

Oracle® Enterprise Data Quality for Product Data
Java API Interface Guide

Release 5.6.2

E23725-02

November 2011

Oracle Enterprise Data Quality for Product Data Java API Interface Guide, Release 5.6.2

E23725-02

Copyright © 2001, 2011 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents .. vii
Conventions ... viii

1 Overview

Overview of the Oracle DataLens Server APIs .. 1-1
APIs .. 1-1
Platforms ... 1-2
Pre-Installation Requirements.. 1-2

Oracle DataLens Server Java Libraries... 1-2

2 DSA API to the Oracle DataLens Server

WfgClient... 2-1
Updating Individual Records and Data Lines ... 2-1
Transforming Data... 2-1

Import ... 2-1
Initialize the Client.. 2-2
Create the List of Input Data ... 2-2
Transform a List of Data .. 2-3
Alternative Method of Transforming Data ... 2-3

Retrieve Results from the Server for Jobs with a Single Output Step .. 2-3
Synchronous Method ... 2-3
Asynchronous Method... 2-4

Retrieve Results from the Server for Jobs with Multiple Output Steps 2-4
Pulling the Result Data from the List .. 2-4

List Data ... 2-4
Tab-Separated Data .. 2-5

Listing Multiple DSA Jobs .. 2-5
Listing a Single DSA Job ... 2-6
Using File Input and Output .. 2-6

Miscellaneous Settings for the WfgClient ... 2-6
Retry Count... 2-6
Filter Data .. 2-7

iv

Job Priority .. 2-7
Run-Time Locale .. 2-7
Separator Character ... 2-7
Client-Side Debugging Toggle ... 2-8
E-mail Output ... 2-8
FTP Output.. 2-8
Database Parameters.. 2-9

3 Server Information API to the Oracle DataLens Server

InfoClient... 3-1
Getting Transform Map and Data Lens Information.. 3-1
Import .. 3-1
Initialize the Client... 3-1
Get a List of Deployed Data Lenses... 3-1

Lists of Schemas and Translations.. 3-2
Get a List of Deployed DSAs.. 3-2

4 Server Availability API to the Oracle DataLens Server

PingClient .. 4-1
Import .. 4-1
Simple Server Check .. 4-1
Round-Robin Server Check .. 4-1

5 Error Handling

Client-Side Exceptions .. 5-1
Client-Side Log Messages... 5-1
Log4j to Standard Output ... 5-1

Log4J to a File.. 5-2
Server-Side Faults... 5-2
Server-Side Exceptions .. 5-2
Server-Side Log Messages .. 5-3
Debugging Client Requests and Responses ... 5-3

6 Compiling and Running with the API

Compile the Application with the Oracle DataLens Libraries.. 6-1
Run the Application with the Oracle DataLens Libraries.. 6-1

7 Web Service Access to the Oracle DataLens Server Using Doc-Lit

Generating a WSDL Document on Demand .. 7-1
Client Web Service Software.. 7-1
Overview of the DSA Interface ... 7-1

processListRequest and processOneLineRequest Operations... 7-2
processDBRequest.. 7-2
SOAP Document-Literal One Line Request Example... 7-2
SOAP Document-Literal One Line Response Example.. 7-3

v

SOAP Doc-Lit Multi-Line ProcessList Request Example ... 7-3
SOAP Doc-Lit Multi-Line ProcessList Response Example .. 7-3
SOAP Document-Literal ProcessDb Request Example .. 7-4
SOAP Document-Literal processDb Response Example.. 7-4

8 Customizing DSA Maps with Java Add-Ins and Algorithms

TMap Algorithms ... 8-1
Initial Configuration .. 8-1

Client Startup Changes .. 8-1
Creating a New TMap Algorithm.. 8-2
TMap Algorithm Debugging.. 8-4

Server .. 8-4
Client... 8-4

Transform Map Add-In Transforms.. 8-4
Writing a TMap Add-In Transform... 8-4
Defining the Transform Map Add-In Transform .. 8-5

Server .. 8-5
Defining the Input Parameters to the Transform Map Add-In Transform 8-5
Using the Transform Map Add-In Transform in the Client .. 8-6
Using TMap Add-in Transforms to Process Exception Data... 8-7

DSA Add-In Outputters.. 8-8
Writing a DSA Add-In Outputter.. 8-8
Defining the DSA Add-In Outputter .. 8-9

Server .. 8-9
Defining the Input Parameters to the Transform Map Add-In Transform 8-9
Using the DSA Add-In Outputter in the Client... 8-9
Use in the Application Studio .. 8-9

A Working Through a Proxy Server

Run-Time Java Proxy Parameters ... A-1
RtClient Java Proxy Parameters .. A-1

B Installing the Client Software

vi

vii

Preface

This guide is intended to explain the basic capabilities of the Oracle DataLens Server
Java Interface.

To understand all of the features presented, you must use this guide in conjunction
with the Oracle Enterprise Data Quality for Product Data documents listed in "Related
Documents" on page 2-vii.

You must have Oracle Enterprise Data Quality for Product Data client software
installed on your computer as described in "Installing the Client Software" on
page B-1.

Audience
You should have a basic understanding of the DataLens Technology. You must be an
experienced Java software developer.

This document is intended for all users of the DataLens Technology, including:

■ Subject Matter Experts (SMEs)

■ IT Administrators

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents in the documentation set:

■ The Oracle Java API documentation (Javadoc) provides a list of all packages,
including those used in the Oracle Enterprise Data Quality for Product Data Java
API, with a summary for each. Javadoc is delivered in the Oracle Enterprise Data
Quality for Product Data DevToolKit package in the ...\DevToolKit\java_

viii

api\doc\javadoc directory. You can access Javadoc by locating this directory and
opening the index.html file in a browser.

■ The Oracle Enterprise Data Quality for Product Data Oracle DataLens Server
Installation Guide provides detailed Oracle DataLens Server installation
instructions.

■ The Oracle Enterprise Data Quality for Product Data Oracle DataLens Server
Administration Guide provides information about installing and managing an
Oracle DataLens Server.

■ The Oracle Enterprise Data Quality for Product Data COM Interface Guide provides
information about installing and using the Oracle DataLens Server COM APIs.

■ The Oracle Enterprise Data Quality for Product Data Application Studio Reference Guide
provides information about creating and maintaining Data Service Applications
(DSAs).

■ The Oracle Enterprise Data Quality for Product Data AutoBuild Reference Guide
provides information about creating an initial data lens based on existing product
information and data lens knowledge.

■ The Oracle Enterprise Data Quality for Product Data Knowledge Studio Reference Guide
provides information about creating and maintaining data lenses.

■ The Oracle Enterprise Data Quality for Product Data Governance Studio Reference Guide
provides information about creating and maintaining Data Service Applications
(DSAs).

■ The Oracle Enterprise Data Quality for Product Data Glossary provides definitions to
commonly used Enterprise DQ for Product technology terms.

■ The Oracle Enterprise Data Quality for Product Data Services for Excel Reference Guide
provides information about creating a DSA based on data contained in a Microsoft
Excel spreadsheet.

■ The Oracle Enterprise Data Quality for Product Data Task Manager Reference Guide
provides information about managing tasks created with the Task Manager or
Governance Studio applications.

■ The Oracle Enterprise Data Quality for Product Data R12 PIM Connector Installation
Guide provides installation and configuration of Enterprise DQ for Product R12
PIM Connector.

■ The Oracle Enterprise Data Quality for Product Data R12 PIM Connector User's Guide
provides highlights of the core process steps and features of Enterprise DQ for
Product R12 PIM Connector.

■ The Oracle Enterprise Data Quality for Product Data R12 PIM Connector API Interface
Guide provides information about using the R12 PIM Connector API.

See the latest version of this and all documents listed at the Oracle Enterprise Data
Quality for Product Data Documentation Web site at:

http://download.oracle.com/docs/cd/E20593_01/index.htm

Conventions
The following text conventions are used in this document:

http://download.oracle.com/docs/cd/E20593_01/index.htm

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, text that you enter, or a
file, directory, or path name.

monospace Boldface, monospace type indicates commands or text that you enter.

ix

x

1

Overview 1-1

1Overview

Oracle DataLens Server is built on industry-leading DataLens™ Technology to
standardize, match, enrich, and correct product data from different sources and
systems. The core DataLens Technology uses patented semantic technology designed
from the ground up to tackle the extreme variability typical of product data.

Oracle Enterprise Data Quality for Product Data, formerly known as Oracle Product
Data Quality, uses three core DataLens Technology modules: Governance Studio,
Knowledge Studio, and Application Studio. The following figure illustrates the
process flow of these modules.

Overview of the Oracle DataLens Server APIs
This section provides information about the Enterprise DQ for Product (EDQP) Oracle
DataLens Server APIs:

■ APIs

■ Platforms

■ Pre-Installation Requirements

APIs
There are three main Application Programming Interfaces to the Oracle DataLens
Server platform.

Oracle DataLens Server Java Libraries

1-2 Java API Interface Guide

■ DSA Client - The Oracle DataLens Server DSA Client interface. This is used for
direct access to the DSA loaded on the Oracle DataLens Servers for processing
application/enterprise data. The DSA Client can process the following:

■ Tab-separated input data

■ Input data with any user-defined separator character

■ Input data from a database query

■ Information Client - The Oracle DataLens Server Information Client interface.
This is used for access to information about the data lenses, Transform Maps, and
DSAs that are loaded on the Oracle DataLens Servers.

■ Ping Client - The Server Availability Client interface. This is used to check for a
response from any Oracle DataLens Server in an Oracle DataLens Server Group.

There is also a low-level Application Programming Interface to the Oracle DataLens
Server platform. This interface is not recommended for application developers. If this
interface is needed, then Oracle Consulting Services should be contacted to get
assistance on the best practices and use of this interface to the Oracle DataLens
Servers.

■ Oracle DataLens Client - The Real-Time Client interface. This is used for direct
access to the data lenses loaded on the Oracle DataLens Servers for processing
application data. The RT Client can process the following:

■ Single line of data

■ Array of data

■ List of data

Platforms
The Java API can be used for integrating to the following.

■ Java applications or Web pages

■ Available on Windows or Linux operating systems

Pre-Installation Requirements
Java JDK 1.4.2_02 - The API was compiled and built using this release.

Java JDK 1.4, 1.5, 1.6 - The API is also compatible with these releases.

Oracle DataLens Server Java Libraries
The libraries and software used by this API are delivered in the product download in
the oracle_datalens_5_n_nn_api.zip file for EDQP 5.6.1 and earlier and in the
DevToolKit 5.6.2 Patch Release. The following libraries are provided, in the
\DevToolKit\java_api\lib directory, for creating new applications and integrating to
existing applications:

edqp-api.jar
This library contains the Application interface classes.

edqp-apiimports.jar
This library contains the third party component, Jdom 1.0, needed by the API. Jdom is
used for encoding/decoding the SOAP messages sent to the Oracle DataLens Server
from the client application.

Note: If there are issues with using these versions of this software,
contact Oracle Consulting Services.

Oracle DataLens Server Java Libraries

Overview 1-3

Oracle DataLens Server Java Libraries

1-4 Java API Interface Guide

2

DSA API to the Oracle DataLens Server 2-1

2DSA API to the Oracle DataLens Server

WfgClient
Use of this interface is the preferred method to access any data transformations that
need to be done on the Oracle DataLens Server. This interface will directly execute the
DSAs that are deployed to the Oracle DataLens Server. Use of this interface should
supplant use of the Oracle DataLens API.

The WfgClient class is used as an interface to the Oracle DataLens Server. This class
provides methods to perform DSA transformations.

Updating Individual Records and Data Lines
DSAs are not a one-to-one match of the input records and the output records. In some
cases this may be true, depending on the map. More likely, there will be multiple
output steps, and each step will only have a subset of the input data results. In some
output steps, there may be no data returned, and in other cases there may be multiple
output records returned for a single input record.

This means that the DSAs should pass the original Id into the processing, usually as
the first data field. This provides a means for matching the output result data with the
original input data.

In cases where data is just being processed, and there is no need to link the results back
to each individual input record, then passing the ID through the DSA is not needed.

Transforming Data

Import
Import the WfgClient with the following lines:

import com.onerealm.solx.api.client.WfgClient;
import com.onerealm.solx.api.client.WfgResultLine;
import com.onerealm.solx.api.client.WfgRequestLine;
import com.onerealm.solx.api.bean.Fault;
import com.onerealm.solx.api.iface.ErrorIF;
import com.onerealm.solx.api.util.Priorities;

WfgClient

2-2 Java API Interface Guide

Initialize the Client
An instance of the WfgClient class needs to be created with the Oracle DataLens
Server name and port.

Actual parameters:

■ Server Name - This can be either a machine name (such as, "Production") or an IP
address (such as "127.0.0.1").

■ Server Port - This is the port number of the server. By default, the Oracle DataLens
Server is installed on port 2229.

■ Encryption flag - False uses normal HTTP communication; true uses the secure
HTTPS. Use false unless instructed otherwise by Oracle Consulting Services.

■ Client Code - This is the "secret code" that the Oracle DataLens Server provides
with your server license to prevent unauthorized access to the Oracle DataLens
Server via this API. This code is built into the Oracle DataLens Server license and
is only active if requested as part of the license. This value can be left blank if the
server license has no code.

■ Application - This application name initiated the client request to the server. This
name is used to accumulate server statistics on the Oracle DataLens Server
Administration Web Pages.

// Create WfgClient object
WfgClient wfgClient;
 wfgClient = new WfgClient(serverName, SERVER_PORT, ENCRYPTION,
 clientCode, APPLICATION);

Create the List of Input Data
This is a brief example of creating the input data list. First we will create the list from
an array of static data as shown below.

private static final String m_inputData[][] = {
{"0", "Res, 20 Ohm"},
 {"1", "Res, Net 4 W"};

This data above is just an example. Your data will come from your application, from an
input file or a database query.

In any case, the data needs to be put into an input list for the Java API to process the
data. Below is an example of creating and populating the list using the example data.
In this case, the input data needs to be separated using the character separator, in this
case the Tab character. This interface is best used when there is only one field of input
data to be processed.

// Setup this list of String Fields for the request
List list = new ArrayList();
 for (int i=0; i<m_inputData.length; i++) {
 List fields = new ArrayList(); // Create a List of Strings
 fields.add(new String(m_inputData[i][0])); // Add the ID Data Field
 fields.add(new String(m_inputData[i][1])); // Add the Description Field
 list.add(fields);
 }

WfgClient

DSA API to the Oracle DataLens Server 2-3

Transform a List of Data
A list is passed to the runRtJob method and a single job ID is returned. The runRtJob
method is called just a single time with a single list of data.

Actual parameters:

■ Job ID - The DSA Job ID obtained from the runJob call.

■ DSA Name - The name of the DSA to run on the Oracle DataLens Server.

■ Description - A description of this particular job.

■ List - The list with a list of String input fields.

// Start the DSA job with our data
// NOTE: Input data with a List containing a list of string attributes.
 // This is useful for already separated data
 m_wfgClient.setLinesFromFields(list);
 int m_jobID = m_wfgClient.runJob(PMapName, "My Job");

The preceding call is using the following default values:

■ Job Priority of medium

■ Job run-time locale of USA English

Alternative Method of Transforming Data
In any case, the data needs to be put into an input list for the Java API to process the
data. Following is an example of creating and populating the list using the example
data. In this case, the input data needs to be separated using the character separator.
The following example uses the Tab character. This interface is best used when there is
only one field of input data to be processed.

List list = new ArrayList();
for (int i=0; i<m_inputData.length; i++) {
 list.add(new WfgRequestLine(m_inputData[i][0] + "\t" + m_inputData[i][1]));
}

Now process the data using the list you created:

List
The list of WfgRequestLine objects that have been initialized with the tab-separated
input data.

// Start the DSA job with our data
wfgClient.setLines(list);
 int m_jobID = wfgClient.runJob(PMapName, "Comment: API Test Job 1");

Retrieve Results from the Server for Jobs with a Single Output Step
When the job has finished, the transformed data can be retrieved from the server back
to the client application. The getResultData method is called just a single time and
returns a list of WfgResultLine objects containing the result data.

Synchronous Method
The call will wait until the job has finished processing the data before control is
returned to the program with the result data.

// Get the DSA Results!

WfgClient

2-4 Java API Interface Guide

boolean waitForResults = true;
resultData = wfgClient.getResultData(jobID, waitForResults);

Asynchronous Method
You can check the job status and do other processing while waiting for the job to
complete. The getResultData method will throw a fault indicating that the job is still
processing the input data.

try {
// Get the DSA Results!
 boolean waitForResults = true;
 resultData = wfgClient.getResultData(jobID, waitForResults);
 } catch (Fault f) {
 // Check if the job has not completed yet
 if (f.getErrorCode() == ErrorIF.ERROR_NOT_COMPLETED)
 . . .
 }

Server Faults that can be thrown from a call to getResultData include the following
ErrorIF errors:

ERROR_JOB_CANCELED

ERROR_CANCEL_FAILED

ERROR_COPY_FAILED

ERROR_JOB_FAILED

ERROR_NOT_COMPLETED

Retrieve Results from the Server for Jobs with Multiple Output Steps
When the job has finished, the transformed data can be retrieved from the Server back
to the client application. The getResultData method is called just a single time for
each output step. Each call returns a list of WfgResultLine objects containing the result
data, just as with the jobs with a single output step.

The call will wait until the job has finished processing the data before control is
returned to the program with the result data.

// Get the DSA Results!
resultData = wfgClient.getResultData(jobID, stepName, waitForResults);

The call to getResultData can be made synchronously or asynchronously as
demonstrated above.

Pulling the Result Data from the List
The result data is returned as a list of WfgResultLine objects.

List Data
This is how the result data fields should be pulled from the output lines. This list
interface will always maintain all the columns of output data, even if there is no data
for a particular output data field. In this case, the data field result will be a null value.

The following code excerpt demonstrates pulling out the individual data lines, with
the individual data fields.

WfgClient

DSA API to the Oracle DataLens Server 2-5

// Iterate through the result data lines
Iterator iter = resultData.iterator();
 while (iter.hasNext()) {
 WfgResultLine resultLine = (WfgResultLine)iter.next();
 List outFields = resultLine.getDataFields();

 // Iterate through the result data fields
 Iterator i2 = outFields.iterator();
 while (i2.hasNext()) {
 String outField = (String)i2.next();
 System.out.print(outField);
 If (i2.hasNext())System.out.print(", ");
 }
 System.out.println(" ");
 }

Tab-Separated Data
This is a simple way to get to the result data for testing. The following code excerpt
demonstrates pulling out each line of tab-separated output data.

Note: This example works if you have specified an alternate
separator character.

Iterator iter = resultData.iterator();
while(iter.hasNext()) {
 WfgResultLine resultLine = (WfgResultLine)iter.next();
 System.out.println(resultLine.getData());
 }

Listing Multiple DSA Jobs
The DSA Client can list Jobs can be listed from the Oracle DataLens Server
Administration Web Pages. The following types of lists can be retrieved from the
server.

■ All Jobs (also since a particular date)

■ All jobs that have not completed

■ All jobs for a particular submitter (also since a particular date)

■ All not-completed jobs for a particular submitter

■ All jobs for a particular approver

The following code shows the calls in the order listed in the preceding:

List list = wfgClient.listAllJobs(sinceTS);
List list = wfgClient.listNCJobs();
List list = wfgClient.listSubmitterJobs(submitter, sinceTS);
List list = wfgClient.listNCSubmitterJobs(submitter);
List list = wfgClient.listApproverJobs(approver);

These calls all return lists of WfgJobInfo objects.

Miscellaneous Settings for the WfgClient

2-6 Java API Interface Guide

Listing a Single DSA Job
Information can also be obtained from a single job given the Job ID. The following Java
code example shows this:

WfgJobInfo jobInfo = wfgClient.listJob(jobID);

This call returns a single WfgJobInfo object with the job details.

Additionally, all the details on the steps are returned as well. To get the steps, use the
getSteps method call as shown in the following example:

List steps = jobInfo.getSteps();

These steps are a list of WfgJobStepInfo objects with all the details on the individual
job steps.

Using File Input and Output
The DSA API can use a text file as input and a text file as output. The complete path to
the input file and the complete path to the output directory are needed. Use the setters
to toggle on the input/output directory locations as in the following example:

// Setting the input file and output directory toggles on file processing
wfgClient.setOutputDirectory(outputLocation);
wfgClient.setInputFilePath(filePath);
jobID = wfgClient.runJob(transformProcess, desc);

These file input paths and the file output paths are sent directly to the Oracle DataLens
Server. This means that the paths must be paths that are relative to the server. For
example, if you give the path to an input file as:

C:/temp/raw_data.txt

This file is from the C drive on the server machine, not the C drive on the client
machine. The output directory is also a relative path from the server machine as well.

The source path can be a UNC path to a file on a remote machine.

Here is an example:

//node_name/shared/test.txt

Miscellaneous Settings for the WfgClient
These are options that can be used by the WfgClient. In fact, these settings can be used
by any of the Oracle DataLens Server Client API classes. For a complete list of
methods in the WfgClient class and additional information, see the Javadoc
documentation as described in "Related Documents" on page 2-vii.

Retry Count
This is useful to control the amount of time that the client attempts to connect to the
Oracle DataLens Server. The default is to retry 20 times. This could be a problem in an
interactive user environment, where you does not have a couple of minutes while
WfgClient is attempting to connect to the server. In these cases you could set the retry
count to 1 or even 0. Look also at PingClient, which can be used to check if a
particular server is responding.

// Just set the retry to one for starting the job, then use the default

Miscellaneous Settings for the WfgClient

DSA API to the Oracle DataLens Server 2-7

wfgClient.setRetryCount(1);jobID = wfgClient.runRtJob(transformProcess,
jobPriority, desc, rtLocale, input);
wfgClient.setRetryCountToDefault();

Filter Data
By default, data filtering is turned on for all input data. This will filter out all
inadvertent control characters that may be interspersed in your input data. This data
can cause problems with processing and sometimes it can cause problems with
sending the data from the client to the server via HTTP as XML Soap documents. Tab
characters are never filtered out.

// By default filtering is turned on and nothing needs to be done
wfgClient.setFilterData(false);
jobID = wfgClient.runRtJob(transformProcess, jobPriority, desc, rtLocale, input);

In the preceding example, the parameter input (with the List of input data) will be
filtered.

Where the filtering encounters control characters in the input data, they will be
substituted with the "?" character. This facilitates you in tracking down the source and
exact location of the control characters. The data lens can ignore the "?" character when
processing the input lines.

Job Priority
By default, a job priority of medium is used for all jobs.

This is the priority the job will be given on the server for processing. Large batch
overnight jobs should be given a priority of low. Small jobs with few input records, or
requests that need a quick response, such as users waiting for a response should get a
priority of High. All other jobs should use a priority of medium. The number of
concurrent jobs that can be run on the server is also controlled by the priority of the job
(For more information, use the Configuration link on the Oracle DataLens Server
Administration Web Pages). These priority values can be used from the Priorities
class in the edqp-api.jar.

■ Priorities.PRIORITY_LOW

■ Priorities.PRIORITY_MEDIUM

■ Priorities.PRIORITY_HIGH

// Set the job priority
wfgClient.setPriority(Priorities.PRIORITY_HIGH);

Run-Time Locale
By default, a run-time locale of USA English (en_US) is used.

Set the locale to use for output of this job.

// Set the run-time locale
wfgClient.setRuntimeLocale(RT_LOCALE);

Separator Character
By default, a field separator character of tab is used.

Miscellaneous Settings for the WfgClient

2-8 Java API Interface Guide

// Set the run-time locale
wfgClient.setFieldSeparator('|');

Note: If you are using a different separator character than the
default, then the separator character must be specified when pulling
the data fields from the WfgResultLine data object.

List fields = wfgResultLine.getDataFields(FIELD_SEPARATOR_CHAR);

Client-Side Debugging Toggle
By default, this is toggled off when a new WfgClient object is created

This will dump the client information out to standard output prior to sending the
request to the server. This is only used for debugging and should never be toggled to
on in a production environment.

// Toggle on client data to standard output
wfgClient.setTrace(true);

E-mail Output
If set, then an API request that would return a list or update a file, will e-mail the
results to the user specified instead.

// Send the results to the following user
wfgClient.setEmailAddress("user1@systems.com");

A DSA that updates a database will continue to update the database.

A DSA can be defined to return the results to an e-mail address. This will work
regardless of this API e-mail setting. In fact, the e-mail address in the DSA will take
precedence over this e-mail set in the API

FTP Output
If set, then an API request that would return a list or update a file, will send the results
instead to the FTP location specified.

// Send the results to the following FTP site
wfgClient.setFtpName("internal");

Note: This should not be set if the setEmailAddress is being used. In
addition, the FTP name being used "internal" is one that is setup on
the Oracle DataLens Server as in the following figure.

Miscellaneous Settings for the WfgClient

DSA API to the Oracle DataLens Server 2-9

Database Parameters
By default, database parameters are not used.

This is used where the input map is expecting input from a database query and the
query requires parameters that must be passed in.

Create a list of Parameters and then set the Db parameters as shown in the following
code excerpt:

// Set the database parameters
List dbParams = new ArrayList();
 dbParams.add("first_parameter");
 dbParams.add("second_parameter");
 wfgClient.setDbParameters(dbParams);

Miscellaneous Settings for the WfgClient

2-10 Java API Interface Guide

3

Server Information API to the Oracle DataLens Server 3-1

3Server Information API to the Oracle
DataLens Server

InfoClient

Getting Transform Map and Data Lens Information
Getting the data lens or Transform Map information uses a Java List interface. This is
used to find out what data lenses or Transform Maps are available (deployed) on a
particular server for processing. Details about the data lenses are also returned.

Import
Import the InfoClient with the following lines:

import com.onerealm.solx.api.client.InfoClient;
import com.onerealm.solx.api.client.ProjectData;
import com.onerealm.solx.api.client.MapData;

Initialize the Client
For all the examples shown below, an instance of the InfoClient class needs to be
created with the Oracle DataLens Server name and port.

The SERVER_NAME can be either a machine name such as "localhost" or an IP address
"12.1.20.117".

The SERVER_PORT is the port number of the server. By default, the Oracle DataLens
Server is installed on port 2229.

// Create the Server Api object and point to the server
InfoClient projectApi = new InfoClient(SERVER_NAME, SERVER_PORT);

Get a List of Deployed Data Lenses
With the getDeployedProjectList method, you get a List of ProjectData objects that
contains all the Data Lenses that are deployed and loaded on the Oracle DataLens
Server.

Each ProjectData object contains a:

InfoClient

3-2 Java API Interface Guide

■ data lens name

■ description of the data lens

■ list of the Standardizations used by the data lens

■ list of the Classification schemas used by the data lens

■ list of the Unit Conversions used by the data lens

■ single Source Locale used by the data lens

■ list of the target Translation locales used by the data lens

This is a simple example of pulling the data from the returned List:

List prjList = infoApi.getDeployedProjectList();
Iterator itr = prjList.iterator();
 while (itr.hasNext()) {
 // Get the data lens information
 ProjectData prjData = (ProjectData)itr.next();
 String projectName = prjData.getProject();
 String projectDesc = prjData.getDescription();
 List standardizations = prjData.getStandardizations();
 List schemas = prjData.getClassifications();
 List unitConversions = prjData.getUnitConversions();
 String sourceLocale = prjData.getSourceLocale();
 List targetLocales = prjData.getTargetLocales();
 }

Lists of Schemas and Translations
The ProjectData object contains lists of classification and translation data for each
data lens as shown above. These are just lists of String data. These lists include:

■ Classification Schemas used (UNSPSC, eCl@ss, or user-defined)

■ Target Translation locales supported.

In addition, the ProjectData object contains lists of input and output data for each
data lens, as in the preceding. These are just lists of string data. These lists include:

■ Input data list

■ Output data list

Get a List of Deployed DSAs
With the getDeployedWorkflowList method, you get a List of WorkflowData objects
that contains all the DSAs that are deployed and loaded on the Oracle DataLens
Server.

Each WorkflowData object contains:

■ DSA name

■ Description of the DSA

■ List of input fields

■ List of output fields

■ A list of Transform Maps used by this DSA

■ A list of the Database Connections used by this DSA

InfoClient

Server Information API to the Oracle DataLens Server 3-3

Follwoing is a simple example of pulling the data from the returned list:

List workflowList = infoClientApi.getDeployedWorkflowList();
Iterator itr = workflowList.iterator();
while (itr.hasNext()) {
 // List the DSAs
 WorkflowData workflowData = (WorkflowData)itr.next();
 String name = workflowData.getWorkflowName();
 String desc = workflowData.getDescription();
 List inputFields = workflowData.getInputFields();
 List outputFields = workflowData.getOutputFields();
 List transformMaps = workflowData.getTransformMaps();
 List dbConnections = workflowData.getDbConnections();
}

InfoClient

3-4 Java API Interface Guide

4

Server Availability API to the Oracle DataLens Server 4-1

4Server Availability API to the Oracle
DataLens Server

PingClient
This interface is the provided to access the availability of the Oracle DataLens Servers.

The PingClient class is used as an interface to the Oracle DataLens Server. This class
provides a simple method that returns true if an Oracle DataLens Server is available
for processing data and false if it is not.

Import
Import the PingClient with the following line:

import com.onerealm.solx.api.client.PingClient;

Simple Server Check
This is a simple test to check the server availability. This can be used prior to sending
data to the server for processing.

// Create the Server Api object and point to the server
PingClient pingApi = new PingClient(serverName, serverPort);
boolean available = pingApi.pingServer("JavaAPI");

Round-Robin Server Check
This is essentially the same code as in the previous section, just that we are going
through a list of Oracle DataLens Servers in a Production Oracle DataLens Server
Group and returning the first server that responds.

Iterator iter = serverList.iterator();
while (iter.hasNext()) {
 String serverNameStr = (String)iter.next();
 if (new PingClient(serverName, serverPort).pingServer(userName)) {
 return serverNameStr;
 }
 }

PingClient

4-2 Java API Interface Guide

5

Error Handling 5-1

5Error Handling

Client-Side Exceptions
Client-side exceptions are caught via the standard java Exception catching mechanism.
These faults are typically Connection exceptions, such as request/response timeouts or
failure to connect to the server.

Client-Side Log Messages
The client side messages are output using standard output.

The client side messages can be output using a logging package called log4j. The API
library uses Java reflection to determine if log4j is available. If it is already in your
client application, log4j is used to output messages.

For more information about log4j, see the Apache log4j Web site:

http://logging.apache.org/log4j/

Log4j to Standard Output
By default, client-side error messages will go to standard output.

These same log messages are sent to a log-file if log4j is used in your client application.

If you want to add log4j for use in your client application, then the logger needs to be
initialized. Otherwise, you will get the following error message in the standard output
window or log file if there is a client-side problem.

log4j:WARN No appenders could be found for logger
(com.onerealm.solx.api.client.ClientBase).
log4j:WARN Please initialize the log4j system properly.

Add the following line of code to initialize the client-side logger, enabling logging
output to standard output.

import org.apache.log4j.BasicConfigurator;
. . .
// Initialize Log4J to get client-side logging to standard output
BasicConfigurator.configure();

The output in this log is usually a connection re-try attempt or some other client-side
processing. Instead of the warning messages, you will now see the following types of
messages:

Server-Side Faults

5-2 Java API Interface Guide

- Attempt 2 to connect to http://lrivas-xp-a31:2229/datalens/Workflow
- Attempt 3 to connect to http://lrivas-xp-a31:2229/datalens/Workflow
- Attempt 4 to connect to http://lrivas-xp-a31:2229/datalens/Workflow

Log4J to a File
If log4j is being use in the client application, then the following will apply.

The client-side logging messages can be sent to a file as well. The following example is
a very simple logging configuration that will log all the messages to a log file in the
/tmp directory.

import org.apache.log4j.*;
. . .
// Initialize Log4J to get client-side logging to the /tmp directory
Logger logger =
Logger.getLogger(com.onerealm.solx.api.client.ClientBase.class);
SimpleLayout layout = new SimpleLayout();
FileAppender appender = null;
try {
 appender = new FileAppender(layout,"/tmp/SCS_Log.txt",false);
} catch(Exception e) {}
logger.addAppender(appender);
logger.setLevel((Level) Level.WARN);

Note: The level for messages can be changed from WARN to DEBUG to
get additional information if needed.

Server-Side Faults
There are also server-side exceptions that are propagated back to the client via the
SOAP interface.

Here is how those exceptions are caught:

try {
m_client.getResultData (...
 } catch (Fault f) {
 System.out.println(f.getErrorCode());
 } catch (Exception e) {
 System.out.println("Error in Test: " + e.getMessage());
 }

Server-Side Exceptions
The Fault Exception object will provide a listing of error codes of the problem and
status of your request to the Oracle DataLens Server.

Use the macros in the com.onerealm.solx.api.iface.ErrorIf class to check for
specific errors.

For example:

try {
resultData = wfgRtApi.getResultData(m_jobID, waitForResults);
 } catch (Fault f) {
 if (f.getErrorCode() == ErrorIF.ERROR_NOT_COMPLETED) ...

Debugging Client Requests and Responses

Error Handling 5-3

 }

Server-Side Log Messages
Go to the Oracle DataLens Server Administration Web Pages and examine the log file
from the home page. This will have a listing of any errors that were encountered in the
server-side processing of your request.

Debugging Client Requests and Responses
The Oracle DataLens Server API communicates with the Oracle DataLens Servers by
sending HTTP SOAP requests to the server and receiving HTTP SOAP responses back
from the server. The content of these XML messages can be sent to standard output for
debugging by the application programmer. This is useful if you want to verify that the
data being send and received by the application program is exactly what is being
communicated to the server.

This is turned on from the Oracle DataLens Server Administration Web Pages as
shown in the following:

Debugging Client Requests and Responses

5-4 Java API Interface Guide

6

Compiling and Running with the API 6-1

6Compiling and Running with the API

Compile the Application with the Oracle DataLens Libraries
To compile your class with the Oracle DataLens Server client calls, the Oracle
DataLens Server client libraries (edqp-api.jar and edqp-apiimports.jar) will need to
be part of your CLASSPATH.

These jar files are located in the \DevToolKit\java_api\lib directory.

Put this into either the CLASSPATH environment variable or use in the command-line
Java compile as shown follows:

javac -classpath " edqp-api.jar; edqp-apiimports.jar" WfgClientTest.java

This creates the WfgClientTest.class file that is part of your application.

Run the Application with the Oracle DataLens Libraries
The Oracle DataLens Server libraries need to be referenced when running an
application that accesses the Oracle DataLens Server.

The following is an example of running the program compiled in the previous
example.

java -cp " edqp-api.jar; edqp-apiimports.jar;.;" WfgClientTest

In this case, we are using the API and the edqp-apiimports libraries, running the Java
class file that we just compiled.

Run the Application with the Oracle DataLens Libraries

6-2 Java API Interface Guide

7

Web Service Access to the Oracle DataLens Server Using Doc-Lit 7-1

7Web Service Access to the Oracle DataLens
Server Using Doc-Lit

Access is provided to the Oracle DataLens Server as a Document-Literal Web Service.

Generating a WSDL Document on Demand
To integrate with an Enterprise DQ for Product DSA as a Web Service, you need
software that will talk to the specific Oracle DataLens Web Services. Many vendors
provide tools to generate this software from a Web Services Description Language
(WSDL) document, which is an XML format for describing network services. You can
view the WSDL for the Oracle DataLens Web Services by using a browser.

Enter the following into a browser:

Note: The host name and port number may differ.

http://localhost:2229/datalens/ws/Processor?wsdl (Document-Literal)

This displays the WSDL document, which can be saved by right-clicking in the
document in the browser, selecting View Source, and then saving the file from within
your browser. For instance, the file can be saved as Processor.wsdl.

Note: Internet Explorer displays the WSDL document; Netscape
Navigator displays a blank web page for the returned document.

Client Web Service Software
For your Web Service clients, client-side software can be generated from this WSDL
document to access the Oracle DataLens Server.

Overview of the DSA Interface
There is a single Service called "ProcessorService". This uses a Port called "Processor".

Three Oracle DataLens Web Services Operations can be used to process data as
follows:

ProcessorList
This takes an input array of strings and returns an output array of strings.

Overview of the DSA Interface

7-2 Java API Interface Guide

ProcessorOneLine
This takes a single string of input and returns a single string of output.

ProcessorDB
This takes a database query (defined in the Transform Map) and returns a job Id of the
DSA Job that handled the request. The output is assumed to be a database update,
e-mail, or FTP.

processListRequest and processOneLineRequest Operations
The difference between these two operations is that processListRequest takes an
array of lines and processLineRequest takes a single line of data as a string. The
transformed data is returned. This call is synchronous.

Parameters are as follows:

dsaName
lines/line
dbParameters
priority
runtimeLocale
fieldSeparatorChar
application
description

processDBRequest
This call takes the database parameters as input and returns the DSA Job ID. This call
is asynchronous.

Parameters are as follows:

dsaName
dbParameters
priority
runtimeLocale
fieldSeparatorChar
application
description

For additional information about these parameters, see Chapter 2, "DSA API to the
Oracle DataLens Server."

SOAP Document-Literal One Line Request Example
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://www.silvercreeksystems.com/ws">
<soapenv:Header/>
 <soapenv:Body>
 <ws:processOneLine>
 <dsaName>sampleDSA</dsaName>
 <!--Optional:-->
 <line>1^res, 17ohm, 19watt, 20%</line>
 <!--Zero or more repetitions:-->
 <dbParameters>?</dbParameters>
 <!--Optional:-->
 <priority>1</priority>
 <!--Optional:-->

Overview of the DSA Interface

Web Service Access to the Oracle DataLens Server Using Doc-Lit 7-3

 <runtimeLocale>en_US</runtimeLocale>
 <!--Optional:-->
 <fieldSeparator>^</fieldSeparator>
 <!--Optional:-->
 <application>ClientCall</application>
 <!--Optional:-->
 <description>Example Doc-Lit client call</description>
 </ws:processOneLine>
 </soapenv:Body>
</soapenv:Envelope>

SOAP Document-Literal One Line Response Example
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
 <ns2:processOneLineResponse
xmlns:ns2="http://www.silvercreeksystems.com/ws">
 <return>1^Resistor, 17 Ohm, 20%, 19 Watt^32121609^Fixed
resistors^Resistor^Item_Name^RESISTOR^Item_Type^^Resistance^17
OHM^Power^19^Tolerance^20%^Package_Size^^Construction^^Mounting^^Pin_Count
^^For_sale_packaging^</return>
 </ns2:processOneLineResponse>
 </S:Body>
</S:Envelope>

SOAP Doc-Lit Multi-Line ProcessList Request Example
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://www.silvercreeksystems.com/ws">
<soapenv:Header/>
 <soapenv:Body>
 <ws:processList>
 <dsaName>sampleDSA</dsaName>
 <!--Zero or more repetitions:-->
 <linesOfData>1^res, 17ohm, 19watt, 10%</linesOfData>
 <linesOfData>2^res, 27ohm, 29watt, 20%</linesOfData>
 <linesOfData>3^res, 37ohm, 39watt, 30%</linesOfData>
 <!--Zero or more repetitions:-->
 <dbParameters>?</dbParameters>
 <!--Optional:-->
 <priority>1</priority>
 <!--Optional:-->
 <runtimeLocale>en_US</runtimeLocale>
 <!--Optional:-->
 <fieldSeparator>^</fieldSeparator>
 <!--Optional:-->
 <application>ClientCall</application>
 <!--Optional:-->
 <description>Example list Doc-Lit client call</description>
 </ws:processList>
 </soapenv:Body>
</soapenv:Envelope>

SOAP Doc-Lit Multi-Line ProcessList Response Example
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

Overview of the DSA Interface

7-4 Java API Interface Guide

<S:Body>
 <ns2:processListResponse xmlns:ns2="http://www.silvercreeksystems.com/ws">
 <return>1^Resistor, 17 Ohm, 10%, 19 Watt^32121609^Fixed
resistors^Resistor^Item_Name^RESISTOR^Item_Type^^Resistance^17
OHM^Power^19^Tolerance^10%^Package_Size^^Construction^^Mounting^^Pin_Count
^^For_sale_packaging^</return>
 <return>2^Resistor, 27 Ohm, 20%, 29 Watt^32121609^Fixed
resistors^Resistor^Item_Name^RESISTOR^Item_Type^^Resistance^27
OHM^Power^29^Tolerance^20%^Package_Size^^Construction^^Mounting^^Pin_Count
^^For_sale_packaging^</return>
 <return>3^Resistor, 37 Ohm, 30%, 39 Watt^32121609^Fixed
resistors^Resistor^Item_Name^RESISTOR^Item_Type^^Resistance^37
OHM^Power^39^Tolerance^30%^Package_Size^^Construction^^Mounting^^Pin_Count
^^For_sale_packaging^</return>
 </ns2:processListResponse>
 </S:Body>
</S:Envelope>

SOAP Document-Literal ProcessDb Request Example
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://www.silvercreeksystems.com/ws">
<soapenv:Header/>
 <soapenv:Body>
 <ws:processDB>
 <dsaName>SampleDSADbInput</dsaName>
 <!--Zero or more repetitions:-->
 <dbParameters>1</dbParameters>
 <dbParameters>2</dbParameters>
 <!--Optional:-->
 <priority>2</priority>
 <!--Optional:-->
 <runtimeLocale>en_US</runtimeLocale>
 <!--Optional:-->
 <fieldSeparator>|</fieldSeparator>
 <!--Optional:-->
 <application>ClientCall</application>
 <!--Optional:-->
 <description>Example Db Input Doc-Lit client call</description>
 </ws:processDB>
 </soapenv:Body>
</soapenv:Envelope>

Note: The field separator will be used when the output from the
database job is a text file.

SOAP Document-Literal processDb Response Example
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
 <ns2:processDBResponse xmlns:ns2="http://www.silvercreeksystems.com/ws">
 <return>784</return>
 </ns2:processDBResponse>
 </S:Body>
</S:Envelope>

Overview of the DSA Interface

Web Service Access to the Oracle DataLens Server Using Doc-Lit 7-5

The return value of the preceding processDb call is the DSA Job ID, in this case 784.
This job reads data from the database and updates other fields in the database as in the
following example:

Overview of the DSA Interface

7-6 Java API Interface Guide

8

Customizing DSA Maps with Java Add-Ins and Algorithms 8-1

8Customizing DSA Maps with Java Add-Ins
and Algorithms

There are three types of customizations that can be done in a DSA and Tranform Map
(TMap).

■ TMap Algorithms (The easiest to use)

■ TMap Add-in Transforms (Usually used by Oracle Consulting Services)

■ DSA Add-in Outputters (Usually used by Oracle Consulting Services)

The TMap Algorithms are the easiest to use and require no special work outside of the
Application Studio. The Java code is written directly in the Tranform Map Builder in
Application Studio and can be tested and run from here. The limitation is that all the
Java code needs to be part of the single transform method.

The TMap Add-in Transforms and DSA Add-in Outputters are really for use by Oracle
Consulting Services to create powerful custom widgets for use in the DSAs. This Java
code can contain entire packages of classes and needs to be written in an external Java
API and imported into the Oracle DataLens Server.

TMap Algorithms

Initial Configuration
Java TMap Algorithms, allow Java code to be embedded into Tranform Maps and have
the code be executed when the parent DSA is run. The Oracle DataLens Client and
Server software is configured "out of the box" to support this with no configuration
changes needed.

Client Startup Changes
The Algorithm widget is available in the Process Control Transformation menu in the
Tranform Map Builder as follows:

TMap Algorithms

8-2 Java API Interface Guide

Creating a New TMap Algorithm
Drag the Algorithm object into your Tranform Map as follows:

The following dialog will appear. Name and create a new algorithm object as shown
on the left. In this example, we modified the template Java code to divide two
numbers as follows:

TMap Algorithms

Customizing DSA Maps with Java Add-Ins and Algorithms 8-3

Notes on the Algorithm Java method:

■ The name of the Algorithm can be any valid Java Class name, but the method
needs to be declared as public String transform.

■ The method may contain one or more string parameters. In the previous example,
the method is taking two string parameters.

Test the new code as in the following figure:

Select OK to save the new custom Algorithm. The Tranform Map looks like the
following:

Transform Map Add-In Transforms

8-4 Java API Interface Guide

The new Custom Algorithm is ready to check-in and deploy to the Oracle DataLens
Server and start using in your client applications.

TMap Algorithm Debugging
All these Customizations require that the classes directory be part of the Java
classpath. This has already been done for you as part of the standard Oracle
DataLens Client and Server installations.

Server
If you encounter any problems running the TMap Algorithm on the server, check that
the environment variable CATALINA_HOME is set on the Oracle DataLens Server with
value C:\Program Files\Apache Software Foundation\Tomcat 5.5.

The classes directory is located in the …/Tomcat/webapps/datalens/WEB-INF/classes
directory already and nothing needs to be done.

Client
The script file that starts the Application Studio needs to have the $SOLX_
HOME/classes directory added to the classpath as follows:

set CP6=%SOLX_HOME%/classes
set clspath=%CP1%;%CP2%;%CP3%;%CP4%;%CP5%;%CP6%

Note: This is already done for you in during the Oracle DataLens
client software installation.

Transform Map Add-In Transforms
Java Transform Map Add-in Transforms are only created by Oracle Consulting
Services.

Java Transform Map Add-in Transforms allow user-defined widgets to be available for
use in DSAs.

For additional information on these classes, see the file, Add2Int.java .

Writing a TMap Add-In Transform
The class may be in any Java package of your choosing.

The class name may be any valid Java Class name.

In the following example, we are using a TMap add-in transform class that is shipped
with the Oracle DataLens Server installation called GetField.

The class must implement a constructor with a single string argument (the name).

public GetField(String name) {
 super(name);
}

The class must implement a method called getResults as follows:

/**
* This is the main method called by the Add-In Transform server code.
 *
 * @param linesOfInputData is an Array of data for each line being

Transform Map Add-In Transforms

Customizing DSA Maps with Java Add-Ins and Algorithms 8-5

 * processed,
 * where the data is an array of the inputs to a single computation.
 *
 * @param parameters are the input parameters for this TMap Add-in function.
 *
 * @return XfmInfo[] of the results of the transformation, one element
 * for each line of input data.
 */
 public XfmInfo[] getResults(String[][] linesOfInputData,
 Map<String, String>
fixedParameters) {
 int inputLength = linesOfInputData.length;
 XfmInfo[] results = new XfmInfo[inputLength];
 // Get the parameters here…
 // Processing happens here…
 return results;
 }

1. linesOfInputData parameter - An array of arrays of Strings. The 1-D level array
has one element for each line of input that must be processed. Each element of the
1-D array has a 2-D String[] containing the column data needed for the
transformation. Thus the array looks like:

 String[numberOfLines][numberOfColumnsOfInputData]

2. fixedParameters - These are the parameters to this add-in transform, passed in
from the DSA.

3. Return an XfmInfo[] of the results of the transformation, one element for each
line of input data.

Defining the Transform Map Add-In Transform
In the Application Studio, the add-in classes will be toggled on if the system finds the
AddInClasses.xml file in the shared config directory on the Oracle DataLens Server.

Server
The class needs to be added to the AddInClasses.xml file, in the
C:\Oracle\middleware\opdq\data\shared\config, directory, as follows:

<AddInClasses>
<Transforms>
 <class>
 <name>Get Field</name>

<className>com.onerealm.solx.maps.xfm.code.transform.GetField</className>
 <description>Gets the specified field from a string. The field index,
 field separator, and default value are specified in the fixed
parameters.</description>
 </class>
 </Transforms>
</AddInClasses>

Defining the Input Parameters to the Transform Map Add-In Transform
This step can be skipped if the Transform Map Add-in transform does not use any
initialization parameters.

Transform Map Add-In Transforms

8-6 Java API Interface Guide

The parameters to the new Transform Map add-in transform need to be added to the
AddInTramsformParameters.xml configuration file. This file is located in the same
configuration directory as the AddInClasses.xml. In this case, our GetField add-in
takes three parameters and the AddInTransformParameters.xml file will look like
similar to the following:

<TransformParameters>
<AddIn>
 <name>Get Field</name>
 <parameters>
 <parameter>
 <name>separator</name>
 <default>|</default>
 <desc>Separator for splitting string into fields</desc>
 <editable>true</editable>
 </parameter>
 <parameter>
 <name>index</name>
 <default>0</default>
 <desc>Index of field to extract (1-based)</desc>
 <editable>true</editable>
 </parameter>
 <parameter>
 <name>default</name>
 <default></default>
 <desc>Default value to return if field not found</desc>
 <editable>true</editable>
 </parameter>
 </parameters>
 </AddIn>
</TransformParameters>

Using the Transform Map Add-In Transform in the Client
No changes are need for the client configuration to pick up your new Tmap Add-In
Transformation. The Oracle DataLens Server just needs to be restarted whenever the
CustomClasses.xml file is updated (because the server reads this file on startup).

Note: You will be able to add the new Tmap Add-in to your DSA
map, but this cannot be tested on the client, it can only be tested by
running a job on the server.

Start the Application Studio. The new add-in class is available in the Transform Map
as follows:

Transform Map Add-In Transforms

Customizing DSA Maps with Java Add-Ins and Algorithms 8-7

Drag the Get Field widget into the Transform Map and the parameters are displayed
for you to edit as follows:

Using TMap Add-in Transforms to Process Exception Data
The individual Tmaps that comprise the complete DSA, have a limitation in that the
same number of records input to the Tmap must be output from the Tmap. If the
Tmap is processing data and some of the records cannot be processed, then these
individual records must be flagged as exception records and routed in the DSA for
separate processing.

You can flag exception records to be processed separately using the XfmError class as
in the following example:

if (returnUnmatchedRows) {
 // This is a good row of data
 finalResults[i] = new XfmData(classification.getId()+"|0|||||", 0);
} else {
 // Return a line failure (exception) for this line
 finalResults[i] = new XfmError("unknownMap", getName(), "No Match");
}

The XfmError constructor uses the following three parameters that are all string
values:

mapName
The name of the DSA.

DSA Add-In Outputters

8-8 Java API Interface Guide

xfmName
The name of the Tmap transform.

errorMsg
The error message associated with the line of data.

DSA Add-In Outputters
Java DSA Add-in Outputters can write data out in any user-defined format. Since this
is an output step, there is no routing of data past this step in the DSA Map, so this
should be used only by Java code that will not be throwing any exceptions that need to
be caught and processed by the DSA Map.

Writing a DSA Add-In Outputter
The class may be in any Java package of your choosing.

The class name may be any valid Java Class name.

In the following example, we are using a Transform Map add-in transform class that is
shipped with the Oracle DataLens Server installation called SCS XML.

The main method that is called is writeOutput. This returns a WfgCustomOutputReturn
object, which contains information needed to forward the result data to an e-mail
address or an FTP site. If this returns null, then there will be no e-mail or FTP.

Note: Even if this object is returned, the e-mail and FTP is only sent
if it is defined in the DSA or the DSA job has defined e-mail or FTP
output.

Following is an example of the structure of the Output Adapter Class:

package com.onerealm.solx.maps.wfg.code.output;
 /**
 * @param job PMap job information
 * @param data Wfg Job data
 * @param outputDir The directory to write the xml file
 * @param parameters The input parameters to the Add-in Outputter.
 * @return Custom output
 * @throws SaException Superclass for all SCS exceptions
 * @throws IOException Signals that an I/O exception of some sort has occurred
 */
public WfgCustomOutputReturn writeOutput(WfgJob job, WfgInputData data, String
outputDir,
 Map<String, String> parameters) {
 List<WfgDataLine> lines;
 while ((lines =
data.getNextGoodLines(WfgConstants.MAX_MEMORY_LINES)) != null) {
 for (WfgDataLine line : lines) {
 System.out.println(line.getData());
 }
 }
 return null;
 }

DSA Add-In Outputters

Customizing DSA Maps with Java Add-Ins and Algorithms 8-9

Defining the DSA Add-In Outputter
In the Application Studio, the add-in classes will be toggled on if the system finds the
AddInClasses.xml file in the shared/config directory on the Oracle DataLens Server.

Server
The class needs to be added to the AddInClasses.xml file as follows:

<AddInClasses>
 <Outputs>
 <class>
 <name>SCS XML</name>

<className>com.onerealm.solx.maps.wfg.code.output.scspim.ScsStepPimProducts</class
Name>
 <description>This will output a STEP PIM Product XML document
with SCS processed data; The default file is
/tmp/ScsStepPimProductData_jobId.xml</description>
 </class>
 </Outputs>
</AddInClasses>

Note: There is no client file needs to be updated for use with the
Application Studio.

The server file needs to be updated for use running DSAs on the Oracle DataLens
Server and to make this available to the Application Studio Clients.

Follow the instructions in the Transform Map Add-in Transforms section for changing
the startup scripts and adding the new classes to the classpath.

Defining the Input Parameters to the Transform Map Add-In Transform
This step can be skipped if the Transform Map Add-in transform does not use any
initialization parameters. In this example, we are not using any input parameters.

Using the DSA Add-In Outputter in the Client
No changes are need for the client configuration to pick up your new DSA Add-In
Outputter. The Oracle DataLens Server just needs to be restarted whenever the
CustomClasses.xml file is updated (because the server reads this file on startup).

Note: You will be able to add the new DSA Add-in Outputter to
your DSA map, but this cannot be tested on the client, it can only be
tested by running a job on the server.

Now start the Application Studio and the new add-in class will be available in the
Transform Map interface s shown below.

Use in the Application Studio
Once the above steps are finished, the new DSA Output Adapter is now available for
use in the Application Studio as follows:

DSA Add-In Outputters

8-10 Java API Interface Guide

A

Working Through a Proxy Server A-1

AWorking Through a Proxy Server

Sometimes a Java program needs to call the Oracle DataLens Java API to an Oracle
DataLens Server outside of your firewall. Normally this is not a problem, but
sometimes there is a proxy server that must be negotiated to get to the outside world.

There are two solutions to this problem.

■ Use the Oracle DataLens Web Services interface and you your WSDL connection
software to negotiate through the proxy server.

■ Use the Java Proxy arguments to the java command.

Run-Time Java Proxy Parameters
Three parameters are used with the java command to set the proxy information:

■ DproxySet=true

■ DproxyHost=hostname or IP Address

■ DproxyPort=8080

These parameters are illustrated in the following example java call to a program called
WfgProgram:

java -cp "./edqp-api.jar;./edqp-apiimports.jar;." -DproxySet=true
-DproxyHost=10.1.60.116 -DproxyPort=8080 WfgProgram

RtClient Java Proxy Parameters
There are four additional parameters to the RtClient overloaded constructor for with
through a proxy. For additional information, see the JavaDoc documentation as
described in "Related Documents" on page 2-vii.

■ @param proxyHost - the name of the proxy server

■ @param proxyPort - the port of the proxy server

■ @param proxyUser - the user name to login to the proxy server

■ @param proxyPassword - the password to login to the proxy server

These are shown in the following between the ServerPort and the ENCRYPTION
parameters:

m_wfgClient = new WfgClient(serverName, serverPort,
 "10.1.60.106",2229, "user123", "secret1",
 ENCRYPTION, clientCode, APPLICATION);

Run-Time Java Proxy Parameters

A-2 Java API Interface Guide

B

Installing the Client Software B-1

BInstalling the Client Software

Enterprise DQ for Product uses Java Web Start to initially install and maintain the
current version of the software on your client desktop. The process requires you to
access the Oracle DataLens Server to initiate the connection and download the
software.

You download and install the Enterprise DQ for Product client applications using Java
Web Start by browsing to the installation page for your Oracle DataLens Server as
follows:

1. Using Microsoft Internet Explorer, browse to one of the following URLs as
appropriate for your server:

Note: If you setup a different port number for your application
server other than 2229, you must use that port number in the
following URL when browsing to the Oracle DataLens Server to
download the client applications.

32-bit

http://<server>:2229/datalens/datalens.html

64-bit

http://<server>:2229/datalens/datalens64.html

Where <server> is the hostname of the Oracle DataLens Server

The application download and installation begins. If you do not have a supported
Java environment on the target installation machine the Java Web Start program
automatically redirects you to a Java download site and begins a Java Runtime
installation.

B-2 Oracle Enterprise Data Quality for Product Data Java API Interface Guide

2. If the preceding Java Web Start message is not displayed, you must initiate a
connection and download the software by browsing to:

http://<server>:2229/datalens/datalens.jnlp

Enterprise DQ for Product files are digitally signed by a trusted source so the
following security warning is displayed.

3. To avoid the security dialog in the future you can select the Always trust content
from this publisher check box.

4. Click Run to continue and complete the installation.

The Oracle Enterprise Data Quality for Product Data log on dialog is displayed.

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Overview
	Overview of the Oracle DataLens Server APIs
	APIs
	Platforms
	Pre-Installation Requirements

	Oracle DataLens Server Java Libraries

	2 DSA API to the Oracle DataLens Server
	WfgClient
	Updating Individual Records and Data Lines
	Transforming Data
	Import
	Initialize the Client
	Create the List of Input Data
	Transform a List of Data
	Alternative Method of Transforming Data

	Retrieve Results from the Server for Jobs with a Single Output Step
	Synchronous Method
	Asynchronous Method

	Retrieve Results from the Server for Jobs with Multiple Output Steps
	Pulling the Result Data from the List
	List Data
	Tab-Separated Data

	Listing Multiple DSA Jobs
	Listing a Single DSA Job
	Using File Input and Output

	Miscellaneous Settings for the WfgClient
	Retry Count
	Filter Data
	Job Priority
	Run-Time Locale
	Separator Character
	Client-Side Debugging Toggle
	E-mail Output
	FTP Output
	Database Parameters

	3 Server Information API to the Oracle DataLens Server
	InfoClient
	Getting Transform Map and Data Lens Information
	Import
	Initialize the Client
	Get a List of Deployed Data Lenses
	Lists of Schemas and Translations

	Get a List of Deployed DSAs

	4 Server Availability API to the Oracle DataLens Server
	PingClient
	Import
	Simple Server Check
	Round-Robin Server Check

	5 Error Handling
	Client-Side Exceptions
	Client-Side Log Messages
	Log4j to Standard Output
	Log4J to a File

	Server-Side Faults
	Server-Side Exceptions
	Server-Side Log Messages
	Debugging Client Requests and Responses

	6 Compiling and Running with the API
	Compile the Application with the Oracle DataLens Libraries
	Run the Application with the Oracle DataLens Libraries

	7 Web Service Access to the Oracle DataLens Server Using Doc-Lit
	Generating a WSDL Document on Demand
	Client Web Service Software
	Overview of the DSA Interface
	processListRequest and processOneLineRequest Operations
	processDBRequest
	SOAP Document-Literal One Line Request Example
	SOAP Document-Literal One Line Response Example
	SOAP Doc-Lit Multi-Line ProcessList Request Example
	SOAP Doc-Lit Multi-Line ProcessList Response Example
	SOAP Document-Literal ProcessDb Request Example
	SOAP Document-Literal processDb Response Example

	8 Customizing DSA Maps with Java Add-Ins and Algorithms
	TMap Algorithms
	Initial Configuration
	Client Startup Changes

	Creating a New TMap Algorithm
	TMap Algorithm Debugging
	Server
	Client

	Transform Map Add-In Transforms
	Writing a TMap Add-In Transform
	Defining the Transform Map Add-In Transform
	Server

	Defining the Input Parameters to the Transform Map Add-In Transform
	Using the Transform Map Add-In Transform in the Client
	Using TMap Add-in Transforms to Process Exception Data

	DSA Add-In Outputters
	Writing a DSA Add-In Outputter
	Defining the DSA Add-In Outputter
	Server

	Defining the Input Parameters to the Transform Map Add-In Transform
	Using the DSA Add-In Outputter in the Client
	Use in the Application Studio

	A Working Through a Proxy Server
	Run-Time Java Proxy Parameters
	RtClient Java Proxy Parameters

	B Installing the Client Software

