ORACLE’

Oracle® Application Integration Architecture
Foundation Pack 11g Release 1 (11.1.1.2.0):
Concepts and Technologies Guide

Release 1 (11.1.1.2.0)
Part No. E17363-01

April 2010

Oracle Application Integration Architecture Foundation Pack 11¢ Release 1 (11.1.1.2.0): Concepts and Technologies Guide
Part No. E17363-01
Copyright © 2010 Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers
are “commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and
adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

This software and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with
respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third party content, products or services.

Contents

L (] 7= Lo PO PP OTRR TR 7
OFACIE AlA GUIES ...ttt h e bt it s e e e b et e st e e e b et e ant e e sb e e e snneennreas 7
AdAItIONAl RESOUICES........ciiiiiiiie ittt ettt e s et e st e e s s e e e e s anna e e e s aenneees 7

1. Understanding the Oracle AIA Reference ArchiteCtureceeveiiiiiiiiiiiie e, 9
1.1. INEFOAUCTION ...t e et e e e e s s n e e s sr e e e s snaeeeesnrneeeaas 9
1.2. Describing the Goals Of ALA e e e e e s s e e e e e e e e e eaans 9
1.3. Describing Possible Integration Types Using AlA........cooo i, 10
1.4. Describing Integration Styles Using AlA ... e 11

1.4.1. Describing the Integration FIOW CONCEPLcocuiiiiiiiiiie e 11
1.4.2. Describing Integration Through Native Application Interfaces Using the Oracle
Applications Technology Infrastructure ... 12
14.3. Describing Direct Integration Through Application Web Services Using Oracle SOA
ST ettt bbb e b e b et e aa b e s b e e e sbe e e neeea 13
1.4.4. Describing Integration Through Packaged Canonical and Standardized Interfaces Using
Oracle FOUNdation PacCKScoiiiiiiiiiiiie et 14
1.4.5. Describing Bulk Data Integration with an Extra, Transform, and Load Approach Using
Oracle Data INtegration SUIEccccuiiiiiii e 15
1.5. Describing AIA Reference Process Modelsoeeiiiiiiiiiiiiii e 16
1.5.1. What is @ BUSINESS PrOCESS? ...ttt 16
1.5.2. What is @ BUSINESS ACHVITY?coiiiiiiii e 16
1.5.3. What is @ BUSINESS TaSK?uiiiiiiiiiii et e e 17
1.5.4. What is @ Composite BUSINESS FIOW?cooiiiiiiiiiieie e 17
1.6. Describing a Conceptual View Of ALA e 17
1.6.1 What is @ Service CONSUMET?uuiiiiiiiiie ettt e et ee e e sbee e e e b e e e sneeeeeans 18
1.6.2 What are AIA Conceptual SEIVICES? 18
1.6.3 What are Provider Applications and Resources?cccooooeeiiiiiiiiiiiiii e, 19
1.7. Describing the AIA Shared Service INVENtOryoooiiii i 19
1.7.1. What iS @ ProCess SEIrVICE?coiiiiiiiiiiiiiee et 20
1.7.2. What is @n ACHIVIY SEIVICE? ... 20
1.7.3. What iS @ Data SEIVICET ..o 21
1.7.4. What is @ ULility SEIrVICE7.. ...t 21
1.7.5. Implementing ProCeSS SEIVICESuiiiiiiiiie it 21

Copyright © 2010, Oracle. All rights reserved. iii

Contents

3.

1.7.6. Implementing ACHIVIty SEIVICEScooiiiiiiiie e 23
1.7.7. Implementing Data SEIVICESccoiiiiiiiieie e 24
1.8. Describing AlA Service Artifactscccuuiiiiiii e 24
1.8.1. What is a Composite BuSINESS ProCesS?uuuiiiiiiiiiiiiiiiiee e 24
1.8.2. What is an Enterprise BUSINESS SErviCe?uuueiiiii i 24
1.8.3. What is an Enterprise BUusiness FIOW? ... 26
1.8.4. What is an Application Business Connector SErviCe?ccccvvviicieiieeeeeiiicieeeeeeeeeeee 26
Understanding Enterprise Business Objects and Enterprise Business Messagesccccccee..... 29
220 O 1 = USSR 29
2.2, EBIMS bbbttt Ee e bt she e sae e e b b e e beenbeeanreas 31
2.2.1. EBM AICRItECIUIE ... 31
222 EBM HEAUEIS ...ttt 32
Understanding Enterprise BUSINESS SEIVICESuveiiiiiiiiiiiiiiiiee ettt 35
R O 1 o 1 TR 35
3.2. EBS OPErationsuuviiiiiiiiiiieeee ettt e e e e e e e e e e e e e r e e e aaeeeaaa 36
KRG T Y /=T o1 ST PRR 37
3.4. SR Y o1 RSP UPUPPRRP 37
3.4.1. ENLitY SEIVICES....eiiieeie e 37
3.4.2. PrOCESS SEIVICES. ... ittt et sttt e st e e s enbe e e e s anneeeas 39
3.5. EBS ArChItECIUMeeiiiieie ettt e et e et e e sbeeee e 40
3.6. Enterprise BUSINESS FIOW PrOCESSES.......ccoiiiiiiiiiiiiiie ittt 44
3.7. EBS IMPIemeEntationuuuiiiiiiiiiiii bbb ——a—————————————————————_ 45
3.8. EBS Message Exchange Patterns 48
3.8.1. Synchronous Request-Response Patterns in EBSS ... 48
3.8.2. Asynchronous Fire-and-Forget Patterns in EBSS ..., 49
3.8.3. Asynchronous Request-Delayed Response Patterns in EBSSccceeevieiiiiiiiieeen.n. 51
Understanding Application Business Connector SErviCes.........ccccoiiiiiiiieiiiniiiieeee e 55
e O A = 0 PSSRSO 55
4.2, ABCS ArChIECIUIEeoiiiiiiii ettt e e e s as 56
4.3. ABCS CharaCteriStiCS......uueiiiiiiiiie it as 58
4.4, Architectural Considerationsooiiiiiiiiiie e 58
4.41. Participating Application's Service Granularity............cccocceeeeiiiiiiine e 58
4.4.2. T8 o] oo Ty i ol =1 =V R PRR 59
4.4.3. APPIICatioN INTEITACES ... 59
444, Support for Logging and MONItOriNGooiiueiiiiiiee e 60

Copyright © 2010, Oracle. All rights reserved.

Contents

445. Support for Insulating the Service Provider............ooooiiiiiiiiiiie e 60
4.4.6. SUPPOIt FOr SECUIEY ...t e e e e e e e e e e s e a e e e aaaeeaaans 60
447. ValidAIONS ... 61
4.4.8. Support for Internationalization and Localizationcccoee i 61
4.4.9. Message Consolidation and DecompoOSItioNcoocuiiiiiiiii i 62
4.4.10. Support for Multiple Application INStanCescceeeiiiiie e 62
4.5. IMPIEMENLING ABCS ...ttt as 62
451. Requester-Side ABCS ...t e e e a e e e 63
452 Provider-Side ABCSottt ettt et e e e e et e e eae e e eneeeeneeeanneeaeean 67
4.6. Reviewing Implementation Technologies for ABCScocciiiiiiie e 69
4.6.1. Oracle MeIatOrcoouiiiiiie e 69
4.6.2. 2] TSRS 70
4.7. Extending or Customizing ABCS ProCessingcccouuueeieiiiiiiiiiieeeee et 70
4.8. Processing Multiple INStanCeS........ccoooii oo, 71
4.9. Participating Applications INVOKING ABCSoo i 71
4.10. ABCS Transformations.cooiuiiiiiiiii e 72
4.10.1. Transformation: Implementation Approach.............ccco i 72
4.10.2. Static Data Cross-ReferenCing..........coo i 73
4.10.3. Dynamic Data Cross-ReferenCing.........cc.cceiiiiiiiiiiiiiiiiiiee e 73
4.10.4. Structural TransformMation..........cooiiiii e 73
5. Understanding Interaction Patterns ... 75
51. Patterns for EXchanging MeSSagesuuuiiiiiiiiiiiiie e 75
5.2. REQUEST/ RESPONSE 76
5.21. SYNCHrONOUS RESPONSEveiiiiieiiiiiiieiii ettt e e e e e s e e e e e e e s ennreeeeaeeeeanns 76
5.3. Fire-and-FOrget et e e e e e e e e 76
5.3.1. MeESSagE ROULING ...t e e e e e e s e e e e e e e e anns 77
5.3.2. Message Splitting and ROULINGcooiuiiiiiiiie e 78
54. Data ENFICRMENT..... ..ot e e e e s e e e e e e 79
5.5. Data AQOregationooiiiiiiii et e e e e e e 79
5.6. Asynchronous Request — Delayed Response Pattern ... 80
5.7. Publish-and-SUDSCIIDEcooii e 80
6. Understanding EXENSIDIlITY........cooiiiii s 81
6.1. Q1= 0 < o 11 SRS 81
6.2. SCNEMA EXIENSIONS.eiiiiieiii et e e e e e 82
6.2.1. CUSIOMEr EXIENSIONSeeiiiiiiieiiteee ettt e e e e 82

Copyright © 2010, Oracle. All rights reserved. v

Contents

6.2.2. INdustry-Specific EXIENSIONScccciiiiiiiiiiiiee e e e e e 82
6.2.3. Schema in the USE CaSecooiiiiiiiiiiiic it 83

6.3. Transformation EXIENSIONSccicuiiiiiiiiiie it 83
6.3.1. EXtensions iN the USE Casecooiiiiiiiiiiii et 83

6.4. TranspOrt/FIOW EXIENSIONS ... e e e e e e eeeeeeeens 84
6.5. ProCESS EXIENSIONScitiiiiiiie ettt b e e s bt e e e sb b e e e abb e e e e abreee e 84
6.6. ROULING EXIENSIONS ...ttt e e sbaeee e 84
7. UNderstanding VErSIONINGc..eeieiiieiieiiiiee ettt ettt sttt ettt e aabe e e s aabe e e e s aabe e e e s aatr e e e s aaneeeas 87
7.1, SChEMA VEISIONINGeeiiiiiiiiie ettt ettt et b e e e s rbe e e e e eab e e e e e aabee e e e anes 87
711, Y = o T gr=TaTe I\ T oL VA=Y =] o o 87
7.1.2. NAMESPACES ... ————— 89

7.2. SEIVICE VEISIONING . .uvtiiiiiii et et e e e e e e et e e e e e e e e s eaabreeeeaeeeeeaaabaeeeaaeeeanans 89
7.2.1. NaMING CONVENTIONScoiiiiiiiiiieeec e e e e e e e e e e e st e e e e e e e e nnneees 90

7.3. Participating Applications VersioniNguuuuuuiiiiiuiiiiiiiiiiiiiiierierrreeerereere ... 90
8. Understanding BatCh ProCessingccooooiiiiiiiiiiie e 91
9. UNAerstanding SECUIMLY........ooi ittt sttt s sttt e e sttt e e s rane e e e s anneeeesannneeas 93
9.1. Point-to-Point or ENd-t0-ENd SECUIItYcccoiiiiiiiiiiiie e 94
9.2, Transport-LeVel SECUILYuuiii e snaeee e 94
9.3. MESSAGE-LEVEl SECUNTY ...coiiiiiiii et areee e 94
9.4, SeCUNNG ABCS ... ettt e ettt e e e b bt e e e b e e e e e e b et e e e e bre e e e s baeeeeanaeeeeaa 95
9.5. Implementation Techniques for Enterprise Service Bus Security..........ccccoviieiiiiiiiieene 95
o= O ST PP PSP OUPRPRN 97

Vi

Copyright © 2010, Oracle. All rights reserved.

Preface

Welcome to the Oracle Application Integration Architecture Foundation Pack 11g Release 1
(11.1.1.2.0): Concepts and Technologies Guide.

Oracle Application Integration Architecture (AlA) provides the following guides and resources for
this release:

Oracle AlA Guides

e Oracle Application Integration Architecture Foundation Pack: Installation Guide

e Oracle Application Integration Architecture Foundation Pack: Getting Started with the Oracle
AIA Foundation Pack and Demo

o Oracle Application Integration Architecture Foundation Pack: Concepts and Technologies
Guide

e Oracle Application Integration Architecture Foundation Pack: Development Guide

e Oracle Application Integration Architecture Foundation Pack: Infrastructure Components and
Utilities Guide

e Oracle Application Integration Architecture Foundation Pack: Reference Process Model
Guide

e Oracle Application Integration Architecture Foundation Pack: Migration Guide for Foundation
Pack 2.X to Foundation Pack 11gR1 (11.1.1.2.0)

Additional Resources

The following resources are also available:

Resource III Location
Oracle Application Integration Architecture Foundation My Oracle Support: https://support.oracle.com/
Pack: Product-to-Guide Index
Known Issues and Workarounds My Oracle Support: https://support.oracle.com/
Release Notes Oracle Technology Network:

http://www.oracle.com/technology/

Documentation updates My Oracle Support: https://support.oracle.com/

Copyright © 2010, Oracle. All rights reserved.

https://support.oracle.com/
https://support.oracle.com/
http://www.oracle.com/technology/
https://support.oracle.com/

1. Understanding the Oracle AIA
Reference Architecture

This chapter discusses the following topics:

e Introduction

e Describing the Goals of AIA

e Describing Possible Integration Types Using AlA

e Describing Integration Styles Using AIA

e Describing AIA Reference Process Models

e Describing a Conceptual View of AIA

e Describing the AIA Shared Service Inventory

e Describing AlA Service Artifacts

e Describing AlA Service Artifacts

1.1. Introduction

Oracle Application Integration Architecture (AlA) is a complete integration solution for
orchestrating agile, user-centric, business processes across enterprise applications. AlA offers
prebuilt solutions at the data, process, and user interface levels delivering a complete process
solution to business end users. All of the AIA components are designed to work together in a mix-
and-match fashion. They are built for configurability, ultimately helping to lower IT costs and the
burden of building, extending, and maintaining integrations.

Powered by Oracle Fusion Middleware, AIA enables organizations to utilize the applications of
their choice and create Composite Business Processes (CBPs) following these guiding principles
that define the ground rules for development, maintenance, and usage of a service-oriented
architecture (SOA):

e Reuse, granularity, modularity, compose ability, componentization, and interoperability.
e Standards-compliance (both common and industry-specific).

e Service identification and categorization, provisioning and delivery, and monitoring and
tracking.

1.2. Describing the Goals of AlA

The goal of AlA is to provide the following features via these deliverables:

Copyright © 2010, Oracle. All rights reserved.

Understanding the Oracle AlA Reference Architecture

Features

Deliverables

A robust architectural framework for engineering service-
oriented business processes.

e Reference Process Models
e Reference Architecture
e Foundation Pack — infrastructure components

e Process Integration Packs (PIPs) — prebuilt solutions

Support for interaction styles to handle high transaction
rates and volumes that are associated with mission-
critical applications.

Reference Architecture for different Integration Styles with
and without canonical abstractions.

Ability to leverage functionality provided by various Oracle
and customer-owned software assets.

Programming Models for constructing and assembling
different types of AIA service artifacts that leverage
various Oracle tools.

Ability for customers to extend various AlA artifacts
delivered as part of PIPs.

Programming Models for extending various AlA service
artifacts.

Support for process model decomposition and analysis,
service design, service construction, process definition,
deployment plan generation, deployment, and upgrade.

Project Lifecycle Management

Support for runtime monitoring of Integration Flows Monitoring
resulting from deployed AIA services.
Governance of design-time and runtime AlA artifacts. Governance

1.3.
Using AIlA

Describing Possible Integration Types

With AIA, business processes can be engineered according to the following types of integrations:

e User Interface Integration

A User Interface Integration connects disparate systems to provide a unified view to the user.
It is a single view to many heterogeneous systems that are integrated at the user-interface
level. It significantly increases the productivity to the end user by eliminating the need for the
user to toggle back and forth between these systems. For example, in the Siebel Order
Capture application, the order configuration capability of the Oracle E-Business Suite
application has been embedded. Although this approach provides a unified approach to the
users, there is no aggregation of data at the applications level.

e Data Integration

A Data Integration connects at the logical level of data, making the same data available to
more than one application. This is accomplished by relying upon database technologies. This
type of integration is a good candidate when there is a minimal amount of business logic to

be reused across applications.

e Functional Integration

Copyright © 2010, Oracle. All rights reserved.

Understanding the Oracle AlA Reference Architecture

A Functional Integration connects applications at the business-logic layer. This type of
integration is a good candidate when there is a need for reuse of functionality, such as
business logic or processing.

Process Integration

A Process Integration is primarily accomplished by exposing object interfaces that can be
consumed by other systems, by using message-oriented middleware (MOM) systems to send
messages to the destinations, or by exposing web service interfaces that can be consumed
by the clients.

1.4. Describing Integration Styles Using AlA

This section discusses the following topics:

Describing the Integration Flow Concept

Describing Integration Through Native Application Interfaces Using the Oracle Applications
Technology Infrastructure

Describing Direct Integration Through Application Web Services Using Oracle SOA Suite

Describing Integration Through Packaged Canonical and Standardized Interfaces Using
Oracle Foundation Packs

Describing Bulk Data Integration with an Extra, Transform, and Load Approach Using Oracle
Data Integration Suite

1.4.1. Describing the Integration Flow Concept

An Integration Flow represents the journey of a message from a business event-triggering
source, through possible intermediary milestones, to one or more target milestones. At each
milestone, the message is stored in a different state.

Messaga in differant Stales

An Integration Flow represents the runtime path of a message. It is not a design-time artifact.

Copyright © 2010, Oracle. All rights reserved. 1

Understanding the Oracle AlA Reference Architecture

AIA recommends a variety of integration styles and patterns to enable the flight of a message in
an Integration Flow. The AlA artifacts that are required for the collaboration between applications
or functions are dependent on the integration style adopted for an Integration Flow.

1.4.2. Describing Integration Through Native Application
Interfaces Using the Oracle Applications Technology
Infrastructure

In this style, messages flow from the requester application to the provider application. The mode
of connectivity could be SOAP/HTTP, queues, topics, or native adapters. No middleware is
involved in this integration.

The requester application must establish the connectivity with the provider applications. It is the
responsibility of the requester application to send the request in the format mandated by
provider's API, as well as to interpret the response sent by the provider. In addition, the requester
and provider applications are responsible for the authentication and authorization of requests.

The Integration Flow consists of individual application functions interacting directly. All capabilities
required to make this interaction possible need to be available in the individual applications.

The following diagram illustrates how a requester application interacts directly with the provider
application.

SOAP [HTTP
Component Interface (Cl)
RMI

Account Status Reguest

PeopleSoft

Siebel CRM : :
Financials

Account Status Response

Example of a requester application interacting directly with a provider application

In the case of more complex situations in which the Integration Flow consists of multiple steps
involving interactions with multiple applications, it is imperative that workflow-like capability be
leveraged in one or more applications.

There are no AlA artifacts that need to be built in this case. Direct connectivity must be
established between applications.

12 Copyright © 2010, Oracle. All rights reserved.

Understanding the Oracle AlA Reference Architecture

1.4.3. Describing Direct Integration Through Application Web
Services Using Oracle SOA Suite

A provider application-specific AlA service, exposing a coarse-grained functionality of the provider
application leveraging one or more APls, is created with a suitable provider application-specific
interface.

Several business initiators can invoke this AlA service. If the business initiators cannot present
the request in the format understood by the provider application-specific AlA service, a requester
application specific-AlA service is used to transform the business initiator request into the
provider-application format.

The requester application-specific AlA service is responsible for the authentication and
authorization of the requests. The provider application-specific AlA service propagates the
authentication and authorization information of the requests to the provider application.

The Integration Flow consists of a requester application-specific AlA service artifact deployed on
the middleware that manages interactions with all provider application-specific AlA services.

The following diagram illustrates how a service deployed on the middleware enables the
integration between the requester and the provider applications.

"ﬁ

Receive

Client 1 Request

o R

Ebusiness Suite
Client 4z Return Response

L

Example of Integration Flow leveraging provider services

In the case of more complex situations in which the Integration Flow involves interactions with
multiple applications, the requester application-specific AlA service implements a workflow-like
capability and manages interactions with all provider application-specific AlA services.

The AIA service artifacts that need to be developed are determined by the complexity of the data
exchange and the various message exchange patterns that are involved.

Copyright © 2010, Oracle. All rights reserved. 13

Understanding the Oracle AlA Reference Architecture

1.4.4. Describing Integration Through Packaged Canonical
and Standardized Interfaces Using Oracle Foundation
Packs

Loose-coupling through a canonical (application-independent) model is a characteristic of a true
SOA. Participating applications in loosely coupled integrations communicate through a
virtualization layer. Instead of direct mappings between data models, transformations are used to
map to the canonical data model. While this allows for greater reusability, the transformations
both increase the message size and consume more computing resources. For functional
integrations, this is the ideal integration pattern because the reusability gained is worth the slight
overhead cost.

In this case, an Enterprise Business Service (EBS) based on relevant Enterprise Business
Objects (EBOs) and Enterprise Business Messages (EBMs) is created as a mediator service.

A provider service, exposing a coarse-grained functionality of the provider application leveraging
one or more APIs, is created with the same EBM interface as the EBS operation interface.

If the business initiators cannot present the request in the format understood by the EBS
operation interface, a requester service is used to transform the business initiator request to the
provider service format.

The following diagram illustrates how the request sent by the source application is processed by
target application with the help of the EBS and a set of intermediary services. Note that the
request as well as provider transport services are optional. They are needed only in the case of
non-SOAP-based transports.

Source
Application Target
Application

m

Enterprise
LB usiness Servica

b

Req Impl
Service

e

Prov Impl
Service

5

Req Transport
Service

Prov Transport
Service

<

Customer
Service

Example using canonical model-based virtualization

In the case of more complex situations in which the Integration Flow involves interactions with
multiple applications, the requester application-specific AlA service presents its request to the
mediator AlA service. The mediator AlA service triggers an AlA service that implements a
workflow-like capability and manages all interactions with the provider application-specific AIA
services through mediator AIA services.

In this case, it is assumed that the mediator AlA service interface chosen is accepted as a
common interface. Thus, all requester application-specific AIA services invoke this mediator AIA
service and all provider application-specific AlA services implement this common interface. The
AlA service artifacts that need to be developed are determined by the complexity of the data
exchange and the various message exchange patterns that are involved.

14 Copyright © 2010, Oracle. All rights reserved.

Understanding the Oracle AlA Reference Architecture

1.4.5. Describing Bulk Data Integration with an Extra,
Transform, and Load Approach Using Oracle Data
Integration Suite

Bulk data processing involves a large batch of discrete records or records with very large data
sets. The methodology used for this integration is a point-to-point integration specializing in the
movement of data with high performance and a reusability trade-off.

1.4.51. Integrations for High-Volume Transactions without an Xref
Table

For use cases in which storing cross-reference (Xref) data for high-volume transactions does not
make sense, AIA recommends using a point-to-point integration using Oracle Data Integrator.

An example of such a use case is a retail store chain headquarters that receives business
transaction data from individual retail stores at the end of each day after each store closes.
Depending on the time zone where each store is located, they start sending their day’s worth of
business transactions to headquarters. In this scenario, there is no need to store Xref data
between each individual local store and headquarters because there will not be any data
manipulation language (DML) operations on such data sets.

Local ERP HGQ ERP
App App
ul ul
App App

ODI Architecture

0Dl zends

Suurce Confirmation TarQEt
and Rowy iz Data
Data Upratec with
"Transferred’ Y
Interface
In}l;rg?:e RRRRERETR] CEEO I Data E » Tahle
......... b coooon] INtegrator 5] @
A 0D populates the interface table
: @ First using KM -
: . Mews Rows i =
: : ey Rowes sent to : :
g @ : invokes COI Target g :
i : Package Interface v i
v H tahle

Load
Program

Load
Program

High Volume Transactions Without Xref

Example of a high-volume transactions integration without the use of an XREF table

The steps to load data are the same as those for using an Oracle Data Integrator package. There
is no AIA component in this architecture. Local Enterprise Resource Planning (ERP) applications
load their interface table and invoke an Oracle Data Integrator package to send data to the
headquarters interface table. Once the data is processed, the Oracle Data Integrator updates the
local ERP application’s interface table with a status of Transferred or Processed for each row.

Copyright © 2010, Oracle. All rights reserved. 15

Understanding the Oracle AlA Reference Architecture

1.5. Describing AIA Reference Process Models

AIA Reference Process Models are collections of best practices from various Oracle application
portfolios. These models are delivered by AlA as Oracle Business Process Analyzer content.

Reference Process Models serve the following purposes:

e Help categorize Business Processes into Business Activities and Business Tasks.
e Build a repository of reusable Business Activities and Business Tasks
o Establish key performance indicators

e Aid in identifying equivalent AlA service artifacts described as part of the AIA service
inventory

Business
Process

Business Business

Activity

Business Business Business Business
Task Task Task Task

Relationships between Business Processes, Business Activities, and Business Tasks

Activity

1.5.1. What is a Business Process?

A set of activities and tasks accomplished in a particular business area are treated as a business
process. Examples include Sales Management, Inventory Management, and so on. In
themselves, they do not deliver business value. Business value is realized when business
processes from different business areas are coordinated.

1.5.2. What is a Business Activity?

A Business Activity is a coordinated set of Business Tasks. A Business Activity can be
considered to be equivalent to a subprocess. Examples include Process Payment, Ship Goods,
and so on. Business activity functionality is provided by one application or a combination of
applications.

16 Copyright © 2010, Oracle. All rights reserved.

Understanding the Oracle AlA Reference Architecture

1.5.3. What is a Business Task?

A Business Task is an elementary activity or atomic process capable of handling a unit of work. It
cannot be split further without a loss of business meaning. It can be implemented by one or more
providers. Examples include Create Customer, Query Payment, and so on.

1.5.4. What is a Composite Business Flow?

A Composite Business Flow is a set of coordinated tasks and activities, involving both human and
system interactions across one or more business areas that will lead to accomplishing a set of
specific organizational goals. Characteristics of Composite Business Flows include the following:

e Large, complex, and long running

e Widely distributed and customized

¢ Dynamic

e Automated

¢ Both business-oriented and technical in nature

e Cross boundaries within and between businesses

e Dependent on and supportive of human intelligence and judgment

¢ Difficult to recognize

1.6. Describing a Conceptual View of AIA

This diagram depicts the various concepts of AlA:

Copyright © 2010, Oracle. All rights reserved. 17

Understanding the Oracle AlA Reference Architecture

J

Applications User Interface Partners

& &

é Service A
Consumers

)\ B

Activity Services

Data Services

Infrastructure
Services

[NA Conceptual
Services

@

r@@@@@%%%“

CRM FINS BRM HRM MFG PLM MDM
_ Provider Applications I Ftesuu rces J

Conceptual view of AIA

This section discusses the following topics:

e Whatis a Service Consumer?

e What are AIA Conceptual Services?

e \What are Provider Applications and Resources?

1.6.1. What is a Service Consumer?

A Service Consumer is the initiator of a business process, business activity, or business task in
an enterprise. It has knowledge of the available AIA Conceptual Services and has the ability to
present requests accordingly.

1.6.2. What are AIA Conceptual Services?

AIA Conceptual Services are developed using Oracle Fusion Middleware technologies. They
constitute the service portfolio for the SOA implementation and enable the following:

e Reuse, granularity, modularity, composeability, componentization, and interoperability
e Standards-compliance (both common and industry-specific)

e Service identification and categorization, provisioning and delivery, and monitoring and
tracking

AIA Conceptual Services are categorized as follows: Process Services, Activity Services, Data
Services, Connector Services, and Infrastructure Services.

18 Copyright © 2010, Oracle. All rights reserved.

Understanding the Oracle AIA Reference Architecture

1.6.3.

What are Provider Applications and Resources?

Various applications acquired for their best-of-breed functionalities and any legacy applications
built in-house are Provider Applications and Resources. Each of these applications exposes
business functions, such as APlIs, and can be accessed using different modes of connectivity.

1.7.

Describing the AIA Shared Service

Inventory

Shared Services are application-agnostic services leveraged to build cross-application Composite
Business Processes (CBPs). A successful AIA implementation is dependent on a robust Shared

Services Inventory.

The various categories described in this section help to relate Shared Services to Reference
Process Model artifacts. This diagram depicts elements in the Shared Services Inventory:

(‘

Shared Services Inventory

\

Orchestration

Human
ervice Intervention
omposition

Process Services

‘ ystam-systam

Actwlty Services

Data
Normalization

Aggregation

Data Servlces

@ Adaptersj

El'l"ﬂll' Handler

Instrurr-entaﬂo |

OtiTity 7 Services
Logging

Ennﬁ uration
Notlf'catlnn

Elements in the Shared Services Inventory

Copyright © 2010, Oracle. All rights reserved.

Understanding the Oracle AlA Reference Architecture

1.7.1. What is a Process Service?

A Process Service is the implementation of major business events in an enterprise that have a
significant impact on running the enterprise. It involves work being accomplished with the help of
multiple resources.

Process Services automate business processes, orchestrate a series of human and automated
steps, and normally span multiple information systems. They are analogous to Business
Processes in AlA Reference Process Models.

The primary purpose of Process Services in AlA is to define and automate business processes
that are external to and independent of the specific backend systems used in the organization.
This shields the business process from backend system changes. Similarly, the applications are
isolated from business process changes. Loose-coupling between the business processes and
the applications simplifies changes and maintenance for business processes, as well as
applications.

Process Services
Orchestration Human

enri:ze_ Intervention
pmposition

Process Services

The structure of the information packets that are passed around should be rich enough to capture
all of the significant event details. These can be custom-defined or accepted canonical
messages, and be independent of the enterprise applications. Process Services leverage the
Activity Services and Data Services and are triggered by significant business event initiators,
such as CRM, Ul applications, and business-to-business (B2B), for example.

1.7.2. What is an Activity Service?

An Activity Service represents an atomic business unit of work and has a set of steps involving
system-to-system interactions. Activity Services may also warrant orchestration. In some cases,
there may be matching application capabilities. These are exposed as mediator services on the
service bus. Activity Services can act upon multiple canonical messages and be consumed by
participating applications and process services. The structure of the message will either be
canonical or a user-defined format.

Orchestration
ervice - System-System
omp asltl o[Interactmn

Activity Services are analogous to the Business Activities and Business Tasks in the AlA
Reference Process Models. In some cases, multiple lower-level operations are combined to form
an Activity Service, thereby hiding the complexity of the lower-level operations.

Activity Services

Activity Services

20 Copyright © 2010, Oracle. All rights reserved.

Understanding the Oracle AlA Reference Architecture

1.7.3. What is a Data Service?

A Data Service provides an aggregated, real-time view of enterprise data. Data consumers
interact with enterprise data via Data Services. Data Services are primarily create, read, update,
and delete (CRUD) operations that act upon canonical or user-defined messages. They are
exposed on the service bus as mediator services.

Data Services eliminate point-to-point links at the data level and direct dependency on the data
models of data sources. Data Services can be consumed by participating applications, process
services, and activity services.

Data Services
Entlty Senﬂ
Aggregatlnn
Da_ta ! Adapters
Normalization

Data Services
Data Services are analogous to Business Tasks in AIA Reference Process Models.

1.7.4. What is a Utility Service?

A Utility Service provides error handling, diagnostic, and logging facilities across AlA

implementations.
Otility Services
Error Handler Notification

Utility Services

1.7.5. Implementing Process Services

The CBP AlA service artifact is an implementation of a Process Service.

1.7.51. Common Scenarios for Process Services

Process Services are analogous to Business Processes in AlA Reference Process Models, so
they have the same goal: enabling structured accomplishment of work in an enterprise to ensure
consistency and efficiency with low cost.

A Reference Process Model Business Process consists of a set of business activities and
business tasks. There is a judicious mix of automated and manual tasks.

Process Services leverage technology and provide implementation software that can be executed
on the application server. They leverage activity services and data services.

Copyright © 2010, Oracle. All rights reserved. 21

Understanding the Oracle AlA Reference Architecture

Process Service examples:

22

Resolve Customer Complaint Process Service: A business process defined to resolve
complaints could:

= Analyze a complaint and identify activities.

= Schedule call, block resources, and assign technician.

= Track activities and send statuses.

» Close the complaint, generate metrics, and update statuses.

Settle Auto Accident Claim Process: A business process to settle auto accident claims
could:

= Analyze the claim and identify the parties and insurance agencies involved.
= Schedule appointments and assign agents for collecting facts.

= Compare facts collected with those from other agencies and attribute fault and
settlement.

= Send for approval.

Copyright © 2010, Oracle. All rights reserved.

Understanding the Oracle AlA Reference Architecture

System-based
Business
Activities

Business Activity Services

Process Integration Custom Business Logic

Data Services

Process Service implementation

1.7.6. Implementing Activity Services

The EBS AIA service artifact is the implementation of an activity service, if the EBS operation
invokes an Enterprise Business Flow (EBF). In very few situations, an application might directly
expose the needed functionality. In this case, an EBS operation may call an Application Business
Connector Service (ABCS).

1.7.6.1. Common Scenarios for Activity Services

Activity Services are analogous to Business Activities in AIA Reference Process Models, so they
have the same goal: providing a structure to accomplish work with the help of granular business
tasks. Typically, an orchestration flow is used to implement Activity Services. The orchestration
flow strings together a set of business tasks. Activity Services can leverage other activity services
and data services.

Activity Service examples:

Copyright © 2010, Oracle. All rights reserved. 23

Understanding the Oracle AlA Reference Architecture

e Creation of Customer in Billing Systems: An activity service can be implemented to create
a customer in a billing system using an order document. This service may be composed of
the following steps:

= Retrieving set of account identifiers from an order document.
= Retrieval of account particulars from a CRM system.

= Creation and updating of customers in a billing system.

1.7.7. Implementing Data Services

The EBS AIA service artifact is an implementation of a data service.

1.7.7.1. Common Scenarios for Data Services

Data Services are analogous to Business Tasks in AIA Reference Process Models, so they have
the same goal: providing a structure to accomplish work with the help of application provider
services. Data Services leverage application provider services.

1.8. Describing AIA Service Artifacts

This section discusses the following topics:

e What is a Composite Business Process?

e Whatis an Enterprise Business Service?

e \Whatis an Enterprise Business Flow?

e Whatis an Application Business Connector Service?

1.8.1. What is a Composite Business Process?

A CBP is a set of coordinated tasks and activities involving both human and system interactions.
It is an implementation of the AIA Reference Process Model Business Process and is a Process
Service.

In AIA, CBPs are implemented, managed, and monitored as a single SOA composite using SOA
BPEL along with SOA Mediator, SOA Human Workflow, and SOA Business Rules components.
The BPEL components are used to drive the flow.

1.8.2. What is an Enterprise Business Service?

An EBS is a first-class object exposed on the enterprise service bus. An EBS is coarse-grained
and performs a specific business activity or business task and is either an Activity Service or Data
Service.

24 Copyright © 2010, Oracle. All rights reserved.

Understanding the Oracle AlA Reference Architecture

For example, the activity it performs could be one of the following:

e Creating an account in a billing system.

e Checking for the presence of an account in a billing system.

e Getting the balance details for an account from a billing system.

An EBS is agnostic of a specific backend implementation. Any backend implementations that can
support the interface standards defined by an EBS can be automatically considered as service
providers. EBSs expose coarse-grained, message-driven interfaces for the purpose of
exchanging data between applications, both synchronously and asynchronously.

The salient features of EBSs include:

o Ability to reuse available assets in the Oracle portfolio.

o Ability to substitute a service provider with another without any impact to the client.
e Content-based selection of the service provider.

The following diagrams show how an EBS enables the loose-coupling of requesters with actual
service providers.

Get Account
Enterprise
Business Service

1

| Enterprise | Enterprise Enterprise

Business Business Business
Object Object Object
E 3™ Party 3" Party
D F{;"'t‘ﬂ B'”'“i‘t’ Billing System Billing System
e A;C Scclm.m 1 Get Account 2 Get Account
"— BIVES ABC Service ABC Service
>
o Application Application Application
.- Business Business usiness
ﬂ- Object Object Object
b
&
> m =i
- = —
'D [
U'J Portal Billing System g3rd Party Billing System - 1 3™ Party Billing System - 2

An EBS enabling the loose-coupling of requesters with actual service providers

Copyright © 2010, Oracle. All rights reserved. 25

Understanding the Oracle AlA Reference Architecture

1.8.3. What is an Enterprise Business Flow?

An EBF is used to implement a business activity or a task that involves leveraging capabilities
available in multiple applications. An EBF strings together a set of capabilities available in
applications to implement a coarse-grained business activity or task and composes a new service
that leverages existing capabilities. An EBF involves only system-to-system or service-to-service
interactions and does not include any activity that requires human intervention.

In a canonical integration, the EBF is an implementation of an EBS operation and calls other
EBSs. An EBF will never directly call an ABCS or application. In other integration styles, the caller
invoking the EBF can be an application or any other service.

An EBF can be implemented using Oracle Service Bus for stateless coordination of synchronous
or one-way business activities where BPEL is used to coordinate asynchronous activities.

The following activity diagrams illustrate how some of the EBFs in the Order to Cash Process
Integration Pack are implemented to leverage existing capabilities.

(Enterprise Business Flow R

\ J

Example of an EBF orchestrating the flow from a source to a target

This diagram illustrates the way in which the EBF orchestrates a flow for synchronizing customers
between the source application and the target application. When the sync operation is invoked
from the source application, the EBF first determines if the customer already exists in the target
application. If so, it will update the customer in the target application. If not, it will create the
customer in the target application.

1.8.4. What is an Application Business Connector Service?

An ABCS implements the EBS interface by exposing the business functions provided by the
participating application.

The ABCS is responsible for the coordination of the various steps provided by a number of
business functions exposed by a provider application. For example:

26 Copyright © 2010, Oracle. All rights reserved.

Understanding the Oracle AlA Reference Architecture

e Validation

o Transformations: message translation, content enrichment, and normalization
e Invocation of application functions

e Error handling and message generation

e Security

Siebel CRM Application querying account balance from Portal Billing application

Portal Application Business Connector Service

Siebel Application Business Connector Service

N

iebel Account to
Account EBO

to Portal

Sends Account

SiebE't | Transformation | io Sends
cooun
: |] Portal
Object . | | | @
Siebel === = = g —
CRM Et":;coo;ntﬂ_alanéé\ Account Portal’'s
<:| > : etrzwce - GetAccountBalance
| Lol ervice Invocatio
Bceives @ Returns!
Siabel : @ | Portal
Acoount Enterprise -& frcount
oooet | 1 30 Account fo P | Object
- Siebel Account Business || sortal Acoun
Transformation i |
Service || /4 Account EBO

ransformatio

ABCS implementations

Copyright © 2010, Oracle. All rights reserved. 27

2. Understanding Enterprise Business
Objects and Enterprise Business
Messages

This chapter introduces Enterprise Business Objects (EBOs) and explains what an EBO is and
why you need an EBO to facilitate an integration. The chapter then introduces Enterprise
Business Messages (EBMs) and discusses the architecture and usages as well as how the
context-specific views of the EBO can be created.

This chapter discusses:
e EBOs
e EBMs
= EBM architecture

= EBM headers

2.1. EBOs

An EBO is the definition for a standard business data object and is composed of reusable data
components. The library of all EBOs makes up a data model. The EBO represents a layer of
abstraction on top of the logical data model and is targeted for use by developers, business
users, and system integrators. In the integrations developed using Oracle Application Integration
Architecture (AlA), the EBO data model serves as a common data abstraction across systems. It
supports the loose coupling of systems in Oracle AIA and eliminates the need for one-to-one
mappings of the disparate data schemas between each set of systems. The adoption of the EBO
facilitates the mapping of each application data schema only once to the EBO data model. This
significantly minimizes the manual coding for data transformation and validation because it
eliminates the need to map data directly from one application to another.

EBOs have the following characteristics:

o They contain components that satisfy the requirements of business objects from the source
and target application data models.

o EBOs differ from other data models in that they are not data repositories.

Instead, they provide the structure for exchanging data. XML provides the vocabulary for
expressing business data. The XML schema is an XSD file that contains the application-
independent data structure to describe the common object.

e Each EBO is represented in an XML schema (XSD) file format.

An EBO represents business concepts such as a customer, a sales order, a payment, and so
forth. Each EBO has a primary business component that identifies the object, and optionally
multiple supplementary components required to complete the definition of the EBO. Sales Order
Header and Purchase Order Header are examples of primary business components; Sales Order

Copyright © 2010, Oracle. All rights reserved.

29

Understanding Enterprise Business Objects and Enterprise Business Messages

Line and Sales Order Schedule are examples of supplementary business components. The
following sections describe the various components that form the EBO.

Business Component

An EBO business component is a subset of an EBO that has complex content (many properties)
and exists only within the context of the EBO. These components are the high-level building
blocks of any EBO.

Examples include Sales Order Header and Invoice Line. Each EBO is built from one or more
EBO business components.

An EBO business component may have a primary or a supplementary role in defining an EBO.

Each EBO is built from one or more EBO business components. Business components that can
be used across various context-specific definitions for a single EBO are defined within the EBO
schema module.

Common Components

These are reusable common components that are used by many EBO business components. A
common business component is a subset of an EBO business component that has complex
content (many properties). Examples of common business components include concepts such as
tax, charge, status, address, and so forth. Generally speaking, the content within a common
business component is complete enough to both identify and define the component. This implies
that applications could use the common components associated with an EBO to create or update
application objects. For example, Address is a common business component that is used by
many different EBOs. The content model of Address will contain sufficient information for an
application to identify as well as create and update the address as necessary when the address is
supplied as part of an EBO’s content. Note that for this to happen, the application that creates the
EBO instance must ensure that the address information is complete. No one-to-one relationship
exists between a data model entity such as table or a foreign key relationship to a common
business component. A set of attributes or a foreign key relationship in a table could resolve to a
common business component. Foreign keys by themselves could resolve to either common
business components, reference business components, or other business components within the
EBO definition.

A customization to one of these common objects will automatically be reflected in all EBOs that
reference that object. An example would be an Address definition type. If your implementation
requires customizing this address format by adding a third address line, the modification of the
Address definition type automatically affects the addresses referenced in EBOs. This design
philosophy significantly reduces the design, development, and maintenance of common objects.

Components that are applicable to all EBOs are defined in a common components schema
module.

Reference Components

A reference business component shares the same identification properties as the corresponding
EBO business component (that is, both the EBO business component and its associated
reference business component can be identified by the same attributes), but additionally includes
a minimal subset of attributes required to qualify the EBO business component.
PurchaseOrderLineReference and InvoiceLineReference are examples of reference business
components. Note that reference business components by definition are not meant to contain all
the attributes necessary to define an EBO—they are expected to contain at the least all the
attributes necessary to identify a supplementary business component. Beyond this, they generally
contain additional attributes that help consumers of an EBO to better understand and interpret the
EBO instance that uses the reference business component.

30 Copyright © 2010, Oracle. All rights reserved.

Understanding Enterprise Business Objects and Enterprise Business Messages

Wherever possible and practical, the EBO leverages widely adopted international standards for
modeling and naming, such as the United Nations Centre for Trade Facilitation and Electronic
Business (UN/CEFACT) Core Components Technical Specification (CCTS), UN/CEFACT XML
Naming and Design Rules (NDR), Open Applications Group Interoperability Standard (OAGIS),
and ISO 11179.

Apart from creating the complete definition for an EBO, a definition is also created for each of the
contexts in which this EBO will be used.

2.2. EBMs

At the most basic level, EBMs are the messages that are exchanged between two applications.
The EBM represents the specific content of an EBO needed for performing a specific activity. For
example, an invoice might be used in three contexts: add, cancel, and update. The context for
processing the invoice might warrant the presence of almost all of the elements present in the
EBO; however, canceling the invoice might need to identify only the invoice instance to be
canceled.

The context-specific EBM definitions are created by assembling a set of common components
and EBO-specific business components. In some scenarios, the business components can be
obtained from more than one EBO. These context-specific EBO definitions are then used in the
appropriate context-specific EBMs. In this scenario, the process-specific invoice definition would
be part of the Processinvoice EBM and the cancel-specific invoice definition would be a part of
the Cancellnvoice EBM. These EBMs can be used either as the request or response parameters.

The definitions for these context-specific EBMs are present in the EBM schema module. Hence,
for every EBO, two schema modules are available—one containing the definition of the EBO and
another containing the definition of the context-specific definitions for that EBO. In the case of the
Customer Party EBO, a Customer Party EBO schema module is available as well as a Customer
Party EBM schema module to represent the entire concept for the business object.

For more information, see Chapter 7: Understanding Extensibility.

2.21. EBM Architecture

Every EBM possesses the same message architecture. An EBM encompasses details about the
action to be performed using the data, one or more instances (EBOs) of the same type, and the
EBM header. Each service request and response is represented in an EBM by using a distinct
combination of an action and an instance. For example, a single Query Customer Party EBM
business document sends the request to a billing system for retrieving account details for one or
several customer accounts. You can accomplish this by using a single Query action and several
Customer Party instances. The billing application can respond to this request by sending a Query
Customer Party Response EBM business document that comprises the Query Response action
and Customer Party instances, which are populated with details.

The EBM cannot process details about more than one type of action. For example, you cannot
have a Query and Update action in the same message.

When using EBMs, consider the following points:

e Application interdependencies.

Copyright © 2010, Oracle. All rights reserved. 31

Understanding Enterprise Business Objects and Enterprise Business Messages

Any application invoking the Enterprise Business Services (EBSs) will have to generate the
EBM to pass the EBM as a payload to the EBS.

e The action in the EBM identifies the action that the sender or the requester application wants
the receiver or provider application to perform on the EBM.

The action also stores additional information that must be carried out on the EBO instance.
For example, the Create action may carry information about whether it wants the target
application to send a confirmation message. The Query action may carry information about
the document header section of the original EBM that resulted in the performance of this
action.

e The business object portion of the data area element contains the business object data
element definitions that can or must be sent in the message.

This is the content that is carried from one point to another. The element reflects the action-
specific view of the EBO.

e An EBM can be defined to carry multiple instances. Only the actions that support bulk
processing will use EBMs that support multiple instances.

¢ The information that is present in an EBM header is common to all EBMs.

The information that is present in the data area and the action are very specific to a particular
EBM.

e The message architecture is detached from the underlying transport protocol.

Any transport protocol such as HTTP, HTTPS, SMTP, SOAP, and JMS should be able to
carry these documents.

2.2.2. EBM Headers

The EBM header is an integral part of every EBM. You can consider the EBM header as a
wrapper or an envelope around transactional data messages. It comprises representations of
functional data such as Document Identification, Involved Parties (Sender, Provider, intermediary
services, Security, and Transaction Rules [Transaction State and Exceptions]).

The EBM header provides the ability to:
e Carry information that associates the message with the originator.
o Uniquely identify the message for auditing, logging, security, and error handling.

e Associate the message with the specific instance of the sender system that resulted in the
origination of the document.

e Store environment-specific or system-specific information.

The requirements pertaining to infrastructure-related services such as auditing, logging, error
handling, and security necessitate the introduction of additional attributes to the message header
section of the EBM.

32 Copyright © 2010, Oracle. All rights reserved.

Understanding Enterprise Business Objects and Enterprise Business Messages

For more information, see Oracle Application Integration Architecture Foundation Pack:
Development Guide, "Working with Message Transformations."

Copyright © 2010, Oracle. All rights reserved. 33

3. Understanding Enterprise Business
Services

This chapter introduces Enterprise Business Services (EBS) and explains why EBSs are needed
to facilitate an integration. The chapter then discusses the types of EBSs as well as the types of
operations that can exist for these services. Finally, it provides a high-level overview of the tasks
involved in the creation of enterprise business services.

This chapter discusses:

e EBS

e EBS operations

o \Verbs

o EBS types

e EBS architecture

o Enterprise Business Flow (EBF) processes
¢ EBS implementation

e EBS message exchange patterns

For more information about EBS, see Oracle Application Integration Architecture Foundation
Pack: Development Guide, “Designing and Developing Enterprise Business Services.”

3.1. EBS

EBSs are the foundation blocks in the Oracle Application Integration Architecture (AlA). EBSs
represent the application or implementation-independent web service definition for performing a
business task. The architecture facilitates distributed processing using EBS.

An EBS is a service interface definition, currently manifested as an abstract Web Service
Definition Language (WSDL) document, which defines the operations, message exchange
pattern, and payload that are applicable for each operation of a service.

An EBS is self-contained; that is, it can be used independent of any other services. In addition, it
can also be used within another EBS. Because EBSs are business-level interfaces, they are
standard service definitions that can be implemented by the applications that want to participate
in the integration. EBSs are generally coarse-grained and typically perform a specific business
activity such as creating an account in a billing system or getting the balance details for an
account from a billing system. Each activity in EBS has a well-defined interface described in XML.
This interface description is composed of all details required for a client to independently invoke
the service.

Copyright © 2010, Oracle. All rights reserved.

Understanding Enterprise Business Services

These services expose coarse-grained, message-driven interfaces for the purpose of exchanging
data between applications, both synchronously and asynchronously. The request-specific and
response-specific payload for each of the services is defined as an Enterprise Business Message
(EBM). The EBM typically contains one or several instances of a single Enterprise Business
Object (EBO), which forms the crux of the message, the action to be performed, and the

metadata about the message specified in the message header section.

For more information, see EBM Architecture.

EBS components do not presuppose a specific backend implementation of that service. They
simply provide an integration layer for the customer's choice of a backend. Regardless of the
choice, customers can still achieve the seamless interaction experience in the prebuilt
integrations that are delivered by AIA. Any backend implementations that can support the
interface standards defined by an EBS can automatically be considered as service providers.

For more information about EBSs, see Oracle Application Integration Architecture Foundation
Pack: Development Guide, “Designing and Developing Enterprise Business Services.”

3.2. EBS Operations

An operation is a unique action that has a specific payload and results in a clearly defined,
repeatable outcome.

36

Each EBS contains multiple operations. A standard set of operations is defined for all Entity
services. Additionally, each Entity service may have one or more nonstandard operations.

Operations are categorized based on the Verb associated with the operation. Every operation
must have a Verb identified. The Verb helps to precisely define the scope, payload, and

name of the operation.

An EBS may have synchronous and asynchronous versions of the same operation. By
default, the behavior of a service operation (synchronous or asynchronous) is predetermined

by the Verb associated with the operation.

For more information, see Verbs.

AIA makes an explicit distinction between operations that can process a single instance of a
payload versus operations that can process multiple instances of a payload. Distinct
operations are provided for both cases. Only the standard operations have this distinction

implemented.

Copyright © 2010, Oracle. All rights reserved.

Understanding Enterprise Business Services

3.3. Verbs

Every operation has a Verb to identify the action to be performed by the operation. The concept
of a verb was originally introduced by the Open Applications Group Integration Specification
(OAGIS) in their business object document (BOD) definitions and has been adopted with some
modifications in the EBO definition.

Strictly speaking, the significance of a verb to identify the action to be performed by an operation
is not applicable in a service-oriented web services environment because the operation definition
of a web service assumes this responsibility. However, not all integrations are using web
services, and message-oriented integration scenarios still exist that may require the processing
action to be identified within the message.

Verbs are also critical to define the semantics of the operation to be performed and to provide a
consistent, unambiguous framework for naming operations and operation payloads.

For more information about verbs and how to use them, see Oracle Application Integration
Architecture Foundation Pack: Development Guide, “Constructing the ABCS.”

3.4. EBS Types

AlIA supports two categories of EBSs, entity-based services and process-based services.

3.4.1. Entity Services

All of the standard activities that need to be performed using an EBO are brought together under
an entity service. Hence, every EBO has a corresponding EBS, which has definitions for
performing standard activities such as Create, Update, Delete, Query, and so on. Sample EBSs
include Customer, Party, ltem, Sales Order, and Installed Asset.

The standard activities in an entity-based EBS are:
e Create

To create an object instance

e Update

To update an object instance with only the changes that occurred

e Delete

To delete an object instance

e Query

To retrieve details about an object

e Sync

To send a current snap shot

Copyright © 2010, Oracle. All rights reserved. 37

Understanding Enterprise Business Services

Each of the activities uses the relevant EBM that represents the activity-specific view of the EBO

as input and output.

Entity services expose operations that act on a specific EBO.

Entity services have the following characteristics:

e Each of the business object entities has a corresponding EBS; all of the actions that can be
performed on this object are exposed as service operations and are part of this EBS.

e The entity operations consist of standard Create, Read, Update, and Delete (CRUD)
operations that are similar across services as well as any specialized operations that are

specific to the EBO.

o Entity services are implemented as Mediator routing services.

o Entity services receive and return messages in the form of EBMs.

o Entity services leverage the context-based routing rules to delegate the request to the
appropriate application-specific Application Business Connector Service (ABCS) containing

the actual implementation.

This diagram illustrates the EBS logical components and EBS physical implementation of entity

services.

Enterprise
EBS logical Business

components Service

A
r ~
EBS EBS
WSDL X
Implementation
Interface

EBS Physical Implementation

Routing

OrderEBS
Create () Routing rules
Client
g Update () Routing rules
v
[
ABCS

Query ()

Entity Based EBES

Create Provider 1

EPEI FaTalal
Create Provider 2

ATt

BPE! :
Create Provider 3

BPEL |ABCS

Update Prowider 1

Ao

Update Provider 2
[Natatat

Update Provider 3
ABCS

Entity services

38

Copyright © 2010, Oracle. All rights reserved.

Understanding Enterprise Business Services

3.4.2. Process Services

All of the business activities that need to act upon a particular business object to fulfill a specific
business process are brought together under a process service. For example, an EBS like
OrderProcessOrchestration, Employee On Boarding might exist. The Employee On Boarding
EBS might have operations such as Hire Employee, Terminate Employee, and so on that you
might not find in Person EBS.

These interfaces are described using an implementation-agnostic approach. For the interface to
be application-independent, the EBS expects an EBM to be passed as the input. In cases in
which the EBS is expected to return a response, it will send a relevant EBM as the response.
Hence, these interfaces are participating-application agnostic.

Process services expose operations related to an enterprise business process.
Process services have the following characteristics:

e Each EBF has a corresponding EBS; all of the actions that can be performed on this flow are
exposed as service operations and are part of this EBS.

e Process services are implemented as Mediator routing services.
e Process services receive and return messages in the form of EBMs.

e Operations exposed on the EBS will initiate cross-functional Enterprise Business Flows
(EBFs) that coordinate complex long-lived flows that span multiple services. These flows can
interact only with EBS services. This way both the Process EBS and the related business
flows are completely application-agnostic.

¢ Unlike Entity Services, a Process Service can act on more than one EBO.

This diagram illustrates the EBS logical components for process services.

Enterprise
EBS logical Business
components Service

EBS
WsDL
Interface

EBS

Implemeantation FeLuli]

EBS p—y EBS
EBF

Cross-functional
Enterprise Business Flows

EBS logical components for process services

This diagram illustrates the EBS physical implementation of process services.

Copyright © 2010, Oracle. All rights reserved.

39

Understanding Enterprise Business Services

EBS Physical Implementation
OrderOrchestrationEBS
Client Process () Routing rules Proc‘?gfrder
BPEL
= ESB EBS
[,
—
. InterfaceOrder
ABCS Synec () Routing rules toBillingEBF
BPEL
|
Process Based EBS

EBS physical implementation of process services

3.5. EBS Architecture

The EBS architecture enables:

¢ Reuse of the available assets.
e Substitution of one service provider with another without any impact on the client.

e Content-based selection of the service provider.

Reuse of Available Assets

The EBS is a web service. Like any other web service, the interface definitions for the EBS are
defined in Web Service Definition Language (WSDL). The list of EBS-specific business activities
(service operations), the input and output arguments for each of these service operations (input
and output messages) are specified in the WSDL. As with any other web service, an EBS can be
implemented using any language. The implementation takes an EBM as input and provides
another EBM as output. Oracle AIA uses the Oracle SOA Suite Mediator to implement an EBS.

Even though an EBS activity such as Create or Update can be built from the ground up using web
services technology, AIA takes advantage of the existing functionality in the applications. The
EBS acts as a virtual service to expose the actual implementation provided by the participating
application in a format that is amenable to the EBS. The intermediary services provided by the
participating applications in a format amenable to the EBS are called ABCSs. The ABCS acts as
the glue connecting the EBS and the participating application that is exposing the business
capability. The ABCS is responsible for exposing the data access, as well as the transaction-
related business functions that are available in applications as services that an EBS can invoke.

The ABCS approach does not preclude the customer from creating entirely new services for
implementing the EBS.

The virtualization layer enables the following aspects of Oracle AlA:

e The physical implementation of the target service needs to be abstracted and its location
needs to be hidden so that the target service (Service Provider) can eventually be replaced
by some other service (endpoint virtualization).

o |f the shapes of data and operations are different, data transformations and operation-to-

40 Copyright © 2010, Oracle. All rights reserved.

Understanding Enterprise Business Services

operation mappings are needed. This is common when old systems in existing infrastructures
need to be replaced with no interruption or change to the consumers.

e The virtual service may be composed of more than one physical service, as in aggregation of
services or rule-based routing. For example, a request from CA goes to the CA-Warehouse.

e You may not want to expose all operations of the actual service to the external world (partial
service).

e Target service might be supporting a different transport protocol than supported by the
service consumer. For example, a header transformation needs to happen from JMS to
SOAP.

¢ If complex, content-based validations against XML are required, then Schematron should be
used inside the mediator. For example, the order price must reflect the sum of prices of each
order line.

e |f the service consumer expects an asynchronous message exchange pattern and the service
provider allows only synchronous calls, the client application invokes a virtual or proxy
service (in AlA, it is an EBS) representing the target services.

For more information, see Understanding Application Business Connector Services.

Substituting One Service Provider for Another

AlA enables the customer to decouple the requester's view of a service from the actual
implementation. This approach increases the flexibility of the architecture by allowing the
substitution of one service provider for another without the requester being aware of the change
and without the need to alter the requester or EBS to abet the substitution.

For example, the delivered integration between a CRM system and a financials system may
leverage a service provided by the Oracle E-Business suite. At implementation time, the
customer may want to substitute this service with the one made available by another provider,
such as PeopleSoft Financials. The substitution of the service provider will have absolutely no
impact on the requester or the client.

This kind of decoupling is accomplished by having the requesters and service providers converse
using a mediator. In AlA, the EBS publishes services to requesters. The requester binds to the
EBS to access the service, with no direct interaction with the actual implementer of the service.

Hence, to achieve the loose coupling between service consumer and the provider, the EBS takes
the role of mediator. Routing rules can be definitionally specified to direct the EBS regarding how
to delegate the request to the right service provider as well as to the right application instance.
Situations might also occur in which the services that invoke the EBS might have knowledge of
whom the requests need to be delegated to. In this scenario, the services might supply the
information in the EBM prior to invoking the EBS.

For example, a customer might have two billing system implementations—one dedicated to
customers who reside in Northern America and the second dedicated to the customers residing in
other parts of the world. The EBS evaluates this rule and deciphers the actual implementation
that needs to be used for processing a specific message. Using this approach, the clients and
service requesters are totally unaware of the actual implementers. Similarly, the underlying
service implementers will be oblivious to the client applications that made the request.

Copyright © 2010, Oracle. All rights reserved. 41

Understanding Enterprise Business Services

Note that while the architecture allows for an entire message (containing all instances) to be sent
to one service provider as opposed to another, it does not allow for a subset of the instances
present in a message to go to one provider and the remaining instances to go to another
provider.

Content-Based Selection of the Service Provider

This architecture enables cross-application business processes to use these EBS without regard
to which application vendor is actually providing the implementation or which of the multiple
deployments that might exist is responsible for processing the request and providing the
response.

To achieve the loose coupling, some aspects of the service interactions need to be tightly
coupled between the requester and the service provider. In a service-oriented architecture (SOA),
there is no way to loosely couple a service entirely between systems. One needs to choose what
aspects need to be loosely coupled and what can be tightly coupled.

Oracle AlA places importance on the client being unaware of who the service provider is, the
language, the platform in which the services are implemented, and finally, the communication
protocol. So these aspects are totally decoupled. Making a change to one of these aspects will
have no impact on the client.

However, at design time, the requester will explicitly specify the name of the EBS operation,
which in turn is responsible for identifying the actual service provider. The data formats are also
specified at design time and regardless of the actual service providers, the data formats needed
to pass the content will not change. So changing either the name of the EBS or the service
operation or the structure of the data formats will certainly impact the client. As mentioned in the
previous sections, an EBM will be passed as a request; and another EBM will be received as a
response.

EBS Purpose

The purpose of the EBS can be summarized in the following way:

e Toreceive the request from the calling application.

e To identify the implementation as well as the deployment that is responsible for providing the
requested service.

o To delegate the requested task to the right implementation.
e To receive the response and return the EBM to the calling application.

The following diagrams show how EBS enables the loose coupling of requesters with the actual
service providers.

42 Copyright © 2010, Oracle. All rights reserved.

Understanding Enterprise Business Services

r

Warks only on
canonical objecis

Cross-Application
Business Frocesses

Sends Siebel Application Paortal Application
5:'“' Business Connector Business Connector
Account Service Service Sends
Object Partal
Agcount
Siebel Cbject
CRM
»| Portal
Billing
Receives
Siebel Returns
Account Partal
Ohject Account
Ohject
cend 3™ Party Application 37 Party Application
HMEII:I'-IarEty Business Connector Business Connector Sand
) - =nds
Account Service Service ar Party
Object Account
Object
3™ Party
CRM 3™ Party
Billing
Receives
3% Party Returns
Account 3" Party
Dbject Account
Object

EBS enables loose coupling of requesters with service providers

GethAccount
Enterprise Business Service
F 9
EBM

: 3rd Party Billing | 3rd Party Billing

{E;RM| , B"'gl System 1 System 2

’ GetAccount GetAccount

pEL Sdas ABC Service ABC Senvice
IABM ABM IABM

Example of GetAccount EBS

Copyright © 2010, Oracle. All rights reserved.

43

Understanding Enterprise Business Services

For more information about EBS, see Oracle Application Integration Architecture Foundation
Pack: Development Guide, “Designing and Developing Enterprise Business Services.”

3.6.

Enterprise Business Flow Processes

Business processes define and orchestrate a series of discrete steps to complete an integration
task, such as synchronizing a product across multiple applications or submitting an order from
CRM to the back office for fulfillment.

Business processes are defined independently of the underlying applications, simplifying the
process of integrating applications from multiple vendors. Business processes will always use the
services of the EBS.

For more information, see EBS.

EBSs have application-independent interfaces. They are used by BPEL processes to interact with
different applications. This helps cross-application processes to be application-independent. The
EBM containing the EBO is the payload of the EBS and contains business-specific messages.

Within a cross-application business process, the EBO is used as the structure that holds the in-
memory representation of the message that is sent back and forth between applications.

The following process flow diagram shows how a business process is initiated by a request
coming from a participating application.

Sends

Siebel
CRM

Siebel
Cirdear

CObjeet

Portal Application
Business Connector
Service

Siebel Order to
COrder EBO
Tramsformation

!

Process Ordar
Enterprise Business
Sarvice Invocation

Process Order

Entzrprise

Business Service

BFM

Y

Participating application request initiates a business process

The following sequence diagram shows the occurrence of events that lead to a successful

initiation of a BPEL process.

44

Copyright © 2010, Oracle. All rights reserved.

Understanding Enterprise Business Services

@ 0 0 ~ 3
2 8 8¢ g8 3 E 28
A= B 5 =5 z H’g = m=
8z T o 3 @ 3
BR g L 24 = W @2 T E
Vg 5 g g 89 g2 8@
W oy @ 3 1 z
g 8 Be g g]
=1] g IE

= | | | |

—

Invokes <<Convert== | | |

I | :

| | I

1

» | ldentify Impl |

<=|nvokes Enterprise |

Business senvice>> |

i —
I l
dentified j_
g
==Pazses Order
EBO==
| — ————]
e — — — — — — —
- — — —

Invocation of process order

This diagram illustrates how to keep the BPEL processes application-independent.

For the BPEL processes to remain application-independent, they should not contain any steps
that are relevant to any one particular participating application.

For more information about EBF, see Oracle Application Integration Architecture Foundation
Pack: Development Guide, “Designing and Constructing Enterprise Business Flows.”

3.7. EBS Implementation

Every EBO will have an EBS. Each action of the EBO will have a service operation as its
interface. The EBS is a very lightweight service. It is implemented as a Mediator routing service.
Every service operation will have its own set of routing rules.

Copyright © 2010, Oracle. All rights reserved. 45

Understanding Enterprise Business Services

This WSDL example shows the interface definition for each of the actions that can be carried out
on the Invoice EBO.

<portType name="SalesOrderInterface">
<portType name="SalesOrderInterface">
<documentation>
<svcdoc:Interface>
<svcdoc:Description>This interface contains operations that
can
act upon the=>
Sales Order object</svcdoc:Description>
<svcdoc:DisplayName>Sales Order Interface</svcdoc:DisplayName>
<svcdoc:Status>Active</svcdoc:Status>
</svcdoc:Interface>
</documentation>

<operation name="QuerySalesOrder">
<documentation>
<svcdoc:0peration>

<svcdoc:Description>This operation is used to query an Sales
Order

object<=>
/svcdoc:Description>
<svcdoc:MEP>SYNC REQ RESPONSE</svcdoc:MEP>
<svcdoc:DisplayName>Query Sales Order</svcdoc:DisplayName>
<svcdoc:Status>Active</svcdoc:Status>
<svcdoc:Scope>Public</svcdoc: Scope>
</svcdoc:0peration> </documentation>
<input message="sordsvc:QuerySalesOrderRequestMsg"/>
<output message="sordsvc:QuerySalesOrderResponseMsg" />
</operation>

<operation name="CreateSalesOrder">
<documentation>
<svcdoc:0Operation>
<svcdoc:Description>This operation is used to Create an
Sales

Order object<=
/svcdoc:Description>

<svcdoc:MEP>ASYNC REQ RESPONSE</svcdoc:MEP>

<svcdoc:DisplayName>Create Sales

Order</svcdoc:DisplayName>
<svcdoc:Status>Active</svcdoc:Status>
<svcdoc:Scope>Public</svcdoc:Scope>
<svcdoc:CallbackService>SalesOrderEBS</svcdoc:CallbackService>
<svcdoc:CallbackInterface>UpdateSalesOrderEBM</svcdoc:Callback=>
Interface>
<svcdoc:CallbackOperation>UpdateSalesOrder</svcdoc:
CallbackOperation>
</svcdoc:0peration> </documentation>
<input message="sordsvc:CreateSalesOrderMsg"/>
</operation>

EBS Responsibilities

Here is an overview of the responsibilities of the EBS:

1. The EBS passes the EBM to the routing rules.

46 Copyright © 2010, Oracle. All rights reserved.

4.
5.
6.

Understanding Enterprise Business Services

The routing rules evaluator applies the relevant rules to the EBM to decipher the ABCS it
should invoke as well as the end-point details.

In scenarios in which multiple instances for a single application occur, the EBS enriches the
EBM header section of the document with details about the service provider and the end-
point location.

The prebuilt integrations to be delivered by Oracle leverage the AlA Configuration Properties
file to identify the end-point location.

The EBS routes the message to the relevant ABCS.

The EBS receives the response from the service provider.

The EBS returns the response to the calling application.

Steps 5 and 6 will occur only in the case of an integration scenario that uses the request/reply
pattern. The following activity diagram illustrates the steps that are performed by an EBS:

?

Receive the request
from calling
application

v

Evaluate the routing
rules

!

|dentify the Service
Provider

v

Enrich the EBM with
service provider
details

!

Route the message
to relevant service
provider

v

Receive response in
requestireply pattern

4

EBS steps

For example, clients that want to invoke the Query operation on Customer Party should invoke
the Query Customer Party operation of Customer Party EBS service.

Copyright © 2010, Oracle. All rights reserved. 47

Understanding Enterprise Business Services

3.8. EBS Message Exchange Patterns

Business requirements drive the need for the use of different message exchange patterns. This
section defines the various message exchange patterns that can be implemented for various
operations of EBSs.

A synchronous operation is one that waits for a response before continuing on. This forces
operations to occur in a serial order. People often say that an operation blocks or waits for a
response. Synchronous operations will open a communication channel between the parties,
make the request, and leave the channel open until the response occurs. This method is effective
unless large numbers of channels are being left open for long periods of time. In this case,
asynchronous operations may be more appropriate. Also, the synchronous pattern may not be
necessary or appropriate if the end user does not need an immediate response.

An asynchronous operation is one that does not wait for a response before continuing. This
allows operations to occur in parallel. Thus, the operation does not block or wait for the response.
Asynchronous operations will open a communication channel between the parties, make the
request, and close the channel before the response occurs. Message correlation is used to relate
the inbound message to the outbound message. This method is effective when large numbers of
transactions occur that could take long periods of time to process. In the case in which the
operations are short or need to run in serial, synchronous operations may be more appropriate.
The asynchronous pattern is effective if the end user does not need immediate feedback.

The EBS is modeled to have multiple operations. Each operation leads to the execution of the
EBS for a particular business scenario requirement and is granular in nature. Each operation can
be modeled to have the following interaction style or message exchange pattern:

e Synchronous request — response
e Fire-and-forget

¢ Asynchronous request — delayed response

For more information about design patterns, see Oracle Application Integration Architecture
Foundation Pack: Development Guide, “Working with AIA Design Patterns” and “Establishing
Resource Connectivity.”

3.8.1. Synchronous Request-Response Patterns in EBSs

A synchronous request-response EBS operation pattern is synchronous in nature. The request-
response has two participants.

The requester sends a request and waits for a response message. The service provider receives
the request message and responds with either a response or a fault. After sending the request
message, the requester waits until the service provider responds with a message. Both the
request and the response messages are independent.

The operations in the portType will have input, output, and fault. Here is a snippet from
SalesOrderEBS.wsdl for a synchronous request response operation:

<!-- operation support for read/query -->
<operation name="QuerySalesOrder">
<documentation>

<svcdoc:0Operation>

48 Copyright © 2010, Oracle. All rights reserved.

http://www.serviceoriented.org/operation.html

Understanding Enterprise Business Services

<svcdoc:Description>This operation is used to query a
SalesOrder EBO</svcdoc:Description>
<svcdoc:MEP>SYNC REQ RESPONSE</svcdoc:MEP>
<svcdoc:DisplayName>QuerySalesOrder</svcdoc:DisplayName>
<svcdoc:LifecycleStatus>Active</svcdoc:LifecycleStatus>
<svcdoc:Scope>Public</svcdoc:Scope>
</svcdoc:0Operation>
</documentation>
<input message="ebs:QuerySalesOrderReqMsg"/>
<output message="ebs:QuerySalesOrderRespMsg"/>
<fault name="fault" message="ebs:FaultMsg"/>
</operation>

3.8.2. Asynchronous Fire-and-Forget Patterns in EBSs

A fire-and-forget EBS operation pattern is asynchronous in nature. This is an event that leads to a
request message being posted to an endpoint or placed in a channel/queue/topic. This pattern is
also characterized as a one-way call.

In a fire-and-forget pattern, the requesting service invokes a one-way operation in an EBS. The
EBS invokes the providing service. No concept of a response exists even in the case of an error.
In the Order EBS WSDL, the one-way operation meant for request is defined in the portType
having all the operations, which are either request-response or request only.

In the case of a fire-and-forget pattern, once the request is made and presented to the provider, it
cannot be re-presented. In case of any error in the provider service, it has to be handled locally.
This includes either retrying or terminating. In case the error cannot be handled locally, then
compensation needs to be initiated, if required.

In the diagram, the usage of the Order EBS depicts a fire-and-forget scenario. The Order EBS
has two operations—Process Order Request and Update Order Request. Both of these
operations are in a fire-and-forget pattern using the one-way calls in the EBS WSDLs.

Copyright © 2010, Oracle. All rights reserved. 49

Understanding Enterprise Business Services

Async Async Customer Async Create
Siebel Process Update Order EBS Process Order| Customer EBS Customer Oracle EBS
Order Req | Order Prov EBF EBS Response Prov ABCS
ABCS Impl | ABCS Impl P Imp
‘ SC;JE:;I }—} Receive Receive Order
! . AT
Transform Transfarm I
Transform
Process
equest Invoke | Customer
I oke Request
I Invoke e App
Create
Update Receive I
< Customer
Receive RS;dUEErSt Customer P ————
I Transform
Transform Transform I
; ; — Invoke
Uéjrtéeg:& o Invoke Invoke

Order EBS showing fire-and-forget scenario

Here is a snippet from SalesOrderEBS.wsdl for a request-only operation.

The operations in the portType will have input only. This contract necessitates the invoker to

<!-- operation support for creation -->
<operation name="CreateSalesOrder">
<documentation>

</operati

<svcdoc:0peration>
<svcdoc:Description>This operation is used to create a
SalesOrder EBO.</svcdoc:Description>
<svcdoc:MEP>REQUEST ONLY</svcdoc:MEP>
<svcdoc:DisplayName>CreateSalesOrder</svcdoc:DisplayName>
<svcdoc:LifecycleStatus>Active</svcdoc:LifecycleStatus>
<svcdoc:Scope>Public</svcdoc:Scope>
</svcdoc:0Operation>

</documentation>
<input message="ebs:CreateSalesOrderRegMsg"/>

on>

make one-way calls. This could be a request-only operation. For Entity EBS, the WSDLs are part
of the Foundation Pack Enterprise Service Library. For Process EBS, the WSDLs will be hand-
coded based on template WSDLs provided.

50

Copyright © 2010, Oracle. All rights reserved.

Understanding Enterprise Business Services

3.8.3. Asynchronous Request-Delayed Response Patterns in
EBSs

A request-delayed response EBS operation pattern is asynchronous in nature. In this situation,
the requester sends the request message and sets up a callback for a response. The requester
will not be waiting for the response after sending the request message. A separate thread listens
for a response message. When the response message arrives, the response thread invokes the
appropriate callback and processes the response. The EBS would have a pair of operations—one
for sending the request and another for receiving the response. Both of the operations will be
independent and atomic. A correlation mechanism is used to establish the caller’s context.

In a request-delayed response pattern, the requesting service invokes a one-way request
operation in an EBS. The requesting service waits for the response. The EBS invokes the
providing service. The providing service, after ensuring that the request is serviced, invokes the
response EBS. The response EBS pushes the response to the waiting requesting service. If an
error occurs in the providing service, the response is sent with fault information populated. In the
Customer EBS WSDL, the one-way operation meant for request is defined in the portType having
all the operations, which are either request-response or request-only. The one-way operation
meant for response is defined in the portType having all the operations, which are Response.

In the diagram, the usage of the Create Customer EBS Request depicts a one-way request and
Create Customer EBS Response depicts a one-way response. The Customer EBS is based on
the Customer EBS portType and has the operation Create Customer Request. The Customer
EBS Response is based on the Customer EBS Response portType and has the operation Create
Customer Response. Both are modeled as one-way calls in the EBS WSDL.

This pattern allows for more flexibility in error handling. In case of error, a suitable response can
be sent to the requester service and the request re-presented or resubmitted to the provider after
error correction. In some situations, an error in the provider service can be handled locally too,
similar to the fire-and-forget pattern. The methodology to be followed will be dictated by the
business use case scenario.

Copyright © 2010, Oracle. All rights reserved.

51

Understanding Enterprise Business Services

Async Async Async Create
Customer
Siebel Process Update Order EBS Process Order | Customer EBS Customer Oracle EBS
Order Req | Order Prov EBF EBS Response Prov ABCS
ABCS Impl | ABCS Impl Imp
‘ Sslrbdrsr\t }—b Receive Receive Order
Receive
oy v d
Transform Transfarm I

Transfaorm

Process *

@icles Create

Request Invoke - Customer

Invoke Request
T T
Create
Update Receive ™
Receive = Order . Customer | ¥ ggli:jnnn;i I
Request
I I Transform
Transform Transform I
; I — Irvoke
UC;)th‘Ijegre - Ihvoke ™ Invoke

One-way request and one-way response

To increase the reliability of message delivery, a need exists to resort to persistence at strategic

asynchronous points.

For more information about guaranteed message delivery designs, see Oracle Application
Integration Architecture Foundation Pack: Development Guide, “Configuring Oracle AIA

Processes for Error Handling and Trace Logging,” Implementing Error Handling and Recovery for
the Asynchronous Message Exchange Pattern to Ensure Guaranteed Message Delivery.

Here is a snippet from SalesOrderEBS.wsdl for an async request response operation:

<!-- operation support for creation response-->
<operation name="CreateSalesOrderResponse">

<documentation>

<svcdoc:0peration>

<svcdoc:Description>This callback operation will be
used to provide the Create Sales Order Response</svcdoc:Description>

<svcdoc:MEP>ASYNC7REQ7RESPONSE</svcdoc:MEP>

<svcdoc:DisplayName>CreateSalesOrderResponse</svcdoc:DisplayName>

<svcdoc:LifecycleStatus>Active</svcdoc:LifecycleStatus>
<svcdoc:Scope>Public</svcdoc:Scope>

<svcdoc:InitiatorService>SalesOrderEBS</svcdoc:InitiatorService>

<svcdoc:InitiatorInterface>CreateSalesOrderRequestEBM</svcdoc:Ini

tiatorInterface>

52

Copyright © 2010, Oracle. All rights reserved.

Understanding Enterprise Business Services

<svcdoc:InitiatorOperation>CreateSalesOrderRequest</svcdoc:Initia
torOperation>
</svcdoc:0Operation>
</documentation>
<input message="ebs:CreateSalesOrderRespMsg"/>
</operation>

For Entity EBS, the WSDLs are part of the Foundation Pack Enterprise Service Library. For
Process EBS, the WSDLs will be hand-coded based on template WSDLs provided.

Copyright © 2010, Oracle. All rights reserved. 53

4, Understanding Application Business
Connector Services

This chapter provides an overview of Application Business Connector Services (ABCS) and
discusses:

e ABCS architecture

e ABCS characteristics

e Architectural considerations

¢ Implementing ABCS

¢ Reviewing implementation technologies for ABCS

e ABCS transformations

For more information about ABCS, see Oracle Application Integration Architecture Foundation
Pack: Development Guide, “Designing Application Business Connector Services,” “Constructing
the ABCS,” and “Completing ABCS Development.”

41. ABCS

The role of the ABCS is to expose the business functions provided by the participating application
in a representation that is agreeable to a service interface.

In canonical integration style, the common service interface will be the one exposed by Enterprise
Business Services (EBSs). It can also serve as a glue to allow the participating application to
invoke the EBSs.

In noncanonical integration styles, an EBS to expose the service interface might not be present.
In these situations, the client application or its ABCS can directly invoke the provider ABCS. In
other situations, the client application or its ABCS can invoke the EBS exposed using the service
interface defined by the provider.

An ABCS can be requester-specific or provider-specific. A requester ABCS accepts the request
from the client application through a client-specific Application Business Message (ABM) and
returns the response to the client application through a client-specific ABM. The role of the
requester ABCS is to act as a vehicle to enable the participating application to invoke the EBS
either to access data or to perform a transactional task. The client side ABM will be the payload
that is passed by the requester application to the requester ABCS.

The requester application that wants to leverage an action needs to define the requester-specific
ABCS. The requester application that wants to implement this ABCS could be Siebel CRM,
PeopleSoft Enterprise CRM, or Oracle eBusiness Suite CRM. The requester application-specific
ABCS needs to take the requester application-specific ABM as input and provide the requester
application-specific ABM as output.

Copyright © 2010, Oracle. All rights reserved.

55

Understanding Application Business Connector Services

The role of the provider ABCS is to expose the business capabilities that are available in the
provider application according to the EBS specification. In certain noncanonical integration styles,
the EBS interface will be defined by the provider. In other situations, the EBS artifact might be
absent. The service-provider-side ABCS will accept the request either from the EBS through the
Enterprise Business Message (EBM) or directly from either Requester Application or Requester
ABCS (in case of certain noncanonical integration styles) and will send the response using the
same format. ABCS are needed because every application has a different representation of
objects, and any communication between applications necessitates the transformation of these
objects to the canonical definition.

The ABCS is responsible for the coordination of the various steps that are provided by a number
of services, including:

e Validation (if any)

o Transformations - message translation, content enrichment, and normalization
¢ Invocation of application functions

e Error handling and message generation

e Security

For each of the activities that can be performed with an Enterprise Business Object (EBO), an
ABCS must be defined by the participating requester application and another ABCS must be
defined by the service provider application.

4.2. ABCS Architecture

For an application providing a business function to be a part of the Oracle Application Integration
Architecture (AlA) ecosystem, it needs to be able to send messages that comply with either EBS
or provider ABCS (in noncanonical integration styles) expectations. This enables the application

to participate in cross-application business processes and prebuilt data integrations that exist in

the Oracle AlA ecosystem.

Similarly, the application that receives messages from EBS must be able to understand the
message types. Very few applications are built to readily interact with EBS. For applications that
are not able to readily interact with EBS, ABCS act as conduits to expose the application-specific
business functions in the Mediator.

The ABCS leverages a variant of the industry-standard integration pattern called the VETO -
pattern. VETO is a common integration pattern that stands for Validate, Enrich, Transform, and
Operate. The VETO pattern and its variations ensure that consistent, validated data is routed
throughout the Mediator. The VETO pattern has many variations. A commonly known variation is
the VETRO pattern. This includes the Route step.

The ABCS architecture adopts an extended variation of the VETRO pattern called the VETORO
pattern.

56 Copyright © 2010, Oracle. All rights reserved.

Understanding Application Business Connector Services

Application Business Connector Service

Actual Service Providers for an EBS

ABCSE1

Ba

ABCS2

i

ABCSE3

l— Ciperate

A;Eshiizt;n » Walidate - Enrich e Transform [EBS
Message
Route

-~

VETORO pattern

The VETORO pattern consists of the following steps:

e Validate

This step can be used to ensure that the incoming message has the right content so that it
can be transformed into what the target system is expecting. In certain cases, the validate
step can be used to check whether the incoming message contains a well-formed XML
document that is in conformance with the particular schema associated with the receiving
application. The latter validation will often be performed as one of the first steps in the EBS
and is needed to allow dissimilar versions of XML-producing and XML-consuming

applications to coexist.

e Enrich

This step involves adding additional data to a message to make it more meaningful and
useful to a target service or application.

e Transform

This step converts the message to a target format by translating an application-specific object
representation into an EBO, or translating an EBO-specific representation into the
application-specific object representation of the Operate step.

e Operate

This step is the invocation of the target service or an interaction with the target application. In
Oracle AlA, it could be either an invocation of the EBS or a specific ABCS, or an interaction
with the participating application using the provider ABCS.

¢ Route

The Route step deciphers the appropriate service provider that will be responsible for
performing the service. In Oracle AlA, the Route step is implemented in the EBS using the
content-based routing technologies that are available in Oracle Mediator.

In some cases, the validate, enrich, and transform steps can be accomplished in one ABCS
implementation. Also, note that a Mediator routing service may use XSL-based validation as well
as content-based routing directly in the service itself, rather than using a separate routing service.

Copyright © 2010, Oracle. All rights reserved.

57

Understanding Application Business Connector Services

The ABCS will not handle transport protocol abstraction itself. The ABCS will have inbound as
well as outbound interactions using only the SOAP/Mediator protocol. A transport adapter will be
used to integrate the participating application-specific native protocols with the ABCS-specific
standard. This facilitates the reuse of the same ABCS for multiple transport adapters and vice
versa.

4.3. ABCS Characteristics

The ABCS has the following characteristics:

e For each of the activities that can be done on an EBO (canonical pattern-based integration
style), an ABCS must be provided by each of the participating requester and provider
applications.

¢ In the case of a noncanonical pattern-based integration style, an ABCS must be provided by
the provider application.

e The requester ABCS has participating application-specific ABMs as input as well as output.

The service accepts requester application-specific ABMs as input and provides requester
application-specific ABMs as output.

e The provider ABCS has EBMs (representing specific content of EBO needed for performing
the operation) as input as well as output.

The service accepts EBMs as input and returns EBMs as output.

e Although a single ABCS can be used to handle multiple activities, Oracle highly recommends
allowing only a single ABCS per action. This approach greatly reduces the complexity of
designing a generic ABCS.

If you do design a single ABCS to handle multiple activities, remember that the service needs to
have the activity information accepted as a part of the input. This enables the ABCS to decipher
the actual action to be performed and enables it to perform the appropriate transformations and
invocations. In addition, allowing a single requester ABCS to handle multiple activities means that
a single requester application-specific ABM will encompass all of the information pertaining to all
of the activities.

4.4. Architectural Considerations

The architectural issues discussed in the following sections play a large role in determining your
choice of implementation technologies as well as the design paradigms that you will use to
construct ABCS.

4.4.1. Participating Application's Service Granularity

Perform some analysis to identify how the participating applications intend to expose their
business functionality to the Mediator. If the applications expose their functionality using a web
service interface, verify that the granularity of functionality matches exactly that of an application-
agnostic or provider application-specific interface

58 Copyright © 2010, Oracle. All rights reserved.

Understanding Application Business Connector Services

If an exact match exists, then much of your new effort will be to transform the application-specific
ABM into the enterprise EBM and vice versa. Mediator would certainly be a candidate as the
implementation technology for building the ABCS for this design paradigm.

In situations in which granularity of functionality exposed by the application through the web
service doesn't match that of the EBS, attempts should be made to have appropriate
modifications or enhancements made in the application. In situations in which these modifications
cannot be made to the application, the ABCS will not only be responsible for transformations, but
will also need to aggregate and disaggregate services.

For example, perhaps a single business-level activity cannot be mapped to a single APl or
operation in the server application. The provider application might have very fine-grained
operations and might also require that transaction management be handled by calling
applications. In this case, the provider ABCS will probably have a chatty conversation with the
provider application. The provider ABCS will also be responsible for state management.

This type of ABCS can be implemented only through BPEL technologies and not through
Mediator services.

Although Oracle AlA allows for the existence of this type of ABCS, Oracle highly recommends
that much of this application logic be encapsulated within native applications as opposed to
having them handled in ABCS.

4.4.2. Support for EBMs

Because the EBS operates only on EBMs, you need to determine whether the applications that
implement the services provide support for EBMs. In scenarios in which the application-provided
services provide native support for EBMs, the effort for transforming the EBO into an EBM is
minimal. In situations in which the applications that implement the services don't provide EBM
support, you should determine whether their services can provide inherent support for EBMs.

If these applications cannot provide support for EBMs, transformation-related work needs to be
done by the ABCS.

4.4.3. Application Interfaces

Perform a check to determine how the participating applications intend to allow the business logic
to interact with the Mediator. Some applications may have inherent support for web service
interfaces. This is the preferred scenario. The WSDL defines the interface that will be used to
communicate directly with the application business logic. In this situation, the ABCS will use the
web service interface to invoke the application business logic.

In the case of packaged applications such as Siebel, PeopleSoft, J.D. Edwards, and SAP, the
much-preferred route is to use the respective packaged-application adapters. These adapters can
be deployed as J2CA resource adapters. This is a better solution than using the conventional
SOAP interface. In situations in which the participating applications don't expose their business
logic as web services, interactions with these applications will need to occur by means of
technology adapters such as database adapters, advanced queuing (AQ) adapters, and so forth.

Investigate whether the services exposed by the participating applications provide support for
proprietary message formats, technologies, and standards. If the applications that implement the
functionality don't have inherent support for standards and technologies such as XML, SOAP,
and JMS, then the transformations need to happen in the ABCS.

Copyright © 2010, Oracle. All rights reserved.

59

Understanding Application Business Connector Services

For example, the application might be able to receive and send messages only through files, and
EDI is the only format that it recognizes. In this case, the ABCS becomes responsible for
integrating with the application using a file adapter, translating the EDI-based message into XML
format, and exposing the message as a SOAP message.

For more information, see Oracle Application Integration Architecture Foundation Pack:
Development Guide, “Establishing Resource Connectivity.”

4.4.4. Support for Logging and Monitoring
The ABCS is responsible for facilitating logging and monitoring capabilities. The ABCS will invoke

the convenience services for logging and auditing.

For more information, see Oracle Application Integration Architecture Foundation Pack:
Infrastructure Components and Utilities Guide.

4.4.5. Support for Insulating the Service Provider

Situations will occur in which the granularity of the service that is provided by the service provider
will not match that of the EBS. In this case, the ABCS must construct the message needed for
interacting with the EBS from multiple fine-grained transactions.

For example, the BRM Billing application provides an API for retrieving only immediate child
details for either a bill or bill detail. However, the interface that is defined by the EBS warrants that
the service provider return complete details about a bill, including all of the details. In this case, it
becomes the responsibility of the ABCS to provide protection to the application implementing the
service by doing the workload buffering. The ABCS will make a series of sequencing calls to the
application to retrieve all of the required information, consolidate the data into a single message,
and send it to the calling application.

4.4.6. Support for Security

The security model that you choose will play a large role in determining which responsibilities are
owned by the ABCS. Support for a point-to-point security model will require only that the ABCS
authorize the service requests. Support for an end-to-end security model will necessitate the
transmission of requester credentials to the service provider.

In the latter scenario, Web Services Security can be used if all participating systems provide
support for it. Otherwise, transmitting security credentials either as application data or as a part of
the SOAP header is an option. Depending upon the route taken, the ABCS must be coded
accordingly so that it can be authenticated.

60 Copyright © 2010, Oracle. All rights reserved.

Understanding Application Business Connector Services

4.4.7. Validations

As the message travels from one participating application to another, validations need to occur at
various stages throughout the journey to ensure that accurate and valid data is being sent to the
target system. The specificity of the validations varies significantly depending on how far or close
the message is from the target system.

Validations are based on the constraints that are imposed by the participating application
providing the service. The ABMs generated from the EBMs need to comply with the constraints
imposed by the participating applications. In addition, the target system may have its own built-in
validation rules, which necessitates that the transformation step alter incoming data to prevent
rejection of the message by the target system.

Because not all participating application-specific constraints can be enforced at the EBM level,
these validations must be enforced by the specific ABCS. For example, the PeopleSoft CRM
application might mandate that the product description be present for creating a product, while
the product EBM might not enforce that constraint. In this situation, the PeopleSoft Create
Product ABCS will be responsible for ensuring that the ABM generated from the EBM includes
the product description. This validation will ensure that the ABM that is passed to the PeopleSoft
CRM Create Product service is compliant with the constraints imposed by the service.

If the previously mentioned constraint is very specific to the PeopleSoft CRM application, then
this validation needs to reside only in the PeopleSoft CRM Create Product ABCS. It is
inappropriate to have this validation present in the early stages of message flow, for example, in
the client-side ABCS.

In the case of asynchronous interaction styles (request-only), where the user experience will be
hindered if validations are not performed at the time of capture, the requester application should
use another integration point to perform the validation prior to submitting the message for
processing. For example, in an Order Capture application, prior to submitting the order for
fulfillment, the requester application will make a synchronous call to validate the order to ensure
that the order contains the content required to enable successful provisioning. A Validate Order or
Validate Billing Information EBS might exist that can be implemented by various service
providers. If the response from the Validate Order service is favorable, the requester application
will then make the request to process the order.

4.4.8. Support for Internationalization and Localization

The ABCS that pass the EBMs to the actual service providers are responsible for translating the
document into a locale-specific ABM. Similarly, the ABCS is responsible for translating the locale-
specific ABM into the locale-independent EBM.

The ABCS deciphers the locale based on the locale preferences of the user of the relevant
participating application. This data provides information about how the locale-specific ABM needs
to be constructed, as well as how the locale-specific ABM needs to be interpreted.

The ABCS should specify the locale in which the response needs to be provided by the real
service provider. For example, the ABCS for Get Product Details EBS needs to specify the locale
in which the product details should be provided by the Oracle eBusiness Suite application. If the
requester wants the product details in Spanish, the Get Product Details EBS needs to instruct the
real service provider that the product details need to be returned according to the Spanish locale.

Copyright © 2010, Oracle. All rights reserved. 61

Understanding Application Business Connector Services

4.4.9. Message Consolidation and Decomposition

Situations will occur in which a need will exist to combine responses to a request that originates
from multiple sources. For example, in the case of convergent billing in the telecommunication
solution, the ABCS for the getBillDetails EBS might have to retrieve details from multiple
participating applications. This ABCS will also be responsible for consolidating them into a single
response.

4.410. Support for Multiple Application Instances

Situations will occur in which multiple instances of a packaged application with the same business
capabilities will exist in a customer’s ecosystem. The routing rules defined in the EBS will be
responsible for deciphering the right application instance to which the request needs to be routed.
Regardless of the number of application instances for a packaged application, only one ABCS wiill
exist for that packaged application to perform a specific business task.

4.5. Implementing ABCS

Each of the participating applications implementing a business activity or task will have its own
ABCS.

An ABCS for a particular participating application should be responsible for implementing a single
action. The action would be the same in the case of a synchronous request/response pattern. In
the case of a delayed response pattern, the carrying out of the request will be implemented by
one action and the carrying out of the response will be implemented by another action. Hence,
two ABCS would exist.

The ABCS can be implemented in two ways:

e The first approach is to make complete use of components that are built using Oracle Fusion
Middleware technologies to make up the ABCS.

The service is implemented as a Mediator service or a BPEL process. This Mediator service
or BPEL process performs the tasks listed in the following sections.

o The second approach is to build the transformation services, to a large extent, as part of the
participating application.

This approach can be taken when the participating application's technology stack has the
infrastructure to perform the transformations. However, a lightweight ABCS will still need to
perform the translations related to cross-reference details.

For more information about ABCS, see Oracle Application Integration Architecture Foundation
Pack: Development Guide, “Designing Application Business Connector Services,” “Constructing
the ABCS,” and “Completing ABCS Development.”

Regardless of how an ABCS is implemented, it is still a service, so an interface will exist that will
be exposed as a WSDL. This is what the client applications will use to invoke the ABCS.

The transformations for each of the directions in both the client-side and server-side ABCS are
implemented XSL scripts.

62 Copyright © 2010, Oracle. All rights reserved.

Understanding Application Business Connector Services

The ABCS itself should be independent of deployment. In situations in which multiple
deployments of a single client or provider application exist, only one instance of an ABCS will still
exist. For example, two deployments of BRM Billing applications could exist, one for customers
who reside in North America and the second for customers living in the rest of the world. In this
case, only one BRM application-specific ABCS would still exist for a particular action. Under no
circumstances should two versions of the ABCS exist, one for each deployment. A single ABCS
should be responsible for invoking the application business service that is available in the
appropriate deployment.

In many situations, a single action cannot be mapped to a single API or operation in the provider
application. The provider application might have very fine-grained operations and might also
require that transaction management be handled by calling applications. In this case, the
provider-side ABCS will probably have a chatty conversation with the server application. The
provider-side ABCS will also be responsible for state management.

This type of ABCS can be implemented using only BPEL technologies and not through Mediator
services.

Although Oracle AlA allows the existence of this type of ABCS, Oracle highly recommends that
much of this application logic be encapsulated within native applications as opposed to having
them handled in ABCS.

The service is responsible for populating the message header section of the EBM with values.
The service deciphers some of the values by itself, whereas for other values it relies on the
content being passed by participating applications through an ABM.

For more information, see EBM Architecture.

4.5.1. Requester-Side ABCS

The requester-side ABCS has the following core responsibilities:
e Enrichment or augmentation of the ABM.

This may be required in situations in which the ABM received from the participating
application does not contain all of the required content. The enrichment can be done by
issuing additional calls to the participating application to get more information. For example, a
CRM application might pass only the order identifier as part of the ABM. The interface for
ProcessOrder EBS might warrant that the entire order object be passed as the payload. In
this situation, the ABCS will be responsible for interacting with the participating application to
get all of the required information to enrich the ABM.

¢ Transformation of requester application-specific ABMs into EBMs.
e Creation of an EBM that encompasses the previously mentioned EBM.

e Population of the message header with the appropriate values.

For more information, see EBM Architecture.

¢ Invocation of any extension handler that the customer may have registered.

Copyright © 2010, Oracle. All rights reserved. 63

Understanding Application Business Connector Services

This extension handler could be used by the customer to perform any additional
transformations. The extension handler is passed to the EBM and the transformed EBM is
passed back as the response. This extension handler will enable customers to perform
additional transformations on the EBO before the EBS is invoked.

Note. This functionality is not used by the Oracle AlA Process Integration Packs (PIPs) for
Communications.

Invocation of the EBS.

The EBS is responsible for taking an EBM and providing the response using an EBM.

Transformation of an EBM into an ABM.
Invocation of any extension handler that the customer may have registered.

This extension handler could be used to perform any additional transformations. The
extension handler is passed to the ABM and the transformed ABM is passed back as the
response. This extension handler enables customers to perform additional transformations on
the ABM before the ABM is passed back to the calling application.

Note. This functionality is not used by the Oracle AIA Process Integration Packs for
Communications.

Perform any necessary validations to ensure that the ABM that needs to be passed to the
participating client application complies with the constraints enforced by the participating
application.

Return the response to the calling application.

The following activity diagram illustrates the high-level flow of activities in a requester-specific
ABCS. The diagram makes an assumption that the EBS with which it is interacting employs a
request/response interaction style. Note that the steps for running the customer extension to do
additional transformations are optional.

64

Copyright © 2010, Oracle. All rights reserved.

Understanding Application Business Connector Services

¢

Receive the request from
participating applicaticn

Transform the content inta EBO

v

Create the Enterprise Businass
Massags

¥

Execute the customer extansion
to do additional transformation

¥

Call Enterprise Business Service

¥

Transform the received responss
inta application business object

v

Execute the customer extension
to do additional transformation

o

Requester-specific ABCS interacting with Request/Response Interaction Style

The following activity diagram depicts the high-level flow of activities in a requester-specific
ABCS. The diagram makes an assumption that the EBS with which it is interacting employs a fire-
and-forget interaction style. Note that the steps for running the customer extension to do
additional transformations are optional.

Copyright © 2010, Oracle. All rights reserved. 65

Understanding Application Business Connector Services

¢

Feceive the request from
participating application

Enrich the content (optional) |

———-—r———--l

Transform the conten: into EBO

¥

Craate the Enterprise Business
Massage

¥

Execute the customer extension
to do additicnal transformation

¥

Call Enterprise Business Service

o

Requester-specific ABCS interacting with request/response interaction style

The following activity diagram illustrates the high-level flow of activities in a requester-specific
ABCS. The diagram makes an assumption that the EBS with which it is interacting employs a fire-
and-forget interaction style. Note that the steps for running the customer extension to do
additional transformations are optional.

¢

Raceive the request from
participating application

Enrich the content {optional) |

——.—-—r—-—--l

Transform the content inta EBD

v

Craate the Enterprise Business
Massage

¥

Execute the customer extension
to do additional transformation

v

Call Enterprise Business Service

O

Requester-specific ABCS interacting with fire-and-forget interaction style

66 Copyright © 2010, Oracle. All rights reserved.

Understanding Application Business Connector Services

4.5.2. Provider-Side ABCS

The provider-side Application Business Connector Service has the following core responsibilities:

e Transformation of an EBM into a provider application-specific ABM.
e Invocation of any extension handler that a customer may have registered.

This extension handler could be used by a customer to perform any additional
transformations. The extension handler is passed to the ABM and the transformed ABM is
passed back as the response. This extension handler enables customers to perform
additional transformations on the ABM before the ABM is passed to the provider application
business service.

Note. This functionality is not used by the Oracle AlA Process Integration Packs for
Communications.

e Performance of any necessary validations to ensure that the ABM that needs to be passed to
the participating provider application complies with the constraints enforced by the
participating application.

¢ Invocation of the provider application business service.

One or multiple calls may be made to the provider application business service.

For more information, see Architectural Considerations.

¢ Transformation of an ABM into an EBM. The response message sent by the provider
application needs to be returned to the caller application. In this case, it would be EBS.
Because EBS expects only EBM as the output, the transformation needs to be done to
transform the ABM into an EBM.

o Creation of an EBM that encompasses the previously mentioned EBO.

o Population of the message header section with the appropriate values.

For more information, see EBM Architecture.

¢ Invocation of any extension handler that a customer may have registered.

This extension handler could be used by a customer to perform any additional
transformations. The extension handler is passed to the EBM and the transformed EBM is
passed back as the response. This extension handler enables customers to perform
additional transformations on the EBM before the document is passed to the EBS.

Note. This functionality is not used by the Oracle AlA Process Integration Packs for
Communications.

Copyright © 2010, Oracle. All rights reserved. 67

Understanding Application Business Connector Services

Return of the document to the EBS.

The following activity diagram depicts the high-level flow of activities in a provider-specific ABCS.
The diagram makes an assumption that the EBS with which it is interacting employs a
request/response interaction style

?

Receive the reguest from Enterprise
Business Service

Transform the EBMinto application
business message

¥

Execute the customer extension to do
additional transformation (optional))

¥

Perform validation on the application
business message (if necessary)

!

Call application specific business function

v

Perform additional calls f needed to consaolidate
a message or because of fine-grained APls

!

Transform the enriched content into EBM

¥

Execute the customer extension to do additional
transformation (optional)

-

Create the Enterprise Business Message

¥

Return the response to enterprise business
service

&

Provider-specific ABCS interacting with request/response interaction style

The following activity diagram depicts the high-level flow of activities in a provider-specific ABCS.
The diagram makes an assumption that the EBS with which it is interacting employs a fire-and-
forget interaction style.

68

Copyright © 2010, Oracle. All rights reserved.

Understanding Application Business Connector Services

?

Receive the requeast from
enterprise business service

Enrich the content (optional) |

—————r————-l

Transform the EBM into
application business chject

¥

Executs the customer extension
to do additional transformation

v

Perform walidation on the
application business message
(if necessary)

!

Call application specific
business function

v

Perform additional calls if needed
to consolidate a messags or
because of fine-grained AFIs

&

Provider-specific ABCS interacting with fire-and-forget interaction style

4.6. Reviewing Implementation Technologies for
ABCS

Oracle AlA provides two blueprints for implementing an ABCS: Oracle Mediator and BPEL.

4.6.1. Oracle Mediator

The Oracle Mediator blueprint can be applied in situations in which you do not need the ABCS to
do additional enrichment and validation of the content. In this model, the ABCS are implemented
as Mediator services.

This enables customers to easily add transport adapters either before the client-side ABCS or
after the provider-side ABCS to use a different transport. This will involve only configuration
changes.

For more information about using Oracle Mediator, see Oracle Application Integration
Architecture Foundation Pack: Development Guide, “Designing and Developing Enterprise
Business Services” and “Tuning AlA Process Integration Packs.”

Copyright © 2010, Oracle. All rights reserved.

69

Understanding Application Business Connector Services

4.6.2. BPEL

BPEL is used when the ABCS must augment content, validate content, or both. In most
situations, the ABCS will need to have a conversation with one or more participating applications
to enrich the content. It may also have to handle state management.

In this scenario, BPEL is the preferred technology. BPEL enables you to perform the tasks listed
previously and also enables you to extend the connector. This architecture doesn't preclude you
from implementing the ABCS using procedural object-oriented languages such as Java or C++.

BPEL will also be used when a Mediator service can't be used to implement the ABCS either due
to the constraints in Mediator technology or due to the complexities.

For more information about using BPEL, see Oracle Application Integration Architecture
Foundation Pack: Development Guide, “Designing Application Business Connector Services,”
“Constructing the ABCS,” and “Completing ABCS Development.”

4.7. Extending or Customizing ABCS
Processing

Oracle AlA facilitates the use of different transports without having to modify the delivered
artifacts. For example, you could add a third-party billing application-specific implementation
without modifying the Query Customer Party EBS. Similarly, you can change the transport
mechanism by which the services provided by the participating application are invoked without
having to modify the ABCS.

Each of the client-side and provider-side ABCS implementing request/response pattern provides
four extensibility points. In the case of the requester ABCS, two extensibility points are provided
prior to the invocation to the EBS and two after the receipt of response message from EBS. In
case of provider ABCS, two extensibility points are provided prior to the invocation of application-
specific service and two after the receipt of response from the application service. In case of fire-
and-forget patterns, the ABCS will have only two extensibility points. These extensibility points
can be used to inject additional behavior. The services for injecting additional behavior can have
capabilities such as custom validation or custom transformations. Transformations are used
primarily for any additional elements that have been introduced at the implementation site. You
can use this feature to introduce any additional processing that needs to be done without having
to customize the delivered ABCS. The extension service is passed either the EBM or the ABM,
depending on the situation. The content is passed as context to the extension service and the
extension service returns the content after performing the alterations.

For more information about ABCS, see Oracle Application Integration Architecture Foundation
Pack: Development Guide, “Completing ABCS Development.”

Note. This functionality may not be supported by all process integration packs.

70 Copyright © 2010, Oracle. All rights reserved.

Understanding Application Business Connector Services

4.8. Processing Multiple Instances

Because an EBM can carry multiple instances, the provider ABCS should be able to iterate
through each of the instances and process them. Not all EBMs have support for carrying multiple
instances. But EBMs that are created specifically for supporting bulk processing can be defined to
support multiple instances.

The ABCS can decide whether its application has the ability to process the instances in bulk form.
If the application has the ability, then the ABCS transforms the content into ABM format for all of
the instances and hands them over to the participating application by invoking the service. Upon
receiving the response, the ABCS transforms the content of each instance back into EBM format,
consolidates them in an EBM, and returns the message to the EBS.

If the provider application doesn't have the capability to process all of them in bulk, then the
provider ABCS must invoke the services of the provider application for each of the instances,
consolidate them, and return that message to the EBS.

4.9. Participating Applications Invoking ABCS

When a requester application encounters a business event, it might send a request to get details
from another application by invoking an ABCS. At the time of invocation, the requester application
will pass the ABM to the ABCS. The requester application can either pass everything that an
ABCS will ever need or it can pass just the bare minimum, which in turn could be used by ABCS
as the driver to fetch relevant details from the client-side participating application. In the latter
approach, the ABCS might need to engage in conversations with the participating application to
get all of the details relevant to compose an EBM. Although the architecture can support both
approaches, Oracle highly recommends that the participating applications resort to the first
approach to minimize overhead.

Because the ABCS will be responsible for enclosing an EBO in an EBM, much of the information
pertaining to population of the EBM header with attributes also needs to be passed by the
participating application. For this reason, in addition to passing the business content, the
participating application will also be passing data that is related to the source environment. This
information is needed to associate an EBM with the originator.

For more information, see EBM Architecture.

The participating application is also responsible for specifying the locale that was used to
construct the ABM. This locale can be used to interpret the locale-specific content. This enables
the translation of locale-specific content into locale-independent content and vice versa.

Copyright © 2010, Oracle. All rights reserved. i

Understanding Application Business Connector Services

4.10. ABCS Transformations

The transformations found in ABCS are participating application-specific components. The main
responsibility of ABCS is to perform transformations and invoke the services provided by the
participating application. The transformations result in replacement of application-specific fields
with some generic fields and vice versa. The transformation also involves the replacement of any
static and non-static application-specific identifiers with a common identifier. The nonstatic
identifier-related transformations are done with the help of the Mediator cross-reference facility.
The types and number of transformations done in a single ABCS depend upon the design
patterns employed and the type of participating application with which the service is interacting. A
single ABCS can interact with either a client-side or provider-side participating application.

For more information about ABCS, see Oracle Application Integration Architecture Foundation
Pack: Development Guide, “Working with Message Transformations.”

4.10.1. Transformation: Implementation Approach

Two ways are available by which transformation can be implemented. In the case of ABCS that
are specific to a particular action, the entire set of transformations is present in an XSL file. The
ABCS invokes the XSL file to perform the transformations.

The architecture also provides a facility for you to provide transformations for additional elements
that were introduced as a part of their implementation. The customer-specific transformations
don't modify the artifacts delivered by Oracle AlIA and hence will survive upgrades.

The ABCS transformations handle:

e Cross-referencing
e Error-handling
¢ Validation rules (such as format validation)

Transformations can be simple or complex. The following transformation map patterns are
handled by the Oracle AlA service:

e Data field mapping
e Static data cross-referencing
e Dynamic data cross-referencing

e Structural transformation

72 Copyright © 2010, Oracle. All rights reserved.

Understanding Application Business Connector Services

4.10.2. Static Data Cross-Referencing

Different applications and common component objects frequently use different values for
enumerated types. For example, the values for the Country common component object may be
the full country name, such as United States of America, while it could be a two-letter code, such
as US in an ERP application. Static cross-referencing maps the values between an application
and the common component object model. It would map the US and United States of America
values presented in this example. Similar to dynamic cross-referencing, static cross-referencing
uses a scheme to store and resolve the cross-references. However, in this case, the mapping is
static and the mapping table is populated only at design time. The domain value mapping facility
that is available in the Mediator is used to facilitate static data cross-referencing.

4.10.3. Dynamic Data Cross-Referencing

Typically, each application generates its own set of identifiers or keys for the data objects that it
stores. A data object replicated in multiple applications ultimately has different IDs or keys in
different applications. Identifying that given data objects are the same becomes an issue of
identifying the mapping between these keys. The EBS provides a dynamic cross-referencing
scheme that assigns a common or global key to data objects and maintains mappings between
application-specific keys and the common key in a dynamic cross-referencing table.

4.10.4. Structural Transformation

Structural transformation provides the transformation between two different, but related,
structures. Some examples include:

e Joining a sibling to a single child
e Converting rows to columns

e Converting columns to rows

Copyright © 2010, Oracle. All rights reserved. 73

5. Understanding Interaction Patterns

Oracle Application Integration Architecture (AlA) solutions are delivered as Mediator and BPEL
services to create specific integration scenarios between named participating applications. The
services interact with each other in various ways, giving rise to diverse interactive styles and
patterns for exchanging messages between services. This chapter lists various patterns,
highlights the features, and presents guidelines for choosing patterns based on their suitability to
an integration scenario.

This chapter provides an overview of patterns for exchanging messages and discusses:
e Request/response
e Fire-and-forget
= Message routing
» Message splitting and routing
e Data enrichment
o Data aggregation
e Asynchronous request—delayed response pattern

e Publish-and-subscribe

For more information, see Oracle Application Integration Architecture Foundation Pack:
Development Guide.

5.1. Patterns for Exchanging Messages

Business requirements drive the need for different patterns to exchange messages between
participating applications in an integration scenario.

In any application integration, the core functionalities of the best applications are leveraged to
accomplish tasks by linking them to business processes. The functionalities are exposed as APls.
Events in applications trigger information interchange as a straight-through process consisting of
multiple tasks spanning multiple applications. This can be real-time or batch mode. From the
perspective of events triggering the information interchange, the interactions can be invocations
that are synchronous, asynchronous, or a combination of the two.

Synchronous operations wait for a response before continuing. This forces the operations to
occur in a serial order. It is often said that an operation blocks or waits for a response.
Synchronous operations open a communication channel between the parties, make the request,
and leave the channel open until the response occurs. This method is effective unless large
numbers of channels are being left open for long periods of time. In that case, asynchronous
operations may be more appropriate. The synchronous pattern may not be necessary or
appropriate if the end user does not need an immediate response.

Copyright © 2010, Oracle. All rights reserved.

Understanding Interaction Patterns

Asynchronous operations do not wait for a response before continuing. This allows operations to
occur in parallel. The operation does not block or wait for the response. Asynchronous operations
will open a communication channel between the parties, make the request, and close the channel
before the response occurs. Message correlation is used to relate the inbound message to the
outbound message. This method is effective when large numbers of transactions could take long
periods of time to process. If the operations are short or need to run in serial, synchronous
operations may be more appropriate. The asynchronous pattern is effective if the end user does
not need immediate feedback.

The basic patterns for exchanging messages along with variations of the basic patterns are
detailed in the following sections.

5.2. Request/Response

In this pattern, a requester sends a request message to a replier system, which receives and
processes the request, ultimately returning a message in response. This enables two applications
to have a two-way conversation with one another over a channel.

5.2.1. Synchronous Response

Consider the following business problem: An application making a request to get information from
an external system has to wait until the response is received.

e Use case

A CRM application needs to get account details from a billing application. When the service
rep clicks a button in the CRM application to get the account details for a customer, the CRM
application sends an Application Business Message (ABM) to the Siebel Get Account Details
Application Business Connector Service (ABCS), which is responsible for invoking the Get
Account Details Enterprise Business Service (EBS). The CRM application waits for the ABM
to be returned by the Siebel Get Account Details ABCS before it can render the information
on the screen.

e Synchronous requester/response

The requester sends a request and waits for a response message. The service provider
receives the request message and responds with either a response or a fault message. After
sending the request message, the requester waits until the service provider responds with a
message or a time-out. Both the request and the response messages are independent.

5.3. Fire-and-Forget

Consider the following business problem: A customer integrating two applications doesn't want
the sender application to be affected due to nonavailability of the receiving application.

e Use case

76 Copyright © 2010, Oracle. All rights reserved.

Understanding Interaction Patterns

The customer has CRM On Demand and CRM On Premises applications. The customer
wants the opportunities that are created in the CRM On Demand application to be created as
quotes in the CRM On Premises application. The conversion of opportunity to quote happens
in real time to near real time. But at the same time, nonavailability of the CRM On Premises
application should have no impact on the functioning of the CRM On Demand application.
Also, no work that is done on CRM On Demand during nonavailability of CRM On Premises
can be lost.

e Asynchronous transaction using queue/topic

Oracle AlA uses queues for asynchronous and reliable delivery of messages. CRM On
Demand, upon occurrence of a business event, can either push the message directly into a
queue or send a SOAP message over HTTP to a JMS message producer (a Mediator
adapter) that will be responsible for entering the message in the queue. CRM On Demand
can consider the message as sent as soon as the message is dropped into the queue. With
this mechanism, the CRM On Demand application can continue sending new messages
regardless of whether the CRM On Premises is available. A JMS consumer (another
Mediator/BPEL service with JMS adapter) is responsible for dequeuing the messages and
invoking the CRM On Demand ABCS. Having the CRM On Demand ABCS, EBS, the CRM
On Premises ABCS, and the web services as part of the transaction initiated by the JMS
message producer will ensure that the message gets removed from the queue only after the
successful completion of the task in the CRM On Premises application.

5.3.1. Message Routing

Consider the following business problem: A customer with multiple applications providing the
same business function wants to employ certain criteria to identify the application that can provide
service for a specific request.

e Use case

The customer has two billing systems—one from vendor A and one from vendor B. The
customer uses vendor A's billing system for servicing EMEA customers and vendor B's billing
system for servicing North American customers. The customer has a CRM system that needs
to get bill details for their customers. They don't want the CRM system to be responsible for
routing the request to the appropriate billing system.

o Message routing/mediation

Oracle AlA architecture enables the requester to be completely decoupled from the provider.
For this use case, Get Bill Details will be the EBS operation. Each of the billing applications
provides ABCS for Get Bill Details. The ABCS of the CRM application is integrated only with
the Get Bill Details EBS. The Get Bill Details EBS is implemented as a Mediator routing
service. The customer can define the routing rules at this level to identify the appropriate
ABCS that needs to be invoked. For EMEA customers, vendor A's ABCS will be invoked; and
for North America customers, vendor B's ABCS will be invoked. Each of the vendor's ABCS
will be responsible for interacting with their applications to get the bill details and hand them
over to EBS in Enterprise Business Message (EBM) format

For more information, see Understanding Enterprise Business Services.

Copyright © 2010, Oracle. All rights reserved. 77

Understanding Interaction Patterns

Consider the following business problem: A customer with multiple instances of the same
application providing the same business function wants to employ certain criteria to identify the
application instance that can provide service for a specific request.

e Use case

The customer has two instances of the Oracle BRM application in their ecosystem—BRM
Instance A and B. The customer uses BRM instance A for servicing EMEA customers and
instance B for servicing North American customers. The customer has a CRM system that
needs to get bill details for their customers. They don't want the CRM system to be
responsible for routing the request to the appropriate BRM instance.

e Message routing/mediation

Oracle AlA architecture enables the requester to be completely decoupled from the provider.
For this use case, Get Bill Details will be the EBS operation. Only one ABCS for the BRM
application will exist. This ABCS will be responsible for routing the request to the right
instance. The ABCS of the CRM application will be integrated only with the Get Bill Details
EBS. The Get Bill Details EBS is implemented as a Mediator routing service. The customer
can define the routing rules at this level to identify the appropriate ABCS that needs to be
invoked. The customer needs to define a transformation service for populating the target
system information in the EBM header. The BRM ABCS will use the information present in
the EBM header to route the request to the right BRM instance.

For more information, see Understanding Enterprise Business Services.

5.3.2. Message Splitting and Routing

Consider the following business problem: A business document with multiple line entries needs
each one of the line items to be handled differently

e Use case

The customer has two billing systems—one from vendor A and another from vendor B. The
customer uses vendor A's billing system for broadband customers and vendor B's billing
system for wireless customers. The customer has a CRM system that sends a Process Order
Request EBM that can contain requests for both the services. In this situation, the
broadband-related portion of the order needs to be sent to vendor A's billing system and the
wireless product-related portion of the order needs to be sent to vendor B's billing system.

e Message splitting and routing

The CRM system (CRM ABCS) will invoke the Process Order EBS operation. The
implementation will be a BPEL process that is responsible for splitting the order business
document into multiple business documents each having data for only one order line. After
splitting the documents, each of these is handed over to another EBS, such as Activate
Service. This EBS will use the routing rules to decipher the billing system that needs to be
used.

78 Copyright © 2010, Oracle. All rights reserved.

Understanding Interaction Patterns

5.4. Data Enrichment

Consider the following business problem: The requester application does not send all of the
required data that is necessary for invoking the EBS.

e Use case

The CRM application passes only the order identifier as part of the ABM to the requester
ABCS for invoking the Order Fulfillment process. However, the ProcessOrder EBS expects
the entire order object to be passed as the payload.

e Data enrichment of the ABM

This may be required in situations in which the ABM that is received from the participating
application does not contain all of the required content. The enrichment can be done by
issuing additional calls to the participating application to get more information. In this
situation, the ABCS is responsible for interacting with the participating application using web
services (or JCA-based adapters, if available) to get all of the required information to enrich
the ABM. The participating application is responsible for exposing the needed business
capabilities as web services.

5.5. Data Aggregation

Consider the following business problem: The provider application does not return all of the
required data expected by EBS.

The provider application does not have a service that matches the granularity of the EBS
operation.

e Use case

The EBS operation Get Bill Details provides complete bill information for a particular
customer. It passes the customer identifier and the specific month as the input parameters to
the service provider. It expects the complete bill details from the provider. The billing
application has a web service that can provide only bill summary. The application doesn't
have a single service that can provide the complete details. However, it does have services
to get details for every part of the bill.

e Data aggregation of the ABM

Situations will occur in which you need to make multiple interactions with the provider
application to get all of the content; and then combine them to produce a single response that
can be returned to the EBS. For this use case, the ABCS for the billing application will
interact three times with the provider application using three web services—for getting bill
header, bill summary, and for bill details. After retrieving all of the content, the ABCS will be
responsible for combining the three ABMs and producing a single EBM.

Consider the following business problem: Information needed for providing the response is
spread across multiple applications.

e Use case

Copyright © 2010, Oracle. All rights reserved. 79

Understanding Interaction Patterns

The EBS operation Get Bill Details provides complete bill information (information for all of
the services in one bill) for a particular customer. It passes the customer identifier and the
specific month as the input parameters to the service provider. It expects the complete bill
details from the provider. However, the customer has one billing application that has
information about wireless services only, another that has information about broadband only,
and a third system that has information about land line-related services.

e Data aggregation of the ABM

The ABCS for the Get Bill Details EBS needs to retrieve details from multiple billing
applications. It is responsible for interacting with each of these applications using the services
provided by them. This ABCS is also responsible for consolidating them into a single
response. After retrieving all of the content, the ABCS will combine the three ABMs and
produce a single EBM.

5.6. Asynchronous Request — Delayed
Response Pattern

A request — delayed response pattern is asynchronous in nature. In this situation, the requester
sends the request message and sets up a callback for a response. The requester will not be
waiting for the response after sending the request message. A separate thread listens for the
response message. When the response message arrives, the response thread invokes the
appropriate callback, and processes the response. The EBS would have a pair of operations—
one for sending the request and another for receiving the response. Both the operations will be
independent and atomic. A correlation mechanism is used to establish the caller’s context.

In a request — delayed response pattern, the requesting service invokes a one-way request
operation in an EBS. The requesting service waits for the response. The EBS invokes the
providing service. The providing service, after ensuring that the request is serviced invokes the
response EBS. The response EBS pushes the response to the requested service waiting for the
asynchronous response. If an error occurs in the providing service, the response is sent with fault
information populated. In the Customer EBS WSDL, the one-way operation meant for request is
defined in the portType having all the operations, which are either Request — Response or
Request only. The one-way operation meant for response is defined in the portType having all the
operations, which are for Response.

5.7. Publish-and-Subscribe

Multiple integration scenarios exist in which participating applications publish events and
messages that are subscribed to by multiple participating applications. This pattern is
transactional in the sense that changes are made to the entities in the participating applications.
These scenarios require an asynchronous and durable implementation model.

For more information about the publish-and-subscribe interaction pattern and implementing the
publish-and-subscribe programming model, see Oracle Application Integration Architecture
Foundation Pack: Development Guide, “Establishing Resource Connectivity.”

80 Copyright © 2010, Oracle. All rights reserved.

6. Understanding Extensibility

This chapter provides an overview of extensibility and discusses:

e Schema extensions

e Transformations extensions
e Transport/flow extensions

e Process extensions

¢ Routing extensions

6.1. Extensibility

One of the capabilities of the architecture is to allow for various artifacts of prebuilt integrations to
be extended by customers. It also ensures that these extensions are protected during the
upgrades, although for some extensions, configurations may have to be done after the upgrade to
point to the artifacts. The Oracle Application Integration Architecture (AlA) artifacts have been
designed and constructed from the ground up to have native support for extensibility.

Configuring the
routing rules o
identify service .
provider Wodify ermor

“handling |
i Altering the
dﬁdm% enrichment . Maodifying the Replacing
acaimona process payload object existing service
payload | new content | |

from the

P application Siebel CRM
Eé___ I : . Enterprise '
;:;EH Validate » Enrich > Transform --. Business =~ PSFT CRM

) Service
- R | — 8 .- - u-_'_j' e
ABO | | ABCservice | y, wuj
Chanaina the | f Altering the | o
S fransform | Reguesting System
h D " process to | ;
channs | account for new | Adding new -
Changing | fields or change service
validation rules the way providers

existing fields
are tfransformed

lllustration of customer extensibility points

Copyright © 2010, Oracle. All rights reserved.

81

Understanding Extensibility

6.2. Schema Extensions

Oracle AlA facilitates the extension of delivered Enterprise Business Objects (EBOs) to
accommodate the introduction of industry-specific and customer-specific needs.

The EBO is extensible to meet the specific needs of an implementation. Extensions are clearly
separated from the original structure of the EBO delivered by Oracle AIA so that future delivered
versions will not override any extensions that have been defined.

All of the EBO extensions have been designed to reside in the extension-specific namespaces.
Extensions must use their own namespace name for two reasons:

e Each family of extensions must be distinguishable from the core components of the XML
format and other extensions.

Without providing such identification, naming conflicts might occur between different
extensions or between extensions and future additions to the core specification. Hence, the
customer and vertical-specific extensions will each reside in their own namespace.

e A straightforward path should exist from identifying an extension to learning more about it.
Two approaches are available for implementing extensibility:
e Customer-specific extensions

e Industry-specific extensions

6.2.1. Customer Extensions

Every component that is available in an EBO is enabled to accommodate customer-specific
extensions. Every component has an additional element added at the very end that is designed to
accommodate customer-specific attributes that may be applicable to that component. In an
implementation, a customer may decide to complete the definition for the data types for which
data elements are of interest.

For more information about extension-enabling an EBO and about how to add customer-
specific attributes to an existing EBO, see the Oracle Application Integration Architecture
Foundation Pack: Development Guide.

6.2.2. Industry-Specific Extensions

The architecture allows for incorporating industry-specific attributes as overlays. An industry-
specific object can be created by assembling a set of business components that are available at
the core with a set of industry-specific components. This approach is available only for delivering
industry-specific EBOs by Oracle. Customers can add industry-specific content using the
approach listed in Customer Extensions.

82 Copyright © 2010, Oracle. All rights reserved.

Understanding Extensibility

6.2.3. Schema in the Use Case

When implementing the Get Account Balance use case, you might want business-specific
information such as usage details about the customer to be retrieved from the billing system.
Assume that this information is available in BRM and that this information is made available by
BRM web service. You want the usage details to be rendered on a Siebel screen along with the
other information that has been brought from BRM. For this additional content to be sent to the
calling application through integration, you need to extend the Enterprise Business Message
(EBM), in this use case, the Query Customer Party Response EBM.

6.3. Transformation Extensions

The transformation scripts that are delivered as part of prebuilt integrations are made extension-
ready. This allows for customer-defined transformations to be introduced in a nonintrusive
manner and ensures that customer-specific transformation-related extensions are durable.

Every component in the EBM, including the EBM header, contains an extensibility point that can
be configured to add the necessary transformations. A transformation script exclusively dedicated
for housing customer extensions is delivered. You can add transformation code to the templates
that are available in the customer-specific transformation script to specify transformation rules for
the newly introduced content.

In this release, the XSLT extensibility programming model focuses on providing hooks for
customers to add maps only to the new elements they have added to EBM. The programming
model at this time does not provide mechanisms for overriding the existing maps for certain
elements. Similarly, adding maps to existing elements that have no maps provided by the PIPs
are not addressed.

6.3.1. Extensions in the Use Case

You will see what needs to be done to send the extensions to the Siebel screen in the Get
Account Balance use case. The Oracle BRM Application Business Connector Service (ABCS) for
Query Customer Party is responsible for transforming the Application Business Message (ABM)
into an EBM. Assume that the BRM web service has already retrieved the details and made them
available in the ABM. Now you need to make sure that the content present in ABM is made
available in EBM.

You leverage the predefined extensibility point and include the code for transformations in the
extensions script. The customer-specific content Usage Details is available in the Query
Customer Party Response EBM.

The Enterprise Business Service (EBS) operation Query Customer Party returns the Customer
Party Response EBM back to the Siebel Query Customer Party ABCS. The transformation script
that is present in this ABCS is responsible for transforming the EBM into an ABM, which is then
sent to the Siebel application. You will again use the transformation script that is exclusively
meant for customer extensions and include the code pertaining to this transformation. Now the
Siebel ABM will get the ABM from the ABCS and can display the Usage Details on the screen.

Copyright © 2010, Oracle. All rights reserved.

83

Understanding Extensibility

6.4. Transport/Flow Extensions

Oracle AlIA enables you to change the transport channel by which the messages travel between
the participating application and the connector services in a nonintrusive manner. For example,
the prebuilt integration that is delivered with the system might use SOAP/HTTP to transport the
message between Siebel CRM and the connector service. But at implementation time, you might
decide to ship the data using a file. This change can be made in a configurable manner without
making any customizations to the delivered artifacts.

6.5. Process Extensions

The architecture provides recommendations on how the ABCS as well as the orchestration
processes (Composite Business Processes [CBPs] and Enterprise Business Flows [EBFs]) can
be designed to allow the customers to introduce the extensions to augment the functionality.

Each of the BPEL processes can have its own set of extensibility points based on the functional
needs. You can implement the interface that will be defined for each of the extensibility points to
either augment or override the behavior. ABCS are recommended to have a minimum of four
extensibility points, in case of request/response pattern, to enable customers to inject additional
behavior. In case of the fire-and-forget pattern, the services are expected to have a minimum of
two extensibility points. The orchestration processes might decide not to have any extensibility
points.

Refer to the appropriate Process Integration Packs (PIPs) to check whether they have support for
process extensions.

6.6. Routing Extensions

Oracle AlA enables you to add custom routing rules using the custom extension points provided
in the custom EBS. This enables you to route the message to any other homegrown applications
or services plugged into the Oracle AlA to extend your service provisioning for any service
request.

84 Copyright © 2010, Oracle. All rights reserved.

CAVS

Validate SalesOrderPortal ABC Simpl

=

CAVS

Create a new custom EBS service
for customers to add new Routing
Rules

+ Add a new Routing Rule to EBS for
each operation invoking the
custom EBS service

Routing extensions

Understanding Extensibility

For more information about whether a PIP supports routing extensions, see the respective PIP |

implementation guide.

Copyright © 2010, Oracle. All rights reserved.

85

7. Understanding Versioning

This chapter provides details about how Oracle Application Integration Architecture (AIA) handles
versions for Enterprise Business Objects (EBOs), services, and participating applications. Major
and minor versions, backward compatibility, and naming conventions are discussed.

This chapter discusses:

e Schema versioning
e Service versioning

e Participating applications versioning

7.1. Schema Versioning

Oracle AlA allows for the natural evolution of EBOs. Each of the EBOs continues to evolve over
multiple generations as you add content, remove existing content, or change the semantics or
characteristics of existing content. The primary reasons for changes in EBOs are:

e Product enhancements
e Bug fixes

e Adoption of new technologies and language enhancements

7.1.1. Major and Minor Versions

Each of the EBOs in the library has its own release life cycle, so each object has a version
number that is used to differentiate versions. EBO version numbers are not aligned with
participating applications release numbers, and new releases of participating applications do not
necessarily result in introduction of new versions of the objects.

The version number is composed of two parts—major and minor version number.

A new major version number is introduced when the object undergoes the following types of
changes, which could break the backward compatibility of the object:

e Changing the meaning or semantics of existing components

e Adding required components

e Removing required components

e Restricting the content model of a component, such as changing a choice to a sequence
e Changing the type of an element or attribute

A new minor version number is introduced when the object undergoes the following types of
changes:

Copyright © 2010, Oracle. All rights reserved.

87

Understanding Versioning

¢ Adding optional components, such as elements, attributes, or both
¢ Adding optional content, such as extending an enumeration

¢ Adding, changing, or removing default initializations, changing the order of elements in a
choice, and so forth

Backward compatibility means that newer clients must be able to interpret data from older
services. Forward compatibility means that older clients must be able to interpret data from newer
services.

The major and minor terminology used in this section refers to characteristics of the change, not
to any quantitative measure. One small change could be sufficient to qualify for a major version
change if that change breaks backward compatibility. Similarly, enormous changes may result in
a minor version change if backward compatibility is not broken.

The Enterprise Object Library will always be cumulative. Within a single major version, the
schema module for that EBO might have undergone several iterations of changes that warranted
incrementing of minor version number. For every iteration of backward-compatible changes, the
minor version number will be incremented. Hence, the schema file that is present in the folder
related to the major version will always contain the latest and greatest. The Enterprise Object
Library will contain the latest version of the schema module for every one of the major versions
introduced for each of the EBOs. In the future, deprecation rules will be laid out pertaining to how
the earliest major versions can be brought to end of life.

A release that updates the major version number of an EBO contains changes that might
sometimes make it incompatible with the prior major release. This means that consumer
applications that depend on an earlier major release might need to be modified to work with the
new release. On the other hand, a release that updates the minor version number of an EBO is a
backward-compatible change. This means that an application written against version 1.0 will work
when targeted against versions 1.1 and 1.2, but may fail if moved to version 2.0 of the EBO.

Because Oracle AlA leverages a service-oriented architecture that involves the common adoption
of the request/response interaction style by the web services, backward and forward compatibility
surface at the same time. When a provider application is upgraded, the provider application
needs to be backward compatible to understand requests from older requesters. At the same
time, requesters need to be forward compatible to recognize the responses of the provider
application. Compatibility in both directions, at least among minor versions, ensures the utmost
degree of independence of providers and requesters.

Because the architecture will not mandate (in most situations) that the requester and provider of
the message be upgraded at the same time, additional transformations must be provided to
transform XML messages written against previous major versions into a format to work against
the newer versions and vice versa. In some cases, these transformations may not be technically
feasible or may not make functional sense. In these situations, the applications receiving the
messages will cause a fatal error.

The version of the schema is identified with the help of the schema declaration version attribute
that is available in the XML schema and with the help of a required custom attribute on the XML
instance document. An XML instance specifies exactly which namespace and minimal version it
is structured to validate against. The XML instance does not use the schemalocation attribute.
The XML instance documents provide the schemaVersion attribute on the top-level Enterprise
Business Message (EBM) element to indicate the version of the schema used to generate the
document. For example:

<GetAccount ... schemaVersion="1.1"> ... </GetAccount>

88 Copyright © 2010, Oracle. All rights reserved.

Understanding Versioning

7.1.2. Namespaces

Each of the EBOs has its own namespace. This is advantageous because it minimizes the
duplication of names and it provides the flexibility for letting each of the business objects have its
own release cycle. The namespace uses the following format:

http://xmins.oracle.com/EnterpriseObjects/Core/EBO/[object name]/v[version number]

The namespace name will be the same across multiple minor and major versions and will be
changed only when the schemas undergo major architectural changes. Introducing backward-
incompatible changes alone don’t warrant namespace changes.

Here is a sample namespace:

http://xmins.oracle.com/EnterpriseObjects/Core/EBOParty/v1

The innermost layer of the objects library is a set of namespaces that contain those constructs
that are commonly used throughout the Enterprise Objects Library. Some of these namespaces
include core component types, business datatypes, and core datatypes. In earlier releases, only
one namespace will hold all of the common components and reference components.

These namespaces are imported by the next layer of namespaces, which denote functional
areas. Each second-layer namespace has a set of declarations that are specific to a business
process or functional area. For example, the documents used for placing a purchase order all
reside in the PurchaseOrder namespace.

In addition, customer-specific namespaces exist that are designed to house customer-specific
extensions.

When the innermost layer namespaces are versioned, the next layer namespaces are also
versioned if they have to leverage the new common constructs. The functional layer-specific
namespaces can be versioned independently because the functional-layer namespaces have no
necessary dependency on them. The innermost layer does not import the functional layer-specific
namespaces. This scheme implies that the entire snapshot as a whole has no actual version—it
is merely a group of interdependent schema modules that are versioned independently.

7.2. Service Versioning

Oracle AlA allows for the natural evolution of Enterprise Business Services (EBSs). A change,
either in the interface definition or the implementation that could affect the contract that the
consumer relies upon will lead to the creation of a new version of the service.

With this concept, Oracle AlA facilitates the co-location of multiple implementations of a single
EBS with each version being totally identifiable. Multiple versions of the same service allows for
consumers to use a particular version of the service that caters to their needs. Introduction of a
new version of the service doesn't force the consumers of a specific version of the service to
switch to the latest version immediately.

Copyright © 2010, Oracle. All rights reserved.

89

Understanding Versioning

Service ConsSumer f=-—

‘l'___J

Service CONSUMET = = Invoice EBS

|
Caontract changes
resulting in new varsion
h J

Invoice EBS

Service Consumer == sl Version 2

lllustration of versioning

7.21. Naming Conventions

This section discusses the naming conventions only with respect to versioning.

Similar to EBOs, each of the EBSs in the library will have its own release life cycle and each of
the services will have a version number. The first version of the service will not have a number
affixed to it. The default value will be 1.0. Subsequent versions of the service will have numbers
affixed to the name of the service to differentiate different versions of the object. This construct
allows for multiple versions of the service to be co-located in the same ecosystem and enables
you to recognize the multiple versions of the same service. The EBS version numbers will not be
in alignment with those of participating applications release numbers. New major releases of
participating applications do not necessarily result in the introduction of new versions of the
services.

7.3. Participating Applications Versioning

The applications that participate in the integration will also continue to evolve regardless of
whether they are playing a requester or provider role. The new versions of the applications can
introduce enhancements to their native functionality, to the underlying connecting technologies, or
to the web services standards. The Application Business Connector Services that are specific to
participating applications will not have any impact if the new version of the participating
application does not introduce any changes pertaining to the connectivity/transport protocol, web
service definitions, or payloads.

90 Copyright © 2010, Oracle. All rights reserved.

8. Understanding Batch Processing

In situations that warrant the high-performance movement and transformation of very large
volumes of data between heterogeneous systems in batch, real time, and synchronous and
asynchronous modes, Oracle Application Integration Architecture (AlA) leverages Oracle's
extract, transform, and load (ETL) tool called Oracle Data Integrator. By implementing an ETL
architecture, based on the relevant RDBMS engines and SQL, Oracle AlA can perform data
transformations on the target server at a set-based level, giving a much higher performance.

Oracle AlA leverages batch processing technology for the following types of use cases:

e To perform an initial synchronization of reference data across disparate applications
e To load an Operational Data Store to provide fresh, integrated information

e To load production databases from data entered over the Internet (by sales forces, agencies,
suppliers, customers, and third parties) that strictly respects security constraints

e To leverage the use of Cross Reference and Domain Value Map, for those cases in which the
data transferred is used for the running of services from an Integration Scenario

For more information about batch processing, see the Oracle Application Integration
Architecture Foundation Pack: Development Guide, “Using Oracle Data Integrator for Bulk
Processing.”

Copyright © 2010, Oracle. All rights reserved.

91

9. Understanding Security

Oracle Application Integration Architecture (AlA) provides support for all security-related functions
including:

¢ Identification

o Authentication (verification of identity)
e Authorization (access controls)

e Privacy (encryption)

¢ Integrity (message signing)

e Non-repudiation

e Logging

The service-oriented architecture (SOA)-based integration approach allows for clear separation
between the interface and the actual business logic. This provides the security architect with a
number of choices in deploying security for SOA and web services.

For example, a SOAP web service interface such as CreateSalesOrder can be hosted as a proxy
instead of the real endpoint that hosts the business logic implementation. The gateway proxies
communication to and from the web service and performs security functions on behalf of the service
endpoint. The actual endpoint is virtualized. Even though the client thinks it is talking directly to the
service provider, it communicates through the proxy.

Oracle AlA leverages web service administration tools such as Oracle Web Services Manager
(OWSM) in a nonintrusive manner to ensure the validity as well as safety of the XML messages
exchanged between services. This methodology ensures that no enforcement of web services
security is in silo mode. This approach enables integration architects and developers to focus on
integration logic, and the security architects and administrators to focus on security and management.
Having security policies enforced via a centralized tool enables the administrators to ensure that the
corporate rules are applied as well as to apply the policy changes centrally instead of applying them
in each of the web services. With tools such as OWSM, an administrator creates security and
management policies using a browser-based tool as and when needed during deployment. Security
should be avoided unless it is absolutely needed as it degrades performance. A typical web service
security policy could:

e Decrypt the incoming XML message

e Extract the user's credentials

e Perform an authentication for this user

e Perform an authorization check for this user and this web service

o Write a log record of the preceding information

o Pass the message to the intended web service, if all steps are successful

e Return an error and write an exception record, if all of the steps are not successful

Copyright © 2010, Oracle. All rights reserved. 93

Understanding Security

To apply the security policy, OWSM intercepts every incoming request to a web service and applies
any one of the policy items listed previously. As the policy is executed, OWSM collects statistics
about its operations and sends them to a monitoring server. The monitor displays errors, service
availability data, and so on. As a result, each web service in an enterprise network can automatically
gain security and management control, without the service developer coding extra logic.

9.1. Point-to-Point or End-to-End Security

Because a typical interaction in the Oracle AIA framework will be part of multiple discrete interactions
involving a service requester, client-specific Application Business Connector Service (ABCS),
Enterprise Business Service (EBS), server-specific ABCS and the service provider, choosing a
security model plays a critical role.

Oracle AlA provides support for point-to-point and end-to-end security models. The architecture
enables you to choose one over the other at the implementation time for each of the transactions.

To choose a specific security model and implementation technique, the following issues should be
discussed:

e Can an entire transaction be considered as secured as long as the individual discrete
transactions are secured?

e Can the trusted model expressed previously be agreed to in principle, or must it be enforced
using certificates provided by a certificate authority for the discrete interactions?

e Can the communication-level security methods such as SSL encryption be used to secure the
individual discrete transactions within a trusted model?

Adoption of the industry-standard WS-Security security model is possible, provided that all
participating applications in the transactions provide inherent support.

9.2. Transport-Level Security

Existing technologies such as SSL can be used to secure the transport channel. SSL enables two
applications to securely connect over a network and authenticate each other. It also enables you to
encrypt the data exchanged between the applications. In Oracle's Web Services Security model, this
transport security mechanism can be used to provide point-to-point security, data integrity, and data
confidentiality.

9.3. Message-Level Security

Oracle AlA places strong emphasis on message-level security. For a web service, XML encryption
provides security for applications that require a secure exchange of data. While SSL was considered
the standard way to secure data exchanges, it has limitations. For example, assume that a document
visits several web services before hitting its eventual endpoint. By using XML encryption, the
document can be encrypted while at rest or in transport. Encrypting only portions of a document
instead of the whole document is also possible.

94 Copyright © 2010, Oracle. All rights reserved.

Understanding Security

9.4. Securing ABCS

The ABCS passes the participating application-specific security credentials, such as the user ID,
under which the transaction in the participating application should run.

The identity information of service requester, such as user name, is propagated from end-to-end. This
identity information can then be used for authorization by the application providing the service.

9.5. Implementation Techniques for Enterprise
Service Bus Security

Consider whether the client identity and password need to be transmitted from one end to another via
the Enterprise Business Message (EBM) header.

Use custom headers in the WS-Header section to transmit the security information to the server-side
ABCS. The ABCS will be responsible for interpreting the custom header information and invoking the
participating application in the appropriate manner.

For more information about security, see Oracle Application Integration Architecture Foundation
Pack: Development Guide, “Working with Security.”

Copyright © 2010, Oracle. All rights reserved. 95

Index

ABCS
application interfaces, 59
architecture, 56, 58
characteristics, 58
extending processing, 70
implementation, 62
internationalization, 61
localization, 61

message consolidation and
decomposition, 62

participating applications invoking, 71

participating application's service
granularity, 58

provider, 56, 67
requester, 55, 63
responsibilities, 56
security, 95

support for EBM, 59

support for insulating the service provider,
60

support for logging and monitoring, 60

support for multiple application instances,
62

support for security, 60
validations, 61
VETORO pattern, 57
ABCS implementation technologies, 69
BPEL, 70
Oracle Mediator, 69
ABCS transformations, 72
dynamic data cross-referencing, 73

static data cross-referencing, 73

Copyright © 2010, Oracle. All rights reserved.

structural transformation, 73

transformation - implementation approach,
72

Application Business Connector Services.
See ABCS

asynchronous fire and forget pattern, 49
asynchronous operations, 76

asynchronous request — delayed response
pattern, 80

asynchronous request—delayed response
pattern, 51

backward compatibility, 88
batch processing, 91
customer extensions, 82
data aggregation, 79
data enrichment, 79
dynamic data cross-referencing, 73
EBF
processes, 44
EBM
architecture, 31
considerations, 31
header, 32
EBO
characteristics, 29
EBS
architecture, 40

asynchronous request-delayed response
pattern, 51

content based selection of the service
provider, 42

implementation, 45

message exchange patterns, 48

97

Index

operations, 36

purpose, 42
responsibilities, 46

reusing available assets, 40

substituting one service provider with
another, 41

synchronous request-response pattern, 48
types, 37
verbs, 37
Enterprise Business Flow. See EBF
Enterprise Business Messages. See EBM
Enterprise Business Objects. See EBO
Enterprise Business Services. See EBS
entity services, 37
characteristics, 38
standard activities, 37
extending ABCS processing, 70
extensibility, 81
fire and forget, 76
forward compatibility, 88
interaction patterns

asynchronous request-delayed response,
80

data aggregation, 79
data enrichment, 79
fire and forget, 76
message routing, 77
message splitting and routing, 78
request/response, 76
synchronous response, 76
major versions, 87
message exchange patterns, 48

asynchronous request-delayed response
pattern, 51

synchronous request-response pattern, 48

message routing, 77

98

message splitting and routing, 78
message-level security, 94
minor versions, 87
namespaces, 89
naming conventions for versioning, 90
operations, 36
participating applications invoking ABCS, 71
process extensions, 84
process services, 39
characteristics, 39
processing multiple instances, 71
provider ABCS, 56, 67
publish-and-subscribe, 80
request/response, 76
requester ABCS, 55, 63
routing extensions, 84
schema extensions, 82
schema versioning, 87
security, 93
ABCS, 95
message-level, 94
point-to-point, 94
transport-level, 94
service versioning, 89
static data cross-referencing, 73
structural transformation, 73
synchronous operations, 75
synchronous request-response patterns, 48
synchronous response, 76
transformation extensions, 83
transformations
ABCS, 72
implementation approach, 72
transport/flow extensions, 84

transport-level security, 94

Copyright © 2010, Oracle. All rights reserved.

use case
extensions, 83

verbs, 37

version number, 87

versions

Copyright © 2010, Oracle. All rights reserved.

backward compatability, 88

forward compatability, 88

naming conventions, 90

participating applications, 90
VETORO, 57

Index

99

	Contents
	Preface
	Oracle AIA Guides
	Additional Resources

	Understanding the Oracle AIA Reference Architecture
	Introduction
	Describing the Goals of AIA
	Describing Possible Integration Types Using AIA
	Describing Integration Styles Using AIA
	Describing the Integration Flow Concept
	Describing Integration Through Native Application Interfaces Using the Oracle Applications Technology Infrastructure
	Describing Direct Integration Through Application Web Services Using Oracle SOA Suite
	Describing Integration Through Packaged Canonical and Standardized Interfaces Using Oracle Foundation Packs
	Describing Bulk Data Integration with an Extra, Transform, and Load Approach Using Oracle Data Integration Suite
	Integrations for High-Volume Transactions without an Xref Table

	Describing AIA Reference Process Models
	What is a Business Process?
	What is a Business Activity?
	What is a Business Task?
	What is a Composite Business Flow?

	Describing a Conceptual View of AIA
	What is a Service Consumer?
	What are AIA Conceptual Services?
	What are Provider Applications and Resources?

	Describing the AIA Shared Service Inventory
	What is a Process Service?
	What is an Activity Service?
	What is a Data Service?
	What is a Utility Service?
	Implementing Process Services
	Common Scenarios for Process Services

	Implementing Activity Services
	Common Scenarios for Activity Services

	Implementing Data Services
	Common Scenarios for Data Services

	Describing AIA Service Artifacts
	What is a Composite Business Process?
	What is an Enterprise Business Service?
	What is an Enterprise Business Flow?
	What is an Application Business Connector Service?

	Understanding Enterprise Business Objects and Enterprise Business Messages
	EBOs
	EBMs
	EBM Architecture
	EBM Headers

	Understanding Enterprise Business Services
	EBS
	EBS Operations
	Verbs
	EBS Types
	Entity Services
	Process Services

	EBS Architecture
	Enterprise Business Flow Processes
	EBS Implementation
	EBS Message Exchange Patterns
	Synchronous Request-Response Patterns in EBSs
	Asynchronous Fire-and-Forget Patterns in EBSs
	Asynchronous Request–Delayed Response Patterns in EBSs

	Understanding Application Business Connector Services
	ABCS
	ABCS Architecture
	ABCS Characteristics
	Architectural Considerations
	Participating Application's Service Granularity
	Support for EBMs
	Application Interfaces
	Support for Logging and Monitoring
	Support for Insulating the Service Provider
	Support for Security
	Validations
	Support for Internationalization and Localization
	Message Consolidation and Decomposition
	Support for Multiple Application Instances

	Implementing ABCS
	Requester-Side ABCS
	Provider-Side ABCS

	Reviewing Implementation Technologies for ABCS
	Oracle Mediator
	BPEL

	Extending or Customizing ABCS Processing
	Processing Multiple Instances
	Participating Applications Invoking ABCS
	ABCS Transformations
	Transformation: Implementation Approach
	Static Data Cross-Referencing
	Dynamic Data Cross-Referencing
	Structural Transformation

	Understanding Interaction Patterns
	Patterns for Exchanging Messages
	Request/Response
	Synchronous Response

	Fire-and-Forget
	Message Routing
	Message Splitting and Routing

	Data Enrichment
	Data Aggregation
	Asynchronous Request – Delayed Response Pattern
	Publish-and-Subscribe

	Understanding Extensibility
	Extensibility
	Schema Extensions
	Customer Extensions
	Industry-Specific Extensions
	Schema in the Use Case

	Transformation Extensions
	Extensions in the Use Case

	Transport/Flow Extensions
	Process Extensions
	Routing Extensions

	Understanding Versioning
	Schema Versioning
	Major and Minor Versions
	Namespaces

	Service Versioning
	Naming Conventions

	Participating Applications Versioning

	Understanding Batch Processing
	Understanding Security
	Point-to-Point or End-to-End Security
	Transport-Level Security
	Message-Level Security
	Securing ABCS
	Implementation Techniques for Enterprise Service Bus Security

	Index

