Developer's Guide
11g Release 2 (11.2) for Microsoft Windows
E26104-01
October 2011
Oracle Services for Microsoft Transaction Server Developer's Guide, 11g Release 2 (11.2) for Microsoft Windows
E26104-01
Copyright © 1996, 2011, Oracle and/or its affiliates. All rights reserved.
Contributing Authors: Janis Greenberg, Patricia Huey, Mark Kennedy, Roza Leyderman, Janelle Simmons
Contributors: Alex Keh, Valarie Moore, Vivek Raja, Eric Wang, Yong Hu
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This manual explains how to install, configure, use, and administer Oracle Services for Microsoft Transaction Server that apply to operating systems. It covers the features of Oracle Database software that apply to the Windows 2000, Windows XP, and Windows Server 2003 operating systems.
This preface contains these topics:
This guide is intended for anyone who performs the following tasks:
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see these Oracle resources:
For information about Oracle error messages, see Oracle Database Error Messages. Oracle error message documentation is available only in HTML. If you only have access to the Oracle Documentation CD, you can browse the error messages by range. Once you find the specific range, use your browser's "find in page" feature to locate the specific message. When connected to the Internet, you can search for a specific error message using the error message search feature of the Oracle online documentation.
Many of the examples in this book use the sample schemas of the seed database, which is installed by default when you install Oracle. Refer to Oracle Database Sample Schemas for information on how these schemas were created and how you can use them yourself.
To download free release notes, installation documentation, white papers, or other collateral, please visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at
If you already have a username and password for OTN, then you can go directly to the documentation section of the OTN Web site at
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
This section describes new features of Oracle Database 11g Release 2 (11.2) and provides pointers to additional information.	
The following sections describe the new features in Oracle Services for Microsoft Transaction Server.	
Oracle database now allows all transactions to remain local until more than one database is brought into the transaction, at which point, they are promoted to distributed transactions.	
The database now redirects all the branches of a distributed transaction to a single Oracle RAC instance automatically.	
This chapter describes Microsoft Transaction Server and Oracle Database integration.	
This chapter contains these topics:	
Microsoft Transaction Server is a proprietary component object model (COM) transaction processing system that runs on an Internet or network server. Microsoft Transaction Server deploys and manages application and database transaction requests on behalf of a client computer. Microsoft Transaction Server provides:	
Microsoft Transaction Server is a component of the three-tiered, server-centric architecture model. This model lets you separate the presentation, business logic, and data elements of applications onto different computers connected in a network. Microsoft Transaction Server functionality is also implemented in COM+ and Enterprise Services. Oracle Services for Microsoft Transaction Server, or OraMTS, support Microsoft Transaction Server, COM+, and Enterprise Services.	
See Also: Microsoft documentation for additional information about Microsoft Transaction Server	
Without any special integration, you can deploy applications that were created using Win32, Win64, COM, or Microsoft .NET with a Microsoft Transaction Server that connects to an Oracle Database. To use either of the following features, however, you must install Oracle Services for Microsoft Transaction Server (OraMTS):	
After you have installed Oracle Services for Microsoft Transaction Server, an Oracle MTS Recovery Service is also automatically installed on the same computer. The Oracle MTS Recovery Service helps in the recovery of in-doubt transactions left in Oracle Database instances that originated from this computer. On each connected database:	
This enables the database to participate in Microsoft Transaction Server-started transactions.	
Create the COM component with any of the following Oracle products:	
Oracle Services for Microsoft Transaction Server works with Microsoft Distributed Transaction Coordinator (DTC), which is part of the Enterprise Services component of .NET. DTC implements a two-phase commit protocol that makes sure that the transaction outcome is consistent across all data resources involved in a transaction.	
With Oracle Database Release 11.1, the database now redirect all the branches of a distributed transaction to a single Oracle RAC instance automatically. Previously developers needed to manually manage this process, individually redirecting all the branches to a single Oracle RAC instance.	
See Also: Oracle Database Oracle Real Application Clusters Administration and Deployment Guide to learn more about distributed transactions in Real Application Clusters.	
Promotable local transactions allow all transactions to remain local until more than one database is brought into the transaction, at which point, they are promoted to distributed transactions.	
The flexibility of the promotable transaction feature ensures more efficient resource usage for transactional applications. Distributed transactions require significant overhead versus local transactions. Therefore, local transactions are preferred if only one database is used. At design-time, it may not be known when transactions are local or distributed. Prior to this feature, developers always had to use distributed transactions, even if local ones occurred most of the time, leading to unnecessary resource usage.	
This feature is supported with Oracle Database 11g Release 1 and higher. Earlier database versions and other resource managers can participate in a promotable transaction as long as the first connection is to an Oracle Database 11g Release 1 data source or higher.	
See Also: Oracle Data Provider for .NET Developer's Guide for more information onSystem.Transactions support	
You are now ready to use Microsoft Transaction Server with a database. To get started quickly, follow these steps:	
See Chapter 4, "Programming with Microsoft Transaction Server and an Oracle Database" for instructions on using OCI, OO4O, Oracle ODBC Driver, or Oracle Provider for OLE DB with COM-based applications.	
This chapter describes installation and migration requirements for the Microsoft Transaction Server and Oracle Database environment.	
This chapter contains these topics:	
You can install OraMTS by choosing the Custom installation type when you install Oracle Database.	
This section describes the Oracle and non-Oracle products you must install for OraMTS. Additional installation requirements include:	
The Windows computer where Microsoft Transaction Server is installed has the following product requirements:	
Notes:	
This chapter describes how to create and schedule Microsoft Transaction Server-related Oracle transaction recovery.	
This chapter contains these topics:	
You must configure the Microsoft Transaction Server and Oracle Database environments after installing or migrating Oracle Services for Microsoft Transaction Server (OraMTS).	
Configuration is not required on the Windows computer if a Microsoft Transaction Server is installed on a computer.	
To configure the Microsoft Transaction Server, perform the following tasks on the computer where the Oracle Database is installed:	
oramtsadmin.sql	
script against the database to create the Microsoft Transaction Server administrative user account (the default username is mtssys	
). See "Scheduling Automatic Microsoft Transaction Server Transaction Recovery"	
oramtsadmin.sql	
script. See "Modifying Registry Values for Oracle Fail Safe Configurations".	
Distributed transaction capabilities are required to use Microsoft Transaction Server with Oracle database. Microsoft Transaction Server-related Oracle transactions become in-doubt transactions when any of the following fail:	
An Oracle MTS Recovery Service resolves in-doubt transactions on the computer that started the failed transaction.	
Typically, an Oracle MTS Recovery Service is automatically created and started with Oracle Services For Microsoft Transaction Server. However, for Oracle Database releases 11.2.0.3 through 11.2.0.x, depending on the options you choose during the install, Oracle MTS Recovery Service may be created, but not started at the end of the installation. In this case, it must be started manually.	
Only one Oracle MTS Recovery Service can be installed for each computer. A scheduled recovery job on each Microsoft Transaction Server-enabled database permits the Oracle MTS Recovery Service to resolve in-doubt transactions.	
The Oracle MTS Recovery Service resolves an in-doubt Microsoft Transaction Server transaction in the following order:	
OraMTS uses server-based recovery to resolve in-doubt transactions originated by MSDTC. To do this, the OraMTS administrator must be able to access the Windows middle-tier node through UTL_HTTP	
. oramtsadmin.sql	
grants execute privileges on UTL_HTTP	
to the OraMTS administrator, as shown in "Configuring Automatic Transaction Recovery"	
Note: Starting with Oracle version 11g, the DBA needs to create an access control list (ACL) as shown in "Creating an Access Control List (ACL)".	
For Oracle database version 11g and later, the DBA must create an access control list (ACL) that grants the OraMTS administrator the privilege to make out-bound HTTP connections. Example 3-1 demonstrates this:	
Example 3-1 Creating an ACL List and Adding OraMTS Administrator to it	
Automatic transaction recovery is performed by scheduling a database job. A database job for in-doubt transactions must be scheduled for each database participating in Microsoft Transaction Server transactions.	
Transaction recovery is configured by running the oramtsadmin.sql	
script, which triggers utl_oramts.sql	
and prvtoramts.plb	
scripts to create the PL/SQL package utl_oramts	
. The database view oramts_2pc_pending	
is also created to show in-doubt transactions related to Microsoft Transaction Server transactions.	
The oramtsadmin.sql	
script:	
When the database job is run, it checks for unresolved global transactions in the database that are related to Microsoft Transaction Server. Information in the transaction identifiers (XIDs) of the in-doubt transactions identifies the computer on which the transaction was started. The Oracle MTS Recovery Service on that computer resolves the transaction.	
Schedule automatic transaction recovery in the database by performing these tasks:	
The JOB_QUEUE_PROCESSES	
initialization parameter specifies the maximum number of job slaves started on an instance.	
To set and start up job-queue processes:	
SYSDBA	
privileges. SYSDBA	
: JOB_QUEUE_PROCESSES	
initialization parameter: The default value for this parameter is 0	
. Set this parameter to a value greater than 1	
if there are many destinations to which to propagate the messages.	
The oramtsadmin.sql	
script creates the Microsoft Transaction Server administrator user account with the default username mtssys	
. The Microsoft Transaction Server transaction recovery jobs run under the administrator user account.	
The oramtsadmin.sql	
script runs the utl_oramts.sql	
script to grant the following privileges and roles to the administrator user account:	
CREATE SESSION	
role SELECT_CATALOG_ROLE	
role FORCE_ANY_TRANSACTION	
privilege DBMS_JOBS	
package, on which EXECUTE	
privileges are granted DBMS_TRANSACTION	
package, on which EXECUTE	
privileges are granted To create and schedule automatic transaction recovery:	
SYSDBA	
privileges. SYSDBA	
: Run the oramtsadmin.sql	
script:	
You are prompted for the Microsoft Transaction Server administrator username and password. You can accept the default username of mtssys	
and password of mtssys	
, or change them.	
To change the username after completing this task, drop the user, rerun the oramtsadmin.sql	
script, and specify a different username when prompted.	
Exit SQL*Plus:	
A single PL/SQL package, utl_oramts	
, is created in the Microsoft Transaction Server administrator's schema. utl_oramts	
exposes these public procedures and creates this view:	
Use this procedure to view Microsoft Transaction Server in-doubt transactions in the database. This procedure uses the dbms_output	
package to display results.	
Description This procedure requires SERVEROUTPUT	
set to ON	
.	
The following information appears:	
This procedure is run by the transaction recovery job. An automatic database job is scheduled for utl_oramts.recover_automatic	
. When the job is run, it checks for unresolved global transactions in the database that are related to Microsoft Transaction Server. Information in the XIDs of the in-doubt transactions identifies the computer on which the transaction started. The Oracle MTS Recovery Service is contacted and resolves the transactions.	
Use this procedure to request the transaction manager (MS DTC) to forget resolved transactions. This procedure is run by the post-recovery cleanup job.	
The view oramts_2pc_pending	
is created by executing oramtsadmin.sql	
. oramts_2pc_pending	
shows in-doubt transactions in the database. This view consists of the following columns:	
Formatid This is the formatid	
of the global transaction in the database.	
global_transaction_id This is the transaction identifier of the Oracle global transaction corresponding to the Microsoft Transaction Server transaction. In fact, this is the globally unique identifier (GUID) of the Microsoft Transaction Server transaction.	
branch_id This shows the branch identifier of the Oracle transaction. A single Microsoft Transaction Server transaction can have multiple Oracle global transactions. This depends on the number of Microsoft Transaction Server/COM+ components that span the same Microsoft Transaction Server transaction. All these transactions have the small global transaction identifier, but different branch identifiers.	
local_tx_id A local Oracle transaction corresponds to each Microsoft Transaction Server transaction. This column shows the identifier corresponding to this local transaction.	
state This shows the state of the transaction: pending, heuristically committed, heuristically terminated, and so on.	
protocol This is the protocol that the transaction recovery job in the database uses to communicate with the Oracle MTS Recovery Service.	
endpoint This is the endpoint of the Windows computer on which the Microsoft Transaction Server transaction originated. For HTTP connections, this translates to a hostname and port number.	
To view Microsoft Transaction Server–related in-doubt transactions in the database, use SQL*Plus to query the view oramts_2pc_pending	
:	
This displays the computer on which the in-doubt transaction originated.	
In typical configurations, the MS DTC and Oracle MTS Recovery Service run on the same computer. This ensures that the required information for transaction recovery is available to the Oracle-Microsoft Transaction Server integration layer.	
In configurations where the Microsoft Transaction Server application is part of a Windows cluster (for example, the application can fail over to another node or host in the cluster), the MS DTC runs as a cluster-wide resource. All cluster nodes use a single instance of the MS DTC running on any cluster node.	
If you have an Oracle Fail Safe configuration, make sure the following registry information is replicated on all nodes in the cluster participating in Microsoft Transaction Server transactions:	
To modify registry values for Oracle Fail Safe configurations:	
The Registry Editor window appears.	
HKEY_LOCAL_MACHINE	
\Software	
\Oracle	
\OracleMTSRecoveryService	
. This chapter describes how to program with Microsoft Transaction Server and an Oracle Database.	
This chapter contains these topics:	
OraMTS also provides integration with OO4O, Oracle Provider for OLE DB, and Oracle Data Provider for .NET.	
See Also:	
The focal point of the transaction process is a component of Microsoft Transaction Server called Microsoft Distributed Transaction Coordinator (MS DTC). When a client computer starts a business method on a transactional component, Microsoft Transaction Server begins a transaction coordinated by the MS DTC. The Oracle connection pooling layer enables the database to act as a resource manager (RM) in the MS DTC-coordinated transaction. Figure 4-1 illustrates this transactional model.	
Client Computer The client computer activates the application components on the MTS Application Server through a Web browser or through the component object model (COM) /distributed component object model (DCOM).	
MTS Application Server The MTS application server consists of the services that the Windows operating service provides to host transactional application components that a client computer can activate, either indirectly through a Web browser or directly through the component object model (COM) /distributed component object model (DCOM). In response to client requests, the application server invokes the COM components. The invocations are performed within the scope of transactions where required	
Transactional Application Logic COM Components Three primary responsibilities:	
Oracle ODBC Driver, OO4O, Oracle Provider for OLE DB, and OCI Two primary responsibilities:	
OCI Connection Pool Three primary responsibilities:	
Oracle Net Provides connectivity in distributed, heterogeneous computing environments.	
Oracle MTS Recovery Service Recovers in-doubt Oracle transactions that originated from the host computer and are related to the Microsoft Transaction Server.	
Database Recovery Job Detects in-doubt DTC transactions. This job extracts the recovery service's endpoint address in the in-doubt transaction's XID and then requests the outcome of the Microsoft DTC transaction from the recovery service. Ultimately, the job will commit or terminate the in-doubt transaction when it receives the transaction's outcome.	
Microsoft DTC Microsoft Distributed Transaction Coordinator is part of Microsoft Transaction Server and has two primary responsibilities:	
Oracle Database Acts as an RM for Microsoft Transaction Server. This is the database on which the client transaction request is performed.	
OCI connection pooling is used to coordinate a transaction in nearly all application programming interfaces. This sections describes how transactions are registered and how OCI connection pooling coordinates them.	
Application components that run in the Microsoft Transaction Server environment are created as dynamic link libraries (DLLs). Application components are registered with Microsoft Transaction Server using the Microsoft Transaction Server Explorer graphical user interface (GUI) tool.	
When you register the application component, you mark it as one of the following types:	
How you register an application component determines if it runs in a Microsoft Transaction Server-coordinated transaction.	
This section describes how OCI connection pooling, Microsoft Transaction Server, and MS DTC operate with application components in a Microsoft Transaction Server-coordinated transaction environment.	
OraMTSSvcGet()	
to obtain a service context from the OCI connection pooling component. The OCI service and environment handles are returned to client applications.	
OraMTSSvcRel()	
to release the OCI pooling connection obtained at the beginning of the transaction. SetComplete	
(to commit database operations) or SetAbort	
(to terminate database operations) on the Microsoft Transaction Server context object associated with the component. This section describes how OCI connection pooling, Microsoft Transaction Server, and MS DTC operate with application components not running in a Microsoft Transaction Server-coordinated transaction, but using MS DTC.	
OCIServerAttach()	
and OCISessionBegin()	
. For these connections, the application calls OraMTSEnlCtxGet()	
to associate the OCI service context with a Microsoft Transaction Server enlistment context. OraMTSSvcGet(..,..,ORAMTS_CFLG_NOIMPLICIT)	
. OraMTSJoinTxn()	
. OraMTSSvcEnlist()	
. OraMTSSvcEnlist()	
with a NULL	
transaction reference to de-enlist from an MS DTC coordinated transaction. For nonpooled connections, OraMTSTxnJoin()	
is invoked with a NULL	
transaction reference to perform the de-enlistment.	
OraMTSSvcRel()	
to release a pooled connection back to the pool. For nonpooled connections, the client calls OraMTSEnlCtxRel()	
to release the enlistment context and then logs off the database.	
pTransaction->Commit()	
or pTransaction->Abort()	
. Example 4-1 illustrates how you can integrate the MTS sever with OCI. The only change in code you must make involves obtaining and releasing the OCI service context handle. Both OCI service context handle and environment handle are acquired when you obtain a pooled OCI connection to the database by calling OraMTSSvcGet()	
. Include the oramts.h	
header and link with the oramts.lib	
library. When you are finished, call OCI function OraMTSSvcRel()	
to release the service context handle and environment handle. Using OraMTSSvcGet()	
enables you to receive connection pooling and implicit transaction support if you registered the application component to run in a Microsoft Transaction Server transaction.	
Ensure that for each process, you call OCIInitialize	
at least once before executing any other OCI calls. This initializes the OCI process environment. In addition, you must pass it the OCI_THREADED	
flag. If you are using Microsoft Internet Information Server (IIS) and the components are being called as in-process libraries, then OCIInitialize	
is already called for you. The registry key ORAMTS_OCI_OBJ_MODE	
has been added. Set the value to 1 to initialize OCI in Object mode; otherwise OCI will initialize in the threaded mode.	
Example 4-1 Integration of MTS and OCI	
There are several scenarios for integrating COM components. COM applications that are not hosted by the Microsoft Transaction Server environment, also known as standalone applications, cannot use declarative transactions through the Microsoft Transaction Server Explorer Microsoft Management Console, but they can use the last three of the scenario described.	
COM components that are running in an MTS-coordinated transactions use OCI connection pooling to implicitly enlist the database in a transaction. The following pseudo-code listing illustrates the use of OCI functions:	
COM components that are marked as non-transactional and running in an MTS-coordinated transaction use OCI connection pooling do not enlist the database in a transaction. The following pseudo-code listing illustrates the use of OCI functions:	
COM components that are not running in an MTS-coordinated transaction use MS DTC with OCI connection pooling to explicitly enlist the database in a transaction. The following pseudo-code listing illustrates the use of OCI functions:	
COM components that are not running in an MTS-coordinated transaction use MS DTC with a non-pooling OCI connection to explicitly enlist the database in a transaction. The following pseudo-code listing illustrates the use of OCI functions:	
This section details the OCI functions discussed earlier in this section. Table 4-1 summarizes these functions.	
Table 4-1 Summary of OCI Functions for Integrating MTS and Oracle Database	
OCI Function	Summary
---	---
Obtains a pooled connection from the OCI connection pool.	
Releases a pooled OCI connection, OCI service context, back to the connection pool.	
Enlists or de-enlists an OCI connection in a transaction coordinated by MS DTC.	
Enlists an OCI connection or service context in an MS DTC transaction.	
Creates an enlistment context for a nonpooled OCI connection.	
Eliminates a previously set up enlistment context for a nonpooled OCI connection.	
Enlists a nonpooled OCI connection in an MS DTC transaction.	
Tests if you are running inside a Microsoft Transaction Server-started transaction.	
Retrieves the OCI error code and message text.	
Obtains a pooled connection, also known as an OCI service context, from the OCI connection pool. The pooled connection includes an OCI service context handle and an OCI environment handle.	
Table 4-2 OraMTSSvcGet() Parameters	
Parameter	IN/OUT
---	---
IN	Username for connecting to the Oracle Database
IN	Password for the username
IN	The net service name for connecting to the database (created with Oracle Net Manager or Oracle Net Configuration Assistant)
OUT	Pointer to the OCI service context handle
OUT	Pointer to the OCI environment handle
IN	Connection flags. Possible values are:
Returns ORAMTSERR_NOERROR	
upon successful acquisition of an OCI pooling connection (OCI service context).	
Usage Notes	
OraMTSSvcGet()	
returns a pooled OCI connection to the caller, enabling a database transaction using OCI to begin. Use OraMTSSvcGet()	
to implicitly enlist the OCI connection in a transaction coordinated by Microsoft Transaction Server. In this type of transaction, Microsoft Transaction Server controls the creation, startup, management, and commitment phases of the transaction through its MS DTC component. OraMTSSvcGet()	
also provides connection pooling without enlisting the Oracle Database in a Microsoft Transaction Server transaction. This is done by setting OraMTSSvcGet()	
as follows: OraMTSSvcGet	
()	
is used, you must always use OraMTSSvcRel	
()	
to release the connection when finished. ORAMTS_CFLG_SYSDBALOGN	
and ORAMTS_CFLG_SYSOPRLOGN	
when connecting as SYSDBA	
and SYSOPER	
, respectively. hr	
/hr_password	
account, call OraMTSSvcGet()	
as follows: OraMTSSvcGet()	
does not support placing the username (lpUname	
), password (lpPsswd	
), and net service name syntax (lpDbname	
) together in the username argument (for example, hr/	
hr_password	
@prod_fin	
). Instead, the caller must fill in lpUname	
, lpPsswd	
, and lpDbname	
separately (as shown in the previous syntax example). Calling OraMTSSvcGet()	
with the username and password as NULL	
strings uses external authentication (operating system authentication) for the connection. Releases a pooled OCI connection, OCI service context, back to the connection pool. Use this function to release connections that were acquired with OraMTSSvcGet()	
.	
Parameters	
Table 4-3 OraMTSSvcRel() Parameters	
Parameter	IN/OUT
---	---
IN	OCI service context for a pooled connection
Returns ORAMTSERR_NOERROR	
upon successful release of a pooled OCI connection.	
Usage Notes	
An OCI pooled connection obtained through a previous call to OraMTSSvcGet()	
is released back to the connection pool. Once released back to the connection pool, the OCI service context, its environment handle, and all child handles are invalid.	
OCITransCommit()	
or OCITransAbort()	
prior to releasing a connection obtained through OraMTSSvcGet(..., ...,ORAMTS_CFLG_ALLDEFAULT)	
back to the pool. Otherwise, all changes made in that session are rolled back. A transaction component uses the SetComplete	
or SetAbort	
methods on its Microsoft Transaction Server object context. OraMTSSvcGet(..., ...,ORAMTS_CFLG_NOIMPLICIT)	
to obtain a connection resource must first de-enlist the resource if enlisted. If the connection was enlisted explicitly, pTransaction->Commit()	
or pTransaction->Abort()	
must be called. Otherwise, OCITransCommit()	
or OCITransAbort()	
must be called before releasing the connection back to the pool. Enlists or de-enlists an OCI connection in a transaction coordinated by MS DTC. Use this call to explicitly enlist pooled connections. Nonpooled connections must enlist with OraMTSJoinTxn()	
.	
Table 4-4 OraMTSSvcEnlist() Parameters	
Returns ORAMTSERR_NOERROR	
on success.	
OraMTSSvcRel()	
. OraMTSSvcEnlist()	
enlists (or de-enlists) pooled OCI connections obtained previously through OraMTSSvcGet()	
with the ORAMTS_CFLG_NOIMPLICIT	
flag and not yet released with OraMTSSvcRel()	
. The pooled OCI connections must be explicitly enlistable. When the transaction is complete, you must de-enlist OraMTSSvcEnlist()	
, passing NULL	
as the transaction pointer as follows: You must use OraMTSSvcRel()	
to release the connection when done.	
Enlists an OCI connection or service context in an MS DTC transaction. Use this call only to explicitly enlist pooled connections. Nonpooled connections must enlist with OraMTSJoinTxn()	
.	
Parameters	
Table 4-5 OraMTSSvcEnlistEx() Parameters	
Returns ORAMTSERR_ILLEGAL_OPER	
.	
Use OraMTSSvcEnlistEx()	
for pooled connections or OraMTSJoinTxn()	
for nonpooled connections.	
Creates an enlistment context for a nonpooled OCI connection.	
Syntax	
Table 4-6 OraMTSEnlCtxGet() Parameters	
Parameter	IN/OUT
---	---
Username for connecting to the Oracle Database	
Password for connecting to the Oracle Database	
Net service name for connecting to a database	
OCI service context for a nonpooled connection	
OCI error handle	
Enlistment flags. The only value currently permitted is	
Enlistment context to be created	
Returns	
Returns ORAMTSERR_NOERROR	
on success.	
Usage Notes	
OraMTSJoinTxn()	
calls. Prior to deleting the OCI connection, OraMTSEnlCtxRel()	
must be called to delete the enlistment context. OraMTSEnlCtxGet()	
. OraMTSJoinTxn()	
. OraMTSJoinTxn()	
with a NULL	
transaction pointer. OraMTSEnlCtxRel()	
. Eliminates a previously set up enlistment context for a nonpooled OCI connection.	
Table 4-7 OraMTSEnlCtxRel() Parameters	
Parameter	IN/OUT
---	---
IN	Enlistment context to eliminate
Returns ORAMTSERR_NOERROR	
on success.	
Usage Notes	
OraMTSEnlCtxRel()	
to eliminate any enlistment context it may have created for that connection. The enlistment context can maintain OCI handles allocated off the connection's OCI environment handle. This makes it imperative that the environment handle is not deleted for the associated enlistment context. Enlists a nonpooled OCI connection in an MS DTC transaction.	
Parameters	
Table 4-8 OraMTSJoinTxn() Parameters	
Parameter	IN
---	---
Enlistment context for the OCI connection	
Reference to the MS DTC transaction object	
Returns ORAMTSERR_NOERROR	
on success.	
Usage Notes	
pTrans	
is NULL	
, the OCI connection is de-enlisted from any MS DTC transaction in which it is currently enlisted. You can enlist a previously-enlisted OCI connection in a different MS DTC transaction. Tests if you are running inside a Microsoft Transaction Server-started transaction.	
Returns	
Returns true	
if running inside a Microsoft Transaction Server transaction.	
Usage Notes	
Microsoft Transaction Server transactional components use OraMTSTransTest()	
to check if a component is running within the context of a Microsoft Transaction Server transaction. Note that this call can only test Microsoft Transaction Server-started transactions. Transactions started by directly calling the MS DTC are not detected.	
Retrieves the OCI error code and message text, if any, from the last OraMTS	
function operation, typically OraMTSSvcGet()	
or OraMTSJoinTxn()	
.	
Table 4-9 OraMTSOCIErrGet() Parameters	
Parameter	IN/OUT
---	---
Error code	
Buffer for the error message, if any	
Set to the actual number of message bytes	
Returns
Returns true
if an OCI error is encountered. Otherwise, false
is returned. If true
is returned and lpcEMsg
and lpdLen
are valid, and there is a stashed error message, up to lpdLen
bytes are copied into lpcEMsg
. lpdLen
is set to the actual number of message bytes.
Usage Notes
Example 4-2 illustrates how OraMTSOCIErrGet()
retrieves the OCI error code and OCI error message text, if any, from the last OraMTSSvc()
operation on this thread.
Example 4-2 Retrieving the OCI Error Code and Message Text
This section describes how to use Oracle ODBC Driver with Microsoft Transaction Server and a Oracle Database. No changes to OCI code are necessary for ODBC to operate successfully.
To use Microsoft Transaction Server with either Oracle ODBC Driver 11.1 or Microsoft Oracle ODBC driver, set the connection attribute using the SQLSetConnectAttr
function to call the parameter SQL_ATTR_ENLIST_IN_DTC
in the ODBC code. This enables you to receive connection pooling and implicit transaction support.
The ODBC Driver Manager distributed with ODBC 3.0 is a Resource Dispenser that supports connection pooling. Oracle ODBC Driver release 11.1 integrates with the ODBC 3.0 Driver Manager by supporting the SQLSetConnectAttr(...,..., SQL_ATTR_ENLIST_IN_DTC)
call to enlist or de-enlist the ODBC connection used in MS DTC-coordinated transactions.
Use the Oracle ODBC Driver 11.1 with:
To configure Oracle ODBC Driver, follow these steps:
The Control Panel window appears.
The ODBC Data Source Administrator dialog box appears.
To make Oracle ODBC Driver work with Microsoft sample banking application demo, follow these steps. Otherwise, skip this step.
mtssamples.dsn
file. This file is located in ROOTDRIVE
:\program files\common files\odbc\data sources
. Click Yes when prompted.
This deletes the configuration file that enables the Microsoft Transaction Server sample application demo to use the Microsoft ODBC driver.
If you don't intend to use the demo, click Add to create a new File data source name (DSN).
The Create New Data Source wizard appears.
HOME_NAME
. where:
SERVER
is the The database alias used by the demo to access the database mtsdemo
. USERNAME
is the database username for this application, such as hr
. PASSWORD
is the database password for username hr
. Verify that the hr
schema contains the account
and receipt
tables.
mtssamples.dsn
(Microsoft ODBC name). This name must exactly match the name you removed in Step 4. For applications you develop, enter the name of the DSN file that will be used.
See Also: Microsoft Transaction Server SDK for information |
As an alternative to the Oracle ODBC driver, you can use the Microsoft Oracle ODBC Driver. You should be aware that you would not be able to integrate with OO4O, Oracle Provider for OLE DB, and Oracle Data Provider for .NET if using the Microsoft driver. Also, you will not receive the performance benefits of the Oracle ODBC driver, API support for integration, or Oracle client support services.
After enabling the Microsoft Oracle ODBC Driver, perform these additional steps to configure the Microsoft Oracle ODBC Driver:
To configure the Microsoft Oracle ODBC Driver:
ORACLE_BASE
\
ORACLE_HOME
\oramts\samples\ sql\omtssamp.sql
script. mtssamples.dsn
file. HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE
: See Also: "Setting Up MTS to Access Oracle" in the Microsoft Transaction Server online Help for instructions on enabling the Microsoft Oracle ODBC Driver |
This chapter provides Microsoft Transaction Server performance tuning information.
This chapter contains these topics:
Optimizing the programming methods of your application improves its performance. For example, placing all code for a given transaction into one component object model (COM) component means you do not mark that component as transactional. This eliminates the overhead of going through Microsoft Transaction Server. You can subsequently use the Oracle commit or rollback functions to control that transaction in the component. If you are using the Oracle Call Interface (OCI), you can still use ORAMTSSvcGet()
, but you can also use the ORAMTS_CFLG_NOIMPLICIT
flag. If you are updating across two or more Oracle Database instances, use database links and connect to one database from the COM component.
See Also: "OCI Integration with Microsoft Transaction Server" for more information on usingORAMTSSvcGet() |
When a .NET or COM component ends a session with the Oracle Database, the connection does not immediately terminate. Instead, it remains idle in a connection pool, where it is available for reuse by another component attempting a new connection to the Oracle Database.
The idle period during which a connection is reusable reduces the resource costs associated with opening a new connection. The amount of time that the connection remains idle and available in the connection pool is determined by several registry parameter settings. You can modify these parameters on the computers on which the client Microsoft Transaction Server components are installed, in the file HKEY_
LOCAL_MACHINE
\SOFTWARE\ORACLE\
HOMEID
:
ORAMTS_CONN_POOL_TIMEOUT The time, in seconds, that the connection remains idle and available for reuse in the client side connection pool, before timing out and being released. The default value of this parameter is 120
seconds.
ORAMTS_SESS_TXNTIMETOLIVE The time, in seconds, that the connection established using OraMTSSvcGet()
remains alive in the client side connection pool after being released by an OraMTSSvcRel()
call. The sum of the ORAMTS_CONN_POOL_TIMEOUT
and ORAMTS_NET_CACHE_TIMEOUT
values determines the actual time before a connection terminates completely. The default value of this parameter is 120
seconds.
ORAMTS_NET_CACHE_TIMEOUT The resource dispenser implemented inside Oracle Services for Microsoft Transaction Server establishes pooled connections to Oracle databases. When these connections are no longer in use, the user sessions are disconnected after the timeout specified by ORAMTS_CONN_POOL_TIMEOUT
. However, the underlying Oracle Net connections are cached for the period specified by this parameter. After this time, expressed in milliseconds, a cached Oracle Net connection to the database will be terminated. The default value of this parameter is 120000 milliseconds. Oracle recommends setting this parameter to a higher value than the value for ORAMTS_CONN_POOL_TIMEOUT
. The sum of the time periods specified for ORAMTS_CONN_POOL_TIMEOUT
and ORAMTS_NET_CACHE_TIMEOUT
determines the actual time before a connection terminates completely.
ORAMTS_NET_CACHE_MAXFREE The maximum number of free server connections that should be maintained in the client-side connection pool at a given time. The default value of this parameter is 5
.
ORAMTS_OSCREDS_MATCH_LEVEL The level of Windows security checking implemented when the OS_ROLES
initialization parameter in the init.ora
file is true
.
When a user establishes a connection to the Oracle Database using the CONNECT
command, the Windows username is associated with specific database roles and privileges. When the user disconnects, this connection becomes idle and available in the pool. When another user enters the CONNECT
command, if the Windows username is identical to the one used by the first user, the second user can receive the same database roles and privileges as the first user. This is a considerable security concern, especially if the second user possesses only the CREATE SESSION
and RESOURCE
database roles but receives the DBA
privileges of the first user.
By default, the ORAMTS_OSCREDS_MATCH_LEVEL
parameter value is OS_AUTH_LOGIN
, and Windows security checking is performed only if the username and password are NULL
.
The most secure setting for this parameter is ALWAYS
, which ensures that Windows security checking is performed in all cases, and takes care of possible security breaches due to identical non-null Window usernames.
Because Windows security checking is a resource-intensive operation, you may wish to set the value of this parameter to NEVER
. However, if you know that OS_ROLES
is true
, or if you use operating system-authenticated connections, you should avoid this option.
If transaction requests are timing out before completing, the transaction timeout parameter may be set too low. Increase the transaction timeout parameter to ensure that transactions have enough time to complete.
To increase the transaction timeout parameter:
The Component Services window appears.
A menu appears with several options.
The My Computer Properties dialog box appears.
Enter a value in the Transaction Timeout field and click OK.
The transaction timeout value is increased. For most environments, 60
seconds may be enough. However, if the transaction is competing with numerous concurrent transactions, this value may be too low.
You may need to modify several initialization parameters to use the Oracle Database with Microsoft Transaction Server. The values you should set these parameters to are based on the database workload environment.
To verify initialization parameter file values, follow these steps:
SYSDBA
privileges. SYSDBA
: SESSIONS
parameter: PROCESSES
parameter: The current settings for both SESSIONS
and PROCESS
parameters are typically appropriate for running the Microsoft application demo. For creating and deploying .NET or COM-based applications, the values for these parameters depend on the database environment's anticipated workload. For example, if you anticipate 100
concurrent connections to the Oracle Database, consider setting both values to 200
to accommodate a possible system overload. Ensure that you do not set these parameters too high, because they are resource-intensive.
SESSIONS
= 200
(or larger if anticipating heavier loads) PROCESSES
= 200
(or larger if anticipating heavier loads) Use the registry variable ORAMTS_ABORT_MODE
to control whether a new connection always performs an abort or whether the originally enlisted connection can be used to perform the abort, that is, whether the abort is synchronous or asynchronous.
By default, the originally enlisted connection performs transaction aborts (whenever possible).
Registry variable: ORAMTS_ABORT_MODE
Values:
ORAMTS_ABORT_MODE_NEW_CONN_ONLY:
Results in asynchronous aborts. A new connection to the database is opened for performing transaction aborts. The Microsoft Distributed Transaction Coordinator (MS DTC) must be running to enable communication with Oracle Services for Microsoft Transaction Server.
To start MS DTC, follow these steps:
The Component Services window appears.
A menu with several options appears.
MS DTC starts.
This chapter provides information on troubleshooting Oracle Microsoft Transaction Server.
This chapter contains these topics:
Trace files record information about Oracle Services for Microsoft Transaction Server performance. This information includes:
Registry parameters handle tracing within oramts.dll
, which performs the following tasks:
The MTS-based COM components can acquire connections to both dedicated and shared Oracle servers of a database. The components can then attempt to perform distributed updates, using data manipulation language, on another database using pre-existing database links between these databases. While the distributed updates from shared servers succeed, those from dedicated servers fail.
Registry parameters that handle tracing are automatically set in \\
HKEY_LOCAL_MACHINE
\SOFTWARE\ORACLE\
HOMEID
during the installation of Oracle Services for Microsoft Transaction Server.
Restart all applications using Oracle Services for Microsoft Transaction Server. Further, if you have modified parameters related to the tracing of the OracleMTSRecoveryService
, restart the Windows service.
Table 6-1 shows the range of ORAMTS_CP_TRACE_LEVEL
trace values.
Table 6-1 ORAMTS_CP_TRACE_LEVEL Trace Registry Parameter Values
Level | Description |
---|---|
0 | Disables tracing. If the registry parameter is not set in the registry or as an environment variable, then tracing is disabled. This is equivalent to setting the level to |
1 | Traces errors only |
2 | Traces important events in addition to errors |
3 | This level is not supported; if you set this parameter to |
4 | Traces function entry/exit, important events, and errors |
5 | Traces reference counting function and constructor/destructor entry/exit |
Note: The Oracle MTS Recovery Service also generates trace file output in theORACLE_BASE \ ORACLE_HOME \ oramts \ trace directory. |
The connection pool provided by the OraMTS layer, oramts.dll
, uses a connection's net service name to identify pooled connections for an application. If changes are made to the net service name, and pooled connections are available, the application using the connection pool must be stopped and restarted. These changes can include altering the host or the database system identifier (SID) for the net service name in the tnsnames.ora
file.
These changes ensure that all currently pooled connections corresponding to the old net service name are destroyed and any new pooled connections use the changes made to the net service name. This includes any application hosting Microsoft Transaction Server components.
To empty connection pools, perform the following:
This empties the connection pools.
Oracle clients can establish connections to a database in two ways:
Microsoft Transaction Server communicates with the database through distributed transactions. In a dedicated server configuration, you cannot use distributed updates (data manipulation language statements across database links) from other databases. However, if the original connection to the database is established using shared server configurations, the distributed updates from other databases succeed.
To use data manipulation language statements in shared server configurations, set the following parameter in the tnsnames.ora
file:
This forces the Oracle Net listener to provide a dedicated connection. Figure 6-1 shows this process.
Oracle Net Connection Pooling Oracle Net connection pooling is a server-side feature that is implemented only if the Oracle Database is configured for shared server support. Oracle Net connection pooling enables you to minimize the number of physical network connections to a shared server. This is achieved by sharing a dispatcher's set of connections among multiple client processes.
Microsoft Transaction Server Connection Pooling Microsoft Transaction Server provides a resource pooling infrastructure that enables certain resources to be pooled, such as memory and database connections.
OCI Connection Pooling OCI connection pooling layer works with MTS resource pooling to provide pooled Oracle client/server sessions. The OCI connection pooling layer also caches Oracle Net connections to reduce client/server session setup time.
Oracle uses distributed transactions in the following configurations:
The two-phase commit protocol completes these transactions. During phase one, the transaction manager (TM) requests the various resource managers involved in the TM's transaction to prepare the underlying distributed transactions. In phase two, the TM determines whether it commits or terminates the transaction, and requests the resource managers to commit or terminate the underlying transaction. If a resource manager fails to receive the phase two notification, the underlying distributed transaction becomes in-doubt.
To integrate Oracle with Microsoft Transaction Server, distributed transactions are used in the database. Distributed transactions correspond to transactions coordinated by the MS DTC. A distributed transaction can become in-doubt when the transaction cannot commit or terminate (phase two of the two-phase commit). This occurs when the Microsoft Transaction Server application server process, database, or network fails.
The Microsoft Transaction Server administrative user account is created by running the oramtsadmin.sql
script. If you later change the database with which Microsoft Transaction Server is coordinating transactions, you can drop the administrative user account schema from the previous database.
To drop the Microsoft Transaction Server administrative user account:
SYSDBA
: where mtsadmin_username
is the Microsoft Transaction Server administrative user account (default is mtssys
).
See Also: See Chapter 3, "Managing Recovery Scenarios" for information on creating the Microsoft Transaction Server administrative user account for the new database |
Atomicity, Consistency, Isolation, and Durability (ACID)
ACID consists of the four primary attributes provided to any transaction by a transaction manager (also called a transaction manager).
component object model (COM)
A binary standard that enables objects to interact with other objects, regardless of the programming language in which each object was written.
distributed component object model (DCOM)
An extension of COM that enables objects to interact with other objects across a network.
data manipulation language
The category of SQL statements that query and update database data. Common DML statements are SELECT
, INSERT
, UPDATE
, and DELETE
.
JOB_QUEUE_PROCESSES
This initialization parameter specifies the maximum number of DBMS_JOB
jobs and Oracle Scheduler (DBMS_SCHEDULER
) jobs running concurrently on an instance. This parameter must be set to at least 1 to run Oracle Scheduler or DBMS_JOB
jobs and to use database features that depend on these jobs
listener.ora
A listener configuration file that identifies the following for a listener:
Microsoft .NET
Microsoft .NET is a set of Microsoft software technologies used to connect information, people, systems, and devices through web services to each other and to larger applications over the Internet.
Microsoft application demo
An Oracle Call Interface (OCI) implementation of the Visual C++ Sample Bank package that ships with Microsoft Transaction Server on Windows.
Microsoft Distributed Transaction Coordinator (MS DTC)
The focal point of the transaction process is a component of Microsoft Transaction Server called Microsoft Distributed Transaction Coordinator (MS DTC).
Microsoft Transaction Server
A COM-based transaction processing system that runs on an Internet or network server.
mtssys
The default Microsoft Transaction Server administrator username. In releases prior to Oracle9i Database release 1 (9.0.1), this was the username for the OraMTS.
net service name
The name used by clients to identify an Oracle Net server and the specific system identifier (SID) or database for the Oracle Net connection. A net service name is mapped to a port number and protocol. A net service name is also known as a connect string, database alias, host string, or service name.
This also identifies the specific SID or database to which the connection is attaching, and not just the Oracle Net server.
Oracle Call Interface (OCI)
An application programming interface that enables you to manipulate data and schemas in a database. You compile and link an OCI program in the same way that you compile and link a nondatabase application. There is no requirement for a separate preprocessing or precompilation step.
Oracle Data Provider for .NET (ODP.NET)
Oracle Data Provider for .NET (ODP.NET) features optimized data access to the Oracle Database from a .NET environment. ODP.NET includes support for connection pooling, PL/SQL, LOBs, RefCursors, globalization/localization, proxy user authentication/ parameter array binding, named parameters, and safe type mapping between Oracle types and .NET types.
Oracle Fail Safe
Ensures that if a failure occurs on one cluster node, then the databases and applications running on that node fail over (move) automatically and quickly to a surviving node.
Oracle MTS Recovery Service
The Oracle MTS Recovery Service resolves in-doubt transactions on the computer that started the failed transaction. A scheduled recovery job for each Microsoft Transaction Server-enabled database lets the Oracle MTS Recovery Service resolve in-doubt transactions.
Oracle Objects for OLE (OO4O)
Oracle Objects for OLE (OO4O) is a COM-based database connectivity tool that combines seamless and optimized access to Oracle Database instances with easy to use interfaces.
Oracle Open Database Connectivity (ODBC) Driver
Oracle ODBC Driver provides a standard interface that allows one application to access many different data sources. The application's source code does not have to be recompiled for each data source. A database driver links the application to a specific data source. A database driver is a dynamic link library that an application can invoke on demand to gain access to a particular data source. Therefore, the application can access any data source for which a database driver exists.
Oracle Provider for OLE DB
Interfaces that offer high performance and efficient access to Oracle data by applications, compilers, and other database components.
Oracle Services for Microsoft Transaction Server (OraMTS)
A component that provides full integration of the Oracle Database with Microsoft Transaction Server. This component enables you to develop and deploy COM-based applications using Microsoft Transaction Server.
Optimal Flexible Architecture (OFA)
A set of file naming and placement guidelines for Oracle software and databases.
resource manager (RM)
Microsoft Transaction Server enlists the database to act as a resource manager (RM) in the transaction process.
SYSDBA
A special database administration role that contains all system privileges with the ADMIN
OPTION
and the SYSOPER
system privilege. SYSDBA
also permits CREATE DATABASE
actions and time-based recovery.
SYSOPER
A special database administration role that permits a database administrator to perform STARTUP
, SHUTDOWN
, ALTER
DATABASE
OPEN/MOUNT
, ALTER
DATABASE
BACKUP
, ARCHIVE
LOG
, and RECOVER
, and includes the RESTRICTED
SESSION
privilege.
tnsnames.ora
A file that contains connect descriptors mapped to net service names. The file can be maintained centrally or locally for use by all or individual clients.
 Copyright © 1996, 2011, Oracle and/or its affiliates. All rights reserved. |