

Oracle Application Integration Architecture
Foundation 11g Release 1 (11.1.1.2.0):
Infrastructure Components and Utilities Guide

Release 1 (11.1.1.2.0)

Part No. E17366-01

April 2010

Oracle Application Integration Architecture Foundation Pack 11g Release 1 (11.1.1.2.0): Infrastructure Components and

Utilities Guide

Part No. E17366‐01

Copyright © 2010 Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their

respective owners.

This software and related documentation are provided under a license agreement containing restrictions on use and

disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or

allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,

perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation

of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error‐free. If you find any

errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.

Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers

are “commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition

Regulation and agency‐specific supplemental regulations. As such, the use, duplication, disclosure, modification, and

adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the

extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227‐19, Commercial

Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or

intended for use in any inherently dangerous applications, including applications which may create a risk of personal

injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail‐safe,

backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates

disclaim any liability for any damages caused by use of this software in dangerous applications.

This software and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with
respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third party content, products or services.

Copyright © 2010, Oracle. All rights reserved. iii

Contents

Preface .. 9

Oracle AIA Guides ... 9

Additional Resources ... 9

Part: Working with the CAVS .. 11

1. Introduction to the CAVS ... 13

1.1. Describing the Purpose of the CAVS .. 13

1.2. Describing Key Components of the CAVS Framework... 14

1.3. Describing the CAVS Design Assumptions and Knowledge Prerequisites 15

2. Preparing to Use the CAVS ... 17

2.1. What Can I Test Using CAVS? ... 17

2.2. What Are the Oracle AIA Components That I Need to Test? ... 17

2.3. Which Message Exchange Pattern Is Being Used by the Components Being Tested? 18

2.3.1. Describing CAVS Process Flows for Testing the Synchronous Message Exchange Pattern
 ... 18

2.3.2. Describing CAVS Process Flows for Testing the Asynchronous (Notify) Message
Exchange Pattern .. 20

2.3.3. Describing Flows for Testing the Asynchronous Two-Way Message Exchange Pattern ... 22

2.4. Does the Scenario Need to be Unit or Flow Tested? ... 24

2.4.1. Describing a Unit Test Configuration .. 24

2.4.2. Describing a Flow Test Configuration ... 25

2.4.3. Describing a Complex Flow Test Configuration .. 25

2.5. Do I Have the Content I Need to Create the Definitions? ... 26

2.5.1. How to Obtain Message XML Text from a BPEL Process .. 27

3. Introduction to Defining and Running CAVS Tests Using the CAVS UI .. 29

3.1. Describing the CAVS UI .. 29

3.2. Overview of Defining and Running CAVS Tests ... 30

3.3. How to Execute CAVS Definitions as Web Services .. 32

3.4. How to Execute CAVS Definitions Using ANT .. 32

4. Creating and Modifying Test Definitions .. 35

4.1. How to Create a Test Definition .. 35

4.2. How to Modify a Test Definition .. 38

4.3. How to Provide Multiple Request and Response Message Sets in a Single Test Definition 45

Contents

iv Copyright © 2010, Oracle. All rights reserved.

5. Creating and Modifying Simulator Definitions .. 49

5.1. How to Create a Simulator Definition .. 49

5.2. How to Modify a Simulator Definition .. 52

5.3. How to Provide Multiple Request and Response Message Sets in a Single Simulator Definition .
 .. 56

5.4. How to Create a Simulator Definition that Supports Chatty Services ... 58

5.5. How to Send Dynamic Responses in a Simulator Response ... 60

6. Searching for Test and Simulator Definitions .. 63

6.1. How to Search for and Work with Test and Simulator Definitions .. 63

7. Working with Group Definitions ... 67

7.1. How to Work with Group Definitions ... 67

7.2. How to Create and Modify a Group Definition .. 68

8. Defining CAVS Routing Setup IDs ... 71

8.1. Introduction to CAVS Routing Setup IDs .. 71

8.2. How to Create CAVS Routing Setup IDs .. 72

8.3. How to Search for CAVS Routing Setup IDs .. 74

8.4. How to Modify Routing Setup IDs ... 75

8.5. How to Set Up CAVS Routing Configurations Without Creating Routing Setup IDs 76

9. Working with Test and Simulator Instances... 79

9.1. How to Work with Test and Simulator Instances .. 79

9.2. How to View Test Instance Details ... 81

9.3. How to View Simulator Instance Details ... 85

10. Working with Group Instances .. 89

10.1. How to View Group Instances ... 89

10.2. How to View Group Instance Details .. 90

11. Purging CAVS-Related Cross Reference Entries to Enable Rerunning of Test Scenarios 93

11.1. How to Purge CAVS-Related Cross Reference Entries to Enable Rerunning of Test Scenarios ..
 .. 93

12. Exporting and Importing CAVS Definitions and Instances .. 95

12.1. How to Export and Import Definitions ... 95

12.2. How to Export Test and Simulator Instances .. 97

12.3. How to Export Group Instances .. 98

Part: Setting Up and Using Error Handling and Logging .. 101

13. Introduction to Oracle AIA Error Handling ... 103

13.1. Introduction to the Error Handling Framework .. 103

Contents

Copyright © 2010, Oracle. All rights reserved. v

13.1.1. Fault Categories .. 106

13.2. Introduction to Error Handling for Business Faults ... 106

13.3. Introduction to Error Handling for BPEL and Mediator System Faults...................................... 107

13.4. Introduction to Error Handling for Oracle B2B Errors.. 107

14. Setting Up Error Handling ... 111

14.1. Introduction to Setting Up Error Handling ... 111

14.2. How to Create Error Handling User Roles .. 114

14.3. How to Associate Email Addresses with Error Handling User Roles .. 115

14.4. How to Configure Notification Details ... 115

14.5. How to Set Up AIA Error Handling Configuration Details ... 116

14.5.1. What You Need to Know about Setting Up Error Handling Configurations 119

15. Using Error Notifications ... 121

15.1. Introduction to Error Notifications .. 121

15.2. Setting Up Error Notification Throttling ... 122

15.2.1. Introduction to Error Notification Throttling ... 122

15.2.2. How to Enable Error Notification Throttling ... 123

15.2.3. How to Configure Error Notification Throttling Parameters ... 123

15.3. Customizing Error Notification Emails ... 124

15.3.1. Introduction to Error Notification Customization .. 125

15.3.2. How to Customize the Subject Line of Error Notification Emails 127

15.3.3. How to Customize the Body Text of Error Notification Emails .. 129

15.3.4. How to Customize Additional URLs Provided in Error Notification Email Body Text 131

15.4. Disabling Error Notifications .. 135

16. Using the Oracle BPM Worklist ... 137

16.1. Introduction to the Oracle BPM Worklist ... 137

16.2. How to Enable the Oracle BPM Worklist .. 139

16.3. How to Use the Oracle BPM Worklist ... 139

17. Using the Message Resubmission Utility .. 141

17.1. Introduction to the Message Resubmission Utility .. 141

17.2. How to Use the Message Resubmission Utility .. 141

18. Using Trace and Error Logs .. 145

18.1. Introduction to Trace and Error Logging ... 145

18.2. How to Enable Trace Logging ... 145

18.3. How to Set Trace Log Levels .. 146

18.4. How to Access Trace and Error Logs ... 147

Contents

vi Copyright © 2010, Oracle. All rights reserved.

18.4.1. Accessing Oracle AIA Logs in the Oracle Enterprise Manager Console 147

18.4.2. Searching for Oracle AIA Log Messages .. 148

18.4.3. Accessing Oracle AIA Log XML Files ... 149

19. Accessing Oracle B2B Errors .. 151

Part: Working with Oracle AIA Developer Tools ... 153

20. Introduction to AIA Developer Tools ... 155

20.1. Overview of AIA Developer Tools ... 155

21. Using the XSL Mapping Analyzer ... 157

21.1. Overview of XMAN .. 157

21.2. Generating XMAN Reports ... 158

21.2.1. Overview of Optional XMAN Command Line Switches .. 159

21.2.2. How to Invoke XMAN in Single File Mode .. 159

21.2.3. How to Invoke XMAN in Directory Mode ... 160

21.2.4. How to Invoke XMAN in PIP Mode ... 160

21.2.5. How to Invoke XMAN in All-PIP Mode .. 161

21.2.6. How to Import XMAN CSV Output into Microsoft Excel .. 161

21.3. Adding XMAN Annotations to XSLT Files ... 162

21.3.1. Overview of XMAN Annotations in XSLT Files ... 162

21.3.2. Describing XMAN Annotation Structure and Placement in XSLT Files 163

22. Using the PIP Auditor .. 167

22.1. Overview of the PIP Auditor .. 167

22.2. Generating PIP Auditor Reports.. 168

22.2.1. How to Generate PIP Auditor Reports Using a Command Line 168

22.2.2. How to Generate PIP Auditor Delta Reports Using a Command Line 170

22.2.3. What You Need to Know about Generating PIP Auditor Reports 170

22.3. Trend Analysis Chart ... 171

22.4. Changing Default PIP Auditor Configurations ... 172

22.5. Creating Custom Rules for PIP Auditor .. 173

22.5.1. Describing a Rule .. 174

22.5.2. Describing Rule Parameters ... 176

22.5.3. Describing a Rule Executor ... 177

22.5.4. Describing Tests and TestSuites .. 177

22.5.5. Describing Rule Files .. 178

22.5.6. Describing Test Suite Files ... 179

22.5.7. Describing Rule and Test Releases and Customization ... 180

Contents

Copyright © 2010, Oracle. All rights reserved. vii

22.5.8. How to Execute Newly Created and Customized Rules ... 181

23. Using the PIP Shared Artifact Analyzer .. 183

23.1. Overview of the PIP Shared Artifact Analyzer .. 183

23.2. Generating PIP Shared Artifact Analyzer Reports .. 184

24. Using the XSD Flattener ... 187

24.1. Overview of the XSD Flattener .. 187

24.2. Generating XSD Flattener CSV Files .. 187

24.2.1. How to Flatten a Single XSD File into a CSV File ... 188

24.2.2. How to Flatten a Full or Partial EOL into a CSV File .. 188

25. Hosting Mapping and Technical Compliance Reports .. 191

26. Appendix: XML Structures of Exportable CAVS Definitions and Instances 193

26.1. Definition.xml ... 193

26.2. Instance.xml .. 195

27. Appendix: Understanding GenerateScriptInput.xml .. 197

27.1. Describing GenerateScriptInput.xml Elements ... 197

27.1.1. Application ... 197

27.1.2. EBSRoutingRules.. 198

27.1.3. EBF ... 198

27.1.4. CommonSeedData .. 198

27.1.5. CompatiblePIP .. 199

27.1.6. IncompatiblePIP .. 199

27.1.7. PIPName ... 199

28. Appendix: Delivered PIP Auditor Rule Executors ... 201

28.1. XPathExecutor Rule Parameters .. 201

28.1.1. Mandatory Params .. 201

28.1.2. Optional Params.. 202

28.2. FSExecutor Rule Parameters ... 204

28.2.1. Mandatory Params .. 204

28.2.2. Optional Params.. 204

28.3. Available Operations for XPathExecutor ... 205

28.4. Available Operations for FSExecutor .. 214

Index .. 215

Copyright © 2010, Oracle. All rights reserved. 9

Preface

Welcome to the Oracle Application Integration Architecture Foundation Pack 11g Release 1 (11.1.1.2.0):
Infrastructure Components and Utilities Guide.

Oracle Application Integration Architecture (AIA) provides the following guides and resources for this
release:

Oracle AIA Guides

 Oracle Application Integration Architecture Foundation Pack: Installation Guide

 Oracle Application Integration Architecture Foundation Pack: Getting Started with the Oracle AIA

Foundation Pack and Demo

 Oracle Application Integration Architecture Foundation Pack: Concepts and Technologies Guide

 Oracle Application Integration Architecture Foundation Pack: Development Guide

 Oracle Application Integration Architecture Foundation Pack: Infrastructure Components and Utilities

Guide

 Oracle Application Integration Architecture Foundation Pack: Reference Process Model Guide

 Oracle Application Integration Architecture Foundation Pack: Migration Guide for Foundation Pack

2.X to Foundation Pack 11gR1 (11.1.1.2.0)

Additional Resources

The following resources are also available:

Resource Location

Oracle Application Integration Architecture Foundation Pack:

Product-to-Guide Index

My Oracle Support: https://support.oracle.com/

Known Issues and Workarounds My Oracle Support: https://support.oracle.com/

Release Notes Oracle Technology Network: http://www.oracle.com/technology/

Documentation updates My Oracle Support: https://support.oracle.com/

https://support.oracle.com/
https://support.oracle.com/
http://www.oracle.com/technology/
https://support.oracle.com/

Copyright © 2010, Oracle. All rights reserved. 11

Part: Working with the CAVS

 Introduction to the CAVS

 Preparing to Use the CAVS

 Introduction to Defining and Running CAVS Tests Using the CAVS UI

 Creating and Modifying Test Definitions

 Creating and Modifying Simulator Definitions

 Searching for Test and Simulator Definitions

 Working with Group Definitions

 Defining CAVS Routing Setup IDs

 Working with Test and Simulator Instances

 Working with Group Instances

 Purging CAVS-Related Cross Reference Entries to Enable Rerunning of Test Scenarios

 Exporting and Importing CAVS Definitions and Instances

Copyright © 2010, Oracle. All rights reserved. 13

1. Introduction to the CAVS

This chapter discusses the following topics:

 Describing the Purpose of the CAVS

 Describing Key Components of the CAVS Framework

 Describing the CAVS Design Assumptions and Knowledge Prerequisites

1.1. Describing the Purpose of the CAVS

The Composite Application Validation System (CAVS) is a framework that provides a structured
approach to test integration of Oracle Application Integration Architecture (AIA) services. The CAVS
includes test initiators that simulate web service invocations and simulators that simulate service
endpoints.

In the context of AIA, where there is a sequence of service invocations; spanning Application
Business Connector Services (ABCSs), Enterprise Business Services (EBSs), Enterprise Business
Flows (EBFs), and participating applications; the CAVS test initiators and simulators enable a layered
testing approach. Each component in an integration can be thoroughly tested without having to
account for dependencies by using test initiators and simulators on either end.

Consequently, when you build an integration, you have the ability to add new components to an
already tested subset, allowing any errors to be constrained to the new component or to the interface
between the new component and the existing component. This ability to isolate and test individual
web services within an integration provides the benefit of narrowing the test scope, thereby distancing
the service test from possible faults in other components.

Test initiators and simulators can be used independent of each other, thereby allowing users to
effectively substitute them for non-available AIA services or participating applications.

The CAVS provides a repository that stores these test initiator and simulator definitions created by
the CAVS user, as well as an interactive user interface to create and manage the same. Tests can be
configured to run individually or in a single-threaded batch.

The CAVS provides value as a testing tool throughout the integration development life cycle:

 Development

Because integration developers working with AIA are dealing with integrating disparate systems,

they typically belong to different teams. To this end, the CAVS provides an effective way to

substitute dependencies, letting developers focus on the functionality of their own service rather

than being preoccupied with integrations to other services.

 Quality assurance

The CAVS allows quality assurance engineers to unit and flow test integrations, thereby providing

a way to easily certify different pieces of an integration. The reusability of test definitions,

simulators, and test groups helps in regression testing and provides a quick way to certify new

versions of services.

Introduction to the CAVS

14 Copyright © 2010, Oracle. All rights reserved.

1.2. Describing Key Components of the CAVS
Framework

The CAVS framework operates using the following key components:

 Test definition

 Simulator definition

Test Definition

The CAVS test initiator reads test data and feeds it to the web service being tested. You create the
test data as a part of a test definition. The test definition is a configuration of the test initiator and
contains test execution instructions.

The CAVS user creates a definition using the CAVS user interface (UI) to define the service endpoint
URL that needs to be invoked, as well as the request message that will be passed along with
metadata about the test definition itself.

For more information about creating test definitions, see Creating and Modifying Test Definitions.

The test initiator is a logical unit that executes test definitions to call the endpoint URL defined and
creates test instances. This call is no different from any other request initiated by other clients. If the
test definition Service Type value is set to Synchronous or Asynchronous two-way, the actual
response can be verified against predefined response data to validate the accuracy of the response.

This diagram illustrates the high-level concept of the test initiator:

CAVS Test Definition

Simulator Definition

The CAVS simulator is used to simulate a web service. Simulators typically contain predefined
responses for a specific request. CAVS users create several simulator definitions, each for a specific
set of input.

At runtime, the CAVS simulator framework receives data from the service being tested. Upon
receiving the request, CAVS locates the appropriate simulator definition, validates the input against
predefined request values, and then returns predefined response data so that the web service being
tested can continue processing.

For more information about creating simulator definitions, see Creating and Modifying Simulator

Definitions.

Introduction to the CAVS

Copyright © 2010, Oracle. All rights reserved. 15

This diagram illustrates the high-level concept of the CAVS simulator:

CAVS Simulator

1.3. Describing the CAVS Design Assumptions
and Knowledge Prerequisites

The CAVS operates with the following design assumptions:

 The CAVS assumes that the requester and provider ABCSs it is testing are implemented using

BPEL.

 The CAVS is designed to initiate requests and simulate responses as SOAP messages using

SOAP over HTTP. The request and response messages that you define in test and simulator

definitions must contain the entire XML SOAP document, including the SOAP envelope, message

header, and body (payload).

 The correlation logic between the test initiator and the response simulator is based on

timestamps only. For this reason, test and simulator instances generated in the database schema

will not always be reconcilable, especially when the same web service is invoked multiple times

during a very short time period, as in during performance testing.

 The CAVS does not provide or authenticate security information for web services that are initiated

by a test initiator or received by a response simulator. However, security information passed

through the system by the web service can be used as a part of verification and validation logic.

 When a participating application is involved in a CAVS testing flow, execution of tests can

potentially modify data in a participating application. Therefore, consecutive running of the same

test may not generate the same results. The CAVS is not designed to prevent this kind of data

tampering because it supports the user‟s intention to include a real participating application in the

flow. The CAVS has no control over modifications that are performed in participating applications.

This issue does not apply if your CAVS test scenario uses test definitions and simulator

definitions to replace all participating applications and other dependencies. In this case, all cross-

reference data is purged once the test scenario has been executed. This enables rerunning of the

test scenario.

Introduction to the CAVS

16 Copyright © 2010, Oracle. All rights reserved.

Note. CAVS cross reference data is purged at the end of a test execution when executing a test

definition and at the end of a test group execution when executing a test group definition.

Therefore, if you want to execute test definitions that are dependent on cross referencing data

created by earlier test executions, ensure that you include all dependent test definitions in a test

group and execute the test group.

For more information about how to make test scenarios rerunnable, see Purging CAVS-Related

Cross Reference Entries to Enable Rerunning of Test Scenarios.

To work effectively with the CAVS, users must have working knowledge of the following concepts and
technologies:

 AIA

 XML

 XPath

 SOAP

Copyright © 2010, Oracle. All rights reserved. 17

2. Preparing to Use the CAVS

Before you start creating and running tests in the Composite Application Validation System (CAVS), take
the time to gather your test requirements and plan your approach to using CAVS.

This chapter provides a high-level discussion of the following questions you should answer to help gather
requirements for the tests you want to create and run in the CAVS.

 What Can I Test Using CAVS?

 What Are the Oracle AIA Components That I Need to Test?

 Which Message Exchange Pattern Is Being Used by the Components Being Tested?

 Does the Scenario Need to be Unit or Flow Tested?

 Do I Have the Content I Need to Create the Definitions?

2.1. What Can I Test Using CAVS?

The CAVS supports the following testing scenarios:

 Create and execute test definitions against actual services in participating applications.

 Create and execute test definitions that call services that call simulators, which simulate actual

services in participating applications.

 Use actual services in participating applications in cooperation with simulators to simulate any

unavailable services.

2.2. What Are the Oracle AIA Components That I
Need to Test?

Examine the components involved in the scenario that you need to test. Which of the following
components does the scenario include?

 Requester Application Business Connector Services (ABCSs)

 Provider ABCSs

 Enterprise Business Flows (EBFs)

 Exposed services in participating applications

Preparing to Use the CAVS

18 Copyright © 2010, Oracle. All rights reserved.

2.3. Which Message Exchange Pattern Is Being
Used by the Components Being Tested?

Once you have assessed which components you need to test, identify the message exchange pattern
(MEP) being used by the components to help you determine which types of CAVS test and simulator
definitions you need to create. Based on the sequence of service calls and the MEPs employed, you can
determine if you need to use synchronous, notify, or asynchronous two-way test definitions and/or
simulator definitions.

This section discusses CAVS process flows for testing the following MEPs:

 Synchronous (request-and-response)

 Asynchronous (notify)

 Asynchronous two-way

Note. The information in this chapter provides CAVS processing details that can inform your creation of

test and simulator definitions in the CAVS user interface (UI). As you prepare to define and run tests for a

particular web service, refer to the section in this chapter that corresponds to the message exchange

pattern of the service you want to test.

2.3.1. Describing CAVS Process Flows for Testing the Synchronous
Message Exchange Pattern

The following diagrams describe CAVS process flows for testing a provider ABCS using a synchronous
MEP.

These sample flows can be used as the basis for testing other artifacts as well, such as requester
ABCSs, EBFs, or provider services.

Synchronous MEP Testing Flow Using a Test Definition

The requester participating application is replaced by the CAVS test definition. The test definition points to
the URL of the requester ABCS. It uses a composed request message to invoke the ABCS and expects a
message in response.

Preparing to Use the CAVS

Copyright © 2010, Oracle. All rights reserved. 19

Testing a synchronous MEP using a CAVS test definition

Synchronous MEP Testing Flow Using a Test Definition and Simulator Definition

The requester participating application is replaced by the CAVS test definition. The test definition points to
the URL of the requester ABCS. It uses a composed request message to invoke the ABCS and expects a
message in response.

The provider participating application is replaced by the CAVS simulator definition. The provider ABCS is
programmed to route to this simulator instead of the provider participating application. The simulator
definition contains a predefined request and response message pair.

The simulator definition performs validations on message input from the provider ABCS and sends the
message back to the provider ABCS. The provider ABCS sends the message back to the test definition,
which validates this actual response against its predefined expected response.

Testing a synchronous MEP using a CAVS test definition and simulator definition

Synchronous MEP Testing Flow Using a Simulator Definition

The provider participating application is replaced by the CAVS simulator definition. The provider ABCS is
programmed to route to this simulator instead of the provider participating application. The simulator
definition contains a predefined request and response message pair.

Preparing to Use the CAVS

20 Copyright © 2010, Oracle. All rights reserved.

The simulator definition performs validations on message input from the provider ABCS and sends the
message back to the provider ABCS. The provider ABCS sends the message back to requester
participating application.

Testing a synchronous MEP using a CAVS simulator definition

2.3.2. Describing CAVS Process Flows for Testing the
Asynchronous (Notify) Message Exchange Pattern

The following diagrams describe CAVS process flows for testing a provider ABCS using an asynchronous
(notify) MEP.

These sample flows can be used as the basis for testing other artifacts as well, such as the requester
ABCS, EBF, or the provider service itself.

Asynchronous (Notify) MEP Testing Flow Using a Test Definition

The requester participating application is replaced by the CAVS test definition. The test definition points to
the URL of the requester ABCS. It uses a composed request message to invoke the ABCS and does not
expect a message in response.

Testing an asynchronous (notify) MEP using a CAVS test definition

Preparing to Use the CAVS

Copyright © 2010, Oracle. All rights reserved. 21

Asynchronous (Notify) MEP Testing Flow Using a Test Definition and Simulator Definition

The requester participating application is replaced by the CAVS test definition. The test definition points to
the URL of the requester ABCS. It uses a composed request message to invoke the ABCS and does not
expect a message in response.

The provider participating application is replaced by the CAVS simulator definition. The provider ABCS is
programmed to route to this simulator instead of the provider participating application. The simulator
definition contains a predefined expected request message.

The simulator definition performs validations on message input from the provider ABCS.

Testing an asynchronous (notify) MEP using a CAVS test definition and simulator definition

Asynchronous (Notify) MEP Testing Flow Using a Simulator Definition

The provider participating application is replaced by the CAVS simulator definition. The requester ABCS
is programmed to route to this simulator instead of the provider participating application. The simulator
definition contains a predefined expected request message.

The simulator definition performs validations on message input from the provider ABCS

Testing an asynchronous (notify) MEP using a CAVS simulator definition

Preparing to Use the CAVS

22 Copyright © 2010, Oracle. All rights reserved.

2.3.3. Describing Flows for Testing the Asynchronous Two-Way
Message Exchange Pattern

The following diagrams describe CAVS process flows for testing a provider ABCS using an asynchronous
two-way MEP.

These sample flows can be used as the basis for testing other artifacts as well, such as the requester
ABCS, EBF, or the provider service itself.

Asynchronous Two-Way MEP Testing Flow Using a Test Definition

The requester participating application is replaced by the CAVS test definition. The test definition points to
the URL of the requester ABCS. It uses a composed request message to invoke the ABCS and expects
an eventual message in response. The test definition includes a timeout value. If no response message is
received within this timeout value, the test definition will experience a timeout failure.

Testing an asynchronous two way MEP using a CAVS test definition

Asynchronous Two-Way MEP Testing Flow Using a Test Definition and Simulator Definition

The requester participating application is replaced by the CAVS test definition. The test definition points to
the URL of the requester ABCS. It uses a composed request message to invoke the ABCS and expects
an eventual message in response. The test definition includes a timeout value. If no response message is
received within this timeout value, the test definition will experience a timeout failure.

The provider participating application is replaced by the CAVS simulator definition. The provider ABCS is
programmed to route to this simulator instead of the provider participating application. The simulator
definition contains a predefined request and response message pair.

The simulator definition performs validations on message input from the provider ABCS and sends the
message back to the provider ABCS. The provider ABCS sends the message back to the test definition,
which validates this actual response against its predefined expected response.

Preparing to Use the CAVS

Copyright © 2010, Oracle. All rights reserved. 23

Testing an asynchronous two way MEP using a CAVS test definition and simulator definition

Asynchronous Two-Way MEP Testing Flow Using a Simulator Definition

The provider ABCS is replaced by the CAVS simulator definition. The requester ABCS is programmed to
route to this simulator instead of having the flow reach the provider ABCS.

The simulator definition contains a predefined request and response message pair, as well as a user-
defined delay value. The simulator definition will delay its response by this amount of time to simulate the
asynchronous two-way nature of the provider participating application.

The simulator definition performs validations on message input from the requester ABCS and sends the
message back to the requester ABCS.

Preparing to Use the CAVS

24 Copyright © 2010, Oracle. All rights reserved.

Testing an asynchronous two way MEP using a CAVS simulator definition

2.4. Does the Scenario Need to be Unit or Flow
Tested?

This section discusses different configurations for test and simulator definitions to achieve unit and flow
tests.

2.4.1. Describing a Unit Test Configuration

This section will use a synchronous provider ABCS as the focus of the test example. However, this test
configuration is not specific to message exchange patterns, so it can be applied to asynchronous (notify)
and asynchronous two-way components as well.

To unit test a component, place a test definition before the component and a simulator definition after it.
This isolates the focus of the test to the single component.

Preparing to Use the CAVS

Copyright © 2010, Oracle. All rights reserved. 25

Unit testing a provider ABCS

2.4.2. Describing a Flow Test Configuration

This section will use a synchronous provider ABCS as the focus of the test example. However, this test
configuration is not specific to message exchange patterns, so it can be applied to asynchronous (notify)
and asynchronous two-way components as well.

Once you have unit tested the components in a scenario, you can flow test the scenario. To flow test a
scenario, place a test definition before the requester ABCS at the front of the scenario and a simulator
definition after the provider ABCS at the end of the scenario.

Flow testing a scenario

2.4.3. Describing a Complex Flow Test Configuration

This section will use an EBF as the focus of the test example. However, this test configuration is not
specific to EBFs, so it can be applied to any service that conducts chatty conversations.

You can place a test definition before the requester ABCS at the front of a scenario and enable the EBF
to make calls out to simulator definitions whenever required. You can then go on to replace some of the
provider applications with simulators at the end of the scenario.

Preparing to Use the CAVS

26 Copyright © 2010, Oracle. All rights reserved.

Complex flow testing an EBF

2.5. Do I Have the Content I Need to Create the
Definitions?

Once you know what you need to test and which CAVS definitions you need to create, assess whether or
not you have all of the content you need to create the definitions.

To create your test definitions and simulator definitions, you will primarily need request and response
XML text.

If you are creating a Test Definition (or an asynchronous two-way simulator), you will need the endpoint
URL of the web service you are testing.

The endpoint URL value can be found in the WSDL of the web service that you want to test.

When the endpoint URL is provided, CAVS will present you with available SOAP actions. Once you select
the required SOAP action, CAVS will automatically generate the message stub for the service being
called. You can then include data within the XML tags generated.

In either case, you can use the BPEL Console to obtain request and response XML text. Run the
processes you are testing at least once with all participating applications and services in place and with
the desired results. The XML messages generated by this successful run of the processes will provide
your request and response XML for test and simulator definitions. The following section describes how to
use the BPEL console to obtain these XML messages.

Note. Obtaining response message XML text is only applicable when testing synchronous and

asynchronous two-way processes.

Preparing to Use the CAVS

Copyright © 2010, Oracle. All rights reserved. 27

2.5.1. How to Obtain Message XML Text from a BPEL Process

To obtain request and response message XML text:

1. Access the BPEL Console for your AIA implementation.

2. Click the Instances tab.

3. In the BPEL Process drop-down list box, select the BPEL process for which you are creating a test definition and

click Go. BPEL process instances for the selected BPEL process display in the List of BPEL Process Instances

frame. Sort by Last Modified, if you want to access the most recent instance.

4. Click the link for the instance you want to use for your request and response XML message text.

5. Click the Flow link.

Note. If the instance you selected contains any faults, you may want to consider selecting a different

instance. However, if you are trying to test fault messaging in the BPEL, you must select a BPEL

process instance that contains the fault.

6. To obtain the Request Message XML text:

a. Click the receiveInput element to get your test definition request message XML text.

b. Click the Copy details to clipboard link at the bottom of the pop-up box displaying input Variable
data.

c. Open an XML editor and paste the XML text into a blank document.

d. Remove the opening and closing inputVariable (XYZ_InputVariable, in the case of a non-BPEL
service, such as a participating application service) and part elements.

e. Copy and paste the remaining XML text in the default SOAP envelope provided in the Request
Message field on the Test Definition page or Simulator Definition page. Paste the XML text into
the area indicated by the “Paste your SOAP Message Content here” placeholder text.

7. To obtain the Response Message XML text:

Note. Obtaining response message XML text is only applicable when testing a synchronous process.

a. Click the reply Output element to get your test definition response message XML text.

b. Click the Copy details to clipboard link at the bottom of the pop-up box displaying output Variable
data.

c. Open an XML editor and paste the XML text into a blank document.

d. Remove the opening and closing inputVariable (XYZ_InputVariable, in the case of a non-BPEL
service, such as a participating application service) and part elements.

e. Copy and paste the remaining XML text in the default SOAP envelope provided in the Response
Message field on the Test Definition page or Simulator Definition page.

Copyright © 2010, Oracle. All rights reserved. 29

3. Introduction to Defining and Running
CAVS Tests Using the CAVS UI

This chapter discusses the following topics:

 Describing the CAVS UI

 Overview of Defining and Running CAVS Tests

 How to Execute CAVS Definitions as Web Services

 How to Execute CAVS Definitions Using ANT

3.1. Describing the CAVS UI

The Composite Application Validation System (CAVS) enables you to configure test data, execute tests,
review test results, and migrate tests using the following user interface (UI) components.

Test Definitions

A test definition is a configuration of a single execution of the test initiator service. The test definition
stores test data and test execution instructions. A test definition can be executed alone, or in a single-
threaded batch as a part of a group definition.

You will find that the values you set for a test definition and simulator definition are similar. The test
definition differs from the simulator definition in that it is an active participant in the CAVS framework,
initiating tests. The test definition carries the following values that are not a part of the simulator definition.
These values inform the active state of the test definition:

 Endpoint URL

 SOAP Action

For more information about test definitions, see Creating and Modifying Test Definitions.

If required by the business service pattern of the web service you are testing, you can assign a simulator
definition to the test definition.

Simulator Definitions

A simulator definition is a configuration of a single execution of response simulator service. The simulator
definition simulates a web service and receives data from the tested web service and returns previously
defined data so that the tested web service can continue processing.

You will find that the values you set for a simulator definition and test definition are similar. The simulator
definition differs from the test definition in that it is a passive participant in the CAVS framework, awaiting
initiation.

The simulator definition carries the following additional XPath attributes that are not a part of the test
definition. These values participate in simulator definition request matching:

 Is Node Key

Introduction to Defining and Running CAVS Tests Using the CAVS UI

30 Copyright © 2010, Oracle. All rights reserved.

 Key Node Value

For more information about simulator definitions, see Creating and Modifying Simulator Definitions.

The success of the test is verified based on the simulator definition's previously defined data being
accurately returned and matched to the expected response results defined in the test definition.

Group Definitions

A group definition is a configuration of a single execution of one or more test definitions in a single-
threaded batch.

Test Instances

A test instance captures the details of the execution of a test definition.

Simulator Instances

A simulator instance captures the details of a simulator definition's behavior during the execution of a test
definition with which it is associated.

Group Instances

A group instance captures the details of the execution of a group definition.

Component Overview

This diagram provides a high-level overview of the relationships among the CAVS components discussed
in this section.

Group Definition

Simulator Definition 1

Simulator Instance 1

Group Instance

Test Definition 2

Test Instance 1

Test Instance 2

Web

Service
Test Definition 1

Web

Service

Overview of CAVS component relationships

3.2. Overview of Defining and Running CAVS Tests

This high-level procedure provides the steps involved in defining and running tests using the CAVS UI.

Introduction to Defining and Running CAVS Tests Using the CAVS UI

Copyright © 2010, Oracle. All rights reserved. 31

1. Assess your test requirements and gather required content.

For more information, see Preparing to Use the CAVS.

2. If your test requires a test definition, access the Create Test page to create your test definition.

For more information, see Creating and Modifying Test Definitions.

3. If your test requires a simulator definition, access the Create Simulator page to create your simulator
definition.

For more information, see Creating and Modifying Simulator Definitions.

4. If your test requires a test definition and simulator definition, you can link their definitions on either
Modify Test Definition page or Modify Simulator Definition page.

5. If your test requires multiple (single-threaded) executions of the same or different test definitions,
create a group definition on the Create Group Definition page.

For more information, see Working with Group Definitions.

6. If your test or group definition utilizes a simulator definition, you must set the Application Business
Connector Service (ABCS) being tested to route to the response simulator. To do this:

a. Access the Routing Setup page.

b. Create a routing setup ID for the invoking service being tested.

c. Associate this routing setup ID with the test definition being used to test your scenario.

For more information about routing setup IDs, see Defining CAVS Routing Setup IDs.

d. Alternatively, you can quickly set up a routing configuration on the Configurations page.

For more information about routing configurations, see How to Set Up CAVS Routing

Configurations Without Creating Routing Setup IDs.

7. To run a single test, access the test definition on the Definitions page or Modify Test Definitions page
to run the test.

For more information, see Searching for Test and Simulator Definitions.

To run a group test, access the Group Definition page or Group Definition Detail page to run the

group test.

For more information, see Working with Group Definitions.

8. Once an individual test has been executed, view test results generated for the test instance on the
Test Instances Detail page. If the test definition includes an associated simulator definition, view the
simulator instance on the Simulator Instances Detail page.

Introduction to Defining and Running CAVS Tests Using the CAVS UI

32 Copyright © 2010, Oracle. All rights reserved.

For more information, see Working with Test and Simulator Instances.

Once a group of tests has been executed, view the test results generated for the group instance on

the Group Instance Detail page.

For more information, see Working with Group Instances.

9. Once testing is complete for a test that involved a simulator definition for which you defined a routing
configuration on the Configurations page, be sure to reset the ABCS tested to return to routing to its
usual production destination and no longer route to the response simulator. To do this:

a. Access the Configurations page.

b. Clear the Route To CAVS option.

c. Click Reload.

For more information about routing configurations, see How to Set Up CAVS Routing Configurations

Without Creating Routing Setup IDs.

3.3. How to Execute CAVS Definitions as Web
Services

The CAVS provides a web service that enables you to execute test definitions and test group definitions
without the use of the CAVS user interface.

You can call this CAVS web service from any system:
http://<hostname>:<port>/AIAValidationSystemAPIService/AIAValidationSystemAPIServiceSoapHttpPort.

This web service provides two operations:

 executeDefinition

Executes a given test definition ID.

 executeGroupDefinition

Executes a given test group definition ID.

Typically, these operations can be consumed by third-party testing tools or other systems to execute test
definitions and test group definitions whenever desired, without the use of the CAVS UI.

The WSDL that defines the service contract is:
http://<hostname>:<port>/AIAValidationSystemAPIService/AIAValidationSystemAPIServiceSoapHttpPort
?wsdl.

3.4. How to Execute CAVS Definitions Using ANT

CAVS provides an ANT script that enables you to execute test definitions without the use of the CAVS
user interface. This functionality is useful when trying to automate test execution as a part of automated
deployment processes.

CAVS test definitions can also be executed as web services.

Introduction to Defining and Running CAVS Tests Using the CAVS UI

Copyright © 2010, Oracle. All rights reserved. 33

For more information about the CAVS web service, see How to Execute CAVS Definitions as Web

Services.

To execute a CAVS definition using ANT:

1. Define your test definition using CAVS. In this example, the test definition ID is 601.

2. Navigate to AIAHOME/Infrastructure/CAVS.

3. Run source AIAHOME/bin/aiaenv.sh.

4. Run ant -f AIACAVSInvoke.xml -Did=601.

Copyright © 2010, Oracle. All rights reserved. 35

4. Creating and Modifying Test Definitions

A test definition is a configuration of a single execution of the test initiator service. The test definition
stores test data and test execution instructions. A test definition can be executed alone, or in a single-
threaded batch as a part of a group definition.

This chapter discusses

 How to Create a Test Definition

 How to Modify a Test Definition

 How to Provide Multiple Request and Response Message Sets in a Single Test Definition

4.1. How to Create a Test Definition

To create a test definition:

1. Access the Create Test page. To access the page, access the Oracle Application Integration Architecture (AIA)

Home Page. In the Composite Application Validation System area, click the Go button. Select the Definitions tab.

Click the Create Test button.

Create Test page (1 of 2)

Creating and Modifying Test Definitions

36 Copyright © 2010, Oracle. All rights reserved.

Create Test page (2 of 2)

2. On the Create Test page, use the following page elements to create test definitions.

Id Upon saving the test definition, displays a unique key identifier that
is assigned to the test definition.

Name Enter a descriptive name that you want to use for the test definition.

Type Displays the type of definition you chose to create. On the Create
Test page, this value will always be set to Test.

Service Type Select the business service pattern of the web service that you want
to test using the test definition.

 Synchronous (request-and-reply)

 Notify (asynchronous request-only)

 Asynchronous two way

Service Name Enter the name of the web service that you want to test using the
test definition. This is the name of the web service being called by
the URL provided in the Endpoint URL field.

Service Version Enter the version of the web service that you want to test using the
test definition. This is the version of the web service being called by
the URL provided in the Endpoint URL field.

Process Name Enter the name of the process that includes the web service that
you want to test using the test definition.

PIP Name (Process Integration

Pack name)

Enter the name of the PIP that includes the web service that you
want to test using the test definition.

Endpoint URL Enter the URL of the web service that you want to test using the test
definition. The endpoint URL value can be found in the WSDL of the
web service that you want to test.

Get Operations Click to display the list of operations supported by the WSDL
associated with the Endpoint URL value you provided. Supported
operations display in the Select WSDL Operations window.

Creating and Modifying Test Definitions

Copyright © 2010, Oracle. All rights reserved. 37

Select the operation that you want to test using the test definition.
The selected operation displays in the SOAP Action field.

SOAP Action If you clicked Get Operations to select an operation in the Select
WSDL Operations window, selected operation displays here.

 Alternatively, you can manually enter the operation called by the
web service that you want to test using the test definition. The value
you enter must match an action provided in the WSDL of the web
service that you want to test.

Get Messages Click to generate a request stub message for the operation specified
in the SOAP Action field. For test definitions with the Service Type
field set to Synchronous, the response stub message will also be
generated.

Routing Setup Id Select a routing configuration that you want to use for the test.

For more information about routing configurations, see Defining

CAVS Routing Setup IDs.

Test Messages

Use the Test Messages group box to enter request and response XML message text. By default, SOAP
envelope XML text is provided in these fields. You can use the Get Messages button to generate request
and response stub messages based on selected endpoint URL and operation values. Alternatively, you
can paste XML text within this default SOAP envelope or paste your own XML text already enclosed in an
envelope into these fields.

For more information about obtaining request and response XML message text, see How to Obtain

Message XML Text from a BPEL Process.

For more information about how to create test request and response messages that hold multiple sets

of test data in a single definition, see How to Provide Multiple Request and Response Message Sets in a

Single Test Definition.

Request Message Entering request message XML text for a test definition is required,
whether the Service Type field value is set to Synchronous,
Notify, or Asynchronous two way.

 When you first access the Create Test page, the Request
Message text box is populated with a SOAP stub message.

 You can use the Get Messages button to generate a request stub
message based on selected endpoint URL and operation values.

 If you are manually entering your request message, the “Paste
your SOAP Message Content here” text in the stub message
indicates where you should paste your actual request message
text. This request message should mimic the XML message text
sent by the service that normally initiates the service.

Expected Response Message The ability to enter response message XML text is available when
the Service Type field value is set to Synchronous or
Asynchronous two way.

 When you first access the Create Test page, the Expected
Response Message text box is populated with a SOAP stub

Creating and Modifying Test Definitions

38 Copyright © 2010, Oracle. All rights reserved.

message.

 For test definitions with the Service Type field set to
Synchronous, the response message stub will have been
generated when you clicked Get Messages during request
message generation.

 If you are manually entering your request message, the “Paste
your SOAP Message Content here” text in the stub message
indicates where you should paste your actual response message
text. Enter a response message that is the expected response
message XML. This facilitates the generation of XPath values,
which are used to validate the actual response message returned
in the test. You may also choose to manually enter or modify the
XPath values directly on the Modify Test Definition page. If you are
manually entering XPath values, you do not need to enter
response message XML text.

 When you enter response message XML text on this page, you can
click Generate Xpath on the Modify Test Definition page to
generate the XPath values that will be used to validate the
expected response message you entered on this page against the
actual response returned by the test.

 If the Service Type field value is set to Synchronous or
Asynchronous two way, you may choose to not enter response
message XML text in this field. You do not need to enter response
message XML if you are manually entering XPath values directly
on the Modify Test Definition or if the test you are running does not
require validation of the response message. For example, your test
may be focused on just populating data.

 The Expected Response Message text box is unavailable when
the Service Type field value is set to Notify.

Cancel Click to exit the page and return to the Definitions page.

Next Click to save entries on the Create Test page and go to the Modify
Test Definition page, where you can further edit your test definition,
generate XPaths, and execute the test.

Save Click to save entries on the Create Test page and return to the
Definitions page.

4.2. How to Modify a Test Definition

To modify a test definition:

1. Access the Modify Test Definition page. To access the page, use one of the following navigation paths:

 Enter required values on the Create Test page and click Next. To access the Create Test page,

access the AIA Home Page. In the Composite Application Validation System area, click the Go

button. Select the Definitions tab. Click the Create Test button.

 Click an Id link for an unlocked test definition in the Search Result Selection grid on the

Definitions page. To access the Definitions page, access the AIA Home Page. In the Composite

Creating and Modifying Test Definitions

Copyright © 2010, Oracle. All rights reserved. 39

Application Validation System area, click the Go button. Select the Definitions tab.

 Click a Definition Id link for an unlocked test definition on the Instances page. To access the

Instances page, access the AIA Home Page. In the Composite Application Validation System

area, click the Go button. Select the Instances tab.

 Click a Definition Id link for an unlocked test definition on the Test Instances Detail page. To

access the Test Instances Detail page, access the AIA Home Page. In the Composite Application

Validation System area, click the Go button. Select the Instances tab. Click an instance ID link.

Modify Test Definition page (1 of 3)

Modify Test Definition page (2 of 3)

Creating and Modifying Test Definitions

40 Copyright © 2010, Oracle. All rights reserved.

Modify Test Definition page (3 of 3)

2. Use the following page elements on the Modify Test Definition page to modify an existing test definition and

execute and manage existing test definitions.

The page displays values you have defined for the test definition. You can modify the values in

editable fields.

For more information, see How to Create a Test Definition.

Time-out (msec) (in

milliseconds)

This field displays only for a test definition with a Service Type
value of Asynchronous two way.

Enter the number of milliseconds that you want the test definition to
remain available for the asynchronous reply before timing out. If
this length of time passes before the asynchronous response is
returned, a failure will be issued.

If your test includes a simulator definition, the Time-out (msec)
value you provide here must be greater than the Delay (msec)
value defined on the simulator definition.

For more information about the Delay (msec) field, see How to

Create a Simulator Definition.

Test Messages

Use the Test Messages group box to generate XPath values based on provided response XML message
text. By default, SOAP envelope XML text is provided in these fields. You can use the Get Messages
button to generate request and response stub messages based on selected endpoint URL and operation
values. Alternatively, you can paste XML text within this default SOAP envelope, or paste your own XML
text already enclosed in an envelope into these fields.

For more information about obtaining request and response XML message text, see How to Obtain

Message XML Text from a BPEL Process.

For more information about how to create test request and response messages that hold multiple sets

of test data in a single definition, see How to Provide Multiple Request and Response Message Sets in a

Single Test Definition.

Request Message If request message XML text was entered on the Create Test page,

Creating and Modifying Test Definitions

Copyright © 2010, Oracle. All rights reserved. 41

it is accessible and editable on this page.

 Entering request message XML text for a test definition is required,
whether the Service Type field value is set to Synchronous,
Notify, or Asynchronous two way.

 You can use the Get Messages button to generate a request stub
message based on selected endpoint URL and operation values.

 If you are manually entering your request message, the “Paste your
SOAP Message Content here” text in the stub message indicates
where you should paste your actual request message text. This
request message should mimic the XML message text sent by the
service that normally initiates the service.

Request CorrelationId Message This field only displays for a test definition with the Service Type
field value set to Asynchronous two way. For this service type,
entering a correlation ID value ensures that when the asynchronous
response is actually received, the Composite Application Validation
System (CAVS) is able to correlate it to the correct request.

If your request message is an Enterprise Business Message (EBM),
leave this field blank, as the EBM header ID is automatically used as
the correlation ID. In this case, because the EBM header ID is used
as the correlation ID, do not use it as a key column in the simulator
definition, if applicable.

If your request message is not an EBM, you must enter a correlation
ID value. This correlation must be based on a unique key of the
message. For example, CreateOrder can use Order ID as the
correlation ID.

Click Lookup to access the Choose Request Correlation Id page,
where you can select a correlation ID from XPath variables available
in the message.

Expected Response Message The ability to enter response message XML text is available when
the Service Type field value is set to Synchronous or
Asynchronous two way.

If expected response message XML test was entered on the Create
Test page, it is accessible and editable on this page.

 You can manually enter the response message text on this page, or
for test definitions with the Service Type field set to Synchronous,
you can use the Get Messages button to generate a response stub
message based on selected endpoint URL and operation values.

Entering the expected response message XML facilitates the
generation of XPath values, which are used to validate the actual
response message returned in the test. You may also choose to
manually enter or modify the XPath values directly on the Modify
Test Definition page. If you are manually entering XPath values, you
do not need to enter response message XML text.

 When you enter response message XML text on this page, you can
click Generate Xpath on the Modify Test Definition page to
generate the XPath values that will be used to validate the expected
response message you entered on this page against the actual
response returned by the test.

Creating and Modifying Test Definitions

42 Copyright © 2010, Oracle. All rights reserved.

 If the Service Type field value is set to Synchronous or
Asynchronous two way, you may choose to not enter response
message XML text in this field. You do not need to enter response
message XML if you are manually entering XPath values directly on
the Modify Test Definition or if the test you are running does not
require validation of the response message. For example, your test
may be focused on just populating data.

 The Expected Response Message text box is unavailable when
the Service Type field value is set to Notify. In this case, a
response message is not a test requirement.

Generate Xpath Click to generate namespace and XPath values based on available
Endpoint URL and Response Message values.

Note. Once you have generated XPath values, consider deleting

any rows that will not be used in the testing effort.

 The Generate Xpath button is unavailable when the Service Type
field value is set to Notify. In this case, a response message is not
a test requirement.

Response Message Correlation

ID

This field only displays for a test definition with the Service Type
field value set to Asynchronous two way. For this service type,
entering a correlation ID value ensures that when the asynchronous
response is actually received, the CAVS is able to correlate it to the
correct request.

 If your response message is an EBM, leave this field blank, as the
EBM header ID is automatically used as the correlation ID. In this
case, because the EBM header ID is used as the correlation ID, do
not use it as a key column in the simulator definition, if applicable. If
your response message is not an EBM, you must enter a correlation
ID value. This correlation must be based on a unique key of the
message. For example, CreateOrder can use Order ID as the
correlation ID.

 Click Lookup to access the Choose Response Correlation Id page,
where you can select a correlation ID from XPath variables
available in the message.

Prefix and Namespace Selection

Use the Prefix and Namespace Selection grid to define namespace data that will be used in the XPath
values defined in the XPath Selection grid.

Delete Select one or more namespace rows and click Delete to execute the
deletion. This button only appears when namespace rows are present.

Create Click to manually add and populate a namespace row.

Prefix Prefix that should be used for the namespace.

Namespace Namespace to be used in the XPath data for the test definition.

Creating and Modifying Test Definitions

Copyright © 2010, Oracle. All rights reserved. 43

XPath Selection

Use the XPath Selection grid to work with XPath values that are used to compare the actual response
message returned in the test to the expected response message defined in the Response Message text
box on this page. The values in this grid use the namespace values set in the Prefix and Namespace
Selection grid.

A common adjustment you will likely need to make to XPath conditions and expected node values in this
grid is to genericize certain specific values, such as EBM IDs. For example, an EBM ID is unique for each
transaction, so your test definition will likely not want to specify a particular EBM ID as response criteria.
Instead, you may want to genericize the criteria to just verify that the EBM ID is a number greater than
zero or use the Is Valid condition value.

Note. If you are entering XPath values manually, it is important to maintain correlations with the values

entered in the Prefix and Namespace Selection grid. Each XPath node must have a prefix (namespace

alias) that has been defined in the Prefix and Namespace Selection grid, unless it is an XPath

expression.

The XPath Selection grid is unavailable when the Service Type field value is set to Notify. In this case,
a response message is not a test requirement.

Xpath When working with a test definition that contains multiple request
and response data sets, use the Xpath drop-down list box to select
the data set you want to use to run the test.

For more information about providing multiple data sets in a test

definition, see How to Provide Multiple Request and Response

Message Sets in a Single Test Definition.

Delete Select one or more XPath rows and click Delete to execute the
deletion. This button only appears when XPath rows are present.

Create Click to manually add and populate an XPath row.

XPath Sequence Id Indicates the sequence of the XPath expressions. This value is
required. This value is read-only when it has been generated using
Generate Xpath.

XPath XPath data to be used in the test definition. These values can
include XPath nodes and expressions. This value is read-only
when it has been generated using the Generate Xpath button.

Condition Is Valid: The value provided in the XPath field is valid and no
Expected Node Value is supplied.

 Equals To: The value provided in the XPath field is valid and an
Expected Node Value is supplied.

 Not Equal To

 Less Than

 Greater Than

 Less Than Equal

 Greater Than Equal

Creating and Modifying Test Definitions

44 Copyright © 2010, Oracle. All rights reserved.

 Not Null

Expected Node Value The value expected in the response XML message. When you use
the Generate Xpath button to generate XPath data, this value may
be populated, but can be modified as necessary. The Condition
field value is used to qualify this value.

Test Instance Selection

Select the Test Instances tab to display the Test Instance Selection grid, which displays information
about test instances generated using the test definition.

Id Click to access the test instance on the Test Instance Detail page.

For more information about the Test Instance Detail page, see

How to View Test Instance Details.

Linked Simulator Definition Selection

Select the Simulator Definitions tab to display the Linked Simulator Definition Selection grid, which
displays information about simulator definitions that are linked to the selected test definition.

Unassign Select one or more simulator definition rows that you want to
disassociate with the test definition. Click Unassign to execute the
disassociation.

Assign Click to access the Search Definitions - Simulator page, where you
can search for a simulator definition that you want to assign to the
test definition. Making this assignment facilitates reporting. Once
the test definition runs and generates a test instance, all simulator
instances generated by the simulator definition associated with the
test definition will automatically be linked to the test instance.

 Once you have assigned a simulator definition using the Search
Definitions - Simulator page, the Modify Test Definition page
appears, and displays the selected simulator definition.

Refresh Click to refresh the Modify Test Definition page.

Simulator Definition Id Click for an unlocked simulator definition to access the Modify
Simulator Definition page.

 Click for a locked simulator definition to access the View Simulator
Definition page, where you can access a read-only view of the
simulator definition.

Group Definition Selection

Select the Group Definitions tab to display the Group Definition Selection grid, which displays
information about group definitions that include the test definition.

Group Definition Id Click to access the group definition on the Group Definition Detail
page.

For more information about the Group Definition Detail page, see

Creating and Modifying Test Definitions

Copyright © 2010, Oracle. All rights reserved. 45

Working with Group Definitions.

Group Name Displays the descriptive name assigned to the group definition.

Sequence Id within Group Displays the sequence in which the test definition is initiated by the
group definition.

Cancel Click to discard any updates you have made and return to the
Definitions page.

Actions Select the action you want to take with the test definition.

 Execute: Select to execute the test definition. The status of the test
execution appears at the top of the page. When a test definition has
successfully executed, you can view details of the test instance on
the Test Instance Details page.

For more information about the Test Instance Details page, see

Working with Test and Simulator Instances.

 Lock: Select to lock the test definition and view the test definition on
the View Test Definition page. A locked definition cannot be edited.

 Duplicate: Select to duplicate the test definition. The duplicate
definition is created using the exact values of the original, with the
exception of being given a unique Id value.

Apply Click to apply and save any changes you have made to values on
the page.

Save Click to save entries on the page and go to the Definitions page.

For more information about the Definitions page, see Searching

for Test and Simulator Definitions.

4.3. How to Provide Multiple Request and Response
Message Sets in a Single Test Definition

You can create a test definition that contains multiple pairs of request and response message data. This
means that test definitions only need to be created per usage requirements, not per test data
requirements.

For example, if you want to test a process against five sets of test data, you can create a single test
definition to test the process and include in it all five sets of test data against which you want the process
to operate. This is as opposed to creating five separate test definitions, one per combination of process
and set of test data.

Creating and Modifying Test Definitions

46 Copyright © 2010, Oracle. All rights reserved.

Providing multiple request and response message sets in a single test definition

When multiple sets of test data are included in a test definition, each set will be executed in sequence.
Separate test instances will be generated for each set of data. Test instances will reflect the success or
failure of each segment of the test run using each set of test data.

Request Message Format

Use the following format to include multiple sets of request data in the test definition.

The CAVSRequestInputs and CAVSRequestInput_1 envelope are autogenerated. Use copy and

paste commands to create more sets; CAVSRequestInput_2 and CAVSRequestInput_3, for

example.

<cavs:CAVSRequestInputs

xmlns:cavs="http://schemas.xmlsoap.org/cavs/requestenvelope/">

<cavs:CAVSRequestInput_1>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body xmlns:ns1="http://xmlns.oracle.com/SimpleProcess">

 <ns1:SimpleProcessProcessRequest>

…

 </ns1:SimpleProcessProcessRequest>

 </soap:Body>

</soap:Envelope>

</cavs:CAVSRequestInput_1>

<cavs:CAVSRequestInput_2>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body xmlns:ns1="http://xmlns.oracle.com/SimpleProcess">

 <ns1:SimpleProcessProcessRequest>

 …

 </ns1:SimpleProcessProcessRequest>

Creating and Modifying Test Definitions

Copyright © 2010, Oracle. All rights reserved. 47

 </soap:Body>

</soap:Envelope>

</cavs:CAVSRequestInput_2>

</cavs:CAVSRequestInputs>

Response Message Format

Use the following format to include multiple sets of response data in the test definition.

<cavs:CAVSResponseOutput_1>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body xmlns:ns1="http://xmlns.oracle.com/SimpleProcess">

 <ns1:SimpleProcessProcessResponse>

 …

 </ns1:SimpleProcessProcessResponse>

 </soap:Body>

</soap:Envelope>

</cavs:CAVSResponseOutput_1>

<cavs:CAVSResponseOutput_2>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body xmlns:ns1="http://xmlns.oracle.com/SimpleProcess">

 <ns1:SimpleProcessProcessResponse>

 …

 </ns1:SimpleProcessProcessResponse>

 </soap:Body>

</soap:Envelope>

</cavs:CAVSResponseOutput_2>

</cavs:CAVSResponseOutputs>

After entering request and response data sets and clicking the Generate Xpath button on the Modify Test
Definition page, the XPath Selection grid provides access to the Please select an Xpath drop-down list
box, where you can select the set of test data you want to use to run the test.

For more information about the Modify Test Definition page, see How to Modify a Test Definition.

If your testing scenario includes simulator definitions, you can likewise create simulator definitions that
contain multiple request and response message sets that work with the sets defined in your test
definition.

For more information, see How to Provide Multiple Request and Response Message Sets in a Single

Simulator Definition.

Copyright © 2010, Oracle. All rights reserved. 49

5. Creating and Modifying Simulator
Definitions

A simulator definition is created by the Composite Application Validation System (CAVS) user to simulate
a particular service in an Oracle Application Integration Architecture (AIA) integration or a participating
application. A simulator receives data from the tested web service and returns predefined data so that the
tested web service can continue processing.

This chapter discusses:

 How to Create a Simulator Definition

 How to Modify a Simulator Definition

 How to Provide Multiple Request and Response Message Sets in a Single Simulator Definition

 How to Create a Simulator Definition that Supports Chatty Services

 How to Send Dynamic Responses in a Simulator Response

5.1. How to Create a Simulator Definition

To create a simulator definition:

1. Access the Create Simulator page. To access the page, access the AIA Home Page. In the Composite

Application Validation System area, click the Go button. Select the Definitions tab. Click the Create Simulator

button.

Create Simulator page (1 of 2)

Creating and Modifying Simulator Definitions

50 Copyright © 2010, Oracle. All rights reserved.

Create Simulator page (2 of 2)

2. Use the following page elements on the Create Simulator page to create simulator definitions.

Id Upon saving the simulator definition, a unique key identifier is
assigned to the simulator definition.

Name Enter the descriptive name you want to use for the simulator
definition.

Type Displays the type of definition you have chosen to create. On the
Create Simulator page, this value will always be set to Simulator.

Service Type Select the business service pattern of the web service the simulator
definition is simulating.

Synchronous (request-and-reply)

Notify (asynchronous request-only)

Asynchronous two way

Service Name Enter the name of the web service that you want to simulate using
the simulator definition.

Service Version Enter the version of the web service you want simulate using the
simulator definition.

Process Name Enter the name of the process that includes the web service that you
want to simulate using the simulator definition.

PIP Name (Process Integration

Pack name)

Enter the name of the PIP that includes the web service that you
want to simulate using the simulator definition.

Test Messages

Use the Test Messages group box to generate XPath values based on provided request XML message
text. By default, SOAP envelope XML text is provided in these fields. You can paste XML text within this
default SOAP envelope, or paste your own XML text already enclosed in an envelope into these fields.

Creating and Modifying Simulator Definitions

Copyright © 2010, Oracle. All rights reserved. 51

For more information about how to create simulator request and response messages that hold multiple

sets of test data in a single definition, see How to Provide Multiple Request and Response Message Sets

in a Single Simulator Definition.

For more information about how to create simulator request and response messages that support chatty

service conversations, see How to Create a Simulator Definition that Supports Chatty Services.

Expected Request Message Entering request message XML text facilitates the generation of
XPath values that are used to match a received request with this
simulator's expected request, as well as to validate values in this
received request message. That is, the XPath values you supply
provide a signature for the simulator definition that the simulator
service attempts to match with arriving request actions. In addition
to enabling the simulator service to match a test request with a
simulator definition, the XPath criteria you provide can also serve to
validate data sent in the test request.

If a simulator has been directly designated for use in the
AIAConfigurationProperties.xml via the Routing Configurations
page, the simulator definition will be identified directly. However,
once the simulator has been identified, there may be multiple
requests within it. If so, the XPath key field values provide an
efficient search method for request matching.

For more information about the Routing Configurations page, see

Defining CAVS Routing Setup IDs.

You can enter expected request message XML text on this page
and click Generate Xpath on the Modify Simulator Definition page
to generate XPath values used to validate the actual request sent
by the test definition. You may also choose to manually enter or
modify the XPath values directly on the Modify Simulator Definition
page. You do not need to enter request message XML if you are
manually entering XPath values directly on the Modify Simulator
Definition page.

You may choose to copy and paste messages from the BPEL
Console, instead of manually entering them.

For more information, see How to Obtain Message XML Text

from a BPEL Process.

Response Message Entering response message XML text for a simulator definition is
required when the Service Type field value is set to Synchronous
or Asynchronous two way. Enter the XML text of the response
message that you want to use for the simulator definition. This
response message should mimic the actual response message that
would be sent by the service that the simulator definition is
simulating.

This text box is hidden when the Service Type field value is set to
Notify. In this case, a response message is not a simulator
requirement.

You may choose to copy and paste messages from the BPEL

Creating and Modifying Simulator Definitions

52 Copyright © 2010, Oracle. All rights reserved.

Console, instead of manually entering them.

For more information, see How to Obtain Message XML Text

from a BPEL Process.

Cancel Click to discard any updates you have made and return to the
Definitions page.

Next Click to save entries on the Create Simulator page and go to the
Modify Simulator Definition page, where you can generate XPaths
and further edit and manage the simulator definition.

Save Click to save entries on the Create Simulator page and return to the
Definitions page.

5.2. How to Modify a Simulator Definition

To modify a simulator definition:

1. Access the Modify Test Definition page. To access the page, use one of the following navigation paths:

 Enter required values on the Create Simulator page and click Next. To access the Create

Simulator page, access the AIA Home Page. In the Composite Application Validation System

area, click the Go button. Select the Definitions tab. Click the Create Simulator button.

 Click an Id link for an unlocked simulator definition in the Search Result Selection grid on the

Definitions page. To access the Definitions page, access the AIA Home Page. In the Composite

Application Validation System area, click the Go button. Select the Definitions tab.

 Click a Definition Id link for an unlocked simulator definition on the Instances page. To access the

Instances page, access the AIA Home Page. In the Composite Application Validation System

area, click the Go button. Select the Instances tab.

Modify Simulator Definition page (1 of 3)

Creating and Modifying Simulator Definitions

Copyright © 2010, Oracle. All rights reserved. 53

Modify Simulator Definition page (2 of 3)

Modify Simulator Definition page (3 of 3)

2. Use the following page elements on the Modify Simulator Definition page to modify a simulator definition. The

page displays values you defined for the simulator definition. You can modify the values in editable fields.

Actions Select the action you want to take with the simulator definition.

Lock: Select to lock the simulator definition and view the simulator
definition on the View Simulator Definition page. A locked definition
cannot be edited.

Duplicate: Select to duplicate the simulator definition. The
duplicate definition is created using the exact values of the original,
with the exception of being given a unique Id value.

Cancel Click to discard any updates you have made and return to the
Definitions page.

Apply Click to apply and save any changes you have made to values on

Creating and Modifying Simulator Definitions

54 Copyright © 2010, Oracle. All rights reserved.

the page.

Save Click to save entries on the page and go to the Definitions page.

For more information, see Searching for Test and Simulator

Definitions.

Callback URL If you are creating a simulator with a Service Type of Asynchronous
two way, enter the URL of the web service that should be called
back by the simulator.

SOAP Action If you are creating a simulator with a Service Type of Asynchronous
two way, enter the operation of the callback URL.

Delay (msec) If you are creating a simulator with a Service Type of Asynchronous
two way, enter the number of milliseconds that you want the
simulator definition to wait before issuing the call back service
invocation.

Note. If you are using this simulator along with an asynchronous
two-way test definition, ensure that the Delay (msec) value you
provide is less than the Timeout (msec) value defined for any test
definition

For more information about the Timeout (msec) field, see How to
Modify a Test Definition.

Test Messages

For more information about the elements in the Test Messages group box, see How to Create a

Simulator Definition.

Prefix and Namespace Selection

Use the Prefix and Namespace Selection grid to define namespace data that will be used in the XPath
values defined in the XPath Selection grid.

Delete Select one or more namespace rows and click Delete to execute
the deletion.

This button only appears when namespace rows are present.

Create Click to manually add and populate a namespace row.

Prefix Prefix that should be used for the namespace.

Namespace Namespace to be used in the XPath data for the simulator
definition.

XPath Selection

Use the XPath Selection grid to work with XPath values that are used to match the simulator definition
with arriving requests. XPath values can also be used to validate data send in the test request. The
values in this grid use the namespace values set in the Prefix and Namespace Selection grid.

Creating and Modifying Simulator Definitions

Copyright © 2010, Oracle. All rights reserved. 55

Note. If you are entering XPath values manually, it is important to maintain correlations with the values

entered in the Prefix and Namespace Selection grid. Each XPath node must have a prefix that has

been defined in the Prefix and Namespace Selection grid, unless it is an XPath expression.

Delete Select one or more XPath rows and click Delete to execute the
deletion.

This button only appears when XPath rows are present.

Create Click to add and manually populate an XPath row.

XPath Sequence Id Indicates the sequence of the XPath expressions. This value is
required. This value is read-only when it has been generated using
Generate Xpath.

Xpath XPath value used to help match the simulator definition with
arriving requests. These values can include XPath nodes and
expressions. This value is read-only when it has been generated
using the Generate Xpath button.

Is Node Key Select if the XPath node is a key value to be used in matching
arriving test requests with the simulator.

Condition Is Valid: The value provided in the XPath field is valid and no
Expected Node Value is supplied.

Equals To: The value provided in the XPath field is valid and an
Expected Node Value is supplied.

Not Equal To

Less Than

Greater Than

Less Than Equal

Greater Than Equal

Not Null

Expected Node Value The value that the simulator expects to receive from the service
that invokes it. When the simulator is actually executed, this value
is compared with the actual value based on the validation condition
selected in the Condition field

When you use the Generate Xpath button to generate XPath data,
this value may be populated, but can be modified as necessary.
The Condition field value is used to qualify this value.

Simulator Instance Selection

Select the Simulator Instances tab to display the Simulator Instance Selection grid, which displays
information about simulator instances generated using the simulator definition.

Refresh Click to refresh the Modify Simulator Definition page.

Id Click to display the selected instance ID on the Simulator
Instances Detail page.

For more information about the Simulator Instances Detail

Creating and Modifying Simulator Definitions

56 Copyright © 2010, Oracle. All rights reserved.

page, see How to View Simulator Instance Details.

Status Displays the status of the simulator instance generated by the
simulator definition.

Initiated: The simulator instance has been initiated.

Ended: This status is only applicable to simulator instances
that do not involve validations. Indicates that the instance has
ended.

Faulted: The simulator instance could not execute properly
due to exceptions or faults.

Failed: The simulator instance did not pass validation.

Passed: The simulator instance passed validation.

Start Date Displays the date and time at which the simulator instance was
initiated.

End Date Displays the date and time at which the simulator instance
ended.

Test Definition Selection

Select the Test Definitions tab to display the Linked Test Definition Selection grid, which displays
information about test definitions associated with the simulator definition.

Delete Select one or more test definition rows that you want to delete and
click Delete to execute the deletion.

Assign Click to access the Search Definitions - Test page, where you can
search for a test definition to which you want to assign the simulator
definition.

Refresh Click to refresh the Modify Simulator Definition page.

5.3. How to Provide Multiple Request and Response
Message Sets in a Single Simulator Definition

You can create a simulator definition that contains multiple pairs of request and response message data.
This means that simulator definitions only need to be created per usage requirements, not per test data
requirements.

For example, if you want to simulate a service against five sets of test data, you can create a single
simulator definition to simulate the service and include in it all five sets of test data with which you can the
service to operate. This is as opposed to creating five separate simulator definitions, one per combination
of service and set of test data.

Creating and Modifying Simulator Definitions

Copyright © 2010, Oracle. All rights reserved. 57

Providing multiple request and response message sets in a single simulator definition

When a simulator definition that includes multiple test data sets is invoked, the appropriate data set is
matched for use based on key attributes identified in the request. At this point, the request validation and
response provision can occur. Since we would typically use such definitions to handle several sets of
data, it is recommended that you choose the same key values for every set of data.

Request Message Format

Use the following format to include multiple sets of request data in the simulator definition.

The CAVSRequestInputs and CAVSRequestInput_1 envelope are autogenerated upon the input of

the endpoint URL value on the test definition. Use copy and paste commands to create more sets;

CAVSRequestInput_2 and CAVSRequestInput_3, for example.

<cavs:CAVSRequestInputs

xmlns:cavs="http://schemas.xmlsoap.org/cavs/requestenvelope/">

<cavs:CAVSRequestInput_1>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body xmlns:ns1="http://xmlns.oracle.com/SimpleProcess">

 <ns1:SimpleProcessProcessRequest>

…

 </ns1:SimpleProcessProcessRequest>

 </soap:Body>

</soap:Envelope>

</cavs:CAVSRequestInput_1>

<cavs:CAVSRequestInput_2>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body xmlns:ns1="http://xmlns.oracle.com/SimpleProcess">

 <ns1:SimpleProcessProcessRequest>

 …

Creating and Modifying Simulator Definitions

58 Copyright © 2010, Oracle. All rights reserved.

 </ns1:SimpleProcessProcessRequest>

 </soap:Body>

</soap:Envelope>

</cavs:CAVSRequestInput_2>

</cavs:CAVSRequestInputs>

Response Message Format

Use the following format to include multiple sets of response data in the simulator definition.

<cavs:CAVSResponseOutput_1>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body xmlns:ns1="http://xmlns.oracle.com/SimpleProcess">

 <ns1:SimpleProcessProcessResponse>

 …

 </ns1:SimpleProcessProcessResponse>

 </soap:Body>

</soap:Envelope>

</cavs:CAVSResponseOutput_1>

<cavs:CAVSResponseOutput_2>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body xmlns:ns1="http://xmlns.oracle.com/SimpleProcess">

 <ns1:SimpleProcessProcessResponse>

 …

 </ns1:SimpleProcessProcessResponse>

 </soap:Body>

</soap:Envelope>

</cavs:CAVSResponseOutput_2>

</cavs:CAVSResponseOutputs>

Envelope text is prepopulated. Enter actual message content within appropriate tags provided within the
envelopes.

After entering request and response data sets and clicking the Generate Xpath button on the Modify
Simulator Definition page, the XPath Selection grid provides access to available XPath values and
enables you to select the XPaths that must be treated as key nodes.

For more information about the Modify Simulator Definition page, see How to Modify a Simulator

Definition.

If your testing scenario includes test definitions, you can likewise create test definitions that contain
multiple request and response message sets that work with the sets defined in your simulator definition.

For more information, see How to Provide Multiple Request and Response Message Sets in a Single

Test Definition.

5.4. How to Create a Simulator Definition that
Supports Chatty Services

You can create a simulator definition that can simulate multiple services, each with a different schema.

Creating and Modifying Simulator Definitions

Copyright © 2010, Oracle. All rights reserved. 59

In general, we recommend that you create simulators that simulate a single specific service. However, in
the case of chatty conversations, for the ease of maintenance, you may choose to simulate all callouts of
an Application Business Connector Service (ABCS) using a single simulator definition.

Using this method, you have the advantage of using one simulator for a particular ABCS, regardless of
the number of callouts that need to be made. This method also provides ease of maintenance because
linked callouts can all be viewed and modified in one place.

For example, in some integration scenarios, participating applications do not provide services at the same
level of granularity as operations in Enterprise Business Services (EBSs). In these scenarios, a requester
ABCS may need to adopt patterns such as message enrichment, splitting, and aggregation and
disaggregation as required by an EBS. Likewise, a provider ABCS may need to adopt patterns as
required by participating application services.

These ABCSs, which are typically implemented using BPEL process, call out to several services. To test
this “chatty” ABCS using CAVS, there will likely be a need to replace the services that the ABCS calls out
to with several simulators. It will also be required that these multiple request/response simulators be
correlated, so that they accurately emulate the transaction of the same entity.

When this type of simulator is called, CAVS initiates the following general flow:

1. Selects simulator definition.

2. Validates the first request message based on the selected simulator.

3. Returns the appropriate response message, if the selected simulator is a two-way simulator.

4. Repeats steps 2 and 3 until the chatty service conversation is complete.

Request Message Format

Use the following format to create a simulator definition that supports chatty service conversations. This
format provides the ability to specify a set of request and response messages, along with success criteria
for each of them. This format is the same as that used for multiple requests and responses in a simulator
definition. However, in this case, the schemas for each set will be different.

<cavs:CAVSRequestInputs

xmlns:cavs="http://schemas.xmlsoap.org/cavs/requestenvelope/">

<cavs:CAVSRequestInput_1>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body xmlns:ns1="http://xmlns.oracle.com/Service1">

 <ns1:Service1Request>

…

 </ns1: Service1Request>

 </soap:Body>

</soap:Envelope>

</cavs:CAVSRequestInput_1>

<cavs:CAVSRequestInput_2>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body xmlns:ns2="http://xmlns.oracle.com/ Service2">

 <ns2: Service2Request>

…

 </ns2: Service2Request>

 </soap:Body>

</soap:Envelope>

</cavs:CAVSRequestInput_2>

Once you have provided request and response messages, click Generate Xpath on the Modify Simulator
Definition page to generate XPath values. Modify the generated XPath values, if necessary.

Creating and Modifying Simulator Definitions

60 Copyright © 2010, Oracle. All rights reserved.

For more information about the Modify Simulator Definition page, see How to Modify a Simulator

Definition.

When this type of simulator is called, separate simulator instances are created for each request and
response pair. The evaluation of actual response versus expected response is handled per instance
created for the same simulator definition.

5.5. How to Send Dynamic Responses in a
Simulator Response

CAVS simulator definitions are actually predefined request and response message sets. In some cases,
you may not know the values for all the fields in the request message. Additionally, you may want to send
these unknown dynamic values in a response to the service that called the simulator.

For example, consider the Enterprise Business Message (EBM) ID. This value is normally generated on
the fly by AIA services. If you create a simulator that talks to this AIA service, you do not have a way to
validate the value in the EBM ID field of the request message because the value is dynamically
generated.

You may to choose to avoid validations of this value by setting the CAVS XPath validation for the EBM ID
field to isValid. However, you may have a requirement in which you need to send this dynamic value
back in a particular field of the simulator response. To meet this requirement, you can let the simulator
pick the particular field (such as EBM ID) in the request and send it back as a field in the response.

To send a dynamic response in a simulator response:

1. Map a field from the request message and add it to the response message.

These are two valid formats you can use:

#@#XPATH.{copy the XPath from request msg Ex./soap:Envelop/soap:Body..}#@#

#@#SYSTEM.{SYSDATE}#@#

2. Before sending the response, the simulator will pick up this ID from the generated XPath, substitute the actual

value, and send it in the response.

The strings referenced above will form a part of the response message. To know what the request

message XPath values are, use the output that was generated by clicking the Generate Xpath button.

For example, let‟s say that the request SOAP message has the following nodes:

<corecom:PersonName>

 <corecom:FirstName>CAVS</corecom:FirstName>

 <corecom:MiddleName>FP</corecom:MiddleName>

 <corecom:FamilyName>AIA</corecom:FamilyName>

 <corecom:CreationDateTime></corecom:CreationDateTime>

</corecom:PersonName>

You would define your response SOAP message as follows:

<corecom:PersonName>

Creating and Modifying Simulator Definitions

Copyright © 2010, Oracle. All rights reserved. 61

<corecom:FirstName>#@#XPATH.{/soap:Envelope/soap:Body/corecom:CreateCustom

erPa

rtyListEBM/ebo:DataArea/ebo:CreateCustomerPartyList/corecomx:Contact/corec

omx:

PersonName/corecomx:FamilyName}#@#2dot1</corecom:FirstName>

<corecom:MiddleName>#@#XPATH.{/soap:Envelope/soap:Body/corecom:CreateCusto

merP

artyListEBM/ebo:DataArea/ebo:CreateCustomerPartyList/corecomx:Contact/core

comx

:PersonName/corecomx:MiddleName}#@#</corecom:MiddleName>

<corecom:FamilyName>#@#XPATH.{/soap:Envelope/soap:Body/corecom:CreateCusto

merP

artyListEBM/ebo:DataArea/ebo:CreateCustomerPartyList/corecomx:Contact/core

comx

:PersonName/corecomx:FirstName}#@#</corecom:FamilyName>

<corecom:CreationDateTime>#@#SYSTEM.{SYSDATE}#@#</corecom:CreationDateTime

>

</corecom:PersonName>

In this case, the response would be modified by the CAVS engine by copying values from the request

as follows:

<corecom:PersonName>

 <corecom:FirstName>AIA2dot1</corecom:FirstName>

 <corecom:MiddleName>FP</corecom:MiddleName>

 <corecom:FamilyName>CAVS</corecom:FamilyName>

<corecom:CreationDateTime>2008-05-

12T15:26:43+05:30</corecom:CreationDateTime>

</corecom:PersonName>

Note that 2dot1 is a static string that is always appended to the FamilyName value.

Copyright © 2010, Oracle. All rights reserved. 63

6. Searching for Test and Simulator
Definitions

This chapter discusses How to Search for and Work with Test and Simulator Definitions.

6.1. How to Search for and Work with Test and
Simulator Definitions

To search for and work with test and simulator definitions:

1. Access the Definitions page. To access the page, access the Oracle Application Integration Architecture (AIA)

Home Page. In the Composite Application Validation System area, click the Go button. Select the Definitions tab.

Definitions page

2. Use the following page elements on the Definitions page to search for, execute, migrate, and manage existing

test and simulator definitions. You can also access pages you can use to create and modify test and simulator

definitions.

Search Definitions

Use the Search Definitions group box to enter search criteria to find the test or simulator definition you
are searching for.

Id Enter the unique key identifier assigned to the test or simulator
definition.

Name Enter the descriptive name assigned to the test or simulator
definition.

Type Select the type of definition.

<Value Not Selected>: Select to display all definition types.

Searching for Test and Simulator Definitions

64 Copyright © 2010, Oracle. All rights reserved.

Test

Simulator

Service Type Select the business service pattern of the web service for which the
definition was created.

<Value Not Selected>: Select to display definitions for all service
types.

Synchronous

Notify

Asynchronous two way

Service Name Enter the name of the web service for which the definition was
created.

Service Version Enter the version of the service for which the definition was created.
This is the web service whose URL is provided in the Endpoint
URL field.

Process Name Enter the name of the process that includes the web service for
which the definition was created.

PIP Name (Process Integration

Pack name)

Enter the name of the Process Integration Pack that includes the
web service for which the definition was created.

Endpoint URL Enter the URL of the web service for which the definition was
created.

SOAP Action Enter the operation called by the web service for which the definition
was created.

State Select the state of the definition.

<Value Not Selected>: Select to display definitions in all states.

Locked

Unlocked

Search Click to execute a search for definitions using the search criteria
entered in the Search Definitions group box.

Search Result Selection

Use the Search Result Selection grid to work with definitions returned in your search results. Upon
accessing this page, the grid displays all definitions.

Execute Select one or more test definitions that you want to run and click
Execute to execute the test definition. When a test definition has
successfully executed, you can view details of the test instance
generated by the test execution on the Test Instance Details page.

For more information about the Test Instance Details page, see

How to View Test Instance Details.

Simulator definitions cannot be executed.

Searching for Test and Simulator Definitions

Copyright © 2010, Oracle. All rights reserved. 65

Delete Select one or more definitions that you want to delete and click
Delete to execute the deletion.

Duplicate Select one or more definitions that you want to duplicate and click
Duplicate to execute the duplication.

The duplicate definition is created using the exact values of the
original, with the exception of being assigned a unique ID value.

Lock Select one or more definitions that you want to lock and click Lock
to lock the definitions. A definition with its State value set to
Locked cannot be edited.

Unlock Select one or more definitions that you want to unlock and click
Unlock to unlock the definitions. An unlocked definition can be
edited. A definition with its State value set to Unlocked is editable.

Export

For more information about exporting definitions and instances,

see Exporting and Importing CAVS Definitions and Instances.

Change URL Select one or more test definitions for which you want to change
the endpoint URL value. Click Change URL to launch a pop-up
window in which you can enter the new endpoint URL value that
you want to use for the selected test definitions.

Create Test Click to access the Create Test page, where you can create a test
definition.

For more information about the Create Test page, see How to

Create a Test Definition.

Create Simulator Click to access the Create Simulator page, where you can create a
simulator definition.

For more information about the Create Simulator page, see How

to Create a Simulator Definition.

Import

For more information about importing test definitions, see

Exporting and Importing CAVS Definitions and Instances.

Id Click for an unlocked test definition to access the Modify Test
Definition page.

Click for a locked test definition to access the View Test Definition
page, where you can access a read-only view of the test definition.

Click for an unlocked simulator definition to access the Modify
Simulator Definition page.

Click for a locked simulator definition to access the View Simulator
Definition page, where you can access a read-only view of the
simulator definition.

For more information, see How to Modify a Test Definition.

Searching for Test and Simulator Definitions

66 Copyright © 2010, Oracle. All rights reserved.

For more information, see How to Modify a Simulator Definition.

Copyright © 2010, Oracle. All rights reserved. 67

7. Working with Group Definitions

This chapter discusses:

 How to Work with Group Definitions

 How to Create and Modify a Group Definition

7.1. How to Work with Group Definitions

To work with group definitions:

1. Access the Group Definitions page. To access the page, access the Oracle Application Integration Architecture

(AIA) Home Page. In the Composite Application Validation System area, click the Go button. Select the Group

Definitions tab.

Group Definitions page

2. Use the following page elements on the Group Definitions page to search for, execute, and manage existing

group definitions. You can also access a page you can use to create and modify group definitions.

Search Group Definitions

Use the Search Group Definitions group box to enter search criteria to find the group definition you are
searching for.

Id Enter the unique key identifier assigned to the group definition.

Name Enter the descriptive name assigned to the group definition.

Process Name Enter the name of the process associated with the group definition.

PIP (Process Integration Pack)

Name

Enter the name of the Process Integration Pack (PIP) associated
with the group definition.

Search Click to execute a search for group definitions using the search
criteria entered in the Search Group Definitions group box.

Search Result Selection

Use the Search Result Selection grid to work with group definitions returned in your search results.
Upon accessing this page, the grid is populated by all group definitions.

Working with Group Definitions

68 Copyright © 2010, Oracle. All rights reserved.

Execute Select one or more group definitions that you want to run and click
Execute to execute the group definition.

When a group definition has successfully executed, you can view
details of the group instance on the Group Instances Detail page.

For more information about the Group Instances Detail page, see

How to View Group Instance Details.

Delete Select one or more group definitions that you want to delete and
click Delete to execute the deletion.

Duplicate Select one or more group definitions that you want to duplicate and
click Duplicate to execute the duplication.

The duplicate group definition is created using the exact values of
the original, with the exception of being given a unique Id value.

Create Click to access the Group Definition Detail page, where you can
create a group definition

Id Click to access the Group Definition Detail page.

7.2. How to Create and Modify a Group Definition

To create and modify a group definition:

1. Access the Group Definition Detail page. To access the page, click the Create button on the Group Definitions

page.

Group Definition Detail page (new group definition)

Group Definition Detail page (existing definition)

2. Use the following page elements on the Group Definition Detail page to create and modify a group definition that

combines one or more tests and executes them in a single-threaded batch sequence.

Working with Group Definitions

Copyright © 2010, Oracle. All rights reserved. 69

Actions Select the action you want to take with the group definition.

Execute: Select to execute the group definition.

When a group definition has successfully executed, you can view
details of the test instance on the Group Instances page.

Duplicate: Select to duplicate the group definition. The duplicate
definition is created using the exact values of the original, with the
exception of being given a unique Group Definition Id value.

Cancel Click to discard updates to the page and return to the Group
Definitions page.

Next For a new group definition, click to save entries and display further
group definition details on the Group Definition Detail page.

This button does not appear for existing group definitions.

Apply Click to apply and save any changes you have made to values on
the page.

Save Click to save entries on the Group Definition Detail page and return
to the Group Definitions page.

Id Upon saving a new group definition, a unique key identifier is
assigned to the group definition.

For an existing group definition, displays the unique key identifier
assigned to the group definition.

Name For a new group definition, enter a descriptive name for the group
definition.

For an existing group definition, displays the descriptive name
assigned to the group definition.

Process Name For a new group definition, enter the name of the process you want
to associate with the group definition.

For an existing group definition, displays the process name
associated with the group definition. This value is editable.

PIP (Process Integration Pack)

Name

For a new group definition, enter the name of the PIP you want to
associate with the group definition.

For an existing group definition, displays the PIP associated with
the group definition. This value is editable.

Test Definition Selection

Select the Test Definitions tab to access the Test Definition Selection grid, where you can associate
test definitions with the group definition.

Unassign Select one or more test definition rows that you want to
disassociate from the group definition. Click Unassign to execute
the disassociation.

Assign Click to access the Search Definitions - Test page, where you can
search for a test definition that you want to assign to the simulator
definition.

Working with Group Definitions

70 Copyright © 2010, Oracle. All rights reserved.

Refresh Click to refresh the Group Definition Detail page.

Definition Sequence Id Displays the sequence in which the test definition is initiated by the
group definition.

Definition Id Click for an unlocked test definition to access the Modify Test
Definition page.

Click for a locked test definition to access the View Test Definition
page, where you can access a read-only view of the test definition.

For more information, see How to Modify a Test Definition.

Group Instance Selection

Select the Group Instances tab to display the Group Instance Selection grid, which displays
information about group instances generated by the group definition.

Refresh Click to refresh the Group Definition Detail page.

Id Click to access the Group Instances Detail page.

Start Date Displays the date and time at which the group instance was
initiated.

Copyright © 2010, Oracle. All rights reserved. 71

8. Defining CAVS Routing Setup IDs

This chapter discusses the following topics:

 Introduction to CAVS Routing Setup IDs

 How to Create CAVS Routing Setup IDs

 How to Search for CAVS Routing Setup IDs

 How to Modify Routing Setup IDs

 How to Set Up CAVS Routing Configurations Without Creating Routing Setup IDs

8.1. Introduction to CAVS Routing Setup IDs

Composite Application Validation System (CAVS) routing setups are used in the following two scenarios.

 CAVS test definitions call services that in turn, call CAVS simulators.

 Actual applications and services call CAVS simulators instead of calling subsequent actual services.

CAVS routing setup IDs are used to route the service calls to the CAVS simulators. Use the pages
covered in this chapter to set up CAVS routing setup IDs before executing tests. These CAVS routing
setup IDs are stored as RouteToCAVS properties in the AIAConfigurationProperties.xml file in
<AIA_HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config. This file is read during runtime to
determine whether routing needs to be made to a CAVS simulator or to an actual system.

For example, you could create three routing setup IDs for the scenarios illustrated below.

1. To test the requester Application Business Connector Service (ABCS) or when the provider ABCS is
not available, you would want the requester ABCS to call a simulator instead of actual Oracle AIA
services. For this scenario, create a routing setup ID to set the RouteToCAVS property to TRUE on
the requester ABCS. This will ensure that the message is routed to the CAVS simulator, as indicated
in red.

Note. An actual participating application or test definition can be used to invoke the requester ABCS.

2. To test the provider ABCS or when the provider application is not available, you would want the
provider ABCS to call a simulator instead of an actual provider application service. For this scenario,
create a routing setup ID to set the RouteToCAVS property to TRUE on the provider ABCS. This will
ensure that the message is routed to the CAVS simulator, as indicated in blue.

Note. If there is more than one callout from the provider ABCS, the CAVS user can have fine-grained

control over the routing by setting the routing at the PartnerLink level (and optionally at the operation

level). This is indicated in the figure.

3. To test the requester ABCS and the provider ABCS together, you would create a routing setup ID to
set the RouteToCAVS property to FALSE on the requester ABCS so that it can go on to call the
provider ABCS and TRUE on the provider ABCS.

Defining CAVS Routing Setup IDs

72 Copyright © 2010, Oracle. All rights reserved.

Sample scenarios for using CAVS routing setup IDs

This figure helps to illustrate the need for different routing setup IDs to test each of these three scenarios.
When creating test definitions that will be used to initiate these test scenarios, CAVS allows you to
associate the test definition with a specific routing setup ID. This routing setup ID determines the
configuration that is required and automatically applies it before executing the test.

For example, if these three test scenarios are grouped into a single test group for execution, each test
requires a different routing setup. In this case, you would create three routing setup IDs, 1001, 1002, and
1003, for example. Each routing setup ID is required by one of the scenarios. You assign routing setup ID
1001 to the test definition for scenario 1, 1002 to the test definition for scenario 2, and so forth. When
these three test definitions are executed as a part of the test group, the CAVS system automatically
applies routing setup IDs 1001, 1002, and 1003 when executing the appropriate test definition. This
eliminates the need to manually modify routing configurations between test scenario executions.

If, for example, you did not associate routing setup ID 1002 with the test definition for scenario 2, the test
definition for scenario 2 would use routing setup ID 1001, because it was the last applied routing setup ID.

For more information about assigning a routing setup ID to a test definition, see How to Create a Test

Definition.

Another option for applying routings is to directly modify them on the Configuration page.

For more information about the Configuration page, see How to Set Up CAVS Routing Configurations

Without Creating Routing Setup IDs.

8.2. How to Create CAVS Routing Setup IDs

To create CAVS routing setup IDs:

Defining CAVS Routing Setup IDs

Copyright © 2010, Oracle. All rights reserved. 73

1. Access the Create Routing Setup page. To access the page, access the Oracle Application Integration

Architecture (AIA) Home Page. In the Composite Application Validation System area, click the Go button. Select

the Routing Setup tab. Click the Create button.

Create Routing Setup page

2. Upon access, the Create Routing Setup page displays routing information for all services with a RoutetoCAVS

property defined in the AIAConfigurationProperties.xml file in

<AIA_HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config.

Use this page to perform a one-time setup of routing setup IDs that you can later associate with test

definitions using the SetupId field on the Create Test page. By making this association, the required

routing setup will be automatically applied during the execution of the test definition.

For more information about the SetupId field, see How to Create a Test Definition.

Data saved on this page is stored in a CAVS table, rather than in the AIAConfigurationProperties.xml.

For more information about how to quickly define a routing configuration that is stored in

AIAConfigurationProperties.xml, see How to Set Up CAVS Routing Configurations Without Creating

Routing Setup IDs.

Use the following page elements on the Create Routing Setup page to create a new CAVS routing.

SetupId Upon saving, a sequentially generated ID is assigned to the routing
setup ID.

Description Enter a description of the routing setup ID you are creating.

InvokingServiceName Lists all services defined in the AIAConfigurationProperties.xml file in
<AIA_HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config.

PartnerLink The PartnerLink that is invoked by the service that you want to route to
the CAVS simulator.

Operation The operation of the PartnerLink that you want to route to the CAVS
simulator. Displays a value only when multiple operations on the
service are invoked using the same PartnerLink, typically when calling
an enterprise business service.

RouteToCavs Select to indicate that the invoking service should route to the selected
CAVS simulator.

SimulatorId Click Add to access the Search Definitions page, where you can select
the simulator definition that you want an invoking service to route to.
Upon access, the page displays all available CAVS simulator definition
IDs. Select the simulator definition to which you want to route an

Defining CAVS Routing Setup IDs

74 Copyright © 2010, Oracle. All rights reserved.

invoking service and click the Select button.

If a simulator definition has already been selected, the simulator ID
displays. Click Modify to select a different simulator ID. Click Clear to
clear the selection.

8.3. How to Search for CAVS Routing Setup IDs

To search for CAVS routing setup IDs:

1. Access the Routing Setup page. To access the page, access the AIA Home Page. In the Composite Application

Validation System area, click the Go button. Select the Routing Setup tab.

Routing Setup page

2. Use the following page elements to search for an existing CAVS routing setup ID, or access functionality to

create and delete routings.

SetupId Enter the ID assigned to the routing setup ID you are searching for.

Description Enter description text used for the routing setup ID you are
searching for.

Search Click to execute a search for routing setup IDs using the search
criteria entered in the Search Routing Setups group box.

Delete Select one or more routing setup IDs that you want to delete and
click Delete to execute the deletion.

Create Click to access the Create Routing Setup page, where you can
create a routing setup ID.

For more information, see How to Create CAVS Routing Setup

IDs.

Apply Routing Once you have created a new routing setup ID, you may apply it to
populate the AIAConfigurationProperties.xml file. To do this, select
a single routing setup ID and click Apply Routing.

Defining CAVS Routing Setup IDs

Copyright © 2010, Oracle. All rights reserved. 75

If you apply the routing setup ID to the
AIAConfigurationProperties.xml file, it becomes a routing
configuration that is applied in all executions of the associated
invoking service, not just when the routing setup ID is referenced
on a test definition.

SetupId Click to access the Routing Setup page, where you can modify an
existing routing setup ID.

For more information the Routing Setup page, see How to Modify

Routing Setup IDs.

Routing Setup Actions

Reset Routing Click to set all routing configurations to FALSE. This means that all
routings to simulators (RoutetoCAVS property settings) in the
AIAConfigurationProperties.xml file will be set to FALSE, whether
you have defined them through the Routing Setup pages or directly
in the file.

View Routing Click to access the Configuration page, where you can access a
read-only view of the last applied, or active, routing setup ID.

8.4. How to Modify Routing Setup IDs

To modify routing setup IDs:

1. Access the Routing Setup page. To access the page, access the AIA Home Page. In the Composite Application

Validation System area, click the Go button. Select the Routing Setup tab. Click a SetupId link.

Routing Setup page

2. Use the following page elements on the Routing Setup page to modify existing routing setups. Data saved on

this page is stored in a CAVS table, rather than in the AIAConfigurationProperties.xml.

If you want to apply the data to the AIAConfigurationProperties.xml file, you must click Apply Routing

for the routing setup ID on the Search Routing Setups page.

For more information about the Apply Routings button, see How to Search for CAVS Routing Setup

IDs.

SetupId Displays the ID you assigned to routing setup ID on the Create

Defining CAVS Routing Setup IDs

76 Copyright © 2010, Oracle. All rights reserved.

Routing Setup page.

Description If applicable, edit the routing setup ID description.

Invoking Service Name This is the service after which the service routing to CAVS should
happen.

PartnerLink The PartnerLink that is invoked by the service that you want to
route to the CAVS simulator.

Operation The operation of the PartnerLink that you want to route to the
CAVS simulator. Displays a value only when multiple operations on
the service are invoked using the same PartnerLink, typically when
calling an enterprise business service.

RouteToCavs Select to indicate that the invoking service should route to the
selected CAVS simulator.

SimulatorId Click the icon to access the Search Definitions page, where you
can select the simulator definition that you want an invoking service
to route to.

If a simulator definition has already been selected, the simulator ID
displays. Click Modify to select a different simulator ID. Click Clear
to clear the selection.

8.5. How to Set Up CAVS Routing Configurations
Without Creating Routing Setup IDs

To set up CAVS routing configurations without creating routing setup IDs:

1. Access the Configuration page. To access the page, access the AIA Home Page. In the Setup area, click the Go

button. Select the Configuration tab.

Configuration page

Defining CAVS Routing Setup IDs

Copyright © 2010, Oracle. All rights reserved. 77

2. Use this page to quickly set up a CAVS routing configuration without having to create routing setup IDs. This is

particularly useful when you are only interested in using CAVS simulators without CAVS test definitions.

For example, you may only need to use the CAVS simulator feature for your development purposes

and you may not need to uptake the complexity involved in setting up routing setup IDs. In this case,

you can use this page to directly modify service routing configurations in the

AIAConfigurationProperties.xml file.

Note. If you use this page to modify these service routing configurations, there is no need to manually

reload the configurations.

However, if you are using CAVS for extensive testing purposes, we recommend that you use the

Routing Setup pages to create your routing setup.

For more information about the Routing Setup page, see How to Create CAVS Routing Setup IDs.

Copyright © 2010, Oracle. All rights reserved. 79

9. Working with Test and Simulator Instances

A test instance captures the details of the execution of a test definition. A simulator instance captures the
details of a simulator definition's behavior during the execution of a test definition with which it is
associated.

This chapter discusses:

 How to Work with Test and Simulator Instances

 How to View Test Instance Details

 How to View Simulator Instance Details

9.1. How to Work with Test and Simulator Instances

To work with test and simulator instances:

1. Access the Instances page. To access the page, access the Oracle Application Integration Architecture (AIA)

Home Page. In the Composite Application Validation System area, click the Go button. Select the Instances tab.

Instances page

2. Use the following page elements on the Instance page to search for test and simulator instances. You can also

access pages you can use to view test and simulator instance details.

Search Instances

Use the Search Instances group box to enter search criteria to locate the instance you are searching for.

Id Enter the unique key assigned to the instance.

Definition Id Enter a definition ID associated with the definition that generated
the instance.

Working with Test and Simulator Instances

80 Copyright © 2010, Oracle. All rights reserved.

Name Enter the descriptive name given to the definition that generated
the instance.

Status Enter the status of the instance.

Ended: This status is only applicable to instances that do not
involve validations. Indicates that the instance has ended.

Faulted: The instance could not execute properly due to
exceptions or faults.

Failed: The instance did not pass validation.

Passed: The instance passed validation.

Delayed: For an asynchronous two-way test instance, indicates
that the test instance is still active and waiting for an asynchronous
reply.

Type Select the type of instance.

<Value Not Selected>

Test

Simulator

Service Type Select the business service pattern of the web service associated
with the instance.

For example, if you are searching for a test instance, this is the
business service pattern of the web service tested by the test
definition that generated the test instance. If you are searching for a
simulator instance, this is the business service pattern of the web
service simulated by the simulator definition that generated the
simulator instance.

<Value Not Selected>

Synchronous

Notify

Asynchronous two way

Service Name Enter the name of the web service associated with the definition
that created the instance.

Service Version Enter the version of the web service associated with the definition
that created the instance.

Process Name Enter the name of the process associated with the definition that
created the instance.

PIP Name (Process Integration

Pack name)

Enter the name of the Process Integration Pack (PIP) associated
with the definition that created the instance.

Start Date Enter a start date and time that you want to use as search criteria.
The search will look for all instances that were created on and after
the given date and time.

End Date Enter an end date and time that you want to use as search criteria.
The search will look for all instances that were created before and

Working with Test and Simulator Instances

Copyright © 2010, Oracle. All rights reserved. 81

on the given date and time.

Search Click to execute a search for instances using the search criteria
entered in the Search Instances group box.

Search Result Selection

Use the Search Result Selection grid to work with instances returned in your search results. Upon
accessing this page, the grid is populated by all instances.

Delete Select one or more instances that you want to delete and click the
Delete button to execute the deletion.

Export

For more information about exporting instances, see Exporting

and Importing CAVS Definitions and Instances.

Id Click for a test instance to access the Test Instance Detail page.

Definition Id Click for a simulator instance to access the Simulator Instance
Detail page.

 For a test instance, click to access details about the test definition
that generated the test instance. An unlocked test definition
displays on the Modify Test Definition page. A locked test definition
displays on the View Test Definition page.

For more information, see How to Modify a Test Definition.

For a simulator instance, click to access details about the simulator
definition that generated the simulator instance. An unlocked
simulator definition displays on the Modify Simulator Definition
page. A locked test definition displays on the View Simulator
Definition page.

For more information, see How to Modify a Simulator Definition.

9.2. How to View Test Instance Details

To view test instance details:

1. Access the Test Instances Detail page. To access the page, use one of the following navigation paths:

 Select Execute in the Actions drop-down list box on the Modify Test Definition page. To access

the Modify Test Definition page, access the AIA Home Page. In the Composite Application

Validation System area, click the Go button. Select the Definitions tab. Click a test definition Id

link.

 Click an instance ID link in the Test Instances group box on the Modify Test Definition page. To

access the Modify Test Definition page, access the AIA Home Page. In the Composite

Application Validation System area, click the Go button. Select the Definitions tab. Click a test

definition Id link.

Working with Test and Simulator Instances

82 Copyright © 2010, Oracle. All rights reserved.

 Click an instance ID link on the Instances page. To access the Instances page, access the AIA

Home Page. In the Composite Application Validation System area, click the Go button. Select the

Instances tab.

Test Instances Detail page (1 of 2)

Test Instances Detail page (2 of 2)

2. Use the following page elements on the Test Instances Detail page to view the details of a test instance.

Cancel Click to discard any updates to the page and return to the Instances
page.

Apply Click to apply and save any updates you have made to the page.

Save Click to save any updates you have made to the page and go to the
Instances page.

Working with Test and Simulator Instances

Copyright © 2010, Oracle. All rights reserved. 83

Id Displays the unique ID assigned to the instance.

Definition Id Displays the ID of the test definition that generated the test
instance.

Click for an unlocked test definition to access the Modify Test
Definition page.

Click for a locked test definition to access the View Test Definition
page, where you can access a read-only view of the test definition.

For more information, see How to Modify a Test Definition.

Name Displays the descriptive name associated with the test definition
that generated the instance.

Status Displays the status of the test instance.

Ended: This status is only applicable to test instances that do not
involve validations. Indicates that the instance has ended.

Faulted: The test instance could not execute properly due to
exceptions or faults.

Failed: The test instance did not pass validation.

Passed: The instance passed validation.

Delayed: For an asynchronous two-way test instance, indicates
that the test instance is still active and waiting for an asynchronous
reply.

Type Displays the type of definition that generated the test instance. On
the Test Instances Detail page, this value will always be Test.

Service Type Displays the business service pattern of the web service tested by
the test definition that generated the test instance.

Synchronous

Notify

Asynchronous two way

Service Name Displays the name of the web service tested by the test definition
that created the instance.

Service Version Displays the version of the web service tested by the test definition
that created the instance.

Process Name Displays the name of the process associated with the test definition
that created the instance.

PIP Name (Process Integration

Pack name)

Displays the name of the PIP associated with the test definition that
created the instance.

Endpoint URL Displays the URL of the web service tested by the test definition
that created the instance.

SOAP Action Displays the operation called by the web service tested by the test
definition that created the instance.

Working with Test and Simulator Instances

84 Copyright © 2010, Oracle. All rights reserved.

Start Date Displays the date and time at which the test instance was initiated.

End Date Displays the date and time at which the test instance ended.

Test Messages

Use the Test Messages group box to view the request and response XML messages associated with the
test definition that generated the instance.

Request Message Displays request message XML defined for the test definition that
generated the test instance.

For more information about the Request Message field, see How

to Create a Test Definition.

Actual Response Message Displays response message XML defined for the test definition that
generated the test instance.

For more information about the Response Message field, see

How to Create a Test Definition.

Prefix and Namespace Selection

Displays namespace data created for the test definition that generated the test instance. This namespace
data is used in the XPath values defined in the XPath Selection grid.

For more information about the Prefix and Namespace Selection grid, see How to Modify a Test

Definition.

XPath Selection

Displays XPath data created for the test definition that generated the test instance. The values in this grid
use the namespace values set in the Prefix and Namespace Selection grid.

For more information about the XPath Selection grid, see How to Modify a Test Definition.

Linked Simulator instance Selection

Use the Linked Simulator instance Selection grid to work with associations between test instances and
simulator instances.

If no correlation logic has been defined between the test definition and the simulator definition, the test
and simulator instances will not always be reconcilable, especially when the same web service is invoked
multiple times during a very short time period, as in during performance testing.

However, if a simulator definition is associated with a test definition, any test instances generated by the
test definition will automatically reflect associations to simulator instances generated by associated
simulator definitions.

You can manually adjust these associations in this grid area.

Unassign Select one or more simulator instance rows that you want to
disassociate with the test instance. Click the Unassign button to
execute the disassociation.

Working with Test and Simulator Instances

Copyright © 2010, Oracle. All rights reserved. 85

Assign Click to access the Search Instances - Simulator page, where you
can search for a simulator instance that you want to manually
associate with the test instance.

Once you have associated a simulator instance with the test
instance using the Search Instances - Simulator page, the Test
Instances Detail page displays the selected simulator instance.

Refresh Click to refresh the Test Instances Detail page.

Id Click to access the Simulator Instances Detail page.

Definition Id Click to view details about the test definition that generated the test
instance.

An unlocked test definitions display on the Modify Test Definition
page. A locked test definition displays on the View Test Definition
page.

For more information, see How to Modify a Test Definition.

9.3. How to View Simulator Instance Details

To view simulator instance details:

1. Access the Simulator Instances Detail page. To access the page, click the Instance Id link for a simulator

instance on the Instances page.

Simulator Instances Detail page (1 of 2)

Working with Test and Simulator Instances

86 Copyright © 2010, Oracle. All rights reserved.

Simulator Instances Detail page (2 of 2)

2. Use the following page elements on the Simulator Instances Detail page to view the details of a simulator

instance.

Cancel Click to discard any updates to the page and return to the Instances
page.

Apply Click to apply and save any updates you have made to the page.

Save Click to save any updates you have made to the page and go to the
Instances page.

Id Displays the unique ID assigned to the instance.

Definition Id Click for an unlocked simulator definition to access the Modify
Simulator Definition page.

Click for a locked simulator definition to access the View Simulator
Definition page, where you can access a read-only view of the
simulator definition.

Name Displays the descriptive name associated with the simulator
definition that generated the instance.

Status Displays the status of the simulator instance.

Initiated: The simulator instance has been initiated.

Ended: This status is only applicable to simulator instances that do
not involve validations. Indicates that the instance has ended.

Faulted: The simulator instance could not execute properly due to
exceptions or faults.

Failed: The simulator instance did not pass validation.

Passed: The simulator instance passed validation.

Type Displays the type of definition that generated the simulator
instance. On the Simulator Instances Detail page, this value will
always be Simulator.

Working with Test and Simulator Instances

Copyright © 2010, Oracle. All rights reserved. 87

Service Type Displays the business service pattern of the web service simulated
by the simulator definition that generated the instance.

Synchronous

Notify

Asynchronous two way

Service Name Displays the name of the web service simulated by the simulator
definition that created the instance.

Service Version Displays the version of the web service simulated by the simulator
definition that created the instance.

Process Name Displays the name of the process associated with the simulator
definition that created the instance.

PIP Name (Process Integration

Pack name)

Displays the name of the PIP associated with the simulator
definition that created the instance.

Start Date Displays the date and time at which the simulator instance was
initiated.

End Date Displays the date and time at which the simulator instance ended.

Test Messages

Use the Test Messages group box to view the request and response XML messages associated with the
simulator definition that generated the instance.

Actual Request Message Displays request message XML defined for the simulator definition
that generated the instance.

For more information about the Request Message field, see How

to Create a Simulator Definition.

Response Message Displays response message XML defined for the simulator
definition that generated the instance.

For more information about the Response Message field, see

How to Create a Simulator Definition.

Prefix and Namespace Selection

Displays namespace data created for the simulator definition that generated the simulator instance. This
namespace data is used in the XPath values defined in the XPath Selection grid.

For more information about the Prefix and Namespace Selection grid, see How to Modify a Simulator

Definition.

XPath Selection

Displays XPath data created for the simulator definition that generated the instance. The values in this
grid use the namespace values set in the Prefix and Namespace Selection grid.

Working with Test and Simulator Instances

88 Copyright © 2010, Oracle. All rights reserved.

For more information about the XPath Selection grid, see How to Modify a Simulator Definition.

Linked Test Instance Selection

Displays the test instance with which the simulator instance is associated. This is a one-to-one
association.

If no correlation logic has been defined between the test definition and the simulator definition, the test
and simulator instances will not always be reconcilable, especially when the same web service is invoked
multiple times during a very short time period, as in during performance testing.

However, if a simulator definition is associated with a test definition, any test instances generated by the
test definition will automatically reflect associations to simulator instances generated by associated
simulator definitions.

You can adjust the association between the simulator instance and a test instance using the controls on
this page.

Unassign Select the test instance ID that you want to disassociate from the
simulator instance and click the Unassign button to execute the
disassociation.

Assign Click to access the Search Instances - Test page, where you can
search for a test instance that you want to manually associate with
the simulator instance.

Once you have associated a test instance with the simulator
instance using the Search Instances - Test page, the Simulator
Instances Detail page displays the selected test instance.

Refresh Click to refresh the Simulator Instances Detail page.

Id Click to display the selected test instance on the Test Instances
Detail page

Definition Id Displays the ID of the test definition that generated the test
instance.

Click for an unlocked test definition to access the Modify Test
Definition page.

Click for a locked test definition to access the View Test Definition
page, where you can access a read-only view of the test definition.

For more information, see How to Modify a Test Definition.

Copyright © 2010, Oracle. All rights reserved. 89

10. Working with Group Instances

A group instance captures the details of the execution of a group definition.

This chapter discusses:

 How to View Group Instances

 How to View Group Instance Details

10.1. How to View Group Instances

To view group instances:

1. Access the Group Instances page. To access the page, access the Oracle Application Integration Architecture

(AIA) Home Page. In the Composite Application Validation System area, click the Go button. Select the Group

Instances tab.

Group Instances page

2. Use the following page elements on the Group Instances page to search for group instances. Access a page you

can use to view group instance details.

Search Group Instances

Use the Search Group Instances group box to enter search criteria to find the group instance you are
searching for.

Id Enter the unique key identifier assigned to the group instance.

Group Definition Id Enter the unique key ID assigned to the group definition that
generated the instance.

Name Enter a descriptive name assigned to the group definition.

Process Name Enter the name of the process associated with the group definition
that generated the instance.

PIP Name (process integration

pack)

Enter the name of the Process Integration Pack (PIP) associated
with the group definition that generated the instance.

Start Date Enter a start date and time that you want to use as search criteria.
The search will look for all group instances that were created on

Working with Group Instances

90 Copyright © 2010, Oracle. All rights reserved.

and after the given date and time.

Search Click to execute a search for group instances using the search
criteria entered in the Search Group Instances group box.

Search Result Selection

Use the Search Result Selection grid to work with group instances returned in your search results. Upon
accessing this page, the grid is populated by all group instances.

Delete Select one or more group instances that you want to delete and
click the Delete button to execute the deletion.

Export

For more information exporting group instances, see Exporting

and Importing CAVS Definitions and Instances.

Id Click to access the Group Instances Detail page.

Group Definition Id Click to access the Group Definition Detail page.

For more information about the Group Definition Detail page, see

Working with Group Definitions.

10.2. How to View Group Instance Details

To view group instance details:

1. Access the Group Instances Detail page. To access the page, click a group instance Id link on the Group

Instances page.

Group Instances Detail page

2. Use the following page elements on the Group Instances Detail page to view the details of a group instance.

Id Displays the unique key identifier assigned to the group instance.

Group Definition Id Click to access the Group Definition Detail page.

Name Displays the descriptive name assigned to the group definition.

Process Name Displays the name of the process associated with the group
definition that generated the instance.

Working with Group Instances

Copyright © 2010, Oracle. All rights reserved. 91

PIP Name Enter the name of the PIP associated with the group definition that
generated the instance.

Start Date Displays the date and time at which the group instance was
initiated.

Delete Select one or more test instance rows that you want to delete and
click the Delete button to execute the deletion.

Definition Sequence Id Indicates the sequence in which the test definitions were initiated
by the group definition that generated the group instance.

Definition Id Click to access the Modify Test Definition page.

For more information about the Modify Test Definition page, see

How to Modify a Test Definition.

Instance Id Click to access the Test Instances Detail page.

For more information about the Test Instances Detail page, see

How to View Test Instance Details.

Status Displays the status of the test instance in the group instance.

Initiated: The test instance has been initiated.

Ended: This status is only applicable to test instances that do not
involve validations. Indicates that the instance has ended.

Faulted: The test instance could not execute properly due to
exceptions or faults.

Failed: The test instance did not pass validation.

Passed: The instance passed validation.

Start Date Displays the date and time at which the test instance was initiated.

End Time Displays the date and time at which the test instance ended.

Copyright © 2010, Oracle. All rights reserved. 93

11. Purging CAVS-Related Cross Reference
Entries to Enable Rerunning of Test
Scenarios

When a participating application is involved in a Composite Application Validation System (CAVS) testing
flow, execution of tests can potentially modify data in a participating application. Therefore, consecutive
running of the same test may not generate the same results. The CAVS is not designed to prevent this
kind of data tampering because it supports the user‟s intention to include a real participating application in
the flow. The CAVS has no control over modifications that are performed in participating applications.

However, this issue does not apply if your CAVS test scenario uses test definitions and simulator
definitions to replace all participating applications and other dependencies. In this case, all cross-
reference data is purged once the test scenario has been executed. This enables rerunning of the test
scenario.

This chapter discusses How to Purge CAVS-Related Cross Reference Entries to Enable Rerunning of
Test Scenarios.

11.1. How to Purge CAVS-Related Cross Reference
Entries to Enable Rerunning of Test Scenarios

To purge CAVS-related cross reference entries to enable rerunning of test scenarios:

1. Process integration packs (PIPs) that are delivered to work with Oracle Application Integration Architecture (AIA)

Foundation Packs are delivered with cross-reference systems in place. They are named CAVS_<XYZ>, where

<XYZ> is the participating application system. For example, for systems EBIZ and SEBL, the PIP is delivered

with cross-reference systems CAVS_EBIZ and CAVS_SEBL.

2. For every system type defined on the System - Application Registry page for which you want to make test

scenarios rerunnable (<XYZ>), create a related CAVS system (CAVS_<XYZ>). The System Type field value for

the CAVS-related entry should match the name of the system for which it is created.

For more information about the System – Application Registry page, see Oracle Application

Integration Architecture Foundation Pack: Development Guide, “Building AIA Integration Flows."

3. When testing a provider Application Business Connector Service (ABCS) in isolation, the Enterprise Business

Message (EBM) will be passed from the CAVS to the provider ABCS with the

NamespacePrefixedEBMName/EBMHeader/Target/ID element set as CAVS_<XYZ>.

4. When testing a requester ABCS in isolation, the element in the Application Business Message (ABM) that

normally contains the Internal ID value will now contain the CAVS-specific Internal ID value set for the system on

the System – Application Registry page.

5. When testing an entire flow (requester ABCS-to-Enterprise Business Service [EBS] -to-provider ABCS), you

must set the Default.SystemID property of the provider ABCS to CAVS_<XYZ>, where <XYZ> is the system.

Purging CAVS-Related Cross Reference Entries to Enable Rerunning of Test Scenarios

94 Copyright © 2010, Oracle. All rights reserved.

a. To do this, edit the Default.SystemID property value in the AIAConfigurationProperties.xml file in
the <AIA_HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config directory.

b. Reload updates to the AIAConfigurationProperties.xml file.

For more information about reloading updates to AIAConfigurationProperties.xml, see Oracle

Application Integration Architecture Foundation Pack: Development Guide, “Building AIA

Integration Flows.”

c. You can now commence testing the entire flow.

Note: If the test scenario is an entire flow that includes multiple instances of the same system, this

approach will not work. In this case, data created in the cross reference will remain making the same test

case non-rerunnable.

Copyright © 2010, Oracle. All rights reserved. 95

12. Exporting and Importing CAVS Definitions
and Instances

This chapter discusses:

 How to Export and Import Definitions

 How to Export Test and Simulator Instances

 How to Export Group Instances

12.1. How to Export and Import Definitions

To export and import CAVS definitions:

1. Access the Definitions page. To access the page, access the Oracle Application Integration Architecture (AIA)

Home Page. In the Composite Application Validation System area, click the Go button. Select the Definitions tab.

Definitions page

2. Use the following page elements on the Definitions page to search for, execute, migrate, and manage existing

test and simulator definitions. You can also access pages you can use to create and modify test and simulator

definitions.

Export Use the Export and Import buttons on this page to migrate test
definitions, simulator definitions, and any associated group
definitions in XML flat-file format between instances running on the
same version of Foundation Pack.

 Examples of uses for this export and import functionality include:

 QA may want to certify a set of definitions that have been run in

one build in other builds.

Exporting and Importing CAVS Definitions and Instances

96 Copyright © 2010, Oracle. All rights reserved.

 Support analysts and customers may want to exchange

definition files.

 You may want to verify validity of new environments.

Select one or more definitions and click the Export button to initiate
the export. The following options display:

 Export selected Definition(s) only

 Export selected Definition(s) and associated Group
Definition(s)

 Export selected Definition(s), associated GroupDefinition(s)
and Test Definition(s) that belong to the associated
GroupDefinition(s) but are not selected

 Select an option and click the Proceed button to create and save
the definitions to a location on your local system. The default file
name for the exported definition(s) is Definitions.xml.

If a test definition that you are exporting is associated with a routing
setup ID, the routing setup information will also be exported.

If that routing setup is associated with one or more simulator
definitions, which were provided when the Route To CAVS option
was set to true, then these simulator definitions will also be
exported.

For more information about the structure of the Definitions.xml file

created by the CAVS export definition feature, see Appendix: XML

Structures of Exportable CAVS Definitions and Instances.

Import Use the Import button to upload a test, simulator, or group
definition in the XML flat-file format generated by Composite
Application Validation System (CAVS) export functionality. You can
generate these files by clicking the Export button on this page. The
definition file to be uploaded must be accessible by the local
system being used to perform the upload.

 Click the Import button and browse for the file you want to upload.
The CAVS validates the structure of the file being uploaded. If the
structure is invalid, an error will be raised.

If a test definition that you are importing is associated with a routing
setup ID, the routing setup information will also be imported.

If that routing setup is associated with one or more simulator
definitions, which were provided when the Route To CAVS option
was set to true, then these simulator definitions will also be
imported.

For more information about the valid structure of the

Definitions.xml file created by the CAVS export definition feature,

see Appendix: XML Structures of Exportable CAVS Definitions and

Instances.

Exporting and Importing CAVS Definitions and Instances

Copyright © 2010, Oracle. All rights reserved. 97

 Imported definitions will still reference endpoint URLs pointing to
tested web services in the source system. You must update
imported definition endpoint URL values to point to tested web
services in the target system. The CAVS enables you to update
these URLs directly on the following pages:

Use the Change URL button on this page.

Update the Endpoint URL field value on the Modify Test Definitions
page.

For more information about the Endpoint URL field, see How to

Create a Test Definition.

 Because the sequential definition IDs assigned in the source
system may not be valid in the target system, new sequential
definition IDs will be assigned by the target system. As a result,
associations between definitions will be severed in the target
system and will need to be reestablished.

 Because test, simulator, and group instance details that may be
associated with definitions in the source system are not valid in the
target system, they will not be imported.

 If the same definition is uploaded multiple times, multiple duplicate
definitions will be created in the target system.

For more information about the Definitions page, see Searching for Test and Simulator Definitions.

12.2. How to Export Test and Simulator Instances

To export test and simulator instances:

1. Access the Instances page. To access the page, access the AIA Home Page. In the Composite Application

Validation System area, click the Go button. Select the Instances tab.

Exporting and Importing CAVS Definitions and Instances

98 Copyright © 2010, Oracle. All rights reserved.

Instances page

2. Use the following page elements on the Instances page to search for test and simulator instances. Access pages

you can use to view test and simulator instance details.

Export Use to export instances in XML format. You can use XML-based
reporting tools to generate reports of test and simulator executions
using these XML files.

Select one or more instances and click the Export button to initiate
the export.

 Click Save to create and save the definitions to a location on your
local system. The default file name for the exported definition(s) is
Instances.xml.

For more information about the structure of the Definitions.xml file

created by the CAVS export instance feature, see Appendix: XML

Structures of Exportable CAVS Definitions and Instances.

For more information about the Instances page, see Working with Test and Simulator Instances.

12.3. How to Export Group Instances

To export group instances:

1. Access the Group Instances page. To access the page, access the AIA Home Page. In the Composite

Application Validation System area, click the Go button. Select the Group Instances tab.

Exporting and Importing CAVS Definitions and Instances

Copyright © 2010, Oracle. All rights reserved. 99

Group Instances page

2. Use the following page element son the Group Instances page to search for group instances. Access a page you

can use to view group instance details.

Export Select one or more group instances that you want to export and
click the Export button to execute the download.

For more information about the structure of the Definitions.xml file

created by the CAVS export definition feature, see Appendix: XML

Structures of Exportable CAVS Definitions and Instances.

For more information about the Group Instances page, see How to View Group Instances.

Copyright © 2010, Oracle. All rights reserved. 101

Part: Setting Up and Using Error
Handling and Logging

 Introduction to Oracle AIA Error Handling

 Setting Up Error Handling

 Using Error Notifications

 Using the Oracle BPM Worklist

 Using the Message Resubmission Utility

 Using Trace and Error Logs

 Accessing Oracle B2B Errors

Copyright © 2010, Oracle. All rights reserved. 103

13. Introduction to Oracle AIA Error
Handling

This chapter discusses the following topics:

 Introduction to the Error Handling Framework

 Introduction to Error Handling for Business Faults

 Introduction to Error Handling for BPEL and Mediator System Faults

 Introduction to Error Handling for Oracle B2B Errors

13.1. Introduction to the Error Handling
Framework

The Error Handling Framework provides error handling and logging components to support the
needs of integration services operating in an Oracle Application Integration Architecture (AIA)
ecosystem.

This diagram provides a high-level overview of the Error Handling Framework.

Introduction to Oracle AIA Error Handling

104 Copyright © 2010, Oracle. All rights reserved.

Error Handling Framework components Key Features

The AIA Error Handling Framework provides the following key features for integration services
operating in an AIA ecosystem.

Unified Error Handling Approach

 Works across technologies, including BPEL and Mediator components, business-to-business

(B2B), and ODI.

 Works across categories of faults, including business and system/runtime/technical faults.

 Works across integration patterns.

 Adopts the Oracle SOA Suite 11g tech stack.

Introduction to Oracle AIA Error Handling

Copyright © 2010, Oracle. All rights reserved. 105

Error Notifications

 Error notifications are emailed to suitable actor roles, such as integration administrators, and

FYI roles, such as customer service representatives.

 Provides visibility into error context.

 Drill-down to the Oracle Enterprise Manager Console Flow Trace page from the error

notification email.

 View errors in the context of an AIA flow trace.

 Enables customization of error notification content.

 Add key fields to the error notification body.

 Add or remove fields from error notification content.

 Issue error notifications to suitable Actor and FYI roles.

 Provide a link to Oracle BPM Worklist for error details, if desired.

 Enables error notification throttling.

 Control the number of error notifications issued for a specific error.

 Regulate the issuance of error notifications by time interval and number of errors.

Oracle BPM Worklist Integration

 Centralized user interface to access error details that are assigned for resolution or for

informational purposes.

 Accessible to administrators and end-users.

 Decoupled from the Error Notification Framework.

 Oracle BPM Worklist is not tied to error notifications.

 Oracle BPM Worklist can be used as an optional component.

Error Logging

 Logs messages non-intrusively in a consistent schema.

 Logs can be searched, sorted, and filtered using Oracle Enterprise Manager.

B2B Error Handling

 Errors in the Oracle B2B component of Oracle Fusion Middleware are routed to the AIA Error

Handling Framework.

 The AIA fault definition captures B2B-specific details of a failed AIA flow.

Extensible Framework

 Provides the ability to extend error handling capabilities.

Introduction to Oracle AIA Error Handling

106 Copyright © 2010, Oracle. All rights reserved.

Automated Error Actions

 Automatically acts upon the errored object to provide automated retry actions, error

notifications, and logging.

 Error actions include retry, rethrow, replay, abort, Java action, and human-intervention.

13.1.1. Fault Categories

There are two categories of faults:

 Business faults

Business faults are generated when there is a problem with the information being processed.

For example, a credit card number is invalid.

Error actions for business faults that are internal to BPEL are configured in catch blocks.

These are business faults that are thrown by a throw activity. Error notifications and logging

for these business faults are handled by AIAAsyncErrorHandlingBPELProcess.

Error actions for business faults from external applications and services are configured using

the Composite Fault Policy Framework. These are business errors that are returned by an

invoked service or application when using a BPEL invoke activity. Error notifications and

logging for these business faults are handled by

oracle.apps.aia.core.eh.CompositeJavaAction.

 System faults

System faults occur as a result of problems within the running of the BPEL process or

Mediator service component. For example, data cannot be copied properly because the

variable name is incorrect or because of transformation errors.

Error actions for system faults are configured using the Composite Fault Policy Framework.

Error notifications and logging for system faults are handled by

oracle.apps.aia.core.eh.CompositeJavaAction.

13.2. Introduction to Error Handling for Business
Faults

This section discusses error handling for two types of business faults:

 Local business faults

 Remote business faults

Local Business Faults

If a BPEL process or Mediator component needs to issue a business error, such as a validation
error, the process must be developed to issue the error explicitly, catch it in a catch block, and
invoke the AIAAsyncErrorHandlingBPELProcess. The input to the process is a fault message in
the AIA fault message schema. This is also true for business errors for Oracle Data Integrator,
Oracle Service Bus, third-party B2B, and other external systems that want to leverage the AIA
Error Handling and Logging framework.

Introduction to Oracle AIA Error Handling

Copyright © 2010, Oracle. All rights reserved. 107

Remote Business Faults

If an invoked service or application responds to a request with a business fault, the Oracle SOA
Suite captures these types of errors using the Composite Fault Policy Framework. The AIA Error
Handling framework provides a custom Java action,
oracle.apps.aia.core.eh.CompositeJavaAction, which can be configured as the Java action for all
policies.

By configuring fault policies to include this Java action, the AIA Error Handling framework can
perform all necessary error logging and notifications.

For more information, see Oracle Application Integration Architecture Foundation Pack:

Development Guide, “Configuring Oracle AIA Processes for Error Handling and Trace Logging.”

13.3. Introduction to Error Handling for BPEL and
Mediator System Faults

These types of errors are captured using the Composite Fault Policy Framework. The AIA Error
Handling framework provides a custom Java action,
oracle.apps.aia.core.eh.CompositeJavaAction, which can be configured as the Java action for all
policies.

By configuring fault policies to include this Java action, the AIA Error Handling framework can
perform all necessary error logging and notifications.

For more information, see Oracle Application Integration Architecture Foundation Pack:

Development Guide, “Configuring Oracle AIA Processes for Error Handling and Trace Logging.”

For more information about the Composite Fault Policy framework, see Oracle Fusion

Middleware Developer's Guide for Oracle SOA Suite, “Using Fault Handling in a BPEL Process.”

13.4. Introduction to Error Handling for Oracle
B2B Errors

The Oracle AIA Error Handling Framework is automatically triggered when there is an error in
Oracle B2B.

Oracle B2B can encounter errors while exchanging B2B documents with trading partners. Some
common reasons for errors in the Oracle B2B layer include the following scenarios:

 Documents fail schema validation in the B2B layer.

 Incorrect or missing trading partner agreements in Oracle B2B.

 Incorrect or missing document-type definitions in Oracle B2B.

 Network errors or unavailability of a trading partner system.

 Authentication failures, for example invalid digital certificates, and so forth.

http://download.oracle.com/docs/cd/E12839_01/integration.1111/e10224/bp_faults.htm

Introduction to Oracle AIA Error Handling

108 Copyright © 2010, Oracle. All rights reserved.

Note. Business process failures, such as an order being rejected by the trading partner if the

ordered item is not in stock, are not considered to be Oracle B2B errors. Response or

acknowledgement messages from trading partner applications containing these failures are

treated as independent flows.

When Oracle B2B encounters these system errors, its default behavior is to publish the error to
the Oracle Advanced Queuing (AQ) queue defined in the Oracle B2B infrastructure schema.

The details of the AQ to which Oracle B2B posts errors are as follows:

Queue Name IP_IN_QUEUE

Database Schema SH_SOAINFRA

Queue Consumer b2berroruser

Data Source jdbc/SOADatasource

The following diagram illustrates the way in which AIA‟s error handling framework captures B2B
errors:

Introduction to Oracle AIA Error Handling

Copyright © 2010, Oracle. All rights reserved. 109

Error handling framework support for capturing B2B errors

These errors can be viewed in error reports available in the Oracle B2B console.

For more information about viewing Oracle B2B error reports, see Accessing Oracle B2B

Errors.

For Oracle B2B inbound and outbound flows, when an error occurs within the Oracle B2B server
and not in the AIA layer, the AIA fault has the capacity to capture only the B2B-specific details.

Introduction to Oracle AIA Error Handling

110 Copyright © 2010, Oracle. All rights reserved.

Enterprise Business Message (EBM) details will not be available. However, in the case of an
error in an outbound flow, AIA is able to track the EBMID and include that information in the fault.

Copyright © 2010, Oracle. All rights reserved. 111

14. Setting Up Error Handling

This chapter discusses the following topics:

 Introduction to Setting Up Error Handling

 How to Create Error Handling User Roles

 How to Associate Email Addresses with Error Handling User Roles

 How to Configure Notification Details

 How to Set Up AIA Error Handling Configuration Details

14.1. Introduction to Setting Up Error Handling

Setting up error handling involves configuring the following items:

 Error notification enablement

Error notification functionality is enabled by default.

For more information about disabling error notification functionality, see Disabling Error

Notifications.

 Oracle BPM Worklist enablement

Oracle BPM Worklist functionality is disabled by default.

For more information about enabling Oracle BPM Worklist functionality, see How to Enable

the Oracle BPM Worklist.

 Error handling user roles

Create user roles in WebLogic Server Administration Console to receive error notifications
and Oracle BPM Worklist task assignments.

For more information, see How to Create Error Handling User Roles.

 Error handling user role email addresses

Use Oracle User Messaging Service to associate email addresses with error handling user
roles. Error notifications will be sent to the email addresses specified.

For more information, see How to Associate Email Addresses with Error Handling User

Roles.

 Notification configuration details

Configure details that enable error notification emails to be sent.

Setting Up Error Handling

112 Copyright © 2010, Oracle. All rights reserved.

For more information, see How to Configure Notification Details.

 Error handling configuration details

Define and modify error handling configuration details, including Error Notification and Oracle
Worklist roles and responsibilities for processes operating in an Oracle Application Integration
Architecture (AIA) ecosystem.

For more information, see How to Set Up AIA Error Handling Configuration Details.

 Error handling responsibilities

If you do not want to assign Actor and FYI user roles for specific error scenarios, you can
assign default Actor and FYI user roles in AIAConfigurationProperties.xml.

For more information, see Oracle Application Integration Architecture Foundation Pack:

Development Guide, “Configuring Oracle AIA Processes for Error Handling and Trace

Logging.”

The following diagram illustrates the way in which error handling setup elements enable Error
Notification functionality.

Setting Up Error Handling

Copyright © 2010, Oracle. All rights reserved. 113

Error handling setup elements that enable Error Notification functionality

The following diagram illustrates the way in which error handling setup elements enable Oracle
Worklist functionality.

Setting Up Error Handling

114 Copyright © 2010, Oracle. All rights reserved.

Error handling setup elements that enable Oracle Worklist functionality

14.2. How to Create Error Handling User Roles

To create error handling user roles:

1. Access the Oracle WebLogic Server Administration Console: http://<host>:<port>/console.

2. In the Domain Structure menu, click Security Realms.

3. On the Summary of Security Realms page, select myrealm.

4. On the Settings for myrealm page, select the Users and Groups tab.

Setting Up Error Handling

Copyright © 2010, Oracle. All rights reserved. 115

5. Select the Users tab.

6. Create and modify user roles for use with the Error Handling Framework. For error handling notification

and worklist functionality to work as designed, ensure that you are using user roles and not groups.

For more information about setting up user roles, see Oracle WebLogic Server

Documentation, “Administration Console Online Help,” Manage Users and Groups.

Note. Any user roles you create in the WebLogic Server Administration Console are stored in the

Oracle WebLogic Server‟s embedded LDAP server. You may integrate a third-party LDAP

solution to the embedded LDAP server.

For more information about Oracle WebLogic Server‟s embedded LDAP server, see Oracle

Fusion Middleware Understanding Security for Oracle WebLogic Server, “Security Providers,”

Security Provider Databases.

14.3. How to Associate Email Addresses with
Error Handling User Roles

To associate email address with error handling user roles:

1. Access the My Messaging Channels page in the Oracle User Messaging Service standalone user

interface: http://<soa-host>:<soa-port>/sdpmessaging/userprefs-ui.

For more information about creating, updating, and deleting a message channel, see

Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite, “User Messaging

Preferences,” How to Manage Messaging Channels.

2. Associate an email address with an error handling user role.

For more information about creating user roles, see How to Create Error Handling User

Roles.

3. Ensure that the messaging channel name you enter corresponds to an error handling user role name

you have created according to information in How to Create Error Handling User Roles.

14.4. How to Configure Notification Details

To configuration notification details:

1. Set up workflow notification properties in the Oracle Enterprise Manager.

For more information about how to set up these properties, see Oracle Fusion Middleware

Administrator's Guide for Oracle SOA Suite, "Configuring Human Workflow Service

Components and Engines," Configuring Human Workflow Notification Properties.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/security/ManageUsersAndGroups.html
http://download.oracle.com/docs/cd/E12839_01/web.1111/e13710/realm_chap.htm#i1033521
http://download.oracle.com/docs/cd/E12839_01/integration.1111/e10224/ns_rulebasednotification.htm#BCFDGHIA
http://download.oracle.com/docs/cd/E12839_01/integration.1111/e10226/hwf_config.htm#BHCJDGFJ

Setting Up Error Handling

116 Copyright © 2010, Oracle. All rights reserved.

2. Configure an email messaging channel. This enables the messaging service to resolve the email

address when trying to send a notification to a user.

For more information about how to configure an email messaging channel, see Oracle

WebLogic Communication Services Developer's Guide.

3. Set the sender address for email notifications to a valid email address. Set this value in the

FROM.EMAIL.ID property in the Error Handling Module section of the AIAConfigurationProperties.xml

file. For example:

<Property name="FROM.EMAIL.ID">Email:AIA-Error-

Handling@oracle.com</Property>

For more information about requirements for working with AIAConfigurationProperties.xml,

see Oracle Application Integration Architecture Foundation Pack: Development Guide,

“Building AIA Integration Flows,” How to Set Up AIA Workstation.

14.5. How to Set Up AIA Error Handling
Configuration Details

To set up AIA error handling configuration details:

1. Access Error Notifications page. To access the page, access the AIA Home Page. In the Setup area,

click the Go button. Select the Error Notifications tab.

Error Notifications page

2. Use the page elements to define and modify error handling configuration details for processes

operating in an Oracle AIA ecosystem, including Error Notification and Oracle Worklist roles and Error

Notification throttling parameters.

The error handling configurations you define on the Error Notifications page are stored in the
AIA_ERROR_NOTIFICATIONS table.

http://download.oracle.com/docs/cd/E12839_01/doc.1111/e13807/ns_rulebasednotification.htm#POWDGHIA
http://download.oracle.com/docs/cd/E12839_01/doc.1111/e13807/ns_rulebasednotification.htm#POWDGHIA

Setting Up Error Handling

Copyright © 2010, Oracle. All rights reserved. 117

Note. For a given process, if no entry is found in the AIA_ERROR_NOTIFICATIONS table, the

Actor and FYI roles specified in AIAConfigurationProperties.xml are used for Error Notifications

and Oracle Worklist assignments, if enabled. By default, the Actor role is set to

AIAIntegrationAdmin. Therefore, you are not required to populate the

AIA_ERROR_NOTIFICATIONS table unless there is an explicit need.

For more information, see Oracle Application Integration Architecture Foundation Pack:

Development Guide, “Configuring Oracle AIA Processes for Error Handling and Trace Logging.”

Following are descriptions of key fields on the page:

ErrorCode For BPEL and Mediator process system error notifications,
this is the fault code.

For business errors using catch blocks, this is the business
error code you are catching. This is user-defined, for
example, OUT_OF_INV.

SystemCode This is the system code of the participating application.

ProcessName This is the business process in which the service is
participating.

ServiceName For BPEL and Mediator services, this is the name of the
service that experiences the error for which you are defining
error notification details. For example,
SampleBPELProcess.

NotificationRole If you have enabled Error Notifications, specify the user role
that you want to receive Actor error notifications for a
process.

If you have enabled Oracle Worklist functionality, specify the
role to which you want to assign Actor tasks for a process.

The Actor role is responsible for taking action to correct the
error that generated the notification.

For Error Notifications or Oracle Worklist functionality,
ensure that the role you specify here has a corresponding
entry in the Oracle WebLogic Server Administration
Console‟s user store.

For more information, see How to Create Error Handling

User Roles.

For Error Notifications functionality, ensure that the user role
has an email address defined in the Oracle WebLogic User
Messaging Service.

For more information, see How to Associate Email

Addresses with Error Handling User Roles.

FyiNotificationRole If you have enabled Error Notifications, specify the user role
that you want to receive FYI error notifications for a process.

Setting Up Error Handling

118 Copyright © 2010, Oracle. All rights reserved.

If you have enabled Oracle BPM Worklist functionality,
specify the role to which you want to assign FYI tasks for a
process.

This is the role that will be given information about the error,
but will not be responsible for taking any actions to correct
the error that generated the notification.

For Error Notifications or Oracle BPM Worklist functionality,
ensure that the role you specify here has a corresponding
entry in your implementation‟s user management store. By
default, the AIA user management store is WebLogic‟s
embedded LDAP server.

For more information, see How to Create Error Handling

User Roles.

For Error Notifications functionality, ensure that the user role
has an email address defined in Oracle User Messaging
Service preferences.

For more information, see How to Associate Email

Addresses with Error Handling User Roles.

ErrorType The default value is AIA_EH_DEFAULT. Use this value if
you want to use the AIA default error listener as the
consuming component for this error notification.

Enter a unique value here if you are using extended error
handling functionality.

For more information about extending error handling, see

Oracle Application Integration Architecture Foundation

Pack: Development Guide, “Configuring Oracle AIA

Processes for Error Handling and Trace Logging.”

If you want to use default and extended error handling
functionality in a single error notification definition, add
multiple Error Type values separated by commas. For
example, AIA_EH_DEFAULT, ORDER_FO, where
AIA_EH_DEFAULT is the default Oracle AIA follow-through
action, and ORDER_FO identifies the custom
JMSCorrelationID for the extended error handling
implementation. The listeners and associated actions for
both of these error types will be executed at runtime.

ErrorExtHandler (error

extension handler)

The default value is ERRORHANDLER_EXT. Use this
value for the error notification if you are not using an
extended handler and the fault message will be generated
based on the default fault message schema.

For more information about extending fault messages, see

Oracle Application Integration Architecture Foundation

Pack: Development Guide, “Configuring Oracle AIA

Setting Up Error Handling

Copyright © 2010, Oracle. All rights reserved. 119

Processes for Error Handling and Trace Logging.”

If you are using an extended handler to extend the fault
message for this error notification, enter a unique value to
identify the extension handler that will be used to enrich the
fault message.

AggrCountTot (aggregation

count total)

Error notification throttling must be enabled before this field
value can be used to control the issuance of error
notifications.

For more information, see How to Enable Error

Notification Throttling.

Enter the total number of error notifications you want the
system to suppress during a specific time interval for the
given error scenario. The count is valid only during the
specified time interval.

An error notification email is issued for the first error during
the time interval. After reaching the count value, the count is
reset to 0 and another error notification email is issued.

StDatetime/EndDatetime Error notification throttling must be enabled before these
field values can be used to control the issuance of error
notifications.

For more information, see How to Enable Error

Notification Throttling.

Enter the start and end date-and-time intervals to which you
want the count value to apply.

For example, if you set the AggrCountTot field value to
100, the start date and time to 30-Oct-2009 18:00:00, and
the end date and time to 01-Nov-2009 17:00:00, one error
notification email will be sent out on the first occurrence of
an error in the time interval. When the count value entered
in the AggrCountTot field is reached, the count is reset to 0
and another error notification email is issued.

The date and time values used to track the time interval are
derived from the database. The date and time displayed in
the fields are derived from your browser time. Hover over
the field values to view the database time.

14.5.1. What You Need to Know about Setting Up Error
Handling Configurations

The Error Handling Framework uses runtime values and the data you enter on this page to
execute the following hierarchical logic to determine the appropriate Error Notification and Oracle
BPM Worklist assignment roles for an error.

Setting Up Error Handling

120 Copyright © 2010, Oracle. All rights reserved.

1. If all four runtime values (SYSTEM CODE, ERROR CODE, SERVICE NAME, and
PROCESS_NAME) are available and they map to an entry in this table, use the specified
roles.

2. If the ERROR CODE, SERVICE NAME, and PROCESS NAME are available and map to an
entry in this table, use the specified roles.

3. If the SERVICE_NAME and PROCESS_NAME are available and map to an entry in this
table, use the specified roles.

4. If the SERVICE_NAME is available and maps to an entry in this table, use the specified roles.

5. If none of these values are available, the default values are fetched from the
AIAConfigurationProperties.xml file.

Copyright © 2010, Oracle. All rights reserved. 121

15. Using Error Notifications

This chapter discusses the following topics:

 Introduction to Error Notifications

 Setting Up Error Notification Throttling

 Customizing Error Notification Emails

 Disabling Error Notifications

15.1. Introduction to Error Notifications

By default, error notification functionality is enabled. However, there are setup steps that must be
completed.

For more information about setting up error notifications, see Setting Up Error Handling.

Error notification functionality generates and delivers email notifications to configured user roles.

For more information about configuring user roles for error notifications, see How to Create

Error Handling User Roles and How to Associate Email Addresses with Error Handling User

Roles.

You can define a user role to receive error notifications for a specific error scenario on the Error
Notifications page.

For more information, see How to Set Up AIA Error Handling Configuration Details.

You can control the number of error notifications issued for an error scenario over a specific
interval of time using error notification throttling functionality.

For more information, see Setting Up Error Notification Throttling.

Following sample text from an error notification email:

Using Error Notifications

122 Copyright © 2010, Oracle. All rights reserved.

Sample error notification email

As delivered, error notification emails contain a link to the Oracle Enterprise Manager Console,
where recipients can view error information in the context of its flow trace. If the Oracle BPM
Worklist is also enabled, error notification emails also contain a link to the Oracle BPM Worklist.

For more information about enabling the Oracle BPM Worklist, see How to Enable the Oracle

BPM Worklist.

Error notification actor and FYI emails are generated based on content and configurations in
AIAEHNotifications.xml file located in
<AIA_HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config. You can customize email
content by editing this file.

For more information about customizing error notifications, see Customizing Error Notification

Emails.

15.2. Setting Up Error Notification Throttling

This section provides an Introduction to Error Notifications and discusses:

 How to Enable Error Notification Throttling

 How to Configure Error Notification Throttling Parameters

15.2.1. Introduction to Error Notification Throttling

The Error Handling Framework is capable of sending out an error notification email each time an

error scenario arises, however you may choose to use error notification throttling functionality to

control the number of error notification emails sent during a specific time interval for a specific

error scenario.

For example, if you know that a particular high-volume transaction will be down for an extended

period, you can configure notification throttling settings to control the number of error notification

emails that are sent for the error scenario during the transaction‟s down-time. This will help you

avoid the onslaught of error notification emails that would have been triggered by the down-time

had throttling configurations not been set.

Using Error Notifications

Copyright © 2010, Oracle. All rights reserved. 123

15.2.2. How to Enable Error Notification Throttling

Objective

Enable error notification throttling. By default, error notification throttling is disabled.

Prerequisites

Ensure that error notification functionality is enabled. By default, error notifications are enabled.
To verify that this functionality is enabled, access AIAConfigurationProperties.xml located in
<AIA_HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config. Ensure that the
EH.INVOKE.NOTIFY property value is set to true.

Actor

Integration administrator

To enable error notification throttling:

1. Access AIAConfigurationProperties.xml in

<AIA_HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config.

2. Set Property Name = EH.AGGR.NOTIFY to true.

If error notification throttling functionality is disabled by setting this property value to false, an

error notification email is issued each time an error scenario arises.

3. Reload updates to the AIAConfigurationProperties.xml file.

For more information about reloading updates to AIAConfigurationProperties.xml, see

Oracle Application Integration Architecture Foundation Pack: Development Guide, “Building

AIA Integration Flows.”

15.2.3. How to Configure Error Notification Throttling
Parameters

Objective

Configure the parameters by which you want error notification throttling to occur for an error
scenario.

Prerequisites

 Ensure that error notification functionality is enabled. By default, error notifications are

enabled. To verify that this functionality is enabled, access AIAConfigurationProperties.xml

located in <AIA_HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config. Ensure

that the EH.INVOKE.NOTIFY property value is set to true.

 Ensure that error notification throttling is enabled.

For more information, see How to Enable Error Notification Throttling.

Using Error Notifications

124 Copyright © 2010, Oracle. All rights reserved.

Actor

Integration administrator

To configure the parameters by which you want error notification throttling to occur:

1. Access the Error Notifications page. To access the page, access the AIA Home Page. In the Setup

area, click the Go button. Select the Error Notifications tab.

2. For a given error scenario, defined by a set of ErrorCode, SystemId, ProcessName, and

ServiceName values, enter AggrCountTot, StDatetime, and EndDatetime values.

 In the AggrCountTot (aggregation count total) field, Enter the total number of error

notifications you want the system to suppress during a specific time interval for the given

error scenario. The count is valid only during the specified time interval.

An error notification email is issued for the first error during the time interval. After

reaching the count value, the count is reset to 0 and another error notification email is

issued.

 In the StDatetime and EndDatetime fields enter the start and end date-and-time

intervals to which you want the total count value to apply.

For example, if you set the AggrCountTot field value to 100, the start date and time to

30-Oct-2009 18:00:00, and the end date and time to 01-Nov-2009 17:00:00, one error

notification email will be sent out on the first occurrence of an error in the time interval.

When the count value entered in the AggrCountTot field is reached, the count is reset to

0 and another error notification email is issued.

The date and time values used to track the time interval are derived from the database.

The date and time displayed in the fields are derived from your browser time. Hover over

the field values to view the database time.

For more information about the options on the Error Notifications page, see How to Set Up AIA

Error Handling Configuration Details.

15.3. Customizing Error Notification Emails

This section provides an Introduction to Error Notification Customization and discusses:

 How to Customize the Subject Line of Error Notification Emails

 How to Customize the Body Text of Error Notification Emails

 How to Customize Additional URLs Provided in Error Notification Email Body Text

Note. These customizations will apply to all emails issued by error notification functionality.

Using Error Notifications

Copyright © 2010, Oracle. All rights reserved. 125

15.3.1. Introduction to Error Notification Customization

You can customize the subject line and body text of emails issued by error notification
functionality by editing the AIAEHNotifications.xml file located in
<AIA_HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config. The text of the file is
shown here.

<?xml version="1.0" encoding="UTF-8"?>

<AIAEHNotification xmlns="http://schemas.oracle.com/aia/notify"

version="1.0">

 <EMAIL>

 <SUBJECT>Error in AIA #@#XPATH.{/default:Fault/default:

 FaultNotification/default:FaultingService/default:ID}#@#

 Process</SUBJECT>

 <BODY>An error has occurred during the processing of AIA

 Integration Error in AIA #@#XPATH.{/default:Fault/default

 :FaultNotification/default:FaultingService/default:ID}#@#

 Process requires your attention. Please access the

 details from the url mentioned below.</BODY>

 </EMAIL>

 <FYI_EMAIL>

 <SUBJECT>Error in AIA #@#XPATH.{/default:Fault/default:

 FaultNotification/default:FaultingService/default:ID}#@#

 Process FYI</SUBJECT>

 <BODY>An error has occurred during the processing of AIA

 Integration Error in AIA #@#XPATH.{/default:Fault/default

 :FaultNotification/default:FaultingService/default:ID}#@#

 Process requires your attention. Please access the

 details from the url mentioned below.</BODY>

 </FYI_EMAIL>

 <URL>

 ==

 ========================

 Please click on the following URL To view the instance

 details in the em console :

 ==

 ========================

 @ http://$adminHost:$adminPort/em/faces/ai/soa/message

 Flow?target=/Farm_$domainName/$domainName/$targetServer/

 #@#PROPS.{compositeName}#@#+[#@#PROPS.{composite Revision}

 #@#]%26type=oracle_soa_composite%26soaContext=#@#PROPS.

 {compositeDN}#

 @#/#@#PROPS.{compositeInstanceID}#@#

 ==

 ========================

 </URL>

 <EXT_URL>

 ==

 ==========

 Please access the task in the Worklist Application :

 ==

 ==========

 @ http://$managedHost:$managedPort/integration/

 worklistapp/faces/home.jspx

 ==

 ==========

Using Error Notifications

126 Copyright © 2010, Oracle. All rights reserved.

 </EXT_URL>

</AIAEHNotification>

All elements can be customized. All elements shown are required for error notifications to work as
designed, even if you choose to leave some of them blank.

15.3.1.1. EMAIL Element

You can customize the EMAIL element in AIAEHNotifications.xml to provide content that appears
in error notification emails to Actor roles.

 <EMAIL>

 <SUBJECT>Error in AIA #@#XPATH.{/default:Fault/default:

 FaultNotification/default:FaultingService/default:ID}#@#

 Process</SUBJECT>

 <BODY>An error has occurred during the processing of AIA

 Integration Error in AIA #@#XPATH.{/default:Fault/default

 :FaultNotification/default:FaultingService/default:ID}#@#

 Process requires your attention. Please access the

 details from the url mentioned below.</BODY>

 </EMAIL>

The SUBJECT element provides the subject line of the error notification email. As delivered, the
subject line is set to reference the ID of the service that experienced the error.

The BODY element provides the body text of the error notification email. As delivered, the body
text is set to reference the ID of the service that experienced the error.

15.3.1.2. FYI_EMAIL Element

You can customize the FYI_EMAIL element in AIAEHNotifications.xml to provide content that
appears in error notification emails to FYI roles.

 <FYI_EMAIL>

 <SUBJECT>Error in AIA #@#XPATH.{/default:Fault/default:

 FaultNotification/default:FaultingService/default:ID}#@#

 Process FYI</SUBJECT>

 <BODY>An error has occurred during the processing of AIA

 Integration Error in AIA #@#XPATH.{/default:Fault/default

 :FaultNotification/default:FaultingService/default:ID}#@#

 Process requires your attention. Please access the

 details from the url mentioned below.</BODY>

 </FYI_EMAIL>

The SUBJECT element provides the subject line of the error notification email. As delivered, the
subject line is set to reference the ID of the service that experienced the error.

The BODY element provides the body text of the error notification email. As delivered, the body
text is set to reference the ID of the service that experienced the error.

15.3.1.3. URL Element

As delivered, the URL element in AIAEHNotification.xml is used to provide a link to the composite
instance flow trace details in the Oracle Enterprise Manager Console for your AIA
implementation. You can customize this element to suit your implementation‟s needs.

Using Error Notifications

Copyright © 2010, Oracle. All rights reserved. 127

$hostname, $adminport, and $domain tokens shown in the sample below are populated with
implementation-specific values by the Oracle AIA Installer upon installation of Foundation Pack.

 <URL>

 ==

 ========================

 Please click on the following URL To view the instance

 details in the em console :

 ==

 ========================

 @ http://$adminHost:$adminPort/em/faces/ai/soa/message

 Flow?target=/Farm_$domainName/$domainName/$targetServer/

 #@#PROPS.{compositeName}#@#+[#@#PROPS.{composite Revision}

 #@#]%26type=oracle_soa_composite%26soaContext=#@#PROPS.

 {compositeDN}#

 @#/#@#PROPS.{compositeInstanceID}#@#

 ==

 ========================

 </URL>

15.3.1.4. EXT_URL Element

As delivered, the EXT_URL (external system URL) element in AIAEHNotifications.xml is used to
provide a link to the Oracle BPM Worklist application, where, if enabled for AIA, the user can view
their assigned AIA error-related tasks. You can customize this element to suit your
implementation‟s needs.

$hostname and $port tokens shown in the sample below are populated with implementation-
specific values by the Oracle AIA Installer upon installation of Foundation Pack.

 <EXT_URL>

 ==

 ==========

 Please access the task in the Worklist Application :

 ==

 ==========

 @ http://$managedHost:$managedPort/integration/

 worklistapp/faces/home.jspx

 ==

 ==========

 </EXT_URL>

For more information about enabling Oracle BPM Worklist functionality, see How to Enable the

Oracle BPM Worklist.

15.3.2. How to Customize the Subject Line of Error Notification
Emails

Objective

Customize the subject line of error notification emails.

Using Error Notifications

128 Copyright © 2010, Oracle. All rights reserved.

Prerequisites

Ensure that error notification functionality is enabled. By default, error notifications are enabled.
To verify that this functionality is enabled, access AIAConfigurationProperties.xml located in
<AIA_HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config. Ensure that the
EH.INVOKE.NOTIFY property value is set to true.

Actor

Integration administrator

To customize the subject line of error notification emails:

1. Access the AIAEHNotifications.xml file located in

<AIA_HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config.

2. To customize the subject line used in error notification emails to Actor roles, edit the values in the

<EMAIL><SUBJECT> element. To customize the subject line used in error notification emails to FYI

roles, edit the values in the <FYI_EMAIL><SUBJECT> element.

3. To customize the AIA fault message schema value being displayed in the subject line, edit the XPATH

value to use a different token. The token notation should use this format:

#@#XPATH.{ACTUAL_XPATH_VALUE}#@#. Error notification functionality will parse this file and replace

the tokens with dynamic content. Enter as many or as few tokens as needed.

<?xml version="1.0" encoding="UTF-8"?>

<AIAEHNotification xmlns="http://schemas.oracle.com/aia/notify"

version="1.0">

 <EMAIL>

 <SUBJECT>Error in AIA #@#XPATH.{/default:Fault/default:

 FaultNotification/default:FaultingService/default:ID}#@#

 Process</SUBJECT>

 <BODY>An error has occurred during the processing of AIA

 Integration Error in AIA #@#XPATH.{/default:Fault/default

 :FaultNotification/default:FaultingService/default:ID}#@#

 Process requires your attention. Please access the

 details from the url mentioned below.</BODY>

 </EMAIL>

 <FYI_EMAIL>

 <SUBJECT>Error in AIA #@#XPATH.{/default:Fault/default:

 FaultNotification/default:FaultingService/default:ID}#@#

 Process FYI</SUBJECT>

 <BODY>An error has occurred during the processing of AIA

 Integration Error in AIA #@#XPATH.{/default:Fault/default

 :FaultNotification/default:FaultingService/default:ID}#@#

 Process requires your attention. Please access the

 details from the url mentioned below.</BODY>

 </FYI_EMAIL>

 <URL>

 ==

 ========================

 Please click on the following URL To view the instance

 details in the em console :

 ==

 ========================

 @ http://$adminHost:$adminPort/em/faces/ai/soa/message

Using Error Notifications

Copyright © 2010, Oracle. All rights reserved. 129

 Flow?target=/Farm_$domainName/$domainName/$targetServer/

 #@#PROPS.{compositeName}#@#+[#@#PROPS.{composite Revision}

 #@#]%26type=oracle_soa_composite%26soaContext=#@#PROPS.

 {compositeDN}#

 @#/#@#PROPS.{compositeInstanceID}#@#

 ==

 ========================

 </URL>

 <EXT_URL>

 ==

 ==========

 Please access the task in the Worklist Application :

 ==

 ==========

 @ http://$managedHost:$managedPort/integration/

 worklistapp/faces/home.jspx

 ==

 ==========

 </EXT_URL>

</AIAEHNotification>

For more information about the AIA fault message schema, see Oracle Application

Integration Architecture Foundation Pack: Development Guide, “Configuring Oracle AIA

Processes for Error Handling and Trace Logging.”

4. If you have implemented fault message schema extensions, you can customize the subject line to use

these schema values as well.

For more information about extending the fault schema, see Oracle Application Integration

Architecture Foundation Pack: Development Guide, “Configuring Oracle AIA Processes for

Error Handling and Trace Logging.”

5. Reload updates to the AIAEHNotifications.xml file.

For more information about reloading updates to AIAEHNotifications.xml, see Oracle

Application Integration Architecture Foundation Pack: Development Guide, “Building AIA

Integration Flows.”

15.3.3. How to Customize the Body Text of Error Notification
Emails

Objective

Customize the body text of error notification emails.

Prerequisites

Ensure that error notification functionality is enabled. By default, error notifications are enabled.
To verify that this functionality is enabled, access AIAConfigurationProperties.xml located in
<AIA_HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config. Ensure that the
EH.INVOKE.NOTIFY property value is set to true.

Using Error Notifications

130 Copyright © 2010, Oracle. All rights reserved.

Actor

Integration administrator

To customize the body text of error notification emails:

1. Access the AIAEHNotifications.xml file located in

<AIA_HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config.

2. To customize the body text used in error notification emails to Actor roles, edit the values in the

<EMAIL><BODY> element. To customize the body text used in error notification emails to FYI roles,

edit the values in the <FYI_EMAIL><BODY> element.

3. To customize the AIA fault message schema values being displayed in the body text, edit the XPATH

value to use a different token. The token notation should use this format:

#@#XPATH.{ACTUAL_XPATH_VALUE}#@#. Error notification functionality will parse this file and replace

the tokens with dynamic content. Enter as many or as few tokens as needed.

<?xml version="1.0" encoding="UTF-8"?>

<AIAEHNotification xmlns="http://schemas.oracle.com/aia/notify"

version="1.0">

 <EMAIL>

 <SUBJECT>Error in AIA #@#XPATH.{/default:Fault/default:

 FaultNotification/default:FaultingService/default:ID}#@#

 Process</SUBJECT>

 <BODY>An error has occurred during the processing of AIA

 Integration Error in AIA #@#XPATH.{/default:Fault/default

 :FaultNotification/default:FaultingService/default:ID}#@#

 Process requires your attention. Please access the

 details from the url mentioned below.</BODY>

 </EMAIL>

 <FYI_EMAIL>

 <SUBJECT>Error in AIA #@#XPATH.{/default:Fault/default:

 FaultNotification/default:FaultingService/default:ID}#@#

 Process FYI</SUBJECT>

 <BODY>An error has occurred during the processing of AIA

 Integration Error in AIA #@#XPATH.{/default:Fault/default

 :FaultNotification/default:FaultingService/default:ID}#@#

 Process requires your attention. Please access the

 details from the url mentioned below.</BODY>

 </FYI_EMAIL>

 <URL>

 ==

 ========================

 Please click on the following URL To view the instance

 details in the em console :

 ==

 ========================

 @ http://$adminHost:$adminPort/em/faces/ai/soa/message

 Flow?target=/Farm_$domainName/$domainName/$targetServer/

 #@#PROPS.{compositeName}#@#+[#@#PROPS.{composite Revision}

 #@#]%26type=oracle_soa_composite%26soaContext=#@#PROPS.

 {compositeDN}#

 @#/#@#PROPS.{compositeInstanceID}#@#

 ==

Using Error Notifications

Copyright © 2010, Oracle. All rights reserved. 131

 ========================

 </URL>

 <EXT_URL>

 ==

 ==========

 Please access the task in the Worklist Application :

 ==

 ==========

 @ http://$managedHost:$managedPort/integration/

 worklistapp/faces/home.jspx

 ==

 ==========

 </EXT_URL>

</AIAEHNotification>

For more information about the AIA fault message schema, see Oracle Application

Integration Architecture Foundation Pack: Development Guide, “Configuring Oracle AIA

Processes for Error Handling and Trace Logging.”

4. If you have implemented fault message schema extensions, you can customize the body text to use

these schema values as well.

For more information about extending the fault schema, see Oracle Application Integration

Architecture Foundation Pack: Development Guide, “Configuring Oracle AIA Processes for

Error Handling and Trace Logging.”

5. Reload updates to the AIAEHNotifications.xml file.

For more information about reloading updates to AIAEHNotifications.xml, see Oracle

Application Integration Architecture Foundation Pack: Development Guide, “Building AIA

Integration Flows.”

15.3.4. How to Customize Additional URLs Provided in Error
Notification Email Body Text

Objective

Customize additional URLs provided in error notification email body text.

Prerequisites

 Ensure that error notification functionality is enabled. By default, error notifications are

enabled. To verify that this functionality is enabled, access AIAConfigurationProperties.xml

located in <AIA_HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config. Ensure

that the EH.INVOKE.NOTIFY property value is set to true.

 As delivered, error notification email body text includes a link to the Oracle BPM Worklist. To

enable users to access AIA-related error tasks in the Oracle BPM Worklist, ensure that

Oracle BPM Worklist functionality is enabled.

Using Error Notifications

132 Copyright © 2010, Oracle. All rights reserved.

For more information about enabling Oracle BPM Worklist to work with AIA error handling,

see How to Enable the Oracle BPM Worklist.

Actor

Integration administrator

To customize application links in body text of error notification emails:

1. Access the AIAEHNotifications.xml file located in

<AIA_HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config.

2. To customize the URLs provided in the error notification email body text, edit the values in the <URL>

and <EXT_URL> elements.

3. As delivered, the <URL> element provides a link to flow trace details for the composite instance in the

Oracle Enterprise Manager Console for your AIA implementation. The flow trace provides details about

all of the services, references, and components across composites that are participating in the flow.

For more information about viewing flow trace details in Oracle Enterprise Manager, see

Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite, “Monitoring BPEL

Process Service Components and Engines,” Viewing the Audit Trail and Process Flow of a

BPEL Process Service Component.

Sample Error Notification email text providing a link to flow trace details in the Oracle

Enterprise Manager Console

http://download.oracle.com/docs/cd/E12839_01/integration.1111/e10226/bp_mon.htm#SOAAG3568
http://download.oracle.com/docs/cd/E12839_01/integration.1111/e10226/bp_mon.htm#SOAAG3568

Using Error Notifications

Copyright © 2010, Oracle. All rights reserved. 133

Fault details on the Enterprise Manager Console Flow Trace page

We deliver the following parameters that enable this drill-down into the Oracle Enterprise

Manager Console:

 #@#PROPS.{compositeName}#@#

 #@#PROPS.{compositeRevision}#@#

 #@#PROPS.{compositeDN}#@#

 #@#PROPS.{compositeInstanceID}#@#

For system errors configured in fault policy files, these parameters will be automatically

derived to build the URL for inclusion in the error notification email. Specifically, by default,

remote and binding faults are configured in the fault policy file.

For business errors, you must configure impacted processes to populate the fault message

with the execution context ID (ECID). Error notification functionality will derive these

parameters to build the URL based on this ECID value.

For more information about programming guidelines to populate fault messages with ECID

value, see Oracle Application Integration Architecture Foundation Pack: Development Guide,

“Configuring Oracle AIA Processes for Error Handling and Trace Logging.”

4. As delivered, the <EXT_URL> element provides a link to the Oracle BPM Worklist.

If you are not using Oracle BPM Worklist as a part of your AIA implementation and do not

want error notification emails to include this link to Oracle BPM Worklist, access

AIAConfigurationProperties.xml located in

<AIA_HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config and set the

EH.INVOKE.HWF property to false. This setting will remove any content expressed in the

<EXT_URL> element, including the Oracle BPM Worklist default link, from error notification

emails.

Using Error Notifications

134 Copyright © 2010, Oracle. All rights reserved.

<?xml version="1.0" encoding="UTF-8"?>

<AIAEHNotification xmlns="http://schemas.oracle.com/aia/notify"

version="1.0">

 <EMAIL>

 <SUBJECT>Error in AIA #@#XPATH.{/default:Fault/default:

 FaultNotification/default:FaultingService/default:ID}#@#

 Process</SUBJECT>

 <BODY>An error has occurred during the processing of AIA

 Integration Error in AIA #@#XPATH.{/default:Fault/default

 :FaultNotification/default:FaultingService/default:ID}#@#

 Process requires your attention. Please access the

 details from the url mentioned below.</BODY>

 </EMAIL>

 <FYI_EMAIL>

 <SUBJECT>Error in AIA #@#XPATH.{/default:Fault/default:

 FaultNotification/default:FaultingService/default:ID}#@#

 Process FYI</SUBJECT>

 <BODY>An error has occurred during the processing of AIA

 Integration Error in AIA #@#XPATH.{/default:Fault/default

 :FaultNotification/default:FaultingService/default:ID}#@#

 Process requires your attention. Please access the

 details from the url mentioned below.</BODY>

 </FYI_EMAIL>

 <URL>

 ==

 ========================

 Please click on the following URL To view the instance

 details in the em console :

 ==

 ========================

 @ http://$adminHost:$adminPort/em/faces/ai/soa/message

 Flow?target=/Farm_$domainName/$domainName/$targetServer/

 #@#PROPS.{compositeName}#@#+[#@#PROPS.{composite Revision}

 #@#]%26type=oracle_soa_composite%26soaContext=#@#PROPS.

 {compositeDN}#

 @#/#@#PROPS.{compositeInstanceID}#@#

 ==

 ========================

 </URL>

 <EXT_URL>

 ==

 ==========

 Please access the task in the Worklist Application :

 ==

 ==========

 @ http://$managedHost:$managedPort/integration/

 worklistapp/faces/home.jspx

 ==

 ==========

 </EXT_URL>

</AIAEHNotification>

5. Reload updates to the AIAEHNotifications.xml file.

Using Error Notifications

Copyright © 2010, Oracle. All rights reserved. 135

For more information about reloading updates to AIAEHNotifications.xml, see Oracle

Application Integration Architecture Foundation Pack: Development Guide, “Building AIA

Integration Flows.”

15.4. Disabling Error Notifications

By default, error notification functionality is enabled. You can disable this functionality in
AIAConfigurationProperties.xml.

To disable error notifications:

1. Access AIAConfigurationProperties.xml located in

<AIA_HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config.

2. Set the EH.INVOKE.NOTIFY property value to false.

3. Reload updates to AIAConfigurationProperties.xml.

For more information about reloading updates to AIAConfigurationProperties.xml, see

Oracle Application Integration Architecture Foundation Pack: Development Guide, “Building

AIA Integration Flows.”

When error notification functionality is disabled, the Error Handling Framework does not issue
error notification emails, but continues to log errors and assemble fault messages in the AIA Error
Topic.

While error notifications are disabled, the AIA fault message remains available for input in the AIA
Error Topic. This enables the Error Handling Framework to support a fully customized error
handling solution.

Copyright © 2010, Oracle. All rights reserved. 137

16. Using the Oracle BPM Worklist

This chapter discusses the following topics:

 Introduction to the Oracle BPM Worklist

 How to Enable the Oracle BPM Worklist

 How to Use the Oracle BPM Worklist

16.1. Introduction to the Oracle BPM Worklist

The Oracle BPM Worklist application can be used to provide an error console for the Oracle
Application Integration Architecture (AIA). You can enable this functionality in
AIAConfigurationProperties.xml.

Note. Oracle BPM Worklist functionality will be accessible even if you have not enabled it to work

with Oracle AIA. However, the Oracle BPM Worklist will not include any AIA-specific error tasks.

For more information about enabling Oracle BPM Worklist functionality, see How to Enable the

Oracle BPM Worklist.

The Oracle BPM Worklist application is a user interface (UI) that Actor roles, such as integration
administrators, and FYI roles, such as customer service representatives (CSRs), can use to
access details about AIA ecosystem service errors that have been assigned to them for resolution
or for informational purposes only. Users will not receive email notifications regarding Oracle
BPM Worklist task assignments unless error notifications are enabled.

For more information, see Using Error Notifications.

Based on their roles, users will be able to interact with the following types of tasks in the Oracle
BPM Worklist:

 Single-approver task

Actor roles, such as integration administrators, are assigned single-approver tasks in the

Oracle BPM Worklist. Typically, this role is responsible for taking action to resolve the error

and must update the error task with activity and status details. Therefore, for Actor roles, the

Oracle BPM Worklist provides an editable UI.

 FYI task

FYI roles, such as customer service representatives, are assigned FYI tasks in the Oracle

BPM Worklist. Typically, this role only needs a view of information about the status of the

errored end-to-end transaction. Therefore, for FYI roles, the Oracle BPM Worklist provides a

display-only UI. The FYI role is not responsible for taking any particular action to resolve the

error.

Using the Oracle BPM Worklist

138 Copyright © 2010, Oracle. All rights reserved.

The Oracle BPM Worklist provides the following error details that can assist in the troubleshooting
process:

 EBMID

 EBMName

 EBOName

 Verb Code

 Business Scope Reference ID

 Business Scope Reference Instance ID

 Enterprise Service Name

 Enterprise Service Operation Name

 Sender Reference ID

 Sender Message ID

 Sender Reference Transaction Code

 Sender Object Identification ID

 Context ID

 EBOID

 Reporting Date Time

 Corrective Action

 Fault Message Code

 Fault Message Text

 Severity

 Stack

 Faulting Service ID

 Faulting Service Implementation Code

 Faulting Service Instance ID

 B2B Fault Element

 B2BMReference/B2BMID

 B2BMReference/B2BDocumentType/DocumentTypeCode

 B2BMReference/B2BDocumentType/DocumentTypeVersion

 B2BMReference/SenderTradingPartner/TradingPartnerID

 B2BMReference/ReceiverTradingPartner/TradingPartnerID

Using the Oracle BPM Worklist

Copyright © 2010, Oracle. All rights reserved. 139

16.2. How to Enable the Oracle BPM Worklist

By default, Oracle BPM Worklist functionality is disabled. You can enable this functionality in
AIAConfigurationProperties.xml.

To enable the Oracle BPM Worklist:

1. Access AIAConfigurationProperties.xml located in

<AIA_HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config.

2. Set the EH.INVOKE.HWF property value to true.

3. Reload updates to the AIAConfigurationProperties.xml file.

For more information about reloading updates to AIAConfigurationProperties.xml, see

Oracle Application Integration Architecture Foundation Pack: Development Guide, “Building

AIA Integration Flows.”

The AIAReadJMSNotification BPEL process will now listen to the AIA Error Topic Java message
service (JMS) topic, which is populated by the Error Handling Framework. Relevant errors will be
aggregated by the AIAReadJMSNotification BPEL process and displayed in the Oracle BPM
Worklist.

If error notification is also enabled, error notification emails will contain a link to the Oracle BPM
Worklist.

For more information about error notifications, see Using Error Notifications.

16.3. How to Use the Oracle BPM Worklist

Once you have been assigned an AIA error task that you need to view or act upon to resolve, you
can use the details provided by the Oracle BPM Worklist to troubleshoot the error.

Access the Oracle BPM Worklist: http://<host>:<SOA server port>/integration/worklistapp.

Your assigned tasks display on the My Tasks page. You can filter your assigned tasks using
various criteria and search for assigned tasks by title, priority, and status. Click an assigned task
to access complete task details.

For more information, see Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite,

“Using Oracle BPM Worklist.”

FYI user roles can view a task in read-only mode in the Oracle BPM Worklist.

Actor user roles can work on a task by acquiring the task. They can also enter comments against
the task and update the task status. For example, when the error has been resolved, the user can
set the task action to COMPLETED. Setting this value in the Actions field completes the task.

For more information about message resubmission, see Using the Message Resubmission

Utility.

http://download.oracle.com/docs/cd/E15523_01/integration.1111/e10224/bp_worklist.htm#insertedID0

Copyright © 2010, Oracle. All rights reserved. 141

17. Using the Message Resubmission
Utility

This chapter discusses the following topics:

 Introduction to the Message Resubmission Utility

 How to Use the Message Resubmission Utility.

17.1. Introduction to the Message Resubmission
Utility

To use the Message Resubmission Utility, you must implement error handling and recovery for
the asynchronous message exchange pattern.

For more information, see Oracle Application Integration Architecture Foundation Pack:

Development Guide, “Configuring Oracle AIA Processes for Error Handling and Trace Logging.”

According to this implementation method, when a message cannot be delivered to a service or
component in the flow of a global transaction, the message is rolled back to the appropriate
source milestone. This source milestone corresponds to an Oracle Advanced Queue or JMS
topic. It is here that the message will be persisted until it can be resubmitted for delivery to the
service or component.

At the same time, a fault is raised by the Error Handling framework and, if enabled, error
notifications and Oracle BPM Worklist tasks regarding the fault are created to alert administrators.

For more information about the Oracle BPM Worklist, see Using the Oracle BPM Worklist.

For more information about error notifications, see Using Error Notifications.

Once notified, the most natural course of action is for the administrator to bring up the failed
service or component. Once the service or component is back up and running, the administrator
can use the Message Resubmission Utility to recover the faulted message from the source
milestone. The Message Resubmission Utility changes the state of the faulted message to the
Ready state, enabling it to be picked up by the consumer process.

17.2. How to Use the Message Resubmission
Utility

This section discusses how to use the Message Resubmission Utility to resubmit a faulted
message.

Using the Message Resubmission Utility

142 Copyright © 2010, Oracle. All rights reserved.

For message resubmission scenarios that involve Oracle Advanced Queue, we provide the
MSG_RESUBMIT stored procedure. This procedure assumes that the message type is
SYS.AQ$_JMS_MESSAGE.

If the message type is JMS, the following must be set in the WebLogic Console for the JMS
resource (Queue or Topic) in the Delivery Failure section:

 Redelivery Limit: Set to specify the number of retries before the message is moved to the

error resource.

 Expiration Policy: Set to Redirect.

 Error Destination: Set to a valid JMS resource.

In addition, there must be a JMS Connection Factory with the JNDI Name <JMS Resource JNDI
Name>CF. For example, the JNDI Name of the Error Destination Resource plus CF.

If the message type being used is not SYS.AQ$_JMS_MESSAGE, you must change the data
type for the MSG variable in the MSG_RESUBMIT stored procedure and then recompile the
procedure. You can then use the Message Resubmission Utility for resubmission based on
message ID.

For more information about configuring a queue with AQ to support resubmission, see Oracle

Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server, “Interoperating

with Oracle AQ JMS,” Configure AQ JMS Foreign Server Destinations.

To use the Message Resubmission Utility:

1. Access the Oracle AIA log file, <DOMAIN_HOME>/servers/<SOA Server Name>/logs/aia-error.log to

look up the following values included in the IntermediateMessageHop element for the message that

requires resubmission:

 SenderResourceTypeCode

 SenderResourceID

 SenderMessageID

For more information about these values in the context of the Oracle AIA fault message

schema, see Oracle Application Integration Architecture Foundation Pack: Development

Guide, “Configuring Oracle AIA Processes for Error Handling and Trace Logging.”

Alternatively, you can also look up the aia-error.log in the Oracle Enterprise Manager. Under

WebLogic Domain, <domain name>, right-click the manage server entry (usually

soa_server1). Navigate to Logs, View Log Messages. On the Log Message page, provide

search criteria (optional) and click the Search button.

For more information about viewing the Oracle AIA log in Oracle EM, see Using Trace and

Error Logs.

2. Set these values in the ResubmissionParams.properties file located in

$AIA_HOME/util/AIAMessageResubmissionUtil.

http://download.oracle.com/docs/cd/E15523_01/web.1111/e13738/aq_jms.htm#JMSAD589

Using the Message Resubmission Utility

Copyright © 2010, Oracle. All rights reserved. 143

3. For Windows, execute $AIA_INSTANCE\bin\aiaenv.bat. For Linux, source

$AIA_INSTANCE/bin/aiaenv.sh.

4. Navigate to $AIA_HOME/util/ AIAMessageResubmissionUtil and execute the following ant command:

ant –buildfile MessageResubmit.xml

The MessageResubmit.xml script references the edited ResubmissionParams.properties file.

Once run, the script resets the message status back to a ready state so that the transaction

can resume its flow.

Following is the ResubmissionParams.properties file for AIA JMS sample:

@ jms.app.hostName=sdc60024sems.us.oracle.com

jms.app.admin.port=7097

jms.app.soa.port=8097

jms.app.userName=weblogic

@ jms.app.password=weblogic#1

jms.aq=false

jms.moduleName=AIAJMSModule

#QUEUE/TOPIC - 1/2

resourceType=1

#queueName/topicName/routingServiceName

resourceName=AIA_SiebelCustomerJMSQueue

#messageID/groupID

messageID=ID:<983029.1264581138423.0>

#queueTableName/topicTableName

aq.resourceTableName=AIASamples

@ aq.db.driverName=oracle.jdbc.driver.OracleDriver

aq.db.jdbcURL=jdbc:oracle:thin:@localhost:1521:XE

aq.db.userName=aia

@ aq.db.password=aia

Copyright © 2010, Oracle. All rights reserved. 145

18. Using Trace and Error Logs

This chapter discusses the following topics:

 Introduction to Trace and Error Logging

 How to Enable Trace Logging

 How to Set Trace Log Levels

 How to Access Trace and Error Logs

18.1. Introduction to Trace and Error Logging

The Oracle Application Integration Architecture (AIA) enables you to generate trace and error log
files that provide a detailed view of services running in your AIA ecosystem. These logs can be
especially informative when troubleshooting service processing issues.

 Trace

Trace logs capture chronological recordings of a service's general activities. The trace log is

created by configuring the service to make an explicit call using the trace logging custom

XPath or Java API.

For more information, see Oracle Application Integration Architecture Foundation Pack:

Development Guide, “Configuring Oracle AIA Processes for Error Handling and Trace

Logging.”

 Error

Error logs capture a recording of errors that occur during a service's activities. No specific

configurations are required to make BPEL and Mediator services eligible for error logging.

The Error Handling Framework is designed to trigger an error logging event for errors

occurring in any of the Oracle AIA services, whether they are BPEL- or Mediator-based. The

Error Handling Framework does this logging non-intrusively.

18.2. How to Enable Trace Logging

Trace logging is enabled via configurations in the AIAConfigurationProperties.xml file located in
<AIA_HOME>/aia_instances/$INSTANCE_NAME/AIAMetaData/config.

Logging can be set at the system or service level. The logging property set at the service level
overrides the property set at the system level.

To enable trace logging for the entire system:

1. Access the AIAConfigurationProperties.xml file.

2. Set the TRACE.LOG.ENABLED property at the system level to TRUE.

Using Trace and Error Logs

146 Copyright © 2010, Oracle. All rights reserved.

To enable trace logging for an individual service:

1. Access the AIAConfigurationProperties.xml file.

2. Set the TRACE.LOG.ENABLED property for the service to TRUE.

3. Reload updates to AIAConfigurationProperties.xml.

For more information about reloading updates to AIAConfigurationProperties.xml, see Oracle

Application Integration Architecture Foundation Pack: Development Guide, “Building AIA

Integration Flows.”

18.3. How to Set Trace Log Levels

To set trace log levels:

1. Access the Oracle Enterprise Manager console (http://<host>:<port>/em).

2. Expand the WebLogic domain and navigate to your domain. Right-click on your domain and select

Logs, Log Configuration.

3. Select the Log Levels tab on the Log Configuration page.

Log Configuration page

4. In the View drop-down list box, select Runtime Loggers.

5. In the Search drop-down list box, select All Categories. Enter aia in the Search field and execute the

search.

6. Locate Logger Name value oracle.aia -> oracle.aia.logging.trace and set the Oracle Diagnostic

Logging Level (Java Level) field value accordingly. The type and amount of information written to

trace log files is determined by the message type and log level specified.

7. Select from one of the following values, ordered from highest to lowest severity. The lower the severity

level, the more information is written to the log file.

Using Trace and Error Logs

Copyright © 2010, Oracle. All rights reserved. 147

INCIDENT_ERROR:1

(SEVERE+100)

A serious problem, such as one from which you cannot
recover. The problem may be caused by a bug in the
product and should be reported to Oracle Support.

ERROR:1 (SEVERE) A serious problem that requires immediate attention from
the administrator and is not caused by a bug in the
product.

WARNING:1 (WARNING) A potential problem, such as invalid parameter values or
a specified file that does not exist, that should be
reviewed by the administrator.

NOTIFICATION:1 (INFO) A major lifecycle event such as the activation or
deactivation of a primary subcomponent or feature.

NOTIFICATION:16 (CONFIG) A finer level of granularity for reporting normal events.

TRACE:1 (FINE) Trace or debug information for events that are meaningful
to end-users of the product, such as public API entry or
exit points.

TRACE:16 (FINER) Detailed trace or debug information that can help Oracle
Support diagnose problems with a particular subsystem.

TRACE:32 (FINEST) Very detailed trace or debug information that can help
Oracle Support diagnose problems with a particular
subsystem.

18.4. How to Access Trace and Error Logs

In this section, we discuss:

 Accessing Oracle AIA Logs in the Oracle Enterprise Manager Console

 Searching for Oracle AIA Log Messages

 Accessing Oracle AIA Log XML Files

18.4.1. Accessing Oracle AIA Logs in the Oracle Enterprise
Manager Console

Log files can be accessed using the Oracle Enterprise Manager user interface, in much the same
way that standard log files generated by various components of the Oracle SOA Suite can be
handled in Oracle Enterprise Manager. Using Oracle Enterprise Manager as the user interface for
the logs enables searching, sorting, and filtering of logs.

To access Oracle AIA trace and error log files:

1. Access the Oracle Enterprise Manager console (http://<host>:<port>/em).

2. Expand the WebLogic domain and navigate to your domain. Right-click on your domain and select

Logs, View Log Messages.

Using Trace and Error Logs

148 Copyright © 2010, Oracle. All rights reserved.

3. Click the Target Log Files button. The error log file, aia-error.log, can be found under

${domain.home}/servers/${weblogic.Name}/logs. The trace log file, aia-trace.log, can be found under

${domain.home}/servers/${weblogic.Name}/logs.

4. To view a log file, select the file row and click the View Log File button.

View Log File page

5. To download a log file, select the file row and click the Download button.

18.4.2. Searching for Oracle AIA Log Messages

To search for Oracle AIA trace and error log messages:

1. Access the Oracle Enterprise Manager console (http://<host>:<port>/em).

2. Expand the WebLogic domain and navigate to your domain. Right-click on your domain and select

Logs, View Log Messages.

3. Search for specific log messages using the search parameters available in the Search area on the Log

Messages page.

Using Trace and Error Logs

Copyright © 2010, Oracle. All rights reserved. 149

Log Messages page

18.4.3. Accessing Oracle AIA Log XML Files

You can access Oracle AIA trace and error log XML files directly in the following directories:

 ${domain.home}/servers/${weblogic.Name}/logs/aia-error.log

 ${domain.home}/servers/${weblogic.Name}/logs/aia-trace.log

Copyright © 2010, Oracle. All rights reserved. 151

19. Accessing Oracle B2B Errors

To access error reports about failed business-to-business (B2B) transactions in the Oracle B2B
console:

1. Access the Oracle B2B console: http://<soa-host>:<port>/b2b.

2. Log in using the B2B administrator user name and password.

3. Select the Reports tab.

4. Select the Errors tab.

5. Enter search criteria or leave fields blank. Click Search. Once you have located the failed message, you

can use the B2B error monitor to:

 View details about the error

 View the payload of the failed message

 Retry processing of the failed message

Note. Business process failures, such as an order being rejected by the trading partner if the

ordered item is not in stock, are not considered to be Oracle B2B errors. Response or

acknowledgement messages containing these failures are treated as independent flows.

For more information about Oracle B2B errors in Oracle Application Integration Architecture

(AIA), see Introduction to Error Handling for Oracle B2B Errors and Oracle Application Integration

Architecture Development Guide, “Understanding B2B Integration Using AIA.”

Copyright © 2010, Oracle. All rights reserved. 153

Part: Working with Oracle AIA Developer
Tools

 Introduction to AIA Developer Tools

 Using the XSL Mapping Analyzer

 Using the PIP Auditor

 Using the PIP Shared Artifact Analyzer

 Using the XSD Flattener

 Hosting Mapping and Technical Compliance Reports

Copyright © 2010, Oracle. All rights reserved. 155

20. Introduction to AIA Developer Tools

This chapter provides an Overview of AIA Developer Tools

20.1. Overview of AIA Developer Tools

Oracle Application Integration Architecture (AIA) Developer Tools equip Process Integration Pack (PIP)
developers, architects and quality assurance engineers with tools to help them effectively and efficiently
develop PIPs that are in compliance with open standards and AIA best practices in design and coding.

Governance, whether it is financial, business, legal, or IT, is about getting people to do the right thing at
the right time. It is about encouraging behaviors that will achieve your business goals. The foundation of a
service-oriented architecture (SOA) implementation is good SOA governance. AIA Developer Tools assist
in establishing SOA governance as a service so that your organization can reap all of the benefits of solid
SOA governance process.

AIA Developer Tools expose mapping information that exist in cryptic XSLT files; enable PIP validations
per The Open Group Architecture Framework (TOGAF) standards, and provide a PIP artifact reuse
matrix. These tools are used by Oracle PIP teams, partners, and customers alike.

For PIP-specific reports, AIA Developer Tools need to be able to identify the artifact inventory for each
PIP, including all of its services, cross references, domain value maps, and any other related artifacts. All
AIA Developer Tools covered in this part expect the same input XML file, GenerateScriptInput.xml file,
also known as the inputMetaFile. To produce any PIP-specific reports, ensure that you have created a
GenerateScriptInput.xml file.

For more information about the GenerateScriptInput.xml file, see Appendix: Understanding

GenerateScriptInput.xml.

Copyright © 2010, Oracle. All rights reserved. 157

21. Using the XSL Mapping Analyzer

This chapter discusses the following topics:

 Overview of XMAN

 Generating XMAN Reports

 Adding XMAN Annotations to XSLT Files

21.1. Overview of XMAN

The reuse of artifacts and effective information sharing are key principles of SOA governance. The XSL
Mapping Analyzer (XMAN) analyzes mapping information that exists in cryptic Application Business
Connector Service (ABCS) XSLT files and provides it in a more readable format so that existing
connector mappings can be easily considered for reuse.

Being able to comprehend the mappings between an Application Business Message (ABM) and an
Enterprise Business Message (EBM) becomes imperative when developing a connector based on
existing connectors.

True interoperability can be only be achieved by adopting a consistent mapping practice using the
appropriate domain value map (DVM), cross-reference (XREF), and translation functions; which this tool
encourages.

When preparing for an upgrade, use XMAN to compare customized mappings to Oracle-supplied
mappings. Evaluate the results of these comparisons and make any necessary changes before
performing the upgrade.

Following is a sample XMAN mapping report.

Using the XSL Mapping Analyzer

158 Copyright © 2010, Oracle. All rights reserved.

Sample XMAN Mapping Report

XMAN can be configured to run against a Process Integration Pack (PIP), an application folder, or a
specific XSL file. The output is produced in XML format and can be further rendered in HTML and
comma-separated values (CSV) outputs.

If a particular mapping is too complex to analyze or is not constructed as per standard guidelines, an error
message is shown and the output is highlighted to inform you that the mapping is a best effort and that
more detailed analysis may be required. In the case of a code bug, you can fix the XSL and rerun the
report to produce more a meaningful report.

XMAN reports are indexed and categorized using various approaches, by Enterprise Business Object
(EBO) or by application, for example. This allows the reports to satisfy various governance and
documentation use cases. Viewing reports by EBO can help to identify the mappings as they exist in a
given connector. Viewing reports by application can provide insight into the kinds of mappings that exist
for a given application, such as Oracle E-Business Suite.

The PIP Auditor also uses XMAN for validating rules that cover coding best practices in XSLT files.

For more information about the PIP Auditor, Using the PIP Auditor.

21.2. Generating XMAN Reports

This section discusses:

 Overview of Optional XMAN Command Line Switches

 How to Invoke XMAN in Single File Mode

 How to Invoke XMAN in Directory Mode

 How to Invoke XMAN in PIP Mode

 How to Invoke XMAN in All-PIP Mode

Using the XSL Mapping Analyzer

Copyright © 2010, Oracle. All rights reserved. 159

 How to Import XMAN CSV Output into Microsoft Excel

21.2.1. Overview of Optional XMAN Command Line Switches

The following optional command line switches can be used when generating XMAN reports:

 -outputFormat <output format>

This is an optional switch. Valid values are xml, html. or csv. If no output format is specified, output

will be generated in all three formats.

Note. For CSV output, XMAN uses the tilde (~) as a delimiter. When importing the CSV data into a

Microsoft Excel spreadsheet, you must specify that the tilde is used as the delimiter in the file you are

importing.

For more information, see How to Import XMAN CSV Output into Microsoft Excel.

 -outputDir <output directory>

This is an optional switch. This switch indicates where the generated reports should be created. If no

output directory is specified, the reports will be created in the current directory.

 -version

This is an optional switch. Indicates the version of XMAN that is being invoked.

21.2.2. How to Invoke XMAN in Single File Mode

To generate an XMAN report based on a single XSL file:

1. Access a command line and invoke XMAN from $AIA_HOME/DeveloperTools/XMAN/bin.

2. Use the following switch to generate an XMAN report based on a single given file:

 -inputFile <file path to the ABCS XSL transformation file for which you want to run the report>

This is a required switch. Use this switch to provide the location of the input XSL file.

3. Optionally, you can also set other switches described in Overview of Optional XMAN Command Line Switches.

For example:

 Windows: xman –inputFile d:\aia\PIPS\abcs.xsl –outputFormat html –outputDir d:\output

 Linux: sh xman.sh –inputFile $AIA_HOME/aia/PIPS/abcs.xsl –outputFormat html –outputDir

/output

Using the XSL Mapping Analyzer

160 Copyright © 2010, Oracle. All rights reserved.

21.2.3. How to Invoke XMAN in Directory Mode

When you run XMAN in directory mode, output reports are generated for the XSL files that are present in
the folders or subfolders of folders whose names end with “ABCSImpl.” Any subfolders within the folders
whose names end with “ABCSImpl” will be included in the report. Here, ABCSImpl is the name of the
ABCS directory. XMAN will recursively process all XSL files in the directories.

To generate an XMAN report in directory mode:

1. Access a command line and invoke XMAN from $AIA_HOME/DeveloperTools/XMAN/bin.

2. Use the following switch to generate an XMAN report based on a given directory.

 -inputDir <path to the ABCS XSL directory for which you want to run the report>

This is a mandatory switch. Use this switch to provide the location of the input directory.

3. Optionally, you can also set other switches described in Overview of Optional XMAN Command Line Switches.

For example:

 Windows: xman –inputDir d:\aia\PIPS –outputFormat html –outputDir d:\output

 Linux: sh xman.sh –inputDir $AIA_HOME/aia/PIPS –outputFormat html –outputDir /output

21.2.4. How to Invoke XMAN in PIP Mode

When you run XMAN in PIP mode, it generates mapping reports based on XSL files that belong to a
particular PIP. You identify these XSL files by providing the location of the GenerateScriptInput.xml PIP
inventory meta file, to XMAN.

This file contains information about the directories for a given PIP, as well as the names of all services
used in the PIP. XMAN uses this data to identify the XSL files for which it needs to generate reports.

To generate an XMAN report in PIP mode:

1. Access a command line and invoke XMAN from $AIA_HOME/DeveloperTools/XMAN/bin.

2. Use the following switch to generate an XMAN report based on a given PIP inputMetaFile.

 -inputDir <path to the root directory of the PIP source code>

This is a mandatory switch. You must define this input directory here as all inputMetaFile entries

are defined relative to this root.

 -inputMetaFile <file path to the GenerateScriptInput.xml file for the PIP>

This is a mandatory switch. When this option is specified, the –inputDir switch should point to the

root directory of the PIP source code, because all entries in the metafile are relative to this root.

3. Optionally, you can also set other switches described in Overview of Optional XMAN Command Line Switches.

For example:

 Windows: xman –inputDir D:\PIPS –inputMetaFile d:\aia\PIPS\ GenerateScriptInput.xml –

outputDir d:\output

Using the XSL Mapping Analyzer

Copyright © 2010, Oracle. All rights reserved. 161

 Linux: sh xman.sh –inputDir $AIA_HOME/aia –inputMetaFile

$AIA_HOME/aia/PIPS/GenerateScriptInput.xml -outputDir /output

21.2.5. How to Invoke XMAN in All-PIP Mode

When you run XMAN in all-PIP mode, XMAN generates mapping reports for all PIPs that have
GenerateScriptInput.xml files placed in the PIPS/Core/Setup/[PIP Name]/Install directory for core PIPs
and in the PIPS/Industry/[Industry Name]/Setup/[PIP Name]/Install directory for industry-specific PIPs.

Generated reports will be stored as follows:

 Core PIP reports will be placed in <outputDir>/Core/<PIPName>

 Industry PIP reports will be placed in <outputDir>/Industry/<IndustryName>/<PIPName>

To generate an XMAN report in all-PIP mode:

1. Access a command line and invoke XMAN from $AIA_HOME/DeveloperTools/XMAN/bin.

2. Use the following switches to generate XMAN reports in all-PIP mode.

 -inputDir <parent folder of the Service Location attribute value specified in

GenerateInputScript.xml>

This is a mandatory switch.

 -inputMetaFile ALL

This is a mandatory switch.

3. Optionally, you can also set other switches described in Overview of Optional XMAN Command Line Switches.

For example:

 Windows: xman –inputDir D:\aia –inputMetaFile ALL –outputDir d:\output

 Linux: sh xman.sh –inputDir $AIA_HOME/aia –inputMetaFile ALL –outputDir /output

21.2.6. How to Import XMAN CSV Output into Microsoft Excel

To import XMAN CSV report output into a Microsoft Excel spreadsheet:

1. Access Microsoft Excel and open a new file.

2. Navigate to Data, Get External Data, From Text.

3. The Import Text File dialog box displays. Select the XMAN CSV output file that you want to import.

4. The Text Import Wizard dialog box displays. In the Original data type group box, select the Delimited option and

click Next.

5. In the Delimiters group box, select Other and enter ~ in the text box. In the Text qualifier field, accept the

default value.

Using the XSL Mapping Analyzer

162 Copyright © 2010, Oracle. All rights reserved.

Text Import Wizard dialog box

6. Click Next and then click Finish.

7. The Import Data dialog box displays. Select the Existing Worksheet option and click OK. XMAN report data

displays in the spreadsheet.

21.3. Adding XMAN Annotations to XSLT Files

This section discusses:

 Overview of XMAN Annotations in XSLT Files

 Describing XMAN Annotation Structure and Placement in XSLT Files

21.3.1. Overview of XMAN Annotations in XSLT Files

XMAN may not be able to handle every XPath in your ABCS implementation XSLT files. There are many
scenarios in which XMAN cannot decipher the correct XPath used in the mapping due to the dynamic
handling of elements or the use of expressions that can only be deciphered with the help of an input XML
file.

When XMAN encounters a mapping for which it cannot decipher the complete or correct XPath, it
displays it with a yellow background in the output HTML report.

Using the XSL Mapping Analyzer

Copyright © 2010, Oracle. All rights reserved. 163

To be able to generate reports that provide accurate mapping information for all XPaths, you can add
XMAN annotations directly in the source XSLT files (ABCS implementation XSLT files) for the mappings
that are not correctly displayed in the output report.

Once the XMAN annotation is provided in the format described in this section, XMAN ignores the derived
XPath and replaces it with the annotated value in the report output.

21.3.2. Describing XMAN Annotation Structure and Placement in
XSLT Files

The structure and placement of the XMAN annotation element and the information needs to provide to
XMAN vary depending upon the available XSLT elements and style of coding in the XSLT.

The general structure of the XMAN annotation is as follows:

<?xman:annotation

 <xman:annotation xmlns:xman="http://www.oracle.com/aia/xman">

 <xman:source>SupplierRef/supplierSite/supplierSiteAddress/addr_

 Xref_Key</xman:source> -- optional

 <xman:dvm>myDVM</xman:dvm> -- optional

 <xman:xref>myXREF</xman:xref> -- optional

 <xman:target>TargetEBM/DataArea/addr_Xref_element</xman:target>

 -- optional

 </xman:annotation>

?>

Follow these placement guidelines when working with XMAN annotations in XSLT files:

 Identify the element in the source XSLT that is causing the yellow background entry in the HTML

report. Focus on the <xsl:value-of> element that populates the value for the particular element. Place

the <xman:annotation> element containing the annotation details before the <xsl:value-of> element.

 XPaths should be expressed without prefixes in the XMAN annotation. For example:

<xman:source>SupplierRef/supplierSite/supplierSiteAddress/addr_Xref_Key</x

man:source>

 If a certain undecipherable expression leads to a hardcoded value, for example, a table name is

referenced in a variable, the hardcoded value should be expressed in the XMAN annotation as

follows:

<xman:source>ADDRESS_COUNTRYID</xman:source>

 If there are conditional elements enclosing the <xsl:value-of> element, you can ignore them and place

the XMAN annotation element between the conditional element and the <xsl:value-of> element. For

example:

<corecom:BizId>

<xsl:if test=”$testResult=’true’”>

<?xman:annotation

 <xman:annotation xmlns:xman="http://www.oracle.com/aia/xman">

 <xman:source>SuppABM/Supplier/asd</xman:source>

 <xman:annotation>

?>

<xsl:value-of select=”*/*[name()=’abm:asd’]”/>

</xsl:if>

Using the XSL Mapping Analyzer

164 Copyright © 2010, Oracle. All rights reserved.

</corecom:BizId>

 If multiple <xsl:value-of> elements are present, each under an <xsl:when> element, place the XMAN

annotation above each <xsl:value-of> element.

21.3.2.1. XMAN Annotation Structure for XPaths

The XMAN annotation structure for an XPath is as follows:

<?xman:annotation

 <xman:annotation xmlns:xman="http://www.oracle.com/aia/xman">

 <xman:source>source xpath</xman:source>

 </xman:annotation>

?>

21.3.2.2. XMAN Annotation Structure for XREFs

The XMAN annotation structure for an XREF mapping is as follows:

<?xman:annotation

 <xman:annotation xmlns:xman="http://www.oracle.com/aia/xman">

 <xman:source>reference value (in case of lookupXref, third

 parameter) or actual value (in case of populateXref, 5th

 parameter of xref function call) </xman:source>

 <xman:xref>xref_table_name</xman:xref>

 </xman:annotation>

?>

<xman:source> is the reference value that would be passed as the third argument to the lookXref()
function call, or the actualValue parameter that would be passed as the fifth argument of the
populateXref() call.

<xman:xref> is the XREF table name.

21.3.2.3. XMAN Annotation Structure for DVMs

The XMAN annotation structure for DVM mappings that are undecipherable by XMAN is as follows:

<?xman:annotation

 <xman:annotation xmlns:xman="http://www.oracle.com/aia/xman">

 <xman:source>xpath of the reference value</xman:source>

 <xman:dvm>dvm table name</xman:dvm>

 <xman:annotation>

?>

21.3.2.4. Example XMAN Annotation for an XREF Mapping

The following code resulted in a yellow background entry in a XMAN output HTML report:

<itemABO:Number>

 <xsl:value-of select="xref:lookupXRef ($xrefTableName,

 $xrefReferenceColumnName,$xrefReferenceValue, $xrefColumnName,

 false())"/>

</itemABO:Number>

The XMAN annotation used to address the undecipherable XREF call shown above is as follows:

Using the XSL Mapping Analyzer

Copyright © 2010, Oracle. All rights reserved. 165

<itemABO:Number>

 <?xman:annotation

 <xman:annotation xmlns:xman="http://www.oracle.com/aia/xman">

 <xman:source>/UpdateItemBalanceListEBM/DataArea/UpdateItem

 BalanceList/InventoryBalance/ItemReference/ItemId/Biz

 CompID</xman:source>

 <xman:xref>ITEM_ITEMID</xman:xref>

 </xman:annotation>

 ?>

 <xsl:value-of select="xref:lookupXRef ($xrefTableName,$xrefReference

 ColumnName,$xrefReferenceValue, $xrefColumnName, false())"/>

</itemABO:Number>

Copyright © 2010, Oracle. All rights reserved. 167

22. Using the PIP Auditor

This chapter discusses the following topics:

 Overview of the PIP Auditor

 Generating PIP Auditor Reports

22.1. Overview of the PIP Auditor

Adherence to open standards and the enforcement of good coding practices are key principles of SOA
governance. The Process Integration Pack (PIP) Auditor is a tool that checks for good coding practices in
a PIP and qualifies the PIP as Compliant, Conformant, or Fully Conformant as per The Open Group
Architecture Framework (TOGAF) standard guidelines based on the pass criteria of the highest priority
rules.

PIP Auditor uses a predefined set of rules based on Oracle Application Integration Architecture (AIA)
integration developer guidelines to check PIP design and code for design consistency and good coding
and documentation practices.

PIP Auditor test results detail the level of compliance and pass and fail percentages. A graphical bar chart
groups results by category, priority, and test suites. Results also include a list of the top 10 violating
projects. The overall TOGAF compliance score for a PIP is shown in the header section of the report.

Following is a sample PIP Auditor report.

PIP Auditor Technical Compliance Report

http://www.opengroup.org/togaf/

Using the PIP Auditor

168 Copyright © 2010, Oracle. All rights reserved.

Priority 1 (P1) rules are the absolute basic rules that are the basis of the AIA philosophy. There are the
“must have” rules, of which a PIP must satisfy 100% to be qualified as Compliant.

Priority 2 (P2) rules enforce more stringent criteria for certain design time patterns. A PIP meeting these
rules is qualified as Conformant.

Priority 3 (P3) rules are the most stringent at the lowest levels of the technology. PIPs meeting at least a
certain threshold of these rules are awarded the Fully Conformant rating.

Priority 4 (P4) rules are recently introduced rules, which may be qualified as P3, P2, or P1 rules in a
future release. For the current release, P4 rules are “nice-to-have” rules and do not play a role in
qualification of a PIP.

Note that these levels are additive in nature, so passing with a Priority 2 rating (conformant) means that
the PIP must also pass Priority 1 rules (compliance) as well. A detailed list of predefined rules with
different categories can be viewed in the delivered Rules.html file.

PIP Auditor uses a flexible XML format as input for the rule and test definitions, allowing you to customize
existing rules and add new rules. The tool generates output results in XML format and renders it in HTML,
providing the flexibility to modify the look and feel of the output.

22.2. Generating PIP Auditor Reports

This section discusses:

 How to Generate PIP Auditor Reports Using a Command Line

 How to Generate PIP Auditor Delta Reports Using a Command Line

 What You Need to Know about Generating PIP Auditor Reports

22.2.1. How to Generate PIP Auditor Reports Using a Command Line

For Windows, access a command line and invoke pipaudit.bat. For example: pipaudit –inputDir
D:\AIAAudit\demo –outputDir D:\AuditOut

For Linux, access a command line and invoke pipaudit.sh. For example: sh pipaudit.sh –inputDir
/AIAAudit/demo –outputDir/AuditOut

Use the following switches to configure your invocation:

 -inputDir <PIP folder or folder that contains process(es)>

This is a mandatory switch that is used to indicate the location of the input directory.

 If the -inputMetaFile switch is not specified, this input is not necessarily representative of a single

PIP.

 If the -inputMetaFile switch is provided, this specifies the PIP root directory, for example, the

source folder containing the PIPs folder from AIA_HOME.

 -outputDir <path to output folder where the audit report will generated>

This is a mandatory switch that is used to indicate the location where the output reports will be stored.

 -testFile <test suite file name>

Using the PIP Auditor

Copyright © 2010, Oracle. All rights reserved. 169

This is an optional switch that is used to indicate which testSuite file PIP Auditor should run against.

For example, TestSuite.3x.xml. The file should be available under [DeveloperTools install

folder]/DeveloperTools/PIPAuditor/lib or [DeveloperTools install

folder]/DeveloperTools/PIPAuditor/config (Tool class path), or embedded in pipauditor.jar.

 -testSuite <test suite name>

This is an optional switch that is used to specify the name of the test suite on which to run a PIP

audit. Using this switch will perform an audit on a specific test suite that you have defined. If you

include the testSuite switch but do not provide a value, it will run the audit on all testSuites defined in

your system.

 -testName <test name>

This is an optional switch that is used to specify the name of the test on which to run a PIP audit.

Using this switch will perform an audit on a specific test that you have defined. For example,

ABCSTargetNameSpacesCheck.

 -inputMetaFile <path to GenerateScriptInput.xml input file>

This is an optional switch. Use this switch if you want to run reports for a specific PIP. The

GenerateScriptInput.xml input metafile contains paths pointing to the specific directories that the PIP

Auditor needs to scan to generate output results that are specific to the PIP. This file contains the

names of all of the services that are used in a given PIP.

When you use this switch, you must set the -inputDir switch to point to the PIP root directory, since

the directory paths defined in the input metafile are defined relative to this root.

For Windows, for example: pipaudit –inputDir D:\AIAAudit\aia –inputMetaFile <dir path of the

file>/GenerateScriptInput.xml -outputDir D:\AuditOut

For Linux, for example: sh pipaudit.sh –inputDir $AIA_HOME/aia –inputMetaFile <dir path of the

file>/GenerateScriptInput.xml –outputDir /AuditOut

 -inputMetaFile ALL

This is an optional switch. Use this switch if you want to run reports for all PIPs that have

GenerateScriptInput.xml files placed in the PIPS/Core/Setup/[PIP Name]/Install directory for core

PIPs and in the PIPS/Industry/[Industry Name]/Setup/[PIP Name]/Install directory for industry-specific

PIPs.

When you use this switch, you must set the -inputDir switch to point to the PIP root directory, since

the directory paths defined in the input metafile are defined relative to this root. The output directory

contains AuditSummary.xml, AuditSummany.csv, and the consolidated index.html.

For Windows, for example: pipaudit –inputDir D:\AIAAudit\aia –inputMetaFile ALL -outputDir

D:\AuditOut

For Linux, for example: sh pipaudit.sh –inputDir $AIA_HOME/aia –inputMetaFile ALL –outputDir

/AuditOut

If you do not define an –outputDir switch value, generated reports will be stored as follows:

 Core PIP reports will be placed in <outputDir>/Core/<PIPName>

Using the PIP Auditor

170 Copyright © 2010, Oracle. All rights reserved.

 Industry PIP reports will be placed in <outputDir>/Industry/<IndustryName>/<PIPName>

 -version

This is an optional switch. Indicates the version of the PIP Auditor tool that is being invoked.

22.2.2. How to Generate PIP Auditor Delta Reports Using a Command
Line

A PIP Auditor delta report is generated by comparing a newly run PIP Auditor XML report to a previously
run PIP Auditor XML report. Based on this comparison, the delta report provides details about newly
compliant PIPs and newly non-compliant PIPs.

For example, this delta report can be generated during development to compare the report results of two
versions of a PIP. It can also be run to provide a delta report comparing report results before and after
PIP customization. The report provides information about fixes and violations introduced between the old
and new reports that are being compared.

For Windows, access a command line and invoke PIPAuditdiff.bat.

For Linux, access a command line and invoke pipauditdiff.sh.

Use the following mandatory switches to configure your invocation:

 -newAuditXML <file path to a newly generated PIP Auditor audit XML file>

 -oldAuditXML <file path to a previously generated PIP Auditor audit XML file>

 -outputDir <location of the output folder to which the PIP Auditor delta report will be generated>

For Window, for example: PIPAuditdiff –newAuditXML D:\AIAAudit\Core_Audit.xml –oldAuditXML
D:\AIAAudit\Core1_Audit.xml -outputDir D:\AuditOut

For Linux, for example: sh pipauditdiff.sh –newAuditXML $AIA_HOME/Core_Audit.xml –
oldAuditXML $AIA_HOME/Core1_Audit.xml –outputDir /AuditOut

22.2.3. What You Need to Know about Generating PIP Auditor
Reports

 The PIP Auditor reads the target namespace of a BPEL process and uses it as metadata to derive

AIA-related information, such as application name, service name, service operation, industry, version,

and so forth. Therefore, if the target namespace for the process has not been coded as per

standards, audits will not work as designed.

 The PIP Auditor executes profile rules before executing audit rules. The profile rules derive contextual

information about a project from the target namespace of a WSDL used in service components. This

derived contextual information may be used in the definition of an auditing rule. Therefore, if the

target namespace for the process has not been coded as per standards, audits will not work as

designed. This is one of the reasons why PIP Auditor includes a targetNameSpace check as a

Priority 1 check.

Using the PIP Auditor

Copyright © 2010, Oracle. All rights reserved. 171

The profile rules store this derived AIA contextual information, such as application name, service

name, service operation, industry, version, and so forth. For example, this contextual information can

identify that a service is a provider Application Business Connector Service (ABCS) for participating

application X and that it uses Enterprise Business Object (EBO) Y and is invoked by Enterprise

Business Service (EBS) Z. This enables you to write a rule that is applicable only to provider ABCSs

and not other projects, for example.

 Running PIP Auditor with the -inputDir switch value as a mapped network drive (a ClearCase mapped

drive, for example) may cause performance issues. We recommend that you run PIP Auditor against

local source folders.

22.3. Trend Analysis Chart

Users can generate trend analysis charts from AuditSummary.csv. The trend analysis chart illustrates
how a selected PIP adhered to standards at different points in a timeline.

To generate a trend analysis chart in Microsoft Excel 2003:

1. Create a new Excel spreadsheet.

2. Import AuditSummary.csv into cell A1 of the newly created spreadsheet.

3. Insert a new pivot chart from the Insert menu. In the PivotTable and PivotChart Wizard, select the range of

source data for which you want generate the chart. You may choose to select all imported data and filter it later

while presenting the charts.

4. Select the New worksheet option to generate the chart and table in the new spreadsheet.

5. A list of PivotTable fields displays along with an empty pivot table and chart sheet. Drag and drop the DATE field

to the Axis Fields area, the PIPNAME and GROUP VALUE fields to the Legend Fields area, and the FAILED

EXECUTIONS field to the Values area.

6. Select the GROUP VALUE filter from the PivotChart Filter Pane and select only ALL in the drop-down list box.

7. The trend analysis chart displays.

Using the PIP Auditor

172 Copyright © 2010, Oracle. All rights reserved.

Trend analysis chart

22.4. Changing Default PIP Auditor Configurations

You can change default PIP Auditor configurations by modifying the AuditorRuntime.properties file. This
file is located in [DeveloperTools install folder]/DeveloperTools/PIPAuditor/config.

If any property value contains a placeholder like ${another-property-name}, the value of the property is
calculated by substituting the calculated value of the property used in the placeholder. For example:

Version=”2.5”

TestFile=Test${Version}.xml

The actual value of the TestFile property is Test2.5.xml, by substituting the value of version property.

Property Name Property Value Example Description

env.VERSION 2.5 Version against which the PIP Auditor is

going to run.

This default value can be overridden by

defining an OS environment variable

VERSION before executing PIP Auditor.

default.testSuiteFile TestSuite.${env.VERSION}.xml Used as the default value for the -

testFile switch.

This default value can be overridden by

defining a –testFile during execution of

the PIP Auditor.

Using the PIP Auditor

Copyright © 2010, Oracle. All rights reserved. 173

Property Name Property Value Example Description

default.ruleFile Rules.${env.VERSION}.xml Used as the default value for the -

ruleFile switch.

This default value can be overridden by

defining a –ruleFile switch during

execution of the PIP Auditor.

logger.console.level INFO Used as the default value for the level of

logging provided by the console handler.

The PIP Auditor uses the console

handler to display execution status

messages.

logger.file.level INFO Used as the default value for the level of

logging for the file handler.

The PIP Auditor uses the file handler to

write log information into the pipaudit.log

file. The user can limit the amount of

information logged by setting various

logger levels.

metafile.patterns GenerateInputScript.xml,DeployementPl

an.xml

The PIP Auditor uses this property when

the user defines the–inputMetaFile ALL

switch.

The PIP Auditor will search the given

input directory (using the –inputDir

switch) for the metafile(s) provided in

this property value.

metafile.components.xpaths //Service/Location The input metafile contains paths

pointing to the specific directories that

the PIP Auditor needs to scan so that

output results are specific to the PIP.

To get a list of directories, the PIP

Auditor uses this property value as an

XPath to resolve the paths provided in

the metafile.

metafile.logicalname.xpaths //PIPName|//ComponentName The PIP Auditor uses this property value

as an XPath to resolve the PIP Name

based on information provided in the

metafile.

22.5. Creating Custom Rules for PIP Auditor

PIP Auditor uses the Rules.<release number>.xml file, which contains rules in a rule language that is
specific to and optimized for PIP Auditor. Use the rules file specific to the release for which you want to
run audits.

To create a custom rule one needs to understand the rule structure, select the appropriate rule executor,
and write a new test case to execute a new rule.

Using the PIP Auditor

174 Copyright © 2010, Oracle. All rights reserved.

This section discusses the following topics:

 Describing a Rule

 Describing Rule Parameters

 Describing a Rule Executor

 Describing Tests and TestSuites

 Describing Rule Files

 Describing Test Suite Files

 Describing Rule and Test Releases and Customization

 How to Execute Newly Created and Customized Rules

22.5.1. Describing a Rule

A rule is essentially a design-time governance policy in the form of an XML snippet. A rule is executed
against a subset of input provided in the –inputDir and a report is generated based on compliance to the
rule.

A rule has the following structure:

PIP Auditor Rule element structure

<Rule name=" " description=" " executor=" " fileType=" " category=" "

 priority=" " context=" ">

 <Param name=" " default=" " value=” ”/>

 <Param name=" " default=" " value=” ”/>

 <Param name=" " default=" " value=” ”/>

</Rule>

Using the PIP Auditor

Copyright © 2010, Oracle. All rights reserved. 175

An example rule displayed in an XML editor

PIP Auditor executes a new rule when the TestSuite.<release number>.xml file includes a Test element
with a rulename attribute set to a new rule name. Use the test suite file specific to the release for which
you want to run audits. The Test element is a child of the TestSuite element, which is a placeholder for
multiple tests that have been grouped together.

Use the UnitTestSuite element to test a new rule before placing it under the appropriate TestSuite
element for actual use.

For more information about Test and TestSuite elements, see Describing Tests and TestSuites.

Following is a table of the attributes that make up the Rule element.

Attribute Description

 name This is the name of the rule. Note that because rules do not include an ID value,

the rule name should be unique. The name value acts as the identifier for a rule.

description This is a plain text description of what the rule checks. This value helps end

users understand what the rule actually checks and what they need to do to

Using the PIP Auditor

176 Copyright © 2010, Oracle. All rights reserved.

Attribute Description

achieve compliance to the rule.

executor The rule engine executes rules using executors. Executors provide the base

infrastructure for a rule developer to write rules. Various operations can be

performed on executors. For example, XPathExecutor provides rule writers with

different operations that they can perform on an XPath.

For more information about the executors shipped with PIP Auditor, see

Appendix: Delivered PIP Auditor Rule Executors.

fileType Every rule works on either files or directories. The fileType attribute gives users

the flexibility to perform audits on only specific types of files. For example,

fileType=“*.wsdl” means only files with .wsdl extensions will be picked for the

execution of a particular rule.

Users can choose to execute a particular rule on folders only by using “*”.

fileType=“*” selects folders only. Note that fileType=“*” is dependent on the

executor. For example, fileType=“*” cannot be used with XPathExecutor since

XPath operations cannot be performed on a folder, whereas it can be used with

FSExecutor to perform file-related operations.

category This attribute is used to group sets of rules and categorize the audit results.

When there are many rules, they are easier to maintain if they are categorized.

It is a free-form text attribute. Audit results can be viewed based on these

category values.

priority This is another attribute that can be used to group the output of audit results.

Numbers can be entered for this attribute and allow sorting of results. The

priority of the rule is based on its importance. For example, a rule with

priority="1" is critical and all PIPs must comply with the rule and produce only

Compliant nodes in the _Audit.xml file.

context This is used to provide additional filtering of matching files found in the input.

For example, a rule writer may want to audit only utility BPEL processes for a

certain rule. Assuming that all utility processes contain "util" in the process

name, specifying filetype="*.bpel" and context="util" selects only utility BPEL

processes for auditing.

22.5.2. Describing Rule Parameters

Param is the element used to hold the parameters of the rule. These are the parameters that are passed
on to the executor during the execution of the rule. Any substitutions are performed before the
parameters are sent for rule execution.

<Param name=" " default=" " value=” ”/>

These are the attributes of the Param element:

Attribute Description

 name This is the name of the parameter.

Using the PIP Auditor

Copyright © 2010, Oracle. All rights reserved. 177

Attribute Description

default This is the default value that needs to be passed in the parameter.

value This is the value of the parameter and can be expressed as either a variable or an

expression. If no value is provided, then the value provided in the default attribute

will be used as the actual value.

22.5.3. Describing a Rule Executor

A rule executor is the underlying infrastructure provided by the PIP Auditor to write new rules. All rules are
executed using one of the executors provided by the PIP Auditor. These executors provide a common
mechanism to execute checks and expose different operations or methods that can be executed when
supplied with a set of arguments.

For example, XPathExecutor performs different XPath-related operations on an XML file. XPathExecutor
can be used to check if a value at a particular XPath location matches an input String and so forth.

Custom rules can be written using only executors delivered with PIP Auditors.

For more information about delivered rule executors, see Appendix: Delivered PIP Auditor Rule

Executors.

22.5.4. Describing Tests and TestSuites

A Test is an invocation of a rule by passing parameters to be overridden in the rule, if required. For
delivered tests and rules, usually nothing changes between a test and a rule. A test simply invokes the
rule. However, the infrastructure supports the ability to use a test as a user-friendly interface to edit the
behavior of a rule.

For example, consider a rule that checks the assign activity naming in BPEL. The delivered
implementation of the rule is strict. If company XYZ wants to be more lenient when it comes to naming
standards, they can simply modify the test by adding a <Param name="naming" value=" .* "/>. This
change can be made directly in the rule file, but the implementation would be more complicated.

Another use case for tests would be writing multiple checks using the same rule. For example, company
XYZ wants to define a character length check for an element, ABC:

 ABC length = > 10 characters = P1

 ABC length > 20 characters = P2

 ABC length < = 50 chars = P3

All three checks can be written with the help of same rule by passing different values for length.

Following is an example of a simple test:

<Test rulename="NoHardWiringUnamePwdInEndpointURICheck"/>

The value of the rulename attribute should be the same name as that given in the name attribute of the
rule. In the Test element, no parameter values are passed from the test and the default values from the
rule are used.

Now let‟s consider an example where test passes on parameters to override for execution of a rule.

Using the PIP Auditor

178 Copyright © 2010, Oracle. All rights reserved.

Following is an example of a rule in which a test provides parameters to be used as overrides in the
execution of the rule:

<Rule name="DocumentMinLengthCheck " description=" " executor=" "

 fileType=" " category=" " priority=" " context=" ">

 <Param name=" minLength" default=" 20" value=” ”/>

</Rule>

A test can be written for the rule

<Test rulename="DocumentMinLengthCheck ">

 <Param name=" minLength" value=" 30" />

</Test>

During the execution of this test, the default value of „20‟ for the rule minLength parameter is overridden
by the test minLength parameter value of „30‟.

TestSuite is an element used to group tests. PIP Auditor results can be grouped by test suites, as well as
by priority and category. Grouping of tests with the help of test suites can be helpful in prioritizing audit
results.

Following is an example of a test suite:

<TestSuite name="FaultPolicyRelatedSuite">

 <Test rulename="FaultPolicyEnabledforABCSAndEBFCheck"/>

 <Test rulename="FaultPolicyFileExistsInABCSAndEBFCheck"/>

</TestSuite>

In the TestSuite element, the name attribute must have a unique value. Every TestSuite name in a
TestSuite.xml file must be unique.

A TestSuite can invoke other TestSuites. This usage can be used for grouping purposes.

Following is an example of a group of TestSuites wrapped in a TestSuite:

<TestSuite name="AllTestSuite">

 <depends name="ABCSsecuritySuite"/>

 <depends name="SeedDataAndConfigSuite"/>

 <depends name="ESBProjectContentSuite"/>

 <depends name="BPELProjectContentSuite"/>

 <Test rulename="FaultPolicyEnabledforABCSAndEBFCheck"/>

 <Test rulename="FaultPolicyFileExistsInABCSAndEBFCheck"/>

</TestSuite>

For this reference mechanism, the depends element is used. The name attribute in the depends element
should contain the name of the TestSuite.

Note that the parent TestSuite wrapper contains both depends and Test elements. This signifies that
TestSuite can invoke other TestSuites, as well as Tests. If you execute PIP Auditor passing –testSuite
AllTestSuite, this command will execute all test suites and tests specified in this example.

22.5.5. Describing Rule Files

A rule file is an XML file found either in the PIP Auditor‟s classpath ([DeveloperTools install
folder]/DeveloperTools/PIPAuditor/config) or embedded in the PIPAuditor.jar file. The .jar file can be
found in [DeveloperTools install folder]/DeveloperTools/PIPAuditor/lib. The rule XML file found in
[DeveloperTools install folder]/DeveloperTools/PIPAuditor/config takes precedence over the one found in
the .jar file. The Oracle-delivered rule file is Rules.<release version>.xml.

Using the PIP Auditor

Copyright © 2010, Oracle. All rights reserved. 179

The Oracle-delivered rule file can have a corresponding optional (Custom_<<base rule file name>>)
custom rule XML file, which should be stored in [DeveloperTools install
folder]/DeveloperTools/PIPAuditor/config. Users can create this custom rule file by copying and renaming
the Custom_Rules.<release version>.xml file found in PIPAuditor/samples.

The rule XML file contains Oracle-delivered rules that are executed by PIP Auditor. A new rule or override
for an existing rule should be added to the Custom rule XML file by inserting a new Rule node as a child
node of the RuleSet element that has the attribute name=“OracleAIARules”.

<RuleSet name="OraleAIARules"

xmlns="http://www.oracle.com/aia/PIPvalidator">

Once changes to the rule file have been made, the new Custom_Rules.2.x.xml file must be placed in
[DeveloperTools install folder]/DeveloperTools/PIPAuditor/config.

For a new rule added to the Custom_Rules.2.x.xml file to be executed, a corresponding Test needs to be
added to the Custom_TestSuite xml file.

For more information about how to add a new Test to a custom TestSuite XML file, see Describing Test

Suite Files.

There are three methods by which one can override an existing Oracle-delivered rule:

 Add the same rule to a custom rule XML file found in [DeveloperTools install

folder]/DeveloperTools/PIPAuditor/config and modify values for parameters directly in the rule. In this

case, there is no need to add a Test to the custom test suite XML file because there will already be

one in the Oracle-delivered test suite XML file found in the .jar file. By default, Tests in the Oracle-

delivered test suite XML file do not pass override parameters.

 Add the Test to a custom test suite XML file found in [DeveloperTools install

folder]/DeveloperTools/PIPAuditor/config for a rule you are going to override. Pass parameters with

override values from the Test for those parameters that have variables defined in the rule. In this

case, there is no need to add a rule to the custom rule XML file.

 A less practical method would be to use a combination of the two previous methods wherein some

parameters are overridden by passing them from the Test in the custom test suite XML file, while

others are overridden by directly changing them in the rule added to the custom rule XML file.

For more information about rules and how to write them, see Describing a Rule.

22.5.6. Describing Test Suite Files

A test suite file is an XML file found either in the PIP Auditor‟s classpath ([DeveloperTools install
folder]/DeveloperTools/PIPAuditor/config) or embedded in the PIPAuditor.jar file. The .jar file is located in
[DeveloperTools install folder]/DeveloperTools/PIPAuditor/lib. The test suite XML file found in
[DeveloperTools install folder]/DeveloperTools/PIPAuditor/config takes precedence over the one found in
the .jar file. The Oracle-delivered test suite file is TestSuite.2.x.xml.

The Oracle-delivered TestSuite.2.x.xml file contains a top-level element called Validator, which contains
an attribute called default. The value in default dictates which TestSuite needs to be invoked when PIP
Auditor is run. This value can be overridden by the user while running PIP Auditor by using the -testSuite
switch and the name of the TestSuite.

<Validator xmlns="http://www.oracle.com/aia/PIPvalidator" default="all">

Using the PIP Auditor

180 Copyright © 2010, Oracle. All rights reserved.

The Oracle-delivered Test suite XML file can have a corresponding optional (Custom_<<base test suite
file name>>) custom test suite file, which should be stored in [DeveloperTools install
folder]/DeveloperTools/PIPAuditor/config. User can create this custom test suite file by copying and
renaming the Custom_Testsuite.2.x.xml file in PIPAuditor/samples. The custom test suite file contains an
overriding or new set of Tests that need to be executed by PIP Auditor, in addition to those already found
in the Oracle-delivered TestSuite.2.x.xml. A new Test can be added by adding a Test node under the
existing TestSuite element. In this way, the new Test will be executed under the test suite, along with the
existing tests from this test suite found in the Oracle-delivered TestSuite.2.x.xml file.

For more information about Tests and TestSuites, see Describing Tests and TestSuites.

In summary, the Oracle-delivered TestSuite.2.x.xml file contains tests that will be executed when PIP
Auditor runs. A test from TestSuite.2.x.xml invokes a rule from Rules.2.x.xml. Parameters can be passed
from a Test to a Rule, if required. Therefore, only those rules from Rules.2.x.xml for which there is a
corresponding test in the TestSuite.2.x.xml are executed. Note that the same rule can be invoked by
multiple tests. This is useful if there is a need to pass different values to the same parameters of the
same rule. This will override the default values for these parameters.

22.5.7. Describing Rule and Test Releases and Customization

Oracle delivers dedicated test suite and rule XML files with each release. While users may be able to
download PIP Auditor once and use it across releases (unless otherwise specified), users must download
release-specific test suite and rule files into the PIPAuditor/lib directory. You can download these files
from My Oracle Support article 782351.1.

The dedicated release-specific test suite and rule XML files can be passed to PIP Auditor by using the –
testFile switch command-line option accepting the test suite file name as an argument. When the user
passes the –testFile command, PIP Auditor will try to identify the rule file name based on the testFile
naming convention.

To avoid any annotation and merge/patch problems, it is recommended that a user make changes only in
custom test suite or rule files that the PIP Auditor engine reads as overriding files. The PIP Auditor
automatically identifies custom files based on their file naming patterns and their location, which should
be the same location where Oracle-delivered base test and rule files are found, [DeveloperTools install
folder]/DeveloperTools/PIPAuditor/config, for example.

Following are examples of test suite names and their matching patterns for rule file names:

 TestSuite.2.x.xml (Custom_TestSuite.2.x.xml) and Rules.2.x.xml (Custom_Rules.2.x.xml)

 TestSuite.25.xml (Custom_TestSuite.25.xml) and Rules.25.xml (Custom_Rules.25.xml)

If the Rules.25.xml file contains only base rules delivered by Oracle, then the Custom_Rules.25.xml file
should contain all new and customized rules.

For examples of added and modified tests and rules, refer to Custom_Rules.2.x.xml and
Custom_TestSuite.2.x.xml files located in DeveloperTools/PIPAuditor/sample.

22.5.7.1. Adding and Modifying Rules in a Custom Rule File

 To add a new rule for execution by PIP Auditor, add it in the Custom Rule file. A Corresponding Test

must be added to the Custom Test suite file for a new rule to be executed.

 To customize an Oracle-delivered rule, copy the rule from the base Rule file and paste it in the

Custom Rule file. Edit parameters of the rule as needed in the Custom Rule file.

https://support.oracle.com/CSP/ui/flash.html

Using the PIP Auditor

Copyright © 2010, Oracle. All rights reserved. 181

 To remove a rule from execution by PIP Auditor, copy the rule from the base Rule file and paste it in

the Custom Rule file. Replace the value for the executor attribute of the pasted rule to NAExecutor

(Not available).

22.5.7.2. Adding and Modifying Tests in a Custom Test Suite File

 To add a new test under an existing test suite, add it in the Custom Test suite file under the testSuite

element for the existing test suite. If the testSuite is not present, the user must add the same node

that is present in the base test suite file.

 To customize an Oracle-delivered test, copy the test from the base Test suite file and paste it in the

Custom Test suite file. Edit parameters as needed in the Custom Test suite file.

 To remove a test from execution by PIP Auditor, copy the test from the base Test suite file and paste

it in the Custom Test suite file. Add the active attribute with its value set to false.

<test rulename="ABCSTargetNsCheck" active="false">

The Rules.html and TestSuite.html files found in the <<output directory>>/reports folder use a different
text style to display a new or customized rule executed by PIP Auditor.

Note. Users should maintain custom rule files when they install and upgrade to the latest Developer

Tools. Users must take a backup of the custom and base rule and test suite files from the

[DeveloperTools install folder]/DeveloperTools/PIPAuditor/config directory and place them in the same

location after the new Developer Tools installation has completed.

22.5.8. How to Execute Newly Created and Customized Rules

To execute newly created or customized rules, all users need to do is ensure that the base and custom
Rule and Test suite files are available in the [DeveloperTools install
folder]/DeveloperTools/PIPAuditor/config folder. PIP Auditor automatically detects base and custom files
and executes new rules and customized rules, in addition to those available in the base Rule file.

Copyright © 2010, Oracle. All rights reserved. 183

23. Using the PIP Shared Artifact Analyzer

This chapter discusses the following topics:

 Overview of the PIP Shared Artifact Analyzer

 Generating PIP Shared Artifact Analyzer Reports

23.1. Overview of the PIP Shared Artifact Analyzer

The Process Integration Pack (PIP) Shared Artifact Analyzer processes a list of PIPs and produces a
report that identifies the artifacts that are shared (reused) by each possible combination of two PIPs. The
tool produces a matrix-style report that displays the number of overlapping artifacts for each PIP
combination, along with an indicator of whether that PIP combination can be co-deployed to a single SOA
service instance. At design-time, this information can help identify areas that may need reviews for
technical standards compliance and potential co-deployment issues.

Following is a sample PIP Shared Artifact Analyzer report.

PIP Shared Artifact Analyzer sample report

As with other AIA Developer Tools, the PIP Shared Artifact Analyzer uses the GenerateScriptInput.xml file
to get an inventory of the services, domain-value maps (DVMs) and cross references (XRefs) that each
PIP uses.

Using the PIP Shared Artifact Analyzer

184 Copyright © 2010, Oracle. All rights reserved.

By default, the PIP Shared Artifact Analyzer looks for all GenerateScriptInput.xml files in the input source
directory. Alternatively, a list of one or more specific GenerateScriptInput.xml files can be used as input
via a properties file.

23.2. Generating PIP Shared Artifact Analyzer
Reports

For Windows, access a command line and invoke psaa.bat. For example: psaa.bat -inputDir d:\aia -
outputDir d:\temp\psaaout

For Linux, access a command line and invoke psaa.sh. For example: psaa.sh -inputDir /aia -outputDir
~/psaaout

Use the following switches to configure your invocation:

 -inputDir <input AIA source code root directory>

This is a required switch. Use this switch to indicate the location of the root of the Oracle Application

Integration Architecture (AIA) source code tree.

 -outputDir <output directory in which to generate the report files>

This is an optional switch. Use this switch to indicate the location of the directory in which you want

the reports to be generated. The default output directory for the report is the current working directory.

 -inputPropsFile <file path to the input properties file, including the name of the file>

This is an optional switch. Use it to indicate the location of a properties file that you want the PIP

Shared Artifact Analyzer to use as input. The properties file contains a list of the locations of the

GenerateScriptInput.xml files for the PIPs that you want the tool to analyze.

The input properties file format is as follows:

ScriptGeneratorInputFile.count=2

ScriptGeneratorInputFile.1=PIPS/Core/Setup/Fleet/Financials/Install/Genera

teScriptInput.xml

ScriptGeneratorInputFile.2=PIPS/Core/Setup/Fleet/OrderManagement/Install/G

enerateScriptInput.xml

…

If this switch is not used, the tool will search the -inputDir directory tree for all GenerateScriptInput.xml

files and these files will be used as input for the report.

Note. The recommended approach is to NOT use the -inputPropsFile argument.

 -outputXML YES

This is an optional switch. Prior to generating the HTML report, an XML file containing all the

gathered PIP data is created. By default, this XML file is not included in the output directory. Use this

switch to indicate that you want this XML file to be made available in the output directory.

 -version

Using the PIP Shared Artifact Analyzer

Copyright © 2010, Oracle. All rights reserved. 185

This is an optional switch. Indicates the version of the PIP Shared Artifact Analyzer that is being

invoked.

Copyright © 2010, Oracle. All rights reserved. 187

24. Using the XSD Flattener

This chapter discusses the following topics:

 Overview of the XSD Flattener

 Generating XSD Flattener CSV Files

24.1. Overview of the XSD Flattener

The XSD Flattener is a command line tool that flattens an XML schema element tree into a comma-
separated values (CSV) file. This can be useful for documentation of a schema or for creating a mapping
spreadsheet.

The XSD Flattener can flatten a single XSD schema file or a full or partial Oracle Application Integration
Architecture (AIA) Enterprise Object Library (EOL) consisting of multiple Enterprise Business Objects
(EBOs) and Enterprise Business Messages (EBMs).

The CSV files generated by the XSD Flattener contain multiple columns for each node of the input tree.
The output of the tool is meant to provide as much information as possible so as to support many different
uses.

The columns included in the XSD Flattener CSV output files are:

 Element name with indentation

 Element name without indentation

 Element namespace

 Element Type name

 Element Type namespace

 List of element attributes

 Custom element indicator

 Tree depth

 Cardinality minOccurs

 Cardinality maxOccurs

 Full XPath for the element

 Annotation/Documentation for the element

24.2. Generating XSD Flattener CSV Files

This section discusses:

 How to Flatten a Single XSD File into a CSV File

Using the XSD Flattener

188 Copyright © 2010, Oracle. All rights reserved.

 How to Flatten a Full or Partial EOL into a CSV File

24.2.1. How to Flatten a Single XSD File into a CSV File

For Windows, access a command line and invoke xsd2csv.bat. For example: xsd2csv.bat -
inputSchemaURL d:\CustomerPartyEBO.xsd -rootElement CustomerPartyEBO

For Linux, access a command line and invoke xsd2csv. For example: xsd2csv.sh -inputSchemaURL
/aia/CustomerPartyEBO.xsd -rootElement CustomerPartyEBO

Use the following switches to configure your invocation:

 -inputSchemaURL <URL or path to the XML schema file>

This is a required switch. Use it to indicate the location of the schema file that you want to flatten. This

value can be an HTTP URL or a local file path.

 -rootElement <name of the root element to flatten>

This is a required switch. Use it to indicate the name of the root element in the schema that you want

to flatten and output to the CSV file.

 -outputFile <path and name of the output CSV file>

This is an optional switch. Use it to specify the file name and location of the output CSV file. If you do

not use this switch, the output file will be created in the current working directory and will take the file

name format <rootElement>.csv.

 -csvDelimiter <delimiter to use for the CSV file>

This is an optional switch. Use it to specify the CSV delimiter. If you do not use this switch, the default

delimiter will be a comma “,”.

 -version

This is an optional switch. Indicates the version of the XSD Flattener being invoked.

24.2.2. How to Flatten a Full or Partial EOL into a CSV File

For Windows, access a command line and invoke eol2csv.bat. For example, eol2csv.bat -inputDir
d:\aia\EnterpriseObjectLibrary\Schemas -outputDir d:\temp\eoloutput

For Linux, access a command line and invoke eol2csv.sh. For example, eol2csv.sh -inputDir
/aia/EnterpriseObjectLibrary?Schemas -outputDir ~/eoloutput

Use the following switches to configure your invocation:

 -inputDir <EOL directory to process>

This is a required switch. Use it to indicate the location of the EOL directory on which you want to run

the XSD Flattener. Any EBO or EBM schemas found below this directory tree will be processed.

Unlike with the XSD2CSV utility, this must be a path on a local file system.

 -outputDir <output directory path>

Using the XSD Flattener

Copyright © 2010, Oracle. All rights reserved. 189

This is an optional switch. Use it to specify the directory in which you want the tool to create the EBO

and EBM CSV files. If you do not use this switch, the files will be created in the current working

directory. The same directory tree structure found under the -inputDir value will be recreated in the -

outputDir location and CSV files will be placed accordingly.

 -csvDelimiter <delimiter to use for the CSV file>

This is an optional switch. Use it to specify the CSV delimiter. If you do not use this switch, the default

delimiter will be a comma “,”.

 -version

This is an optional switch. Indicates the version of the XSD Flattener being invoked.

Copyright © 2010, Oracle. All rights reserved. 191

25. Hosting Mapping and Technical
Compliance Reports

To support technical compliance and content governance during design-time, you can provide hosted
mapping and technical compliance reports in a central location.

Note. At this time, we provide Linux scripts only.

The $AIA_Home/DeveloperTools/bin/devtoolsenv.sh script is used to provide these reports. This file will

be used to set up environment variable values for executing DeveloperTools. The following table provides

descriptions of each variable.

Variable Description

VERSION Specifies the release number. For example, 2.3, 2.5, and so

forth.

INPUTDIR Specifies the path of the directory root where the AIA source is

available. For example, /scratch/aia/AIASource/RV2.5/aia.

REPORT_STAGING_HOME Specifies the directory location where reports will be generated

by the tools. For example, /scratch/aia/AIAReports_stage.

REPORT_PRODUC_HOME Specifies the directory where reports are copied to be viewed

by report viewers. For example, /scratch/aia/AIAReports.

AIA_HOME Specifies the directory where the Developer Tools are

installed. For example, /scratch/aia/.

To generate reports and HTML pages for your hosted solution:

1. Change the environment variables in $AIA_HOME/DeveloperTools/bin/devtoolsenv.sh using information

provided in the table above.

2. Access a command line and invoke $AIA_Home/DeveloperTools/bin/aia_runreports<release number>.sh.

Use the script specific to the release for which you want to run reports. Running this script refreshes

the source code from source control, executes XSL Mapping Analyzer (XMAN), Process Integration

Pack (PIP) Auditor, PIP Shared Artifact Analyzer, and XSD Flattener tools, and generates reports in

the stage directory that has been set in the script. After executing these tools, this script executes

commands to produce Enterprise Business Message (EBM)-level consolidated comma-separated

values (CSV) files and creates the Mapping Report Dashboard page and the technical Compliance

Report Dashboard page in the stage directory.

3. Verify the presence and accuracy of the reports in the stage directory.

4. Invoke $AIA_Home/DeveloperTools/bin/aia_movestagetoprod.sh <release number>.

Running this script removes all generated report and page content from the $STAGEDIR directory

and places it in the $PRODDIR directory, as defined in the script.

Hosting Mapping and Technical Compliance Reports

192 Copyright © 2010, Oracle. All rights reserved.

5. If you want to revert content back to the version of your production site that existed before the most recent run of

$AIA_Home/DeveloperTools/bin/aia_movestagetoprod.sh, invoke

$AIA_Home/DeveloperTools/bin/aia_restorebaktoprod.sh <release number>.

Running this script moves reports from the $PRODDIR directory back to the $STAGEDIR directory.

Copyright © 2010, Oracle. All rights reserved. 193

26. Appendix: XML Structures of
Exportable CAVS Definitions and
Instances

This appendix provides the following XML structures of exportable Composite Application
Validation System (CAVS) definitions and instances:

 Definition.xml

 Instance.xml

26.1. Definition.xml

This is the structure of the Definitions.xml file created by the CAVS definition export feature.

This export feature should be used to migrate definitions between instances running on the same
version of Foundation Pack.

Use this structure as a reference if you a receiving a validation error when importing definitions.

Edit this structure to create new definitions for importing to an Oracle Application Integration
Architecture (AIA) Foundation Pack instance.

For more information about the definition export and import feature, see Exporting and

Importing CAVS Definitions and Instances.

<DefinitionsList>

<!-- The section below is for one test/simulator definition. This

includes all definition details as well as XPATH conditions set by

the user. For each definition the section below will be repeated -->

<DefinitionsViewRORow>

 <DefinitionId>[Definition ID that was set in the previous

environment. During import, the target system will generate a new ID

for this field]</DefinitionId>

 <Type>[Test|Simulator]</Type>

 <Description>[String. Description of the test or

simulator]</Description>

 <State>[Locked|Unlocked]</State>

 <ServiceType>[Synchronous|Notify|Asynchronous two

way]</ServiceType>

 <UrlEndpoint>[URL]</UrlEndpoint>

 <SoapAction>[String. Valid soap action from the wsdl of the above

URL]</SoapAction>

 <SoapTransportType>[HTTP]</SoapTransportType>

 <MessageRequest>[SOAP Message. Request message along with CAVS

SOAP envelopes]</MessageRequest>

 <MessageResponse>[SOAP Message. Response message along with CAVS

SOAP envelopes]</MessageResponse>

Appendix: XML Structures of Exportable CAVS Definitions and Instances

194 Copyright © 2010, Oracle. All rights reserved.

 <Delay>[Integer greater than -1. Only in the case of ServiceType

Asynchronous two way]</Delay>

 <ServiceName>[String]</ServiceName>

 <ServiceVersion>[String]</ServiceVersion>

 <ProcessName>[String]</ProcessName>

 <PipName>[String]</PipName>

 <AuditedOn>[YYYY-MM-DD HH:MM:SS.M]</AuditedOn>

 <AuditedBy>[oc4jadmin]</AuditedBy>

 <!-- Namespace details from the request/response message. There

can be more than one occurrence of the section below -->

 <NsXpathsForDefinitionsRO>

 <DefinitionNsXpathsViewRORow>

 <DefinitionId>[Definition ID mentioned

above]</DefinitionId>

 <NamespaceAlias>[String. namespace alias]</NamespaceAlias>

 <Namespace>[valid namespace URL]</Namespace>

 </DefinitionNsXpathsViewRORow>

 </NsXpathsForDefinitionsRO>

 <!-- XPATH variables and values. There can be more than one

occurrence of the section below -->

 <XpathsForDefinitionsRO>

 <DefinitionXpathsViewRORow>

 <DefinitionId>[Definition ID mentioned

above]</DefinitionId>

 <XpathSeqId>[Non negative Integer]</XpathSeqId>

 <Xpath>[XPATH expression]</Xpath>

 <IsNodeText>[0|1.Applicable only for Simulator

Definitions]</IsNodeText>

 <IsNodeKey>[0|1. Applicable only for Simulator

Definitions]</IsNodeKey>

 <Condition>[OK|EQ|NE|LT|GE|LE|Not Null]</Condition>

 <IsSystemGenerated>[0|1]</IsSystemGenerated>

 </DefinitionXpathsViewRORow>

 </XpathsForDefinitionsRO>

</DefinitionsViewRORow>

<!-- The section below is for one group test definition. This

includes all definition details as well as references to Test

definitions that are mentioned above. For each such group definition

the section below will be repeated -->

<GroupDefinitions>

 <!-- There can be more than one occurrences of the section below

-->

<GroupDefinitionsViewRORow>

 <GroupDefinitionId>[Group Definition ID that was set in the

previous environment. During import the target system will generate

a new ID for this field]</GroupDefinitionId>

 <Description>[String]</Description>

 <ProcessName>[String]</ProcessName>

 <PipName>[String]</PipName>

 <GDDefinitionsViewRO>

 <!-- There can be more than one occurrences of the section

below -->

 <GDDefinitionsViewRORow>

 <GroupDefinitionId>[Group Definition ID set

Appendix: XML Structures of Exportable CAVS Definitions and Instances

Copyright © 2010, Oracle. All rights reserved. 195

above]</GroupDefinitionId>

 <SeqId>[Non negative Integer]</SeqId>

 <DefinitionId>[One of the Definition ID set in the

DefinitionsViewRORow section]</DefinitionId>

 <DefinitionSeqId>[Non negative Integer]</DefinitionSeqId>

 <ServiceType>[Synchronous|Notify|Asynchronous two

way]</ServiceType>

 <SoapTransportType>[HTTP]</SoapTransportType>

 </GDDefinitionsViewRORow>

 </GDDefinitionsViewRO>

</GroupDefinitionsViewRORow>

</GroupDefinitions>

</DefinitionsList>

26.2. Instance.xml

This is the structure of the Instance.xml file created by the CAVS instance export feature.

This export feature can be used to export a test or group instance in XML format that can be used
with XML reporting tools to generate reports of test executions.

For more information about the instance export feature, see Exporting and Importing CAVS

Definitions and Instances.

<InstancesList><?xml version = '1.0' encoding = 'UTF-8'?>

<InstancesViewRORow>

<!-- There would be more occurrences of this if more instances are

exported

 <InstanceId>[Instance ID that was assigned by the environment in

which the instance was run]</InstanceId>

 <Type>[Test|Simulator|Group</Type>

 <Status>[Status of the instances being exported] </Status>

 <StartedOn>[Date and time at which the instance

started]</StartedOn>

 <EndedOn>[Date and time at which the instance ended]</EndedOn>

 <IsStaled>[0|1]</IsStaled>

 <DefinitionId>[Definition ID of the definition that generated the

instance]</DefinitionId>

 <Description>[Description of the definition ID that generated the

instance]</Description>

 <ServiceType>Synchronous|Asynchronous two-way|Asynchronous

(notify)</ServiceType>

 <SoapAction>[String. Valid SOAP action for the WSDL defined for

the definition ID]</SoapAction>

 <SoapTransportType>HTTP</SoapTransportType>

 <MessageRequest>actual request message</MessageRequest>

 <MessageResponse>actual response message</MessageResponse>

 <DefinitionsViewRO>

 <DefinitionsViewRORow>

 <DefinitionId>[Definition ID mentioned

above]</DefinitionId>

 <Type>[Type mentioned above] </Type>

 <Description>[Description mentioned above]</Description>

 <State>[Locked|Unlocked]</State>

Appendix: XML Structures of Exportable CAVS Definitions and Instances

196 Copyright © 2010, Oracle. All rights reserved.

 <ServiceType>[Service Type mentioned above] </ServiceType>

 <SoapAction>[SOAP Action mentioned above] </SoapAction>

 <SoapTransportType>HTTP</SoapTransportType>

 <MessageRequest>[Request message defined in the

corresponding Test or Simulator definition]</MessageRequest>

 <MessageResponse>[Response message defined in the

corresponding Test or Simulator definition]</MessageResponse>

 <AuditedOn>[YYYY-MM-DD HH:MM:SS.M]</AuditedOn>

 <AuditedBy>[oc4jadmin]</AuditedBy>

 </DefinitionsViewRORow>

 </DefinitionsViewRO>

 <InstanceXpathsViewRO>

 <InstanceXpathsViewRORow>

 <InstanceId>[Instance ID assigned to the

instance}</InstanceId>

 <XpathSeqId>[Non-negative integer] </XpathSeqId>

 <Status>[Status of the instance] </Status>

 <Xpath>/soap:Envelope</Xpath>

 <IsNodeKey>[0|1. Applicable only for Simulator

Definitions]</IsNodeKey>

 <Condition>[OK|EQ|NE|LT|GE|LE|Not Null]</Condition>

 </InstanceXpathsViewRORow>

 </InstanceXpathsViewRO>

 <InstanceNsXpathsViewRO>

 <InstanceNsXpathsViewRORow>

 <InstanceId>[Instance ID assigned to the instance]

</InstanceId>

 <NamespaceAlias>[String]</NamespaceAlias>

 <Namespace>[Valid namespace URL]</Namespace>

 </InstanceNsXpathsViewRORow>

 </InstanceNsXpathsViewRO>

</InstancesViewRORow></InstancesList>

Copyright © 2010, Oracle. All rights reserved. 197

27. Appendix: Understanding
GenerateScriptInput.xml

This file is used to compile an inventory of Process Integration Pack (PIP) artifacts. All folder
paths expressed below are relative to AIA_HOME, which should be provided to Oracle
Application Integration Architecture (AIA) Developer Tools as the -inputDir parameter.

An example of a GenerateScriptInput.xml file can be accessed here:
$AIA_HOME/aia/PIPS/Core/Setup/Fleet/OrderManagement/Install/GenerateScriptInput.xml.

27.1. Describing GenerateScriptInput.xml
Elements

Here is a view of a sample GenerateScriptInput.xml file:

Sample GenerateScriptInput.xml file

27.1.1. Application

This element can appear any number of times depending on the number of services that we need
to group. Services are grouped under a particular application name.

For participating application services, the Application Name attribute can be set to E-Business
Suite, Logistics, or Siebel, for example.

Appendix: Understanding GenerateScriptInput.xml

198 Copyright © 2010, Oracle. All rights reserved.

It is mandatory to create a ServiceGroup as the first element, even if one of the services in that
group is an Enterprise Business Service (EBS), such as an inbound or outbound adapter.
Therefore, for predefined AIA-based services, such as EBSs or Enterprise Business Flows
(EBFs). The Application Name attributes should only use the following attribute values:

 EBS

 EBF

27.1.1.1. Service

This element is contained within the Application element. A Service element must be the first
element in the Application element. The Service element includes the Location attribute, which is
used to express the location of the Service that needs to be deployed.

The Location path should start from the PIPs folder,
PIPS/Core/Logistics/RequestorABCS/CreatePayableInvoiceListLogisticsReqABCSImpl, for
example.

Note: When running any of the AIA Developer Tools, this is the path relative to the –inputDir

option. The concatenation of the path given at –inputDir and the path given at

Application/Service/@Location is the absolute path for any service for a PIP.

Application and Service elements in GenerateScriptInput.xml

27.1.2. EBSRoutingRules

This element is used for listing EBSs that do not have associated routing rules. This is an optional
element. The Service element is not required within this element because the service information
should have already been defined as a part of the EBS Application Name attribute.

27.1.3. EBF

This element is used if there is an EBF in one of PIPs that need to be deployed. This is an
optional element.

27.1.4. CommonSeedData

This element is used to specify common seed data. This is an optional element. Possible
attributes are:

 DBObject

Appendix: Understanding GenerateScriptInput.xml

Copyright © 2010, Oracle. All rights reserved. 199

 DVMName

 XrefName

 IntegrationScenarios

 FaultPolicy

 ConnectorFactory

27.1.5. CompatiblePIP

This element is used to specify one or more PIPs with which the PIP is known to be compatible.
This element may appear more than once.

27.1.6. IncompatiblePIP

This element is used to specify one or more PIPs with which the PIP is known to be incompatible.
This element may appear more than once.

27.1.7. PIPName

This element is used to specify the name of the PIP. This should be the name of the PIP without
spaces.

Copyright © 2010, Oracle. All rights reserved. 201

28. Appendix: Delivered PIP Auditor Rule
Executors

This appendix describes available Process Integration Pack (PIP) Auditor rule executors, as well
as:

 XPathExecutor Rule Parameters

 FSExecutor Rule Parameters

 Available Operations for XPathExecutor

 Available Operations for FSExecutor

Available PIP Auditor rule executors include:

Executor Name Description

XPathExecutor Contains all XPath-related operations. For example,

"XpathExists", "XpathNodeCountEqual".

FSExecutor Contains all file system-related operations. For example,

"FileExist", "FilesMatchPattern".

28.1. XPathExecutor Rule Parameters

This section provides:

 Mandatory Params

 Optional Params

28.1.1. Mandatory Params

Param Name

Description

Default Value

Example

Failure
Situation

Xpath XPath to be

executed on a

particular document

No default //xsl:variable/@name XPath execution

failure exception

prefixes List of delimited

values of

namespace prefixes

that are used for a

particular XPath

expression

execution.

No default 'bpel="http://schema

s.xmlsoap.org/ws/20

03/03/business-

process/";

xsl="http://www.w3.o

rg/1999/XSL/Transfo

rm";

aiacfg="http://xmlns.

oracle.com/aia/core/

XPath execution

failure exception

Appendix: Delivered PIP Auditor Rule Executors

202 Copyright © 2010, Oracle. All rights reserved.

Param Name

Description

Default Value

Example

Failure
Situation

config/V1";

wsdl="http://schema

s.xmlsoap.org/wsdl/"

;

xsd="http://www.w3.

org/2001/XMLSche

ma";

xsd="http://www.w3.

org/2001/XMLSche

ma";

assertCondition Any one of the

Operations

supported by the

XPathExecutor.

For more

information, see

Available Operations

for XPathExecutor.

No default XpathValuesPattern

Match

Unsupported

Operation exception

assertValue Assertion value. No default [a-zA-Z_0-9]*

Above regular

expression says that

variable name can

contain only

alphanumeric

characters with

underscores.

Error depending on

the comparison type

28.1.2. Optional Params

Param Name Description Default Value Example Failure Situation

noNodeFlag Every XPath

operation assumes

that the comparison

between XPath

execution result and

assertValue can only

be made if the output

NodeList returned

after evaluating XPath

contains at least one

node (default

behavior except for

„XpathExists' and

'XpathNotExists'

operations). Default

false We have a test saying

"all compensate

activities in BPEL

should start with

a prefix of

compensate". Now if

we do not have any

compensate activities

in a bpel file,

PIPAuditor reports a

non-compliance. If we

specify

noNodeFlag=”true”,

then the test would be

considered as a

None

Appendix: Delivered PIP Auditor Rule Executors

Copyright © 2010, Oracle. All rights reserved. 203

Param Name Description Default Value Example Failure Situation

behavior is non-

compliance is

reported if the XPath

does not return any

nodes.)

success by

PIPAuditor. This is

where this flag comes

into picture.

compareXML There are situations

when assertValue is

more than just a mere

String. The value can

be an entire XML

fragment, which

contains regEx

patterns. In this case

a compare file

argument specifies

the file and Xpath

specifies the fragment

within the file.

No default Used to compare

standard code

snippets.

<Param

name="compareXML"

value="${faultXML}"

default="AIAStdCode.

xml"/>

None

compareXPATH CompareXPATH is

always used with

compareXML. As

mentioned above, this

XPath helps us

identify the XML

fragment for

comparison.

No default <Param

name="compare

XPATH"

value="//EBMH

eaderPopulati

on/corecom:EB

MHeader/P4/co

recom:Message

ProcessingIns

truction"/>

Now this is used with

the compareXML

param above.

When we apply the

XPath

(CompareXPATH) on

the file

(CompareXML) we

get a XML fragment

for comparison. In the

above example,

MessageProcessingIn

struction returned by

evaluating XPath on

selected files is

evaluated against

MessageProcessingIn

struction returned by

evaluating

CompareXPATH on

the file CompareXML.

None

Appendix: Delivered PIP Auditor Rule Executors

204 Copyright © 2010, Oracle. All rights reserved.

Param Name Description Default Value Example Failure Situation

compareType Special operations, if

any, to be executed to

derive the

assertValue.

Otherwise, default

behavior is executed,

which is stated in the

default section.

String

It converts the

NodeList from

Resultant XPath to

string

(ConvertNodeListToS

tirng)

Only supported type

is length. By default,

when nothing is

specified, it converts

the resultant NodeList

to String.

None

28.2. FSExecutor Rule Parameters

This section provides:

 Mandatory Params

 Optional Params

28.2.1. Mandatory Params

Param Name

Description

Default Value

Example

Failure
Situation

assertCondition Any one of the

Operations

supported by the

FSExecutor.

For more

information, see

Available Operations

for FSExecutor.

No default FileNotExist Unsupported

Operation exception

filePattern RegularExpression

for selection of

matching files.

No default [a-zA-Z_0-

9_/]*(EBF)((V)[0-

9]*)??.wsdl

Invalid Regular

expression

28.2.2. Optional Params

Param Name

Description

Default Value

Example

Failure
Situation

assertValue Assertion value

(String)

No default InputFilePattern_(c|C

)ustom.xsl

None

fileExcludeContentP

attern

Exclude of file for

which content

matched with this

pattern (Regular

Expression)

No default .*(c|C)ustom.xsl None

Appendix: Delivered PIP Auditor Rule Executors

Copyright © 2010, Oracle. All rights reserved. 205

Param Name

Description

Default Value

Example

Failure
Situation

fileExcludePattern Exclude of file for

which filename

matched with this

pattern (Regular

Expression)

No default .*(JMSProducer|Out

boundHeader).*.wsdl

None

28.3. Available Operations for XPathExecutor

XpathExists

Checks for the existence of at least one node in the given Xpath.

Xpath Xpath where at least one node is

expected

Prefixes

resolveImport Optional param when set true

enables the PIPAuditor to check for

xsl files imported from local directory.

If this is set to true then even the

imported files are checked for xpath,

This would be helpful when a

modular programming approach is

used. I.e. the actual content we want

to check might be in imported XLSs.

Note that this parameter only

resolves local file imports from same

directory.

resolveServerImport Optional param when set true

enables the PIPAuditor to check for

xsl files imported from server

directory.

If set true helps resolve the imported

server files. It tries to resolve the http

import.

serverDir Name of the server directory where

the files exist.

For example, AIAComponents.

PIPAuditor will then look for a

directory called AIAComponents

within inputDir. Once it finds it, it

replaces http by the location of the dir

AIAComponents. The remaining part

of the file location is taken from the

http server import.

XpathListExist

Checks for the existence of the nodes in the given Xpath List. Every xpath in the list should have at least a node. This

is very similar to the XpathExist operation except that we can check for multiple xpaths.

Xpath Xpath where zero nodes are

expected

Appendix: Delivered PIP Auditor Rule Executors

206 Copyright © 2010, Oracle. All rights reserved.

XpathListExist

Checks for the existence of the nodes in the given Xpath List. Every xpath in the list should have at least a node. This

is very similar to the XpathExist operation except that we can check for multiple xpaths.

Prefixes

xpath1 /A/B

xpath2 And so on... We can check for „n‟

xpaths in this manner (xpathn)

resolveImport

resolveServerImport

serverDir

XpathNotExists

Checks for the non-existence of any node in the given Xpath.

Xpath Xpath where zero nodes are

expected

Prefixes

resolveImport Same as the one in XpathExists.

resolveServerImport

serverDir

XpathNodeCountLessThan

Checks if the number of nodes found at the xpath is less than the assert value.

Xpath Xpath for which node count is

checked.

Prefixes

assertValue Maximum number of nodes that can

be present for the xpath. Note that if

your intended value is „n‟ then the

assert value is its „n+1‟.

All BPEL processes, which follow

SYNC Request Response pattern,

should not have more than 6

extension points.

So assert value would be „7‟.

XpathNodeCountGreaterThan

Checks if the number of nodes found at the xpath is less than the assert value.

Xpath Xpath for which node count is

checked.

Appendix: Delivered PIP Auditor Rule Executors

Copyright © 2010, Oracle. All rights reserved. 207

XpathNodeCountGreaterThan

Checks if the number of nodes found at the xpath is less than the assert value.

Prefixes

assertValue Minimum number of nodes that can

be present for the Xpath. Note that if

your intended value is „n‟ then the

assert value is its „n-1‟.

All BPEL processes, which follow

SYNC Request Response pattern,

should have minimum of 4 extension

points.

So assert value would be „3‟.

XpathValuesLessThan

Checks if the value in the xpath is less than the assert value.

xpath Xpath for which node count is

checked.

prefixes

assertValue Maximum number that the value from

xpath can have. Note that if your

intended value is „n‟ then the assert

value is its „n+1‟.

All BPEL processes, which follow

SYNC Request Response pattern,

should not have more than 6

extension points.

So assert value would be „7‟.

XpathValuesLessThanEqual

Checks if the value in the xpath is less than or equal to the assert value.

xpath Xpath for which node count is

checked.

prefixes

assertValue Maximum number that the value from

xpath can have.

XpathValuesGreaterThan

Checks if the value in the xpath is greater than the assert value.

xpath Xpath for which node count is

checked.

prefixes

Appendix: Delivered PIP Auditor Rule Executors

208 Copyright © 2010, Oracle. All rights reserved.

XpathValuesGreaterThan

Checks if the value in the xpath is greater than the assert value.

assertValue Minimum number of nodes that can

be present for the xpath. Note that if

your intended value is „n‟ then the

assert value is its „n-1‟.

All BPEL processes, which follow

SYNC Request Response pattern,

should have minimum of 4 extension

points.

So assert value would be „3‟.

XpathValuesGreaterThanEqual

Checks if the value in the xpath is greater than or equal to the assert value.

xpath Xpath for which node count is

checked.

prefixes

assertValue Minimum number of nodes that can

be present for the xpath.

compareNodeWithRegExXML

Checks if the node returned by the xpath matches the XML snippet from a file. Note that it is a regular expression

comparison and the snippet can contain regular expressions.

xpath Xpath for the node, which has to be

checked.

prefixes

compareXML The XML file where the snippet for

comparison lies.

ABCS WSDL should be documented

as per AIA Documentation

standards.” The file AIAStdCode.xml

for example contains all the XML

snippets. So this file is the

compareXML

compareXPATH Xpath to derive the XML snippet from

the compareXML XML file.

//ABCSwsdlDoc/wsdl:documentation

This Xpath will separate out just the

documentation snippet from the XML.

Appendix: Delivered PIP Auditor Rule Executors

Copyright © 2010, Oracle. All rights reserved. 209

CompareNodeListWithRegExXML

Checks if every node from the NodeList returned by the xpath matches the XML snippet from a file. Note that it is a

regular expression comparison and the snippet can contain regular expressions. This can be used when multiple

nodes from a file have to be checked against the same XML snippet.

xpath Xpath for the NodeList, which has to

be checked.

Every node from NodeList returned

from this Xpath should be compliant

to the XML snippet derived using

compareXML and compareXpath.

prefixes

compareXML The XML file where the snippet for

comparison lies.

Catch blocks are defined as per AIA

Error Handling Guidelines. The file

AIAStdCode.xml for example

contains all the XML snippets. So this

file is the compareXML

compareXPATH Xpath to derive the XML snippet from

the compareXML XML file.

//catch

This Xpath will separate out just the

documentation snippet from the XML.

XpathValuesEqual

Checks if the string value of every node from the NodeList returned by the xpath matches the string value specified in

the assert value.

xpath Xpath for the NodeList, which has to

be checked.

Every node from NodeList returned

from this Xpath should be compliant

to the assert value.

prefixes

assertValue String value to check against.

noNodeFlag

XpathValuesNotEqual

Checks if the string value of every node from the NodeList returned by the xpath does not match the string value

specified in the assert value.

xpath Xpath for the NodeList, which has to

be checked.

Every node from NodeList returned

from this Xpath should be compliant

to the assert value.

prefixes

assertValue String value to check against.

noNodeFlag

Appendix: Delivered PIP Auditor Rule Executors

210 Copyright © 2010, Oracle. All rights reserved.

XpathValuesPatternMatch

Checks if the string value of every node from the NodeList returned by the xpath matches the regular expression

pattern specified in the assert value.

xpath Xpath for the NodeList, which has to

be checked.

Every node from NodeList returned

from this Xpath should be compliant

to the assert value.

prefixes

assertValue Regular expression pattern to check

against.

“All Assign activities in a BPEL

process should start with a prefix of

Assign followed by activity name”.

The pattern would look like:

(Assign){1}(_)??(([a-zA-Z])([a-zA-

Z_0-9])*)

noNodeFlag

XpathValuesNotMatchPattern

Checks if the string value of every node from the NodeList returned by the xpath does not match the regular

expression pattern specified in the assert value. This does the exact opposite check of XpathValuesPatternMatch.

xpath Xpath for the NodeList, which has to

be checked.

Every node from NodeList returned

from this Xpath should be compliant

to the assert value.

prefixes

assertValue Regular expression pattern to check

against.

“Target node should not be

populated during ABM to EBM

transformation in Requester

ABCSImpl.”

The following pattern would ensure

that no hard coding of target id is

present. :([a-zA-Z_0-9\s]*)

noNodeFlag

XpathValueNotContains

Checks if the string value of every node from the NodeList returned by the xpath does not contain the string specified

in the assert value.

xpath Xpath for the NodeList, which has to

be checked.

Every node from NodeList returned

from this Xpath should be compliant

to the assert value.

prefixes

Appendix: Delivered PIP Auditor Rule Executors

Copyright © 2010, Oracle. All rights reserved. 211

XpathValueNotContains

Checks if the string value of every node from the NodeList returned by the xpath does not contain the string specified

in the assert value.

assertValue String value to check against. “DVMs stores should have no

credentials stored..”

The following pattern would ensure

that no tokens that are generally

used to store credentials are used in

DVMs.:UserName;Password;uname;

pwd;username;password

noNodeFlag

XpathValueContains

Checks if the string value of every node from the NodeList returned by the xpath contains the string specified in the

assert value.

xpath Xpath for the NodeList, which has to

be checked.

Every node from NodeList returned

from this Xpath should be compliant

to the assert value.

prefixes

assertValue String value to check against.

noNodeFlag

ExistsRegExXML

Iterates through children of node specified by compareXML and compareXPATH. Checks if every node in NodeList

returned by executing compareXPATH on compareXML, exists in the NodeList returned by executing xpath on the test

file. Note that CompareNodeWithRegExXML checks against the compareXML. The behavior is reverse in the

operation. This operation iterates through all the children of the node from compareXML and makes sure each one of

them is present in the NodeList from Xpath.

Xpath Xpath for the NodeList, which has to

be checked.

Every node from NodeList returned

from this Xpath should contain all the

children of the node derived from

compareXML and compareXPATH.

Prefixes

compareXML String value to check against. “Ensure

MessageProcessingInstruction is

populated fully in ReqABM_to_EBM

xsl”.

compareXPATH

Appendix: Delivered PIP Auditor Rule Executors

212 Copyright © 2010, Oracle. All rights reserved.

ExistsRegExXML

Iterates through children of node specified by compareXML and compareXPATH. Checks if every node in NodeList

returned by executing compareXPATH on compareXML, exists in the NodeList returned by executing xpath on the test

file. Note that CompareNodeWithRegExXML checks against the compareXML. The behavior is reverse in the

operation. This operation iterates through all the children of the node from compareXML and makes sure each one of

them is present in the NodeList from Xpath.

matchMode 1. (NODE_MUST) This is the

default option. All the elements

are considered for comparison.

Any missing elements are

reported for non-compliance.

2. (NODE_IGNORE). If

matchMode is specified as 2,

then missing nodes are not

considered for comparison. E.g.

Consider a XML structure with A

as a parent and B and C as

children (<A><C/>).

When matchMode=1 and if

node B or C is absent all

together, then non-compliance

is reported. If we want to change

this default behavior to report a

compliance, then we should

specify matchMode=2. Note that

if a node is present then it

should conform to the regular

expression specified.

3. (NODE_OPTIONAL). This lets

us pick and choose what

differences we would want to

ignore. We can add an attribute

minoccurs=”0” in any element

that we would want to skip

comparison when not found.

E.g. Consider an XML structure

where A is a parent element and

has 2 children B and C

(<A><C/>). If we want

a scenario where missing B‟s

should be reported as

compliance where as missing

C‟s should be reported as non-

compliance then this is how we

can achieve it through

matchMode: <A><B

minoccurs=”0”/><C/>

noNodeFlag

Appendix: Delivered PIP Auditor Rule Executors

Copyright © 2010, Oracle. All rights reserved. 213

NotExistsRegExXML

Iterates through children of node specified by compareXML and compareXPATH. Checks if every node in NodeList

returned by executing compareXPATH on compareXML, does not exist in the NodeList returned by executing xpath on

the test file. Note that this does the exact reverse of ExistsRegExXML.

xpath Xpath for the NodeList, which has to

be checked.

Every node from NodeList returned

from this Xpath should contain all the

children of the node derived from

compareXML and compareXPATH.

prefixes

compareXML String value to check against.

compareXPATH Example of this would be say we

want to make sure double

notifications are not sent as part of

error handling. So we could check for

the non-existence of certain error

handling code snippets in some of

the catch blocks.

matchMode Please refer to documentation of

ExistsRegExXML for more details

regarding this.

errorPath This would be helpful if we would

want to show the user the node,

which is not supposed to exist. E.g.

we would want to show the user the

catch block that contains the

redundant call, this is how we can do

it:

<Param name="errorPath"

default="@faultName"/>

noNodeFlag

Appendix: Delivered PIP Auditor Rule Executors

214 Copyright © 2010, Oracle. All rights reserved.

28.4. Available Operations for FSExecutor

FileExist

Checks if a file of particular pattern exists in the selected directory.

filePattern Pattern of the file to be selected. Suppose we want to check for the

existence of a config file

AIAConfigurations.xml in every ABCS

project, then we could select

FileType=”*” and context=”ABCS”

and then provide

“AIAConfigurations.xml” in this param

value.

FileNotExist

Checks if a file of particular pattern does not exist in the selected directory.

filePattern Pattern of the file to be selected. Suppose we want to check for the

non-existence of a local schemas in

every ABCS project, then we could

select FileType=”*” and

context=”ABCS” and then provide

“*.xsd” in this param value.

FilesMatchPattern

Checks if the selected file name matches a particular pattern.

filePattern Pattern of the file to be selected. Suppose we want to check for the

existence of a extension WSDL in

every ABCS project, then we could

select FileType=”*” and

context=”ABCS” and then provide

“.*(ABCSImpl)((V)[0-9]*)??.wsdl” in

this param value.

assertValue The pattern the file name has to be

checked against.

We want to assert that the extension

file selected matches a particular

naming pattern e.g.

“.*(ABCSImpl)Extension.wsdl”

Copyright © 2010, Oracle. All rights reserved. 215

Index

audit reports

generating, 168

B2B errors

accessing, 151

CAVS. See Composite Application Validation
System

complex flow testing

using CAVS, 25

compliance reports

hosting, 191

Composite Application Validation System,
13

asynchronous (notify) testing flows, 20

asynchronous (two-way) testing flows, 22

complex flow testing, 25

design assumptions, 15

exporting definitions, 95

exporting instances, 95

flow testing, 25

gathering test requirements, 17

group definitions, 29

group instances, 29

importing definitions, 95

knowledge prerequisites, 15

obtaining message XML, 27

overview of defining tests, 30

overview of running tests, 30

preparing to use, 17

purging cross-reference entries, 93

routing setup IDs, 71

simulator definitions, 14, 29

simulator instances, 29

synchronous testing flows, 18

test definitions, 14, 29

test instances, 29

unit testing, 24

web service, 32

cross-references

purging CAVS-related, 93

definitions

export structure, 193

Developer Tools

introduction, 155

error handling

accessing B2B errors, 151

associating email addresses with user
roles, 115

configuring, 116

fault categories, 106

for B2B faults, 107

for BPEL system faults, 107

for business faults, 106

for Mediator system faults, 107

key features, 104

overview, 103

setting up, 111

setting up user roles, 114

using the Oracle BPM Worklist, 137

error logging

access logs, 147

overview, 145

error notifications

configuring, 115

Index

216 Copyright © 2010, Oracle. All rights reserved.

customizing emails, 124

disabling, 135

overview, 121

setting up throttling, 122

faults

B2B, 107

BPEL system, 107

business, 106

Mediator system, 107

system, 106

flow testing

using CAVS, 25

GenerateScriptInput.xml, 197

group definitions, 29

creating, 67

modifying, 67

group instances, 29

exporting, 95

searching for, 89

viewing details, 89

instances

export structure, 193

mapping reports

generating, 157

hosting, 191

Message Resubmission Utility

overview, 141

using, 141

message XML

obtaining, 27

Oracle BPM Worklist, 137

enabling, 139

using, 139

PIP Auditor

changing configurations, 172

creating custom rules, 173

FSExecutor operations, 214

FSExecutor rule parameters, 204

generating reports, 168

generating trend analysis chart, 171

overview, 167

rule executors, 201

XPathExecutor operations, 205

XPathExecutor rule parameters, 201

PIP Shared Artifact Analyzer

generating reports, 184

overview, 183

routing setup IDs

defining, 71

shared artifact reports

generating, 184

simulator definitions, 14, 29

creating, 49

modifying, 49

searching for, 63

simulator instances, 29

exporting, 95

searching for, 79

viewing details, 79

test definitions, 14, 29

creating, 35

exporting, 95

importing, 95

modifying, 35

searching for, 63

test instances, 29

exporting, 95

searching for, 79

viewing details, 79

test requirements

Index

Copyright © 2010, Oracle. All rights reserved. 217

gathering for CAVS, 17

testing flows

asynchronous (notify), 20

asynchronous (two-way), 22

synchronous, 18

tests

defining in CAVS, 30

running in CAVS, 30

trace logging

access logs, 147

enabling, 145

overview, 145

setting log levels, 146

trend analysis chart

generating using PIP Auditor, 171

unit testing

using CAVS, 24

user roles

associating with email addresses, 115

setting up for error handling, 114

web service

CAVS, 32

XMAN. See XSL Mapping Analyzer

XSD Flattener

generating CSV files, 187

overview, 187

XSL Mapping Analyzer

adding annotations to XSLTs, 162

generating reports, 158

overview, 157

	Contents
	Preface
	Oracle AIA Guides
	Additional Resources

	Introduction to the CAVS
	Describing the Purpose of the CAVS
	Describing Key Components of the CAVS Framework
	Describing the CAVS Design Assumptions and Knowledge Prerequisites

	Preparing to Use the CAVS
	What Can I Test Using CAVS?
	What Are the Oracle AIA Components That I Need to Test?
	Which Message Exchange Pattern Is Being Used by the Components Being Tested?
	Describing CAVS Process Flows for Testing the Synchronous Message Exchange Pattern
	Describing CAVS Process Flows for Testing the Asynchronous (Notify) Message Exchange Pattern
	Describing Flows for Testing the Asynchronous Two-Way Message Exchange Pattern

	Does the Scenario Need to be Unit or Flow Tested?
	Describing a Unit Test Configuration
	Describing a Flow Test Configuration
	Describing a Complex Flow Test Configuration

	Do I Have the Content I Need to Create the Definitions?
	How to Obtain Message XML Text from a BPEL Process

	Introduction to Defining and Running CAVS Tests Using the CAVS UI
	Describing the CAVS UI
	Overview of Defining and Running CAVS Tests
	How to Execute CAVS Definitions as Web Services
	How to Execute CAVS Definitions Using ANT

	Creating and Modifying Test Definitions
	How to Create a Test Definition
	How to Modify a Test Definition
	How to Provide Multiple Request and Response Message Sets in a Single Test Definition

	Creating and Modifying Simulator Definitions
	How to Create a Simulator Definition
	How to Modify a Simulator Definition
	How to Provide Multiple Request and Response Message Sets in a Single Simulator Definition
	How to Create a Simulator Definition that Supports Chatty Services
	How to Send Dynamic Responses in a Simulator Response

	Searching for Test and Simulator Definitions
	How to Search for and Work with Test and Simulator Definitions

	Working with Group Definitions
	How to Work with Group Definitions
	How to Create and Modify a Group Definition

	Defining CAVS Routing Setup IDs
	Introduction to CAVS Routing Setup IDs
	How to Create CAVS Routing Setup IDs
	How to Search for CAVS Routing Setup IDs
	How to Modify Routing Setup IDs
	How to Set Up CAVS Routing Configurations Without Creating Routing Setup IDs

	Working with Test and Simulator Instances
	How to Work with Test and Simulator Instances
	How to View Test Instance Details
	How to View Simulator Instance Details

	Working with Group Instances
	How to View Group Instances
	How to View Group Instance Details

	Purging CAVS-Related Cross Reference Entries to Enable Rerunning of Test Scenarios
	How to Purge CAVS-Related Cross Reference Entries to Enable Rerunning of Test Scenarios

	Exporting and Importing CAVS Definitions and Instances
	How to Export and Import Definitions
	How to Export Test and Simulator Instances
	How to Export Group Instances

	Introduction to Oracle AIA Error Handling
	Introduction to the Error Handling Framework
	Fault Categories

	Introduction to Error Handling for Business Faults
	Introduction to Error Handling for BPEL and Mediator System Faults
	Introduction to Error Handling for Oracle B2B Errors

	Setting Up Error Handling
	Introduction to Setting Up Error Handling
	How to Create Error Handling User Roles
	How to Associate Email Addresses with Error Handling User Roles
	How to Configure Notification Details
	How to Set Up AIA Error Handling Configuration Details
	What You Need to Know about Setting Up Error Handling Configurations

	Using Error Notifications
	Introduction to Error Notifications
	Setting Up Error Notification Throttling
	Introduction to Error Notification Throttling
	How to Enable Error Notification Throttling
	How to Configure Error Notification Throttling Parameters

	Customizing Error Notification Emails
	Introduction to Error Notification Customization
	EMAIL Element
	FYI_EMAIL Element
	URL Element
	EXT_URL Element

	How to Customize the Subject Line of Error Notification Emails
	How to Customize the Body Text of Error Notification Emails
	How to Customize Additional URLs Provided in Error Notification Email Body Text

	Disabling Error Notifications

	Using the Oracle BPM Worklist
	Introduction to the Oracle BPM Worklist
	How to Enable the Oracle BPM Worklist
	How to Use the Oracle BPM Worklist

	Using the Message Resubmission Utility
	Introduction to the Message Resubmission Utility
	How to Use the Message Resubmission Utility

	Using Trace and Error Logs
	Introduction to Trace and Error Logging
	How to Enable Trace Logging
	How to Set Trace Log Levels
	How to Access Trace and Error Logs
	Accessing Oracle AIA Logs in the Oracle Enterprise Manager Console
	Searching for Oracle AIA Log Messages
	Accessing Oracle AIA Log XML Files

	Accessing Oracle B2B Errors
	Introduction to AIA Developer Tools
	Overview of AIA Developer Tools

	Using the XSL Mapping Analyzer
	Overview of XMAN
	Generating XMAN Reports
	Overview of Optional XMAN Command Line Switches
	How to Invoke XMAN in Single File Mode
	How to Invoke XMAN in Directory Mode
	How to Invoke XMAN in PIP Mode
	How to Invoke XMAN in All-PIP Mode
	How to Import XMAN CSV Output into Microsoft Excel

	Adding XMAN Annotations to XSLT Files
	Overview of XMAN Annotations in XSLT Files
	Describing XMAN Annotation Structure and Placement in XSLT Files
	XMAN Annotation Structure for XPaths
	XMAN Annotation Structure for XREFs
	XMAN Annotation Structure for DVMs
	Example XMAN Annotation for an XREF Mapping

	Using the PIP Auditor
	Overview of the PIP Auditor
	Generating PIP Auditor Reports
	How to Generate PIP Auditor Reports Using a Command Line
	How to Generate PIP Auditor Delta Reports Using a Command Line
	What You Need to Know about Generating PIP Auditor Reports

	Trend Analysis Chart
	Changing Default PIP Auditor Configurations
	Creating Custom Rules for PIP Auditor
	Describing a Rule
	Describing Rule Parameters
	Describing a Rule Executor
	Describing Tests and TestSuites
	Describing Rule Files
	Describing Test Suite Files
	Describing Rule and Test Releases and Customization
	Adding and Modifying Rules in a Custom Rule File
	Adding and Modifying Tests in a Custom Test Suite File

	How to Execute Newly Created and Customized Rules

	Using the PIP Shared Artifact Analyzer
	Overview of the PIP Shared Artifact Analyzer
	Generating PIP Shared Artifact Analyzer Reports

	Using the XSD Flattener
	Overview of the XSD Flattener
	Generating XSD Flattener CSV Files
	How to Flatten a Single XSD File into a CSV File
	How to Flatten a Full or Partial EOL into a CSV File

	Hosting Mapping and Technical Compliance Reports
	Appendix: XML Structures of Exportable CAVS Definitions and Instances
	Definition.xml
	Instance.xml

	Appendix: Understanding GenerateScriptInput.xml
	Describing GenerateScriptInput.xml Elements
	Application
	Service

	EBSRoutingRules
	EBF
	CommonSeedData
	CompatiblePIP
	IncompatiblePIP
	PIPName

	Appendix: Delivered PIP Auditor Rule Executors
	XPathExecutor Rule Parameters
	Mandatory Params
	Optional Params

	FSExecutor Rule Parameters
	Mandatory Params
	Optional Params

	Available Operations for XPathExecutor
	Available Operations for FSExecutor

	Index

