDCARD (“*”) in *out.
The caller is responsible for freeing the *out buffer on success.

The scf_tmpl_pg_type() function will retrieve the type of the property group template and
place it in *out. If the property group type is implicitly wildcarded (see smf_template(5)) in
the template, this function will return a string containing SCF_TMPL_WILDCARD (“*”) in *out.
The caller is responsible for freeing the *out buffer on success.

The scf_tmpl_pg_target() function will retrieve the target of the property group template
and place it in *out. The caller is responsible for freeing the *out buffer on success.

The scf_tmpl_pg_required() function will determine whether the property group is
required and place the result of that check in *out. If required is unset, out will be the default
value of 0. If the property is explicitly set to required, out will be 1.

The scf_tmpl_pg_common_name() function will retrieve the property group's localized
common name as currently templated and place it in *out. A locale (as described in
setlocale(3C)) may be specified, or if the supplied locale is NULL, the current locale will be
used. If a common_name in the specified locale is not found, the function will also look for a

Name

Synopsis

Description

scf_tmpl_pg_name(3SCF)

Extended Library Functions, Volume 4 189

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-template-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-template-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=setlocale-3c


common_name in the C locale. Some templates will not specify the property group common
name. The caller is responsible for freeing the *out buffer on success.

The scf_tmpl_pg_description() function will retrieve the property group's localized
description as currently templated and place it in *out. A locale (as described in
setlocale(3C)) may be specified, or if the supplied locale is NULL, the current locale will be
used. If a description in the specified locale is not found, the function will also look for a
description in the C locale. Some templates will not specify the property group description.
The caller is responsible for freeing the *out buffer on success.

Upon successful completion, scf_tmpl_pg_name(), scf_tmpl_pg_common_name(),
scf_tmpl_pg_description(), scf_tmpl_pg_target(), and scf_tmpl_pg_type() return the
length of the string written, not including the terminating null byte. Otherwise, they return -1.

Upon successful completion, scf_tmpl_pg_required() returns 0. Otherwise, it returns -1.

The scf_tmpl_pg_name(), scf_tmpl_pg_common_name(), scf_tmpl_pg_description(),
scf_tmpl_pg_required(), scf_tmpl_pg_target(), and scf_tmpl_pg_type() functions will
fail if:

SCF_ERROR_BACKEND_ACCESS The storage mechanism that the repository server
(svc.configd(1M)) chose for the operation denied
access.

SCF_ERROR_CONNECTION_BROKEN The connection to the repository was lost.

SCF_ERROR_DELETED The template property group has been deleted.

SCF_ERROR_HANDLE_DESTROYED The handle passed in has been destroyed.

SCF_ERROR_INTERNAL An internal error occurred.

SCF_ERROR_NO_MEMORY There is not enough memory to populate the
scf_pg_tmpl_t.

SCF_ERROR_NO_RESOURCES The server does not have adequate resources to complete
the request.

SCF_ERROR_NOT_BOUND The handle is not currently bound.

SCF_ERROR_PERMISSION_DENIED The template could not be read due to access
restrictions.

SCF_ERROR_TEMPLATE_INVALID The template data is invalid.

The scf_tmpl_pg_common_name() and scf_tmpl_pg_description() functions will fail if:

SCF_ERROR_NOT_FOUND The property does not exist or exists and has no value.

SCF_ERROR_INVALID_ARGUMENT The locale string is too long.

Return Values

Errors

scf_tmpl_pg_name(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Oct 2008190

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=setlocale-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.configd-1m


See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

svc.configd(1M), scf_tmpl_pg_create(3SCF), setlocale(3C), attributes(5),
smf_template(5)

Attributes

See Also

scf_tmpl_pg_name(3SCF)

Extended Library Functions, Volume 4 191

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.configd-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=setlocale-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-template-5


scf_tmpl_prop_create, scf_tmpl_prop_reset, scf_tmpl_prop_destroy, scf_tmpl_get_by_prop,
scf_tmpl_iter_props – template property functions

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

scf_prop_tmpl_t *scf_tmpl_prop_create(scf_handle_t *handle);

void scf_tmpl_prop_reset(scf_prop_tmpl_t *prop_tmpl);

void scf_tmpl_prop_destroy(scf_prop_tmpl_t *prop_tmpl);

int scf_tmpl_get_by_prop(scf_pg_tmpl_t *pg_tmpl,
const char *prop, scf_prop_tmpl_t *prop_tmpl, int flags)

int scf_tmpl_iter_props(scf_pg_tmpl_t *pg_tmpl, const char *fmri,
scf_prop_tmpl_t *prop_tmpl, int flags);

The template property functions locate and give access to metadata about properties. They
require that the template for the property group containing the property has already been
located by one of the scf_tmpl_pg_create(3SCF) suite of functions.

Once retrieved, the scf_prop_tmpl_t can be explored using the scf_tmpl_prop_name(3SCF)
suite of functions.

Before calling scf_tmpl_get_by_prop() or scf_tmpl_iter_props(), the scf_prop_tmpl_t
must be allocated by scf_tmpl_prop_create. The scf_prop_tmpl_t can be reset to contain
no template information with scf_tmpl_prop_reset(), so that it can be used to start an
iteration from scratch. All associated memory can be freed with scf_tmpl_prop_destroy().

The scf_tmpl_get_by_prop() function locates template data about the property name
specified.

The scf_tmpl_iter_props() function iterates across all property templates defined in the
specified property group template.

The iterator state for scf_tmpl_iter_props() is stored on the property template data
structure. The data structure should be allocated with scf_tmpl_prop_create(), and to
continue the iteration the previously returned structure should be passed in as an argument.

The scf_tmpl_get_by_prop() function returns -1 on failure and 0 on success.

The scf_tmpl_iter_props() function returns 1 on successful completion. If the iteration is
complete, it returns 0. It returns -1 on error.

The scf_tmpl_get_by_prop() and scf_tmpl_iter_props() functions will fail if:

SCF_ERROR_BACKEND_ACCESS The storage mechanism that the repository server
(svc.configd(1M)) chose for the operation denied
access.

SCF_ERROR_CONNECTION_BROKEN The connection to the repository was lost.

Name

Synopsis

Description

Return Values

Errors

scf_tmpl_prop_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Oct 2008192

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.configd-1m


SCF_ERROR_DELETED The instance or its template property group has been
deleted.

SCF_ERROR_HANDLE_DESTROYED The handle passed in has been destroyed.

SCF_ERROR_INTERNAL An internal error occurred.

SCF_ERROR_INVALID_ARGUMENT One of the arguments is invalid.

SCF_ERROR_NO_MEMORY There is not enough memory to populate the
scf_prop_tmpl_t.

SCF_ERROR_NO_RESOURCES The server does not have adequate resources to complete
the request.

SCF_ERROR_NOT_BOUND The handle is not currently bound.

The scf_tmpl_get_by_prop() function will fail if:

SCF_ERROR_NOT_FOUND Template object matching property doesn't exist in the
repository.

SCF_ERROR_TYPE_MISMATCH Matching template object is the wrong type in the
repository.

SCF_ERROR_PERMISSION_DENIED The template could not be read due to access
restrictions.

SCF_ERROR_TEMPLATE_INVALID The template data is invalid.

The scf_tmpl_prop_create() function will fail if:

SCF_ERROR_INVALID_ARGUMENT The handle argument is NULL.

SCF_ERROR_NO_MEMORY There is no memory available.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

svc.configd(1M), scf_tmpl_pg_create(3SCF), scf_tmpl_prop_name(3SCF),
attributes(5), smf_template(5)

Attributes

See Also

scf_tmpl_prop_create(3SCF)

Extended Library Functions, Volume 4 193

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.configd-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-template-5


scf_tmpl_prop_name, scf_tmpl_prop_type, scf_tmpl_prop_required,
scf_tmpl_prop_common_name, scf_tmpl_prop_description, scf_tmpl_prop_units,
scf_tmpl_prop_visibility, scf_tmpl_visibility_to_string, scf_tmpl_prop_cardinality,
scf_tmpl_prop_internal_seps, scf_tmpl_value_name_constraints, scf_count_ranges_destroy,
scf_int_ranges_destroy, scf_tmpl_value_count_range_constraints,
scf_tmpl_value_int_range_constraints, scf_tmpl_value_name_choices, scf_values_destroy,
scf_tmpl_value_count_range_choices, scf_tmpl_value_int_range_choices,
scf_tmpl_value_common_name, scf_tmpl_value_description, scf_tmpl_value_in_constraint
– retrieve the metadata about a specific property

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

ssize_t scf_tmpl_prop_name(const scf_prop_tmpl_t *prop_tmpl,
char **out);

int scf_tmpl_prop_type(const scf_prop_tmpl_t *prop_tmpl,
scf_type_t *out);

int scf_tmpl_prop_required(const scf_prop_tmpl_t *prop_tmpl,
uint8_t *out)

ssize_t scf_tmpl_prop_common_name(const scf_prop_tmpl_t *prop_tmpl,
char *locale, char **out);

ssize_t scf_tmpl_prop_description(const scf_prop_tmpl_t *prop_tmpl,
char * locale, char **out);

ssize_t scf_tmpl_prop_units(const scf_prop_tmpl_t *prop_tmpl,
const char *locale, char **out);

int scf_tmpl_prop_visibility(const scf_prop_tmpl_t *prop_tmpl,
uint8_t *out);

const char *scf_tmpl_visibility_to_string(uint8_t visibility);

int scf_tmpl_prop_cardinality(const scf_prop_tmpl_t *prop_tmpl,
uint64_t *min, uint64_t *max);

int scf_tmpl_prop_internal_seps(const scf_prop_tmpl_t *prop_tmpl,
scf_values_t *out);

int scf_tmpl_value_name_constraints(const scf_prop_tmpl_t *prop_tmpl,
scf_values_t *out);

void scf_count_ranges_destroy(scf_count_ranges_t *ranges);

void scf_int_ranges_destroy(scf_int_ranges_t *ranges);

int scf_tmpl_value_count_range_constraints(

const scf_prop_tmpl_t *prop_tmpl, scf_count_ranges_t *ranges);

int scf_tmpl_value_int_range_constraints(

const scf_prop_tmpl_t *prop_tmpl, scf_int_ranges_t *ranges);

Name

Synopsis

scf_tmpl_prop_name(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Oct 2008194



int scf_tmpl_value_name_choices(const scf_prop_tmpl_t *prop_tmpl,
scf_values_t *vals);

void scf_values_destroy(scf_values_t *vals);

int scf_tmpl_value_count_range_choices(

const scf_prop_tmpl_t *prop_tmpl, scf_count_ranges_t *ranges);

int scf_tmpl_value_int_range_choices(const scf_prop_tmpl_t *prop_tmpl,
scf_int_ranges_t *ranges);

ssize_t scf_tmpl_value_common_name(const scf_prop_tmpl_t *prop_tmpl,
const char *locale, const char *value, char **out);

ssize_t scf_tmpl_value_description(const scf_prop_tmpl_t *prop_tmpl,
const char *locale, const char *value, char **out);

int scf_tmpl_value_in_constraint(const scf_prop_tmpl_t *prop_tmpl,
scf_value_t *value, scf_tmpl_errors_t **errs);

These functions retrieve the metadata about a specific property. They require that the
template for the property has already been located by one of the
scf_tmpl_prop_create(3SCF) suite of functions.

The scf_tmpl_prop_name() function will retrieve the property's name as currently templated
and place it in *out. The caller is responsible for freeing the *out buffer on success.

The scf_tmpl_prop_type() function will retrieve the type of the property as templated and
place the type in out.

The scf_tmpl_prop_required() function will determine whether the property is required in
this property group and place the result of that check in out. If required is unset, out will be the
default, 0. If the property is explicitly set to required, out will be 1.

The scf_tmpl_prop_common_name() function will retrieve the property's localized common
name as currently templated and place it in *out. A locale (as described in setlocale(3C)) can
be specified, or if the supplied locale is NULL, the current locale will be used. If a common name
in the specified locale is not found, the function will also look for a common name in the C
locale. Some templates will not specify the property common name. The caller is responsible
for freeing the *out buffer on success.

The scf_tmpl_prop_description() function will retrieve the property's localized
description as currently templated and place it in *out. A locale (as described in
setlocale(3C)) can be specified, or if the supplied locale is NULL, the current locale will be
used. If a description in the specified locale is not found, the function will also look for a
description in the C locale. Some templates will not specify the property description. The
caller is responsible for freeing the *out buffer on success.

The scf_tmpl_prop_visibility() function will retrieve the visibility of the property as
currently templated and place it in out. A property can be SCF_TMPL_VISIBILITY_HIDDEN,

Description

scf_tmpl_prop_name(3SCF)

Extended Library Functions, Volume 4 195

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=setlocale-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=setlocale-3c


SCF_TMPL_VISIBILITY_READONLY, or SCF_TMPL_VISIBILITY_READWRITE. If the visibility is
unset, this function will return the default, SCF_TMPL_VISIBILITY_READWRITE.

The scf_tmpl_prop_cardinality() function will retrieve the minimum number of values
and maximum number of values allowed for this property and place them in min and max,
respectively. If the values are unset, the defaults of 0 for min and UINT64_MAX for max.

The scf_values_destroy() function destroys an scf_values_t structure and all memory
associated with it.

The scf_values_t structure is populated by a number of functions. Based on the value type, it
is populated with an array of the values. It is also always populated with an array of astring
translations of those values.

typedef struct scf_time {

int64_t t_seconds;

int32_t t_ns;

} scf_time_t;

typedef struct scf_values {

scf_type_t value_type;

char *reserved;

int value_count;

const char **values_as_astring;

union {

uint64_t *v_count;

uint8_t *v_boolean;

int64_t *v_integer;

char **v_astring;

char **v_ustring;

char **v_opaque;

scf_time_t *v_time;

} sv_data;

} scf_values_t;

The scf_tmpl_prop_internal_seps() function will retrieve the list of internal separators as
currently defined in the template. Each separator will be a single string character in a different
element of out. Some templates will not specify any internal separators. The caller is
responsible for calling scf_values_destroy() on success.

The scf_tmpl_value_name_constraints() function will retrieve the set of property values
the property is expected to be part of. Some templates will not specify any constraints. The
caller is responsible for calling scf_values_destroy() on success.

The scf_tmpl_value_count_range_constraints() function will retrieve the set of defined
lower and upper bounds as defined by the property template and place them in ranges. Some
templates will not specify any range constraints.

scf_tmpl_prop_name(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Oct 2008196



The scf_count_ranges_t structure is populated by the
scf_tmpl_value_count_range_constraints() and
scf_tmpl_value_count_range_choices() functions. scf_count_ranges_destroy()
destroys an scf_count_ranges_t and all memory associated with it.

typedef struct scf_count_ranges {

int scr_num_ranges;

uint64_t *scr_min;

uint64_t *scr_max;

} scf_count_ranges_t;

The scf_tmpl_value_int_range_constraints() function will retrieve the set of defined
lower and upper bounds as defined by the property template and place them in ranges. Some
templates will not specify any range constraints.

The scf_int_ranges_t structure is populated by the
scf_tmpl_value_int_range_constraints() and scf_tmpl_value_int_range_choices()

functions. The scf_int_ranges_destroy() function destroys an scf_int_ranges_t and all
memory associated with it.

typedef struct scf_int_ranges {

int scr_num_ranges;

int64_t *scr_min;

int64_t *scr_max;

} scf_int_ranges_t;

The scf_tmpl_value_name_choices() function will retrieve the set of property value choices
that should be offered to a user. Some templates will not specify any choices. The caller is
responsible for calling scf_values_destroy() on success.

The scf_tmpl_value_count_range_choices() function will retrieve the set of defined lower
and upper bounds as defined by the property template and place them in ranges. Some
templates will not specify any range choices.

The scf_tmpl_value_int_range_constraints() function will retrieve the set of defined
lower and upper bounds as defined by the property template and place them in ranges. Some
templates will not specify any range constraints.

The scf_tmpl_value_common_name() function will retrieve the value's common name as
currently templated and place it in *out. A locale (as described in setlocale(3C)) can be
specified, or if the supplied locale is NULL, the current locale will be used. If a common name in
the specified locale is not found, the function will also look for a common name in the C locale.
Some templates will not specify the value common name. The caller is responsible for freeing
the *out buffer on success.

The scf_tmpl_value_description() function will retrieve the value's description as
currently templated and place it in *out. A locale (as described in setlocale(3C)) can be
specified, or if the supplied locale is NULL, the current locale will be used. If a description in the

scf_tmpl_prop_name(3SCF)

Extended Library Functions, Volume 4 197

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=setlocale-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=setlocale-3c


specified locale is not found, the function will also look for a description in the C locale. Some
templates will not specify the value description. The caller is responsible for freeing the *out
buffer on success.

The scf_tmpl_value_in_constraint() function will check that the value provided matches
the constraints as defined in the property template provided. This currently means it will
determine if the value provided:
■ is of the proper type for the property template defined,
■ is within a range defined, if it is a numeric type, and
■ is within the name constraints, if name constraints are defined.

If the template property does not define a type, ranges will be considered of the same type as
the numeric values being checked. Some ranges might consider the value out of constraint
when tested as one numeric type but within constraint if tested as other numeric type. Refer to
strtoull(3C) and strtoll(3C) to see the implications when retrieving numeric values from
the repository or converting strings to numeric values in libscf(3LIB).

If errs is not NULL, an scf_tmpl_error_t will be created, populated and added to errs in case of
a constraint violation. The caller is responsible for calling scf_tmpl_errors_destroy() to
free memory allocated for all scf_tmpl_error_t associated to errs.

Upon successful completion, scf_tmpl_prop_name(), scf_tmpl_prop_common_name(),
scf_tmpl_prop_description(), scf_tmpl_prop_units(),
scf_tmpl_value_common_name(), and scf_tmpl_value_description() return the length of
the string written, not including the terminating null byte. Otherwise, they return -1.

Upon successful completion, scf_tmpl_prop_type(), scf_tmpl_prop_required(),
scf_tmpl_prop_visibility(), scf_tmpl_prop_cardinality(),
scf_tmpl_prop_internal_seps(), scf_tmpl_value_name_constraints(),
scf_tmpl_value_count_range_constraints(),
scf_tmpl_value_int_range_constraints(), scf_tmpl_value_name_choices(),
scf_tmpl_value_count_range_choices(), scf_tmpl_value_int_range_choices() return
0. Otherwise, they return -1.

The scf_tmpl_value_in_constraint() functions returns 0 on success, 1 if the value is not in
the constraint, and -1 on failure.

Upon successful completion, scf_tmpl_visibility_to_string() returns a string of the
visibility supplied.

The scf_tmpl_prop_name(), scf_tmpl_prop_type(), scf_tmpl_prop_required(),
scf_tmpl_prop_common_name(), scf_tmpl_prop_description(), scf_tmpl_prop_units(),
scf_tmpl_prop_visibility(), scf_tmpl_prop_cardinality(),
scf_tmpl_prop_internal_seps(), scf_tmpl_value_name_constraints(),
scf_tmpl_value_count_range_constraints(),
scf_tmpl_value_int_range_constraints(), scf_tmpl_value_name_choices(),

Return Values

Errors

scf_tmpl_prop_name(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Oct 2008198

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=strtoull-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=strtoll-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libscf-3lib


scf_tmpl_value_count_range_choices(), scf_tmpl_value_int_range_choices(),
scf_tmpl_value_common_name(), scf_tmpl_value_description(), and
scf_tmpl_value_in_constraint() functions will fail if:

SCF_ERROR_BACKEND_ACCESS The storage mechanism that the repository server
(svc.configd(1M)) chose for the operation denied
access.

SCF_ERROR_CONNECTION_BROKEN The connection to the repository was lost.

SCF_ERROR_DELETED The template property group has been deleted.

SCF_ERROR_HANDLE_DESTROYED The handle passed in has been destroyed.

SCF_ERROR_INTERNAL An internal error occurred.

SCF_ERROR_NO_MEMORY There is not enough memory to populate the
scf_pg_tmpl_t.

SCF_ERROR_NO_RESOURCES The server does not have adequate resources to complete
the request.

SCF_ERROR_NOT_BOUND The handle is not currently bound.

SCF_ERROR_PERMISSION_DENIED The template could not be read due to access
restrictions.

SCF_ERROR_TEMPLATE_INVALID The template data is invalid.

The scf_tmpl_prop_type(), scf_tmpl_prop_common_name(),
scf_tmpl_prop_description(), scf_tmpl_prop_units(), scf_tmpl_prop_cardinality(),
scf_tmpl_prop_internal_seps(), scf_tmpl_value_name_constraints(),
scf_tmpl_value_count_range_constraints(),
scf_tmpl_value_int_range_constraints(), scf_tmpl_value_name_choices(),
scf_tmpl_value_count_range_choices(), scf_tmpl_value_int_range_choices(),
scf_tmpl_value_common_name(), and scf_tmpl_value_description(), functions will fail
if:

SCF_ERROR_NOT_FOUND The property does not exist or exists and has no value.

The scf_tmpl_value_in_constraint() function will fail if:

SCF_ERROR_INVALID_ARGUMENT Value is not a valid scf_value_t.

The scf_tmpl_prop_common_name(), scf_tmpl_prop_description() and
scf_tmpl_prop_units() functions will fail if:

SCF_ERROR_INVALID_ARGUMENT The locale string is too long to make a property name.

The scf_tmpl_value_common_name() and scf_tmpl_value_description() functions will
fail if:

scf_tmpl_prop_name(3SCF)

Extended Library Functions, Volume 4 199

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.configd-1m


SCF_ERROR_INVALID_ARGUMENT The value and locale strings are too long to make a
property name.

The scf_tmpl_value_count_range_constraints() and
scf_tmpl_value_count_range_choices() functions will fail if:

SCF_ERROR_CONSTRAINT_VIOLATED The range has negative values.

The scf_tmpl_value_int_range_constraints() and
scf_tmpl_value_int_range_choices() functions will fail if:

SCF_ERROR_CONSTRAINT_VIOLATED The range values don't fit in a int64_t.

The scf_tmpl_value_count_range_constraints(),
scf_tmpl_value_int_range_constraints(), scf_tmpl_value_count_range_choices()
and scf_tmpl_value_int_range_choices() functions will fail if:

SCF_ERROR_CONSTRAINT_VIOLATED A range with min value > max value is found.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

svc.configd(1M), scf_tmpl_prop_create(3SCF), setlocale(3C), strtoll(3C),
strtoull(3C), attributes(5), smf_template(5)

Attributes

See Also

scf_tmpl_prop_name(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Oct 2008200

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.configd-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=setlocale-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=strtoll-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=strtoull-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-template-5


scf_tmpl_validate_fmri, scf_tmpl_errors_destroy, scf_tmpl_next_error,
scf_tmpl_reset_errors, scf_tmpl_strerror, scf_tmpl_error_type, scf_tmpl_error_source_fmri,
scf_tmpl_error_pg_tmpl, scf_tmpl_error_pg, scf_tmpl_error_prop_tmpl,
scf_tmpl_error_prop, scf_tmpl_error_value – template validation functions

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

int scf_tmpl_validate_fmri(scf_handle_t *h, const char *fmri,
const char *snapshot, scf_tmpl_errors_t **errs, int flags);

void scf_tmpl_errors_destroy(scf_tmpl_errors_t *errs);

scf_tmpl_error_t *scf_tmpl_next_error(scf_tmpl_errors_t *errs,
scf_tmpl_errors_t *err)

void scf_tmpl_reset_errors(scf_tmpl_errors_t *errs);

int scf_tmpl_strerror(scf_tmpl_error_t *err, char *s,
size_t n, int flags);

int scf_tmpl_error_type(const scf_tmpl_error_t *err,
scf_tmpl_error_type_t *type);

int scf_tmpl_error_source_fmri(const scf_tmpl_error_t *err,
char *fmri);

int scf_tmpl_error_pg_tmpl(const scf_tmpl_error_t *err, char *name,
char *type);

int scf_tmpl_error_pg(const scf_tmpl_error_t *err,
char **name, char **type);

int scf_tmpl_error_prop_tmpl(const scf_tmpl_error_t *err, char **name,
char **type);

int scf_tmpl_error_prop(const scf_tmpl_error_t *err, char **name,
char **type,);

int scf_tmpl_error_value(const scf_tmpl_error_t *err, char**val);

The template validation functions offer a way to validate the configuration data of an service
instance against the appropriate template data. The scf_tmpl_validate_fmri() function
returns the full set of errors for the specified instance, and those errors can be printed or
explored directly.

By default, the validation is performed on the composed data from the running snapshot of an
instance. A different snapshot can be explicitly selected by specifying a valid snapshot name
rather than NULL for the snapshot argument. If flags includes
SCF_TMPL_VALIDATE_FLAG_CURRENT, the snapshot argument is ignored and the current
configuration is used.

Name

Synopsis

Description

scf_tmpl_validate_fmri(3SCF)

Extended Library Functions, Volume 4 201



By default, these functions also explore template data defined by the service or instance itself,
the service's restarter, and global template data. See smf_template(5) for more information
about this composition.

An instance FMRI is required, and FMRIs that specify other entities (for example, services)
are explicitly rejected.

The scf_tmpl_validate_fmri() function validates an instance FMRI against the template
data in the repository. As described above, when the snapshot argument is NULL, the default
running snapshot is used. If scf_tmpl_errors_t ** is non-null, the structure is allocated and
returned to the caller for further perusal or printing of the errors.

The scf_tmpl_errors_destroy() function destroys and frees the scf_tmpl_errors_t and
all of the scf_tmpl_error_t structures to which it refers.

The scf_tmpl_next_error() function takes a pointer to a scf_tmpl_errors_t structure
previously returned by scf_tmpl_validate_fmri(). On the first call, it returns a pointer to
the first scf_tmpl_error_t found during validation. On subsequent calls, the next error is
returned. To resume processing from the first error, the caller can use
scf_tmpl_reset_errors().

The contents of an scf_tmpl_error_t are determined by its type. Types added as additional
validation checks are introduced. Based on the error type, a set of fields can be retrieved from
the error.

SCF_TERR_TYPE_INVALID

reserved invalid type

SCF_TERR_MISSING_PG

required property group is missing

template source FMRI
property group template name and type

SCF_TERR_WRONG_PG_TYPE

property group type is incorrect

template source FMRI
property group template name and type
property group name and type

SCF_TERR_MISSING_PROP

required property is missing

template source FMRI
property group template name and type

scf_tmpl_validate_fmri(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Oct 2008202

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-template-5


property template name and type

SCF_TERR_WRONG_PROP_TYPE

property type is incorrect

template source FMRI
property group template name and type
property template name and type
property group name and type
property name and type

SCF_TERR_CARDINALITY_VIOLATION

number of values violates cardinality

template source FMRI
property group template name and type
property template name and type
property group name and type
property name and type
cardinality and cardinality limits

SCF_TERR_VALUE_CONSTRAINT_VIOLATED

constraint violated for value

template source FMRI
property group template name and type
property template name and type
property group name and type
property name and type
value

SCF_TERR_RANGE_VIOLATION

value violated specified range

template source FMRI
property group template name and type
property template name and type
property group name and type
property name and type
value

SCF_TERR_PROP_TYPE_MISMATCH

value type is different from property type

scf_tmpl_validate_fmri(3SCF)

Extended Library Functions, Volume 4 203



template source FMRI
property group template name and type
property template name and type

SCF_TERR_VALUE_OUT_OF_RANGE

value is out of template defined range

template source FMRI
property group template name and type
property template name and type
value

SCF_TERR_INVALID_VALUE

value violates template defined constraints

template source FMRI
property group template name and type
property template name and type
value

The SCF_TERR_PROP_TYPE_MISMATCH, SCF_TERR_VALUE_OUT_OF_RANGE and
SCF_TERR_INVALID_VALUE types are only set from calls to
scf_tmpl_value_in_constraint(3SCF).

The scf_tmpl_error_type() function retrieves the error type.

The scf_tmpl_error_source_fmri() function retrieves a string with the FMRI of the source
of the template that was violated. This string is freed by scf_tmpl_errors_destroy().

The scf_tmpl_error_pg_tmpl() function retrieves strings with the name and type of the
property group template that was violated. If the property group name or type was implicitly
wildcarded (see smf_template(5)) in the template, this function returns a string containing
SCF_TMPL_WILDCARD (“*”). These strings are freed by scf_tmpl_errors_destroy().

The scf_tmpl_error_pg() function retrieves strings with the name and type of the property
group that was violated. These strings are freed by scf_tmpl_errors_destroy().

The scf_tmpl_error_prop_tmpl() function retrieves strings with the name and type of the
property template that was violated. If the property type was implicitly wildcarded (see
smf_template(5)) in the template, this function returns a string containing
SCF_TMPL_WILDCARD (“*”). These strings are freed by scf_tmpl_errors_destroy().

The scf_tmpl_error_prop() function retrieves strings with the name and type of the
property that was violated. These strings are freed by scf_tmpl_errors_destroy().

The scf_tmpl_error_value() function retrieves a string with the value containing the error
in val. This string are freed by scf_tmpl_errors_destroy().

scf_tmpl_validate_fmri(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Oct 2008204

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-template-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-template-5


The scf_tmpl_strerror() function takes an scf_tmpl_error_t previously returned by
scf_tmpl_next_error() and returns in s. If flags includes SCF_TMPL_STRERROR_HUMAN, s is a
human-readable, localized description of the error. Otherwise, s is a one-line string suitable
for logfile output.

The scf_tmpl_validate_fmri() function returns 0 on successful completion with no
validation failures. It returns 1 if there are validation failures. It returns -1 if there is an error
validating the instance.

The scf_tmpl_next_error() function returns a pointer to the next scf_tmpl_error_t.
When none remain, it returns NULL.

The scf_tmpl_error_type(), scf_tmpl_error_source_fmri(),
scf_tmpl_error_pg_tmpl(), scf_tmpl_error_pg(), scf_tmpl_error_prop_tmpl(),
scf_tmpl_error_prop(), and scf_tmpl_error_value() functions return 0 on success and -1
on failure.

The scf_tmpl_strerror() function returns the number of bytes that would have been
written to s if n had been sufficiently large.

The scf_tmpl_validate_fmri() function will fail if:

SCF_ERROR_BACKEND_ACCESS The storage mechanism that the repository server
(svc.configd(1M)) chose for the operation denied
access.

SCF_ERROR_CONNECTION_BROKEN The connection to the repository was lost.

SCF_ERROR_DELETED The instance or one of its template property group have
been deleted.

SCF_ERROR_HANDLE_DESTROYED The handle passed in has been destroyed.

SCF_ERROR_INTERNAL An internal error occurred.

SCF_ERROR_INVALID_ARGUMENT The handle argument, FMRI argument, or snapshot
name is invalid

SCF_ERROR_NO_MEMORY There is not enough memory to validate the instance.

SCF_ERROR_NO_RESOURCES The server does not have adequate resources to complete
the request.

SCF_ERROR_NOT_BOUND The handle is not currently bound.

SCF_ERROR_NOT_FOUND An object matching FMRI does not exist in the
repository, or the snapshot does not exist.

SCF_ERROR_PERMISSION_DENIED The instance or template could not be read due to access
restrictions.

SCF_ERROR_TEMPLATE_INVALID The template data is invalid.

Return Values

Errors

scf_tmpl_validate_fmri(3SCF)

Extended Library Functions, Volume 4 205

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.configd-1m


The scf_tmpl_strerror(), scf_tmpl_error_type(), scf_tmpl_error_source_fmri(),
scf_tmpl_error_pg_tmpl(), scf_tmpl_error_pg(), scf_tmpl_error_prop_tmpl(),
scf_tmpl_error_prop(), and scf_tmpl_error_value() functions will fail if:

SCF_ERROR_INVALID_ARGUMENT The scf_tmpl_errors_t argument is invalid.

The scf_tmpl_error_type(), scf_tmpl_error_source_fmri(),
scf_tmpl_error_pg_tmpl(), scf_tmpl_error_pg(), scf_tmpl_error_prop_tmpl(),
scf_tmpl_error_prop(), and scf_tmpl_error_value() functions will fail if:

SCF_ERROR_NOT_FOUND The data requested is not available for the scf_tmpl_error_t
argument supplied.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

svc.configd(1M), scf_tmpl_value_in_constraint(3SCF), attributes(5),
smf_template(5)

Attributes

See Also

scf_tmpl_validate_fmri(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Oct 2008206

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.configd-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-template-5


scf_transaction_create, scf_transaction_handle, scf_transaction_reset,
scf_transaction_reset_all, scf_transaction_destroy, scf_transaction_destroy_children,
scf_transaction_start, scf_transaction_property_delete, scf_transaction_property_new,
scf_transaction_property_change, scf_transaction_property_change_type,
scf_transaction_commit – create and manipulate transaction in the Service Configuration
Facility

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

scf_transaction_t *scf_transaction_create(scf_handle_t *handle);

scf_handle_t *scf_transaction_handle(scf_transaction_t *tran);

void scf_transaction_reset(scf_transaction_t *tran);

void scf_transaction_reset_all(scf_transaction_t *tran);

void scf_transaction_destroy(scf_transaction_t *tran);

void scf_transaction_destroy_children(scf_transaction_t *tran);

int scf_transaction_start(scf_transaction_t *tran,
scf_propertygroup_t *pg);

int scf_transaction_property_delete(scf_transaction_t *tran,
scf_transaction_entry_t *entry, const char *prop_name);

int scf_transaction_property_new(scf_transaction_t *tran,
scf_transaction_entry_t *entry, const char *prop_name,
scf_type_t type);

int scf_transaction_property_change(scf_transaction_t *tran,
scf_transaction_entry_t *entry, const char *prop_name,
scf_type_t type);

int scf_transaction_property_change_type(

scf_transaction_t *tran, scf_transaction_entry_t *entry,
const char *prop_name, scf_type_t type);

int scf_transaction_commit(scf_transaction_t *tran);

Transactions are the mechanism for changing property groups. They act atomically, whereby
either all of the updates occur or none of them do. An scf_transaction_t is always in one of
the following states:

reset The initial state. A successful return of scf_transaction_start() moves the
transaction to the started state.

started The transaction has started. The scf_transaction_property_delete(),
scf_transaction_property_new(), scf_transaction_property_change(),
and scf_transaction_property_change_type() functions can be used to set

Name

Synopsis

Description

scf_transaction_create(3SCF)

Extended Library Functions, Volume 4 207



up changes to properties. The scf_transaction_reset() and
scf_transaction_reset_all() functions return the transaction to the reset
state.

committed A call to scf_transaction_commit() (whether or not it is successful) moves
the transaction to the committed state. Modifying, resetting, or destroying the
entries and values associated with a transaction will move it to the invalid
state.

invalid The scf_transaction_reset() and scf_transaction_reset_all()

functions return the transaction to the reset state.

The scf_transaction_create() function allocates and initializes an scf_transaction_t

bound to handle. The scf_transaction_destroy() function resets, destroys, and frees tran.
If there are any entries associated with the transaction, scf_transaction_destroy() also
effects a call to scf_transaction_reset(). The scf_transaction_destroy_children()
function resets, destroys, and frees all entries and values associated the transaction.

The scf_transaction_handle() function gets the handle to which tran is bound.

The scf_transaction_start() function sets up the transaction to modify the property
group to which pg is set. The time reference used by pg becomes the basis of the transaction.
The transaction fails if the property group has been modified since the last update of pg at the
time when scf_transaction_commit() is called.

The scf_transaction_property_delete(), scf_transaction_property_new(),
scf_transaction_property_change(), and scf_transaction_property_change_type()

functions add a new transaction entry to the transaction. Each property the transaction affects
must have a unique scf_transaction_entry_t. Each scf_transaction_entry_t can be
associated with only a single transaction at a time. These functions all fail if the transaction is
not in the started state, prop_name is not a valid property name, or entry is already associated
with a transaction. These functions affect commit and failure as follows:

scf_transaction_property_delete()

This function deletes the property prop_name in the property group. It fails if prop_name
does not name a property in the property group.

scf_transaction_property_new()

This function adds a new property prop_name to the property group with a value list of
type type. It fails if prop_name names an existing property in the property group.

scf_transaction_property_change()

This function changes the value list for an existing property prop_name in the property
group. It fails if prop_name does not name an existing property in the property group or
names an existing property with a different type.

scf_transaction_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Aug 2007208



scf_transaction_property_change_type()

This function changes the value list and type for an existing property prop_name in the
property group. It fails if prop_name does not name an existing property in the property
group.

If the function call is successful, entry remains active in the transaction until
scf_transaction_destroy(), scf_transaction_reset(), or
scf_transaction_reset_all() is called. The scf_entry_add_value(3SCF) manual page
provides information for setting up the value list for entries that are not associated with
scf_transaction_property_delete(). Resetting or destroying an entry or value active in a
transaction will move it into the invalid state.

The scf_transaction_commit() function attempts to commit tran.

The scf_transaction_reset() function returns the transaction to the reset state and releases
all of the transaction entries that were added.

The scf_transaction_reset_all() function returns the transaction to the reset state,
releases all of the transaction entries, and calls scf_value_reset(3SCF) on all values
associated with the entries.

Upon successful completion, scf_transaction_create() returns a new
scf_transaction_t. Otherwise, it returns NULL.

Upon successful completion, scf_transaction_handle() returns the handle associated with
the transaction. Otherwise, it returns NULL.

Upon successful completion, scf_transaction_start(),
scf_transaction_property_delete(), scf_transaction_property_new(),
scf_transaction_property_change(), and scf_transaction_property_change_type()

return 0. Otherwise, they return −1.

The scf_transaction_commit() function returns 1 upon successful commit, 0 if the property
group set in scf_transaction_start() is not the most recent, and -1 on failure.

The scf_transaction_create() function will fail if:

SCF_ERROR_INVALID_ARGUMENT The value of the handle argument is NULL.

SCF_ERROR_NO_MEMORY There is not enough memory to allocate an
scf_transaction_t.

SCF_ERROR_NO_RESOURCES The server does not have adequate resources for a new
transaction handle.

The scf_transaction_handle() function will fail if:

SCF_ERROR_HANDLE_DESTROYED The handle associated with tran has been destroyed.

The scf_transaction_start() function will fail if:

Return Values

Errors

scf_transaction_create(3SCF)

Extended Library Functions, Volume 4 209



SCF_ERROR_BACKEND_ACCESS The repository backend refused the modification.

SCF_ERROR_BACKEND_READONLY The repository backend refused modification because it
is read-only.

SCF_ERROR_CONNECTION_BROKEN The connection to the repository was lost.

SCF_ERROR_DELETED The property group has been deleted.

SCF_ERROR_HANDLE_MISMATCH The transaction and property group are not derived
from the same handle.

SCF_ERROR_IN_USE The transaction is not in the reset state. The
scf_transaction_reset() and
scf_transaction_reset_all() functions can be used
to return the transaction to the reset state.

SCF_ERROR_NO_RESOURCES The server does not have the resources to complete the
request.

SCF_ERROR_NOT_BOUND The handle was never bound or has been unbound.

SCF_ERROR_NOT_SET The property group specified by pg is not set.

SCF_ERROR_PERMISSION_DENIED The user does not have sufficient privileges to modify the
property group.

The scf_transaction_property_delete(), scf_transaction_property_new(),
scf_transaction_property_change(), and scf_transaction_property_change_type()

functions will fail if:

SCF_ERROR_BACKEND_ACCESS The storage mechanism that the repository server
(svc.configd(1M)) chose for the operation denied
access.

SCF_ERROR_CONNECTION_BROKEN The connection to the repository was lost.

SCF_ERROR_DELETED The property group the transaction is changing has been
deleted.

SCF_ERROR_HANDLE_MISMATCH The transaction and entry are not derived from the same
handle.

SCF_ERROR_IN_USE The property already has an entry in the transaction.

SCF_ERROR_INTERNAL An internal error occurred.

SCF_ERROR_INVALID_ARGUMENT The prop_name argument is not a valid property name.

SCF_ERROR_NO_RESOURCES The server does not have the resources to complete the
request.

SCF_ERROR_NOT_BOUND The handle is not bound.

scf_transaction_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Aug 2007210

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.configd-1m


SCF_ERROR_NOT_SET The transaction has not been started.

SCF_ERROR_TYPE_MISMATCH The tran argument is not of a type compatible with type.

The scf_transaction_property_delete(), scf_transaction_property_change(), and
scf_transaction_property_change_type() functions will fail if:

SCF_ERROR_EXISTS The object already exists.

SCF_ERROR_NOT_FOUND The property group does not contain a property named
prop_name.

The scf_transaction_property_new() , scf_transaction_property_change(), and
scf_transaction_property_change_type() functions will fail if:

SCF_ERROR_INVALID_ARGUMENT The prop_name argument is not not a valid property
name, or the type argument is an invalid type.

The scf_transaction_property_new() function will fail if:

SCF_ERROR_EXISTS The property group already contains a property named
prop_name.

SCF_ERROR_NOT_FOUND Nothing of that name was found.

The scf_transaction_property_change() function will fail if:

SCF_ERROR_TYPE_MISMATCH The property prop_name is not of type type.

The scf_transaction_commit() function will fail if:

SCF_ERROR_BACKEND_READONLY The repository backend is read-only.

SCF_ERROR_BACKEND_ACCESS The repository backend refused the modification.

SCF_ERROR_NOT_BOUND The handle is not bound.

SCF_ERROR_CONNECTION_BROKEN The connection to the repository was lost.

SCF_ERROR_INVALID_ARGUMENT The transaction is in an invalid state.

SCF_ERROR_DELETED The property group the transaction is acting on has been
deleted.

SCF_ERROR_NOT_SET The transaction has not been started.

SCF_ERROR_PERMISSION_DENIED The user does not have sufficient privileges to modify the
property group.

SCF_ERROR_NO_RESOURCES The server does not have sufficient resources to commit
the transaction.

The scf_error(3SCF) function can be used to retrieve the error value.

scf_transaction_create(3SCF)

Extended Library Functions, Volume 4 211



EXAMPLE 1 Set an existing boolean value to true.

tx = scf_transaction_create(handle);

e1 = scf_entry_create(handle);

v1 = scf_value_create(handle);

do {

if (scf_pg_update(pg) == -1)

goto fail;

if (scf_transaction_start(tx, pg) == -1)

goto fail;

/* set up transaction entries */

if (scf_transaction_property_change(tx, e1, "property",
SCF_TYPE_BOOLEAN) == -1) {

scf_transaction_reset(tx);

goto fail;

}

scf_value_set_boolean(v1, 1);

scf_entry_add_value(e1, v1);

result = scf_transaction_commit(tx);

scf_transaction_reset(tx);

} while (result == 0);

if (result < 0)

goto fail;

/* success */

cleanup:

scf_transaction_destroy(tx);

scf_entry_destroy(e1);

scf_value_destroy(v1);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libscf(3LIB), scf_value_reset(3SCF), scf_error(3SCF), scf_pg_create(3SCF),
attributes(5)

Examples

Attributes

See Also

scf_transaction_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 28 Aug 2007212

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libscf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


scf_value_create, scf_value_handle, scf_value_reset, scf_value_destroy, scf_value_type,
scf_value_base_type, scf_value_is_type, scf_type_base_type, scf_value_get_boolean,
scf_value_get_count, scf_value_get_integer, scf_value_get_time, scf_value_get_astring,
scf_value_get_ustring, scf_value_get_opaque, scf_value_get_as_string,
scf_value_get_as_string_typed, scf_value_set_boolean, scf_value_set_count,
scf_value_set_integer, scf_value_set_time, scf_value_set_from_string, scf_value_set_astring,
scf_value_set_ustring, scf_value_set_opaque – manipulate values in the Service
Configuration Facility

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

scf_value_t *scf_value_create(scf_handle_t *h);

scf_handle_t *scf_value_handle(scf_value_t *v);

void scf_value_reset(scf_value_t *v);

void scf_value_destroy(scf_value_t *v);

int scf_value_type(scf_value_t *v);

int scf_value_base_type(scf_value_t *v);

int scf_value_is_type(scf_value_t *v, scf_type_t type);

int scf_type_base_type(scf_type_t type, scf_type_t *out);

int scf_value_get_boolean(scf_value_t *v, uint8_t *out);

int scf_value_get_count(scf_value_t *v, uint64_t *out);

int scf_value_get_integer(scf_value_t *v, int64_t *out);

int scf_value_get_time(scf_value_t *v, int64_t *seconds,
int32_t *ns);

ssize_t scf_value_get_astring(scf_value_t *v, char *buf,
size_t size);

ssize_t scf_value_get_ustring(scf_value_t *v, char *buf,
size_t size);

ssize_t scf_value_get_opaque(scf_value_t *v, char *out,
size_t len);

ssize_t scf_value_get_as_string(scf_value_t *v, char *buf,
size_t size);

ssize_t scf_value_get_as_string_typed(scf_value_t *v,
scf_type_t type, char *buf, size_t size);

void scf_value_set_boolean(scf_value_t *v, uint8_t in);

void scf_value_set_count(scf_value_t *v, uint64_t in);

void scf_value_set_integer(scf_value_t *v, int64_t in);

Name

Synopsis

scf_value_create(3SCF)

Extended Library Functions, Volume 4 213



int scf_value_set_time(scf_value_t *v, int64_t seconds,
int32_t ns);

int scf_value_set_from_string(scf_value_t *v, scf_type_t type,
char *in);

int scf_value_set_astring(scf_value_t *v, const char *in);

int scf_value_set_ustring(scf_value_t *v, const char *in);

int scf_value_set_opaque(scf_value_t *v, void *in, size_t sz);

The scf_value_create() function creates a new, reset scf_value_t that holds a single typed
value. The value can be used only with the handle specified by h and objects associated with h.

The scf_value_reset() function resets the value to the uninitialized state. The
scf_value_destroy() function deallocates the object.

The scf_value_type() function retrieves the type of the contents of v. The
scf_value_is_type() function determines if a value is of a particular type or any of its
subtypes. The scf_type_base_type() function returns the base type of type. The
scf_value_base_type() function returns the true base type of the value (the highest type
reachable from the value's type).

Type Identifier Base Type Type Description

SCF_TYPE_INVALID reserved invalid type

SCF_TYPE_BOOLEAN single bit

SCF_TYPE_COUNT unsigned 64-bit quantity

SCF_TYPE_INTEGER signed 64-bit quantity

SCF_TYPE_TIME signed 64-bit seconds, signed 32-bit nanoseconds in
the range 0 <= ns < 1,000,000,000

SCF_TYPE_ASTRING 8-bit NUL-terminated string

SCF_TYPE_OPAQUE opaque 8-bit data

SCF_TYPE_USTRING ASTRING 8-bit UTF-8 string

SCF_TYPE_URI USTRING a URI string

SCF_TYPE_FMRI URI a Fault Management Resource Identifier

SCF_TYPE_HOST USTRING either a hostname, IPv4 address, or IPv6 address

SCF_TYPE_HOSTNAME HOST a fully-qualified domain name

SCF_TYPE_NET_ADDR HOST a valid SCF_TYPE_NET_ADDR_V4 or
SCF_TYPE_NET_ADDR_V6 address

Description

scf_value_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 10 May 2010214



Type Identifier Base Type Type Description

SCF_TYPE_NET_ADDR_V4 NET_ADDR a dotted-quad IPv4 address with optional network
portion

SCF_TYPE_NET_ADDR_V6 NET_ADDR legal IPv6 address with optional network portion

The scf_value_get_boolean(), scf_value_get_count(), scf_value_get_integer(),
scf_value_get_time(), scf_value_get_astring(), scf_value_get_ustring(), and
scf_value_get_opaque() functions read a particular type of value from v.

The scf_value_get_as_string() and scf_value_get_as_string_typed() functions
convert the value to a string form. For scf_value_get_as_string_typed(), the value must
be a reachable subtype of type.

The scf_value_set_boolean(), scf_value_set_count(), scf_value_set_integer(),
scf_value_set_time(), scf_value_set_astring(), scf_value_set_ustring(), and
scf_value_set_opaque() functions set v to a particular value of a particular type.

The scf_value_set_from_string() function is the inverse of scf_value_get_as_string().
It sets v to the value encoded in buf of type type.

The scf_value_set_*() functions will succeed on scf_value_t objects that have already
been set.

Upon successful completion, scf_value_create() returns a new, reset scf_value_t.
Otherwise, it returns NULL.

Upon successful completion, scf_value_handle() returns the handle associated with v.
Otherwise, it returns NULL.

The scf_value_base_type() function returns the base type of the value, or
SCF_TYPE_INVALID on failure.

Upon successful completion, scf_value_type() returns the type of the value. Otherwise, it
returns SCF_TYPE_INVALID.

Upon successful completion, scf_value_is_type(), scf_value_get_boolean(),
scf_value_get_count(), scf_value_get_integer(), scf_value_get_time(),
scf_value_set_time(), scf_value_set_from_string(), scf_value_set_astring(),
scf_value_set_ustring(), and scf_value_set_opaque() return 0. Otherwise, they return
-1.

Upon successful completion, scf_value_get_astring(), scf_value_get_ustring(),
scf_value_get_as_string(), and scf_value_get_as_string_typed() return the length of
the source string, not including the terminating null byte. Otherwise, they return -1.

Upon successful completion, scf_value_get_opaque() returns the number of bytes written.
Otherwise, it returns -1.

Return Values

scf_value_create(3SCF)

Extended Library Functions, Volume 4 215



The scf_value_create() function will fail if:

SCF_ERROR_HANDLE_DESTROYED The handle associated with h has been destroyed.

SCF_ERROR_INVALID_ARGUMENT The handle is NULL.

SCF_ERROR_NO_MEMORY There is not enough memory to allocate an scf_value_t.

The scf_value_handle() function will fail if:

SCF_ERROR_HANDLE_DESTROYED The handle associated with v has been destroyed.

The scf_value_set_time() function will fail if:

SCF_ERROR_INVALID_ARGUMENT The nanoseconds field is not in the range 0 <= ns <
1,000,000,000.

The scf_type_base_type() function will fail if:

SCF_ERROR_INVALID_ARGUMENT The type argument is not a valid type.

The scf_value_set_astring(), scf_value_set_ustring(), scf_value_set_opaque(), and
scf_value_set_from_string() functions will fail if:

SCF_ERROR_INVALID_ARGUMENT The in argument is not a valid value for the specified type
or is longer than the maximum supported value length.

The scf_type_base_type(), scf_value_is_type(), and
scf_value_get_as_string_typed() functions will fail if:

SCF_ERROR_INVALID_ARGUMENT The type argument is not a valid type.

The scf_value_type(), scf_value_base_type(), scf_value_get_boolean(),
scf_value_get_count(), scf_value_get_integer(), scf_value_get_time(),
scf_value_get_astring(), scf_value_get_ustring(), scf_value_get_as_string(),
andscf_value_get_as_string_typed() functions will fail if:

SCF_ERROR_NOT_SET The v argument has not been set to a value.

The scf_value_get_boolean(), scf_value_get_count(), scf_value_get_integer(),
scf_value_get_time(), scf_value_get_astring(), scf_value_get_ustring(), and
scf_value_get_as_string_typed() functions will fail if:

SCF_ERROR_TYPE_MISMATCH The requested type is not the same as the value's type and is
not in the base-type chain.

The scf_error(3SCF) function can be used to retrieve the error value.

See attributes(5) for descriptions of the following attributes:

Errors

Attributes

scf_value_create(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 10 May 2010216

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libscf(3LIB), scf_entry_add_value(3SCF), scf_error(3SCF), attributes(5)See Also

scf_value_create(3SCF)

Extended Library Functions, Volume 4 217

http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libscf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


setflabel – move file to zone with corresponding sensitivity label

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

int setflabel(const char *path, const m_label_t *label_p);

The file that is named by path is relabeled by moving it to a new pathname relative to the root
directory of the zone corresponding to label_p. If the source and destination file systems are
loopback mounted from the same underlying file system, the file is renamed. Otherwise, the
file is copied and removed from the source directory.

The setflabel() function enforces the following policy checks:

■ If the sensitivity label of label_p equals the existing sensitivity label, then the file is not
moved.

■ If the corresponding directory does not exist in the destination zone, or if the directory
exists, but has a different label than label_p, the file is not moved. Also, if the file already
exists in the destination directory, the file is not moved.

■ If the sensitivity label of the existing file is not equal to the calling process label and the
caller is not in the global zone, then the file is not moved. If the caller is in the global zone,
the existing file label must be in a labeled zone (not ADMIN_LOW or ADMIN_HIGH).

■ If the calling process does not have write access to both the source and destination
directories, then the calling process must have PRIV_FILE_DAC_WRITE in its set of effective
privileges.

■ If the sensitivity label of label_p provides read only access to the existing sensitivity label
(an upgrade), then the user must have the solaris.label.file.upgrade authorization.
In addition, if the current zone is a labeled zone, then it must have been assigned the
privilege PRIV_FILE_UPGRADE_SL when the zone was configured.

■ If the sensitivity label of label_p does not provide access to the existing sensitivity label (a
downgrade), then the calling user must have the solaris.label.file.downgrade
authorization. In addition, if the current zone is a labeled zone, then it must have been
assigned the privilege PRIV_FILE_DOWNGRADE_SL when the zone was configured.

■ If the calling process is not in the global zone, and the user does not have the
solaris.label.range authorization, then label_p must be within the user's label range
and within the system accreditation range.

■ If the existing file is in use (not tranquil) it is not moved. This tranquility check does not
cover race conditions nor remote file access.

Additional policy constraints can be implemented by customizing the shell script
/etc/security/tsol/relabel. See the comments in this file.

Name

Synopsis

Description

setflabel(3TSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 2007218



Upon successful completion, setflabel() returns 0. Otherwise it returns -1 and sets errno to
indicate the error.

The setflabel() function fails and the file is unchanged if:

EACCES Search permission is denied for a component of the path prefix of path.

The calling process does not have mandatory write access to the final
component of path because the sensitivity label of the final component of
path does not dominate the sensitivity label of the calling process and the
calling process does not have PRIV_FILE_MAC_WRITE in its set of effective
privileges.

EBUSY There is an open file descriptor reference to the final component of path.

ECONNREFUSED A connection to the label daemon could not be established.

EEXIST A file with the same name exists in the destination directory.

EINVAL Improper parameters were received by the label daemon.

EISDIR The existing file is a directory.

ELOOP Too many symbolic links were encountered in translating path.

EMLINK The existing file is hardlinked to another file.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX.

ENOENT The file referred to by path does not exist.

EROFS The file system is read-only or its label is ADMIN_LOW or ADMIN_HIGH.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libtsol(3LIB), attributes(5)

“Setting a File Sensitivity Label” in Oracle Solaris Trusted Extensions Developer’s Guide

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Return Values

Errors

Attributes

See Also

Notes

setflabel(3TSOL)

Extended Library Functions, Volume 4 219

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=labelcode-12


smf_enable_instance, smf_disable_instance, smf_refresh_instance, smf_restart_instance,
smf_maintain_instance, smf_degrade_instance, smf_restore_instance, smf_get_state,
smf_state_to_string, smf_state_from_string – administrative interface to the Service
Configuration Facility

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

int smf_enable_instance(const char *instance, int flags);

int smf_disable_instance(const char *instance, int flags);

int smf_refresh_instance(const char *instance);

int smf_restart_instance(const char *instance);

int smf_maintain_instance(const char *instance, int flags);

int smf_degrade_instance(const char *instance, int flags);

int smf_restore_instance(const char *instance);

char *smf_get_state(const char *instance);

const char *smf_state_to_string(int32_t state_code);

int32_t smf_state_from_string(const char *state);

These functions provide administrative control over service instances. Using these functions,
an administrative tool can make a request to enable, disable, refresh, or restart an instance. All
calls are asynchronous. They request an action, but do not wait to see if the action succeeds or
fails.

The smf_enable_instance() function enables the service instance specified by instance
FMRI. If flags is SMF_TEMPORARY, the enabling of the service instance is a temporary change,
lasting only for the lifetime of the current system instance. The flags argument is set to 0 if no
flags are to be use.

The smf_disable_instance() function places the service instance specified by instance
FMRI in the disabled state and triggers the stop method (see svc.startd(1M)). If flags is
SMF_TEMPORARY, the disabling of the service instance is a temporary change, lasting only for
the lifetime of the current system instance. The flags argument is set to 0 if no flags are to be
use.

The smf_refresh_instance() function causes the service instance specified by instance
FMRI to re-read its configuration information.

The smf_restart_instance() function restarts the service instance specified by instance
FMRI.

The smf_maintain_instance() function moves the service instance specified by instance into
the maintenance state. If flags is SMF_IMMEDIATE, the instance is moved into maintenance state

Name

Synopsis

Description

smf_enable_instance(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 30 Jul 2010220

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.startd-1m


immediately, killing any running methods. If flags is SMF_TEMPORARY, the change to
maintenance state is a temporary change, lasting only for the lifetime of the current system
instance. The flags argument is set to 0 if no flags are to be use.

The smf_degrade_instance() function moves an online service instance into the degraded
state. This function operates only on instances in the online state. The flags argument is set to
0 if no flags are to be use. The only available flag is SMF_IMMEDIATE, which causes the instance
to be moved into the degraded state immediately.

The smf_restore_instance() function brings an instance currently in the maintenance to
the uninitialized state, so that it can be brought back online. For a service in the degraded state,
smf_restore_instance() brings the specified instance back to the online state.

The smf_get_state() function returns a pointer to a string containing the name of the
instance's current state. The user is responsible for freeing this string. Possible state strings are
defined as the following:

#define SCF_STATE_STRING_UNINIT ((const char *)"uninitialized")
#define SCF_STATE_STRING_MAINT ((const char *)"maintenance")
#define SCF_STATE_STRING_OFFLINE ((const char *)"offline")
#define SCF_STATE_STRING_DISABLED ((const char *)"disabled")
#define SCF_STATE_STRING_ONLINE ((const char *)"online")
#define SCF_STATE_STRING_DEGRADED ((const char *)"degraded")

The smf_state_to_string() function returns a pointer to an immutable string containing
the state equivalent to state_code. Possible state strings are defined as above. Possible state
codes are defined as following:

#define SCF_STATE_UNINIT 0x00000001

#define SCF_STATE_MAINT 0x00000002

#define SCF_STATE_OFFLINE 0x00000004

#define SCF_STATE_DISABLED 0x00000008

#define SCF_STATE_ONLINE 0x00000010

#define SCF_STATE_DEGRADED 0x00000020

The smf_state_from_string() function returns the value equivalent to the string parameter
state. Besides the strings defined above, this function accepts the string “all” as argument. In
this case the returned value is:

#define SCF_STATE_ALL 0x0000003F

Upon successful completion, smf_enable_instance(), smf_disable_instance(),
smf_refresh_instance(), smf_restart_instance(), smf_maintain_instance(),
smf_degrade_instance(), and smf_restore_instance() return 0. Otherwise, they return
–1.

Upon successful completion, smf_get_state() returns an allocated string. Otherwise, it
returns NULL.

Return Values

smf_enable_instance(3SCF)

Extended Library Functions, Volume 4 221



Upon successful completion smf_state_to_string() returns a pointer to a constant string.
Otherwise, it returns NULL.

Upon successful completion smf_state_from_string() returns the macro value defined for
the parameter state. Otherwise it returns -1.

These functions will fail if:

SCF_ERROR_NO_MEMORY The memory allocation failed.

SCF_ERROR_INVALID_ARGUMENT The instance FMRI or flags argument is invalid.

SCF_ERROR_NOT_FOUND The FMRI is valid but there is no matching instance
found.

SCF_ERROR_CONNECTION_BROKEN The connection to repository was broken.

SCF_ERROR_NO_RESOURCES The server has insufficient resources.

The smf_maintain_instance(), smf_refresh_instance(), smf_restart_instance(),
smf_degrade_instance(), and smf_restore_instance() functions will fail if:

SCF_ERROR_PERMISSION_DENIED User does not have proper authorizations. See
smf_security(5).

SCF_ERROR_BACKEND_ACCESS The repository's backend refused access.

SCF_ERROR_BACKEND_READONLY The repository's backend is read-only.

The smf_restore_instance() and smf_degrade_instance() functions will fail if:

SCF_ERROR_CONSTRAINT_VIOLATED The function is called on an instance in an
inappropriate state.

The scf_error(3SCF) function can be used to retrieve the error value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

svc.startd(1M), libscf(3LIB), scf_error(3SCF), attributes(5), smf_security(5)

Errors

Attributes

See Also

smf_enable_instance(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 30 Jul 2010222

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-security-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.startd-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libscf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-security-5


smf_notify_set_params, smf_notify_get_params, smf_notify_del_params – store, retrieve
and delete notification parameters in the Service Configuration Facility

cc [ flag... ] file... -lscf [ library... ]

#include <libscf.h>

int smf_notify_set_params(const char *class, nvlist_t *attr);

int smf_notify_get_params(nvlist_t **params, nvlist_t *nvl);

int smf_notify_del_params(const char *class, const char *fmri,
int32_t tset);

class
class of events to which the function call refers. For SMF state transition events, you should
use a subclass of SCF_SVC_TRANSITION_CLASS defined in <libscf.h>.

tset
set of SMF state transitions encoded in an int32_t value. The encoded states are defined in
<libscf.h> by the macros SCF_STATE_*. The encoding of a initial state is obtained by
shifting 16 bits to the left the encoded value for that state. For example, the value of tset that
represents the state transition set (see smf(5), State Transition Sets) for to-maintenance,
from-maintenance and form-online is given by:

set = ((SCF_STATE_MAINT | SCF_STATE_ONLINE) << 16) | SCF_STATE_MAINT;

fmri
FMRI of an SMF service or instance

params
address of a pointer to an nvlist_t

nvl
a pointer to the event payload nvlist_t, such as is provided to an event delivery callback in
libfmevent(3LIB)

attr
a pointer to nvlist_t with the notification parameters

These interfaces are used to manipulate Notification Parameters for Software Events. See
smf(5)

The smf_notify_set_params() function stores the notification parameters for class. The
attr nvlist_t containing the notification parameters must follow the format:

version (uint32_t)

fmri (string)

tset (int32_t)

SCF_NOTIFY_PARAMS (embedded nvlist)

<mechanism-name> (embedded nvlist)

<parameter-name> <parameter-type>

...

Name

Synopsis

Parameters

Description

smf_notify_set_params(3SCF)

Extended Library Functions, Volume 4 223

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libfmevent-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-5


(end <mechanism-name>)

...

(end notify-params)

The version field must be SCF_NOTIFY_PARAMS_VERSION, defined in <libscf.h>. The fields
fmri and tset are only required for SMF state transitions events. They are ignored otherwise.
Existing notification parameters are replaced by this function.

The smf_notify_get_params() function creates and populates the params nvlist_t with the
notification parameters for the Event class in nvl. If the Event in nvl is an SMF state transition
event, this function will perform a composed lookup in
scf_instance_get_pg_composed(3SCF) for the instance FMRI in nvl. If notification
parameters are not found in the composed lookup, the function will look for the system-wide
notification parameters at SCF_INSTANCE_GLOBAL. The caller is responsible for calling
nvlist_free(3NVPAIR) after using params. The params nvlist_t has the following format:

version (uint32_t)

SCF_NOTIFY_PARAMS (array of embedded nvlists)

(start of notify-params[0])

tset (int32_t)

<mechanism-name> (embedded nvlist)

<parameter-name> <parameter-type>

...

(end <mechanism-name>)

...

(end of notify-params[0])

...

The SCF_NOTIFY_PARAMS is an array of nvlist_t because SMF state transitions have
notification parameters for both end states of the transitions.

The smf_notify_del_params() function deletes the notification parameters for the given
class. If class is not a subclass of SCF_SVC_TRANSITION_CLASS, fmri and tset are ignored.

Both smf_notify_del_params() and smf_notify_set_params() refresh all instances
affected by the changes.

Upon successful completion smf_notify_del_params(), smf_notify_get_params() and
smf_notify_set_params() return SCF_SUCCESS. Otherwise they return SCF_FAILED.

These functions will fail if:

SCF_ERROR_BACKEND_ACCESS

The storage mechanism that the repository server (svc.configd(1M)) chose for the
operation denied access.

SCF_ERROR_CONNECTION_BROKEN

The connection to the repository was lost.

Return Values

Errors

smf_notify_set_params(3SCF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 30 Jul 2010224

http://www.oracle.com/pls/topic/lookup?ctx=821-1469&id=nvlist-free-3nvpair
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=svc.configd-1m


SCF_ERROR_DELETED

The entity being operated on has been deleted.

SCF_ERROR_INTERNAL

An internal error occurred.

SCF_ERROR_INVALID_ARGUMENT

An argument passed is invalid.

SCF_ERROR_NO_MEMORY

There is not enough memory.

SCF_ERROR_NO_RESOURCES

The server does not have the resources to complete the request.

SCF_ERROR_NOT_FOUND

The entity was not found.

SCF_ERROR_PERMISSION_DENIED

The caller does not have permission to access or modify the repository.

The smf_notify_del_params() and smf_notify_set_params() functions will fail if:

SCF_ERROR_BACKEND_READONLY

The repository backend is read-only.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libfmevent(3LIB), libnvpair(3LIB), libscf(3LIB), nvlist_free(3NVPAIR),
scf_error(3SCF), scf_instance_get_pg_composed(3SCF), attributes(5), smf(5)

Attributes

See Also

smf_notify_set_params(3SCF)

Extended Library Functions, Volume 4 225

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libfmevent-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libnvpair-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libscf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1469&id=nvlist-free-3nvpair
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=smf-5


srpt_SetDefaultState, srpt_GetDefaultState – set and retrieve the default state setting for the
SRP Target service

cc [ flag... ] file... -lsrpt [ library... ]

#include <libsrpt.h>

int srpt_SetDefaultState(boolean_t enabled);

int srpt_GetDefaultState(boolean_t *enabled);

enabled boolean value indicating whether COMSTAR SRP targets should be created

The srpt_SetDefaultState() function sets the default behavior of the SRP Target service. If
enabled is B_TRUE, SRP targets will be created for all discovered HCAs that have not been
specifically disabled. If enabled is B_FALSE, targets will not be created unless the HCA has been
specifically enabled. See srpt_SetTargetState(3SRPT) for enabling or disabling specific
HCAs. If the default state is changed when the SRP service is online, the state of existing
targets is not changed until the service is restarted.

The srpt_GetDefaultState() function returns the current value for enabled.

Upon successful completion, these functions return 0. Otherwise they return a non-zero value
to indicate the error.

These functions will fail if:

ENOMEM Resources could not be allocated.

EINVAL A parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsrpt(3LIB), srpt_SetTargetState(3SRPT), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

srpt_SetDefaultState(3SRPT)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 2 Apr 2010226

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libsrpt-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


srpt_SetTargetState, srpt_GetTargetState, srpt_ResetTarget – set and retrieve SRP Target state
for a specific HCA

cc [ flag... ] file... -lsrpt [ library... ]

#include <libsrpt.h>

int srpt_SetTargetState(char *hca_guid, boolean_t enabled);

int srpt_GetTargetState(char *hca_guid, boolean_t *enabled);

int srpt_ResetTarget(char *hca_guid);

hc_guid HCA GUID. Must be in one of the following forms:

3BA000100CD18 base hex form

0003BA000100CD18 base hex form with leading zeroes

hca:3BA000100CD18 form from cfgadm

eui.0003BA000100CD18 EUI form

enabled boolean value indicating whether a COMSTAR SRP target should be created for
this HCA

The srpt_SetTargetState() function controls whether a COMSTAR SRP target will be
created for the specified HCA. If enabled is B_TRUE, an SRP target will be created for this
HCA. If enabled is B_FALSE, a target will not be created. This function overrides the default
setting for the SRP Target service as set by srpt_SetDefaultState(3SRPT). Changing the
target state takes effect immediately if the SRP target service is online. Targets set to disabled
will be offlined and removed; targets set to enabled will be immediately created.

The srpt_GetTargetState() function retrieves the current setting for the specified HCA.

The srpt_ResetTarget() function clears HCA-specific settings. The service-wide defaults
will control SRP Target creation for this HCA.

Upon successful completion, these functions return 0. Otherwise they return a non-zero value
to indicate the error.

These functions will fail if:

ENOMEM Resources could not be allocated.

EINVAL A parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

srpt_SetTargetState(3SRPT)

Extended Library Functions, Volume 4 227

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

libsrpt(3LIB), srpt_SetDefaultState(3SRPT), attributes(5)See Also

srpt_SetTargetState(3SRPT)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 2 Apr 2010228

http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libsrpt-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


SSAAgentIsAlive, SSAGetTrapPort, SSARegSubtable, SSARegSubagent, SSARegSubtree,
SSASendTrap, SSASubagentOpen – Sun Solstice Enterprise Agent registration and
communication helper functions

cc [ flag ... ] file ... -lssagent -lssasnmp [ library .. ]

#include <impl.h>

extern int SSAAgentIsAlive(IPAddress *agent_addr, int *port,
char *community, struct timeval *timeout);

extern int SSAGetTrapPort();

extern int *SSARegSubagent(Agent* agent);

int SSARegSubtable(SSA_Table *table);

int SSARegSubtree(SSA_Subtree *subtree);

extern void SSASendTrap(char *name);

extern int SSASubagentOpen(int *num_of_retry, char *agent_name);

The SSAAgentIsAlive() function returns TRUE if the master agent is alive, otherwise returns
FALSE. The agent_addr parameter is the address of the agent. Specify the security token in the
community parameter. You can specify the maximum amount of time to wait for a response
with the timeout parameter.

The SSAGetTrapPort() function returns the port number used by the Master Agent to
communicate with the subagent.

The SSARegSubagent() function enables a subagent to register and unregister with a Master
Agent. The agent parameter is a pointer to an Agent structure containing the following
members:

int timeout; /* optional */

int agent_id; /* required */

int agent_status; /* required */

char *personal_file; /* optional */

char *config_file; /* optional */

char *executable; /* optional */

char *version_string; /* optional */

char *protocol; /* optional */

int process_id; /* optional */

char *name; /* optional */

int system_up_time; /* optional */

int watch_dog_time; /* optional */

Address address; /* required */

struct _Agent; /* reserved */

struct _Subtree; /* reserved */

Name

Synopsis

Description

SSAAgentIsAlive(3SNMP)

Extended Library Functions, Volume 4 229



The agent_id member is an integer value returned by the SSASubagentOpen() function. After
calling SSASubagentOpen(), you pass the agent_id in the SSARegSubagent() call to register
the subagent with the Master Agent.

The following values are supported for agent_status:

SSA_OPER_STATUS_ACTIVE

SSA_OPER_STATUS_NOT_IN_SERVICE

SSA_OPER_STATUS_DESTROY

You pass SSA_OPER_STATUS_DESTROY as the value in a SSARegSubagent() function call when
you want to unregister the agent from the Master Agent.

Address has the same structure as sockaddr_in, that is a common UNIX structure containing
the following members:

short sin_family;

ushort_t sin_port;

struct in_addr sin_addr;

char sin_zero[8];

The SSARegSubtable() function registers a MIB table with the Master Agent. If this function
is successful, an index number is returned, otherwise 0 is returned. The table parameter is a
pointer to a SSA_Table structure containing the following members:

int regTblIndex; /* index value */

int regTblAgentID; /* current agent ID */

Oid regTblOID; /* Object ID of the table */

int regTblStartColumn; /* start column index */

int regTblEndColumn; /* end column index */

int regTblStartRow; /* start row index */

int regTblEndRow; /* end row index */

int regTblStatus; /* status */

The regTblStatus can have one of the following values:

SSA_OPER_STATUS_ACTIVE

SSA_OPER_STATUS_NOT_IN_SERVICE

The SSARegSubtree() function registers a MIB subtree with the master agent. If successful
this function returns an index number, otherwise 0 is returned. The subtree parameter is a
pointer to a SSA_Subtree structure containing the following members:

int regTreeIndex; /* index value */

int regTreeAgentID; /* current agent ID */

Oid name; /* Object ID to register */

int regtreeStatus; /* status */

The regtreeStatus can have one of the following values:

SSA_OPER_STATUS_ACTIVE

SSA_OPER_STATUS_NOT_IN_SERVICE

SSAAgentIsAlive(3SNMP)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 30 Apr 2006230



The SSASendTrap() function instructs the Master Agent to send a trap notification, based on
the keyword passed with name. When your subagent MIB is compiled by mibcodegen, it
creates a lookup table of the trap notifications defined in the MIB. By passing the name of the
trap notification type as name, the subagent instructs the Master Agent to construct the type of
trap defined in the MIB.

The SSASubagentOpen() function initializes communication between the subagent and the
Master Agent. You must call this function before calling SSARegSubagent() to register the
subagent with the Master Agent. The SSASubagentOpen() function returns a unique agent ID
that is passed in the SSARegSubagent() call to register the subagent. If 0 is returned as the
agent ID, the attempt to initialize communication with the Master Agent was unsuccessful.
Since UDP is used to initialize communication with the Master Agent, you may want to set the
value of num_of_retry to make multiple attempts.

The value for agent_name must be unique within the domain for which the Master Agent is
responsible.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

MT-Level Unsafe

attributes(5)

Attributes

See Also

SSAAgentIsAlive(3SNMP)

Extended Library Functions, Volume 4 231

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


SSAOidCmp, SSAOidCpy, SSAOidDup, SSAOidFree, SSAOidInit, SSAOidNew,
SSAOidString, SSAOidStrToOid, SSAOidZero – Sun Solstice Enterprise Agent OID helper
functions

cc [ flag ... ] file ... -lssasnmp [ library .. ]

#include <impl.h>

int SSAOidCmp(Oid *oid1, Oid *oid2);

int SSAOidCpy(Oid *oid1, Oid *oid2, char *error_label);

Oid *SSAOidDup(Oid *oid, char *error_label);

void SSAOidFree(Oid *oid);

int SSAOidInit(Oid *oid, Subid *subids, int len, char *error_label);

Oid *SSAOidNew();

char *SSAOidString(Oid *oid);

Oid *SSAOidStrToOid(char* name, char *error_label);

void SSAOidZero(Oid *oid);

The SSAOidCmp() function performs a comparison of the given OIDs. This function returns:

0 if oid1 is equal to oid2

1 if oid1 is greater than oid2

−1 if oid1 is less than oid2

The SSAOidCpy() function makes a deep copy of oid2 to oid1. This function assumes oid1 has
been processed by the SSAOidZero() function. Memory is allocated inside oid1 and the
contents of oid2, not just the pointer, is copied to oid1. If an error is encountered, an error
message is stored in the error_label buffer.

The SSAOidDup() function returns a clone of oid, by using the deep copy. Error information is
stored in the error_label buffer.

The SSAOidFree() function frees the OID instance, with its content.

The SSAOidNew() function returns a new OID.

The SSAOidInit() function copies the Subid array from subids to the OID instance with the
specified length len. This function assumes that the OID instance has been processed by the
SSAOidZero() function or no memory is allocated inside the OID instance. If an error is
encountered, an error message is stored in the error_label buffer.

The SSAOidString() function returns a char pointer for the printable form of the given oid.

Name

Synopsis

Description

SSAOidCmp(3SNMP)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 30 Apr 2006232



The SSAOidStrToOid() function returns a new OID instance from name. If an error is
encountered, an error message is stored in the error_label buffer.

The SSAOidZero() function frees the memory used by the OID object for buffers, but not the
OID instance itself.

The SSAOidNew() and SSAOidStrToOid() functions return 0 if an error is detected.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

MT-Level Unsafe

attributes(5)

Return Values

Attributes

See Also

SSAOidCmp(3SNMP)

Extended Library Functions, Volume 4 233

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


SSAStringCpy, SSAStringInit, SSAStringToChar, SSAStringZero – Sun Solstice Enterprise
Agent string helper functions

cc [ flag ... ] file ... -lssasnmp [ library .. ]

#include <impl.h>

void *SSAStringZero(String *string);

int SSAStringInit(String *string, uchar_t *chars, int len,
char *error_label);

int SSAStringCpy(String *string1, String *string2, char *error_label);

char *SSAStringToChar(String string);

The SSAStringCpy() function makes a deep copy of string2 to string1. This function assumes
that string1 has been processed by the SSAStringZero() function. Memory is allocated inside
the string1 and the contents of string2, not just the pointer, is copied to the string1. If an error
is encountered, an error message is stored in the error_label buffer.

The SSAStringInit() function copies the char array from chars to the string instance with
the specified length len. This function assumes that the string instance has been processed by
the SSAStringZero() function or no memory is allocated inside the string instance. If an error
is encountered, an error message is stored in the error_label buffer.

The SSAStringToChar() function returns a temporary char array buffer for printing
purposes.

The SSAStringZero() function frees the memory inside of the String instance, but not the
string object itself.

The SSAStringInit() and SSAStringCpy() functions return 0 if successful and −1 if error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

MT-Level Unsafe

attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

SSAStringCpy(3SNMP)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 30 Apr 2006234

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfAddToHostGroup – add an initiator port to an existing host group

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfAddToHostGroup(stmfGroupName *hostGroupName,
stmfDevid initiatorName);

hostGroupName The name of the host group to which the specified initiatorName is
added.

initiatorName The device identifier of the initiator port to add to the specified host
group.

The stmfAddToHostGroup() function adds an initiator port to an existing host group.

The following values are returned:

STMF_ERROR_EXISTS The specified initiatorName already exists in this
hostGroupName or in another host group in the system.

STMF_ERROR_GROUP_NOT_FOUND The specified hostGroupName was not found in the
system.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfAddToHostGroup(3STMF)

Extended Library Functions, Volume 4 235

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfAddToTargetGroup – add a target to an existing target group

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfAddToTargetGroup(stmfGroupName *targetGroupName,
stmfDevid targetName);

targetGroupName The name of the target port group to which the specified targetName is
added.

targetName The device identifier of the target port to add to the specified target
group.

The stmfAddToTargetGroup() function adds a target to an existing target group.

The following values are returned:

STMF_ERROR_EXISTS The specified targetName already exists in this
tagettGroupName or in another target group in the
system.

STMF_ERROR_GROUP_NOT_FOUND The specified targetGroupName was not found in the
system.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfAddToTargetGroup(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 9 Jun 2008236

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfAddViewEntry – add a view entry for a given logical unit

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfAddViewEntry(stmfGuid *logicalUnit,
stmfViewEntry *viewEntry);

logicalUnit The identifier of the logical unit to which this view entry is being added.

viewEntry The view entry to add to the specified logical unit identifier.

The stmfAddViewEntry() function adds a view entry for a given logical unit.

The following values are returned:

STMF_ERROR_LUN_IN_USE The specified logical unit number is already in use for this
logical unit.

STMF_ERROR_NOT_FOUND The ID specified for logicalUnit was not found in the system.

STMF_ERROR_VE_CONFLICT Adding this view entry is in conflict with one or more existing
view entries.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

If luNbrValid in the stmfViewEntry structure is set to B_FALSE, the framework will assign a
logical unit number for this view entry. veIndexValid must be set to B_FALSE when adding a
view entry. On successful return, veIndexValid will be set to B_TRUE and veIndex will contain
the view entry index assigned to this view entry by the framework.

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

Notes

stmfAddViewEntry(3STMF)

Extended Library Functions, Volume 4 237

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfClearProviderData – delete all data for the specified provider

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfClearProviderData(char *providerName, int providerType);

providerName The name of the provider whose data is being deleted.

providerType The value must be either STMF_LU_PROVIDER_TYPE or
STMF_PORT_PROVIDER_TYPE.

The stmfClearProviderData() function deletes all data for the specified provider.

The following values are returned:

STMF_ERROR_NOT_FOUND The value specified for providerName was not found in the
system.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfClearProviderData(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 9 Jun 2008238

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfCreateHostGroup – create a new host group

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfCreateHostGroup(stmfGroupName *hostGroupName);

hostGroupName The name of the host group to be created.

The stmfCreateHostGroup() function creates a new host group.

The following values are returned:

STMF_ERROR_EXISTS The value specified for hostGroupName already exists in the
system.

STMF_INVALID_ARGUMENT The value specified for hostGroupName was not valid.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfCreateHostGroup(3STMF)

Extended Library Functions, Volume 4 239

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfCreateLu – create a logical unit

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfCreateLu(luResource hdl, stmfGuid *luGuid);

hdl The logical unit resource returned from a previous call to
stmfCreateLuResource(3STMF).

luGuid If non-null, it must contain a pointer to an stmfGuid structure allocated by the
caller. On successful return from this API, it will contain the guid of the newly
created logical unit. If luGuid is NULL, this argument is ignored.

The stmfCreateLu function creates a logical unit in stmf using the properties of hdl. See
stmfSetLuProp(3STMF) for a complete description of properties and their possible values.

The following values are returned:

STMF_STATUS_SUCCESS

The API call was successful.

STMF_ERROR_FILE_IN_USE

The filename specified by the STMF_LU_PROP_DATA_FILENAME or
STMF_LU_PROP_META_FILENAME was in use.

STMF_ERROR_GUID_IN_USE

The guid specified by the STMF_LU_PROP_GUID property is already being used.

STMF_ERROR_INVALID_BLKSIZE

The blocksize specified by STMF_LU_PROP_BLOCK_SIZE is invalid.

STMF_ERROR_WRITE_CACHE_SET

The requested write cache setting could not be provided.

STMF_ERROR_SIZE_OUT_OF_RANGE

The specified logical unit size is not supported.

STMF_ERROR_META_FILE_NAME

The specified meta file could not be accessed.

STMF_ERROR_DATA_FILE_NAME

The specified data file could not be accessed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Name

Synopsis

Parameters

Description

Return Values

Attributes

stmfCreateLu(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 8 May 2009240

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


libstmf(3LIB), stmfCreateLuResource(3STMF), stmfSetLuProp(3STMF), attributes(5)See Also

stmfCreateLu(3STMF)

Extended Library Functions, Volume 4 241

http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfCreateLuResource – create new logical unit resource

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfCreateLuResource(uint16_t dType, luResource *hdl);

dType The device type of the logical unit resource. Only STMF_DISK is currently supported.

hdl The logical unit resource to be created.

The stmfCreateLuResource() function creates a resource for setting properties of a logical
unit for purposes of creating a logical unit in STMF.

The following values are returned:

STMF_ERROR_INVALID_ARG Either type is unrecognized or hdl was NULL.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfCreateLuResource(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 8 May 2009242

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfCreateTargetGroup – create a new target port group

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfCreateTargetGroup(stmfGroupName *targetGroupName);

targetGroupName The name of the target port group to be created.

The stmfCreateTargetGroup() function creates a new target port group.

The following values are returned:

STMF_ERROR_EXISTS The value specified for targetGroupName already exists in the
system.

STMF_INVALID_ARGUMENT The value specified for targetGroupName was not valid.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfCreateTargetGroup(3STMF)

Extended Library Functions, Volume 4 243

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfDeleteHostGroup – delete an existing host group

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfDeleteHostGroup(stmfGroupName *hostGroupName);

hostGroupName The name of the host group being deleted.

The stmfDeleteHostGroup() function deletes an existing host group.

The following values are returned:

STMF_ERROR_NOT_FOUND The specified hostGroupName was not found in the system.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfDeleteHostGroup(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 9 Jun 2008244

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfDeleteLu – delete a logical unit

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfDeleteLu(stmfGuid *luGuid);

luGuid a pointer to an stmfGuid structure containing the guid of the logical unit to delete

The stmfDeleteLu() function deletes the logical unit from the system. Any view entries that
may exist for this logical unit will be retained in the system and must be removed using
stmfRemoveViewEntry(3STMF) if so desired.

The following values are returned:

STMF_STATUS_SUCCESS The API call was successful.

STMF_ERROR_NOT_FOUND The guid does not exist.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), stmfRemoveViewEntry(3STMF), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfDeleteLu(3STMF)

Extended Library Functions, Volume 4 245

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfDeleteTargetGroup – delete an existing target port group

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfDeleteTargetGroup(stmfGroupName *targetGroupName);

targetGroupName The name of the target port group being deleted.

The stmfDeleteTargetGroup() function deletes an existing target port group.

The following values are returned:

STMF_ERROR_NOT_FOUND The specified targetGroupName was not found in the system.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfDeleteTargetGroup(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 9 Jun 2008246

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfDestroyProxyDoor – close the door interface

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

void stmfDestroyProxyDoor(int hdl);

hdl handle returned from a previous call to stmfInitProxyDoor(3STMF)

The stmfDestroyProxyDoor() function closes the door interface established in the call to
stmfInitProxyDoor().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), stmfInitProxyDoor(3STMF), attributes(5)

Name

Synopsis

Parameters

Description

Attributes

See Also

stmfDestroyProxyDoor(3STMF)

Extended Library Functions, Volume 4 247

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfDevidFromIscsiName – convert an iSCSI name to a stmfDevid structure

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfDevidFromIscsiName(char *iscsiName, stmfDevid *devid);

iscsiName A character string of UTF-8 encoded Unicode characters representing the
iSCSI name terminated with the Unicode nul character.

devid A pointer to a stmfDevid structure allocated by the caller. On successful return,
this will contain the converted device identifier. On error, the value of this
parameter is undefined.

The stmfDevidFromIscsiName() function converts an iSCSI name to a stmfDevid structure.
It returns the devid as a SCSI name string identifier.

The following values are returned:

STMF_ERROR_INVALID_ARGUMENT The value of iscsiName was not valid iSCSI name.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfDevidFromIscsiName(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 9 Jun 2008248

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfDevidFromWwn – convert a WWN to a stmfDevid structure

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfDevidFromWWN(uchar_t wwn[8], stmfDevid *devid);

wwn The 8-byte WWN identifier.

devid A pointer to a stmfDevid structure allocated by the caller. On successful return, this
will contain the converted device identifier. On error, the value of this parameter is
undefined.

The stmfDevidFromWwn function convert a WWN to a stmfDevid structure. It returns the
devid as a SCSI name string.

The following values are returned:

STMF_ERROR_INVALID_ARGUMENT The value of wwn was not valid WWN identifier.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfDevidFromWwn(3STMF)

Extended Library Functions, Volume 4 249

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfFreeLuResource – free an allocated logical unit resource

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfFreeLuResource(luResource hdl);

hdl A logical unit resource previously allocated in a call to
stmfCreateLuResource(3STMF) or stmfGetLuResource(3STMF).

The stmfFreeLuResource() function frees a logical unit resource that was previously
allocated in a call to stmfCreateLuResource(3STMF) or stmfGetLuResource(3STMF).

The following values are returned:

STMF_STATUS_SUCCESS The API call was successful.

STMF_ERROR_INVALID_ARG The hdl argument is not a valid logical unit resource.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), stmfCreateLuResource(3STMF), stmfGetLuResource(3STMF),
attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfFreeLuResource(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 8 May 2009250

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfFreeMemory – free memory allocated by this library

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

void stmfFreeMemory(void *stmfMemory);

memory A pointer to memory that was previously allocated by this library. If
stmfMemory() is equal to NULL, the call will return successfully.

The stmfFreeMemory() function frees memory allocated by this library.

No values are returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfFreeMemory(3STMF)

Extended Library Functions, Volume 4 251

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfGetAluaState – return the Asymmetric Logical Unit Access State (ALUA) mode for
STMF

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfGetAluaState(boolean_t *alua_enabled, uint32_t *node);

alua_enabled Set to B_TRUE or B_FALSE on success.

node Set to 0 or 1 on success.

The stmfGetAluaState() function returns the Asymmetric Logical Unit Access State
(ALUA) mode for STMF along with the node setting.

The following values are returned:

STMF_ERROR_INVALID_ARG Either alua_enabled or node was incorrectly set.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfGetAluaState(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 29 Sep 2009252

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfGetHostGroupList – retrieve the list of host groups

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfGetInitiatorGroupList(stmfGroupList **hostGroupList);

hostGroupList A pointer to a pointer to an stmfGroupList structure. On successful return,
this will contain a list of host groups.

The stmfGetInitiatorGroupList() function retrieves the list of host groups. The caller
should call stmfFreeMemory(3STMF) when this list is no longer needed.

The following values are returned:

STMF_ERROR_NOMEM The library was unable to allocate sufficient memory for
hostGroupList.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

stmfFreeMemory(3STMF), libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfGetHostGroupList(3STMF)

Extended Library Functions, Volume 4 253

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfGetHostGroupMembers – retrieve the properties of the specified host group

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfGetHostGroupMembers(stmfGroupName *hostGroupName,
stmfGroupProperties **groupProperties);

hostGroupName The name of the host group whose member list is being retrieved.

groupProperties A pointer to a pointer to an stmfGroupProperties structure. On
successful return, this will contain the properties for the specified
hostGroupName.

The stmfGetHostGroupMembers() function retrieves the properties of the specified host
group. The caller should call stmfFreeMemory(3STMF) when this list is no longer needed.

The following values are returned:

STMF_ERROR_NOT_FOUND The specified hostGroupName was not found in the system.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

stmfFreeMemory(3STMF), libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfGetHostGroupMembers(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 9 Jun 2008254

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfGetLogicalUnitList – retrieve the list of logical units

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfGetLogicalUnitList(stmfGuidList **logicalUnitList);

logicalUnitList A pointer to a pointer to an stmfGuidList structure. On successful return,
this will contain a list of logical units in the system.

The stmfGetLogicalUnitList() function retrieves the list of logical units. The caller should
call stmfFreeMemory(3STMF) when this list is no longer needed.

The following values are returned:

STMF_ERROR_NOMEM The library was unable to allocate sufficient memory for
logicalUnitList.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

stmfFreeMemory(3STMF), libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfGetLogicalUnitList(3STMF)

Extended Library Functions, Volume 4 255

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfGetLogicalUnitProperties – retrieve the properties of the specified logical unit

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfGetLogicalUnitProperties(stmfGuid *logicalUnit,
stmfLogicalUnitProperties *logicalUnitProps);

logicalUnit The identifier of the logical unit whose properties are being retrieved.

logicalUnitProps A pointer to an stmfLogicalUnitProperties structure. On successful
return, this will contain the properties for the specified logicalUnitOid.

The stmfGetLogicalUnitProperties() function retrieves the properties of the specified
logical unit.

The following values are returned:

STMF_ERROR_LOGICAL_UNIT_NOT_REGISTERED The logicalUnit is not a valid registered
logical unit in the system.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfGetLogicalUnitProperties(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 9 Jun 2008256

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfGetLuResource – get a logical unit resource for a currently registered logical unit

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfGetLuResource(stmfGuid *luGuid, luResource *hdl);

luGuid The guid of logical unit to retrieve.

hdl The logical unit resource to create.

The stmfGetLuResource() function retrieves a logical unit resource hdl for a given logical
unit. The luGuid argument must represent a currently registered stmf logical unit. This
retrieved resource is a set of device-specific properties for a logical unit device. This allocates
an luResource hdl of device type matching luGuid. The stmfFreeLuResource(3STMF)
function should be used when hdl is no longer needed.

The following values are returned:

STMF_STATUS_SUCCESS The API call was successful.

STMF_ERROR_NOT_FOUND The guid does not exist.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), stmfFreeLuResource(3STMF), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfGetLuResource(3STMF)

Extended Library Functions, Volume 4 257

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfGetPersistMethod – get the current persistence method for stmf

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfGetPersistMethod(uint8_t *persistType, boolean_t serviceState);

persistType On success, contains the current persistence setting based on serviceState.

serviceState When set to B_TRUE, persistType will contain the persist method currently set
for the service. When set to B_FALSE, persistType will contain the persist
method for the current library open.

The stmfGetPersistMethod() function retrieves the current persistent method setting for the
service or for a given library open. When set to B_TRUE, retrieves the setting from the service.

The following values are returned:

STMF_STATUS_SUCCESS The API call was successful.

STMF_ERROR_PERSIST_TYPE Unable to retrieve persist type from service.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfGetPersistMethod(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 8 May 2009258

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfGetProviderData – retrieve the data for the specified provider

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfGetProviderData(char *providerName, nvlist_t **nvl,
int providerType);

providerNane The name of the provider for which data is being retrieved.

nvl A pointer to a pointer to an nvlist_t. On success, this will contain the
nvlist retrieved. Caller is responsible for freeing the returned nvlist by
calling nvlist_free(3NVPAIR).

providerType The value for this parameter must be either STMF_LU_PROVIDER_TYPE or
STMF_PORT_PROVIDER_TYPE.

The stmfGetProviderData() function retrieves the data for the specified provider.

The following values are returned:

STMF_ERROR_NOMEM The library was unable to allocate sufficient memory to return the
data.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed (Obsolete)

MT-Level Safe

libstmf(3LIB), nvlist_free(3NVPAIR), stmfGetProviderDataProt(3STMF),
attributes(5)

The stmfGetProviderData() function is deprecated in favor of
stmfGetProviderDataProt(3STMF) and may be removed in a future revision of
libstmf(3LIB).

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

Notes

stmfGetProviderData(3STMF)

Extended Library Functions, Volume 4 259

http://www.oracle.com/pls/topic/lookup?ctx=821-1469&id=nvlist-free-3nvpair
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1469&id=nvlist-free-3nvpair
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib


stmfGetProviderDataProt – retrieve data for the specified provider

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfGetProviderDataProt(char *providerName, nvlist_t **nvl,
int providerType, uint64_t *token);

providerName The name of the provider for which data is being retrieved.

nvl A pointer to a pointer to an nvlist_t. On success, this will contain the
nvlist retrieved. The caller is responsible for freeing the returned nvlist by
calling nvlist_free(3NVPAIR).

providerType The value for this parameter must be either STMF_LU_PROVIDER_TYPE or
STMF_PORT_PROVIDER_TYPE.

token A pointer to a uint64_t allocated by the caller. On success, this will contain
a token for the returned data that can be used in a call to
stmfSetProviderDataProt(3STMF) to ensure that the data returned in
this call is not stale. If this value is NULL, the token will be ignored.

The stmfGetProviderDataProt() function retrieves the data for the specified provider.

The following values are returned:

STMF_ERROR_NOMEM The library was unable to allocate sufficient memory to return the
data.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), nvlist_free(3NVPAIR), stmfSetProviderDataProt(3STMF),
attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfGetProviderDataProt(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 7 Oct 2008260

http://www.oracle.com/pls/topic/lookup?ctx=821-1469&id=nvlist-free-3nvpair
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1469&id=nvlist-free-3nvpair
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfGetState – retrieve the list of sessions on a target

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfGetState(stmfState *state);

state A pointer to an stmfState structure allocated by the caller.

The stmfGetState() function retrieves the list of target port groups.

The following values are returned:

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfGetState(3STMF)

Extended Library Functions, Volume 4 261

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfGetStmfProp – retrieve default stmf properties for luns and targets

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfGetStmfProp(uint8_t propType, char *propVal, size_t *propLen);

propType a property type value. See DESCRIPTION for valid values.

propVal a property value

propLen the length of the specified property value. If propLen was of an insufficient size
to the hold the returned property value, propLen will contain the required size of
the buffer and STMF_ERROR_INVALID_ARG will be returned.

This function gets the default properties for the specified property type. All property values
are expressed in human-readable form. The propType argument can be one of the following
values:

STMF_DEFAULT_LU_STATE Retrieve the current default state for luns. The
default value is “online”.

STMF_DEFAULT_TARGET_PORT_STATE Retrieve the current default state for target ports. the
default value is “online”.

The following values are returned:

STMF_STATUS_SUCCESS The API call was successful.

STMF_ERROR_INVALID_ARG Either the propType or propVal argument is invalid.

STMF_ERROR_NOT_FOUND The specified propType was not found in the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), stmfSetStmfProp(3STMF), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfGetStmfProp(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 7 Jul 2010262

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfGetTargetGroupList – retrieve the list of target port groups

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfGetTargetGroupList(stmfGroupList **targetGroupList);

targetGroupList A pointer to a pointer to an stmfGroupList structure. On successful
return, this will contain a list of target port group object identifiers.

The stmfGetTargetGroupList() function retrieves the list of target port groups. The caller
should call stmfFreeMemory(3STMF) when this list is no longer needed.

The following values are returned:

STMF_ERROR_NOMEM The library was unable to allocate sufficient memory for
targetGroupList.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), stmfFreeMemory(3STMF), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfGetTargetGroupList(3STMF)

Extended Library Functions, Volume 4 263

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfGetTargetGroupMembers – retrieve the properties of the specified target port group

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfGetTargetGroupMembers(stmfGroupName *targetGroupName,
stmfGroupProperties **groupProperties);

targetGroupName The name of the target port group whose member list is being retrieved.

groupProperties A pointer to a pointer to an stmfGroupProperties structure. On
successful return, this will contain the properties for the specified
targetGroupName.

The stmfGetTargetGroupMembers() function retrieves the properties of the specified target
port group. The caller should call stmfFreeMemory(3STMF) when this list is no longer needed.

The following values are returned:

STMF_ERROR_NOT_FOUND The specified targetGroupName was not found in the system.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), stmfFreeMemory(3STMF), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfGetTargetGroupMembers(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 9 Jun 2008264

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfGetTargetList – retrieve the list of target ports

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfGetTargetList(stmfDevidList **targetList);

targetList A pointer to a pointer to an stmfDevidList structure. On successful return, this
will contain a list of target ports in the system.

The stmfGetTargetList() function retrieves the list of target ports. The caller should call
stmfFreeMemory(3STMF) when this list is no longer needed.

The following values are returned:

STMF_ERROR_NOMEM The library was unable to allocate sufficient memory for targetList.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), stmfFreeMemory(3STMF), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfGetTargetList(3STMF)

Extended Library Functions, Volume 4 265

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfGetTargetProperties – retrieve the properties of the specified target port

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfGetTargetProperties(stmfDevid *target,
stmfTargetProperties *targetProperties);

target The identifier of the target port whose properties are being retrieved.

targetProperties A pointer to an stmfTargetProperties structure allocated by the caller.
On successful return, the structure will contain the properties for the
specified.

The stmfGetTargetProperties() function retrieves the properties of the specified target
port.

The following values are returned:

STMF_ERROR_NOT_FOUND The specified target was not found in the system.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfGetTargetProperties(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 9 Jun 2008266

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfGetViewEntryList – retrieve the list of view entries for a specified logical unit

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfGetViewEntryList(stmfGuid *logicalUnit,
stmfViewEntryList **viewEntryList);

logicalUnit The identifier of the logical unit for which to retrieve the list of view entries.

viewEntryList A pointer to a pointer to an stmfViewEntryList structure. On successful
return, this will contain a list of view entries for logicalUnit.

The stmfGetViewEntryList() function retrieves the list of view entries for a specified logical
unit. The caller should call stmfFreeMemory(3STMF) when this list is no longer needed.

The following values are returned:

STMF_ERROR_NOMEM The library was unable to allocate sufficient memory for
viewEntryList.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), stmfFreeMemory(3STMF), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfGetViewEntryList(3STMF)

Extended Library Functions, Volume 4 267

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfImportLu – import a logical unit

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfImportLu(uint16_t dType, char *fname, stmfGuid *luGuid);

dtype the device type of the logical unit being imported. Only STMF_DISK is currently
supported.

fname the filename of the logical unit being imported

luGuid pointer to a stmfGuid allocated by the caller. On success, this contains the guid of
the imported logical unit. If luGuid is NULL, this parameter is ignored.

The stmfImportLu() function imports a previously created logical unit. The fname argument
must be set to the filename where the metadata for the logical unit is stored. See
stmfCreateLu(3STMF).

The following values are returned:

STMF_STATUS_SUCCESS The API call was successful.

STMF_ERROR_INVALID_ARG The dType or fname argument was invalid.

STMF_ERROR_META_FILE_NAME The specified meta file could not be accessed.

STMF_ERROR_DATA_FILE_NAME The data file could not be accessed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

stmfCreateLu(3STMF), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfImportLu(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 29 Sep 2009268

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfInitProxyDoor – establish the door server with the STMF proxy service

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfInitProxyDoor(int *hdl, int fd);

hdl a pointer to an int that will contain the handle for the proxy door to be used in calls to
stmfPostProxyMsg(3STMF) and stmfDestroyProxyDoor(3STMF).

fd the door file descriptor for the established door server

The stmfInitProxyDoor() function establishes the door server with the STMF proxy service.
The STMF proxy service is responsible for sending SCSI commands to the peer node on behalf
of a logical unit in the Standby asymmetric logical unit access (ALUA) state.
stmfInitProxyDoor() should be called once a peer-to-peer communication channel between
the two participating ALUA nodes has been established by the caller.

The door_call(3C) from the STMF proxy service to the door server will fill in the door_arg_t
structure as follows:

door_arg_t arg;

uint32_t result;

arg.data_ptr = buf;

arg.data_size = size;

arg.desc_ptr = NULL;

arg.desc_num = 0;

arg.rbuf = (char *)&result

arg.rsize = sizeof (result);

The tuple <data_ptr, data_size> is expected to arrive at the peer node STMF proxy service via
stmfPostProxyMsg().

The door server is expected to complete the door call with these arguments to
door_return(3C):

uinit32_t result;

(void) door_return((char *)&result, sizeof(result), NULL, 0);

where result is of type uint32_t and set to 0 on success, non-zero on failure.

Non-zero values are logged as errors without further action. No file descriptors will be
exchanged by the door call or return.

The following values are returned:

STMF_ERROR_DOOR_INSTALLED A previous door has already been established.

Name

Synopsis

Parameters

Description

Return Values

stmfInitProxyDoor(3STMF)

Extended Library Functions, Volume 4 269

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=door-call-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=door-return-3c


STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

door_call(3C), door_return(3C), libstmf(3LIB), stmfDestroyProxyDoor(3STMF),
stmfPostProxyMsg(3STMF), attributes(5)

Attributes

See Also

stmfInitProxyDoor(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 29 Sep 2009270

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=door-call-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=door-return-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfLuStandby – set the access state of a logical unit to standby mode

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfSetAluaState(stmfGuid *luGuid);

luGuid a pointer to an stmfGuid structure containing the guid of the logical unit to set to
standby

The stmfLuStandby() function sets the access state of a logical unit to standby mode. When
successfully set, a standby logical unit switches its asymmetric logical unit access state to a one
of “Transition to Standby” (see stmfGetLuProp(3STMF). Once moved to this state, the
backing store for the logical unit will be released by the logical unit provider (sbd for disk
devices). To move a logical unit out of “Standby” or the “Transition to Standby” state,
stmfImportLu(3STMF) or the import-lu subcommand of stmfadm(1M) must be executed on
the logical unit. On a successful logical unit import, the access state of the logical unit will
move to “Active” in addition to sending a message to its peer that will complete the peer's
transition to “Standby”. The current access state for the logical unit can be retrieved using
stmfGetLuProp() where the property type is STMF_LU_PROP_ACCESS_STATE.

The following values are returned:

STMF_ERROR_NOT_FOUND The guid does not exist.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

stmfadm(1M), libstmf(3LIB), stmfGetLuProp(3STMF), stmfImportLu(3STMF),
attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfLuStandby(3STMF)

Extended Library Functions, Volume 4 271

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=stmfadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=stmfadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfModifyLu, stmfModifyLuByFname – modify a logical unit

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfModifyLu(stmfGuid *luGuid, uint32_t prop, const char *propVal)

int stmfModifyLu(uint16_t dType, const char *fname, uint32_t prop,
const char *propVal)

luGuid The guid of logical unit to modify.

fname The filename of logical unit to modify.

dType Type of logical unit. See stmfCreateLuResource(3STMF).

prop A property type value. See DESCRIPTION for valid values.

propVal A property value.

The stmfModifyLu() and stmfModifyLuByFname() functions modify the properties of a
logical unit device.

Valid properties for modify STMF_DISK:

STMF_LU_PROP_ACCESS_STATE

Asymmetric access state for the logical unit. Set to one of:

0 Active

1 Transition to Active

2 Standby

3 Transition to Standby

STMF_LU_PROP_ALIAS

Up to 255 characters representing a user defined name for the device.

Default: Set to file name of backing store.

STMF_LU_PROP_SIZE

Numeric value with optional suffix (for example, 100G, 1T) to specify unit of size.

Default: Size of device specified in the STMF_LU_PROP_DATA_FILENAME property value.

STMF_LU_PROP_WRITE_CACHE_DISABLE

Write back cache disable. When specified as “true” or “false”, specifies write back cache
disable behavior.

Default: Writeback cache setting of the backing store device specified by
STMF_LU_PROP_DATA_FILENAME.

Name

Synopsis

Parameters

Description

stmfModifyLu(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 16 Nov 2009272



STMF_LU_PROP_WRITE_PROTECT

Write protect bit. When specified as “true” or “false”, specifies whether the device behaves
as a write protected device.

Default: “false”

The following values are returned:

STMF_STATUS_SUCCESS The API call was successful.

STMF_ERROR_INVALID_ARG Either prop or propVal is unrecognized.

STMF_ERROR_INVALID_PROPSIZE The size of propVal is invalid.

STMF_ERROR_INVALID_PROP The value of prop is unknown for this resource type.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), stmfCreateLuResource(3STMF), attributes(5)

Return Values

Attributes

See Also

stmfModifyLu(3STMF)

Extended Library Functions, Volume 4 273

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfOfflineLogicalUnit – take offline a logical unit that is currently in the online state

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfOfflineLogicalUnit(stmfGuid *logicalUnit);

logicalUnit The identifier of the logical unit to offline.

The stmfOfflineLogicalUnit() function takes offline a logical unit that is currently in the
online state. Once in the offline state, the logical unit will no longer be capable of servicing
requests in the system.

This API call can be used to take offline a logical unit for servicing. Once the logical unit is
offline, an initiator port that attempts to issue any SCSI commands to the offlined logical unit
will receive a check condition. For purposes of the REPORT LUNS command, the logical unit
will no longer appear in the logical unit inventory for any initiator ports to which it is
currently mapped by one or more view entries.

The following values are returned:

STMF_ERROR_BUSY The device is currently busy.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfOfflineLogicalUnit(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 9 Jun 2008274

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfOfflineTarget – take offline a target port that is currently in the online state

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfOfflineTarget(stmfDevid *target);

target The identifier of the target port to offline.

The stmfOfflineTarget() function takes offline a target port that is currently in the online
state. Once in the offline state, the target port will no longer be capable of servicing requests in
the system.

This API call can be used to take offline a target port device for servicing. Once the target port
is offline, it will no longer be available to any entities outside of the SCSI Target Mode
Framework. Any initiator ports that currently have sessions established by the offlined target
port will be logged out.

The following values are returned:

STMF_ERROR_BUSY The device is currently busy.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfOfflineTarget(3STMF)

Extended Library Functions, Volume 4 275

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfOnlineLogicalUnit – take online of a logical unit that is currently in the offline state

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfOnlineLogicalUnit(stmfGuid *logicalUnit);

logicalUnit The identifier of the logical unit to take online.

The stmfOnlineLogicalUnit() function takes online of a logical unit that is currently in the
offline state.

The following values are returned:

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfOnlineLogicalUnit(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 9 Jun 2008276

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfOnlineTarget – take online a target port that is currently in the offline state

cc [ flag ... ] file... -lstmf [ library ... ]

#include <libstmf.h>

int stmfOnlineTarget(stmfDevid *target);

target The identifier of the target port to online.

The stmfOnlineTarget() function takes online a target port that is currently in the offline
state.

The following values are returned:

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfOnlineTarget(3STMF)

Extended Library Functions, Volume 4 277

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfPostProxyMsg – post proxy message

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfPostProxyMsg(int hdl, void *buf, uint32_t buflen);

hdl handle returned in a previous successful call to stmfInitProxyDoor(3STMF)

buf pointer to a buffer to received from peer node

buflen length of buf

The stmfPostProxyMsg() function passes down to the STMF proxy service the message
received from the peer node's STMF proxy service door upcall.

The following values are returned:

STMF_ERROR_INVALID_ARG The buf argument is NULL.

STMF_POST_MSG_FAILED The attempt to post the message failed.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

stmfInitProxyDoor(3STMF), libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfPostProxyMsg(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 29 Sep 2009278

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfRemoveFromHostGroup – remove an initiator port from an host group

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfRemoveFromHostGroup(stmfGroupName *hostGroupName
stmfDevid *initiatorPortName);

hostGroupName The name of the host group from which the specified hostGroupName
is being removed.

initiatorPortName The device identifier of the initiator port to remove from the specified
host group.

The stmfRemoveFromHostGroup() function removes an initiator port from an host group.

The following values are returned:

STMF_ERROR_GROUP_NOT_FOUND The specified hostGroupName was not found in the
system.

STMF_ERROR_MEMBER_NOT_FOUND The specified initiatorPortName was not found in the
system.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfRemoveFromHostGroup(3STMF)

Extended Library Functions, Volume 4 279

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfRemoveFromTargetGroup – remove a target port from an target port group

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfRemoveFromTargetGroup(stmfGroupName *targetGroupName
stmfDevid *targetName);

targetGroupName The name of the target port group from which the specified
targetGroupName is being removed.

targetName The device identifier of the target port to remove from the specified
target port group.

The stmfRemoveFromTargetGroup() function removes a target port from an target port
group.

The following values are returned:

STMF_ERROR_GROUP_NOT_FOUND The specified targetGroupName was not found in the
system.

STMF_ERROR_MEMBER_NOT_FOUND The specified targetName was not found in the system.

STMF_ERROR_TG_ONLINE The specified targetName must be offline.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfRemoveFromTargetGroup(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 15 Jun 2009280

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfRemoveViewEntry – remove a view entry from the system

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfRemoveViewEntry(stmfGuid *logicalUnit,
uint32_t viewEntry);

logicalUnit The identifier of the logical unit for the view entry being removed.

viewEntry The numeric value of the view entry to be removed.

The stmfRemoveViewEntry() function removes a view entry from the system.

The following values are returned:

STMF_ERROR_NOT_FOUND The specified logicalUnit or viewEntryName was not found in the
system.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfRemoveViewEntry(3STMF)

Extended Library Functions, Volume 4 281

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfSetAluaState – set the Asymmetric Logical Unit Access State (ALUA) mode for STMF

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfSetAluaState(boolean_t alua_enabled, uint32_t node);

alua_enabled B_TRUE when enabling ALUA mode; B_FALSE when disabling ALUA mode.

node Must be the value 0 or 1.

The stmfSetAluaState() function sets the Asymmetric Logical Unit Access State (ALUA)
mode for STMF. When alua_enabled is set to B_FALSE, node is ignored; otherwise, node must
be set to 0 or 1. The node setting must be different for each node in a paired configuration. This
function should be called only after the STMF proxy door service has been initialized (see
stmfInitProxyDoor(3STMF)). When the ALUA state is enabled, all STMF logical units will
be registered on the peer node as standby logical units. The standby logical units can then be
exported to any SCSI initiator using the existing mechanisms in STMF,
stmfAddViewEntry(3STMF) or the add-view subcommand of stmfadm(1M). If ALUA mode is
already enabled, it is valid to call this interface again with enabled set to B_TRUE. This action
would result in a re-initialization of the ALUA mode and can be used during recovery of a
failed peer node.

The following values are returned:

STMF_ERROR_INVALID_ARG Either alua_enabled or node was incorrectly set.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

stmfadm(1M), libstmf(3LIB), stmfAddViewEntry(3STMF), stmfInitProxyDoor(3STMF),
attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfSetAluaState(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 29 Sep 2009282

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=stmfadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=stmfadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfSetLuProp, stmfGetLuProp – set or get a logical unit property

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfSetLuProp(luResource hdl, uint32_t prop, const char *propVal);

int stmfGetLuProp(luResource hdl, uint32_t prop, char *propVal,
size_t *propLen);

hdl A logical unit resource previously allocated by stmfCreateLuResource(3STMF)
or stmfGetLuResource(3STMF).

prop A property type value. See DESCRIPTION for valid values.

propVal A property value.

propLen The length of the specified property value. If propLen was of an insufficient size to
hold the returned property value, propLen will contain the required size of the
buffer and STMF_ERROR_INVALID_ARG will be returned.

These functions set or get property values. All property values are expressed in
human-readable form. Boolean properties are expressed in case insensitive form of “true” or
“false”. Properties that are represented by ASCII hexadecimal contain no leading characters to
indicate a base hexadecimal representation (that is, no leading “0x”). The prop argument can
be one of the following values:

STMF_LU_PROP_ACCESS_STATE

Asymmetric access state for the logical unit. Set to one of:

0 Active

1 Transition to Standby

2 Standby

3 Transition to Active

STMF_LU_PROP_ALIAS

Up to 255 characters representing a user defined name for the device.

Default: Set to file name of backing store.

STMF_LU_PROP_BLOCK_SIZE

Numeric value for block size in bytes in 2^n.

Default: 512

STMF_LU_PROP_COMPANY_ID

Organizational Unique Identifier. 6 hexadecimal ASCII characters representing the IEEE
OUI company id assignment. This will be used to generate the device identifier (GUID).

Default: 00144F

Name

Synopsis

Parameters

Description

stmfSetLuProp(3STMF)

Extended Library Functions, Volume 4 283



STMF_LU_PROP_DATA_FILENAME

Character value representing the file name of the backing store device.

Default: None

STMF_LU_PROP_GUID

ASCII hexadecimal string of 32 characters representing the unique identifier for the device.
This must be of valid 32 hexadecimal ASCII characters representing a valid NAA
Registered Extended Identifier.

Default: Set by framework to a generated value.

STMF_LU_PROP_HOST_ID

8 hexadecimal ASCII characters representing the host ID assignment. This will be used to
generate the globally unique identifier (GUID) for the logical unit.

Default: identifer returned by hostid(1).

STMF_LU_PROP_META_FILENAME

Metadata file name. When specified, will be used to hold the SCSI metadata for the logical
unit.

Default: None. If this value is not specified, the value specified in
STMF_LU_PROP_DATA_FILENAME will be used.

STMF_LU_PROP_MGMT_URL

Up to 1024 characters representing Management Network Address URLs. More than one
URL can be passed using space delimited URLs.

STMF_LU_PROP_PID

Up to 16 characters of product identification that will be reflected in the Standard
INQUIRY data returned for the device.

Default: sSet to COMSTAR.

STMF_LU_PROP_SERIAL_NUM

Serial Number. Specifies the SCSI Vital Product Data Serial Number (page 80h). It is a
character value up to 252 bytes in length.

Default: None

STMF_LU_PROP_SIZE

Numeric value w/optional suffix, e.g. 100G, 1T, to specify unit of size.

Default: Size of the device specified in the STMF_LU_PROP_DATA_FILENAME property value.

STMF_LU_PROP_VID

8 characters of vendor identification per SCSI SPC-3 and will be reflected in the Standard
INQUIRY data returned for the device.

Default: Set to SUN.

stmfSetLuProp(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 16 Nov 2009284

http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=hostid-1


STMF_LU_PROP_WRITE_CACHE_DISABLE

Write back cache disable. When specified as “true” or “false”, specifies write back cache
disable behavior.

Default: Writeback cache setting of the backing store device specified by
STMF_LU_PROP_DATA_FILENAME.

STMF_LU_PROP_WRITE_PROTECT

Write protect bit. When specified as “true” or “false”, specifies whether the device behaves
as a write protected device.

Default: “false”

The following values are returned:

STMF_STATUS_SUCCESS The API call was successful.

STMF_ERROR_INVALID_ARG Either prop or propVal is unrecognized.

STMF_ERROR_INVALID_PROPSIZE The size of propVal is invalid.

STMF_ERROR_INVALID_PROP The value of prop is unknown for this resource type.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

hostid(1), libstmf(3LIB), stmfCreateLuResource(3STMF), stmfGetLuResource(3STMF),
attributes(5)

Return Values

Attributes

See Also

stmfSetLuProp(3STMF)

Extended Library Functions, Volume 4 285

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=hostid-1
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfSetPersistMethod – set persistence method for the stmf service

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfSetPersistMethod(uint8_t persistType, boolean_t serviceSet);

persistType The requested persistence setting. Can be either STMF_PERSIST_SMF or
STMF_PERSIST_NONE.

serviceSet Set to indicate whether the setting should persist on the stmf service. When set
to B_FALSE, this setting is only applicable for the duration of the current
library open or until a subsequent call is made to change the setting.

The stmfSetPersistMethod() function sets the persistence method for stmf.

The following values are returned:

STMF_STATUS_SUCCESS The API call was successful.

STMF_ERROR_INVALID_ARG The persistType argument is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfSetPersistMethod(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 16 Nov 2009286

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfSetProviderData – set the data for the specified provider

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfSetProviderData(char *providerName, nvlist_t *nvl,
int providerType);

providerName The name of the provider for which data is being set.

nvl A pointer to an nvlist_t containing the nvlist to be set.

providerType The value must be either STMF_LU_PROVIDER_TYPE or
STMF_PORT_PROVIDER_TYPE.

The stmfSetProviderData() function sets the data for the specified provider.

The following values are returned:

STMF_ERROR_NOMEM The library was unable to allocate sufficient memory to return the
data.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed (Obsolete)

MT-Level Safe

libstmf(3LIB), stmfSetProviderDataProt(3STMF), attributes(5)

The stmfSetProviderData() function is deprecated in favor of
stmfSetProviderDataProt(3STMF) and may be removed in a future revision of
libstmf(3LIB).

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

Notes

stmfSetProviderData(3STMF)

Extended Library Functions, Volume 4 287

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib


stmfSetProviderDataProt – retrieve data for the specified provider

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfSetProviderDataProt(char *providerName, nvlist_t **nvl,
int providerType, uint64_t *token);

providerName The name of the provider for which data is being set.

nvl A pointer to a pointer to an nvlist_t containing the nvlist to be set.

providerType The value for this parameter must be either STMF_LU_PROVIDER_TYPE or
STMF_PORT_PROVIDER_TYPE.

token A pointer to a uint64_t that contains the value returned from a successful
call to stmfGetProviderDataProt(3STMF). If this argument is NULL, the
token is ignored. Otherwise, the token will be verified against the current
data. If the token represents stale data, the call fails.

On success, token will contain the new token for the data being set and can
be used in subsequent calls to stmfSetProviderData(3STMF). On failure
the contents are undefined.

The stmfSetProviderDataProt() function sets the data for the specified provider.

The following values are returned:

STMF_ERROR_PROV_DATA_STALE The token value represents stale data.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), nvlist_free(3NVPAIR), stmfGetProviderDataProt(3STMF),
stmfSetProviderData(3STMF), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfSetProviderDataProt(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 7 Oct 2008288

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1469&id=nvlist-free-3nvpair
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfSetStmfProp – set default stmf properties for luns and targets

cc [ flag... ] file... -lstmf [ library... ]

#include <libstmf.h>

int stmfSetStmfProp(uint8_t propType, char *propVal);

propType a property type value. See DESCRIPTION for valid values.

propVal a property value

This function sets the default properties for the specified property type. All property values are
expressed in human-readable form. The propType argument can be one of the following
values:

STMF_DEFAULT_LU_STATE Set the default state for luns. The new setting will
only take effect after a service enable/restart on the
stmf service. Valid propVal values are “online” or
“offline”.

STMF_DEFAULT_TARGET_PORT_STATE Sets the default state for target ports The new setting
will only take effect after a service enable/restart on
the stmf service. Valid propVal values are “online” or
“offline”.

The following values are returned:

STMF_STATUS_SUCCESS The API call was successful.

STMF_ERROR_INVALID_ARG The propType argument is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), stmfGetStmfProp(3STMF), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfSetStmfProp(3STMF)

Extended Library Functions, Volume 4 289

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stmfValidateView – remove a target port from an target port group

cc [ flag... ] file... lstmf [ library... ]

#include <libstmf.h>

int stmfValidateView(stmfViewEntry *view);

view The view entry to validate or get the logical number.

The stmfValidateView() function validates the logical unit number. This is done by setting
view->luNbrValid to B_TRUE and setting view->luNbr to the logical unit number. A valid
logical unit number is in the range of 0-16383.

The stmfValidateView() function finds the next available logical unit numbere by setting
view->luNbrValid to B_FALSE. On success, the available logical unit number is returned in
view->luNbr. A logical unit number is considered to be available if it is not currently
consumed by an existing view entry where the target group and host group matches the view
entry passed into this function. Until the logical unit number is no longer available, any calls
to this function will get the same logical unit number in view->luNbr.

The following values are returned:

STMF_ERROR_LUN_IN_USE The specified logical unit number is already in use for this
logical unit.

STMF_STATUS_SUCCESS The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libstmf(3LIB), stmfAddViewEntry(3STMF), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

stmfValidateView(3STMF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Oct 2009290

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libstmf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


stobl, stobsl, stobclear – translate character-coded labels to binary labels

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

int stobsl(const char *string, m_label_t *label, const int flags,
int *error);

int stobclear(const char *string, m_label_t *clearance,
const int flags, int *error);

The stobsl() and stobclear() functions translate character-coded labels into binary labels.
They also modify an existing binary label by incrementing or decrementing it to produce a
new binary label relative to its existing value.

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective privileges to
perform label translation on character-coded labels that dominate the process's sensitivity
label.

The generic form of an input character-coded label string is:

[ + ] classification name ] [ [ + | − ] word ...

Leading and trailing white space is ignored. Fields are separated by white space, a ‘/' (slash), or
a ‘,' (comma). Case is irrelevant. If string starts with + or −, string is interpreted a modification
to an existing label. If string starts with a classification name followed by a + or −, the new
classification is used and the rest of the old label is retained and modified as specified by string.
+ modifies an existing label by adding words. − modifies an existing label by removing words.
To the maximum extent possible, errors in string are corrected in the resulting binary label
label.

The stobsl() and stobclear() functions also translate hexadecimal label representations
into binary labels (see hextob(3TSOL)) when the string starts with 0x and either NEW_LABEL or
NO_CORRECTION is specified in flags.

The flags argument can take the following values:

NEW_LABEL label contents is not used, is formatted as a label of the relevant type, and
is assumed to be ADMIN_LOW for modification changes. If NEW_LABEL is not
present, label is validated as a defined label of the correct type dominated
by the process's sensitivity label.

NO_CORRECTION No corrections are made if there are errors in the character-coded label
string. string must be complete and contain all the label components that
are required by the label_encodings file. The NO_CORRECTION flag
implies the NEW_LABEL flag.

0 (zero) The default action is taken.

The error argument is a return parameter that is set only if the function is unsuccessful.

Name

Synopsis

Description

stobl(3TSOL)

Extended Library Functions, Volume 4 291



The stobsl() function translates the character-coded sensitivity label string into a binary
sensitivity label and places the result in the return parameter label.

The flags argument can be either NEW_LABEL, NO_CORRECTION, or 0 (zero). Unless
NO_CORRECTION is specified, this translation forces the label to dominate the minimum
classification, and initial compartments set that is specified in the label_encodings file and
corrects the label to include other label components required by the label_encodings file, but
not present in string.

The stobclear() function translates the character-coded clearance string into a binary
clearance and places the result in the return parameter clearance.

The flags argument can be either NEW_LABEL, NO_CORRECTION, or 0 (zero). Unless
NO_CORRECTION is specified, this translation forces the label to dominate the minimum
classification, and initial compartments set that is specified in the label_encodings file and
corrects the label to include other label components that are required by the label_encodings
file, but not present in string. The translation of a clearance might not be the same as the
translation of a sensitivity label. These functions use different tables of the label_encodings
file that might contain different words and constraints.

These functions return 1 if the translation was successful and a valid binary label was returned.
Otherwise they return 0 and the value of the error argument indicates the error.

When these functions return zero, error contains one of the following values:

−1 Unable to access the label_encodings file.

0 The label label is not valid for this translation and the NEW_LABEL or NO_CORRECTION
flag was not specified, or the label label is not dominated by the process's sensitivity
label and the process does not have PRIV_SYS_TRANS_LABEL in its set of effective
privileges.

>0 The character-coded label string is in error. error is a one-based index into string
indicating where the translation error occurred.

/etc/security/tsol/label_encodings

The label encodings file contains the classification names, words, constraints, and values
for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

MT-Level MT-Safe

Return Values

Errors

Files

Attributes

stobl(3TSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 2007292

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


The stobsl() and stobclear() functions are obsolete. Use the str_to_label(3TSOL)
function instead.

blcompare(3TSOL), hextob(3TSOL), libtsol(3LIB), str_to_label(3TSOL),
attributes(5)

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

In addition to the ADMIN_LOW name and ADMIN_HIGH name strings defined in the
label_encodings file, the strings “ADMIN_LOW” and “ADMIN_HIGH” are always accepted as
character-coded labels to be translated to the appropriate ADMIN_LOW and ADMIN_HIGH label,
respectively.

Modifying an existing ADMIN_LOW label acts as the specification of a NEW_LABEL and forces the
label to start at the minimum label that is specified in the label_encodings file.

Modifying an existing ADMIN_HIGH label is treated as an attempt to change a label that
represents the highest defined classification and all the defined compartments that are
specified in the label_encodings file.

The NO_CORRECTION flag is used when the character-coded label must be complete and
accurate so that translation to and from the binary form results in an equivalent
character-coded label.

See Also

Notes

stobl(3TSOL)

Extended Library Functions, Volume 4 293

http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


str_to_label – parse human readable strings to label

cc [flag...] file... -ltsol [library...]

#include <tsol/label.h>

int str_to_label(const char *string, m_label_t **label,
const m_label_type_t label_type, uint_t flags, int *error);

The str_to_label() function is a simple function to parse human readable strings into labels
of the requested type.

The string argument is the string to parse. If string is the result of a label_to_str()
conversion of type M_INTERNAL, flags are ignored, and any previously parsed label is replaced.

If *label is NULL, str_to_label() allocates resources for label and initializes the label to the
label_type that was requested before parsing string.

If *label is not NULL, the label is a pointer to a mandatory label that is the result of a previously
parsed label and label_type is ignored. The type that is used for parsing is derived from label
for any type-sensitive operations.

If flags is L_MODIFY_EXISTING, the parsed string can be used to modify this label.

If flags is L_NO_CORRECTION, the previously parsed label is replaced and the parsing algorithm
does not attempt to infer missing elements from string to compose a valid label.

If flags is L_DEFAULT, the previously parsed label is replaced and the parsing algorithm makes a
best effort to imply a valid label from the elements of string.

If flags contains L_CHECK_AR logically OR-ed with another value, the resulting label will be
checked to ensure that it is within the “Accreditation Range” of the DIA encodings schema.
This flag is interpreted only for MAC_LABEL label types.

The caller is responsible for freeing the allocated resources by calling the m_label_free()
function. label_type defines the type for a newly allocated label. The label type can be:

MAC_LABEL The string should be translated as a Mandatory Access Control (MAC) label.

USER_CLEAR The string should be translated as a label that represents the least upper
bound of the labels that the user is allowed to access.

If error is NULL, do not return additional error information for EINVAL. The calling process
must have mandatory read access to label and human readable string. Or the calling process
must have the sys_trans_label privilege.

The manifest constants ADMIN_HIGH and ADMIN_LOW are the human readable strings that
correspond to the Trusted Extensions policy admin_high and admin_low label values. See
labels(5).

Name

Synopsis

Description

str_to_label(3TSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 15 Jun 2009294

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=labels-5


Upon successful completion, the str_to_label() function returns 0. Otherwise, -1 is
returned, errno is set to indicate the error, and error provides additional information for
EINVAL. Otherwise, error is a zero-based index to the string parse failure point.

The str_to_label() function will fail if:

EINVAL Invalid parameter. M_BAD_STRING indicates that string could not be parsed.
M_BAD_LABEL indicates that the label passed in was in error. M_OUTSIDE_AR
indicates that the resulting label is not within the “Accreditation Range” specified
in the DIA encodings schema.

ENOTSUP The system does not support label translations.

ENOMEM The physical limits of the system are exceeded by size bytes of memory which
cannot be allocated.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See below.

Parsing types that are relative to Defense Intelligence Agency (DIA) encodings schema are
Standard. Standard is specified in label_encodings(4).

label_to_str(3TSOL), libtsol(3LIB), m_label(3TSOL), label_encodings(4),
attributes(5), labels(5)

“Validating the Label Request Against the Printer’s Label Range” in Oracle Solaris Trusted
Extensions Developer’s Guide

A number of the parsing rules rely on the DIA label encodings schema. The rules might not be
valid for other label schemata.

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Return Values

Errors

Attributes

See Also

Warnings

Notes

str_to_label(3TSOL)

Extended Library Functions, Volume 4 295

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=label-encodings-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=label-encodings-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=labels-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=labelprint-15
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=labelprint-15


sysevent_bind_handle, sysevent_unbind_handle – bind or unbind subscriber handle

cc [flag...] file ... -lsysevent [library ...]

#include <libsysevent.h>

sysevent_handle_t *sysevent_bind_handle(void (*event_handler)
(sysevent_t *ev));

void sysevent_unbind_handle(sysevent_handle_t *sysevent_hdl);

ev pointer to sysevent buffer handle

event_handler pointer to an event handling function

sysevent_hdl pointer to a sysevent subscriber handle

The sysevent_bind_handle() function allocates memory associated with a subscription
handle and binds it to the caller's event_handler. The event_handler is invoked during
subsequent system event notifications once a subscription has been made with
sysevent_subscribe_event(3SYSEVENT).

The system event is represented by the argument ev and is passed as an argument to the
invoked event delivery function, event_handler.

Additional threads are created to service communication between syseventd(1M) and the
calling process and to run the event handler routine, event_handler.

The sysevent_unbind_handle() function deallocates memory and other resources
associated with a subscription handle and deactivates all system event notifications for the
calling process. All event notifications are guaranteed to stop upon return from
sysevent_unbind_handle().

The sysevent_bind_handle() function returns a valid sysevent subscriber handle if the
handle is successfully allocated. Otherwise, NULL is returned and errno is set to indicate the
error.

The sysevent_unbind_handle() function returns no value.

The sysevent_bind_handle() function will fail if:

EACCES The calling process has an ID other than the privileged user.

EBUSY There are no resources available.

EINVAL The pointer to the function event_handler is NULL.

EMFILE The process has too many open descriptors.

ENOMEM There are insufficient resources to allocate the handle.

Name

Synopsis

Parameters

Description

Return Values

Errors

sysevent_bind_handle(3SYSEVENT)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 24 Jul 2009296

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=syseventd-1m


See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

syseventd(1M), sysevent_subscribe_event(3SYSEVENT), attributes(5)

Event notifications are revoked by syseventd when the bound process dies. Event notification
is suspended if a signal is caught and handled by the event_handler thread. Event notification
is also suspended when the calling process attempts to use fork(2) or fork1(2). Event
notifications might be lost during suspension periods.

The libsysevent interfaces do not work at all in non-global zones.

Attributes

See Also

Notes

sysevent_bind_handle(3SYSEVENT)

Extended Library Functions, Volume 4 297

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=syseventd-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=fork-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=fork1-2


sysevent_free – free memory for sysevent handle

cc [flag ...] file... -lsysevent [library ...]
#include <libsysevent.h>

void sysevent_free(sysevent_t *ev);

ev handle to event an event buffer

The sysevent_free() function deallocates memory associated with an event buffer.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

attributes(5)

The libsysevent interfaces do not work at all in non-global zones.

Name

Synopsis

Parameters

Description

Attributes

See Also

Notes

sysevent_free(3SYSEVENT)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 24 Jul 2009298

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


sysevent_get_attr_list – get attribute list pointer

cc [flag ...] file... -lsysevent -lnvpair [library ...]
#include <libsysevent.h>

#include <libnvpair.h>

int sysevent_get_attr_list(sysevent_t *ev, nvlist_t **attr_list);

ev handle to a system event

attr_list address of a pointer to attribute list (nvlist_t)

The sysevent_get_attr_list() function updates attr_list to point to a searchable
name-value pair list associated with the sysevent event, ev. The interface manages the
allocation of the attribute list, but it is up to the caller to free the list when it is no longer
needed with a call to nvlist_free(). See nvlist_alloc(3NVPAIR).

The sysevent_get_attr_list() function returns 0 if the attribute list for ev is found to be
valid. Otherwise it returns −1 and sets errno to indicate the error.

The sysevent_get_attr_list() function will fail if:

ENOMEM Insufficient memory available to allocate an nvlist.

EINVAL Invalid sysevent event attribute list.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

syseventd(1M), nvlist_alloc(3NVPAIR), nvlist_lookup_boolean(3NVPAIR),
attributes(5)

The libsysevent interfaces do not work at all in non-global zones.

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

Notes

sysevent_get_attr_list(3SYSEVENT)

Extended Library Functions, Volume 4 299

http://www.oracle.com/pls/topic/lookup?ctx=821-1469&id=nvlist-alloc-3nvpair
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=syseventd-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1469&id=nvlist-alloc-3nvpair
http://www.oracle.com/pls/topic/lookup?ctx=821-1469&id=nvlist-lookup-boolean-3nvpair
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


sysevent_get_class_name, sysevent_get_subclass_name, sysevent_get_size, sysevent_get_seq,
sysevent_get_time – get class name, subclass name, ID or buffer size of event

cc [flag...] file... -lsysevent [library...]
#include <libsysevent.h>

char *sysevent_get_class_name(sysevent_t *ev);

char *sysevent_get_subclass_name(sysevent_t *ev);

int sysevent_get_size(sysevent_t *ev);

uint64_t sysevent_get_seq(sysevent_t *ev);

void sysevent_get_time(sysevent_t *ev, hrtime_t *etimep);

ev handle to event

etimep pointer to high resolution event time variable

The sysevent_get_class_name() and sysevent_get_subclass_name() functions return,
respectively, the class and subclass names for the provided event ev.

The sysevent_get_size() function returns the size of the event buffer, ev.

The sysevent_get_seq() function returns a unique event sequence number of event ev. The
sequence number is reset on every system boot.

The sysevent_get_time() function writes the time the event was published into the variable
pointed to by etimep. The event time is added to the event just before it is put into the kernel
internal event queue.

EXAMPLE 1 Parse sysevent header information.

The following example parses sysevent header information from an application's event
handler.

hrtime_t last_ev_time;

unit64_t last_ev_seq;

void

event_handler(sysevent_t *ev)

{

sysevent_t *new_ev;

int ev_sz;

hrtime_t ev_time;

uint64_t ev_seq;

/* Filter on class and subclass */

if (strcmp(EC_PRIV, sysevent_get_class_name(ev)) != 0) {

Name

Synopsis

Parameters

Description

Examples

sysevent_get_class_name(3SYSEVENT)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 24 Jul 2009300



EXAMPLE 1 Parse sysevent header information. (Continued)

return;

} else if (strcmp("ESC_MYSUBCLASS,
sysevent_get_subclass_name(ev)) != 0) {

return;

}

/*

* Check for replayed sysevent, time must

* be greater than previously recorded.

*/

sysevent_get_event_time(ev, &ev_time);

ev_seq = sysevent_get_seq(ev);

if (ev_time < last_ev_time ||

(ev_time == last_ev_time && ev_seq <=

last_ev_seq)) {

return;

}

last_ev_time = ev_time;

last_ev_seq = ev_seq;

/* Store event for later processing */

ev_sz = sysevent_get_size(ev):

new_ev (sysevent_t *)malloc(ev_sz);

bcopy(ev, new_ev, ev_sz);

queue_event(new_ev);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

attributes(5)

The libsysevent interfaces do not work at all in non-global zones.

Attributes

See Also

Notes

sysevent_get_class_name(3SYSEVENT)

Extended Library Functions, Volume 4 301

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


sysevent_get_vendor_name, sysevent_get_pub_name, sysevent_get_pid – get vendor name,
publisher name or processor ID of event

cc [flag ...] file... -lsysevent [library ...]
#include <libsysevent.h>

char *sysevent_get_vendor_name(sysevent_t *ev);

char *sysevent_get_pub_name(sysevent_t *ev);

pid_t sysevent_get_pid(sysevent_t *ev);

ev handle to a system event object

The sysevent_get_pub_name() function returns the publisher name for the sysevent handle,
ev. The publisher name identifies the name of the publishing application or kernel subsystem
of the sysevent.

The sysevent_get_pid() function returns the process ID for the publishing application or
SE_KERN_PID for sysevents originating in the kernel. The publisher name and PID are useful
for implementing event acknowledgement.

The sysevent_get_vendor_name() function returns the vendor string for the publishing
application or kernel subsystem. A vendor string is the company's stock symbol that provided
the application or kernel subsystem that generated the system event. This information is
useful for filtering sysevents for one or more vendors.

The interface manages the allocation of the vendor and publisher name strings, but it is the
caller's responsibility to free the strings when they are no longer needed by calling
free(3MALLOC). If the new vendor and publisher name strings cannot be created,
sysevent_get_vendor_name() and sysevent_get_pub_name() return a null pointer and
may set errno to ENOMEM to indicate that the storage space available is insufficient.

EXAMPLE 1 Parse sysevent header information.

The following example parses sysevent header information from an application's event
handler.

char *vendor;

char *pub;

void

event_handler(sysevent_t *ev)

{

if (strcmp(EC_PRIV, sysevent_get_class_name(ev)) != 0) {

return;

}

vendor = sysevent_get_vendor_name(ev);

Name

Synopsis

Parameters

Description

Examples

sysevent_get_vendor_name(3SYSEVENT)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 24 Jul 2009302

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=free-3malloc


EXAMPLE 1 Parse sysevent header information. (Continued)

if (strcmp("SUNW", vendor) != 0) {

free(vendor);

return;

}

pub = sysevent_get_pub_name(ev);

if (strcmp("test_daemon", pub) != 0) {

free(vendor);

free(pub);

return;

}

(void) kill(sysevent_get_pid(ev), SIGUSR1);

free(vendor);

free(pub);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

malloc(3MALLOC), attributes(5)

The libsysevent interfaces do not work at all in non-global zones.

Attributes

See Also

Notes

sysevent_get_vendor_name(3SYSEVENT)

Extended Library Functions, Volume 4 303

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=malloc-3malloc
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


sysevent_post_event – post system event for applications

cc [ flag... ] file... -lsysevent -lnvpair [ library... ]

#include <libsysevent.h>

#include <libnvpair.h>

int sysevent_post_event(char *class, char *subclass, char *vendor,
char *publisher, nvlist_t *attr_list, sysevent_id_t *eid);

attr_list pointer to an nvlist_t, listing the name-value attributes associated with the
event, or NULL if there are no such attributes for this event

class pointer to a string defining the event class

eid pointer to a system unique identifier

publisher pointer to a string defining the event's publisher nam

subclass pointer to a string defining the event subclass

vendor pointer to a string defining the vendor

The sysevent_post_event() function causes a system event of the specified class, subclass,
vendor, and publisher to be generated on behalf of the caller and queued for delivery to the
sysevent daemon syseventd(1M).

The vendor should be the company stock symbol (or similarly enduring identifier) of the
event posting application. The publisher should be the name of the application generating the
event.

For example, all events posted by Sun applications begin with the company's stock symbol,
“SUNW”. The publisher is usually the name of the application generating the system event. A
system event generated by devfsadm(1M) has a publisher string of devfsadm.

The publisher information is used by sysevent consumers to filter unwanted event publishers.

Upon successful queuing of the system event, a unique identifier is assigned to eid.

The sysevent_post_event() function returns 0 if the system event has been queued
successfully for delivery. Otherwise it returns −1 and sets errno to indicate the error.

The sysevent_post_event() function will fail if:

ENOMEM Insufficient resources to queue the system event.

EIO The syseventd daemon is not responding and events cannot be queued or
delivered at this time.

EINVAL Invalid argument.

EPERM Permission denied.

Name

Synopsis

Parameters

Description

Return Values

Errors

sysevent_post_event(3SYSEVENT)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 24 Jul 2009304

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=syseventd-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=devfsadm-1m


EFAULT A copy error occurred.

EXAMPLE 1 Post a system event event with no attributes.

The following example posts a system event event with no attributes.

if (sysevent_post_event(EC_PRIV, "ESC_MYSUBCLASS", "SUNW", argv[0],

NULL), &eid == -1) {

fprintf(stderr, "error logging system event\n");
}

EXAMPLE 2 Post a system event with two name-value pair attributes.

The following example posts a system event event with two name-value pair attributes, an
integer value and a string.

nvlist_t *attr_list;

uint32_t uint32_val = 0XFFFFFFFF;

char *string_val = "string value data";

if (nvlist_alloc(&attr_list, 0, 0) == 0) {

err = nvlist_add_uint32(attr_list, "uint32 data", uint32_val);

if (err == 0)

err = nvlist_add_string(attr_list, "str data",
string_val);

if (err == 0)

err = sysevent_post_event(EC_PRIV, "ESC_MYSUBCLASS",
"SUNW", argv[0], attr_list, &eid);

if (err != 0)

fprintf(stderr, "error logging system event\n");
nvlist_free(attr_list);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

devfsadm(1M), syseventd(1M), nvlist_add_boolean(3NVPAIR),
nvlist_alloc(3NVPAIR), attributes(5)

The libsysevent interfaces do not work at all in non-global zones.

Examples

Attributes

See Also

Notes

sysevent_post_event(3SYSEVENT)

Extended Library Functions, Volume 4 305

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=devfsadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=syseventd-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1469&id=nvlist-add-boolean-3nvpair
http://www.oracle.com/pls/topic/lookup?ctx=821-1469&id=nvlist-alloc-3nvpair
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


sysevent_subscribe_event, sysevent_unsubscribe_event – register or unregister interest in
event receipt

cc [ flag... ] file... -lsysevent [ library... ]

#include <libsysevent.h>

int sysevent_subscribe_event(sysevent_handle_t *sysevent_hdl,
char *event_class, char **event_subclass_list,
int num_subclasses);

void sysevent_unsubscribe_event(sysevent_handle_t *sysevent_hdl,
char *event_class);

event_class system event class string

event_subclass_list array of subclass strings

num_subclasses number of subclass strings

sysevent_hdl sysevent subscriber handle

The sysevent_subscribe_event() function registers the caller's interest in event
notifications belonging to the class event_class and the subclasses contained in
event_subclass_list. The subscriber handle sysevent_hdl is updated with the new subscription
and the calling process receives event notifications from the event handler specified in
sysevent_bind_handle.

System events matching event_class and a subclass contained in event_subclass_list published
after the caller returns from sysevent_subscribe_event() are guaranteed to be delivered to
the calling process. Matching system events published and queued prior to a call to
sysevent_subscribe_event() may be delivered to the process's event handler.

The num_subclasses argument provides the number of subclass string elements in
event_subclass_list.

A caller can use the event class EC_ALL to subscribe to all event classes and subclasses. The
event class EC_SUB_ALL can be used to subscribe to all subclasses within a given event class.

Subsequent calls to sysevent_subscribe_event() are allowed to add additional classes or
subclasses. To remove an existing subscription, sysevent_unsubscribe_event() must be
used to remove the subscription.

The sysevent_unsubscribe_event() function removes the subscription described by
event_class for sysevent_hdl. Event notifications matching event_class will not be delivered to
the calling process upon return.

A caller can use the event class EC_ALL to remove all subscriptions for sysevent_hdl.

Name

Synopsis

Parameters

Description

sysevent_subscribe_event(3SYSEVENT)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 24 Jul 2009306



The library manages all subscription resources.

The sysevent_subscribe_event() function returns 0 if the subscription is successful.
Otherwise, −1 is returned and errno is set to indicate the error.

The sysevent_unsubscribe_event() function returns no value.

The sysevent_subscribe_event() function will fail if:

EACCES The calling process has an ID other than the privileged user.

EINVAL The sysevent_hdl argument is an invalid sysevent handle.

ENOMEM There is insufficient memory available to allocate subscription resources.

EXAMPLE 1 Subscribing for environmental events

#include <libsysevent.h>

#include <sys/nvpair.h>

static int32_t attr_int32;

#define CLASS1 "class1"
#define CLASS2 "class2"
#define SUBCLASS_1 "subclass_1"
#define SUBCLASS_2 "subclass_2"
#define SUBCLASS_3 "subclass_3"
#define MAX_SUBCLASS 3

static void

event_handler(sysevent_t *ev)

{

nvlist_t *nvlist;

/*

* Special processing for events (CLASS1, SUBCLASS_1) and

* (CLASS2, SUBCLASS_3)

*/

if ((strcmp(CLASS1, sysevent_get_class_name(ev)) == 0 &&

strcmp(SUBCLASS_1, sysevent_get_subclass_name(ev)) == 0) ||

(strcmp(CLASS2, sysevent_get_subclass_name(ev) == 0) &&

strcmp(SUBCLASS_3, sysevent_get_subclass(ev)) == 0)) {

if (sysevent_get_attr_list(ev, &nvlist) != 0)

return;

if (nvlist_lookup_int32(nvlist, "my_int32_attr", &attr_int32)

!= 0)

return;

/* Event Processing */

Return Values

Errors

Examples

sysevent_subscribe_event(3SYSEVENT)

Extended Library Functions, Volume 4 307



EXAMPLE 1 Subscribing for environmental events (Continued)

} else {

/* Event Processing */

}

}

int

main(int argc, char **argv)

{

sysevent_handle_t *shp;

const char *subclass_list[MAX_SUBCLASS];

/* Bind event handler and create subscriber handle */

shp = sysevent_bind_handle(event_handler);

if (shp == NULL)

exit(1);

/* Subscribe to all CLASS1 event notifications */

subclass_list[0] = EC_SUB_ALL;

if (sysevent_subscribe_event(shp, CLASS1, subclass_list, 1) != 0) {

sysevent_unbind_handle(shp);

exit(1);

}

/* Subscribe to CLASS2 events for subclasses: SUBCLASS_1,

* SUBCLASS_2 and SUBCLASS_3

*/

subclass_list[0] = SUBCLASS_1;

subclass_list[1] = SUBCLASS_2;

subclass_list[2] = SUBCLASS_3;

if (sysevent_subscribe_event(shp, CLASS2, subclass_list,

MAX_SUBCLASS) != 0) {

sysevent_unbind_handle(shp);

exit(1);

}

for (;;) {

(void) pause();

}

}

See attributes(5) for descriptions of the following attributes:Attributes

sysevent_subscribe_event(3SYSEVENT)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 24 Jul 2009308

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

syseventd(1M), sysevent_bind_handle(3SYSEVENT),
sysevent_get_attr_list(3SYSEVENT), sysevent_get_class_name(3SYSEVENT),
sysevent_get_vendor_name(3SYSEVENT), attributes(5)

The libsysevent interfaces do not work at all in non-global zones.

See Also

Notes

sysevent_subscribe_event(3SYSEVENT)

Extended Library Functions, Volume 4 309

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=syseventd-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


tnfctl_buffer_alloc, tnfctl_buffer_dealloc – allocate or deallocate a buffer for trace data

cc [ flag ... ] file ... -ltnfctl [ library ... ]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_buffer_alloc(tnfctl_handle_t *hndl,
const char *trace_file_name, size_t trace_buffer_size);

tnfctl_buffer_dealloc(tnfctl_handle_t *hndl);

tnfctl_buffer_alloc() allocates a buffer to which trace events are logged. When tracing a
process using a tnfctl handle returned by tnfctl_pid_open(3TNF),
tnfctl_exec_open(3TNF), tnfctl_indirect_open(3TNF), and
tnfctl_internal_open(3TNF)), trace_file_name is the name of the trace file to which trace
events should be logged. It can be an absolute path specification or a relative path
specification. If it is relative, the current working directory of the process that is calling
tnfctl_buffer_alloc() is prefixed to trace_file_name. If the named trace file already exists,
it is overwritten. For kernel tracing, that is, for a tnfctl handle returned by
tnfctl_kernel_open(3TNF), trace events are logged to a trace buffer in memory; therefore,
trace_file_name is ignored. Use tnfxtract(1) to extract a kernel buffer into a file.

trace_buffer_size is the size in bytes of the trace buffer that should be allocated. An error is
returned if an attempt is made to allocate a buffer when one already exists.
tnfctl_buffer_alloc() affects the trace attributes; use tnfctl_trace_attrs_get(3TNF) to
get the latest trace attributes after a buffer is allocated.

tnfctl_buffer_dealloc() is used to deallocate a kernel trace buffer that is no longer needed.
hndl must be a kernel handle, returned by tnfctl_kernel_open(3TNF). A process's trace file
cannot be deallocated using tnfctl_buffer_dealloc(). Instead, once the trace file is no
longer needed for analysis and after the process being traced exits, use rm(1) to remove the
trace file. Do not remove the trace file while the process being traced is still alive.
tnfctl_buffer_dealloc() affects the trace attributes; use tnfctl_trace_attrs_get(3TNF)
to get the latest trace attributes after a buffer is deallocated.

For a complete discussion of tnf tracing, see tracing(3TNF).

tnfctl_buffer_alloc() and tnfctl_buffer_dealloc() return TNFCTL_ERR_NONE upon
success.

The following error codes apply to tnfctl_buffer_alloc():

TNFCTL_ERR_BUFEXISTS A buffer already exists.

TNFCTL_ERR_ACCES Permission denied; could not create a trace file.

TNFCTL_ERR_SIZETOOSMALL The trace_buffer_size requested is smaller than the minimum
trace buffer size needed. Use trace_min_size of trace
attributes in tnfctl_trace_attrs_get(3TNF) to determine
the minimum size of the buffer.

Name

Synopsis

Description

Return Values

Errors

tnfctl_buffer_alloc(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 4 Mar 1997310

http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=rm-1


TNFCTL_ERR_SIZETOOBIG The requested trace file size is too big.

TNFCTL_ERR_BADARG trace_file_name is NULL or the absolute path name is longer
than MAXPATHLEN.

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_buffer_dealloc():

TNFCTL_ERR_BADARG hndl is not a kernel handle.

TNFCTL_ERR_NOBUF No buffer exists to deallocate.

TNFCTL_ERR_BADDEALLOC Cannot deallocate a trace buffer unless tracing is stopped. Use
tnfctl_trace_state_set(3TNF) to stop tracing.

TNFCTL_ERR_INTERNAL An internal error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/tnf

MT Level MT-Safe

prex(1), rm(1), tnfxtract(1), TNF_PROBE(3TNF), libtnfctl(3TNF),
tnfctl_exec_open(3TNF), tnfctl_indirect_open(3TNF), tnfctl_internal_open(3TNF),
tnfctl_kernel_open(3TNF), tnfctl_pid_open(3TNF), tnfctl_trace_attrs_get(3TNF),
tracing(3TNF), attributes(5)

Attributes

See Also

tnfctl_buffer_alloc(3TNF)

Extended Library Functions, Volume 4 311

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=rm-1
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


tnfctl_close – close a tnfctl handle

cc [ flag ... ] file ... -ltnfctl [ library ... ]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_close(tnfctl_handle_t *hndl,
tnfctl_targ_op_t action);

tnfctl_close() is used to close a tnfctl handle and to free up the memory associated with the
handle. When the handle is closed, the tracing state and the states of the probes are not
changed. tnfctl_close() can be used to close handles in any mode, that is, whether they
were created by tnfctl_internal_open(3TNF), tnfctl_pid_open(3TNF),
tnfctl_exec_open(3TNF), tnfctl_indirect_open(3TNF), or
tnfctl_kernel_open(3TNF).

The action argument is only used in direct mode, that is, if hndl was created by
tnfctl_exec_open(3TNF) or tnfctl_pid_open(3TNF). In direct mode, action specifies
whether the process will proceed, be killed, or remain suspended. action may have the
following values:

TNFCTL_TARG_DEFAULT Kills the target process if hndl was created with
tnfctl_exec_open(3TNF), but lets it continue if it was created
with tnfctl_pid_open(3TNF).

TNFCTL_TARG_KILL Kills the target process.

TNFCTL_TARG_RESUME Allows the target process to continue.

TNFCTL_TARG_SUSPEND Leaves the target process suspended. This is not a job control
suspend. It is possible to attach to the process again with a
debugger or with the tnfctl_pid_open(3TNF) interface. The
target process can also be continued with prun(1).

tnfctl_close() returns TNFCTL_ERR_NONE upon success.

The following error codes apply to tnfctl_close():

TNFCTL_ERR_BADARG A bad argument was sent in action.

TNFCTL_ERR_INTERNAL An internal error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/tnf

MT Level MT-Safe

Name

Synopsis

Description

Return Values

Errors

Attributes

tnfctl_close(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 4 Mar 1997312

http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=prun-1
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


prex(1), prun(1), TNF_PROBE(3TNF), libtnfctl(3TNF), tnfctl_exec_open(3TNF),
tnfctl_indirect_open(3TNF), tnfctl_kernel_open(3TNF), tnfctl_pid_open(3TNF),
tracing(3TNF), attributes(5)

See Also

tnfctl_close(3TNF)

Extended Library Functions, Volume 4 313

http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=prun-1
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


tnfctl_indirect_open, tnfctl_check_libs – control probes of another process where caller
provides /proc functionality

cc [ flag ... ] file ... -ltnfctl [ library ... ]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_indirect_open(void *prochandle,
tnfctl_ind_config_t *config, tnfctl_handle_t **ret_val);

tnfctl_errcode_t tnfctl_check_libs(tnfctl_handle_t *hndl);

The interfaces tnfctl_indirect_open() and tnfctl_check_libs() are used to control
probes in another process where the libtnfctl(3TNF) client has already opened proc(4) on
the target process. An example of this is when the client is a debugger. Since these clients
already use /proc on the target, libtnfctl(3TNF) cannot use /proc directly. Therefore, these
clients must provide callback functions that can be used to inspect and to update the target
process. The target process must load libtnfprobe.so.1 (defined in <tnf/tnfctl.h> as
macro TNFCTL_LIBTNFPROBE).

The first argument prochandle is a pointer to an opaque structure that is used in the callback
functions that inspect and update the target process. This structure should encapsulate the
state that the caller needs to use /proc on the target process (the /proc file descriptor). The
second argument, config, is a pointer to

typedef

struct tnfctl_ind_config {

int (*p_read)(void *prochandle, paddr_t addr, char *buf,

size_t size);

int (*p_write)(void *prochandle, paddr_t addr, char *buf,

size_t size);

pid_t (*p_getpid)(void *prochandle);

int (*p_obj_iter)(void *prochandle, tnfctl_ind_obj_f *func,

void *client_data);

} tnfctl_ind_config_t;

The first field p_read is the address of a function that can read size bytes at address addr in the
target image into the buffer buf. The function should return 0 upon success.. The second field
p_write is the address of a function that can write size bytes at address addr in the target
image from the buffer buf. The function should return 0 upon success. The third field p_getpid
is the address of a function that should return the process id of the target process (prochandle).
The fourth field p_obj_iter is the address of a function that iterates over all load objects and the
executable by calling the callback function func with client_data. If func returns 0, p_obj_iter
should continue processing link objects. If func returns any other value, p_obj_iter should stop
calling the callback function and return that value. p_obj_iter should return 0 if it iterates over
all load objects.

If a failure is returned by any of the functions in config, the error is propagated back as
PREX_ERR_INTERNAL by the libtnfctl interface that called it.

Name

Synopsis

Description

tnfctl_indirect_open(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Mar 2004314

http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=proc-4


The definition of tnfctl_ind_obj_f is:

typedef int

tnfctl_ind_obj_f(void *prochandle,

const struct tnfctl_ind_obj_info *obj

void *client_data);

typedef struct tnfctl_ind_obj_info {

int objfd; /* -1 indicates fd not available */

paddr_t text_base; /* virtual addr of text segment */

paddr_t data_base; /* virtual addr of data segment */

const char *objname; /* null-term. pathname to loadobj */

} tnfctl_ind_obj_info_t;

objfd should be the file descriptor of the load object or executable. If it is −1, then objname
should be an absolute pathname to the load object or executable. If objfd is not closed by
libtnfctl, it should be closed by the load object iterator function. text_base and data_base
are the addresses where the text and data segments of the load object are mapped in the target
process.

Whenever the target process opens or closes a dynamic object, the set of available probes may
change. See dlopen(3C) and dlclose(3C). In indirect mode, call tnfctl_check_libs() when
such events occur to make libtnfctl aware of any changes. In other modes this is
unnecessary but harmless. It is also harmless to call tnfctl_check_libs() when no such
events have occurred.

tnfctl_indirect_open() and tnfctl_check_libs() return TNFCTL_ERR_NONE upon
success.

The following error codes apply to tnfctl_indirect_open():

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_BUSY Internal tracing is being used.

TNFCTL_ERR_NOLIBTNFPROBE libtnfprobe.so.1 is not loaded in the target process.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_check_libs():

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_INTERNAL An internal error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/tnf

Return Values

Errors

Attributes

tnfctl_indirect_open(3TNF)

Extended Library Functions, Volume 4 315

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlclose-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level MT-Safe

prex(1), TNF_PROBE(3TNF), dlclose(3C), dlopen(3C), libtnfctl(3TNF),
tnfctl_probe_enable(3TNF), tnfctl_probe_trace(3TNF), tracing(3TNF), proc(4),
attributes(5)

Linker and Libraries Guide

tnfctl_indirect_open() should only be called after the dynamic linker has mapped in all
the libraries (rtld sync point) and called only after the process is stopped. Indirect process
probe control assumes the target process is stopped whenever any libtnfctl interface is used
on it. For example, when used for indirect process probe control,
tnfctl_probe_enable(3TNF) and tnfctl_probe_trace(3TNF) should be called only for a
process that is stopped.

See Also

Notes

tnfctl_indirect_open(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Mar 2004316

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlclose-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=proc-4
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=819-0690&id=llm


tnfctl_internal_open – create handle for internal process probe control

cc [ flag ... ] file ... -ltnfctl [ library ... ]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_internal_open(tnfctl_handle_t **ret_val);

tnfctl_internal_open() returns in ret_val a pointer to an opaque handle that can be used to
control probes in the same process as the caller (internal process probe control). The process
must have libtnfprobe.so.1 loaded. Probes in libraries that are brought in by dlopen(3C)
will be visible after the library has been opened. Probes in libraries closed by a dlclose(3C)
will not be visible after the library has been disassociated. See the NOTES section for more
details.

tnfctl_internal_open() returns TNFCTL_ERR_NONE upon success.

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_BUSY Another client is already tracing this program (internally or
externally).

TNFCTL_ERR_NOLIBTNFPROBE libtnfprobe.so.1 is not linked in the target process.

TNFCTL_ERR_INTERNAL An internal error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/tnf

MT Level MT-Safe

ld(1), prex(1), TNF_PROBE(3TNF), dlopen(3C), dlclose(3C), libtnfctl(3TNF),
tracing(3TNF), attributes(5)

Linker and Libraries Guide

libtnfctl interposes on dlopen(3C) and dlclose(3C) in order to be notified of libraries
being dynamically opened and closed. This interposition is necessary for internal process
probe control to update its list of probes. In these interposition functions, a lock is acquired to
synchronize on traversal of the library list maintained by the runtime linker. To avoid
deadlocking on this lock, tnfctl_internal_open() should not be called from within the init
section of a library that can be opened by dlopen(3C).

Since interposition does not work as expected when a library is opened dynamically,
tnfctl_internal_open() should not be used if the client opened libtnfctl through

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

tnfctl_internal_open(3TNF)

Extended Library Functions, Volume 4 317

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlclose-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=ld-1
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlclose-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=819-0690&id=llm
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlclose-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlopen-3c


dlopen(3C). In this case, the client program should be built with a static dependency on
libtnfctl. Also, if the client program is explicitly linking in -ldl, it should link -ltnfctl

before -ldl.

Probes in filtered libraries (see ld(1)) will not be seen because the filtee (backing library) is
loaded lazily on the first symbol reference and not at process startup or dlopen(3C) time. A
workaround is to call tnfctl_check_libs(3TNF) once the caller is sure that the filtee has
been loaded.

tnfctl_internal_open(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Mar 2004318

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=ld-1
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlopen-3c


tnfctl_kernel_open – create handle for kernel probe control

cc [ flag ... ] file ... -ltnfctl [ library ... ]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_kernel_open(tnfctl_handle_t **ret_val);

tnfctl_kernel_open() starts a kernel tracing session and returns in ret_val an opaque
handle that can be used to control tracing and probes in the kernel. Only one kernel tracing
session is possible at a time on a given machine. An error code of TNFCTL_ERR_BUSY is
returned if there is another process using kernel tracing. Use the command

fuser -f /dev/tnfctl

to print the process id of the process currently using kernel tracing. Only a superuser may use
tnfctl_kernel_open(). An error code of TNFCTL_ERR_ACCES is returned if the caller does not
have the necessary privileges.

tnfctl_kernel_open returns TNFCTL_ERR_NONE upon success.

TNFCTL_ERR_ACCES Permission denied. Superuser privileges are needed for
kernel tracing.

TNFCTL_ERR_BUSY Another client is currently using kernel tracing.

TNFCTL_ERR_ALLOCFAIL Memory allocation failed.

TNFCTL_ERR_FILENOTFOUND /dev/tnfctl not found.

TNFCTL_ERR_INTERNAL Some other failure occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/tnf

MT Level MT-Safe

prex(1), fuser(1M), TNF_PROBE(3TNF), libtnfctl(3TNF), tracing(3TNF),
tnf_kernel_probes(4), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

tnfctl_kernel_open(3TNF)

Extended Library Functions, Volume 4 319

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=fuser-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


tnfctl_pid_open, tnfctl_exec_open, tnfctl_continue – interfaces for direct probe and process
control for another process

cc [ flag ... ] file ... -ltnfctl [ library ... ]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_pid_open(pid_t pid, tnfctl_handle_t **ret_val);

tnfctl_errcode_t tnfctl_exec_open(const char *pgm_name,
char * const *argv, char * const *envp,
const char *libnfprobe_path, const char *ld_preload,
tnfctl_handle_t **ret_val);

tnfctl_errcode_t tnfctl_continue(tnfctl_handle_t *hndl,
tnfctl_event_t *evt, tnfctl_handle_t **child_hndl);

The tnfctl_pid_open(), tnfctl_exec_open(), and tnfctl_continue() functions create
handles to control probes in another process (direct process probe control). Either
tnfctl_pid_open() or tnfctl_exec_open() will return a handle in ret_val that can be used
for probe control. On return of these calls, the process is stopped. tnfctl_continue() allows
the process specified by hndl to continue execution.

The tnfctl_pid_open() function attaches to a running process with process id of pid. The
process is stopped on return of this call. The tnfctl_pid_open() function returns an error
message if pid is the same as the calling process. See tnfctl_internal_open(3TNF) for
information on internal process probe control. A pointer to an opaque handle is returned in
ret_val, which can be used to control the process and the probes in the process. The target
process must have libtnfprobe.so.1 (defined in <tnf/tnfctl.h> as macro
TNFCTL_LIBTNFPROBE) linked in for probe control to work.

The tnfctl_exec_open() function is used to exec(2) a program and obtain a probe control
handle. For probe control to work, the process image to be exec'd must load
libtnfprobe.so.1. The tnfctl_exec_open() function makes it simple for the library to be
loaded at process start up time. The pgm_name argument is the command to exec. If
pgm_name is not an absolute path, then the $PATH environment variable is used to find the
pgm_name. argv is a null-terminated argument pointer, that is, it is a null-terminated array of
pointers to null-terminated strings. These strings constitute the argument list available to the
new process image. The argv argument must have at least one member, and it should point to
a string that is the same as pgm_name. See execve(2). The libnfprobe_path argument is an
optional argument, and if set, it should be the path to the directory that contains
libtnfprobe.so.1. There is no need for a trailing "/" in this argument. This argument is
useful if libtnfprobe.so.1 is not installed in /usr/lib. ld_preload is a space-separated list of
libraries to preload into the target program. This string should follow the syntax guidelines of
the LD_PRELOAD environment variable. See ld.so.1(1). The following illustrates how strings
are concatenated to form the LD_PRELOAD environment variable in the new process image:

<current value of $LD_PRELOAD> + <space> +

libtnfprobe_path + "/libtnfprobe.so.1" +<space> +

ld_preload

Name

Synopsis

Description

tnfctl_pid_open(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Mar 2004320

http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=exec-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=execve-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=ld.so.1-1


This option is useful for preloading interposition libraries that have probes in them.

envp is an optional argument, and if set, it is used for the environment of the target program. It
is a null-terminated array of pointers to null-terminated strings. These strings constitute the
environment of the new process image. See execve(2). If envp is set, it overrides ld_preload. In
this case, it is the caller's responsibility to ensure that libtnfprobe.so.1 is loaded into the
target program. If envp is not set, the new process image inherits the environment of the
calling process, except for LD_PRELOAD.

The ret_val argument is the handle that can be used to control the process and the probes
within the process. Upon return, the process is stopped before any user code, including .init
sections, has been executed.

The tnfctl_continue() function is a blocking call and lets the target process referenced by
hndl continue running. It can only be used on handles returned by tnfctl_pid_open() and
tnfctl_exec_open() (direct process probe control). It returns when the target stops; the
reason that the process stopped is returned in evt. This call is interruptible by signals. If it is
interrupted, the process is stopped, and TNFCTL_EVENT_EINTR is returned in evt. The client of
this library will have to decide which signal implies a stop to the target and catch that signal.
Since a signal interrupts tnfctl_continue(), it will return, and the caller can decide whether
or not to call tnfctl_continue() again.

tnfctl_continue() returns with an event of TNFCTL_EVENT_DLOPEN,
TNFCTL_EVENT_DLCLOSE, TNFCTL_EVENT_EXEC, TNFCTL_EVENT_FORK, TNFCTL_EVENT_EXIT, or
TNFCTL_EVENT_TARGGONE, respectively, when the target program calls dlopen(3C),
dlclose(3C), any flavor of exec(2), fork(2) (or fork1(2)), exit(2), or terminates
unexpectedly. If the target program called exec(2), the client then needs to call
tnfctl_close(3TNF) on the current handle leaving the target resumed, suspended, or killed
(second argument to tnfctl_close(3TNF)). No other libtnfctl interface call can be used
on the existing handle. If the client wants to control the exec'ed image, it should leave the old
handle suspended, and use tnfctl_pid_open() to reattach to the same process. This new
handle can then be used to control the exec'ed image. See EXAMPLES below for sample code. If
the target process did a fork(2) or fork1(2), and if control of the child process is not needed,
then child_hndl should be NULL. If control of the child process is needed, then child_hndl
should be set. If it is set, a pointer to a handle that can be used to control the child process is
returned in child_hndl. The child process is stopped at the end of the fork() system call. See
EXAMPLES for an example of this event.

The tnfctl_pid_open(), tnfctl_exec_open(), and tnfctl_continue() functions return
TNFCTL_ERR_NONE upon success.

The following error codes apply to tnfctl_pid_open():

TNFCTL_ERR_BADARG The pid specified is the same process. Use
tnfctl_internal_open(3TNF) instead.

TNFCTL_ERR_ACCES Permission denied. No privilege to connect to a setuid
process.

Return Values

Errors

tnfctl_pid_open(3TNF)

Extended Library Functions, Volume 4 321

http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=execve-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlclose-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=exec-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=fork-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=fork1-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=exit-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=exec-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=fork-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=fork1-2


TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_BUSY Another client is already using /proc to control this process
or internal tracing is being used.

TNFCTL_ERR_NOTDYNAMIC The process is not a dynamic executable.

TNFCTL_ERR_NOPROCESS No such target process exists.

TNFCTL_ERR_NOLIBTNFPROBE libtnfprobe.so.1 is not linked in the target process.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_exec_open():

TNFCTL_ERR_ACCES Permission denied.

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_NOTDYNAMIC The target is not a dynamic executable.

TNFCTL_ERR_NOLIBTNFPROBE libtnfprobe.so.1 is not linked in the target process.

TNFCTL_ERR_FILENOTFOUND The program is not found.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_continue():

TNFCTL_ERR_BADARG Bad input argument. hndl is not a direct process probe control
handle.

TNFCTL_ERR_INTERNAL An internal error occurred.

TNFCTL_ERR_NOPROCESS No such target process exists.

EXAMPLE 1 Usingtnfctl_pid_open()

These examples do not include any error-handling code. Only the initial example includes the
declaration of the variables that are used in all of the examples.

The following example shows how to preload libtnfprobe.so.1 from the normal location
and inherit the parent's environment.

const char *pgm;

char * const *argv;

tnfctl_handle_t *hndl, *new_hndl, *child_hndl;

tnfctl_errcode_t err;

char * const *envptr;

extern char **environ;

tnfctl_event_t evt;

int pid;

Examples

tnfctl_pid_open(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Mar 2004322



EXAMPLE 1 Using tnfctl_pid_open() (Continued)

/* assuming argv has been allocated */

argv[0] = pgm;

/* set up rest of argument vector here */

err = tnfctl_exec_open(pgm, argv, NULL, NULL, NULL, &hndl);

This example shows how to preload two user-supplied libraries libc_probe.so.1 and
libthread_probe.so.1. They interpose on the corresponding libc.so and libthread.so

interfaces and have probes for function entry and exit. libtnfprobe.so.1 is preloaded from
the normal location and the parent's environment is inherited.

/* assuming argv has been allocated */

argv[0] = pgm;

/* set up rest of argument vector here */

err = tnfctl_exec_open(pgm, argv, NULL, NULL,

"libc_probe.so.1 libthread_probe.so.1", &hndl);

This example preloads an interposition library libc_probe.so.1, and specifies a different
location from which to preload libtnfprobe.so.1.

/* assuming argv has been allocated */

argv[0] = pgm;

/* set up rest of argument vector here */

err = tnfctl_exec_open(pgm, argv, NULL, "/opt/SUNWXXX/lib",
"libc_probe.so.1", &hndl);

To set up the environment explicitly for probe control to work, the target process must link
libtnfprobe.so.1. If using envp, it is the caller's responsibility to do so.

/* assuming argv has been allocated */

argv[0] = pgm;

/* set up rest of argument vector here */

/* envptr set up to caller’s needs */

err = tnfctl_exec_open(pgm, argv, envptr, NULL, NULL, &hndl);

Use this example to resume a process that does an exec(2) without controlling it.

err = tnfctl_continue(hndl, &evt, NULL);

switch (evt) {

case TNFCTL_EVENT_EXEC:

/* let target process continue without control */

err = tnfctl_close(hndl, TNFCTL_TARG_RESUME);

...

break;

}

Alternatively, use the next example to control a process that does an exec(2).

tnfctl_pid_open(3TNF)

Extended Library Functions, Volume 4 323

http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=exec-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=exec-2


EXAMPLE 1 Using tnfctl_pid_open() (Continued)

/*

* assume the pid variable has been set by calling

* tnfctl_trace_attrs_get()

*/

err = tnfctl_continue(hndl, &evt, NULL);

switch (evt) {

case TNFCTL_EVENT_EXEC:

/* suspend the target process */

err = tnfctl_close(hndl, TNFCTL_TARG_SUSPEND);

/* re-open the exec’ed image */

err = tnfctl_pid_open(pid, &new_hndl);

/* new_hndl now controls the exec’ed image */

...

break;

}

To let fork'ed children continue without control, use NULL as the last argument to
tnfctl_continue( ).

err = tnfctl_continue(hndl, &evt, NULL);

The next example is how to control child processes that fork(2) or fork1(2) create.

err = tnfctl_continue(hndl, &evt, &child_hndl);

switch (evt) {

case TNFCTL_EVENT_FORK:

/* spawn a new thread or process to control child_hndl */

...

break;

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/tnf

MT Level MT-Safe

ld(1), prex(1), proc(1), exec(2), execve(2), exit(2), fork(2), TNF_PROBE(3TNF),
dlclose(3C), dlopen(3C), libtnfctl(3TNF), tnfctl_close(3TNF),
tnfctl_internal_open(3TNF), tracing(3TNF) attributes(5)

Linker and Libraries Guide

Attributes

See Also

tnfctl_pid_open(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Mar 2004324

http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=fork-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=fork1-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=ld-1
http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=proc-1
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=exec-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=execve-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=exit-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=fork-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlclose-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=819-0690&id=llm


After a call to tnfctl_continue() returns, a client should use
tnfctl_trace_attrs_get(3TNF) to check the trace_buf_state member of the trace
attributes and make sure that there is no internal error in the target.

Notes

tnfctl_pid_open(3TNF)

Extended Library Functions, Volume 4 325



tnfctl_probe_apply, tnfctl_probe_apply_ids – iterate over probes

cc [ flag ... ] file ... -ltnfctl [ library ... ]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_probe_apply(tnfctl_handle_t *hndl,
tnfctl_probe_op_t probe_op, void *clientdata);

tnfctl_errcode_t tnfctl_probe_apply_ids(tnfctl_handle_t *hndl,
ulong_t probe_count, ulong_t *probe_ids,
tnfctl_probe_op_t probe_op, void *clientdata);

tnfctl_probe_apply() is used to iterate over the probes controlled by hndl. For every probe,
the probe_op function is called:

typedef tnfctl_errcode_t (*tnfctl_probe_op_t)(

tnfctl_handle_t *hndl,

tnfctl_probe_t *probe_hndl,

void *clientdata);

Several predefined functions are available for use as probe_op. These functions are described
in tnfctl_probe_state_get(3TNF).

The clientdata supplied in tnfctl_probe_apply() is passed in as the last argument of
probe_op. The probe_hndl in the probe operation function can be used to query or change the
state of the probe. See tnfctl_probe_state_get(3TNF). The probe_op function should
return TNFCTL_ERR_NONE upon success. It can also return an error code, which will cause
tnfctl_probe_apply() to stop processing the rest of the probes and return with the same
error code. Note that there are five (5) error codes reserved that the client can use for its own
semantics. See ERRORS.

The lifetime of probe_hndl is the same as the lifetime of hndl. It is good until hndl is closed by
tnfctl_close(3TNF). Do not confuse a probe_hndl with hndl. The probe_hndl refers to a
particular probe, while hndl refers to a process or the kernel. If probe_hndl is used in another
libtnfctl(3TNF) interface, and it references a probe in a library that has been dynamically
closed (see dlclose(3C)), then the error code TNFCTL_ERR_INVALIDPROBE will be returned by
that interface.

tnfctl_probe_apply_ids() is very similar to tnfctl_probe_apply(). The difference is that
probe_op is called only for probes that match a probe id specified in the array of integers
referenced by probe_ids. The number of probe ids in the array should be specified in
probe_count. Use tnfctl_probe_state_get() to get the probe_id that corresponds to the
probe_handl.

tnfctl_probe_apply() and tnfctl_probe_apply_ids() return TNFCTL_ERR_NONE upon
success.

Name

Synopsis

Description

Return Values

tnfctl_probe_apply(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Mar 2004326

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlclose-3c


The following errors apply to both tnfctl_probe_apply() and tnfctl_probe_apply_ids():

TNFCTL_ERR_INTERNAL An internal error occurred.

TNFCTL_ERR_USR1 Error code reserved for user.

TNFCTL_ERR_USR2 Error code reserved for user.

TNFCTL_ERR_USR3 Error code reserved for user.

TNFCTL_ERR_USR4 Error code reserved for user.

TNFCTL_ERR_USR5 Error code reserved for user.

tnfctl_probe_apply() and tnfctl_probe_apply_ids() also return any error returned by
the callback function probe_op.

The following errors apply only to tnfctl_probe_apply_ids():

TNFCTL_ERR_INVALIDPROBE The probe handle is no longer valid. For example, the probe is
in a library that has been closed by dlclose(3C).

EXAMPLE 1 Enabling Probes

To enable all probes:

tnfctl_probe_apply(hndl, tnfctl_probe_enable, NULL);

EXAMPLE 2 Disabling Probes

To disable the probes that match a certain pattern in the probe attribute string:

/* To disable all probes that contain the string "vm" */

tnfctl_probe_apply(hndl, select_disable, "vm");
static tnfctl_errcode_t

select_disable(tnfctl_handle_t *hndl, tnfctl_probe_t *probe_hndl,

void *client_data)

{

char *pattern = client_data;

tnfctl_probe_state_t probe_state;

tnfctl_probe_state_get(hndl, probe_hndl, &probe_state);

if (strstr(probe_state.attr_string, pattern)) {

tnfctl_probe_disable(hndl, probe_hndl, NULL);

}

}

Note that these examples do not have any error handling code.

See attributes(5) for descriptions of the following attributes:

Errors

Examples

Attributes

tnfctl_probe_apply(3TNF)

Extended Library Functions, Volume 4 327

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlclose-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/tnf

MT-Level MT-Safe

prex(1), TNF_PROBE(3TNF), dlclose(3C), dlopen(3C), libtnfctl(3TNF),
tnfctl_close(3TNF), tnfctl_probe_state_get(3TNF), tracing(3TNF),
tnf_kernel_probes(4), attributes(5)

Linker and Libraries Guide

See Also

tnfctl_probe_apply(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Mar 2004328

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlclose-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=819-0690&id=llm


tnfctl_probe_state_get, tnfctl_probe_enable, tnfctl_probe_disable, tnfctl_probe_trace,
tnfctl_probe_untrace, tnfctl_probe_connect, tnfctl_probe_disconnect_all – interfaces to
query and to change the state of a probe

cc [ flag ... ] file ... -ltnfctl [ library ... ]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_probe_state_get(tnfctl_handle_t *hndl,
tnfctl_probe_t *probe_hndl, tnfctl_probe_state_t *state);

tnfctl_errcode_t tnfctl_probe_enable(tnfctl_handle_t *hndl,
tnfctl_probe_t *probe_hndl, void *ignored);

tnfctl_errcode_t tnfctl_probe_disable(tnfctl_handle_t *hndl,
tnfctl_probe_t *probe_hndl, void *ignored);

tnfctl_errcode_t tnfctl_probe_trace(tnfctl_handle_t *hndl,
tnfctl_probe_t *probe_hndl, void *ignored);

tnfctl_errcode_t tnfctl_probe_untrace(tnfctl_handle_t *hndl,
tnfctl_probe_t *probe_hndl, void *ignored);

tnfctl_errcode_t tnfctl_probe_disconnect_all(tnfctl_handle_t *hndl,
tnfctl_probe_t *probe_hndl, void *ignored);

tnfctl_errcode_t tnfctl_probe_connect(tnfctl_handle_t *hndl,
tnfctl_probe_t *probe_hndl, const char *lib_base_name,
const char *func_name);

tnfctl_probe_state_get() returns the state of the probe specified by probe_hndl in the
process or kernel specified by hndl. The user will pass these in to an apply iterator. The caller
must also allocate state and pass in a pointer to it. The semantics of the individual members of
state are:

id The unique integer assigned to this probe. This number does
not change over the lifetime of this probe. A probe_hndl can be
obtained by using the calls tnfctl_apply(),
tanfctl_apply_ids(), or tnfctl_register_funcs().

attr_string A string that consists of attribute value pairs separated by
semicolons. For the syntax of this string, see the syntax of the
detail argument of the TNF_PROBE(3TNF) macro. The
attributes name, slots, keys, file, and line are defined for
every probe. Additional user-defined attributes can be added
by using the detail argument of the TNF_PROBE(3TNF) macro.
An example of attr_string follows:

"name pageout;slots vnode pages_pageout ;

keys vm pageio io;file vm.c;line 25;"

Name

Synopsis

Description

tnfctl_probe_state_get(3TNF)

Extended Library Functions, Volume 4 329



enabled B_TRUE if the probe is enabled, or B_FALSE if the probe is
disabled. Probes are disabled by default. Use
tnfctl_probe_enable() or tnfctl_probe_disable() to
change this state.

traced B_TRUE if the probe is traced, or B_FALSE if the probe is not
traced. Probes in user processes are traced by default. Kernel
probes are untraced by default. Use tnfctl_probe_trace() or
tnfctl_probe_untrace() to change this state.

new_probe B_TRUE if this is a new probe brought in since the last change in
libraries. See dlopen(3C) or dlclose(3C). Otherwise, the
value of new_probe will be B_FALSE. This field is not
meaningful for kernel probe control.

obj_name The name of the shared object or executable in which the
probe is located. This string can be freed, so the client should
make a copy of the string if it needs to be saved for use by other
libtnfctl interfaces. In kernel mode, this string is always
NULL.

func_names A null-terminated array of pointers to strings that contain the
names of functions connected to this probe. Whenever an
enabled probe is encountered at runtime, these functions are
executed. This array also will be freed by the library when the
state of the probe changes. Use tnfctl_probe_connect() or
tnfctl_probe_disconnect_all() to change this state.

func_addrs A null-terminated array of pointers to addresses of functions
in the target image connected to this probe. This array also will
be freed by the library when the state of the probe changes.

client_registered_data Data that was registered by the client for this probe by the
creator function in tnfctl_register_funcs(3TNF).

tnfctl_probe_enable( ), tnfctl_probe_disable( ), tnfctl_probe_trace( ),

tnfctl_probe_untrace( ), and tnfctl_probe_disconnect_all() ignore the last
argument. This convenient feature permits these functions to be used in the probe_op field of
tnfctl_probe_apply(3TNF) and tnfctl_probe_apply_ids(3TNF).
tnfctl_probe_enable() enables the probe specified by probe_hndl. This is the master switch
on a probe. A probe does not perform any action until it is enabled.

tnfctl_probe_disable() disables the probe specified by probe_hndl.

tnfctl_probe_trace() turns on tracing for the probe specified by probe_hndl. Probes emit a
trace record only if the probe is traced.

tnfctl_probe_state_get(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Mar 2004330

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlclose-3c


tnfctl_probe_untrace() turns off tracing for the probe specified by probe_hndl. This is
useful if you want to connect probe functions to a probe without tracing it.

tnfctl_probe_connect() connects the function func_name which exists in the library
lib_base_name, to the probe specified by probe_hndl. tnfctl_probe_connect() returns an
error code if used on a kernel tnfctl handle. lib_base_name is the base name (not a path) of the
library. If it is NULL, and multiple functions in the target process match func_name, one of the
matching functions is chosen arbitrarily. A probe function is a function that is in the target's
address space and is written to a certain specification. The specification is not currently
published.

tnf_probe_debug() is one function exported by libtnfprobe.so.1 and is the debug
function that prex(1) uses. When the debug function is executed, it prints out the probe
arguments and the value of the sunw%debug attribute of the probe to stderr.

tnfctl_probe_disconnect_all() disconnects all probe functions from the probe specified
by probe_hndl.

Note that no libtnfctl call returns a probe handle (tnfctl_probe_t), yet each of the
routines described here takes a probe_hndl as an argument. These routines may be used by
passing them to one of the tnfctl_probe_apply(3TNF) iterators as the “op” argument.
Alternatively, probe handles may be obtained and saved by a user's “op" function, and they
can be passed later as the probe_hndl argument when using any of the functions described
here.

tnfctl_probe_state_get( ), tnfctl_probe_enable( ), tnfctl_probe_disable( ),

tnfctl_probe_trace( ), tnfctl_probe_untrace( ), tnfctl_probe_disconnect_all()

and tnfctl_probe_connect() return TNFCTL_ERR_NONE upon success.

The following error codes apply to tnfctl_probe_state_get():

TNFCTL_ERR_INVALIDPROBE probe_hndl is no longer valid. The library that the probe was
in could have been dynamically closed by dlclose(3C).

The following error codes apply to tnfctl_probe_enable(), tnfctl_probe_disable(),
tnfctl_probe_trace(), tnfctl_probe_untrace(), and tnfctl_probe_disconnect_all()

TNFCTL_ERR_INVALIDPROBE probe_hndl is no longer valid. The library that the probe was
in could have been dynamically closed by dlclose(3C).

TNFCTL_ERR_BUFBROKEN Cannot do probe operations because tracing is broken in the
target.

TNFCTL_ERR_NOBUF Cannot do probe operations until a buffer is allocated. See
tnfctl_buffer_alloc(3TNF). This error code does not
apply to kernel probe control.

Return Values

Errors

tnfctl_probe_state_get(3TNF)

Extended Library Functions, Volume 4 331

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlclose-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlclose-3c


The following error codes apply to tnfctl_probe_connect():

TNFCTL_ERR_INVALIDPROBE probe_hndl is no longer valid. The library that the probe was
in could have been dynamically closed by dlclose(3C).

TNFCTL_ERR_BADARG The handle is a kernel handle, or func_name could not be
found.

TNFCTL_ERR_BUFBROKEN Cannot do probe operations because tracing is broken in the
target.

TNFCTL_ERR_NOBUF Cannot do probe operations until a buffer is allocated. See
tnfctl_buffer_alloc(3TNF).

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/tnf

MT Level MT-Safe

prex(1), TNF_PROBE(3TNF), libtnfctl(3TNF), tnfctl_check_libs(3TNF),
tnfctl_continue(3TNF), tnfctl_probe_apply(3TNF), tnfctl_probe_apply_ids(3TNF),
tracing(3TNF), tnf_kernel_probes(4), attributes(5)

Attributes

See Also

tnfctl_probe_state_get(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Mar 2004332

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlclose-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


tnfctl_register_funcs – register callbacks for probe creation and destruction

cc [ flag ... ] file ... -ltnfctl [ library ... ]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_register_funcs(tnfctl_handle_t *hndl, void * (*create_func)
(tnfctl_handle_t *, tnfctl_probe_t *), void (*destroy_func)(void *));

The function tnfctl_register_funcs() is used to store client-specific data on a per-probe
basis. It registers a creator and a destructor function with hndl, either of which can be NULL.
The creator function is called for every probe that currently exists in hndl. Every time a new
probe is discovered, that is brought in by dlopen(3C), create_func is called.

The return value of the creator function is stored as part of the probe state and can be retrieved
by tnfctl_probe_state_get(3TNF) in the member field client_registered_data.

destroy_func is called for every probe handle that is freed. This does not necessarily happen at
the time dlclose(3C) frees the shared object. The probe handles are freed only when hndl is
closed by tnfctl_close(3TNF). If tnfctl_register_funcs() is called a second time for the
same hndl, then the previously registered destructor function is called first for all of the
probes.

tnfctl_register_funcs() returns TNFCTL_ERR_NONE upon success.

TNFCTL_ERR_INTERNAL An internal error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/tnf

MT Level MT-Safe

prex(1), TNF_PROBE(3TNF), dlclose(3C), dlopen(3C), libtnfctl(3TNF),
tnfctl_close(3TNF), tnfctl_probe_state_get(3TNF), tracing(3TNF),
tnf_kernel_probes(4), attributes(5)

Linker and Libraries Guide

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

tnfctl_register_funcs(3TNF)

Extended Library Functions, Volume 4 333

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlclose-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlclose-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=819-0690&id=llm


tnfctl_strerror – map a tnfctl error code to a string

cc [ flag ... ] file ... -ltnfctl [ library ... ]

#include <tnf/tnfctl.h>

const char * tnfctl_strerror(tnfctl_errcode_t errcode);

tnfctl_strerror() maps the error number in errcode to an error message string, and it
returns a pointer to that string. The returned string should not be overwritten or freed.

tnfctl_strerror() returns the string "unknown libtnfctl.so error code" if the error number
is not within the legal range.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/tnf

MT Level MT-Safe

prex(1), TNF_PROBE(3TNF), libtnfctl(3TNF), tracing(3TNF), attributes(5)

Name

Synopsis

Description

Errors

Attributes

See Also

tnfctl_strerror(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 4 Mar 1997334

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


tnfctl_trace_attrs_get – get the trace attributes from a tnfctl handle

cc [ flag... ] file... -ltnfctl [ library... ]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_trace_attrs_get(tnfctl_handle_t *hndl,
tnfctl_trace_attrs_t *attrs);

The tnfctl_trace_attrs_get() function returns the trace attributes associated with hndl in
attrs. The trace attributes can be changed by some of the other interfaces in
libtnfctl(3TNF). It is the client's responsibility to use tnfctl_trace_attrs_get() to get
the new trace attributes after use of interfaces that change them. Typically, a client will use
tnfctl_trace_attrs_get() after a call to tnfctl_continue(3TNF) in order to make sure
that tracing is still working. See the discussion of trace_buf_state that follows.

Trace attributes are represented by the struct tnfctl_trace_attrs structure defined in
<tnf/tnfctl.h>:

struct tnfctl_trace_attrs {

pid_t targ_pid; /* not kernel mode */

const char *trace_file_name; /* not kernel mode */

size_t trace_buf_size;

size_t trace_min_size;

tnfctl_bufstate_t trace_buf_state;

boolean_t trace_state;

boolean_t filter_state; /* kernel mode only */

long pad;

};

The semantics of the individual members of attrs are:

targ_pid The process id of the target process. This is not valid for kernel tracing.

trace_file_name The name of the trace file to which the target writes. trace_file_name
will be NULL if no trace file exists or if kernel tracing is implemented.
This pointer should not be used after calling other libtnfctl
interfaces. The client should copy this string if it should be saved for the
use of other libtnfctl interfaces.

trace_buf_size The size of the trace buffer or file in bytes.

trace_min_size The minimum size in bytes of the trace buffer that can be allocated by
using the tnfctl_buffer_alloc(3TNF) interface.

trace_buf_state The state of the trace buffer. TNFCTL_BUF_OK indicates that a trace
buffer has been allocated. TNFCTL_BUF_NONE indicates that no buffer
has been allocated. TNFCTL_BUF_BROKEN indicates that there is an
internal error in the target for tracing. The target will continue to run
correctly, but no trace records will be written. To fix tracing, restart the

Name

Synopsis

Description

tnfctl_trace_attrs_get(3TNF)

Extended Library Functions, Volume 4 335



process. For kernel tracing, deallocate the existing buffer with
tnfctl_buffer_dealloc(3TNF) and allocate a new one with
tnfctl_buffer_alloc(3TNF).

trace_state The global tracing state of the target. Probes that are enabled will not
write out data unless this state is on. This state is off by default for the
kernel and can be changed by tnfctl_trace_state_set(3TNF). For a
process, this state is on by default and can only be changed by
tnf_process_disable(3TNF) and tnf_process_enable(3TNF).

filter_state The state of process filtering. For kernel probe control, it is possible to
select a set of processes for which probes are enabled. See
tnfctl_filter_list_get(3TNF), tnfctl_filter_list_add(3TNF),
and tnfctl_filter_list_delete(3TNF). No trace output will be
written when other processes traverse these probe points. By default
process filtering is off, and all processes cause the generation of trace
records when they hit an enabled probe. Use
tnfctl_filter_state_set(3TNF) to change the filter state.

The tnfctl_trace_attrs_get() function returns TNFCTL_ERR_NONE upon success.

The tnfctl_trace_attrs_get() function will fail if:

TNFCTL_ERR_INTERNAL An internal error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/tnf

MT Level MT-Safe

prex(1), TNF_PROBE(3TNF), libtnfctl(3TNF), tnfctl_buffer_alloc(3TNF),
tnfctl_continue(3TNF), tnfctl_filter_list_get(3TNF), tnf_process_disable(3TNF),
tracing(3TNF), attributes(5)

Return Values

Errors

Attributes

See Also

tnfctl_trace_attrs_get(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 4 Mar 1997336

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


tnfctl_trace_state_set, tnfctl_filter_state_set, tnfctl_filter_list_get, tnfctl_filter_list_add,
tnfctl_filter_list_delete – control kernel tracing and process filtering

cc [ flag ... ] file ... -ltnfctl [ library ... ]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_trace_state_set(tnfctl_handle_t *hndl,
boolean_t trace_state);

tnfctl_errcode_t tnfctl_filter_state_set(tnfctl_handle_t *hndl,
boolean_t filter_state);

tnfctl_errcode_t tnfctl_filter_list_get(tnfctl_handle_t *hndl,
pid_t **pid_list, int *pid_count);

tnfctl_errcode_t tnfctl_filter_list_add(tnfctl_handle_t *hndl,
pid_t pid_to_add);

tnfctl_errcode_t tnfctl_filter_list_delete(tnfctl_handle_t *hndl,
pid_t pid_to_delete);

The interfaces to control kernel tracing and process filtering are used only with kernel
handles, handles created by tnfctl_kernel_open(3TNF). These interfaces are used to change
the tracing and filter states for kernel tracing.

tnfctl_trace_state_set() sets the kernel global tracing state to “on” if trace_state is
B_TRUE, or to “off” if trace_state is B_FALSE. For the kernel, trace_state is off by default.Probes
that are enabled will not write out data unless this state is on. Use
tnfctl_trace_attrs_get(3TNF) to retrieve the current tracing state.

tnfctl_filter_state_set() sets the kernel process filtering state to “on” if filter_state is
B_TRUE, or to “off” if filter_state is B_FALSE. filter_state is off by default. If it is on, only probe
points encountered by processes in the process filter set by tnfctl_filter_list_add() will
generate trace points. Use tnfctl_trace_attrs_get(3TNF) to retrieve the current process
filtering state.

tnfctl_filter_list_get() returns the process filter list as an array in pid_list. The count of
elements in the process filter list is returned in pid_count. The caller should use free(3C) to
free memory allocated for the array pid_list.

tnfctl_filter_list_add() adds pid_to_add to the process filter list. The process filter list is
maintained even when the process filtering state is off, but it has no effect unless the process
filtering state is on.

tnfctl_filter_list_delete() deletes pid_to_delete from the process filter list. It returns an
error if the process does not exist or is not in the filter list.

Name

Synopsis

Description

tnfctl_trace_state_set(3TNF)

Extended Library Functions, Volume 4 337

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=free-3c


The interfaces tnfctl_trace_state_set(), tnfctl_filter_state_set(),
tnfctl_filter_list_add(), tnfctl_filter_list_delete(), and
tnfctl_filter_list_get() return TNFCTL_ERR_NONE upon success.

The following error codes apply to tnfctl_trace_state_set:

TNFCTL_ERR_BADARG The handle is not a kernel handle.

TNFCTL_ERR_NOBUF Cannot turn on tracing without a buffer being allocated.

TNFCTL_ERR_BUFBROKEN Tracing is broken in the target.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_filter_state_set:

TNFCTL_ERR_BADARG The handle is not a kernel handle.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_filter_list_add:

TNFCTL_ERR_BADARG The handle is not a kernel handle.

TNFCTL_ERR_NOPROCESS No such process exists.

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_filter_list_delete:

TNFCTL_ERR_BADARG The handle is not a kernel handle.

TNFCTL_ERR_NOPROCESS No such process exists.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_filter_list_get:

TNFCTL_ERR_BADARG The handle is not a kernel handle.

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_INTERNAL An internal error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/tnf

MT Level MT-Safe

Return Values

Errors

Attributes

tnfctl_trace_state_set(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 4 Mar 1997338

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


prex(1), TNF_PROBE(3TNF), free(3C), libtnfctl(3TNF), tnfctl_kernel_open(3TNF),
tnfctl_trace_attrs_get(3TNF), tracing(3TNF), tnf_kernel_probes(4), attributes(5)

See Also

tnfctl_trace_state_set(3TNF)

Extended Library Functions, Volume 4 339

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=free-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


TNF_DECLARE_RECORD, TNF_DEFINE_RECORD_1, TNF_DEFINE_RECORD_2,
TNF_DEFINE_RECORD_3, TNF_DEFINE_RECORD_4, TNF_DEFINE_RECORD_5 –
TNF type extension interface for probes

cc [ flag ... ] file ...[ -ltnfprobe ] [ library ... ]

#include <tnf/probe.h>

TNF_DECLARE_RECORD(c_type, tnf_type);

TNF_DEFINE_RECORD_1(c_type, tnf_type, tnf_member_type_1, c_member_name_1);

TNF_DEFINE_RECORD_2(c_type, tnf_type, tnf_member_type_1, c_member_name_1,
tnf_member_type_2, c_member_name_2);

TNF_DEFINE_RECORD_3(c_type, tnf_type, tnf_member_type_1, c_member_name_1,
tnf_member_type_2, c_member_name_2, tnf_member_type_3,
c_member_name_3);

TNF_DEFINE_RECORD_4(c_type, tnf_type, tnf_member_type_1, c_member_name_1,
tnf_member_type_2, c_member_name_2, tnf_member_type_3,
c_member_name_3, tnf_member_type_4, c_member_name_4);

TNF_DEFINE_RECORD_5(c_type, tnf_type, tnf_member_type_1, c_member_name_1,
tnf_member_type_2, c_member_name_2, tnf_member_type_3,
c_member_name_3,tnf_member_type_4, c_member_name_4,
tnf_member_type_5, c_member_name_5);

This macro interface is used to extend the TNF (Trace Normal Form) types that can be used in
TNF_PROBE(3TNF).

There should be only one TNF_DECLARE_RECORD and one TNF_DEFINE_RECORD per new type
being defined. The TNF_DECLARE_RECORD should precede the TNF_DEFINE_RECORD. It can be in
a header file that multiple source files share if those source files need to use the tnf_type being
defined. The TNF_DEFINE_RECORD should only appear in one of the source files.

The TNF_DEFINE_RECORD macro interface defines a function as well as a couple of data
structures. Hence, this interface has to be used in a source file (.c or .cc file) at file scope and
not inside a function.

Note that there is no semicolon after the TNF_DEFINE_RECORD interface. Having one will
generate a compiler warning.

Compiling with the preprocessor option -DNPROBE or with the preprocessor control statement
#define NPROBE ahead of the #include <tnf/probe.h> statement, will stop the TNF type
extension code from being compiled into the program.

The c_type argument must be a C struct type. It is the template from which the new tnf_type is
being created. Not all elements of the C struct need be provided in the TNF type being defined.

Name

Synopsis

Description

TNF_DECLARE_RECORD(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 31 Dec 1996340



The tnf_type argument is the name being given to the newly created type. Use of this interface
uses the name space prefixed by tnf_type. If a new type called “xxx_type” is defined by a
library, then the library should not use “xxx_type” as a prefix in any other symbols it defines.
The policy on managing the type name space is the same as managing any other name space in
a library; that is, prefix any new TNF types by the unique prefix that the rest of the symbols in
the library use. This would prevent name space collisions when linking multiple libraries that
define new TNF types. For example, if a library libpalloc.so uses the prefix “pal” for all
symbols it defines, then it should also use the prefix “pal” for all new TNF types being defined.

The tnf_member_type_n argument is the TNF type of the nth provided member of the C
structure.

The tnf_member_name_n argument is the name of the nth provided member of the C
structure.

EXAMPLE 1 Defining and using a TNF type.

The following example demonstrates how a new TNF type is defined and used in a probe. This
code is assumed to be part of a fictitious library called “libpalloc.so” which uses the prefix “pal”
for all it's symbols.

#include <tnf/probe.h>

typedef struct pal_header {

long size;

char * descriptor;

struct pal_header *next;

} pal_header_t;

TNF_DECLARE_RECORD(pal_header_t, pal_tnf_header);

TNF_DEFINE_RECORD_2(pal_header_t, pal_tnf_header,

tnf_long, size,

tnf_string, descriptor)

/*

* Note: name space prefixed by pal_tnf_header should not

* be used by this client anymore.

*/

void

pal_free(pal_header_t *header_p)

{

int state;

TNF_PROBE_2(pal_free_start, "palloc pal_free",
"sunw%debug entering pal_free",
tnf_long, state_var, state,

pal_tnf_header, header_var, header_p);

. . .

}

Examples

TNF_DECLARE_RECORD(3TNF)

Extended Library Functions, Volume 4 341



See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability developer/tnf

MT-Level MT-Safe

prex(1), tnfdump(1), TNF_PROBE(3TNF), tnf_process_disable(3TNF), attributes(5)

It is possible to make a tnf_type definition be recursive or mutually recursive e.g. a structure
that uses the “next” field to point to itself (a linked list). If such a structure is sent in to a
TNF_PROBE(3TNF), then the entire linked list will be logged to the trace file (until the “next”
field is NULL). But, if the list is circular, it will result in an infinite loop. To break the recursion,
either do not include the “next” field in the tnf_type, or define the type of the “next” member as
tnf_opaque.

Attributes

See Also

Notes

TNF_DECLARE_RECORD(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 31 Dec 1996342

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


TNF_PROBE, TNF_PROBE_0, TNF_PROBE_1, TNF_PROBE_2, TNF_PROBE_3,
TNF_PROBE_4, TNF_PROBE_5, TNF_PROBE_0_DEBUG, TNF_PROBE_1_DEBUG,
TNF_PROBE_2_DEBUG, TNF_PROBE_3_DEBUG, TNF_PROBE_4_DEBUG,
TNF_PROBE_5_DEBUG, TNF_DEBUG – probe insertion interface

cc [ flag ... ] [ -DTNF_DEBUG ] file ... [ -ltnfprobe ] [ library ... ]

#include <tnf/probe.h>

TNF_PROBE_0(name, keys, detail);

TNF_PROBE_1(name, keys, detail, arg_type_1, arg_name_1, arg_value_1);

TNF_PROBE_2(name, keys, detail, arg_type_1, arg_name_1, arg_value_1,
arg_type_2, arg_name_2, arg_value_2);

TNF_PROBE_3(name, keys, detail, arg_type_1, arg_name_1,arg_value_1,
arg_type_2, arg_name_2, arg_value_2,
arg_type_3, arg_name_3, arg_value_3);

TNF_PROBE_4(name, keys, detail, arg_type_1, arg_name_1, arg_value_1,
arg_type_2, arg_name_2, arg_value_2,
arg_type_3, arg_name_3, arg_value_3,
arg_type_4, arg_name_4, arg_value_4);

TNF_PROBE_5(name, keys, detail, arg_type_1, arg_name_1, arg_value_1,
arg_type_2, arg_name_2, arg_value_2,
arg_type_3, arg_name_3, arg_value_3,
arg_type_4, arg_name_4, arg_value_4,
arg_type_5, arg_name_5, arg_value_5);

TNF_PROBE_0_DEBUG(name, keys, detail);

TNF_PROBE_1_DEBUG(name, keys, detail, arg_type_1, arg_name_1, arg_value_1);

TNF_PROBE_2_DEBUG(name, keys, detail, arg_type_1, arg_name_1, arg_value_1,
arg_type_2, arg_name_2, arg_value_2);

TNF_PROBE_3_DEBUG(name, keys, detail, arg_type_1, arg_name_1, arg_value_1,
arg_type_2, arg_name_2, arg_value_2,
arg_type_3, arg_name_3, arg_value_3);

TNF_PROBE_4_DEBUG(name, keys, detail, arg_type_1, arg_name_1, arg_value_1,
arg_type_2, arg_name_2, arg_value_2,
arg_type_3, arg_name_3, arg_value_3,
arg_type_4, arg_name_4, arg_value_4);

TNF_PROBE_5_DEBUG(name, keys, detail, arg_type_1, arg_name_1, arg_value_1,
arg_type_2, arg_name_2, arg_value_2,
arg_type_3, arg_name_3, arg_value_3,
arg_type_4, arg_name_4, arg_value_4,
arg_type_5, arg_name_5, arg_value_5);

Name

Synopsis

TNF_PROBE(3TNF)

Extended Library Functions, Volume 4 343



This macro interface is used to insert probes into C or C++ code for tracing. See
tracing(3TNF) for a discussion of the Solaris tracing architecture, including example source
code that uses it.

You can place probes anywhere in C and C++ programs including .init sections, .fini sections,
multi-threaded code, shared objects, and shared objects opened by dlopen(3C). Use probes to
generate trace data for performance analysis or to write debugging output to stderr. Probes are
controlled at runtime by prex(1).

The trace data is logged to a trace file in Trace Normal Form ( TNF). The interface for the user
to specify the name and size of the trace file is described in prex(1). Think of the trace file as
the least recently used circular buffer. Once the file has been filled, newer events will overwrite
the older ones.

Use TNF_PROBE_0 through TNF_PROBE_5 to create production probes. These probes are
compiled in by default. Developers are encouraged to embed such probes strategically, and to
leave them compiled within production software. Such probes facilitate on-site analysis of the
software.

Use TNF_PROBE_0_DEBUG through TNF_PROBE_5_DEBUG to create debug probes. These probes
are compiled out by default. If you compile the program with the preprocessor option
-DTNF_DEBUG or with the preprocessor control statement #define TNF_DEBUG ahead of the
#include <tnf/probe.h> statement, the debug probes will be compiled into the program.
When compiled in, debug probes differ in only one way from the equivalent production
probes. They contain an additional “debug” attribute which may be used to distinguish them
from production probes at runtime, for example, when using prex(). Developers are
encouraged to embed any number of probes for debugging purposes. Disabled probes have
such a small runtime overhead that even large numbers of them do not make a significant
impact.

If you compile with the preprocessor option -DNPROBE or place the preprocessor control
statement #define NPROBE ahead of the #include <tnf/probe.h> statement, no probes will
be compiled into the program.

The name of the probe should follow the syntax guidelines for identifiers in ANSI C. The use
of name declares it, hence no separate declaration is necessary. This is a block scope
declaration, so it does not affect the name space of the program.

keys is a string of space-separated keywords that specify the groups that the probe belongs to.
Semicolons, single quotation marks, and the equal character (=) are not allowed in this string.
If any of the groups are enabled, the probe is enabled. keys cannot be a variable. It must be a
string constant.

detail is a string that consists of <attribute> <value> pairs that are each separated by a
semicolon. The first word (up to the space) is considered to be the attribute and the rest of the
string (up to the semicolon) is considered the value. Single quotation marks are used to denote

Description

name

keys

detail

TNF_PROBE(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Mar 2004344

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlopen-3c


a string value. Besides quotation marks, spaces separate multiple values. The value is optional.
Although semicolons or single quotation marks generally are not allowed within either the
attribute or the value, when text with embedded spaces is meant to denote a single value, use
single quotes surrounding this text.

Use detail for one of two reasons. First, use detail to supply an attribute that a user can type
into prex(1) to select probes. For example, if a user defines an attribute called color, then
prex(1) can select probes based on the value of color. Second, use detail to annotate a probe
with a string that is written out to a trace file only once. prex(1) uses spaces to tokenize the
value when searching for a match. Spaces around the semicolon delimiter are allowed. detail
cannot be a variable; it must be a string constant. For example, the detail string:

"XYZ%debug ’entering function A’; XYZ%exception ’no file’;

XYZ%func_entry; XYZ%color red blue"

consists of 4 units:

Attribute Value Values that prex matches on

XYZ%debug 'entering function A' 'entering function A'

XYZ%exception 'no file' 'no file'

XYZ%func_entry /.*/ (regular expression)

XYZ%color red blue red <or> blue

Attribute names must be prefixed by the vendor stock symbol followed by the '%' character.
This avoids conflicts in the attribute name space. All attributes that do not have a '%' character
are reserved. The following attributes are predefined:

Attribute Semantics

name name of probe

keys keys of the probe (value is space− separated tokens)

file file name of the probe

line line number of the probe

slots slot names of the probe event (arg_name_n)

object the executable or shared object that this probe is in.

debug distinguishes debug probes from production probes

TNF_PROBE(3TNF)

Extended Library Functions, Volume 4 345



This is the type of the nth argument. The following are predefined TNF types:

tnf Type Associated C type (and semantics)

tnf_int int

tnf_uint unsigned int

tnf_long long

tnf_ulong unsigned long

tnf_longlong long long (if implemented in compilation system)

tnf_ulonglong unsigned long long (if implemented in compilation
system)

tnf_float float

tnf_double double

tnf_string char *

tnf_opaque void *

To define new TNF types that are records consisting of the predefined TNF types or references
to other user defined types, use the interface specified in TNF_DECLARE_RECORD(3TNF).

arg_name_n is the name that the user associates with the nth argument. Do not place
quotation marks around arg_name_n. Follow the syntax guidelines for identifiers in ANSI C.
The string version of arg_name_n is stored for every probe and can be accessed as the attribute
“slots”.

arg_value_n is evaluated to yield a value to be included in the trace file. A read access is done
on any variables that are in mentioned in arg_value_n. In a multithreaded program, it is the
user's responsibility to place locks around the TNF_PROBE macro if arg_value_n contains a
variable that should be read protected.

EXAMPLE 1 tracing(3TNF)

See tracing(3TNF) for complete examples showing debug and production probes in source
code.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability developer/tnf

MT Level MT-Safe

arg_type_n

arg_name_n

arg_value_n

Examples

Attributes

TNF_PROBE(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 1 Mar 2004346

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


ld(1), prex(1), tnfdump(1), dlopen(3C), libtnfctl(3TNF), TNF_DECLARE_RECORD(3TNF),
threads(5), tnf_process_disable(3TNF), tracing(3TNF), attributes(5)

If attaching to a running program with prex(1) to control the probes, compile the program
with -ltnfprobe or start the program with the environment variable LD_PRELOAD set to
libtnfprobe.so.1. See ld(1). If libtnfprobe is explicitly linked into the program, it must be
listed before libdoor, which in turn must be listed before libthread on the link line.

See Also

Notes

TNF_PROBE(3TNF)

Extended Library Functions, Volume 4 347

http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=ld-1
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=dlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=threads-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=ld-1


tnf_process_disable, tnf_process_enable, tnf_thread_disable, tnf_thread_enable – probe
control internal interface

cc [ flag ... ] file ... -ltnfprobe [ library ... ]

#include <tnf/probe.h>

void tnf_process_disable(void);

void tnf_process_enable(void);

void tnf_thread_disable(void);

void tnf_thread_enable(void);

There are three levels of granularity for controlling tracing and probe functions (called
probing from here on): probing for the entire process, a particular thread, and the probe itself
can be disabled or enabled. The first two (process and thread) are controlled by this interface.
The probe is controlled with the prex(1) utility.

The tnf_process_disable() function turns off probing for the process. The default process
state is to have probing enabled. The tnf_process_enable() function turns on probing for
the process.

The tnf_thread_disable() function turns off probing for the currently running thread.
Threads are "born" or created with this state enabled. The tnf_thread_enable() function
turns on probing for the currently running thread. If the program is a non-threaded program,
these two thread interfaces disable or enable probing for the process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability developer/tnf

Interface Stability Uncommitted

MT-Level MT-Safe

prex(1), tnfdump(1), TNF_DECLARE_RECORD(3TNF), TNF_PROBE(3TNF), attributes(5)

A probe is considered enabled only if:

■ prex(1) has enabled the probe AND
■ the process has probing enabled, which is the default or could be set with

tnf_process_enable() AND
■ the thread that hits the probe has probing enabled, which is every thread's default or could

be set with tnf_thread_enable().

Name

Synopsis

Description

Attributes

See Also

Notes

tnf_process_disable(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 5 Feb 2002348

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


There is a run time cost associated with determining that the probe is disabled. To reduce the
performance effect of probes, this cost should be minimized. The quickest way that a probe
can be determined to be disabled is by the enable control that prex(1) uses. Therefore, to
disable all the probes in a process use the disable command in prex(1) rather than
tnf_process_disable().

The tnf_process_disable() and tnf_process_enable() functions should only be used to
toggle probing based on some internal program condition. The tnf_thread_disable()
function should be used to turn off probing for threads that are uninteresting.

tnf_process_disable(3TNF)

Extended Library Functions, Volume 4 349



tracing – overview of tnf tracing system

tnf tracing is a set of programs and API's that can be used to present a high-level view of the
performance of an executable, a library, or part of the kernel. tracing is used to analyze a
program's performance and identify the conditions that produced a bug.

The core elements of tracing are:

TNF_PROBE_*( ) The TNF_PROBE_*( ) macros define "probes" to be placed in
code which, when enabled and executed, cause information to
be added to a trace file. See TNF_PROBE(3TNF). If there are
insufficient TNF_PROBE_* macros to store all the data of interest
for a probe, data may be grouped into records. See
TNF_DECLARE_RECORD(3TNF).

prex Displays and controls probes in running software. See prex(1).

kernel probes A set of probes built into the Solaris kernel which capture
information about system calls, multithreading, page faults,
swapping, memory management, and I/O. You can use these
probes to obtain detailed traces of kernel activity under your
application workloads. See tnf_kernel_probes(4).

tnfxtract A program that extracts the trace data from the kernel's
in-memory buffer into a file. See tnfxtract(1).

tnfdump A program that displays the information from a trace file. See
tnfdump(1).

libtnfctl A library of interfaces that controls probes in a process. See
libtnfctl(3TNF). prex(1) also utilizes this library. Other tools
and processes use the libtnfctl interfaces to exercise fine
control over their own probes.

tnf_process_enable() A routine called by a process to turn on tracing and probe
functions for the current process. See
tnf_process_enable(3TNF).

tnf_process_disable() A routine called by a process to turn off tracing and probe
functions for the current process. See
tnf_process_disable(3TNF).

tnf_thread_enable() A routine called by a process to turn on tracing and probe
functions for the currently running thread. See
tnf_thread_enable(3TNF).

tnf_thread_disable() A routine called by a process to turn off tracing and probe
functions for the currently running thread. See
tnf_thread_disable(3TNF).

Name

Description

tracing(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 4 Mar 1997350



EXAMPLE 1 Tracing a Process

The following function in some daemon process accepts job requests of various types,
queueing them for later execution. There are two "debug probes" and one "production probe."
Note that probes which are intended for debugging will not be compiled into the final version
of the code; however, production probes are compiled into the final product.

/*

* To compile in all probes (for development):

* cc -DTNF_DEBUG ...

*

* To compile in only production probes (for release):

* cc ...

*

* To compile in no probes at all:

* cc -DNPROBE ...

*/

#include <tnf/probe.h>

void work(long, char *);

enum work_request_type { READ, WRITE, ERASE, UPDATE };

static char *work_request_name[] = {"read", "write", "erase", "update"};
main( )

{

long i;

for (i = READ; i <= UPDATE; i++)

work(i, work_request_name[i]);

}

void work(long request_type, char *request_name)

{

static long q_length;

TNF_PROBE_2_DEBUG(work_start, "work",
"XYZ%debug ’in function work’",
tnf_long, request_type_arg, request_type,

tnf_string, request_name_arg, request_name);

/* assume work request is queued for later processing */

q_length++;

TNF_PROBE_1(work_queue, "work queue",
"XYZ%work_load heavy",
tnf_long, queue_length, q_length);

TNF_PROBE_0_DEBUG(work_end, "work", "");
}

The production probe "work_queue," which remains compiled in the code, will, when
enabled, log the length of the work queue each time a request is received.

The debug probes "work_start" and "work_end, " which are compiled only during the
development phase, track entry to and exit from the work() function and measure how much
time is spent executing it. Additionally, the debug probe "work_start" logs the value of the two

Examples

tracing(3TNF)

Extended Library Functions, Volume 4 351



EXAMPLE 1 Tracing a Process (Continued)

incoming arguments request_type and request_name. The runtime overhead for disabled
probes is low enough that one can liberally embed them in the code with little impact on
performance.

For debugging, the developer would compile with -DTNF_DEBUG, run the program under
control of prex(1), enable the probes of interest (in this case, all probes), continue the
program until exit, and dump the trace file:

% cc

-DTNF_DEBUG -o daemon daemon.c # compile in all probes

% prex daemon # run program under prex control

Target process stopped

Type "continue" to resume the target, "help" for help ...

prex> list probes $all # list all probes in program

<probe list output here>

prex> enable $all # enable all probes

prex> continue # let target process execute

<program output here>

prex: target process finished

% ls /tmp/trace-* # trace output is in trace-<pid>

/tmp/trace-4194

% tnfdump /tmp/trace-4194 # get ascii output of trace file

<trace records output here>

For the production version of the system, the developer simply compiles without
–DTNF_DEBUG.

EXAMPLE 2 Tracing the Kernel

Kernel tracing is similar to tracing a process; however, there are some differences. For
instance, to trace the kernel, you need superuser privileges. The following example uses
prex(1) and traces the probes in the kernel that capture system call information.

Allocate kernel

trace buffer and capture trace data:

root# prex -k

Type "help" for help ...

prex> buffer alloc 2m # allocate kernel trace buffer

Buffer of size 2097152 bytes allocated

prex> list probes $all # list all kernel probes

<probe list output here>

prex> list probes syscall # list syscall probes

# (keys=syscall)

<syscall probes list output here>

prex> enable syscall # enable only syscall probes

prex> ktrace on # turn on kernel tracing

tracing(3TNF)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 4 Mar 1997352



EXAMPLE 2 Tracing the Kernel (Continued)

<Run your application in another window at this point>

prex> ktrace off # turn off kernel tracing

prex> quit # exit prex

Extract the kernel’s trace buffer into a file:

root# tnfxtract /tmp/ktrace # extract kernel trace buffer

Reset kernel tracing:

root# prex -k

prex> disable $all # disable all probes

prex> untrace $all # untrace all probes

prex> buffer dealloc # deallocate kernel trace buffer

prex> quit

CAUTION: Do not deallocate the trace buffer until you have extracted it into a trace file.
Otherwise, you will lose the trace data that you collected from your experiment!

Examine the kernel trace file:

root# tnfdump /tmp/ktrace # get ascii dump of trace file

<trace records output here>

prex can also attach to a running process, list probes, and perform a variety of other tasks.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability developer/tnf

MT Level MT-Safe

prex(1), tnfdump(1), tnfxtract(1), TNF_DECLARE_RECORD(3TNF), TNF_PROBE(3TNF),
libtnfctl(3TNF), tnf_process_disable(3TNF), tnf_kernel_probes(4), attributes(5)

Attributes

See Also

tracing(3TNF)

Extended Library Functions, Volume 4 353

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


tsol_getrhtype – get trusted network host type

cc [flag...] file... -ltsnet [library...]

#include <libtsnet.h>

tsol_host_type_t tsol_getrhtype(char *hostname);

The tsol_getrhtype() function queries the kernel-level network information to determine
the host type that is associated with the specified hostname. The hostname can be a regular
hostname, an IP address, or a network wildcard address.

The returned value will be one of the enumerated types that is defined in the
tsol_host_type_t typedef. Currently these types are UNLABELED and SUN_CIPSO.

/etc/security/tsol/tnrhdb Trusted network remote-host database

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libtsnet(3LIB), attributes(5)

“Obtaining the Remote Host Type” in Oracle Solaris Trusted Extensions Developer’s Guide

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Name

Synopsis

Description

Return Values

Files

Attributes

See Also

Notes

tsol_getrhtype(3TSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 2007354

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libtsnet-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=accessingnetworkdbentries


uuid_clear, uuid_compare, uuid_copy, uuid_generate, uuid_generate_random,
uuid_generate_time, uuid_is_null, uuid_parse, uuid_time, uuid_unparse – universally
unique identifier (UUID) operations

cc [ flag ... ] file... -luuid [ library ... ]

#include <uuid/uuid.h>

void uuid_clear(uuid_t uu);

int uuid_compare(uuid_t uu1, uuid_t uu2);

void uuid_copy(uuid_t dst, uuid_t src);

void uuid_generate(uuid_t out);

void uuid_generate_random(uuid_t out);

void uuid_generate_time(uuid_t out);

int uuid_is_null(uuid_t uu);

int uuid_parse(char *in, uuid_t uu);

time_t uuid_time(uuid_t uu, struct timeval *ret_tv);

void uuid_unparse(uuid_t uu, char *out);

The uuid_clear() function sets the value of the specified universally unique identifier
(UUID) variable uu to the NULL value.

The uuid_compare() function compares the two specified UUID variables uu1 and uu2 to
each other. It returns an integer less than, equal to, or greater than zero if uu1 is found to be,
respectively, lexicographically less than, equal, or greater than uu2.

The uuid_copy() function copies the UUID variable src to dst.

The uuid_generate() function creates a new UUID that is generated based on high-quality
randomness from /dev/urandom, if available. If /dev/urandom is not available,
uuid_generate() calls uuid_generate_time(). Because the use of this algorithm provides
information about when and where the UUID was generated, it could cause privacy problems
for some applications.

The uuid_generate_random() function produces a UUID with a random or
pseudo-randomly generated time and Ethernet MAC address that corresponds to a DCE
version 4 UUID.

The uuid_generate_time() function uses the current time and the local Ethernet MAC
address (if available, otherwise a MAC address is fabricated) that corresponds to a DCE
version 1 UUID. If the UUID is not guaranteed to be unique, the multicast bit is set (the
high-order bit of octet number 10).

The uuid_is_null() function compares the value of the specified UUID variable uu to the
NULL value. If the value is equal to the NULL UUID, 1 is returned. Otherwise 0 is returned.

Name

Synopsis

Description

uuid_clear(3UUID)

Extended Library Functions, Volume 4 355



The uuid_parse() function converts the UUID string specified by in to the internal uuid_t
format. The input UUID is a string of the form cefa7a9c-1dd2-11b2-8350-880020adbeef. In
printf(3C) format, the string is “%08x-%04x-%04x-%04x-%012x”, 36 bytes plus the trailing
null character. If the input string is parsed successfully, 0 is returned and the UUID is stored in
the location pointed to by uu. Otherwise -1 is returned.

The uuid_time() function extracts the time at which the specified UUID uu was created.
Since the UUID creation time is encoded within the UUID, this function can reasonably be
expected to extract the creation time only for UUIDs created with the uuid_generate_time()
function. The time at which the UUID was created, in seconds since January 1, 1970 GMT (the
epoch), is returned (see time(2)). The time at which the UUID was created, in seconds and
microseconds since the epoch is also stored in the location pointed to by ret_tv (see
gettimeofday(3C)).

The uuid_unparse() function converts the specified UUID uu from the internal binary
format to a string of the length defined in the uuid.h macro,
UUID_PRINTABLE_STRING_LENGTH, which includes the trailing null character. The resulting
value is stored in the character string pointed to by out.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

inetd(1M), time(2), gettimeofday(3C), libuuid(3LIB), printf(3C), attributes(5)

Attributes

See Also

uuid_clear(3UUID)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 16 Jan 2006356

http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=printf-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=time-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=gettimeofday-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=inetd-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=time-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=gettimeofday-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libuuid-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=printf-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


volmgt_acquire – reserve removable media device

cc [ flag ... ] file ... -lvolmgt [ library ... ]

#include <sys/types.h>

#include <volmgt.h>

int volmgt_acquire(char *dev, char *id, int ovr, char **err, pid_t *pidp);

This function is obsolete. The management of removable media by the Volume Management
feature, including vold, has been replaced by software that supports the Hardware
Abstraction Layer (HAL). Programmatic support for HAL is through the HAL APIs, which are
documented on the HAL web site. See hal(5). The return value of this function is undefined.

The volmgt_acquire() routine reserves the removable media device specified as dev.
volmgt_acquire() operates in two different modes, depending on whether or not volume
management is running.

If volume management is running, volmgt_acquire() attempts to reserve the removable
media device specified as dev. Specify dev as either a symbolic device name (for example,
floppy0) or a physical device pathname (for example, /dsk/unnamed_floppy).

If volume management is not running, volmgt_acquire() requires callers to specify a
physical device pathname for dev. Specifying dev as a symbolic device name is not acceptable.
In this mode, volmgt_acquire() relies entirely on the major and minor numbers of the device
to determine whether or not the device is reserved.

If dev is free, volmgt_acquire() updates the internal device reservation database with the
caller's process id (pid) and the specified id string.

If dev is reserved by another process, the reservation attempt fails and volmgt_acquire( ):

■ sets errno to EBUSY

■ fills the caller's id value in the array pointed to by err
■ fills in the pid to which the pointer pidp points with the pid of the process which holds the

reservation, if the supplied pidp is non-zero

If the override ovr is non-zero, the call overrides the device reservation.

The return from this function is undefined.

The volmgt_acquire() routine fails if one or more of the following are true:

EINVAL One of the specified arguments is invalid or missing.

EBUSY dev is already reserved by another process (and ovr was not set to a non-zero
value)

Name

Synopsis

Description

Return Values

Errors

volmgt_acquire(3VOLMGT)

Extended Library Functions, Volume 4 357

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5


EXAMPLE 1 Usingvolmgt_acquire()

In the following example, volume management is running and the first floppy drive is
reserved, accessed and released.

#include <volmgt.h>

char *errp;

if (!volmgt_acquire("floppy0", "FileMgr", 0, NULL,

&errp, NULL)) {

/* handle error case */

. . .

}

/* floppy acquired - now access it */

if (!volmgt_release("floppy0")) {

/* handle error case */

. . .

}

EXAMPLE 2 Using volmgt_acquire()To Override A Lock On Another Process

The following example shows how callers can override a lock on another process using
volmgt_acquire().

char *errp, buf[20];

int override = 0;

pid_t pid;

if (!volmgt_acquire("floppy0", "FileMgr", 0, &errp,

&pid)) {

if (errno == EBUSY) {

(void) printf("override %s (pid=%ld)?\n",
errp, pid); {

(void) fgets(buf, 20, stdin);

if (buf[0] == ’y’) {

override++;

}

} else {

/* handle other errors */

. . .

}

}

if (override) {

if (!volmgt_acquire("floppy0", "FileMgr", 1,

&errp, NULL)) {

/* really give up this time! */

. . .

}

}

Examples

volmgt_acquire(3VOLMGT)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 8 Mar 2007358



See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Obsolete

free(3C), malloc(3C), volmgt_release(3VOLMGT), attributes(5), hal(5)

When returning a string through err, volmgt_acquire() allocates a memory area using
malloc(3C). Use free(3C) to release the memory area when no longer needed.

The ovr argument is intended to allow callers to override the current device reservation. It is
assumed that the calling application has determined that the current reservation can safely be
cleared. See EXAMPLES.

Attributes

See Also

Notes

volmgt_acquire(3VOLMGT)

Extended Library Functions, Volume 4 359

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=free-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=free-3c


volmgt_check – have Volume Management check for media

cc [ flag... ] file... -lvolmgt [ library ... ]

#include <volmgt.h>

int volmgt_check(char *pathname);

This function is obsolete. The management of removable media by the Volume Management
feature, including vold, has been replaced by software that supports the Hardware
Abstraction Layer (HAL). Programmatic support for HAL is through the HAL APIs, which are
documented on the HAL web site. See hal(5). The return value of this function is undefined.

This routine asks volume Management to check the specified pathname and determine if new
media has been inserted in that drive.

If a null pointer is passed in, then Volume Management will check each device it is managing
that can be checked.

If new media is found, volmgt_check() tells volume management to initiate appropriate
actions.

The return from this function is undefined.

This routine can fail, returning 0, if a stat(2) or open(2) of the supplied pathname fails, or if
any of the following is true:

ENXIO volume management is not running.

EINTR An interrupt signal was detected while checking for media.

EXAMPLE 1 Checking If Any New Media Is Inserted

To check if any drive managed by volume management has any new media inserted in it:

if (volmgt_check(NULL)) {

(void) printf("Volume management found media\n");
}

This would also request volume management to take whatever action was appropriate for the
new media.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Name

Synopsis

Description

Return Values

Errors

Examples

Attributes

volmgt_check(3VOLMGT)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 8 Mar 2007360

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=stat-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=open-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


volcheck(1), open(2), stat(2), volmgt_inuse(3VOLMGT), volmgt_running(3VOLMGT),
attributes(5), hal(5)

Since volmgt_check() returns 0 for two different cases (both when no media is found, and
when an error occurs), it is up to the user to check errno to differentiate the two, and to ensure
that volume management is running.

See Also

Notes

volmgt_check(3VOLMGT)

Extended Library Functions, Volume 4 361

http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=volcheck-1
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=open-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=stat-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5


volmgt_feature_enabled – check whether specific Volume Management features are enabled

cc [ flag ... ] file ... -l volmgt [ library ... ]

#include <volmgt.h>

int volmgt_feature_enabled(char *feat_str);

This function is obsolete. The management of removable media by the Volume Management
feature, including vold, has been replaced by software that supports the Hardware
Abstraction Layer (HAL). Programmatic support for HAL is through the HAL APIs, which are
documented on the HAL web site. See hal(5). The return value of this function is undefined.

The volmgt_feature_enabled() routine checks whether specific volume management
features are enabled. volmgt_feature_enabled() checks for the volume management
features passed in to it by the feat_str parameter.

Currently, the only supported feature string that volmgt_feature_enabled() checks for is
floppy-summit-interfaces. The floppy-summit-interfaces feature string checks for the
presence of the libvolmgt routines volmgt_acquire() and volmgt_release().

The return from this function is undefined.

EXAMPLE 1 A sample of the volmgt_feature_enabled() function.

In the following example, volmgt_feature_enabled() checks whether the
floppy-summit-interfaces feature is enabled.

if (volmgt_feature_enabled("floppy-summit-interfaces")) {

(void) printf("Media Sharing Routines ARE present\n");
} else {

(void) printf("Media Sharing Routines are NOT present\n");
}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Obsolete

volmgt_acquire(3VOLMGT), volmgt_release(3VOLMGT), attributes(5), hal(5)

Name

Synopsis

Description

Return Values

Examples

Attributes

See Also

volmgt_feature_enabled(3VOLMGT)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 8 Mar 2007362

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5


volmgt_inuse – check whether or not volume management is managing a pathname

cc [ flag... ] file... -lvolmgt [ library ... ]

#include <volmgt.h>

int volmgt_inuse(char *pathname);

This function is obsolete. The management of removable media by the Volume Management
feature, including vold, has been replaced by software that supports the Hardware
Abstraction Layer (HAL). Programmatic support for HAL is through the HAL APIs, which are
documented on the HAL web site. See hal(5). The return value of this function is undefined.

volmgt_inuse() checks whether volume management is managing the specified pathname.

The return from this function is undefined.

This routine can fail, returning 0, if a stat(2) of the supplied pathname or an open(2) of
/dev/volctl fails, or if any of the following is true:

ENXIO Volume management is not running.

EINTR An interrupt signal was detected while checking for the supplied pathname for use.

EXAMPLE 1 Usingvolmgt_inuse()

To see if volume management is managing the first floppy disk:

if (volmgt_inuse("/dev/rdiskette0") != 0) {

(void) printf("volmgt is managing diskette 0\n");
} else {

(void) printf("volmgt is NOT managing diskette 0\n");
}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Obsolete

open(2), stat(2), errno(3C), volmgt_check(3VOLMGT), volmgt_running(3VOLMGT),
attributes(5), hal(5)

This routine requires volume management to be running.

Since volmgt_inuse() returns 0 for two different cases (both when a volume is not in use, and
when an error occurs), it is up to the user to to check errno to differentiate the two, and to
ensure that volume management is running.

Name

Synopsis

Description

Return Values

Errors

Examples

Attributes

See Also

Notes

volmgt_inuse(3VOLMGT)

Extended Library Functions, Volume 4 363

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=stat-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=open-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=open-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=stat-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=errno-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5


volmgt_ownspath – check volume management name space for path

cc [flag]... file... −lvolgmt [library]...

#include <volmgt.h>

int volmgt_ownspath(char *path);

path A string containing the path.

This function is obsolete. The management of removable media by the Volume Management
feature, including vold, has been replaced by software that supports the Hardware
Abstraction Layer (HAL). Programmatic support for HAL is through the HAL APIs, which are
documented on the HAL web site. See hal(5). The return value of this function is undefined.

The volmgt_ownspath() function checks to see if a given path is contained in the volume
management name space. This is achieved by comparing the beginning of the supplied path
name with the output from volmgt_root(3VOLMGT)

The return from this function is undefined.

EXAMPLE 1 Usingvolmgt_ownspath()

The following example first checks if volume management is running, then checks the volume
management name space for path, and then returns the id for the piece of media.

char *path;

...

if (volmgt_running()) {

if (volmgt_ownspath(path)) {

(void) printf("id of %s is %lld\n",
path, media_getid(path));

}

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

Interface Stability Obsolete

volmgt_root(3VOLMGT), volmgt_running(3VOLMGT), attributes(5), hal(5)

Name

Synopsis

Parameters

Description

Return Values

Examples

Attributes

See Also

volmgt_ownspath(3VOLMGT)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 8 Mar 2007364

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5


volmgt_release – release removable media device reservation

cc [ flag ... ] file ... -lvolmgt [ library ... ]

#include <volmgt.h>

int volmgt_release(char *dev);

This function is obsolete. The management of removable media by the Volume Management
feature, including vold, has been replaced by software that supports the Hardware
Abstraction Layer (HAL). Programmatic support for HAL is through the HAL APIs, which are
documented on the HAL web site. See hal(5). The return value of this function is undefined.

The volmgt_release() routine releases the removable media device reservation specified as
dev. See volmgt_acquire(3VOLMGT) for a description of dev.

If dev is reserved by the caller, volmgt_release() updates the internal device reservation
database to indicate that the device is no longer reserved. If the requested device is reserved by
another process, the release attempt fails and errno is set to 0.

The return from this function is undefined.

On failure, volmgt_release() returns 0, and sets errno for one of the following conditions:

EINVAL dev was invalid or missing.

EBUSY dev was not reserved by the caller.

EXAMPLE 1 Usingvolmgt_release()

In the following example, volume management is running, and the first floppy drive is
reserved, accessed and released.

#include <volmgt.h>

char *errp;

if (!volmgt_acquire("floppy0", "FileMgr", 0, &errp,

NULL)) {

/* handle error case */

. . .

}

/* floppy acquired - now access it */

if (!volmgt_release("floppy0")) {

/* handle error case */

. . .

}

Name

Synopsis

Description

Return Values

Errors

Examples

volmgt_release(3VOLMGT)

Extended Library Functions, Volume 4 365

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5


See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Obsolete

volmgt_acquire(3VOLMGT), attributes(5), hal(5)

Attributes

See Also

volmgt_release(3VOLMGT)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 8 Mar 2007366

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5


volmgt_root – return the volume management root directory

cc [ flag... ] file... -lvolmgt [ library ... ]

#include <volmgt.h>

const char *volmgt_root(void);

This function is obsolete. The management of removable media by the Volume Management
feature, including vold, has been replaced by software that supports the Hardware
Abstraction Layer (HAL). Programmatic support for HAL is through the HAL APIs, which are
documented on the HAL web site. See hal(5). The return value of this function is undefined.

The volmgt_root() function returns the current volume management root directory, which
by default is /vol but can be configured to be in a different location.

The return from this function is undefined.

This function may fail if an open() of /dev/volctl fails. If this occurs a pointer to the default
Volume Management root directory is returned.

EXAMPLE 1 Finding the Volume Management Root directory.

To find out where the volume management root directory is:

if ((path = volmgt_root()) != NULL) {

(void) printf("Volume Management root dir=%s\n", path);

} else {

(void) printf("can’t find Volume Management root dir\n");
}

/dev default location for the volume management root directory

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Obsolete

open(2), volmgt_check(3VOLMGT), volmgt_inuse(3VOLMGT),
volmgt_running(3VOLMGT), attributes(5), hal(5)

This function returns the default root directory location even when volume management is
not running.

Name

Synopsis

Description

Return Values

Errors

Examples

Files

Attributes

See Also

Notes

volmgt_root(3VOLMGT)

Extended Library Functions, Volume 4 367

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=open-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5


volmgt_running – return whether or not volume management is running

cc [ flag... ] file... -lvolmgt [ library... ]

#include <volmgt.h>

int volmgt_running(void);

This function is obsolete. The management of removable media by the Volume Management
feature, including vold, has been replaced by software that supports the Hardware
Abstraction Layer (HAL). Programmatic support for HAL is through the HAL APIs, which are
documented on the HAL web site. See hal(5).

volmgt_running() tells whether or not Volume Management is running.

volmgt_running() always returns 0 indicating Volume Management (as implemented by
vold) is not running.

volmgt_running() will fail, returning 0, if a stat(2) or open(2) of /dev/volctl fails, or if any
of the following is true:

ENXIO Volume Management is not running.

EINTR An interrupt signal was detected while checking to see if Volume Management was
running.

EXAMPLE 1 Usingvolmgt_running()

To see if Volume Management is running:

if (volmgt_running() != 0) {

(void) printf("Volume Management is running\n");
} else {

(void) printf("Volume Management is NOT running\n");
}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Obsolete

open(2), stat(2), volmgt_check(3VOLMGT), volmgt_inuse(3VOLMGT), attributes(5),
hal(5)

Volume Management must be running for many of the Volume Management library routines
to work.

Name

Synopsis

Description

Return Values

Errors

Examples

Attributes

See Also

Notes

volmgt_running(3VOLMGT)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 8 Mar 2007368

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=stat-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=open-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=open-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=stat-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5


volmgt_symname, volmgt_symdev – convert between Volume Management symbolic names,
and the devices that correspond to them

cc [ flag... ] file... -lvolmgt [ library... ]

#include <volmgt.h>

char *volmgt_symname(char *pathname);

char *volmgt_symdev(char *symname);

This function is obsolete. The management of removable media by the Volume Management
feature, including vold, has been replaced by software that supports the Hardware
Abstraction Layer (HAL). Programmatic support for HAL is through the HAL APIs, which are
documented on the HAL web site. See hal(5). The return value of this function is undefined.

These two routines compliment each other, translating between Volume Management's
symbolic name for a device, called a symname, and the /dev pathname for that same device.

volmgt_symname( ) converts a supplied /dev pathname to a symname, Volume Management's
idea of that device's symbolic name.

volmgt_symdev( ) does the opposite conversion, converting between a symname, Volume
Management's idea of a device's symbolic name for a volume, to the /dev pathname for that
device.

The return from this function is undefined.

volmgt_symname( ) can fail, returning a null string pointer, if a stat(2) of the supplied
pathname fails, or if an open(2) of /dev/volctl fails, or if any of the following is true:

ENXIO Volume Management is not running.

EINTR An interrupt signal was detected while trying to convert the supplied pathname to a
symname.

volmgt_symdev( ) can fail if an open(2) of /dev/volctl fails, or if any of the following is true:

ENXIO Volume Management is not running.

EINTR An interrupt signal was detected while trying to convert the supplied symname to a
/dev pathname.

EXAMPLE 1 Testing Floppies

The following tests how many floppies Volume Management currently sees in floppy drives
(up to 10):

for (i=0; i < 10; i++) {

(void) sprintf(path, "floppy%d", i);

if (volmgt_symdev(path) != NULL) {

(void) printf("volume %s is in drive %d\n",

Name

Synopsis

Description

Return Values

Errors

Examples

volmgt_symname(3VOLMGT)

Extended Library Functions, Volume 4 369

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=stat-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=open-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=open-2


EXAMPLE 1 Testing Floppies (Continued)

path, i);

}

}

EXAMPLE 2 Finding The Symbolic Name

This code finds out what symbolic name (if any) Volume Management has for
/dev/rdsk/c0t6d0s2:

if ((nm = volmgt_symname("/dev/rdsk/c0t6d0s2")) == NULL) {

(void) printf("path not managed\n");
} else {

(void) printf("path managed as %s\n", nm);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Obsolete

open(2), stat(2), free(3C), malloc(3C), volmgt_check(3VOLMGT),
volmgt_inuse(3VOLMGT), volmgt_running(3VOLMGT), attributes(5), hal(5)

Attributes

See Also

volmgt_symname(3VOLMGT)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 8 Mar 2007370

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=open-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=stat-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=free-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1465&id=malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=hal-5


wsreg_add_child_component, wsreg_remove_child_component,
wsreg_get_child_components – add or remove a child component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_add_child_component(Wsreg_component *comp,
const Wsreg_component *childComp);

int wsreg_remove_child_component(Wsreg_component *comp,
const Wsreg_component *childComp);

Wsreg_component **wsreg_get_child_components(const Wsreg_component *comp);

The wsreg_add_child_component() function adds the component specified by childComp to
the list of child components contained in the component specified by comp.

The wsreg_remove_child_component() function removes the component specified by
childComp from the list of child components contained in the component specified by comp.

The wsreg_get_child_components() function returns the list of child components
contained in the component specified by comp.

The wsreg_add_child_component() function returns a non-zero value if the specified child
component was successfully added; otherwise, 0 is returned.

The wsreg_remove_child_component() function returns a non-zero value if the specified
child component was successfully removed; otherwise, 0 is returned.

The wsreg_get_child_components() function returns a null-terminated array of
Wsreg_component pointers that represents the specified component's list of child components.
If the specified component has no child components, NULL is returned. The resulting array
must be released by the caller through a call to wsreg_free_component_array(). See
wsreg_create_component(3WSREG).

The parent-child relationship between components in the product install registry is used to
record a product's structure. Product structure is the arrangement of features and components
that make up a product. The structure of installed products can be displayed with the prodreg
GUI.

The child component must be installed and registered before the parent component can be.
The registration of a parent component that has child components results in each of the child
components being updated to reflect their parent component.

Read access to the product install registry is required in order to use these functions because
these relationships are held with lightweight component references that can only be fully
resolved using the registry contents.

Name

Synopsis

Description

Return Values

Usage

wsreg_add_child_component(3WSREG)

Extended Library Functions, Volume 4 371



See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

prodreg(1M), wsreg_can_access_registry(3WSREG),
wsreg_create_component(3WSREG), wsreg_initialize(3WSREG),
wsreg_register(3WSREG), wsreg_set_parent(3WSREG), attributes(5)

Attributes

See Also

wsreg_add_child_component(3WSREG)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Sep 2000372

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=prodreg-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_add_compatible_version, wsreg_remove_compatible_version,
wsreg_get_compatible_versions – add or remove a backward-compatible version

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_add_compatible_version(Wsreg_component *comp,
const char *version);

int wsreg_remove_compatible_version(Wsreg_component *comp,
const char *version);

char **wsreg_get_compatible_versions(const Wsreg_component *comp);

The wsreg_add_compatible_version() function adds the version string specified by version
to the list of backward-compatible versions contained in the component specified by comp.

The wsreg_remove_compatible_version() function removes the version string specified by
version from the list of backward-compatible versions contained in the component specified
by comp.

The wsreg_get_compatible_versions() function returns the list of backward-compatible
versions contained in the component specified by comp.

The wsreg_add_compatible_version() function returns a non-zero value if the specified
backward-compatible version was successfully added; otherwise, 0 is returned.

The wsreg_remove_compatible_version() function returns a non-zero value if the specified
backward-compatible version was successfully removed; otherwise, 0 is returned.

The wsreg_get_compatible_versions() function returns a null-terminated array of char
pointers that represents the specified component's list of backward-compatible versions. If the
specified component has no such versions, NULL is returned. The resulting array and its
contents must be released by the caller.

The list of backward compatible versions is used to allow components that are used by
multiple products to upgrade successfully without compromising any of its dependent
products. The installer that installs such an update can check the list of backward-compatible
versions and look at what versions are required by all of the dependent components to ensure
that the upgrade will not result in a broken product.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

Name

Synopsis

Description

Return Values

Usage

Attributes

wsreg_add_compatible_version(3WSREG)

Extended Library Functions, Volume 4 373

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


prodreg(1M), wsreg_initialize(3WSREG), wsreg_register(3WSREG),
wsreg_set_version(3WSREG), attributes(5)

See Also

wsreg_add_compatible_version(3WSREG)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Sep 2000374

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=prodreg-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_add_dependent_component, wsreg_remove_dependent_component,
wsreg_get_dependent_components – add or remove a dependent component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_add_dependent_component(Wsreg_component *comp,
const Wsreg_component *dependentComp);

int wsreg_remove_dependent_component(Wsreg_component *comp,
const Wsreg_component *dependentComp);

Wsreg_component **wsreg_get_dependent_components(const Wsreg_component *comp);

The wsreg_add_dependent_component() function adds the component specified by
dependentComp to the list of dependent components contained in the component specified by
comp.

The wsreg_remove_dependent_component() function removes the component specified by
dependentComp from the list of dependent components contained in the component specified
by comp.

The wsreg_get_dependent_components() function returns the list of dependent
components contained in the component specified by comp.

The wsreg_add_dependent_component() function returns a non-zero value if the specified
dependent component was successfully added; otherwise, 0 is returned.

The wsreg_remove_dependent_component() function returns a non-zero value if the
specified dependent component was successfully removed; otherwise, 0 is returned.

The wsreg_get_dependent_components() function returns a null-terminated array of
Wsreg_component pointers that represents the specified component's list of dependent
components. If the specified component has no dependent components, NULL is returned. The
resulting array must be released by the caller through a call to
wsreg_free_component_array(). See wsreg_create_component(3WSREG).

The relationship between two components in which one must be installed for the other to be
complete is a dependent/required relationship. The component that is required by the other
component is the required component. The component that requires the other is the
dependent component.

The required component must be installed and registered before the dependent component
can be. Uninstaller applications should check the registry before uninstalling and
unregistering components so a successful uninstallation of one product will not result in
another product being compromised.

Read access to the product install registry is required to use these functions because these
relationships are held with lightweight component references that can only be fully resolved
using the registry contents.

Name

Synopsis

Description

Return Values

Usage

wsreg_add_dependent_component(3WSREG)

Extended Library Functions, Volume 4 375



The act of registering a component having required components results in the converse
dependent relationships being established automatically.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_add_required_component(3WSREG), wsreg_can_access_registry(3WSREG),
wsreg_create_component(3WSREG), wsreg_initialize(3WSREG),
wsreg_register(3WSREG), attributes(5)

Attributes

See Also

wsreg_add_dependent_component(3WSREG)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Sep 2000376

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_add_display_name, wsreg_remove_display_name, wsreg_get_display_name,
wsreg_get_display_languages – add, remove, or return a localized display name

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_add_display_name(Wsreg_component *comp, const char *language,
const char *display_name);

int wsreg_remove_display_name(Wsreg_component *comp, const char *language);

char *wsreg_get_display_name(const Wsreg_component *comp,
const char *language);

char **wsreg_get_display_languages(const Wsreg_component *comp);

For each of these functions, the comp argument specifies the component on which these
functions operate. The language argument is the ISO 639 language code identifying a
particular display name associated with the specified component.

The wsreg_add_display_name() function adds the display name specified by display_name
to the component specified by comp.

The wsreg_remove_display_name() function removes a display name from the component
specified by comp.

The wsreg_get_display_name() function returns a display name from the component
specified by comp.

The wsreg_get_display_languages() returns the ISO 639 language codes for which display
names are available from the component specified by comp.

The wsreg_add_display_name() function returns a non-zero value if the display name was
set correctly; otherwise 0 is returned.

The wsreg_remove_display_name() function returns a non-zero value if the display name
was removed; otherwise 0 is returned.

The wsreg_get_display_name() function returns the display name from the specified
component if the component has a display name for the specified language code. Otherwise,
NULL is returned. The caller must not free the resulting display name.

The wsreg_get_display_languages() function returns a null-terminated array of ISO 639
language codes for which display names have been set into the specified component. If no
display names have been set, NULL is returned. It is the caller's responsibility to release the
resulting array, but not the contents of the array.

Name

Synopsis

Description

Return Values

wsreg_add_display_name(3WSREG)

Extended Library Functions, Volume 4 377



See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_initialize(3WSREG), attributes(5)

Attributes

See Also

wsreg_add_display_name(3WSREG)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Sep 2000378

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_add_required_component, wsreg_remove_required_component,
wsreg_get_required_components – add or remove a required component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_add_required_component(Wsreg_component *comp,
const Wsreg_component *requiredComp);

int wsreg_remove_required_component(Wsreg_component *comp,
const Wsreg_component *requiredComp);

Wsreg_component **wsreg_get_required_components

(const Wsreg_component *comp);

The wsreg_add_required_component() function adds the component specified by
requiredComp to the list of required components contained in the component specified by
comp.

The wsreg_remove_required_component() function removes the component specified by
requiredComp from the list of required components contained in the component specified by
comp.

The wsreg_get_required_components() function returns the list of required components
contained in the component specified by comp.

The wsreg_add_required_component() function returns a non-zero value if the specified
required component was successfully added. Otherwise, 0 is returned.

The wsreg_remove_required_component() function returns a non-zero value if the specified
required component was successfully removed. Otherwise, 0 is returned.

The wsreg_get_required_components() function returns a null-terminated array of
Wsreg_component pointers that represents the specified component's list of required
components. If the specified component has no required components, NULL is returned. The
resulting array must be released by the caller through a call to
wsreg_free_component_array(). See wsreg_create_component(3WSREG).

The relationship between two components in which one must be installed for the other to be
complete is a dependent/required relationship. The component that is required by the other
component is the required component. The component that requires the other is the
dependent component.

The required component must be installed and registered before the dependent component
can be. Uninstaller applications should check the registry before uninstalling and
unregistering components so a successful uninstallation of one product will not result in
another product being compromised.

Name

Synopsis

Description

Return Values

Usage

wsreg_add_required_component(3WSREG)

Extended Library Functions, Volume 4 379



Read access to the product install registry is required in order to use these functions because
these relationships are held with lightweight component references that can only be fully
resolved using the registry contents.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_add_dependent_component(3WSREG), wsreg_can_access_registry(3WSREG),
wsreg_create_component(3WSREG), wsreg_initialize(3WSREG),
wsreg_register(3WSREG), attributes(5)

Attributes

See Also

wsreg_add_required_component(3WSREG)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Sep 2000380

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_can_access_registry – determine access to product install registry

cc [flag ...] file ...-lwsreg [library ...]
#include <fcntl.h>

#include <wsreg.h>

int wsreg_can_access_registry(int access_flag);

The wsreg_can_access_registry() function is used to determine what access, if any, an
application has to the product install registry.

The access_flag argument can be one of the following:

O_RDONLY Inquire about read only access to the registry.

O_RDWR Inquire about modify (read and write) access to the registry.

The wsreg_can_access_registry() function returns non-zero if the specified access level is
permitted. A return value of 0 indicates the specified access level is not permitted.

EXAMPLE 1 Initialize the registry and determine if access to the registry is permitted.

#include <fcntl.h>

#include <wsreg.h>

int main(int argc, char **argv)

{

int result;

if (wsreg_initialize(WSREG_INIT_NORMAL, NULL)) {

printf("conversion recommended, sufficient access denied\n");
}

if (wsreg_can_access_registry(O_RDONLY)) {

printf("registry read access granted\n");
} else {

printf("registry read access denied\n");
}

if (wsreg_can_access_registry(O_RDWR)) {

printf("registry read/write access granted\n");
} else {

printf("registry read/write access denied\n");
}

}

The wsreg_initialize(3WSREG) function must be called before calls to
wsreg_can_access_registry() can be made.

Name

Synopsis

Description

Return Values

Examples

Usage

wsreg_can_access_registry(3WSREG)

Extended Library Functions, Volume 4 381



See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_initialize(3WSREG), attributes(5)

Attributes

See Also

wsreg_can_access_registry(3WSREG)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Sep 2000382

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_clone_component – clone a component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

Wsreg_component *wsreg_clone_component(const Wsreg_component *comp);

The wsreg_clone_component() function clones the component specified by comp.

The wsreg_clone_component() returns a pointer to a component that is configured exactly
the same as the component specified by comp.

The resulting component must be released through a call to wsreg_free_component() by the
caller. See wsreg_create_component(3WSREG).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_create_component(3WSREG), wsreg_initialize(3WSREG), wsreg_get(3WSREG),
attributes(5)

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

wsreg_clone_component(3WSREG)

Extended Library Functions, Volume 4 383

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_components_equal – determine equality of two components

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_components_equal(const Wsreg_component *comp1,
const Wsreg_component *comp2);

The wsreg_components_equal() function determines if the component specified by the
comp1 argument is equal to the component specified by the comp2 argument. Equality is
evaluated based only on the content of the two components, not the order in which data was
set into the components.

The wsreg_components_equal() function returns a non-zero value if the component
specified by the comp1 argument is equal to the component specified by the comp2 argument.
Otherwise, 0 is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_clone_component(3WSREG), wsreg_create_component(3WSREG),
wsreg_initialize(3WSREG), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

wsreg_components_equal(3WSREG)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Sep 2000384

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_create_component, wsreg_free_component, wsreg_free_component_array – create or
release a component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

Wsreg_component *wsreg_create_component(const char *uuid);

void wsreg_free_component(Wsreg_component *comp);

int wsreg_free_component_array(Wsreg_component **complist);

The wsreg_create_component() function allocates a new component and assigns the uuid
(universal unique identifier) specified by uuid to the resulting component.

The wsreg_free_component() function releases the memory associated with the component
specified by comp.

The wsreg_free_component_array() function frees the null-terminated array of component
pointers specified by complist. This function can be used to free the results of a call to
wsreg_get_all(). See wsreg_get(3WSREG).

The wsreg_create_component() function returns a pointer to the newly allocated
Wsreg_component structure.

The wsreg_free_component_array() function returns a non-zero value if the specified
Wsreg_component array was freed successfully. Otherwise, 0 is returned.

A minimal registerable Wsreg_component configuration must include a version, unique name,
display name, and an install location.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_add_display_name(3WSREG), wsreg_get(3WSREG), wsreg_initialize(3WSREG),
wsreg_register(3WSREG), wsreg_set_id(3WSREG), wsreg_set_location(3WSREG),
wsreg_set_unique_name(3WSREG), wsreg_set_version(3WSREG), attributes(5)

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

wsreg_create_component(3WSREG)

Extended Library Functions, Volume 4 385

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_get, wsreg_get_all – query product install registry

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

Wsreg_component *wsreg_get(const Wsreg_query *query);

Wsreg_component **wsreg_get_all(void);

The wsreg_get() function queries the product install registry for a component that matches
the query specified by query.

The wsreg_get_all() function returns all components currently registered in the product
install registry.

The wsreg_get() function returns a pointer to a Wsreg_component structure representing the
registered component. If no component matching the specified query is currently registered,
wsreg_get() returns NULL.

The wsreg_get_all() function returns a null-terminated array of Wsreg_component
pointers. Each element in the resulting array represents one registered component.

The wsreg library must be initialized by a call to wsreg_initialize(3WSREG) before any call
to wsreg_get() or wsreg_get_all().

The Wsreg_component pointer returned from wsreg_get() should be released through a call
to wsreg_free_component(). See wsreg_create_component(3WSREG).

The Wsreg_component pointer array returned from wsreg_get_all() should be released
through a call to wsreg_free_component_array(). See
wsreg_create_component(3WSREG).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_create_component(3WSREG), wsreg_initialize(3WSREG),
wsreg_register(3WSREG), attributes(5)

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

wsreg_get(3WSREG)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Sep 2000386

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_initialize – initialize wsreg library

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_initialize(Wsreg_init_level level, const char *alternate_root);

The wsreg_initialize() function initializes the wsreg library.

The level argument can be one of the following:

WSREG_INIT_NORMAL If an old registry file is present, attempt to perform a
conversion.

WSREG_INIT_NO_CONVERSION If an old conversion file is present, do not perform the
conversion, but indicate that the conversion is
recommended.

The alternate_root argument can be used to specify a root prefix. If NULL is specified, no root
prefix is used.

The wsreg_initialize() function can return one of the following:

WSREG_SUCCESS The initialization was successful and no registry
conversion is necessary.

WSREG_CONVERSION_RECOMMENDED An old registry file exists and should be converted.

A conversion is attempted if the init_level argument is WSREG_INIT_NORMAL and a registry file
from a previous version of the product install registry exists. If the wsreg_initialize()
function returns WSREG_CONVERSION_RECOMMENDED, the user either does not have permission
to update the product install registry or does not have read/write access to the previous
registry file.

The wsreg_initialize() function must be called before any other wsreg library functions.

The registry conversion can take some time to complete. The registry conversion can also be
performed using the graphical registry viewer /usr/bin/prodreg or by the registry converter
/usr/bin/regconvert.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

prodreg(1M), wsreg_can_access_registry(3WSREG), attributes(5)

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

wsreg_initialize(3WSREG)

Extended Library Functions, Volume 4 387

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=prodreg-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_query_create, wsreg_query_free – create a new query

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

Wsreg_query *wsreg_query_create(void);

void wsreg_query_free(Wsreg_query *query);

The wsreg_query_create() function allocates a new query that can retrieve components
from the product install registry.

The wsreg_query_free() function releases the memory associated with the query specified
by query.

The wsreg_query_create() function returns a pointer to the newly allocated query. The
resulting query is completely empty and must be filled in to describe the desired component.

The query identifies fields used to search for a specific component in the product install
registry. The query must be configured and then passed to the wsreg_get(3WSREG) function
to perform the registry query.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_get(3WSREG), wsreg_initialize(3WSREG), wsreg_query_set_id(3WSREG),
wsreg_query_set_instance(3WSREG), wsreg_query_set_location(3WSREG),
wsreg_query_set_unique_name(3WSREG), wsreg_query_set_version(3WSREG),
wsreg_unregister(3WSREG), attributes(5)

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

wsreg_query_create(3WSREG)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Sep 2000388

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_query_set_id, wsreg_query_get_id – set or get the uuid of a query

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_query_set_id(Wsreg_query *query, const char *uuid);

char *wsreg_query_get_id(const Wsreg_query *query);

The wsreg_query_set_id() function sets the uuid (universal unique identifier) specified by
uuid in the query specified by query. If a uuid has already been set in the specified query, the
resources associated with the previously set uuid are released.

The wsreg_query_get_id() function returns the uuid associated with the query specified by
query. The resulting string is not a copy and must not be released by the caller.

The wsreg_query_set_id() function returns non-zero if the uuid was set correctly; otherwise
0 is returned.

The wsreg_query_get_id() function returns the uuid associated with the specified query.

The query identifies fields used to search for a specific component in the product install
registry. By specifying the uuid, the component search is narrowed to all components in the
product install registry that have the specified uuid.

Other fields can be specified in the same query to further narrow the search.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_get(3WSREG), wsreg_initialize(3WSREG), wsreg_query_create(3WSREG),
attributes(5)

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

wsreg_query_set_id(3WSREG)

Extended Library Functions, Volume 4 389

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_query_set_instance, wsreg_query_get_instance – set or get the instance of a query

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_query_set_instance(Wsreg_query *query, int instance);

int wsreg_query_get_instance(Wsreg_query *comp);

The wsreg_query_set_instance() function sets the instance number specified by instance in
the query specified by query.

The wsreg_query_get_instance() function retrieves the instance from the query specified
by query.

The wsreg_query_set_instance() function returns a non-zero value if the instance was set
correctly; otherwise 0 is returned.

The wsreg_query_get_instance() function returns the instance number from the specified
query. It returns 0 if the instance number has not been set.

The query identifies fields used to search for a specific component in the product install
registry. By specifying the instance, the component search is narrowed to all components in
the product install registry that have the specified instance.

Other fields can be specified in the same query to further narrow down the search.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_get(3WSREG), wsreg_initialize(3WSREG), wsreg_query_create(3WSREG),
attributes(5)

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

wsreg_query_set_instance(3WSREG)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Sep 2000390

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_query_set_location, wsreg_query_get_location – set or get the location of a query

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_query_set_location(Wsreg_query *query, const char *location);

char *wsreg_query_get_location(Wsreg_query *query);

The wsreg_query_set_location() function sets the location specified by location in the
query specified by query. If a location has already been set in the specified query, the resources
associated with the previously set location are released.

The wsreg_query_get_location() function gets the location string from the query specified
by query.

The wsreg_query_set_location() function returns a non-zero value if the location was set
correctly; otherwise 0 is returned.

The wsreg_query_get_location() function returns the location from the specified query
structure. The resulting location string is not a copy, so it must not be released by the caller.

The query identifies fields used to search for a specific component in the product install
registry. By specifying the install location, the component search is narrowed to all
components in the product install registry that are installed in the same location.

Other fields can be specified in the same query to further narrow the search.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_get(3WSREG), wsreg_initialize(3WSREG), wsreg_query_create(3WSREG),
attributes(5)

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

wsreg_query_set_location(3WSREG)

Extended Library Functions, Volume 4 391

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_query_set_unique_name, wsreg_query_get_unique_name – set or get the unique
name of a query

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_query_set_unique_name(Wsreg_query *query,
const char *unique_name);

char *wsreg_query_get_unique_name(const Wsreg_query *query);

The wsreg_query_set_unique_name() function sets the unique name specified by
unique_name in the query specified by query. If a unique name has already been set in the
specified query, the resources associated with the previously set unique name are released.

The wsreg_query_get_unique_name() function gets the unique name string from the query
specified by query. The resulting string is not a copy and must not be released by the caller.

The wsreg_query_set_unique_name() function returns a non-zero value if the unique_name
was set correctly; otherwise 0 is returned.

The wsreg_query_get_unique_name() function returns a copy of the unique_name from the
specified query.

The query identifies fields used to search for a specific component in the product install
registry. By specifying the unique name, the component search is narrowed to all components
in the product install registry that have the specified unique name.

Other fields can be specified in the same query to further narrow the search.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_get(3WSREG), wsreg_initialize(3WSREG), wsreg_query_create(3WSREG),
attributes(5)

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

wsreg_query_set_unique_name(3WSREG)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Sep 2000392

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_query_set_version, wsreg_query_get_version – set or get the version of a query

cc [flag ...] file ... -lwsreg [library ...]
#include <wsreg.h>

int wsreg_query_set_version(Wsreg_query *query, const char *version);

char *wsreg_query_get_version(const Wsreg_query *query);

The wsreg_query_set_version() function sets the version specified by version in the query
specified by query. If a version has already been set in the specified query, the resources
associated with the previously set version are released.

The wsreg_query_get_version() function gets the version string from the query specified by
query. The resulting string is not a copy and must not be released by the caller.

The wsreg_query_set_version() function returns a non-zero value if the version was set
correctly; otherwise 0 is returned.

The wsreg_query_get_version() function returns the version from the specified query. If no
version has been set, NULLt is returned. The resulting version string is not a copy and must not
be released by the caller.

The query identifies fields used to search for a specific component in the product install
registry. By specifying the version, the component search is narrowed to all components in the
product install registry that have the specified version.

Other fields can be specified in the same query to further narrow the search.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_get(3WSREG), wsreg_initialize(3WSREG), wsreg_query_create(3WSREG),
attributes(5)

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

wsreg_query_set_version(3WSREG)

Extended Library Functions, Volume 4 393

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_register – register a component in the product install registry

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_register(Wsreg_component *comp);

The wsreg_register() function updates a component in the product install registry.

If comp is already in the product install registry, the call to wsreg_register() results in the
currently registered component being updated. Otherwise, comp is added to the product
install registry.

An instance is assigned to the component upon registration. Subsequent component updates
retain the same component instance.

If comp has required components, each required component is updated to reflect the required
component relationship.

If comp has child components, each child component that does not already have a parent is
updated to reflect specified component as its parent.

Upon successful completion, a non-zero value is returned. If the component could not be
updated in the product install registry, 0 is returned.

EXAMPLE 1 Create and register a component.

The following example creates and registers a component.

#include <wsreg.h>

int main (int argc, char **argv)

{

char *uuid = "d6cf2869-1dd1-11b2-9fcb-080020b69971";
Wsreg_component *comp = NULL;

/* Initialize the registry */

wsreg_initialize(WSREG_INIT_NORMAL, NULL);

/* Create the component */

comp = wsreg_create_component(uuid);

wsreg_set_unique_name(comp, "wsreg_example_1");
wsreg_set_version(comp, "1.0");
wsreg_add_display_name(comp, "en", "Example 1 component");
wsreg_set_type(comp, WSREG_COMPONENT);

wsreg_set_location(comp, "/usr/local/example1_component");

/* Register the component */

wsreg_register(comp);

wsreg_free_component(comp);

Name

Synopsis

Description

Return Values

Examples

wsreg_register(3WSREG)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Sep 2000394



EXAMPLE 1 Create and register a component. (Continued)

return 0;

}

A product's structure can be recorded in the product install registry by registering a
component for each element and container in the product definition. The product and each of
its features would be registered in the same way as a package that represents installed files.

Components should be registered only after they are successfully installed. If an entire
product is being registered, the product should be registered after all components and features
are installed and registered.

In order to register correctly, the component must be given a uuid, unique name, version,
display name, and a location. The location assgined to product structure components should
generally be the location in which the user chose to install the product.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_get(3WSREG), wsreg_initialize(3WSREG), wsreg_create_component(3WSREG),
wsreg_unregister(3WSREG), attributes(5)

Usage

Attributes

See Also

wsreg_register(3WSREG)

Extended Library Functions, Volume 4 395

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_set_data, wsreg_get_data, wsreg_get_data_pairs – add or retrieve a key-value pair

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_data(Wsreg_component *comp, const char *key,
const char *value);

char *wsreg_get_data(const Wsreg_component *comp, const char *key);

char *wsreg_get_data_pairs(const Wsreg_component *comp);

The wsreg_set_data() function adds the key-value pair specified by key and value to the
component specified by comp. If value is NULL, the key and current value is removed from the
specified component.

The wsreg_get_data() function retrieves the value associated with the key specified by key
from the component specified by comp.

The wsreg_get_data_pairs() function returns the list of key-value pairs from the
component specified by comp.

The wsreg_set_data() function returns a non-zero value if the specified key-value pair was
successfully added. It returns 0 if the addition failed. If NULL is passed as the value, the current
key-value pair are removed from the specified component.

The wsreg_get_data() function returns the value associated with the specified key. It returns
NULL if there is no value associated with the specified key. The char pointer that is returned is
not a clone, so it must not be freed by the caller.

The wsreg_get_data_pairs() function returns a null-terminated array of char pointers that
represents the specified component's list of data pairs. The even indexes of the resulting array
represent the key names. The odd indexes of the array represent the values. If the specified
component has no data pairs, NULL is returned. The resulting array (not its contents) must be
released by the caller.

Any string data can be associated with a component. Because this information can be viewed
in the prodreg registry viewer, it is a good place to store support contact information.

After the data pairs are added or removed, the component must be updated with a call to
wsreg_register(3WSREG) for the modifications to be persistent.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

Name

Synopsis

Description

Return Values

Usage

Attributes

wsreg_set_data(3WSREG)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Sep 2000396

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


prodreg(1M), wsreg_initialize(3WSREG), wsreg_register(3WSREG), attributes(5)See Also

wsreg_set_data(3WSREG)

Extended Library Functions, Volume 4 397

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=prodreg-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_set_id, wsreg_get_id – set or get the uuid of a component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_id(Wsreg_component *comp, const char *uuid);

char *wsreg_get_id(const Wsreg_component *comp);

The wsreg_set_id() function sets the uuid (universal unique identifier) specified by uuid
into the component specified by comp. If a uuid has already been set into the specified
component, the resources associated with the previously set uuid are released.

The wsreg_get_id() function returns a copy of the uuid of the component specified by comp.
The resulting string must be released by the caller.

The wsreg_set_id() function returns non-zero if the uuid was set correctly; otherwise 0 is
returned.

The wsreg_get_id() function returns a copy of the specified component's uuid.

Generally, the uuid will be set into a component by the wsreg_create_component(3WSREG)
function, so a call to the wsreg_set_id() is not necessary.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_create_component(3WSREG), wsreg_initialize(3WSREG),
attributes(5)attributes(5)

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

wsreg_set_id(3WSREG)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Sep 2000398

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_set_instance, wsreg_get_instance – set or get the instance of a component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_instance(Wsreg_component *comp, int instance);

int wsreg_get_instance(Wsreg_component *comp);

The wsreg_set_instance() function sets the instance number specified by instance of the
component specified by comp. The instance number and uuid are used to uniquely identify
any component in the product install registry.

The wsreg_get_instance() function determines the instance number associated with the
component specified by comp.

The wsreg_set_instance() function returns a non-zero value if the instance was set
correctly; otherwise 0 is returned.

The wsreg_get_instance() function returns the instance number associated with the
specified component.

EXAMPLE 1 Get the instance value of a registered component.

The following example demonstrates how how to get the instance value of a registered
component.

#include <fcntl.h>

#include <wsreg.h>

int main (int argc, char **argv)

{

char *uuid = "d6cf2869-1dd1-11b2-9fcb-080020b69971";
Wsreg_component *comp = NULL;

/* Initialize the registry */

wsreg_initialize(WSREG_INIT_NORMAL, NULL);

if (!wsreg_can_access_registry(O_RDWR)) {

printf("No permission to modify the registry.\n");
return 1;

}

/* Create a component */

comp = wsreg_create_component(uuid);

wsreg_set_unique_name(comp, "wsreg_example_1");
wsreg_set_version(comp, "1.0");
wsreg_add_display_name(comp, "en", "Example 1 component");
wsreg_set_type(comp, WSREG_COMPONENT);

wsreg_set_location(comp, "/usr/local/example1_component");

Name

Synopsis

Description

Return Values

Examples

wsreg_set_instance(3WSREG)

Extended Library Functions, Volume 4 399



EXAMPLE 1 Get the instance value of a registered component. (Continued)

/* Register */

wsreg_register(comp);

printf("Instance %d was assigned\n", wsreg_get_instance(comp));

wsreg_free_component(comp);

return 0;

}

Upon component registration with the wsreg_register(3WSREG) function, the instance
number is set automatically. The instance number of 0 (the default) indicates to the
wsreg_register() function that an instance number should be looked up and assigned
during registration. If a component with the same uuid and location is already registered in
the product install registry, that component's instance number will be used during
registration.

After registration of a component, the wsreg_get_instance() function can be used to
determine what instance value was assigned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_create_component(3WSREG), wsreg_register(3WSREG), attributes(5)

Usage

Attributes

See Also

wsreg_set_instance(3WSREG)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Sep 2000400

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_set_location, wsreg_get_location – set or get the location of a component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_location(Wsreg_component *comp, const char *location);

char *wsreg_get_location(const Wsreg_component *comp);

The wsreg_set_location() function sets the location specified by location into the
component specified by comp. Every component must have a location before being registered.
If a location has already been set into the specified component, the resources associated with
the previously set location are released.

The wsreg_get_location() function gets the location string from the component specified
by comp. The resulting string must be released by the caller.

The wsreg_set_location() function returns a non-zero value if the location was set
correctly; otherwise 0 is returned.

The wsreg_get_location() function returns a copy of the location from the specified
component.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_initialize(3WSREG), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

wsreg_set_location(3WSREG)

Extended Library Functions, Volume 4 401

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_set_parent, wsreg_get_parent – set or get the parent of a component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

void wsreg_set_parent(Wsreg_component *comp,
const Wsreg_component *parent);

Wsreg_component *wsreg_get_parent(const Wsreg_component *comp);

The wsreg_set_parent() function sets the parent specified by parent of the component
specified by comp.

The wsreg_get_parent() function gets the parent of the component specified by comp.

The wsreg_get_parent() function returns a pointer to a Wsreg_component structure that
represents the parent of the specified component. If the specified component does not have a
parent, NULL is returned. If a non-null value is returned, it the caller's responsibility to release
the memory associated with the resulting Wsreg_component pointer with a call to
wsreg_free_component(). See wsreg_create_component(3WSREG).

The parent of a component is set as a result of registering the parent component. When a
component that has children is registered, all of the child components are updated to reflect
the newly registered component as their parent. This update only occurs if the child
component does not already have a parent component set.

The specified parent component is reduced to a lightweight component reference that
uniquely identifies the parent in the product install registry. This lightweight reference
includes the parent's uuid and instance number.

The parent must be registered before a call to wsreg_set_parent() can be made, since the
parent's instance number must be known at the time the wsreg_set_parent() function is
called.

A process needing to call wsreg_set_parent() or wsreg_get_parent() must have read
access to the product install registry.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_can_access_registry(3WSREG), wsreg_create_component(3WSREG),
wsreg_initialize(3WSREG), wsreg_register(3WSREG),
wsreg_set_instance(3WSREG), attributes(5)

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

wsreg_set_parent(3WSREG)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Sep 2000402

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_set_type, wsreg_get_type – set or get the type of a component

cc [ flag... ] file ... -lwsreg [ library ... ]

#include <wsreg.h>

int wsreg_set_type(Wsreg_component *comp, Wsreg_component_type type);

Wsreg_component_type wsreg_get_type(const Wsreg_component *comp);

The wsreg_set_type() function sets the type specified by type in the component specified by
comp.

The wsreg_get_type() function retrieves the type from the component specified by comp.

The wsreg_set_type() function returns a non-zero value if the type is set successfully;
otherwise 0 is returned.

The wsreg_get_type() function returns the type currently set in the component specified by
comp.

The component type is used to indicate whether a Wsreg_component structure represents a
product, feature, or component. The type argument can be one of the following:

WSREG_PRODUCT Indicates the Wsreg_component represents a product. A product is a
collection of features and/or components.

WSREG_FEATURE Indicates the Wsreg_component represents a feature. A feature is a
collection of components.

WSREG_COMPONENT Indicates the Wsreg_component represents a component. A component
is a collection of files that may be installed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_create_component(3WSREG), wsreg_initialize(3WSREG),
wsreg_register(3WSREG), wsreg_set_instance(3WSREG), attributes(5)

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

wsreg_set_type(3WSREG)

Extended Library Functions, Volume 4 403

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_set_uninstaller, wsreg_get_uninstaller – set or get the uninstaller of a component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_uninstaller(Wsreg_component *comp, const char *uninstaller);

char *wsreg_set_uninstaller(const Wsreg_component *comp);

The wsreg_set_uninstaller() function sets the uninstaller specified by uninstaller in the
component specified by comp. If an uninstaller has already been set in the specified
component, the resources associated with the previously set uninstaller are released.

The wsreg_get_uninstaller() function gets the uninstaller string from the component
specified by comp. The resulting string must be released by the caller.

The wsreg_set_uninstaller() function returns a non-zero value if the uninstaller was set
correctly; otherwise 0 is returned.

The wsreg_get_uninstaller() function returns a copy of the uninstaller from the specified
component.

An uninstaller is usually only associated with a product, not with every component that
comprises a product. The uninstaller string is a command that can be passed to the shell to
launch the uninstaller.

If an uninstaller is set in a registered component, the prodreg(1M) registry viewer will provide
an uninstall button that will invoke the uninstaller.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

prodreg(1M), wsreg_initialize(3WSREG), attributes(5)

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

wsreg_set_uninstaller(3WSREG)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Sep 2000404

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=prodreg-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=prodreg-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_set_unique_name, wsreg_get_unique_name – set or get the unique name of a
component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_unique_name(Wsreg_component *comp, const char *unique_name);

char *wsreg_get_unique_name(const Wsreg_component *comp);

The wsreg_set_unique_name() function sets the unique name specified by unique_name in
the component specified by comp. Every component must have a unique name before being
registered. If a unique name has already been set in the specified component, the resources
associated with the previously set unique name are released.

The wsreg_get_unique_name() function gets the unique name string from the component
specified by comp. The resulting string must be released by the caller.

The wsreg_set_unique_name() function returns a non-zero value if the unique name was set
correctly; otherwise it returns 0.

The wsreg_get_unique_name() function returns a copy of the unique name from the
specified component.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_initialize(3WSREG), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

wsreg_set_unique_name(3WSREG)

Extended Library Functions, Volume 4 405

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_set_vendor, wsreg_get_vendor – set or get the vendor of a componentt

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_vendor(Wsreg_component *comp, const char *vendor);

char *wsreg_get_vendor(const Wsreg_component *comp);

The wsreg_set_vendor() function sets the vendor specified by vendor in the component
specified by comp. The vendor argument is a string that identifies the vendor of the
component. If a vendor has already been set in the specified component, the resources
associated with the previously set vendor are released.

The wsreg_get_vendor() function gets the vendor string from the component specified by
comp. The resulting string must be released by the caller.

The wsreg_set_vendor() function returns a non-zero value if the vendor was set correctly;
otherwise it returns 0.

The wsreg_get_vendor() function returns a copy of the vendor from the specified
component.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_initialize(3WSREG), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

wsreg_set_vendor(3WSREG)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Sep 2000406

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_set_version, wsreg_get_version – set or get the version of a component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_version(Wsreg_component *comp, const char *version);

char *wsreg_get_version(const Wsreg_component *comp);

The wsreg_set_version() function sets the version specified by version in the component
specified by comp. The version argument is a string that represents the version of the
component. Every component must have a version before being registered. If a version has
already been set in the specified component, the resources associated with the previously set
version are released.

The wsreg_get_version() function gets the version string from the component specified by
comp. The resulting string must be released by the caller.

The wsreg_set_version() function returns a non-zero value if the version was set correctly;
otherwise it returns 0.

The wsreg_get_version() function returns a copy of the version from the specified
component.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_initialize(3WSREG), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

wsreg_set_version(3WSREG)

Extended Library Functions, Volume 4 407

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


wsreg_unregister – remove a component from the product install registry

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_unregister(const Wsreg_component *comp);

The wsreg_unregister() function removes the component specified by comp from the
product install registry. The component will only be removed if the comp argument has a
matching uuid, instance, and version.

Usually, the component retrieved through a call to wsreg_get(3WSREG) before being passed
to the wsreg_unregister() function.

If the component has required components, the respective dependent components will be
updated to reflect the change.

A component that has dependent components cannot be unregistered until the dependent
components are uninstalled and unregistered.

Upon successful completion, a non-zero return value is returned. If the component could not
be unregistered, 0 is returned.

EXAMPLE 1 Unregister a component.

The following example demonstrates how to unregister a component.

#include <stdio.h>

#include <wsreg.h>

int main(int argc, char **argv)

{

char *uuid = "d6cf2869-1dd1-11b2-9fcb-080020b69971";
char *location = "/usr/local/example1_component";
Wsreg_query *query = NULL;

Wsreg_component *comp = NULL;

/* Initialize the registry */

wsreg_initialize(WSREG_INIT_NORMAL, NULL);

/* Query for the component */

query = wsreg_query_create();

wsreg_query_set_id(query, uuid);

wsreg_query_set_location(query, location);

comp = wsreg_get(query);

if (comp != NULL) {

/* The query succeeded. The component has been found. */

Wsreg_component **dependent_comps;

Name

Synopsis

Description

Return Values

Examples

wsreg_unregister(3WSREG)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Sep 2000408



EXAMPLE 1 Unregister a component. (Continued)

dependent_comps = wsreg_get_dependent_components(comp);

if (dependent_comps != NULL) {

/*

* The component has dependent components. The

* component cannot be unregistered.

*/

wsreg_free_component_array(dependent_comps);

printf("The component cannot be uninstalled because "
"it has dependent components\n");

} else {

/*

* The component does not have dependent components.

* It can be unregistered.

*/

if (wsreg_unregister(comp) != 0) {

printf("wsreg_unregister succeeded\n");
} else {

printf("unregister failed\n");
}

}

/* Be sure to free the component */

wsreg_free_component(comp);

} else {

/* The component is not currently registered. */

printf("The component was not found in the registry\n");
}

wsreg_query_free(query);

}

Components should be unregistered before uninstallation. If the component cannot be
unregistered, uninstallation should not be performed.

A component cannot be unregistered if other registered components require it. A call to
wsreg_get_dependent_components() can be used to determine if this situation exists. See
wsreg_add_dependent_component(3WSREG).

A successful unregistration of a component will result in all components required by the
unregistered component being updated in the product install registry to remove the
dependency. Also, child components will be updated so the unregistered component is no
longer registered as their parent.

When unregistering a product, the product should first be unregistered, followed by the
unregistration of its first feature and then the unregistration and uninstallation of the
components that comprise that feature. Be sure to use this top-down approach to avoid
removing a component that belongs to a product or feature that is required by a separate
product.

Usage

wsreg_unregister(3WSREG)

Extended Library Functions, Volume 4 409



See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_add_dependent_component(3WSREG), wsreg_get(3WSREG),
wsreg_initialize(3WSREG), wsreg_register(3WSREG), attributes(5)

Attributes

See Also

wsreg_unregister(3WSREG)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 22 Sep 2000410

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


XTSOLgetClientAttributes – get all label attributes associated with a client

cc [flag...] file... -lX11 -lXtsol [library...]

#include <X11/extensions/Xtsol.h>

Status XTSOLgetClientAttributes(display, windowid, clientattr);

Display *display;
XID windowid;
XTsolClientAttributes *clientattrp;

display Specifies a pointer to the Display structure. Is returned from XOpenDisplay().

windowid Specifies window ID of X client.

clientattrp Client must provide a pointer to an XTsolClientAttributes structure.

The XTSOLgetClientAttributes() function retrieves all label attributes that are associated
with a client in a single call. The attributes include process ID, user ID, IP address, audit flags
and session ID.

None.

BadAccess Lack of privilege.

BadValue Not a valid client.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

libXtsol(3LIB), XTSOLgetPropAttributes(3XTSOL), XTSOLgetResAttributes(3XTSOL),
attributes(5)

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

Notes

XTSOLgetClientAttributes(3XTSOL)

Extended Library Functions, Volume 4 411

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libxtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


XTSOLgetPropAttributes – get the label attributes associated with a property hanging on a
window

cc [flag...] file... -lX11 -lXtsol [library...]
#include <X11/extensions/Xtsol.h>

Status XTSOLgetPropAttributes(display, window, property, propattrp);

Display *display;
Window window;

Atom property;
XTSOLPropAttributes *propattrp;

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

window Specifies the ID of a window system object.

property Specifies the property atom.

propattrp Client must provide a pointer to XTSOLPropAttributes.

The client requires the PRIV_WIN_DAC_READ and PRIV_WIN_MAC_READ privileges. The
XTSOLgetPropAttributes() function retrieves the label attributes that are associated with a
property hanging out of a window in a single call. The attributes include UID and sensitivity
label.

None

BadAccess Lack of privilege

BadWindow Not a valid window

BadAtom Not a valid atom

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Unsafe

libXtsol(3LIB), XTSOLgetClientAttributes(3XTSOL),
XTSOLgetResAttributes(3XTSOL), attributes(5)

“Setting Window Polyinstantiation Information” in Oracle Solaris Trusted Extensions
Developer’s Guide

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

XTSOLgetPropAttributes(3XTSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 2007412

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libxtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-38
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-38


The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Notes

XTSOLgetPropAttributes(3XTSOL)

Extended Library Functions, Volume 4 413



XTSOLgetPropLabel – get the label associated with a property hanging on a window

cc [flag...] file... -lX11 -lXtsol [library...]
#include <X11/extensions/Xtsol.h>

Status XTSOLgetPropLabel(display, window, property, sl);

Display *display;
Window window;

Atom property;
m_label_t *sl;

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

window Specifies the ID of the window whose property's label you want to get.

property Specifies the property atom.

sl Returns a sensitivity label that is the current label of the specified property.

Client requires the PRIV_WIN_DAC_READ and PRIV_WIN_MAC_READ privileges. The
XTSOLgetPropLabel() function retrieves the sensitivity label that is associated with a property
hanging on a window.

None.

BadAccess Lack of privilege.

BadWindow Not a valid window.

BadAtom Not a valid atom.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

libXtsol(3LIB), XTSOLgetPropAttributes(3XTSOL), XTSOLsetPropLabel(3XTSOL),
attributes(5)

“Setting Window Polyinstantiation Information” in Oracle Solaris Trusted Extensions
Developer’s Guide

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

Notes

XTSOLgetPropLabel(3XTSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 2007414

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libxtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-38
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-38


XTSOLgetPropUID – get the UID associated with a property hanging on a window

cc [flag...] file... -lX11 -lXtsol [library...]
#include <X11/extensions/Xtsol.h>

Status XTSOLgetPropUID (display, window, property, uidp);

Display *display;
Window window;

Atom property;
uid_t *uidp;

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

window Specifies the ID of the window whose property's UID you want to get.

property Specifies the property atom.

uidp Returns a UID which is the current UID of the specified property. Client needs to
provide a uid_t type storage and passes the address of this storage as the function
argument. Client must provide a pointer to uid_t.

The client requires the PRIV_WIN_DAC_READ and PRIV_WIN_MAC_READ privileges. The
XTSOLgetPropUID() function retrieves the ownership of a window's property. This allows a
client to get the ownership of an object it did not create.

None.

BadAccess Lack of privilege.

BadWindow Not a valid window.

BadAtom Not a valid atom.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

libXtsol(3LIB), XTSOLgetPropAttributes(3XTSOL), XTSOLsetPropUID(3XTSOL),
attributes(5)

“Setting Window Polyinstantiation Information” in Oracle Solaris Trusted Extensions
Developer’s Guide

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

XTSOLgetPropUID(3XTSOL)

Extended Library Functions, Volume 4 415

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libxtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-38
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-38


The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Notes

XTSOLgetPropUID(3XTSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 2007416



XTSOLgetResAttributes – get all label attributes associated with a window or a pixmap

cc [flag...] file... -lX11 -lXtsol [library...]
#include <X11/extensions/Xtsol.h>

Status XTSOLgetResAttributes(display, object, type, winattrp);

Display *display;
XID object;
ResourceType type;
XTSOLResAttributes *winattrp;

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

object Specifies the ID of a window system object. Possible window system objects are
windows and pixmaps.

type Specifies what type of resource is being accessed. Possible values are IsWindow
and IsPixmap.

winattrp Client must provide a pointer to XTSOLResAttributes.

The client requires the PRIV_WIN_DAC_READ and PRIV_WIN_MAC_READ privileges. The
XTSOLgetResAttributes() function retrieves all label attributes that are associated with a
window or a pixmap in a single call. The attributes include UID, sensitivity label, and
workstation owner.

None.

BadAccess Lack of privilege.

BadWindow Not a valid window.

BadPixmap Not a valid pixmap.

BadValue Not a valid type.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

libXtsol(3LIB), XTSOLgetClientAttributes(3XTSOL),
XTSOLgetPropAttributes(3XTSOL), attributes(5)

“Obtaining Window Attributes” in Oracle Solaris Trusted Extensions Developer’s Guide

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

XTSOLgetResAttributes(3XTSOL)

Extended Library Functions, Volume 4 417

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libxtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-39


The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Notes

XTSOLgetResAttributes(3XTSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 2007418



XTSOLgetResLabel – get the label associated with a window, a pixmap, or a colormap

cc [flag...] file... -lX11 -lXtsol [library...]
#include <X11/extensions/Xtsol.h>

Status XTSOLgetResLabel(display, object, type, sl);

Display *display;
XID object;
ResourceType type;
m_label_t *sl;

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

object Specifies the ID of a window system object whose label you want to get. Possible
window system objects are windows, pixmaps, and colormaps.

type Specifies what type of resource is being accessed. Possible values are IsWindow,
IsPixmap or IsColormap.

sl Returns a sensitivity label which is the current label of the specified object.

The client requires the PRIV_WIN_DAC_READ and PRIV_WIN_MAC_READ privileges. The
XTSOLgetResLabel() function retrieves the label that is associated with a window or a pixmap
or a colormap.

None.

BadAccess Lack of privilege.

BadPixmap Not a valid pixmap.

BadValue Not a valid type.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

libXtsol(3LIB), XTSOLgetClientAttributes(3XTSOL), XTSOLsetResLabel(3XTSOL),
attributes(5)

“Obtaining a Window Label” in Oracle Solaris Trusted Extensions Developer’s Guide

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

Notes

XTSOLgetResLabel(3XTSOL)

Extended Library Functions, Volume 4 419

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libxtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-41


XTSOLgetResUID – get the UID associated with a window, a pixmap

cc [flag...] file... -lX11 -lXtsol [library...]
#include <X11/extensions/Xtsol.h>

Status XTSOLgetResUID(display, object, type, uidp);

Display *display;
XID object;
ResourceType type;
uid_t *uidp;

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

object Specifies the ID of a window system object whose UID you want to get. Possible
window system objects are windows or pixmaps.

type Specifies what type of resource is being accessed. Possible values are IsWindow and
IsPixmap.

uidp Returns a UID which is the current UID of the specified object. Client must
provide a pointer to uid_t.

The client requires the PRIV_WIN_DAC_READ and PRIV_WIN_MAC_READ privileges. The
XTSOLgetResUID() function retrieves the ownership of a window system object. This allows a
client to get the ownership of an object that the client did not create.

None.

BadAccess Lack of privilege.

BadWindow Not a valid window.

BadPixmap Not a valid pixmap.

BadValue Not a valid type.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

libXtsol(3LIB), XTSOLgetClientAttributes(3XTSOL),
XTSOLgetResAttributes(3XTSOL), XTSOLgetResLabel(3XTSOL), attributes(5)

“Obtaining the Window User ID” in Oracle Solaris Trusted Extensions Developer’s Guide

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

XTSOLgetResUID(3XTSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 2007420

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libxtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-43


The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Notes

XTSOLgetResUID(3XTSOL)

Extended Library Functions, Volume 4 421



XTSOLgetSSHeight – get the height of screen stripe

cc [flag...] file... -lX11 -lXtsol [library...]
#include <X11/extensions/Xtsol.h>

Status XTSOLgetSSHeight(display, screen_num, newheight);

Display *display;
int screen_num;

int *newheight;

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

screen_num Specifies the screen number.

newheight Specifies the storage area where the height of the stripe in pixels is returned.

The XTSOLgetSSHeight() function gets the height of trusted screen stripe at the bottom of the
screen. Currently the screen stripe is only present on the default screen. Client must have the
Trusted Path process attribute.

None.

BadAccess Lack of privilege.

BadValue Not a valid screen_num or newheight.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

libXtsol(3LIB), XTSOLsetSSHeight(3XTSOL), attributes(5)

“Accessing and Setting the Screen Stripe Height” in Oracle Solaris Trusted Extensions
Developer’s Guide

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

Notes

XTSOLgetSSHeight(3XTSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 2007422

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libxtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-25
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-25


XTSOLgetWorkstationOwner – get the ownership of the workstation

cc [flag...] file... -lX11 -lXtsol [library...]
#include <X11/extensions/Xtsol.h>

Status XTSOLgetWorkstationOwner(display, uidp);

Display *display;
uid_t *uidp;

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

uidp Returns a UID which is the current UID of the specified Display workstation
server. Client must provide a pointer to uid_t.

The XTSOLgetWorkstationOwner() function retrieves the ownership of the workstation.

None.

BadAccess Lack of privilege.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

libXtsol(3LIB), XTSOLsetWorkstationOwner(3XTSOL), attributes(5)

“Obtaining the X Window Server Workstation Owner ID” in Oracle Solaris Trusted
Extensions Developer’s Guide

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

Notes

XTSOLgetWorkstationOwner(3XTSOL)

Extended Library Functions, Volume 4 423

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libxtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-45
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-45


XTSOLIsWindowTrusted – test if a window is created by a trusted client

cc [flag...] file... -lX11 -lXtsol [library...]
#include <X11/extensions/Xtsol.h>

Bool XTSOLIsWindowTrusted(display, window);

Display *display;
Window window;

The XTSOLIsWindowTrusted() function tests if a window is created by a trusted client. The
window created by a trusted client has a special bit turned on. The client does not require any
privilege to perform this operation.

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

window Specifies the ID of the window to be tested.

True If the window is created by a trusted client.

BadWindow Not a valid window.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

libXtsol(3LIB), attributes(5)

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

Notes

XTSOLIsWindowTrusted(3XTSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 2007424

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libxtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


XTSOLMakeTPWindow – make this window a Trusted Path window

cc [flag...] file... -lX11 -lXtsol [library...]
#include <X11/extensions/Xtsol.h>

Status XTSOLMakeTPWindow(display, w);

Display *display;
Window w;

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

w Specifies the ID of a window.

The XTSOLMakeTPWindow() function makes a window a trusted path window. Trusted Path
windows always remain on top of other windows. The client must have the Trusted Path
process attribute set.

None.

BadAccess Lack of privilege.

BadWindow Not a valid window.

BadValue Not a valid type.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

libXtsol(3LIB), attributes(5)

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

Notes

XTSOLMakeTPWindow(3XTSOL)

Extended Library Functions, Volume 4 425

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libxtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


XTSOLsetPolyInstInfo – set polyinstantiation information

cc [flag...] file... -lX11 -lXtsol [library...]
#include <X11/extensions/Xtsol.h>

Status XTSOLsetPolyInstInfo(display, sl, uidp, enabled);

Display *display;
m_label_t sl;
uid_t *uidp;
int enabled;

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

sl Specifies the sensitivity label.

uidp Specifies the pointer to UID.

enabled Specifies whether client can set the property information retrieved.

The XTSOLsetPolyInstInfo() function sets the polyinstantiated information to get property
resources. By default, when a client requests property data for a polyinstantiated property, the
data returned corresponds to the SL and UID of the requesting client. To get the property data
associated with a property with specific sl and uid, a client can use this call to set the SL and
UID with enabled flag to TRUE. The client should also restore the enabled flag to FALSE after
retrieving the property value. Client must have the PRIV_WIN_MAC_WRITE and
PRIV_WIN_DAC_WRITE privileges.

None.

BadAccess Lack of privilege.

BadValue Not a valid display or sl.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

libXtsol(3LIB), attributes(5)

“Setting Window Polyinstantiation Information” in Oracle Solaris Trusted Extensions
Developer’s Guide

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

Notes

XTSOLsetPolyInstInfo(3XTSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 2007426

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libxtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-38
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-38


XTSOLsetPropLabel – set the label associated with a property hanging on a window

cc [flag...] file... -lX11 -lXtsol [library...]
#include <X11/extensions/Xtsol.h>

Status XTSOLsetPropLabel(*display, window, property, *sl);

Display *display;
Window window;

Atom property;
m_label_t *sl;

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

window Specifies the ID of the window whose property's label you want to change.

property Specifies the property atom.

sl Specifies a pointer to a sensitivity label.

The XTSOLsetPropLabel() function changes the sensitivity label that is associated with a
property hanging on a window. The client must have the PRIV_WIN_DAC_WRITE,
PRIV_WIN_MAC_WRITE, and PRIV_WIN_UPGRADE_SL privileges.

None.

BadAccess Lack of privilege.

BadWindow Not a valid window.

BadAtom Not a valid atom.

BadValue Not a valid sl.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

libXtsol(3LIB), XTSOLgetPropAttributes(3XTSOL), XTSOLgetPropLabel(3XTSOL),
attributes(5)

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

Notes

XTSOLsetPropLabel(3XTSOL)

Extended Library Functions, Volume 4 427

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libxtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


XTSOLsetPropUID – set the UID associated with a property hanging on a window

cc [flag...] file... -lX11 -lXtsol [library...]
#include <X11/extensions/Xtsol.h>

Status XTSOLsetPropUID(display, window, property, uidp);

Display *display;
Window window;

Atom property;
uid_t *uidp;

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

window Specifies the ID of the window whose property's UID you want to change.

property Specifies the property atom.

uidp Specifies a pointer to a uid_t that contains a UID.

The XTSOLsetPropUID() function changes the ownership of a window's property. This allows
another client to modify a property of a window that it did not create. The client must have the
PRIV_WIN_DAC_WRITE and PRIV_WIN_MAC_WRITE privileges.

None.

BadAccess Lack of privilege.

BadWindow Not a valid window.

BadAtom Not a valid atom.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

libXtsol(3LIB), XTSOLgetPropAttributes(3XTSOL), XTSOLgetPropUID(3XTSOL),
attributes(5)

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

Notes

XTSOLsetPropUID(3XTSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 2007428

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libxtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


XTSOLsetResLabel – set the label associated with a window or a pixmap

cc [flag...] file... -lX11 -lXtsol [library...]
#include <X11/extensions/Xtsol.h>

Status XTSOLsetResLabel(display, object, type, sl);

Display *display;
XID object;
ResourceType type;
m_label_t *sl;

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

object Specifies the ID of a window system object whose label you want to change.
Possible window system objects are windows and pixmaps.

type Specifies what type of resource is being accessed. Possible values are IsWindow and
IsPixmap.

sl Specifies a pointer to a sensitivity label.

The client must have the PRIV_WIN_DAC_WRITE, PRIV_WIN_MAC_WRITE,
PRIV_WIN_UPGRADE_SL, and PRIV_WIN_DOWNGRADE_SL privileges. The XTSOLsetResLabel()
function changes the label that is associated with a window or a pixmap.

None.

BadAccess Lack of privilege.

BadPixmap Not a valid pixmap.

BadValue Not a valid type or sl.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

libXtsol(3LIB), XTSOLgetResAttributes(3XTSOL), XTSOLgetResLabel(3XTSOL),
attributes(5)

“Setting a Window Label” in Oracle Solaris Trusted Extensions Developer’s Guide

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

Notes

XTSOLsetResLabel(3XTSOL)

Extended Library Functions, Volume 4 429

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libxtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-42


XTSOLsetResUID – set the UID associated with a window, a pixmap, or a colormap

cc [flag...] file... -lX11 -lXtsol [library...]
#include <X11/extensions/Xtsol.h>

Status XTSOLsetResUID(display, object, type, uidp);

Display *display;
XID object;
ResourceType type;
uid_t *uidp;

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

object Specifies the ID of a window system object whose UID you want to change.
Possible window system objects are windows and pixmaps.

type Specifies what type of resource is being accessed. Possible values are: IsWindow and
IsPixmap.

uidp Specifies a pointer to a uid_t structure that contains a UID.

The client must have the PRIV_WIN_DAC_WRITE and PRIV_WIN_MAC_WRITE privileges. The
XTSOLsetResUID() function changes the ownership of a window system object. This allows a
client to create an object and then change its ownership. The new owner can then make
modifications on this object as this object being created by itself.

None.

BadAccess Lack of privilege.

BadWindow Not a valid window.

BadPixmap Not a valid pixmap.

BadValue Not a valid type.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Unsafe

libXtsol(3LIB), XTSOLgetResUID(3XTSOL), attributes(5)

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

Notes

XTSOLsetResUID(3XTSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 2007430

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libxtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5


XTSOLsetSessionHI – set the session high sensitivity label to the window server

cc [flag...] file... -lX11 -lXtsol [library...]
#include <X11/extensions/Xtsol.h>

Status XTSOLsetSessionHI(display, sl);

Display *display;
m_label_t *sl;

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

sl Specifies a pointer to a sensitivity label to be used as the session high label.

The XTSOLsetSessionHI() function sets the session high sensitivity label. After the session
high label has been set by a Trusted Extensions window system TCB component, logintool,
X server will reject connection request from clients running at higher sensitivity labels than
the session high label. The client must have the PRIV_WIN_CONFIG privilege.

None.

BadAccess Lack of privilege.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

libXtsol(3LIB), XTSOLsetSessionLO(3XTSOL), attributes(5)

“Setting the X Window Server Clearance and Minimum Label” in Oracle Solaris Trusted
Extensions Developer’s Guide

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

Notes

XTSOLsetSessionHI(3XTSOL)

Extended Library Functions, Volume 4 431

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libxtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-23
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-23


XTSOLsetSessionLO – set the session low sensitivity label to the window server

cc [flag...] file... -lX11 -lXtsol [library...]
#include <X11/extensions/Xtsol.h>

Status XTSOLsetSessionLO(display, sl);

Display *display;
m_label_t *sl;

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

sl Specifies a pointer to a sensitivity label to be used as the session low label.

The XTSOLsetSessionLO() function sets the session low sensitivity label. After the session low
label has been set by a Trusted Extensions window system TCB component, logintool, X
server will reject a connection request from a client running at a lower sensitivity label than
the session low label. The client must have the PRIV_WIN_CONFIG privilege.

None.

BadAccess Lack of privilege.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

libXtsol(3LIB), XTSOLsetSessionHI(3XTSOL), attributes(5)

“Setting the X Window Server Clearance and Minimum Label” in Oracle Solaris Trusted
Extensions Developer’s Guide

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

Notes

XTSOLsetSessionLO(3XTSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 2007432

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libxtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-23
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-23


XTSOLsetSSHeight – set the height of screen stripe

cc [flag...] file... -lX11 -lXtsol [library...]
#include <X11/extensions/Xtsol.h>

Status XTSOLsetSSHeight(display, screen_num, newheight);

Display *display;
int screen_num;

int newheight;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.

screen_num Specifies the screen number.

newheight Specifies the height of the stripe in pixels.

The XTSOLsetSSHeight() function sets the height of the trusted screen stripe at the bottom of
the screen. Currently the screen stripe is present only on the default screen. The client must
have the Trusted Path process attribute.

None.

BadAccess Lack of privilege.

BadValue Not a valid screen_num or newheight.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

libXtsol(3LIB), XTSOLgetSSHeight(3XTSOL), attributes(5)

“Accessing and Setting the Screen Stripe Height” in Oracle Solaris Trusted Extensions
Developer’s Guide

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

Notes

XTSOLsetSSHeight(3XTSOL)

Extended Library Functions, Volume 4 433

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libxtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-25
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-25


XTSOLsetWorkstationOwner – set the ownership of the workstation

cc [flag...] file... -lX11 -lXtsol [library...]
#include <X11/extensions/Xtsol.h>

Status XTSOLsetWorkstationOwner(display, uidp);

Display *display;
uid_t *uidp;
XTSOLClientAttributes *clientattrp;

display Specifies a pointer to the Display structure; returned from XOpenDisplay().

uidp Specifies a pointer to a uid_t structure that contains a UID.

The XTSOLsetWorkstationOwner() function is used by the Solaris Trusted Extensions
logintool to assign a user ID to be identified as the owner of the workstation server. The
client running under this user ID can set the server's device objects, such as keyboard
mapping, mouse mapping, and modifier mapping. The client must have the Trusted Path
process attribute.

None.

BadAccess Lack of privilege.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

libXtsol(3LIB), XTSOLgetWorkstationOwner(3XTSOL), attributes(5)

“Accessing and Setting a Workstation Owner ID” in Oracle Solaris Trusted Extensions
Developer’s Guide

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

Notes

XTSOLsetWorkstationOwner(3XTSOL)

man pages section 3: Extended Library Functions, Volume 4 • Last Revised 20 Jul 2007434

http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1464&id=libxtsol-3lib
http://www.oracle.com/pls/topic/lookup?ctx=821-1474&id=attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-22
http://www.oracle.com/pls/topic/lookup?ctx=821-1483&id=windowapi-22

	man pages section 3: Extended Library Functions, Volume 4
	Preface
	Overview

	Extended Library Functions, Volume 4
	acl_check(3SEC)
	aclcheck(3SEC)
	acl_free(3SEC)
	acl_get(3SEC)
	aclsort(3SEC)
	acl_strip(3SEC)
	acltomode(3SEC)
	acl_totext(3SEC)
	acltotext(3SEC)
	acl_trivial(3SEC)
	blcompare(3TSOL)
	blminmax(3TSOL)
	bltocolor(3TSOL)
	bltos(3TSOL)
	btohex(3TSOL)
	cpl_complete_word(3TECLA)
	ef_expand_file(3TECLA)
	getauthattr(3SECDB)
	getexecattr(3SECDB)
	getpathbylabel(3TSOL)
	getplabel(3TSOL)
	getprofattr(3SECDB)
	getuserattr(3SECDB)
	getuserrange(3TSOL)
	getzonelabelbyid(3TSOL)
	getzonerootbyid(3TSOL)
	gl_get_line(3TECLA)
	gl_io_mode(3TECLA)
	hextob(3TSOL)
	kva_match(3SECDB)
	labelclipping(3TSOL)
	label_to_str(3TSOL)
	libtecla_version(3TECLA)
	libtnfctl(3TNF)
	media_findname(3VOLMGT)
	media_getattr(3VOLMGT)
	media_getid(3VOLMGT)
	m_label(3TSOL)
	pca_lookup_file(3TECLA)
	sbltos(3TSOL)
	scf_entry_create(3SCF)
	scf_error(3SCF)
	scf_handle_create(3SCF)
	scf_handle_decode_fmri(3SCF)
	scf_instance_create(3SCF)
	scf_iter_create(3SCF)
	scf_limit(3SCF)
	scf_pg_create(3SCF)
	scf_property_create(3SCF)
	scf_scope_create(3SCF)
	scf_service_create(3SCF)
	scf_simple_prop_get(3SCF)
	scf_simple_walk_instances(3SCF)
	scf_snaplevel_create(3SCF)
	scf_snapshot_create(3SCF)
	scf_tmpl_pg_create(3SCF)
	scf_tmpl_pg_name(3SCF)
	scf_tmpl_prop_create(3SCF)
	scf_tmpl_prop_name(3SCF)
	scf_tmpl_validate_fmri(3SCF)
	scf_transaction_create(3SCF)
	scf_value_create(3SCF)
	setflabel(3TSOL)
	smf_enable_instance(3SCF)
	smf_notify_set_params(3SCF)
	srpt_SetDefaultState(3SRPT)
	srpt_SetTargetState(3SRPT)
	SSAAgentIsAlive(3SNMP)
	SSAOidCmp(3SNMP)
	SSAStringCpy(3SNMP)
	stmfAddToHostGroup(3STMF)
	stmfAddToTargetGroup(3STMF)
	stmfAddViewEntry(3STMF)
	stmfClearProviderData(3STMF)
	stmfCreateHostGroup(3STMF)
	stmfCreateLu(3STMF)
	stmfCreateLuResource(3STMF)
	stmfCreateTargetGroup(3STMF)
	stmfDeleteHostGroup(3STMF)
	stmfDeleteLu(3STMF)
	stmfDeleteTargetGroup(3STMF)
	stmfDestroyProxyDoor(3STMF)
	stmfDevidFromIscsiName(3STMF)
	stmfDevidFromWwn(3STMF)
	stmfFreeLuResource(3STMF)
	stmfFreeMemory(3STMF)
	stmfGetAluaState(3STMF)
	stmfGetHostGroupList(3STMF)
	stmfGetHostGroupMembers(3STMF)
	stmfGetLogicalUnitList(3STMF)
	stmfGetLogicalUnitProperties(3STMF)
	stmfGetLuResource(3STMF)
	stmfGetPersistMethod(3STMF)
	stmfGetProviderData(3STMF)
	stmfGetProviderDataProt(3STMF)
	stmfGetState(3STMF)
	stmfGetStmfProp(3STMF)
	stmfGetTargetGroupList(3STMF)
	stmfGetTargetGroupMembers(3STMF)
	stmfGetTargetList(3STMF)
	stmfGetTargetProperties(3STMF)
	stmfGetViewEntryList(3STMF)
	stmfImportLu(3STMF)
	stmfInitProxyDoor(3STMF)
	stmfLuStandby(3STMF)
	stmfModifyLu(3STMF)
	stmfOfflineLogicalUnit(3STMF)
	stmfOfflineTarget(3STMF)
	stmfOnlineLogicalUnit(3STMF)
	stmfOnlineTarget(3STMF)
	stmfPostProxyMsg(3STMF)
	stmfRemoveFromHostGroup(3STMF)
	stmfRemoveFromTargetGroup(3STMF)
	stmfRemoveViewEntry(3STMF)
	stmfSetAluaState(3STMF)
	stmfSetLuProp(3STMF)
	stmfSetPersistMethod(3STMF)
	stmfSetProviderData(3STMF)
	stmfSetProviderDataProt(3STMF)
	stmfSetStmfProp(3STMF)
	stmfValidateView(3STMF)
	stobl(3TSOL)
	str_to_label(3TSOL)
	sysevent_bind_handle(3SYSEVENT)
	sysevent_free(3SYSEVENT)
	sysevent_get_attr_list(3SYSEVENT)
	sysevent_get_class_name(3SYSEVENT)
	sysevent_get_vendor_name(3SYSEVENT)
	sysevent_post_event(3SYSEVENT)
	sysevent_subscribe_event(3SYSEVENT)
	tnfctl_buffer_alloc(3TNF)
	tnfctl_close(3TNF)
	tnfctl_indirect_open(3TNF)
	tnfctl_internal_open(3TNF)
	tnfctl_kernel_open(3TNF)
	tnfctl_pid_open(3TNF)
	tnfctl_probe_apply(3TNF)
	tnfctl_probe_state_get(3TNF)
	tnfctl_register_funcs(3TNF)
	tnfctl_strerror(3TNF)
	tnfctl_trace_attrs_get(3TNF)
	tnfctl_trace_state_set(3TNF)
	TNF_DECLARE_RECORD(3TNF)
	TNF_PROBE(3TNF)
	tnf_process_disable(3TNF)
	tracing(3TNF)
	tsol_getrhtype(3TSOL)
	uuid_clear(3UUID)
	volmgt_acquire(3VOLMGT)
	volmgt_check(3VOLMGT)
	volmgt_feature_enabled(3VOLMGT)
	volmgt_inuse(3VOLMGT)
	volmgt_ownspath(3VOLMGT)
	volmgt_release(3VOLMGT)
	volmgt_root(3VOLMGT)
	volmgt_running(3VOLMGT)
	volmgt_symname(3VOLMGT)
	wsreg_add_child_component(3WSREG)
	wsreg_add_compatible_version(3WSREG)
	wsreg_add_dependent_component(3WSREG)
	wsreg_add_display_name(3WSREG)
	wsreg_add_required_component(3WSREG)
	wsreg_can_access_registry(3WSREG)
	wsreg_clone_component(3WSREG)
	wsreg_components_equal(3WSREG)
	wsreg_create_component(3WSREG)
	wsreg_get(3WSREG)
	wsreg_initialize(3WSREG)
	wsreg_query_create(3WSREG)
	wsreg_query_set_id(3WSREG)
	wsreg_query_set_instance(3WSREG)
	wsreg_query_set_location(3WSREG)
	wsreg_query_set_unique_name(3WSREG)
	wsreg_query_set_version(3WSREG)
	wsreg_register(3WSREG)
	wsreg_set_data(3WSREG)
	wsreg_set_id(3WSREG)
	wsreg_set_instance(3WSREG)
	wsreg_set_location(3WSREG)
	wsreg_set_parent(3WSREG)
	wsreg_set_type(3WSREG)
	wsreg_set_uninstaller(3WSREG)
	wsreg_set_unique_name(3WSREG)
	wsreg_set_vendor(3WSREG)
	wsreg_set_version(3WSREG)
	wsreg_unregister(3WSREG)
	XTSOLgetClientAttributes(3XTSOL)
	XTSOLgetPropAttributes(3XTSOL)
	XTSOLgetPropLabel(3XTSOL)
	XTSOLgetPropUID(3XTSOL)
	XTSOLgetResAttributes(3XTSOL)
	XTSOLgetResLabel(3XTSOL)
	XTSOLgetResUID(3XTSOL)
	XTSOLgetSSHeight(3XTSOL)
	XTSOLgetWorkstationOwner(3XTSOL)
	XTSOLIsWindowTrusted(3XTSOL)
	XTSOLMakeTPWindow(3XTSOL)
	XTSOLsetPolyInstInfo(3XTSOL)
	XTSOLsetPropLabel(3XTSOL)
	XTSOLsetPropUID(3XTSOL)
	XTSOLsetResLabel(3XTSOL)
	XTSOLsetResUID(3XTSOL)
	XTSOLsetSessionHI(3XTSOL)
	XTSOLsetSessionLO(3XTSOL)
	XTSOLsetSSHeight(3XTSOL)
	XTSOLsetWorkstationOwner(3XTSOL)


