Oracle® Server Management Agents User's Guide
Copyright © 2010, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

This software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible and/or expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, brever, transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes d’erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel ou l’utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are ”commercial computer software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de securité, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l’utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d’autres propriétaires qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. UNIX est une marque déposée par The Open Group.

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l’accès à des contenus, produits ou services tiers, ou à leur utilisation.
Contents

Using This Documentation ... 5
 Documentation and Feedback ... 5
 About This Documentation ... 5
 Change History .. 6
Oracle Server Management Agents User's Guide Overview ... 7
Oracle Server Management Agents .. 9
Configuring Hardware Management Agent and Hardware SNMP Plugins 13
 Hardware Management Agent Configuration File .. 13
 Configuring the Hardware Management Agent Logging Level 14
 How to Configure the Hardware Management Agent Logging Level 15
 Configuring your Host Operating System's SNMP .. 16
 (Solaris and Linux) Configuring Net-SNMP/SMA ... 16
 (Windows) Configuring SNMP ... 18
Oracle Server Hardware SNMP Plugins Overview ... 21
 Overview of Sun HW Monitoring MIB ... 21
 Overview of Sun HW Trap MIB ... 25
 Overview of Sun Storage MIB ... 25
Working With Management Agents .. 29
 Retrieving and Setting Information Through SNMP ... 29
 sunHwMonProductGroup ... 30
 sunHwMonProductChassisGroup .. 31
 sunHwMonSPGroup .. 32
 sunHwMonInventoryTable .. 32
 sunHwMonSensorGroup .. 33
 sunHwMonIndicatorLocator .. 35
 Generating SNMP Traps .. 36
Using the itpconfig Tool ... 39
 itpconfig Command Usage ... 39
Contents

itpconfig Usage Scenario ... 41
Host-to-ILOM Interconnect Configuration Commands ... 41
itpconfig Trap Forwarding Commands .. 43
Configuring Trap Forwarding on Windows Servers ... 44
Troubleshooting Management Agents .. 45
General Management Agents Troubleshooting .. 45
itpconfig Troubleshooting .. 45
Oracle Solaris Operating System Troubleshooting ... 45
Linux Troubleshooting .. 46

Index .. 49
Using This Documentation

This section describes product information, documentation and feedback, and a document change history.

- “Documentation and Feedback” on page 5
- “About This Documentation” on page 5
- “Change History” on page 6

Documentation and Feedback

The following documentation is available related to the Oracle Hardware Management Pack.

<table>
<thead>
<tr>
<th>Documentation</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Oracle products</td>
<td>http://www.oracle.com/documentation</td>
</tr>
<tr>
<td>Oracle Hardware Management Pack</td>
<td>http://www.oracle.com/goto/ohmp/docs</td>
</tr>
<tr>
<td>Oracle ILOM</td>
<td>http://www.oracle.com/goto/ILOM/docs</td>
</tr>
</tbody>
</table>

Provide feedback on this documentation at:

About This Documentation

This documentation is available in both PDF and HTML and relates to software version 2.2.x. Any differences between software versions are noted. The information is presented in topic-based format (similar to online help) and therefore does not include chapters, appendixes, or section numbering.

You can get a PDF that includes all information about a particular topic subject (such as hardware installation or product notes) by clicking the PDF button in the upper left corner of the page.
Change History

The following changes have been made to the documentation set.

- September 2010, initial publication.
- July 2011, updated document URLs.
- September 2011, updated to match software version 2.2. Changes to graphic installer documented.
- November 2011, updated to integrate information related to installing Oracle Solaris OS 11 and information related to install prerequisites.
- January 2012, updated to reflect changes to version 2.2.1, the support for Emulex and QLogic Fibre channel controllers, new package names and describe all software package dependencies.
- March 2012, updated to include all package contents for version 2.2, 2.2.1 and 2.2.2, including Mellanox InfiniBand support.
- February 2013, updated to include changes in version 2.2.5, such as configuration of ILOM trap proxy during install, correct terminology for Host-to-ILOM Interconnect, information about installing security certificate on Windows, and improvement of the platform support of ubiosconfig.
- April 2013, updated to include changes in version 2.2.6, such as installing ipconfig on Windows, improved instructions for manually configuring on Oracle Solaris 10 and dependencies for Linux.
- July 2013, updated to include changes in version 2.2.7, such as installing on Oracle Solaris 11 OS using the graphic installer, support for Oracle VM, and renamed dependencies for Linux.
- October 2013, released to include changes in version 2.2.8, such as the extra step in the installer for installing on Oracle Solaris 10 OS servers with zones, and using the Oracle Solaris 11 OS packages to install on a server with zones.
Oracle Server Management Agents User's Guide Overview

This guide provides an overview of Oracle Server Management Agents (Management Agents) and how to use them with your Oracle server. The following topics are covered in this guide:

- "Oracle Server Management Agents" on page 9
- "Configuring Hardware Management Agent and Hardware SNMP Plugins" on page 13
- "Oracle Server Hardware SNMP Plugins Overview" on page 21
- "Working With Management Agents" on page 29
- "Using the itpconfig Tool" on page 39
- "Troubleshooting Management Agents" on page 45

For information on installing Management Agents, see Oracle Hardware Management Pack Installation Guide.
Oracle Server Management Agents

Oracle Server Management Agents provide operating-system-specific agents to enable management and configuration of your Oracle servers.

Oracle Server Management Agents provides the following software:

- Oracle Server Hardware Management Agent
- Oracle Server Hardware SNMP Plugins
- The itpconfig tool enables you to configure a trap proxy to send traps between Oracle ILOM and the host server over the Host-to-ILOM Interconnect

This section contains a description of each of these parts.

Oracle Server Hardware Management Agent

The Oracle Server Hardware Management Agent (Hardware Management Agent) and associated Oracle Server Hardware SNMP Plugins (Hardware SNMP Plugins) provide a way to monitor and manage your server and server module’s hardware using an operating system native agent. This in-band functionality enables you to use a single IP address (the host’s IP) for monitoring your servers and blade server modules, without having to connect the management port of the Oracle Integrated Lights Out Manager (ILOM) service processor to the network.

The Hardware Management Agent and Hardware SNMP Plugins run on the host operating system of your Oracle servers, communicating with the Oracle ILOM service processor. The Hardware Management Agent daemon, called hwmgmtd, regularly polls the service processor for information about the current state of the server. Hardware Management Agent can poll the service processor for hardware information over either the Host-to-ILOM Interconnect, available on Oracle latest servers, or KCS interface on previous generation servers. This information is then made available by Hardware Management Agent over SNMP using the Hardware SNMP Plugins.

In addition, the Hardware Management Agent provides sensor and indicator readings by reading System Event Log (SEL) records stored on the service processor. The SEL records hardware events such as temperatures crossing a threshold. The Hardware Management Agent reads the service processor’s SEL records and the host operating system’s syslog and sends the appropriate SNMP traps using the OS-native SNMP daemon. Finally, the Hardware Management Agent also maintains a separate log that contains information about the Hardware Management Agent status, which can be used for troubleshooting.
Note – Previous versions of Hardware Management Pack have included a separate Storage Management Agent, but starting with Oracle Hardware Management Pack 2.1, the Storage Management Agent has been merged with the functionality of the Hardware Management Agent.

Oracle Server Hardware SNMP Plugins

The Oracle Server Hardware SNMP Plugins consists of Net-SNMP plugins, that are compiled versions of hardware-specific Management Information Bases (MIB) which have been designed to enable you to monitor your Oracle servers effectively.

The sunHwMonMIB describes the state of sensors and alarms on your servers and provides the following information:

- Overall system alarm status
- Aggregate alarm status by device type
- FRU Alarm status
- Lists of sensors, sensor types, sensor readings, and sensor thresholds
- Indicator states
- System locator control
- Inventory including basic manufacturing information
- Product and chassis inventory information (such as serial number and part numbers)
- Per-sensor alarm status

The sunHwTrapMIB describes a set of traps for hardware events that can be generated by an Oracle server and provides the following information:

- Conditions affecting the environmental state of the server (such as temperature, voltage, and current out-of-range conditions)
- Error conditions affecting the hardware components in the server such as FRU insertion and removal and security intrusion notification

The sunStorageMIB provides the following information about system storage:

- Basic manufacturing information, properties, and alarm status for controllers
- Properties and alarm status for disks
- Properties and alarm status for RAID volumes
- Status of logical components
itpconfig and the ILOM Trap Proxy

The `itpconfig` command-line interface (CLI) tool configures Oracle ILOM to forward SNMP traps to the host over the Host-to-ILOM Interconnect, available on servers with the necessary hardware. See your server documentation to check if your server supports Host-to-ILOM Interconnect. You can also use `itpconfig` to configure the Host-to-ILOM Interconnect between Oracle ILOM service processors and the host.
Configuring Hardware Management Agent and Hardware SNMP Plugins

This section provides instructions about configuring the Hardware Management Agent and Hardware SNMP Plugins, as well as information about using Hardware Management Agent successfully. The section contains the following:

- “Hardware Management Agent Configuration File” on page 13
- “Configuring the Hardware Management Agent Logging Level” on page 14
- “How to Configure the Hardware Management Agent Logging Level” on page 15
- “Configuring your Host Operating System’s SNMP” on page 16
- “(Solaris and Linux) Configuring Net-SNMP/SMA” on page 16
- “(Windows) Configuring SNMP” on page 18

Hardware Management Agent Configuration File

Once the Hardware Management Agent and Hardware SNMP Plugins are installed on the Oracle server you want to monitor, you can configure the level of detail used for log messages using the `hwmgmtd.conf` file.

The Hardware Management Agent records log messages into the log file. These messages can be used to troubleshoot the running status of the Hardware Management Agent. The following table shows the location of the log file where Hardware Management Agent records the log messages used for troubleshooting.

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Log File Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Solaris</td>
<td>/var/log/sun-ssm/hwmgmtd.log</td>
</tr>
<tr>
<td>Linux based</td>
<td>/var/log/sun-ssm/hwmgmtd.log</td>
</tr>
<tr>
<td>Microsoft Windows</td>
<td>%Program Files%\Oracle\Oracle Hardware Management Pack\log\hwmgmtd.log</td>
</tr>
</tbody>
</table>

The level of detail of the messages recorded in the log file depends on the logging level set in the configuration file.
Configuring the Hardware Management Agent Logging Level

To configure the logging level, modify the `hwagentd_log_levels` parameter in the `hwmgmt.d.conf` file. There are two ways to configure the logging level. The easiest way to configure the logging level is to set the `hwagentd_log_levels` parameter to one of the following levels.

<table>
<thead>
<tr>
<th>Log Level</th>
<th>Messages Logged</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERROR</td>
<td>Any error messages generated by the Hardware Management Agent</td>
</tr>
<tr>
<td>WARNING</td>
<td>Any error and warning messages generated by the Hardware Management Agent</td>
</tr>
<tr>
<td>INFO</td>
<td>Any error and warning messages generated by the Hardware Management Agent and informative messages about normal functioning</td>
</tr>
</tbody>
</table>

Alternatively, you can set the logging level with a finer level of granularity by using the bit flags from the following table.

<table>
<thead>
<tr>
<th>Log Level</th>
<th>Bit Code</th>
<th>Messages Logged</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMERG</td>
<td>0x0001</td>
<td>Information about the system being unusable</td>
</tr>
<tr>
<td>ALARM</td>
<td>0x0002</td>
<td>Information about any immediate action that must be taken</td>
</tr>
<tr>
<td>CRIT</td>
<td>0x0004</td>
<td>Information related to the Hardware Management Agent either not starting or stopping because of critical conditions</td>
</tr>
<tr>
<td>ERROR</td>
<td>0x0008</td>
<td>Information about any error messages generated by the Hardware Management Agent</td>
</tr>
<tr>
<td>WARNING</td>
<td>0x0010</td>
<td>Information about any error and warning messages generated by the Hardware Management Agent</td>
</tr>
<tr>
<td>NOTICE</td>
<td>0x0020</td>
<td>Information related to normal functioning</td>
</tr>
<tr>
<td>INFO</td>
<td>0x0040</td>
<td>Information about any error and warning messages generated by the Hardware Management Agent and informative messages about normal functioning</td>
</tr>
<tr>
<td>DEBUG</td>
<td>0x0080</td>
<td>Verbose debug-level messages, useful in troubleshooting</td>
</tr>
<tr>
<td>TRACE</td>
<td>0x0100</td>
<td>Highly verbose debug-level messages, useful in troubleshooting</td>
</tr>
</tbody>
</table>

Note – It is recommended to use the logging levels above. The following options are for advanced troubleshooting.

Note – levels DEBUG and TRACE generate a lot of detailed messages and are designed for troubleshooting. These levels are not recommended for production usage.

For example, when you want to set all logging levels between EMERG and NOTICE, the bit code values of all the required levels must be added and then converted to a decimal value. Referring to preceding table, the addition would be as follows:

\[
0x0001 + 0x0002 + 0x0004 + 0x0008 + 0x0010 + 0x0020 = 0x003f
\]

Converting this hexadecimal value to decimal equals 63, which is the desired log level. This is the decimal number that should be assigned to the `hwagentd_log_levels` parameter in the `hwmgmt.d.conf` file.

How to Configure the Hardware Management Agent Logging Level

1. Find the `hwmgmt.d.conf` file and open it for editing. The following table shows the file location on different operating systems.

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Configuration file path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Solaris</td>
<td><code>/etc/opt/sun-ssm/hwmgmt.d.conf</code></td>
</tr>
<tr>
<td>Linux based</td>
<td><code>/etc/sun-ssm/hwmgmt.d.conf</code></td>
</tr>
<tr>
<td>Microsoft Windows</td>
<td><code><Program Files>\Oracle\Oracle Hardware Management Pack\conf\hwmgmt.d.conf</code></td>
</tr>
</tbody>
</table>

2. Find the `hwagentd_log_levels` parameter and change the logging level to one of the options from the tables above.

3. Save the modified `hwmgmt.d.conf` file.

4. Choose one of the following options to make the Hardware Management Agent reread the `hwmgmt.d.conf` file:

 - On Oracle Solaris refresh Hardware Management Agent, which forces the `hwmgmt.d.conf` to be reread.

 `/usr/sbin/svcadm disable hwmgmtd`

 `/usr/sbin/svcadm enable hwmgmtd`
On Linux based operating systems restart Hardware Management Agent, which forces the `hwmgmtd.conf` to be reread.

```
/sbin/service hwmgmtd restart
```

On Windows operating systems restart the service using the Microsoft Management Console Services snap-in.

The Hardware Management Agent rereads the `hwmgmtd.conf` file with the modified `hwagentd_log_levels` parameter.

Configuring your Host Operating System's SNMP

The Hardware Management Agent uses SNMP for network communications. For the Hardware Management Agent to be able to use SNMP correctly on host operating systems, you must ensure that SNMP is configured correctly. Incorrect settings can cause the Hardware Management Agent to have limited, or no, network connectivity.

For details see:

- Oracle Solaris and Linux based operating systems, the `snmpd.conf` file controls network access to the Hardware Management Agent. See "(Solaris and Linux) Configuring Net-SNMP/SMA" on page 16
- Windows operating systems, the SNMP service controls network access to the Hardware Management Agent. See "(Windows) Configuring SNMP" on page 18

(Solaris and Linux) Configuring Net-SNMP/SMA

Depending on which operating system the Hardware Management Agent has been installed on, you can find the `snmpd.conf` file at the path shown in the following table.

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Path to snmpd.conf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux</td>
<td><code>/etc/snmp/snmpd.conf</code></td>
</tr>
<tr>
<td>Oracle Solaris 10 Operating System</td>
<td><code>/etc/sma/snmp/snmpd.conf</code></td>
</tr>
<tr>
<td>Oracle Solaris 11 Operating System</td>
<td><code>/etc/net-snmp/snmp/snmpd.conf</code></td>
</tr>
</tbody>
</table>

The exact modifications you need to make to the `snmpd.conf` file depend on which host operating system the Hardware Management Agent is running on. The following procedures explain how to configure SNMP gets, sets, and traps.
Note – the following instructions assume you are using an unmodified *snmpd.conf* file. If you have customized your *snmpd.conf* file, use these instructions as a guide to make sure your *snmpd.conf* file is compatible with the Hardware Management Agent.

This section covers the following procedures:

- “How to Configure SNMP Gets” on page 17
- “How to Configure SNMP Sets” on page 17
- “How to Configure SNMP Traps” on page 18

How to Configure SNMP Gets

SNMP gets enable you to read data filled by the Hardware Management Agent. To be able to perform SNMP gets, use the following information to modify your *snmpd.conf* file, depending on which host operating system the Hardware Management Agent is running on.

1. **Open your *snmpd.conf* file for editing.**

2. **Choose one of the following options:**

 - **For Red Hat Enterprise Linux,** add the following line to *snmpd.conf*:
     ```
     view systemview included .1.3.6.1.4.
     ```
 This adds the Hardware SNMP Plugins to the specified view.

 - **For Oracle Solaris OS and SUSE Linux Enterprise Server,** add the following line to *snmpd.conf*:
     ```
     rocommunity public
     ```
 This adds a read-only community from a network location other than localhost.

How to Configure SNMP Sets

To enable the functionality of setting information over SNMP, use the following information to modify your *snmpd.conf* file, depending on which host operating system the Hardware Management Agent is running on.

1. **Open your *snmpd.conf* file for editing.**

2. **Choose one of the following options:**

 - **For Oracle Solaris and SUSE Linux Enterprise Server** add the following line:
     ```
     rwcommunity private
     ```
 By default the public community is blocked as rocommunity on these operating systems.
For Red Hat Enterprise Linux, change:

```
access notConfigGroup "" any noauth exact systemview none none
```
to the following:

```
access notConfigGroup "" any noauth exact systemview systemview none
```

This modification grants write access for the specified view and group. In this example the specified view is `systemview` and the specified group is `NotConfigGroup`. By default, the group uses the public community string.

How to Configure SNMP Traps

1. Open your `snmpd.conf` file for editing.

2. Depending on the version of SNMP traps you want to send:

 - To be able to send SNMP version 1 traps from the Hardware Management Agent, add the following line to `snmpd.conf`:
     ```
     trapsink host communitystring trapport
     ```

 - To be able to send SNMP version 2 traps from the Hardware Management Agent, add the following line to `snmpd.conf`:
     ```
     trap2sink host communitystring trapport
     ```

 Example 1 Setting SNMP Version 2 Traps
 The following example shows the line added to the `snmpd.conf` file to configure SNMP Traps using SNMP version 2:
   ```
   trap2sink 10.18.141.22 public 162
   ```

(Windows) Configuring SNMP

On Windows operating systems there is not a `snmpd.conf` file. You configure the SNMP service in the Windows Microsoft Management Console Services snap-in.

To configure SNMP, see “(Windows) How to Configure SNMP” on page 18.

(Windows) How to Configure SNMP

1. From the Start menu Administrative Tools option, select Services.

 The Microsoft Management Console Services snap-in opens.
2 Double-click the SNMP service.
The SNMP service options open.

3 In the SNMP service options, select the Security tab.
Configure the community rights.

4 In the SNMP service options, select the Traps tab.
Configure the destination you want to send SNMP traps to.

5 Close the SNMP service options.
Oracle Server Hardware SNMP Plugins
Overview

This section contains overviews of the Management Information Bases (MIBs) that are implemented by Oracle Server Hardware SNMP Plugins. This section contains the following:

- “Overview of Sun HW Monitoring MIB” on page 21
- “Overview of Sun HW Trap MIB” on page 25
- “Overview of Sun Storage MIB” on page 25

Overview of Sun HW Monitoring MIB

The Sun HW Monitoring Management Information Base (MIB) provides the following details about the server or server module implementing this MIB:

- A hardware inventory of all Field Replaceable Units (FRU) and sensors monitoring different physical parameters
- Parent/child relationship or containment information of all FRUs and sensors
- Individual status of each sensor as well as combined status of each device type
- Any threshold values configured for each sensor, where applicable
- Details about the service processor
- Information about total power consumption

The MIB is subdivided into sections, based on the information provided by the MIB objects. The information provided by the MIB objects is categorized into logically divided groups of scalars, as well as MIB tables.

For a complete list of all of the objects defined by each group, refer to the comments section defined at the beginning of each group in the SUN-HW-MONITORING-MIB.mib file.

The following sections briefly describe each of the MIB sections, with some examples of the objects defined in each group:

- “Sun Server Product and Chassis” on page 22
- “Sun Server Service Processor” on page 22
- “Sun Server Hardware Monitoring MIB” on page 22
- “Sun Server Hardware Management Agent” on page 22
- “Sun Server Hardware Inventory” on page 23
Sun Server Product and Chassis

The first two groups, sunHwMonProductGroup and sunHwMonProductChassisGroup, define scalar MIB objects that provide information about the server, including part number, and manufacturer. These groups are:

- sunHwMonProductGroup is a scalar group that provides general product details about the server or server module, such as the part number, type, name, and serial number.
- sunHwMonProductChassisGroup is a scalar group that provides details about the server’s chassis or the chassis into which the server has been inserted.

Note – sunHwMonProductChassisGroup is populated only on server modules, where it is relevant.

Sun Server Service Processor

The Sun Server Service Processor group consists of one group, sunHwMonSPGroup, which is a scalar group that provides details about the server’s Oracle Integrated Lights Out Management (ILOM) service processor. This group includes information such as serial number, manufacturer, MAC Address, IP details, and Web accessibility information such as the URL to access the Oracle ILOM Web interface.

Sun Server Hardware Monitoring MIB

The Sun Server Hardware Monitoring MIB group consists of one scalar group, sunHwMonMibGroup that provides details about the SUN-HW-MONITORING-MIB itself, such as MIB version number.

Sun Server Hardware Management Agent

The Sun Servers Hardware Management Agent group consists of one scalar group, sunHwMonAgentSoftwareGroup that provides details about the Hardware Management Agents associated with this MIB, such as the version of the Agent and the connection status to Oracle ILOM.
Sun Server Hardware Inventory

The Sun Servers Hardware Inventory group consists of one scalar group, sunHwMonInventoryGroup with a MIB table, sunHwMonInventoryTable. This table contains details about the server’s field replaceable units (FRUs). For each FRU, it includes the name, type, description, part number, status, and the FRU in which it is contained (if any).

Sun Server Hardware Monitor Sensor Group

The sunHwMonSensorGroup contains details about all of the server’s hardware sensors, except indicators. The MIB objects that define the sensor properties are hierarchically and logically grouped based on device type, for example temperature or voltage, as well as sensor type, for example numeric or discrete.

The sunHwMonSensorGroup also contains a device-specific group for all significant device types, such as sunHwMonVoltageGroup or sunHwMonCurrentGroup. There is also a group for sensors that are not part of any device—specific group.

Each of the groups listed below contains two tables. One table provides details about all of the numeric sensors of this device type and the other table provides details about all of the discrete sensors of corresponding device type on the server.

The numeric sensors tables provide details about numeric sensors such as the sensor name, sensor type, the current reading, defined thresholds, current status, perceived severity, and the FRU in which the sensor is contained. The discrete sensors tables provide details about discrete sensors, such as sensor name, sensor type, sensor state, perceived severity, and the FRU in which the sensor is contained.

The alarm status of an entity can be one of the following, where critical is the most severe and indeterminate is the least severe.

- critical
- major
- minor
- warning
- cleared
- indeterminate

The sunHwMonSensorGroup contains the following groups:

- sunHwMonSensorAlarmStatusGroup is a scalar group that provides a single view of the alarm status of the server and aggregate status per device type such as rolled-up status of all voltage sensors. This is the main value used to obtain the overall status of a server. The individual sensor status is provided by MIB objects that are defined in the corresponding device-specific group.
sunHwMonVoltageGroup contains two MIB tables that provide details regarding all voltage sensors contained in the server.

sunHwMonCurrentGroup contains two MIB tables that provide details regarding all current sensors contained in the server.

sunHwMonPowerDeviceGroup contains two MIB tables that provide details regarding all power device sensors contained in the server.

sunHwMonCoolingDeviceGroup contains two MIB tables that provide details regarding all cooling device sensors contained in the server.

sunHwMonTemperatureGroup contains two MIB tables that provide details regarding all temperature sensors contained in the server.

sunHwMonMemoryGroup contains two MIB tables that provide details regarding all memory sensors contained in the server.

SunHwMonProcessorGroup contains two MIB tables that provide details regarding all processor sensors contained in the server.

sunHwMonHardDriveGroup contains two MIB tables that provide details regarding all hard drive sensors contained in the server.

sunHwMonIOGroup contains two MIB tables that provide details regarding all input/output sensors contained in the server.

sunHwMonSlotOrConnectorGroup contains two MIB tables that provide details regarding all slot or connector sensors contained in the server.

sunHwMonOtherSensorGroup contains two MIB tables that provide details regarding all sensors contained in the server that are not part of above defined device type groups.

sunHwMonIndicatorGroup

This group contains multiple groups that provide details about the indicators present on the server. These groups are as follows:

sunHwMonIndicatorLocator is a scalar group that provides details about the locator indicator, such as the name of the locator indicator sensor and its status. The sunHwMonIndicatorLocatorCurrentStatus MIB object is a read-write MIB object. You can control the locator indicator sensor through an SNMP set command, using a community string with write access.

sunHwMonIndicatorService is a scalar group that provides the name and status of the service indicator sensor.

sunHwMonIndicatorAll contains sunHwMonIndicatorTable, which provides details about all indicators present on the server, such as power supply failure indicator or fan failure indicator.
sunHwMonTotalPowerConsumption

This scalar group provides details about the server’s total power consumption, including:

- Sensor name and type
- Current reading
- Defined thresholds
- Current status
- Perceived severity
- The FRU in which the sensor is contained

Note – Data is available here only if the platform has implemented a total power consumption indicator.

Overview of Sun HW Trap MIB

The Hardware Management Agent uses the Sun HW Trap MIB to implement SNMP traps. These traps report the environmental state of the server as well as faults, errors, and other conditions affecting hardware components.

The SNMP traps are categorized into three groups.

- Any SNMP trap name ending in Ok or Error, as well as any SNMP trap name containing Threshold, is reporting a change in a sensor value.
- Any SNMP trap name ending in Fault is reporting a problem detected by the system’s fault management subsystem, if such a subsystem is available on the server.
- The final group is the status SNMP traps, which report the environmental state and any hardware information that is not covered by the two previous groups.

For more detailed information on the Sun HW Trap MIB, see the comments in the SUN-HW-TRAP-MIB.mib file.

Overview of Sun Storage MIB

The Sun Storage MIB supplements the Sun HW Monitoring MIB with storage-related information. The following sections briefly describe each of the MIB sections:

- “Sun Storage MIB Objects” on page 26
- “Physical and Logical Storage Objects” on page 26
Sun Storage MIB Objects

The following scalar objects contain information about the Sun Storage MIB itself:

- `sunStorageAgentVersion` defines the version of the software implementing the `sunStorageMIB`. The version is in the following format:
 \(\text{MajorVersion}.\text{MinorVersion}.\text{SubMinorVersion} \) (for example: `1.2.3`).
- `sunStorageMibVersion` defines the version of the SUN-STORAGE-MIB this agent implements. The version defined is in the format of
 \(\text{MajorVersion}.\text{MinorVersion}.\text{SubMinorVersion} \) (for example: `1.3.0`).

Physical and Logical Storage Objects

The following tables list physical and logical storage objects:

- `sunStorageControllerTable`. The storage controller object represents either an on-board or bus-attached storage controller. The properties associated with a controller object describe the type of controller (vendor and model) as well as the features it supports (such as RAID). The table is indexed with an arbitrary integer to uniquely identify each entry. Entries can contain the following:
 - Identifying: name, part number, serial number, manufacturer, model, firmware version, and PCI bus address
 - RAID capabilities: levels supported, maximum volumes manageable, number of spares, and stripe size
 - Status: operational and alarm

- `sunStorageDiskTable`. Each disk object corresponds to one physical disk that is available to the host operating system. Entries in this table might have parent objects in other tables (such as `sunStorageControllerTable`). The table is indexed with `sunHwMonFruIndex`, so that information corresponding to the same physical disk is retrievable from both the `sunHwMonInventoryTable` and `sunStorageDiskTable` at the same index.
 - Identifying: name and OS device name
 - Relational: parent name and index, slot number
 - Descriptive: physical type, interface type, and capacity
 - Status: mapping, RAID, and operational
 - Entries can contain the following:

- `sunStorageVolumeTable`. This table contains logical volume objects that correspond to a logical disk visible to the host OS. Only RAID logical volumes are supported. The table is indexed with an arbitrary integer to uniquely identify each entry. Entries can contain the following:
 - Identifying: name, OS device name, and mount point
 - Relational: parent name and index
- Descriptive: capacity, RAID level, and sizing
- Status: mapping, mounting, RAID parameters, task, and operational

sunStorageLogicalCompTable. A logical component node represents an active or passive component of its logical device parent. A logical component object is always a direct child of a logical device node. In the case of a RAID logical device, the logical component represents a physical device, or part of a physical device, used to create the specified RAID level. The table is indexed with an arbitrary integer to uniquely identify each entry. Entries can contain the following:
- Identifying: name, disk name, and index
- Relational: parent name and index
- Status: RAID spare and RAID operational
Once the Management Agents are installed on your Oracle Server, you can monitor the server. The Hardware Management Agent provides the SNMP Plugins layer, which enables you to retrieve and set information using SNMP, and to generate SNMP traps.

This section provides the following:

- "Retrieving and Setting Information Through SNMP" on page 29
- "sunHwMonProductGroup" on page 30
- "sunHwMonProductChassisGroup" on page 31
- "sunHwMonSPGroup" on page 32
- "sunHwMonInventoryTable" on page 32
- "sunHwMonSensorGroup" on page 33
- "sunHwMonIndicatorLocator" on page 35
- “Generating SNMP Traps” on page 36

Retrieving and Setting Information Through SNMP

The following section provides some examples of using Net-SNMP’s snmpwalk utility to get and set information from Oracle servers running the Hardware Management Agent. For more information on the Hardware Management Agent functionality shown here, see “Overview of Sun HW Monitoring MIB” on page 21 or the SUN-HW-MONITORING-MIB.mib file.

The format of the Net-SNMP snmpwalk command is:

```
snmpwalk Application options Common Options OID
```

For more information, see the Net-SNMP documentation.
sunHwMonProductGroup

The sunHwMonProductGroup contains information about the server implementing the MIB. The following procedures are covered in this section:

- “How to Retrieve the Product Information from a Sun x86 Server” on page 30
- “How to Retrieve The Product Information on a Sun x86 Server Module” on page 30

▼ How to Retrieve the Product Information from a Sun x86 Server

- At the command prompt, type the following:

 # snmpwalk -v2c -c public -mALL localhost\n SUN-HW-MONITORING-MIB::sunHwMonProductGroup

 You should see output similar to the following:

 SUN-HW-MONITORING-MIB::sunHwMonProductName.0 = STRING: SUN FIRE X4440
 SUN-HW-MONITORING-MIB::sunHwMonProductType.0 = INTEGER: rackmount(3)
 SUN-HW-MONITORING-MIB::sunHwMonProductPartNumber.0 = STRING: 602-4058-01
 SUN-HW-MONITORING-MIB::sunHwMonProductSerialNumber.0 = STRING: 0823QBU01C
 SUN-HW-MONITORING-MIB::sunHwMonProductManufacturer.0 = STRING: SUN MICROSYSTEMS
 SUN-HW-MONITORING-MIB::sunHwMonProductSlotNumber.0 = INTEGER: -1
 SUN-HW-MONITORING-MIB::sunHwMonProductUUID.0 = STRING: 080020FFFFFFFFFFFFFF00144FEDE5E0
 SUN-HW-MONITORING-MIB::sunHwMonProductBiosVersion.0 = STRING: S90_3B18

 Note – On a Sun x86 rack mount server, the following line signifies that there is no slot number (nodef).

 sunHwMonProductSlotNumber.0 = INTEGER: -1

 This is expected behavior because slot numbers are relevant only to blade servers. Rackmount servers do not have slot numbers.

▼ How to Retrieve The Product Information on a Sun x86 Server Module

- At the command prompt, type the following:

 # snmpwalk -v2c -c public -mALL localhost\n SUN-HW-MONITORING-MIB::sunHwMonProductGroup

 You should see output similar to the following:
sunHwMonProductChassisGroup

This group is filled only on Sun x86 server modules and represents the chassis holding the server module.

▼ How to Retrieve the Server Module's Product Chassis Information

- At the command prompt, type the following:

 # snmpwalk -v2c -c public -mALL localhost\n SUN-HW-MONITORING-MIB::sunHwMonProductChassisGroup

 You should see output similar to the following:

 SUN-HW-MONITORING-MIB::sunHwMonProductChassisName.0 = STRING: SUN BLADE 6000 MODULAR SYSTEM
 SUN-HW-MONITORING-MIB::sunHwMonProductChassisPartNumber.0 = STRING: 541-1983-07
 SUN-HW-MONITORING-MIB::sunHwMonProductChassisSerialNumber.0 = STRING: 1005LCB-0728YM01R7
 SUN-HW-MONITORING-MIB::sunHwMonProductChassisManufacturer.0 = STRING: SUN MICROSYSTEMS
This group contains information about the Oracle ILOM service processor.

How to Retrieve Service Processor Information

- At the command prompt, type the following:

  ```
  # snmpwalk -v2c -c public -mALL localhost
  SUN-HW-MONITORING-MIB::sunHwMonSPGroup
  ```

 You should see output similar to the following:

  ```
  SUN-HW-MONITORING-MIB::sunHwMonSPSerialNumber.0 = STRING: 1762TH1-075000707
  SUN-HW-MONITORING-MIB::sunHwMonSPManufacturer.0 = STRING: ASPEED
  SUN-HW-MONITORING-MIB::sunHwMonSPFWVersion.0 = STRING: 2.0.3.10
  SUN-HW-MONITORING-MIB::sunHwMonSPMacAddress.0 = STRING: 0:1b:24:78:2f:a1
  SUN-HW-MONITORING-MIB::sunHwMonSPIPAddress.0 = IpAddress: 10.18.141.164
  SUN-HW-MONITORING-MIB::sunHwMonSPNetMask.0 = IpAddress: 255.255.255.128
  SUN-HW-MONITORING-MIB::sunHwMonSPDefaultGateway.0 = IpAddress: 10.18.141.129
  SUN-HW-MONITORING-MIB::sunHwMonSPIPMode.0 = INTEGER: dhcp(2)
  ```

 Note – When using Oracle ILOM 2.0 the following lines are returned:

  ```
  SUN-HW-MONITORING-MIB::sunHwMonSPURLToLaunch.0 = STRING:
  SUN-HW-MONITORING-MIB::sunHwMonSPSystemIdentifier.0 = STRING:
  ```

 This is expected behavior because this information is specific to Oracle ILOM 3.0.

sunHwMonInventoryTable

Information about only one FRU, `mb.net0.fru`, is shown in this example.
How to Retrieve Inventory Information

At the command prompt, type the following:

```bash
# snmpwalk -v2c -c public -mALL localhost\nSUN-HW-MONITORING-MIB::sunHwMonInventoryTable | grep '.148 = '
```

where `grep '.148 = '` is filtering for results with a property of the FRU we are interested in.

You should see output similar to the following:

```
SUN-HW-MONITORING-MIB::sunHwMonFruName.148 = STRING: /SYS/MB/NET0
SUN-HW-MONITORING-MIB::sunHwMonFruType.148 = INTEGER: networkInterface(80)
SUN-HW-MONITORING-MIB::sunHwMonFruDescr.148 = STRING:
SUN-HW-MONITORING-MIB::sunHwMonFruPartNumber.148 = STRING: 82546GB
SUN-HW-MONITORING-MIB::sunHwMonFruSerialNumber.148 = STRING: 00:14:4F:A8:39:44
SUN-HW-MONITORING-MIB::sunHwMonFruManufacturer.148 = STRING:
SUN-HW-MONITORING-MIB::sunHwMonFruStatus.148 = INTEGER: indeterminate(6)
SUN-HW-MONITORING-MIB::sunHwMonParentFruIndex.148 = INTEGER: 146
SUN-HW-MONITORING-MIB::sunHwMonParentFruName.148 = STRING: /SYS/MB
```

Note – When using Oracle ILOM 2.0 the following lines are returned:

```
SUN-HW-MONITORING-MIB::sunHwMonFruType.75 = INTEGER: unknown(1)
SUN-HW-MONITORING-MIB::sunHwMonParentFruIndex.75 = INTEGER: -1
SUN-HW-MONITORING-MIB::sunHwMonParentFruName.75 = STRING:
```

This is expected behavior because this information is specific to Oracle ILOM 3.0. In this case, the -1 signifies node.

sunHwMonSensorGroup

In the following example, the numeric sensor MB/V_\+_12V is retrieved.

How to Retrieve the Sensor Group Information

At the command prompt, type the following:

```bash
# snmpwalk -v2c -c public -mALL localhost\nSUN-HW-MONITORING-MIB::sunHwMonSensorGroup | grep '\.9 = '
```
where `grep '\.9 = '` is filtering a property of the FRU we are interested in.

You should see output similar to the following:

```
SUN-HW-MONITORING-MIB::sunHwMonNumericVoltageSensorType.9 = INTEGER: voltage(133)
SUN-HW-MONITORING-MIB::sunHwMonNumericVoltageSensorName.9 = STRING: /SYS/MB/V+_12V
SUN-HW-MONITORING-MIB::sunHwMonNumericVoltageSensorParentFruIndex.9 = INTEGER: 146
SUN-HW-MONITORING-MIB::sunHwMonNumericVoltageSensorParentFruName.9 = STRING: /SYS/MB
SUN-HW-MONITORING-MIB::sunHwMonNumericVoltageSensorAlarmStatus.9 = INTEGER: cleared(1)
SUN-HW-MONITORING-MIB::sunHwMonNumericVoltageSensorStateDescr.9 = STRING: Normal
SUN-HW-MONITORING-MIB::sunHwMonNumericVoltageSensorCurrentValue.9 = INTEGER: 12160
SUN-HW-MONITORING-MIB::sunHwMonNumericVoltageSensorBaseUnit.9 = INTEGER: volts(4)
SUN-HW-MONITORING-MIB::sunHwMonNumericVoltageSensorExponent.9 = INTEGER: -3
SUN-HW-MONITORING-MIB::sunHwMonNumericVoltageSensorUpperNonRecoverableThreshold.9 = INTEGER: 14994
SUN-HW-MONITORING-MIB::sunHwMonNumericVoltageSensorUpperCriticalThreshold.9 = INTEGER: 13986
SUN-HW-MONITORING-MIB::sunHwMonNumericVoltageSensorUpperNonCriticalThreshold.9 = INTEGER: 12978
SUN-HW-MONITORING-MIB::sunHwMonNumericVoltageSensorLowerNonRecoverableThreshold.9 = INTEGER: 8946
SUN-HW-MONITORING-MIB::sunHwMonNumericVoltageSensorLowerCriticalThreshold.9 = INTEGER: 9954
SUN-HW-MONITORING-MIB::sunHwMonNumericVoltageSensorLowerNonCriticalThreshold.9 = INTEGER: 10962
SUN-HW-MONITORING-MIB::sunHwMonNumericVoltageSensorEnabledThresholds.9 = BITS: FC lowerThresholdNonCritical(0) upperThresholdNonCritical(1) lowerThresholdCritical(2) upperThresholdCritical(3) lowerThresholdFatal(4) upperThresholdFatal(5)
```
Note – When using Oracle ILOM 2.0 the following lines are returned:

SUN-HW-MONITORING-MIB::sunHwMonNumericVoltageSensorType.9 = INTEGER: unknown(1)
SUN-HW-MONITORING-MIB::sunHwMonNumericVoltageSensorParentFruIndex.9 = INTEGER: -1
SUN-HW-MONITORING-MIB::sunHwMonNumericVoltageSensorParentFruName.9 = STRING:

This is expected behavior because this information is specific to Oracle ILOM 3.0.

Tip – When analyzing the following lines, do not forget that the sunHwMonNumericVoltageSensorCurrentValue is returned using the exponent set in sunHwMonNumericVoltageSensorExponent.

SUN-HW-MONITORING-MIB::

sunHwMonNumericVoltageSensorCurrentValue.9 = INTEGER: 12290
sunHwMonNumericVoltageSensorBaseUnit.9 = INTEGER: volts(4)
sunHwMonNumericVoltageSensorExponent.9 = INTEGER: -3

This example has an exponent of -3, which means that the voltage value of sunHwMonNumericVoltageSensorCurrentValue has to be multiplied by 10^{-3}, resulting in 12.290 volts.

sunHwMonIndicatorLocator

You can get and set the sunHwMonIndicatorLocator. The following example sets the sunHwMonIndicatorLocator to integer(i) value 7, which means fastBlink for this OID.

How to Set the Indicator Locator

- At the command prompt, type the following:

  ```
  # snmpset -v2c -c public -mALL localhost
  SUN-HW-MONITORING-MIB::sunHwMonIndicatorLocatorCurrentStatus.0 i 7
  ```

 You should see output similar to the following:
Generating SNMP Traps

The combination of Hardware Management Agent and Hardware SNMP Plugins enables you to generate SNMP traps. To test this, you can use IPMItool, which is a component of Hardware Management Pack, to inject a simulated fault. This causes the Hardware SNMP Plugins to generate an SNMP fault.

▼ How to Inject a Simulated Fault

Caution – This procedure returns test SNMP traps, however the values received might not match the values you expect to see when a real SNMP trap is generated. This does not impact non-test SNMP trap functionality.

1 At the command prompt, type:

 ipmitool -U user -P password -H hostname -v sdr list

Choose a sensor from the returned list that you want to inject a simulated fault to. In this example the IPMI event: 'P0/VTT' unc assert is used.

2 At the command prompt, type:

 # ipmitool -U user -P password -H hostname event 'P0/VTT' unc assert

This injects the IPMI event: 'P0/VTT' unc assert.

You should receive an SNMP trap similar to the following:

 sysUpTime.0 = Timeticks: (4300) 0:00:43.00
 snmpModules.1.1.4.1.1 = OID: sunHwTrapVoltageNonCritThresholdExceeded
 sunHwTrapSystemIdentifier.0 = STRING: sg-prg-x6220-01-sp0
 sunHwTrapChassisId.0 = STRING: 1005LCB-0728YM01R7::0739AL71EA
 sunHwTrapProductName.0 = STRING: SUN BLADE 6000 MODULAR SYSTEM::SUN BLADE X6220 SERVER MODULE
 sunHwTrapComponentName.0 = STRING: /SYS/MB/P0/VTT
 sunHwTrapThresholdType.0 = INTEGER: upper(1)
 sunHwTrapThresholdValue.0 = STRING:
 sunHwTrapSensorValue.0 = STRING:
sunHwTrapAdditionalInfo.0 = STRING: Upper Non-critical going high

sunHwTrapAssocObjectId.0 = OID: zeroDotZero

sunHwTrapSeverity.0 = INTEGER: nonCritical(4)

You can verify the SNMP trap by checking the syslog record, which should contain something similar to the following:

sg-prg-x6250-01 hwagentd[3470]: P0/VTT (Sensor ID: 0x1b) (Record ID: 0x821):
Upper Non-critical going high.

The messages stored in syslog or the Windows application log correspond exactly to the SNMP traps. On Linux and Oracle Solaris operating systems, the messages are logged with facility daemon and level notice.

Note – If records corresponding to SNMP traps are not being stored on Linux and Oracle Solaris operating systems, make sure that the daemon facility and notice level are enabled.
Using the itpconfig Tool

The itpconfig tool enables you to configure a trap proxy to send traps from Oracle Integrated Lights Out Manager (ILOM) over the Host-to-ILOM Interconnect and forward the traps from the host server to a configurable destination. itpconfig can also enable or disable the Host-to-ILOM Interconnect, which is available on the latest Oracle servers. The Host-to-ILOM Interconnect provides a high speed internal interconnection between your server's Oracle ILOM service processors and the host, and must be enabled for the trap forwarding to function.

From Hardware Management Pack 2.2.6 onwards itpconfig is supported on Microsoft Windows Server based operating systems. See "Configuring Trap Forwarding on Windows Servers" on page 44 for additional configuration information.

This section includes the following topics:

■ "itpconfig Command Usage" on page 39
■ “itpconfig Usage Scenario” on page 41
■ "Host-to-ILOM Interconnect Configuration Commands" on page 41
■ “itpconfig Trap Forwarding Commands” on page 43
■ “Configuring Trap Forwarding on Windows Servers” on page 44

itpconfig Command Usage

The itpconfig commands must be run in administrator mode.

When a command fails, it returns one of several failure codes listed in Table 1.

Options

The following options are available to all CLI Tools commands including itpconfig:

<table>
<thead>
<tr>
<th>Short Option</th>
<th>Long Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>--help</td>
<td>Displays help information.</td>
</tr>
</tbody>
</table>
Short Option Long Option Description
- **V** --version Displays the tool version.
- **q** --quiet Suppresses informational message output and returns only error codes.

Subcommands

The available `itpconfig` subcommands are:

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>list</td>
<td>Show Oracle ILOM trap proxy or Host-to-ILOM Interconnect settings.</td>
</tr>
<tr>
<td>modify</td>
<td>Modify Oracle ILOM trap proxy settings.</td>
</tr>
<tr>
<td>enable</td>
<td>Enable trap forwarding or Host-to-ILOM Interconnect.</td>
</tr>
<tr>
<td>disable</td>
<td>Disable trap forwarding or Host-to-ILOM Interconnect.</td>
</tr>
</tbody>
</table>

See also “CLI Tools Command Syntax and Conventions” in *Oracle Server CLI Tools User’s Guide*.

Error Codes

In addition, `itpconfig` generates the following error codes:

<table>
<thead>
<tr>
<th>Code Number</th>
<th>Error Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>Oracle ILOM SNMP timeout.</td>
</tr>
<tr>
<td>82</td>
<td>Oracle ILOM SNMP failure.</td>
</tr>
</tbody>
</table>

These errors can occur if there are issues communicating with the Oracle ILOM SNMP service when enabling the trap proxy.
itpconfig Usage Scenario

The high level steps for enabling fault forwarding are:

1. Install the Oracle Hardware Management Agents and SNMP Plugins packages.

 See *Oracle Hardware Management Pack Installation Guide*

 These packages contain all the necessary software for *itpconfig*.

2. Enable the Host-to-ILOM Interconnect, required for *itpconfig* to function.

 The Host-to-ILOM Interconnect can be configured during installation. Alternatively you can use *itpconfig*, see "How to Enable Host-to-ILOM Interconnect" on page 41.

3. Enable the ILOM trap proxy.

 See "How to Enable Trap Forwarding" on page 43

 Note – *itpconfig* uses ILOM Notification Alert Rule 15 to set up the trap forwarding. If this alert rule is in use, *itpconfig* fails. See “*itpconfig* Troubleshooting” on page 45 for a workaround.

4. Start or restart the SNMP service daemon on the server.

 Refer to your OS documentation.

5. Start a trap listener on the destination server configured to listen to traps from the port and community described in the *itpconfig* arguments.

 Any faults generated by the service processor should now generate an SNMP trap which are sent to the destination SNMP trap listener.

Host-to-ILOM Interconnect Configuration Commands

The following procedures are covered in this section:

- “How to Enable Host-to-ILOM Interconnect” on page 41
- “How to Disable Host-to-ILOM Interconnect” on page 42
- “How to List the Host-to-ILOM Interconnect Settings” on page 42

▼ How to Enable Host-to-ILOM Interconnect

The Host-to-ILOM Interconnect can be enabled during the Hardware Management Pack installation. See “Enabling the Host-to-ILOM Interconnect” in *Oracle Hardware Management Pack Installation Guide* for details.

Alternatively, you can use *itpconfig* to enable this feature and manage its properties.
Note – It is recommended that you use this command without any arguments and let `itpconfig` choose the settings. You can override the defaults with different IP and netmask addresses, but this is for advanced users only.

- **Issue the following command:**

 `itpconfig enable interconnect [--ipaddress=ipaddress] [--netmask=netmask] [--hostipaddress=hostipaddress]`

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>--ipaddress</td>
<td>Oracle ILOM IP address. This address must be in the format: 169.254.x.x</td>
<td>169.254.175.72</td>
</tr>
<tr>
<td>--netmask</td>
<td>Oracle ILOM netmask.</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>--hostipaddress</td>
<td>Host IP address. This address must be in the format: 169.254.x.x</td>
<td>169.254.175.73</td>
</tr>
</tbody>
</table>

▼ **How to Disable Host-to-ILOM Interconnect**

To disable the Host-to-ILOM Interconnect between the host and Oracle ILOM, use the `itpconfig disable interconnect` command.

- **Issue the following command:**

 `itpconfig disable interconnect`

▼ **How to List the Host-to-ILOM Interconnect Settings**

To list the Host-to-ILOM Interconnect state and IP settings on both the Oracle ILOM and host side of the interconnect, use `ilomconfig list interconnect`.

- **Issue the following command:**

 `ilomconfig list interconnect`
itpconfig Trap Forwarding Commands

This section includes the following procedures:

- “How to Enable Trap Forwarding” on page 43
- “How to Disable Trap Forwarding” on page 43

▼ How to Enable Trap Forwarding

To enable trap forwarding, issue the following command:

```
itpconfig enable trapforwarding --ipaddress=ipaddress --port=port
--community=community
```

> Note – If the trap forwarding is already enabled, use the itpconfig modify trapforwarding command instead.

Mandatory options for itpconfig enable trapforwarding are:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--ipaddress</td>
<td>Sets the destination IP address for the forwarded trap. This can be loopback (127.0.0.1) or any other valid IP address. This must correspond to the configuration of the SNMP listener.</td>
</tr>
<tr>
<td>--port</td>
<td>Sets the destination port for the forwarded trap. There is no default value, but 162 is a common port value. This must correspond to the configuration of the SNMP listener.</td>
</tr>
<tr>
<td>--community</td>
<td>Sets the destination SNMP V2c community for the forwarded trap. This value must correspond to the configuration of the SNMP listener.</td>
</tr>
</tbody>
</table>

Example:

```
itpconfig enable trapforwarding --ipaddress=127.0.0.1 --port=1234
--community=test
```

▼ How to Disable Trap Forwarding

To disable itpconfig trap forwarding, issue the following command:

```
itpconfig disable trapforwarding
```

The disable command takes no additional parameters and disables the trap forwarding operation on both iLOM and the host.
Configuring Trap Forwarding on Windows Servers

This procedure explains how to configure ILOM trap forwarding a server running a Windows based operating system using `ipconfig`. This process requires configuring the server which will send the traps, referred to as the source server in this procedure, and the server which will receive the trap, referred to as the destination in this procedure.

▼ How to configure trap forwarding on Windows servers

1. Log in to the source server. You must have Administrator privileges.

2. Use the `ipconfig.exe enable trapforwarding` subcommand to enable the trap proxy.

   ```
   ipconfig.exe enable trapforwarding --ipaddress=destination --port=162
   --community=trap_community
   ```

 where `destination` is the IP address of the server that should receive the traps, and `trap_community` is the SNMP trap community that the destination is listening for.

 Note – the port number of 162 cannot be modified on Windows.

3. If either of the source or destination servers use a firewall, configure the firewall rules on both to allow incoming traps.

 a. Go to Control panel and select Firewall.

 b. Click on Advanced Setting and then Inbound Rules on the left panel. The rules are shown in the right panel.

 c. Enable Inbound Rules for both private and domain by right clicking SNMP Trap Service and selecting Enable.

4. Restart the SNMP Trap service and the Oracle Hardware Management Agent service.

 a. Go to Server Manager, select Services.

 b. Find the SNMP Trap service and start/restart it.

 c. Find the Oracle Server Hardware Management Agent service and start/restart it.
Troubleshooting Management Agents

This section provides tips and solutions for the most common problems you might encounter when working with Management Agents. The section contains:

- “General Management Agents Troubleshooting” on page 45
- “itpconfig Troubleshooting” on page 45
- “Oracle Solaris Operating System Troubleshooting” on page 45
- “Linux Troubleshooting” on page 46

General Management Agents Troubleshooting

The best way to troubleshoot problems with Management Agents is to review the log files.

The Hardware Management Agent stores log information in the `hwmgmtd.log` file.

For more information on the `hwmgmtd.log` file, see “Configuring the Hardware Management Agent Logging Level” on page 14.

itpconfig Troubleshooting

`itpconfig` uses ILOM Notification Alert Rule 15 to set up the trap forwarding. If this alert rule is in use, `itpconfig` fails with error code 83. This error is caused when you try to run `itpconfig` when ILOM Notification Alert Rule 15 is already defined on the system.

To work around this, set the destination IP address of ILOM Notification Alert Rule 15 to 0.0.0.0.

Oracle Solaris Operating System Troubleshooting

The following topics can help you to identify and solve problems when using the Hardware Management Pack on Oracle Solaris OS.

This section covers the following topics:

- “Issues Installing with pkgadd” on page 46
Issues Installing with pkgadd

When using pkgadd(1M) during installation, if you encounter the following error message:

```
# Waiting for up to <300> seconds for package administration commands to become available (another user is administering packages on zone <XXX>)
```

An interruption of the pkgadd(1M) process can leave an outstanding packaging lock file, which blocks further use of the pkgadd (1M) command. Before attempting another installation, remove the packaging lock file.

▼ How to Remove a Packaging Lock File

1. At the command prompt, type the following:

 svccfg list

 If you see /TEMP/application/management/hwmgmtd listed in the output then delete the file by typing the following:

 svccfg delete TEMP/application/management/hwmgmtd

2. Type the following:

 svccfg list

 You should no longer see /TEMP/application/management/hwmgmtd listed.

3. Remove the packages by typing the following:

 pkgrm SUNWssm-hwmgmt-config

 You should now be able to install SUNWssm-hwmgmt-config.

Linux Troubleshooting

The following topics can help you to identify and solve problems when using the Hardware Management Pack on Linux.

This section covers the following topics:

- "Hardware Management Agent Service Fails to Start" on page 47
- "Hardware Management Agent Service Status Dead" on page 47
Hardware Management Agent Service Fails to Start

After installing the Hardware Management Agent on SUSE Linux Enterprise, you might encounter the following:

Starting Sun HW agent services: failed

In addition, there might be a line in the Hardware Management Agent log file similar to the following:

(hwagentd_poller.c:334:hwagent_bmc_response_test):Unable to reach the KCS interface over ipmitool-hwagentd.

This problem occurs when the IPMI device drivers are not installed. Hardware Management Agent uses the IPMI drivers to access the KCS interface.

▼ How to Solve Issues With IPMI Device Drivers

1. Install an IPMI system such as OpenIPMI which provides device drivers for full access to IPMI information.

2. Start the Hardware Management Agent.

Hardware Management Agent Service Status Dead

After installing the Hardware Management Agent on Red Hat Enterprise Linux, the hwmgmtd service starts but you see something similar to the following:

/etc/init.d/hwmgmtd start

Starting Sun HW agent services: [OK]

/etc/init.d/hwmgmtd status

hwmgmtd dead but subsys locked

In addition, there may be a line in the Hardware Management Agent similar to the following:

(hwagentd_poller.c:334:hwmgmtd_bmc_response_test):Unable to reach the KCS interface over ipmitool-hwmgmtd.

This problem occurs when the IPMI device drivers have not been installed. Hardware Management Agent uses the IPMI drivers to access the KCS interface.

Solution: Install an IPMI system such as OpenIPMI, which provides device drivers for full access to IPMI information.
How to Solve Issues with IPMI Device Drivers

1. Install an IPMI system such as OpenIPMI which provides device drivers for full access to IPMI information.

2. Start the Hardware Management Agent.
Index

C
command usage, itpconfig, 39
Configuration File, Hardware Management Agent, 13
Configure
 Hardware Management Agent, 13–19
 Host Operating System's SNMP, 16
 Log Level, 14
 SNMP Gets, 17
 SNMP Sets, 17–18
 SNMP Traps, 18
 Windows SNMP, 18
Configure Net-SNMP
 Linux, 16
 Solaris, 16
Hardware SNMP Plugins, 21–27
Host-to-ILOM Interconnect
 disabling, 42
 enabling, 41–42
 listing, 42
 hwagentd.conf, 13
 hwagentd.log, 13
 hwagentd_log_levels, Parameter, 14
 hwmgmtd.conf, 13
 hwmgmtd.log, 13

D
documentation links, 5

F
feedback, 5

H
Hardware Management Agent
 Configuration File, 13
 Configure, 13–19
 Configure SNMP, 16
 Log File, 13
 local Oracle ILOM interconnect, See Host-to-ILOM Interconnect

I
ILOM Notification Alert Rule 15, 45
ILOM Trap Proxy, overview, 11
IPMItool, 36
itpconfig, command usage, 39
itpconfig, overview, 11
itpconfig troubleshooting, 45

L
Linux
 Configure Net-SNMP, 16
 SNMP Gets, 17
 SNMP Sets, 17–18
 SNMP Traps, 18
 Troubleshooting, 46
 See Host-to-ILOM Interconnect
 Log File, Hardware Management Agent, 13
Index

Log Level, Configure, 14

M
Management Information Base, 21–27
Sun Hw Monitoring, 21
Sun Hw Trap MIB, 25
MIB, See Management Information Base

O
Oracle Server Hardware Management Agent, overview, 9
Oracle Server Hardware SNMP Plugins, 10
Oracle Server Management Agents, overview, 9–11
Overview
Oracle Server Hardware Management Agent, 9
Oracle Server Hardware SNMP Plugins, 9

S
Sensor, Severity, 23
Severity, Sensor, 23
SNMP, 9
Configure, 16
Generating Traps, 36
Retrieving and Setting Information Through, 29
SNMP Gets, 17
SNMP Sets, 17–18
SNMP Traps, 18
snmpd.conf, 16, 17, 18
snmpwalk, 29
Solaris
Configure Net-SNMP, 16
SNMP Sets, 17–18
SNMP Traps, 18
Troubleshooting, 45
Storage Management Agent, 9
Sun Hw Monitoring MIB, Overview, 21
Sun Hw Trap MIB, Overview, 25
sunHwMonMIB, overview, 10
sunHwTrapMIB, overview, 10
sunStorageMIB, overview, 10
Syslog, 36
System Event Log, 9

T
trap forwarding on Windows, 44
Troubleshooting, 45–48

W
Windows, SNMP, 18