
ONC+ Developer's Guide
Beta

Part No: 821–1671–02
November 2010

Copyright © 1996, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
“commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are
trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

110425@25097

Contents

Preface ...21

1 Introduction to ONC+ Technologies ...25
Introduction ... 25
Brief Description of ONC+ Technologies .. 26

TI-RPC .. 26
XDR ... 26
NFS .. 27
NIS+ ... 27

2 Introduction to TI-RPC ..29
What Is TI-RPC? ... 29
TI-RPC Issues .. 30

Parameter Passing .. 30
Binding .. 31
Transport Protocol .. 31
Call Semantics .. 31
Data Representation .. 31

Program, Version, and Procedure Numbers .. 31
Overview of Interface Routines ... 32

Simplified Interface Routines ... 32
Standard Interface Routines ... 32

Network Selection ... 34
Transport Selection ... 35

Name-to-Address Translation ... 36
Address Look-up Services .. 36

Registering Addresses .. 37

3

Reporting RPC Information ... 38

3 rpcgenProgramming Guide ..39
What Is rpcgen? ... 39
SunOS 9 Software Environment Features .. 40
rpcgen Tutorial .. 40

Converting Local Procedures to Remote Procedures .. 41
Passing Complex Data Structures .. 46
Preprocessing Directives ... 51
cpp Directive ... 52

Compile-Time Flags ... 52
Compile-Time Client and Server Templates .. 53
Compile-Time C-style Mode .. 54
Compile-Time MT-Safe Code ... 56
Compile-Time MT Auto Mode .. 61
Compile-Time TI-RPC or TS-RPC Library Selection ... 62
Compile-Time ANSI C-compliant Code .. 62
Compile-Time xdr_inline() Count .. 63

rpcgen Programming Techniques .. 63
Network Types/Transport Selection ... 64
Command-Line Define Statements ... 64
Server Response to Broadcast Calls ... 65
Port Monitor Support .. 65
Time-out Changes ... 66
Client Authentication .. 66
Dispatch Tables .. 67
64–Bit Considerations for rpcgen ... 69
IPv6 Considerations for rpcgen ... 70
Debugging Applications .. 70

4 Programmer's Interface to RPC ...73
Simplified Interface ... 73

Client Side of Simplified Interface ... 74
Server Side of the Simplified Interface ... 76
Hand-Coded Registration Routine .. 76

Contents

ONC+ Developer's Guide • November 2010 (Beta)4

Passing Arbitrary Data Types ... 77
Standard Interfaces .. 80

Top-Level Interface .. 81
Intermediate-Level Interface .. 84
Expert-Level Interface ... 87
Bottom-Level Interface ... 91
Server Caching ... 92
Low-Level Data Structures ... 92

Testing Programs Using Low-Level Raw RPC ... 95
Connection-Oriented Transports ... 97
Memory Allocation With XDR .. 100

5 Advanced RPC Programming Techniques ...103
poll() on the Server Side ... 103
Broadcast RPC ... 105
Batching .. 107
Authentication ... 110

AUTH_SYS Authentication .. 111
AUTH_DES Authentication .. 113
AUTH_KERB Authentication .. 115

Authentication Using RPCSEC_GSS .. 116
RPCSEC_GSS API ... 117
RPCSEC_GSS Routines .. 118
Creating a Context ... 120
Changing Values and Destroying a Context .. 121
Principal Names ... 121
Receiving Credentials at the Server .. 123
Callbacks ... 125
Maximum Data Size .. 125
Miscellaneous Functions ... 126
Associated Files .. 126

Using Port Monitors ... 127
Using inetd .. 128
Using the Listener .. 128

Multiple Server Versions .. 129

Contents

5

Multiple Client Versions .. 131
Using Transient RPC Program Numbers ... 132

6 Porting From TS-RPC to TI-RPC .. 135
Porting an Application .. 135
Benefits of Porting ... 136
IPv6 Considerations for RPC ... 136
Porting Issues ... 137
Differences Between TI-RPC and TS-RPC .. 137
Function Compatibility Lists ... 138

Creating and Destroying Services .. 138
Registering and Unregistering Services ... 138
SunOS Compatibility Calls ... 139
Broadcasting ... 139
Address Management Functions ... 139
Authentication Functions ... 140
Other Functions ... 140

Comparison Examples .. 140

7 Multithreaded RPC Programming ..145
MT Client Overview ... 145
MT Server Overview ... 146

Sharing the Service Transport Handle ... 148
MT Auto Mode .. 149
MT User Mode ... 152

Freeing Library Resources in User Mode .. 152

8 Extensions to the Sun RPC Library .. 157
New Features .. 157
One-Way Messaging ... 158

clnt_send() ... 160
oneway Attribute .. 160

Non-Blocking I/O .. 163
Using Non-Blocking I/O ... 164

Contents

ONC+ Developer's Guide • November 2010 (Beta)6

clnt_call() Configured as Non-Blocking .. 167
Client Connection Closure Callback .. 167

Example of client connection closure callback ... 168
User File Descriptor Callbacks ... 173

Example of User File Descriptors ... 174

9 NIS+ Programming Guide ..185
NIS+ Overview .. 185

NIS+ Domains .. 185
NIS+ and Servers .. 186
NIS+ Tables .. 186
NIS+ Security .. 187
Name Service Switch .. 187
NIS+ Administration Commands ... 187

NIS+ API .. 189
NIS+ Sample Program .. 192

Unsupported Macros ... 193
Functions Used in the Example .. 193
Program Compilation ... 193

A XDR Technical Note ..205
What Is XDR? ... 205
Canonical Standard ... 208
XDR Library ... 209
XDR Library Primitives .. 211

Memory Requirements for XDR Routines ... 211
Number Filters ... 213
Floating-Point Filters ... 214
Enumeration Filters ... 215
No-Data Routine .. 215
Constructed Data Type Filters ... 215
Strings .. 215
Byte Arrays .. 216
Arrays .. 217
Opaque Data ... 219

Contents

7

Fixed-Length Arrays .. 220
Discriminated Unions ... 221
Pointers ... 222
Nonfilter Primitives ... 224
Operation Directions ... 224
Stream Access ... 224
Standard I/O Streams .. 224
Memory Streams .. 225
Record TCP/IP Streams .. 225

XDR Stream Implementation .. 227
XDR Object ... 227

Advanced XDR Topics .. 228
Linked Lists ... 229

B RPC Protocol and Language Specification .. 233
Protocol Overview ... 233

RPC Model .. 234
Transports and Semantics ... 234
Binding and Rendezvous Independence ... 235

Program and Procedure Numbers .. 235
Program Number Assignment ... 237
Program Number Registration ... 237
Other Uses of the RPC Protocol ... 238
RPC Message Protocol .. 238
Record-Marking Standard .. 241

Authentication Protocols ... 242
AUTH_NONE ... 242
AUTH_SYS ... 242
AUTH_DES Authentication .. 243
AUTH_DES Authentication Verifiers .. 244
Nicknames and Clock Synchronization .. 245
DES Authentication Protocol (in XDR language) .. 246
AUTH_KERB Authentication .. 248

RPC Language Specification .. 252
Example Service Described in the RPC Language ... 252

Contents

ONC+ Developer's Guide • November 2010 (Beta)8

RPCL Syntax ... 253
RPCL Enumerations .. 254
RPCL Constants ... 255
RPCL Type Definitions ... 255
RPCL Declarations .. 255
RPCL Simple Declarations ... 255
RPCL Fixed-Length Array Declarations ... 256
RPCL Variable-Length Array Declarations .. 256
RPCL Pointer Declarations ... 257
RPCL Structures ... 257
RPCL Unions .. 258
RPCL Programs .. 258
RPCL Special Cases .. 259
rpcbind Protocol ... 260
rpcbind Operation .. 265

C XDR Protocol Specification ..269
XDR Protocol Introduction ... 269

Graphic Box Notation ... 269
Basic Block Size .. 270

XDR Data Type Declarations ... 270
Signed Integer ... 271
Unsigned Integer .. 271
Enumerations ... 272
Booleans .. 272
Hyper Integer and Unsigned Hyper Integer ... 272
Floating Point ... 273
Quadruple-Precision Floating Point ... 274
Fixed-Length Opaque Data .. 275
Variable-Length Opaque Data ... 276
Counted Byte Strings ... 277
Fixed-Length Array ... 278
Variable-Length Array .. 278
Structure .. 279
Discriminated Union .. 280

Contents

9

Void ... 281
Constant .. 281
Typedef .. 281
Optional-Data .. 282

XDR Language Specification .. 283
Notational Conventions .. 283
Lexical Notes ... 283
Syntax Notes ... 285
XDR Data Description .. 285

RPC Language Reference ... 287

D RPC Code Examples ...289
Directory Listing Program and Support Routines (rpcgen) .. 289
Time Server Program (rpcgen) ... 292
Add Two Numbers Program (rpcgen) ... 293
Spray Packets Program (rpcgen) ... 293
Print Message Program With Remote Version .. 294
Batched Code Example ... 297
Non-Batched Example .. 299

E portmapUtility ..301
System Registration Overview ... 301
portmap Protocol ... 302
portmap Operation .. 304

PMAPPROC_NULL ... 304
PMAPPROC_SET ... 304
PMAPPROC_UNSET .. 304
PMAPPROC_GETPORT .. 304
PMAPPROC_DUMP ... 305
PMAPPROC_CALLIT .. 305

F Writing a Port Monitor With the Service Access Facility (SAF) ..307
What Is the SAF? .. 307
What Is the SAC? ... 308

Contents

ONC+ Developer's Guide • November 2010 (Beta)10

Basic Port Monitor Functions .. 308
Port Management .. 309
Activity Monitoring ... 309
Other Port Monitor Functions ... 309

Terminating a Port Monitor ... 310
SAF Files ... 311

Port Monitor Administrative File .. 311
Per-Service Configuration Files ... 311
Private Port Monitor Files ... 311

SAC/Port Monitor Interface ... 311
Message Formats .. 312
Message Classes .. 313

Port Monitor Administrative Interface ... 314
SAC Administrative File _sactab .. 314
Port Monitor Administrative File _pmtab ... 315
SAC Administrative Command sacadm .. 316
Port Monitor Administrative Command pmadm .. 317
Monitor-Specific Administrative Command ... 317
Port Monitor/Service Interface ... 317
Port Monitor Requirements ... 318
Important Files ... 318
Port Monitor Responsibilities .. 319

Configuration Files and Scripts ... 320
Interpreting Configuration Scripts With doconfig() .. 320
Per-System Configuration File ... 320
Per-Port Monitor Configuration Files ... 321
Per-Service Configuration Files ... 321
Configuration Language ... 321
Printing, Installing, and Replacing Configuration Scripts .. 323

Sample Port Monitor Code .. 324
Logic Diagram and Directory Structure ... 329

Glossary .. 333

Index ... 335

Contents

11

12

Figures

FIGURE 1–1 ONC+ Distributed Computing Platform ... 26
FIGURE 2–1 How RPC Works ... 30
FIGURE 5–1 GSS-API and RPCSEC_GSS Security Layers ... 117
FIGURE 6–1 RPC Applications .. 136
FIGURE 7–1 Two Client Threads Using Different Client Handles (Real Time) 146
FIGURE 7–2 MT RPC Server Timing Diagram .. 148
FIGURE 8–1 One-Way Messaging ... 158
FIGURE 8–2 Two-Way Messaging .. 159
FIGURE 8–3 Non-Blocking Messaging ... 164
FIGURE 9–1 NIS+ Domain ... 186
FIGURE B–1 Authentication Process Map .. 243
FIGURE E–1 Typical Portmap Sequence (For TCP/IP Only) ... 302
FIGURE F–1 SAF Logical Framework ... 330
FIGURE F–2 SAF Directory Structure ... 331

13

14

Tables

TABLE 2–1 RPC Routines–Simplified Level ... 32
TABLE 2–2 RPC Routines–Top Level ... 33
TABLE 2–3 RPC Routines–Intermediate Level .. 33
TABLE 2–4 RPC Routines–Expert Level ... 34
TABLE 2–5 RPC Routines–Bottom Level ... 34
TABLE 2–6 nettypeParameters .. 35
TABLE 2–7 Name-to-Address Translation Routines .. 36
TABLE 3–1 rpcgenPreprocessing Directives ... 51
TABLE 3–2 rpcgenCompile-Time Flags .. 52
TABLE 3–3 rpcgenTemplate Selection Flags ... 53
TABLE 3–4 RPC Programming Techniques ... 63
TABLE 4–1 Primitive Type Equivalences .. 78
TABLE 5–1 Authentication Methods Supported by Sun RPC .. 110
TABLE 5–2 RPCSEC_GSS Functions .. 118
TABLE 5–3 RPC inetd Services ... 128
TABLE 6–1 Differences Between TI-RPC and TS-RPC .. 137
TABLE 7–1 rpc_control()Library Routines .. 149
TABLE 9–1 NIS+ Namespace Administration Commands .. 187
TABLE 9–2 NIS+ API Functions .. 189
TABLE 9–3 NIS+ Table Objects ... 195
TABLE B–1 RPC Program Number Assignment .. 237
TABLE B–2 RPC Language Definitions ... 253
TABLE C–1 XDR Data Description Example .. 286
TABLE F–1 Service Access Controller _sactab File .. 314
TABLE F–2 SVCTAG Service Entries .. 316
TABLE F–3 Key Port Monitor Files .. 319

15

16

Examples

EXAMPLE 3–1 Single Process Version of printmesg.c .. 41
EXAMPLE 3–2 RPC Version of printmsg.c .. 42
EXAMPLE 3–3 Client Program to Call printmsg.c .. 44
EXAMPLE 3–4 RPC Protocol Description File: dir.x ... 46
EXAMPLE 3–5 Server dir_proc.cExample .. 48
EXAMPLE 3–6 Client-side Implementation of rls.c ... 49
EXAMPLE 3–7 Time Protocol rpcgen Source ... 51
EXAMPLE 3–8 C-style Mode Version of add.x .. 54
EXAMPLE 3–9 Default Mode Version of add.x ... 54
EXAMPLE 3–10 C-style Mode Client Stub for add.x .. 54
EXAMPLE 3–11 Default Mode Client .. 55
EXAMPLE 3–12 C-style Mode Server .. 56
EXAMPLE 3–13 Default Mode Server Stub ... 56
EXAMPLE 3–14 MT-Safe Program: msg .. 56
EXAMPLE 3–15 MT-Safe Client Stub .. 57
EXAMPLE 3–16 Client Stub (MT Unsafe) .. 57
EXAMPLE 3–17 MT-Safe Server Stub ... 58
EXAMPLE 3–18 MT-Safe Program: add.x ... 59
EXAMPLE 3–19 MT-Safe Client: add.x ... 59
EXAMPLE 3–20 MT-Safe Server: add.x ... 61
EXAMPLE 3–21 MT Auto Mode: time.x .. 62
EXAMPLE 3–22 rpcgenANSI C Server Template ... 63
EXAMPLE 3–23 NFS Server Response to Broadcast Calls .. 65
EXAMPLE 3–24 clnt_controlRoutine ... 66
EXAMPLE 3–25 AUTH_SYSAuthentication Program ... 67
EXAMPLE 3–26 printmsg_1 for Superuser .. 67
EXAMPLE 3–27 Using a Dispatch Table ... 68
EXAMPLE 4–1 rusersProgram ... 74

17

EXAMPLE 4–2 rusersProgram Using Simplified Interface .. 75
EXAMPLE 4–3 xdr_simpleRoutine .. 78
EXAMPLE 4–4 xdr_varintarr Syntax Use .. 79
EXAMPLE 4–5 xdr_vector Syntax Use .. 79
EXAMPLE 4–6 xdr_reference Syntax Use .. 80
EXAMPLE 4–7 time_prot.hHeader File ... 81
EXAMPLE 4–8 Client for Trivial Date Service .. 82
EXAMPLE 4–9 Server for Trivial Date Service ... 83
EXAMPLE 4–10 Client for Time Service, Intermediate Level ... 85
EXAMPLE 4–11 Server for Time Service, Intermediate Level .. 86
EXAMPLE 4–12 Client for RPC Lower Level .. 87
EXAMPLE 4–13 Server for RPC Lower Level .. 90
EXAMPLE 4–14 Client for Bottom Level .. 91
EXAMPLE 4–15 Server for Bottom Level .. 92
EXAMPLE 4–16 RPC Client Handle Structure ... 93
EXAMPLE 4–17 Client Authentication Handle .. 93
EXAMPLE 4–18 Server Transport Handle .. 93
EXAMPLE 4–19 Simple Program Using Raw RPC .. 95
EXAMPLE 4–20 Remote Copy (Two-Way XDR Routine) .. 97
EXAMPLE 4–21 Remote Copy Client Routines ... 98
EXAMPLE 4–22 Remote Copy Server Routines ... 99
EXAMPLE 5–1 svc_run() and poll() .. 104
EXAMPLE 5–2 RPC Broadcast ... 105
EXAMPLE 5–3 Collect Broadcast Replies ... 106
EXAMPLE 5–4 Unbatched Client .. 107
EXAMPLE 5–5 Batched Client .. 108
EXAMPLE 5–6 Batched Server ... 108
EXAMPLE 5–7 AUTH_SYSCredential Structure .. 111
EXAMPLE 5–8 Authentication Server ... 111
EXAMPLE 5–9 AUTH_DES Server .. 114
EXAMPLE 5–10 rpc_gss_seccreate() ... 120
EXAMPLE 5–11 rpc_gss_set_defaults() ... 121
EXAMPLE 5–12 rpc_gss_set_svc_name() ... 122
EXAMPLE 5–13 rpc_gss_get_principal_name() .. 122
EXAMPLE 5–14 Getting Credentials ... 123
EXAMPLE 5–15 Server Handle for Two Versions of Single Routine ... 130

Examples

ONC+ Developer's Guide • November 2010 (Beta)18

EXAMPLE 5–16 Procedure for Two Versions of Single Routine .. 130
EXAMPLE 5–17 RPC Versions on Client Side .. 131
EXAMPLE 5–18 Transient RPC Program–Server Side .. 132
EXAMPLE 6–1 Client Creation in TS-RPC ... 140
EXAMPLE 6–2 Client Creation in TI-RPC ... 141
EXAMPLE 6–3 Broadcast in TS-RPC .. 142
EXAMPLE 6–4 Broadcast in TI-RPC ... 142
EXAMPLE 7–1 Server for MT Auto Mode .. 150
EXAMPLE 7–2 MT Auto Mode: time_prot.h ... 151
EXAMPLE 7–3 MT User Mode: rpc_test.h .. 153
EXAMPLE 7–4 Client for MT User Mode ... 153
EXAMPLE 9–1 NIS+ Routine to Create Directory Objects ... 194
EXAMPLE 9–2 NIS+ Routine to Create Group Objects .. 194
EXAMPLE 9–3 NIS+ Routine to Create Table Objects .. 195
EXAMPLE 9–4 NIS+ Routine to Add Objects to Table ... 196
EXAMPLE 9–5 NIS+ Routine for nis_listCall .. 197
EXAMPLE 9–6 NIS+ Routine to List Objects ... 198
EXAMPLE 9–7 NIS+ Routine to Remove Directory Objects .. 199
EXAMPLE 9–8 NIS+ Routine to Remove All Objects .. 200
EXAMPLE 9–9 NIS+ Program Execution ... 201
EXAMPLE A–1 Writer Example (initial) ... 205
EXAMPLE A–2 Reader Example (initial) ... 206
EXAMPLE A–3 Writer Example (XDR modified) .. 207
EXAMPLE A–4 Reader Example (XDR modified) .. 207
EXAMPLE A–5 xdr_sizeofExample #1 ... 212
EXAMPLE A–6 xdr_sizeofExample #2 ... 213
EXAMPLE A–7 Array Example #1 .. 217
EXAMPLE A–8 Array Example #2 .. 218
EXAMPLE A–9 Array Example #3 .. 218
EXAMPLE A–10 xdr_netobj Routine ... 220
EXAMPLE A–11 xdr_vectorRoutine .. 220
EXAMPLE A–12 XDR Discriminated Union .. 222
EXAMPLE A–13 XDR Stream Interface Example ... 227
EXAMPLE A–14 Linked List .. 229
EXAMPLE A–15 xdr_pointer .. 230
EXAMPLE A–16 Nonrecursive Stack in XDR .. 230

Examples

19

EXAMPLE B–1 RPC Message Protocol .. 238
EXAMPLE B–2 AUTH_DESAuthentication Protocol ... 246
EXAMPLE B–3 AUTH_KERB Authentication Protocol ... 250
EXAMPLE B–4 ping Service Using RPC Language .. 252
EXAMPLE B–5 rpcbindProtocol Specification in RPC Language .. 261
EXAMPLE C–1 XDR Specification ... 283
EXAMPLE C–2 XDR File Data Structure ... 286
EXAMPLE D–1 rpcgenProgram: dir.x .. 289
EXAMPLE D–2 Remote dir_proc.c .. 290
EXAMPLE D–3 rls.cClient ... 291
EXAMPLE D–4 rpcgenProgram: time.x .. 292
EXAMPLE D–5 rpcgen program: Add Two Numbers ... 293
EXAMPLE D–6 rpcgenprogram: spray.x .. 293
EXAMPLE D–7 printmesg.c .. 294
EXAMPLE D–8 Remote Version of printmesg.c ... 295
EXAMPLE D–9 rpcgenProgram: msg.x .. 296
EXAMPLE D–10 mesg_proc.c .. 296
EXAMPLE D–11 Batched Client Program ... 297
EXAMPLE D–12 Batched Server Program ... 298
EXAMPLE D–13 Unbatched Version of Batched Client .. 299
EXAMPLE E–1 portmapProtocol Specification (in RPC Language) ... 303
EXAMPLE F–1 Sample Port Monitor ... 324
EXAMPLE F–2 sac.hHeader File .. 327

Examples

ONC+ Developer's Guide • November 2010 (Beta)20

Preface

The ONC+ Developer's Guide describes the programming interfaces to remote procedure call
(RPC) and the network name service (NIS+), which belong to the ONC+ distributed services
developed at Sun Microsystems, Inc.

In this guide, the terms SunOS and Solaris are used interchangeably because the interfaces
described in this manual are common to both. The Solaris 9 release is the Sun Microsystems
distributed computing operating environment. It includes SunOS release 5.9 with the ONC+
technologies and the Common Desktop Environment (CDE), as well as other utilities.

Who Should Use This Guide
The guide assists you in converting an existing single-computer application to a networked,
distributed application, or developing and implementing distributed applications.

Use of this guide assumes basic competence in programming, a working familiarity with the C
programming language, and a working familiarity with the UNIX operating system. Previous
experience in network programming is helpful, but is not required to use this manual.

How This Guide Is Organized
Chapter 1, “Introduction to ONC+ Technologies,” gives a high-level introduction to the ONC+
distributed computing platform and services.

Chapter 2, “Introduction to TI-RPC,” introduces TI-RPC.

Chapter 3, “rpcgen Programming Guide,” describes how the rpcgen tool generates client and
server stubs.

Chapter 4, “Programmer's Interface to RPC,” describes the use of RPC in the programming
environment.

Chapter 9, “NIS+ Programming Guide,” describes the NIS + applications programming
interface.

Appendix A, “XDR Technical Note,” describes XDR and how it is used in data formatting and
type conversion.

21

Appendix B, “RPC Protocol and Language Specification,” describes the protocol of RPC usage,
both syntax and limitations.

Appendix C, “XDR Protocol Specification,” describes the XDR protocol and language.

Appendix D, “RPC Code Examples,” contains complete functional listings of some of the code
included in the document as examples.

Appendix E, “portmap Utility,” describes the portmap utility and its function. This appendix is
included in this document to aid in the migration of applications written to run on earlier
SunOS releases.

Appendix F, “Writing a Port Monitor With the Service Access Facility (SAF),” describes the
process of writing a port monitor application under the SAF and is included as a reference for
applications development.

Related Books and Sites
For information on NFS distributed computing file system, see the following sources.

■ NFS: Network File System Version 3 Protocol Specification. Sun Microsystems, 1993. You can
view a PostScript copy by using anonymous ftp:
■ ftp.uu.net:/networking/ip/nfs/NFS3.spec.ps.Z bcm.tmc.edu:

/nfs/nfsv3.ps.Z gatekeeper.dec.com:/pub/standards/nfs/nfsv3.ps.Z

■ 1094 NFS: Network File System Protocol Specification Version 2
■ 1813 NFS Version 3 Protocol Specification
■ 1831 RPC: Remote Procedure Call Protocol Specification Version 2
■ 1832 XDR: External Data Representation Standard

The following third-party books and articles provide information on network programming
topics.

■ Brent Callaghan. NFS Illustrated, Addision-Wesley Professional Computing Series. ISBN:
0201325705

■ W. Richard Stevens. “Networking APIs: Sockets and XTI” in UNIX Network Programming
Volume 1. Englewood Cliffs, N.J. : Prentice Hall Software Series, 1990. Describes UNIX
network programming, including code examples. Covers IPv4 and IPv6, sockets and XTI,
TCP and UDP, raw sockets, programming techniques, multicasting, and broadcasting.

■ John Bloomer. Power Programming with RPC Sebastopol, Calif.: O'Reilly & Associates, Inc,
1992.

Preface

ONC+ Developer's Guide • November 2010 (Beta)22

Documentation, Support, and Training
See the following web sites for additional resources:
■ Documentation (http://docs.sun.com)
■ Support (http://www.oracle.com/us/support/systems/index.html)
■ Training (http://education.oracle.com) – Click the Sun link in the left navigation bar.

Oracle Software Resources
Oracle Technology Network (http://www.oracle.com/technetwork/index.html) offers a
range of resources related to Oracle software:
■ Discuss technical problems and solutions on the Discussion Forums

(http://forums.oracle.com).
■ Get hands-on step-by-step tutorials with Oracle By Example (http://www.oracle.com/

technetwork/tutorials/index.html).
■ Download Sample Code (http://www.oracle.com/technology/sample_code/

index.html).

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Preface

23

http://docs.sun.com
http://www.oracle.com/us/support/systems/index.html
http://education.oracle.com
http://www.oracle.com/technetwork/index.html
http://forums.oracle.com
http://forums.oracle.com
http://www.oracle.com/technetwork/tutorials/index.html
http://www.oracle.com/technetwork/tutorials/index.html
http://www.oracle.com/technology/sample_code/index.html
http://www.oracle.com/technology/sample_code/index.html

Shell Prompts in Command Examples
The following table shows the default UNIX system prompt and superuser prompt for shells
that are included in the Oracle Solaris OS. Note that the default system prompt that is displayed
in command examples varies, depending on the Oracle Solaris release.

TABLE P–2 Shell Prompts

Shell Prompt

Bash shell, Korn shell, and Bourne shell $

Bash shell, Korn shell, and Bourne shell for superuser #

C shell machine_name%

C shell for superuser machine_name#

Preface

ONC+ Developer's Guide • November 2010 (Beta)24

Introduction to ONC+ Technologies

This chapter briefly introduces ONC+ technologies, the Sun open systems distributed
computing environment. The ONC+ technologies are the core services available to developers
who implement distributed applications in a heterogeneous distributed computing
environment. ONC+ technologies also include tools to administer client/server networks.

Introduction
Figure 1–1 shows an integrated view of how client-server applications are built on top of ONC+
technologies, and how they sit on top of the low-level networking protocols.

1C H A P T E R 1

25

Brief Description of ONC+ Technologies
ONC+ technologies consist of a family of technologies, services, and tools. These technologies
are backward compatible and interoperate with the installed base of ONC services. The main
components are described. This guide covers the technologies that require the use of
programming facilities.

TI-RPC
The transport-independent remote procedure call (TI-RPC) was developed as part of UNIX
System V Release 4 (SVR4). TI-RPC makes RPC applications transport-independent by
enabling a single binary version of a distributed program to run on multiple transports.
Previously, with transport-specific RPC, the transport was bound at compile time so that
applications could not use other transports unless the program was rebuilt. With TI-RPC,
applications can use new transports if the system administrator updates the network
configuration file and restarts the program. Thus, no changes are required to the binary
application.

XDR
External data representation (XDR) is an architecture-independent specification for
representing data. It resolves the differences in data byte ordering, data type size,

FIGURE 1–1 ONC+ Distributed Computing Platform

Application
Programs

NFS

TI-RPC XDR

TLI Sockets

Low-level Network Protocols
i.e. TCP/IP and IPX/SPX

NIS+

Brief Description of ONC+ Technologies

ONC+ Developer's Guide • November 2010 (Beta)26

representation, and alignment between different architectures. Applications that use XDR can
exchange data across heterogeneous hardware systems.

NFS
NFS is a distributed computing file system that provides transparent access to remote file
systems on heterogeneous networks. In this way, users can share files among PCs, workstations,
mainframes, and supercomputers. As long as users are connected to the same network, the files
appear as though they are on the user's desktop. The NFS environment features Kerberos V5
authentication, multithreading, the network lock manager, and the automounter.

NFS does not have programming facilities, so it is not covered in this guide. However, the
specification for NFS is available through anonymous ftp at:

■ ftp.uu.net:/networking/ip/nfs/NFS3.spec.ps.Z bcm.tmc.edu:

/nfs/nfsv3.ps.Z gatekeeper.dec.com:/pub/standards/nfs/nfsv3.ps.Z

NIS+
NIS+ is the enterprise naming service in the Solaris environment. It provides a scalable and
secure information base for host names, network addresses, and user names. NIS+ makes
administration of large, multivendor client/server networks easier by being the central point for
adding, removing, and relocating network resources. Changes made to the NIS+ information
base are automatically and immediately propagated to replica servers across the network. This
propagation ensures that system uptime and performance are preserved. Security is integral to
NIS+. Unauthorized users and programs are prevented from reading, changing, or destroying
naming service information.

Brief Description of ONC+ Technologies

Chapter 1 • Introduction to ONC+ Technologies 27

28

Introduction to TI-RPC

This section provides an overview of TI-RPC, also known as Sun RPC. The information
presented is most useful to someone new to RPC. See the Glossary for the definition of the terms
used in this guide.

Topics covered in this chapter include:

■ “What Is TI-RPC?” on page 29
■ “TI-RPC Issues” on page 30
■ “Overview of Interface Routines” on page 32
■ “Network Selection” on page 34
■ “Transport Selection” on page 35
■ “Address Look-up Services” on page 36

What Is TI-RPC?
TI-RPC is a powerful technique for constructing distributed, client-server based applications. It
is based on extending the notion of conventional, or local, procedure calling so that the called
procedure need not exist in the same address space as the calling procedure. The two processes
might be on the same system, or they might be on different systems with a network connecting
them.

By using RPC, programmers of distributed applications avoid the details of the interface with
the network. The transport independence of RPC isolates the application from the physical and
logical elements of the data communications mechanism and enables the application to use a
variety of transports.

2C H A P T E R 2

29

An RPC is analogous to a function call. Like a function call, when an RPC is made, the calling
arguments are passed to the remote procedure and the caller waits for a response to be returned
from the remote procedure.

Figure 2–1 shows the flow of activity that takes place during an RPC call between two
networked systems. The client makes a procedure call that sends a request to the server and
waits. The thread is blocked from processing until either a reply is received, or the request times
out. When the request arrives, the server calls a dispatch routine that performs the requested
service, and sends the reply to the client. After the RPC call is completed, the client program
continues.

RPC specifically supports network applications. TI-RPC runs on available networking
mechanisms such as TCP/IP. Other RPC standards are OSF DCE (based on Apollo's NCS
system), Xerox Courier, and Netwise.

TI-RPC Issues
A number of issues help to characterize a particular RPC implementation.

■ How are parameters and results passed?
■ How is binding carried out?
■ How are transport protocols dealt with?
■ What are the call semantics?
■ What data representation is used?

Parameter Passing
TI-RPC allows a single parameter to be passed from client to server. If more than one parameter
is required, the components can be combined into a structure that is counted as a single
element. Information passed from server to client is passed as the function's return value.
Information cannot be passed back from server to client through the parameter list.

FIGURE 2–1 How RPC Works

Host A

Host B

Client
program

Time

Service
executes

Client program
continues

RPC
call

Call
service

Return
answer

Return
reply

Service
daemon

Invoke
service

Request
complete

TI-RPC Issues

ONC+ Developer's Guide • November 2010 (Beta)30

Binding
The client must know how to contact the service. The two necessary aspects are finding out
which host the server is on, and then connecting to the actual server process. On each host, a
service called rpcbind manages RPC services. TI-RPC uses the available host-naming services,
such as the hosts file, NIS+, and DNS, to locate a host.

Transport Protocol
The transport protocol specifies how the call message and the reply message are transmitted
between client and server. TS-RPC used TCP and UDP as transport protocols, but the current
version of TI-RPC is transport independent, so it works with any transport protocol.

Call Semantics
Call semantics define what the client can assume about the execution of the remote procedure;
in particular, how many times the procedure was executed. These semantics are important in
dealing with error conditions. The three alternatives are exactly once, at most once, and at least
once. ONC+ provides at least once semantics. Procedures called remotely are idempotent: they
should return the same result each time they are called, even through several iterations.

Data Representation
Data representation describes the format used for parameters and results as they are passed
between processes. To function on a variety of system architectures, RPC requires a standard
data representation. TI-RPC uses external data representation (XDR). XDR is a
machine-independent data description and encoding protocol. Using XDR, RPC can handle
arbitrary data structures, regardless of the byte orders or structure layout conventions of the
different hosts. For a detailed discussion of XDR, see Appendix A, “XDR Technical Note,” and
Appendix C, “XDR Protocol Specification.”

Program, Version, and Procedure Numbers
A remote procedure is uniquely identified by the triple:
■ Program number
■ Version number
■ Procedure number

The program number identifies a group of related remote procedures, each of which has a
unique procedure number.

Program, Version, and Procedure Numbers

Chapter 2 • Introduction to TI-RPC 31

A program can consist of one or more versions. Each version consists of a collection of
procedures that are available to be called remotely. Version numbers enable multiple versions
of an RPC protocol to be available simultaneously.

Each version contains a number of procedures that can be called remotely. Each procedure has
a procedure number.

“Program and Procedure Numbers” on page 235 lists the range of values and their significance
and tells you how to have a program number assigned to your RPC program. A list of mappings
of RPC service name to program number is available in the RPC network database /etc/rpc.

Overview of Interface Routines
RPC has multiple levels of application interface to its services. These levels provide different
degrees of control balanced with different amounts of interface code to implement, in order of
increasing control and complexity. This section gives a summary of the routines available at
each level.

Simplified Interface Routines
The simplified interfaces are used to make remote procedure calls to routines on other
machines, and specify only the type of transport to use. The routines at this level are used for
most applications. Descriptions and code samples are in the section “Simplified Interface” on
page 73.

TABLE 2–1 RPC Routines–Simplified Level

Routine Function

rpc_reg() Registers a procedure as an RPC program on all transports of the specified
type

rpc_call() Remotely calls the specified procedure on the specified remote host

rpc_broadcast() Broadcasts a call message across all transports of the specified type

Standard Interface Routines
The standard interfaces are divided into top level, intermediate level, expert level, and bottom
level. These interfaces give a programmer much greater control over communication
parameters such as the transport being used, how long to wait before responding to errors and
retransmitting requests, and so on.

Overview of Interface Routines

ONC+ Developer's Guide • November 2010 (Beta)32

Top-Level Routines
At the top level, the interface is still simple, but the program has to create a client handle before
making a call or create a server handle before receiving calls. If you want the application to run
on all transports, use this interface. You can find the use of these routines and code samples in
“Top-Level Interface” on page 81.

TABLE 2–2 RPC Routines–Top Level

Routine Description

clnt_create() Generic client creation. The program tells clnt_create() where the
server is located and the type of transport to use.

clnt_create_timed() Similar to clnt_create() but enables the programmer to specify the
maximum time allowed for each type of transport tried during the
creation attempt.

svc_create() Creates server handles for all transports of the specified type. The
program tells svc_create() which dispatch function to use.

clnt_call()() Client calls a procedure to send a request to the server.

Intermediate-Level Routines
The intermediate level interface of RPC enables you to you control details. Programs written at
these lower levels are more complicated but run more efficiently. The intermediate level enables
you to specify the transport to use. “Intermediate-Level Interface” on page 84 describes the use
of these routines and code samples.

TABLE 2–3 RPC Routines–Intermediate Level

Routine Description

clnt_tp_create() Creates a client handle for the specified transport

clnt_tp_create_timed() Similar to clnt_tp_create() but enables the programmer to specify the
maximum time allowed

svc_tp_create() Creates a server handle for the specified transport

clnt_call()() Client calls a procedure to send a request to the server

Expert-Level Routines
The expert level contains a larger set of routines with which to specify transport-related
parameters. “Expert-Level Interface” on page 87 describes the use of these routines and code
samples.

Overview of Interface Routines

Chapter 2 • Introduction to TI-RPC 33

TABLE 2–4 RPC Routines–Expert Level

Routine Description

clnt_tli_create() Creates a client handle for the specified transport

svc_tli_create() Creates a server handle for the specified transport

rpcb_set() Calls rpcbind to set a map between an RPC service and a network
address

rpcb_unset() Deletes a mapping set by rpcb_set()

rpcb_getaddr() Calls rpcbind() to get the transport addresses of specified RPC services

svc_reg() Associates the specified program and version number pair with the
specified dispatch routine

svc_unreg() Deletes an association set by svc_reg()

clnt_call()() Client calls a procedure to send a request to the server

Bottom-Level Routines
The bottom level contains routines used for full control of transport options. “Bottom-Level
Interface” on page 91 describes these routines.

TABLE 2–5 RPC Routines–Bottom Level

Routine Description

clnt_dg_create() Creates an RPC client handle for the specified remote program using a
connectionless transport

svc_dg_create() Creates an RPC server handle using a connectionless transport

clnt_vc_create() Creates an RPC client handle for the specified remote program using a
connection-oriented transport

svc_vc_create() Creates an RPC server handle using a connection-oriented transport

clnt_call()() Client calls a procedure to send a request to the server

Network Selection
You can write programs to run on a specific transport or transport type, or to operate on a
system-chosen or user-chosen transport. Two mechanisms for network selection are the
/etc/netconfig database and the environmental variable NETPATH. These mechanisms enable
a fine degree of control over network selection: a user can specify a preferred transport and an
application will use it if it can. If the specified transport is inappropriate, the application
automatically tries other transports with the right characteristics.

Network Selection

ONC+ Developer's Guide • November 2010 (Beta)34

/etc/netconfig lists the transports available to the host and identifies them by type. NETPATH is
optional and enables you to specify a transport or selection of transports from the list in
/etc/netconfig. By setting the NETPATH, you specify the order in which the application tries
the available transports. If NETPATH is not set, the system defaults to all visible transports
specified in /etc/netconfig, in the order that they appear in that file.

For more details on network selection, see the getnetconfig(3NSL) and netconfig(4) man
pages.

RPC divides selectable transports into the types described in the following table.

TABLE 2–6 nettypeParameters

Value Meaning

NULL Same as selecting netpath.

visible Uses the transports chosen with the visible flag (‘v') set in their /etc/netconfig
entries.

circuit_v Same as visible, but restricted to connection-oriented transports. Transports are
selected in the order listed in /etc/netconfig.

datagram_v Same as visible, but restricted to connectionless transports.

circuit_n Uses the connection-oriented transports chosen in the order defined in NETPATH.

datagram_n Uses the connectionless transports chosen in the order defined in NETPATH.

udp Specifies Internet User Datagram Protocol (UDP).

tcp Specifies Internet Transport Control Protocol (TCP).

Transport Selection
RPC services are supported on both circuit-oriented and datagram transports. The selection of
the transport depends on the requirements of the application.

Choose a datagram transport if the application has all of the following characteristics:

■ Calls to the procedures do not change the state of the procedure or of associated data.
■ The size of both the arguments and results is smaller than the transport packet size.
■ The server is required to handle hundreds of clients. A datagram server does not keep any

state data on clients, so it can potentially handle many clients. A circuit-oriented server
keeps state data on each open client connection, so the number of clients is limited by the
host resources.

Choose a circuit-oriented transport if the application has any of the following characteristics:

Transport Selection

Chapter 2 • Introduction to TI-RPC 35

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=getnetconfig-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=netconfig-4

■ The application can tolerate or justify the higher cost of connection setup compared to
datagram transports.

■ Calls to the procedures can change the state of the procedure or of associated data.
■ The size of either the arguments or the results exceeds the maximum size of a datagram

packet.

Name-to-Address Translation
Each transport has an associated set of routines that translate between universal network
addresses (string representations of transport addresses) and the local address representation.
These universal addresses are passed around within the RPC system (for example, between
rpcbind and a client). A runtime linkable library that contains the name-to-address translation
routines is associated with each transport. Table 2–7 shows the main translation routines.

For more details on these routines, see the netdir(3NSL) man page. Note that the netconfig
structure in each case provides the context for name-to-address translations.

TABLE 2–7 Name-to-Address Translation Routines

netdir_getbyname() Translates from host or service pairs (for example server1, rpcbind)
and a netconfig structure to a set of netbuf addresses. netbufs are
Transport Level Interface (TLI) structures that contain
transport-specific addresses at runtime.

Translates from netbuf() addresses and a netconfig structure to host
or service pairs.

uaddr2taddr() Translates from universal addresses and a netconfig() structure to
netbuf addresses.

taddr2uaddr() Translates from netbuf addresses and a netconfig structure to
universal addresses.

Address Look-up Services
Transport services do not provide address look-up services. They provide only message transfer
across a network. A client program needs a way to obtain the address of its server program. In
previous system releases this service was performed by portmap. In this release, rpcbind
replaces the portmap utility.

RPC makes no assumption about the structure of a network address. It handles universal
addresses specified only as null-terminated strings of ASCII characters. RPC translates
universal addresses into local transport addresses by using routines specific to the transport. For
more details on these routines, see the netdir(3NSL) and rpcbind(3NSL) man pages.

Address Look-up Services

ONC+ Developer's Guide • November 2010 (Beta)36

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=netdir-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=netdir-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpcbind-3nsl

rpcbind enables you to perform the following operations:

■ Add a registration
■ Delete a registration
■ Get address of a specified program number, version number, and transport
■ Get the complete registration list
■ Perform a remote call for a client

Registering Addresses
rpcbind maps RPC services to their addresses, so rpcbind's address must be known. The
name-to-address translation routines must reserve a known address for each type of transport
used. For example, in the Internet domain, rpcbind has port number 111 on both TCP and
UDP. When rpcbind is started, it registers its location on each of the transports supported by
the host. rpcbind is the only RPC service that must have a known address.

For each supported transport, rpcbind registers the addresses of RPC services and makes the
addresses available to clients. A service makes its address available to clients by registering the
address with the rpcbind daemon. The address of the service is then available to rpcinfo(1M)
and to programs using library routines named in the rpcbind(3NSL) man page. No client or
server can assume the network address of an RPC service.

Client and server programs and client and server hosts are usually distinct but they need not be.
A server program can also be a client program. When one server calls another rpcbind server it
makes the call as a client.

To find a remote program's address, a client sends an RPC message to a host's rpcbind daemon.
If the service is on the host, the daemon returns the address in an RPC reply message. The client
program can then send RPC messages to the server's address. A client program can minimize its
calls to rpcbind by storing the network addresses of recently called remote programs.

The RPCBPROC_CALLIT procedure of rpcbind enables a client to make a remote procedure call
without knowing the address of the server. The client passes the target procedure's program
number, version number, procedure number, and calling arguments in an RPC call message.
rpcbind looks up the target procedure's address in the address map and sends an RPC call
message, including the arguments received from the client, to the target procedure.

When the target procedure returns results, RPCBPROC_CALLIT passes them to the client
program. It also returns the target procedure's universal address so that the client can later call it
directly.

The RPC library provides an interface to all rpcbind procedures. Some of the RPC library
procedures also call rpcbind automatically for client and server programs. For details, see “RPC
Language Specification” on page 252.

Address Look-up Services

Chapter 2 • Introduction to TI-RPC 37

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=rpcinfo-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpcbind-3nsl

Reporting RPC Information
rpcinfo is a utility that reports current RPC information registered with rpcbind. rpcinfo,
with either rpcbind or the portmap utility, reports the universal addresses and the transports
for all registered RPC services on a specified host. rpcinfo can call a specific version of a specific
program on a specific host and report whether a response is received. rpcinfo can also delete
registrations. For details, see the rpcinfo(1M) man page.

Address Look-up Services

ONC+ Developer's Guide • November 2010 (Beta)38

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=rpcinfo-1m

rpcgen Programming Guide

This section introduces the rpcgen tool and provides a tutorial with code examples and usage of
the available compile-time flags. See Glossary for the definition of the terms used in this
chapter.

The topics covered in this chapter include:
■ “SunOS 9 Software Environment Features” on page 40
■ “rpcgen Tutorial” on page 40
■ “Compile-Time Flags” on page 52
■ “rpcgen Programming Techniques” on page 63

What Is rpcgen?
The rpcgen tool generates remote program interface modules. It compiles source code written
in the RPC language. The RPC language is similar in syntax and structure to C. The rpcgen tool
produces one or more C language source modules, which are then compiled by a C compiler.

The default output of rpcgen is:

■ A header file of definitions common to the server and the client
■ A set of XDR routines that translate each data type defined in the header file
■ A stub program for the server
■ A stub program for the client

rpcgen can optionally generate:

■ Various transports
■ A timeout for servers
■ Server stubs that are multithread safe
■ Server stubs that are not main programs
■ C-style arguments passing ANSI C-compliant code
■ An RPC dispatch table that checks authorizations and invokes service routines

3C H A P T E R 3

39

rpcgen significantly reduces the development time that would otherwise be spent developing
low-level routines. Handwritten routines link easily with the rpcgen output. For a discussion of
RPC programming without rpcgen, see Chapter 4, “Programmer's Interface to RPC.”

SunOS 9 Software Environment Features
This section lists the features found in the current rpcgen code generator.

■ SunOS Template Generation: rpcgen generates client-side, server-side, and makefile
templates. See “Compile-Time Client and Server Templates” on page 53 for the list of
options.

■ SunOS C-style Mode: rpcgen has two compilation modes, C-style and default. In C-style
mode arguments can be passed by value, instead of as pointers to a structure. It also supports
passing multiple arguments. The default mode is the same as in previous releases. See
“Compile-Time C-style Mode” on page 54 for the example code for both modes.

■ SunOS Multithread-Safe Code: rpcgen generates MT-safe code for use in a threaded
environment. By default, the code generated by rpcgen is not MT safe. See “Compile-Time
MT-Safe Code” on page 56 for the description and example code.

■ SunOS Multithread Auto Mode: rpcgen generates MT-safe server stubs that operate in the
MT Auto mode. See “Compile-Time MT Auto Mode” on page 61 for the definition and
example code.

■ SunOS Library Selection: rpcgen uses library calls for either TS-RPC or TI-RPC. See
“Compile-Time TI-RPC or TS-RPC Library Selection” on page 62.

■ SunOS ANSI C-compliant Code: The output generated by rpcgen conforms to ANSI C
standards. See “Compile-Time ANSI C-compliant Code” on page 62.

rpcgen Tutorial
rpcgen provides programmers a direct way to write distributed applications. Server procedures
can be written in any language that observes procedure-calling conventions. These procedures
are linked with the server stub produced by rpcgen to form an executable server program.
Client procedures are written and linked in the same way.

This section presents some basic rpcgen programming examples. Refer also to the rpcgen(1)
man page.

SunOS 9 Software Environment Features

ONC+ Developer's Guide • November 2010 (Beta)40

http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=rpcgen-1

Converting Local Procedures to Remote Procedures
Assume that an application runs on a single computer and you want to convert it to run in a
“distributed” manner on a network. This example shows the stepwise conversion of this
program that writes a message to the system console. The following code example shows the
original program.

EXAMPLE 3–1 Single Process Version of printmesg.c

/* printmsg.c: print a message on the console */

#include <stdio.h>

main(argc, argv)

int argc;

char *argv[];

{

char *message;

if (argc != 2) {

fprintf(stderr, "usage: %s <message>\n",
argv[0]);

exit(1);

}

message = argv[1];

if (!printmessage(message)) {

fprintf(stderr,"%s: couldn’t print your

message\n",argv[0]);
exit(1);

}

printf("Message Delivered!\n");
exit(0);

}

/* Print a message to the console.

* Return a boolean indicating whether

* the message was actually printed. */

printmessage(msg)

char *msg;

{

FILE *f;

f = fopen("/dev/console", "w");
if (f == (FILE *)NULL) {

return (0);

}

fprintf(f, "%s\n", msg);

fclose(f);

return(1);}

For local use on a single machine, this program could be compiled and executed as follows:

$ cc printmsg.c -o printmsg

$ printmsg "Hello, there."
Message delivered!

$

rpcgen Tutorial

Chapter 3 • rpcgen Programming Guide 41

If the printmessage() function is turned into a remote procedure, the function can be called
from anywhere in the network.

First, determine the data types of all procedure-calling arguments and the resulting argument.
The calling argument of printmessage() is a string, and the result is an integer. You can write a
protocol specification in the RPC language that describes the remote version of
printmessage(). The RPC language source code for such a specification is:

/* msg.x: Remote msg printing protocol */

program MESSAGEPROG {

version PRINTMESSAGEVERS {

int PRINTMESSAGE(string) = 1;

} = 1;

} = 0x20000001;

Remote procedures are always declared as part of remote programs. The previous code declares
an entire remote program that contains the single procedure PRINTMESSAGE. In this example,
the PRINTMESSAGE procedure is declared to be procedure 1, in version 1 of the remote program
MESSAGEPROG, with the program number 0x20000001. See Appendix B, “RPC Protocol and
Language Specification,” for guidance on choosing program numbers.

Version numbers are incremented when functionality is changed in the remote program.
Existing procedures can be changed or new ones can be added. More than one version of a
remote program can be defined and a version can have more than one procedure defined.

Note that the program and procedure names are declared with all capital letters.

Note also that the argument type is string and not char * as it would be in C. This is because a
char * in C is ambiguous. char usually means an array of characters, but it could also represent
a pointer to a single character. In the RPC language, a null-terminated array of char is called a
string.

You have just two more programs to write:
■ The remote procedure itself
■ The main client program that calls it

Example 3–2 is a remote procedure that implements the PRINTMESSAGE procedure in
Example 3–1.

EXAMPLE 3–2 RPC Version of printmsg.c

/*

* msg_proc.c: implementation of the

* remote procedure "printmessage"
*/

#include <stdio.h>

#include "msg.h" /* msg.h generated by rpcgen */

int *

printmessage_1(msg, req)

rpcgen Tutorial

ONC+ Developer's Guide • November 2010 (Beta)42

EXAMPLE 3–2 RPC Version of printmsg.c (Continued)

char **msg;

struct svc_req *req; /* details of call */

{

static int result; /* must be static! */

FILE *f;

f = fopen("/dev/console", "w");
if (f == (FILE *)NULL) {

result = 0;

return (&result);

}

fprintf(f, "%s\n", *msg);

fclose(f);

result = 1;

return (&result);}

The declaration of the remote procedure printmessage_1() differs from that of the local
procedure printmessage() in four ways:

1. printmessage_1() takes a pointer to the character array instead of the pointer itself. This
principle is true of all remote procedures when the -N option is not used. These procedures
always take pointers to their arguments rather than the arguments themselves. Without the
-N option, remote procedures are always called with a single argument. If more than one
argument is required the arguments must be passed in a struct.

2. printmessage_1() is called with two arguments. The second argument contains
information on the context of an invocation: the program, version, and procedure numbers;
raw and canonical credentials; and an SVCXPRT structure pointer. The SVCXPRT structure
contains transport information. All of the information is made available in case the invoked
procedure requires it to perform the request.

3. printmessage_1() returns a pointer to an integer instead of the integer itself. This principle
is also true of remote procedures when the -N option is not used. These procedures return
pointers to the result. The result should be declared static unless the -M (multithread) or -A
(Auto mode) options are used. Ordinarily, if the result is declared local to the remote
procedure, references to the result by the server stub are invalid after the remote procedure
returns. In the case of -M and -A options, a pointer to the result is passed as a third argument
to the procedure, so the result is not declared in the procedure.

4. An _1 is appended to the printmessage_1() name. In general, all remote procedures calls
generated by rpcgen are named as follows: the procedure name in the program definition
(here PRINTMESSAGE) is converted to all lowercase letters, an underbar (_) is appended to it,
and the version number (here 1) is appended. This naming scheme enables you to have
multiple versions of the same procedure.

The following code example shows the main client program that calls the remote procedure.

rpcgen Tutorial

Chapter 3 • rpcgen Programming Guide 43

EXAMPLE 3–3 Client Program to Call printmsg.c

/*

* rprintmsg.c: remote version

* of "printmsg.c"
*/

#include <stdio.h>

#include "msg.h" /* msg.h generated by rpcgen */

main(argc, argv)

int argc;

char *argv[];

{

CLIENT *clnt;

int *result;

char *server;

char *message;

if (argc != 3) {

fprintf(stderr, "usage: %s host

message\n", argv[0]);

exit(1);

}

server = argv[1];

message = argv[2];

/*

* Create client "handle" used for

* calling MESSAGEPROG on the server

* designated on the command line.

*/

clnt = clnt_create(server, MESSAGEPROG,

PRINTMESSAGEVERS,

"visible");
if (clnt == (CLIENT *)NULL) {

/*

* Couldn’t establish connection

* with server.

* Print error message and die.

*/

clnt_pcreateerror(server);

exit(1);

}

/*

* Call the remote procedure

* "printmessage" on the server

*/

result = printmessage_1(&message, clnt);

if (result == (int *)NULL) {

/*

* An error occurred while calling

* the server.

* Print error message and die.

*/

clnt_perror(clnt, server);

exit(1);

}

/* Okay, we successfully called

* the remote procedure.

rpcgen Tutorial

ONC+ Developer's Guide • November 2010 (Beta)44

EXAMPLE 3–3 Client Program to Call printmsg.c (Continued)

*/

if (*result == 0) {

/*

* Server was unable to print

* our message.

* Print error message and die.

*/

fprintf(stderr,

"%s: could not print your message\n",argv[0]);
exit(1);

}

/* The message got printed on the

* server’s console

*/

printf("Message delivered to %s\n",
server);

clnt_destroy(clnt);

exit(0);}

In the example code, a client handle is created by the RPC library routine clnt_create(). This
client handle is passed to the stub routine that calls the remote procedure. See Chapter 4,
“Programmer's Interface to RPC,” for details on how the client handle can be created in other
ways. If no more calls are to be made using the client handle, destroy it with a call to
clnt_destroy() to conserve system resources.

The last parameter to clnt_create() is visible, which specifies that any transport noted as
visible in /etc/netconfig can be used. For further information on transports, see the
/etc/netconfig file and its description in Programming Interfaces Guide.

The remote procedure printmessage_1() is called exactly the same way as it is declared in
msg_proc.c, except for the inserted client handle as the second argument. The remote
procedure also returns a pointer to the result instead of the result.

The remote procedure call can fail in two ways. The RPC mechanism can fail or an error can
occur in the execution of the remote procedure. In the former case, the remote procedure
printmessage_1() returns a NULL. In the latter case, the error reporting is application
dependent. Here, the error is returned through *result.

The compile commands for the printmsg example are:

$ rpcgen msg.x

$ cc rprintmsg.c msg_clnt.c -o rprintmsg -lnsl

$ cc msg_proc.c msg_svc.c -o msg_server -lnsl

rpcgen is used to generate the header files (msg.h), client stub (msg_clnt.c), and server stub
(msg_svc.c). Then, two programs are compiled: the client program rprintmsg and the server
program msg_server. The C object files must be linked with the library libnsl, which contains
all of the networking functions, including those for RPC and XDR.

rpcgen Tutorial

Chapter 3 • rpcgen Programming Guide 45

http://www.oracle.com/pls/topic/lookup?ctx=821-1602&id=netproto

In this example, no XDR routines were generated because the application uses only the basic
types that are included in libnsl.

rpcgen received the input file msg.x and created:
■ A header file called msg.h that contained #define statements for MESSAGEPROG,

MESSAGEVERS, and PRINTMESSAGE for use in the other modules. This file must be included by
both the client and server modules.

■ The client stub routines in the msg_clnt.c file. Only one routine, the printmessage_1()
routine, was called from the rprintmsg client program. If the name of an rpcgen input file is
FOO.x, the client stub's output file is called FOO_clnt.c.

■ The server program in msg_svc.c that calls printmessage_1() from msg_proc.c. The rule
for naming the server output file is similar to that of the client: for an input file called FOO.x,
the output server file is named FOO_svc.c.

After the server program is created, it is installed on a remote machine and run. If the machines
are homogeneous, the server binary can just be copied. If they are not homogeneous, the server
source files must be copied to and compiled on the remote machine. For this example, the
remote machine is called remote and the local machine is called local. The server is started
from the shell on the remote system:

remote$ msg_server

Server processes generated with rpcgen always run in the background. You do not have to
follow the server's invocation with an ampersand (&). Servers generated by rpcgen can also be
invoked by port monitors like listen() and inetd(), instead of from the command line.

Thereafter, a user on local can print a message on the console of machine remote as follows:

local$ rprintmsg remote "Hello, there."

Using rprintmsg, a user can print a message on any system console, including the local
console, when the server msg_server is running on the target system.

Passing Complex Data Structures
“Converting Local Procedures to Remote Procedures” on page 41 shows how to generate client
and server RPC code. rpcgen can also be used to generate XDR routines, which are the routines
that convert local data structures into XDR format and the reverse.

The following code example presents a complete RPC service: a remote directory listing service,
built using rpcgen to generate both stub routines and the XDR routines.

EXAMPLE 3–4 RPC Protocol Description File: dir.x

/*

* dir.x: Remote directory listing protocol

*

rpcgen Tutorial

ONC+ Developer's Guide • November 2010 (Beta)46

EXAMPLE 3–4 RPC Protocol Description File: dir.x (Continued)

* This example demonstrates the functions of rpcgen.

*/

const MAXNAMELEN = 255; /* max length of directory entry */

typedef string nametype<MAXNAMELEN>; /* director entry */

typedef struct namenode *namelist; /* link in the listing */

/* A node in the directory listing */

struct namenode {

nametype name; /* name of directory entry */

namelist next; /* next entry */

};

/*

* The result of a READDIR operation

*

* A truly portable application would use an agreed upon list of

* error codes rather than (as this sample program does) rely upon

* passing UNIX errno’s back.

*

* In this example: The union is used here to discriminate between

* successful and unsuccessful remote calls.

*/

union readdir_res switch (int errno) {

case 0:

namelist list; /* no error: return directory listing */

default:

void; /* error occurred: nothing else to return */

};

/* The directory program definition */

program DIRPROG {

version DIRVERS {

readdir_res

READDIR(nametype) = 1;

} = 1;

} = 0x20000076;

You can redefine types (like readdir_res in the previous example) using the struct, union,
and enum RPC language keywords. These keywords are not used in later declarations of
variables of those types. For example, if you define a union, foo, you declare using only foo, and
not union foo.

rpcgen compiles RPC unions into C structures. Do not declare C unions using the union
keyword.

Running rpcgen on dir.x generates four output files:
■ Header file
■ Client stub
■ Server skeleton
■ XDR routines in the file dir_xdr.c.

The dir_xdr.c file contains the XDR routines to convert declared data types from the host
platform representation into XDR format, and the reverse.

rpcgen Tutorial

Chapter 3 • rpcgen Programming Guide 47

For each RPC data type used in the.x file, rpcgen assumes that libnsl contains a routine with a
name that is the name of the data type, prepended by the XDR routine header xdr_ (for
example, xdr_int). If a data type is defined in the.x file, rpcgen generates the required xdr_

routine. If there is no data type definition in the .x source file (for example, msg.x), then no
_xdr.c file is generated.

You can write a.x source file that uses a data type not supported by libnsl, and deliberately
omit defining the type in the.x file. In doing so, you must provide the xdr_ routine. This is a
way to provide your own customized xdr_ routines. See Chapter 4, “Programmer's Interface to
RPC,” for more details on passing arbitrary data types. The server-side of the READDIR
procedure is shown in the following example.

EXAMPLE 3–5 Server dir_proc.cExample

/*

* dir_proc.c: remote readdir

* implementation

*/

#include <dirent.h>

#include "dir.h" /* Created by rpcgen */

extern int errno;

extern char *malloc();

extern char *strdup();

readdir_res *

readdir_1(dirname, req)

nametype *dirname;

struct svc_req *req;

{

DIR *dirp;

struct dirent *d;

namelist nl;

namelist *nlp;

static readdir_res res; /* must be static! */

/* Open directory */

dirp = opendir(*dirname);

if (dirp == (DIR *)NULL) {

res.errno = errno;

return (&res);

}

/* Free previous result */

xdr_free(xdr_readdir_res, &res);

/*

* Collect directory entries.

* Memory allocated here is free by xdr_free the next time

* readdir_1 is called

*/

nlp = &res.readdir_res_u.list;

while (d = readdir(dirp)) {

nl = *nlp = (namenode *)

malloc(sizeof(namenode));

if (nl == (namenode *) NULL) {

rpcgen Tutorial

ONC+ Developer's Guide • November 2010 (Beta)48

EXAMPLE 3–5 Server dir_proc.cExample (Continued)

res.errno = EAGAIN;

closedir(dirp);

return(&res);

}

nl->name = strdup(d->d_name);

nlp = &nl->next;

}

*nlp = (namelist)NULL;

/* Return the result */

res.errno = 0;

closedir(dirp);

return (&res);

}

The following code example shows the client-side implementation of the READDIR procedure.

EXAMPLE 3–6 Client-side Implementation of rls.c

/*

* rls.c: Remote directory listing client

*/

#include <stdio.h>

#include "dir.h" /* generated by rpcgen */

extern int errno;

main(argc, argv)

int argc;

char *argv[];

{

CLIENT *clnt;

char *server;

char *dir;

readdir_res *result;

namelist nl;

if (argc != 3) {

fprintf(stderr, "usage: %s host directory\n",argv[0]);
exit(1);

}

server = argv[1];

dir = argv[2];

/*

* Create client "handle" used for

* calling MESSAGEPROG on the server

* designated on the command line.

*/

cl = clnt_create(server, DIRPROG, DIRVERS, "tcp");
if (clnt == (CLIENT *)NULL) {

clnt_pcreateerror(server);

exit(1);

}

result = readdir_1(&dir, clnt);

if (result == (readdir_res *)NULL) {

rpcgen Tutorial

Chapter 3 • rpcgen Programming Guide 49

EXAMPLE 3–6 Client-side Implementation of rls.c (Continued)

clnt_perror(clnt, server);

exit(1);

}

/* Okay, we successfully called

* the remote procedure.

*/

if (result->errno != 0) {

/* Remote system error. Print

* error message and die.

*/

errno = result->errno;

perror(dir);

exit(1);

}

/* Successfully got a directory listing.

* Print it.

*/

for (nl = result->readdir_res_u.list;

nl != NULL;

nl = nl->next) {

printf("%s\n", nl->name);

}

xdr_free(xdr_readdir_res, result);

clnt_destroy(cl);

exit(0);}

As in other examples, execution is on systems named local and remote. The files are compiled
and run as follows:

remote$ rpcgen dir.x

remote$ cc -c dir_xdr.c

remote$ cc rls.c dir_clnt.c dir_xdr.o -o rls -lnsl

remote$ cc dir_svc.c dir_proc.c dir_xdr.o -o dir_svc -lnsl

remote$ dir_svc

When you install rls() on system local, you can list the contents of /usr/share/lib on
system remote as follows:

local$ rls remote /usr/share/lib

ascii

eqnchar

greek

kbd

marg8

tabclr

tabs

tabs4

local

$

Client code generated by rpcgen does not release the memory allocated for the results of the
RPC call. Call xdr_free() to release the memory when you are finished with it. Calling

rpcgen Tutorial

ONC+ Developer's Guide • November 2010 (Beta)50

xdr_free() is similar to calling the free() routine, except that you pass the XDR routine for
the result. In this example, after printing the list, xdr_free(xdr_readdir_res, result); was
called.

Note – Use xdr_free() to release memory allocated by malloc(). Failure to use xdr_free() to
release memory results in memory leaks.

Preprocessing Directives
rpcgen supports C and other preprocessing features. C preprocessing is performed on rpcgen

input files before they are compiled. All standard C preprocessing directives are allowed in
the.x source files. Depending on the type of output file being generated, five symbols are
defined by rpcgen.

rpcgen provides an additional preprocessing feature: any line that begins with a percent sign
(%) is passed directly to the output file, with no action on the line's content. Use caution because
rpcgen does not always place the lines where you intend. Check the output source file and, if
needed, edit it.

rpcgen uses the preprocessing directives listed in the following table.

TABLE 3–1 rpcgenPreprocessing Directives

Symbol Use

RPC_HDR Header file output

RPC_XDR XDR routine output

RPC_SVC Server stub output

RPC_CLNT Client stub output

RPC_TBL Index table output

The following code example is a simple rpcgen example. Note the use of rpcgen‘s
pre-processing features.

EXAMPLE 3–7 Time Protocol rpcgen Source

/*

* time.x: Remote time protocol

*/

program TIMEPROG {

version TIMEVERS {

unsigned int TIMEGET() = 1;

} = 1;

} = 0x20000044;

rpcgen Tutorial

Chapter 3 • rpcgen Programming Guide 51

EXAMPLE 3–7 Time Protocol rpcgen Source (Continued)

#ifdef RPC_SVC

%int *

%timeget_1()

%{

% static int thetime;

%

% thetime = time(0);

% return (&thetime);

%}

#endif

cppDirective
rpcgen supports C preprocessing features. rpcgen defaults to use /usr/ccs/lib/cpp as the C
preprocessor. If that fails, rpcgen tries to use /lib/cpp. You can specify a library containing a
different cpp to rpcgen with the -Y flag.

For example, if /usr/local/bin/cpp exists, you can specify it to rpcgen as follows:

rpcgen -Y /usr/local/bin test.x

Compile-Time Flags
This section describes the rpcgen options available at compile time. The following table
summarizes the options that are discussed in this section.

TABLE 3–2 rpcgenCompile-Time Flags

Option Flag Comments

Templates -a, -Sc, -Ss,
-Sm

See Table 3–3

C-style -N Also called Newstyle mode

ANSI C -C Often used with the -N
option

MT-safe code -M For use in multithreaded
environments

MT auto mode -A -A also turns on -M option

TS-RPC library -b TI-RPC library is default

Compile-Time Flags

ONC+ Developer's Guide • November 2010 (Beta)52

TABLE 3–2 rpcgenCompile-Time Flags (Continued)
Option Flag Comments

xdr_inline count -i Uses five packed elements
as default, but other
number can be specified

Compile-Time Client and Server Templates
rpcgen generates sample code for the client and server sides. Use the options described in the
following table to generate the desired templates.

TABLE 3–3 rpcgenTemplate Selection Flags

Flag Function

-a Generates all template files

-Sc Generates client-side template

-Ss Generates server-side template

-Sm Generates makefile template

The files can be used as guides by filling in the missing parts. These files are in addition to the
stubs generated.

A C-style mode server template is generated from the add.x source by the command rpcgen -N

-Ss -o add_server_template.c add.x

The result is stored in the file add_server_template.c. A C-style mode, client template for the
same add.x source is generated with the command rpcgen -N -Sc -o

add_client_template.c add.x

The result is stored in the file add_client_template.c. A makefile template for the same add.x
source is generated with the command rpcgen -N -Sm -o mkfile_template add.x

The result is stored in the file mkfile_template. It can be used to compile the client and the
server. The -a flag, used in the command rpcgen -N -a add.x, generates all three template
files. The client template is stored in add_client.c, the server template in add_server.c, and
the makefile template inmakefile.a. If any of these files already exists, rpcgen displays an error
message and exits.

Note – When you generate template files, give them new names to avoid the files being
overwritten the next time rpcgen is executed.

Compile-Time Flags

Chapter 3 • rpcgen Programming Guide 53

Compile-Time C-style Mode
Also called Newstyle mode, the -N flag causes rpcgen to produce code in which arguments are
passed by value and multiple arguments are passed without a struct. These changes enable
RPC code that is more like C and other high-level languages. For compatibility with existing
programs and make files, the previous standard mode of argument passing is the default. The
following examples demonstrate the new feature. The source modules for both modes, C-style
and default, are shown in Example 3–8 and Example 3–9 respectively.

EXAMPLE 3–8 C-style Mode Version of add.x

/*

* This program contains a procedure

* to add 2 numbers. It demonstrates

* the C-style mode argument passing.

* Note that add() has 2 arguments.

*/

program ADDPROG { /* program number */

version ADDVER { /* version number */

int add(int, int) = 1; /* procedure */

} = 1;

} = 0x20000199;

EXAMPLE 3–9 Default Mode Version of add.x

/*

* This program contains a procedure

* to add 2 numbers. It demonstrates

* the "default" mode argument passing.

* In this mode rpcgen can process

* only one argument.

*/

struct add_arg {

int first;

int second;

};

program ADDPROG { /* program number */

version ADDVER { /* version number */

int add (add_arg) = 1; /* procedure */

} = 1;

} = 0x20000199;

The next four examples show the resulting client-side templates.

EXAMPLE 3–10 C-style Mode Client Stub for add.x

/*

* The C-style client side main

* routine calls the add() function

* on the remote rpc server

*/

#include <stdio.h>

#include "add.h"

Compile-Time Flags

ONC+ Developer's Guide • November 2010 (Beta)54

EXAMPLE 3–10 C-style Mode Client Stub for add.x (Continued)

main(argc, argv)

int argc;

char *argv[];

{

CLIENT *clnt;

int *result,x,y;

if(argc != 4) {

printf("usage: %s host num1 num2\n" argv[0]);

exit(1);

}

/* create client handle -

* bind to server

*/

clnt = clnt_create(argv[1], ADDPROG, ADDVER, "udp");
if (clnt == NULL) {

clnt_pcreateerror(argv[1]);

exit(1);

}

x = atoi(argv[2]);

y = atoi(argv[3]);

/*

* invoke remote procedure: Note that

* multiple arguments can be passed to

* add_l() instead of a pointer

*/

result = add_1(x, y, clnt);

if (result == (int *) NULL) {

clnt_perror(clnt, "call failed:");
exit(1);

} else {

printf("Success: %d + %d = %d\n", x, y, *result);

}

exit(0);

}

The following code example shows how the default mode code differs from C-style mode code.

EXAMPLE 3–11 Default Mode Client

arg.first = atoi(argv[2]);

arg.second = atoi(argv[3]);

/*

* invoke remote procedure -- note

* that a pointer to the argument has

* to be passed to the client stub

*/

result = add_1(&arg, clnt);

The server-side procedure in C-style mode is shown in the following example.

Compile-Time Flags

Chapter 3 • rpcgen Programming Guide 55

EXAMPLE 3–12 C-style Mode Server

#include "add.h"

int *

add_1(arg1, arg2, rqstp)

int arg1;

int arg2;

struct svc_req *rqstp;

{

static int result;

result = arg1 + arg2;

return(&result);

}

The server-side procedure in default mode is shown in the following code example.

EXAMPLE 3–13 Default Mode Server Stub

#include "add.h"
int *

add_1(argp, rqstp)

add_arg *argp;

struct svc_req *rqstp;

{

static int result;

result = argp->first + argp->second;

return(&result);

}

Compile-Time MT-Safe Code
By default, the code generated by rpcgen is not MT safe. It uses unprotected global variables
and returns results in the form of static variables. The -M flag generates MT-safe code that can
be used in a multithreaded environment. This code can be used with the C-style flag, the ANSI
C flag, or both.

An example of an MT-safe program with this interface follows. The rpcgen protocol file is
msg.x, shown in the following code example.

EXAMPLE 3–14 MT-Safe Program: msg

program MESSAGEPROG {

version PRINTMESSAGE {

int PRINTMESSAGE(string) = 1;

} = 1;

} = 0x4001;

A string is passed to the remote procedure, which prints it and returns the length of the string to
the client. The MT-safe stubs are generated with the rpcgen -M msg.x command.

Compile-Time Flags

ONC+ Developer's Guide • November 2010 (Beta)56

Client-side code that could be used with this protocol file is shown in the following code
example.

EXAMPLE 3–15 MT-Safe Client Stub

#include "msg.h"

void

messageprog_1(host)

char *host;

{

CLIENT *clnt;

enum clnt_stat retval_1;

int result_1; char * printmessage_1_arg;

clnt = clnt_create(host, MESSAGEPROG, PRINTMESSAGE, "netpath");

if (clnt == (CLIENT *) NULL) {

clnt_pcreateerror(host)

exit(1);

}

printmessage_1_arg = (char *) malloc(256);

strcpy(printmessage_1_arg, "Hello World");
retval_1 = printmessage_1(&printmessage_1_arg, &result_1,clnt);

if (retval_1 != RPC_SUCCESS) {

clnt_perror(clnt, "call failed");
}

printf("result = %d\n", result_1);

clnt_destroy(clnt);

}

main(argc, argv)

int argc;

char *argv[];

{

char *host;

if (argc < 2) {

printf("usage: %s server_host\n", argv[0]);

exit(1);

}

host = argv[1];

messageprog_1(host);

}

A pointer to both the arguments and the results needs to be passed in to the rpcgen-generated
code in order to preserve re-entrancy. The value returned by the stub function indicates
whether this call is a success or a failure. The stub returns RPC_SUCCESS if the call is successful.
Compare the MT-safe client stub, generated with the -M option, and the MT-unsafe client stub
shown in Example 3–16. The client stub that is not MT-safe uses a static variable to store
returned results and can use only one thread at a time.

EXAMPLE 3–16 Client Stub (MT Unsafe)

int *

printmessage_1(argp, clnt)

Compile-Time Flags

Chapter 3 • rpcgen Programming Guide 57

EXAMPLE 3–16 Client Stub (MT Unsafe) (Continued)

char **argp;

CLIENT *clnt;

{

static int clnt_res;

memset((char *)&clnt_res, 0, sizeof (clnt_res));

if (clnt_call(clnt, PRINTMESSAGE,

(xdrproc_t) xdr_wrapstring, (caddr_t) argp,

(xdrproc_t) xdr_int, (caddr_t) &clnt_res,

TIMEOUT) != RPC_SUCCESS) {

return (NULL);

}

return (&clnt_res);

}

The server side code is shown in the following example.

Note – When compiling a server that uses MT-safe mode, you must link in the threads library.
To do so, specify the -lthread option in the compile command.

EXAMPLE 3–17 MT-Safe Server Stub

#include "msg.h"

#include <syslog.h>

bool_t

printmessage_1_svc(argp, result, rqstp)

char **argp;

int *result;

struct svc_req *rqstp;

{

int retval;

if (*argp == NULL) {

syslog(LOG_INFO, "argp is NULL\n");
*result = 0;

}

else {

syslog("argp is %s\n", *argp);

*result = strlen (*argp);

}

retval = 1;

return (retval);

}

int

messageprog_1_freeresult(transp, xdr_result, result)

SVCXPRT *transp;

xdrproc_t xdr_result;

caddr_t result;

{

/*

Compile-Time Flags

ONC+ Developer's Guide • November 2010 (Beta)58

EXAMPLE 3–17 MT-Safe Server Stub (Continued)

* Insert additional freeing code here,

* if needed

*/

(void) xdr_free(xdr_result, result);

}

The server-side code should not use statics to store returned results. A pointer to the result is
passed in and this should be used to pass the result back to the calling routine. A return value of
1 indicates success to the calling routine, while 0 indicates a failure.

In addition, the code generated by rpcgen also generates a call to a routine to free any memory
that might have been allocated when the procedure was called. To prevent memory leaks, any
memory allocated in the service routine needs to be freed in this routine.
messageprog_1_freeresult() frees the memory.

Normally, xdr_free() frees any allocated memory for you. In this example, no memory was
allocated, so no freeing needs to take place.

The following add.x file shows the use of the -M flag with the C-style and ANSI C flag.

EXAMPLE 3–18 MT-Safe Program: add.x

program ADDPROG {

version ADDVER {

int add(int, int) = 1;

} = 1;

}= 199;

This program adds two numbers and returns its result to the client. rpcgen is invoked on it,
with the rpcgen -N -M -C add.x command. The following example shows the multithreaded
client code to call this code.

EXAMPLE 3–19 MT-Safe Client: add.x

/*

* This client-side main routine starts up a number of threads,

* each of which calls the server concurrently.

*/

#include "add.h"

CLIENT *clnt;

#define NUMCLIENTS 5

struct argrec {

int arg1;

int arg2;

};

/*

Compile-Time Flags

Chapter 3 • rpcgen Programming Guide 59

EXAMPLE 3–19 MT-Safe Client: add.x (Continued)

* Keeps count of number of threads running

*/

int numrunning;

mutex_t numrun_lock;

cond_t condnum;

void

addprog(struct argrec *args)

{

enum clnt_stat retval;

int result;

/* call server code */

retval = add_1(args->arg1, args->arg2,

&result, clnt);

if (retval != RPC_SUCCESS) {

clnt_perror(clnt, "call failed");
} else

printf("thread #%x call succeeded,

result = %d\n", thr_getself(),

result);

/* decrement the number of running threads */

mutex_lock(&numrun_lock);

numrunning--;

cond_signal(&condnum);

mutex_unlock(&numrun_lock);

thr_exit(NULL);

}

main(int argc, char *argv[])

{

char *host;

struct argrec args[NUMCLIENTS];

int i;

thread_t mt;

int ret;

if (argc < 2) {

printf("usage: %s server_host\n", argv[0]);

exit(1);

}

host = argv[1];

clnt = clnt_create(host, ADDPROG, ADDVER, "netpath");
if (clnt == (CLIENT *) NULL) {

clnt_pcreateerror(host);

exit(1);

};

mutex_init(&numrun_lock, USYNC_THREAD, NULL);

cond_init(&condnum, USYNC_THREAD, NULL);

numrunning = 0;

/* Start up separate threads */

for (i = 0; i < NUMCLIENTS; i++) {

args[i].arg1 = i;

args[i].arg2 = i + 1;

ret = thr_create(NULL, NULL, addprog, (char *) &args[i],

THR_NEW_LWP, &mt);

Compile-Time Flags

ONC+ Developer's Guide • November 2010 (Beta)60

EXAMPLE 3–19 MT-Safe Client: add.x (Continued)

if (ret == 0)

numrunning++;

}

mutex_lock(&numrun_lock);

/* are any threads still running ? */

while (numrunning != 0)

cond_wait(&condnum, &numrun_lock);

mutex_unlock(&numrun_lock);

clnt_destroy(clnt);}

The server-side procedure is shown in the following example.

Note – When compiling a server that uses MT-safe mode, you must link in the threads library.
To do so, specify the -lthread option in the compile command.

EXAMPLE 3–20 MT-Safe Server: add.x

add_1_svc(int arg1, int arg2, int *result, struct svc_req

*rqstp)

{

bool_t retval;

/* Compute result */

*result = arg1 + arg2;

retval = 1;

return (retval);

}

/* Routine for freeing memory that may

* be allocated in the server procedure

*/

int

addprog_1_freeresult(SVCXPRT *transp, xdrproc_t xdr_result, caddr_t result)

{

(void) xdr_free(xdr_result, result);

}

Compile-Time MT Auto Mode
MT Auto mode enables RPC servers to automatically use Solaris threads to process client
requests concurrently. Use the -A option to generate RPC code in MT Auto mode. The -A
option also has the effect of turning on the -M option, so -M does not need to be explicitly
specified. The -M option is necessary because any code that is generated has to be multithread
safe.

The section Chapter 7, “Multithreaded RPC Programming,” contains further discussion on
multithreaded RPC. See also “MT Auto Mode” on page 149.

Compile-Time Flags

Chapter 3 • rpcgen Programming Guide 61

An example of an Auto mode program generated by rpcgen follows in the rpcgen protocol file
time.x. A string is passed to the remote procedure, which prints the string and returns its
length to the client.

EXAMPLE 3–21 MT Auto Mode: time.x

program TIMEPROG {

version TIMEVERS {

unsigned int TIMEGET(void) = 1;

void TIMESET(unsigned) = 2;

} = 1;

} = 0x20000044;

The MT-safe stubs are generated with the rpcgen -A time.x command.

When the -A option is used, the generated server code contains instructions for enabling MT
Auto mode for the server.

Note – When compiling a server that uses MT Auto mode, you must link in the threads library.
To do so, specify the -lthread option in the compile command.

Compile-Time TI-RPC or TS-RPC Library Selection
In older SunOS releases, rpcgen created stubs that used the socket functions. With the current
SunOS release, you can use either the transport-independent RPC (TI-RPC) or the
transport-specific socket (TS-RPC) routines. These routines provides backward compatibility
with previous releases. The default uses the TI-RPC interfaces. The -b flag tells rpcgen to create
TS-RPC variant source code as its output.

Compile-Time ANSI C-compliant Code
rpcgen can also produce output that is compatible with ANSI C. This feature is selected with
the -C compile flag and is most often used with the -N flag, described in “Compile-Time C-style
Mode” on page 54.

The add.x example of the server template is generated by the rpcgen -N -C -Ss -o

add_server_template.c add.x command:

Note that on the C++ 3.0 server, remote procedure names require an _svc suffix. In the
following example, the add.x template and the -C compile flag produce the client side add_1
and the server stub add_1_svc.

Compile-Time Flags

ONC+ Developer's Guide • November 2010 (Beta)62

EXAMPLE 3–22 rpcgenANSI C Server Template

/*

* This is a template. Use it to

* develop your own functions.

*/

#include <c_varieties.h>

#include "add.h"

int *

add_1_svc(int arg1, int arg2, struct svc_req *rqstp)

{

static int result;

/*

* insert server code here

*/

return(&result);

}

This output conforms to the syntax requirements and structure of ANSI C. The header files that
are generated when this option is invoked can be used with ANSI C or with C++.

Compile-Time xdr_inline()Count
rpcgen tries to generate more efficient code by using xdr_inline() when possible (see the
xdr_admin(3NSL) man page). When a structure contains elements that xdr_inline() can be
used on (for example integer(), long(), bool()), the relevant portion of the structure is
packed with xdr_inline(). A default of five or more packed elements in sequence causes inline
code to be generated. You can change this default with the -i flag. The rpcgen -i 3 test.x
command causes rpcgen to start generating inline code after three qualifying elements are
found in sequence. The rpcgen -i 0 test.x command prevents any inline code from being
generated.

In most situations, you do not need to use the -i flag. The _xdr.c stub is the only file affected by
this feature.

rpcgenProgramming Techniques
This section suggests some common RPC and rpcgen programming techniques.

TABLE 3–4 RPC Programming Techniques

Technique Description

Network type rpcgen can produce server code for specific transport types.

Define statements You can define C-preprocessing symbols on rpcgen command lines.

rpcgen Programming Techniques

Chapter 3 • rpcgen Programming Guide 63

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=xdr-admin-3nsl

TABLE 3–4 RPC Programming Techniques (Continued)
Technique Description

Broadcast calls Servers need not send error replies to broadcast calls.

Debugging applications Debug as normal function calls, then change to a distributed
application.

Port monitor support Port monitors can “listen” on behalf of RPC servers.

Dispatch tables Programs can access server dispatch tables.

Time-out changes You can change client default time-out periods.

Authentication Clients can authenticate themselves to servers; the appropriate
servers can examine client authentication information.

Network Types/Transport Selection
rpcgen takes optional arguments that enable a programmer to specify desired network types or
specific network identifiers. For details of network selection, see Programming Interfaces Guide.

The -s flag creates a server that responds to requests on the specified type of transport. For
example, the command rpcgen -s datagram_n prot.x writes a server to standard output that
responds to any of the connectionless transports specified in the NETPATH environment variable,
or in /etc/netconfig, if NETPATH is not defined. A command line can contain multiple -s flags
and their network types.

Similarly, the -n flag creates a server that responds only to requests from the transport specified
by a single network identifier.

Note – Be careful using servers created by rpcgen with the -n flag. Network identifiers are host
specific, so the resulting server might not run as expected on other hosts.

Command-Line Define Statements
You can define C-preprocessing symbols and assign values to them from the command line.
Command-line define statements can be used to generate conditional debugging code when the
DEBUG symbol is defined. For example:

$ rpcgen -DDEBUG proto.x

rpcgen Programming Techniques

ONC+ Developer's Guide • November 2010 (Beta)64

http://www.oracle.com/pls/topic/lookup?ctx=821-1602&id=netproto

Server Response to Broadcast Calls
When a procedure has been called through broadcast RPC and cannot provide a useful
response, the server should send no reply to the client, thus reducing network traffic. To prevent
the server from replying, a remote procedure can return NULL as its result. The server code
generated by rpcgen detects this return and sends no reply.

The following code example is a procedure that replies only if it reaches an NFS server.

EXAMPLE 3–23 NFS Server Response to Broadcast Calls

void *

reply_if_nfsserver()

{

char notnull; /*only here so we can use its address */

if(access("/etc/dfs/sharetab", F_OK) < 0) {

/* prevent RPC from replying */

return((void *) NULL);

}

/* Assign notnull a non-null value then RPC sends a reply */

return((void *) ¬null);

}

A procedure must return a non-NULL pointer when it is appropriate for RPC library routines to
send a reply.

In the example, if the procedure reply_if_nfsserver() is defined to return nonvoid values,
the return value ¬null should point to a static variable.

Port Monitor Support
Port monitors such as inetd and listen can monitor network addresses for specified RPC
services. When a request arrives for a particular service, the port monitor spawns a server
process. After the call has been serviced, the server can exit. This technique conserves system
resources. The main server function generated by rpcgen allows invocation by inetd. See
“Using inetd” on page 128 for details.

Services might wait for a specified interval after completing a service request, in case another
request follows. If no call arrives in the specified time, the server exits, and some port monitors,
like inetd, continue to monitor for the server. If a later request for the service occurs, the port
monitor gives the request to a waiting server process (if any), rather than spawning a new
process.

rpcgen Programming Techniques

Chapter 3 • rpcgen Programming Guide 65

Note – When monitoring for a server, some port monitors, like listen(), always spawn a new
process in response to a service request. If a server is used with such a monitor, the server should
exit immediately on completion.

By default, services created using rpcgen wait for 120 seconds after servicing a request before
exiting. You can change the interval with the -K flag. In the following example, the server waits
for 20 seconds before exiting. To create a server that exits immediately, you can use zero value
for the interval period.

rpcgen -K 20 proto.x

rpcgen -K 0 proto.x

To create a server that never exits, the value is -K -1.

For more information on port monitors, see Appendix F, “Writing a Port Monitor With the
Service Access Facility (SAF).”

Time-out Changes
After sending a request to the server, a client program waits for a default period (25 seconds) to
receive a reply. You can change this timeout by using the clnt_control() routine. See
“Standard Interfaces” on page 80 for additional uses of the clnt_control() routine. See also
the rpc(3NSL) man page. When considering time-out periods, be sure to allow the minimum
amount of time required for “round-trip” communications over the network. The following
code example illustrates the use of clnt_control().

EXAMPLE 3–24 clnt_controlRoutine

struct timeval tv;

CLIENT *clnt;

clnt = clnt_create("somehost", SOMEPROG, SOMEVERS, "visible");

if (clnt == (CLIENT *)NULL)

exit(1);

tv.tv_sec = 60; /* change time-out to 60 seconds */

tv.tv_usec = 0;

clnt_control(clnt, CLSET_TIMEOUT, &tv);

Client Authentication
The client create routines do not have any facilities for client authentication. Some clients might
have to authenticate themselves to the server.

rpcgen Programming Techniques

ONC+ Developer's Guide • November 2010 (Beta)66

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-3nsl

The following example illustrates one of the least secure authentication methods in common
use. See “Authentication” on page 110 for information on more secure authentication
techniques.

EXAMPLE 3–25 AUTH_SYSAuthentication Program

CLIENT *clnt;

clnt = clnt_create("somehost", SOMEPROG, SOMEVERS, "visible");

if (clnt != (CLIENT *)NULL) {

/* To set AUTH_SYS style authentication */

clnt->cl_auth = authsys_createdefault();

}

Authentication information is important to servers that have to achieve some level of security.
This extra information is supplied to the server as a second argument.

The following example is for a server that checks client authentication data. It is modified from
printmessage_1() in “rpcgen Tutorial” on page 40. The code allows only superusers to print a
message to the console.

EXAMPLE 3–26 printmsg_1 for Superuser

int *

printmessage_1(msg, req)

char **msg;

struct svc_req *req;

{

static int result; /* Must be static */

FILE *f;

struct authsys_parms *aup;

aup = (struct authsys_parms *)req->rq_clntcred;

if (aup->aup_uid != 0) {

result = 0;

return (&result)

}

/* Same code as before. */

}

Dispatch Tables
Sometimes programs should have access to the dispatch tables used by the RPC package. For
example, the server dispatch routine might check authorization and then invoke the service
routine. Or, a client library might handle the details of storage management and XDR data
conversion.

When invoked with the -T option, rpcgen generates RPC dispatch tables for each program
defined in the protocol description file, proto.x, in the file proto_tbl.i. The suffix.i stands
for “index.” You can invoke rpcgen with the -t option to build only the header file. You cannot
invoke rpcgen in C-style mode (-N) with either the -T or -t flag.

rpcgen Programming Techniques

Chapter 3 • rpcgen Programming Guide 67

Each entry in the dispatch table is a struct rpcgen_table, defined in the header file proto.h as
follows:

struct rpcgen_table {

char *(*proc)();

xdrproc_t xdr_arg;

unsigned len_arg;

xdrproc_t xdr_res;

xdrproc_t len_res

};

where:

proc is a pointer to the service routine

xdr_arg is a pointer to the input (argument) xdr routine

len_arg is the length in bytes of the input argument

xdr_res is a pointer to the output (result) xdr routine

len_res is the length in bytes of the output result

The table, named dirprog_1_table for the dir.x example, is indexed by procedure number.
The variable dirprog_1_nproc contains the number of entries in the table.

The find_proc() routine shows an example of how to locate a procedure in the dispatch tables.

EXAMPLE 3–27 Using a Dispatch Table

struct rpcgen_table *

find_proc(proc)

rpcproc_t proc;

{

if (proc >= dirprog_1_nproc)

/* error */

else

return (&dirprog_1_table[proc]);

}

Each entry in the dispatch table contains a pointer to the corresponding service routine.
However, that service routine is usually not defined in the client code. To avoid generating
unresolved external references, and to require only one source file for the dispatch table, the
rpcgen service routine initializer is RPCGEN_ACTION(proc_ver).

Using this technique, the same dispatch table can be included in both the client and the server.
Use the following define statement when compiling the client.

#define RPCGEN_ACTION(routine) 0

Use the following define when writing the server.

rpcgen Programming Techniques

ONC+ Developer's Guide • November 2010 (Beta)68

#define RPCGEN_ACTION(routine)routine

64–Bit Considerations for rpcgen
In Example 3–27 proc is declared as type rpcproc_t. Formerly, RPC programs, versions,
procedures, and ports were declared to be of type u_long. On a 32–bit machine, a u_long is a
4–byte quantity (as is an int); on a 64–bit system, a u_long is an 8-byte quantity. The data types
rpcprog_t, rpcvers_t, rpc_proc_t, and rpcport_t, introduced in the Solaris 7 environment,
should be used whenever possible in declaring RPC programs, versions, procedures, and ports
in place of both u_long and long. These newer types provide backwards compatibility with
32–bit systems. They are guaranteed to be 4–byte quantities no matter which system rpcgen is
run on. While rpcgen programs using u_long versions of programs, versions, and procedures
can still run, they have different consequences on 32– and 64–bit machines. For that reason,
replace them with the appropriate newer data types. In fact, avoid using long and u_long

whenever possible.

Beginning with the Solaris 7 environment, source files created with rpcgen containing XDR
routines use different inline macros depending on whether the code is to run on a 32–bit or
64–bit machine. Specifically, the source files will use the IXDR_GET_INT32() and
IXDR_PUT_INT32() macros instead of IXDR_GETLONG() and IXDR_PUTLONG(). For example, if
the rpcgen source file foo.x contains the following code, the resulting foo_xdr.c file ensures
that the correct inline macro is used.

struct foo {

char c;

int i1;

int i2;

int i3;

long l;

short s;

};

#if defined(_LP64) || defined(_KERNEL)

register int *buf;

#else

register long *buf;

#endif

. . .

#if defined(_LP64) || defined(_KERNEL)

IXDR_PUT_INT32(buf, objp->i1);

IXDR_PUT_INT32(buf, objp->i2);

IXDR_PUT_INT32(buf, objp->i3);

IXDR_PUT_INT32(buf, objp->l);

IXDR_PUT_SHORT(buf, objp->s);

rpcgen Programming Techniques

Chapter 3 • rpcgen Programming Guide 69

#else

IXDR_PUT_LONG(buf, objp->i1);

IXDR_PUT_LONG(buf, objp->i2);

IXDR_PUT_LONG(buf, objp->i3);

IXDR_PUT_LONG(buf, objp->l);

IXDR_PUT_SHORT(buf, objp->s);

#endif

The code declares buf to be either int or long, depending on whether the machine is 64–bit or
32–bit.

Currently, data types transported by using RPC are limited in size to 4-byte quantities (32 bits).
The 8-byte long is provided to enable applications to make maximum use of 64–bit
architecture. However, programmers should avoid using longs, and functions that use longs,
such as x_putlong(), in favor of ints whenever possible. As noted previously, RPC programs,
versions, procedures, and ports have their own dedicated types. xdr_long() fails if the data
value is not between INT32_MIN and INT32_MAX. Also, the data could be truncated if inline
macros such as IXDR_GET_LONG() and IXDR_PUT_LONG() are used. The same concerns apply to
u_long variables. See also the xdr_long(3NSL) man page.

IPv6 Considerations for rpcgen
Only TI-RPC supports IPv6 transport. If an application is intended to run over IPv6, now or in
the future, you must not use the backward compatibility switch. The selection of IPv4 or IPv6 is
determined by the respective order of associated entries in /etc/netconfig.

Debugging Applications
To simplify the testing and debugging process, first test the client program and the server
procedure in a single process by linking them with each other rather than with the client and
server skeletons. Comment out calls to the client create RPC library routines (see the
rpc_clnt_create(3NSL) man page) and the authentication routines. Do not link with libnsl.

Link the procedures from the previous example by using the command cc rls.c dir_clnt.c

dir_proc.c -o rls

With the RPC and XDR functions commented out, the procedure calls execute as ordinary local
function calls, and the program is debugged with a local debugger such as dbxtool. When the
program works, the client program is linked to the client skeleton produced by rpcgen and the
server procedures are linked to the server skeleton produced by rpcgen.

You can also use the Raw RPC mode to test the XDR routines. For details, see “Testing
Programs Using Low-Level Raw RPC” on page 95 for details.

rpcgen Programming Techniques

ONC+ Developer's Guide • November 2010 (Beta)70

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=xdr-long-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-clnt-create-3nsl

Two kinds of errors can happen in an RPC call. The first kind of error is caused by a problem
with the mechanism of the remote procedure calls. Examples of this problem are:

■ The procedure is not available
■ The remote server is not responding
■ The remote server is unable to decode the arguments.

In Example 3–26, an RPC error happens if result is NULL. The reason for the failure can be
displayed by using clnt_perror(), or an error string can be returned through
clnt_sperror().

The second type of error is caused by the server itself. In Example 3–26, an error can be returned
by opendir(). The handling of these errors is application specific and is the responsibility of the
programmer.

Note that you will be unable to link the client and server programs to each other if you are using
the -C option, because of the -_svc suffix added to the server-side routines.

rpcgen Programming Techniques

Chapter 3 • rpcgen Programming Guide 71

72

Programmer's Interface to RPC

This chapter addresses the C interface to RPC and describes how to write network applications
using RPC. For a complete specification of the routines in the RPC library, see the rpc(3NSL)
and related man pages.

The topics covered in this chapter include:

■ “Simplified Interface” on page 73
■ “Standard Interfaces” on page 80
■ “Testing Programs Using Low-Level Raw RPC” on page 95
■ “MT User Mode” on page 152

Note – The client and server interfaces described in this chapter are multithread safe, except
where noted (such as raw mode). This designation means that applications that contain RPC
function calls can be used freely in a multithreaded application.

Simplified Interface
The simplified interface is the level to use if you do not require the use of any other RPC
routines. This level also limits control of the underlying communications mechanisms. You can
rapidly develop a program at this level, and the development is directly supported by the rpcgen
compiler. For most applications, rpcgen and its facilities are sufficient.

Some RPC services are not available as C functions, but they are available as RPC programs. The
simplified interface library routines provide direct access to the RPC facilities for programs that
do not require fine levels of control. Routines such as rusers() are in the RPC services library
librpcsvc. The following code example is a program that displays the number of users on a
remote host. It calls the RPC library routine rusers().

4C H A P T E R 4

73

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-3nsl

EXAMPLE 4–1 rusersProgram

#include <rpc/rpc.h>

#include <rpcsvc/rusers.h>

#include <stdio.h>

/*

* a program that calls the

* rusers() service

*/

main(argc, argv)

int argc;

char **argv;

{

int num;

if (argc != 2) {

fprintf(stderr, "usage: %s hostname\n", argv[0]);

exit(1);

}

if ((num = rnusers(argv[1])) < 0) {

fprintf(stderr, "error: rusers\n");
exit(1);

}

fprintf(stderr, "%d users on %s\n", num, argv[1]);

exit(0);

}

Compile the program in Example 4–1 by typing:

cc program.c -lrpcsvc -lnsl

Client Side of Simplified Interface
Just one function exists on the client side of the simplified interface: rpc_call(). It has nine
parameters:

int 0 or error code

rpc_call (

char *host /* Name of server host */

rpcprog_t prognum /* Server program number */

rpcvers_t versnum /* Server version number */

rpcproc_t procnum /* Server procedure number */

xdrproc_t inproc /* XDR filter to encode arg */

char *in /* Pointer to argument */

xdr_proc_t outproc /* Filter to decode result */

char *out /* Address to store result */

char *nettype /*For transport selection */

);

The rpc_call() function calls the procedure specified by prognum, versum, and procnum on
the host. The argument to be passed to the remote procedure is pointed to by the in parameter,

Simplified Interface

ONC+ Developer's Guide • November 2010 (Beta)74

and inproc is the XDR filter to encode this argument. The out parameter is an address where the
result from the remote procedure is to be placed. outproc is an XDR filter that decodes the result
and places it at this address.

The client blocks on rpc_call() until it receives a reply from the server. If the server accepts, it
returns RPC_SUCCESS with the value of zero. The server returns a non-zero value if the call was
unsuccessful. You can cast this value to the type clnt_stat, an enumerated type defined in the
RPC include files and interpreted by the clnt_sperrno() function. This function returns a
pointer to a standard RPC error message corresponding to the error code.

In the example, all “visible” transports listed in /etc/netconfig are tried. Adjusting the
number of retries requires use of the lower levels of the RPC library.

Multiple arguments and results are handled by collecting them in structures.

The following code example changes the code in Example 4–1 to use the simplified interface.

EXAMPLE 4–2 rusersProgram Using Simplified Interface

#include <stdio.h>

#include <utmpx.h>

#include <rpc/rpc.h>

#include <rpcsvc/rusers.h>

/* A program that calls the RUSERSPROG RPC program */

main(argc, argv)

int argc;

char **argv;

{

unsigned int nusers;

enum clnt_stat cs;

if (argc != 2) {

fprintf(stderr, "usage: rusers hostname\n");
exit(1);

}

if(cs = rpc_call(argv[1], RUSERSPROG,

RUSERSVERS, RUSERSPROC_NUM, xdr_void,

(char *)0, xdr_u_int, (char *)&nusers,

"visible") != RPC_SUCCESS) {

clnt_perrno(cs);

exit(1);

}

fprintf(stderr, "%d users on %s\n", nusers, argv[1]);

exit(0);

}

Data types can be represented differently on different machines. Therefore, rpc_call() needs
both the type of the RPC argument and a pointer to it. rpc_call() also needs this information
for the result. For RUSERSPROC_NUM, the return value is an unsigned int, so the first return
parameter of rpc_call() is xdr_u_int, which is for an unsigned int, and the second return

Simplified Interface

Chapter 4 • Programmer's Interface to RPC 75

parameter is &nusers, which points to unsigned int storage. Because RUSERSPROC_NUM has no
argument, the XDR encoding function of rpc_call() is xdr_void() and its argument is NULL.

Server Side of the Simplified Interface
The server program using the simplified interface is straightforward. The server calls rpc_reg()
to register the procedure to be called. It then calls svc_run(), the RPC library's remote
procedure dispatcher, to wait for requests to arrive.

rpc_reg() has the following arguments:

rpc_reg (

rpcprog_t prognum /* Server program number */

rpcvers_t versnum /* Server version number */

rpcproc_t procnum /* server procedure number */

char *procname /* Name of remote function */

xdrproc_t inproc /* Filter to encode arg */

xdrproc_t outproc /* Filter to decode result */

char *nettype /* For transport selection */

);

svc_run() invokes service procedures in response to RPC call messages. The dispatcher in
rpc_reg() decodes remote procedure arguments and encodes results, using the XDR filters
specified when the remote procedure was registered. Some notes about the server program
include:
■ Most RPC applications follow the naming convention of appending a _1 to the function

name. The sequence _n is added to the procedure names to indicate the version number n of
the service.

■ The argument and result are passed as addresses. This is true for all functions that are called
remotely. Passing NULL as a result of a function means that no reply is sent to the client,
because NULL indicates that there is no reply to send.

■ The result must exist in static data space because its value is accessed after the actual
procedure has exited. The RPC library function that builds the RPC reply message accesses
the result and sends the value back to the client.

■ Only a single argument is allowed. If there are multiple elements of data, they should be
wrapped inside a structure that can then be passed as a single entity.

■ The procedure is registered for each transport of the specified type. If the type parameter is
(char *)NULL, the procedure is registered for all transports specified in NETPATH.

Hand-Coded Registration Routine
You can sometimes implement faster or more compact code than can rpcgen. rpcgen handles
the generic code-generation cases. The following program is an example of a hand-coded
registration routine. It registers a single procedure and enters svc_run() to service requests.

Simplified Interface

ONC+ Developer's Guide • November 2010 (Beta)76

#include <stdio.h>

#include <rpc/rpc.h>

#include <rpcsvc/rusers.h>

void *rusers();

main()

{

if(rpc_reg(RUSERSPROG, RUSERSVERS,

RUSERSPROC_NUM, rusers,

xdr_void, xdr_u_int,

"visible") == -1) {

fprintf(stderr, "Couldn’t Register\n");
exit(1);

}

svc_run(); /* Never returns */

fprintf(stderr, "Error: svc_run

returned!\n");
exit(1);

}

rpc_reg() can be called as many times as is needed to register different programs, versions, and
procedures.

Passing Arbitrary Data Types
Data types passed to and received from remote procedures can be any of a set of predefined
types, or can be programmer-defined types. RPC handles arbitrary data structures, regardless of
the byte orders or structure layout conventions of different machines. RPC always converts
these structures to a standard transfer format called external data representation (XDR) before
sending them over the transport. The conversion from a machine representation to XDR is
called serializing, and the reverse process is called deserializing.

The translator arguments of rpc_call() and rpc_reg() can specify an XDR primitive
procedure, like xdr_u_int(), or a programmer-supplied routine that processes a complete
argument structure. Argument processing routines must take only two arguments: a pointer to
the result and a pointer to the XDR handle.

The XDR Primitive Type Routines are:

xdr_int()

xdr_netobj()

xdr_u_long()

xdr_enum()

xdr_long()

xdr_float()

xdr_u_int()

xdr_bool()

xdr_short()

xdr_double()

xdr_u_short()

xdr_wrapstring()

xdr_char()

xdr_quadruple()

xdr_u_char()

xdr_void()

xdr_hyper()

xdr_u_hyper()

Simplified Interface

Chapter 4 • Programmer's Interface to RPC 77

The fixed-width integer types found in int_types.h, the routines xdr_char(), xdr_short(),
xdr_int(), and xdr_hyper() (and the unsigned versions of each) have equivalent functions
with names familiar to ANSI C, as indicated in the following table.

TABLE 4–1 Primitive Type Equivalences

Function Equivalent

xdr_char() xdr_int8_t()

xdr_u_char() xdr_u_int8_t()

xdr_short() xdr_int16_t()

xdr_u_short() xdr_u_int16_t()

xdr_int() xdr_int32_t()

xdr_u_int() xdr_u_int32_t()

xdr_hyper() xdr_int64_t()

xdr_u_hyper() xdr_u_int64_t()

The nonprimitive xdr_string(), which takes more than two parameters, is called from
xdr_wrapstring().

The following example of a programmer-supplied routine contains the calling arguments of a
procedure.

struct simple {

int a;

short b;

} simple;

The XDR routine xdr_simple() translates the argument structure as shown in the following
code example.

EXAMPLE 4–3 xdr_simpleRoutine

#include <rpc/rpc.h>

#include "simple.h"

bool_t

xdr_simple(xdrsp, simplep)

XDR *xdrsp;

struct simple *simplep;

{

if (!xdr_int(xdrsp, &simplep->a))

return (FALSE);

if (!xdr_short(xdrsp, &simplep->b))

return (FALSE);

return (TRUE);

}

Simplified Interface

ONC+ Developer's Guide • November 2010 (Beta)78

rpcgen can automatically generate an equivalent routine.

An XDR routine returns nonzero (a C TRUE) if it completes successfully, and zero otherwise. A
complete description of XDR is provided in Appendix C, “XDR Protocol Specification.”

The following list shows prefabricated routines:

xdr_array()

xdr_bytes()

xdr_reference()

xdr_vector()

xdr_union()

xdr_pointer()

xdr_string()

xdr_opaque()

For example, to send a variable-sized array of integers, the routine is packaged in a structure
containing the array and its length:

struct varintarr {

int *data;

int arrlnth;

} arr;

Translate the array with xdr_varintarr(), as shown in the following code example.

EXAMPLE 4–4 xdr_varintarr Syntax Use

bool_t

xdr_varintarr(xdrsp, arrp)

XDR *xdrsp;

struct varintarr *arrp;

{

return(xdr_array(xdrsp, (caddr_t)&arrp->data,

(u_int *)&arrp->arrlnth, MAXLEN,

sizeof(int), xdr_int));

}

The arguments of xdr_array() are the XDR handle, a pointer to the array, a pointer to the size
of the array, the maximum array size, the size of each array element, and a pointer to the XDR
routine to translate each array element. If the size of the array is known in advance, use
xdr_vector(), as shown in the following code example.

EXAMPLE 4–5 xdr_vector Syntax Use

int intarr[SIZE];

bool_t

xdr_intarr(xdrsp, intarr)

XDR *xdrsp;

Simplified Interface

Chapter 4 • Programmer's Interface to RPC 79

EXAMPLE 4–5 xdr_vector Syntax Use (Continued)

int intarr[];

{

return (xdr_vector(xdrsp, intarr, SIZE, sizeof(int), xdr_int));

}

XDR converts quantities to 4-byte multiples when serializing. For arrays of characters, each
character occupies 32 bits. xdr_bytes() packs characters. It has four parameters similar to the
first four parameters of xdr_array().

Null-terminated strings are translated by xdr_string(), which is like xdr_bytes() with no
length parameter. On serializing xdr_string() gets the string length from strlen(), and on
deserializing it creates a null-terminated string.

The following example calls the built-in functions xdr_string() and xdr_reference(), which
translates pointers to pass a string, and struct simple from previous examples.

EXAMPLE 4–6 xdr_reference Syntax Use

struct finalexample {

char *string;

struct simple *simplep;

} finalexample;

bool_t

xdr_finalexample(xdrsp, finalp)

XDR *xdrsp;

struct finalexample *finalp;

{

if (!xdr_string(xdrsp, &finalp->string, MAXSTRLEN))

return (FALSE);

if (!xdr_reference(xdrsp, &finalp->simplep,

sizeof(struct simple), xdr_simple))

return (FALSE);

return (TRUE);

}

Note that xdr_simple() could have been called here instead of xdr_reference().

Standard Interfaces
Interfaces to standard levels of the RPC package provide increasing control over RPC
communications. Programs that use this control are more complex. Effective programming at
these lower levels requires more knowledge of computer network fundamentals. The top,
intermediate, expert, and bottom levels are part of the standard interfaces.

Standard Interfaces

ONC+ Developer's Guide • November 2010 (Beta)80

This section describes how to control RPC details by using lower levels of the RPC library. For
example, you can select the transport protocol, which can be done at the simplified interface
level only through the NETPATH variable. You should be familiar with the top-level interface
(TLI) in order to use these routines.

The routines shown below cannot be used through the simplified interface because they require
a transport handle. For example, there is no way to allocate and free memory while serializing or
deserializing with XDR routines at the simplified interface.

clnt_call()

clnt_destroy()

clnt_control()

clnt_perrno()

clnt_pcreateerror()

clnt_perror()

svc_destroy()

Top-Level Interface
At the top level, the application can specify the type of transport to use but not the specific
transport. This level differs from the simplified interface in that the application creates its own
transport handles in both the client and server.

Client Side of the Top-Level Interface
Assume the header file in the following code example.

EXAMPLE 4–7 time_prot.hHeader File

/* time_prot.h */

#include <rpc/rpc.h>

#include <rpc/types.h>

struct timev {

int second;

int minute;

int hour;

}; typedef struct timev timev;

bool_t xdr_timev();

#define TIME_PROG 0x40000001

#define TIME_VERS 1

#define TIME_GET 1

The following example shows the client side of a trivial date service using top-level service
routines. The transport type is specified as an invocation argument of the program.

Standard Interfaces

Chapter 4 • Programmer's Interface to RPC 81

EXAMPLE 4–8 Client for Trivial Date Service

#include <stdio.h>

#include "time_prot.h"

#define TOTAL (30)

/*

* Caller of trivial date service

* usage: calltime hostname

*/

main(argc, argv)

int argc;

char *argv[];

{

struct timeval time_out;

CLIENT *client;

enum clnt_stat stat;

struct timev timev;

char *nettype;

if (argc != 2 && argc != 3) {

fprintf(stderr,”usage:%s host[nettype]\n” ,argv[0]);

exit(1);

}

if (argc == 2)

nettype = "netpath"; /* Default */

else

nettype = argv[2];

client = clnt_create(argv[1], TIME_PROG, TIME_VERS, nettype);

if (client == (CLIENT *) NULL) {

clnt_pcreateerror(“Couldn’t create client”);

exit(1);

}

time_out.tv_sec = TOTAL;

time_out.tv_usec = 0;

stat = clnt_call(client, TIME_GET,

xdr_void, (caddr_t)NULL,

xdr_timev, (caddr_t)&timev,

time_out);

if (stat != RPC_SUCCESS) {

clnt_perror(client, "Call failed");
exit(1);

}

fprintf(stderr,"%s: %02d:%02d:%02d GMT\n",
nettype timev.hour, timev.minute,

timev.second);

(void) clnt_destroy(client);

exit(0);

}

If nettype is not specified in the invocation of the program, the string netpath is substituted.
When RPC libraries routines encounter this string, the value of the NETPATH environment
variable governs transport selection.

If the client handle cannot be created, display the reason for the failure with
clnt_pcreateerror(). You can also get the error status by reading the contents of the global
variable rpc_createerr.

Standard Interfaces

ONC+ Developer's Guide • November 2010 (Beta)82

After the client handle is created, clnt_call() is used to make the remote call. Its arguments
are the remote procedure number, an XDR filter for the input argument, the argument pointer,
an XDR filter for the result, the result pointer, and the time-out period of the call. The program
has no arguments, so xdr_void() is specified. Clean up by calling clnt_destroy().

To bound the time allowed for client handle creation in the previous example to 30 seconds,
replace the call to clnt_create() with a call to clnt_create_timed() as shown in the
following code segment:

struct timeval timeout;

timeout.tv_sec = 30; /* 30 seconds */

timeout.tv_usec = 0;

client = clnt_create_timed(argv[1], TIME_PROG, TIME_VERS, nettype,

&timeout);

The following example shows a top-level implementation of a server for the trivial date service.

EXAMPLE 4–9 Server for Trivial Date Service

#include <stdio.h>

#include <rpc/rpc.h>

#include "time_prot.h"

static void time_prog();

main(argc,argv)

int argc;

char *argv[];

{

int transpnum;

char *nettype;

if (argc > 2) {

fprintf(stderr, "usage: %s [nettype]\n", argv[0]);

exit(1);

}

if (argc == 2)

nettype = argv[1];

else

nettype = "netpath"; /* Default */

transpnum = svc_create(time_prog,TIME_PROG,TIME_VERS,nettype);

if (transpnum == 0) {

fprintf(stderr,”%s: cannot create %s service.\n”,

argv[0], nettype);

exit(1);

}

svc_run();

}

/*

* The server dispatch function

*/

static void

time_prog(rqstp, transp)

struct svc_req *rqstp;

Standard Interfaces

Chapter 4 • Programmer's Interface to RPC 83

EXAMPLE 4–9 Server for Trivial Date Service (Continued)

SVCXPRT *transp;

{

struct timev rslt;

time_t thetime;

switch(rqstp->rq_proc) {

case NULLPROC:

svc_sendreply(transp, xdr_void, NULL);

return;

case TIME_GET:

break;

default:

svcerr_noproc(transp);

return;

}

thetime = time((time_t *) 0);

rslt.second = thetime % 60;

thetime /= 60;

rslt.minute = thetime % 60;

thetime /= 60;

rslt.hour = thetime % 24;

if (!svc_sendreply(transp, xdr_timev, &rslt)) {

svcerr_systemerr(transp);

}

}

svc_create() returns the number of transports on which it created server handles.
time_prog() is the service function called by svc_run() when a request specifies its program
and version numbers. The server returns the results to the client through svc_sendreply().

When you use rpcgen to generate the dispatch function, svc_sendreply() is called after the
procedure returns. Therefore, rslt in this example must be declared static in the actual
procedure. svc_sendreply() is called from inside the dispatch function, so rslt is not declared
static.

In this example, the remote procedure takes no arguments. When arguments must be passed,
the calls listed below fetch, deserialize (XDR decode), and free the arguments.

svc_getargs(SVCXPRT_handle, XDR_filter, argument_pointer);

svc_freeargs(SVCXPRT_handle, XDR_filter argument_pointer);

Intermediate-Level Interface
At the intermediate level, the application directly chooses the transport to use.

Standard Interfaces

ONC+ Developer's Guide • November 2010 (Beta)84

Client Side of the Intermediate-Level Interface
The following example shows the client side of the time service from “Top-Level Interface” on
page 81, written at the intermediate level of RPC. In this example, the user must name the
transport over which the call is made on the command line.

EXAMPLE 4–10 Client for Time Service, Intermediate Level

#include <stdio.h>

#include <rpc/rpc.h>

#include <netconfig.h> /* For netconfig structure */

#include "time_prot.h"

#define TOTAL (30)

main(argc,argv)

int argc;

char *argv[];

{

CLIENT *client;

struct netconfig *nconf;

char *netid;

/* Declarations from previous example */

if (argc != 3) {

fprintf(stderr, "usage: %s host netid\n”, argv[0]);

exit(1);

}

netid = argv[2];

if ((nconf = getnetconfigent(netid)) ==

(struct netconfig *) NULL) {

fprintf(stderr, "Bad netid type: %s\n", netid);

exit(1);

}

client = clnt_tp_create(argv[1], TIME_PROG,

TIME_VERS, nconf);

if (client == (CLIENT *) NULL) {

clnt_pcreateerror("Could not create client");
exit(1);

}

freenetconfigent(nconf);

/* Same as previous example after this point */

}

In this example, the netconfig structure is obtained by a call to getnetconfigent(netid). See
the getnetconfig(3NSL) man page and Programming Interfaces Guide for more details. At this
level, the program explicitly selects the network.

To bound the time allowed for client handle creation in the previous example to 30 seconds,
replace the call to clnt_tp_create() with a call to clnt_tp_create_timed() as shown in the
following code segment:

struct timeval timeout;

timeout.tv_sec = 30; /* 30 seconds */

Standard Interfaces

Chapter 4 • Programmer's Interface to RPC 85

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=getnetconfig-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1602&id=netproto

timeout.tv_usec = 0;

client = clnt_tp_create_timed(argv[1],

TIME_PROG, TIME_VERS, nconf,

&timeout);

Server Side of the Intermediate-Level Interface
The following example shows the corresponding server. The command line that starts the
service must specify the transport over which the service is provided.

EXAMPLE 4–11 Server for Time Service, Intermediate Level

/*

* This program supplies Greenwich mean

* time to the client that invokes it.

* The call format is: server netid

*/

#include <stdio.h>

#include <rpc/rpc.h>

#include <netconfig.h> /* For netconfig structure */

#include "time_prot.h"

static void time_prog();

main(argc, argv)

int argc;

char *argv[];

{

SVCXPRT *transp;

struct netconfig *nconf;

if (argc != 2) {

fprintf(stderr, "usage: %s netid\n", argv[0]);

exit(1);

}

if ((nconf = getnetconfigent(argv[1])) ==

(struct netconfig *) NULL) {

fprintf(stderr, "Could not find info on %s\n", argv[1]);

exit(1);

}

transp = svc_tp_create(time_prog, TIME_PROG,

TIME_VERS, nconf);

if (transp == (SVCXPRT *) NULL) {

fprintf(stderr, "%s: cannot create %s service\n",
argv[0], argv[1]);

exit(1)

}

freenetconfigent(nconf);

svc_run();

}

static

void time_prog(rqstp, transp)

struct svc_req *rqstp;

SVCXPRT *transp;

Standard Interfaces

ONC+ Developer's Guide • November 2010 (Beta)86

EXAMPLE 4–11 Server for Time Service, Intermediate Level (Continued)

{

/* Code identical to Top Level version */

Expert-Level Interface
At the expert level, network selection is done the same as at the intermediate level. The only
difference is in the increased level of control that the application has over the details of the
CLIENT and SVCXPRT handles. These examples illustrate this control, which is exercised using
the clnt_tli_create() and svc_tli_create() routines. For more information on TLI, see
Programming Interfaces Guide.

Client Side of the Expert-Level Interface
Example 4–12 shows a version of clntudp_create(), the client creation routine for UDP
transport, using clnt_tli_create(). The example shows how to do network selection based
on the family of the transport you choose. clnt_tli_create() is used to create a client handle
and to:
■ Pass an open TLI file descriptor, which might or might not be bound
■ Pass the server's address to the client
■ Specify the send and receive buffer size

EXAMPLE 4–12 Client for RPC Lower Level

#include <stdio.h>

#include <rpc/rpc.h>

#include <netconfig.h>

#include <netinet/in.h>

/*

* In earlier implementations of RPC,

* only TCP/IP and UDP/IP were supported.

* This version of clntudp_create()

* is based on TLI/Streams.

*/

CLIENT *

clntudp_create(raddr, prog, vers, wait, sockp)

struct sockaddr_in *raddr; /* Remote address */

rpcprog_t prog; /* Program number */

prcvers_t vers; /* Version number */

struct timeval wait; /* Time to wait */

int *sockp; /* fd pointer */

{

CLIENT *cl; /* Client handle */

int madefd = FALSE; /* Is fd opened here */

int fd = *sockp; /* TLI fd */

struct t_bind *tbind; /* bind address */

struct netconfig *nconf; /* netconfig structure */

void *handlep;

Standard Interfaces

Chapter 4 • Programmer's Interface to RPC 87

http://www.oracle.com/pls/topic/lookup?ctx=821-1602&id=netproto

EXAMPLE 4–12 Client for RPC Lower Level (Continued)

if ((handlep = setnetconfig()) == (void *) NULL) {

/* Error starting network configuration */

rpc_createerr.cf_stat = RPC_UNKNOWNPROTO;

return((CLIENT *) NULL);

}

/*

* Try all the transports until it gets one that is

* connectionless, family is INET, and preferred name is UDP

*/

while (nconf = getnetconfig(handlep)) {

if ((nconf->nc_semantics == NC_TPI_CLTS) &&

(strcmp(nconf->nc_protofmly, NC_INET) == 0) &&

(strcmp(nconf->nc_proto, NC_UDP) == 0))

break;

}

if (nconf == (struct netconfig *) NULL)

rpc_createerr.cf_stat = RPC_UNKNOWNPROTO;

goto err;

}

if (fd == RPC_ANYFD) {

fd = t_open(nconf->nc_device, O_RDWR, &tinfo);

if (fd == -1) {

rpc_createerr.cf_stat = RPC_SYSTEMERROR;

goto err;

}

}

if (raddr->sin_port == 0) { /* remote addr unknown */

u_short sport;

/*

* rpcb_getport() is a user-provided routine that calls

* rpcb_getaddr and translates the netbuf address to port

* number in host byte order.

*/

sport = rpcb_getport(raddr, prog, vers, nconf);

if (sport == 0) {

rpc_createerr.cf_stat = RPC_PROGUNAVAIL;

goto err;

}

raddr->sin_port = htons(sport);

}

/* Transform sockaddr_in to netbuf */

tbind = (struct t_bind *) t_alloc(fd, T_BIND, T_ADDR);

if (tbind == (struct t_bind *) NULL)

rpc_createerr.cf_stat = RPC_SYSTEMERROR;

goto err;

}

if (t_bind->addr.maxlen < sizeof(struct sockaddr_in))

goto err;

(void) memcpy(tbind->addr.buf, (char *)raddr,

sizeof(struct sockaddr_in));

tbind->addr.len = sizeof(struct sockaddr_in);

/* Bind fd */

if (t_bind(fd, NULL, NULL) == -1) {

rpc_createerr.ct_stat = RPC_TLIERROR;

goto err;

Standard Interfaces

ONC+ Developer's Guide • November 2010 (Beta)88

EXAMPLE 4–12 Client for RPC Lower Level (Continued)

}

cl = clnt_tli_create(fd, nconf, &(tbind->addr), prog, vers,

tinfo.tsdu, tinfo.tsdu);

/* Close the netconfig file */

(void) endnetconfig(handlep);

(void) t_free((char *) tbind, T_BIND);

if (cl) {

*sockp = fd;

if (madefd == TRUE) {

/* fd should be closed while destroying the handle */

(void)clnt_control(cl,CLSET_FD_CLOSE, (char *)NULL);

}

/* Set the retry time */

(void) clnt_control(l, CLSET_RETRY_TIMEOUT,

(char *) &wait);

return(cl);

}

err:

if (madefd == TRUE)

(void) t_close(fd);

(void) endnetconfig(handlep);

return((CLIENT *) NULL);

}

The network is selected using setnetconfig(), getnetconfig(), and endnetconfig().
endnetconfig() is not called until after the call to clnt_tli_create(), near the end of the
example.

clntudp_create() can be passed an open TLI fd. If passed none (fd == RPC_ANYFD),
clntudp_create() opens its own using the netconfig structure for UDP to find the name of
the device to pass to t_open().

If the remote address is not known (raddr->sin_port == 0), it is obtained from the remote
rpcbind.

After the client handle has been created, you can modify it using calls to clnt_control(). The
RPC library closes the file descriptor when destroying the handle, as it does with a call to
clnt_destroy() when it opens the fd itself. The RPC library then sets the retry timeout period.

Server Side of the Expert-Level Interface
Example 4–13 shows the server side of Example 4–12. It is called svcudp_create(). The server
side uses svc_tli_create().

svc_tli_create() is used when the application needs a fine degree of control, particularly to:

■ Pass an open file descriptor to the application.
■ Pass the user's bind address.

Standard Interfaces

Chapter 4 • Programmer's Interface to RPC 89

■ Set the send and receive buffer sizes. The fd argument can be unbound when passed in. It is
then bound to a given address, and the address is stored in a handle. If the bind address is set
to NULL and the fd is initially unbound, it is bound to any suitable address.

Use rpcb_set() to register the service with rpcbind.

EXAMPLE 4–13 Server for RPC Lower Level

#include <stdio.h>

#include <rpc/rpc.h>

#include <netconfig.h>

#include <netinet/in.h>

SVCXPRT *

svcudp_create(fd)

register int fd;

{

struct netconfig *nconf;

SVCXPRT *svc;

int madefd = FALSE;

int port;

void *handlep;

struct t_info tinfo;

/* If no transports available */

if ((handlep = setnetconfig()) == (void *) NULL) {

nc_perror("server");
return((SVCXPRT *) NULL);

}

/*

* Try all the transports until it gets one which is

* connectionless, family is INET and, name is UDP

*/

while (nconf = getnetconfig(handlep)) {

if ((nconf->nc_semantics == NC_TPI_CLTS) &&

(strcmp(nconf->nc_protofmly, NC_INET) == 0)&&

(strcmp(nconf->nc_proto, NC_UDP) == 0))

break;

}

if (nconf == (struct netconfig *) NULL) {

endnetconfig(handlep);

return((SVCXPRT *) NULL);

}

if (fd == RPC_ANYFD) {

fd = t_open(nconf->nc_device, O_RDWR, &tinfo);

if (fd == -1) {

(void) endnetconfig();

return((SVCXPRT *) NULL);

}

madefd = TRUE;

} else

t_getinfo(fd, &tinfo);

svc = svc_tli_create(fd, nconf, (struct t_bind *) NULL,

tinfo.tsdu, tinfo.tsdu);

(void) endnetconfig(handlep);

if (svc == (SVCXPRT *) NULL) {

if (madefd)

Standard Interfaces

ONC+ Developer's Guide • November 2010 (Beta)90

EXAMPLE 4–13 Server for RPC Lower Level (Continued)

(void) t_close(fd);

return((SVCXPRT *)NULL);

}

return (svc);

}

The network selection here is accomplished similar to clntudp_create(). The file descriptor is
not bound explicitly to a transport address because svc_tli_create() does that.

svcudp_create() can use an open fd. It opens one itself using the selected netconfig structure
if none is provided.

Bottom-Level Interface
The bottom-level interface to RPC enables the application to control all options.
clnt_tli_create() and the other expert-level RPC interface routines are based on these
routines. You rarely use these low-level routines.

Bottom-level routines create internal data structures, buffer management, RPC headers, and so
on. Callers of these routines, like the expert-level routine clnt_tli_create(), must initialize
the cl_netid and cl_tp fields in the client handle. For a created handle, cl_netid is the network
identifier (for example, udp) of the transport and cl_tp is the device name of that transport (for
example, /dev/udp). The routines clnt_dg_create() and clnt_vc_create() set the clnt_ops
and cl_private fields.

Client Side of the Bottom-Level Interface
The following code example shows calls to clnt_vc_create() and clnt_dg_create().

EXAMPLE 4–14 Client for Bottom Level

/*

* variables are:

* cl: CLIENT *

* tinfo: struct t_info returned from either t_open or t_getinfo

* svcaddr: struct netbuf *

*/

switch(tinfo.servtype) {

case T_COTS:

case T_COTS_ORD:

cl = clnt_vc_create(fd, svcaddr,

prog, vers, sendsz, recvsz);

break;

case T_CLTS:

cl = clnt_dg_create(fd, svcaddr,

prog, vers, sendsz, recvsz);

break;

Standard Interfaces

Chapter 4 • Programmer's Interface to RPC 91

EXAMPLE 4–14 Client for Bottom Level (Continued)

default:

goto err;

}

These routines require that the file descriptor be open and bound. svcaddr is the address of the
server.

Server Side of the Bottom-Level Interface
The following code example is an example of creating a bottom-level server.

EXAMPLE 4–15 Server for Bottom Level

/*

* variables are:

* xprt: SVCXPRT *

*/

switch(tinfo.servtype) {

case T_COTS_ORD:

case T_COTS:

xprt = svc_vc_create(fd, sendsz, recvsz);

break;

case T_CLTS:

xprt = svc_dg_create(fd, sendsz, recvsz);

break;

default:

goto err;

}

Server Caching
svc_dg_enablecache() initiates service caching for datagram transports. Caching should be
used only in cases where a server procedure is a “once only” kind of operation. Executing a
cached server procedure multiple times yields different results.

svc_dg_enablecache(xprt, cache_size)

SVCXPRT *xprt;

unsigned int cache_size;

This function allocates a duplicate request cache for the service endpoint xprt, large enough to
hold cache_size entries. A duplicate request cache is needed if the service contains procedures
with varying results. After caching is enabled, it cannot be disabled.

Low-Level Data Structures
The following data structure information is for reference only. The implementation might
change.

Standard Interfaces

ONC+ Developer's Guide • November 2010 (Beta)92

The first structure is the client RPC handle, defined in <rpc/clnt.h>. Low-level
implementations must provide and initialize one handle per connection, as shown in the
following code example.

EXAMPLE 4–16 RPC Client Handle Structure

typedef struct {

AUTH *cl_auth; /* authenticator */

struct clnt_ops {

enum clnt_stat (*cl_call)(); /* call remote procedure */

void (*cl_abort)(); /* abort a call */

void (*cl_geterr)(); /* get specific error code */

bool_t (*cl_freeres)(); /* frees results */

void (*cl_destroy)(); /* destroy this structure */

bool_t (*cl_control)(); /* the ioctl() of rpc */

} *cl_ops;

caddrt_t cl_private; /* private stuff */

char *cl_netid; /* network token */

char *cl_tp; /* device name */

} CLIENT;

The first field of the client-side handle is an authentication structure, defined in <rpc/auth.h>.
By default, this field is set to AUTH_NONE. A client program must initialize cl_auth appropriately,
as shown in the following code example.

EXAMPLE 4–17 Client Authentication Handle

typedef struct {

struct opaque_auth ah_cred;

struct opaque_auth ah_verf;

union des_block ah_key;

struct auth_ops {

void (*ah_nextverf)();

int (*ah_marshal)(); /* nextverf & serialize */

int (*ah_validate)(); /* validate varifier */

int (*ah_refresh)(); /* refresh credentials */

void (*ah_destroy)(); /* destroy this structure */

} *ah_ops;

caddr_t ah_private;

} AUTH;

In the AUTH structure, ah_cred contains the caller's credentials, and ah_verf contains the data
to verify the credentials. See “Authentication” on page 110 for details.

The following code example shows the server transport handle.

EXAMPLE 4–18 Server Transport Handle

typedef struct {

int xp_fd;

#define xp_sock xp_fd

u_short xp_port; /* associated port number. Obsoleted */

struct xp_ops {

Standard Interfaces

Chapter 4 • Programmer's Interface to RPC 93

EXAMPLE 4–18 Server Transport Handle (Continued)

bool_t (*xp_recv)(); /* receive incoming requests */

enum xprt_stat (*xp_stat)(); /* get transport status */

bool_t (*xp_getargs)(); /* get arguments */

bool_t (*xp_reply)(); /* send reply */

bool_t (*xp_freeargs)(); /* free mem alloc for args */

void (*xp_destroy)(); /* destroy this struct */

} *xp_ops;

int xp_addrlen; /* length of remote addr. Obsolete */

char *xp_tp; /* transport provider device name */

char *xp_netid; /* network token */

struct netbuf xp_ltaddr; /* local transport address */

struct netbuf xp_rtaddr; /* remote transport address */

char xp_raddr[16]; /* remote address. Now obsoleted */

struct opaque_auth xp_verf; /* raw response verifier */

caddr_t xp_p1; /* private: for use by svc ops */

caddr_t xp_p2; /* private: for use by svc ops */

caddr_t xp_p3; /* private: for use by svc lib */

} SVCXPRT;

The following table shows the fields for the server transport handle.

xp_fd The file descriptor associated with the handle. Two or
more server handles can share the same file descriptor.

xp_netid The network identifier (for example, udp) of the
transport on which the handle is created and xp_tp is
the device name associated with that transport.

xp_ltaddr The server's own bind address.

xp_rtaddr The address of the remote caller (and so can change
from call to call).

xp_netid xp_tp xp_ltaddr Initialized by svc_tli_create() and other
expert-level routines.

The rest of the fields are initialized by the bottom-level server routines svc_dg_create() and
svc_vc_create().

For connection-oriented endpoints, the following fields are not valid until a connection has
been requested and accepted for the server:

xp_fd

xp_ops()

xp_p1()

xp_p2

xp_verf()

Standard Interfaces

ONC+ Developer's Guide • November 2010 (Beta)94

xp_tp()

xp_ltaddr

xp_rtaddr()

xp_netid()

Testing Programs Using Low-Level Raw RPC
Two pseudo-RPC interface routines bypass all the network software. The routines shown in
clnt_raw_create() and svc_raw_create() do not use any real transport.

Note – Do not use raw mode on production systems. Raw mode is intended as a debugging aid
only. Raw mode is not MT safe.

The following code example is compiled and linked using the following makefile:

all: raw

CFLAGS += -g

raw: raw.o

cc -g -o raw raw.o -lnsl

EXAMPLE 4–19 Simple Program Using Raw RPC

/*

* A simple program to increment a number by 1

*/

#include <stdio.h>

#include <rpc/rpc.h>

#include <rpc/raw.h>

#define prognum 0x40000001

#define versnum 1

#define INCR 1

struct timeval TIMEOUT = {0, 0};

static void server();

main (argc, argv)

int argc;

char **argv;

{

CLIENT *cl;

SVCXPRT *svc;

int num = 0, ans;

int flag;

if (argc == 2)

num = atoi(argv[1]);

svc = svc_raw_create();

if (svc == (SVCXPRT *) NULL) {

Testing Programs Using Low-Level Raw RPC

Chapter 4 • Programmer's Interface to RPC 95

EXAMPLE 4–19 Simple Program Using Raw RPC (Continued)

fprintf(stderr, "Could not create server handle\n");
exit(1);

}

flag = svc_reg(svc, prognum, versnum, server,

(struct netconfig *) NULL);

if (flag == 0) {

fprintf(stderr, "Error: svc_reg failed.\n");
exit(1);

}

cl = clnt_raw_create(prognum, versnum);

if (cl == (CLIENT *) NULL) {

clnt_pcreateerror("Error: clnt_raw_create");
exit(1);

}

if (clnt_call(cl, INCR, xdr_int, (caddr_t) &num, xdr_int,

(caddr_t) &ans, TIMEOUT)

!= RPC_SUCCESS) {

clnt_perror(cl, "Error: client_call with raw");
exit(1);

}

printf("Client: number returned %d\n", ans);

exit(0);

}

static void

server(rqstp, transp)

struct svc_req *rqstp;

SVCXPRT *transp;

{

int num;

fprintf(stderr, "Entering server procedure.\n");

switch(rqstp->rq_proc) {

case NULLPROC:

if (svc_sendreply(transp, xdr_void,

(caddr_t) NULL) == FALSE) {

fprintf(stderr, "error in null proc\n");
exit(1);

}

return;

case INCR:

break;

default:

svcerr_noproc(transp);

return;

}

if (!svc_getargs(transp, xdr_int, &num)) {

svcerr_decode(transp);

return;

}

fprintf(stderr, "Server procedure: about to increment.\n");
num++;

if (svc_sendreply(transp, xdr_int, &num) == FALSE) {

fprintf(stderr, "error in sending answer\n");

Testing Programs Using Low-Level Raw RPC

ONC+ Developer's Guide • November 2010 (Beta)96

EXAMPLE 4–19 Simple Program Using Raw RPC (Continued)

exit (1);

}

fprintf(stderr, "Leaving server procedure.\n");
}

Note the following points about the example:

■ The server must be created before the client.

■ svc_raw_create() has no parameters.

■ The server is not registered with rpcbind. The last parameter to svc_reg() is (struct
netconfig *) NULL.

■ svc_run() is not called.

■ All the RPC calls occur within the same thread of control.

■ The server-dispatch routine is the same as for normal RPC servers.

Connection-Oriented Transports
Example 4–20 copies a file from one host to another. The RPC send() call reads standard input
and sends the data to the server receive(), which writes the data to standard output. This
example also illustrates an XDR procedure that behaves differently on serialization and on
deserialization. A connection-oriented transport is used.

EXAMPLE 4–20 Remote Copy (Two-Way XDR Routine)

/*

* The xdr routine:

* on decode, read wire, write to fp

* on encode, read fp, write to wire

*/

#include <stdio.h>

#include <rpc/rpc.h>

bool_t

xdr_rcp(xdrs, fp)

XDR *xdrs;

FILE *fp;

{

unsigned long size;

char buf[BUFSIZ], *p;

if (xdrs->x_op == XDR_FREE) /* nothing to free */

return(TRUE);

while (TRUE) {

if (xdrs->x_op == XDR_ENCODE) {

if ((size = fread(buf, sizeof(char), BUFSIZ, fp))

Connection-Oriented Transports

Chapter 4 • Programmer's Interface to RPC 97

EXAMPLE 4–20 Remote Copy (Two-Way XDR Routine) (Continued)

== 0 && ferror(fp)) {

fprintf(stderr, "can’t fread\n");
return(FALSE);

} else

return(TRUE);

}

p = buf;

if (! xdr_bytes(xdrs, &p, &size, BUFSIZ))

return(0);

if (size == 0)

return(1);

if (xdrs->x_op == XDR_DECODE) {

if (fwrite(buf, sizeof(char), size, fp) != size) {

fprintf(stderr, "can’t fwrite\n");
return(FALSE);

} else

return(TRUE);

}

}

}

In Example 4–21 and Example 4–22, the serializing and deserializing are done only by the
xdr_rcp() routine shown in Example 4–20.

EXAMPLE 4–21 Remote Copy Client Routines

/* The sender routines */

#include <stdio.h>

#include <netdb.h>

#include <rpc/rpc.h>

#include <sys/socket.h>

#include <sys/time.h>

#include "rcp.h"

main(argc, argv)

int argc;

char **argv;

{

int xdr_rcp();

if (argc != 2 7) {

fprintf(stderr, "usage: %s servername\n", argv[0]);

exit(1);

}

if(callcots(argv[1], RCPPROG, RCPPROC, RCPVERS, xdr_rcp,

stdin,

xdr_void, 0) != 0)

exit(1);

exit(0);

}

callcots(host, prognum, procnum, versnum, inproc, in, outproc,

Connection-Oriented Transports

ONC+ Developer's Guide • November 2010 (Beta)98

EXAMPLE 4–21 Remote Copy Client Routines (Continued)

out)

char *host, *in, *out;

xdrproc_t inproc, outproc;

{

enum clnt_stat clnt_stat;

register CLIENT *client;

struct timeval total_timeout;

if ((client = clnt_create(host, prognum, versnum,

"circuit_v")
== (CLIENT *) NULL)) {

clnt_pcreateerror("clnt_create");
return(-1);

}

total_timeout.tv_sec = 20;

total_timeout.tv_usec = 0;

clnt_stat = clnt_call(client, procnum, inproc, in, outproc,

out,

total_timeout);

clnt_destroy(client);

if (clnt_stat != RPC_SUCCESS)

clnt_perror("callcots");
return((int)clnt_stat);

}

The following code example defines the receiving routines. Note that in the server, xdr_rcp()
did all the work automatically.

EXAMPLE 4–22 Remote Copy Server Routines

/*

* The receiving routines

*/

#include <stdio.h>

#include <rpc/rpc.h

#include "rcp.h"

main()

{

void rcp_service();

if (svc_create(rpc_service,RCPPROG,RCPVERS,"circuit_v") == 0) {

fprintf(stderr, "svc_create: errpr\n");
exit(1);

}

svc_run(); /* never returns */

fprintf(stderr, "svc_run should never return\n");
}

void

rcp_service(rqstp, transp)

register struct svc_req *rqstp;

register SVCXPRT *transp;

{

switch(rqstp->rq_proc) {

Connection-Oriented Transports

Chapter 4 • Programmer's Interface to RPC 99

EXAMPLE 4–22 Remote Copy Server Routines (Continued)

case NULLPROC:

if (svc_sendreply(transp, xdr_void, (caddr_t) NULL)

== FALSE)

fprintf(stderr, "err: rcp_service");
return;

case RCPPROC:

if (!svc_getargs(transp, xdr_rcp, stdout)) {

svcerr_decode(transp);

return();

}

if(!svc_sendreply(transp, xdr_void, (caddr_t) NULL)) {

fprintf(stderr, "can’t reply\n");
return();

}

return();

default:

svcerr_noproc(transp);

return();

}

}

Memory Allocation With XDR
XDR routines normally serialize and deserialize data. XDR routines often automatically allocate
memory and free automatically allocated memory. The convention is to use a NULL pointer to
an array or structure to indicate that an XDR function must allocate memory when
deserializing. The next example, xdr_chararr1(), processes a fixed array of bytes with length
SIZE and cannot allocate memory if needed:

xdr_chararr1(xdrsp, chararr)

XDR *xdrsp;

char chararr[];

{

char *p;

int len;

p = chararr;

len = SIZE;

return (xdr_bytes(xdrsp, &p, &len, SIZE));

}

If space has already been allocated in chararr, it can be called from a server as follows.

char chararr[SIZE];

svc_getargs(transp, xdr_chararr1, chararr);

Any structure through which data is passed to XDR or RPC routines must be allocated so that
its base address is at an architecture-dependent boundary. An XDR routine that does the
allocation must be written so that it can:
■ Allocate memory when a caller requests

Memory Allocation With XDR

ONC+ Developer's Guide • November 2010 (Beta)100

■ Return the pointer to any memory it allocates

In the following example, the second argument is a NULL pointer, meaning that memory should
be allocated to hold the data being deserialized.

xdr_chararr2(xdrsp, chararrp)

XDR *xdrsp;

char **chararrp;

{

int len;

len = SIZE;

return (xdr_bytes(xdrsp, charrarrp, &len, SIZE));

}

The corresponding RPC call is:

char *arrptr;

arrptr = NULL;

svc_getargs(transp, xdr_chararr2, &arrptr);

/*

* Use the result here

*/

svc_freeargs(transp, xdr_chararr2, &arrptr);

After use, free the character array through svc_freeargs(). svc_freeargs() does nothing if
passed a NULL pointer as its second argument.

To summarize:

■ An XDR routine normally serializes, deserializes, and frees memory.
■ svc_getargs() calls the XDR routine to deserialize.
■ svc_freeargs() calls the XDR routine to free memory.

Memory Allocation With XDR

Chapter 4 • Programmer's Interface to RPC 101

102

Advanced RPC Programming Techniques

This section addresses areas of occasional interest to developers using the lower-level interfaces
of the RPC package. The topics are:
■ poll() on the server - How a server can call the dispatcher directly if calling svc_run() is

not feasible
■ Broadcast RPC - How to use the broadcast mechanisms
■ Batching - How to improve performance by batching a series of calls
■ Authentication - What authentication methods are available in this release
■ Port monitors - How to interface with the inetd and listener port monitors
■ Multiple program versions - How to service multiple program versions

poll()on the Server Side
This section applies only to servers running RPC in single-threaded (default) mode.

A process that services RPC requests and performs some other activity cannot always call
svc_run(). If the other activity periodically updates a data structure, the process can set a
SIGALRM signal before calling svc_run(). This process enables the signal handler to process the
data structure and return control to svc_run() when done.

A process can bypass svc_run() and access the dispatcher directly with the svc_getreqset()
call. The process must be given the file descriptors of the transport endpoints associated with
the programs being waited on. Then the process can have its own poll() that waits on both the
RPC file descriptors and its own descriptors.

Example 5–1 shows svc_run(). svc_pollset is an array of pollfd structures that is derived,
through a call to __rpc_select_to_poll(), from svc_fdset(). The array can change every
time any RPC library routine is called because descriptors are constantly being opened and
closed. svc_getreq_poll() is called when poll() determines that an RPC request has arrived
on some RPC file descriptors.

5C H A P T E R 5

103

Note – The __rpc_dtbsize() and __rpc_select_to_poll() functions are not part of the SVID,
but they are available in the libnsl library. The descriptions of these functions are included
here so that you can create versions of these functions for non-Solaris implementations.

Given an fd_set pointer and the number of bits to check in it, the __rpc_select_to_poll
function initializes the supplied pollfd array for RPC's use. RPC polls only for input events. The
number of pollfd slots that were initialized is returned. The arguments for this function are:

int __rpc_select_to_poll(int fdmax, fd_set *fdset,

struct pollfd *pollset)

The __rpc_dtbsize() function calls the getrlimit() function to determine the maximum
value that the system can assign to a newly created file descriptor. The result is cached for
efficiency.

For more information on the SVID routines in this section, see the rpc_svc_calls(3NSL) and
poll(2) man pages.

EXAMPLE 5–1 svc_run() and poll()

void

svc_run()

{

int nfds;

int dtbsize = __rpc_dtbsize();

int i;

struct pollfd svc_pollset[fd_setsize];

for (;;) {

/*

* Check whether there is any server fd on which we may have

* to wait.

*/

nfds = __rpc_select_to_poll(dtbsize, &svc_fdset,

svc_pollset);

if (nfds == 0)

break; /* None waiting, hence quit */

switch (i = poll(svc_pollset, nfds, -1)) {

case -1:

/*

* We ignore all errors, continuing with the assumption

* that it was set by the signal handlers (or any

* other outside event) and not caused by poll().

*/

case 0:

continue;

default:

svc_getreq_poll(svc_pollset, i);

}

}

}

poll() on the Server Side

ONC+ Developer's Guide • November 2010 (Beta)104

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-svc-calls-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=poll-2

Broadcast RPC
When an RPC broadcast is issued, a message is sent to all rpcbind daemons on a network. An
rpcbind daemon with which the requested service is registered forwards the request to the
server. The main differences between broadcast RPC and normal RPC calls are:

■ Normal RPC expects one answer; broadcast RPC expects many answers, one or more
answer from each responding machine.

■ Broadcast RPC works only on connectionless protocols that support broadcasting, such as
UDP.

■ With broadcast RPC, all unsuccessful responses are filtered out. If a version mismatch
occurs between the broadcaster and a remote service, the broadcaster is never contacted by
the service.

■ Only datagram services registered with rpcbind are accessible through broadcast RPC.
Service addresses can vary from one host to another, so rpc_broadcast() sends messages to
rpcbind's network address.

■ The size of broadcast requests is limited by the maximum transfer unit (MTU) of the local
network. The MTU for Ethernet is 1500 bytes.

The following code example shows how rpc_broadcast() is used and describes its arguments.

EXAMPLE 5–2 RPC Broadcast

/*

* bcast.c: example of RPC broadcasting use.

*/

#include <stdio.h>

#include <rpc/rpc.h>

main(argc, argv)

int argc;

char *argv[];

{

enum clnt_stat rpc_stat;

rpcprog_t prognum;

rpcvers_t vers;

struct rpcent *re;

if(argc != 3) {

fprintf(stderr, "usage : %s RPC_PROG VERSION\n", argv[0]);

exit(1);

}

if (isdigit(*argv[1]))

prognum = atoi(argv[1]);

else {

re = getrpcbyname(argv[1]);

if (! re) {

fprintf(stderr, "Unknown RPC service %s\n", argv[1]);

exit(1);

}

Broadcast RPC

Chapter 5 • Advanced RPC Programming Techniques 105

EXAMPLE 5–2 RPC Broadcast (Continued)

prognum = re->r_number;

}

vers = atoi(argv[2]);

rpc_stat = rpc_broadcast(prognum, vers, NULLPROC, xdr_void,

(char *)NULL, xdr_void, (char *)NULL, bcast_proc,

NULL);

if ((rpc_stat != RPC_SUCCESS) && (rpc_stat != RPC_TIMEDOUT)) {

fprintf(stderr, "broadcast failed: %s\n",
clnt_sperrno(rpc_stat));

exit(1);

}

exit(0);

}

The function in Example 5–3 collects the replies to the broadcast. The normal operation is to
collect either the first reply or all replies. bcast_proc() displays the IP address of the server that
has responded. Because the function returns FALSE it continues to collect responses. The RPC
client code continues to resend the broadcast until it times out.

EXAMPLE 5–3 Collect Broadcast Replies

bool_t

bcast_proc(res, t_addr, nconf)

void *res; /* Nothing comes back */

struct t_bind *t_addr; /* Who sent us the reply */

struct netconfig *nconf;

{

register struct hostent *hp;

char *naddr;

naddr = taddr2naddr(nconf, &taddr->addr);

if (naddr == (char *) NULL) {

fprintf(stderr,"Responded: unknown\n");
} else {

fprintf(stderr,"Responded: %s\n", naddr);

free(naddr);

}

return(FALSE);

}

If done is TRUE, then broadcasting stops and rpc_broadcast() returns successfully. Otherwise,
the routine waits for another response. The request is rebroadcast after a few seconds of waiting.
If no responses come back, the routine returns with RPC_TIMEDOUT.

Broadcast RPC

ONC+ Developer's Guide • November 2010 (Beta)106

Batching
RPC is designed so that clients send a call message and wait for servers to reply to the call. This
procedure implies that a client is blocked while the server processes the call. This result is
inefficient when the client does not need each message acknowledged.

RPC batching lets clients process asynchronously. RPC messages can be placed in a pipeline of
calls to a server. Batching requires that:
■ The server does not respond to any intermediate message.
■ The pipeline of calls is transported on a reliable transport, such as TCP.
■ The result's XDR routine in the calls is NULL.
■ The RPC call's timeout is zero.

Because the server does not respond to each call, the client can send new calls in parallel with
the server processing previous calls. The transport can buffer many call messages and send
them to the server in one write() system call. This buffering decreases interprocess
communication overhead and the total time of a series of calls. The client should end with a
nonbatched call to flush the pipeline.

The following code example shows the unbatched version of the client. It scans the character
array, buf, for delimited strings and sends each string to the server.

EXAMPLE 5–4 Unbatched Client

#include <stdio.h>

#include <rpc/rpc.h>

#include "windows.h"

main(argc, argv)

int argc;

char **argv;

{

struct timeval total_timeout;

register CLIENT *client;

enum clnt_stat clnt_stat;

char buf[1000], *s = buf;

if ((client = clnt_create(argv[1], WINDOWPROG, WINDOWVERS,

"circuit_v")) == (CLIENT *) NULL) {

clnt_pcreateerror("clnt_create");
exit(1);

}

total_timeout.tv_sec = 20;

total_timeout.tv_usec = 0;

while (scanf("%s", s) != EOF) {

if (clnt_call(client, RENDERSTRING, xdr_wrapstring, &s,

xdr_void, (caddr_t) NULL, total_timeout) != RPC_SUCCESS) {

clnt_perror(client, "rpc");
exit(1);

}

}

Batching

Chapter 5 • Advanced RPC Programming Techniques 107

EXAMPLE 5–4 Unbatched Client (Continued)

clnt_destroy(client);

exit(0);

}

The following code example shows the batched version of the client. It does not wait after each
string is sent to the server. It waits only for an ending response from the server.

EXAMPLE 5–5 Batched Client

#include <stdio.h>

#include <rpc/rpc.h>

#include "windows.h"

main(argc, argv)

int argc;

char **argv;

{

struct timeval total_timeout;

register CLIENT *client;

enum clnt_stat clnt_stat;

char buf[1000], *s = buf;

if ((client = clnt_create(argv[1], WINDOWPROG, WINDOWVERS,

"circuit_v")) == (CLIENT *) NULL) {

clnt_pcreateerror("clnt_create");
exit(1);

}

timerclear(&total_timeout);

while (scanf("%s", s) != EOF)

clnt_call(client, RENDERSTRING_BATCHED, xdr_wrapstring,

&s, xdr_void, (caddr_t) NULL, total_timeout);

/* Now flush the pipeline */

total_timeout.tv_sec = 20;

clnt_stat = clnt_call(client, NULLPROC, xdr_void,

(caddr_t) NULL, xdr_void, (caddr_t) NULL, total_timeout);

if (clnt_stat != RPC_SUCCESS) {

clnt_perror(client, "rpc");
exit(1);

}

clnt_destroy(client);

exit(0);

}

The following code example shows the dispatch portion of the batched server. Because the
server sends no message, the clients are not notified of failures.

EXAMPLE 5–6 Batched Server

#include <stdio.h>

#include <rpc/rpc.h>

#include "windows.h"

Batching

ONC+ Developer's Guide • November 2010 (Beta)108

EXAMPLE 5–6 Batched Server (Continued)

void

windowdispatch(rqstp, transp)

struct svc_req *rqstp;

SVCXPRT *transp;

{

char *s = NULL;

switch(rqstp->rq_proc) {

case NULLPROC:

if (!svc_sendreply(transp, xdr_void, NULL))

fprintf(stderr, "can’t reply to RPC call\n");
return;

case RENDERSTRING:

if (!svc_getargs(transp, xdr_wrapstring, &s)) {

fprintf(stderr, "can’t decode arguments\n");
/* Tell caller an error occurred */

svcerr_decode(transp);

break;

}

/* Code here to render the string s */

if (!svc_sendreply(transp, xdr_void, (caddr_t) NULL))

fprintf(stderr, "can’t reply to RPC call\n");
break;

case RENDERSTRING_BATCHED:

if (!svc_getargs(transp, xdr_wrapstring, &s)) {

fprintf(stderr, "can’t decode arguments\n");
/* Be silent in the face of protocol errors */

break;

}

/* Code here to render string s, but send no reply! */

break;

default:

svcerr_noproc(transp);

return;

}

/* Now free string allocated while decoding arguments */

svc_freeargs(transp, xdr_wrapstring, &s);

}

Note – To illustrate the benefits of batching, Example 5–4 and Example 5–6 were completed to
render the lines in a 25,144-line file. The rendering service throws away the lines. The batched
version of the application is four times as fast as the unbatched version.

Batching

Chapter 5 • Advanced RPC Programming Techniques 109

Authentication
Just as you can use different transports when creating RPC clients and servers, you can associate
different “flavors” of authentication with RPC clients. The authentication subsystem of RPC is
open ended. So, RPC can support many flavors of authentication. Appendix B, “RPC Protocol
and Language Specification,” further defines the authentication protocols.

Sun RPC currently supports the authentication flavors shown in the following table.

TABLE 5–1 Authentication Methods Supported by Sun RPC

Method Description

AUTH_NONE Default. No authentication performed.

AUTH_SYS An authentication flavor based on the process permissions
authentication in the UNIX operating system.

AUTH_SHORT An alternate flavor of AUTH_SYS used by some servers for
efficiency. Client programs using AUTH_SYS authentication can
receive AUTH_SHORT response verifiers from some servers. See
Appendix B, “RPC Protocol and Language Specification,” for details.

AUTH_DES An authentication flavor based on DES encryption techniques.

AUTH_KERB Version 5 Kerberos authentication based on DES framework.

When a caller creates a new RPC client handle as in:

clnt = clnt_create(host, prognum, versnum, nettype);

the appropriate client-creation routine sets the associated authentication handle to:

clnt->cl_auth = authnone_create();

If you create a new instance of authentication, you must destroy it with
auth_destroy(clnt->cl_auth). This destruction conserves memory.

On the server side, the RPC package passes a request that has an arbitrary authentication style
associated with it to the service-dispatch routine. The request handle passed to a
service-dispatch routine contains the structure rq_cred. This structure is opaque, except for
one field: the flavor of the authentication credentials.

/*

* Authentication data

*/

struct opaque_auth {

enum_t oa_flavor; /* style of credentials */

caddr_t oa_base; /* address of more auth stuff */

u_int oa_length; /* not to exceed MAX_AUTH_BYTES */

};

Authentication

ONC+ Developer's Guide • November 2010 (Beta)110

The RPC package guarantees the following structural requirements to the service-dispatch
routine:

■ The rq_cred field in the svc_req structure is well formed. You can check
rq_cred.oa_flavor to get the flavor of authentication. You can also check the other fields
of rq_cred if RPC does not support the flavor.

■ The rq_clntcred field that is passed to service procedures is either NULL or points to a
well-formed structure that corresponds to a supported flavor of authentication credential.
No authentication data exists for the AUTH_NONE flavor. rq_clntcred can be cast only as a
pointer to an authsys_parms, short_hand_verf, authkerb_cred, or authdes_cred
structure.

AUTH_SYSAuthentication
The client can use AUTH_SYS style authentication (called AUTH_UNIX in previous releases) by
setting clnt–>cl_auth after creating the RPC client handle:

clnt->cl_auth = authsys_create_default();

This setting causes each RPC call associated with clnt to carry with it the following
credentials-authentication structure shown in the following example.

EXAMPLE 5–7 AUTH_SYSCredential Structure

/*

* AUTH_SYS flavor credentials.

*/

struct authsys_parms {

u_long aup_time; /* credentials creation time */

char *aup_machname; /* client’s host name */

uid_t aup_uid; /* client’s effective uid */

gid_t aup_gid; /* client’s current group id */

u_int aup_len; /* element length of aup_gids*/

gid_t *aup_gids; /* array of groups user is in */

};

rpc.broadcast defaults to AUTH_SYS authentication.

The following example shows a server, with procedure RUSERPROC_1(), that returns the number
of users on the network. As an example of authentication, the server checks AUTH_SYS
credentials and does not service requests from callers with a uid of 16.

EXAMPLE 5–8 Authentication Server

nuser(rqstp, transp)

struct svc_req *rqstp;

SVCXPRT *transp;

{

Authentication

Chapter 5 • Advanced RPC Programming Techniques 111

EXAMPLE 5–8 Authentication Server (Continued)

struct authsys_parms *sys_cred;

uid_t uid;

unsigned int nusers;

/* NULLPROC should never be authenticated */

if (rqstp->rq_proc == NULLPROC) {

if (!svc_sendreply(transp, xdr_void, (caddr_t) NULL))

fprintf(stderr, "can’t reply to RPC call\n");
return;

}

/* now get the uid */

switch(rqstp->rq_cred.oa_flavor) {

case AUTH_SYS:

sys_cred = (struct authsys_parms *) rqstp->rq_clntcred;

uid = sys_cred->aup_uid;

break;

default:

svcerr_weakauth(transp);

return;

}

switch(rqstp->rq_proc) {

case RUSERSPROC_1:

/* make sure caller is allowed to call this proc */

if (uid == 16) {

svcerr_systemerr(transp);

return;

}

/*

* Code here to compute the number of users and assign

* it to the variable nusers

*/

if (!svc_sendreply(transp, xdr_u_int, &nusers))

fprintf(stderr, "can’t reply to RPC call\n");
return;

default:

svcerr_noproc(transp);

return;

}

}

Note the following points about the example:

■ The authentication parameters associated with the NULLPROC (procedure number zero) are
usually not checked.

■ The server calls svcerr_weakauth() if the authentication parameter's flavor is too weak. In
this case, there is no way to get the list of authentication flavors the server requires.

■ The service protocol should return status for access denied. In the examples, the protocol
instead calls the service primitive svcerr_systemerr().

Authentication

ONC+ Developer's Guide • November 2010 (Beta)112

The last point underscores the relation between the RPC authentication package and the
services: RPC deals only with authentication and not with an individual service's access control.
The services must establish access-control policies and reflect these policies as return statuses in
their protocols.

AUTH_DESAuthentication
Use AUTH_DES authentication for programs that require more security than AUTH_SYS provides.
AUTH_SYS authentication is easy to defeat. For example, instead of using
authsys_create_default(), a program can call authsys_create() and change the RPC
authentication handle to give itself any desired user ID and host name.

AUTH_DES authentication requires keyserv() daemons to be running on both the server and
client hosts. The NIS or NIS+ naming service must also be running. Users on these hosts need
public/secret key pairs assigned by the network administrator in the publickey() database.
The users must also have decrypted their secret keys with the keylogin() command. This
decryption is normally done by login() unless the login password and secure-RPC password
differ.

To use AUTH_DES authentication, a client must set its authentication handle appropriately, as
shown in the following example.

cl->cl_auth = authdes_seccreate(servername, 60, server,

(char *)NULL);

The first argument is the network name or “net name” of the owner of the server process. Server
processes are usually root processes, and you can get their net names with the following call;

char servername[MAXNETNAMELEN];

host2netname(servername, server, (char *)NULL);

servername points to the receiving string and server is the name of the host the server process
is running on. If the server process was run by a non-root user, use the call user2netname() as
follows:

char servername[MAXNETNAMELEN];

user2netname(servername, serveruid(), (char *)NULL);

serveruid() is the user ID of the server process. The last argument of both functions is the
name of the domain that contains the server. NULL means “use the local domain name.”

The second argument of authdes_seccreate() is the lifetime (known also as the “window”) of
the client's credential. In this example, a credential expires 60 seconds after the client makes an
RPC call. If a program tries to reuse the credential, the server RPC subsystem recognizes that
the credential has expired and does not service the request carrying the expired credential. If
any program tries to reuse a credential within its lifetime, the process is rejected, because the
server RPC subsystem saves credentials it has seen in the near past and does not serve
duplicates.

Authentication

Chapter 5 • Advanced RPC Programming Techniques 113

The third argument of authdes_seccreate() is the name of the timehost used to synchronize
clocks. AUTH_DES authentication requires that server and client agree on the time. Example 5–8
specifies synchronization with the server. A (char *)NULL says not to synchronize. Use this
syntax only when you are sure that the client and server are already synchronized.

The fourth argument of authdes_seccreate() points to a DES encryption key to encrypt
timestamps and data. If this argument is (char *)NULL, as it is in Example 5–8, a random key is
chosen. The ah_key field of the authentication handle contains the key.

The server side is simpler than the client. The following example shows the server in
Example 5–8 changed to use AUTH_DES.

EXAMPLE 5–9 AUTH_DES Server

#include <rpc/rpc.h>

...

nuser(rqstp, transp)

struct svc_req *rqstp;

SVCXPRT *transp;

{

struct authdes_cred *des_cred;

uid_t uid;

gid_t gid;

int gidlen;

gid_t gidlist[10];

/* NULLPROC should never be authenticated */

if (rqstp->rq_proc == NULLPROC) {

/* same as before */

}

/* now get the uid */

switch(rqstp->rq_cred.oa_flavor) {

case AUTH_DES:

des_cred = (struct authdes_cred *) rqstp->rq_clntcred;

if (! netname2user(des_cred->adc_fullname.name,

&uid, &gid, &gidlen, gidlist)) {

fprintf(stderr, "unknown user: %s\n",
des_cred->adc_fullname.name);

svcerr_systemerr(transp);

return;

}

break;

default:

svcerr_weakauth(transp);

return;

}

/* The rest is the same as before */

The routine netname2user() converts a network name, or “net name” of a user, to a local
system ID. It also supplies group IDs, which are not used in this example.

Authentication

ONC+ Developer's Guide • November 2010 (Beta)114

AUTH_KERBAuthentication
SunOS 5.0 and compatible versions include support for most client-side features of Kerberos 5
except klogin. AUTH_KERB is conceptually similar to AUTH_DES. The essential difference is that
DES passes a network name and a DES-encrypted session key, while Kerberos passes the
encrypted service ticket. This section describes other factors that affect implementation and
interoperability.

Kerberos uses the concept of a time window in which its credentials are valid. It does not place
restrictions on the clocks of the client or server. Specifically, the window is passed as an
argument to authkerb_seccreate(). The window does not change. If a timehost is specified as
an argument, the client side gets the time from the timehost and alters its timestamp by the
difference in time. Various methods of time synchronization are available. See the
kerberos_rpc man page for more information.

Kerberos users are identified by a primary name, instance, and realm. The RPC authentication
code ignores the realm and instance, while the Kerberos library code does not. The assumption
is that user names are the same between client and server. This enables a server to translate a
primary name into user identification information. Two forms of well-known names are used
(omitting the realm):

■ root.host represents a privileged user on client host.
■ user.ignored represents the user whose user name is user. The instance is ignored.

Kerberos uses cipher block chaining (CBC) mode when sending a full name credential, one that
includes the ticket and window, and electronic code book (ECB) mode otherwise. CBC and
ECB are two methods of DES encryption. The session key is used as the initial input vector for
CBC mode. The following notation means that XDR is used on object as a type.

xdr_type(object)

The length in the next code section is the size, in bytes of the credential or verifier, rounded up
to 4-byte units. The full name credential and verifier are obtained as follows:

xdr_long(timestamp.seconds)

xdr_long(timestamp.useconds)

xdr_long(window)

xdr_long(window - 1)

After encryption with CBC with input vector equal to the session key, the output is two DES
cipher blocks:

CB0

CB1.low

CB1.high

The credential is:

Authentication

Chapter 5 • Advanced RPC Programming Techniques 115

xdr_long(AUTH_KERB)

xdr_long(length)

xdr_enum(AKN_FULLNAME)

xdr_bytes(ticket)

xdr_opaque(CB1.high)

The verifier is:

xdr_long(AUTH_KERB)

xdr_long(length)

xdr_opaque(CB0)

xdr_opaque(CB1.low)

The nickname exchange yields:

xdr_long(timestamp.seconds)

xdr_long(timestamp.useconds)

The nickname is encrypted with ECB to obtain ECB0, and the credential is:

xdr_long(AUTH_KERB)

xdr_long(length)

xdr_enum(AKN_NICKNAME)

xdr_opaque(akc_nickname)

The verifier is:

xdr_long(AUTH_KERB)

xdr_long(length)

xdr_opaque(ECB0)

xdr_opaque(0)

Authentication Using RPCSEC_GSS
A determined snoop can overcome the authentication flavors mentioned previously-
AUTH_SYS, AUTH_DES, and AUTH_KERB. For this reason a new networking layer, the Generic
Security Standard API, or GSS-API, was added, which RPC programmers can use. The
GSS-API framework offers two extra services beyond authentication: integrity and privacy.

■ Integrity. With the integrity service, the GSS-API uses the underlying mechanism to
authenticate messages exchanged between programs. Cryptographic checksums establish:
■ The identity of the data originator to the recipient
■ The identity of the recipient to the originator if mutual authentication is requested
■ The authenticity of the transmitted data itself

■ Privacy. The privacy service includes the integrity service. In addition, the transmitted data
is also encrypted to protect it from any eavesdroppers.
Because of U.S. export restrictions, the privacy service might not be available to all users.

Authentication Using RPCSEC_GSS

ONC+ Developer's Guide • November 2010 (Beta)116

Note – Currently, the GSS–API is exposed, and certain GSS-API features are visible through
RPCSEC_GSS functions. See the Oracle Solaris Security for Developers Guide.

RPCSEC_GSS API
The RPCSEC_GSS security flavor enables ONC RPC applications to maximize the features of
GSS-API. RPCSEC_GSS sits “on top” of the GSS-API layer as shown in the following figure.

Using the programming interface for RPCSEC_GSS, ONC RPC applications can specify the
following information:

■ Mechanism – A security paradigm. Each kind of security mechanism offers a different kind
of data protection, as well as one or more levels of data protection. You can use any security
mechanism supported by the GSS-API (Kerberos V5, RSA public key, and so forth).

■ Security service – Either privacy or integrity or neither. The default is integrity. The service
is mechanism independent.

■ QOP – Quality of protection. The QOP specifies the type of cryptographic algorithm to be
used to implement privacy or integrity services. Each security mechanism can have one or
more QOPs associated with it.

Applications can obtain lists of valid QOPs and mechanisms through functions provided by
RPCSEC_GSS. See “Miscellaneous Functions” on page 126. Developers should avoid
hard-coding mechanisms and QOPs into their applications, so that the applications do not need
to be modified to use new or different mechanisms and QOPs.

FIGURE 5–1 GSS-API and RPCSEC_GSS Security Layers

Kerberos
V5

RSA
Public Key

GSS-API

RPCSEC_GSS

Application

Other . . .

Authentication Using RPCSEC_GSS

Chapter 5 • Advanced RPC Programming Techniques 117

http://www.oracle.com/pls/topic/lookup?ctx=819-2145&id=gssapipg

Note – Historically, “security flavor” and “authentication flavor” have had the same meaning.
With the introduction of RPCSEC_GSS, “flavor” now has a somewhat different sense. A flavor
can now include a service integrity or privacy along with authentication, although currently
RPCSEC_GSS is the only flavor that falls into this category.

Using RPCSEC_GSS, ONC RPC applications establish a security context with a peer, exchange
data, and destroy the context, just as they do with other flavors. After a context is established,
the application can change the QOP and service for each data unit sent.

For more information on RPCSEC_GSS, including RPCSEC_GSS data types, see the
rpcsec_gss(3N) man page.

RPCSEC_GSS Routines
The following table summarizes RPCSEC_GSS commands. It is a general overview of
RPCSEC_GSS functions, rather than a specific description of each one. For more information
on each function, see its man page, or check the rpcsec_gss(3NSL) man page for an overview,
including a list of RPCSEC_GSS data structures.

TABLE 5–2 RPCSEC_GSS Functions

Action Function Input Output

Create a security
context

rpc_gss_seccreate(3NSL) CLIENT handle, principal
name, mechanism, QOP,
service type

AUTH handle

Change QOP,
service type for
context

rpc_gss_set_defaults(3NSL) Old QOP, service New QOP, service

Show maximum
size for data before
security
transformation

rpc_gss_max_data_length(3NSL) (client side) Maximum data size
allowed by transport

Maximum pre-transformation
data size

Show maximum
size for data before
security
transformation

rpc_gss_svc_max_data_length(3NSL) (server
side)

Maximum data size
allowed by transport

Maximum pre-transformation
data size

Set name of
principals for
server to represent

rpc_gss_set_svc_name(3NSL) Principal name, RPC
program, version #s

TRUE if successful

Authentication Using RPCSEC_GSS

ONC+ Developer's Guide • November 2010 (Beta)118

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpcsec-gss-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-gss-seccreate-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-gss-set-defaults-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-gss-max-data-length-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-gss-svc-max-data-length-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-gss-set-svc-name-3nsl

TABLE 5–2 RPCSEC_GSS Functions (Continued)
Action Function Input Output

Fetch credentials of
caller (client)

rpc_gss_getcred(3NSL) Pointer to svc_req

structure
UNIX credentials,
RPCSEC_GSS credentials,
cookie

Specify
user-written
callback function

rpc_gss_set_callback(3NSL) Pointer to callback
function

TRUE if successful

Create
RPCSEC_GSS
structure for
principal names
from unique
parameters

rpc_gss_get_principal_name(3NSL) Mechanism, user name,
machine name, domain
name

RPCSEC_GSS principal name
structure

Fetch an error code
when an
RPCSEC_GSS
routine fails

rpc_gss_get_error(3NSL) RPCSEC_GSS error number,
errno if applicable

Get strings for
installed
mechanisms

rpc_gss_get_mechanisms(3NSL) List of valid mechanisms

Get valid QOP
strings

rpc_gss_get_mech_info(3NSL) Mechanism Valid QOPs for that
mechanism

Get the highest,
lowest version
numbers of
RPCSEC_GSS
supported

rpc_gss_get_versions(3NSL) Highest, lowest versions

Check if a
mechanism is
installed

rpc_gss_is_installed(3NSL) Mechanism TRUE if installed

Convert ASCII
mechanism to RPC
object identifier

rpc_gss_mech_to_oid(3NSL) Mechanism (as string) Mechanism (as OID)

Convert ASCII
QOP to integer

rpc_gss_qop_to_num(3NSL) QOP (as string) QOP (as integer)

Authentication Using RPCSEC_GSS

Chapter 5 • Advanced RPC Programming Techniques 119

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-gss-getcred-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-gss-set-callback-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-gss-get-principal-name-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-gss-get-error-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-gss-get-mechanisms-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-gss-get-mech-info-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-gss-get-versions-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-gss-is-installed-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-gss-mech-to-oid-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-gss-qop-to-num-3nsl

Creating a Context
You create contexts with the rpc_gss_seccreate() call. This function takes as its arguments:

■ A client handle returned, for example, by clnt_create()
■ The name of the server principal, for example, nfs@acme.com
■ The mechanism (for example, Kerberos V5) for the session
■ The security service type (for example, privacy)
■ The QOP for the session
■ Two GSS-API parameters that can remain opaque for most uses (that is, the programmer

can supply NULL values)

This function returns an AUTH authentication handle. The following example shows how
rpc_gss_seccreate() might be used to create a context using the Kerberos V5 security
mechanism and the integrity service.

EXAMPLE 5–10 rpc_gss_seccreate()

CLIENT *clnt; /* client handle */

char server_host[] = "foo";
char service_name[] = "nfs@eng.acme.com";
char mech[] = "kerberos_v5";

clnt = clnt_create(server_host, SERVER_PROG, SERV_VERS, "netpath");
clnt->clnt_auth = rpc_gss_seccreate(clnt, service_name, mech,

rpc_gss_svc_integrity, NULL, NULL, NULL);

. . .

Note the following points about the example:

■ Although the mechanism was declared explicitly for ease of reading, it would be more
commonly obtained programmatically with rpc_gss_get_mechanisms() from a table of
available mechanisms.

■ The QOP is passed as a NULL, which sets the QOP to this mechanism's default. Otherwise, a
valid value could, as with the mechanism, be obtained programmatically with
rpc_gss_get_mechanisms(). See the rpc_gss_get_mechanisms(3NSL) man page for more
information.

■ The security service type, rpc_gss_svc_integrity, is an enum of the RPCSEC_GSS type
rpc_gss_service_t. rpc_gss_service_t has the following format:

typedef enum {

rpc_gss_svc_default = 0,

rpc_gss_svc_none = 1,

rpc_gss_svc_integrity = 2,

rpc_gss_svc_privacy = 3

} rpc_gss_service_t;

Authentication Using RPCSEC_GSS

ONC+ Developer's Guide • November 2010 (Beta)120

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-gss-get-mechanisms-3nsl

The default security service maps to integrity, so the programmer could have specified
rpc_gss_svc_default and obtained the same result.

For more information, see the rpc_gss_seccreate(3NSL) man page.

Changing Values and Destroying a Context
After a context has been set, the application might need to change QOP and service values for
individual data units being transmitted. For example, if you want a program to encrypt a
password but not a login name, you can use rpc_gss_set_defaults().

EXAMPLE 5–11 rpc_gss_set_defaults()

rpc_gss_set_defaults(clnt->clnt_auth, rpc_gss_svc_privacy, qop);

. . .

In this case, the security service is set to privacy. See “Creating a Context” on page 120. qop is a
pointer to a string naming the new QOP.

Contexts are destroyed in the usual way, with auth_destroy().

For more information on changing service and QOP, see the rpc_gss_set_defaults(3NSL)
man page.

Principal Names
You need both a client and a server principal name to establish and maintain a security context.

■ A server's principal name is always specified as a NULL-terminated ASCII string of the form
service@host. One example is nfs@eng.acme.com.
When a client creates a security context, it specifies the server principal name in this format.
See “Creating a Context” on page 120. Similarly, when a server needs to set the name of a
principal it represents, it uses rpc_gss_set_svc_name(). This function takes a principal
name in this format as an argument.

■ The principal name of a client, as received by a server, takes the form of an
rpc_gss_principal_t structure: a counted, opaque byte string determined by the
mechanism being used. This structure is described in the rpcsec_gss(3NSL) man page.

Setting Server Principal Names
A server needs to be told the names of the principals it represents when it starts up. A server can
act as more than one principal. rpc_gss_set_svc_name() sets the name of the principals, as
shown in the following code example.

Authentication Using RPCSEC_GSS

Chapter 5 • Advanced RPC Programming Techniques 121

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-gss-seccreate-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-gss-set-defaults-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpcsec-gss-3nsl

EXAMPLE 5–12 rpc_gss_set_svc_name()

char *principal, *mechanism;

u_int req_time;

principal = "nfs@eng.acme.com";
mechanism = "kerberos_v5";
req_time = 10000; /* time for which credential should be valid */

rpc_gss_set_svc_name(principal, mechanism, req_time, SERV_PROG, SERV_VERS);

Kerberos ignores the req_time parameter. Other authentication systems might use it.

For more information, see the rpc_gss_set_svc_name(3NSL) man page.

Generating Client Principal Names
Servers need to be able to operate on a client's principal name. For example, you might need to
compare a client's principal name to an access control list, or look up a UNIX credential for that
client, if such a credential exists. Such principal names are kept in the form of a
rpc_gss_principal_t structure pointer. See the rpcsec_gss(3NSL) man page for more on
rpc_gss_principal_t. If a server is to compare a principal name it has received with the name
of a known entity, the server needs to be able to generate a principal name in that form.

The rpc_gss_get_principal_name() call takes as input several parameters that uniquely
identify an individual on a network, and generates a principal name as a rpc_gss_principal_t
structure pointer, as shown in the following code example.

EXAMPLE 5–13 rpc_gss_get_principal_name()

rpc_gss_principal_t *principal;

rpc_gss_get_principal_name(principal, mechanism, name, node, domain);

. . .

The arguments to rpc_gss_get_principal_name() are:

■ principal is a pointer to the rpc_gss_principal_t structure to be set.
■ mechanism is the security mechanism being used. The principal name being generated is

mechanism dependent.
■ name is an individual or service name, such as joeh or nfs, or even the name of a

user-defined application.
■ node might be, for example, a UNIX machine name.
■ domain might be, for example, a DNS, NIS, or NIS+ domain name, or a Kerberos realm.

Each security mechanism requires different identifying parameters. For example, Kerberos V5
requires a user name and, only optionally, qualified node and domain names, which in
Kerberos terms are host and realm names.

Authentication Using RPCSEC_GSS

ONC+ Developer's Guide • November 2010 (Beta)122

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-gss-set-svc-name-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpcsec-gss-3nsl

For more information, see the rpc_gss_get_principal_name(3NSL) man page.

Freeing Principal Names
Use the free() library call to free principal names.

Receiving Credentials at the Server
A server must be able to fetch the credentials of a client. The rpc_gss_getcred() function,
shown in Example 5–14, enables the server to retrieve either UNIX credentials or RPCSEC_GSS
credentials, or both. The function has two arguments that are set if the function is successful.
One is a pointer to an rpc_gss_ucred_t structure, which contains the caller's UNIX
credentials, if such exist:

typedef struct {

uid_t uid; /* user ID */

gid_t gid; /* group ID */

short gidlen;

git_t *gidlist; /* list of groups */

} rpc_gss_ucred_t;

The other argument is a pointer to a rpc_gss_raw_cred_t structure, which looks like this:

typedef struct {

u_int version; /*RPCSEC_GS program version *mechanism;

char *qop;

rpc_gss_principal_t client_principal; /* client principal name */

char *svc_principal; /*server principal name */

rpc_gss_service_t service; /* privacy, integrity enum */

} rpc_gss_rawcred_t;

Because rpc_gss_rawcred_t contains both the client and server principal names,
rpc_gss_getcred() can return them both. See “Generating Client Principal Names” on
page 122 for a description of the rpc_gss_principal_t structure and how it is created.

The following example is a simple server-side dispatch procedure, in which the server gets the
credentials for the caller. The procedure gets the caller's UNIX credentials and then verifies the
user's identity, using the mechanism, QOP, and service type found in the rpc_gss_rcred_t
argument.

EXAMPLE 5–14 Getting Credentials

static void server_prog(struct svc_req *rqstp, SVCXPRT *xprt)

{

rpc_gss_ucred_t *ucred;

rpc_gss_rawcred_t *rcred;

if (rqst->rq_proq == NULLPROC) {

svc_sendreply(xprt, xdr_void, NULL);

return;

Authentication Using RPCSEC_GSS

Chapter 5 • Advanced RPC Programming Techniques 123

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-gss-get-principal-name-3nsl

EXAMPLE 5–14 Getting Credentials (Continued)

}

/*

* authenticate all other requests */

*/

switch (rqstp->rq_cred.oa_flavor) {

case RPCSEC_GSS:

/*

* get credential information

*/

rpc_gss_getcred(rqstp, &rcred, &ucred, NULL);

/*

* verify that the user is allowed to access

* using received security parameters by

* peeking into my config file

*/

if (!authenticate_user(ucred->uid, rcred->mechanism,

rcred->qop, rcred->service)) {

svcerr_weakauth(xprt);

return;

}

break; /* allow the user in */

default:

svcerr_weakauth(xprt);

return;

} /* end switch */

switch (rqstp->rq_proq) {

case SERV_PROC1:

. . .

}

/* usual request processing; send response ... */

return;

}

For more information, see the rpc_gss_getcred(3NSL) man page.

Cookies
In Example 5–14, the last argument to rpc_gss_getcred() (here, a NULL) is a user-defined
cookie, with a value on return of whatever was specified by the server when the context was
created. This cookie, a 4-byte value, can be used in any way appropriate for the application. RPC
does not interpret the cookie. For example, the cookie can be a pointer or index to a structure
that represents the context initiator. Instead of computing this value for every request, the
server computes it at context-creation time, saving on request-processing time.

Authentication Using RPCSEC_GSS

ONC+ Developer's Guide • November 2010 (Beta)124

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-gss-getcred-3nsl

Callbacks
Another opportunity to use cookies is with callbacks. By using the rpc_gss_set_callback()
function, a server can specify a user-defined callback so that it knows when a context first gets
used. The callback is invoked the first time a context is used for data exchanges, after the context
is established for the specified program and version.

The user-defined callback routine takes the following form:

bool_t callback (struct svc_req *req, gss_cred_id_t deleg,

gss_ctx_id_t gss_context rpc_gss_lock_t *

lock void ** cookie);

The second and third arguments, deleg and gss_context, are GSS-API data types and are
currently exposed. See the Oracle Solaris Security for Developers Guide for more information.
Note that deleg is the identity of any delegated peer, while gss_context is a pointer to the
GSS-API context. This pointer is necessary in case the program needs to perform GSS-API
operations on the context, that is, to test for acceptance criteria. You have already seen the
cookie argument.

The lock argument is a pointer to a rpc_gss_lock_t structure:

typedef struct {

bool_t locked;

rpc_gss_rawcred_t *raw_cred;

} rpc_gss_lock_t;

This parameter enables a server to enforce a particular QOP and service for the session. QOP
and service are found in the rpc_gss_rawcred_t structure described in Example 5–14. A server
should not change the values for service and QOP. When the user-defined callback is invoked,
the locked field is set to FALSE. If the server sets locked to TRUE, only requests with QOP and
service values that match the QOP and service values in the rpc_gss_rawcred_t structure are
accepted.

For more information, see the rpc_gss_set_callback(3NSL) man page.

Maximum Data Size
Two functions, rpc_gss_max_data_length() on the client side, and
rpc_gss_svc_max_data_length() on the server side, are useful in determining how large a
piece of data can be before it is transformed by security measures and sent “over the wire.” A
security transformation such as encryption usually changes the size of a piece of transmitted
data, most often enlarging it. To make sure that data won't be enlarged past a usable size, these
two functions return the maximum pre-transformation size for a given transport.

For more information, see the rpc_gss_max_data_length(3NSL) man page.

Authentication Using RPCSEC_GSS

Chapter 5 • Advanced RPC Programming Techniques 125

http://www.oracle.com/pls/topic/lookup?ctx=819-2145&id=gssapipg
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-gss-set-callback-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-gss-max-data-length-3nsl

Miscellaneous Functions
You can use several functions for getting information about the installed security system.
■ rpc_gss_get_mechanisms(3NSL)() returns a list of installed security mechanisms.
■ rpc_gss_is_installed(3NSL)() checks if a specified mechanism is installed.
■ rpc_gss_get_mech_info(3NSL)() returns valid QOPs for a given mechanism.

Using these functions gives the programmer latitude in avoiding hard-coding security
parameters in applications. (See Table 5–2 and the rpcsec_gss(3NSL) man page for a list of all
RPCSEC_GSS functions.)

Associated Files
RPCSEC_GSS makes use of certain files to store information.

gsscred Table
When a server retrieves the client credentials associated with a request, the server can get either
the client's principal name in the form of a rpc_gss_principal_t structure pointer or local
UNIX credentials (UID) for that client. Services such as NFS require a local UNIX credential for
access checking, but others might not. Those services can, for example, store the principal name
directly in their own access control lists as a rpc_gss_principal_t structure.

Note – The correspondence between a client's network credential (its principal name) and any
local UNIX credential is not automatic. The local security administrator must be set up
explicitly.

The gsscred file contains both the client's UNIX and network (for example, Kerberos V5)
credentials. The network credential is the Hex-ASCII representation of the
rpc_gss_principal_t structure. The gsscred file is accessed through XFN. Thus, this table
can be implemented over files, NIS, or NIS+, or any future name service supported by XFN. In
the XFN hierarchy, this table appears as this_org_unit/service/gsscred. Administrators can
maintain the gsscred table with the use of the gsscred utility, which enables adding and
deleting of users and mechanisms.

/etc/gss/qop and /etc/gss/mech

For convenience, RPCSEC_GSS uses string literals for representing mechanisms and quality of
protection (QOP) parameters. The underlying mechanisms themselves, however, require
mechanisms to be represented as object identifiers and QOPs as 32–bit integers. Additionally,
for each mechanism, you need to specify the shared library that implements the services for that
mechanism.

Authentication Using RPCSEC_GSS

ONC+ Developer's Guide • November 2010 (Beta)126

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpcsec-gss-3nsl

The /etc/gss/mech file stores the following information on all installed mechanisms on a
system: the mechanism name, in ASCII; the mechanism's OID; the shared library
implementing the services provided by this mechanism; and, optionally, the kernel module
implementing the service. A sample line might look like this:

kerberos_v5 1.2.840.113554.1.2.2 gl/mech_krb5.so gl_kmech_krb5

For all mechanisms installed, the /etc/gss/qop file stores all the QOPs supported by each
mechanism, both as an ASCII string and as its corresponding 32–bit integer.

Both /etc/gss/mech and /etc/gss/qop are created when security mechanisms are first
installed on a given system.

Many of the in-kernel RPC routines use non-string values to represent mechanism and QOP.
Therefore, applications can use the rpc_gss_mech_to_oid() and rpc_gss_qop_to_num()

functions to get the non-string equivalents for these parameters, should they need to maximize
use of those in-kernel routines.

Using Port Monitors
RPC servers can be started by port monitors such as inetd and listen. Port monitors listen for
requests and spawn servers in response. The forked server process is passed the file descriptor 0
on which the request has been accepted. For inetd, when the server is done, it can exit
immediately or wait a given interval for another service request. See also Appendix F, “Writing a
Port Monitor With the Service Access Facility (SAF).”

For listen, servers should exit immediately after replying because listen() always spawns a
new process. The following function call creates a SVCXPRT handle to be used by the services
started by port monitors.

transp = svc_tli_create(0, nconf, (struct t_bind *)NULL, 0, 0)

nconf is the netconfig structure of the transport from which the request is received.

Because the port monitors have already registered the service with rpcbind, the service does not
need to register with rpcbind. The service must call svc_reg() to register the service
procedure.

svc_reg(transp, PROGNUM, VERSNUM, dispatch,(struct netconfig *)NULL)

The netconfig structure is NULL to prevent svc_reg() from registering the service with
rpcbind.

For connection-oriented transports, the following routine provides a lower level interface:

transp = svc_fd_create(0, recvsize, sendsize);

Using Port Monitors

Chapter 5 • Advanced RPC Programming Techniques 127

A 0 file descriptor is the first argument. You can set the value of recvsize and sendsize to any
appropriate buffer size. A 0 for either argument causes a system default size to be chosen.
Application servers that do not do any listening of their own use svc_fd_create().

Using inetd

Entries in /etc/inet/inetd.conf have different formats for socket-based, TLI-based, and RPC
services. The format of inetd.conf entries for RPC services follows.

TABLE 5–3 RPC inetd Services

Service Description

rpc_prog/vers The name of an RPC program followed by a / and the version number or a range of
version numbers.

endpoint_type One of dgram (for connectionless sockets), stream (for connection mode sockets), or
tli (for TLI endpoints).

proto May be * (for all supported transports), a net type, a net ID, or a comma separated list
of net type and net ID.

flags Either wait or nowait.

user Must exist in the effective passwd database.

pathname Full path name of the server daemon.

args Arguments to be passed to the daemon on invocation.

For example:

rquotad/1 tli rpc/udp wait root /usr/lib/nfs/rquotad rquotad

For more information, see the inetd.conf(4) man page.

Using the Listener
Use pmadm to add RPC services:

pmadm -a -p pm_tag -s svctag -i id -v vers \

-m ‘nlsadmin -c command -D -R prog:vers‘

The arguments are:

-a adds a service

-p pm_tag specifies a tag associated with the port monitor providing access to the service

Using Port Monitors

ONC+ Developer's Guide • November 2010 (Beta)128

http://www.oracle.com/pls/topic/lookup?ctx=821-1473&id=inetd.conf-4

-s svctag server's identifying code

-i id the /etc/passwd user name assigned to service svctag

-v ver the version number for the port monitor's database file

-m specifies the nlsadmin command to invoke the service. nlsadmin can have
additional arguments. For example, to add version 1 of a remote program server
named rusersd, a pmadm command would be:

pmadm -a -p tcp -s rusers -i root -v 4 \

-m ‘nlsadmin -c /usr/sbin/rpc.ruserd -D -R 100002:1‘

The command is given root permissions, installed in version 4 of the listener database file,
and is made available over TCP transports. Because of the complexity of the arguments and
options to pmadm, use a command script or the menu system to add RPC services. To use the
menu system, type sysadm ports and choose the -port_services option.

After adding a service, the listener must be re-initialized before the service is available. To do
this, stop and restart the listener, as follows. rpcbind must be running.

sacadm -k -p pmtag

sacadm -s -p pmtag

For more information, such as how to set up the listener process, see the listen(1M),
pmadm(1M), and sacadm(1M) man pages. Also see “How the TCP/IP Protocols Handle Data
Communications” in System Administration Guide: IP Services.

Multiple Server Versions
By convention, the first version number of a program, PROG, is named PROGVERS_ORIG and the
most recent version is named PROGVERS. Program version numbers must be assigned
consecutively. Leaving a gap in the program version sequence can cause the search algorithm
not to find a matching program version number that is defined.

Only the owner of a program should change version numbers. Adding a version number to a
program that you do not own can cause severe problems when the owner increments the
version number. Sun registers version numbers and answers questions about them
(rpc@Sun.com).

Suppose a new version of the ruser program returns an unsigned short rather than an int. If
you name this version RUSERSVERS_SHORT, a server that supports both versions would do a
double register. Use the same server handle for both registrations.

Multiple Server Versions

Chapter 5 • Advanced RPC Programming Techniques 129

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=listen-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=pmadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=sacadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1453&id=ipov-29
http://www.oracle.com/pls/topic/lookup?ctx=821-1453&id=ipov-29

EXAMPLE 5–15 Server Handle for Two Versions of Single Routine

if (!svc_reg(transp, RUSERSPROG, RUSERSVERS_ORIG,

nuser, nconf))

{

fprintf(stderr, "can’t register RUSER service\n");
exit(1);

}

if (!svc_reg(transp, RUSERSPROG, RUSERSVERS_SHORT, nuser,

nconf)) {

fprintf(stderr, "can’t register RUSER service\n");
exit(1);

}

Both versions can be performed by a single procedure, as shown in the following example.

EXAMPLE 5–16 Procedure for Two Versions of Single Routine

void

nuser(rqstp, transp)

struct svc_req *rqstp;

SVCXPRT *transp;

{

unsigned int nusers;

unsigned short nusers2;

switch(rqstp->rq_proc) {

case NULLPROC:

if (!svc_sendreply(transp, xdr_void, 0))

fprintf(stderr, "can’t reply to RPC call\n");
return;

case RUSERSPROC_NUM:

/*

* Code here to compute the number of users

* and assign it to the variable nusers

*/

switch(rqstp->rq_vers) {

case RUSERSVERS_ORIG:

if (! svc_sendreply(transp, xdr_u_int,

&nusers))

fprintf(stderr, "can’t reply to RPC

call\n");
break;

case RUSERSVERS_SHORT:

nusers2 = nusers;

if (! svc_sendreply(transp, xdr_u_short,

&nusers2))

fprintf(stderr, "can’t reply to RPC

call\n");
break;

}

default:

svcerr_noproc(transp);

return;

}

return;

}

Multiple Server Versions

ONC+ Developer's Guide • November 2010 (Beta)130

Multiple Client Versions
Because different hosts can run different versions of RPC servers, a client should be capable of
accommodating the variations. For example, one server can run the old version of
RUSERSPROG(RUSERSVERS_ORIG) while another server runs the newer version
(RUSERSVERS_SHORT).

If the version on a server does not match the version number in the client creation call,
clnt_call() fails with an RPCPROGVERSMISMATCH error. You can get the version numbers
supported by a server and then create a client handle with the appropriate version number. Use
either the routine in the following example, or clnt_create_vers(). See the rpc(3NSL) man
page for more details.

EXAMPLE 5–17 RPC Versions on Client Side

main()

{

enum clnt_stat status;

u_short num_s;

u_int num_l;

struct rpc_err rpcerr;

int maxvers, minvers;

CLIENT *clnt;

clnt = clnt_create("remote", RUSERSPROG, RUSERSVERS_SHORT,

"datagram_v");
if (clnt == (CLIENT *) NULL) {

clnt_pcreateerror("unable to create client handle");
exit(1);

}

to.tv_sec = 10; /* set the time outs */

to.tv_usec = 0;

status = clnt_call(clnt, RUSERSPROC_NUM, xdr_void,

(caddr_t) NULL, xdr_u_short,

(caddr_t)&num_s, to);

if (status == RPC_SUCCESS) { /* Found latest version number */

printf("num = %d\n", num_s);

exit(0);

}

if (status != RPC_PROGVERSMISMATCH) { /* Some other error */

clnt_perror(clnt, "rusers");
exit(1);

}

/* This version not supported */

clnt_geterr(clnt, &rpcerr);

maxvers = rpcerr.re_vers.high; /* highest version supported */

minvers = rpcerr.re_vers.low; /*lowest version supported */

if (RUSERSVERS_SHORT < minvers || RUSERSVERS_SHORT > maxvers)

{

/* doesn’t meet minimum standards */

clnt_perror(clnt, "version mismatch");
exit(1);

Multiple Client Versions

Chapter 5 • Advanced RPC Programming Techniques 131

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-3nsl

EXAMPLE 5–17 RPC Versions on Client Side (Continued)

}

(void) clnt_control(clnt, CLSET_VERSION, RUSERSVERS_ORIG);

status = clnt_call(clnt, RUSERSPROC_NUM, xdr_void,

(caddr_t) NULL, xdr_u_int, (caddr_t)&num_l, to);

if (status == RPC_SUCCESS)

/* We found a version number we recognize */

printf("num = %d\n", num_l);

else {

clnt_perror(clnt, "rusers");
exit(1);

}

}

Using Transient RPC Program Numbers
Occasionally, an application could use RPC program numbers that are generated dynamically.
This technique could be used for implementing callback procedures, for example. In the
callback example, a client program typically registers an RPC service using a dynamically
generated, or transient, RPC program number. The program then passes this number on to a
server along with a request. The server then calls back the client program using the transient
RPC program number in order to supply the results.

This mechanism might be necessary if processing the client's request takes an excessive amount
of time and the client cannot block, assuming it is single threaded. In this case, the server
acknowledges the client's request, and calls back later with the results.

Another use of callbacks is to generate periodic reports from a server. The client makes an RPC
call to start the reporting, and the server periodically calls back the client with reports using the
transient RPC program number supplied by the client program.

Dynamically generated, or transient, RPC program numbers are in the transient range
0x40000000 - 0x5fffffff. The following routine creates a service based on a transient RPC
program for a given transport type. The service handle and the transient RPC program number
are returned. The caller supplies the service dispatch routine, the version, and the transport
type.

EXAMPLE 5–18 Transient RPC Program–Server Side

SVCXPRT *register_transient_prog(dispatch, program, version, netid)

void (*dispatch)(); /* service dispatch routine */

rpcproc_t *program; /* returned transient RPC number */

rpcvers_t version; /* program version */

char *netid; /* transport id */

{

SVCXPRT *transp;

struct netconfig *nconf;

Using Transient RPC Program Numbers

ONC+ Developer's Guide • November 2010 (Beta)132

EXAMPLE 5–18 Transient RPC Program–Server Side (Continued)

rpcprog_t prognum;

if ((nconf = getnetconfigent(netid)) == (struct netconfig *)NULL)

return ((SVCXPRT *)NULL);

if ((transp = svc_tli_create(RPC_ANYFD, nconf,

(struct t_bind *)NULL, 0, 0)) == (SVCXPRT *)NULL) {

freenetconfigent(nconf);

return ((SVCXPRT *)NULL);

}

prognum = 0x40000000;

while (prognum < 0x60000000 && svc_reg(transp, prognum,

version, dispatch, nconf) == 0) {

prognum++;

}

freenetconfigent(nconf);

if (prognum >= 0x60000000) {

svc_destroy(transp);

return ((SVCXPRT *)NULL);

}

*program = prognum;

return (transp);

}

Using Transient RPC Program Numbers

Chapter 5 • Advanced RPC Programming Techniques 133

134

Porting From TS-RPC to TI-RPC

The transport-independent RPC (TI-RPC) routines provide the developer with stratified levels
of access to the transport layer. The highest-level routines provide complete abstraction from
the transport and provide true transport-independence. Lower levels provide access levels
similar to the TI-RPC of previous releases.

This section is an informal guide to porting transport-specific RPC (TS-RPC) applications to
TI-RPC. Table 6–1 shows the differences between selected routines and their counterparts. For
information on porting issues concerning sockets and transport layer interface (TLI), see the
Programming Interfaces Guide.

Porting an Application
An application based on either TCP or UDP can run in binary-compatibility mode. For some
applications you only recompile and relink all source files. Such applications might use simple
RPC calls and use no socket or TCP or UDP specifics.

You might need to edit code and write new code if an application depends on socket semantics
or features specific to TCP or UDP. For example, the code might use the format of host
addresses or rely on the Berkeley UNIX concept of privileged ports.

Applications that are dependent on the internals of the library or the socket implementation, or
applications that depend on specific transport addressing, probably require more effort to port
and might require substantial modification.

6C H A P T E R 6

135

http://www.oracle.com/pls/topic/lookup?ctx=821-1602&id=netproto

Benefits of Porting
Some of the benefits of porting are:
■ Application transport independence means applications operate over more transports than

before.
■ Use of new interfaces makes your application more efficient.
■ Binary compatibility is less efficient than native mode.

IPv6 Considerations for RPC
IPv6 is the successor of IPv4, the most commonly used layer 2 protocol. IPv6 is also known as IP
next generation (IPng). For more information, see System Administration Guide: IP Services.

Both IPv4 and IPv6 are available to users. Applications choose which stack to use when using
COTS (connection-oriented transport service). They can choose TCP or CLTS (connectionless
transport service).

The following figure illustrates a typical RPC application running over an IPv4 or IPv6 protocol
stack.

IPv6 is supported only for TI-RPC applications. TS-RPC does not currently support IPv6.
Transport selection in TI-RPC is governed either by the NETPATH environment variable or in
/etc/netconfig.

The selection of TCP or UDP instead of IPv4 or IPv6 is dependent on the order in which the
corresponding entries appear in /etc/netconfig. Two new entries are associated with IPv6 in
/etc/netconfig, and by default they are the first two entries of the file. TI-RPC first tries IPv6.
Failing that, it falls back to IPv4. Doing so requires no change in the RPC application itself
provided that it doesn't have any knowledge of the transport and is written using the top-level
interface.

FIGURE 6–1 RPC Applications

RPC Applications

Network

TCP UDP

IPv4 IPv6

Benefits of Porting

ONC+ Developer's Guide • November 2010 (Beta)136

http://www.oracle.com/pls/topic/lookup?ctx=821-1453&id=sysadv3

Porting Issues
■ libnsl library – libc no longer includes networking functions. libnsl must be explicitly

specified at compile time to link the network services routines.
■ Old interfaces – Many old interfaces are supported in the libnsl library, but they work only

with TCP or UDP transports. To make full use of new transports, you must use the new
interfaces.

■ Name-to-address mapping – Transport independence requires opaque addressing. This
requirement has implications for applications that interpret addresses.

Differences Between TI-RPC and TS-RPC
The major differences between transport-independent RPC and transport-specific RPC are
illustrated in the following table. Also see “Comparison Examples” on page 140 for code
examples comparing TS-RPC with TI-RPC.

TABLE 6–1 Differences Between TI-RPC and TS-RPC

Category TI-RPC TS-RPC

Default Transport Selection TI-RPC uses the TLI interface. TS-RPC uses the socket interface.

RPC Address Binding TI-RPC uses rpcbind() for service
binding. rpcbind() keeps address
in universal address format.

TS-RPC uses portmap for service
binding.

Transport Information Transport information is kept in a
local file, /etc/netconfig. Any
transport identified in netconfig is
accessible.

Only TCP and UDP transports are
supported.

Loopback Transports rpcbind service requires a secure
loopback transport for server
registration.

TS-RPC services do not require a
loopback transport.

Host Name Resolution The order of host-name resolution
in TI-RPC depends on the order of
dynamic libraries identified by
entries in /etc/netconfig.

Host-name resolution is done by
name services. The order is set by
the state of the hosts database.

File Descriptors Descriptors are assumed to be TLI
endpoints.

Descriptors are assumed to be
sockets.

rpcgen The TI-RPC rpcgen tool adds
support for multiple arguments,
pass-by values, sample client files,
and sample server files.

rpcgen in SunOS 4.1 and previous
releases does not support the
features listed for TI-RPC rpcgen.

Differences Between TI-RPC and TS-RPC

Chapter 6 • Porting From TS-RPC to TI-RPC 137

TABLE 6–1 Differences Between TI-RPC and TS-RPC (Continued)
Category TI-RPC TS-RPC

Libraries TI-RPC requires that applications
be linked to the libnsl library.

All TS-RPC functionality is
provided in libc.

MT Support Multithreaded RPC clients and
servers are supported.

Multithreaded RPC is not
supported.

Function Compatibility Lists
This section lists the RPC library functions and groups them into functional areas. Each section
includes lists of functions that are unchanged, have added functionality, and are new to this
release.

Note – Functions marked with an asterisk are retained for ease of porting.

Creating and Destroying Services
The following functions are unchanged from the previous releases and are available in the
current SunOS release:1

svc_destroy

svcfd_create

*svc_raw_create

*svc_tp_create

*svcudp_create

*svc_udp_bufcreate

svc_create

svc_dg_create

svc_fd_create

svc_raw_create

svc_tli_create

svc_tp_create

svc_vc_create

Registering and Unregistering Services
The following functions are unchanged from the previous releases and are available in the
current SunOS release:

*registerrpc

*svc_register

*svc_unregister

xprt_register

Function Compatibility Lists

ONC+ Developer's Guide • November 2010 (Beta)138

xprt_unregister

rpc_reg

svc_reg

svc_unreg

SunOS Compatibility Calls
The following functions are unchanged from previous releases and are available in the current
SunOS release:

*callrpc

clnt_call

*svc_getcaller - works only with IP-based transports

rpc_call

svc_getrpccaller

Broadcasting
The clnt_broadcast call has the same functionality as in previous releases, although it is
supported for backward compatibility only.

clnt_broadcast() can broadcast only to the portmap service. It does not support rpcbind.

The rpc_broadcast function broadcasts to both portmap and rpcbind and is also available in
the current SunOS release.

Address Management Functions
The TI-RPC library functions interface with either portmap or rpcbind. Because the services of
the programs differ, there are two sets of functions, one for each service.

The following functions work with portmap:

pmap_set

pmap_unset

pmap_getport

pmap_getmaps

pmap_rmtcall

The following functions work with rpcbind:

rpcb_set

rpcb_unset

rpcb_getaddr

rpcb_getmaps

rpcb_rmtcall

Function Compatibility Lists

Chapter 6 • Porting From TS-RPC to TI-RPC 139

Authentication Functions
The following calls have the same functionality as in previous releases. They are supported for
backward compatibility only.

authdes_create

authunix_create

authunix_create_default

authdes_seccreate

authsys_create

authsys_create_default

Other Functions
rpcbind provides a time service, primarily for use by secure RPC client-server time
synchronization, available through the rpcb_gettime() function. pmap_getport() and
rpcb_getaddr() can be used to get the port number of a registered service. rpcb_getaddr()
communicates with any server running version 2, 3, or 4 of rcpbind. pmap_getport() can only
communicate with version 2.

Comparison Examples
The changes in client creation from TS-RPC to TI-RPC are illustrated in Example 6–1 and
Example 6–2. Each example:

■ Creates a UDP descriptor
■ Contacts the remote host's RPC binding process to get the service's address
■ Binds the remote service's address to the descriptor
■ Creates the client handle and set its timeout

EXAMPLE 6–1 Client Creation in TS-RPC

struct hostent *h;

struct sockaddr_in sin;

int sock = RPC_ANYSOCK;

u_short port;

struct timeval wait;

if ((h = gethostbyname("host")) == (struct hostent *) NULL)

{

syslog(LOG_ERR, "gethostbyname failed");
exit(1);

}

sin.sin_addr.s_addr = *(u_int *) hp->h_addr;

if ((port = pmap_getport(&sin, PROGRAM, VERSION, "udp")) == 0) {

syslog (LOG_ERR, "pmap_getport failed");
exit(1);

} else

Comparison Examples

ONC+ Developer's Guide • November 2010 (Beta)140

EXAMPLE 6–1 Client Creation in TS-RPC (Continued)

sin.sin_port = htons(port);

wait.tv_sec = 25;

wait.tv_usec = 0;

clntudp_create(&sin, PROGRAM, VERSION, wait, &sock);

The TI-RPC version of client creation, shown in the following example, assumes that the UDP
transport has the netid udp. A netid is not necessarily a well-known name.

EXAMPLE 6–2 Client Creation in TI-RPC

struct netconfig *nconf;

struct netconfig *getnetconfigent();

struct t_bind *tbind;

struct timeval wait;

nconf = getnetconfigent("udp");
if (nconf == (struct netconfig *) NULL) {

syslog(LOG_ERR, "getnetconfigent for udp failed");
exit(1);

}

fd = t_open(nconf->nc_device, O_RDWR, (struct t_info *)NULL);

if (fd == -1) {

syslog(LOG_ERR, "t_open failed");
exit(1);

}

tbind = (struct t_bind *) t_alloc(fd, T_BIND, T_ADDR);

if (tbind == (struct t_bind *) NULL) {

syslog(LOG_ERR, "t_bind failed");
exit(1);

}

if (rpcb_getaddr(PROGRAM, VERSION, nconf, &tbind->addr, "host")
== FALSE) {

syslog(LOG_ERR, "rpcb_getaddr failed");
exit(1);

}

cl = clnt_tli_create(fd, nconf, &tbind->addr, PROGRAM, VERSION,

0, 0);

(void) t_free((char *) tbind, T_BIND);

if (cl == (CLIENT *) NULL) {

syslog(LOG_ERR, "clnt_tli_create failed");
exit(1);

}

wait.tv_sec = 25;

wait.tv_usec = 0;

clnt_control(cl, CLSET_TIMEOUT, (char *) &wait);

Example 6–3 and Example 6–4 show the differences between broadcast in TS-RPC and TI-RPC.
The older clnt_broadcast() is similar to the newer rpc_broadcast(). The primary difference
is in the collectnames() function: it deletes duplicate addresses and displays the names of
hosts that reply to the broadcast.

Comparison Examples

Chapter 6 • Porting From TS-RPC to TI-RPC 141

EXAMPLE 6–3 Broadcast in TS-RPC

statstime sw;

extern int collectnames();

clnt_broadcast(RSTATPROG, RSTATVERS_TIME, RSTATPROC_STATS,

xdr_void, NULL, xdr_statstime, &sw, collectnames);

...

collectnames(resultsp, raddrp)

char *resultsp;

struct sockaddr_in *raddrp;

{

u_int addr;

struct entry *entryp, *lim;

struct hostent *hp;

extern int curentry;

/* weed out duplicates */

addr = raddrp->sin_addr.s_addr;

lim = entry + curentry;

for (entryp = entry; entryp < lim; entryp++)

if (addr == entryp->addr)

return (0);

...

/* print the host’s name (if possible) or address */

hp = gethostbyaddr(&raddrp->sin_addr.s_addr, sizeof(u_int),

AF_INET);

if(hp == (struct hostent *) NULL)

printf("0x%x", addr);

else

printf("%s", hp->h_name);

}

The following code example shows broadcast in TI-RPC.

EXAMPLE 6–4 Broadcast in TI-RPC

statstime sw;

extern int collectnames();

rpc_broadcast(RSTATPROG, RSTATVERS_TIME, RSTATPROC_STATS,

xdr_void, NULL, xdr_statstime, &sw, collectnames, (char *)

0);

...

collectnames(resultsp, taddr, nconf)

char *resultsp;

struct t_bind *taddr;

struct netconfig *nconf;

{

struct entry *entryp, *lim;

struct nd_hostservlist *hs;

extern int curentry;

extern int netbufeq();

/* weed out duplicates */

lim = entry + curentry;

Comparison Examples

ONC+ Developer's Guide • November 2010 (Beta)142

EXAMPLE 6–4 Broadcast in TI-RPC (Continued)

for (entryp = entry; entryp < lim; entryp++)

if (netbufeq(&taddr->addr, entryp->addr))

return (0);

...

/* print the host’s name (if possible) or address */

if (netdir_getbyaddr(nconf, &hs, &taddr->addr) == ND_OK)

printf("%s", hs->h_hostservs->h_host);

else {

char *uaddr = taddr2uaddr(nconf, &taddr->addr);

if (uaddr) {

printf("%s\n", uaddr);

(void) free(uaddr);

} else

printf("unknown");
}

}

netbufeq(a, b)

struct netbuf *a, *b;

{

return(a->len == b->len && !memcmp(a->buf, b->buf, a->len));

}

Comparison Examples

Chapter 6 • Porting From TS-RPC to TI-RPC 143

144

Multithreaded RPC Programming

This manual does not cover basic topics and code examples for the Solaris implementation of
multithreaded programming. Instead, refer to the Multithreaded Programming Guide for
background on the following topics.
■ Thread creation
■ Scheduling
■ Synchronization
■ Signals
■ Process resources
■ Lightweight processes (LWP)
■ Concurrency
■ Data-locking strategies

TI-RPC supports multithreaded RPC servers. The difference between a multithreaded server
and a single-threaded server is that a multithreaded server uses threading technology to process
incoming client requests concurrently. Multithreaded servers can have higher performance and
availability compared with single-threaded servers.

MT Client Overview
In a multithread client program, a thread can be created to issue each RPC request. When
multiple threads share the same client handle, only one thread at a time is able to make an RPC
request. All other threads wait until the outstanding request is complete. On the other hand,
when multiple threads make RPC requests using different client handles, the requests are
carried out concurrently. Figure 4–1 illustrates a possible timing of a multithreaded client
implementation consisting of two client threads using different client handles.

The following figure shows the client side implementation of a multithreaded rstat program.
The client program creates a thread for each host. Each thread creates its own client handle and
makes various RPC calls to the given host. Because the client threads are using different handles
to make the RPC calls, they can carry out the RPC calls concurrently.

7C H A P T E R 7

145

http://www.oracle.com/pls/topic/lookup?ctx=821-1601&id=mtp

Note – You must link in the thread library when writing any RPC multithreaded-safe
application. The thread library must be the last named library on the link line. To link this
properly, specify the -lthread option in the compile command.

Compile the program in the code example by typing cc rstat.c -lnsl -lthread.

MT Server Overview
RPC servers made available prior to the Solaris 2.4 release are single threaded. That is, they
process client requests sequentially, as the requests come in. For example, say two requests
come in, and the first takes 30 seconds to process, and the second takes only 1 second to process.
The client that made the second request still has to wait for the first request to complete before it
receives a response. This result is not desirable, especially in a multiprocessor server

FIGURE 7–1 Two Client Threads Using Different Client Handles (Real Time)

Host A

Host B

Host C

Service
executes

Return
answer

Invoke
service

Request
complete

Time

Server
daemon

Client thread 1

Client thread 2

Client 1 thread
continues

Client 2 thread
continues

Service
executes

Return
answer

Invoke
service

Request
complete

MT Server Overview

ONC+ Developer's Guide • November 2010 (Beta)146

environment, where each CPU could be processing a different request simultaneously.Also,
while one request is waiting for I/O to complete, sometimes other requests could be processed
by the server.

Facilities in the RPC library for service developers can create multithreaded servers that deliver
better performance to end users. Two modes of server multithreading are supported in TI-RPC:
the Auto MT mode and the User MT mode.

In the Auto mode, the server automatically creates a new thread for every incoming client
request. This thread processes the request, sends a response, and exits. In the User mode, the
service developer decides how to create and manage threads for concurrently processing the
incoming client requests. The Auto mode is much easier to use than the User mode, but the
User mode offers more flexibility for service developers with special requirements.

Note – You must link in the thread library when writing RPC multithreaded-safe applications.
The thread library must be the last named library on the link line. To link this properly, specify
the -lthread option in the compile command.

The two calls that support server multithreading are rpc_control() and svc_done(). The
rpc_control() call is used to set the MT mode, either Auto or User mode. If the server uses
Auto mode, it does not need to invoke svc_done() at all. In User mode, svc_done() must be
invoked after each client request is processed so that the server can reclaim the resources from
processing the request. In addition, multithreaded RPC servers must call on svc_run(). Note
that svc_getreqpoll() and svc_getreqset() are unsafe in MT applications.

If the server program does not invoke any of the MT interface calls, it remains in
single-threaded mode, which is the default mode.

You are required to make RPC server procedures multithreaded safe regardless of which mode
the server is using. Usually, this means that all static and global variables need to be protected
with mutex locks. Mutual exclusion and other synchronization APIs are defined in
/usr/include/synch.h and /usr/include/pthread.h.

The following figure illustrates a possible timing of a server implemented in one of the MT
modes of operation.

MT Server Overview

Chapter 7 • Multithreaded RPC Programming 147

Sharing the Service Transport Handle
The service transport handle, SVCXPRT, contains a single data area for decoding arguments and
encoding results. Therefore, in the default, single-threaded mode, this structure cannot be
freely shared between threads that call functions that perform these operations. However, when
a server is operating in the MT Auto or User modes, a copy of this structure is passed to the
service dispatch procedure in order to enable concurrent request processing. Under these
circumstances, some routines that would otherwise be unsafe become safe. Unless otherwise
noted, the server interfaces are generally MT safe. See the rpc_svc_calls(3NSL) man page for
more details on safety for server-side interfaces.

FIGURE 7–2 MT RPC Server Timing Diagram

Host A

Host B

Host C

RPC
 call

Create
 thread

Time

Service
daemon

Client
program

Client program
continues

Service
executes

Return
answer

RPC
 call

Create
 thread

Client
program

Client program
continues

Service
executes

Return
answer

MT Server Overview

ONC+ Developer's Guide • November 2010 (Beta)148

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-svc-calls-3nsl

MT Auto Mode
In the Auto mode, the RPC library creates and manages threads. The service developer invokes
a new interface call, rpc_control(), to put the server into MT Auto mode before invoking the
svc_run() call. In this mode, the programmer needs only to ensure that service procedures are
MT safe.

rpc_control() enables applications to set and modify global RPC attributes. At present, this
function supports only server-side operations. The following table shows the rpc_control()
operations defined for Auto mode. See also the rpc_control(3NSL) man page for additional
information.

TABLE 7–1 rpc_control()Library Routines

Routine Description

RPC_SVC_MTMODE_SET() Set multithread mode

RPC_SVC_MTMODE_GET() Get multithread mode

RPC_SVC_THRMAX_SET() Set maximum number of threads

RPC_SVC_THRMAX_GET() Get maximum number of threads

RPC_SVC_THRTOTAL_GET() Total number of threads currently active

RPC_SVC_THRCREATES_GET() Cumulative total number of threads created by the RPC
library

RPC_SVC_THRERRORS_GET() Number of thr_create() errors within RPC library

Note – All of the get operations in Table 7–1, except RPC_SVC_MTMODE_GET(), apply only to the
Auto MT mode. If used in MT User mode or the single-threaded default mode, the results of the
operations might be undefined.

By default, the maximum number of threads that the RPC server library creates at any time is
16. If a server needs to process more than 16 client requests concurrently, the maximum
number of threads must be set to the desired number. This parameter can be set at any time by
the server. It enables the service developer to put an upper bound on the thread resources
consumed by the server. Example 7–1 is an example RPC program written in MT Auto mode.
In this case, the maximum number of threads is set at 20.

MT performance is enhanced if the function svc_getargs() is called by every procedure other
than NULLPROCS, even if there are no arguments (you can use xdr_void() in this case). This is
true for both the MT Auto and MT User modes. For more information on this call, see the
rpc_svc_calls(3NSL) man page.

MT Auto Mode

Chapter 7 • Multithreaded RPC Programming 149

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-control-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-svc-calls-3nsl

Note – You must link in the thread library when writing RPC multithreaded-safe applications.
The thread library must be the last named library on the link line. Specify the -lthread option
in the compile command.

The following example illustrates the server in MT Auto mode. To compile this program, type
cc time_svc.c -lnsl -lthread.

EXAMPLE 7–1 Server for MT Auto Mode

#include <stdio.h>

#include <rpc/rpc.h>

#include <synch.h>

#include <thread.h>

#include "time_prot.h"

void time_prog();

main(argc, argv)

int argc;

char *argv[];

{

int transpnum;

char *nettype;

int mode = RPC_SVC_MT_AUTO;

int max = 20; /* Set maximum number of threads to 20 */

if (argc > 2) {

fprintf(stderr, "usage: %s [nettype]\n", argv[0]);

exit(1);

}

if (argc == 2)

nettype = argv[1];

else

nettype = "netpath";

if (!rpc_control(RPC_SVC_MTMODE_SET, &mode)) {

printf("RPC_SVC_MTMODE_SET: failed\n");
exit(1);

}

if (!rpc_control(RPC_SVC_THRMAX_SET, &max)) {

printf("RPC_SVC_THRMAX_SET: failed\n");
exit(1);

}

transpnum = svc_create(time_prog, TIME_PROG, TIME_VERS,

nettype);

if (transpnum == 0) {

fprintf(stderr, "%s: cannot create %s service.\n",
argv[0], nettype);

exit(1);

}

MT Auto Mode

ONC+ Developer's Guide • November 2010 (Beta)150

EXAMPLE 7–1 Server for MT Auto Mode (Continued)

svc_run();

}

/*

* The server dispatch function.

* The RPC server library creates a thread which executes

* the server dispatcher routine time_prog(). After which

* the RPC library destroys the thread.

*/

static void

time_prog(rqstp, transp)

struct svc_req *rqstp;

SVCXPRT *transp;

{

switch (rqstp->rq_proc) {

case NULLPROC:

svc_sendreply(transp, xdr_void, NULL);

return;

case TIME_GET:

dotime(transp);

break;

default:

svcerr_noproc(transp);

return;

}

}

dotime(transp)

SVCXPRT *transp;

{

struct timev rslt;

time_t thetime;

thetime = time((time_t *)0);

rslt.second = thetime % 60;

thetime /= 60;

rslt.minute = thetime % 60;

thetime /= 60;

rslt.hour = thetime % 24;

if (!svc_sendreply(transp, xdr_timev,(caddr_t) &rslt)) {

svcerr_systemerr(transp);

}

}

The following code example shows the time_prot.h header file for the server.

EXAMPLE 7–2 MT Auto Mode: time_prot.h

#include <rpc/types.h>

struct timev {

MT Auto Mode

Chapter 7 • Multithreaded RPC Programming 151

EXAMPLE 7–2 MT Auto Mode: time_prot.h (Continued)

int second;

int minute;

int hour;

};

typedef struct timev timev;

bool_t xdr_timev();

#define TIME_PROG 0x40000001

#define TIME_VERS 1

#define TIME_GET 1

MT User Mode
In MT User mode, the RPC library does not create any threads. This mode works, in principle,
like the single-threaded, or default mode. The only difference is that it passes copies of data
structures, such as the transport service handle to the service-dispatch routine to be MT safe.

The RPC server developer takes the responsibility for creating and managing threads through
the thread library. In the dispatch routine, the service developer can assign the task of procedure
execution to newly created or existing threads. The thr_create() API is used to create threads
having various attributes. All thread library interfaces are defined in /usr/include/thread.h

and /usr/include/pthread.h.

This mode provides flexibility to the service developer. Threads can now have different stack
sizes based on service requirements. Threads can be bound. Different procedures can be
executed by threads with different characteristics. The service developer might choose to run
some services single threaded. The service developer might choose to do special thread-specific
signal processing.

As in the Auto mode, you use the rpc_control() library call to turn on User mode. Note that
the rpc_control() operations shown in Table 7–1, except for RPC_SVC_MTMODE_GET(), apply
only to MT Auto mode. If used in MT User mode or the single-threaded default mode, the
results of the operations can be undefined.

Freeing Library Resources in User Mode
In the MT User mode, service procedures must invoke svc_done() before returning.
svc_done() frees resources allocated to service a client request directed to the specified service
transport handle. This function is invoked after a client request has been serviced, or after an

MT User Mode

ONC+ Developer's Guide • November 2010 (Beta)152

error or abnormal condition that prevents a reply from being sent. After svc_done() is
invoked, the service procedure should not reference the service transport handle. The following
example shows a server in MT User mode.

Note – svc_done() must only be called within MT User mode. For more information on this
call, see the rpc_svc_calls(3NSL) man page.

EXAMPLE 7–3 MT User Mode: rpc_test.h

#define SVC2_PROG 0x30000002

#define SVC2_VERS 1

#define SVC2_PROC_ADD 1)

#define SVC2_PROC_MULT 2

struct intpair {

u_short a;

u_short b;

};

typedef struct intpair intpair;

struct svc2_add_args {

int argument;

SVCXPRT *transp;

};

struct svc2_mult_args {

intpair mult_argument;

SVCXPRT *transp;

};

extern bool_t xdr_intpair();

#define NTHREADS_CONST 500

The following code example is the client for MT User mode.

EXAMPLE 7–4 Client for MT User Mode

#define _REENTRANT

#include <stdio.h>

#include <rpc/rpc.h>

#include <sys/uio.h>

#include <netconfig.h>

#include <netdb.h>

#include <rpc/nettype.h>

#include <thread.h>

#include "rpc_test.h"
void *doclient();

int NTHREADS;

struct thread_info {

MT User Mode

Chapter 7 • Multithreaded RPC Programming 153

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-svc-calls-3nsl

EXAMPLE 7–4 Client for MT User Mode (Continued)

thread_t client_id;

int client_status;

};

struct thread_info save_thread[NTHREADS_CONST];

main(argc, argv)

int argc;

char *argv[];

{

int index, ret;

int thread_status;

thread_t departedid, client_id;

char *hosts;

if (argc < 3) {

printf("Usage: do_operation [n] host\n");
printf("\twhere n is the number of threads\n");
exit(1);

} else

if (argc == 3) {

NTHREADS = NTHREADS_CONST;

hosts = argv[1]; /* live_host */

} else {

NTHREADS = atoi(argv[1]);

hosts = argv[2];

}

for (index = 0; index < NTHREADS; index++){

if (ret = thr_create(NULL, NULL, doclient,

(void *) hosts, THR_BOUND, &client_id)){

printf("thr_create failed: return value %d", ret);

printf(" for %dth thread\n", index);

exit(1);

}

save_thread[index].client_id = client_id;

}

for (index = 0; index < NTHREADS; index++){

if (thr_join(save_thread[index].client_id, &departedid,

(void *)

&thread_status)){

printf("thr_join failed for thread %d\n",
save_thread[index].client_id);

exit(1);

}

save_thread[index].client_status = thread_status;

}

}

void *doclient(host)

char *host;

{

struct timeval tout;

enum clnt_stat test;

int result = 0;

u_short mult_result = 0;

int add_arg;

int EXP_RSLT;

intpair pair;

CLIENT *clnt;

MT User Mode

ONC+ Developer's Guide • November 2010 (Beta)154

EXAMPLE 7–4 Client for MT User Mode (Continued)

if ((clnt = clnt_create(host, SVC2_PROG, SVC2_VERS, "udp"
==NULL) {

clnt_pcreateerror("clnt_create error: ");
thr_exit((void *) -1);

}

tout.tv_sec = 25;

tout.tv_usec = 0;

memset((char *) &result, 0, sizeof (result));

memset((char *) &mult_result, 0, sizeof (mult_result));

if (thr_self() % 2){

EXP_RSLT = thr_self() + 1;

add_arg = thr_self();

test = clnt_call(clnt, SVC2_PROC_ADD, (xdrproc_t) xdr_int,

(caddr_t) &add_arg, (xdrproc_t) xdr_int, (caddr_t) &result,

tout);

} else {

pair.a = (u_short) thr_self();

pair.b = (u_short) 1;

EXP_RSLT = pair.a * pair.b;

test = clnt_call(clnt, SVC2_PROC_MULT, (xdrproc_t)

xdr_intpair,

(caddr_t) &pair, (xdrproc_t) xdr_u_short,

(caddr_t) &mult_result, tout);

result = mult_result;

}

if (test != RPC_SUCCESS) {

printf("THREAD: %d clnt_call hav

thr_exit((void *) -1);

};

thr_exit((void *) 0);

}

MT performance is enhanced if the function svc_getargs() is called by every procedure other
than NULLPROC, even if there are no arguments. xdr_void may be used in this case. This result is
true for both the MT Auto and MT User modes. For more information on this call, see the
rpc_svc_calls(3NSL) man page.

Note – You must link in the thread library when writing RPC multithreaded-safe applications.
The thread library must be the last named library on the link line. Specify the -lthread option
in the compile command.

MT User Mode

Chapter 7 • Multithreaded RPC Programming 155

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-svc-calls-3nsl

156

Extensions to the Sun RPC Library

New features have been added to the Sun RPC library which are integrated into the standard
Solaris 9 product.

New and altered man pages are available to describe the functionality added to the Sun RPC
library.

The additions to the Sun RPC library are described in the following sections:

■ “One-Way Messaging” on page 158
■ “Non-Blocking I/O” on page 163
■ “Client Connection Closure Callback” on page 167
■ “User File Descriptor Callbacks” on page 173

New Features
The new features added to the Sun RPC library are:

■ One-way messaging - Reduces the time a client thread waits before continuing processing.
■ Non-blocking I/O - Enables a client to send requests without being blocked.
■ Client connection closure callback - Enables a server to detect client disconnection and to

take corrective action.
■ Callback user file descriptor - Extends the RPC server to handle non-RPC descriptors.

8C H A P T E R 8

157

One-Way Messaging
In one-way messaging the client thread sends a request containing a message to the server. The
client thread does not wait for a reply from the server and is free to continue processing when
the request has been accepted by the transport layer. The request is not always sent immediately
to the server by the transport layer, but waits in a queue until the transport layer sends it. The
server executes the request received by processing the message contained in the request. This
method saves processing time.

The following figure illustrates one-way messaging.

In previous versions of the Sun RPC library, most requests were sent by two-way messaging. In
two-way messaging, the client thread waits until it gets an answer from the server before
continuing processing. If the client thread does not receive a reply from the server within a
certain period of time, a time-out occurs. This client thread cannot send a second request until
the first request is executed or until a time-out occurs. This messaging method is illustrated in
the following figure.

FIGURE 8–1 One-Way Messaging

Time

Client RPC I/O

Transport Layer

I/O RPC

Host A Host B

Server

Service
Executes

Queue

Call
 service

Blocked

One-Way Messaging

ONC+ Developer's Guide • November 2010 (Beta)158

Previous versions of the Sun RPC library contain a second method of messaging called
batching. In this method, client request are held in a queue until a group of requests can be
processed at the same time. This is a form of one-way messaging. See Chapter 4, “Programmer's
Interface to RPC,” for further details.

After the transport layer accepts a request, the client is not notified of failures in transmission
and does not receive a receipt from the server from the request. For example, if the server
refuses the request due to an authentication problem, the client is not notified of this problem. If
the transport layer does not accept the request, the sending operation returns an immediate
error to the client.

If you need to check whether the server is functioning correctly, you can send a two-way request
to the server. Such a request can determine whether the server is still available and whether it
has received the one-way requests sent by the client.

For one-way messaging, the clnt_send() function has been added to the Sun RPC library, and
the oneway attribute has been added to the RPC grammar.

FIGURE 8–2 Two-Way Messaging

Time

Client RPC I/O

Transport Layer

I/O RPC

Host A Host B

Server

Blocked Service
Executes

Queue

One-Way Messaging

Chapter 8 • Extensions to the Sun RPC Library 159

clnt_send()

In previous versions of the Sun RPC library, you used the clnt_call() function to send a
remote procedure call. With the extended one-way messaging service, the clnt_send()
function sends one-way remote procedure calls.

When the client calls clnt_send(), the client sends a request to the server and continues
processing. When the request arrives at the server, the server calls a dispatch routine to process
the incoming request.

Like clnt_call(), the clnt_send() function uses a client handle to access a service. See the
clnt_send(3NSL) and clnt_call(3NSL) man pages for further information.

If you do not provide the correct version number to clnt_create(), clnt_call() fails. In the
same circumstances, clnt_send() does not report the failure, as the server does not return a
status.

onewayAttribute
To use one-way messaging, add the oneway keyword to the XDR definition of a server function.
When you use the oneway keyword, the stubs generated by rpcgen use clnt_send(). You can
either:
■ Use a simplified interface as outlined in the Chapter 2, “Introduction to TI-RPC.” The

stubs used by the simplified interface must call clnt_send().
■ Call the clnt_send() function directly, as described in the clnt_send(3NSL) man page.

For one-way messaging, use version 1.1 of the rpcgen command.

When declaring the oneway keyword, follow the RPC language specification using the following
syntax:

"oneway" function-ident "(" type-ident-list ")" "=" value;

See Appendix B, “RPC Protocol and Language Specification,” for details on RPC language
specifications.

When you declare the oneway attribute for an operation, no result is created on the server side
and no message is returned to the client.

The following information on the oneway attribute must be added to the RPC Language
Definition Table as described in “RPC Language Specification” on page 252:

type-ident procedure-ident (type-ident) = value

oneway procedure-ident (type-ident) = value

One-Way Messaging

ONC+ Developer's Guide • November 2010 (Beta)160

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=clnt-send-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=clnt-call-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=clnt-send-3nsl

One-way call using a simple counter service
This section describes how to use a one-way procedure on a simple counter service. In this
counter service the ADD() function is the only function available. Each remote call sends an
integer and this integer is added to a global counter managed by the server. For this service, you
must declare the oneway attribute in the RPC language definition.

In this example, you generate stubs using the -M, -N and -C rpcgen options. These options
ensure that the stubs are multithread safe, accept multiple input parameters and that generated
headers are ANSI C++ compatible. Use these rpcgen options even if the client and server
applications are mono-threaded as the semantic to pass arguments is clearer and adding
threads in applications is easier since the stubs do not change.

1. First, you write the service description in the counter.x.

/* counter.x: Remote counter protocol */

program COUNTERPROG {

version COUNTERVERS {

oneway ADD(int) = 1;

} = 1;

} = 0x20000001;

The service has a program number, (COUNTERPROG) 0x200000001, and a version
number, (COUNTERVERS) 1.

2. Next, call rpcgen on the counter.x file.

rpcgen -M -N -C counter.x

This call generates the client and server stubs, counter.h, counter_clnt.c and
counter_svc.c.

3. As shown in the server.c file below, write the service handler for the server side and the
counterprog_1_freeresult() function used to free memory areas allocated to the handler.
The RPC library calls this function when the server sends a reply to the client.

#include <stdio.h>

#include "counter.h"

int counter = 0;

bool_t

add_1_svc(int number, struct svc_req *rqstp)

{

bool_t retval = TRUE;

counter = counter + number;

return retval;

}

int

counterprog_1_freeresult(SVCXPRT *transp, xdrproc_t xdr_result, caddr_t

result)

{

(void) xdr_free(xdr_result, result);

One-Way Messaging

Chapter 8 • Extensions to the Sun RPC Library 161

/*

* Insert additional freeing code here, if needed

*/

return TRUE;

}

You build the server by compiling and linking the service handler to the counter_svc.c
stub. This stub contains information on the initialization and handling of TI-RPC.

4. Next, you write the client application, client.c.

#include <stdio.h>

#include "counter.h"

main(int argc, char *argv[])

{

CLIENT *clnt;

enum clnt_stat result;

char *server;

int number;

if(argc !=3) {

fprintf(stderr, "usage: %s server_name number\n", argv[0];

exit(1);

}

server = argv[1];

number = atoi(argv[2]);

/*

* Create client handle

*/

clnt = clnt_create(server, COUNTERPROG, COUNTERVERS, "tcp");

if(clnt == (CLIENT *)NULL) {

/*

* Couldn’t establish connection

*/

clnt_pcreateerror(server);

exit(1);

}

result = add_1(number, clnt);

if (result !=RPC_SUCCESS) {

clnt_perror(clnt, "call failed");
}

clnt_destroy(clnt);

exit(0);

}

The add_1() client function is the counter_clnt.c stub generated for the remote function.

To build the client, compile and link the client main and the counter_clnt.c.
5. To launch the server that you built, type ./server
6. Finally, to invoke the service in another shell, type: ./client servername23.

One-Way Messaging

ONC+ Developer's Guide • November 2010 (Beta)162

23 is the number being added to the global counter.

Non-Blocking I/O
Non-blocking I/O avoids the client being blocked while waiting for a request to be accepted by
the transport layer during one-way messaging for connection-oriented protocols.

For connection-oriented protocols, there is a limit to the amount of data that can be put in a
network protocol queue. The limit depends on the transport protocols used. When a client
sending a request reaches the data limit, this client is blocked from processing until its request
has entered the queue. You cannot determine how long a message will wait before being added
to the queue.

In non-blocking I/O, when the transport queue is full, there is an additional buffer available
between the client and the transport layer. As requests not accepted by the transport queue can
be stored in this buffer, the client is not blocked. The client is free to continue processing as soon
as it has put the request in the buffer. The client does not wait until the request is put in the
queue and does not receive information on the status of the request after the buffer accepts the
request.

By using non-blocking I/O you gain further processing time as compared to two-way and
one-way messaging. The client can send requests in succession without being blocked from
processing.

The following figure shows a case where you choose the non-blocking argument of the I/O
mode and the transport layer queue is full.

Non-Blocking I/O

Chapter 8 • Extensions to the Sun RPC Library 163

Using Non-Blocking I/O
To use non-blocking I/O, configure a client handle using the CLSET_IO_MODE rpciomode_t*
option of the clnt_control() function with the RPC_CL_NONBLOCKING argument. See the
clnt_control(3NSL) man page for further information.

When the transport queue is full, the buffer is used. The buffer continues to be used until two
criteria are fulfilled:
■ The buffer is empty
■ The queue can immediately accept a request

Requests then go directly to the transport queue until the queue is full. The default size of the
buffer is 16 kbytes.

Note that the buffer is not emptied automatically. You must flush the buffer when it contains
data.

When you chose the RPC_CL_NONBLOCKING argument of CLSET_IO_MODE, you have a
choice of flush modes. You can specify either the RPC_CLBESTEFFORT_FLUSH or

FIGURE 8–3 Non-Blocking Messaging

Time

Client RPC I/O

Transport Level

I/O RPC

Host A Host B

Server

Service
Executes

QueueBuffer
Call

 service

Non-Blocking I/O

ONC+ Developer's Guide • November 2010 (Beta)164

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=clnt-control-3nsl

RPC_CL_BLOCKING_FLUSH argument to CLSET_FLUSH_MODE. You can also empty the
buffer by sending a synchronous call, such as clnt_call(). See the clnt_control(3NSL) man
page for further information.

If the buffer is full, an RPC_CANTSTORE error is returned to the client and the request is not sent.
The client must send the message again later. You can find out or change the size of the buffer
by using the CLSET_CONNMAXREC and CLGET_CONNMAXREC commands. To
determine the size of all pending request stored in the buffer, use the
CLGET_CURRENT_REC_SIZE command. For further information on these commands see
the clnt_control(3NSL) man page.

The server does not confirm whether the request is received or processed. After a request enters
a buffer, you can use clnt_control() to obtain information on the status of the request.

Using a simple counter with non-blocking I/O
The client.c file in the one-way messaging example is modified in this section to demonstrate
how to use the non-blocking I/O mode. In this new file, client_nonblo.c, the I/O mode is
specified as non-blocking with the RPC_CL_NONBLOCKING argument, the flush mode is
chosen to be blocking by use of the RPC_CL_BLOCKING_FLUSH. The I/O mode and flush
mode are invoked with CLSET_IO_MODE. When an error occurs RPC_CANT_STORE is
returned to the client and the program tries to flush the buffer. To choose a different method of
flush consult the clnt_control(3NSL) man page.

#include <stdio.h>

#include "counter.h"

main(int argc, char *argv[])

{

CLIENT* clnt;

enum clnt_stat result;

char *server;

int number;

bool_t bres;

/*

* Choose the I/O mode and flush method to be used.

* The non-blocking I/O mode and blocking flush are

* chosen in this example.

*/

int mode = RPC_CL_NONBLOCKING;

int flushMode = RPC_CL_BLOCKING_FLUSH;

if (argc != 3) {

fprintf(stderr, "usage: %s server_name number\n", argv[0]);

exit(1);

}

server = argv[1];

number = atoi(argv[2]);

clnt= clnt_create(server, COUNTERPROG, COUNTERVERS, "tcp");
if (clnt == (CLIENT*) NULL) {

clnt_pcreateerror(server);

Non-Blocking I/O

Chapter 8 • Extensions to the Sun RPC Library 165

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=clnt-control-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=clnt-control-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=clnt-control-3nsl

exit(1);

}

/*

* Use clnt_control to set the I/O mode.

* The non-blocking I/O mode is

* chosen for this example.

*/

bres = clnt_control(clnt, CLSET_IO_MODE, (char*)&mode);

if (bres)

/*

* Set flush mode to blocking

*/

bres = clnt_control(clnt, CLSET_FLUSH_MODE, (char*)&flushMode);

if (!bres) {

clnt_perror(clnt, "clnt_control");
exit(1);

}

/*

* Call the RPC services.

*/

result = add_1(number, clnt);

switch (result) {

case RPC_SUCCESS:

fprintf(stdout,"Success\n");
break;

/*

* RPC_CANTSTORE is a new value returned to the

* client when the buffer cannot store a request.

*/

case RPC_CANTSTORE:

fprintf(stdout,"RPC_CANTSTORE error. Flushing ... \n");
/*

* The buffer is flushed using the blocking flush method

*/

bres = clnt_control(clnt, CLFLUSH, NULL);

if (!bres) {

clnt_perror(clnt, "clnt_control");
}

break;

default:

clnt_perror(clnt, "call failed");
break;

}

/* Flush */

bres = clnt_control(clnt, CLFLUSH, NULL);

if (!bres) {

clnt_perror(clnt, "clnt_control");
}

clnt_destroy(clnt);

exit(0);

}

Non-Blocking I/O

ONC+ Developer's Guide • November 2010 (Beta)166

clnt_call()Configured as Non-Blocking
For a one-way message, use the clnt_send() function. No time-out is applied as the client
sends a request to a server and does not wait for a reply.

For two-way messaging, use clnt_call(). The client remains blocked until the server sends a
reply or an error status message, or until a time-out occurs at the client side.

The non-blocking feature enables you to send two-way and one-way calls together. If you use
clnt_call() on the client side configured as non-blocking, that is, using the
RPC_CL_NONBLOCKING I/O MODE, you get the following modified behavior. When a
two-way request is sent to the buffer, all one-way requests already in the buffer are sent through
the transport layer before the two-way request is processed. The time taken to empty the buffer
is not counted in the two-way call timeout. For further information, see the
clnt_control(3NSL) man page.

Client Connection Closure Callback
Client connection closure callback enables the server for connection-oriented transport to
detect that the client has disconnected. The server can take the necessary action to recover from
transport errors. Transport errors occur when a request arrives at the server, or when the server
is waiting for a request and the connection is closed.

The connection closure callback is called when no requests are currently being executed on the
connection. If the client connection is closed when a request is being executed, the server
executes the request but a reply may not be sent to the client. The connection closure callback is
called when all pending request are completed.

When a connection closure occurs, the transport layer sends an error message to the client. The
handler is attached to a service using svc_control() for example as follows:

svc_control(service, SVCSET_RECVERRHANDLER, handler);

The arguments of svc_control() are:

1. A service or an instance of this service. When this argument is a service, any new connection
to the service inherits the error handler. When this argument is an instance of the service,
only this connection gets the error handler.

2. The error handler callback. The prototype of this callback function is:

void handler(const SVCXPRT *svc, const boot_t IsAConnection);

For further information see the svc_control(3NSL) man page.

Client Connection Closure Callback

Chapter 8 • Extensions to the Sun RPC Library 167

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=clnt-control-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=svc-control-3nsl

Note – For XDR unmarshalling errors, if the server is unable to unmarshal a request, the message
is destroyed and an error is returned directly to the client.

Example of client connection closure callback
This example implements a message log server. A client can use this server to open a log
(actually a text file), to store message log, and then to close the log.

The log.x file describes the log program interface.

enum log_severity { LOG_EMERG=0, LOG_ALERT=1, LOG_CRIT=2, LOG_ERR=3,

LOG_WARNING=4, LOG_NOTICE=5, LOG_INFO=6 };

program LOG {

version LOG_VERS1 {

int OPENLOG(string ident) = 1;

int CLOSELOG(int logID) = 2;

oneway WRITELOG(int logID, log_severity severity,

string message) = 3;

} = 1;

} = 0x20001971;

The two procedures OPENLOG and CLOSELOG open and close a log that is specified by its logID.
The WRITELOG() procedure, declared as oneway for the example, logs a message in an opened
log. A log message contains a severity attribute, and a text message.

This is the makefile for the log server. Use this makefile to call the log.x file.

RPCGEN = rpcgen

CLIENT = logClient

CLIENT_SRC = logClient.c log_clnt.c log_xdr.c

CLIENT_OBJ = $(CLIENT_SRC:.c=.o)

SERVER = logServer

SERVER_SRC = logServer.c log_svc.c log_xdr.c

SERVER_OBJ = $(SERVER_SRC:.c=.o)

RPCGEN_FILES = log_clnt.c log_svc.c log_xdr.c log.h

CFLAGS += -I.

RPCGEN_FLAGS = -N -C

LIBS = -lsocket -lnsl

all: log.h ./$(CLIENT) ./$(SERVER)

$(CLIENT): log.h $(CLIENT_OBJ)

Client Connection Closure Callback

ONC+ Developer's Guide • November 2010 (Beta)168

cc -o $(CLIENT) $(LIBS) $(CLIENT_OBJ)

$(SERVER): log.h $(SERVER_OBJ)

cc -o $(SERVER) $(LIBS) $(SERVER_OBJ)

$(RPCGEN_FILES): log.x

$(RPCGEN) $(RPCGEN_FLAGS) log.x

clean:

rm -f $(CLIENT_OBJ) $(SERVER_OBJ) $(RPCGEN_FILES)

logServer.c shows the implementation of the log server. As the log server opens a file to store
the log messages, it registers a closure connection callback in openlog_1_svc(). This callback is
used to close the file descriptor even if the client program forgets to call the closelog()
procedure (or crashes before doing so). This example demonstrates the use of the connection
closure callback feature to free up resources associated to a client in an RPC server.

#include "log.h"
#include <stdio.h>

#include <string.h>

#define NR_LOGS 3

typedef struct {

SVCXPRT* handle;

FILE* filp;

char* ident;

} logreg_t;

static logreg_t logreg[NR_LOGS];

static char* severityname[] = {"Emergency", "Alert", "Critical", "Error",
"Warning", "Notice", "Information"};

static void

close_handler(const SVCXPRT* handle, const bool_t);

static int

get_slot(SVCXPRT* handle)

{

int i;

for (i = 0; i < NR_LOGS; ++i) {

if (handle == logreg[i].handle) return i;

}

return -1;

}

static FILE*

_openlog(char* logname)

/*

* Open a log file

*/

{

FILE* filp = fopen(logname, "a");
time_t t;

Client Connection Closure Callback

Chapter 8 • Extensions to the Sun RPC Library 169

if (NULL == filp) return NULL;

time(&t);

fprintf(filp, "Log opened at %s\n", ctime(&t));

return filp;

}

static void

_closelog(FILE* filp)

{

time_t t;

time(&t);

fprintf(filp, "Log close at %s\n", ctime(&t));

/*

* Close a log file

*/

fclose(filp);

}

int*

openlog_1_svc(char* ident, struct svc_req* req)

{

int slot = get_slot(NULL);

FILE* filp;

static int res;

time_t t;

if (-1 != slot) {

FILE* filp = _openlog(ident);

if (NULL != filp) {

logreg[slot].filp = filp;

logreg[slot].handle = req->rq_xprt;

logreg[slot].ident = strdup(ident);

/*

* When the client calls clnt_destroy, or when the

* client dies and clnt_destroy is called automatically,

* the server executes the close_handler callback

*/

if (!svc_control(req->rq_xprt, SVCSET_RECVERRHANDLER,

(void*)close_handler)) {

puts("Server: Cannot register a connection closure callback");
exit(1);

}

}

}

res = slot;

return &res;

}

int*

closelog_1_svc(int logid, struct svc_req* req)

{

static int res;

Client Connection Closure Callback

ONC+ Developer's Guide • November 2010 (Beta)170

if ((logid >= NR_LOGS) || (logreg[logid].handle != req->rq_xprt)) {

res = -1;

return &res;

}

logreg[logid].handle = NULL;

_closelog(logreg[logid].filp);

res = 0;

return &res;

}

/*

* When there is a request to write a message to the log,

* write_log_1_svc is called

*/

void*

writelog_1_svc(int logid, log_severity severity, char* message,

struct svc_req* req)

{

if ((logid >= NR_LOGS) || (logreg[logid].handle != req->rq_xprt)) {

return NULL;

}

/*

* Write message to file

*/

fprintf(logreg[logid].filp, "%s (%s): %s\n",
logreg[logid].ident, severityname[severity], message);

return NULL;

}

static void

close_handler(const SVCXPRT* handle, const bool_t dummy)

{

int i;

/*

* When the client dies, the log is closed with closelog

*/

for (i = 0; i < NR_LOGS; ++i) {

if (handle == logreg[i].handle) {

logreg[i].handle = NULL;

_closelog(logreg[i].filp);

}

}

}

The logClient.c file shows a client using the log server.

#include "log.h"
#include <stdio.h>

#define MSG_SIZE 128

void

usage()

{

puts("Usage: logClient <logserver_addr>");
exit(2);

}

Client Connection Closure Callback

Chapter 8 • Extensions to the Sun RPC Library 171

void

runClient(CLIENT* clnt)

{

char msg[MSG_SIZE];

int logID;

int* result;

/*

* client opens a log

*/

result = openlog_1("client", clnt);

if (NULL == result) {

clnt_perror(clnt, "openlog");
return;

}

logID = *result;

if (-1 == logID) {

puts("Cannot open the log.");
return;

}

while(1) {

struct rpc_err e;

/*

* Client writes a message in the log

*/

puts("Enter a message in the log (\".\" to quit):");
fgets(msg, MSG_SIZE, stdin);

/*

* Remove trailing CR

*/

msg[strlen(msg)-1] = 0;

if (!strcmp(msg, ".")) break;

if (writelog_1(logID, LOG_INFO, msg, clnt) == NULL) {

clnt_perror(clnt, "writelog");
return;

}

}

/*

* Client closes the log

*/

result = closelog_1(logID, clnt);

if (NULL == result) {

clnt_perror(clnt, "closelog");
return;

}

logID = *result;

if (-1 == logID) {

puts("Cannot close the log.");
return;

}

}

int

main(int argc, char* argv[])

Client Connection Closure Callback

ONC+ Developer's Guide • November 2010 (Beta)172

{

char* serv_addr;

CLIENT* clnt;

if (argc != 2) usage();

serv_addr = argv[1];

clnt = clnt_create(serv_addr, LOG, LOG_VERS1, "tcp");

if (NULL == clnt) {

clnt_pcreateerror("Cannot connect to log server");
exit(1);

}

runClient(clnt);

clnt_destroy(clnt);

}

User File Descriptor Callbacks
User file descriptor callbacks enable you to register file descriptors with callbacks, specifying
one or more event types. Now you can use an RPC server to handle file descriptors that were not
written for the Sun RPC library.

With previous versions of the Sun RPC library, you could use a server to receive both RPC calls
and non-RPC file descriptors only if you wrote your own server loop, or used a separate thread
to contact the socket API.

For user file descriptor callbacks, two new functions have been added to the Sun RPC library,
svc_add_input(3NSL) and svc_remove_input(3NSL), to implement user file descriptor
callbacks. These functions declare or remove a callback on a file descriptor.

When using this new callback feature you must:

■ Create your callback() function by writing user code with the following syntax:

typedef void (*svc_callback_t) (svc_input_id_t id, int fd, \

unsigned int revents, void* cookie);

The four parameters passed to the callback() function are:

id Provides an identifier for each callback. This identifier can be used to remove a
callback.

fd The file descriptor that your callback is waiting for.

revents An unsigned integer representing the events that have occurred. This set of
events is a subset of the list given when the callback is registered.

cookie The cookie given when the callback is registered. This cookie can be a pointer to
specific data the server needs during the callback.

User File Descriptor Callbacks

Chapter 8 • Extensions to the Sun RPC Library 173

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=svc-add-input-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=svc-remove-input-3nsl

■ Call svc_add_input() to register file descriptors and associated events, such as read or
write, that the server must be aware of.

svc_input_id_t svc_add_input (int fd, unsigned int revents, \

svc_callback_t callback, void* cookie);

A list of the events that can be specified is given inpoll(2) .
■ Specify a file descriptor. This file descriptor can be an entity such as a socket or a file.

When one of the specified events occurs, the standard server loop calls the user code through
svc_run() and your callback performs the required operation on the file descriptor, socket or
file.

When you no longer need a particular callback, call svc_remove_input() with the
corresponding identifier to remove the callback.

Example of User File Descriptors
This example shows you how to register a user file descriptor on an RPC server and how to
provide user defined callbacks. With this example you can monitor the time of day on both the
server and the client.

The makefile for this example is shown below.

RPCGEN = rpcgen

CLIENT = todClient

CLIENT_SRC = todClient.c timeofday_clnt.c

CLIENT_OBJ = $(CLIENT_SRC:.c=.o)

SERVER = todServer

SERVER_SRC = todServer.c timeofday_svc.c

SERVER_OBJ = $(SERVER_SRC:.c=.o)

RPCGEN_FILES = timeofday_clnt.c timeofday_svc.c timeofday.h

CFLAGS += -I.

RPCGEN_FLAGS = -N -C

LIBS = -lsocket -lnsl

all: ./$(CLIENT) ./$(SERVER)

$(CLIENT): timeofday.h $(CLIENT_OBJ)

cc -o $(CLIENT) $(LIBS) $(CLIENT_OBJ)

$(SERVER): timeofday.h $(SERVER_OBJ)

cc -o $(SERVER) $(LIBS) $(SERVER_OBJ)

timeofday_clnt.c: timeofday.x

User File Descriptor Callbacks

ONC+ Developer's Guide • November 2010 (Beta)174

http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=poll-2

$(RPCGEN) -l $(RPCGEN_FLAGS) timeofday.x > timeofday_clnt.c

timeofday_svc.c: timeofday.x

$(RPCGEN) -m $(RPCGEN_FLAGS) timeofday.x > timeofday_svc.c

timeofday.h: timeofday.x

$(RPCGEN) -h $(RPCGEN_FLAGS) timeofday.x > timeofday.h

clean:

rm -f $(CLIENT_OBJ) $(SERVER_OBJ) $(RPCGEN_FILES)

The timeofday.x file defines the RPC services offered by the server in this example. The
services in this examples are gettimeofday() and settimeofday().

program TIMEOFDAY {

version VERS1 {

int SENDTIMEOFDAY(string tod) = 1;

string GETTIMEOFDAY() = 2;

} = 1;

} = 0x20000090;

The userfdServer.h file defines the structure of messages sent on the sockets in this example.

#include "timeofday.h"
#define PORT_NUMBER 1971

/*

* Structure used to store data for a connection.

* (user fds test).

*/

typedef struct {

/*

* Ids of the callback registration for this link.

*/

svc_input_id_t in_id;

svc_input_id_t out_id;

/*

* Data read from this connection.

*/

char in_data[128];

/*

* Data to be written on this connection.

*/

char out_data[128];

char* out_ptr;

} Link;

void

socket_read_callback(svc_input_id_t id, int fd, unsigned int events,

void* cookie);

void

User File Descriptor Callbacks

Chapter 8 • Extensions to the Sun RPC Library 175

socket_write_callback(svc_input_id_t id, int fd, unsigned int events,

void* cookie);

void

socket_new_connection(svc_input_id_t id, int fd, unsigned int events,

void* cookie);

void

timeofday_1(struct svc_req *rqstp, register SVCXPRT *transp);

The todClient.c file shows how the time of day is set on the client. In this file, RPC is used with
and without sockets.

#include "timeofday.h"

#include <stdio.h>

#include <netdb.h>

#define PORT_NUMBER 1971

void

runClient();

void

runSocketClient();

char* serv_addr;

void

usage()

{

puts("Usage: todClient [-socket] <server_addr>");
exit(2);

}

int

main(int argc, char* argv[])

{

CLIENT* clnt;

int sockClient;

if ((argc != 2) && (argc != 3))

usage();

sockClient = (strcmp(argv[1], "-socket") == 0);

/*

* Choose to use sockets (sockClient).

* If sockets are not available,

* use RPC without sockets (runClient).

*/

if (sockClient && (argc != 3))

usage();

serv_addr = argv[sockClient? 2:1];

if (sockClient) {

runSocketClient();

} else {

User File Descriptor Callbacks

ONC+ Developer's Guide • November 2010 (Beta)176

runClient();

}

return 0;

}

/*

* Use RPC without sockets

*/

void

runClient()

{

CLIENT* clnt;

char* pts;

char** serverTime;

time_t now;

clnt = clnt_create(serv_addr, TIMEOFDAY, VERS1, "tcp");
if (NULL == clnt) {

clnt_pcreateerror("Cannot connect to log server");
exit(1);

}

time(&now);

pts = ctime(&now);

printf("Send local time to server\n");

/*

* Set the local time and send this time to the server.

*/

sendtimeofday_1(pts, clnt);

/*

* Ask the server for the current time.

*/

serverTime = gettimeofday_1(clnt);

printf("Time received from server: %s\n", *serverTime);

clnt_destroy(clnt);

}

/*

* Use RPC with sockets

*/

void

runSocketClient()

/*

* Create a socket

*/

{

int s = socket(PF_INET, SOCK_STREAM, 0);

struct sockaddr_in sin;

char* pts;

char buffer[80];

int len;

User File Descriptor Callbacks

Chapter 8 • Extensions to the Sun RPC Library 177

time_t now;

struct hostent* hent;

unsigned long serverAddr;

if (-1 == s) {

perror("cannot allocate socket.");
return;

}

hent = gethostbyname(serv_addr);

if (NULL == hent) {

if ((int)(serverAddr = inet_addr(serv_addr)) == -1) {

puts("Bad server address");
return;

}

} else {

memcpy(&serverAddr, hent->h_addr_list[0], sizeof(serverAddr));

}

sin.sin_port = htons(PORT_NUMBER);

sin.sin_family = AF_INET;

sin.sin_addr.s_addr = serverAddr;

/*

* Connect the socket

*/

if (-1 == connect(s, (struct sockaddr*)(&sin),

sizeof(struct sockaddr_in))) {

perror("cannot connect the socket.");
return;

}

time(&now);

pts = ctime(&now);

/*

* Write a message on the socket.

* The message is the current time of the client.

*/

puts("Send the local time to the server.");
if (-1 == write(s, pts, strlen(pts)+1)) {

perror("Cannot write the socket");
return;

}

/*

* Read the message on the socket.

* The message is the current time of the server

*/

puts("Get the local time from the server.");
len = read(s, buffer, sizeof(buffer));

if (len == -1) {

perror("Cannot read the socket");
return;

}

puts(buffer);

User File Descriptor Callbacks

ONC+ Developer's Guide • November 2010 (Beta)178

puts("Close the socket.");
close(s);

}

The todServer.c file shows the use of the timeofday service from the server side.

#include "timeofday.h"
#include "userfdServer.h"
#include <stdio.h>

#include <errno.h>

#define PORT_NUMBER 1971

int listenSocket;

/*

* Implementation of the RPC server.

*/

int*

sendtimeofday_1_svc(char* time, struct svc_req* req)

{

static int result = 0;

printf("Server: Receive local time from client %s\n", time);

return &result;

}

char **

gettimeofday_1_svc(struct svc_req* req)

{

static char buff[80];

char* pts;

time_t now;

static char* result = &(buff[0]);

time(&now);

strcpy(result, ctime(&now));

return &result;

}

/*

* Implementation of the socket server.

*/

int

create_connection_socket()

{

struct sockaddr_in sin;

int size = sizeof(struct sockaddr_in);

unsigned int port;

/*

* Create a socket

*/

listenSocket = socket(PF_INET, SOCK_STREAM, 0);

User File Descriptor Callbacks

Chapter 8 • Extensions to the Sun RPC Library 179

if (-1 == listenSocket) {

perror("cannot allocate socket.");
return -1;

}

sin.sin_port = htons(PORT_NUMBER);

sin.sin_family = AF_INET;

sin.sin_addr.s_addr = INADDR_ANY;

if (bind(listenSocket, (struct sockaddr*)&sin, sizeof(sin)) == -1) {

perror("cannot bind the socket.");
close(listenSocket);

return -1;

}

/*

* The server waits for the client

* connection to be created

*/

if (listen(listenSocket, 1)) {

perror("cannot listen.");
close(listenSocket);

listenSocket = -1;

return -1;

}

/*

* svc_add_input registers a read callback,

* socket_new_connection, on the listening socket.

* This callback is invoked when a new connection

* is pending. */

if (svc_add_input(listenSocket, POLLIN,

socket_new_connection, (void*) NULL) == -1) {

puts("Cannot register callback");
close(listenSocket);

listenSocket = -1;

return -1;

}

return 0;

}

/*

* Define the socket_new_connection callback function

*/

void

socket_new_connection(svc_input_id_t id, int fd,

unsigned int events, void* cookie)

{

Link* lnk;

int connSocket;

/*

* The server is called when a connection is

* pending on the socket. Accept this connection now.

* The call is non-blocking.

* Create a socket to treat the call.

*/

connSocket = accept(listenSocket, NULL, NULL);

User File Descriptor Callbacks

ONC+ Developer's Guide • November 2010 (Beta)180

if (-1 == connSocket) {

perror("Server: Error: Cannot accept a connection.");
return;

}

lnk = (Link*)malloc(sizeof(Link));

lnk->in_data[0] = 0;

/*

* New callback created, socket_read_callback.

*/

lnk->in_id = svc_add_input(connSocket, POLLIN,

socket_read_callback, (void*)lnk);

}

/*

* New callback, socket_read_callback, is defined

*/

void

socket_read_callback(svc_input_id_t id, int fd, unsigned int events,

void* cookie)

{

char buffer[128];

int len;

Link* lnk = (Link*)cookie;

/*

* Read the message. This read call does not block.

*/

len = read(fd, buffer, sizeof(buffer));

if (len > 0) {

/*

* Got some data. Copy it in the buffer

* associated with this socket connection.

*/

strncat (lnk->in_data, buffer, len);

/*

* Test if we receive the complete data.

* Otherwise, this is only a partial read.

*/

if (buffer[len-1] == 0) {

char* pts;

time_t now;

/*

* Print the time of day you received.

*/

printf("Server: Got time of day from the client: \n %s",
lnk->in_data);

/*

* Setup the reply data

* (server current time of day).

*/

time(&now);

pts = ctime(&now);

User File Descriptor Callbacks

Chapter 8 • Extensions to the Sun RPC Library 181

strcpy(lnk->out_data, pts);

lnk->out_ptr = &(lnk->out_data[0]);

/*

* Register a write callback (socket_write_callback)

* that does not block when writing a reply.

* You can use POLLOUT when you have write

* access to the socket

*/

lnk->out_id = svc_add_input(fd, POLLOUT,

socket_write_callback, (void*)lnk);

}

} else if (len == 0) {

/*

* Socket closed in peer. Closing the socket.

*/

close(fd);

} else {

/*

* Has the socket been closed by peer?

*/

if (errno != ECONNRESET) {

/*

* If no, this is an error.

*/

perror("Server: error in reading the socket");
printf("%d\n", errno);

}

close(fd);

}

}

/*

* Define the socket_write_callback.

* This callback is called when you have write

* access to the socket.

*/

void

socket_write_callback(svc_input_id_t id, int fd, unsigned int events,

void* cookie)

{

Link* lnk = (Link*)cookie;

/*

* Compute the length of remaining data to write.

*/

int len = strlen(lnk->out_ptr)+1;

/*

* Send the time to the client

*/

if (write(fd, lnk->out_ptr, len) == len) {

/*

* All data sent.

*/

/*

User File Descriptor Callbacks

ONC+ Developer's Guide • November 2010 (Beta)182

* Unregister the two callbacks. This unregistration

* is demonstrated here as the registration is

* removed automatically when the file descriptor

* is closed.

*/

svc_remove_input(lnk->in_id);

svc_remove_input(lnk->out_id);

/*

* Close the socket.

*/

close(fd);

}

}

void

main()

{

int res;

/*

* Create the timeofday service and a socket

*/

res = create_connection_socket();

if (-1 == res) {

puts("server: unable to create the connection socket.\n");
exit(-1);

}

res = svc_create(timeofday_1, TIMEOFDAY, VERS1, "tcp");
if (-1 == res) {

puts("server: unable to create RPC service.\n");
exit(-1);

}

/*

Poll the user file descriptors.

*/

svc_run();

}

User File Descriptor Callbacks

Chapter 8 • Extensions to the Sun RPC Library 183

184

NIS+ Programming Guide

This chapter presents the fundamental principles of the NIS+ (pronounced “niss-plus”)
applications programming interface and a detailed sample program. The NIS+ API is for
programmers who need to build applications for Solaris networks. It provides the essential
features for supporting enterprise-wide applications.

This chapter covers the following topics:

■ “NIS+ Overview” on page 185
■ “NIS+ API” on page 189
■ “NIS+ Sample Program” on page 192

The NIS+ network name service addresses the requirements of client/server networks ranging
in size from 10 clients supported by a few servers on a local area network to 10,000
multi-vendor clients supported by 20 to 100 specialized servers located in sites throughout the
world and connected by several public networks.

NIS+ Overview
This section describes various aspects of the NIS+ network name service.

NIS+ Domains
NIS+ supports hierarchical domains, as illustrated in the following figure.

9C H A P T E R 9

185

A NIS+ domain is a set of data describing the workstations, users, and network services in a
portion of an organization. NIS+ domains can be administered independently of each other.
This independence enables NIS+ to be used in a range of networks, from small to very large.

NIS+ and Servers
Each domain is supported by a set of servers. The principal server is called the master server, and
the backup servers are called replicas. Both master and replica servers run NIS+ server software.
The master server stores the original tables, and the backup servers store copies.

NIS+ accepts incremental updates to the replicas. Changes are first made on the master server.
Then they are automatically propagated to the replica servers and are soon available to the
entire namespace.

NIS+ Tables
NIS+ stores information in tables instead of maps or zone files. NIS+ provides 16 types of
predefined, or system, tables, which are named in the following list:

■ Hosts
■ Bootparams
■ Password
■ Cred
■ Group
■ Netgroups
■ Mail Aliases
■ Timezone
■ Networks
■ Netmasks
■ Ethers
■ Services
■ Protocols
■ RPC
■ Auto_Home
■ Auto_Master

FIGURE 9–1 NIS+ Domain

CorpSales EngTest

Wiz

NIS+ Overview

ONC+ Developer's Guide • November 2010 (Beta)186

Each table stores a different type of information. For instance, the Hosts table stores host
name/Internet address pairs, and the Password table stores information about users of the
network.

NIS+ tables have two major improvements over NIS maps. First, a NIS+ table can be accessed
by any column, not just the first column, which is sometimes referred to as the “key.” This access
eliminates the need for duplicate maps, such as the hosts.byname and hosts.byaddr maps of
NIS. Second, access to the information in NIS+ tables can be controlled at three levels of
granularity: the table level, the entry level, and the column level.

NIS+ Security
The NIS+ security model provides both authorization and authentication mechanisms. For
authorization, every object in the namespace specifies the type of operation it accepts and from
whom. NIS+ attempts to authenticate every requestor accessing the namespace. After it
identifies the originator of the request, it determines whether the object has authorized that
particular operation for that particular principal. Based on its authentication and the object's
authorization, NIS+ carries out or denies the access request.

Name Service Switch
NIS+ works in conjunction with a separate facility called the Name Service Switch. The Name
Service Switch, sometimes referred to as “the Switch,” enables Solaris-based workstations to
obtain their information from more than one network information service. They can get the
information from local, or /etc files, from NIS maps, from DNS zone files, or from NIS+ tables.
The Switch not only offers a choice of sources, but allows a workstation to specify different
sources for different types of information. The name service is configured through the file
/etc/nsswitch.conf.

NIS+ Administration Commands
NIS+ provides a full set of commands for administering a namespace, as listed in the following
table.

TABLE 9–1 NIS+ Namespace Administration Commands

Command Description

nischgrp Changes the group owner of a NIS+ object.

nischmod Changes an object's access rights.

nischown Changes the owner of a NIS+ object.

NIS+ Overview

Chapter 9 • NIS+ Programming Guide 187

TABLE 9–1 NIS+ Namespace Administration Commands (Continued)
Command Description

nisgrpadm Creates or destroys a NIS+ group, or displays a list of its members. Also adds
members to a group, removes them, or tests them for membership in the group.

niscat Displays the contents of NIS+ tables.

nisgrep Searches for entries in a NIS+ table.

nisls Lists the contents of a NIS+ directory.

nismatch Searches for entries in a NIS+ table.

nisaddent Adds information from /etc files or NIS maps into NIS+ tables.

nistbladm Creates or deletes NIS+ tables, and adds, modifies, or deletes entries in a NIS+ table.

nisaddcred Creates credentials for NIS+ principals and stores them in the Cred table.

nispasswd Changes password information stored in the NIS+ Passwd table.

nisupdkeys Updates the public keys stored in a NIS+ object.

nisinit Initializes a NIS+ client or server.

nismkdir Creates a NIS+ directory and specifies its master and replica servers.

nisrmdir Removes NIS+ directories and replicas from the namespace.

nissetup Creates org_dir and groups_dir directories and a complete set of (unpopulated)
NIS+ tables for a NIS+ domain.

rpc.nisd The NIS+ server process.

nis_cachemgr Starts the NIS+ Cache Manager on a NIS+ client.

nischttl Changes a NIS+ object's time to live value.

nisdefaults Lists a NIS+ object's default values: domain name, group name, workstation name,
NIS+ principal name, access rights, directory search path, and time-to-live.

nisln Creates a symbolic link between two NIS+ objects.

nisrm Removes NIS+ objects (except directories) from the namespace.

nisshowcache Lists the contents of the NIS+ shared cache maintained by the NIS+ Cache Manager.

NIS+ Overview

ONC+ Developer's Guide • November 2010 (Beta)188

NIS+ API
The NIS+ application programming interface (API) is a group of functions that can be called by
an application to access and modify NIS+ objects. The NIS+ API has 54 functions that fall into
nine categories:

■ Object manipulation functions (nis_names)
■ Table access functions (nis_tables)
■ Local name functions (nis_local_names)
■ Group manipulation functions (nis_groups)
■ Server related functions (nis_server)
■ Database access functions (nis_db)
■ Error message display functions (nis_error)
■ Transaction log functions (nis_admin)
■ Miscellaneous functions (nis_subr)

The functions in each category are summarized in the following table. The category names
match the names by which they are grouped in the NIS+ man pages.

TABLE 9–2 NIS+ API Functions

Function Description

nis_names() Locates and manipulates objects.

nis_lookup() Returns a copy of a NIS+ object. Can follow links. Though it
cannot search for an entry object, if a link points to one, it can
return an entry object.

nis_add() Adds a NIS+ object to the namespace.

nis_remove() Removes a NIS+ object in the namespace.

nis_modify() Modifies a NIS+ object in the namespace.

nis_tables Searches and updates tables.

nis_list() Searches a table in the NIS+ namespace and returns entry
objects that match the search criteria. Can follow links and
search paths from one table to another.

nis_add_entry() Adds an entry object to a NIS+ table. Can be instructed to either
fail or overwrite if the entry object already exists. Can return a
copy of the resulting object if the operation was successful.

nis_freeresult() Frees all memory associated with a nis_result structure.

NIS+ API

Chapter 9 • NIS+ Programming Guide 189

TABLE 9–2 NIS+ API Functions (Continued)
Function Description

nis_remove_entry() Removes one or more entry objects from a NIS+ table. Can
identify the object to be removed by using search criteria or by
pointing to a cached copy of the object. If using search criteria,
can remove all objects that match the search criteria; therefore,
with the proper search criteria, can remove all entries in a table.
Can return a copy of the resulting object if the operation was
successful.

nis_modify_entry() Modifies one or more entry objects in a NIS+ table. Can identify
the object to be modified by using search criteria or by pointing
to a cached copy of the object.

nis_first_entry() Returns a copy of the first entry object in a NIS+ table.

nis_next_entry() Returns a copy of the “next” entry object in a NIS+ table.
Because a table can be updated and entries removed or
modified between calls to this function, the order of entries
returned might not match the actual order of entries in the
table.

nis_local_names() Gets default names for the current process.

nis_local_directory() Returns the name of the workstation's NIS+ domain.

nis_local_host() Returns the fully qualified name of the workstation. A fully
qualified name has the form host-name.domain-name.

nis_local_group() Returns the name of the current NIS+ group, which is specified
by the environment variable NIS_GROUP.

nis_local_principal() Returns the name of the NIS+ principal that has a UID
associated with the calling process.

nis_getnames() Returns a list of possible expansions to a particular name.

nis_freenames() Frees the memory containing the list generated by
nis_getnames().

nis_groups() Group manipulation and authorization.

nis_ismember() Tests whether a principal is a member of a group.

nis_addmember() Adds a member to a group. The member can be a principal, a
group, or a domain.

nis_removemember() Deletes a member from a group.

nis_creategroup() Creates a group object.

nis_destroygroup() Deletes a group object.

nis_verifygroup() Tests whether a group object exists.

NIS+ API

ONC+ Developer's Guide • November 2010 (Beta)190

TABLE 9–2 NIS+ API Functions (Continued)
Function Description

nis_print_group_entry() Lists the principals that are members of a group object.

nis_server Various services for NIS+ applications.

nis_mkdir() Creates the databases to support service for a named directory
on a specified host.

nis_rmdir() Removes the directory from a host.

nis_servstate() Sets and reads state variables of NIS+ servers and flushes
internal caches.

nis_stats() Retrieves statistics about a server's performance.

nis_getservlist() Returns a list of servers that support a particular domain.

nis_freeservlist() Frees the list of servers returned by nis_getservlist().

nis_freetags() Frees the memory associated with the results of
nis_servstate() and nis_stats().

nis_db Interface between the NIS+ server and the database. Not to be
used by a NIS+ client.

db_first_entry() Returns a copy of the first entry of the specified table.

db_next_entry() Returns a copy of the entry succeeding the specified entry.

db_reset_next_entry() Terminates a first/next entry sequence.

db_list_entries() Returns copies of entries that meet specified attributes.

db_remove_entry() Removes all entries that meet specified attributes.

db_add_entry() Replaces an entry in a table identified by specified attributes
with a copy of the specified object, or adds the object to the
table.

db_checkpoint() Reorganizes the contents of a table to make access to the table
more efficient.

db_standby() Advises the database manager to release resources.

nis_error() Functions that supply descriptive strings equivalent to NIS+
status values.

nis_sperrno() Returns a pointer to the appropriate string constant.

nis_perror() Displays the appropriate string constant on standard output.

nis_lerror() Sends the appropriate string constant to syslog.

NIS+ API

Chapter 9 • NIS+ Programming Guide 191

TABLE 9–2 NIS+ API Functions (Continued)
Function Description

nis_sperror() Returns a pointer to a statically allocated string to be used or to
be copied with strdup().

nis_admin Transaction logging functions used by servers.

nis_ping Used by the master server of a directory to timestamp it. This
forces replicas of the directory to be updated.

nis_checkpoint() Forces logged data to be stored in the table on disk.

nis_subr Functions to help operate on NIS+ names and objects.

nis_leaf_of() Returns the first label in a NIS+ name. The returned name does
not have a trailing dot.

nis_name_of() Removes all domain-related labels and returns only the unique
object portion of the name. The name passed to the function
must be either in the local domain or in one of its child
domains, or the function returns NULL.

nis_domain_of() Returns the name of the domain in which an object resides. The
returned name ends in a dot.

nis_dir_cmp() Compares any two NIS+ names. The comparison ignores case
and states whether the names are the same, descendants of each
other, or not related.

nis_clone_object() Creates an exact duplicate of a NIS+ object.

nis_destroy_object() Destroys an object created by nis_clone_object().

nis_print_object() Prints the contents of a NIS+ object structure to stdout.

NIS+ Sample Program
This sample program performs the following tasks:

■ Determines the local principal and local domain
■ Looks up the local directory object
■ Creates a directory called foo under the local domain
■ Creates the groups_dir and org_dir directories under domain foo

■ Creates a group object admins.foo
■ Adds the local principal to the admins group
■ Creates a table under org_dir.foo
■ Adds two entries to the org_dir.foo table

NIS+ Sample Program

ONC+ Developer's Guide • November 2010 (Beta)192

■ Retrieves and displays the new membership list of the admins group
■ Lists the namespace under the foo domain using callbacks
■ Lists the contents of the table created using callbacks
■ Cleans up all the objects that were created by removing the following:

■ The local principal from the admins group
■ The admins group
■ The entries in the table followed by the table
■ The groups_dir and org_dir directory objects
■ The foo directory object

The example program is not a typical application. In a normal situation the directories and
tables would be created or removed through the command line interface, and applications
would manipulate NIS+ entry objects.

Unsupported Macros
The sample program uses unsupported macros that are defined in the file <rpcsvc/nis.h>.
These macros are not public APIs and can change or disappear in the future. They are used for
illustration purposes only and if you choose to use them, you do so at your own risk. The
macros used are:

■ NIS_RES_OBJECT

■ ENTRY_VAL

■ DEFAULT_RIGHTS

Functions Used in the Example
The use of the following NIS+ C API functions is illustrated through this example.

nis_add()

nis_add_entry()

nis_addmember()

nis_creategroup()

nis_destroygroup()

nis_domain_of()

nis_freeresult()

nis_leaf_of()

nis_list()

nis_local_directory()

nis_local_principal()

nis_lookup()

nis_mkdir()

nis_perror()

nis_remove()

nis_remove_entry()

nis_removemember()

Program Compilation
The NIS+ principal running this application has permission to create directory objects in the
local domain. The program is compiled by typing:

% cc -o example.c example -lnsl

NIS+ Sample Program

Chapter 9 • NIS+ Programming Guide 193

It is invoked by typing:

% example [dir]

where dir is the NIS+ directory in which the program creates all the NIS+ objects. Specifying no
directory argument causes the objects to be created in the parent directory of the local domain.
Note that for the call to nis_lookup(), a space and the name of the local domain are appended
to the string that names the directory. The argument is the name of the NIS+ directory in which
to create the NIS+ objects. The principal running this program should have create permission
in the directory.

The following code example shows the routine is called by main() to create directory objects.

EXAMPLE 9–1 NIS+ Routine to Create Directory Objects

void

dir_create (dir_name, dirobj)

nis_name dir_name;

nis_object *dirobj;

{

nis_result *cres;

nis_error err;

printf ("\n Adding Directory %s to namespace ... \n", dir_name);

cres = nis_add (dir_name, dirobj);

if (cres->status != NIS_SUCCESS) {

nis_perror (cres->status, "unable to add directory foo.");
exit (1);

}

(void) nis_freeresult (cres);

/*

* NOTE: you need to do a nis_mkdir to create the table to store the

* contents of the directory you are creating.

*/

err = nis_mkdir (dir_name, dirobj->DI_data.do_servers.do_servers_val);

if (err != NIS_SUCCESS) {

(void) nis_remove (dir_name, 0);

nis_perror (err,

"unable to create table for directory object foo.");
exit (1);

}

}

This routine is called by main() to create the group object. Because nis_creategroup() works
only on group objects, the “groups_dir” literal is not needed in the group name.

EXAMPLE 9–2 NIS+ Routine to Create Group Objects

void

grp_create (grp_name)

nis_name grp_name;

NIS+ Sample Program

ONC+ Developer's Guide • November 2010 (Beta)194

EXAMPLE 9–2 NIS+ Routine to Create Group Objects (Continued)

{

nis_error err;

printf ("\n Adding %s group to namespace ... \n", grp_name);

err = nis_creategroup (grp_name, 0);

if (err != NIS_SUCCESS) {

nis_perror (err, "unable to create group.");
exit (1);

}

}

The routine shown in the following example is called by main() to create a table object laid out
as shown in the following table.

TABLE 9–3 NIS+ Table Objects

Column1 Column2

Name: id name

Attributes: Searchable, Text Searchable, Text

Access Rights ----rmcdr---r--- ----rmcdr---r---

The TA_SEARCHABLE constant indicates to the service that the column is searchable. Only TEXT
(the default) columns are searchable. TA_CASE indicates to the service that the column value is to
be treated in a case-insensitive manner during searches.

EXAMPLE 9–3 NIS+ Routine to Create Table Objects

#define TABLE_MAXCOLS 2

#define TABLE_COLSEP ’:’

#define TABLE_PATH 0

void

tbl_create (dirobj, table_name)

nis_object *dirobj; /* need to use some of the fields */

nis_name table_name;

{

nis_result *cres;

static nis_object tblobj;

static table_col tbl_cols[TABLE_MAXCOLS] = {

{"Id", TA_SEARCHABLE | TA_CASE, DEFAULT_RIGHTS},

{"Name", TA_SEARCHABLE | TA_CASE, DEFAULT_RIGHTS}

};

tblobj.zo_owner = dirobj->zo_owner;

tblobj.zo_group = dirobj->zo_group;

tblobj.zo_access = DEFAULT_RIGHTS; /* macro defined in nis.h */

tblobj.zo_data.zo_type = TABLE_OBJ; /* enumerated type in nis.h */

tblobj.TA_data.ta_type = TABLE_TYPE;

NIS+ Sample Program

Chapter 9 • NIS+ Programming Guide 195

EXAMPLE 9–3 NIS+ Routine to Create Table Objects (Continued)

tblobj.TA_data.ta_maxcol = TABLE_MAXCOLS;

tblobj.TA_data.ta_sep = TABLE_COLSEP;

tblobj.TA_data.ta_path = TABLE_PATH;

tblobj.TA_data.ta_cols.ta_cols_len =

tblobj.TA_data.ta_maxcol; /* ALWAYS ! */

tblobj.TA_data.ta_cols.ta_cols_val = tbl_cols;

/*

* Use a fully qualified table name i.e. the "org_dir" literal should

* be embedded in the table name. This is necessary because nis_add

* operates on all types of NIS+ objects and needs the full path name

* if a table is created.

*/

printf ("\n Creating table %s ... \n", table_name);

cres = nis_add (table_name, &tblobj);

if (cres->status != NIS_SUCCESS) {

nis_perror (cres->status, "unable to add table.");
exit (1);

}

(void) nis_freeresult (cres);

}

The routine shown in the following example is called by main() to add entry objects to the table
object. Two entries are added to the table object. Note that the column width in both entries is
set to include the NULL character for a string terminator.

EXAMPLE 9–4 NIS+ Routine to Add Objects to Table

#define MAXENTRIES 2

void

stuff_table(table_name)

nis_name table_name;

{

int i;

nis_object entdata;

nis_result *cres;

static entry_col ent_col_data[MAXENTRIES][TABLE_MAXCOLS] = {

{0, 2, "1", 0, 5, "John"},
{0, 2, "2", 0, 5, "Mary"}

};

printf ("\n Adding entries to table ... \n");

/*

* Look up the table object first since the entries being added

* should have the same owner, group owner and access rights as

* the table they go in.

*/

cres = nis_lookup (table_name, 0);

if (cres->status != NIS_SUCCESS) {

nis_perror (cres->status, "Unable to lookup table");
exit(1);

}

NIS+ Sample Program

ONC+ Developer's Guide • November 2010 (Beta)196

EXAMPLE 9–4 NIS+ Routine to Add Objects to Table (Continued)

entdata.zo_owner = NIS_RES_OBJECT (cres)->zo_owner;

entdata.zo_group = NIS_RES_OBJECT (cres)->zo_group;

entdata.zo_access = NIS_RES_OBJECT (cres)->zo_access;

/* Free cres, so that it can be reused. */

(void) nis_freeresult (cres);

entdata.zo_data.zo_type = ENTRY_OBJ; /* enumerated type in nis.h */

entdata.EN_data.en_type = TABLE_TYPE;

entdata.EN_data.en_cols.en_cols_len = TABLE_MAXCOLS;

for (i = 0; i < MAXENTRIES; ++i) {

entdata.EN_data.en_cols.en_cols_val = &ent_col_data[i][0];

cres = nis_add_entry (table_name, &entdata, 0);

if (cres->status != NIS_SUCCESS) {

nis_perror (cres->status, "unable to add entry.");
exit (1);

}

(void) nis_freeresult (cres);

}

}

The routine shown in the following example is the print function for the nis_list() call. When
list_objs() calls nis_list(), a pointer to print_info() is one of the calling arguments. Each
time the service calls this function, it prints the contents of the entry object. The return value
indicates to the library to call with the next entry from the table.

EXAMPLE 9–5 NIS+ Routine for nis_listCall

int

print_info (name, entry, cbdata)

nis_name name; /* Unused */

nis_object *entry; /* The NIS+ entry object */

void *cbdata; /* Unused */

{

static u_int firsttime = 1;

entry_col *tmp; /* only to make source more readable */

u_int i, terminal;

if (firsttime) {

printf ("\tId.\t\t\tName\n");
printf ("\t---\t\t\t----\n");
firsttime = 0;

}

for (i = 0; i < entry->EN_data.en_cols.en_cols_len; ++i) {

tmp = &entry->EN_data.en_cols.en_cols_val[i];

terminal = tmp->ec_value.ec_value_len;

tmp->ec_value.ec_value_val[terminal] = ’\0’;

}

/*

* ENTRY_VAL is a macro that returns the value of a specific

* column value of a specified entry.

NIS+ Sample Program

Chapter 9 • NIS+ Programming Guide 197

EXAMPLE 9–5 NIS+ Routine for nis_listCall (Continued)

*/

printf("\t%s\t\t\t%s\n", ENTRY_VAL (entry, 0), ENTRY_VAL (entry, 1));

return (0); /* always ask for more */

}

The routine shown in the following example is called by main() to list the contents of the group,
table, and directory objects. The routine demonstrates the use of callbacks also. It retrieves and
displays the membership of the group. The group membership list is not stored as the contents
of the object. So, the list is queried through the nis_lookup() instead of the nis_list() call.
You must use the “groups_dir” form of the group because nis_lookup() works on all types of
NIS+ objects.

EXAMPLE 9–6 NIS+ Routine to List Objects

void

list_objs(dir_name, table_name, grp_name)

nis_name dir_name, table_name, grp_name;

{

group_obj *tmp; /* only to make source more readable */

u_int i;

char grp_obj_name [NIS_MAXNAMELEN];

nis_result *cres;

char index_name [BUFFER_SIZE];

sprintf (grp_obj_name, "%s.groups_dir.%s",
nis_leaf_of (grp_name), nis_domain_of (grp_name));

printf ("\nGroup %s membership is: \n", grp_name);

cres = nis_lookup(grp_obj_name, 0);

if (cres->status != NIS_SUCCESS) {

nis_perror (cres->status, "Unable to lookup group object.");
exit(1);

}

tmp = &(NIS_RES_OBJECT(cres)->GR_data);

for (i = 0; i < tmp->gr_members.gr_members_len; ++i)

printf ("\t %s\n", tmp->gr_members.gr_members_val[i]);

(void) nis_freeresult (cres);

/*

* Display the contents of the foo domain without using callbacks.

*/

printf ("\nContents of Directory %s are: \n", dir_name);

cres = nis_list (dir_name, 0, 0, 0);

if (cres->status != NIS_SUCCESS) {

nis_perror (cres->status,

"Unable to list Contents of Directory foo.");
exit(1);

}

for (i = 0; i < NIS_RES_NUMOBJ(cres); ++i)

printf("\t%s\n", NIS_RES_OBJECT(cres)[i].zo_name);

(void) nis_freeresult (cres);

NIS+ Sample Program

ONC+ Developer's Guide • November 2010 (Beta)198

EXAMPLE 9–6 NIS+ Routine to List Objects (Continued)

/*

* List the contents of the table we created using the callback form

* of nis_list().

*/

printf ("\n Contents of Table %s are: \n", table_name);

cres = nis_list (table_name, 0, print_info, 0);

if(cres->status != NIS_CBRESULTS && cres->status !=

NIS_NOTFOUND){

nis_perror (cres->status,

"Listing entries using callback failed");
exit(1);

}

(void) nis_freeresult (cres);

/*

* List only one entry from the table we created. Use

* indexed names to do this retrieval.

*/

printf("\n Entry corresponding to id 1 is:\n");
/*

* The name of the column is usually extracted from the table

* object, which would have to be retrieved first.

*/

sprintf(index_name, "[Id=1],%s", table_name);

cres = nis_list (index_name, 0, print_info, 0);

if(cres->status != NIS_CBRESULTS && cres->status !=

NIS_NOTFOUND){

nis_perror (cres->status,

"Listing entry using indexed names and callback failed");
exit(1);

}

(void) nis_freeresult (cres);

}

The routine in the following table is called by cleanup() to remove a directory object from the
namespace. The routine also informs the servers serving the directory about this deletion. Note
that the memory containing result structure, pointed to by cres, must be freed after the result
has been tested.

EXAMPLE 9–7 NIS+ Routine to Remove Directory Objects

void

dir_remove(dir_name, srv_list, numservers)

nis_name dir_name;

nis_server *srv_list;

u_int numservers;

{

nis_result *cres;

nis_error err;

u_int i;

NIS+ Sample Program

Chapter 9 • NIS+ Programming Guide 199

EXAMPLE 9–7 NIS+ Routine to Remove Directory Objects (Continued)

printf ("\nRemoving %s directory object from namespace ... \n",
dir_name);

cres = nis_remove (dir_name, 0);

if (cres->status != NIS_SUCCESS) {

nis_perror (cres->status, "unable to remove directory");
exit (1);

}

(void) nis_freeresult (cres);

for (i = 0; i < numservers; ++i) {

err = nis_rmdir (dir_name, &srv_list[i]);

if (err != NIS_SUCCESS) {

nis_perror (err,

"unable to remove server from directory");
exit (1);

}

}

}

The following routine is called by main() to delete all the objects that were created in this
example. Note the use of the REM_MULTIPLE flag in the call to nis_remove_entry(). You must
delete all entries from a table before the table itself can be deleted.

EXAMPLE 9–8 NIS+ Routine to Remove All Objects

void

cleanup(local_princip, grp_name, table_name, dir_name, dirobj)

nis_name local_princip, grp_name, table_name, dir_name;

nis_object *dirobj;

{

char grp_dir_name [NIS_MAXNAMELEN];

char org_dir_name [NIS_MAXNAMELEN];

nis_error err;

nis_result *cres;

sprintf(grp_dir_name, "%s.%s", "groups_dir", dir_name);

sprintf(org_dir_name, "%s.%s", "org_dir", dir_name);

printf("\n\n\nStarting to Clean up ... \n");
printf("\n\nRemoving principal %s from group %s \n",

local_princip, grp_name);

err = nis_removemember (local_princip, grp_name);

if (err != NIS_SUCCESS) {

nis_perror (err,

"unable to delete local principal from group.");
exit (1);

}

/*

* Delete the admins group. We do not use the "groups_dir" form

* of the group name since this API is applicable to groups only.

* It automatically embeds the groups_dir literal in the name of

NIS+ Sample Program

ONC+ Developer's Guide • November 2010 (Beta)200

EXAMPLE 9–8 NIS+ Routine to Remove All Objects (Continued)

* the group.

*/

printf("\nRemoving %s group from namespace ... \n", grp_name);

err = nis_destroygroup (grp_name);

if (err != NIS_SUCCESS) {

nis_perror (err, "unable to delete group.");
exit (1);

}

printf("\n Deleting all entries from table %s ... \n", table_name);

cres = nis_remove_entry(table_name, 0, REM_MULTIPLE);

switch (cres->status) {

case NIS_SUCCESS:

case NIS_NOTFOUND:

break;

default:

nis_perror(cres->status,

"Could not delete entries from table");
exit(1);

}

(void) nis_freeresult (cres);

printf("\n Deleting table %s itself ... \n", table_name);

cres = nis_remove(table_name, 0);

if (cres->status != NIS_SUCCESS) {

nis_perror(cres->status, "Could not delete table.");
exit(1);

}

(void) nis_freeresult (cres);

/* delete the groups_dir, org_dir and foo directory objects. */

dir_remove (grp_dir_name, dirobj->DI_data.do_servers.do_servers_val,

dirobj->DI_data.do_servers.do_servers_len);

dir_remove (org_dir_name, dirobj->DI_data.do_servers.do_servers_val,

dirobj->DI_data.do_servers.do_servers_len);

dir_remove (dir_name, dirobj->DI_data.do_servers.do_servers_val,

dirobj->DI_data.do_servers.do_servers_len);

}

Running the program displays on the screen, as shown in the following code example.

EXAMPLE 9–9 NIS+ Program Execution

myhost% domainname

sun.com

myhost% ./sample

Adding Directory foo.sun.com. to namespace ...

Adding Directory groups_dir.foo.sun.com. to namespace ...

Adding Directory org_dir.foo.sun.com. to namespace ...

Adding admins.foo.sun.com. group to namespace ...

NIS+ Sample Program

Chapter 9 • NIS+ Programming Guide 201

EXAMPLE 9–9 NIS+ Program Execution (Continued)

Adding principal myhost.sun.com. to group admins.foo.sun.com. ...

Creating table test_table.org_dir.foo.sun.com. ...

Adding entries to table ...

Group admins.foo.sun.com. membership is:

myhost.sun.com.

Contents of Directory foo.sun.com. are:

groups_dir

org_dir

Contents of Table test_table.org_dir.foo.sun.com. are:

Id. Name

--- ----

1 John

2 Mary

Entry corresponding to id 1 is:

1 John

Starting to Clean up ...

Removing principal myhost.sun.com. from group admins.foo.sun.com.

Removing admins.foo.sun.com. group from namespace ...

Deleting all entries from table test_table.org_dir.foo.sun.com. ...

Deleting table test_table.org_dir.foo.sun.com. itself ...

Removing groups_dir.foo.sun.com. directory object from namespace ...

Removing org_dir.foo.sun.com. directory object from namespace ...

Removing foo.sun.com. directory object from namespace ...

myhost%

As a debugging aid, the same operations are performed by the following command sequence.
The first command displays the name of the master server.

Substitute the master server name where the variable master appears in the following.

% niscat -o ‘domainname‘

% nismkdir -m master foo.‘domainname‘.

Create the org_dir.foo subdirectory with the specified master

% nismkdir -m master org_dir.foo.‘domainname‘.
Create the groups_dir.foo subdirectory with the specified master

% nismkdir -m master groups_dir.foo.‘domainname‘.
Create the “admins” group

% nisgrpadm -c admins.foo.‘domainname‘.

Add yourself as a member of this group

% nisgrpadm -a admins.foo.‘domainname‘. ‘nisdefaults -p‘

Create a test_table with two columns : Id and Name

% nistbladm -c test_data id=SI Name=SI \

test_table.org_dir.foo.‘domainname‘

Add one entry to that table.

NIS+ Sample Program

ONC+ Developer's Guide • November 2010 (Beta)202

% nistbladm -a id=1 Name=John test_table.org_dir.foo.‘domainname‘.
Add another entry to that table.

% nistbladm -a id=2 Name=Mary test_table.org_dir.foo.‘domainname‘.

List the members of the group admins

% nisgrpadm -l admins.foo.‘domainname‘.
List the contents of the foo directory

% nisls foo.‘domainname‘.
List the contents of the test_table along with its header

% niscat -h test_table.org_dir.foo.‘domainname‘.

Get the entry from the test_table where id = 1

% nismatch id=1 test_table.org_dir.foo.‘domainname‘.

Delete all we created.

First, delete yourself from the admins group

% nisgrpadm -r admins.foo.‘domainname‘. ‘nisdefaults -p‘
Delete the admins group

% nisgrpadm -d admins.foo.‘domainname‘.
Delete all the entries from the test_table

% nistbladm -r “[],test_table.org_dir.foo.‘domainname‘.”
Delete the test_table itself.

% nistbladm -d test_table.org_dir.foo.‘domainname‘.
Delete all three directories that we created

% nisrmdir groups_dir.foo.‘domainname‘.
% nisrmdir org_dir.foo.‘domainname‘.
% nisrmdir foo.‘domainname‘.

NIS+ Sample Program

Chapter 9 • NIS+ Programming Guide 203

204

XDR Technical Note

This appendix is a technical note on the Sun Microsystems implementation of the external data
representation (XDR) standard, which is a set of library routines that enable C programmers to
describe arbitrary data structures in a machine-independent manner.

What Is XDR?
XDR is the backbone of the Sun Microsystems Remote Procedure Call package. Data for RPCs
are transmitted using this standard. XDR library routines should be used to transmit data
accessed (read or written) by more than one type of machine.

XDR works across different languages, operating systems, and machine architectures. Most
users (particularly RPC users) only need the information in the sections on number filters,
floating point filters, and enumeration filters. Programmers who want to implement RPC and
XDR on new machines should read this technical note and the protocol specification.

You can use rpcgen to write XDR routines even in cases where no RPC calls are being made.

C programs that use XDR routines must include the file <rpc/xdr.h>, which contains all the
necessary interfaces to the XDR system. Because the library libnsl.a contains all the XDR
routines, you compile it by typing:

example% cc program.c

In many environments, several criteria must be observed to accomplish porting. The
ramifications of a small programmatic change are not always apparent, but they can often have
far-reaching implications. Consider the program to read/write a line of text that is shown in the
next two code examples.

EXAMPLE A–1 Writer Example (initial)

#include <stdio.h>

main() /* writer.c */

AA P P E N D I X A

205

EXAMPLE A–1 Writer Example (initial) (Continued)

{ int i;

for (i = 0; i < 8; i++) {

if (fwrite((char *) &i, sizeof(i), 1, stdout) != 1) {

fprintf(stderr, "failed!\n");
exit(1);

}

}

exit(0);

}

EXAMPLE A–2 Reader Example (initial)

#include <stdio.h>

main() /* reader.c */

{

int i, j;

for (j = 0; j < 8; j++) {

if (fread((char *) &i, sizeof(i), 1, stdin) != 1) {

fprintf(stderr, "failed!\n");
exit(1);

}

printf("%ld ", i);

}

printf("\n");
exit(0);

}

The two programs appear to be portable because they:

■ Pass lint checking
■ Exhibit the same behavior when executed locally on any hardware architecture

Piping the output of the writer program to the reader program gives identical results on a
SPARC or Intel machine.

sun% writer | reader

0 1 2 3 4 5 6 7

sun%

intel% writer | reader

0 1 2 3 4 5 6 7

intel%

With the advent of local area networks and 4.2BSD came the concept of “network pipes,” which
is a process that produces data on one machine and a second process that consumes data on
another machine. You can construct a network pipe with writer and reader. Here are the
results if the writer produces data on a SPARC system, and the reader consumes data on Intel
architecture.

What Is XDR?

ONC+ Developer's Guide • November 2010 (Beta)206

sun% writer | rsh intel reader

0 16777216 33554432 50331648 67108864 83886080 100663296

117440512

sun%

Executing writer on the Intel and reader on the SPARC system produces identical results.
These results occur because the byte ordering of data differs between the Intel and the SPARC,
even though the word size is the same.

Note – 16777216 is 224. When 4 bytes are reversed, the 1 is placed in the 24th bit.

Whenever data is shared by two or more machine types, a need exists for portable data. You can
make data portable by replacing the read() and write() calls with calls to an XDR library
routine, xdr_int(), a filter that knows the standard representation of an int integer in its
external form. The revised versions of writer are shown in the following code example.

EXAMPLE A–3 Writer Example (XDR modified)

#include <stdio.h>

#include <rpc/rpc.h> /* xdr is a sub-library of rpc */

main() /* writer.c */

{

XDR xdrs;

int i;

xdrstdio_create(&xdrs, stdout, XDR_ENCODE);

for (i = 0; i < 8; i++) {

if (!xdr_int(&xdrs, &i)) {

fprintf(stderr, "failed!\n");
exit(1);

}

}

exit(0);

}

The following code example shows the revised versions of reader.

EXAMPLE A–4 Reader Example (XDR modified)

#include <stdio.h>

#include <rpc/rpc.h> /* xdr is a sub-library of rpc */

main() /* reader.c */

{

XDR xdrs;

int i, j;

xdrstdio_create(&xdrs, stdin, XDR_DECODE);

What Is XDR?

Appendix A • XDR Technical Note 207

EXAMPLE A–4 Reader Example (XDR modified) (Continued)

for (j = 0; j < 8; j++) {

if (!xdr_int(&xdrs, &i)) {

fprintf(stderr, "failed!\n");
exit(1);

}

printf("%ld ", i);

}

printf("\n");
exit(0);

}

The new programs were executed on a SPARC system, on an Intel, and from a SPARC to an
Intel. The results follow.

sun% writer | reader

0 1 2 3 4 5 6 7

sun%

intel% writer | reader

0 1 2 3 4 5 6 7

intel%

sun% writer | rsh intel reader

0 1 2 3 4 5 6 7

sun%

Note – Arbitrary data structures can create portability issues, particularly with respect to
alignment and pointers. Alignment on word boundaries cause the size of a structure to vary
from machine to machine. Pointers, which are very convenient to use, have no meaning outside
the machine where they are defined.

Canonical Standard
The XDR approach to standardizing data representations is canonical. That is, XDR defines a
single byte order, a single floating-point representation (IEEE), and so on. Any program
running on any machine can use XDR to create portable data by translating its local
representation to the XDR standard representations. Similarly, any program running on any
machine can read portable data by translating the XDR standard representations to its local
equivalents.

The single standard completely decouples programs that create or send portable data from
those that use or receive portable data. A new machine learns how to convert the standard
representations and its local representations. The local representations of other machines are
irrelevant. Conversely, the local representations of the new machine are also irrelevant to
existing programs running on other machines. Such programs can immediately read portable
data produced by the new machine because such data conforms to the canonical standards that
they already understand.

Canonical Standard

ONC+ Developer's Guide • November 2010 (Beta)208

Strong precedents are in place for XDR's canonical approach. For example, TCP/IP, UDP/IP,
XNS, Ethernet, and, indeed, all protocols below layer five of the ISO model, are canonical
protocols. The advantage of any canonical approach is simplicity. In the case of XDR, a single
set of conversion routines is written once and is never touched again.

The canonical approach has the disadvantage of unnecessary conversion to and from the XDR
standard when data is transferred between two machines with identical byte order. Suppose two
Intel machines are transferring integers according to the XDR standard. The sending machine
converts the integers from Intel host byte order to XDR byte order. The receiving machine
performs the reverse conversion. Because both machines observe the same byte order, their
conversions are unnecessary.

The time spent converting to and from a canonical representation is insignificant, especially in
distributed applications. Most of the time required to prepare a data structure for transfer is not
spent in conversion but in traversing the elements of the data structure.

To transmit a tree, for example, each leaf must be visited and each element in a leaf record must
be copied to a buffer and aligned there. Storage for the leaf might have to be de-allocated as well.
Similarly, to receive a tree, you must allocate storage for each leaf, move data from the buffer to
the leaf and properly align it, and construct pointers to link the leaves together.

Every machine pays the cost of traversing and copying data structures whether or not
conversion is required. In distributed applications, communications overhead, which is the
time required to move the data down the sender's protocol layers, across the network, and up
the receiver's protocol layers, dwarfs conversion overhead.

XDR Library
The XDR library solves data portability problems, and also enables you to write and read
arbitrary C constructs in a consistent, specified, well-documented manner. Thus, using the
library can be helpful even when the data is not shared among machines on a network.

The XDR library has filter routines for strings (null-terminated arrays of bytes), structures,
unions, and arrays, to name a few. Using more primitive routines, you can write your own
specific XDR routines to describe arbitrary data structures, including elements of arrays, arms
of unions, or objects pointed at from other structures. The structures themselves might contain
arrays of arbitrary elements, or pointers to other structures.

Look closely at Example A–3 and Example A–4. A family of XDR stream-creation routines has
each member treat the stream of bits differently. In the example, data is manipulated using
standard I/O routines, so you use xdrstdio_create(). The parameters to XDR
stream-creation routines vary according to their function. In the example, xdrstdio_create()
takes a pointer to an XDR structure that it initializes, a pointer to a FILE that the input or output
is performed on, and the operation. The operation might be XDR_ENCODE for serializing in the
writer program, or XDR_DECODE for deserializing in the reader program.

XDR Library

Appendix A • XDR Technical Note 209

Note – RPC users never need to create XDR streams. The RPC system itself creates these
streams, which are then passed to the users.

The xdr_int() primitive is characteristic of most XDR library primitives and all client XDR
routines. First, the routine returns FALSE (0) if it fails, and TRUE (1) if it succeeds. Second, for
each data type, xxx, there is an associated XDR routine of the form:

xdr_xxx(xdrs, xp)

XDR *xdrs;

xxx *xp;

{

}

In this case, xxx is int, and the corresponding XDR routine is a primitive, xdr_int(). The client
could also define an arbitrary structure xxx, in which case the client would also supply the
routine xdr_xxx(), describing each field by calling XDR routines of the appropriate type. In all
cases the first parameter, xdrs, can be treated as an opaque handle and passed to the primitive
routines.

An XDR routine is direction independent. That is, the same routine is called to serialize or
deserialize data. This feature is critical to software engineering of portable data. The idea is to
call the same routine for either operation. This practice almost guarantees that serialized data
can also be deserialized.

This one routine is used by both producer and consumer of networked data. This concept is
implemented by always passing the address of an object rather than the object itself. Only in the
case of deserialization is the object modified. This feature is not shown in the example, but its
value becomes obvious when nontrivial data structures are passed among machines. If needed,
the user can obtain the direction of the XDR operation. For details, see the section“Operation
Directions” on page 224.

A slightly more complicated example follows. Assume that a person's gross assets and liabilities
are to be exchanged among processes. Also assume that these values are important enough to
warrant their own data type.

struct gnumbers {

int g_assets;

int g_liabilities;

};

The corresponding XDR routine describing this structure is as follows.

bool_t /* TRUE is success, FALSE is failure */

xdr_gnumbers(xdrs, gp)

XDR *xdrs;

struct gnumbers *gp;

{

XDR Library

ONC+ Developer's Guide • November 2010 (Beta)210

if (xdr_int(xdrs, &gp->g_assets) &&

xdr_int(xdrs, &gp->g_liabilities))

return(TRUE);

return(FALSE);

}

Note that the parameter xdrs is never inspected or modified. It is only passed on to the
subcomponent routines. The routine must inspect the return value of each XDR routine call,
and to halt immediately and return FALSE if the subroutine fails.

This example also shows that the type bool_t is declared as an integer that has only the values
TRUE (1) and FALSE (0). This document uses the following definitions:

#define bool_t int

#define TRUE 1

#define FALSE 0

By observing these conventions, you can rewrite xdr_gnumbers() as follows:

xdr_gnumbers(xdrs, gp)

XDR *xdrs;

struct gnumbers *gp;

{

return(xdr_int(xdrs, &gp->g_assets) &&

xdr_int(xdrs, &gp->g_liabilities));

}

This document uses both coding styles.

XDR Library Primitives
This section provides a synopsis of each XDR primitive. It starts with memory allocation and
the basic data types, then moves on to constructed data types. Finally, XDR utilities are
discussed. The interface to these primitives and utilities is defined in the include file
<rpc/xdr.h>, automatically included by <rpc/rpc.h>.

Memory Requirements for XDR Routines
When using XDR routines, you sometimes need to to pre-allocate memory, or to determine
memory requirements. When you need to control the allocation and de-allocation of memory
for XDR conversion routines, you can use a routine, xdr_sizeof(). This routine returns the
number of bytes needed to encode and decode data with one of the XDR filter functions
(func()). The output of the xdr_sizeof() function does not include RPC headers or record
markers. You must add them to get a complete accounting of the memory required.
xdr_sizeof() returns a zero on error.

xdr_sizeof(xdrproc_t func, void *data)

XDR Library Primitives

Appendix A • XDR Technical Note 211

Use xdr_sizeof() for the allocation of memory in applications that use XDR outside of the
RPC environment, to select between transport protocols, and at the lower levels of RPC to
perform client and server creation functions.

The next two code examples illustrate two uses of xdr_sizeof().

EXAMPLE A–5 xdr_sizeofExample #1

#include <rpc/rpc.h>

/*

* This function takes as input a CLIENT handle, an XDR function

and

* a pointer to data to be XDR’d. It returns TRUE if the amount of

* data to be XDR’d may be sent using the transport associated

with

* the CLIENT handle, and false otherwise.

*/

bool_t

cansend(cl, xdrfunc, xdrdata)

CLIENT *cl;

xdrproc_t xdrfunc;

void *xdrdata;

{

int fd;

struct t_info tinfo;

if (clnt_control(cl, CLGET_FD, &fd) == -1) {

/* handle clnt_control() error */

return (FALSE);

}

if (t_getinfo(fd, &tinfo) == -1) {

/* handle t_getinfo() error */

return (FALSE);

} else {

if (tinfo.servtype == T_CLTS) {

/*

* This is a connectionless transport. Use xdr_sizeof()

* to compute the size of this request to see whether it

* is too large for this transport.

*/

switch(tinfo.tsdu) {

case 0: /* no concept of TSDUs */

case -2: /* can’t send normal data */

return (FALSE);

break;

case -1: /* no limit on TSDU size */

return (TRUE);

break;

default:

if (tinfo.tsdu < xdr_sizeof(xdrfunc, xdrdata))

return (FALSE);

else

return (TRUE);

}

} else

XDR Library Primitives

ONC+ Developer's Guide • November 2010 (Beta)212

EXAMPLE A–5 xdr_sizeofExample #1 (Continued)

return (TRUE);

}

}

The second xdr_sizeof() example follows.

EXAMPLE A–6 xdr_sizeofExample #2

#include <sys/statvfs.h>

#include <sys/sysmacros.h>

/*

* This function takes as input a file name, an XDR function, and

a

* pointer to data to be XDR’d. It returns TRUE if the filesystem

* on which the file resides has room for the additional amount

of

* data to be XDR’d. Note that since the information statvfs(2)

* returns about the filesystem is in blocks you must convert the

* value returned by xdr_sizeof() from bytes to disk blocks.

*/

bool_t

canwrite(file, xdrfunc, xdrdata)

char *file;

xdrproc_t xdrfunc;

void *xdrdata;

{

struct statvfs s;

if (statvfs(file, &s) == -1) {

/* handle statvfs() error */

return (FALSE);

}

if (s.f_bavail >= btod(xdr_sizeof(xdrfunc, xdrdata)))

return (TRUE);

else

return (FALSE);

}

Number Filters
The XDR library provides primitives to translate between numbers and their corresponding
external representations. Primitives cover the set of numbers in the types:

[signed, unsigned] * [short, int, long]

Specifically, the eight primitives are:

XDR Library Primitives

Appendix A • XDR Technical Note 213

bool_t xdr_char(xdrs, op)

XDR *xdrs;

char *cp;

bool_t xdr_u_char(xdrs, ucp)

XDR *xdrs;

unsigned char *ucp;

bool_t xdr_int(xdrs, ip)

XDR *xdrs;

int *ip;

bool_t xdr_u_int(xdrs, up)

XDR *xdrs;

unsigned *up;

bool_t xdr_long(xdrs, lip)

XDR *xdrs;

long *lip;

bool_t xdr_u_long(xdrs, lup)

XDR *xdrs;

u_long *lup;

bool_t xdr_short(xdrs, sip)

XDR *xdrs;

short *sip;

bool_t xdr_u_short(xdrs, sup)

XDR *xdrs;

u_short *sup;

The first parameter, xdrs, is an XDR stream handle. The second parameter is the address of the
number that provides data to the stream or receives data from it. All routines return TRUE if they
complete successfully, and FALSE otherwise.

Floating-Point Filters
The XDR library also provides primitive routines for C floating-point types.

bool_t xdr_float(xdrs, fp)

XDR *xdrs;

float *fp;

bool_t xdr_double(xdrs, dp)

XDR *xdrs;

double *dp;

The first parameter, xdrs, is an XDR stream handle. The second parameter is the address of the
floating-point number that provides data to the stream or receives data from it. Both routines
return TRUE if they complete successfully, and FALSE otherwise.

Note – Because the numbers are represented in IEEE floating point, routines might fail when
decoding a valid IEEE representation into a machine-specific representation, or the reverse.

XDR Library Primitives

ONC+ Developer's Guide • November 2010 (Beta)214

Enumeration Filters
The XDR library provides a primitive for generic enumerations. The primitive assumes that a C
enum has the same representation inside the machine as a C integer. The Boolean type is an
important instance of the enum. The external representation of a Boolean is always TRUE (1) or
FALSE (0).

#define bool_t int

#define FALSE 0

#define TRUE 1

#define enum_t int

bool_t xdr_enum(xdrs, ep)

XDR *xdrs;

enum_t *ep;

bool_t xdr_bool(xdrs, bp)

XDR *xdrs;

bool_t *bp;

The second parameters ep and bp are addresses of the associated type that provides data to or
receives data from the stream xdrs.

No-Data Routine
Occasionally, an XDR routine must be supplied to the RPC system, even when no data is passed
or required. The library provides such a routine.

bool_t xdr_void(); /* always returns TRUE */

Constructed Data Type Filters
Constructed or compound data type primitives require more parameters and perform more
complicated functions than the primitives discussed previously. This section includes
primitives for strings, arrays, unions, and pointers to structures.

Constructed data type primitives can use memory management. In many cases, memory is
allocated when deserializing data with XDR_DECODE. Therefore, the XDR package must provide a
means to de-allocate memory. The XDR operation, XDR_FREE provides this means. To review, the
three XDR directional operations are XDR_ENCODE, XDR_DECODE, and XDR_FREE.

Strings
In the C language, a string is defined as a sequence of bytes terminated by a null byte, which is
not considered when calculating string length. However, when a string is passed or
manipulated, a pointer to it is employed. Therefore, the XDR library defines a string to be a
char *, and not a sequence of characters. The external representation of a string is drastically
different from its internal representation.

XDR Library Primitives

Appendix A • XDR Technical Note 215

Externally, strings are represented as sequences of ASCII characters. Internally, strings are
represented with character pointers. Conversion between the two representations is
accomplished with the routine xdr_string():

bool_t xdr_string(xdrs, sp, maxlength)

XDR *xdrs;

char **sp;

u_int maxlength;

The first parameter xdrs is the XDR stream handle. The second parameter sp is a pointer to a
string (type char **). The third parameter maxlength specifies the maximum number of bytes
allowed during encoding or decoding. Its value is usually specified by a protocol. For example, a
protocol specification might say that a file name can be no longer than 255 characters. The
routine returns FALSE if the number of characters exceeds maxlength, and TRUE if it doesn't.

The behavior of xdr_string() is similar to the behavior of other routines discussed in this
section. For example, in the direction XDR_ENCODE, the parameter sp points to a string of a
certain length. If the string does not exceed maxlength, the bytes are serialized.

The effect of deserializing a string is subtle. First the length of the incoming string is
determined; it must not exceed maxlength. Next sp is dereferenced. If the value is NULL, a string
of the appropriate length is allocated and *sp is set to this string. If the original value of *sp is
nonnull, the XDR package assumes that a target area has been allocated that can hold strings no
longer than maxlength. In either case, the string is decoded into the target area. The routine
then appends a null character to the string.

In the XDR_FREE operation the string is obtained by dereferencing sp. If the string is not NULL, it
is freed and *sp is set to NULL. In this operation xdr_string() ignores the maxlength parameter.

Note that you can use XDR on an empty string ("") but not on a NULL string.

Byte Arrays
Often variable-length arrays of bytes are preferable to strings. Byte arrays differ from strings in
the following three ways:

■ The length of the array, the byte count, is explicitly located in an unsigned integer.
■ The byte sequence is not terminated by a null character.
■ The external representation of the bytes is the same as their internal representation.

The primitive xdr_bytes() converts between the internal and external representations of byte
arrays:

bool_t xdr_bytes(xdrs, bpp, lp, maxlength)

XDR *xdrs;

char **bpp;

u_int *lp;

u_int maxlength;

XDR Library Primitives

ONC+ Developer's Guide • November 2010 (Beta)216

The usage of the first, second, and fourth parameters is identical to the first, second, and third
parameters of xdr_string(). The length of the byte area is obtained by dereferencing lp when
serializing; *lp is set to the byte length when deserializing.

Arrays
The XDR library package provides a primitive for handling arrays of arbitrary elements. The
xdr_bytes() routine treats a subset of generic arrays, in which the size of array elements is
known to be 1, and the external description of each element is built in. The generic array
primitive, xdr_array() requires parameters identical to those of xdr_bytes() plus two more:
the size of array elements, and an XDR routine to handle each of the elements. This routine is
called to encode or decode each element of the array.

bool_t

xdr_array(xdrs, ap, lp, maxlength, elementsize, xdr_element)

XDR *xdrs;

char **ap;

u_int *lp;

u_int maxlength;

u_int elementsize;

bool_t (*xdr_element)();

The parameter ap is the address of the pointer to the array. If *ap is NULL when the array is being
deserialized, XDR allocates an array of the appropriate size and sets *ap to that array. The
element count of the array is obtained from *lp when the array is serialized; *lp is set to the array
length when the array is deserialized. The parameter maxlength is the maximum number of
elements that the array is allowed to have; elementsiz is the byte size of each element of the array
(the C function sizeof() can be used to obtain this value). The xdr_element() routine is called
to serialize, deserialize, or free each element of the array.

Before defining more constructed data types, three examples are presented.

Array Example 1
A user on a networked machine can be identified by
■ The machine name.
■ The user's UID. See the getuid(2) man page.
■ The group numbers to which the user belongs. See the getgroups(2) man page.

A structure with this information and its associated XDR routine could be coded as in the
following code example.

EXAMPLE A–7 Array Example #1

struct netuser {

char *nu_machinename;

int nu_uid;

XDR Library Primitives

Appendix A • XDR Technical Note 217

http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=getuid-2
http://www.oracle.com/pls/topic/lookup?ctx=821-1463&id=getgroups-2

EXAMPLE A–7 Array Example #1 (Continued)

u_int nu_glen;

int *nu_gids;

};

#define NLEN 255 /* machine names < 256 chars */

#define NGRPS 20 /* user can’t be in > 20 groups */

bool_t

xdr_netuser(xdrs, nup)

XDR *xdrs;

struct netuser *nup;

{

return(xdr_string(xdrs, &nup->nu_machinename, NLEN) &&

xdr_int(xdrs, &nup->nu_uid) &&

xdr_array(xdrs, &nup->nu_gids, &nup->nu_glen, NGRPS,

sizeof (int), xdr_int));

}

Array Example 2
You could implement a party of network users as an array of netuser structure. The declaration
and its associated XDR routines are as shown in the following code example.

EXAMPLE A–8 Array Example #2

struct party {

u_int p_len;

struct netuser *p_nusers;

};

#define PLEN 500 /* max number of users in a party */

bool_t

xdr_party(xdrs, pp)

XDR *xdrs;

struct party *pp;

{

return(xdr_array(xdrs, &pp->p_nusers, &pp->p_len, PLEN,

sizeof (struct netuser), xdr_netuser));

}

Array Example 3
You can combine the well-known parameters to main, argc and argv, into a structure. An array
of these structures can make up a history of commands. The declarations and XDR routines
might look like the following example.

EXAMPLE A–9 Array Example #3

struct cmd {

u_int c_argc;

char **c_argv;

};

#define ALEN 1000 /* args cannot be > 1000 chars */

XDR Library Primitives

ONC+ Developer's Guide • November 2010 (Beta)218

EXAMPLE A–9 Array Example #3 (Continued)

#define NARGC 100 /* commands cannot have > 100 args */

struct history {

u_int h_len;

struct cmd *h_cmds;

};

#define NCMDS 75 /* history is no more than 75 commands */

bool_t

xdr_wrapstring(xdrs, sp)

XDR *xdrs;

char **sp;

{

return(xdr_string(xdrs, sp, ALEN));

}

bool_t

xdr_cmd(xdrs, cp)

XDR *xdrs;

struct cmd *cp;

{

return(xdr_array(xdrs, &cp->c_argv, &cp->c_argc, NARGC,

sizeof (char *), xdr_wrapstring));

}

bool_t

xdr_history(xdrs, hp)

XDR *xdrs;

struct history *hp;

{

return(xdr_array(xdrs, &hp->h_cmds, &hp->h_len, NCMDS,

sizeof (struct cmd), xdr_cmd));

}

Some confusion in this example is that you need the routine xdr_wrapstring() to package the
xdr_string() routine, because the implementation of xdr_array() passes only two
parameters to the array element description routine. xdr_wrapstring() supplies the third
parameter to xdr_string().

By now, the recursive nature of the XDR library should be obvious. A discussion follows of
more constructed data types.

Opaque Data
In some protocols, handles are passed from a server to the client. The client passes the handle
back to the server at some later time. Handles are never inspected by clients; they are obtained
and submitted. That is, handles are opaque. The xdr_opaque() primitive is used for describing
fixed-sized opaque bytes.

XDR Library Primitives

Appendix A • XDR Technical Note 219

bool_t

xdr_opaque(xdrs, p, len)

XDR *xdrs;

char *p;

u_int len;

The parameter p is the location of the bytes, len is the number of bytes in the opaque object. By
definition, the actual data contained in the opaque object is not machine portable.

In the SunOS/SVR4 system is another routine for manipulating opaque data. This routine, the
xdr_netobj, sends counted opaque data, much like xdr_opaque(). The following code example
illustrates the syntax of xdr_netobj().

EXAMPLE A–10 xdr_netobj Routine

struct netobj {

u_int n_len;

char *n_bytes;

};

typedef struct netobj netobj;

bool_t

xdr_netobj(xdrs, np)

XDR *xdrs;

struct netobj *np;

The xdr_netobj() routine is a filter primitive that translates between variable-length opaque
data and its external representation. The parameter np is the address of the netobj structure
containing both a length and a pointer to the opaque data. The length may be no more than
MAX_NETOBJ_SZ bytes. This routine returns TRUE if it succeeds, FALSE otherwise.

Fixed-Length Arrays
The XDR library provides a primitive, xdr_vector(), for fixed-length arrays, shown in the
following code example.

EXAMPLE A–11 xdr_vectorRoutine

#define NLEN 255 /* machine names must be < 256 chars */

#define NGRPS 20 /* user belongs to exactly 20 groups */

struct netuser {

char *nu_machinename;

int nu_uid;

int nu_gids[NGRPS];

};

bool_t

xdr_netuser(xdrs, nup)

XDR *xdrs;

struct netuser *nup;

XDR Library Primitives

ONC+ Developer's Guide • November 2010 (Beta)220

EXAMPLE A–11 xdr_vectorRoutine (Continued)

{

int i;

if (!xdr_string(xdrs, &nup->nu_machinename, NLEN))

return(FALSE);

if (!xdr_int(xdrs, &nup->nu_uid))

return(FALSE);

if (!xdr_vector(xdrs, nup->nu_gids, NGRPS, sizeof(int),

xdr_int))

return(FALSE);

return(TRUE);

}

Discriminated Unions
The XDR library supports discriminated unions. A discriminated union is a C union and an
enum_t value that selects an “arm” of the union.

struct xdr_discrim {

enum_t value;

bool_t (*proc)();

};

bool_t

xdr_union(xdrs, dscmp, unp, arms, defaultarm)

XDR *xdrs;

enum_t *dscmp;

char *unp;

struct xdr_discrim *arms;

bool_t (*defaultarm)(); /* may equal NULL */

First the routine translates the discriminant of the union located at *dscmp. The discriminant is
always an enum_t. Next the union located at *unp is translated. The parameter arms is a pointer
to an array of xdr_discrim structures. Each structure contains an ordered pair of [value,proc].
If the union's discriminant is equal to the associated value, then the proc is called to translate
the union. The end of the xdr_discrim structure array is denoted by a routine of value NULL (0).
If the discriminant is not found in the arms array, then the defaultarm() procedure is called if
it is nonnull. Otherwise the routine returns FALSE.

Discriminated Union Example
Suppose the type of a union is integer, character pointer (a string), or a gnumbers structure.
Also, assume the union and its current type are declared in a structure. The declaration is:

enum utype {INTEGER=1, STRING=2, GNUMBERS=3};

struct u_tag {

enum utype utype; /* the union’s discriminant */

union {

XDR Library Primitives

Appendix A • XDR Technical Note 221

int ival;

char *pval;

struct gnumbers gn;

} uval;

};

The following code example constructs an XDR procedure to deserialize the discriminated
union.

EXAMPLE A–12 XDR Discriminated Union

struct xdr_discrim u_tag_arms[4] = {

{INTEGER, xdr_int},

{GNUMBERS, xdr_gnumbers}

{STRING, xdr_wrapstring},

{__dontcare__, NULL}

/* always terminate arms with a NULL xdr_proc */

}

bool_t

xdr_u_tag(xdrs, utp)

XDR *xdrs;

struct u_tag *utp;

{

return(xdr_union(xdrs, &utp->utype, &utp->uval,

u_tag_arms, NULL));

}

The routine xdr_gnumbers() was presented previously in “XDR Library” on page 209. The
default arm parameter to xdr_union(), the last parameter, is NULL in this example. Therefore,
the value of the union's discriminant can legally take on only values listed in the u_tag_arms
array. Example A–12 also demonstrates that the elements of the arm's array do not need to be
sorted.

The values of the discriminant can be sparse, though in Example A–12 they are not. Make a
practice of assigning explicitly integer values to each element of the discriminant's type. This
practice both documents the external representation of the discriminant and guarantees that
different C compilers emit identical discriminant values.

Pointers
In C, putting pointers to another structure within a structure is often convenient. The
xdr_reference() primitive makes it easy to serialize, deserialize, and free these referenced
structures.

bool_t

xdr_reference(xdrs, pp, size, proc)

XDR *xdrs;

char **pp;

u_int ssize;

bool_t (*proc)();

XDR Library Primitives

ONC+ Developer's Guide • November 2010 (Beta)222

Parameter pp is the address of the pointer to the structure; parameter ssize is the size in bytes of
the structure (use the C function sizeof() to obtain this value); and proc() is the XDR routine
that describes the structure. When decoding data, storage is allocated if *pp is NULL.

A primitive xdr_struct() does not need to describe structures within structures because
pointers are always sufficient.

Pointer Example
Suppose you have a structure containing a person's name and a pointer to a gnumbers structure
containing the person's gross assets and liabilities. The construct is:

struct pgn {

char *name;

struct gnumbers *gnp;

};

The corresponding XDR routine for this structure is:

bool_t

xdr_pgn(xdrs, pp)

XDR *xdrs;

struct pgn *pp;

{

return(xdr_string(xdrs, &pp->name, NLEN) &&

xdr_reference(xdrs, &pp->gnp, sizeof(struct gnumbers),

xdr_gnumbers));

}

Pointer Semantics
In many applications, C programmers attach double meaning to the values of a pointer.
Typically the value NULL (or zero) means data is not needed, yet some application-specific
interpretation applies. In essence, the C programmer is encoding a discriminated union
efficiently by overloading the interpretation of the value of a pointer. For instance, a NULL
pointer value for gnp could indicate that the person's assets and liabilities are unknown. That is,
the pointer value encodes two things: whether the data is known and, if it is known, where it is
located in memory. Linked lists are an extreme example of the use of application-specific
pointer interpretation.

The primitive xdr_reference() cannot and does not attach any special meaning to a null-value
pointer during serialization. That is, passing an address of a pointer that has a value of value of
NULL to xdr_reference() when serializing data most likely causes a memory fault and, on the
UNIX system, a core dump.

xdr_pointer() correctly handles NULL pointers.

XDR Library Primitives

Appendix A • XDR Technical Note 223

Nonfilter Primitives
You can manipulate XDR streams with the primitives discussed in this section.

u_int xdr_getpos(xdrs)

XDR *xdrs;

bool_t xdr_setpos(xdrs, pos)

XDR *xdrs;

u_int pos;

xdr_destroy(xdrs)

XDR *xdrs;

The routine xdr_getpo()s() returns an unsigned integer that describes the current position in
the data stream.

Caution – In some XDR streams, the value returned by x()dr_getpos() is meaningless; the
routine returns a -1 in this case (though -1 should be a legitimate value).

The routine xdr_setpos() sets a stream position to pos. In some XDR streams, setting a
position is impossible; in such cases, xdr_setpos() returns FALSE. This routine also fails if the
requested position is out-of-bounds. The definition of bounds varies from stream to stream.

The xdr_destroy() primitive destroys the XDR stream. Usage of the stream after calling this
routine is undefined.

Operation Directions
At times, you might want to optimize XDR routines by taking advantage of the direction of the
operation: XDR_ENCODE, XDR_DECODE or XDR_FREE. The value xdrs->x_op always contains the
direction of the XDR operation. An example in “Linked Lists” on page 229 demonstrates the
usefulness of the xdrs->x_op field.

Stream Access
An XDR stream is obtained by calling the appropriate creation routine. These creation routines
take arguments that are tailored to the specific properties of the stream. Streams currently exist
for deserialization of data to or from standard I/O FILE streams, record streams, memory, and
UNIX files.

Standard I/O Streams
XDR streams can be interfaced to standard I/O using the xdrstdio_create() routine.

XDR Library Primitives

ONC+ Developer's Guide • November 2010 (Beta)224

#include <stdio.h>

#include <rpc/rpc.h> /* xdr is part of rpc */

void

xdrstdio_create(xdrs, fp, xdr_op)

XDR *xdrs;

FILE *fp;

enum xdr_op x_op;

The routine xdrstdio_create() initializes an XDR stream pointed to by xdrs. The XDR stream
interfaces to the standard I/O library. Parameter fp is an open file, and x_op is an XDR direction.

Memory Streams
Memory streams allow the streaming of data into or out of a specified area of memory:

#include <rpc/rpc.h>

void

xdrmem_create(xdrs, addr, len, x_op)

XDR *xdrs;

char *addr;

u_int len;

enum xdr_op x_op;

The routine xdrmem_create() initializes an XDR stream in local memory. The memory is
pointed to by parameter addr. Parameter len is the length in bytes of the memory. The
parameters xdrs and x_op are identical to the corresponding parameters of
xdrstdio_create(). Currently, the datagram implementation of RPC uses xdrmem_create().
Complete call or result messages are built in memory before calling the t_sndndata() TLI
routine.

Record TCP/IP Streams
A record stream is an XDR stream built on top of a record-marking standard that is built on top
of the UNIX file or 4.2 BSD connection interface.

#include <rpc/rpc.h> /* xdr is part of rpc */

xdrrec_create(xdrs, sendsize, recvsize, iohandle, readproc,

writeproc)

XDR *xdrs;

u_int sendsize, recvsize;

char *iohandle;

int (*readproc)(), (*writeproc)();

The routine xdrrec_create() provides an XDR stream interface that allows for a bidirectional,
arbitrarily long sequence of records. The contents of the records are meant to be data in XDR
form. The stream's primary use is for interfacing RPC to TCP connections. However, it can be
used to stream data into or out of normal UNIX files.

XDR Library Primitives

Appendix A • XDR Technical Note 225

The parameter xdrs is similar to the corresponding parameter described previously. The stream
does its own data buffering similar to that of standard I/O. The parameters sendsize and recvsize
determine the size in bytes of the output and input buffers respectively. If their values are zero
(0), then predetermined defaults are used.

When a buffer needs to be filled or flushed, the routine readproc() or writeproc() is called
respectively. The usage and behavior of these routines are similar to the UNIX system calls
read() and write(). However, the first parameter to each of these routines is the opaque
parameter iohandle. The other two parameters, and nbytes and the results, byte count, are
identical to the system routines. If xxx() is readproc() or writeproc(), then it has the
following form:

/* returns the actual number of bytes transferred. -1 is an error */int

xxx(iohandle, buf, len)

char *iohandle;

char *buf;

int nbytes;

The XDR stream provides a means for delimiting records in the byte stream. Abstract data types
needed to implement the XDR stream mechanism are discussed in “XDR Stream
Implementation” on page 227. The protocol RPC uses to delimit XDR stream records is
discussed in “Record-Marking Standard” on page 241.

The primitives that are specific to record streams are:

bool_t

xdrrec_endofrecord(xdrs, flushnow)

XDR *xdrs;

bool_t flushnow;

bool_t

xdrrec_skiprecord(xdrs)

XDR *xdrs;

bool_t

xdrrec_eof(xdrs)

XDR *xdrs;

The routine xdrrec_endofrecord() causes the current outgoing data to be marked as a record.
If the parameter flushnow is TRUE, then the stream's writeproc() is called. Otherwise,
writeproc() is called when the output buffer is full.

The routine xdrrec_skiprecord() causes an input stream's position to be moved past the
current record boundary and onto the beginning of the next record in the stream.

If no more data is in the stream's input buffer, then the routine xdrrec_eof() returns TRUE.
That does not mean that no more data is in the underlying file descriptor.

XDR Library Primitives

ONC+ Developer's Guide • November 2010 (Beta)226

XDR Stream Implementation
This section provides the abstract data types needed to implement new instances of XDR
streams.

XDR Object
The structure in the following code example defines the interface to an XDR stream.

EXAMPLE A–13 XDR Stream Interface Example

enum xdr_op {XDR_ENCODE=0, XDR_DECODE=1, XDR_FREE=2};

typedef struct {

enum xdr_op x_op;

struct xdr_ops {

bool_t (*x_getlong)(); /* get long from stream */

bool_t (*x_putlong)(); /* put long to stream */

bool_t (*x_getbytes)(); /* get bytes from stream */

bool_t (*x_putbytes)(); /* put bytes to stream */

u_int (*x_getpostn)(); /* return stream offset */

bool_t (*x_setpostn)(); /* reposition offset */

caddr_t (*x_inline)(); /* ptr to buffered data */

VOID (*x_destroy)(); /* free private area */

bool_t (*x_control)(); /* change, retrieve client info */

bool_t (*x_getint32)(); /* get int from stream */

bool_t (*x_putint32)(); /* put intto stream */

} *x_ops;

caddr_t x_public; /* users’ data */

caddr_t x_private; /* pointer to private data */

caddr_t x_base; /* private for position info */

int x_handy; /* extra private word */

} XDR;

The x_op field is the current operation being performed on the stream. This field is important to
the XDR primitives, but should not affect a stream's implementation. That is, a stream's
implementation should not depend on this value. The fields x_private, x_base, and x_handy

are private to the particular stream's implementation. The field x_public is for the XDR client
and should never be used by the XDR stream implementations or the XDR primitives.
x_getpostn(), x_setpostn(), and x_destroy() are macros for accessing operations.

The operation x_inline() has two parameters: an XDR *, and an unsigned integer, which is a
byte count. The routine returns a pointer to a piece of the stream's internal buffer. The caller can
then use the buffer segment for any purpose. The stream's interpretation is that the bytes in the
buffer segment have been consumed. The routine can return NULL if it cannot return a buffer
segment of the requested size.

XDR Stream Implementation

Appendix A • XDR Technical Note 227

Caution – The x_inline() routine is used to squeeze cycles, and the resulting buffer is not data
portable. Do not use this feature.

The operations x_getbytes() and x_putbytes() routinely get and put sequences of bytes from
or to the underlying stream. They return TRUE if they are successful, and FALSE otherwise. The
routines have identical parameters (replace xxx with the same string in each case.)

bool_t

xxxbytes(xdrs, buf, bytecount)

XDR *xdrs;

char *buf;

u_int bytecount;

The operations x_getint32() and x_putint32() receive and put int numbers from and to the
data stream. These routines are responsible for translating the numbers between the machine
representation and the (standard) external representation. The UNIX primitives htonl() and
ntohl() can be helpful in accomplishing this objective. The higher-level XDR implementation
assumes that signed and unsigned integers contain the same number of bits, and that
nonnegative integers have the same bit representations as unsigned integers. The routines
return TRUE if they succeed, and FALSE otherwise.

The x_getint() and x_putint() functions make use of these operations. They have identical
parameters:

bool_t

xxxint(xdrs, ip)

XDR *xdrs;

int32_t *ip;

The long version of these operations (x_getlong() and x_putlong()) also call x_getint32()
and x_putint32(), ensuring that a 4–byte quantity is operated on, no matter what machine the
program is running on.

Implementors of new XDR streams must make an XDR structure with new operation routines
available to clients, using some kind of create routine.

Advanced XDR Topics
This section describes techniques for passing data structures that are not covered in the
preceding sections. Such structures include linked lists of arbitrary lengths. Unlike the simpler
examples covered in the previous sections, the following examples are written using both the
XDR C library routines and the XDR data description language. Appendix C, “XDR Protocol
Specification,” describes this language in detail.

Advanced XDR Topics

ONC+ Developer's Guide • November 2010 (Beta)228

Linked Lists
The “Pointer Example” on page 223 presented a C data structure and its associated XDR
routines for an individual's gross assets and liabilities. The following code example uses a linked
list to duplicate the pointer example.

EXAMPLE A–14 Linked List

struct gnumbers {

int g_assets;

int g_liabilities;

};

bool_t

xdr_gnumbers(xdrs, gp)

XDR *xdrs;

struct gnumbers *gp;

{

return(xdr_int(xdrs, &(gp->g_assets) &&

xdr_int(xdrs, &(gp->g_liabilities)));

}

Now assume that you want to implement a linked list of such information. A data structure
could be constructed as follows.

struct gnumbers_node {

struct gnumbers gn_numbers;

struct gnumbers_node *gn_next;

};

typedef struct gnumbers_node *gnumbers_list;

Think of the head of the linked list as the data object. That is, the head is not merely a
convenient shorthand for a structure. Similarly, the gn_next field is used to indicate whether
the object has terminated. Unfortunately, if the object continues, the gn_next field is also the
address of where it continues. The link addresses carry no useful information when the object is
serialized.

The XDR data description of this linked list is described by the recursive declaration of
gnumbers_list.

struct gnumbers {

int g_assets;

int g_liabilities;

};

struct gnumbers_node {

gnumbers gn_numbers;

gnumbers_node *gn_next;

};

In this description, the Boolean indicates more data follows. If the Boolean is FALSE, it is the last
data field of the structure. If it is TRUE, it is followed by a gnumbers structure and, recursively, by

Advanced XDR Topics

Appendix A • XDR Technical Note 229

a gnumbers_list. Note that the C declaration has no Boolean explicitly declared in it, though
the gn_next field implicitly carries the information. The XDR data description has no pointer
explicitly declared in it.

Hints for writing the XDR routines for a gnumbers_list follow easily from the preceding XDR
description. Note how the primitive xdr_pointer() is used to implement the preceding XDR
union.

EXAMPLE A–15 xdr_pointer

bool_t

xdr_gnumbers_node(xdrs, gn)

XDR *xdrs;

gnumbers_node *gn;

{

return(xdr_gnumbers(xdrs, &gn->gn_numbers) &&

xdr_gnumbers_list(xdrs, &gn->gn_next));

}

bool_t

xdr_gnumbers_list(xdrs, gnp)

XDR *xdrs;

gnumbers_list *gnp;

{

return(xdr_pointer(xdrs, gnp, sizeof(struct gnumbers_node),

xdr_gnumbers_node));

xdr_pointer}

The side effect of using XDR on a list with these routines is that the C stack grows linearly with
respect to the number of nodes in the list. This growth is due to the recursion. The following
example collapses the last two mutually recursive routines into a single, nonrecursive one.

EXAMPLE A–16 Nonrecursive Stack in XDR

bool_t

xdr_gnumbers_list(xdrs, gnp)

XDR *xdrs;

gnumbers_list *gnp;

{

bool_t more_data;

gnumbers_list *nextp;

for(;;) {

more_data = (*gnp != NULL);

if (!xdr_bool(xdrs, &more_data))

return(FALSE);

if (! more_data)

break;

if (xdrs->x_op == XDR_FREE)

nextp = &(*gnp)->gn_next;

if (!xdr_reference(xdrs, gnp,

sizeof(struct gnumbers_node), xdr_gnumbers))

return(FALSE);

gnp = (xdrs->x_op == XDR_FREE) ? nextp : &(*gnp)->gn_next;

Advanced XDR Topics

ONC+ Developer's Guide • November 2010 (Beta)230

EXAMPLE A–16 Nonrecursive Stack in XDR (Continued)

}

*gnp = NULL;

return(TRUE);

}

The first task is to find out whether more data exists, so that this Boolean information can be
serialized. Notice that this statement is unnecessary in the XDR_DECODE case, because the value of
more_data is not known until you deserialize it in the next statement.

The next statement implements XDR on the more_data field of the XDR union. Then if no
more data exists, you set this last pointer to NULL to indicate the end of the list, and return TRUE

because you are done. Note that setting the pointer to NULL is only important in the XDR_DECODE
case, because the pointer is already NULL in the XDR_ENCODE and XDR_FREE cases.

Next, if the direction is XDR_FREE, set the value of nextp to indicate the location of the next
pointer in the list. You set this value now because you need to dereference gnp to find the
location of the next item in the list. After the next statement, the storage pointed to by gnp is
freed up and no longer valid. You cannot set this value for all directions, though, because in the
XDR_DECODE direction the value of gnp is not set until the next statement.

Next, you use XDR on the data in the node using the primitive xdr_reference().
xdr_reference() is like xdr_pointer(), which you used before, but it does not send over the
Boolean indicating whether more data exists. You use xdr_reference() instead of
xdr_pointer() because you have already used XDR on this information yourself.

Notice that the XDR routine passed is not the same type as an element in the list. The routine
passed is xdr_gnumbers(), but each element in the list is actually of type gnumbers_node. You
don't pass xdr_gnumbers_node() because it is recursive. Instead, use xdr_gnumbers(), which
uses XDR on all of the nonrecursive part. Note that this trick works only if the gn_numbers field
is the first item in each element, so that their addresses are identical when passed to
xdr_reference().

Finally, you update gnp to point to the next item in the list. If the direction is XDR_FREE, you set it
to the previously saved value. Otherwise, you can dereference gnp to get the proper value.
Though harder to understand than the recursive version, this nonrecursive routine runs more
efficiently because much of the procedure call overhead has been removed. Most lists are small,
in the hundreds of items or less, and the recursive version should be sufficient for them.

Advanced XDR Topics

Appendix A • XDR Technical Note 231

232

RPC Protocol and Language Specification

This appendix specifies a message protocol used in implementing the RPC package. The
message protocol is specified with the XDR language. The companion appendix to this one is
Appendix C, “XDR Protocol Specification.”

This appendix covers the following topics:

■ “Protocol Overview” on page 233
■ “Program and Procedure Numbers” on page 235
■ “Authentication Protocols” on page 242
■ “RPC Language Specification” on page 252

Protocol Overview
The RPC protocol provides for the following:

■ Unique specification of a procedure to be called.
■ Provisions for matching response messages to request messages.
■ Provisions for authenticating the caller to service and the reverse. In addition, the RPC

package provides features that detect the following:
■ RPC protocol mismatches
■ Remote program protocol version mismatches
■ Protocol errors, such as incorrect specification of a procedure's parameters
■ Reasons why remote authentication failed

Consider a network file service composed of two programs. One program might handle
high-level applications such as file-system access control and locking. The other might handle
low-level file I/O and have procedures like read and write. A client machine of the network file
service would call the procedures associated with the two programs of the service on behalf of
some user on the client machine. In the client-server model, a remote procedure call is used to
call the service.

BA P P E N D I X B

233

RPC Model
The RPC model is similar to the local procedure call model. In the local case, the caller places
arguments to a procedure in some well-specified location. The caller then transfers control to
the procedure, and eventually regains control. At that point, the results of the procedure are
extracted from a well-specified location, and the caller continues execution.

The RPC model is similar, in that one thread of control logically winds through two processes.
One is the caller's process, the other is a server's process. Conceptually, the caller process sends a
call message to the server process and waits for a reply message. The call message contains the
procedure's parameters, among other information. The reply message contains the procedure's
results, among other information. After the reply message is received, the results of the
procedure are extracted, and the caller's execution is resumed.

On the server side, a process is dormant awaiting the arrival of a call message. When one arrives,
the server process extracts the procedure's parameters, computes the results, sends a reply
message, and then awaits the next call message.

Note that in this description only one of the two processes is active at any given time. However,
the RPC protocol makes no restrictions on the concurrency model implemented. For example,
an implementation might choose to have RPC calls be asynchronous, so that the client can do
useful work while waiting for the reply from the server. Another possibility is to have the server
create a task to process an incoming request so that the server is free to receive other requests.

Transports and Semantics
The RPC protocol is independent of transport protocols. That is, RPC disregards how a
message is passed from one process to another. The protocol handles only specification and
interpretation of messages.

RPC does not attempt to ensure transport reliability. Therefore, you must supply the
application with information about the type of transport protocol used under RPC. If you tell
the RPC service that it is running on top of a reliable transport such as TCP, most of the work is
already done for the service. On the other hand, if RPC is running on top of an unreliable
transport such as UDP, the service must devise its own retransmission and time-out policy. RPC
does not provide this service.

Because of transport independence, the RPC protocol does not attach specific semantics to the
remote procedures or their execution. Semantics can be inferred from, but should be explicitly
specified by, the underlying transport protocol. For example, suppose RPC is running on top of
an unreliable transport. If an application retransmits RPC messages after short timeouts
receiving no reply, it can infer only that the procedure was executed zero or more times. If the
application does receive a reply, it can infer that the procedure was executed at least once.

Protocol Overview

ONC+ Developer's Guide • November 2010 (Beta)234

A server might choose to remember previously granted requests from a client and not regrant
them to ensure some degree of execute-at-most-once semantics. A server can do this by using
the transaction ID that is packaged with every RPC request. The main use of this transaction ID
is by the RPC client for matching replies to requests. However, a client application can choose to
reuse its previous transaction ID when retransmitting a request. The server application,
checking this fact, can choose to remember this ID after granting a request and not regrant
requests with the same ID. The server is not allowed to examine this ID in any other way except
as a test for equality.

On the other hand, if using a reliable transport such as TCP, the application can infer from a
reply message that the procedure was executed exactly once. If the application receives no reply
message, it cannot assume the remote procedure was not executed. Note that even if a
connection-oriented protocol like TCP is used, an application still needs timeouts and
reconnection to handle server crashes.

Binding and Rendezvous Independence
The act of binding a client to a service is not part of the remote procedure call specification. This
important and necessary function is left up to some higher-level software. The software can use
RPC itself. See “rpcbind Protocol” on page 260.

Implementers should think of the RPC protocol as the jump-subroutine (JSR) instruction of a
network. The loader makes JSR useful, and the loader itself uses JSR to accomplish its task.
Likewise, the network makes RPC useful, enabling RPC to accomplish this task.

The RPC protocol provides the fields necessary for a client to identify itself to a service and the
reverse. Security and access control mechanisms can be built on top of the message
authentication. Several different authentication protocols can be supported. A field in the RPC
header specifies the protocol being used. You can find more information on authentication
protocols in the section “Record-Marking Standard” on page 241.

Program and Procedure Numbers
The RPC call message has three unsigned fields that uniquely identify the procedure to be
called:
■ Remote program number
■ Remote program version number
■ Remote procedure number

Program numbers are administered by a central authority, as described in “Program Number
Registration” on page 237.

The first implementation of a program most likely has version number 1. Most new protocols
evolve into better, stable, and mature protocols. Therefore, a version field of the call message

Program and Procedure Numbers

Appendix B • RPC Protocol and Language Specification 235

identifies the version of the protocol that the caller is using. Version numbers make speaking
old and new protocols through the same server process possible.

The procedure number identifies the procedure to be called. These numbers are documented in
the individual program's protocol specification. For example, a file service's protocol
specification might state that its procedure number 5 is read and procedure number 12 is write.

Just as remote program protocols can change over several versions, the RPC message protocol
itself can change. Therefore, the call message also has in it the RPC version number, which is
always equal to 2 for the version of RPC described here.

The reply message to a request message has enough information to distinguish the following
error conditions:

■ The remote implementation of RPC does not speak protocol version 2. The lowest and
highest supported RPC version numbers are returned.

■ The remote program is not available on the remote system.
■ The remote program does not support the requested version number. The lowest and

highest supported remote program version numbers are returned.
■ The requested procedure number does not exist. This result is usually a caller-side protocol

or programming error.
■ The server interprets the parameters to the remote procedure as garbage. Again, this result is

usually caused by a disagreement about the protocol between client and service.

Provisions for authentication of caller to service and the reverse are provided as a part of the
RPC protocol. The call message has two authentication fields, the credentials and verifier. The
reply message has one authentication field, the response verifier. The RPC protocol
specification defines all three fields to be the following opaque type.

enum auth_flavor {

AUTH_NONE = 0,

AUTH_SYS = 1,

AUTH_SHORT = 2,

AUTH_DES = 3,

AUTH_KERB = 4

/* and more to be defined */

};

struct opaque_auth {

enum auth_flavor; /* style of credentials */

caddr_t oa_base; /* address of more auth stuff */

u_int oa_length; /* not to exceed MAX_AUTH_BYTES */

};

An opaque_auth structure is an auth_flavor enumeration followed by bytes that are opaque to
the RPC protocol implementation.

The interpretation and semantics of the data contained within the authentication fields are
specified by individual, independent authentication protocol specifications. See
“Record-Marking Standard” on page 241 for definitions of the various authentication protocols.

Program and Procedure Numbers

ONC+ Developer's Guide • November 2010 (Beta)236

If authentication parameters are rejected, the response message contains information stating
why they are rejected.

Program Number Assignment
Program numbers are distributed in groups of 0x20000000, as shown in the following table.

TABLE B–1 RPC Program Number Assignment

Program Numbers Description

00000000 - 1fffffff Defined by host

20000000 - 3fffffff Defined by user

40000000 - 5fffffff Transient (reserved for customer-written applications)

60000000 - 7fffffff Reserved

80000000 - 9fffffff Reserved

a0000000 - bfffffff Reserved

c0000000 - dfffffff Reserved

e0000000 - ffffffff Reserved

Sun Microsystems administers the first group of numbers, which should be identical for all
customers. If a customer develops an application that might be of general interest, that
application should be given an assigned number in the first range.

The second group of numbers is reserved for specific customer applications. This range is
intended primarily for debugging new programs.

The third group is reserved for applications that generate program numbers dynamically.

The final groups are reserved for future use, and should not be used.

Program Number Registration
To register a protocol specification, send a request by email to rpc@sun.com, or write to: RPC
Administrator, Sun Microsystems, 4150 Network Circle, Santa Clara, CA 95054.

Include a compilable rpcgen .x file describing your protocol. You are given a unique program
number in return.

You can find the RPC program numbers and protocol specifications of standard RPC services
in the include files in /usr/include/rpcsvc. These services, however, constitute only a small
subset of those that have been registered.

Program and Procedure Numbers

Appendix B • RPC Protocol and Language Specification 237

mailto:rpc@sun.com

Other Uses of the RPC Protocol
The intended use of this protocol is for calling remote procedures. That is, each call message is
matched with a response message. However, the protocol itself is a message-passing protocol
with which other non-RPC protocols can be implemented. Some of the non-RPC protocols
supported by the RPC package are batching and broadcasting.

Batching
Batching enables a client to send an arbitrarily large sequence of call messages to a server.
Batching typically uses reliable byte-stream protocols like TCP for its transport. In batching, the
client never waits for a reply from the server, and the server does not send replies to batch
requests. A sequence of batch calls is usually finished by a non-batch RPC call to flush the
pipeline with positive acknowledgement. For more information, see “Batching” on page 107.

Broadcast RPC
In broadcast RPC, the client sends a broadcast packet to the network and waits for numerous
replies. Broadcast RPC uses connectionless, packet-based protocols like UDP as its transports.
Servers that support broadcast protocols only respond when the request is successfully
processed, and are silent in the face of errors. Broadcast RPC uses the rpcbind service to achieve
its semantics. See “Broadcast RPC” on page 105 and “rpcbind Protocol” on page 260 for further
information.

RPC Message Protocol
This section defines the RPC message protocol in the XDR data description language. The
message is defined in a top-down style, as shown in the following code example.

EXAMPLE B–1 RPC Message Protocol

enum msg_type {

CALL = 0,

REPLY = 1

};

/*

* A reply to a call message can take on two forms: The message was

* either accepted or rejected.

*/

enum reply_stat {

MSG_ACCEPTED = 0,

MSG_DENIED = 1

};

/*

* Given that a call message was accepted, the following is the

* status of an attempt to call a remote procedure.

Program and Procedure Numbers

ONC+ Developer's Guide • November 2010 (Beta)238

EXAMPLE B–1 RPC Message Protocol (Continued)

*/

enum accept_stat {

SUCCESS = 0, /* RPC executed successfully */

PROG_UNAVAIL = 1, /* remote service hasn’t exported prog */

PROG_MISMATCH = 2, /* remote service can’t support versn # */

PROC_UNAVAIL = 3, /* program can’t support proc */

GARBAGE_ARGS = 4 /* procedure can’t decode params */

};

/*

* Reasons a call message was rejected:

*/

enum reject_stat {

RPC_MISMATCH = 0, /* RPC version number != 2 */

AUTH_ERROR = 1 /* remote can’t authenticate caller */

};

/*

* Why authentication failed:

*/

enum auth_stat {

AUTH_BADCRED = 1, /* bad credentials */

AUTH_REJECTEDCRED = 2, /* clnt must do new session */

AUTH_BADVERF = 3, /* bad verifier */

AUTH_REJECTEDVERF = 4, /* verif expired or replayed */

AUTH_TOOWEAK = 5 /* rejected for security */

};

/*

* The RPC message:

* All messages start with a transaction identifier, xid, followed

* by a two-armed discriminated union. The union’s discriminant is

* a msg_type which switches to one of the two types of the

* message.

* The xid of a REPLY message always matches that of the

* initiating CALL message. NB: The xid field is only used for

* clients matching reply messages with call messages or for servers

* detecting retransmissions; the service side cannot treat this id as

* any type of sequence number.

*/

struct rpc_msg {

unsigned int xid;

union switch (msg_type mtype) {

case CALL:

call_body cbody;

case REPLY:

reply_body rbody;

} body;

};

/*

* Body of an RPC request call:

* In version 2 of the RPC protocol specification, rpcvers must be

* equal to 2. The fields prog, vers, and proc specify the remote

* program, its version number, and the procedure within the

* remote program to be called. After these fields are two

* authentication parameters: cred (authentication credentials) and

Program and Procedure Numbers

Appendix B • RPC Protocol and Language Specification 239

EXAMPLE B–1 RPC Message Protocol (Continued)

* verf (authentication verifier). The two authentication parameters

* are followed by the parameters to the remote procedure, which are

* specified by the specific program protocol.

*/

struct call_body {

unsigned int rpcvers; /* must be equal to two (2) */

unsigned int prog;

unsigned int vers;

unsigned int proc;

opaque_auth cred;

opaque_auth verf;

/* procedure specific parameters start here */

};

/*

* Body of a reply to an RPC request:

* The call message was either accepted or rejected.

*/

union reply_body switch (reply_stat stat) {

case MSG_ACCEPTED:

accepted_reply areply;

case MSG_DENIED:

rejected_reply rreply;

} reply;

/*

* Reply to an RPC request that was accepted by the server: there

* could be an error even though the request was accepted. The

* first field is an authentication verifier that the server

* generates in order to validate itself to the caller. It is

* followed by a union whose discriminant is an enum accept_stat.

* The SUCCESS arm of the union is protocol specific.

* The PROG_UNAVAIL, PROC_UNAVAIL, and GARBAGE_ARGP arms of

* the union are void. The PROG_MISMATCH arm specifies the lowest

* and highest version numbers of the remote program supported by

* the server.

*/

struct accepted_reply {

opaque_auth verf;

union switch (accept_stat stat) {

case SUCCESS:

opaque results[0];

/* procedure-specific results start here */

case PROG_MISMATCH:

struct {

unsigned int low;

unsigned int high;

} mismatch_info;

default:

/*

* Void. Cases include PROG_UNAVAIL, PROC_UNAVAIL, and

* GARBAGE_ARGS.

*/

void;

} reply_data;

};

Program and Procedure Numbers

ONC+ Developer's Guide • November 2010 (Beta)240

EXAMPLE B–1 RPC Message Protocol (Continued)

/*

* Reply to an RPC request that was rejected by the server:

* The request can be rejected for two reasons: either the server

* is not running a compatible version of the RPC protocol

* (RPC_MISMATCH), or the server refuses to authenticate the

* caller AUTH_ERROR). In case of an RPC version mismatch,

* the server returns the lowest and highest supported RPC

* version numbers. In case of refused authentication, failure

* status is returned.

*/

union rejected_reply switch (reject_stat stat) {

case RPC_MISMATCH:

struct {

unsigned int low;

unsigned int high;

} mismatch_info;

case AUTH_ERROR:

auth_stat stat;

};

Record-Marking Standard
When RPC messages are passed on top of a byte-stream transport like TCP, you should try to
delimit one message from another to detect and possibly recover from user protocol errors.
This is called record marking (RM). One RPC message fits into one RM record.

A record is composed of one or more record fragments. A record fragment is a 4-byte header
followed by 0 to (2**31) - 1 bytes of fragment data. The bytes encode an unsigned binary
number. As with XDR integers, the byte order is the network byte order.

The header encodes two values:

■ A Boolean that specifies whether the fragment is the last fragment of the record. Bit value 1
implies the fragment is the last fragment.

■ A 31-bit unsigned binary value that is the length in bytes of the fragment's data. The Boolean
value is the highest-order bit of the header. The length is the 31 low-order bits. This record
specification is not in XDR standard form.

Program and Procedure Numbers

Appendix B • RPC Protocol and Language Specification 241

Authentication Protocols
Authentication parameters are opaque but open-ended to the rest of the RPC protocol. This
section defines some flavors of authentication that have already been implemented. Other sites
are free to invent new authentication types, with the same rules of flavor number assignment for
program number assignment. Sun Microsystems maintains and administers a range of
authentication flavors. To have authentication numbers like RPC program numbers allocated
or registered to them, contact the Sun RPC Administrator.

AUTH_NONE

Calls are often made in which the caller does not authenticate itself and the server disregards
who the caller is. In these cases, the flavor value of the RPC message's credentials, verifier, and
response verifier is AUTH_NONE. The flavor value is the “discriminant” of the opaque_auth
“union.” The body length is zero when AUTH_NONE authentication flavor is used.

AUTH_SYS

AUTH_SYS This is the same as the authentication flavor previously known as AUTH_UNIX. The
caller of a remote procedure might wish to identify itself using traditional UNIX process
permissions authentication. The flavor of the opaque_auth of such an RPC call message is
AUTH_SYS. The bytes of the body encode the following structure:

struct auth_sysparms {

unsigned int stamp;
string machinename<255>;
uid_t uid;
gid_t gid;
gid_t gids<10>;

};

stamp is an arbitrary ID that the caller machine can generate.

machinename is the name of the caller's machine.

uid is the caller's effective user ID.

gid is the caller's effective group ID.

gids is a counted array of groups in which the caller is a member.

The flavor of the verifier accompanying the credentials should be AUTH_NONE.

AUTH_SHORTVerifier
When using AUTH_SYS authentication, the flavor of the response verifier received in the reply
message from the server might be AUTH_NONE or AUTH_SHORT.

Authentication Protocols

ONC+ Developer's Guide • November 2010 (Beta)242

If AUTH_SHORT, the bytes of the response verifier's string encode a short_hand_verf structure.
This opaque structure can now be passed to the server instead of the original AUTH_SYS
credentials.

The server keeps a cache that maps the shorthand opaque structures to the original credentials
of the caller. These structures are passed back by way of an AUTH_SHORT style response verifier.
The caller can save network bandwidth and server CPU cycles by using the new credentials.

The server can flush the shorthand opaque structure at any time. If a flush occurs, the remote
procedure call message is rejected because of an authentication error. The reason for the failure
is AUTH_REJECTEDCRED. At this point, the caller might try the original AUTH_SYS style of
credentials, as shown in the following figure.

AUTH_DESAuthentication
You might encounter the following situations with AUTH_SYS authentication:

FIGURE B–1 Authentication Process Map

AUTH_SYS

Credential

AUTH_SHORT

Verification

AUTH_SHORT

Credential

AUTH_SHORT

Credential

AUTH_REJECTED

Error

AUTH_SYS

Credential

...

...

Authentication Protocols

Appendix B • RPC Protocol and Language Specification 243

■ Caller identification cannot be guaranteed to be unique if machines with differing operating
systems are on the same network.

■ No verifier exists, so credentials can easily be faked.

AUTH_DES authentication attempts to fix these two problems.

The first issue is handled by addressing the caller by a simple string of characters instead of by
an operating system-specific integer. This string of characters is known as the net name or
network name of the caller. The server should not interpret the caller's name in any way other
than as the identity of the caller. Thus, net names should be unique for every caller in the
naming domain.

Each operating system's implementation of AUTH_DES authentication generates net names for
its users that ensure this uniqueness when they call remote servers. Operating systems already
distinguish users local to their systems. Extending this mechanism to the network is usually a
simple matter.

For example, a user with a user ID of 515 might be assigned the following net name:
UNIX.515@sun.com. This net name contains three items that serve to ensure it is unique.
Backtracking, only one naming domain is called sun.com in the Internet. Within this domain,
only one UNIX user has the user ID 515. However, there might be another user on another
operating system, for example VMS, within the same naming domain who, by coincidence,
happens to have the same user ID. To ensure that these two users can be distinguished, you add
the operating system name. So one user is UNIX.515@sun.com and the other is
VMS.515@sun.com.

The first field is actually a naming method rather than an operating system name. It just
happens that almost a one-to-one correspondence exists between naming methods and
operating systems. If there was a common worldwide naming standard, the first field could be a
name from that standard, instead of an operating system name.

AUTH_DESAuthentication Verifiers
Unlike AUTH_SYS authentication, AUTH_DES authentication does have a verifier so the server can
validate the client's credential, and the reverse. The contents of this verifier are primarily an
encrypted timestamp. The server can decrypt this timestamp, and if it is close to its current real
time, then the client must have encrypted it correctly. The only way the client could encrypt the
timestamp correctly is to know the conversation key of the RPC session. If the client knows the
conversation key, it must be the real client.

The conversation key is a DES [5] key that the client generates and notifies the server of in its
first RPC call. The conversation key is encrypted using a public-key scheme in this first

Authentication Protocols

ONC+ Developer's Guide • November 2010 (Beta)244

transaction. The particular public-key scheme used in AUTH_DES authentication is
Diffie-Hellman [3] with 192-bit keys. The details of this encryption method are described in
“Diffie-Hellman Encryption” on page 247.

The client and the server need the same notion of the current time for the verification to work. If
network time synchronization cannot be guaranteed, then the client can synchronize with the
server before beginning the conversation. rpcbind provides a procedure, RPCBPROC_GETTIME,
which can be used to obtain the current time.

A server can determine if a client timestamp is valid. For any transaction after the first, the
server checks for two things:

■ The timestamp is greater than the one previously seen from the same client.
■ The timestamp has not expired. A timestamp is expired if the server's time is later than the

sum of the client's timestamp plus what is known as the client's window. The window is an
encrypted number the client passes to the server in its first transaction. The window can be
thought of as a lifetime for the credential.

For the first transaction, the server checks that the timestamp has not expired. As an added
check, the client sends an encrypted item in the first transaction known as the window verifier.
This verifier must be equal to the window minus 1, or the server rejects the credential.

The client must check the verifier returned from the server to be sure it is legitimate. The server
sends back to the client the encrypted timestamp it received from the client, minus one second.
If the client gets any result other than this one, the verifier is rejected.

Nicknames and Clock Synchronization
After the first transaction, the server's AUTH_DES authentication subsystem returns in its verifier
to the client an integer nickname. The client can use this nickname in its further transactions
instead of passing its net name, encrypted DES key, and window every time. The nickname is
most likely an index into a table on the server that stores for each client its net name, decrypted
DES key, and window. It should however be treated as opaque data by the client.

Though originally synchronized, client and server clocks can get out of sync. If this situation
occurs, the client RPC subsystem most likely receives an RPC_AUTHERROR at which point it
should resynchronize.

A client can still get the RPC_AUTHERROR error even though it is synchronized with the server.
The server's nickname table is a limited size, and it can flush entries as needed. The client should
resend its original credential and the server gives the client a new nickname. If a server crashes,
the entire nickname table is flushed, and all clients have to resend their original credentials.

Authentication Protocols

Appendix B • RPC Protocol and Language Specification 245

DES Authentication Protocol (in XDR language)
Credentials are explained in the following example.

EXAMPLE B–2 AUTH_DESAuthentication Protocol

/*

* There are two kinds of credentials: one in which the client

* uses its full network name, and one in which it uses its

* “nickname” (just an unsigned integer) given to it by the

* server. The client must use its full name in its first

* transaction with the server, in which the server returns

* to the client its nickname. The client may use its nickname

* in all further transactions with the server. There is no

* requirement to use the nickname, but it is wise to use it for

* performance reasons.

*/

enum authdes_namekind {

ADN_FULLNAME = 0,

ADN_NICKNAME = 1

};

/*

* A 64-bit block of encrypted DES data

*/

typedef opaque des_block[8];

/*

* Maximum length of a network user’s name

*/

const MAXNETNAMELEN = 255;

/*

* A fullname contains the network name of the client, an

* encrypted conversation key and the window. The window

* is actually a lifetime for the credential. If the time

* indicated in the verifier timestamp plus the window has

* passed, then the server should expire the request and

* not grant it. To insure that requests are not replayed,

* the server should insist that timestamps be greater

* than the previous one seen, unless it is the first transaction.

* In the first transaction, the server checks instead that the

* window verifier is one less than the window.

*/

struct authdes_fullname {

string name<MAXNETNAMELEN>; /* name of client */

des_block key; /* PK encrypted conversation key */

unsigned int window; /* encrypted window */

}; /* NOTE: PK means "public key" */

/*

* A credential is either a fullname or a nickname

*/

unionauthdes_credswitch(authdes_namekindadc_namekind){

case ADN_FULLNAME:

authdes_fullname adc_fullname;

case ADN_NICKNAME:

Authentication Protocols

ONC+ Developer's Guide • November 2010 (Beta)246

EXAMPLE B–2 AUTH_DESAuthentication Protocol (Continued)

unsigned int adc_nickname;

};

/*

* A timestamp encodes the time since midnight, January 1, 1970.

*/

struct timestamp {

unsigned int seconds; /* seconds */

unsigned int useconds; /* and microseconds */

};

/*

* Verifier: client variety

*/

struct authdes_verf_clnt {

timestamp adv_timestamp; /* encrypted timestamp */

unsigned int adv_winverf; /* encrypted window verifier */

};

/*

* Verifier: server variety

* The server returns (encrypted) the same timestamp the client gave

* it minus one second. It also tells the client its nickname to be

* used in future transactions (unencrypted).

*/

struct authdes_verf_svr {

timestamp adv_timeverf; /* encrypted verifier */

unsigned int adv_nickname; /* new nickname for clnt */};

Diffie-Hellman Encryption
In this scheme are two constants, PROOT and HEXMODULUS. The particular values chosen for these
constants for the DES authentication protocol are:

const PROOT = 3;

const HEXMODULUS = /* hex */

"d4a0ba0250b6fd2ec626e7efd637df76c716e22d0944b88b";

The way this scheme works is best explained by an example. Suppose there are two people, A
and B, who want to send encrypted messages to each other. A and B each generate a random
secret key that they do not disclose to anyone. Let these keys be represented as SK(A) and
SK(B). They also publish in a public directory their public keys. These keys are computed as
follows:

PK(A) = (PROOT ** SK(A)) mod HEXMODULUS

PK(B) = (PROOT ** SK(B)) mod HEXMODULUS

The ** notation is used here to represent exponentiation.

Authentication Protocols

Appendix B • RPC Protocol and Language Specification 247

Now, both A and B can arrive at the common key between them, represented here as CK(A,B),
without disclosing their secret keys.

A computes:

CK(A, B) = (PK(B) ** SK(A)) mod HEXMODULUS

while B computes:

CK(A, B) = (PK(A) ** SK(B)) mod HEXMODULUS

These two computations can be shown to be equivalent: (PK(B)**SK(A)) mod HEXMODULUS =
(PK(A)**SK(B)) mod HEXMODULUS. Drop the mod HEXMODULUS parts and assume modulo
arithmetic to simplify the process:

PK(B) ** SK(A) = PK(A) ** SK(B)

Then replace PK(B) by what B computed earlier and likewise for PK(A).

((PROOT ** SK(B)) ** SK(A) = (PROOT ** SK(A)) ** SK(B)

which leads to:

PROOT ** (SK(A) * SK(B)) = PROOT ** (SK(A) * SK(B))

This common key CK(A,B) is not used to encrypt the timestamps used in the protocol. It is used
only to encrypt a conversation key that is then used to encrypt the timestamps. This approach
uses the common key as little as possible, to prevent a break. Breaking the conversation key is a
far less serious compromise, because conversations are comparatively short lived.

The conversation key is encrypted using 56-bit DES keys, yet the common key is 192 bits. To
reduce the number of bits, 56 bits are selected from the common key as follows. The
middle-most 8 bytes are selected from the common key, and then parity is added to the
lower-order bit of each byte, producing a 56-bit key with 8 bits of parity.

AUTH_KERBAuthentication
To avoid compiling Kerberos code into the operating system kernel, the kernel used in the S
implementation of AUTH_KERB uses a proxy RPC daemon called kerbd. The daemon exports
three procedures.

■ KGETKCRED is used by the server-side RPC to check the authenticator presented by the client.
■ KSETKCRED returns the encrypted ticket and DES session key, given a primary name,

instance, and realm.

Authentication Protocols

ONC+ Developer's Guide • November 2010 (Beta)248

■ KGETUCRED is UNIX specific. It returns the user's ID, the group ID, and groups list, assuming
that the primary name is mapped to a user name known to the server.

The best way to describe how Kerberos works is to use an example based on a service currently
implementing Kerberos: the network file system (NFS). The NFS service on server s is assumed
to have the well-known principal name nfs.s. A privileged user on client c is assumed to have the
primary name root and an instance c. Note that, unlike AUTH_DES, when the user's
ticket-granting ticket has expired, kinit() must be reinvoked. NFS service for Kerberos
mounts fail until a new ticket-granting ticket is obtained.

NFS Mount Example
This section follows an NFS mount request from start to finish using AUTH_KERB. Because
mount requests are executed as root, the user's identity is root.c.

Client c makes a MOUNTPROC_MOUNT request to the server s to obtain the file handle for the
directory to be mounted. The client mount program makes an NFS mount system call, handing
the client kernel the file handle, mount flavor, time synchronization address, and the server's
well-known name, nfs.s. Next the client kernel contacts the server at the time synchronization
host to obtain the client-server time bias.

The client kernel makes the following RPC calls.

1. KSETKCRED to the local kerbd to obtain the ticket and session key.
2. NFSPROC_GETATTR to the server's NFS service, using the full name credential and verifier.

The server receives the calls and makes the KGETKCRED call to its local kerbd to check the
client's ticket.

The server's kerbd and the Kerberos library decrypt the ticket and return, among other data, the
principal name and DES session key. The server checks that the ticket is still valid, uses the
session key to decrypt the DES-encrypted portions of the credential and verifier, and checks
that the verifier is valid.

The possible Kerberos authentication errors returned at this time are:

■ AUTH_BADCRED is returned if the verifier is invalid because the decrypted win in the
credential and win +1 in the verifier do not match, or the timestamp is not within the
window range.

■ AUTH_REJECTEDCRED is returned if a replay is detected.
■ AUTH_BADVERF is returned if the verifier is garbled.

If no errors are received, the server caches the client's identity and allocates a nickname, which
is a small integer, to be returned in the NFS reply. The server then checks if the client is in the
same realm as the server. If so, the server calls KGETUCRED to its local kerbd to translate the

Authentication Protocols

Appendix B • RPC Protocol and Language Specification 249

principal's primary name into UNIX credentials. If the previous name is not translatable, the
user is marked anonymous. The server checks these credentials against the file system's export
information. Consider these three cases:

1. If the KGETUCRED call fails and anonymous requests are allowed, the UNIX credentials of the
anonymous user are assigned.

2. If the KGETUCRED call fails and anonymous requests are not allowed, the NFS call fails with
the AUTH_TOOWEAK.

3. If the KGETUCRED call succeeds, the credentials are assigned, and normal protection checking
follows, including checking for root permission.

Next, the server sends an NFS reply, including the nickname and server's verifier. The client
receives the reply, decrypts and validates the verifier, and stores the nickname for future calls.
The client makes a second NFS call to the server, and the calls to the server described previously
are repeated. The client kernel makes an NFSPROC_STATVFS call to the server's NFS service, using
the nickname credential and verifier described previously. The server receives the call and
validates the nickname. If it is out of range, the error AUTH_BADCRED is returned. The server uses
the session key just obtained to decrypt the DES-encrypted portions of the verifier and validates
the verifier.

The possible Kerberos authentication errors returned at this time are:

■ AUTH_REJECTEDVERF, which is returned if the timestamp is invalid, a replay is detected, or if
the timestamp is not within the window range

■ AUTH_TIMEEXPIRE, which is returned if the service ticket is expired

If no errors are received, the server uses the nickname to retrieve the caller's UNIX credentials.
Then it checks these credentials against the file system's export information, and sends an NFS
reply that includes the nickname and the server's verifier. The client receives the reply, decrypts
and validates the verifier, and stores the nickname for future calls. Last, the client's NFS mount
system call returns, and the request is finished.

KERB Authentication Protocol
The following example of AUTH_KERB has many similarities to the one for AUTH_DES, shown in
the following code example. Note the differences.

EXAMPLE B–3 AUTH_KERB Authentication Protocol

#define AUTH_KERB 4

/*

* There are two kinds of credentials: one in which the client

* sends the (previously encrypted)

Kerberos ticket, and one in

* which it uses its “nickname” (just an unsigned integer)

* given to it by the server. The client must use its full name

* in its first transaction with the server, in which the server

Authentication Protocols

ONC+ Developer's Guide • November 2010 (Beta)250

EXAMPLE B–3 AUTH_KERB Authentication Protocol (Continued)

* returns to the client its nickname. The client may use

* its nickname in all further transactions with the server

* (until the ticket expires). There is no requirement to use

* the nickname, but it is wise to use it for performance reasons.

*/

enum authkerb_namekind {

AKN_FULLNAME = 0,

AKN_NICKNAME = 1

};

/*

* A fullname contains the encrypted service ticket and the

* window. The window is actually a lifetime

* for the credential. If the time indicated in the verifier

* timestamp plus the window has passed, then the server should

* expire the request and not grant it. To insure that requests

* are not replayed, the server should insist that timestamps be

* greater than the previous one seen, unless it is the first

* transaction. In the first transaction, the server checks

* instead that the window verifier is one less than the window.

*/

struct authkerb_fullname {

KTEXT_ST ticket; /* Kerberos service ticket */

unsigned long window; /* encrypted window */

};

/*

* A credential is either a fullname or a nickname

*/

union authkerb_credswitch(authkerb_namekind akc_namekind){

case AKN_FULLNAME:

authkerb_fullname akc_fullname;

case AKN_NICKNAME:

unsigned long akc_nickname;

};

/*

* A timestamp encodes the time since midnight, January 1, 1970.

*/

struct timestamp {

unsigned long seconds; /* seconds */

unsigned long useconds; /* and microseconds */

};

/*

* Verifier: client variety

*/

struct authkerb_verf_clnt {

timestamp akv_timestamp; /* encrypted timestamp */

unsigned long akv_winverf; /* encrypted window verifier */

};

/*

* Verifier: server variety

* The server returns (encrypted) the same timestamp the client

Authentication Protocols

Appendix B • RPC Protocol and Language Specification 251

EXAMPLE B–3 AUTH_KERB Authentication Protocol (Continued)

* gave it minus one second. It also tells the client its

* nickname to be used

in future transactions (unencrypted).

*/

struct authkerb_verf_svr {

timestamp akv_timeverf; /* encrypted verifier */

unsigned long akv_nickname; /* new nickname for clnt */

};

RPC Language Specification
Just as the XDR data types needed to be described in a formal language, the procedures that
operate on these XDR data types in a formal language needed to be described. The RPC
Language, an extension to the XDR language, serves this purpose. The following example is
used to describe the essence of the language.

Example Service Described in the RPC Language
The following code example shows the specification of a simple ping program.

EXAMPLE B–4 ping Service Using RPC Language

/*

* Simple ping program

*/

program PING_PROG {

version PING_VERS_PINGBACK {

void

PINGPROC_NULL(void) = 0;

/*

* ping the caller, return the round-trip time

* in milliseconds. Return a minus one (-1) if

* operation times-out

*/

int

PINGPROC_PINGBACK(void) = 1;

/* void - above is an argument to the call */

} = 2;

/*

* Original version

*/

version PING_VERS_ORIG {

void

PINGPROC_NULL(void) = 0;

} = 1;

} = 200000;

const PING_VERS = 2; /* latest version */

RPC Language Specification

ONC+ Developer's Guide • November 2010 (Beta)252

The first version described is PING_VERS_PINGBACK with two procedures, PINGPROC_NULL and
PINGPROC_PINGBACK.

PINGPROC_NULL takes no arguments and returns no results, but it is useful for such things as
computing round-trip times from the client to the server and back again. By convention,
procedure 0 of any RPC program should have the same semantics, and never require
authentication.

The second procedure returns the amount of time in microseconds that the operation used.

The next version, PING_VERS_ORIG, is the original version of the protocol and does not contain
the PINGPROC_PINGBACK procedure. It is useful for compatibility with old client programs.

RPCL Syntax
The RPC language (RPCL) is similar to C. This section describes the syntax of the RPC
language, and includes examples. It also shows how RPC and XDR type definitions are
compiled into C type definitions in the output header file.

An RPC language file consists of a series of definitions.

definition-list:

definition;

definition; definition-list

The file recognizes six types of definitions:

definition:

enum-definition

const-definition

typedef-definition

struct-definition

union-definition

program-definition

Definitions are not the same as declarations. No space is allocated by a definition, only the type
definition of a single or series of data elements. This behavior means that variables still must be
declared.

The RPC language is identical to the XDR language, except for the added definitions described
in the following table.

TABLE B–2 RPC Language Definitions

Term Definition

program-definition program program-ident {version-list} = value

RPC Language Specification

Appendix B • RPC Protocol and Language Specification 253

TABLE B–2 RPC Language Definitions (Continued)
Term Definition

version-list version;

version; version-list

version version version-ident {procedure-list} = value

procedure-list procedure;

procedure; procedure-list

procedure type-ident procedure-ident (type-ident) = value

In the RPC language:
■ The following keywords are added and cannot be used as identifiers:

program version.
■ Neither version name nor a version number can occur more than once within the scope of a

program definition.
■ Neither a procedure name nor a procedure number can occur more than once within the

scope of a version definition.
■ Program identifiers are in the same namespace as constant and type identifiers.
■ Only unsigned constants can be assigned to programs, versions, and procedures.

RPCL Enumerations
RPC/XDR enumerations have a similar syntax to C enumerations.

enum-definition:

"enum" enum-ident "{"
enum-value-list

"}"
enum-value-list:

enum-value

enum-value "," enum-value-list

enum-value:

enum-value-ident

enum-value-ident "=" value

Here is an example of an XDR enum and the C enum to which it gets compiled.

enum colortype { enum colortype {

RED = 0, RED = 0,

GREEN = 1, --> GREEN = 1,

BLUE = 2 BLUE = 2,

}; };

typedef enum colortype colortype;

RPC Language Specification

ONC+ Developer's Guide • November 2010 (Beta)254

RPCL Constants
You can use XDR symbolic constants wherever an integer constant is used. A typical use might
be in array size specifications:

const-definition:

const const-ident = integer

The following example defines a constant, DOZEN, as equal to 12.

const DOZEN = 12; --> #define DOZEN 12

RPCL Type Definitions
XDR typedefs have the same syntax as C typedefs.

typedef-definition:

typedef declaration

This example defines an fname_type used for declaring file-name strings that have a maximum
length of 255 characters.

typedef string fname_type<255>; --> typedef char *fname_type;

RPCL Declarations
XDR has four kinds of declarations. These declarations must be a part of a struct or a typedef.
They cannot stand alone.

declaration:

simple-declaration

fixed-array-declaration

variable-array-declaration

pointer-declaration

RPCL Simple Declarations
Simple declarations are just like simple C declarations.

simple-declaration:

type-ident variable-ident

Example:

colortype color; --> colortype color;

RPC Language Specification

Appendix B • RPC Protocol and Language Specification 255

RPCL Fixed-Length Array Declarations
Fixed-length array declarations are just like C array declarations.

fixed-array-declaration:

type-ident variable-ident [value]

Example:

colortype palette[8]; --> colortype palette[8];

Many programmers confuse variable declarations with type declarations. Note that rpcgen does
not support variable declarations. The following example is a program that does not compile.

int data[10];

program P {

version V {

int PROC(data) = 1;

} = 1;

} = 0x200000;

The previous example does not compile because of the variable declaration:

int data[10]

Instead use:

typedef int data[10];

or

struct data {int dummy [10]};

RPCL Variable-Length Array Declarations
Variable-length array declarations have no explicit syntax in C. The XDR language does have a
syntax, using angle brackets:

variable-array-declaration:

type-ident variable-ident <value>

type-ident variable-ident < >

The maximum size is specified between the angle brackets. You can omit the size, indicating
that the array can be of any size.

int heights<12>; /* at most 12 items */

int widths<>; /* any number of items */

Because variable-length arrays have no explicit syntax in C, these declarations are compiled into
struct declarations. An example is the heights declaration compiled into the following
struct.

RPC Language Specification

ONC+ Developer's Guide • November 2010 (Beta)256

struct {

u_int heights_len; /* # of items in array */

int *heights_val; /* pointer to array */

} heights;

The number of items in the array is stored in the _len component and the pointer to the array is
stored in the _val component. The first part of each component name is the same as the name of
the declared XDR variable, heights.

RPCL Pointer Declarations
Pointer declarations are made in XDR exactly as they are in C. Address pointers are not really
sent over the network. Instead, XDR pointers are useful for sending recursive data types such as
lists and trees. The type is called optional-data, not pointer, in XDR language.

pointer-declaration:

type-ident *variable-ident

Example:

listitem *next; --> listitem *next;

RPCL Structures
An RPC/XDR struct is declared almost exactly like its C counterpart. It looks like the
following.

struct-definition:

struct struct-ident "{"
declaration-list

"}"

declaration-list:

declaration ";"
declaration ";" declaration-list

The following XDR structure is an example of a 2–D coordinate and the C structure that it
compiles into.

struct coord { struct coord {

int x; --> int x;

int y; int y;

}; };

typedef struct coord coord;

The output is identical to the input, except for the added typedef at the end of the output. This
typedef enables you to use coord instead of struct coord when declaring items.

RPC Language Specification

Appendix B • RPC Protocol and Language Specification 257

RPCL Unions
XDR unions are discriminated unions, and do not look like C unions. They are more similar to
Pascal variant records.

union-definition:

"union" union-ident "switch" "("simple declaration")" "{"
case-list

"}"
case-list:

"case" value ":" declaration ";"
"case" value ":" declaration ";" case-list

"default" ":" declaration ";"

The following example is of a type returned as the result of a “read data” operation: if no error
occurs, return a block of data. Otherwise, don't return anything.

union read_result switch (int errno) {

case 0:

opaque data[1024];

default:

void;

};

This union compiles into the following:

struct read_result {

int errno;

union {

char data[1024];

} read_result_u;

};

typedef struct read_result read_result;

Notice that the union component of the output struct has the same name as the type name,
except for the trailing _u.

RPCL Programs
You declare RPC programs using the following syntax:

program-definition:

"program" program-ident "{"
version-list

"}" "=" value;

version-list:

version ";"
version ";" version-list

version:

"version" version-ident "{"
procedure-list

"}" "=" value;

RPC Language Specification

ONC+ Developer's Guide • November 2010 (Beta)258

procedure-list:

procedure ";"
procedure ";" procedure-list

procedure:

type-ident procedure-ident "(" type-ident ")" "=" value;

When the -N option is specified, rpcgen also recognizes the following syntax.

procedure:

type-ident procedure-ident "(" type-ident-list ")" "=" value;

type-ident-list:

type-ident

type-ident "," type-ident-list

Example:

/*

* time.x: Get or set the time. Time is represented as seconds

* since 0:00, January 1, 1970.

*/

program TIMEPROG {

version TIMEVERS {

unsigned int TIMEGET(void) = 1;

void TIMESET(unsigned) = 2;

} = 1;

} = 0x20000044;

Note that the void argument type means that no argument is passed.

The following file compiles into these #define statements in the output header file.

#define TIMEPROG 0x20000044

#define TIMEVERS 1

#define TIMEGET 1

#define TIMESET 2

RPCL Special Cases
Several exceptions to the RPC language rules follow.

RPCL C-style Mode
The features of the C-style mode of rpcgen have implications for the passing of void
arguments. No arguments need be passed if their value is void.

RPCL Booleans
C has no built-in Boolean type. However, the RPC library uses a Boolean type called bool_t that
is either TRUE or FALSE. Parameters declared as type bool in XDR language are compiled into
bool_t in the output header file.

Example:

RPC Language Specification

Appendix B • RPC Protocol and Language Specification 259

bool married; --> bool_t married;

RPCL Strings
The C language has no built-in string type, but instead uses the null-terminated char *

convention. In C, strings are usually treated as null-terminated single-dimensional arrays.

In XDR language, strings are declared using the string keyword, and compiled into type char
* in the output header file. The maximum size contained in the angle brackets specifies the
maximum number of characters allowed in the strings, not counting the NULL character. You
can omit the maximum size, indicating a string of arbitrary length.

Examples:

string name<32>; --> char *name;

string longname<>; --> char *longname;

NULL strings cannot be passed; however, a zero-length string (that is, just the terminator or NULL
byte) can be passed.

RPCL Opaque Data
Opaque data is used in XDR to describe untyped data, that is, sequences of arbitrary bytes. You
can declare opaque data either as a fixed-length or variable-length array.

Examples:

opaque diskblock[512]; --> char diskblock[512];

opaque filedata<1024>; --> struct {

u_int filedata_len;

char *filedata_val;

} filedata;

RPCL Voids
In a void declaration, the variable is not named. The declaration is just void and nothing else.
Void declarations can only occur in two places: union definitions and program definitions as
the argument or result of a remote procedure; for example, no arguments are passed.

rpcbindProtocol
rpcbind maps RPC program and version numbers to universal addresses, thus making
dynamic binding of remote programs possible.

rpcbind is bound to a well-known address of each supported transport, and other programs
register their dynamically allocated transport addresses with it. rpcbind then makes those
addresses publicly available. Universal addresses are string representations of the
transport-dependent address. They are defined by the addressing authority of the given
transport.

RPC Language Specification

ONC+ Developer's Guide • November 2010 (Beta)260

rpcbind also aids in broadcast RPC. RPC programs have different addresses on different
machines, so direct broadcasts to all these programs are not possible. rpcbind, however, has a
well-known address. So, to broadcast to a given program, the client sends its message to the
rpcbind process on the machine it chooses to reach. rpcbind picks up the broadcast and calls
the local service specified by the client. When rpcbind gets a reply from the local service, it
passes the reply on to the client.

The following code example shows the rpcbind Protocol Specification in RPC Language.

EXAMPLE B–5 rpcbindProtocol Specification in RPC Language

/*

* rpcb_prot.x

* RPCBIND protocol in rpc language

*/

/*

* A mapping of (program, version, network ID) to universal

address

*/

struct rpcb {

rpcproc_t r_prog; /* program number */

rpcvers_t r_vers; /* version number */

string r_netid<>; /* network id */

string r_addr<>; /* universal address */

string r_owner<>; /* owner of this service */ };

/* A list of mappings */

struct rpcblist {

rpcb rpcb_map;

struct rpcblist *rpcb_next;

};

/* Arguments of remote calls */

struct rpcb_rmtcallargs {

rpcprog_t prog; /* program number */

rpcvers_t vers; /* version number */

rpcproc_t proc; /* procedure number */

opaque args<>; /* argument */

};

/* Results of the remote call */

struct rpcb_rmtcallres {

string addr<>; /* remote universal address */

opaque results<>; /* result */

};

/*

* rpcb_entry contains a merged address of a service on a

particular

* transport, plus associated netconfig information. A list of

* rpcb_entrys is returned by RPCBPROC_GETADDRLIST. See

netconfig.h

* for values used in r_nc_* fields.

*/

struct rpcb_entry {

string r_maddr<>; /* merged address of service */

string r_nc_netid<>; /* netid field */

RPC Language Specification

Appendix B • RPC Protocol and Language Specification 261

EXAMPLE B–5 rpcbind Protocol Specification in RPC Language (Continued)

unsigned int r_nc_semantics; /* semantics of transport */

string r_nc_protofmly<>; /* protocol family */

string r_nc_proto<>; /* protocol name */

};

/* A list of addresses supported by a service. */

struct rpcb_entry_list {

rpcb_entry rpcb_entry_map;

struct rpcb_entry_list *rpcb_entry_next;

};

typedef rpcb_entry_list *rpcb_entry_list_ptr;

/* rpcbind statistics */

const rpcb_highproc_2 = RPCBPROC_CALLIT;

const rpcb_highproc_3 = RPCBPROC_TADDR2UADDR;

const rpcb_highproc_4 = RPCBPROC_GETSTAT;

const RPCBSTAT_HIGHPROC = 13; /* # of procs in rpcbind V4 plus

one */

const RPCBVERS_STAT = 3; /* provide only for rpcbind V2, V3 and

V4 */

const RPCBVERS_4_STAT = 2;

const RPCBVERS_3_STAT = 1;

const RPCBVERS_2_STAT = 0;

/* Link list of all the stats about getport and getaddr */

struct rpcbs_addrlist {

rpcprog_t prog;

rpcvers_t vers;

int success;

int failure;

string netid<>;

struct rpcbs_addrlist *next;

};

/* Link list of all the stats about rmtcall */

struct rpcbs_rmtcalllist {

rpcprog_t prog;

rpcvers_t vers;

rpcproc_t proc;

int success;

int failure;

int indirect; /* whether callit or indirect */

string netid<>;

struct rpcbs_rmtcalllist *next;

};

typedef int rpcbs_proc[RPCBSTAT_HIGHPROC];

typedef rpcbs_addrlist *rpcbs_addrlist_ptr;

typedef rpcbs_rmtcalllist *rpcbs_rmtcalllist_ptr;

struct rpcb_stat {

rpcbs_proc info;

int setinfo;

int unsetinfo;

rpcbs_addrlist_ptr addrinfo;

RPC Language Specification

ONC+ Developer's Guide • November 2010 (Beta)262

EXAMPLE B–5 rpcbind Protocol Specification in RPC Language (Continued)

rpcbs_rmtcalllist_ptr rmtinfo;

};

/*

* One rpcb_stat structure is returned for each version of rpcbind

* being monitored.

*/

typedef rpcb_stat rpcb_stat_byvers[RPCBVERS_STAT];

/* rpcbind procedures */

program RPCBPROG {

version RPCBVERS {

void

RPCBPROC_NULL(void) = 0;

/*

* Registers the tuple [r_prog, r_vers, r_addr, r_owner,

* r_netid]. The rpcbind server accepts requests for this

* procedure on only the loopback transport for security

* reasons. Returns TRUE if successful, FALSE on failure.

*/

bool

RPCBPROC_SET(rpcb) = 1;

/*

* Unregisters the tuple [r_prog, r_vers, r_owner, r_netid].

* If vers is zero, all versions are

unregistered. The rpcbind

* server accepts requests for this procedure on only the

* loopback transport for security reasons. Returns TRUE if

* successful, FALSE on failure.

*/

bool

RPCBPROC_UNSET(rpcb) = 2;

/*

* Returns the universal address where the triple [r_prog,

* r_vers, r_netid] is registered. If r_addr specified,

* return a universal address merged on r_addr. Ignores

* r_owner. Returns FALSE on failure.

*/

string

RPCBPROC_GETADDR(rpcb) = 3;

/* Returns a list of all mappings. */

rpcblist

RPCBPROC_DUMP(void) = 4;

/*

* Calls the procedure on the remote machine. If it is not

* registered, this procedure IS quiet; that is, it DOES NOT

* return error information.

RPC Language Specification

Appendix B • RPC Protocol and Language Specification 263

EXAMPLE B–5 rpcbind Protocol Specification in RPC Language (Continued)

*/

rpcb_rmtcallres

RPCBPROC_CALLIT(rpcb_rmtcallargs) = 5;

/*

* Returns the time on the rpcbind server’s system.

*/

unsigned int

RPCBPROC_GETTIME(void) = 6;

struct netbuf

RPCBPROC_UADDR2TADDR(string) = 7;

string

RPCBPROC_TADDR2UADDR(struct netbuf) = 8;

} = 3;

version RPCBVERS4 {

bool

RPCBPROC_SET(rpcb) = 1;

bool

RPCBPROC_UNSET(rpcb) = 2;

string

RPCBPROC_GETADDR(rpcb) = 3;

rpcblist_ptr

RPCBPROC_DUMP(void) = 4;

/*

* NOTE: RPCBPROC_BCAST has the same functionality as CALLIT;

* the new name is

intended to indicate that this procedure

* should be used for broadcast RPC, and RPCBPROC_INDIRECT

* should be used for indirect calls.

*/

rpcb_rmtcallres

RPCBPROC_BCAST(rpcb_rmtcallargs) = RPCBPROC_CALLIT;

unsigned int

RPCBPROC_GETTIME(void) = 6;

struct netbuf

RPCBPROC_UADDR2TADDR(string) = 7;

string

RPCBPROC_TADDR2UADDR(struct netbuf) = 8;

/*

* Same as RPCBPROC_GETADDR except that if the given version

RPC Language Specification

ONC+ Developer's Guide • November 2010 (Beta)264

EXAMPLE B–5 rpcbind Protocol Specification in RPC Language (Continued)

* number is not available, the address is not returned.

*/

string

RPCBPROC_GETVERSADDR(rpcb) = 9;

/*

* Calls the procedure on the remote machine. If it is not

* registered, this procedure IS NOT quiet; that is, it DOES

* return error information.

*/

rpcb_rmtcallres

RPCBPROC_INDIRECT(rpcb_rmtcallargs) = 10;

/*

* Same as RPCBPROC_GETADDR except that it returns a list of

* addresses registered for the combination (prog, vers).

*/

rpcb_entry_list_ptr

RPCBPROC_GETADDRLIST(rpcb) = 11;

/*

* Returns statistics about the rpcbind server’s activity.

*/

rpcb_stat_byvers

RPCBPROC_GETSTAT(void) = 12;

} = 4;

} = 100000;

rpcbindOperation
rpcbind is contacted by way of an assigned address specific to the transport being used. For
TCP/IP and UDP/IP, for example, it is port number 111. Each transport has such an assigned
well-known address. This section describes a description of each of the procedures supported
by rpcbind.

RPCBPROC_NULL This procedure does no work. By convention, procedure zero of
any program takes no parameters and returns no results.

RPCBPROC_SET When a program first becomes available on a machine, it registers
itself with the rpcbind program running on the same machine.
The program passes its program number prog, version number
vers, network identifier netid, and the universal address uaddr; on
which it awaits service requests.

The procedure returns a Boolean response with the value TRUE if
the procedure successfully established the mapping and FALSE

RPC Language Specification

Appendix B • RPC Protocol and Language Specification 265

otherwise. The procedure refuses to establish a mapping if one
already exists for the ordered set (prog, vers, netid).

Neither netid nor uaddr can be NULL, and that netid should be a
valid network identifier on the machine making the call.

RPCBPROC_UNSET When a program becomes unavailable, it should unregister itself
with the rpcbind program on the same machine.

The parameters and results have meanings identical to those of
RPCBPROC_SET. The mapping of the (prog, vers, netid) tuple with
uaddr is deleted.

If netid is NULL, all mappings specified by the ordered set (prog,
vers, *) and the corresponding universal addresses are deleted.
Only the owner of the service or the superuser is allowed to unset a
service.

RPCBPROC_GETADDR Given a program number prog, version number vers, and network
identifier netid, this procedure returns the universal address on
which the program is awaiting call requests.

The netid field of the argument is ignored and the netid is inferred
from the netid of the transport on which the request came in.

RPCBPROC_DUMP This procedure lists all entries in rpcbind's database.

The procedure takes no parameters and returns a list of program,
version, netid, and universal addresses. Call this procedure using a
stream rather than a datagram transport to avoid the return of a
large amount of data.

RPCBPROC_CALLIT This procedure enables a caller to call another remote procedure
on the same machine without knowing the remote procedure's
universal address. RPCBPROC_CALLIT support broadcasts to
arbitrary remote programs through rpcbind's universal address.

The parameters prog, vers, proc, and the args_ptr are the program
number, version number, procedure number, and parameters of
the remote procedure.

This procedure sends a response only if the procedure was
successfully executed, and is silent (no response) otherwise.

The procedure returns the remote program's universal address,
and the results of the remote procedure.

RPC Language Specification

ONC+ Developer's Guide • November 2010 (Beta)266

RPCBPROC_GETTIME This procedure returns the local time on its own machine in
seconds since midnight of January 1, 1970.

RPCBPROC_UADDR2TADDR This procedure converts universal addresses to transport (netbuf)
addresses. RPCBPROC_UADDR2TADDR is equivalent to
uaddr2taddr(). See the netdir(3NSL) man page. Only processes
that cannot link to the name-to-address library modules should
use RPCBPROC_UADDR2TADDR.

RPCBPROC_TADDR2UADDR This procedure converts transport (netbuf) addresses to universal
addresses. RPCBPROC_TADDR2UADDR is equivalent to
taddr2uaddr(). See the netdir(3NSL) man page. Only processes
that cannot link to the name-to-address library modules should
use RPCBPROC_TADDR2UADDR.

Version 4 rpcbind Version 4 of the rpcbind protocol includes all of the previous
procedures, and adds several others.

RPCBPROC_BCAST This procedure is identical to the version 3 RPCBPROC_CALLIT

procedure. The new name indicates that the procedure should be
used for broadcast RPCs only. RPCBPROC_INDIRECT, defined in the
following text, should be used for indirect RPC calls.

RPCBPROC_GETVERSADDR This procedure is similar to RPCBPROC_GETADDR. The difference is
that the r_vers field of the rpcb structure can be used to specify
the version of interest. If that version is not registered, no address
is returned.

RPCBPROC_INDIRECT This procedure is similar to RPCBPROC_CALLIT. Instead of being
silent about errors, such as the program not being registered on the
system, this procedure returns an indication of the error. Do not
use this procedure for broadcast RPC. Use it with indirect RPC
calls only.

RPCBPROC_GETADDRLIST This procedure returns a list of addresses for the given rpcb entry.
The client might be able to use the results to determine alternate
transports that it can use to communicate with the server.

RPCBPROC_GETSTAT This procedure returns statistics on the activity of the rpcbind
server. The information lists the number and kind of requests the
server has received.

All procedures except RPCBPROC_SET and RPCBPROC_UNSET can be called by clients running on a
machine other than a machine on which rpcbind is running. rpcbind accepts only
RPCPROC_SET and RPCPROC_UNSET requests on the loopback transport.

RPC Language Specification

Appendix B • RPC Protocol and Language Specification 267

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=netdir-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=netdir-3nsl

268

XDR Protocol Specification

This appendix contains the XDR Protocol Language Specification. It covers the following
topics:
■ “XDR Protocol Introduction” on page 269
■ “XDR Data Type Declarations” on page 270
■ “XDR Language Specification” on page 283

XDR Protocol Introduction
External data representation (XDR) is a standard for the description and encoding of data. The
XDR protocol is useful for transferring data between different computer architectures and has
been used to communicate data between very diverse machines. XDR fits into the ISO reference
model's presentation layer (layer 6) and is roughly analogous in purpose to X.409, ISO Abstract
Syntax Notation. The major difference between the two is that XDR uses implicit typing, while
X.409 uses explicit typing.

XDR uses a language to describe data formats and can only be used to describe data. It is not a
programming language. This language enables you to describe intricate data formats in a
concise manner. The XDR language is similar to the C language. Protocols such as RPC and
NFS use XDR to describe the format of their data.

The XDR standard assumes that bytes, or octets, are portable and that a byte is defined to be 8
bits of data.

Graphic Box Notation
This appendix uses graphic box notation for illustration and comparison. In most illustrations,
each box depicts a byte. The representation of all items requires a multiple of 4 bytes (or 32 bits)
of data. The bytes are numbered 0 through n -1. The bytes are read or written to some byte
stream such that byte m always precedes byte m+1. The n bytes are followed by enough (0 to 3)

CA P P E N D I X C

269

residual zero bytes, r, to make the total byte count a multiple of four. Ellipses (...) between
boxes show zero or more additional bytes where required, as shown in the following
illustration.

Basic Block Size
Choosing the XDR block size requires a tradeoff. Choosing a small size such as 2 makes the
encoded data small, but causes alignment problems for machines that are not aligned on these
boundaries. A large size such as 8 means the data is aligned on virtually every machine, but
causes the encoded data to grow too large. Four was chosen as a compromise. Four is big
enough to support most architectures efficiently.

This basic block size of 4 does not mean that the computers cannot utilize standard XDR, just
that they do so at a greater overhead per data item than 4-byte (32-bit) architectures. Four is
also small enough to keep the encoded data restricted to a reasonable size.

The same data should encode into an equivalent result on all machines so that encoded data can
be compared or checksummed. So, variable-length data must be padded with trailing zeros.

XDR Data Type Declarations
Each of the sections that follow:

■ Describes a data type defined in the XDR standard
■ Shows how that data type is declared in the language
■ Includes a graphic illustration of the encoding

For each data type in the language a general paradigm declaration is shown. Note that angle
brackets (< and >) denote variable-length sequences of data and square brackets ([and]) denote
fixed-length sequences of data. n, m, and r denote integers. For the full language specification,
refer to “XDR Language Specification” on page 283.

Some data types include specific examples. A more extensive example is given in the section
“XDR Data Description” on page 285.

byte 1byte 0 0byte n-1 0

n bytes

n+r (where (n+r) mod4 = 0)

r bytes

XDR Data Type Declarations

ONC+ Developer's Guide • November 2010 (Beta)270

Signed Integer
An XDR signed integer is a 32-bit datum that encodes an integer in the range
[-2147483648,2147483647]. The integer is represented in two's complement notation; the most
and least significant bytes are 0 and 3, respectively.

Declaration
Integers are declared:

int identifier;

Signed Integer Encoding

Unsigned Integer
An XDR unsigned integer is a 32-bit datum that encodes a nonnegative integer in the range [0,
4294967295]. The integer is represented by an unsigned binary number that has most- and
least-significant bytes of 0 and 3 respectively.

Declaration
An unsigned integer is declared as follows.

unsigned int identifier;

Unsigned Integer Encoding

byte 1byte 0 byte 3byte 2

32 bits

(MSB) (LSB)

byte 1byte 0 byte 3byte 2

32 bits

(MSB) (LSB)

XDR Data Type Declarations

Appendix C • XDR Protocol Specification 271

Enumerations
Enumerations have the same representation as signed integers and are handy for describing
subsets of the integers. The encoding for enumerations is the same as shown in “Signed Integer
Encoding” on page 271.

Enumerated data is declared as follows.

enum {name-identifier = constant, ... } identifier;

For example, an enumerated type could represent the three colors red, yellow, and blue as
follows.

enum {RED = 2, YELLOW = 3, BLUE = 5} colors;

Do not assign to an enum an integer that has not been assigned in the enum declaration.

Booleans
Booleans are important enough and occur frequently enough to warrant their own explicit type
in the standard. Booleans are integers of value 0 or 1. The encoding for Booleans is the same as
show in “Signed Integer Encoding” on page 271.

Booleans are declared as follows.

bool identifier;

This is equivalent to:

enum {FALSE = 0, TRUE = 1} identifier;

Hyper Integer and Unsigned Hyper Integer
The standard defines 64–bit (8-byte) numbers called hyper int and unsigned hyper int with
representations that are the obvious extensions of integer and unsigned integer, defined
previously. They are represented in two's complement notation; the most-significant and
least-significant bytes are 0 and 7, respectively.

Declaration
Hyper integers are declared as follows.

hyper int identifier;

unsigned hyper int identifier;

XDR Data Type Declarations

ONC+ Developer's Guide • November 2010 (Beta)272

Hyper Integer Encoding

Floating Point
The standard defines the floating-point data type float (32 bits or 4 bytes). The encoding used
is the IEEE standard for normalized single-precision floating-point numbers [1]. The following
three fields describe the single-precision floating-point number:

S: The sign of the number. Values 0 and 1 represent positive and negative respectively. One bit.

E: The exponent of the number, base 2. Eight bits are in this field. The exponent is biased by 127.

F: The fractional part of the number's mantissa, base 2. Twenty-three bits are in this field.

Therefore, the floating-point number is described by.

(-1)**S * 2**(E-Bias) * 1.F

Declaration
Single-precision floating-point data is declared as follows.

float identifier;

Double-precision floating-point data is declared as follows.

double identifier;

Double-Precision Floating Point Encoding

byte 1byte 0 byte 3byte 2 byte 5byte 4 byte 7byte 6

64 bits

(MSB) (LSB)

XDR Data Type Declarations

Appendix C • XDR Protocol Specification 273

Just as the most and least significant bytes of an integer are 0 and 3, the most-significant and
least-significant bits of a double-precision floating-point number are 0 and 63. The beginning
bit, and most significant bit, offsets of S, E, and F are 0, 1, and 12 respectively.

These offsets refer to the logical positions of the bits, not to their physical locations, which vary
from medium to medium.

Consult the IEEE specifications about the encoding for signed zero, signed infinity (overflow),
and de-normalized numbers (underflow) [1]. According to IEEE specifications, the NaN (not a
number) is system dependent and should not be used externally.

Quadruple-Precision Floating Point
The standard defines the encoding for the quadruple-precision floating-point data type
quadruple (128 bits or 16 bytes). The encoding used is the IEEE standard for normalized
quadruple-precision floating-point numbers [1]. The standard encodes the following three
fields, which describe the quadruple-precision floating-point number.

S: The sign of the number. Values 0 and 1 represent positive and negative respectively. One bit.

E: The exponent of the number, base 2. Fifteen bits are in this field. The exponent is biased by
16383.

F: The fractional part of the number's mantissa, base 2. One hundred eleven bits are in this field.

Therefore, the floating-point number is described by:

(-1)**S * 2**(E-Bias) * 1.F

Declaration
quadruple identifier;

Quadruple-Precision Floating Point Encoding

byte 1byte 0 byte 3byte 2 byte 5byte 4 byte 7byte 6

F

52 bits

E

11

64 bits

(MSB) (LSB)

S

1

XDR Data Type Declarations

ONC+ Developer's Guide • November 2010 (Beta)274

Just as the most-significant and least-significant bytes of an integer are 0 and 3, the
most-significant and least-significant bits of a quadruple-precision floating- point number are 0
and 127. The beginning bit, and most-significant bit, offsets of S, E, and F are 0, 1, and 16
respectively. These offsets refer to the logical positions of the bits, not to their physical locations,
which vary from medium to medium.

Consult the IEEE specifications about the encoding for signed zero, signed infinity (overflow),
and de-normalized numbers (underflow) [1]. According to IEEE specifications, the NaN (not a
number) is system dependent and should not be used externally.

Fixed-Length Opaque Data
At times, fixed-length uninterpreted data needs to be passed among machines. This data is
called opaque.

Declaration
Opaque data is declared as follows.

opaque identifier[n];

In this declaration, the constant n is the static number of bytes necessary to contain the opaque
data. The n bytes are followed by enough (0 to 3) residual zero bytes r to make the total byte
count of the opaque object a multiple of four.

Fixed-Length Opaque Encoding
The n bytes are followed by enough (0 to 3) residual zero bytes r to make the total byte count of
the opaque object a multiple of four.

byte 1byte 0 byte 3byte 2 byte 5byte 4 byte 15

F

111 bits

E

15

128 bits

(MSB) (LSB)

S

1

XDR Data Type Declarations

Appendix C • XDR Protocol Specification 275

Variable-Length Opaque Data
The standard also provides for variable-length counted opaque data. Such data is defined as a
sequence of n (numbered 0 through n-1) arbitrary bytes to be the number n encoded as an
unsigned integer, as described subsequently, and followed by the n bytes of the sequence.

Byte b of the sequence always precedes byte b+1 of the sequence, and byte 0 of the sequence
always follows the sequence's length. The n bytes are followed by enough (0 to 3) residual zero
bytes, r, to make the total byte count a multiple of four.

Declaration
Variable-length opaque data is declared in the following way.

opaque identifier<m>;

or

opaque identifier<>;;

The constant m denotes an upper bound of the number of bytes that the sequence can contain. If
m is not specified, as in the second declaration, it is assumed to be (2**32) - 1, the maximum
length. For example, a filing protocol might state that the maximum data transfer size is 8192
bytes, as follows.

opaque filedata<8192>;

Variable-Length Opaque Encoding

byte 1byte 0 0byte n-1 0

n bytes

n+r (where (n+r) mod4 = 0)

r bytes

0 1 . . .

XDR Data Type Declarations

ONC+ Developer's Guide • November 2010 (Beta)276

Do not encode a length greater than the maximum described in the specification.

Counted Byte Strings
The standard defines a string of n (numbered 0 through n-1) ASCII bytes to be the number n
encoded as an unsigned integer, as described previously, and followed by the n bytes of the
string. Byte b of the string always precedes byte b+1 of the string, and byte 0 of the string always
follows the string's length. The n bytes are followed by enough (0 to 3) residual zero bytes r to
make the total byte count a multiple of four.

Declaration
Counted byte strings are declared as follows.

string object<m>;

or

string object<>;

The constant m denotes an upper bound of the number of bytes that a string can contain. If m is
not specified, as in the second declaration, it is assumed to be (2**32) - 1, the maximum
length. The constant m would normally be found in a protocol specification. For example, a
filing protocol might state that a file name can be no longer than 255 bytes, as follows.

string filename<255>;

String Encoding

byte 0 byte 1 byte n-1 0 0

4 bytes

n+r (where (n+r) mod4 = 0)

n bytes r bytes

1 3 4 5 . . .

length n

XDR Data Type Declarations

Appendix C • XDR Protocol Specification 277

Do not encode a length greater than the maximum described in the specification.

Fixed-Length Array
Fixed-length arrays of elements numbered 0 through n-1 are encoded by individually encoding
the elements of the array in their natural order, 0 through n-1. Each element's size is a multiple
of 4 bytes. Though all elements are of the same type, the elements might have different sizes. For
example, in a fixed-length array of strings, all elements are of type string, yet each element
varies in its length.

Declaration
Declarations for fixed-length arrays of homogenous elements are in the following form.

type-name identifier[n];

Fixed-Length Array Encoding

Variable-Length Array
Counted arrays enable variable-length arrays to be encoded as homogeneous elements. The
element count n, an unsigned integer, is followed by each array element, starting with element 0
and progressing through element n-1.

byte 0 byte 1 byte n-1 0 0

4 bytes

n+r (where (n+r) mod4 = 0)

n bytes r bytes

1 3 4 5 . . .

length n

byte 1byte 0 0byte n-1 0

n bytes

n+r (where (n+r) mod4 = 0)

r bytes

0 1 . . .

XDR Data Type Declarations

ONC+ Developer's Guide • November 2010 (Beta)278

Declaration
The declaration for variable-length arrays follows this form.

type-name identifier<m>;

or

type-name identifier<>;

The constant m specifies the maximum acceptable element count of an array. If m is not specified,
it is assumed to be (2**32) - 1.

Counted Array Encoding

Do not encode a length greater than the maximum described in the specification.

Structure
The components of the structure are encoded in the order of their declaration in the structure.
Each component's size is a multiple of 4 bytes, though the components might be different sizes.

Declaration
Structures are declared as follows.

struct {

component-declaration-A;

component-declaration-B;

...

} identifier;

Structure Encoding

byte 0 byte 1 byte n-1 0 0

4 bytes

n+r (where (n+r) mod4 = 0)

n bytes r bytes

1 3 4 5 . . .

length n

XDR Data Type Declarations

Appendix C • XDR Protocol Specification 279

Discriminated Union
A discriminated union is a type composed of a discriminant followed by a type selected from a
set of prearranged types according to the value of the discriminant. The type of discriminant is
either int, unsigned int, or an enumerated type, such as bool. The component types are called
“arms” of the union, and are preceded by the value of the discriminant that implies their
encoding.

Declaration
Discriminated unions are declared as follows.

union switch (discriminant-declaration) {

case discriminant-value-A:

arm-declaration-A;

case discriminant-value-B:

arm-declaration-B;

...

default:

default-declaration;

} identifier;

Each case keyword is followed by a legal value of the discriminant. The default arm is optional.
If the arm is not specified, then a valid encoding of the union cannot take on unspecified
discriminant values. The size of the implied arm is always a multiple of 4 bytes.

The discriminated union is encoded as its discriminant followed by the encoding of the implied
arm.

Discriminated Union Encoding

component A component B

4 bytes

0 1 2 3

discriminant implied arm

XDR Data Type Declarations

ONC+ Developer's Guide • November 2010 (Beta)280

Void
An XDR void is a 0-byte quantity. Voids are useful for describing operations that take no data
as input or no data as output. They are also useful in unions, in which some arms might contain
data and others do not.

Declaration
The declaration is simply as follows.

void;

Constant
const is used to define a symbolic name for a constant. It does not declare any data. The
symbolic constant can be used anywhere a regular constant can be used.

The following example defines a symbolic constant DOZEN, equal to 12.

const DOZEN = 12;

Declaration
The declaration of a constant follows this form.

const name-identifier = n;

Typedef
Typedef does not declare any data either, but serves to define new identifiers for declaring data.
The syntax is:

typedef declaration;

The new type name is actually the variable name in the declaration part of the typedef. The
following example defines a new type called eggbox using an existing type called egg and the
symbolic constant DOZEN.

typedef egg eggbox[DOZEN];

Variables declared using the new type name have the same type as the new type name would
have in the typedef, if it were considered a variable. For example, the following two
declarations are equivalent in declaring the variable fresheggs:

eggbox fresheggs;

egg fresheggs[DOZEN];

XDR Data Type Declarations

Appendix C • XDR Protocol Specification 281

When a typedef involves a struct, enum, or union definition, you can use another (preferred)
syntax to define the same type. In general, a typedef of the following form:

typedef <<struct, union, or enum definition>> identifier;

can be converted to the alternative form by removing the typedef part and placing the
identifier after the struct, enum, or union keyword instead of at the end. For example, here are
the two ways to define the type bool.

typedef enum {/* using typedef */

FALSE = 0,

TRUE = 1

} bool;

enum bool {/* preferred alternative */

FALSE = 0,

TRUE = 1

};

This syntax is preferred because you do not have to go to the end of a declaration to learn the
name of the new type.

Optional-Data
The optional-data union occurs so frequently that it is given a special syntax of its own for
declaring it. It is declared as follows.

type-name *identifier;

This syntax is equivalent to the following union:

union switch (bool opted) {

case TRUE:

type-name element;

case FALSE:

void;

} identifier;

The optional-data syntax is also equivalent to the following variable-length array declaration,
because the Boolean opted can be interpreted as the length of the array.

type-name identifier<1>;

Optional data is useful for describing recursive data-structures, such as linked lists and trees.

XDR Data Type Declarations

ONC+ Developer's Guide • November 2010 (Beta)282

XDR Language Specification
This section contains the XDR language specification.

Notational Conventions
This specification uses a modified Backus-Naur Form notation for describing the XDR
language. Here is a brief description of the notation:

■ The characters |, (,), [,], and * are special.
■ Terminal symbols are strings of any characters embedded in quotes (").
■ Nonterminal symbols are strings of nonspecial italic characters.
■ Alternative items are separated by a vertical bar (|).
■ Optional items are enclosed in brackets.
■ Items are grouped by enclosing them in parentheses.
■ A * following an item means 0 or more occurrences of the item.

For example, consider the following pattern:

"a " "very" (", " " very")* [" cold " "and"] " rainy "
("day" | "night")

An infinite number of strings match this pattern. A few of them are:

a very rainy day

a very, very rainy day

a very cold and rainy day

a very, very, very cold and rainy night

Lexical Notes
The following conventions are used in the specification.

■ Comments begin with /* and end with */.
■ White space serves to separate items and is otherwise ignored.
■ An identifier is a letter followed by an optional sequence of letters, digits, or underbars (_).

The case of identifiers is not ignored.
■ A constant is a sequence of one or more decimal digits, optionally preceded by a minus sign

(-), as seen in the following code example.

EXAMPLE C–1 XDR Specification

Syntax Information

declaration:

type-specifier identifier

XDR Language Specification

Appendix C • XDR Protocol Specification 283

EXAMPLE C–1 XDR Specification (Continued)

| type-specifier identifier "[" value "]"
| type-specifier identifier "<" [value] ">"
| "opaque" identifier "[" value "]"
| "opaque" identifier "<" [value] ">"
| "string" identifier "<" [value] ">"
| type-specifier "*" identifier

| "void"

value:

constant

| identifier

type-specifier:

["unsigned"] "int"
| ["unsigned"] "hyper"
| "float"
| "double"
| "quadruple"
| "bool"
| enum-type-spec

| struct-type-spec

| union-type-spec

| identifier

enum-type-spec:

"enum" enum-body

enum-body:

"{"
(identifier "=" value)

("," identifier "=" value)*

"}"

struct-type-spec:

"struct" struct-body

struct-body:

"{"
(declaration ";")

(declaration ";")*

"}"

union-type-spec:

"union" union-body

union-body:

"switch" "(" declaration ")" "{"
("case" value ":" declaration ";")

("case" value ":" declaration ";")*

["default" ":" declaration ";"]

"}"

constant-def:

"const" identifier "=" constant ";"

type-def:

XDR Language Specification

ONC+ Developer's Guide • November 2010 (Beta)284

EXAMPLE C–1 XDR Specification (Continued)

"typedef" declaration ";"
| "enum" identifier enum-body ";"
| "struct" identifier struct-body ";"
| "union" identifier union-body ";"

definition:

type-def

| constant-def

specification:

definition *

Syntax Notes
The following are keywords and cannot be used as identifiers:

bool
cas
chas
const
default
double
enum

float
hyper
int
opaque
quadruple
string
struct

switch
typedef
union
unassigned
void

Only unsigned constants can be used as size specifications for arrays. If an identifier is used, it
must have been declared previously as an unsigned constant in a const definition.

Constant and type identifiers within the scope of a specification are in the same namespace and
must be declared uniquely within this scope.

Similarly, variable names must be unique within the scope of struct and union declarations.
Nested struct and union declarations create new scopes.

The discriminant of a union must be of a type that evaluates to an integer. That is, it must be an
int, an unsigned int, a bool, an enum type, or any typedef that evaluates to one of these. Also,
the case values must be legal discriminant values. Finally, a case value cannot be specified more
than once within the scope of a union declaration.

XDR Data Description
The following example is a short XDR data description of a file data structure that might be used
to transfer files from one machine to another.

XDR Language Specification

Appendix C • XDR Protocol Specification 285

EXAMPLE C–2 XDR File Data Structure

const MAXUSERNAME = 32;/* max length of a user name */

const MAXFILELEN = 65535; /* max length of a file */

const MAXNAMELEN = 255; /* max length of a file name */

/* Types of files: */

enum filekind {

TEXT = 0, /* ascii data */

DATA = 1, /* raw data */

EXEC = 2 /* executable */

};

/* File information, per kind of file: */

union filetype switch (filekind kind) {

case TEXT:

void; /* no extra information */

case DATA:

string creator<MAXNAMELEN>; /* data creator */

case EXEC:

string interpreter<MAXNAMELEN>; /*proginterptr*/

};

/* A complete file: */

struct file {

string filename<MAXNAMELEN>; /* name of file */

filetype type; /* info about file */

string owner<MAXUSERNAME>; /* owner of file */

opaque data<MAXFILELEN>; /* file data */

};

Suppose now that a user named linda wants to store her LISP program sillyprog that
contains just the data "quit." Her file would be encoded as listed in the following table.

TABLE C–1 XDR Data Description Example

Offset Hex Bytes ASCII Description

0 00 00 00 09 – Length of file name = 9

4 73 69 6c 6c sill File name characters

8 79 70 72 6f ypro More characters

12 67 00 00 00 g 3 zero-bytes of fill

16 00 00 00 02 – Filekind is EXEC = 2

20 00 00 00 04 – Length of interpreter = 4

24 6c 69 73 70 lisp Interpreter characters

28 00 00 00 04 – Length of owner = 4

32 6a 6f 68 6e linda Owner characters

XDR Language Specification

ONC+ Developer's Guide • November 2010 (Beta)286

TABLE C–1 XDR Data Description Example (Continued)
Offset Hex Bytes ASCII Description

36 00 00 00 06 – Length of file data = 6

40 28 71 75 69 (qu File data bytes

44 74 29 00 00 t) 2 zero-bytes of fill

RPC Language Reference
The RPC language is an extension of the XDR language. The sole extension is the addition of the
program and version types.

For a description of the RPC extensions to the XDR language, see Appendix B, “RPC Protocol
and Language Specification.”

RPC Language Reference

Appendix C • XDR Protocol Specification 287

288

RPC Code Examples

This appendix contains copies of the complete live code modules used in the rpcgen and RPC
chapters of this book. They are compilable as they are written and will run, unless otherwise
noted to be pseudo-code or the like. These examples are provided for informational purposes
only. Sun Microsystems assumes no liability from their use.

Directory Listing Program and Support Routines (rpcgen)
EXAMPLE D–1 rpcgenProgram: dir.x

/*

* dir.x: Remote directory listing

* protocol

*

* This source module is a rpcgen source module

* used to demonstrate the functions of the rpcgen

* tool.

*

* It is compiled with the rpcgen -h -T switches to

* generate both the header (.h) file and the

* accompanying data structures.

*/

const MAXNAMELEN = 255; /*maxlengthofadirectoryentry*/

typedef string nametype<MAXNAMELEN>; /* directory entry */

typedef struct namenode *namelist; /* linkinthelisting*/

/* A node in the directory listing */

struct namenode {

nametype name; /* name of directory entry */

namelist next; /* next entry */

};

/*

* The result of a READDIR operation:

* a truly portable application would use an agreed upon list of

* error codes rather than, as this sample program does, rely upon

* passing UNIX errno’s back. In this example the union is used to

DA P P E N D I X D

289

EXAMPLE D–1 rpcgenProgram: dir.x (Continued)

* discriminate between successful and unsuccessful remote calls.

*/

union readdir_res switch (int errno) {

case 0:

namelist list; /*no error: return directory listing*/

default:

void; /*error occurred: nothing else to return*/

};

/* The directory program definition */

program DIRPROG {

version DIRVERS {

readdir_res

READDIR(nametype) = 1;

} = 1;

} = 0x20000076;

EXAMPLE D–2 Remotedir_proc.c

/*

* dir_proc.c: remote readdir implementation

*/

#include <rpc/rpc.h> /* Always needed */

#include <dirent.h>

#include "dir.h" /* Created by rpcgen */

extern int errno;

extern char *malloc();

extern char *strdup();

/* ARGSUSED1*/

readdir_res *

readdir_1(dirname,req)

nametype *dirname;

struct svc_req *req;

{

DIR *dirp;

struct dirent *d;

namelist nl;

namelist *nlp;

static readdir_res res; /* must be static! */

/*

* Open directory

*/

dirp = opendir(*dirname);

if (dirp == (DIR *)NULL) {

res.errno = errno;

return (&res);

}

/*

* Free previous result

*/

xdr_free(xdr_readdir_res, &res);

/*

* Collect directory entries. Memory allocated here is freed

Directory Listing Program and Support Routines (rpcgen)

ONC+ Developer's Guide • November 2010 (Beta)290

EXAMPLE D–2 Remote dir_proc.c (Continued)

* by xdr_free the next time readdir_1 is called.

*/

nlp = &res.readdir_res_u.list;

while (d = readdir(dirp)) {

nl = *nlp = (namenode *) malloc(sizeof(namenode));

if (nl == (namenode *) NULL) {

res.errno = EAGAIN;

closedir(dirp);

return(&res);

}

nl->name = strdup(d->d_name);

nlp = &nl->next;

}

*nlp = (namelist)NULL;

/* Return the result */

res.errno = 0;

closedir(dirp);

return (&res);

}

EXAMPLE D–3 rls.cClient

/*

* rls.c: Remote directory listing client

*/

#include <stdio.h>

#include <rpc/rpc.h> /* always need this */

#include "dir.h" /* generated by rpcgen */

extern int errno;

main(argc, argv)

int argc;

char *argv[];

{

CLIENT *cl;

char *server;

char *dir;

readdir_res *result;

namelist nl;

if (argc != 3) {

fprintf(stderr, "usage: %s host directory\n",
argv[0]);

exit(1);

}

server = argv[1];

dir = argv[2];

/*

* Create client "handle" used for calling MESSAGEPROG on the

* server designated on the command line.

*/

cl = clnt_create(server, DIRPROG, DIRVERS, "visible");
if (cl == (CLIENT *)NULL) {

Directory Listing Program and Support Routines (rpcgen)

Appendix D • RPC Code Examples 291

EXAMPLE D–3 rls.cClient (Continued)

clnt_pcreateerror(server);

exit(1);

}

result = readdir_1(&dir, cl);

if (result == (readdir_res *)NULL) {

clnt_perror(cl, server);

exit(1);

}

/* Okay, we successfully called the remote procedure. */

if (result->errno != 0) {

/*

* A remote system error occurred. Print error message and die.

*/

}

if (result->errno < sys_nerr)

fprintf (stderr, "%s : %s\n", dir,

sys_enlist[result->errno]);

errno = result->errno;

perror(dir);

exit(1);

}

/* Successfully got a directory listing. Print it out. */

for(nl = result->readdir_res_u.list; nl != NULL;

nl = nl->next) {

printf("%s\n", nl->name);

}

exit(0);

Time Server Program (rpcgen)
EXAMPLE D–4 rpcgenProgram: time.x

/*

* time.x: Remote time protocol

*/

program TIMEPROG {

version TIMEVERS {

unsigned int TIMEGET(void) = 1;

} = 1;

} = 0x20000044;

#ifdef RPC_SVC

%int *

%timeget_1()

%{

% static int thetime;

%

% thetime = time(0);

% return (&thetime);

%}

Time Server Program (rpcgen)

ONC+ Developer's Guide • November 2010 (Beta)292

EXAMPLE D–4 rpcgenProgram: time.x (Continued)

#endif

Add Two Numbers Program (rpcgen)
EXAMPLE D–5 rpcgen program: Add Two Numbers

/* This program contains a procedure to add 2 numbers to

demonstrate

* some of the features of the new rpcgen. Note that add() takes 2

* arguments in this case.

*/

program ADDPROG { /* program number */

version ADDVER { /* version number */

int add (int, int) /* procedure */

= 1;

} = 1;

} = 199;

Spray Packets Program (rpcgen)
Refer to the notes section on the spray(1M) man page for information about using this tool.

EXAMPLE D–6 rpcgenprogram: spray.x

/*

* Copyright (c) 1987, 1991 by Sun Microsystems, Inc.

*/

/* from spray.x */

#ifdef RPC_HDR

#pragma ident "@(#)spray.h 1.2 91/09/17 SMI"
#endif

/*

* Spray a server with packets

* Useful for testing flakiness of network interfaces

*/

const SPRAYMAX = 8845; /* max amount can spray */

/*

* GMT since 0:00, 1 January 1970

*/

struct spraytimeval {

unsigned int sec;

unsigned int usec;

};

Spray Packets Program (rpcgen)

Appendix D • RPC Code Examples 293

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=spray-1m

EXAMPLE D–6 rpcgen program: spray.x (Continued)

/*

* spray statistics

*/

struct spraycumul {

unsigned int counter;

spraytimeval clock;

};

/*

* spray data

*/

typedef opaque sprayarr<SPRAYMAX>;

program SPRAYPROG {

version SPRAYVERS {

/*

* Just throw away the data and increment the counter. This

* call never returns, so the client should always time it out.

*/

void

SPRAYPROC_SPRAY(sprayarr) = 1;

/*

* Get the value of the counter and elapsed time since last

* CLEAR.

*/

spraycumul

SPRAYPROC_GET(void) = 2;

/*

* Clear the counter and reset the elapsed time

*/

void

SPRAYPROC_CLEAR(void) = 3;

} = 1;

} = 100012;

Print Message Program With Remote Version
EXAMPLE D–7 printmesg.c

/* printmsg.c: print a message on the console */

#include <stdio.h>

main(argc, argv)

int argc;

char *argv[];

{

char *message;

if (argc != 2) {

fprintf(stderr, "usage: %s <message>\n", argv[0]);

exit(1);

Print Message Program With Remote Version

ONC+ Developer's Guide • November 2010 (Beta)294

EXAMPLE D–7 printmesg.c (Continued)

}

message = argv[1];

if(!printmessage(message)) {

fprintf(stderr, "%s: couldn’t print your message\n",
argv[0]);

exit(1);

}

printf("Message Delivered!\n");
exit(0);

}

/* Print a message to the console. */

/*

* Return a boolean indicating whether the message was actually

* printed.

*/

printmessage(msg)

char *msg;

{

FILE *f;

if = fopen("/dev/console","w");
if (f == (FILE *)NULL)

return (0);

fprintf(f,"%sen”, msg);

fclose(f);

return (1);

}

EXAMPLE D–8 Remote Version of printmesg.c

/*

* rprintmsg.c: remote version of "printmsg.c”
*/

#include <stdio.h>

#include <rpc/rpc.h> /* always needed */

#include "msg.h” /* msg.h generated by rpcgen */

main(argc, argv)

int argc;

char *argv[];

{

CLIENT *cl;

int *result;

char *server;

char *message;

extern int sys_nerr;

extern char *sys_errlist[];

if (argc != 3) {

fprintf(stderr,"usage: %s host messagen", argv[0]);

exit(1);

}

/*

* Save values of command line arguments

Print Message Program With Remote Version

Appendix D • RPC Code Examples 295

EXAMPLE D–8 Remote Version of printmesg.c (Continued)

*/

server = argv[1];

message = argv[2];

/*

* Create client"handle” used for calling

* MESSAGEPROG on the server

* designated on the command line.

*/

cl = clnt_create(server, MESSAGEPROG, PRINTMESSAGEVERS,

"visible");
if (cl == (CLIENT *)NULL) {

/*

* Couldn’t establish connection with server.

* Print error message and die.

*/

clnt_pcreateerror(server);

exit(1);

}

/* Call the remote procedure "printmessage" on the server */

result = printmessage_1(&message, cl);

if (result == (int *)NULL) {

/*

* An error occurred while calling the server.

* Print error message and die.

*/

clnt_perror(cl, server);

exit(1);

}

/* Okay, we successfully called the remote procedure. */

if (*result == 0) {

/*

* Server was unable to print our message.

* Print error message and die.

*/

fprintf(stderr,"%s"
}

/* The message got printed on the server’s console */

printf("Message delivered to %s!\n", server);

exit(0);

}

EXAMPLE D–9 rpcgenProgram: msg.x

/* msg.x: Remote message printing protocol */

program MESSAGEPROG {

version MESSAGEVERS {

int PRINTMESSAGE(string) = 1;

} = 1;

} = 0x20000001;

EXAMPLE D–10 mesg_proc.c

/*

* msg_proc.c: implementation of the remote

* procedure "printmessage"

Print Message Program With Remote Version

ONC+ Developer's Guide • November 2010 (Beta)296

EXAMPLE D–10 mesg_proc.c (Continued)

*/

#include <stdio.h>

#include <rpc/rpc.h> /* always needed */

#include "msg.h” /* msg.h generated by rpcgen */

/*

* Remote version of "printmessage"
*/

/*ARGSUSED1*/

int printmessage_1(msg, req)

char **msg;

struct svc_req *req;

{

static int result; /* must be static! */

FILE *f;

f = fopen("/dev/console", "w");
if (f == (FILE *)NULL) {

result = 0;

return (&result);

}

fprintf(f, "%sen", *msg);

fclose(f);

result = 1;

return (&result);

}

Batched Code Example
EXAMPLE D–11 Batched Client Program

#include <stdio.h>

#include <rpc/rpc.h>

#include "windows.h"

main(argc, argv)

int argc;

char **argv;

{

struct timeval total_timeout;

register CLIENT *client;

enum clnt_stat clnt_stat;

char buf[1000], *s = buf;

if ((client = clnt_create(argv[1], WINDOWPROG, WINDOWVERS,

"CIRCUIT_V")) == (CLIENT *) NULL) {

clnt_pcreateerror("clnt_create");
exit(1);

}

timerclear(&total_timeout);

while (scanf("%s", s) != EOF) {

Batched Code Example

Appendix D • RPC Code Examples 297

EXAMPLE D–11 Batched Client Program (Continued)

clnt_call(client, RENDERSTRING_BATCHED, xdr_wrapstring,

&s,xdr_void, (caddr_t) NULL, total_timeout);

}

/* Now flush the pipeline */

total_timeout.tv_sec = 20;

clnt_stat = clnt_call(client, NULLPROC, xdr_void,

(caddr_t) NULL, xdr_void, (caddr_t) NULL,

total_timeout);

if (clnt_stat != RPC_SUCCESS) {

clnt_perror(client, "rpc");
exit(1);

}

clnt_destroy(client);

exit(0);

}

EXAMPLE D–12 Batched Server Program

#include <stdio.h>

#include <rpc/rpc.h>

#include "windows.h"

void windowdispatch();

main()

{

int num;

num = svc_create(windowdispatch, WINDOWPROG, WINDOWVERS,

"CIRCUIT_V");
if (num == 0) {

fprintf(stderr, "can’t create an RPC server\n");
exit(1);

}

svc_run(); /* Never returns */

fprintf(stderr, "should never reach this point\n");
}

void

windowdispatch(rqstp, transp)

struct svc_req *rqstp;

SVCXPRT *transp;

{

char *s = NULL;

switch (rqstp->rq_proc) {

case NULLPROC:

if (!svc_sendreply(transp, xdr_void, 0))

fprintf(stderr, "can’t reply to RPC call\n");
return;

case RENDERSTRING:

if (!svc_getargs(transp, xdr_wrapstring, &s)) {

fprintf(stderr, "can’t decode arguments\n");
/* Tell caller an error occurred */

svcerr_decode(transp);

break;

Batched Code Example

ONC+ Developer's Guide • November 2010 (Beta)298

EXAMPLE D–12 Batched Server Program (Continued)

}

/* Code here to render the string s */

if (!svc_sendreply(transp, xdr_void, (caddr_t) NULL))

fprintf(stderr, "can’t reply to RPC call\n");
break;

case RENDERSTRING_BATCHED:

if (!svc_getargs(transp, xdr_wrapstring, &s)) {

fprintf(stderr, "can’t decode arguments\n");
/* Be silent in the face of protocol errors */

break;

}

/* Code here to render string s, but send no reply! */

break;

default:

svcerr_noproc(transp);

return;

}

/* Now free string allocated while decoding arguments */

svc_freeargs(transp, xdr_wrapstring, &s);

}

Non-Batched Example
This example is included for reference only. It is a version of the batched client string rendering
service, written as a non-batched program.

EXAMPLE D–13 Unbatched Version of Batched Client

#include <stdio.h>

#include <rpc/rpc.h>

#include "windows.h"

main(argc, argv)

int argc;

char **argv;

{

struct timeval total_timeout;

register CLIENT *client;

enum clnt_stat clnt_stat;

char buf[1000], *s = buf;

if ((client = clnt_create(argv[1], WINDOWPROG, WINDOWVERS,

"CIRCUIT_V")) == (CLIENT *) NULL) {

clnt_pcreateerror("clnt_create");
exit(1);

}

total_timeout.tv_sec = 20;

total_timeout.tv_usec = 0;

while (scanf("%s", s) != EOF) {

if(clnt_call(client, RENDERSTRING, xdr_wrapstring, &s,

xdr_void, (caddr_t) NULL, total_timeout) != RPC_SUCCESS) {

clnt_perror(client, "rpc");

Non-Batched Example

Appendix D • RPC Code Examples 299

EXAMPLE D–13 Unbatched Version of Batched Client (Continued)

exit(1);

}

}

clnt_destroy(client);

exit(0);}

Non-Batched Example

ONC+ Developer's Guide • November 2010 (Beta)300

portmapUtility

The rpcbind utility replaces the portmap utility available in previous releases of the Solaris
environment. This appendix is included to help you understand the history of port and network
address resolution using the portmap utility.

Solaris RPC-based services use portmap as a system registration service. It manages a table of
correspondences between ports (logical communications channels) and the services registered
at them. It provides a standard way for a client to look up the TCP/IP or UDP/IP port number of
an RPC program supported by the server.

System Registration Overview
For client programs to find distributed services on a network, they need a way to look up the
network addresses of server programs. Network transport (protocol) services do not provide
this function. Their task is to provide process-to-process message transfer across a network,
that is, a message is sent to a transport-specific network address. A network address is a logical
communications channel. By listening on a specific network address, a process receives
messages from the network.

The way a process waits on a network address varies from one operating system to the next, but
all provide mechanisms by which a process can synchronize its activity with arriving messages.
Messages are not sent across networks to receiving processes, but rather to the network address
at which receiving processes pick them up.

Network addresses are valuable because they allow message receivers to be specified in a way
that is independent of the conventions of the receiving operating system. TI-RPC, being
transport independent, makes no assumptions about the structure of a network address. It uses
a universal address. This universal address is specified as a null-terminated string of characters.
Such a universal address is translated into a local transport address by a routine specific to the
transport provider.

EA P P E N D I X E

301

The rpcbind protocol defines a network service that provides a standard way for clients to look
up the network address of any remote program supported by a server. Because this protocol can
be implemented on any transport, it provides a single solution to a general problem that works
for all clients, all servers, and all networks.

portmapProtocol
The portmap program maps RPC program and version numbers to transport-specific port
numbers. This program makes dynamic binding of remote programs possible.

The figure illustrates the following process:

1. The server registers with portmap.
2. The client gets the server's port from portmap.
3. The client calls the server.

The range of reserved port numbers is small and the number of potential remote programs is
very large. By running only the port mapper on a well-known port, the port numbers of other
remote programs can be ascertained by querying the port mapper. In Figure E–1, a, 111, b, and
c represent port numbers, and 111 is the assigned port-mapper port number.

The port mapper also aids in broadcast RPC. A given RPC program usually has different port
number bindings on different machines, so no direct broadcasts are possible to all of these
programs. The port mapper, however, does have a fixed port number. So, to broadcast to a
given program, the client sends its message to the port mapper located at the broadcast address.
Each port mapper that receives the broadcast then calls the local service specified by the client.
When portmap gets the reply from the local service, it returns the reply to the client. The
portmap protocol specification is shown in the following code example.

FIGURE E–1 Typical Portmap Sequence (For TCP/IP Only)

Client system

Client program

Server system

Server program

Portmap

c

b

111

a

Network

1

2

3

portmap Protocol

ONC+ Developer's Guide • November 2010 (Beta)302

EXAMPLE E–1 portmapProtocol Specification (in RPC Language)

const PMAP_PORT = 111; /* portmapper port number */

/*

* A mapping of (program, version, protocol) to port number

*/

struct pmap {

rpcprog_t prog;

rpcvers_t vers;

rpcprot_t prot;

rpcport_t port;

};

/*

* Supported values for the "prot" field

*/

const IPPROTO_TCP = 6; /* protocol number for TCP/IP */

const IPPROTO_UDP = 17; /* protocol number for UDP/IP */

/*

* A list of mappings

*/

struct pmaplist {

pmap map;

pmaplist *next;

};

/*

* Arguments to callit

*/

struct call_args {

rpcprog_t prog;

rpcvers_t vers;

rpcproc_t proc;

opaque args<>;

};

/*

* Results of callit

*/

struct call_result {

rpcport_t port;

opaque res<>;

};

/*

* Port mapper procedures

*/

program PMAP_PROG {

version PMAP_VERS {

void

PMAPPROC_NULL(void) = 0;

bool

PMAPPROC_SET(pmap) = 1;

bool

PMAPPROC_UNSET(pmap) = 2;

unsigned int

PMAPPROC_GETPORT(pmap) = 3;

pmaplist

PMAPPROC_DUMP(void) = 4;

call_result

PMAPPROC_CALLIT(call_args) = 5;

} = 2;

} = 100000;

portmap Protocol

Appendix E • portmapUtility 303

portmapOperation
portmap currently supports two protocols (UDP/IP and TCP/IP). portmap is contacted by
talking to it on assigned port number 111 (SUNRPC (5)) on either of these protocols. The
following sections describe each of the port-mapper procedures.

PMAPPROC_NULL

This procedure does no work. By convention, procedure zero of any protocol takes no
parameters and returns no results.

PMAPPROC_SET

When a program first becomes available on a machine, it registers itself with the local port map
program. The program passes its program number prog, version number vers, transport
protocol number prot, and the port port on which it receives service requests. The procedure
refuses to establish a mapping if one already exists for the specified port and it is bound. If the
mapping exists and the port is not bound, portmap unregisters the port and performs the
requested mapping. The PMAPPROC_SET procedure returns TRUE if the procedure successfully
established the mapping and FALSE otherwise. See also the pmap_set() function in the
rpc_soc(3NSL) man page.

PMAPPROC_UNSET

When a program becomes unavailable, it should unregister itself with the port-mapper
program on the same machine. The parameters and results of PMAPPROC_UNSET have meanings
identical to those of PMAPPROC_SET. The protocol and port number fields of the argument are
ignored. See also the pmap_unset() function in the rpc_soc(3NSL) man page.

PMAPPROC_GETPORT

Given a program number prog, version number vers, and transport protocol number prot, the
PMAPPROC_GETPORT procedure returns the port number on which the program is awaiting call
requests. A port value of zeroes means the program has not been registered. The port field of
the argument is ignored. See also the pmap_getport() function in the rpc_soc(3NSL) man
page.

portmapOperation

ONC+ Developer's Guide • November 2010 (Beta)304

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-soc-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-soc-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-soc-3nsl

PMAPPROC_DUMP

The PMAPPROC_DUMP procedure enumerates all entries in the port mapper's database. The
procedure takes no parameters and returns a list of program, version, protocol, and port

values. See also the pmap_getmaps() function in the rpc_soc(3NSL) man page.

PMAPPROC_CALLIT

The PMAPPROC_CALLIT procedure enables a caller to call another remote procedure on the same
machine without knowing the remote procedure's port number. It supports broadcasts to
arbitrary remote programs by using the well-known port mapper's port. The parameters prog,
vers, proc, and the bytes of args are the program number, version number, procedure number,
and parameters of the remote procedure. See also the pmap_rmtcall() function in the
rpc_soc(3NSL) man page.

This procedure only sends a response if the procedure was successfully executed and is silent
(no response) otherwise. It also returns the remote program's port number, and the bytes of
results are the results of the remote procedure.

The port mapper communicates with the remote program using UDP/IP only.

portmapOperation

Appendix E • portmapUtility 305

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-soc-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=rpc-soc-3nsl

306

Writing a Port Monitor With the Service Access
Facility (SAF)

This appendix gives a brief description of the functions a port monitor must perform to run
under the service access facility (SAF) and service access controller (SAC).

The appendix covers the following topics:

■ “What Is the SAF?” on page 307
■ “What Is the SAC?” on page 308
■ “SAF Files” on page 311
■ “SAC/Port Monitor Interface” on page 311
■ “Port Monitor Administrative Interface” on page 314
■ “Configuration Files and Scripts” on page 320
■ “Sample Port Monitor Code” on page 324
■ “Logic Diagram and Directory Structure” on page 329

What Is the SAF?
The service access facility (SAF) generalizes the procedures for service access so that login
access on the local system and network access to local services are managed in similar ways.
Under the SAF, systems can access services using a variety of port monitors, including ttymon,
the listener, and port monitors written expressly for a user's application.

The manner in which a port monitor observes and manages access ports is specific to the port
monitor and not to any component of the SAF. Users can therefore extend their systems by
developing and installing their own port monitors. This ability to extend the SAF is one of its
important features.

Relative to the SAF, a service is a process that is started. No restrictions are on the functions a
service can provide.

FA P P E N D I X F

307

The SAF consists of a controlling process, the service access controller (SAC), and two
administrative levels corresponding to two levels in the supporting directory structure. The top
administrative level is concerned with port monitor administration, the lower level with service
administration.

From an administrative point of view, the SAF consists of the following components:
■ The SAC
■ A per-system configuration script
■ The SAC administrative file
■ The SAC administrative command sacadm

■ Port monitors
■ Optional per-port monitor configuration scripts
■ An administrative file for each port monitor
■ The administrative command pmadm

■ Optional per-service configuration scripts

What Is the SAC?
The service access controller (SAC) is the SAF's controlling process. The SAC is started by
init() by means of an entry in /etc/inittab. Its function is to maintain the port monitors on
the system in the state specified by the system administrator.

Use the administrative command sacadm to tell the SAC to change the state of a port monitor.
sacadm can also be used to add or remove a port monitor from SAC supervision and to list
information about port monitors known to the SAC.

The SAC's administrative file contains a unique tag for each port monitor known to the SAC
and the path name of the command used to start each port monitor.

The SAC performs three main functions:
■ Customizes its own environment
■ Starts the appropriate port monitors
■ Polls its port monitors and initiates recovery procedures when necessary

Basic Port Monitor Functions
A port monitor is a process that is responsible for monitoring a set of homogeneous, incoming
ports on a machine. A port monitor's major purpose is to detect incoming service requests and
to dispatch them appropriately.

A port is an externally seen access point on a system. A port can be an address on a network
(TSAP or PSAP), a hardwired terminal line, an incoming phone line, and so on. The definition of
what constitutes a port is strictly a function of the port monitor itself.

What Is the SAC?

ONC+ Developer's Guide • November 2010 (Beta)308

A port monitor performs certain basic functions. Some of these functions are required to
conform to the SAF. Other functions can be specified by the requirements and design of the port
monitor itself.

Port monitors have two main functions:

■ Managing ports
■ Monitoring ports for indications of activity

Port Management
The first function of a port monitor is to manage a port. The actual details of how a port is
managed are defined by the person who defines the port monitor. A port monitor can handle
multiple ports simultaneously.

Some examples of port management are setting the line speed on incoming phone connections,
binding an appropriate network address, reinitializing the port when the service terminates,
outputting a prompt, and so on.

Activity Monitoring
The second function of a port monitor is to monitor the port or ports for which it is responsible
for indications of activity. Two types of activity can be detected.

1. The first activity is an indication to the port monitor to take some port monitor-specific
action. Pressing the Break key to indicate that the line speed should be cycled is an example
of a port monitor activity. Not all port monitors need to recognize and respond to the same
indications. The indication used to attract the attention of the port monitor is defined by the
person who defines the port monitor.

2. The second activity is an incoming service request. When a service request is received, a port
monitor must be able to determine which service is being requested from the port on which
the request is received. Note that the same service can be available on more than one port.

Other Port Monitor Functions
This section briefly describes other port monitor functions.

Restricting Access to the System
A port monitor must be able to restrict access to the system without disturbing services that are
still running. In order to do so, a port monitor must maintain two internal states: enabled and
disabled. The port monitor starts in the state indicated by the ISTATE environment variable
provided by the SAC. See “SAC/Port Monitor Interface” on page 311.

What Is the SAC?

Appendix F • Writing a Port Monitor With the Service Access Facility (SAF) 309

Enabling or disabling a port monitor affects all ports for which the port monitor is responsible.
If a port monitor is responsible for a single port, only that port is affected. If a port monitor is
responsible for multiple ports, the entire collection of ports is affected.

Enabling or disabling a port monitor is a dynamic operation. It causes the port monitor to
change its internal state. The effect does not persist across new invocations of the port monitor.

Enabling or disabling an individual port is a static operation. It causes a change to an
administrative file. The effect of this change persists across new invocations of the port monitor.

Creating utmpx Entries
Port monitors are responsible for creating utmpx entries with the type field set to USER_PROCESS

for services they start, if this action has been specified, that is, if -fu was specified in the pmadm
line that added the service. These utmpx entries can in turn be modified by the service. When the
service terminates, the utmpx entry must be set to DEAD_PROCESS.

Port Monitor Process IDs and Lock Files
When a port monitor starts, it writes its process ID into a file named _pid in the current
directory and places an advisory lock on the file.

Changing the Service Environment: Running doconfig()

Before invoking the service designated in the port monitor administrative file, _pmtab, a port
monitor must arrange for the per-service configuration script to be run, if one exists, by calling
the library function doconfig(). Because the per-service configuration script can specify the
execution of restricted commands, as well as for other security reasons, port monitors are
invoked with root permissions. The details of how services are invoked are specified by the
person who defines the port monitor.

Terminating a Port Monitor
A port monitor must terminate itself gracefully on receipt of the signal SIGTERM. The
termination sequence is as follows:

1. The port monitor enters the stopping state. No further service requests are accepted.
2. Any attempt to re-enable the port monitor is ignored.
3. The port monitor yields control of all ports for which it is responsible. A new instantiation

of the port monitor must be able to start correctly while a previous instantiation is stopping.
4. The advisory lock on the process ID file is released. After this lock is released, the contents of

the process ID file are undefined and a new invocation of the port monitor can be started.

Terminating a Port Monitor

ONC+ Developer's Guide • November 2010 (Beta)310

SAF Files
This section briefly covers the files used by the SAF.

Port Monitor Administrative File
A port monitor's current directory contains an administrative file named _pmtab. _pmtab is
maintained by the pmadm command in conjunction with a port monitor-specific administrative
command.

The port monitor administrative command for a listen port monitor is nlsadmin(); the port
monitor administrative command for ttymon is ttyadm(). Any port monitor written by a user
must be provided with an administrative command specific to that port monitor to perform
similar functions.

Per-Service Configuration Files
A port monitor's current directory also contains the per-service configuration scripts, if they
exist. The names of the per-service configuration scripts correspond to the service tags in the
_pmtab file.

Private Port Monitor Files
A port monitor can create private files in the directory /var/saf/tag, where tag is the name of
the port monitor. Examples of private files are log files or temporary files.

SAC/Port Monitor Interface
The SAC creates two environment variables for each port monitor it starts:

■ PMTAG

■ ISTATE

This variable is set to a unique port monitor tag by the SAC. The port monitor uses this tag
to identify itself in response to sac messages. ISTATE is used to indicate to the port monitor
what its initial internal state should be. ISTATE is set to enabled or disabled to indicate that
the port monitor is to start in the enabled or disabled state respectively. The SAC performs a
periodic sanity poll of the port monitors.

The SAC communicates with port monitors through FIFOs. A port monitor should open
_pmpipe, in the current directory, to receive messages from the SAC and ../_sacpipe to send
return messages to the SAC.

SAC/Port Monitor Interface

Appendix F • Writing a Port Monitor With the Service Access Facility (SAF) 311

Message Formats
This section describes the messages that can be sent from the SAC to a port monitor (SAC
messages), and from a port monitor to the SAC (port monitor messages). These messages are
sent through FIFOs and are in the form of C structures. See Example F–2.

SAC Messages
The format of messages from the SAC is defined by the structure sacmsg:

struct sacmsg {

int sc_size; /* size of optional data portion */

char sc_type; /* type of message */

};

The SAC can send four types of messages to port monitors. The type of message is indicated by
setting the sc_type field of the sacmsg structure to one of the following:

■ SC_STATUS status request.
■ SC_ENABLE enable message.
■ SC_DISABLE disable message.
■ SC_READDB message indicating that the port monitor's _pmtab file should be read.
■ sc_size indicates the size of the optional data part of the message. See “Message Classes” on

page 313. For the Solaris environment, sc_size should always be set to 0.

A port monitor must respond to every message sent by the SAC.

Port Monitor Messages
The format of messages from a port monitor to the SAC is defined by the structure pmmsg.

struct pmmsg {

char pm_type; /* type of message */

unchar pm_state; /* current state of port monitor */

char pm_maxclass; /* maximum message class this port

monitor understands */

char pm_tag[PMTAGSIZE + 1]; /* port monitor’s tag */

int pm_size; /* size of optional data portion */

};

Port monitors can send two types of messages to the SAC. The type of message is indicated by
setting the pm_type field of the pmmsg structure to one of the following values:

■ PM_STATUS state information
■ PM_UNKNOWN negative acknowledgement

For both types of messages, set the pm_tag field to the port monitor's tag and the pm_state field
to the port monitor's current state. Valid states are:

SAC/Port Monitor Interface

ONC+ Developer's Guide • November 2010 (Beta)312

■ PM_STARTING starting
■ PM_ENABLED enabled
■ PM_DISABLED disabled
■ PM_STOPPING stopping

The current state reflects any changes caused by the last message from the SAC.

The status message is the normal return message. The negative acknowledgement should be
sent only when the message received is not understood.

pm_size indicates the size of the optional-data part of the message. pm_maxclass is used to
specify a message class. Both fields are discussed in “Message Classes” on page 313. In the
Solaris environment, always set pm_maxclass to 1 and sc_size to 0.

Port monitors can never initiate messages; they can only respond to messages that they receive.

Message Classes
The concept of message class has been included to accommodate possible SAF extensions. The
preceding messages are all class 1 messages. None of these messages contains a variable data
portion. All pertinent information is contained in the message header.

If new messages are added to the protocol, they are defined as new message classes, for example,
class 2. The first message that the SAC sends to a port monitor is always a class 1 message.
Because all port monitors by definition understand class 1 messages, the first message that the
SAC sends is guaranteed to be understood. In its response to the SAC, the port monitor sets the
pm_maxclass field to the maximum message class number for that port monitor. The SAC does
not send messages to a port monitor from a class with a larger number than the value of
pm_maxclass. Requests fail if they require messages of a higher class than the port monitor can
understand. For the Solaris environment, always set pm_maxclass to 1.

For any given port monitor, messages of class pm_maxclass and messages of all classes with
values lower than pm_maxclass are valid. Thus, if the pm_maxclass field is set to 3, the port
monitor understands messages of classes 1, 2, and 3. Port monitors cannot generate messages;
they can only respond to messages. A port monitor's response must be of the same class as the
originating message.

Because only the SAC can generate messages, this protocol function – even if the port monitor
is capable of dealing with messages of a higher class than the SAC can generate.

pm_size is an element of the pmmsg structure. sc_size is an element of the sacmsg structure.
These elements indicate the size of the optional-data part of the message. The format of this part
of the message is undefined. Its definition is inherent in the type of message. For the Solaris
environment, always set both sc_size and pm_size to 0.

SAC/Port Monitor Interface

Appendix F • Writing a Port Monitor With the Service Access Facility (SAF) 313

Port Monitor Administrative Interface
This section discusses the administrative files available under the SAC.

SAC Administrative File _sactab
The service access controller's administrative file contains information about all the port
monitors for which the SAC is responsible. This file exists on the delivered system. Initially, the
file is empty except for a single comment line that contains the version number of the SAC. You
add port monitors to the system by making entries in the SAC's administrative file. These
entries should be made using the administrative command sacadm with a -a option. sacadm is
also used to remove entries from the SAC's administrative file.

Each entry in the SAC's administrative file contains the information shown in the following
table.

TABLE F–1 Service Access Controller _sactab File

Fields Description

PMTAG A unique tag that identifies a particular port monitor. The system administrator is
responsible for naming a port monitor. This tag is then used by the SAC to identify the port
monitor for all administrative purposes. PMTAG can consist of up to 14 alphanumeric
characters.

PMTYPE The type of the port monitor. In addition to its unique tag, each port monitor has a type
designator. The type designator identifies a group of port monitors that are different
invocations of the same entity. ttymon and listen are examples of valid port monitor
types. The type designator is used to facilitate the administration of groups of related port
monitors. Without a type designator, the system administrator has no way of knowing
which port monitor tags correspond to port monitors of the same type. PMTYPE can consist
of up to 14 alphanumeric characters.

FLGS The flags that are currently defined are:

-d When it is started, do not enable the port monitor.

-x Do not start the port monitor.

If no flag is specified, the default action is taken. By default, a port monitor is started and
enabled.

RCNT The number of times a port monitor can fail before being placed in a failed state. After a
port monitor enters the failed state, the SAC does not try to restart it. If a count is not
specified when the entry is created, this field is set to 0. A restart count of 0 indicates that the
port monitor is not to be restarted when it fails.

COMMAND A string representing the command that starts the port monitor. The first component of the
string, the command itself, must be a full path name.

Port Monitor Administrative Interface

ONC+ Developer's Guide • November 2010 (Beta)314

Port Monitor Administrative File _pmtab
Each port monitor has two directories for its exclusive use. The current directory contains files
defined by the SAF (_pmtab, _pid) and the per-service configuration scripts, if they exist. The
directory /var/saf/pmtag, where pmtag is the tag of the port monitor, is available for the port
monitor's private files.

Each port monitor has its own administrative file. Use the pmadm command to add, remove, or
modify service entries in this file. Each time a change is made using pmadm, the corresponding
port monitor rereads its administrative file. Each entry in a port monitor's administrative file
defines how the port monitor treats a specific port and what service is to be invoked on that
port.

Some fields must be present for all types of port monitors. Each entry must include a service tag
to identify the service uniquely and an identity to be assigned to the service when it is started,
for example, root.

The combination of a service tag and a port monitor tag uniquely define an instance of a service.
You can use the same service tag to identify a service under a different port monitor. The record
must also contain port monitor-specific data (for example, for a ttymon port monitor, this data
includes the prompt string which is meaningful to ttymon). Each type of port monitor must
provide a command that takes the necessary port monitor-specific data as arguments and
outputs this data in a form suitable for storage in the file. The ttyadm command provides the
formatting for ttymon, nlsadmin for listen. For a user-defined port monitor, you also must
supply a similar administrative command.

Each service entry in the port monitor administrative file must have the following format and
contain the following information:

svctag:flgs:id:reserved:reserved:reserved:pmspecific# comment

SVCTAG is a unique tag that identifies a service. This tag is unique only for the port monitor
through which the service is available. Other port monitors can offer the same or other services
with the same tag. A service requires both a port monitor tag and a service tag to identify it
uniquely.

SVCTAG may consist of up to 14 alphanumeric characters. The service entries are defined in the
following table.

Port Monitor Administrative Interface

Appendix F • Writing a Port Monitor With the Service Access Facility (SAF) 315

TABLE F–2 SVCTAG Service Entries

Service Entries Description

FLGS Flags with the following meanings might currently be included in this field:

-x Do not enable this port. By default, the port is enabled.

-u Create a utmpx entry for this service. By default, no utmpx entry is created for
the service.

ID The identity under which the service is to be started. The identity has the form
of a login name as it appears in /etc/passwd.

PMSPECIFIC Examples of port monitor information are addresses, the name of a process to
execute, or the name of a STREAMS pipe through which to pass a connection.
This information varies to meet the needs of each different type of port
monitor.

COMMENT A comment associated with the service entry.

Note – Port monitors might ignore the -u flag if creating a utmpx entry for the service is not
appropriate to the manner in which the service is to be invoked. Some services might not start
properly unless utmpx entries have been created for them, for example, login.

Each port monitor administrative file must contain one special comment of the form:

VERSION=value

In this case, value is an integer that represents the port monitor's version number. The version
number defines the format of the port monitor administrative file. This comment line is created
automatically when a port monitor is added to the system. It appears on a line by itself, before
the service entries.

SAC Administrative Command sacadm

sacadm is the administrative command for the upper level of the SAF hierarchy, that is, for port
monitor administration. See the sacadm(1M) man page. Under the SAF, port monitors are
administered by using the sacadm command to make changes in the SAC's administrative file.
sacadm performs the following functions:

■ Prints requested port monitor information from the SAC administrative file
■ Adds or removes a port monitor
■ Enables or disables a port monitor
■ Starts or stops a port monitor
■ Installs or replaces a per-system configuration script

Port Monitor Administrative Interface

ONC+ Developer's Guide • November 2010 (Beta)316

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=sacadm-1m

■ Installs or replaces a per-port monitor configuration script
■ Asks the SAC to reread its administrative file

Port Monitor Administrative Command pmadm

pmadm is the administrative command for the lower level of the SAF hierarchy, that is, for service
administration. See the pmadm(1M) man page. A port can have only one service associated with
it, although the same service might be available through more than one port. pmadm performs
the following functions:

■ Prints service status information from the port monitor's administrative file
■ Adds or removes a service
■ Enables or disables a service
■ Installs or replaces a per-service configuration script

In order to identify an instance of a service uniquely, the pmadm command must identify both
the service (-s) and the port monitor or port monitors through which the service is available (-p
or -t).

Monitor-Specific Administrative Command
In the previous section, two pieces of information included in the _pmtab file were described:
the port monitor's version number and the port monitor part of the service entries in the port
monitor's _pmtab file. When you add a new port monitor, the version number must be known
so that the _pmtab file can be correctly initialized. When you add a new service, the port
monitor part of the _pmtab entry must be formatted correctly.

Each port monitor must have an administrative command to perform these two tasks. The
person who defines the port monitor must also define such an administrative command and its
input options. When the command is invoked with these options, the information required for
the port monitor part of the service entry must be correctly formatted for inclusion in the port
monitor's _pmtab file and must be written to the standard output. To request the version
number, the command must be invoked with a -V option. When it is invoked in this way, the
port monitor's current version number must be written to the standard output.

If the command fails for any reason during the execution of either of these tasks, no data should
be written to standard output.

Port Monitor/Service Interface
The interface between a port monitor and a service is determined solely by the service. Two
mechanisms for invoking a service are presented here as examples.

Port Monitor Administrative Interface

Appendix F • Writing a Port Monitor With the Service Access Facility (SAF) 317

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=pmadm-1m

New Service Invocations
The first interface is for services that are started anew with each request. This interface requires
the port monitor to first fork() a child process. The child eventually becomes the designated
service by performing an exec(). Before the exec() happens, the port monitor might take some
port monitor-specific action. However, one action that must occur is the interpretation of the
per-service configuration script, if one is present. This interpretation is done by calling the
library routine doconfig().

Standing Service Invocations
The second interface is for invocations of services that are actively running. To use this
interface, a service must have one end of a stream pipe open and be prepared to receive
connections through it.

Port Monitor Requirements
To implement a port monitor, several generic requirements must be met. This section
summarizes these requirements. In addition to the port monitor itself, you must supply an
administrative command.

Initial Environment
When a port monitor is started, it expects an initial execution environment in which:

■ It has no file descriptors open.
■ It cannot be a process group leader.
■ It has an entry in /var/adm/utmpx of type LOGIN_PROCESS.
■ An environment variable, ISTATE, is set to enabled or disabled to indicate the port

monitor's correct initial state .
■ An environment variable, PMTAG, is set to the port monitor's assigned tag.
■ The directory that contains the port monitor's administrative files is its current directory.
■ The port monitor is able to create private files in the directory /var/saf/tag, where tag is

the port monitor's tag.
■ The port monitor is running with user id 0 (root).

Important Files
Relative to its current directory, the key files listed in the following table exist for a port monitor.

Port Monitor Administrative Interface

ONC+ Developer's Guide • November 2010 (Beta)318

TABLE F–3 Key Port Monitor Files

File Description

_config The port monitor's configuration script. The port
monitor configuration script is run by the SAC.
The SAC is started by init() as a result of an
entry in /etc/inittab that calls the SAC.

_pid The file into which the port monitor writes its
process ID.

_pmtab The port monitor's administrative file. This file
contains information about the ports and
services for which the port monitor is
responsible.

_pmpipe The FIFO through which the port monitor
receives messages from the SAC.

svctag The per-service configuration script for the
service with the tag svctag.

../_sacpipe The FIFO through which the port monitor sends
messages to the SAC.

Port Monitor Responsibilities
A port monitor is responsible for performing the following tasks in addition to its port monitor
function:

■ Writing its process ID into the file _pid and place an advisory lock on the file
■ Terminating gracefully on receipt of the signal SIGTERM
■ Following the protocol for message exchange with the SAC

A port monitor must perform the following tasks during service invocation:

■ Creating a utmp entry if the requested service has the “-u” flag set in _pmtab

Note – Port monitors might ignore this flag if creating a utmp entry for the service does not make
sense because of the manner in which the service is to be invoked. On the other hand, some
services might not start properly unless utmp entries have been created for them.

■ Interpreting the per-service configuration script for the requested service, if it exists, by
calling the doconfig() library routine

Port Monitor Administrative Interface

Appendix F • Writing a Port Monitor With the Service Access Facility (SAF) 319

Configuration Files and Scripts
This section describes configuration files and scripts.

Interpreting Configuration Scripts With doconfig()

The library routine doconfig(), defined in libnsl.so, interprets the configuration scripts
contained in the files /etc/saf/_sysconfig, the per-system configuration file,
/etc/saf/pmtag/_config, the per-port monitor configuration files, and
/etc/saf/pmtag/svctag, the per-service configuration files. Its syntax is:

include <sac.h>

int doconfig (int fd, char *script, long rflag);

■ script is the name of the configuration script.
■ fd is a file descriptor that designates the stream to which stream manipulation operations are

to be applied.
■ rflag is a bitmask that indicates the mode in which script is to be interpreted.

rflag takes two values, NORUN and NOASSIGN, which may be OR'd. If rflag is zero, all commands in
the configuration script are eligible to be interpreted. If rflag has the NOASSIGN bit set, the
assign command is considered illegal and generates an error return. If rflag has the NORUN bit
set, the run and runwait commands are considered illegal and generates error returns.

If a command in the script fails, the interpretation of the script ceases at that point and a
positive integer is returned. This number indicates which line in the script failed. If a system
error occurs, a value of -1 is returned.

If a script fails, the process with the environment being established should not be started.

In the following example, doconfig() is used to interpret a per-service configuration script.

. . .

if ((i = doconfig (fd, svctag, 0)) != 0){

error ("doconfig failed online %d of script %s",i,svctag);
}

Per-System Configuration File
The per-system configuration file, /etc/saf/_sysconfig, is delivered empty. You can use it to
customize the environment for all services on the system by writing a command script in the
interpreted language. This language is described in this chapter and on the doconfig(3NSL)
man page. When the SAC is started, it calls the doconfig() function to interpret the per-system
configuration script. The SAC is started when the system enters multiuser mode.

Configuration Files and Scripts

ONC+ Developer's Guide • November 2010 (Beta)320

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=doconfig-3nsl

Per-Port Monitor Configuration Files
Per-port monitor configuration scripts (/etc/saf/pmtag/_config) are optional. They enable
you to customize the environment for any given port monitor and for the services that are
available through the ports for which that port monitor is responsible. Per-port monitor
configuration scripts are written in the same language that is used for per-system configuration
scripts.

The per-port monitor configuration script is interpreted when the port monitor is started. The
port monitor is started by the SAC after the SAC has itself been started and after it has run its
own configuration script, /etc/saf/_sysconfig.

The per-port monitor configuration script might override defaults provided by the per-system
configuration script.

Per-Service Configuration Files
Per-service configuration files enable you to customize the environment for a specific service.
For example, a service might require special privileges that are not available to the general user.
Using the language described in the doconfig(3NSL) man page, you can write a script that
grants or limits such special privileges to a particular service offered through a particular port
monitor.

The per-service configuration might override defaults provided by higher-level configuration
scripts. For example, the per-service configuration script might specify a set of STREAMS
modules other than the default set.

Configuration Language
The language in which configuration scripts are written consists of a sequence of commands,
each of which is interpreted separately. The following reserved keywords are defined: assign,
push, pop, runwait, and run. The comment character is #. Blank lines are not significant. No
line in a command script can exceed 1024 characters.

assignKeyword
The assign keyword is used to define environment variables.

assign variable=value

variable is the name of the environment variable and value is the value to be assigned to it. The
value assigned must be a string constant. No form of parameter substitution is available. value
can be quoted. The quoting rules are those that the shell uses for defining environment
variables. assign fails if space cannot be allocated for the new variable or if any part of the
specification is invalid.

Configuration Files and Scripts

Appendix F • Writing a Port Monitor With the Service Access Facility (SAF) 321

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=doconfig-3nsl

pushKeyword
The push keyword is used to push STREAMS modules onto the stream designated by fd. See the
doconfig(3NSL) man page.

push module1[, module2, module3, ...]

module1 is the name of the first module to be pushed, module2 is the name of the second
module to be pushed, and so on. The command fails if any of the named modules cannot be
pushed. If a module cannot be pushed, the subsequent modules on the same command line are
ignored and modules that have already been pushed are popped.

popKeyword
The pop keyword is used to pop STREAMS modules off the designated stream.

pop [module]

If pop is invoked with no arguments, the top module on the stream is popped. If an argument is
given, modules are popped one at a time until the named module is at the top of the stream. If
the named module is not on the designated stream, the stream is left as it was and the command
fails. If module is the special keyword ALL, then all modules on the stream are popped. Note that
only modules above the topmost driver are affected.

runwaitKeyword
The runwait keyword runs a command and waits for it to complete.

runwait command

command is the path name of the command to be run. The command is run with /bin/sh -c

prepended to it. Shell scripts can thus be executed from configuration scripts. The runwait
command fails if command cannot be found or cannot be executed, or if command exits with a
nonzero status.

runKeyword
The run keyword is identical to runwait except that it does not wait for command to complete.

run command

command is the path name of the command to be run. run does not fail unless it is unable to
create a child process to execute the command.

Although they are syntactically indistinguishable, some of the commands available to run and
runwait are interpreter built-in commands. Interpreter built-ins are used when it is necessary
to alter the state of a process within the context of that process. The doconfig() interpreter

Configuration Files and Scripts

ONC+ Developer's Guide • November 2010 (Beta)322

http://www.oracle.com/pls/topic/lookup?ctx=821-1466&id=doconfig-3nsl

built-in commands are similar to the shell special commands and, like these commands, they do
not spawn another process for execution. See the sh(1) man page. The initial set of built-in
commands is:

cd ulimit umask

Printing, Installing, and Replacing Configuration
Scripts
This section describes the form of the SAC and port monitor administrative commands used to
install the three types of configuration scripts. Per-system and per-port monitor configuration
scripts are administered using the sacadm command. Per-service configuration scripts are
administered using the pmadm command.

Per-System Configuration Scripts
Per-system configuration scripts are administered by using the sacadm command.

sacadm -G [-z script]

The -G option is used to print or replace the per-system configuration script. The -G option by
itself prints the per-system configuration script. The -G option in combination with a -z option
replaces /etc/saf/_sysconfig with the contents of the file script. Other combinations of
options with a -G option are invalid.

The _sysconfig file in the following example sets the time zone variable, TZ.

assign TZ=EST5EDT # set TZ

runwait echo SAC is starting > /dev/console

Per-Port Monitor Configuration Scripts
Per-port monitor configuration scripts are administered by using the sacadm command.

sacadm -g -p pmtag [-z script]

The -g option is used to print, install, or replace the per-port monitor configuration script. A -g

option requires a -p option. The -g option with only a -p option prints the per-port monitor
configuration script for port monitor pmtag. The -g option with a -p option and a -z option
installs the file script as the per-port monitor configuration script for port monitor pmtag. Or, if
/etc/saf/pmtag/_config exists, these options replace _config with the contents of script.
Other combinations of options with -g are invalid.

In the _config file, the command /usr/bin/daemon is assumed to start a daemon process that
builds and holds together a STREAMS multiplexor. By installing this configuration script, the
command can be executed just before starting the port monitor that requires it.

Configuration Files and Scripts

Appendix F • Writing a Port Monitor With the Service Access Facility (SAF) 323

http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=sh-1

build a STREAMS multiplexor

run /usr/bin/daemon

runwait echo $PMTAG is starting > /dev/console

Per-Service Configuration Scripts
Per-service configuration scripts are interpreted by the port monitor before the service is
invoked.

pmadm -g -p pmtag -s svctag [-z script]

pmadm -g -s svctag -t type -z script

Note – The SAC interprets both its own configuration file, _sysconfig, and the port monitor
configuration files. Only the per-service configuration files are interpreted by the port monitors.

The -g option is used to print, install, or replace a per-service configuration script. The -g
option with a -p option and a -s option prints the per-service configuration script for service
svctag available through port monitor pmtag. The -g option with a -p option, a -s option, and a
-z option installs the per-service configuration script contained in the file script as the
per-service configuration script for service svctag available through port monitor pmtag. The -g
option with a -s option, a -t option, and a -z option installs the file script as the per-service
configuration script for service svctag available through any port monitor of type type. Other
combinations of options with -g are invalid.

The following per-service configuration script controls two settings: It specifies the maximum
file size for files created by a process by setting the process's ulimit to 4096. It also specifies the
protection mask to be applied to files created by the process by setting umask to 077.

runwait ulimit 4096

runwait umask 077

Sample Port Monitor Code
The following code example is a “null” port monitor that simply responds to messages from the
SAC.

EXAMPLE F–1 Sample Port Monitor

include <stdlib.h>

include <stdio.h>

include <unistd.h>

include <fcntl.h>

include <signal.h>

include <sac.h>

char Scratch[BUFSIZ]; /* scratch buffer */

Sample Port Monitor Code

ONC+ Developer's Guide • November 2010 (Beta)324

EXAMPLE F–1 Sample Port Monitor (Continued)

char Tag[PMTAGSIZE + 1]; /* port monitor’s tag */

FILE *Fp; /* file pointer for log file */

FILE *Tfp; /* file pointer for pid file */

char State; /* port monitor’s current state*/

main(argc, argv)

int argc;

char *argv[];

{

char *istate;

strcpy(Tag, getenv("PMTAG"));
/*

* open up a log file in port monitor’s private directory

*/

sprintf(Scratch, "/var/saf/%s/log", Tag);

Fp = fopen(Scratch, "a+");
if (Fp == (FILE *)NULL)

exit(1);

log(Fp, "starting");
/*

* retrieve initial state (either "enabled" or "disabled") and set

* State accordingly

*/

istate = getenv("ISTATE");
sprintf(Scratch, "ISTATE is %s", istate);

log(Fp, Scratch);

if (!strcmp(istate, "enabled"))
State = PM_ENABLED;

else if (!strcmp(istate, "disabled"))
State = PM_DISABLED;

else {

log(Fp, "invalid initial state");
exit(1);

}

sprintf(Scratch, "PMTAG is %s", Tag);

log(Fp, Scratch);

/*

* set up pid file and lock it to indicate that we are active

*/

Tfp = fopen("_pid", "w");
if (Tfp == (FILE *)NULL) {

log(Fp, "couldn’t open pid file");
exit(1);

}

if (lockf(fileno(Tfp), F_TEST, 0) < 0) {

log(Fp, "pid file already locked");
exit(1);

}

fprintf(Tfp, "%d", getpid());

fflush(Tfp);

log(Fp, "locking file");
if (lockf(fileno(Tfp), F_LOCK, 0) < 0) {

log(Fp, "lock failed");
exit(1);

}

/*

Sample Port Monitor Code

Appendix F • Writing a Port Monitor With the Service Access Facility (SAF) 325

EXAMPLE F–1 Sample Port Monitor (Continued)

* handle poll messages from the sac ... this function never

returns

*/

handlepoll();

pause();

fclose(Tfp);

fclose(Fp);

}

handlepoll()

{

int pfd; /* file descriptor for incoming pipe */

int sfd; /* file descriptor for outgoing pipe */

struct sacmsg sacmsg; /* incoming message */

struct pmmsg pmmsg; /* outgoing message */

/*

* open pipe for incoming messages from the sac

*/

pfd = open("_pmpipe", O_RDONLY|O_NONBLOCK);

if (pfd < 0) {

log(Fp, "_pmpipe open failed");
exit(1);

}

/*

* open pipe for outgoing messages to the sac

*/

sfd = open("../_sacpipe", O_WRONLY);

if (sfd < 0) {

log(Fp, "_sacpipe open failed");
exit(1);

}

/*

* start to build a return message; we only support class 1

messages

*/

strcpy(pmmsg.pm_tag, Tag);

pmmsg.pm_size = 0;

pmmsg.pm_maxclass = 1;

/*

* keep responding to messages from the sac

*/

for (;;) {

if (read(pfd, &sacmsg, sizeof(sacmsg)) != sizeof(sacmsg)) {

log(Fp, "_pmpipe read failed");
exit(1);

}

/*

* determine the message type and respond appropriately

*/

switch (sacmsg.sc_type) {

case SC_STATUS:

log(Fp, "Got SC_STATUS message");
pmmsg.pm_type = PM_STATUS;

pmmsg.pm_state = State;

break;

case SC_ENABLE:

Sample Port Monitor Code

ONC+ Developer's Guide • November 2010 (Beta)326

EXAMPLE F–1 Sample Port Monitor (Continued)

/*note internal state change below*/

log(Fp, "Got SC_ENABLE message");
pmmsg.pm_type = PM_STATUS;

State = PM_ENABLED;

pmmsg.pm_state = State;

break;

case SC_DISABLE:

/*noteinternalstatechangebelow*/

log(Fp, "Got SC_DISABLE message");
pmmsg.pm_type = PM_STATUS;

State = PM_DISABLED;

pmmsg.pm_state = State;

break;

case SC_READDB:

/*

* If this were a fully functional port

* monitor, it would read _pmtab here and

* take appropriate action

*/

log(Fp, "Got SC_READDB message");
pmmsg.pm_type = PM_STATUS;

pmmsg.pm_state = State;

break;

default:

sprintf(Scratch, "Got unknown message <%d>",
sacmsg.sc_type);

log(Fp, Scratch);

pmmsg.pm_type = PM_UNKNOWN;

pmmsg.pm_state = State;

break;

}

/*

* send back a response to the poll

* indicating current state

*/

if (write(sfd, &pmmsg, sizeof(pmmsg)) != sizeof(pmmsg))

log(Fp, "sanity response failed");
}

}

/*

* general logging function

*/

log(fp, msg)

FILE *fp;

char *msg;

{

fprintf(fp, "%d; %s\n", getpid(), msg);

fflush(fp);

}

The following code example shows the sac.h header file.

EXAMPLE F–2 sac.hHeader File

/* length in bytes of a utmpx id */

define IDLEN 4 /* wild character for utmpx ids */

Sample Port Monitor Code

Appendix F • Writing a Port Monitor With the Service Access Facility (SAF) 327

EXAMPLE F–2 sac.hHeader File (Continued)

define SC_WILDC 0xff /* max len in bytes for port monitor tag */

define PMTAGSIZE 14

/* values for rflag in doconfig() */

define NOASSIGN 0x1 /* don’t allow assign operations */

define NORUN 0x2 /* don’t allow run or runwait operations */

/*

* Message to SAC (header only). This header is forever fixed.

* The size field (pm_size) defines the size of the data portion of the

* message, which follows the header. The form of this optional data

* portion is defined strictly by the message type (pm_type).

*/

struct pmmsg {

char pm_type; /* type of message */

unchar pm_state; /* current state of pm */

char pm_maxclass; /* max message class this port monitor understands */

char pm_tag[PMTAGSIZE + 1]; /* pm’s tag */

int pm_size; /* size of opt data portion */

};

/* pm_type values */

define PM_STATUS 1 /* status response */

define PM_UNKNOWN 2 /* unknown message was received */

/* pm_state values */

/* Class 1 responses */

define PM_STARTING 1 /* monitor in starting state */

define PM_ENABLED 2 /* monitor in enabled state */

define PM_DISABLED 3 /* monitor in disabled state */

define PM_STOPPING 4 /* monitor in stopping state */

/* Message to port monitor */

struct sacmsg {

int sc_size; /* size of optional data portion */

char sc_type; /* type of message */

};

/* sc_type values

* These represent commands that the SAC sends to a port monitor. These

* commands are divided into "classes" for extensibility. Each subsequent

* "class" is a superset of the previous "classes" plus the new commands

* defined within that "class". The header for all commands is identical.

* However, a command may be defined such that an optional data portion

* may be sent in addition to the header. The format of this optional data

* piece is self-defining based on the command.

* Important note: The first message sent by the SAC must always be a

* class 1 message. The port monitor response indicates the maximum class

* that it is able to understand. Also port monitors should only respond to

* a message with an equivalent class response (i.e. a class 1 command causes

* a class 1 * response).

*/

/* Class 1 commands (currently, there are only class 1 commands) */

Sample Port Monitor Code

ONC+ Developer's Guide • November 2010 (Beta)328

EXAMPLE F–2 sac.hHeader File (Continued)

define SC_STATUS 1 /* status request */

define SC_ENABLE 2 /* enable request */

define SC_DISABLE 3 /* disable request */

define SC_READDB 4 /* read pmtab request */

/*

* ‘errno’ values for Saferrno. Note that Saferrno is used by both

* pmadm and sacadm and these values are shared between them

*/

define E_BADARGS 1 /* bad args/ill-formed cmd line */

define E_NOPRIV 2 /* user not priv for operation */

define E_SAFERR 3 /* generic SAF error */

define E_SYSERR 4 /* system error */

define E_NOEXIST 5 /* invalid specification */

define E_DUP 6 /* entry already exists */

define E_PMRUN 7 /* port monitor is running */

define E_PMNOTRUN 8 /* port monitor is not running */

define E_RECOVER 9 /* in recovery */

Logic Diagram and Directory Structure
Figure F-1 is a logical diagram of the SAF. It illustrates how a single service access controller can
spawn a number of port monitors on a per-system basis. This technique means that several
monitors can run concurrently, providing for the simultaneous operation of several different
protocols.

Logic Diagram and Directory Structure

Appendix F • Writing a Port Monitor With the Service Access Facility (SAF) 329

The following figure shows is the corresponding directory structure diagram. Following the
diagram is a description of the files and directories.

FIGURE F–1 SAF Logical Framework

Service Access
Controller

Per-system configuration Secification

Port Monitor #1
configuration

Port Monitor #2
configuration

Port Monitor #3
configuration

Port
Monitor #1

Port
Monitor #2

Port
Monitor #3

Service 1
config

Service 2
config

Service 1 Service 2

Service 3
config

Service 4
config

Service 3 Service 4

Service 5
config

Service 6
config

Service 5 Service 6

. . .

. . .

. . .

. . .

Logic Diagram and Directory Structure

ONC+ Developer's Guide • November 2010 (Beta)330

The scripts and files in the SAF directory structure are:

■ /etc/saf/_sysconfig The per-system configuration script.
■ /etc/saf/_sactab The SAC's administrative file. Contains information about the port

monitors for which the SAC is responsible.
■ /etc/saf/pmtag The home directory for port monitor pmtag.
■ /etc/saf/pmtag/_config The per-port monitor configuration script for port monitor

pmtag.
■ /etc/saf/pmtag/_pmtab Port monitor pmtag's administrative file. Contains information

about the services for which pmtag is responsible.
■ /etc/saf/pmtag/svctag The file in which the per-service configuration script for service

svctag, available through port monitor pmtag, is placed.
■ /etc/saf/pmtag/_pid The file in which a port monitor writes its process ID in the current

directory and places an advisory lock on the file.
■ /etc/saf/pmtag/_pmpipe The file in which the port monitor receives messages from the

SAC and ../_sacpipe and sends return messages to the SAC.
■ /var/saf/_log The SAC's log file.
■ /var/saf/pmtag The directory for files created by port monitor pmtag, for example its log

file.

FIGURE F–2 SAF Directory Structure

/ (Root)

etc var

saf

_config _pmtab . . .

saf

_log pmtag pmtagN_sysconfig _sactab pmtag1 pmtagN

_config _pmtab scvtag _pid _pmpipe

Logic Diagram and Directory Structure

Appendix F • Writing a Port Monitor With the Service Access Facility (SAF) 331

332

Glossary

RPC Programming Terms

client A process that remotely accesses resources of a computer server

client handle A client process data structure that represents the binding of the client to a particular server's RPC
program.

connectionless
transport

Characteristic of the model of interconnection in which communication takes place without first
establishing a connection. See datagram transport.

connection-
oriented transport

Characteristic of the model of interconnection in which communication proceeds through three
well-defined phases: connection establishment, data transfer, and connection release. See stream
transport.

datagram
transport

A message and the Internet source and destination addresses that are associated with it. Datagram
transports have less overhead than connection-oriented transports but are considered less reliable. Data
transmissions are limited by buffer size.

deserialize To convert data from XDR format to a machine-specific representation.

handle An abstraction used by the service libraries to refer to a file or a file-like object such as a socket.

host A computer system that is accessed by computers and/or workstations at remote locations. Usually the
host contains the data, but in networks, the remote locations can be the host and provide information to
the network.

MT hot Characteristic of an interface in which the library or call automatically creates threads.

MT safe Characteristic of an interface that can be called in a threaded environment. An MT-safe interface can be
invoked concurrently for multiple threads.

network client A process that makes remote procedure calls to services.

network server A network device that manages resources and supplies services to a client.

network service A collection of one or more remote service programs.

ping A service that verifies activity on a remote system. A computer sends a small program to a host and notes
time on its return path.

remote program A program that implements one or more remote procedures.

333

RPC language
(RPCL)

A C-like programming language translated by the rpcgen compiler. RPCL is a superset of XDR Language.

RPC library The network services library, libnsl, specified to the link editor at compile time. Also known as the RPC
package.

RPC protocol The message-passing protocol that is the basis of the RPC package.

RPC/XDR A standard for machine-independent data structures. See RPC language.

serialize To convert data from a machine representation to XDR format.

server A network device that manages resources and supplies services to a client.

transport The fourth layer of the Open Systems Interconnection (OSI) Reference Model.

transport handle An abstraction used by the RPC libraries to refer to the transport's data structures.

TI-RPC Transport-independent RPC. The version of RPC supported in SunOS 5.0 and compatible versions.

TS-RPC Transport-specific RPC. The version of RPC supported in SunOS 4.0 and compatible versions. TS-RPC is
also supported in SunOS 5.0 and compatible versions.

universal address A hexadecimal address of a type of network, such as TCP/IP, that configures the port monitor to check for
print requests from print clients on a network.

virtual circuit
transport

An apparent connection between processes that is facilitated by transmission control protocol (TCP). A
virtual circuit enables applications to "talk" to each other as if they had a physical circuit.

XDR Language A data description language and data representation protocol.

RPC language (RPCL)

ONC+ Developer's Guide • November 2010 (Beta)334

Index

Numbers and Symbols
_1 suffix, 43, 76
32–bit system, 69–70
64–bit system, 70

A
access control

authentication, 113
port monitors and, 309

add, NIS+ database entries, 191
add.x source file, 53
add.x source file, 54, 59, 62
adding

port monitor services, 315
port monitors, 308

addition
of address registrations, 37
of NIS+ group members, 190
of NIS+ table entry objects, 189

addition of, NIS+ table entry objects, 196
ADDPROG program, 293
addresses

information reporting for, 38
look-up services, 36, 37
management functions, 139
name-to-address translation routines, 36
network, 301, 302
overview, 301, 302
pass server's address to client, 87
pass user's bind address, 89

addresses (Continued)
passing arguments as, 43, 76
transport (netbuf), 37
universal, 36, 266, 301
unregistering, 304

ah_cred field, 93
ah_key field, 114
ah_verf field, 93
ANSI C standards

rpcgen tool, 40, 52, 62
application programming interface (API)

NIS+, 189, 192
applications, porting from TS-RPC to TI-RPC, 135
arguments (remote procedures)

pass arbitrary data types, 77, 80
pass open TLI file descriptors, 87, 89
pass server's address to client, 87
pass user's bind address, 89
passing by address, 43, 76
passing by value, 54
void, 259

arrays
convert to XDR format, 80, 100, 101
declarations

RPC language, 256, 257
XDR language, 278, 279, 285

XDR code examples, 216, 219, 220
asynchronous mode, 103
AUTH_BADCRED error, 250
AUTH_DES authentication, 113, 243, 248

common key, 248
conversation key, 244, 248

335

AUTH_DES authentication (Continued)
credentials, 113
Diffie-Hellman encryption, 114, 247, 248
errors, 245
handle, 113, 114
nicknames, 245
protocol in XDR language, 246, 248
server, 114
time synchronization, 114, 245
verifiers, 244, 245

AUTH_KERB authentication, 115
and NFS, 250
credentials, 115, 116, 249
encryption, 115, 116
errors, 250
NFS, 249
nicknames, 116, 249
protocol in XDR language, 250
time synchronization, 115
verifiers, 115, 116, 250

AUTH_NONE authentication, 242
AUTH_REJECTEDVERF error, 250
AUTH_SHORT verifier, 242, 243
AUTH_SYS authentication, 242, 243
AUTH_TIMEEXPIRE error, 250
AUTH_TOOWEAK error, 250
AUTH_UNIX (AUTH_SYS) authentication, 243
authentication, 116, 140, 242

access control, 113
allocating authentication numbers, 242
AUTH_DES, 113, 114, 248
AUTH_KERB, 115, 116
AUTH_NONE, 242
AUTH_SHORT, 242, 243
AUTH_SYS (AUTH_UNIX), 242, 243
credentials

AUTH_DES, 113
AUTH_KERB, 115, 116, 249
window, 113, 115, 245

destroying an, 110
errors

AUTH_DES, 245
AUTH_KERB, 250

handles, 93, 113, 114

authentication (Continued)
low-level data structures and, 93
nicknames

AUTH_DES, 245
AUTH_KERB, 116, 249

NIS+, 187
overview, 242
registering authentication numbers, 242
RPC protocol and, 236, 237
rpcgen tool, 66
servers, 110, 111, 113, 114
service-dispatch and routine, 111
service-dispatch routine, 110
time synchronization

AUTH_DES authentication, 114, 245
AUTH_KERB authentication, 115

verifiers
AUTH_DES, 244, 245
AUTH_KERB, 115, 116, 250
AUTH_SYS, 242, 243

authorization, NIS+, 187

B
batched, 109, 238, 297–299
bcast.c program, 105
binding

dynamic, 302
TI-RPC, 235

Booleans
RPC language, 259
XDR language, 272

bottom-level interface routines (RPC), 91
broacast RPC, 105
broadcast RPC, 32, 65, 106, 139

overview, 238
routines, 106
server response, 106

buffer size
specify send and receive, 87, 90

byte arrays, XDR, 216

Index

ONC+ Developer's Guide • November 2010 (Beta)336

C
C

rpcgen tool, 62
ANSI C compliance, 40, 52, 62
C-style mode, 40, 52, 54
preprocessing directives, 51, 52, 64

rpcgen tool and
C-style mode, 259

C-style mode
rpcgen tool, 40, 52, 54, 259

caching
NIS+, 188
server, 92

call semantics
TI-RPC, 31, 234

callback procedures, 132
and transient RPC program numbers, 132
NIS+, 198
RPCSEC_GSS, 125
uses, 132

CBC (cipher block chaining) mode, 115
cd command, 322
change, NIS+ table entry objects, 190
changes, port monitor configuration scripts, 323
changing

port monitor configuration scripts, 324
port monitor services, 315

cipher block chaining (CBC) mode, 115
circuit-oriented transports, when to use, 35
circuit_v transport type, 35
cl_auth field, 93
classes of messages, 313
client handles, 33, 34

creating, 81
expert-level interface, 87, 89
intermediate level interface, 85
top-level interface, 45, 83
top-level level interface, 33

creation
bottom-level interface, 91
top-level interface, 45

destroying
top-level interface, 45

client handles (Continued)
destruction

expert-level interface, 89
top-level interface, 83

low-level data structures, 93
low-level data structures for, 93

client programs
and rpcgen tool, 46
remote copy, 98
rpcgen tool

ANSI C-compliance, 62
complex data structure passing, 49, 50
debugging, 70, 71
directory listing service, 49, 50
message printing code example, 43, 46
MT-safety, 40, 59
overview, 40, 43

simplified interface, 75
client stub routines

rpcgen tool, 39, 45
C-style mode, 54
MT Auto mode, 62
MT-safe, 57
MT-unsafe, 57, 58
preprocessing directive, 51

client templates
rpcgen tool, 40, 52, 53, 54

client time-out periods, 33
creation of timed clients, 83, 85
rpcgen tool, 66

clients
batched, 107, 297–299
multiple versions, 131
multithreaded, 145

safety, 56, 59, 73
User mode, 152, 153

NIS+, 188
transaction IDs and, 235
TS-RPC and TI-RPC, 140

_clnt.c suffix, 46
clnt_create routine, code example, 45
clnt_perror routine, 71
clnt_sperror routine, 71
comments, XDR language, 283

Index

337

compatibility
library functions, 138, 140

compilation
NIS+, 193
rpcgen tool, 40, 54

complex data structures
packing with xdr_inline, 53, 63
rpcgen tool, 46, 50

compound data type filters
XDR, 80, 215

_config file, 320, 321, 323
config file, 319
connection-oriented endpoints, 94
connection-oriented transports

and port monitors, 127, 128
client handle creation for, 34
nettype parameters for, 35
remote copy code example, 97
server handle creation for, 34

connectionless transports
client handle creation for, 34
nettype parameters for, 35
server handle creation for, 34
UDP, 265

constants
RPC language, 255
XDR language, 281, 283, 285

constructed data type filters
XDR, 80, 215

conversation key
AUTH_DES authentication, 244, 248

conversion
of local procedures to remote procedures, 41, 46
to XDR format, 46, 50, 210

convert
addresses, 137
from XDR format, 77, 84, 100, 101, 210, 211
to XDR format, 80, 100, 101, 207, 211

converting
addresses, 36
to XDR format, 77

copy
NIS+ database entries, 191
NIS+ objects, 192

copy (Continued)
NIS+ table entry objects, 190

copying, remote, 97
cpp directive, rpcgen tool, 52
crashes

server, 235, 245
create

NIS+ databases, 191
NIS+ directory objects, 194
NIS+ group objects, 194
NIS+ table objects, 195

creating
utmpx entries, 310, 316, 319

creation, of NIS+ group objects, 190
credentials

AUTH_DES, 113
AUTH_KERB, 115, 116, 249
window, 113, 115
window (lifetime) of, 245

D
daemons

kerbd, 249
rpcbind, 37

data representation, TI-RPC, 31
data structures

conversion to XDR format, 80
converting to XDR format, 208
low-level, 92
MT safe, 152
packing with xdr_inline, 53, 63
recursive, 228, 231, 282
rpcgen tool, 46, 50

data types
pass arbitrary, 80
passing arbitrary, 77

database access functions (NIS+), 189, 191
datagram_n transport type, 35
datagram transports

and broadcast RPC, 105
when to use, 35

datagram_v transport type, 35

Index

ONC+ Developer's Guide • November 2010 (Beta)338

date service
intermediate level client for, 85
intermediate level server for, 86
top-level client for trivial, 81, 83
top-level server for, 83, 84

debug, raw mode, 97
debugging

and rpcgen tool, 71
rpcgen tool, 64, 70

declarations
RPC language, 255, 260
XDR language, 270, 282

defaults
maximum number of threads, 149
single-threaded mode, 147

define statements, command line, rpcgen tool, 64
delete

NIS+ directory from host, 191
NIS+ group objects, 202
NIS+ table entry objects, 202

deleting
port monitor services, 315
port monitors, 308

deletion
of associations, 34
of mappings, 34
of NIS+ group members, 190
of NIS+ group objects, 190
of NIS+ table entry objects, 190

deletion of
NIS+ group objects, 200
NIS+ objects from namespace, 199
NIS+ table entry objects, 200

DES encryption, 114, 244
deseriale, 210
destroy, NIS+ objects, 192
destroying, client handles, 45
destruction

of client handles, 89
XDR streams, 224

destruction of
client authentication handles, 110
client handles, 83
server handles, 138

Diffie-Hellman encryption, 114, 244, 247, 248
dir_proc.c routine, 48
dir.x program, 46, 289–292
dir.x program, 48
directories

remote directory listing service, 46, 50, 289–292
SAF, 330

disabling port monitors, 310, 311
discriminated unions

declarations
RPC language, 258
XDR language, 258, 280, 285

XDR code samples, 221
dispatch tables

rpcgen tool, 67, 68
doconfig function, 310, 318, 320
domains (NIS+), 186, 188

functions, 190, 192
dynamic binding, 302
dynamic program numbers, 132, 237

E
ECB (electronic code book) mode, 115, 116
electronic code book (ECB) mode, 115
enabling

port monitors, 310, 311
server caching, 92

encryption
AUTH_DES authentication (Diffie-Hellman), 114,

244, 247, 248
AUTH_KERB authentication, 115, 116
privacy service, 116

endpoints, connection-oriented, 94
enumeration filters

XDR primitives, 215
enumerations

RPC language, 47, 254
XDR language, 272

errors
authentication

AUTH_DES, 245
AUTH_KERB, 250

client handle creation, 82

Index

339

errors (Continued)
multiple client version, 131
NIS+ error message display functions, 189, 191
RPC, 45, 71, 236

/etc/gss/mech, 126
/etc/gss/qop, 126
/etc/inet/inetd.conf file, 128
/etc/netconfig database, 34, 137
/etc/netconfig database, 64
/etc/rpc database, 32
/etc/saf/_pid file, 310, 319
/etc/saf//_config file, 319, 320, 321, 323
/etc/saf//_pmpipe file, 311, 319
/etc/saf//_pmtab file, 311, 315, 316, 319
/etc/saf//svctag file, 316, 319, 320
_pmtab, 315
/etc/saf/_sactab files, 314
/etc/saf/_sysconfig file, 320, 323
expert-level interface routines (RPC), 87, 91

client, 89
overview, 87
server, 91

F
file data structure, XDR language, 285
file descriptors, pass open TLI, 89
file descriptors, passing open TLI, 87
filters (XDR)

arrays, 216, 219, 220
constructed (compound) data type, 80, 215
enumeration, 215
floating point, 214
number, 77, 213, 214
opaque data, 219, 220
strings, 80, 215, 216
unions, 221

fixed-length arrays
declarations

RPC language, 256
XDR language, 278

XDR code sample, 220
fixed-length opaque data, XDR language, 275

floating point
XDR language, 273–274, 275

floating point filters, XDR primitives, 214
free routine, 50

G
groups (NIS+)

manipulation functions, 189, 190
sample programs, 194, 200, 202

H
handles

authentication, 93, 113, 114
header files

rpcgen tool, 45, 51

I
I/O streams, XDR, 224
.i suffix, 67
identification

of remote procedures, 235
remote procedures, 235, 237

identifiers, XDR language, 283
identifying

port monitor services, 315
remote procedures, 31, 32

index table, rpcgen tool, 51
inetd port monitor, 127, 128
inetd port monitor, rpcgen tool, 46
inetd port monitor

rpcgen tool, 65, 66
information, remote host status, 145
information reporting

addresses, 38
NIS+, 190, 191
RPC, 38
server callbacks, 132

installing port monitor configuration scripts, 323, 324

Index

ONC+ Developer's Guide • November 2010 (Beta)340

integers
XDR language, 207, 208

integrity, 116
intermediate level interface routines, 33
intermediate level interface routines (RPC), 84
ISTATE environment variable, 309, 311, 318
IXDR_GET_LONG, 70
IXDR_PUT_LONG, 70

K
kerbd daemon, 248, 249
keywords

RPC language, 47
XDR language, 285

KGETKCRED procedure, 248, 249
KGETUCRED procedure, 249, 250
KSETKCRED procedure, 248, 249

L
lib library, 50
libc library, 137, 138
libnsl library, 48
libnsl library, 45, 137, 138
libraries

and rpcgen tool
libnsl, 138

lib, 50
libc, 137, 138
libnsl, 45, 48, 137, 138
librpcsvc, 73
lthread, 146
RPC functions, 138, 140
rpcgen tool, 137

libnsl, 45, 48
selecting TI-RPC or TS-RPC library, 40, 52, 62

XDR, 209, 211
librpcsvc library, 73
limits

broadcast request size, 105
maximum number of threads, 149

linked lists
XDR, 228, 231, 282

list
NIS+ objects, 192, 198
NIS+ principals, 191
NIS+ servers, 191
NIS+ table objects, 197

listen port monitor, 127
administrative command for, 311
rpcgen tool, 46, 65, 66
using, 128, 129

listing
portmap mappings, 305
remote directory listing service, 46, 50, 289–292
rpcbind mappings, 32

live code examples, 289–292, 293
batched code, 297–299
directory listing program, 289–292
print message program, 294–297
spray packets program, 293
time server program, 292–293

local procedures
conversion to remote procedures, 41, 46

locks
mutex, multithreaded mode and, 147
port monitor IDs and lock files, 310, 319

log functions
NIS+ transaction, 189, 192

low-level data structures, 92
lthread library, 146

M
main server function, 65
makefile templates

rpcgen tool, 40, 53
map, 34
master servers

NIS+, 186, 188, 202
maximums

broadcast request size, 105
number of threads, 149

mechanism, security, 117
memory, 211

Index

341

memory (Continued)
allocating with XDR, 100, 101
releasing, 59, 81

clnt_destroy routine, 45
free routine, 50
NIS+, 189, 190, 191
XDR_FREE operation, 215
xdr_free routine, 50

XDR primitive requirements, 215
memory streams, XDR, 225
message classes, 313
message interface (SAF), 311, 313, 319, 324
msg_clnt.c routine, 45
msg.h header file, 45
msg_svc.c program, 46
msg_svc.c routine, 45
msg.x program, 56
MT Auto mode, 147, 149

code examples, 150
rpcgen tool, 40, 52, 61
service transport handle, 148

MT-safe code
clients, 40, 56, 59, 73
rpcgen tool, 40, 52, 56
servers, 39, 40, 58, 59, 61, 73, 147

MT User mode, 147, 148, 152
multiple client versions, 131
multiple server versions, 129
multithreaded RPC program

clients, 145
User mode, 152, 153

library, 146
maximum number of threads, 149
performance enhancement, 149, 155
servers, 148

Auto mode, 147, 148, 149
timing diagram, 147
User mode, 147, 148, 152, 155

multithreaded RPC programming, 145
clients

safety, 40, 56, 59, 73
rpcgen tool, 40, 52, 56, 62
servers, 145, 146

Auto mode, 40, 52, 61

multithreaded RPC programming, servers (Continued)
safety, 39, 40, 58, 59, 61, 73, 147

multithreaded user mode, 147
multithreaded User mode, 148, 152
mutex locks, and multithreaded mode, 147

N
Name Service Switch, 187
name-to-address translation, 36, 137
names, netnames, 113
naming

client stub programs by rpcgen, 45, 46
netnames, 244
programs by version number, 129
remote procedure calls by rpcgen, 43
server programs by rpcgen, 46
standard for, 244
template files for rpcgen, 53

netconfig database, 34, 64, 137
netnames, 113, 244
NETPATH environment variable, 34, 64, 82
network names, 113, 244
network pipes, 206
network selection

RPC, 34
rpcgen tool, 64

Newstyle (C-style) mode
rpcgen tool, 40, 52, 54

NFS
Kerberos authentication, 249, 250

NFSPROC_GETATTR procedure, 249
NFSPROC_STATVFS procedure, 250
nicknames

AUTH_DES, 245
AUTH_KERB, 116, 249

NIS+, 188, 202
application programming interface (API), 189, 192
compilation, 193
database access functions, 189, 191
domains, 186, 188

functions, 190
error message display functions, 189, 191

Index

ONC+ Developer's Guide • November 2010 (Beta)342

NIS+ (Continued)
groups

sample programs, 194, 200, 202
local name functions, 189, 190, 192
miscellaneous functions, 189, 192
Name Service Switch, 187
objects, 188

manipulation functions, 189
sample programs, 193, 202

overview, 27
sample program, 192, 202
security, 187
servers, 186

functions, 189, 191
sample program, 202

tables, 186, 187, 188
access functions, 189
sample programs, 195

time synchronization, 192
transaction log functions, 189, 192
unsupported macros, 193

NIS+ (
groups

manipulation functions, 189
NIS+ Plus

groups
manipulation functions, 190

nlsadmin command, 311
NULL arguments, 76
NULL pointers, 223
NULL strings, 260
NULL transport type, 35
number filters, XDR, 77, 213, 214
number of users

on a network, 113
on a remote host, 73

O
objects (NIS+), 188

manipulation functions, 189, 192
sample programs, 193, 202

ONC+ overview, 25, 27

opaque data
declarations

RPC language, 260
XDR language, 275, 277

XDR code examples, 219, 220
open TLI file descriptors

passing, 87, 89
optional-data unions, XDR language, 282

P
_pid file, 310, 319
ping program, 252, 253
pipes

network, 206
_pmpipe file, 311, 319
_sacpipe file, 311, 319

pm_maxclass field, 313
pm_size field, 313
pmadm command, 129, 311, 315, 317, 324
PMAPPROC_CALLIT procedure, 305
PMAPPROC_DUMP procedure, 305
PMAPPROC_GETPORT procedure, 304
PMAPPROC_NULL procedure, 304
PMAPPROC_SET procedure, 304
PMAPPROC_UNSET procedure, 304
pmmsg structure, 312
_pmpipe file, 311, 319
_pmtab file, 311, 315, 316, 319
/ directory, 311, 315
PMTAG environment variable, 311, 318
pointers

remote procedures, 43
RPC language, 257
XDR code examples, 222, 223

poll routine, 103
pop configuration-script keyword, 322
port monitors, 127

activity monitoring, 309
adding, 308
adding services, 315
administrative commands

monitor-specific command, 317
pmadm, 128, 129, 311, 315, 317, 324

Index

343

port monitors, administrative commands (Continued)
sacadm, 129, 308, 314, 316, 317, 323

administrative files
_pmtab, 316
_pmtab, 311, 315, 319
_sactab, 314

administrative interface, 314, 319
changing port monitor services, 315
configuration scripts, 320, 324

installation, 324
installing, 323
language for writing, 321, 322
per-port monitor, 319, 320, 321, 323
per-service, 310, 311, 318, 319, 320, 321, 324
per-system, 320, 323
printing, 323, 324
replacement, 324
replacing, 323

deleting services, 315
disabling, 310, 311
enabling, 310, 311
files

administrative, 311, 314, 315, 316, 318
key, 318
per-port monitor configuration, 319, 320, 321,

323
per-service configuration, 310, 311, 318, 319,

320, 324
per-system configuration, 320, 323
private, 311, 315
process ID, 310, 319

functions, 308, 310, 319
identifying services, 315
management function, 309
message interface, 311, 313, 319, 324
_pmpipe file, 311, 319
private files, 311, 315
process IDs and lock files, 310, 319
removing, 308
requirements for implementing, 318
restricting access to system, 309
rpcgen tool, 46, 65, 66
sample code, 324
service interface, 317

port monitors (Continued)
terminating, 310, 319
types of, 314
utmpx entry creation, 310, 316, 319
version numbers, 316, 317

port numbers
getting for registered services, 301
TCP/IP protocol, 265, 304
UDP/IP protocol, 265, 304

porting TS-RPC to TI-RPC, 135
and name-to-address mapping, 137
and old interfaces, 137
applications, 135
benefits, 136
code comparison examples, 140
differences between TI-RPC and TS-RPC, 137, 140
function compatibility lists, 138, 140
libc library, 137
libnsl library, 137

preprocessing directives
rpcgen tool, 51, 52, 64

printing
message to system console, 41, 46, 294–297
port monitor configuration scripts, 323, 324

printmsg.c program, remote version, 46
printmsg.c program

remote version, 42
single process version, 41

printmsg.c program
single process version, 41, 294–297

privacy, 116
procedure-lists, RPC language, 254
procedure numbers, error conditions, 236
procedures

registering as RPC programs, 32
registration as RPC programs, 76
RPC language, 254

program declarations
RPC language, 258, 259

program definitions, RPC language, 253
program numbers, 235, 237

assigning, 237
error conditions, 236
registering, 237

Index

ONC+ Developer's Guide • November 2010 (Beta)344

program numbers (Continued)
transient (dynamically assigned), 132, 237

PROGVERS_ORIG program name, 129
PROGVERS program name, 129
protocols

AUTH_DES, 246
AUTH_DES, 248
specifying in RPC language, 42

push configuration-script keyword, 321

Q
quadruple-precision floating point

XDR language, 274–275, 275

R
raw RPC, testing programs using low-level, 97
READDIR procedure, 46, 50, 289–292
record-marking standard, 241
record streams

XDR, 225, 226, 241
recursive data structures, 228, 231, 282
registering

authentication numbers, 242
procedures as RPC programs, 32, 76
program numbers, 237

registration, 138
hand-coded registration routine, 76
procedures as RPC programs, 76
program version numbers, 129

remote directory listing service, 46, 50
remote procedures

conversion of local procedures, 46
conversion of local procedures to, 41
identification, 235
identifying, 31, 32, 237

Remote Time Protocol, 51, 62
rendezvousing, TI-RPC, 235
replica servers

NIS+, 186, 188
rls.c routine, 50

RPC
address look-up services, 34, 36, 37
address reporting, 38
address translation, 36, 137
asynchronous mode, 103
batched, 107, 109, 238, 297–299
errors, 71, 236
identification of remote procedures, 235
identifying remote procedures, 31, 32, 235
information report, 132
information reporting, 38
interface routines, 32, 33, 73, 80, 81

bottom-level, 91
caching servers, 92
expert-level, 87, 91
intermediate level, 33, 84
low-level data structures, 92
simplified, 80, 81
standard, 80
top-level, 45

multiple client versions, 131
multiple server versions, 129
name-to-address translation, 36, 37, 137
network selection, 34
poll routine, 103
port monitor usage, 129
record-marking standard, 241
standards, 30, 241
transient RPC program numbers, 132, 237
transport selection, 35

RPC (, identifying remote procedures, 237
RPC (remote procedure call)

errors, 45
failure of, 45
interface routines

top-level, 45
RPC_AUTHERROR error, 245
RPC call, record-marking standard, 241
RPC_CLNT preprocessing directive, 51
rpc_createerr global variable, 82
rpc_gss_principal_t principal name structure, 121
rpc_gss_principal_t principal structure name, 122
RPC_HDR preprocessing directive, 51
RPC language, reference, 287

Index

345

RPC language (RPCL), 252, 253, 260
arrays, 256, 257
Booleans, 259
C, 39
C-style mode and, 259
constants, 255
declarations, 255, 257
definitions, 254
discriminated unions, 47, 258
enumerations, 47, 254
example protocol described in, 42
fixed-length arrays, 256
keywords, 47
opaque data, 260
overview, 287
pointers, 257
portmap protocol specification, 302
program declarations, 258, 259
simple declarations, 255
special cases, 259, 260
specification, 252, 260
strings, 42, 260
structures, 47, 257
syntax, 253, 254
type definitions, 255
unions, 47, 258
variable-length arrays, 256
voids, 260
XDR language, 252
XDR language vs., 253, 287

RPC_SVC preprocessing directive, 51
RPC_TBL preprocessing directive, 51
RPC_XDR preprocessing directive, 51
rpcbind daemons, registering addresses with, 37
rpcbind routine, time service, 245
RPCBPROC_CALLIT procedure, 37
RPCBPROC_GETTIME procedure, 245
rpcgen tool, 39, 69–70, 71, 293

advantages, 40
arguments, 43, 54, 76, 77, 80, 259
authentication, 64, 66, 113, 116
batched code example, 297–299
broadcast call server response, 65
C and, 62

rpcgen tool, C and (Continued)
ANSI C compliance, 40, 52, 62
C-style mode, 40, 52, 54, 259
preprocessing directives, 51, 52, 64

compilation modes, 40, 54
complex data structure passing, 46, 50
conversion of local procedures to remote

procedures, 41, 46
cpp directive, 52
debugging, 64, 70, 71
defaults

argument passing mode, 54, 55
C preprocessor, 52
client time-out period, 66
compilation mode, 40
library selection, 62
MT-safety, 40, 56
output, 39
server exit interval, 66

define statements on command line, 64
directory listing program, 46, 50, 289–292
dispatch tables, 67, 68
failure of remote procedure calls, 45
flags, 53

listed, 52
-A (MT Auto mode), 52, 61
-a (templates), 52, 53
-b (TS-RPC library), 52, 62
-i (xdr_inline() count), 63
-M (MT-safe code), 52, 56
-N (C-style mode), 52, 54
-Sc (templates), 52, 53
-Sm (templates), 52, 53
-Ss (templates), 52, 53

hand-coding vs., 76
libraries

libnsl, 46, 48, 137, 138
selecting TI-RPC or TS-RPC library, 40, 52, 62

MT (multithread) Auto mode, 40, 52, 61, 149
MT (multithread)-safe code, 40, 52, 56
naming remote procedure calls, 43
network types/transport selection, 64
Newstyle (C-style) mode, 40, 52, 54
optional output, 39

Index

ONC+ Developer's Guide • November 2010 (Beta)346

rpcgen tool (Continued)
pointers, 43
port monitor support, 46, 65, 66
preprocessing directives, 51, 52, 63, 64
print message program, 41, 46, 294–297
programming techniques, 63, 71
socket functions, 62
spray packets program, 293
templates, 40, 52, 53, 54
TI-RPC and TS-RPC library selection, 62
TI-RPC vs. TS-RPC, 137
TI-RPC vs. TS-RPC library selection, 40, 52
time-out changes, 66
time server program, 51, 62, 292–293
tutorial, 40, 53
variable declarations and, 256
xdr_inline count, 53
xdr_inline() count, 63
XDR routine generation, 46, 50, 51, 205

RPCPROGVERSMISMATCH error, 131
RPCSEC_GSS security flavor

/etc/gss/qop file, 126
etc/gss/mech/ file, 126
service

integrity, 116
/rpcsvc directory, 237
rstat program, multithreaded, 145
run configuration-script keyword, 322–323
runwait configuration-script keyword, 322

S
SAC

key files, 314, 318
message interface, 311, 313, 319, 324
_sacpipe file, 311, 319
_sactab file, 314
sac.h header file, 327
sacadm command, 129, 314, 316, 317, 323
starting, 319, 320

SAC (service access controller), sacadm command, 308
sac.h header file, 327
sacadm command, 129, 308, 314, 316, 317, 323
_sacpipe file, 311, 319

_sactab file, 314
SAF

administrative interface, 319, 323, 324
key files, 318
monitor-specific command, 317
pmadm command, 128, 129, 311, 315, 317, 324
port monitor implementation requirements, 318
port monitor responsibilities, 319
sacadm command, 129, 314, 316, 317, 323
_pmtab file, 319
_pmtab file, 311, 316
_sactab file, 314
service interface, 317

configuration scripts, 320, 324
installing, 323, 324
language for writing, 321, 322
per-port monitor, 319, 320, 321, 323
per-service, 310, 311, 318, 319, 320, 321, 324
per-system, 320, 323
printing, 323, 324
replacing, 323, 324

directory structure, 330
files used by, 311, 314, 315, 316, 318
logic diagram, 329
message interface, 311, 313, 319, 324
overview, 310
port monitor functions and, 310, 319
SAC (service access controller) and, 310, 311, 313
sample code, 324
terminating port monitors, 310, 319

SAF)
configuration scripts

per-service, 324
SAF (service access facility

administrative interface
_pmtab file, 315

SAF (service access facility), 307
administrative interface, 314

sacadm command, 308
overview, 307
port monitor functions and, 308
SAC (service access controller) and, 308

sc_size field, 313

Index

347

security
mechanism, 117
NIS+, 187
service, 116

semantics
TI-RPC call, 31, 234

serialize, 100, 101, 207, 211
serialized, 80
serializing, 46, 50, 77, 210
server handles, 33

creating, 33, 34
expert-level interface, 91
intermediate level interface, 86
top-level interface, 84

creation, 138
expert-level interface, 89
top-level interface, 83

destruction, 138
low-level data structures, 93

server programs
and rpcgen tool

client authentication, 111
debugging, 71

remote copy, 99
rpcgen tool, 45

broadcast call response, 64, 65
C-style mode, 55
client authentication, 64, 66
complex data structure passing, 48
debugging, 70
directory listing service, 48
MT Auto mode, 61
MT-safety, 39, 40, 61
network type/transport selection, 64
overview, 40, 46

rpcgen tool and
client authentication, 110
directory listing service, 289–292

simplified interface, 76
transient RPC program, 132

server stub routines
rpcgen tool, 39, 40, 45

ANSI C-compliant, 62
MT Auto mode, 62

server stub routines, rpcgen tool (Continued)
MT-safe, 39, 58, 59
preprocessing directive, 51

server templates
rpcgen tool, 40, 52, 53, 55

server transport handle, 93
servers

and port monitors, 127, 129
authentication, 110, 111, 113, 114
batched, 108, 297–299
caching, 92
crashes, 235, 245
dispatch tables, 64, 67, 68
exit interval, rpcgen tool, 65, 66
multiple versions, 129
multithreaded, 145, 146

Auto mode, 40, 52, 61, 147, 148, 149
safety, 39, 40, 58, 59, 61, 73, 147
user mode, 147
User mode, 148, 152, 155

NIS+, 186, 191
poll routine, 103
transaction IDs and, 235

service, 116
service-dispatch routine, authentication, 111
service transport handle (SVCXPRT), 148
simple declarations, RPC language, 255
simplified interface routines, 32
simplified interface routines (RPC), 73, 80

hand-coded registration routine, 76
server, 76
XDR conversion, 80
XDR convert, 77

single-threaded mode
as default, 147
poll routine and, 103

spray.x (spray packets) program, 293
standard interface routines, 33

intermediate level routines, 33
standard interface routines (RPC), 32, 80

bottom-level routines, 91
expert-level routines, 87, 91
intermediate level routines, 84
low-level data structures, 92

Index

ONC+ Developer's Guide • November 2010 (Beta)348

standard interface routines (RPC) (Continued)
MT safety of, 73
top-level routines, 45, 81, 84

standards
ANSI C standard, rpcgen tool, 40, 52, 62
naming standard, 244
record-marking standard, 241
RPC, 30, 241
XDR canonical standard, 208, 209

STREAMS modules
and port monitor configuration, 322
port monitor configuration and, 323

string declarations
RPC language, 42, 260
XDR language, 277–278, 278

string representation
XDR routines, 80, 215

structure declarations
RPC language, 47, 257
XDR language, 279, 285

_svc.c suffix, 46
_svc suffix, 62
svctag file, 316, 319, 320
SVCXPRT service transport handle, 127, 148
syntax

RPC language, 253, 254
XDR language, 285

_sysconfig file, 320, 323

T
tables (NIS+), 186, 187, 188

access functions, 189
sample programs, 195

TCP
porting TCP applications from TS-RPC to

TI-RPC, 135
portmap port number, 304
portmap sequence, 302
server crashes and, 235

TCP (, nettype parameter for, 35
TCP (Transport Control Protocol), RPC protocol

and, 234

TCP/IP streams
XDR, 225, 226, 241

tcp transport type, 35
templates

rpcgen tool, 40, 52, 53, 54
terminating port monitors, 310, 319
test

NIS+ groups, 190
programs using low-level raw RPC, 97

thread.h file, 152
thread library, thread, 146
TI-RPC

address look-up services, 34, 36, 37
address reporting, 38
address translation, 36, 37, 137
call semantics, 31
data representation, 31
identifying remote procedures, 31, 32, 235, 237
information report, 132
information reporting, 38, 132
interface routines, 32, 33, 73, 80, 81

bottom-level, 91
caching servers, 92
expert-level, 87
intermediate level, 33, 84
low-level data structures, 92
simplified, 73, 80
standard, 32, 80
top-lvel, 84

library selection, rpcgen tool, 62
name-to-address translation, 36, 37, 137
network selection, 34
protocol, 31, 233, 235, 241

and authentication, 237
authentication, 236
binding and rendezvous independence, 235
identification of procedures, 235
identification procedures, 237
identifying procedures, 31, 32
in XDR language, 238
record-marking standard, 241
transport protocols and semantics and, 234
version number, 236

raw, test low-level programs, 97

Index

349

TI-RPC (Continued)
transient RPC program numbers, 132, 237
transport selection, 35

TI-RPC (
protocol

identifying procedures, 235
TI-RPC (transport-independent remote procedure call)

and library selection, rpcgen tool, 40
interface routines

top-level, 45
library selection, rpcgen tool, 52

time
obtaining current, 245
ping program, 252, 253

time-out periods
rpcgen tool, 64, 66

time server program, 51, 62, 292–293
time service

intermediate level client for, 85
intermediate level server for, 86
rpcbind routine, 245
top-level client for, 81, 83
top-level server for, 84
toplevel server for, 83

time synchronization
AUTH_DES authentication, 114, 245
AUTH_KERB authentication, 115
NIS+, 192

time.x program, 51, 62
time.x program, 292–293
timed client creation, 33

intermediate level interface, 85
top-level interface, 83

TLI file descriptors
passing open, 87, 89

top-level interface routines (RPC), 45, 81, 84
client, 45, 81, 83
overview, 81
server, 83, 84

topp-level interface routines, 33
transaction IDs, 31, 32, 235
transaction log functions (NIS+), 189
transient program numbers, 132, 237

transport handles
server, 93
SVCXPRT] service, 148
SVCXPRT service, 127

transport-level interface file descriptors
passing open, 87, 89

transport protocols, RPC protocol and, 234
transport selection

RPC, 35
rpcgen tool, 64

transport types
interfaces, 81
rpcgen tool, 64

trees, 282
TS-RPC (transport-specific remote procedure call),

library selection, rpcgen tool, 52
ttyadm command, 311
ttymon port monitor, 311
tutorials

rpcgen tool, 40–52, 52
type definitions

RPC language, 255
XDR language, 281, 282, 285

U
UDP

broadcast RPC and, 105
nettype parameter for, 35
porting UDP applications from TS-RPC to

TI-RPC, 135
portmap port number, 304
server creation routines for, 91

UDP (user datagram protocol), client creating routines
for, 89

UDP (User Datagram Protocol), RCP protocol
and, 234

udp transport type, 35
ulimit command, 322
umask command, 322
unions

declarations
RPC language, 47, 258
XDR language, 280, 282, 285

Index

ONC+ Developer's Guide • November 2010 (Beta)350

unions (Continued)
XDR code samples, 221

universal addresses, 36, 266, 301
unregistration, 138
unsigned integers, XDR language, 271
User MT mode, 147, 148, 152
user's bind address, pass, 89
users

number of, 73
on a network, 113

/usr/include/rpcsvc directory, 237
/usr/share/lib directory, 50
utmpx entries

creating, 310, 316, 319

V
/var/saf/ directory, 311, 315
variable declarations, 256
variable-length array declarations

RPC language, 256
XDR language, 278–279

variable-length opaque data
XDR language, 276–277, 277

verifiers
AUTH_DES, 244, 245
AUTH_KERB, 115, 116, 250
AUTH_SYS, 242, 243

version-lists, RPC language, 254
version numbers

assigning, 129
error conditions, 236
message protocol, 236
multiple client versions, 131
multiple server versions, 129
port monitors, 316, 317
registration of, 129

versions
library functions,, 140
library functions compatibility, 138
RPC language, 254

visible transport type, 35
void arguments, 259

void declarations
RPC language, 260
XDR language, 281

W
window of credentials

AUTH_DES authentication, 113
AUTH_KERB authentication, 115
window verifiers, 245

X
.x suffix, 48
XDR

block size, 270
canonical standard, 209
conversion from (deserializing), 77, 101
conversion to (serializing), 46, 50, 77
convert from (deserialize), 211
convert from (deserializing), 100
convert to (serialize), 101, 211
convert to (serializing), 100
converting from (deserializing), 210
converting to (serializing), 210
cost of conversion, 209
direction determination for operations, 224
graphic box notation, 269
library, 209, 211
linked lists, 228
optimizing routines, 224
primitive routines, 77, 210

arrays, 219
byte arrays, 216
discriminated unions, 221
nonfilter, 224
opaque data, 219, 220
pointers, 222, 223
strings, 215
unions, 221

rpcgen tool, 46, 50
streams

accessing, 224

Index

351

XDR, streams (Continued)
creation by RPC system, 209
implementing new instances, 227
implementing new instances of, 228
interface, 227, 228
memory, 225
nonfilter primitives, 224
record (TCP/IP), 226, 241
standard I/O, 224

treams
record (TCP/IP), 225

with memory allocation, 100, 101
XDR (external data representation)

file data structure in, 285
linked lists, 282
rpcgen tool, 51

xdr_ prefix, 48
xdr_array routine, 219
xdr_bytes routine, 216
XDR_DECODE operation, 215
XDR_ENCODE operation, 215
XDR_FREE operation, 215
xdr_inline count, 53, 63
XDR language, 270

arrays, 278, 279, 285
AUTH_DES authentication protocol, 246
authentication protocol, 248
Booleans, 272
comments, 283
constants, 281, 283, 285
counted byte strings, 277–278, 278
declarations, 270, 282
discriminated unions, 280, 282, 285
enumerations, 272
fixed-length arrays, 278
fixed-length opaque data, 275
floating point, 273–274, 275
identifiers, 283
keywords, 285
opaque data, 275, 277
optional-data unions, 282
overview, 269, 270
quadruple-precision floating point, 274–275, 275
RPC language, 252

XDR language (Continued)
RPC language vs., 287
RPC message protocol, 238
specification for, 283
strings, 277–278, 278
structures, 279, 285
syntax, 285
type definitions, 281, 282, 285
unions, 280, 282, 285
unsigned integers, 271
variable-length arrays, 278–279
variable-length opaque data, 276–277, 277
voids, 281

xdr_type (object) notation, 115
xdrs-x_op field, 224

Index

ONC+ Developer's Guide • November 2010 (Beta)352

	ONC+ Developer's Guide
	Preface
	Who Should Use This Guide
	How This Guide Is Organized
	Related Books and Sites
	Documentation, Support, and Training
	Oracle Software Resources
	Typographic Conventions
	Shell Prompts in Command Examples

	Introduction to ONC+ Technologies
	Introduction
	Brief Description of ONC+ Technologies
	TI-RPC
	XDR
	NFS
	NIS+

	Introduction to TI-RPC
	What Is TI-RPC?
	TI-RPC Issues
	Parameter Passing
	Binding
	Transport Protocol
	Call Semantics
	Data Representation

	Program, Version, and Procedure Numbers
	Overview of Interface Routines
	Simplified Interface Routines
	Standard Interface Routines
	Top-Level Routines
	Intermediate-Level Routines
	Expert-Level Routines
	Bottom-Level Routines

	Network Selection
	Transport Selection
	Name-to-Address Translation

	Address Look-up Services
	Registering Addresses
	Reporting RPC Information

	rpcgen Programming Guide
	What Is rpcgen?
	SunOS 9 Software Environment Features
	rpcgen Tutorial
	Converting Local Procedures to Remote Procedures
	Passing Complex Data Structures
	Preprocessing Directives
	cpp Directive

	Compile-Time Flags
	Compile-Time Client and Server Templates
	Compile-Time C-style Mode
	Compile-Time MT-Safe Code
	Compile-Time MT Auto Mode
	Compile-Time TI-RPC or TS-RPC Library Selection
	Compile-Time ANSI C-compliant Code
	Compile-Time xdr_inline() Count

	rpcgen Programming Techniques
	Network Types/Transport Selection
	Command-Line Define Statements
	Server Response to Broadcast Calls
	Port Monitor Support
	Time-out Changes
	Client Authentication
	Dispatch Tables
	64–Bit Considerations for rpcgen
	IPv6 Considerations for rpcgen
	Debugging Applications

	Programmer's Interface to RPC
	Simplified Interface
	Client Side of Simplified Interface
	Server Side of the Simplified Interface
	Hand-Coded Registration Routine
	Passing Arbitrary Data Types

	Standard Interfaces
	Top-Level Interface
	Client Side of the Top-Level Interface

	Intermediate-Level Interface
	Client Side of the Intermediate-Level Interface
	Server Side of the Intermediate-Level Interface

	Expert-Level Interface
	Client Side of the Expert-Level Interface
	Server Side of the Expert-Level Interface

	Bottom-Level Interface
	Client Side of the Bottom-Level Interface
	Server Side of the Bottom-Level Interface

	Server Caching
	Low-Level Data Structures

	Testing Programs Using Low-Level Raw RPC
	Connection-Oriented Transports
	Memory Allocation With XDR

	Advanced RPC Programming Techniques
	poll() on the Server Side
	Broadcast RPC
	Batching
	Authentication
	AUTH_SYS Authentication
	AUTH_DES Authentication
	AUTH_KERB Authentication

	Authentication Using RPCSEC_GSS
	RPCSEC_GSS API
	RPCSEC_GSS Routines
	Creating a Context
	Changing Values and Destroying a Context
	Principal Names
	Setting Server Principal Names
	Generating Client Principal Names
	Freeing Principal Names

	Receiving Credentials at the Server
	Cookies

	Callbacks
	Maximum Data Size
	Miscellaneous Functions
	Associated Files
	gsscred Table
	/etc/gss/qop and /etc/gss/mech

	Using Port Monitors
	Using inetd
	Using the Listener

	Multiple Server Versions
	Multiple Client Versions
	Using Transient RPC Program Numbers

	Porting From TS-RPC to TI-RPC
	Porting an Application
	Benefits of Porting
	IPv6 Considerations for RPC
	Porting Issues
	Differences Between TI-RPC and TS-RPC
	Function Compatibility Lists
	Creating and Destroying Services
	Registering and Unregistering Services
	SunOS Compatibility Calls
	Broadcasting
	Address Management Functions
	Authentication Functions
	Other Functions

	Comparison Examples

	Multithreaded RPC Programming
	MT Client Overview
	MT Server Overview
	Sharing the Service Transport Handle

	MT Auto Mode
	MT User Mode
	Freeing Library Resources in User Mode

	Extensions to the Sun RPC Library
	New Features
	One-Way Messaging
	clnt_send()
	oneway Attribute
	One-way call using a simple counter service

	Non-Blocking I/O
	Using Non-Blocking I/O
	Using a simple counter with non-blocking I/O

	clnt_call() Configured as Non-Blocking

	Client Connection Closure Callback
	Example of client connection closure callback

	User File Descriptor Callbacks
	Example of User File Descriptors

	NIS+ Programming Guide
	NIS+ Overview
	NIS+ Domains
	NIS+ and Servers
	NIS+ Tables
	NIS+ Security
	Name Service Switch
	NIS+ Administration Commands

	NIS+ API
	NIS+ Sample Program
	Unsupported Macros
	Functions Used in the Example
	Program Compilation

	XDR Technical Note
	What Is XDR?
	Canonical Standard
	XDR Library
	XDR Library Primitives
	Memory Requirements for XDR Routines
	Number Filters
	Floating-Point Filters
	Enumeration Filters
	No-Data Routine
	Constructed Data Type Filters
	Strings
	Byte Arrays
	Arrays
	Array Example 1
	Array Example 2
	Array Example 3

	Opaque Data
	Fixed-Length Arrays
	Discriminated Unions
	Discriminated Union Example

	Pointers
	Pointer Example
	Pointer Semantics

	Nonfilter Primitives
	Operation Directions
	Stream Access
	Standard I/O Streams
	Memory Streams
	Record TCP/IP Streams

	XDR Stream Implementation
	XDR Object

	Advanced XDR Topics
	Linked Lists

	RPC Protocol and Language Specification
	Protocol Overview
	RPC Model
	Transports and Semantics
	Binding and Rendezvous Independence

	Program and Procedure Numbers
	Program Number Assignment
	Program Number Registration
	Other Uses of the RPC Protocol
	Batching
	Broadcast RPC

	RPC Message Protocol
	Record-Marking Standard

	Authentication Protocols
	AUTH_NONE
	AUTH_SYS
	AUTH_SHORT Verifier

	AUTH_DES Authentication
	AUTH_DES Authentication Verifiers
	Nicknames and Clock Synchronization
	DES Authentication Protocol (in XDR language)
	Diffie-Hellman Encryption

	AUTH_KERB Authentication
	NFS Mount Example
	KERB Authentication Protocol

	RPC Language Specification
	Example Service Described in the RPC Language
	RPCL Syntax
	RPCL Enumerations
	RPCL Constants
	RPCL Type Definitions
	RPCL Declarations
	RPCL Simple Declarations
	RPCL Fixed-Length Array Declarations
	RPCL Variable-Length Array Declarations
	RPCL Pointer Declarations
	RPCL Structures
	RPCL Unions
	RPCL Programs
	RPCL Special Cases
	RPCL C-style Mode
	RPCL Booleans
	RPCL Strings
	RPCL Opaque Data
	RPCL Voids

	rpcbind Protocol
	rpcbind Operation

	XDR Protocol Specification
	XDR Protocol Introduction
	Graphic Box Notation
	Basic Block Size

	XDR Data Type Declarations
	Signed Integer
	Declaration
	Signed Integer Encoding

	Unsigned Integer
	Declaration
	Unsigned Integer Encoding

	Enumerations
	Booleans
	Hyper Integer and Unsigned Hyper Integer
	Declaration
	Hyper Integer Encoding

	Floating Point
	Declaration
	Double-Precision Floating Point Encoding

	Quadruple-Precision Floating Point
	Declaration
	Quadruple-Precision Floating Point Encoding

	Fixed-Length Opaque Data
	Declaration
	Fixed-Length Opaque Encoding

	Variable-Length Opaque Data
	Declaration
	Variable-Length Opaque Encoding

	Counted Byte Strings
	Declaration
	String Encoding

	Fixed-Length Array
	Declaration
	Fixed-Length Array Encoding

	Variable-Length Array
	Declaration
	Counted Array Encoding

	Structure
	Declaration
	Structure Encoding

	Discriminated Union
	Declaration
	Discriminated Union Encoding

	Void
	Declaration

	Constant
	Declaration

	Typedef
	Optional-Data

	XDR Language Specification
	Notational Conventions
	Lexical Notes
	Syntax Notes
	XDR Data Description

	RPC Language Reference

	RPC Code Examples
	Directory Listing Program and Support Routines (rpcgen)
	Time Server Program (rpcgen)
	Add Two Numbers Program (rpcgen)
	Spray Packets Program (rpcgen)
	Print Message Program With Remote Version
	Batched Code Example
	Non-Batched Example

	portmap Utility
	System Registration Overview
	portmap Protocol
	portmap Operation
	PMAPPROC_NULL
	PMAPPROC_SET
	PMAPPROC_UNSET
	PMAPPROC_GETPORT
	PMAPPROC_DUMP
	PMAPPROC_CALLIT

	Writing a Port Monitor With the Service Access Facility (SAF)
	What Is the SAF?
	What Is the SAC?
	Basic Port Monitor Functions
	Port Management
	Activity Monitoring
	Other Port Monitor Functions
	Restricting Access to the System
	Creating utmpx Entries
	Port Monitor Process IDs and Lock Files
	Changing the Service Environment: Running doconfig()

	Terminating a Port Monitor
	SAF Files
	Port Monitor Administrative File
	Per-Service Configuration Files
	Private Port Monitor Files

	SAC/Port Monitor Interface
	Message Formats
	SAC Messages
	Port Monitor Messages

	Message Classes

	Port Monitor Administrative Interface
	SAC Administrative File _sactab
	Port Monitor Administrative File _pmtab
	SAC Administrative Command sacadm
	Port Monitor Administrative Command pmadm
	Monitor-Specific Administrative Command
	Port Monitor/Service Interface
	New Service Invocations
	Standing Service Invocations

	Port Monitor Requirements
	Initial Environment

	Important Files
	Port Monitor Responsibilities

	Configuration Files and Scripts
	Interpreting Configuration Scripts With doconfig()
	Per-System Configuration File
	Per-Port Monitor Configuration Files
	Per-Service Configuration Files
	Configuration Language
	assign Keyword
	push Keyword
	pop Keyword
	runwait Keyword
	run Keyword

	Printing, Installing, and Replacing Configuration Scripts
	Per-System Configuration Scripts
	Per-Port Monitor Configuration Scripts
	Per-Service Configuration Scripts

	Sample Port Monitor Code
	Logic Diagram and Directory Structure

	Glossary
	Index

