Developer's Guide
11g Release 2 (11.2) for Microsoft Windows
E17726-01
October 2010
Oracle Provider for OLE DB Developer's Guide, 11g Release 2 (11.2) for Microsoft Windows
E17726-01
Copyright © 1999, 2010, Oracle and/or its affiliates. All rights reserved.
Contributors: Janis Greenberg, Eric Belden, Riaz Ahmed, Kiminari Akiyama, Neeraj Gupta, Sinclair Hsu, Gopal Kirsur, Sunil Mushran, Rajendra Pingte, Helen Slattery, Valarie Moore, Vikhram Shetty, Sujith Somanathan, Alex Keh, Christian Shay
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Based on an open standard, Oracle Provider for OLE DB (OraOLEDB) allows access to Oracle Databases. This documentation describes OraOLEDB's provider-specific features and properties.
This document describes the features of Oracle Database for Windows that apply to the Windows 2000, Windows XP, and Windows Server 2003 operating systems.
This Preface contains these topics:
Oracle Provider for OLE DB Developer's Guide is intended for programmers developing applications to access an Oracle Database using Oracle Provider for OLE DB. This documentation is also valuable to systems analysts, project managers, and others interested in the development of database applications.
To use this document, you must be familiar with OLE DB and have a working knowledge of application programming using Microsoft C/C++, Visual Basic, or ActiveX Data Objects (ADO). Knowledge of Component Object Model (COM) concepts are also useful.
Readers should also be familiar with the use of Structured Query Language (SQL) to access information in relational database systems.
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/
.
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.
Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html
or visit http://www.oracle.com/accessibility/support.html
if you are hearing impaired.
For more information, see these Oracle resources:
For information about Oracle error messages, see Oracle Database Error Messages. Oracle error message documentation is available only in HTML. If you only have access to the Oracle Documentation CD, you can browse the error messages by range. Once you find the specific range, use your browser's "find in page" feature to locate the specific message. When connected to the Internet, you can search for a specific error message using the error message search feature of the Oracle online documentation.
Many of the examples in this book use the sample schemas of the seed database, which is installed by default when you install Oracle. Refer to Oracle Database Sample Schemas for information on how these schemas were created and how you can use them yourself.
To download free release notes, installation documentation, white papers, or other collateral, please visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at
If you already have a username and password for OTN, then you can go directly to the documentation section of the OTN Web site at
For additional information, see:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
The following sections describe the new features in Oracle Provider for OLE DB (OraOLEDB):	
Oracle Provider for OLE DB release 11.1.0.7.20 includes the following:	
The CommandTimeout	
property determines how long OraOLEDB waits before it attempts to terminate the executed command. The Cancel	
command cancels the OraOLEDB command currently being executed.	
A new registry value, EnableCmdTimeout	
, allows developers to enable or disable the CommandTimeout	
property value.	
Oracle Provider for OLE DB release 11.1 includes the following:	
This release enhances the existing caching infrastructure to cache OraOLEDB data buffers and metadata information. This enhancement is independent of Database version and is available for all supported Database versions. This feature provides significant performance improvement for the applications that execute the same statement repeatedly.	
Oracle Provider for OLE DB introduced new connection string attributes and registry entries to enhance failover capability.	
Oracle Provider for OLE DB introduced a new connection string attribute and registry entry to support ADO disconnected recordsets.	
This chapter introduces Oracle Provider for OLE DB (OraOLEDB).	
This chapter contains these topics:	
OLE DB is an open standard data access methodology which utilizes a set of Component Object Model (COM) interfaces for accessing and manipulating different types of data. These interfaces are available from various database providers.	
The design of OLE DB centers around the concept of a consumer and a provider. Figure 1-1 is an illustration of the OLE DB system. The consumer represents the traditional client. The provider places data into a tabular format and returns it to the consumer.	
OLE DB Data Providers	
OLE DB data providers are a set of COM components that transfer data from a data source to a consumer. An OLE DB Provider places that data in a tabular format in response to calls from a consumer. Providers can be simple or complex. A provider may return a table, it may allow the consumer to determine the format of that table, and it may perform operations on the data.	
Each provider implements a standard set of COM interfaces to handle requests from the consumer. A provider may implement optional COM interfaces to provide additional functionality.	
With the standard interfaces, any OLE DB consumer can access data from any provider. Because of COM components, consumers can access them in any programming language that supports COM, such as C++, Visual Basic, and Java.	
OLE DB Data Consumers	
The OLE DB data consumer is any application or tool that utilizes OLE DB interfaces of a provider to access a broad range of data.	
Oracle Provider for OLE DB (OraOLEDB) is an OLE DB data provider that offers high performance and efficient access to Oracle data by OLE DB consumers.	
In general, this developer's guide assumes that you are using OraOLEDB through OLE DB or ADO.	
For sample code, the latest patches, and other technical information on the Oracle Provider for OLE DB, go to	
With the advent of the .NET framework, support has been provided for using the OLEDB.NET Data Provider with OraOLEDB. With the proper connection attribute setting, an OLEDB.NET Data Provider can utilize OraOLEDB to access Oracle Database.	
See Also: "OLEDB.NET Data Provider Compatibility" for further information on support for OLEDB.NET Data Provider	
The following items are required on a system to use Oracle Provider for OLE DB:	
Oracle supports 32-bit Oracle Provider for OLE DB on x86, AMD64, and Intel EM64T processors on these operating systems.	
Oracle supports 32-bit Oracle Provider for OLE DB and 64-bit Oracle Provider for OLE DB for Windows x64 on these operating systems.	
Oracle Provider for OLE DB is included as part of your Oracle installation. It contains the features and demos that illustrate how to use this product to solve real-world problems.	
During the installation process, the files listed in Table 1-1 are installed on the system. Some files have ver	
in their name to indicate the release version.	
Table 1-1 Oracle Provider for OLE DB Files	
File	Description
---	---
Oracle Provider for OLE DB	
Oracle rowset file cache manager	
Oracle rowset memory cache manager	
Oracle rowset	
Oracle ODBC SQL parser	
where	Language-specific resource DLL
Property descriptions	
OraOLEDB utility DLL	
OraOLEDB type library	
OraOLEDB header file	
OraOLEDB library file	
where	Language-specific message file
readme and documentation files	Release notes and online documentation
sample files	Sample code
Oracle provides support information for components on various platforms, lists compatible client and database versions, and identifies patches and workaround information.
Find the latest certification information at My Oracle Support (formerly OracleMetaLink):
You must register online before using My Oracle Support. After logging into My Oracle Support, select Product Lifecycle from the left column. From the Products Lifecycle page, click Certifications. Other Product Lifecycle options include Product Availability, Desupport Notices, and Alerts.
This chapter describes components of Oracle Provider for OLE DB (OraOLEDB) and how to use the components to develop OLE DB consumer applications.
This chapter contains these topics:
The following sections describe provider-specific features of OraOLEDB:
Additional provider-specific information is provided in Appendix A, "Provider-Specific Information".
The data types that OraOLEDB supports are listed in Table A-1 with Unicode and NonUnicode mappings.
OraOLEDB supports the Oracle data types described in the following sections.
BINARY_FLOAT
BINARY_DOUBLE
TIMESTAMP
TIMESTAMP
WITH
TIME
ZONE
TIMESTAMP
WITH
LOCAL
TIME
ZONE
INTERVAL
YEAR
TO
MONTH
INTERVAL
DAY
TO
SECOND
See Also: For details about these and other data types, and time zones, see Oracle Database SQL Language Reference |
BINARY_FLOAT
is a single-precision floating point data type (4 bytes), which is mapped to OLE DB DBTYPE_R4
.
BINARY_DOUBLE
is a double-precision floating point data type (8 bytes), which is mapped to OLE DB DBTYPE_R8
.
This section discusses the Timestamp data types and then provides the following:
Timestamp
data types. Timestamp
data types. Timestamp data types are mapped to the OLE DB DBTYPE_DBTIMESTAMP
. The OLE DB DBTYPE_DBTIMESTAMP
data type does not have TIME
ZONE
information.
The Timestamp data types include:
TIMESTAMP
TIMESTAMP
WITH
TIME
ZONE
TIMESTAMP
WITH
LOCAL
TIME
ZONE
Data Insertion
For data insertion into a TIMESTAMP
WITH
TIME
ZONE
or TIMESTAMP
WITH
LOCAL
TIME
ZONE
column, the time zone setting of the client is used.
OLE DB Timestamp data type cannot provide the time zone information. For insert operations, the default time zone from the client session is added to the TIMESTAMP
WITH
TIME
ZONE
column data.
Data Retrieval
For data retrieval, TIME
ZONE
is dropped for TIMESTAMP
WITH
TIME
ZONE
columns, but TIME
ZONE
is used for TIMESTAMP
WITH
LOCAL
TIME
ZONE
columns.
The OLE DB Timestamp
data type cannot store time zone information.
Fractional Second
Fractional second is not supported for TIMESTAMP
data types binding with Command
objects.
Note that using ALTER
SESSION
to change time zone information does not change the time zone information in the new and existing Recordset
s, which use the client time zone setting from the Regional options of the operating system. The maximum fractional_seconds_precision
of TIMESTAMP
is 9
and the default precision is 6
.
ADO Consumers
For the Timestamp data types, ADO consumers must specify the value of CursorLocation
as adUseServer
and use Recordset
for DML operations.
Examples of Timestamp Insert and Retrieval
The following scenarios assume that the default precision of 6
is used.
TIMESTAMP Column
Insert Data: 4/16/2003 11:19:19 AM (No time zone)
Data in DB: 4/16/2003 11.19.19.000000 AM
Data Retrieval: 4/16/2003 11:19:19 AM
TIMESTAMP WITH TIME ZONE Column
Insert Data: 4/16/2003 11:19:19 AM (Time zone of the Client session is used)
Data in DB: 4/16/2003 11.19.19.000000 AM -07:00
Data Retrieval: 4/16/2003 11:19:19 AM (Time zone is dropped)
TIMESTAMP WITH LOCAL TIME ZONE Column
The following scenario assumes that the time zone of the client session is -04:00
, currently on US EDT (Eastern daylight time). For an insert operation, the data in the TIMESTAMP
WITH
LOCAL
TIME
ZONE
column does not include time zone displacement, but its TIMESTAMP
data is normalized to the database time zone -07:00
, which is the same as US PDT (Pacific daylight time).
For a query, data is returned in the time zone of the client session. The time zone displacement is the difference (in hours and minutes) between the local time and the Coordinated Universal Time (UTC).
Insert Data: 4/16/2003 4:30:23 PM (Client time zone is -04:00)
Data in DB: 4/16/2003 01.30.23.000000 PM (Database time zone -07:00)
Data Retrieval: 4/16/2003 4:30:23 PM (Client time zone is -04:00)
Data Retrieval: 4/16/2003 3:30:23 PM (Client time zone is -05:00)
Data Retrieval: 4/16/2003 2:30:23 PM (Client time zone is -06:00)
Data Retrieval: 4/16/2003 1:30:23 PM (Client time zone is -07:00)
The INTERVAL data types are mapped to OLE DB DBTYPE_STR
data type. The INTERVAL data types include:
INTERVAL
YEAR
TO
MONTH
INTERVAL
DAY
TO
SECOND
For the INTERVAL
YEAR
TO
MONTH
column, the maximum year_precision
is 9
and the default is 2
. For INTERVAL
DAY
TO
SECOND
column, the maximum day_precision
is 9
and the default is 2
and the maximum fractional_seconds_precision
is 9
, the default is 6
.
Note: If the sign is not specified, then the default is +. |
INTERVAL YEAR TO MONTH
Usage: (sign) years-months
Examples:
2-3
2 years and 3 months
+2-3
2 years and 3 months
-2-3
negative 2 years and 3 months
INTERVAL DAY TO SECOND
Usage: (sign) days hours:minutes:seconds.second_fraction
Examples:
7
10:20:30.123456
7 days, 10 hours, 20 minutes, and 30.123456 seconds
+7
10:20:30.123456
7 days, 10 hours, 20 minutes, and 30.123456 seconds
-7
10:20:30.123456
negative 7 days, 10 hours, 20 minutes, and 30.123456 seconds
Visual Basic Example
A data source object in OraOLEDB is responsible for establishing the first connection to the Oracle Database. To establish the initial connection, the consumer must use the CoCreateInstance
function to create an instance of the data source object. This function requires important information about the provider: class ID of the provider and executable context. The class ID of OraOLEDB is CLSID_OraOLEDB
.
OraOLEDB is an in-process server. When calling CoCreateInstance
, use the CLSCTX_INPROC_SERVER
macro. For example:
The code snippet above does not enable OLEDB Services when instantiating the Data Source object. To enable OLEDB services, see "Compatibility with OLE DB Services" below.
Note: OraOLEDB does not support persistent data source objects. |
After the successful creation of an instance of a data source object, the consumer application can initialize the data source and create sessions.
OraOLEDB supports connections to Oracle Databases release 8i and higher. To connect to a specific database, the consumer is required to set the following properties of the DBPROPSET_DBINIT
property set:
DBPROP_AUTH_USERNAME
with the user ID, such as scott
DBPROP_AUTH_PASSWORD
with the password, such as tiger
DBPROP_INIT_DATASOURCE
with the net service name, such as myOraDb
The consumer could also populate DBPROP_INIT_PROMPT
with DBPROMPT_PROMPT
which causes the provider to display a logon box for the user to enter the connect information.
Using DBPROMPT_NOPROMPT
disables display of the logon box. In this case, incomplete logon information causes the provider to return a logon error. However, if this property is set to DBPROMPT_COMPLETE
or DBPROMPT_COMPLETEREQUIRED
, the logon box will be displayed only if the logon information is incomplete.
OraOLEDB is compatible with OLE DB Services that are available in OLE DB version 2.0 and later. OLE DB Services contains useful services such as automatic transaction enlistment, Client Cursor Engine (CCE), connection and session pooling, which can enhance application performance, and others.
OLE DB Services can be used with OraOLEDB through C++/COM or ADO.
By default, the OLEDB_SERVICES
registry entry for OraOLEDB is set, under the CLSID
of OraOLEDB, to 0xffffffff
(that is, -1
), which enables all services. Certain OLE DB Services can also be disabled or enabled programmatically through the DBPROP_INIT_OLEDBSERVICES
property setting.
See Also: http://msdn.microsoft.com/en-us/library/ms724518(VS.85).aspx for more information on OLE DB Services and how to enable or disable specific services |
ADO automatically enables OLE DB Services. Thus, ADO applications do not need any special code to use OLEDB Services.
For C++/COM applications, some additional steps are needed to use OLE DB Services.
The following code snippet shows one way that C++/COM applications can enable OLE DB Services. The code shows the OLE DB consumer creating an instance of the CLSID_MSDAINITIALIZE
class through CoCreateInstance()
, obtaining the IDataInitialize
interface from that object, and then creating an OLE DB data source object through that interface.
To connect to an Oracle Database using OraOLEDB, the OLE DB connection string must be as follows:
When connecting to a remote database, Data
Source
must be set to the correct net service name which is the alias in the tnsnames.ora
file. For more information, refer to Oracle Net Services Administrator's Guide.
OraOLEDB offers provider-specific connection string attributes, which are set in the same way as the Provider and User ID are set. The provider-specific connection string attributes are:
CacheType
- specifies the type of cache used to store the rowset data on the client. See "OraOLEDB-Specific Connection String Attributes for Rowsets". ChunkSize
- specifies the size of LONG
or LONG RAW
column data stored in the provider's cache. See "OraOLEDB-Specific Connection String Attributes for Rowsets". DistribTX
- enables or disables distributed transaction enlistment capability. See "Distributed Transactions". FetchSize
- specifies the size of the fetch array in rows. See "OraOLEDB-Specific Connection String Attributes for Rowsets". OLEDB.NET
- enables or disables compatibility with OLEDB.NET Data Provider. See "OLEDB.NET Data Provider Compatibility". OSAuthent
- specifies whether operating system authentication will be used when connecting to an Oracle Database. See "Operating System Authentication". PLSQLRSet
- enables or disables the return of a rowset from PL/SQL stored procedures. See "OraOLEDB Custom Properties for Commands". PwdChgDlg
- enables or disables displaying the password change dialog box when the password expires. See "Password Expiration". UseSessionFormat
- specifies whether to use the default NLS session formats or let OraOLEDB override some of these formats for the duration of the session. Valid values are 0
(FALSE
) and 1
(TRUE
). The default is FALSE
which lets OraOLEDB override some of the default NLS session formats. If the value is TRUE
, OraOLEDB uses the default NLS session formats. Note that this connection attribute does not appear under the \\HKEY_LOCAL_ MACHINE\SOFTWARE\ORACLE\KEY_
HOMENAME
\OLEDB
registry key.
VCharNull
- enables or disables the NULL termination of VARCHAR2 OUT
parameters from stored procedures. SPPrmDefVal
- specifies whether to use the default value or a NULL value if the application has not specified a stored procedure parameter value. NDataType
- specifies whether any of the parameters bound to the command are of N data types, which include NCHAR
, NVARCHAR
, or NCLOB
. See "NDatatype". Note that this connection attribute does not appear under the \\HKEY_LOCAL_ MACHINE\SOFTWARE\ORACLE\KEY_
HOMENAME
\OLEDB
registry key.
SPPrmsLOB
- specifies whether one or more parameters bound to the stored procedures are of LOB data type, which include CLOB
, BLOB
, or NCLOB
. See "SPPrmsLOB". Note that this connection attribute does not appear under the \\HKEY_LOCAL_ MACHINE\SOFTWARE\ORACLE\KEY_
HOMENAME
\OLEDB
registry key.
StmtCacheSize
– specifies the maximum number of statements that can be cached. See "Statement Caching". MetaDataCacheSize
- specifies the maximum number of SELECT
statements for which the metadata can be cached. See "Metadata Caching". DeferUpdChk
- specifies whether or not to defer the updateability check to support updating read-only disconnected rowsets. See DeferUpdChk
under "OraOLEDB-Specific Connection String Attributes for Rowsets".
DBNotifications
- specifies whether or not to subscribe to the high availability events. See "Enhanced Failover Capability". DBNotificationPort
- specifies the port number, which is opened to listen to the Database notifications. See "Enhanced Failover Capability". The default values for these attributes are located under the \\HKEY_LOCAL_ MACHINE\SOFTWARE\ORACLE\KEY_
HOMENAME
\OLEDB
registry key, where KEY_
HOMENAME
is the Oracle home.
The registry default values are read by OraOLEDB from the registry when the provider is loaded into memory. If Oracle-specific connection string attributes are not provided at connection time, then the default registry values are used. However, if the attributes are provided, then these new values override the default registry values.
These attributes can be set by setting the DBPROP_INIT_PROVIDERSTRING
property, provided in the DBPROPSET_DBINIT
property set. For example:
The DistribTX
attribute specifies whether sessions are enabled to enlist in distributed transactions. Valid values are 0
(disabled) and 1
(enabled). The default is 1
which indicates that sessions are enabled for distributed transaction enlistments.
Applications using Microsoft Transaction Server must have DistribTX
set to 1
, the default.
This feature enhances failover capability.
These connection string attributes support enhanced failover capability.
DBNotifications
The DBNotifications
attribute specifies whether or not to subscribe to high availability events. Valid values are 0
(FALSE
) and 1
(TRUE
). The default is FALSE
, which indicates that OraOLEDB does not subscribe to high availability events. If this attribute is not provided at the connection time, then the default registry value is used.
DBNotificationPort
The DBNotificationPort
attribute specifies the port number, which is used to listen to the database notifications. The valid value is an unsigned integer.
DBNotificationPort
is effective only if the DBNotifications
attribute is set to TRUE
, either through the connection string attribute or by registry entry. The default for the DBNotificationPort
attribute is 0
, which implies that OraOLEDB opens a valid port randomly. OraOLEDB does not validate the port number, so it is the responsibility of the application to specify a valid port number.
Enabling Failover Capability Through Registry Entry
DBNotifications
The DBNotifications
registry entry specifies whether or not to subscribe to high availability events. Valid values are 0
(FALSE
) and 1
(TRUE
). The default value is FALSE
, OraOLEDB does not subscribe. This registry entry value is used when the DBNotifications
connection string attribute is not set. It is located under the \\HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\
KEY_
HOMENAME
\OLEDB
registry key.
The OSAuthent
attribute specifies whether operating system authentication will be used when connecting to an Oracle Database. Valid values are 0
(disabled) and 1
(enabled). The default is 0
, which indicates that operating system authentication is not used.
Operating system authentication is the feature by which Oracle uses the security mechanisms of the operating system to authorize users. For more information on this subject and how to set it up on Windows clients, refer to the information on authenticating database users on Windows in Oracle Database Platform Guide for Windows
After the Windows client has been set up properly for operating system authentication, this feature may be enabled by OraOLEDB clients by setting any of the following:
Oracle9i provides a Password Expiration feature which allows database administrators to force users to change their passwords regularly. The PwdChgDlg
attribute enables or disables the displaying of the password change dialog box, whenever a logon fails due to an expired password. When enabled, the provider displays the dialog box to change the password. When disabled, the logon fails with an error message. The valid values are 0
(disabled) and 1
(enabled). The default is 1
(enabled). For more information on the Password Expiration feature, see Oracle Database Administrator's Guide.
Example: Connecting to an Oracle Database Using ADO
The following examples illustrate how to connect to an Oracle Database using OraOLEDB and ADO.
Note: IfData Source , User ID , and Password are provided with the Open method, then ADO ignores those ConnectionString attributes. |
Connect Using ConnectionString
Connect Without Using ConnectionString
Connect and Set Provider-specific Attributes
Operating System-Authenticated Connect Setting User ID to /
Operating System-Authenticated Connect Using OSAuthent
The VCharNull
attribute enables or disables the NULL termination of VARCHAR2 OUT
parameters from stored procedures. Valid values are 0
(disabled) and 1
(enabled). The default is 1
, which indicates that VARCHAR2 OUT
parameters are NULL terminated. A value of 0
indicates that VARCHAR2 OUT
parameters are padded with spaces.
The default value for this attribute is located under the \\HKEY_LOCAL_ MACHINE\SOFTWARE\ORACLE\KEY_
HOMENAME
\OLEDB
registry key, where HOMENAME
is the Oracle home. If this attribute is not provided at the connection time, then the default registry value is used.
Note that with this connection attribute enabled, applications need to pad the stored procedure IN
and IN OUT CHAR
parameters with spaces explicitly, if the parameter is to be used in a WHERE
clause.
The SPPrmDefVal
attribute specifies whether to use the default value or a NULL value if the application has not specified a stored procedure parameter value. Valid values are 0
(FALSE) and 1
(TRUE). The default is FALSE, which enables OraOLEDB to pass a NULL value. If the value is TRUE, then OraOLEDB uses the default value.
The default value for this attribute is located under the \\HKEY_LOCAL_ MACHINE\SOFTWARE\ORACLE\KEY_
HOMENAME
\OLEDB
registry key. If this attribute is not provided at connection time, then the default registry value is used.
An OraOLEDB session object represents a single connection to an Oracle Database. The session object exposes the interfaces that allow data access and manipulation.
The first session created on the initialized data source inherits the initial connection established by IDBInitialize::Initialize()
. Subsequent sessions that are created establish their own independent connections to the particular Oracle Database specified by the data source properties.
Each session object also defines a transaction space for a data source. All command and rowset objects created from a particular session object are part of the transaction of that session.
After all references to the session object are released, the session object is removed from memory and the connection is dropped.
OraOLEDB supports local and distributed transactions, which provide explicit commit and abort transactional operations.
OraOLEDB does not support nested transactions. In addition, a local transaction cannot be started if the session is currently enlisted in a distributed transaction. This also applies to distributed transactions if the session is currently enlisted in a local transaction.
OraOLEDB supports the ITransactionLocal
interface for explicit transactions. By default, OraOLEDB is in an autocommit mode, meaning that each unit of work done on the database is automatically or implicitly committed. With the use of the ITransactionLocal
interface, consumers may explicitly start a transaction for a particular session, allowing a unit of work to be explicitly committed or aborted by the consumer.
OraOLEDB supports the Read Committed (Cursor Stability) isolation level. In this level, the changes made by other transactions are not visible until those transactions are committed.
OraOLEDB consumers must install Oracle Services for Microsoft Transaction Server (MTS) release 10.2 or higher to be able to participate in Microsoft Transaction Server (or COM+) transactions or to enlist in a distributed transaction coordinated by Microsoft Distributed Transaction Coordinator (MS DTC). For setup and configuration information on Oracle Services for MTS, see Oracle Services for Microsoft Transaction Server Developer's Guide.
OraOLEDB ignores IsoLevel
, IsoFlags
, and pOtherOptions
parameters when ITransactionJoin::JoinTransaction()
is called. These options must be provided when the consumer acquires a transaction object from MS DTC with the ITransactionDispenser::BeginTransaction()
method call.
However, if IsoFlags
is nonzero, then XACT_E_NOISORETAIN
is returned.
OraOLEDB supports ANSI SQL as supported by Oracle Database and the ODBC SQL syntax.
When executing an Oracle PL/SQL stored procedure using a command, use Oracle native syntax or the ODBC procedure call escape sequence in the command text:
BEGIN credit_account(123, 40); END;
CALL credit_account(123, 40)}
When using Oracle ANSI SQL, parameters in the command text are preceded by a colon. In ODBC SQL, parameters are indicated by a question mark (?
).
OraOLEDB supports input, output, and input and output parameters for PL/SQL stored procedures and stored functions. OraOLEDB supports input parameters for SQL statements.
Note: OraOLEDB supports only positional binding. |
OraOLEDB custom properties for commands are grouped under the custom property set ORAPROPSET_COMMANDS
. It provides these properties:
Table 2-1 Custom Properties for Commands
For Visual Basic Users | For C++ Users |
---|---|
|
|
|
|
|
|
|
|
This property is similar to the PLSQLRSet
connection string attribute.
The property specifies whether OraOLEDB must return a rowset from the PL/SQL stored procedure. If the stored procedure, provided by the consumer, returns a rowset, PLSQLRSet
must be set to TRUE
(enabled). This property should be set to FALSE
after the command has been run. By default, the property is set to FALSE
(disabled).
Consumers should use the property over the attribute, as the property can be set at the command object rather than at the session. By setting it at the command object, the consumer is able to set the property only for the command object executing stored procedures which are returning rowsets. With the attribute, the consumer needed to set it even if only one of many stored procedures being executed by the ADO application returned a rowset. The use of this property should provide a performance boost to applications making use of the attribute previously.
Example: Setting the Custom Property PLSQLRSet
This property allows the consumers to specify whether any of the parameters bound to the command are of Oracle's N data types (NCHAR
, NVARCHAR
or NCLOB
). This information is required by OraOLEDB to detect and bind the parameters. This property should not be set for commands executing SELECT
statements. However, this property must be set for all other SQL statements, such as INSERT
, UPDATE
, and DELETE
.
The use of this property should be limited to SQL statements containing parameters of N data type as setting it incurs a processing overhead of at least one round-trip to the database. By default, this property is set to FALSE
.
Note: OraOLEDB does not support parameters of N data types in theWHERE clause of SQL statements. |
Note: Consumers are required to use the ODBC procedure call escape sequence to call stored procedures or functions having N data type parameters. |
Example: Setting the Custom Property NDatatype
This property allows the consumer to specify whether one or more of the parameters bound to the stored procedures are of Oracle's LOB data type (CLOB
, BLOB
, or NCLOB
). OraOLEDB requires this property to be set to TRUE
, to fetch the parameter list of the stored procedure prior to execution. The use of this property limits the processing overhead to stored procedures having one or more LOB data type parameters. This property should be set to FALSE
after the command has been executed. By default, the property is set to FALSE
.
Note: Consumers are required to use the ODBC procedure call escape sequence to call stored procedures or functions having LOB data type parameters. |
Example: Setting the Custom Property SPPrmsLOB
AddToStmtCache
This property allows the consumer to cache the executed statements when the property is set to TRUE
and statement caching is enabled. If the statement caching is disabled or if this property is set to FALSE
, then the executed statement is not cached.
This property is ignored if statement caching is disabled. Statement caching can be enabled by setting the StmtCacheSize
connection string attribute to a value greater than zero. This property provides a way to selectively add statements to the cache when statement caching is enabled. By default, the property is set to TRUE
.
Example: Setting the Custom Property AddToStmtCache
Oracle Provider for OLE DB allows consumers to execute a PL/SQL stored procedure with an argument of REF
CURSOR
type or a stored function returning a REF
CURSOR
value.
OraOLEDB returns a rowset for the REF
CURSOR
bind variable. Because there is no predefined data type for REF
CURSOR
in the OLE DB specification, the consumer must not bind this parameter.
If the PL/SQL stored procedure has one or more arguments of REF
CURSOR
type, OraOLEDB binds these arguments and returns a rowset for each argument of REF
CURSOR
type.
If the PL/SQL stored function returns a REF
CURSOR
or has an argument of REF
CURSOR
type, OraOLEDB binds these and returns a rowset for each REF
CURSOR
type.
To use this feature, stored procedures or functions must be called in the ODBC procedure call escape sequence.
The stored procedure or function being called could be either standalone or packaged. However, the REF
CURSOR
being returned must be explicitly defined in a package in the database.
OraOLEDB supports returning more than one rowset from a stored procedure. Consumers can use this feature to access all the REF
CURSOR
s being returned by a stored procedure.
Example: Stored Procedure Returning Multiple Rowsets
PL/SQL Package
Statement caching eliminates the need to parse each SQL or PL/SQL statement before execution, by caching server cursors created during the initial statement execution. Subsequent executions of the same statement can reuse the parsed information from the cursor, and then execute the statement without reparsing, for better performance.
To see performance gains from statement caching, Oracle recommends caching only those statements that will be repeatedly executed. Furthermore, SQL or PL/SQL statements should use parameters rather than literal values. This will enable you to take full advantage of statement caching. This is because parsed information from parameterized statements can be reused, even if the parameter values change in subsequent executions. However, if the literal values in the statements are different, the parsed information cannot be reused unless the subsequent statements also have the same literal values.
StmtCacheSize Connection String Attribute
This attribute enables or disables OraOLEDB statement caching. By default, this attribute is set to 10
(enabled). If it is set to a value greater than 0
, OraOLEDB statement caching is enabled and the value specifies the maximum number of statements that can be cached for a connection.
After a connection has been cached to the specified maximum cache size, the cursor least recently used is freed to make room to cache the newly-created cursor. This value should not be greater than the value of the OPEN_CURSORS
parameter set in the init.ora
database configuration file.
AddToStmtCache Command Property
This property is relevant only when statement caching is enabled. If statement caching is enabled and this property is set to true
(default), then statements are added to the cache when they are executed. If statement caching is disabled or if this property is set to false
, then the executed statement is not cached.
Enabling Statement Caching Through the Registry
To enable statement caching by default for all OraOLEDB applications running in a system without changing the application, set the registry key of \\HKEY_LOCAL_ MACHINE\SOFTWARE\ORACLE\
KEY_
HOMENAME
\OLEDB\StmtCacheSize
to a value greater than 0
. Here, HOMENAME
refers to the appropriate Oracle home. This value specifies the number of cursors that are to be cached on the server. By default, it is set to 10
.
Connections and Statement Caching
Statement caching is managed separately for each connection. Therefore, for running the same statement on different connections, you need to parse once for each connection and cache a separate cursor for each connection.
This feature minimizes the retrieval of metadata for SELECT
statements by caching the metadata during the initial statement execution. Subsequent executions of the same statement can reuse the cached metadata information for better performance. To see performance gains from metadata caching, Oracle recommends caching only those statements that are executed repeatedly.
Note: Metadata caching is managed separately for each connection. Therefore, to run the same statement on different connections, the metadata must be cached once for each connection. |
The MetaDataCacheSize
attribute enables or disables OraOLEDB metadata caching. If it is set to a value greater than 0
, OraOLEDB metadata caching is enabled and the value specifies the maximum number of statements for which the metadata can be cached for a connection. By default, this attribute is set to 10
.
To enable metadata caching by default for all OraOLEDB applications running in a system, without changing the application, set the following registry key to a value greater than 0
. By default, it is set to 10
.
\\HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\
KEY_
HOMENAME
\ OLEDB\MetaDataCacheSize
The Cancel
method cancels the OraOLEDB command currently being executed. This method can be useful when the application needs to cancel a long running command during times of heavy network traffic or heavy server use.
Alternatively, by using the CommandTimeout
property, developers can set a limit to the time that a command executes before OraOLEDB attempts to cancel it. OraOLEDB requires setting the EnableCmdTimeout
registry value to 1
to enable CommandTimeout
.
When using OLE DB, the default DPBROP_COMMANDTIMEOUT
is 0
seconds. When using ADO, the default CommandTimeout
property is 30
seconds.
Starting with OraOLEDB release 11.1.0.7.20, the installation adds a registry value called EnableCmdTimeout
with the default value set to 0
. Setting it to 0
disables command timeout and setting it to 1
enables it. The CommandTimeout
property value setting takes effect only when EnableCmdTimeout
is set to 1
.
The registry value is:
\\HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\KEY_
HOMENAME
\OLEDB\EnableCmdTimeout
This section discusses using Rowsets with OraOLEDB.
OraOLEDB supports IOpenRowset::OpenRowset
and ICommand::Execute
for creating rowsets.
To Create Rowsets with IOpenRowset::OpenRowset
When using IOpenRowset::OpenRowset
, note the following guidelines:
pTableID
parameter must contain a DBID
structure that specifies a base table or a view. DBID
structure's eKind
member must be set to DBKIND_GUID_NAME
, DBKIND_NAME
, or DBKIND_PGUID_NAME
. DBID
structure's uName
member must specify the base table or view name as a Unicode character string. It cannot be NULL
. pIndexID
parameter of OpenRowset
must be NULL
. To Create Rowsets with ICommand::Execute
OraOLEDB supports SQL SELECT
statements that return rowsets. OraOLEDB also supports returning rowsets from PL/SQL stored procedures and functions.
By default, ADO creates a nonupdatable rowset from a command object. An updatable rowset can be created by setting the Updatability
and IRowsetChange
properties on the command object. The Updatability
property can be set to the following values:
Table 2-2 Possible Values for Updatability Property
Value | Description |
---|---|
| update |
| delete |
| update and delete |
| insert |
| insert and update |
| insert and delete |
| insert, delete, and update |
The following ADO code sample sets the Updatability
property on a command object to allow insert, delete, and update operations on the rowset object.
OraOLEDB supports both immediate and deferred update mode. However, insert and update operations cannot be deferred when the operation changes a nonscalar column, such as LONG
, BLOB
, or CLOB
. When nonscalar column values are changed in a deferred update mode, the entire row is transmitted to the database as though the operation was in an immediate update mode. In addition, these operations cannot be undone with the Undo
method (ADO) or IRowsetUpdate::Undo()
. However, if they are in a transaction, they can be rolled back with RollbackTrans
method (ADO) or ITransactionLocal::Abort()
.
Rowsets created using queries with joins are updatable by OraOLEDB only with the Client Cursor Engine enabled. C/C++ OLE DB consumers must enable this service to make these rowsets updatable. ADO consumers must specify the CursorLocation
as adUseClient
to make these rowsets updatable.
For example:
If DBPROP_SERVERDATAONINSERT
(Server Data on Insert) is set to TRUE
using OraOLEDB, the consumer can obtain defaults, sequences, and triggered column values from newly inserted and updated rows, if the insert and update operations are made through the rowset.
Having DBPROP_SERVERDATAONINSERT
set to TRUE
may degrade performance for both insert and update executions using a rowset because OraOLEDB fetches row data from the database for the newly inserted and updated row. However, if DBPROP_SERVERDATAONINSERT
is set to its default value of FALSE
, only the explicitly provided values for insert and update operations are returned when column values are requested for those rows.
If the base table from which the rowset was created does not contain any defaults, sequences, or triggers, then it is highly recommended that DBPROP_SERVERDATAONINSERT
retain its default value of FALSE
.
The DBPROP_SERVERDATAONINSERT
property does not affect the performance of insert and update operations using the command object.
OraOLEDB only supports searches performed on CHAR
, DATE
, FLOAT
, NUMBER
, RAW
, and VARCHAR2
columns. Otherwise, DB_E_NOTSUPPORTED
is returned.
When a search is done with a NULL
value, only the DBCOMPAREOPS_EQ
and DBCOMPAREOPS_NE
compare operations are supported. Otherwise, DB_E_NOTSUPPORTED
is returned.
OraOLEDB-specific connection string attributes which affect the performance of the rowset are:
CacheType
- specifies the type of caching used by the provider to store rowset data. OraOLEDB provides two caching mechanisms: ChunkSize
- This attribute specifies the size, in bytes, of the data in LONG
and LONG RAW
columns fetched and stored in the provider cache. Providing a high value for this attribute improves performance, but requires more memory to store the data in the rowset. Valid values are 1
to 65535
. The default is 100
. FetchSize
- specifies the number of rows the provider will fetch at a time (fetch array). It must be set on the basis of data size and the response time of the network. If the value is set too high, then this could result in more wait time during the execution of the query. If the value is set too low, then this could result in many more round trips to the database. Valid values are 1
to 429
,496
,
and 296
.
The default is 100
. DeferUpdChk
- The DeferUpdChk
attribute specifies whether or not to defer the updateability check. This supports updating ADO read-only disconnected rowsets. Valid values are 0
(FALSE
) and 1
(TRUE
). The default is FALSE
, which implies that OraOLEDB does not defer the check. If this attribute is not provided at the connection time, then the default registry value is used.
The default attribute values are set in the registry. For more information, see "Default Attribute Values". The following ADO code example overrides the default attribute values:
Setting the ADO Rowset property LockType
to adLockPessimistic
is not supported by Oracle Provider for OLE DB. If LockType
is set to adLockPessimistic
, then OraOLEDB behaves similar to when set as adLockOptimistic
. This behavior occurs because OraOLEDB does not perform explicit locks on the rows being modified. However, when new data is submitted to the database, the database only performs the update if the rowset data was not already updated by another user, which means that dirty writes are not allowed. LockType
values adLockReadOnly
, adLockBatchOptimistic
, and adLockOptimistic
are supported by OraOLEDB.
Setting ADO Rowset property CursorType
to adOpenKeyset
or adOpenDynamic
is not supported by Oracle Provider for OLE DB. OraOLEDB does not support either of the two as Oracle supports Statement Level Read Consistency, which ensures that the data returned by a query contains only committed data as of the time the query was executed. CursorType
values adOpenStatic
and adOpenForwardOnly
are supported by OraOLEDB.
The schema rowsets available through Oracle Provider for OLE DB are:
DBSCHEMA_COLUMNS
DBSCHEMA_INDEXES
DBSCHEMA_SCHEMATA
DBSCHEMA_VIEWS
DBSCHEMA_TABLES
DBSCHEMA_PROVIDER_TYPES
(forward scroll only) DBSCHEMA_FOREIGN_KEYS
DBSCHEMA_PRIMARY_KEYS
DBSCHEMA_PROCEDURES
DBSCHEMA_PROCEDURE_PARAMETERS
The date format for the Oracle session cannot be set using the ALTER SESSION SET NLS_DATE_FORMAT
command. In Visual Basic, date formats are controlled by the Regional Settings properties in Windows Control Panel. For more information on Visual Basic date formats, refer to your Visual Basic documentation.
For Oracle Provider for OLE DB, if the Connection
property UseSessionFormat
is FALSE
, which is a default value, then NLS_DATE_FORMAT
is fixed for the session to 'YYYY-MM-DD HH24:MI:SS'
by the provider. If you pass the date to Oracle Database as a string, the date must be in the 'YYYY-MM-DD HH24:MI:SS'
format. If UseSessionFormat
is TRUE
, then NLS_DATE_FORMAT
is not fixed by Oracle Provider for OLE DB and the default session NLS_DATE_FORMAT
is used. For example:
To use a different format, you need to use the SQL function, TO_DATE()
, to specify the format for dates passed as strings. For example:
However, for dates passed as parameters, the date format is controlled by ADO, which is controlled by the Regional Settings in Windows Control Panel. In this case, TO_DATE()
should not be used. For example:
The names of all objects (tables, columns, views, and so forth) in Oracle Database are case-sensitive. This allows the two objects EMP
and emp
to exist in the same namespace in the database.
The query, SELECT ename FROM emp
, executes correctly even though the table name is EMP
(all uppercase) in the database. However, if you want to specify object names in mixed case, you can do so by enclosing the name in double quotes. For example:
will execute successfully if the table name in the database is Emp
. Double quotes preserve the case of the object names in Oracle Database.
The ISequentialStream
interface is supported for all LONG
, LONG RAW
, and LOB (BLOB
, CLOB
, NCLOB
, and BFILE
) columns. The consumer can use this interface to read and write to all the LOB columns, except BFILE
which is read-only. To have read and write access to these columns, the SELECT
SQL statement used to create the rowset should not contain a join.
Note: Although most of the LOB columns in an Oracle Database support up to 4 GB of data storage, ADO limits the maximum column size to 2 GB. |
Columns having the BFILE
data type are not updatable in the Rowset
interface. However, these columns can be updated using the command interface, if the update is limited to modifying the directory and name of the external file pointed to by the BFILE
column. For example:
For more information on LOBs, see Oracle Database SecureFiles and Large Objects Developer's Guide.
OraOLEDB supports the Unicode character set. Using this feature, consumers can use OraOLEDB to access data in multiple languages on the same client computer. It can be especially useful in creating global Internet applications supporting as many languages as the Unicode standard entails. For example, you can write a single Active Server Page (ASP) application that accesses an Oracle9i Database to dynamically generate contents in Japanese, Arabic, English, Thai, and so on.
The Oracle Databases store the Unicode data in the UTF8 encoding scheme, which is an ASCII compatible multibyte encoding of Unicode. Microsoft Windows 2000 uses the UCS2 encoding, which is a 2-byte fixed-width encoding scheme. OraOLEDB transparently converts the data between the two encoding schemes allowing the consumers to deal with only UCS2.
Note: The Unicode support is transparent to ADO consumers. OLE DB consumers using C or C++ need to explicitly specifyDBTYPE_WSTR in their data type bindings when Unicode data in involved. |
OraOLEDB works in two modes, Unicode mode and nonUnicode mode. When the client character set is not a superset of the server character set or the database character set is a multibyte character set, OraOLEDB automatically enables the Unicode mode. In this mode, OraOLEDB stores the data in its cache in the UCS2 encoding scheme. The user should ensure that the database's character set is UTF8 to prevent any data loss.
If the client character set is a superset of the server's, then the provider operates in the nonUnicode mode. This mode provides slightly better performance as it does not have to deal with larger character buffers required by the UCS2 encoding.
The detection of the client's and the server's character set is performed during logon.
Note: OraOLEDB no longer requires the client character set to be set to UTF8 to enable the Unicode mode. The provider still supports such setups but no longer requires it. |
See "Data Type Mappings in Rowsets and Parameters" for further information.
To prevent any data loss, the database character set should be UTF8. Other than this, there is no other setup required for Unicode support.
You must ensure that the Oracle Database is configured to store the data in the UTF8 character set. The character set configuration is typically specified during database creation. To check the character set setting of your database, execute the following query in SQL*Plus:
If the character set of your database is not UTF8, you need to create a new database with the UTF8 character set and import your data into it. See Oracle Database Administrator's Guide for more information.
OLE and COM objects report errors through the HRESULT
return code of the object member functions. An OLE/COM HRESULT
return code is a bit-packed structure. OLE provides macros that dereference structure members. OraOLEDB exposes IErrorLookup
to retrieve information about an error.
All objects support extended error information. For this, the consumer must instantiate the OLE DB Extended Error object followed by calling the method GetErrorDescription()
to get the error text.
The OraOLEDB provider returns the entire error stack in one text block.
For ADO users, the following example applies:
The OLE DB .NET Data Provider can utilize OraOLEDB as the OLE DB Provider for accessing Oracle Database.
To make OraOLEDB compatible with OLE DB .NET Data Provider, set the connection string attribute OLEDB.NET
to True
.
Setting the OLEDB.NET
attribute to False
disables .NET compatibility.
Note: TheOLEDB.NET connection string attribute must not be used in ADO applications. |
When using OraOLEDB with the OLE DB .NET Data Provider, the OLEDB.NET
connection attribute must be set to True
as shown in the following examples:
ADO allows OraOLEDB provider-specific properties to be set at the object level. The OraOLEDB-specific properties SPPrmsLOB
and NDatatype
can be set as connection string attributes as well as at the command-object level. The StmtCacheSize
property can be set as a connection string attribute and the AddToStmtCache
property can be set at the command object level. The following example shows the setting of properties at the command level:
However, the OLEDB.NET Data Provider cannot expose OLE DB provider-specific properties at the object level. Therefore, the SPPrmsLOB
and NDatatype
properties can only be set as connection string attributes and AddToStmtCache
property is not supported when OraOLEDB is used by OLE DB .NET Data Provider:
Both SPPrmsLOB
and NDatatype
connection string attributes are set to False
by default if they are not specified.
Setting either of these connection string attributes to True
incurs additional processing overhead when executing commands with parameters. For this reason, before setting either attribute to True,
see "OraOLEDB Custom Properties for Commands".
In order for the OleDbDataAdapter.Update()
method to properly update Oracle Database with changes made in DataTable
, which must contain a primary key of a database table. If the database table does not contain a primary key, the ROWID
must be selected explicitly when populating DataTable
, so that the ROWID
can be used to uniquely identify a row when updating a row in the database.
Do not select the ROWID
from database tables that contains a primary key. If ROWID
is selected along with a primary key, ROWID
will be the only column marked as the primary key.
See Also: For further information on using the OLE DB .NET Data Provider
|
The following simple example illustrates how to use Oracle Provider for OLE DB with ADO in Visual Basic 6.0 to connect to an Oracle Database and execute PL/SQL stored procedures and functions.
This example assumes that the Oracle Database has the demonstration table EMP
under the user account scott
. The scott
account is included in the Oracle starter database. If the account does not exist on your database, create the account before running the sample program. If your database does not contain the emp
table, then you can use the demobld.sql
script to create the demonstration tables.
This example also uses exampledb
as the database network alias when connecting to the Oracle Database. You must change this network alias to match your system.
scott
with the password tiger
. demobld.sql
script: After the emp
table has been created in the scott
account, you need to create the PL/SQL package that contains the stored procedure and function that are run in the Visual Basic example.
scott
with the password tiger
. Note: When creating PL/SQL packages the/ character is used as a terminator and must be added on a separate line following each CREATE PACKAGE ...END block. |
After the Oracle Database setup is completed, you can create the Visual Basic 6.0 project.
GetEmpRecords
. The other will run the code to execute the PL/SQL function GetDept
. Click
subroutine of the button that will run the code to execute the PL/SQL procedure GetEmpRecords
. Click
subroutine of the button that will run the code to execute the PL/SQL function GetDept
. After you have entered a department number and clicked OK, another dialog box displays employee names and numbers from that department.
This appendix describes OLE DB information that is specific to Oracle Provider for OLE DB. For generic OLE DB information that includes a detailed listing of all OLE DB properties and interfaces, see the Microsoft OLE DB Programmer's Reference Guide.
This appendix contains these topics:
This section lists the data type mapping between Oracle data types and OLE DB-defined types. Oracle Provider for OLE DB represents Oracle data types by using certain OLE DB-defined data types in the rowset as well as in parameters. OLE DB-defined types are also mapped to an Oracle data type when creating tables.
Each Oracle data type is mapped to a specific OLE DB data type, as shown in Table A-1. This correspondence is used when data type information is retrieved from an Oracle Database.
Oracle Data Type | OLE DB Data Type - Regular (NonUnicode) Mode | OLE DB Data Type - Unicode Mode |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
This section lists the properties supported by Oracle Provider for OLE DB. The read/write status and initial values are noted.
Table A-3 lists DataSourceInfo
properties.
Table A-3 DBPROPSET_DATASOURCEINFO Properties
Property | Status | Initial Value |
---|---|---|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY | "Database link" |
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY | " ", set at run time |
| READ-ONLY |
|
| READ-ONLY | " ", set at run time |
| READ-ONLY | set at run time |
| READ/WRITE |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY | 0, no limit |
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY | "PL/SQL Stored Procedure" |
| READ-ONLY | "Oracle Provider for OLE DB" |
| READ-ONLY |
|
| READ-ONLY | "02.01" |
| READ-ONLY | set to current OraOLEDB version |
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY | "Owner" |
| READ-ONLY |
|
| READ-ONLY | " ", set at run time |
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY | "Table" |
| READ-ONLY | " ", set at run time |
Table A-4 lists initialization and authorization properties.
Table A-4 DBPROPSET_DBINIT Properties
Property | Status | Initial Value |
---|---|---|
| READ-ONLY |
|
| READ/WRITE | User ID |
| READ/WRITE | Connect string |
| READ/WRITE | Window handle for prompt |
| READ/WRITE | LCID of system |
| READ/WRITE |
|
| READ/WRITE |
|
Table A-6 lists rowset properties.
Table A-6 DBPROPSET_ROWSET Properties
Property | Status | Initial Value |
---|---|---|
| READ/WRITE |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ-ONLY |
|
| READ/WRITE |
|
| READ-ONLY |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ/WRITE |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ/WRITE |
|
| READ-ONLY |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ/WRITE |
|
| READ-ONLY |
|
| READ/WRITE |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ/WRITE |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ-ONLY |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ-ONLY |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ/WRITE |
|
| READ-ONLY |
|
| READ/WRITE |
|
| READ/WRITE |
|
Oracle Provider for OLE DB sets other necessary properties if a particular property is set to VARIANT_TRUE
.
DBPROP_IROWSETLOCATE
is set to VARIANT_TRUE
, then the following properties are also set to VARIANT_TRUE
: DBPROP_IROWSETIDENTITY
DBPROP_CANHOLDROWS
DBPROP_BOOKMARKS
DBPROP_CANFETCHBACKWARDS
DBPROP_CANSCROLLBACKWARDS
DBPROP_IROWSETSCROLL
is set to VARIANT_TRUE
, then the following properties are also set to VARIANT_TRUE
: DBPROP_IROWSETIDENTITY
DBPROP_IROWSETLOCATE
DBPROP_CANHOLDROWS
DBPROP_BOOKMARKS
DBPROP_CANFETCHBACKWARDS
DBPROP_CANSCROLLBACKWARDS
DBPROP_IROWSETUPDATE
is set to VARIANT_TRUE
, then the DBPROP_IROWSETCHANGE property is also set to VARIANT_TRUE
. This section identifies the OLE DB interfaces that are supported by Oracle Provider for OLE DB.
DBTYPE_BASECOLUMNNAME
, DBTYPE_BASETABLENAME
, and DBTYPE_BASESCHEMANAME
metadata columns are not populated for read-only recordsets. OraOLEDB creates a read-only recordset for server cursor for SQL queries with DISTINCT
or UNIQUE
keywords. OraOLEDB also creates a read-only recordset for server cursor for JOIN
queries.
The following metadata columns are supported by the column rowset of OraOLEDB:
DBCOLUMN_IDNAME
DBCOLUMN_PROPID
DBCOLUMN_NAME
DBCOLUMN_NUMBER
DBCOLUMN_TYPE
DBCOLUMN_TYPEINFO
DBCOLUMN_COLUMNSIZE
DBCOLUMN_PRECISION
DBCOLUMN_SCALE
DBCOLUMN_FLAGS
DBCOLUMN_BASECATALOGNAME
DBCOLUMN_BASECOLUMNNAME
DBCOLUMN_BASESCHEMANAME
DBCOLUMN_BASETABLENAME
DBCOLUMN_COMPUTEMODE
DBCOLUMN_ISAUTOINCREMENT
DBCOLUMN_ISCASESENSITIVE
DBCOLUMN_ISSEARCHABLE
DBCOLUMN_OCTETLENGTH
DBCOLUMN_KEYCOLUMN
OraOLEDB provides the ability to trace the interface calls for debugging purposes. This feature has been provided to assist Oracle Support Services in debugging customer issues.
The provider can be configured to record the following information:
HRESULT
(exit) Note: To record global transaction enlistment and delistment information, theTraceLevel value must be set to session object. See "TraceLevel " . |
To trace the interface calls, you must configure the following registry values for HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\KEY_
HOMENAME
\OLEDB\
:
TraceFileName
Valid Value: Any valid path and file name
TraceFileName
specifies the file name that is to be used for logging trace information. If TraceOption
is set to 0
, the name is used as is. However, if TraceOption
is 1
, then the thread ID is appended to the file name provided. See "TraceOption
" for more information.
TraceCategory
Valid Values:
0
= None 1
= OLEDB Interface method entry 2
= OLEDB Interface method exit 4
= Distributed Transaction Enlistment and Delistment TraceCategory
specifies the information that is to be traced. Combinations of different tracing categories can be made by adding the valid values. For example, set TraceCategory
to 3
to trace all OLE DB interface method entries and exits.
Valid Values:
0
= None 1
= Data Source object 2
= Session object 4
= Command object 8
= Rowset object 16
= Error object 64
= Multiple Results Object TraceLevel
specifies the OLE DB objects to be traced. Because tracing all the entry and exit calls for all the OLE DB objects can be excessive, TraceLevel
is provided to limit tracing to a single or multiple OLE DB objects. To obtain tracing on multiple objects, add the valid values. For example, if TraceLevel
is set to 12
and TraceCategory
is set to 3
, the trace file will only contain method entry and exit for Command and Rowset objects.
The TraceLevel
value must be set to session object (2) to trace global transaction enlistment and delistment information.
TraceOption
Valid Values:
0
= Single trace file 1
= Multiple trace files TraceOption
specifies whether to log trace information in single or multiple files for each Thread ID. If a single trace file is specified, the file name specified in TraceFileName
is used. If multiple trace file is requested, a Thread ID is appended to the file name provided to create a trace file for each thread.
Component Object Model (COM)
A binary standard that enables objects to interact with other objects, regardless of the programming language that each object was written in.
consumer
A consumer is any application or tool that calls to a data source or the interfaces of provider to access data. See provider.
Oracle Net Services
The Oracle client/server communication software that offers transparent operation to Oracle tools or databases over any type of network protocol and operating system.
provider
A provider is an interface or set of components that provides data to a consumer. As the term is used with Oracle Provider for OLE DB, a data provider is a set of COM components that transfer data from a data source to a consumer, by placing the data in a tabular format when called for. See consumer.
stored procedure
A stored procedure is a PL/SQL block that are stored in an Oracle Database and can be called by name from an application.
 Copyright © 1999, 2010, Oracle and/or its affiliates. All rights reserved. |