
1

Oracle® On Track Communication
Developer’s Guide

Release 1 (1.0)

E20959-01

March 2011

This guide explains how to build and deploy a wide range of integrations with Oracle
On Track Communication. Developers can simply embed portions of On Track in their
applications, or deliver full-featured integrations using the On Track APIs. This guide
explains the fundamental architecture of the server, and provides guidance on
developing a range of solutions from server-side Java to client-side AJAX-based
solutions.

This guide covers the following topics:

■ Audience

■ Background

■ Principles Of On Track Architecture

■ UI-Based Integrations

■ Embedding the Conversation List

■ Standalone Conversation Pane

■ Programmatic Integrations and the On Track API

■ API Fundamentals

■ Modules

■ Setting Required Headers

■ Java Client Development

■ Advanced Topic - Using Conversation List Back Channel Events

■ JavaScript Client Development

■ JavaScript Client Deployment Requirements

■ Other Remote Client Development

■ Gadget Development

■ Additional Resources

■ Documentation Accessibility

Audience
This document is intended for On Track developers who use a variety of programming
languages and development environments to create valuable integrations with On
Track.

2

Background
On Track provides open protocols and rich interfaces to expose integration capabilities
across a wide range of development platforms, languages, and runtime environments.
Fundamentally, On Track is a mid-tier application which runs on WebLogic Server,
stores its data in Oracle Database, and can connect to LDAP for users' data and
authentication.

On Track Architecture

Figure 1 On Track Architecture

As depicted in Figure 1, the On Track Application is a standard Java Application
deployed on WebLogic Server.

There are three principle types of clients for On Track:

■ Web client: The most commonly used interface for the product, accessible through
Google Chrome, Mozilla Firefox 3.6+, Apple Safari 4+, and Microsoft Internet
Explorer 8+ browsers.. The Web client may embed custom developed gadgets
written by developers.

■ Desktop and Mobile clients: Intended to be used as a plug-in for Microsoft
Outlook, or standalone iPad and iPhone applications.

■ External clients: Complete new, custom-built clients that can be created to utilize
the On Track application.

All three clients communicate with the On Track server using remote API invocations
over HTTP. The Web client itself supports deploying and running custom developed
gadgets within the On Track server as part of the gadgets tab of the Conversation pane

Additionally, the On Track Web client contains UI components, the Conversation list
and Conversation pane, which can run in a standalone window and be integrated in
external applications.

3

Figure 2 Poll Gadget

Principles Of On Track Architecture
There are several ways to integrate other applications with On Track that are covered
in this guide including UI-based integrations, and programmatic integrations using
Java and JavaScript. This guide will step through these options starting with the
simplest and most common and progressing through more advanced scenarios. These
integrations are often mixed together as part of a complete solution between On Track
and other applications.

UI-Based Integrations

Figure 3 UI-Based Integration Architecture

The most common method of integrating On Track in another application is to embed
parts of the On Track Web client user interface in those applications. There are two
principle elements of the Web client which are designed to be embedded: the
Conversation list and the Conversation pane.

4

Figure 4 Conversation List

The Conversation list UI can be embedded in other applications, typically through an
iFrame. This UI provides a list of conversations that the user is a member of. In
addition, that list of conversations can be scoped to only show a subset of
conversations as needed. The Conversation list itself provides real-time indicators of
user activity within the conversation. Clicking on any conversation in the list opens up
the conversation pane in a new pop-up window.

Figure 5 Conversation Pane

The Conversation pane is the primary UI component for working within On Track.
When launched as a standalone window, it retains all the capabilities for working with
the conversation that you have when using the full Web client.

One example of embedding a Conversation list is show in below in Figure 6, where
Oracle's CRM On Demand product has been integrated with a list of On Track
conversations in the page of the application.

5

Figure 6 Sample Embedded Conversation List

To enable the Conversation List and Conversation Pane UI to be embedded as iFrames
in other applications, it is necessary for the On Track server to enable frame
embedding. See Oracle On Track Administrator’s Guide for more information. Without
this setting enabled, when these components put into an iFrame the full browser
window will be refreshed with the UI component, removing the iFrame and
containing site.

Embedding the Conversation List
The base URL for a Conversation list is:

http://hostname/context/web/ConversationList.jsp

To create an iFrame in a containing application use the following iFrame code:

<iframe src="http://hostname/context/web/ConversationList.jsp" />

There are a few principles behind the conversations displayed in the list including:

■ The returned list of conversations is limited to the conversations viewable by the
authenticated user.

■ If a system to provide Single Sign-On (SSO) has not been established between On
Track and the containing Web application, a form-based login will be provided
within the embedded UI component.

Customizing the Conversation List UI
The Conversation list can be invoked with a number of optional URL parameters
which will modify the appearance of the conversation list. These parameters include:

columns = STATE, NAME, ACTIVITY, MSG_COUNT, UNREAD_MSG_COUNT, FOLLOWUP,
LASTPOST
This is an optional parameter. If specified, the columns indicated will appear. The
valid options must be separated by commas. NAME and STATE are required
properties.

sortColumn= NAME, ACTIVITY, MSG_COUNT, UNREAD_MSG_COUNT, FOLLOWUP, LASTPOST
This is an optional parameter and can be set to one of the COLUMN values to sort
the list by that value. The valid options must be separated by commas.

sortType=ascending/descending
This is an optional parameter that can be set when sortColumn is used to indicate
the default sort order of the Conversation list.

hideHeader

6

This is used to hide the header. If omitted, the header bar will appear. 'hideHeader'
is only applicable to the ConversationList when trackID is specified or
secondaryID is specified (see Conversation Scoping).

Conversation Scoping
When integrating On Track with other applications, it is common to only use inline
conversations that are related to a particular object that exists in the containing
application. For example:

■ 1-n Sales Opportunities can be related to 1-n Conversations

■ 1-n Orders can be related to 1-n Conversations

■ 1-n Team Sites can be related to 1-n Conversations

To enable scoping of the Conversation list to only show related conversations to an
object, there are two general approaches for maintaining the reference between the
related object and the conversation:

■ Leverage an external system's mechanism for storing a reference to the associated
On Track conversations by storing the associated conversationIDs or parent
trackIDs in that external system as the relationship.

■ Leverage On Track to store the references - conversations have a property on them
called a secondaryID which can contain a set of references to business objects.

When using an external system to store the conversationIDs or parent trackIDs that are
related to an external object, there are several parameters used to scope the
Conversation list:

conversationIDs=CONVERSATIONID,CONVERSATIONID
This optional parameter allows one to specify a set of conversationIDs that will be
displayed. A unique conversation ID exists for every conversation and can be
determined programmatically through the On Track API, or is visible in the URL
of any standalone conversation pane window. The list of conversationIDs must be
separated by commas.

conversationIDs=CONVERSATIONID,CONVERSATIONID
This optional parameter allows one to specify a trackID which will in turn display
conversations that are a part of that track (that the user has access to see). A
unique track ID exists for every conversation and can be determined
programmatically through the On Track API. If trackID is specified on the URL,
the following parameters must NOT exist on the URL (conversationIDs,
secondaryID, and trackName)

Advanced Conversation Integrations
When On Track stores the references between conversations and external systems,
there are several parameters used to scope the Conversation list. However, it should be
noted that this scenario requires the programmatic development and deployment of
On Track agents to listen to events. This functionality is covered in the Advanced
Topic - Using Conversation List Back Channel Events section of this document. The
parameters are:

trackName=TRACKNAME
Required parameter which is used to provide the name of the Track that will be
created for new conversations that do not have a track association.

secondaryID=SECONDARYID

7

An optional parameter that, if specified, will display conversations associated with
a secondary ID . The trackName parameter must be provided along with
integratorName. The integration agent is responsible for creating the new
conversation.

integratorName=INTEGRATORNAME
An optional parameter that is used for call-backs and specifies the name of the
Integration user that is listening to events. It is required when specifying a
secondaryID.

Standalone Conversation Pane
It is possible to directly create an On Track conversation pane as a standalone window
using the following URL format:

http://hostname/ontrackinstance/web/?conversation=conversationID&window=standalone

It is recommended to embed this pane as a standalone window, as it requires more
horizontal screen space to perform activities within the conversation (like opening
documents or working with gadgets). When embedded as an iFrame, enough room
must be provided to accommodate this horizontal expansion of the User Interface.

Programmatic Integrations and the On Track API
Integrating with On Track through custom code enables richer interaction with On
Track than that provided by the integration of a standalone conversation pane. Some
examples of applications that integrate with On Track APIs include:

■ Automatically generating conversations for business objects in an external system

■ Writing messages in an existing conversation when a business event happens in an
external system

■ Updating an external system’s records when a message is entered into a
conversation

■ Having a system auto-respond to conversation messages with relevant
information

■ Displaying On Track information directly inside an external system, with
fine-grained control of the UI

■ Providing gadgets to add live business information and actions to conversations

On Track provides a remote HTTP-based API for working with the server from
multiple types of clients. It is possible to work directly against the API when using a
wide range of clients and languages, such as mobile client development, .NET, etc.
Additionally, On Track provides a Java SDK and JavaScript library to facilitate
working with those runtime environments.

API Fundamentals
The On Track API supports two fundamental types of communication paths -- the
Front Channel and the Back Channel. The HTTP protocol is used for all
communication across these channels. When working with the On Track API, either
the XML-RPC or JSON-RPC data formats must be used.

8

On Track Front-Channel communications are client-to-server protocols. They are
synchronous operations and are initiated on-demand by the client. These can be used
to retrieve initial state information and perform updates. Examples of Front-Channel
communication include posting a message to a conversation, getting the existing
messages of a conversation, and posting a document.

Back-Channel communications are On Track server-to-client protocols. They are
asynchronous operations that are used by the On Track server to call back the client.
These can be used to provide status updates, inform the client of model data changes,
or provide event notifications. Examples of Back Channel communications include
listening to all messages entered into a conversation, informing a user that a contact is
active in a shared conversation, or notifying a business system that a new conversation
has been created.

Front-Channel and Back-Channel communications often work in tandem -- the action
of a user sent over the Front Channel may result in multiple Back-Channel messages
being issued to multiple clients. Likewise, Back-Channel messages often result in a set
of updates through the Front Channel.

Modules
The On Track API organizes groups of common operations into Modules. These
Modules are provided for working with conversations, tracks, users, groups,
documents, bookmarks, and many other common functions within the product.
Module APIs define both the Front-Channel and Back-Channel communications to On
Track. The response to invoking a Module API is a return value or an exception; return
values are scalar types including Dates, Lists, Sets, Maps, and Data Transfer Objects.

When exposed as part of the On Track Java SDK, Modules are organized as Java
packages. The full list of Modules/Packages can be viewed by accessing the Oracle On
Track Communication SDK Documentation. The Modules containing methods exposed in
the SDK Documentation are identical to what is available for remote client developers
using JavaScript or other mechanisms (see Java Client Development). Modules in the
SDK are identified under packages named waggle.common.modules.

Setting Required Headers
When working with the On Track API, several required HTTP Headers must be
provided to establish communication with the server. Table 1 lists the different headers
needed:

Table 1

Name Description Value

X-OnTrack-APIVersion Minimum version of the On
Track API that the client
expects to use; will be utilized
by future versions of the On
Track server for client
compatibility checks.

1005

9

Java Client Development
On Track ships with a Java SDK to provide developers a means to work with On Track
APIs without using raw HTTP calls.

X-OnTrack-ClientID The ClientID is a long integer
that uniquely identifies an
instance of the client program
within the scope of an HTTP
session. For example, if two or
more tabs are opened in
Firefox and the Web client is
loaded into each tab, then
each instance of Web client
must have a unique ClientID
value. The recommended
practice is to set the ClientID
to the current time in
milliseconds when its client is
first loaded.

Long integer

X-OnTrack-Agent The Agent header should be
set to a string that identifies
the client program. The format
is free-form, but providing a
full client name and version is
recommended strongly as a
best practice to assist with
troubleshooting on the server.

String, for example "Oracle
On Track Client for Windows
Mobile Phone 1.2.5"

X-OnTrack-RandomID Also known as the cross-site
request forgery (CSRF) token,
this helps prevent CSRF
security exploits. This is a
secret key that is issued to the
client after login, and has to be
supplied with each
subsequent API request made
by the client. The intent is to
prevent a malicious script
from calling the On Track
server on behalf of the client
by piggy-backing on a
logged-in session that's
maintained by the browser.
RandomIDs are unique to
each user session.

77e3574512ce8ca516dc7a4e639
dacb1

Table 1 (Cont.)

Name Description Value

10

The On Track SDK takes care of making remote calls (over HTTP) to the On Track
server. The main library for the SDK is named ontrack.jar. This file is located under the
MIDDLEWARE_HOME/Oracle_
ONTRACK1/OnTrack/ClientSdk/ontrack-sdk/lib directory of an On Track
installation. In addition to ontrack.jar, this directory contains a variety of other utility
libraries which need to be in the classpath of any client code which uses this class.

Java-Based Front-Channel Interactions
Below is a sample Front-Channel Java application which returns the display name of
the logged-in user. This sample demonstrates creating a client interface to On Track,
logging on, performing a front-channel request, and then logging out and shutting
down the client.

import waggle.client.main.XClientMain;
import waggle.common.modules.connect.XConnectModule;
import waggle.common.modules.connect.infos.XLoginCredentialsInfo;
import waggle.common.modules.connect.infos.XLoginInfo;
import waggle.common.modules.user.XUserModule;
import waggle.common.modules.user.infos.XUserInfo;
import waggle.core.api.XAPI;
import waggle.core.api.XAPIManager;
import waggle.core.api.exceptions.XAPIException;
import java.util.Properties;

public class BasicSample {
 static String fHost = "http://localhost:8080";
 static String fContext = "/ontrack";
 static String fUserName = "";
 static String fUserPassword = "";

 public static void main(String[] args) {
 try {
 // initialize the client
 Properties properties = new Properties();
 XClientMain.initAppWithJar(properties);

 // get an API instance, and set the session host, context, and agent name
 XAPI fAPI = XAPIManager.newInstance();
 fAPI.setSession(fHost, fContext);
 fAPI.setOnTrackAgent("On Track API Example");

 // perform login and set the session random ID
 XLoginCredentialsInfo credentials = new XLoginCredentialsInfo();

11

 credentials.UserName = fUserName;
 credentials.UserPassword = fUserPassword;
 XLoginInfo loginInfo =
fAPI.call(XConnectModule.Server.class).login(credentials);
 fAPI.setRandomID(loginInfo.APIRandomID);

 // Get information about the currently logged in user and print it out
 XUserInfo userInfo = fAPI.call(XUserModule.Server.class).getMe();
 System.out.println("Users Display Name is " + userInfo.DisplayName);

 // perform logout and shutdown the API library
 fAPI.call(XConnectModule.Server.class).logout();
 XClientMain.shutdown();
 }
 catch (XAPIException ex) {
 System.out.println("The Server replied with an Error : " + ex);
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}
At the heart of the above example is the location where the On Track User Module is
executed to return the user object for the currently logged-in user.

XUserInfo userInfo = fAPI.call(XUserModule.Server.class).getMe();

By passing in different Modules as part of the fAPI.call, it is possible to invoke the full
set of Modules provided by the Java API. A more extensive set of Java-based tutorials
is available from the On Track product Web site at

http://www.oracle.com/goto/ontrack

Java-Based Back-Channel Interactions
Back-Channel Module APIs provide a rich way for client developers to extend On
Track. Using the Java API, developers can register to have their clients receive
callbacks from the server when certain events happen. This is accomplished by writing
a class which implements a client events Module. For example, the
XChatModuleClientEvents module provides a number of callbacks to the client
including:

■ notifyChatCreated

■ notifyChatBookmarkClosed

■ notifyChatBookmarkOpened

■ notifyChatDeleted

■ notifyChatFollowupClosed

■ notifyChatFollowupOpened

■ notifyChatUpdated

■ notifyChatsRead

■ notifyTyping

As an example, it is possible to write a client that implements the
notifyChatCreated(XChatInfo arg0) method. Once messages are posted into a

12

conversation, these contents are sent to the client, which then acts on the callback.
These actions may include automatically parsing and posting a response to the
conversation, modifying an external system.

Clients that support Back-Channel communication must:

■ Implement a ClientEvents Module

■ After login, invoke the XHiveModule.Server.class.enterHive() method
to register as an agent

■ Register themselves with XEventsManager.register(this)

■ Instantiate and start a XMessageReceiverThread thread using
XMessageReceiverThreadJSON(fAPI);

■ Loop continually waiting for and acting on message callbacks

■ When complete, unregister themselves with
XEventsManager.unregister(this); and stop the
XMessageReceiverThread thread

Back-Channel Agent Requirements
Agents need to be logged into On Track to be able to receive callbacks from the server.
The user name they are logged in as must have the 'On Behalf Of' privilege which can
be granted in On Track Administration Console. See Oracle On Track Administrator's
Guide for more details. Additionally, the On Track client listener operates as the user it
logs in as, and has the same visibility as that user has within the application. In order
to get call backs when messages are added to a conversation, the user the agent is
running as must be added to the conversations that are of interest.

It is possible to design this integration in a number of ways; for example the agent
could be programmatically added to a conversation when a system creates that
conversation for the first time, or the agent can be designed so that it joins a
Conversation when it is buzzed by a user.

Java Back-Channel Agent samples are available on the Oracle On Track product Web
site at

http://www.oracle.com/goto/ontrack

Advanced Topic - Using Conversation List Back Channel Events
The embeddable conversation list User Interface has a mode that allows users to both
see existing conversations and create new conversations.

Figure 7 Conversation List with New Conversation

To support the creation of new conversations and provide for other interactions, the
Conversation list creates Back-Channel events that a client agent can listen and
respond to. This provides the client agent the ability to take additional actions over the

13

Front-Channel, such as adding additional people or messages to the newly created
conversation.

As detailed in the Advanced Conversation Integrations section of this document, the
Conversation list must be invoked with three URL parameters: secondaryID,
integratorName, and trackName for it to send Back-Channel messages. Then, when
the Conversation list is viewed or the New button is pressed, an event is created. This
event contains the user ID of the user looking at the conversation list, as well as one of
the following two possible message payloads:

■ GetConversations – Generated whenever the Conversation List is displayed in the
user's browser.

■ CreateConversation – Generated when the user clicks the New button in the
Conversation List, provides a Conversation Name and presses OK.

Client agents must implement the XbackChannelModuleClientEvents class and
its messageSent method. The messageSent method returns a payload of strings
formatted as a JSON object, which can be parsed by the client agent into a list of
name/value pairs containing information about the conversation list.

Additionally, any URL query parameter added to the Conversation List URL is added
to this list as well which allows for additional context to be passed to the client agent.

The following is a sample Conversation List URL:

http://hostname/ontrackcontext/web/ConversationList.jsp?integratorName=STANDARD_
AGENT&secondaryID=SR-1234&trackName=Service%20Request%201234&myOwnParameter=SomeVa
lue

The resulting message payload sent to the client agent when a user views that
Conversation list (causing the URL to be invoked) will be:

{
 "MessageType":"GetConversations",
 "integratorName":"<OnTrack Agent User>",
 "secondaryID":"SR-1234",
 "trackName":"Service Request 1234",
 "integratorID":"<OnTrack Agent User ID>",
 "senderName":"<OnTrack User>" ,
 "myOwnParameter":"SomeValue" ,
}

If the user presses the New button in the Conversation List and provides a
Conversation Name in the dialog, the following message payload is sent to the agent:

{
 "MessageType":"CreateConversation",
 "Name":"Conversation Name",
 "integratorName":"<OnTrack Agent User>",
 "secondaryID":"SR-1234",
 "trackName":"Service Request 1234",
 "integratorID":"<OnTrack Agent User ID>",
 "senderName":"<OnTrack User>" ,
 "myOwnParameter":"SomeValue" ,
}

Notice how the custom URL query parameter "myOwnParameter" is part of the
message as well.

14

JavaScript Client Development
On Track supports the development of custom client-side JavaScript which can run in
the browser of a user and perform operations against the On Track Module API over
HTTP using AJAX. This allows the creation of rich Web clients which can leverage
both Front and Back-Channel interactions with an On Track application. Any standard
JavaScript library can be used by client developers, from jQuery to DOJO, or a
developer can use their own JavaScript code. A convenient JavaScript library,
ontrack.js, is provided to simplify this process, but is not strictly necessary to use the
On Track API.

The ontrack.js file can be found under the MIDDLEWARE_HOME/Oracle_
ONTRACK1/OnTrack/ClientSdk/ontrack-sdk/lib directory of the installed
product and can be copied to a place where it is co-located with your custom
JavaScript and accompanying HTML files.

The ontrack.js file contains methods for logging into the server and executing Module
APIs. The full JavaScript documentation for ontrack.js is provided in the Oracle On
Track JavaScript Documentation.

The following is a jQuery code snippet which invokes the ot.execute method of
ontrack.js to call the Tracks module and return a listing of tracks for the current user.
This track list is then looped over and the track names are written out.

ot.execute('Track', 'getTracks', function(success, trackInfos) {
for(var ix = 0; ix < trackInfos.length; ix++) {
 var trackInfo = trackInfos[ix];
 document.write(trackInfo.Name) } }

JavaScript Client Deployment Requirements
JavaScript development is complicated by the fact that the same-origin policy prevents
a document or script loaded from one origin to get or set properties of a document
from another origin. When the browser checks the origin of a JavaScript file, it verifies
that it is hosted on the same named server as the remote APIs it invokes. As an
example, if On Track is deployed on ontrack.company.com, any JavaScript invocations
against that server must have their JavaScript and HTML files served from
ontrack.company.com as well to run in the browser.

There are a number of ways to handle this same-origin policy with custom JavaScript
clients that are written for On Track. The first option is to host the HTML and
JavaScript files on the same server as On Track. This can be done by authoring a new
Web Application Archive (WAR) file which is deployed on On Track servers (in
addition to the On Track application). This effectively co-locates the files in the same
origin.

15

A second option is to deploy the custom JavaScript to another server, masking that
server and the On Track server through a proxy to appear as if they have the same
origin.

These options can make development of JavaScript applications more difficult to
deploy and test. However, it is possible to selectively disable the same origin policy in
browsers such as Google Chrome and Mozilla Firefox for development purposes. For
example, developers can download the developer channel edition of Google Chrome
which allows the browser to be invoked with the command line argument
-disable-web-security. This argument disables the same origin policy. Clearly,
this is not a recommended procedure for users of On Track in production where the
two permitted configurations are co-locating the files in WebLogic or using a proxy
server.

JavaScript samples are available on the Oracle On Track product Web site at

http://www.oracle.com/goto/ontrack

Other Remote Client Development
On Track supports the development of a variety of remote clients, from desktop clients
using .Net libraries to native mobile applications written in Objective C.

The base URLs for accessing the On Track API are:

■ Front Channel

http://<host:port>/ontrackcontext/ontrack/<method-name>
■ Back Channel

http://<host:port>/ontrackcontext/message/<method-name>

Gadget Development
On Track provides Gadgets by way of an implementation of the OpenSocial Core
Gadget Specification. Developers can build Gadgets and register them with the On
Track application so they can be added to conversations. On Track provides a base set
of Open Social Features, which are common JavaScript functions that are loaded into
the user's browser and be invoked by code in the Gadget. These functions include
some base OpenSocial Features, as well as Features which are particular to On Track.
Additionally, users may register their own Features in the On Track application.

16

Authoring and Registering Gadgets
Information on authoring Open Social gadgets can be found at
http://code.google.com/apis/gadgets/. Gadgets are defined in XML files,
which can be registered using the On Track administration console. Details on Gadget
registration are provided in the Oracle On Track Administration Console Online Help.
Some base Open Social Core Gadgets Features are supported including setting Gadget
preferences and title.

Gadget samples are available on the Oracle On Track product Web site at

http://www.oracle.com/goto/ontrack

On Track Specific Feature
On Track provides a feature to enable communication between Gadgets and their
containing On Track conversations. This feature is documented in Oracle On Track
Communication Gadget Feature Documentation.

Custom Features
On Track developers can also write their own Open Social Features and register them
with On Track. Registration is accomplished using the On Track administration
console, details are provided in the Oracle On Track Administration Console Online Help.

Additional Resources
Additional development resources (including samples, blog posts and online
discussion forums) are available from the Oracle On Track product Web site at

http://www.oracle.com/goto/ontrack

17

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/us/corporate/accessibility/index.html.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Oracle On Track Communication Developer's Guide, Release 1 (1.0)
E20959-01

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them
to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions
and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use
in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in
dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered
trademarks of Advanced Micro Devices. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

18

	Audience
	Background
	On Track Architecture
	Principles Of On Track Architecture
	UI-Based Integrations
	Embedding the Conversation List
	Customizing the Conversation List UI
	Conversation Scoping
	Advanced Conversation Integrations

	Standalone Conversation Pane
	Programmatic Integrations and the On Track API
	API Fundamentals
	Modules
	Setting Required Headers
	Java Client Development
	Java-Based Front-Channel Interactions
	Java-Based Back-Channel Interactions
	Back-Channel Agent Requirements

	Advanced Topic - Using Conversation List Back Channel Events
	JavaScript Client Development
	JavaScript Client Deployment Requirements
	Other Remote Client Development
	Gadget Development
	Authoring and Registering Gadgets
	On Track Specific Feature
	Custom Features

	Additional Resources
	Documentation Accessibility

