
Developing OTDs for Oracle® Java CAPS
Application Adapters

Part No: 821–2583
December 2011

Copyright © 2008, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
"commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

120126@25097

Contents

Developing OTDs for Application Adapters .. 5
Creating SAP BAPI OTDs ...5

SAP BAPI Encoding ...6
Date and Time Stamp Requirements ..6
Installing SAP JCo for SAP BAPI ..6
Creating BAPI and RFC OTDs ..8
Relaunching BAPI and RFC OTDs ...9

Creating a SAP ALE OTD .. 10
SAP JCo and SAP IDoc Class Library Installation ... 10
SAP Java IDoc Class Library ... 12
Creating IDoc OTDs ... 13
Exporting the IDOC File from SAP ... 19
Saving the IDoc Description File (After 4.6) ... 23

Creating Siebel EAI OTDs .. 26
Configuring Your System Before Creating the OTD ... 26
Creating the OTD .. 29

Creating COBOL Copybook OTDs .. 35
▼ To Create COBOL Copybook OTDs ... 35

Parsing Copybook Entries .. 36
Relaunching OTDs .. 37

▼ To Relaunch an Existing OTD ... 37
COBOL Copybook OTD Methods .. 38

OTD Method Guidelines .. 38
Root-level Methods .. 40
Non-Root Methods .. 48
BPEL Operations .. 49

Creating an Oracle Applications OTD .. 50
▼ To Create an Oracle Applications OTD .. 52

3

Exposed Oracle Applications OTD Nodes ... 58
Staging Table Node .. 58
COUNT ... 59
DELETE .. 60
INITIALIZE .. 61
MOVE ... 61
REQUEST ... 63
REQUEST_STATUS ... 63
VALIDATE ... 64

SWIFT Alliance Gateway Adapter OTD Features ... 64
Configuration Node ... 65

Generating DTDs from PeopleTools 8.13 .. 70
Generating and Publishing an XML Test Message .. 71
Extracting and Viewing the XML Test Message ... 77
Generating a DTD for the XML File .. 83
OTD Methods and Business Process Operations ... 86

Contents

Developing OTDs for Oracle Java CAPS Application Adapters • December 20114

Developing OTDs for Application Adapters

The following sections provide instructions on how to create an OTD for an application
adapter. OTDs contain the data structure and rules that define an object. They are generated by
extracting the business services that have been exposed through an external system, and the
Integration Objects available in that system's instance. For the adapters listed below, this
operation is performed by their individual OTD Wizard.

This section covers the following topics:

■ “Creating COBOL Copybook OTDs” on page 35
■ “Creating an Oracle Applications OTD” on page 50
■ “Creating SAP BAPI OTDs” on page 5
■ “Creating a SAP ALE OTD” on page 10
■ “Creating Siebel EAI OTDs” on page 26
■ “SWIFT Alliance Gateway Adapter OTD Features” on page 64
■ “Generating DTDs from PeopleTools 8.13” on page 70

Creating SAP BAPI OTDs
The SAP BAPI wizard is used to create BAPI and RFC OTDs. BAPI and RFC OTDs can be used
in Java Collaborations and BPM Business Processes, and NetBeans EJBs to communicate with
SAP.

■ “SAP BAPI Encoding” on page 6
■ “Date and Time Stamp Requirements” on page 6
■ “Installing SAP JCo for SAP BAPI” on page 6
■ “Creating BAPI and RFC OTDs” on page 8
■ “Relaunching BAPI and RFC OTDs” on page 9

5

SAP BAPI Encoding
SAP BAPI/RFC OTDs are encoding independent of the SAP system. This means that OTDs
created on a Unicode SAP instance can seamlessly interact with non-Unicode SAP instances,
and vice versa. In addition, the marshal and unmarshal encoding methods on the
IDOC_INBOUND_ASYNCHRONOUS OTD only apply to the data, and not to the SAP
instance. The default for all processed byte data is UTF-8, regardless of connection type
(Unicode or non-Unicode).

When attempting to unmarshal data flows using an encoding other than UTF-8, such as
UTF-16, then you must also call the setUnmarshalEncoding method to specify this encoding.
This enables the Adapter to properly unmarshal the byte array.

You also need to set the correct Character Set in the Environment parameters for an inbound
Adapter when receiving data from SAP. This way, the Adapter knows whether it is receiving
Unicode or non-Unicode data from the SAP instance. The setMarshalEncoding method is only
for marshaling the OTD data into a byte array and is not related to the SAP system character set.

Like the outbound data flows mentioned above, attempting to marshal data flows using an
encoding other than UTF-8, such as UTF-16, requires setting the setMarshalEncoding method
to match this encoding. This enables the data received from SAP to be correctly converted to a
byte array of the desired encoding.

Date and Time Stamp Requirements
Date and time stamp fields in the OTD are now typed as java.lang.String fields. This means that
the OTD expects values assigned to date fields as YYYYMMDD, where February 14, 2006
becomes 20060214.

The data format time fields is HHMMSS, where 11:59:59 PM becomes 235959, or 12:00:00 AM
becomes 000000.

Installing SAP JCo for SAP BAPI
The SAP Java Connector file, sapjco3.jar, is a middleware component that enables the
development of SAP-compatible components and applications in Java. This component is
required by the SAP BAPI OTD Wizard to create BAPI and RFC OTDs during design time, and
to support inbound and outbound SAP server communication during runtime.

Since we are installing the SAP Java Connector as standalone component, certain installation
files are required. Download the installation files from SAPNet. Once logged in, this link
redirects you to SAP Service Marketplace. Click the following links to access the SAP Java
Connector (SAP JCo) tools and services page:

Creating SAP BAPI OTDs

Developing OTDs for Oracle Java CAPS Application Adapters • December 20116

SAP NetWeaver > SAP NetWeaver in Detail > Application Platform > Connectivity >

Connectors > SAP Java Connector > Tools & Services

Refer to the download instructions that come with JCo for additional information.

▼ To Install SAP JCo on Windows 32

Create a temporary directory and extract the JCo ZIP file into this directory.

Copy sapjco3.dll from your SAP JCo main directory to C:\WINNT\SYSTEM32.
Make sure that the version that is already there is not a more recent version than the one that is
delivered with the SAP JCo.

Copy sapjco3.jar from your SAP JCo main directory to
JavaCAPS\.netbeans\caps\modules\ext\sapjcolib.
Where JavaCAPS is the Java CAPS home directory.

Copy sapjco3.jar to JavaCAPS\appserver\lib.

Download the following DLL files:

■ msvcp71.dll

■ msvcr71.dll

These are available, free of charge, from various sources on the internet.

Copy the DLL files to c:\WINNT\system32.

Restart both the GlassFish domain and NetBeans.

▼ To Install SAP JCo on UNIX
The instructions for the installation of SAP JCo on other operating systems are included in the
corresponding download files.

On UNIX operating systems, add the OS specific shared library files to the library path.

Copy sapjco3.jar to the following location before deploying and running command line code
generation.
/compile/lib/ext

Copy sapjco3.jar to the JavaCAPS_Home/.netbeans/caps/modules/ext/sapjcolib folder.

Copy sapjco3.jar to the JavaCAPS_Home/appserver/lib folder.

1

2

3

4

5

6

7

1

2

3

4

Creating SAP BAPI OTDs

Developing OTDs for Application Adapters 7

Restart both the GlassFish domain and NetBeans.

Important Notes:
■ Confirm backwards compatibility issues for the SAP Java Connector file with SAP before

attempting to switch between different JCo versions on different machines.
■ SAP BAPI Adapters can run on a 64-bit JVM, but only after the correct 64-bit JCo files have

been applied.
■ The SAP application must be configured to communicate with the SAP BAPI Adapter as

described in Configuring SAP in the SAP BAPI Adapter Intelligent Adapter User’s Guide.
■ We recommend only using the directory path when setting your library path, not the

directory path and file name.
■ Many text fields are upper case only. You may need to convert passwords to upper case for

design time and runtime SAP connection configurations.

Creating BAPI and RFC OTDs
You create BAPI and RFC OTDs with the SAP BAPI wizard in the NetBeans IDE.

▼ To Create BAPI OTDs

In the Projects window of the NetBeans IDE, right click the Project, point to New, and click
Object Type Definition.
The New Object Type Definition Wizard dialog box appears.

Click SAP BAPI and click Next.
The Select SAP Object page appears.

To convert a BAPI object to OTD, select the BAPI option. To convert an RFC object to OTD, select
the RFC option.

Click Next.
The System Parameters page appears.

Enter the following information for the SAP system for the SAP Adapter to connect to.

For this option Enter

System ID System ID of the SAP system.

Application server Host name of the SAP system.

5

1

2

3

4

5

Creating SAP BAPI OTDs

Developing OTDs for Oracle Java CAPS Application Adapters • December 20118

For this option Enter

System number System number of the SAP system.

SAP Routing String Router string of hostnames/IP addresses of all SAP routers between the Application
Server and the SAP gateway host (optional).

Language Language used for SAP access.

RFC Trace NO to disable RFC tracing (default); YES to enable RFC tracing, which creates the
trace files in: \netbeans\bin

Click Next.

The Login Parameters page appears.

Enter the information to log into the SAP system:

For this option Enter

Client Number Client number of the SAP system.

User name User name.

Password Login password.

Click Next.

The Select BAPI/RFC page appears, showing the application components

In the BAPI tree, you can navigate to a particular SAP application component and select a BAPI
object.

Expand the SAP application component folder, click a BAPI, and click Finish.

The OTD Editor window appears, displaying the OTD.

You can now build the Collaborations or Business Processes as described in Building and
Deploying the prjBAPIOutbound Sample Project and Building and Deploying the
prjIDocInbound Sample Project.

Relaunching BAPI and RFC OTDs
When an OTD is built for an SAP business object, such as Application Components g
Controlling g CostCenter, the generated OTD has methods corresponding to all BAPIs in the
Cost Center Business Object of SAP. The CostCenter OTD has nodes for each of the BAPIs in
the CostCenter business object. The OTD also has WSDL operations such as GetListExecute

6

7

8

9

Creating SAP BAPI OTDs

Developing OTDs for Application Adapters 9

and GetListReceive. These WSDL operations are used when the OTD is used in a Business
Process. The execute methods are used for client mode operations. The receive methods are
used for server mode operations.

If required, you can also use the Relaunch option of the OTD to relaunch the CostCenter OTD
wizard, see the figure below, and rebuild the BAPI OTD for the same BAPI/RFC. Please note
that selecting a BAPI/RFC other than the original one used to build the OTD will corrupt your
OTD and its associated Collaborations and Business Processes. On Relaunch, the OTD is
rebuilt again with the changed metadata, and any Java Collaborations and Business Processes
using this BAPI OTD are synchronized with the new changes. If your Java Collaborations or
Business Processes are using OTD nodes that are now absent in the relaunched BAPI/RFC
OTD, you will be prompted to correct the business rules by validation errors.

Creating a SAP ALE OTD
The topic describes how to use the SAP ALE OTD Wizard to create IDoc Object Type
Definitions (OTDs). OTDs are used in the business logic in Java Collaboration Definitions and
BPM Business Processes. The SAP IDoc wizard is used to create IDoc OTDs.

You can create IDoc OTDs in one of two ways:

■ Let the IDoc wizard connect and retrieve the IDoc message format directly from the SAP
system.

■ Provide the location for a saved IDoc description file.

To export an IDoc description file from an SAP system to be used by the IDoc wizard, see
“Exporting the IDOC File from SAP” on page 19. Due to the significant SAP GUI changes that
distinguish versions 4.6 and earlier and 4.7 and later, separate instructions are included in
“Saving the IDoc Description File (After 4.6)” on page 23.

■ “SAP JCo and SAP IDoc Class Library Installation” on page 10
■ “SAP Java IDoc Class Library” on page 12
■ “Creating IDoc OTDs” on page 13
■ “Exporting the IDOC File from SAP” on page 19
■ “Saving the IDoc Description File (After 4.6)” on page 23

SAP JCo and SAP IDoc Class Library Installation
Certain JAR files are required by the SAP ALE OTD Wizard to create IDoc OTDs.

■ From the SAP Java Connector: sapjco3.jar

■ From the SAP Java Base IDoc Class Library: sapidoc3.jar

Creating a SAP ALE OTD

Developing OTDs for Oracle Java CAPS Application Adapters • December 201110

The SAP Java Connector
The SAP Java Connector file, sapjco3.jar, is a middleware component that enables the
development of SAP-compatible components and applications in Java. This component is
required to support inbound and outbound SAP server communication during runtime.

Since you are installing the SAP Java Connector as standalone component, certain installation
files are required. Download the installation files from SAPNet. Once logged in, this link
redirects you to SAP Service Marketplace. Click the following links to access the SAP Java
Connector (SAP JCo) tools and services page:

SAP NetWeaver > SAP NetWeaver in Detail > Application Platform > Connectivity >

Connectors > SAP Java Connector > Tools & Services

Refer to the download instructions that come with JCo for additional information.

▼ To Install the SAP Java Connector on Windows 32

Create a temporary directory and extract the JCo ZIP file into this directory.

Copy sapjco3.dll from your SAP JCo main directory to C:\WINNT\SYSTEM32.
Make sure that the version that is already there is not a more recent version than the one that is
delivered with the SAP JCo.

Copy sapjco3.jar and sapidoc3.jar from your SAP JCo main directory to
JavaCAPS\.netbeans\caps\modules\ext\sapjcolib.
Where JavaCAPS is the Java CAPS home directory.

Copy sapjco3.jar and sapidoc3.jar to JavaCAPS\appserver\lib.

Download the following DLL files:

■ msvcp71.dll

■ msvcr71.dll

These are available, free of charge, from various sources on the internet.

Copy the DLL files to c:\WINNT\system32.

Restart both the GlassFish domain and NetBeans.

▼ To Install the SAP Java Connector on UNIX

On UNIX operating systems, add the OS specific shared library files to the library path.

1

2

3

4

5

6

7

1

Creating a SAP ALE OTD

Developing OTDs for Application Adapters 11

Copy sapjco3.jar and sapidoc3.jar to the following location before deploying and running
command line code generation.
/compile/lib/ext

Copy sapjco3.jar and sapidoc3.jar to the
JavaCAPS_Home/.netbeans/caps/modules/ext/sapjcolib folder.

Copy sapjco3.jar and sapidoc3.jar to the JavaCAPS_Home/appserver/lib folder.

Restart both the GlassFish domain and NetBeans.

SAP Java IDoc Class Library
The SAP Java IDoc Class Library consists of two parts, the SAP Java Base IDoc Class Library
and the SAP Java Connector IDoc Class Library. The packages of the SAP Java IDoc Class
Library include the software as well as documentation. The SAP Java Base IDoc Class Library
provides an API which helps navigating, reading, filling, and modifying IDocs. This base
package is middleware independent. Creating, sending, and receiving IDocs is middleware
dependent.

▼ To Download the SAP Java IDoc Class Library
Like the SAP Java Connector, download the required installation files from SAPNet.

Navigate to the following directory to access the SAP Java Connector (SAP JCo) tools and
services page:
SAP NetWeaver > SAP NetWeaver in Detail > Application Platform > Connectivity >

Connectors > SAP Java Connector > Tools & Services > SAP Java IDOC Class Library

This page contains links to the SAP Java Connector IDoc Class Library and the SAP Java Base
IDoc Class Library.

Uncompress and extract the archives into the same directory as the SAP Java Connector
installation path sapidocjco-install-path.

Load sapidocjco-install-path/docs/idoc/jco/intro.html into your browser and follow the
instructions under the link Installation.

Important Notes:
■ Confirm backwards compatibility issues for the SAP Java Connector file with SAP before

attempting to switch between different JCo versions on different machines.
■ We recommend only using the directory path when setting your library path, not the

directory path and file name.

2

3

4

5

1

2

3

Creating a SAP ALE OTD

Developing OTDs for Oracle Java CAPS Application Adapters • December 201112

■ Some SAP fields use uppercase characters only. You may need to convert passwords to
upper case for all design time and runtime SAP connection configurations.

Creating IDoc OTDs
You create IDoc OTDs with the SAP IDoc wizard in the NetBeans IDE. You can choose to have
the wizard connect to the SAP system and retrieve the IDoc message format automatically, or
you can have the wizard use an IDoc definition file from a specified location. The IDoc
definition file would be saved or downloaded from the SAP system as described in “Exporting
the IDOC File from SAP” on page 19.

▼ To Create IDoc OTDs Directly From SAP

In the Projects window of the NetBeans IDE, right click a Project, then click New > Object Type
Definition.

The New Object Type Definition Wizard appears.

Click SAP IDoc and click Next.

The Select metadata page appears.

To retrieve the IDocs message format directly from the connected SAP system, select the From
SAP Directly, then click Next.

Note – Refer to “SAP JCo and SAP IDoc Class Library Installation” on page 10 for a list of
required files that must be installed in order to connect to SAP directly.

Click Next. The System Parameters page appears.

Enter the information for the SAP system for the IDoc wizard to connect to:

For This Option Enter

System ID System ID of the SAP system.

Application server Name of the SAP Application Server.

System number System number of the SAP system.

SAP Routing String Router string of hostnames/IP addresses of all SAP routers between your
Application Server and the SAP gateway host (optional).

1

2

3

4

5

Creating a SAP ALE OTD

Developing OTDs for Application Adapters 13

For This Option Enter

Language Language used for SAP access.

Available Languages include:
■ EN - English
■ DE - German
■ JA - Japanese
■ KO - Korean

RFC Trace NO to disable RFC tracing (default); YES to enable RFC tracing, which creates
trace files.

Click Next.
The Login Parameters page appears.

Enter the information below to log into the SAP system.

For This Option Enter

Client Number Client number of the SAP system.

User name User name.

Password Login password.

Click Next.
The IDoc Metadata Parameters page appears.

Enter the following information about the IDoc.

For This Option Enter

System Release The SAP System release for this IDoc. All IDocs up to this release number are
displayed in the list of available IDocs.

IDoc type IDoc type, for example, CREMAS03. You cannot use a wild card.

IDoc type extension Extension for this IDoc type (optional).

Record Type Version Select the version of the IDoc record type. The default value is 3.

Message format Blank padded for ALE format or CR-LF for EDI format.

For IDoc type, click the List IDocs button to display a list of available IDocs supported by SAP,
as seen in the figure below.

6

7

8

9

Creating a SAP ALE OTD

Developing OTDs for Oracle Java CAPS Application Adapters • December 201114

Select your needed IDoc type and click OK.

Click Next.

The Review Selection page appears.

Review your selections and click Finish.

The OTD Editor window appears, displaying the OTD.

FIGURE 1 IDoc Type List

10

11

12

Creating a SAP ALE OTD

Developing OTDs for Application Adapters 15

The figure above shows a CREMAS IDoc OTD in the OTD editor. The OTD has various
methods which you can use in Java Collaborations for processing IDoc data. The CREMAS
IDoc OTD also has marshal and unmarshal Web Service operations as seen in the Project tree.
You can use these operations when using the OTD in BPM business processes.

The figure below shows the unmarshal operation in the BPM Business Process editor. You can
unmarshal byte or string data onto the IDoc OTDs bytes and contents nodes respectively. The
bytes node takes in only UTF-8 encoded data. That is, if you want to perform an unmarshal
operation using bytes as the input source, then you must ensure that the data is in UTF-8 before
utilizing this node.

In this example we are unmarshaling byte data which is not UTF-8 encoded; therefore, you
must perform a bytes to text conversion in editor, and then unmarshal string data to the
contents node.

FIGURE 2 CREMAS IDOC OTD

FIGURE 3 CREMAS unmarshal

Creating a SAP ALE OTD

Developing OTDs for Oracle Java CAPS Application Adapters • December 201116

If required, you can also use the Relaunch option of the OTD to relaunch the IDoc OTD wizard
and rebuild the IDoc OTD for the same IDoc Type built with a particular system release. On
relaunch, the OTD is rebuilt again with the changed metadata. Any Java Collaborations and
Business Processes using this IDoc OTD are also synchronized with the new changes. If your
Java Collaborations or business Processes are using OTD nodes that are now absent in the
relaunched OTD, you will be prompted to correct the business rules by validation errors.

▼ To Create IDOC OTDs From a Description File

In the Projects window, right click the Project, point to New, and click Object Type Definition.

The New Object Type Definition dialog box appears.

Click SAP IDoc and click Next.

The Select metadata source page appears.

To retrieve the IDocs from a description file, select the From Description File.

FIGURE 4 IDoc Wizard—Metadata Selection

1

2

3

Creating a SAP ALE OTD

Developing OTDs for Application Adapters 17

Click Next.

The Definition File Parameters page appears.

Enter the following information about the IDoc definition file.

For This Option Enter

IDoc File Name The path and filename for the IDoc description file to be used.

Released In SAP IDoc release for this IDoc, for example, 4.6C.

Message format Blank padded for ALE format or CR-LF for EDI format.

Click Next. The Review Selection page appears.

Review your selections and click Finish.

The OTD Editor window appears, displaying the OTD.

FIGURE 5 IDoc Wizard—Definition File Parameters

4

5

6

7

Creating a SAP ALE OTD

Developing OTDs for Oracle Java CAPS Application Adapters • December 201118

Exporting the IDOC File from SAP
The following sections describe how to create and export the IDOC file from SAP. The
procedures provided may vary depending on version and/or platform of SAP. Refer to the
current documentation for your version of SAP. The procedures described in this section create
the IDOC file an SAP system version 4.6 and earlier:

▼ To Download the IDoc Description File From SAP

Log into the SAPGUI, and close the system messages.
The SAP Easy Access window appears.

If the SAP Easy Access window does not appear, click Exit.

Double-click WE63.
The Documentation IDoc Record Types window appears.

FIGURE 6 SAP Easy Access Window

1

2

Creating a SAP ALE OTD

Developing OTDs for Application Adapters 19

In the Basic Types box, type or select the IDoc to be parsed.

Select any other options needed, and click Execute.

The Documentation IDoc Record Types window shows the parsed definition file.

FIGURE 7 Documentation IDoc Record Types Window

3

4

Creating a SAP ALE OTD

Developing OTDs for Oracle Java CAPS Application Adapters • December 201120

On the System menu, click List, Save, and then Local File.

The Save List in File dialog box appears.

FIGURE 8 Documentation IDoc Record Types Window—Parsed Definition File

5

Creating a SAP ALE OTD

Developing OTDs for Application Adapters 21

If necessary, select Unconverted.

Click Save.

The Save As dialog box appears.

Navigate to the folder where you want to save the description file and click Save.

The Transfer List to a Local File dialog box displays.

Enter the name and path of the local file to receive the IDoc description file.

Click Transfer.

Once you have downloaded the IDoc description file, create the IDoc OTD using the IDoc
wizard as described in “Creating IDoc OTDs” on page 13. Use the From Description File option
so that you can select the description file you downloaded.

FIGURE 9 Save List in File Dialog box

FIGURE 10 Transfer List to a Local File Dialog Box

6

7

8

9

10

Creating a SAP ALE OTD

Developing OTDs for Oracle Java CAPS Application Adapters • December 201122

Saving the IDoc Description File (After 4.6)
Follow the instructions below to download an IDoc description file from an SAP system version
4.7 and later.

Note – The images in the procedure below show the SAPGUI version 6.2 connecting to segment
version 4.7.

▼ To Save the IDoc Description File From SAP

Log into the SAPGUI, and close the system messages window.

The SAP Easy Access window appears. If the SAP Easy Access window does not display, click
Exit.

FIGURE 11 SAP Easy Access Window

1

Creating a SAP ALE OTD

Developing OTDs for Application Adapters 23

Double-click WE63.

The Documentation window appears as shown below.

Enter the basic type, enhancement, and segment type information.

Select the IDoc record types to be included.

Click Parser. The Documentation window displays the parsed data.

FIGURE 12 Documentation Window

2

3

4

5

Creating a SAP ALE OTD

Developing OTDs for Oracle Java CAPS Application Adapters • December 201124

On the System menu, click List, Save, and then Local File.

The Save List in File dialog box appears.

FIGURE 13 Documentation Window—Parsed Definition File

6

Creating a SAP ALE OTD

Developing OTDs for Application Adapters 25

If necessary, select Unconverted.

Click Save.

The Save As dialog box appears.

Navigate to the folder where you want to save the description file and click Save.

Once you have saved the IDoc description file, create the IDoc OTD using the IDoc wizard. Use
the From Description File option so that you can select the description file you saved.

Creating Siebel EAI OTDs
Perform the following tasks to create a Siebel EAI OTD:

■ “Configuring Your System Before Creating the OTD” on page 26
■ “Creating the OTD” on page 29

Configuring Your System Before Creating the OTD
The NetBeans IDE needs to be configured to use the appropriate JAR files to correspond with
the version of your Siebel Server. Before you use the NetBeans IDE to create your Siebel EAI
Project, make sure that your local NetBeans IDE installation is using the proper JAR files for
your Siebel Server.

FIGURE 14 Save List in File Dialog box

7

8

9

Creating Siebel EAI OTDs

Developing OTDs for Oracle Java CAPS Application Adapters • December 201126

Configuring NetBeans to Work with Siebel
Depending on which version of Siebel you are using, perform one of the following tasks to
configure NetBeans:

■ “To Run NetBeans with Siebel 7.5.x” on page 27
■ “To Run the NetBeans IDE with Siebel 7.7 or 7.8.x” on page 27

▼ To Run NetBeans with Siebel 7.5.x

Using Windows Explorer, navigate to the Siebel Adapter directory for your NetBeans IDE.
The Siebel Adapter directory is
JavaCAPS_Home\.netbeans\caps\modules\ext\siebeleaieway.

If you have previously used Siebel 7.7 or 7.8.x with this installation of the NetBeans IDE, remove
the following files from this directory:

■ Siebel.jar

■ SiebelJI_enu.jar

Copy the following files from your Siebel 7.5.x system (SiebelTools/Classes) to
JavaCAPS_Home\.netbeans\caps\modules\ext\siebeleaieway:

■ SiebelJI.jar

■ SiebelJI_Common.jar

■ SiebelJI_enu.jar

Restart the NetBeans IDE.

▼ To Run the NetBeans IDE with Siebel 7.7 or 7.8.x

Using Windows Explorer, navigate to the Siebel Adapter directory for your NetBeans IDE.
The Siebel Adapter directory is
JavaCAPS_Home\.netbeans\caps\modules\ext\siebeleaieway.

If you have previously used Siebel 7.5.x with this installation of the NetBeans IDE, then remove
the following files from the Siebel Adapter directory:

■ SiebelJI.jar

■ SiebelJI_Common.jar

■ SiebelJI_enu.jar

Copy the following files from your Siebel 7.7 or 7.8.x system (SiebelTools/Classes) to the Siebel
Adapter directory:

■ Siebel.jar

1

2

3

4

1

2

3

Creating Siebel EAI OTDs

Developing OTDs for Application Adapters 27

■ SiebelJI_enu.jar

Restart the NetBeans IDE.

Installing seebeyond.sif for Siebel 7.5.x
If you are using Siebel 7.5.x, before you create an OTD using the OTD Wizard, you must install
the seebeyond.sif file into your Siebel Tools system.

▼ To Install the seebeyond.sif File

In a web browser, navigate to http://java.net/projects/javacaps-samples/pages/Home.

In the Application Adapters list, click the Adapter for Siebel EAI Sample Workflows link.

Download the file and extract it to a local directory.

Use the Siebel Tools utility to import the seebeyond.sif file from the above location into your
Siebel Server.

After importing the file, use the Siebel Tools utility to compile your SRF file.

Stop the Gateway Server and the Siebel Server.

Replace the file on the Siebel Server with the one you created in step 2.

Restart the Gateway Server and the Siebel Server.

Installing SiebelMessage XSD Generation Process.xml for Siebel 7.7
and 7.8.x
If you are using Siebel 7.7 or 7.8.x, before you can create an OTD using the OTD Wizard, you
must install the SiebelMessage XSD Generation Process.xml file.

▼ To Install the SiebelMessage XSD Generation Process.xml File
Complete the steps under “Installing seebeyond.sif for Siebel 7.5.x” on page 28.

Open the Siebel Tools utility.

In the Object Explorer, click the Workflow Process.

Right-click the item in the Object list, and then click Import Workflow Process.

4

1

2

3

4

5

6

7

8

Before You Begin

1

2

3

Creating Siebel EAI OTDs

Developing OTDs for Oracle Java CAPS Application Adapters • December 201128

http://java.net/projects/javacaps-samples/pages/Home

Browse to the directory that contains SiebelMessage XSD Generation Process.xml.

This file is included in the ZIP file you downloaded when you imported seebeyond.sif.

Click Open to begin importing the Workflow template.

Select your project.

Stop the Gateway Server and the Siebel Server.

Use the Siebel Tools utility to compile your SRF file.

Copy the SRF file to the objects folder in your Siebel Server.

Restart the Gateway Server and the Siebel Server.

Creating the OTD
Steps required to create an OTD include:

■ Selecting a wizard type
■ Specifying connection information
■ Selecting integration objects
■ Specifying OTD names

4

5

6

7

8

9

10

Creating Siebel EAI OTDs

Developing OTDs for Application Adapters 29

▼ To Create the OTD

In the Projects window, right click the Project, point to New, and then select Object Type
Definition.

The Select Wizard Type page appears, displaying the available OTD wizards.

Select Siebel EAI and then click Next.

The Connect to Siebel EAI Server window appears.

1

2

Creating Siebel EAI OTDs

Developing OTDs for Oracle Java CAPS Application Adapters • December 201130

Enter the following information into the text fields:

■ Version: The Siebel Server version (the same version used to create the OTD appears by
default)

■ Connection String
■ For Siebel 7.5.x:

siebel://<GatewayServer>/<EnterpriseServerName>/<ApplicationObjectManager>/

<SiebelServerName>

■ For Siebel 7.7 and 7.8.x:
siebel://<SiebelServerName>:<port>/<EnterpriseServerName>/

<ApplicationObjectManager>

■ Repository Name: Siebel Repository

■ User Name: A valid user name
■ Password: A valid password
■ Code Page: The code page to use for value mapping

Click Connect.

A message appears confirming a successful connection.

Click the Next button.

The Select Integration Objects window appears.

3

4

5

Creating Siebel EAI OTDs

Developing OTDs for Application Adapters 31

Scroll down the Integration Objects selection table and select Account Interface.

Click Add.

Account Interface appears in the Selected Objects window.

Click Next.

The Specify the OTD names window appears.

6

7

8

Creating Siebel EAI OTDs

Developing OTDs for Oracle Java CAPS Application Adapters • December 201132

In the OTD Name column, enter the name for the new OTD, and then click Next.

The Review your Selections window appears.

Click Finish.

A message appears confirming the successfully generated OTD.

▼ To Relaunch the OTD

From the Project tree, right-click the OTD, point to Version Control, and then select Check Out
from the shortcut menu.

The Version Control - Check Out dialog box appears.

Select Check Out on the Version Control - Check Out window.

9

10

1

2

Creating Siebel EAI OTDs

Developing OTDs for Application Adapters 33

Right-click the OTD once again and select Relaunch.

The Connect to Siebel EAI Server window appears.

The fields (with the exception of Password) will be populated with metadata information
selected when building the original OTD.

Enter a valid password in the Password field.

Click Connect.

A message appears confirming a successful connection.

Click Next.

The Select Integration Objects window appears and is already populated with the previously
selected Integration Object.

Note – If you attempt to select a different Integration Object, an error dialogue appears.

Click Next.

The OTD Name column is already populated with the original OTD’s name.

Click Next.

The Review your Selections window appears.

Click Finish.

A message appears confirming the successfully generated OTD.

3

4

5

6

7

8

9

Creating Siebel EAI OTDs

Developing OTDs for Oracle Java CAPS Application Adapters • December 201134

Creating COBOL Copybook OTDs
This topic describes how to use the COBOL Copybook Converter OTD Wizard to build OTDs
and introduces the Converter’s OTD methods. You use the COBOL Copybook wizard within
NetBeans IDE to create Copybook Converter OTDs. These OTDs can then later be used in
Collaboration Definitions to create the business logic behind the Collaborations.

▼ To Create COBOL Copybook OTDs
On the Project tree, right click the Project, point to New, and then select Object Type Definition.
The New Object Type Definition Wizard window appears, displaying the available OTD
wizards.

Click COBOL Copybook and then click Next.
The New Wizard - Cobol Copybook window appears.

Browse for the desired COBOL Copybook file and highlight it.

Click the Add button to include a copybook file in a project.

Repeat Steps 3 and 4 for each file to include in the project. To remove a copybook file from the
project, highlight the file name in the Select Files container and click Remove.

FIGURE 15 COBOL Copybook Wizard—COBOL Copybook Selection

1

2

3

4

5

Creating COBOL Copybook OTDs

Developing OTDs for Application Adapters 35

Click Next.
The Configure Converter Options page appears.

Optionally, add or remove checks from boxes to enable or disable options:

■ Ignore copybook content beyond column 72: The Converter expects copybooks to be
width-compliant with IBM’s COBOL reference format. Deselect this box to process books
with content (excluding comments/line numbers) beyond column 72. Default: enabled (box
is checked).

■ Check Item names against reserved words : The Converter disallows data item names that
match reserved words. Deselect this box to process copy books that use reserve words for
item names. When name checking is disabled, the Converter cannot process copy books
with unnamed items (i.e., implicit ”FILLER’ items). Default: enabled (box is checked).

Click Finish.
The OTD Editor window appears, displaying the OTD.

Parsing Copybook Entries
New functionality in COBOL Copybook Converter 5.1.2 and above, allows for more accurate
parsing of data entries. The Converter’s parser no longer assigns globally unique names to
identical data entries. If there are more than two data entries with identical names, level
numbers, and same direct parent data entry, an exception will be thrown at parsing time, as
follows:

com.stc.cococo.builder.CocoParseException: CCCB4200:

FIGURE 16 COBOL Copybook Wizard—Configure Converter Options

6

7

8

Creating COBOL Copybook OTDs

Developing OTDs for Oracle Java CAPS Application Adapters • December 201136

Parse exception at line 126, column 64, item (n/a), token (n/a):

CCCB4201: Copybook item processing error.

CCCB4228: Identical data name ’9 DEDUCTIBLE-LOSS-SETTLMNT-COOL FQN =

FORMATTER-COPYBOOK:SEEB-GROUP-LST-END-3-0006RG:NEW-IMPORT-GROUP-LST-END-3:

IMPORT-GRP-LST-END-3-0026EV:IE01-ENDORSEMENT-SUBJEC-0026ET:

DEDUCTIBLE-LOSS-SETTLMNT-COOL’ found under parent data item ’7
IE01-ENDORSEMENT-SUBJEC-0026ET FQN = FORMATTER-COPYBOOK:

SEEB-GROUP-LST-END-3-0006RG:NEW-IMPORT-GROUP-LST-END-3

:IMPORT-GRP-LST-END-3-0026EV:IE01-ENDORSEMENT-SUBJEC-0026ET’

Relaunching OTDs
A single OTD can consist of many lines of metadata. When a change to the metadata occurs in
an OTD, it does not have to be recreated from scratch. Using the Relaunch function allows the
OTD to be rebuilt and saved under the same name, then relaunched back to the same Java
Collaboration Definition (JCD) or Business Process Execution Language (BPEL).

▼ To Relaunch an Existing OTD
In the Projects window, right-click on the OTD. From the submenu, click Relaunch.

The Select Files Wizard opens.

Enter the File Name (or Browse and Select) that you want to relaunch and click Next.

Note – The File Name must be identical to the original since the name is used to generate the
OTD name.

Continue with the Wizard as described when creating the OTD.

Click Finish button.

When relaunching an OTD, an existing collaboration will not be affected if:

■ New columns are added.
■ Deleted columns are not used in the original collaboration.

Note – Validation will fail if existing collaborations are not modified when columns are
renamed or deleted.

1

2

3

4

Relaunching OTDs

Developing OTDs for Application Adapters 37

COBOL Copybook OTD Methods
When an OTD is built from a copybook file, it creates an OTD which contains methods that
may be used with the converted contents of the copybook business object.

The figure above shows the Copybook Converter OTD built from the sample copybook
qan3glr1.cobol. The OTD has a node for each of the business processes that may be performed
on the converted copybook. The unmarshal method allows business processes to flow data into
the copybook OTDs and access contents field-by-field.

The Object Type Definitions (OTDs) created by the COBOL Copybook Converter provide the
methods that you can use to extract content from or insert content into OTDs. This section
describes the COBOL copybook methods (operations) that are available for you to use in the
source code for the Collaborations or Business Activities.

■ “OTD Method Guidelines” on page 38
■ “Root-level Methods” on page 40
■ “Non-Root Methods” on page 48
■ “BPEL Operations” on page 49

OTD Method Guidelines
This section addresses the concerns of global behavior, effects, and assumptions inherent to
most methods.

FIGURE 17 Sample Copybook OTD

COBOL Copybook OTD Methods

Developing OTDs for Oracle Java CAPS Application Adapters • December 201138

Encoding Behavior for Redefinitions
The unmarshal and marshal methods of a COBOL Copybook OTD (with the exception of the
marshalToString and unmarshalFromString) have been reimplemented to heed the OTD
structure’s data type information. When data flows into or out of the OTD, character set
encoding is applied only to the portions of the data that fall on or draw from OTD fields
corresponding to items in the Copybook specification that store character data (i.e., usage
display items, whether implicitly or explicitly specified). Data for other types of OTD fields are
not subject to charset encoding, since these fields are capable of containing binary
(non-character) data.

An ambiguity arises when an OTD field, corresponding to a usage display item, is also the object
of redefinition(s) in the Copybook. Redefined items may have alternate, multiple storage types,
and to deal with such an item, the OTD must decide which one of the multiple definition is in
effect at the time of unmarshaling or marshaling, in relation to the available data. The current
implementation of COBOL Copybook OTDs resolve this ambiguity by ignoring redefinitions.
The decision whether or not to apply encoding to a field is based solely on the item’s original
storage specification in the Copybook.

DBCS Items

COBOL Copybook OTDs do not support any particular Double Byte Character Set (DBCS)
encoding. When inserted into DBCS nodes, it will not perform inspections of data to determine
what specific DBCS encoding is used by character codes or byte sequences (e.g., discerning
between a double-byte and a multi-byte encoding). As a consequence:

■ DBCS items are represented in the OTD by Java byte array nodes, and their content will be
treated as binary "blobs" with the following rules:
■ If content is set directly to a DBCS node, it is stored as-is.
■ If the content is retrieved directly from the DBCS node, the content that was originally

set is also returned as-is.
■ If content is unmarshaled from the OTD root, the portion corresponding to the DBCS

node is stored as-is. It should be noted however, that correctness of the aggregate input is
the responsibility of the root-level unmarshal call (e.g., do not use unmarshalFromString
if the OTD contains DBCS items).

■ If the OTD’s content is marshaled, the portion corresponding to the DBCS node is
yielded as-is, and is excluded from any character set transcoding that character data
nodes of the OTD may be subjected to.

Copybook OTDs will not auto-truncate DBCS data. Since the OTD cannot know the
specific DBCS encoding of the data, it cannot correctly truncate it at the correct character
boundaries. If the content which is set directly to a DBCS node exceeds the item’s width, the
OTD will raise an exception.

COBOL Copybook OTD Methods

Developing OTDs for Application Adapters 39

Root-level Methods
The following methods are the root-level methods provided:

■ “enableUnmarshalValidation(boolean enable) Method” on page 40
■ “marshal() Method” on page 41
■ “marshal(String charset) Method” on page 42
■ “marshal(OtdOutputStream out) Method” on page 43
■ “marshal(OtdOutputStream out, String charset) Method” on page 43
■ “marshalToString() Method” on page 44
■ “reset() Method” on page 44
■ “resetHigh() Method” on page 44
■ “resetLow() Method” on page 45
■ “retrieveEncoding() Method” on page 45
■ “unmarshal(byte[] in) Method” on page 45
■ “unmarshal(OtdInputStream in) Method” on page 45
■ “unmarshal(OtdInputStream in, String charset) Method” on page 46
■ “unmarshal(byte[] in, String charset) Method” on page 46
■ “unmarshalFromString(String in) Method” on page 47
■ “useEncoding(String enc) Method” on page 47

enableUnmarshalValidation(boolean enable) Method
The enableUnmarshalValidation(boolean enable) method causes the OTD to validate data flow
during an unmarshal call.

COBOL Copybook OTD Methods

Developing OTDs for Oracle Java CAPS Application Adapters • December 201140

TABLE 1 enableUnmarshalValidation(boolean enable) Method

Syntax Throws Examples

void
enableUnmarshalValidation(boolean
enable)

None. // enable validation during unmarshal

// call to unmarshal may raise an exception if content is
not compatible

byte[] content = ...

OTD_1.enableUnmarshalValidation(true);

OTD_1.unmarshal(content);

// disable validation during unmarshal

// call to unmarshal will not raise data-related
exceptions

// instead, data-related exceptions may/will occur when

// accessing specific nodes with invalid data.

byte[] content = ...

OTD_1.enableUnmarshalValidation(false);

OTD_1.unmarshal(content)

marshal() Method
The marshal() method serializes the OTD’s content as an array of bytes. The content is encoded
with the OTD’s current encoding, which is the encoding specified when data was last
unmarshaled (see setEncoding() and unmarshal() for additional details). If no data was
unmarshaled prior to a marshal call, then the OTD defaults to EBCDIC CP037 encoding. If the
OTD content is incompatible with the current encoding (this can happen when data was
unmarshaled with a different encoding than the current one), a
com.stc.otd.runtime.MarshalException occurs.

COBOL Copybook OTD Methods

Developing OTDs for Application Adapters 41

TABLE 2 marshal() Method

Syntax Throws Examples

byte []
marshal()

MarshalException, IOException,
UnsupportedEncodingException

// populate OTD and marshal entire content in
EBCDIC

OTD_1.setField1(...

OTD_1.setField2(...

...

byte[] output = OTD_1.marshal();

// write ASCII data to OTD

// edit some fields

// marshal OTD data (still ASCII)

byte[] content = ...

OTD_1.unmarshal(content, "US-ASCII");

OTD_1.setField9(...

OTD_1.setField10(...

byte[] output = OTD_1.marshal();

// write ASCII data to OTD

// edit some fields

// marshal OTD data using different encoding (may
fail depending on data)

byte[] content = ...

OTD_1.unmarshal(content, "US-ASCII");

OTD_1.setField9(...

OTD_1.setField10(...

OTD_1.useEncoding("CP277");

byte[] output = OTD_1.marshal();

marshal(String charset) Method
The marshal(String charset) method serializes the content of the OTD as an array of bytes. The
content is encoded using the user-specified character set. The encoding specified in this call acts
as a temporary override to the OTD’s current encoding, but does not become the current
encoding (see setEncoding and unmarshal documentation for information). If the OTD
content is not compatible with the current encoding (this can happen if data was unmarshaled
using an encoding different from the current one), com.stc.otd.MarshalException occurs. If the

COBOL Copybook OTD Methods

Developing OTDs for Oracle Java CAPS Application Adapters • December 201142

specified charset value does not name a supported character set, a
java.io.UnsupportedEncodingException is generated.

TABLE 3 marshal(String charset) Method

Syntax Throws Examples

byte[]
marshal(String
charset)

MarshalException, IOException,
UnsupportedEncodingException

byte[] content = cocoOtd.marshal("cp037"); //
retrieve OTD content as EBCDIC databyte[]
content = cocoOtd.marshal("US-ASCII"); // retrieve
OTD content as ASCII data

marshal(OtdOutputStream out) Method
The marshal(OtdOutputStream out) method serializes the content of the OTD and writes it to
the supplied output stream object. The output is encoded using the same user-specified
encoding used when the data was last unmarshaled (see setEncoding and unmarshal
documentation for additional details). If no data was unmarshaled prior to the call to marshal,
then EBCDIC CP037 encoding is used. If the OTD content is not compatible with the current
encoding (this can happen if the data was unmarshaled using an encoding different from the
current one), com.stc.otd.MarshalException occurs. A java.io.IOException is generated if an
output error occurs in attempting to write data to the stream object.

TABLE 4 marshal(OtdOutputStream out) Method

Syntax Throws Examples

void
marshal(OtdOutputStream
out)

MarshalException, IOException,
UnsupportedEncodingException

marshal(OtdOutputStream out, String charset) Method
The marshal(OtdOutputStream out, String charset) method flows data out from the OTD to the
supplied stream object, using the specified charset encoding. The given encoding acts as a
temporary override to the OTD’s current encoding, it does not become the current encoding
(see setEncoding and unmarshal documentation for information).

If the specified charset is not compatible with the OTD content (this can happen when the data
was unmarshaled to the OTD using a different encoding),
com.stc.otd.runtime.MarshalException occurs. If the encoding is not supported or recognized,
java.io.UnsupportedEncodingException is generated.

COBOL Copybook OTD Methods

Developing OTDs for Application Adapters 43

TABLE 5 marshal(OtdOutputStream out, String charset) Method

Syntax Throws Examples

void marshal(OtdOutputStream
stream, String charset)

MarshalException, IOException,
UnsupportedEncodingException

marshalToString() Method
The marshalToString() method serializes the content of the OTD to a String object. The String
is created by decoding the byte data with the OTD’s current encoding, which is the encoding
specified when data was last unmarshaled (see setEncoding and unmarshal documentation for
additional details). If no data was unmarshaled prior to a marshal call, then the OTD defaults to
EBCDIC CP037 encoding. Only use this method with copybook OTDs built from copybooks
comprised solely of usage display entries. Using this method on OTDs designed to hold binary
data (e.g., packed decimal, internal decimal) may invalidate the data, because portions of the
binary content may not have a suitable mapping to UTF-8. A
java.io.UnsupportedEncodingException may occur if the current encoding (i.e., the encoding
used by the last unmarshal call) is not capable of encoding the data. This is possible because
certain charset encodings in Java are not two-way encodings (encodings that can decode or
encode, but not both).

TABLE 6 marshalToString Method

Syntax Throws Examples

String
marshalToString()

MarshalException, IOException,
UnsupportedEncodingException

reset() Method
The reset() method initializes the storage space of the OTD as follows:

■ alphanumeric fields (PIC X) - blank spaces (EBCDIC value 0x40)
■ numeric fields (PIC 9) - binary zero
■ packed decimal fields - signed-trailing packed binary zero

TABLE 7 reset() Method

Syntax Throws Examples

void reset() None.

resetHigh() Method
The resetHigh() method initializes the entire storage space of the OTD to high bit values; each
byte is initialized to 0xFF.

COBOL Copybook OTD Methods

Developing OTDs for Oracle Java CAPS Application Adapters • December 201144

TABLE 8 resetHigh() Method

Syntax Throws Examples

void resetHigh() None.

resetLow() Method
The resetLow() method initializes the OTD storage space to low bit values; each byte is
initialized to 0x0.

TABLE 9 resetLow() Method

Syntax Throws Examples

void resetLow() None.

retrieveEncoding() Method
The retrieveEncoding() method returns the canonical name of the current OTD encoding. The
default current OTD encoding is "CP037" until it is changed by a successful useEncoding call,
or by a call to one of the encoding-specifiable unmarshal methods. The canonical name may
differ from the one used previously to set the current encoding. See the Java 2 API
documentation for java.nio.charset. Charset for more information.

TABLE 10 retrieveEncoding() Method

Syntax Throws Examples

String retrieveEncoding() None.

unmarshal(byte[] in) Method
The unmarshal(byte[] in) method deserializes the given input into an internal data tree. Data
flowed to the OTD using this method must use EBCDIC CP037 encoding. This method sets the
OTD’s current encoding to EBCDIC CP037, which is used when data is subsequently marshaled
without an overriding encoding; e.g., as allowed in a marshal(OtdOutputStream, String) call.

TABLE 11 unmarshal(byte[] in) Method

Syntax Throws Examples

void unmarshal(byte[] in) UnmarshalException, IOException

unmarshal(OtdInputStream in) Method
The unmarshal(OtdInputStream in) method populates the OTD using the supplied
OtdInputStream object as the data source. The supplied object must be an opened stream with
available data. A com.stc.otd.runtime.UnmarshalException is generated if the data obtained

COBOL Copybook OTD Methods

Developing OTDs for Application Adapters 45

from the stream is incompatible with the OTD, and a java.io.IOException is generated if any
other input error occurs in attempting to read data from the stream object. The stream object
must flow data encoded in EBCDIC CP037. This method sets the OTD’s current encoding to
EBCDIC CP037, which is used when data is subsequently marshaled without overriding
encoding; e.g., as allowed in a marshal (OtdOutputStream, String) call.

TABLE 12 unmarshal(OtdInputStream in) Method

Syntax Throws Examples

void unmarshal(OtdInputStream in) UnmarshalException, IOException

unmarshal(OtdInputStream in, String charset) Method
The unmarshal(OtdInputStream in, String charset) method flows data to the OTD from the
supplied Stream object. The stream must be open and have available data. The charset
argument specifies the encoding of the stream data. The specified encoding becomes the
current encoding of the OTD and is used when data is subsequently marshaled without
overriding encoding; e.g., as allowed in a marshal(OtdOutputStream, String) call.

If the stream data is incompatible with the OTD, a com.stc.otd.runtime.UnmarshalException is
generated. If the stream data cannot be read, a java.io.IOException is generated. If the charset
value does not name a supported charset, or if it names a supported charset with one-way
encoding (capable of decoding or encoding, but not both), a
java.io.UnsupportedEncodingException is generated.

TABLE 13 unmarshal(OtdInputStream in, String charset) Method

Syntax Throws Examples

void unmarshal(OtdInputStream in,
String charset)

UnmarshalException, IOException,
UnsupportedEncodingException

unmarshal(byte[] in, String charset) Method
This method populates the OTD using the data supplied in the byte array in. The charset
argument specifies the encoding of the given data. The specified encoding becomes the current
encoding of the OTD, and is used when data is subsequently marshaled without an overriding
encoding; e.g., as allowed in a marshal (OtdOutputStream, String) call. If the specified charset
value does not name a supported character set or names a supported charset with one-way
encoding (one that can decode or encode, but not both), a
java.io.UnsupportedEncodingException is generated.

COBOL Copybook OTD Methods

Developing OTDs for Oracle Java CAPS Application Adapters • December 201146

TABLE 14 unmarshal(byte[] in, String charset) Method

Syntax Throws Examples

void
unmarshal(byte[] in,
String charset)

Unmarshal

Exception, IOException,
UnsupportedEncodingException

byte[] bytes = ...cocoOtd.unmarshal(bytes, "cp037"); //
Interpret bytes content as EBCDIC
datacocoOtd.unmarshal(bytes, "US-ASCII"); //
Interpret bytes content as ASCII data

unmarshalFromString(String in) Method
The unmarshalFromString(String in) method populates the OTD using the specified String
object as the input source. This method is useful only to unmarshal data to copybook OTDs
comprised solely of character-data records (entries specified implicitly or explicitly as USAGE
DISPLAY). The current OTD encoding (see setEncoding and unmarshal document for
additional details) is used to encode the String’s bytes.

TABLE 15 unmarshalFromString(String in) Method

Syntax Throws Examples

void unmarshalFromString(String
in)

UnmarshalException, IOException

useEncoding(String enc) Method
Use the useEncoding(String enc) method to designate a particular encoding to be used as the
OTD’s current encoding. The current OTD encoding is used when the OTD is marshaled
without an overriding encoding, which is permitted for the marshal (OtdOutputStream, String)
method.

An OTD’s current encoding is initially EBCDIC (CP037) when it is instantiated. There are two
ways to change it:

1. Unmarshaling the data, whereby the data’s stated encoding becomes the current encoding.
2. Using this method to specify it.

Changing the encoding through the use of this method causes reset() to be subsequently (and
automatically) called, causing the OTD’s existing content to be erased. This behavior exists to
avoid situations where data, successfully unmarshaled with one charset, fails to marshal under a
different charset, due to the absence of codepoint mappings between the two encodings. Use the
marshal(String) method when data, which flowed in using a charset, must then be flowed out
with a different charset.

If the specified encoding is the same as the current OTD encoding, the call returns without
affecting the OTD’s state (i.e., reset() is not called) and the data and current encoding will
remain unchanged.

COBOL Copybook OTD Methods

Developing OTDs for Application Adapters 47

If the specified encoding is not supported, or is not a two-way encoding (one that can decode or
encode, but not both), a java.io.UnsupportedEncodingException is thrown.

TABLE 16 useEncoding(String enc) Method

Syntax Throws Examples

void useEncoding(String enc) UnsupportedEncodingException

Non-Root Methods
Every leaf node in a COBOL Copybook OTD represents an elementary item in the Copybook
source. For every given leaf node, the OTD provides “getter” and “setter” methods of which the
return type and input types depend on the data type and usage type specified in the copybook
for the elementary item to which the node corresponds.

For a given non-repeating leaf node named Datum, the following method forms are provided,
where T is determined from the follow table.

■ T getDatum()
■ void setDatum(T)

TABLE 17 Datum Method Forms

Data Types Display
COMP or
COMP-4 COMP-1 COMP-2 COMP-3 COMP-5 INDEX

Alphabetic

For example:

PIC AAA

String

Alphanumeric

For example:

PIC X9

String String String

Alphanumeric edited

For example:

PIC XB9

String

Numeric edited

For example:

PIC ZZZ99

String

COBOL Copybook OTD Methods

Developing OTDs for Oracle Java CAPS Application Adapters • December 201148

TABLE 17 Datum Method Forms (Continued)

Data Types Display
COMP or
COMP-4 COMP-1 COMP-2 COMP-3 COMP-5 INDEX

DBCS

For example

PIC GGBGG

byte[]

External floating point

For example:

PIC +9V99E+99

BigDecimal

Numeric integer (9
digits or less)

int int int int

Numeric floating point

(COMP-1 or COMP-2
items)

BigDecimal

Numeric Integer (10 to
18 digits)

long long long long

Numeric integer (19
digits or more)

BigDecimal Big Decimal Big
Decimal

Big
Decimal

For repeating leaf nodes, these two alternative methods are provided:

■ T getDatum(int i)
■ void setDatum(int i, T)

where i is expected to be a value from 0, representing the ordinal of the desired repetition
instance, and where T is determined as previously described.

BPEL Operations
When using BPM to process COBOL copybooks, the operations in Table are available.

TABLE 18 BPEL COBOL Operations

BPM Operation Activity

Marshal Allows you to marshal an OTD instance to a string.

MarshalToBytes Marshals an OTD instance (or OTD tree) to byte array using current encoding
(CP037).

MarshalToString Marshals an OTD instance (or OTD tree) to string using current encoding
(CP037).

COBOL Copybook OTD Methods

Developing OTDs for Application Adapters 49

TABLE 18 BPEL COBOL Operations (Continued)
BPM Operation Activity

Unmarshal This operation is retained for purposes of compatibility with the previous
release of the COBOL Copybook Converter. The Unmarshal operation allows
you to select unmarshaling from byte array or from string.

UnmarshalFromBytes Unmarshals data from byte array into an OTD instance.

UnmarshalFromString Unmarshals data from string into an OTD instance.

Note – It is recommended that you use the Marshal and Unmarshal methods since they allow
for more control over the output data. Both methods are available for purposes of increased
compatibility.

Creating an Oracle Applications OTD
The Oracle Applications Adapter uses a wizard-based OTD builder to create OTDs based on
your Oracle tables. The wizard queries the Oracle tables to determine the hierarchies of the
interface tables for a particular module, and creates a corresponding OTD. It also sets up the
necessary staging table and the stored validation procedures to be run against the table.

Creating an Oracle Applications OTD

Developing OTDs for Oracle Java CAPS Application Adapters • December 201150

When building an OTD, the wizard calls many JDBC APIs (for example,
getProcedureColumns()) which in turn queries the database and returns the resultset. While
the Adapter itself doesn’t issue the queries directly, it is the Oracle driver that translates the API
into multiple queries. In a situation where there is a lot of data in the database, it may take a
while to return all the resultsets to the wizard. The performance of the queries is dependent on
the execution path which is formulated when a SQL call is prepared. Not having good statistics
in the data dictionary could produce a long running query.

Oracle recommends doing the following to gather vital statistics to improve performance:

1. Set the following in either the init.ora file or spfile (whichever is appropriate for your
installation):

_table_lookup_prefetch_size=0

2. Analyze the SYS schema for the system as follows:

a. Start SQL*Plus
b. Connect as the sys user
c. exec dbms_stats.gather_schema_stats(’SYS’);

Keep in mind that significant changes to the database would affect the data dictionary (like
new tables, indexes, and so on). You should consider running the analysis regularly.

FIGURE 18 Oracle Applications OTD

Creating an Oracle Applications OTD

Developing OTDs for Application Adapters 51

Note – Please consult your Database Administrator or Oracle before taking these steps as it
may impact other applications.

▼ To Create an Oracle Applications OTD
In the projects window, right-click your Project, point to New, and then click Object Type
Definition.

The Object Type Definition Wizard appears.

1

Creating an Oracle Applications OTD

Developing OTDs for Oracle Java CAPS Application Adapters • December 201152

From the New Object Type Definition Wizard window, select the Oracle Applications Wizard and
click Next.

The Specify Database Connection Information page appears.

Specify the applicable connection information for your database including:

■ Host Name - The server where Oracle Applications resides.
■ Port ID- The port number of Oracle Applications.
■ SID - The name of the Oracle instance (equivalent to the database name).
■ User Name - The user name that the Adapter uses to connect to the database.
■ Password - The password used to access the database.

2

3

Creating an Oracle Applications OTD

Developing OTDs for Application Adapters 53

Click Next.

The Select Oracle Applications Module window appears.

Select the Business Function and Module and choose whether to use fully-qualified names and
to replace existing stored procedures.

Module Information Description

Business Function Currently Financial and Manufacturing are the only supported business functions.

4

5

Creating an Oracle Applications OTD

Developing OTDs for Oracle Java CAPS Application Adapters • December 201154

Module Information Description

Module The available modules in the Financial business function are:
■ Auto Invoice

■ Auto Lock

■ Bank Statement

■ Budget

■ Customers

■ Daily Rates

■ Fixed Assets Categories

■ Fixed Assets Mass Additions

■ Journal

■ Payable
The available modules in the Manufacturing business function are:

■ Customer Item

■ Customer Item Cross-Reference

■ Cycle Count Entries

■ Item Import

■ Item Transactions

■ Order Requisition

■ Order Import

■ Order Receiving

■ Replenishment

Use fully-qualified
names in the Java code

Specifies whether the generated Java code uses fully-qualified names.

Replace Existing Stored
Procedures

Specifies to replace any existing stored procedures or stop the wizard if any stored
procedures exist. You must select this option in order to continue with the wizard.

Take care to back up any stored procedures you have modified before continuing
with this wizard.

Note – A set of stored procedures are installed with the Oracle Applications Adapter. Unless
these stored procedures are somehow deleted, the only way to create the OTD is by selecting
Replace Existing Stored Procedures, otherwise, the existing stored procedures are not
overwritten, an error appears, and the wizard stops.

Creating an Oracle Applications OTD

Developing OTDs for Application Adapters 55

Click Next to continue.

The Specify the OTD Name window appears.

Enter a name for the OTD.

6

7

Creating an Oracle Applications OTD

Developing OTDs for Oracle Java CAPS Application Adapters • December 201156

Click Next.

The Review Your Selections dialog box appears.

View the summary of the OTD. If you find any errors, click Back and correct the information.

If you are satisfied with the OTD information, click Finish to generate the OTD.

Caution – If the Oracle Applications DDL Scripts have not been properly installed, an error
message occurs before the OTD can be successfully generated.

The resulting OTD appears in the Java CAPS IDE. The time it takes the OTD to generate
depends on the module you selected and your system performance.

8

9

10

Creating an Oracle Applications OTD

Developing OTDs for Application Adapters 57

The generated OTD appears in the OTD Editor. Nodes and methods for your OTD depend on
the module you selected and the configuration of your tables.

Exposed Oracle Applications OTD Nodes

Staging Table Node
This node represents the Staging Table created inside the Oracle database. All columns in the
table are exposed, and can be dragged and dropped in the Java Collaboration. The node has a
name of the form SB_<Oracle_Interface_Table_name> having a maximum length of 30
characters.

The Staging Table is created from the Interface Table with the following six extra fields used to
support the pre-validation process:

■ SB_EWAY_ID
■ SB_GROUP_ID
■ SB_OBJECT_ID
■ SB_PASS_OR_FAIL
■ SB_ERROR_CODE
■ SB_ERROR_MESSAGE

All of the ID fields (the first three fields shown above) are used for pre-validation purposes
within CAPS.

Exposed Oracle Applications OTD Nodes

Developing OTDs for Oracle Java CAPS Application Adapters • December 201158

COUNT

Description
Stored procedures for both the OTD level and the interface tables level are defined in the utility
package.
■ If it is located at the OTD root level, the data is counted from all Staging Tables.
■ If it is located at the Staging Table level, the data is counted only for that specific Staging

Table.

Parameters
Depends upon specific implementation. Typically, it contains at least four input VARCHAR
parameters corresponding to:
■ sb_eway_id

■ sb_group_id

■ sb_object_id

Note – If you do not assign a value (including the null value) to the above parameters, the
procedure acts on all associated records.

■ sb_pass_or_fail

This parameter accepts the following values:
■ P– records that have passed
■ F– for records that have failed
■ I– all records

Requirements
The stored procedure name is derived from the Open Interface name or the Staging Table
name, according to the following convention:
■ At the root level:

If the OPEN_INTERFACE tab has a Util_Name attribute, then this value is used:
FN_CNT_<UTILNAME>. Otherwise, the value of the attribute Name is used:
FN_CNT_<Open_Interface_Name>.
For example:
■ Customer Item: FN_CNT_CUSTITEMS
■ Item Import: FN_CNT_ITEM_IMPORT

At the staging table level:

Exposed Oracle Applications OTD Nodes

Developing OTDs for Application Adapters 59

If the Interface_Table tag has a Util_Name attribute, then this value is used:
FN_CNT_<UTILNAME>. Otherwise, the short name of the Name attribute is used:
FN_CNT_<Short_Table_Name>.

For example:
■ Customer Item: FN_CNT_MTL_CI_INTERFACE_INT
■ Item Import: FN_CNT_MTL_SYSTEM_ITEMS_INT

DELETE

Description
Stored procedures for both OTD level and interface level are defined in the utility package.

■ If it is located at the OTD root level, the data from all Staging Tables is deleted.
■ If it is located at the Staging Table level, only the data for that specific Staging Table is

deleted.

Parameters

Depends upon the specific implementation. Typically, it contains at least four input VARCHAR
parameters corresponding to:

■ sb_eway_id

■ sb_group_id

■ sb_object_id

Note – If you do not assign a value (including the null value) to the above parameters, the
procedure acts on all associated records.

■ sb_pass_or_fail

This parameter accepts the following values:
■ P– records that have passed
■ F– for records that have failed
■ I– all records

Requirements

The stored procedure name is derived from the Open Interface name or the Staging Table
name, according to the following conventions:

■ At the root level:

Exposed Oracle Applications OTD Nodes

Developing OTDs for Oracle Java CAPS Application Adapters • December 201160

If the OPEN_INTERFACE tab has a Util_Name attribute, then this value is used:
SP_DEL<UTILNAME>. Otherwise, the value of the attribute Name is used:
SP_DEL_<Open_Interface_Name>.
For example:
■ Customer Item: SP_DEL_CUSTITEMS
■ Item Import: SP_DEL_ITEM_IMPORT

At the staging table level:

If the Interface_Table tag has a Util_Name attribute, then this value is used:
SP_DEL_<UTILNAME>. Otherwise, the short name of the Name attribute is used:
SP_DEL_<Short_Table_Name>.

For example:
■ Customer Item: SP_DEL_MTL_CI_INTERFACE_INT
■ Item Import: SP_DEL_MTL_SYSTEM_ITEMS_INT

INITIALIZE

Description
This optional packaged stored procedure is used to initialize the user’s profile for Oracle
Applications.

Parameters

Depends upon the specific implementation. Typically, it accepts the Organization ID as a
parameter.

Requirements

Inside the script package, this stored procedure must have the name Initialize_Profile.

MOVE

Description
Stored procedures for both OTD level and interface tables level are defined in the utility
package.

■ If it is located at the OTD root level, it copies the data from all Staging Tables to the
corresponding Oracle Interface Tables.

Exposed Oracle Applications OTD Nodes

Developing OTDs for Application Adapters 61

■ If it is located at the Interface Table level, then the data for only that specific Staging Table is
copied to its corresponding Open Interface Table.

This procedure acts only on records with the ID values specified.

Parameters

Depends upon the specific implementation. Typically, it contains at least four input VARCHAR
parameters corresponding to:

■ sb_eway_id

■ sb_group_id

■ sb_object_id

■ sb_pass_or_fail

This parameter accepts the following values:
■ P– records that have passed
■ F– for records that have failed
■ I– all records

Requirements

The stored procedure name is derived from the Open Interface name or the Staging Table
name, according to the following convention:

■ At the root level:
If the OPEN_INTERFACE tab has a Util_Name attribute, then this value is used:
SP_MOV<UTILNAME>. Otherwise, the value of the attribute Name is used:
SP_MOV_<Open_Interface_Name>.
For example:
■ Customer Item: SP_MOV_CUSTITEMS
■ Item Import: SP_MOV_ITEM_IMPORT

At the staging table level:

If the Interface_Table tag has a Util_Name attribute, then this value is used:
SP_MOV_<UTILNAME>. Otherwise, the short name of the Name attribute is used:
SP_MOV_<Short_Table_Name>.

For example:
■ Customer Item: SP_MOV_MTL_CI_INTERFACE_INT
■ Item Import: SP_MOV_MTL_SYSTEM_ITEMS_INT

Exposed Oracle Applications OTD Nodes

Developing OTDs for Oracle Java CAPS Application Adapters • December 201162

REQUEST

Description
Concurrent Manager request function. This function is used to submit the concurrent
management request to Oracle Applications.

Parameters

Depends upon specific implementation.

Requirements

The function name is derived from the Open Interface name specified in the SML, and has the
form FN_REQUEST_<ORACLE_INTERFACE_NAME>.

REQUEST_STATUS

Description
Function used to retrieve the status of the Concurrent Manager request.

Parameters
■ INp_request_id IN NUMBER

Request Id for the concurrent Manager; basically, the return value from REQUEST.
■ INp_interval_sec IN NUMBER

The interval in seconds for the program to query for the result of a Concurrent Manager
request.

■ INp_maximum_sec IN NUMBER
The maximum allowed interval (in seconds) for the program to time out. This parameter
must have a non-zero value.

■ OUTp_detailed_status OUT VARCHAR2
Output parameter having the detailed description of the concurrent request.

Requirements

In order for Request_Status to correctly retrieve the Concurrent Manager request, you must
call commit after the Request stored procedure call; otherwise, Request_Status always returns
Pending status after a time-out.

Exposed Oracle Applications OTD Nodes

Developing OTDs for Application Adapters 63

VALIDATE

Description
This packaged stored procedure is used to perform the pre-validation of data in the Staging
Table.

■ If it is located at the OTD root level, the data in all Staging Tables is validated.
■ If it is located at the Staging Table level, only the data in that specific Staging Table is

validated.

Parameters

Depends upon specific implementation. By default, it contains three input VARCHAR
parameters corresponding to:

■ sb_eway_id

■ sb_group_id

■ sb_object_id

■ sb_pass_or_fail

Requirements

Inside the script package, this stored procedure must have the name VALIDATE.

SWIFT Alliance Gateway Adapter OTD Features
The SWIFT AG Adapter includes the SAGOutboundadapter Object Type Definition.

The SAGOutboundadapter OTD structure is organized into five sections: Configuration,
Constants, Primitives, RemoteApis (Remote APIs), and Services.

The figure above shows the SAGOutbound Adapter OTD as displayed in the Collaboration
Editor.

FIGURE 19 SAGOutboundadapter OTD

SWIFT Alliance Gateway Adapter OTD Features

Developing OTDs for Oracle Java CAPS Application Adapters • December 201164

Configuration Node
The Configuration node directly corresponds to the adapter Connectivity Map and
Environment Configuration properties. The OTD Configuration node offers dynamic
configuration (configuration on the fly). Dynamic configuration allows you to edit the
configuration, based on your Collaboration’s Business Rule logic, from the Java Collaboration
Editor, dynamically changing a parameter without shutting down your Project.

As displayed in the figure below, the Configuration section of the OTD is a Java representation
of the SWIFT AG Adapter Configuration file. The Configuration section with the expanded
FileActClient node and sub-nodes is displayed in the figure below.

FIGURE 20 SAGOutboundadapter OTD - Configuration Node

SWIFT Alliance Gateway Adapter OTD Features

Developing OTDs for Application Adapters 65

Constants Node
The Constants node provides a convenient way to select SNL related constants. Constants are
literal values that have a name (see the figure below).

OTD Constants are presented in the Collaboration Editor so that you can simply drag and drop
the Constant to a Business Rule, avoiding possible case or spelling errors.

Primitives Node
The Primitives node provides the full set of SNL Primitives as defined by the SNL specification.
For information regarding any of the SNL Primitives, refer to the SWIFTAlliance Gateway
Documentation. The SNL Primitives node and sub-nodes are displayed in the figure below.

FIGURE 21 SAGOutboundadapter OTD - Constants Node

SWIFT Alliance Gateway Adapter OTD Features

Developing OTDs for Oracle Java CAPS Application Adapters • December 201166

Advanced users can construct their own Primitives and send the Primitive using the SWIFT AG
Adapter API, directly communicating with SWIFTNet. Once they get a response to their
request, they can parse the response based on their Primitives. The parser is provide in the
OTDs Primitives section. The response can be dragged to the appropriate node to parse the
response.

SWIFT Alliance Gateway Adapter OTD Features

Developing OTDs for Application Adapters 67

FIGURE 22 SAGOutboundadapter OTD - Primitives Node

SWIFT Alliance Gateway Adapter OTD Features

Developing OTDs for Oracle Java CAPS Application Adapters • December 201168

Remote APIs Node
The SAGOutboundadapter OTD’s RemoteApis node exposes the SWIFT Remote API’s client
APIs. Just as the Primitives section provide a “message structure”, the RemoteApis section
provides a “communication function structure”. The Remote APIs allow you to perform special
lower level communication functions.

Service Node
The Service section of the OTD allows you to perform higher level message and communication
functions. Right-click the FileActClient or InterActClient node in the Collaboration to view the
available methods to perform your business functions (exchange message, get file, put file,
queue access, and so forth).

FIGURE 23 SAGOutboundadapter OTD - Remote APIs Node

SWIFT Alliance Gateway Adapter OTD Features

Developing OTDs for Application Adapters 69

See the sample Projects for an example of how this OTD is used to create your business logic.
The prjSAGCert Project demonstrates several business functions with one Collaboration.

Generating DTDs from PeopleTools 8.13
This topic describes how to generate DTDs from PeopleSoft 8.13, and use these DTDs to create
the OTDs used to create the business logic for the PeopleSoft Adapter. To create the OTD used
with the Business Process Manager (BPM) PeopleSoft Adapter Project, use the PeopleTools
Application Designer 8.13 to generate the necessary Document Type Definitions (DTDs) using
third-party software. You can then create an OTD that uses the generated DTD.

FIGURE 24 SAGOutboundadapter OTD - Services Node

Generating DTDs from PeopleTools 8.13

Developing OTDs for Oracle Java CAPS Application Adapters • December 201170

This section describes an alternative procedure that “reverse-engineers” a DTD from a sample
XML message generated within PeopleSoft. This procedure may not work for all message
definitions. You must know the data constraints for a particular message definition to correctly
populate the message with sample data.

Creating PeopleSoft DTDs involves the following steps:

■ “Generating and Publishing an XML Test Message” on page 71
■ “Extracting and Viewing the XML Test Message” on page 77
■ “Generating a DTD for the XML File” on page 83

Generating and Publishing an XML Test Message
The first step to generate a DTD is to use the PeopleSoft 8 Application Designer to generate a
PeopleSoft XML test message based on a particular message definition.

▼ To generate a PeopleSoft XML message

Log into PeopleTools.

Log into the Application Designer.

From the Application Designer’s File menu, click Open.

The Open Object dialog box appears (see the figure below).

1

2

3

Generating DTDs from PeopleTools 8.13

Developing OTDs for Application Adapters 71

Select Message as the object type, and click Open.

A list of all available message definitions appears

.

Double-click the message definition for your message, for example,
ADVANCED_SHIPPING_RECEIPT.

The Message window displays the message structure (see the figure below).

FIGURE 25 Open Object Dialog Box - Object Type Message

4

5

Generating DTDs from PeopleTools 8.13

Developing OTDs for Oracle Java CAPS Application Adapters • December 201172

Right-click Version_1 in the message structure tree, and select Create Test Message from the
shortcut menu.

The Version_1 dialog box appears displaying the records contained in the
ADVANCED_SHIPPING_RECEIPT message (see the figure below).

Expand the Transaction record to display all sub-records within the transaction record, as
displayed in the figure below.

FIGURE 26 Message Structure Details

FIGURE 27 Creating a Test Message

6

7

Generating DTDs from PeopleTools 8.13

Developing OTDs for Application Adapters 73

Records can nest multiple levels as displayed in the figure below.

FIGURE 28 Displaying Transaction Subrecords

Generating DTDs from PeopleTools 8.13

Developing OTDs for Oracle Java CAPS Application Adapters • December 201174

For the purpose of this example, only the fields ASN_RECEIVED_DT: 12/15/2000 and
ASN_STATUS: have data contained within them.

If there are no constraints requiring you to populate all fields in a record, then generate a
well-formed XML message by populating only one field in each record and sub-record. For
most message definitions, only one field is required to be populated with data (some contain
default values).

If there are constraints, then all fields in each record and sub-record must be populated.

Enter data for the PSCAMA records as follows:

a. Double-click a specific field. If the field displays empty, it is available for data input.

b. Add the sample data (see the figure below).

FIGURE 29 Expanding Transaction Subrecords

8

Generating DTDs from PeopleTools 8.13

Developing OTDs for Application Adapters 75

Continue entering data until all other required records and sub-records are populated using the
same method as above.

Once all records and sub-records of the message have been populated with data, click Apply to
have the updates published to the PSFT_EP Message Node (see the figure below).

A message confirms that publication was successful.

FIGURE 30 Version 1 - Create Test Message

9

10

Generating DTDs from PeopleTools 8.13

Developing OTDs for Oracle Java CAPS Application Adapters • December 201176

Click OK to close the dialog box.

Extracting and Viewing the XML Test Message
The XML test message that you generated and published in the prior section can now be viewed
using a supported Web browser. Refer to PeopleSoft PeopleBooks for more information about
using the PeopleSoft 8 Application.

FIGURE 31 Viewing the Test Message

11

Generating DTDs from PeopleTools 8.13

Developing OTDs for Application Adapters 77

▼ To view the XML message

Within a supported Web browser, log into the PeopleSoft 8 Application.

In PeopleSoft 8, click PeopleTools to open the PeopleTools application (see the figure below).

The PeopleTools Directory Tree appears as displayed in the figure below.

FIGURE 32 PeopleSoft 8 Application Contents Page

1

2

Generating DTDs from PeopleTools 8.13

Developing OTDs for Oracle Java CAPS Application Adapters • December 201178

Click Application Message Monitor > Use > Application Message Monitor, and click the
hyperlink.

The Application Message Monitor page opens to the Overview tab (see the figure below).

FIGURE 33 PeopleTools Directory Tree

3

Generating DTDs from PeopleTools 8.13

Developing OTDs for Application Adapters 79

From the Publish Node field, select the PSFT_EP message node.

Click Refresh.

The number of messages published for the selected grouping using the Create Test Message tool
appears.

Click the link indicated by the number of messages in the New, Done, or Working columns.

The Message Instances tab appears, displaying a summary of the published messages (see the
figure below).

FIGURE 34 Application Message Monitor - Overview Tab

4

5

6

Generating DTDs from PeopleTools 8.13

Developing OTDs for Oracle Java CAPS Application Adapters • December 201180

Click the Details link to view the properties of the published XML message (see the figure
below).

Click the XML Message Viewer tab to review the message itself.

FIGURE 35 Application Message Monitor - Message Instances Tab

FIGURE 36 Message Properties Tab

7

8

Generating DTDs from PeopleTools 8.13

Developing OTDs for Application Adapters 81

Select the entire XML message (see the figure below).

Copy and paste the XML message into a text editor and save it, with a .xml extension, to a
temporary location. Use the same naming convention used for the name of the Message
Definition.

The example in the figure below shows the saved XML Message
ADVANCED_SHIPPING_RECEIPT.

FIGURE 37 XML Message Viewer Tab

9

10

Generating DTDs from PeopleTools 8.13

Developing OTDs for Oracle Java CAPS Application Adapters • December 201182

Generating a DTD for the XML File
The structure of the XML message must now be described in a DTD, from which an OTD is
subsequently generated. PeopleSoft does not provide a DTD generation utility, but third-party
utilities are available to accomplish this task.

A free, online DTD Generator utility is available at the following URL:

http://www.hitsw.com/

This utility is presented to illustrate the general procedures for generating a DTD. Oracle has no
connection with, and does not support, this product.

1. From the XML Document to DTD field browse to and select the .xml file with the saved
XML Message. For this example:

c:\temp\ADVANCED_SHIPPING_RECEIPT.xml

2. Click Open. The DTD Generator page reappears with the path and file displayed in the XML
Document box (see “Generating a DTD for the XML File” on page 83).

FIGURE 38 ADVANCED_SHIPPING_RECEIPT.xml

Generating DTDs from PeopleTools 8.13

Developing OTDs for Application Adapters 83

http://www.hitsw.com/

3. Click Generate DTD to generate the DTD. The DTD appears as displayed in “Generating a
DTD for the XML File” on page 83.

Generating DTDs from PeopleTools 8.13

Developing OTDs for Oracle Java CAPS Application Adapters • December 201184

4. Select only the DTD-related information (usually all information except the first line).

5. Copy and paste the text into a text editor and save it with a .dtd extension to a temporary
location. Use the same naming convention to name the message definition (for the example,
ADVANCED_SHIPPING_RECEIPT).

Generating DTDs from PeopleTools 8.13

Developing OTDs for Application Adapters 85

You can now use the DTD to create a PeopleSoft OTD using the NetBeans IDE’s DTD OTD
wizard.

OTD Methods and Business Process Operations
For Enterprise Service Bus Collaborations, the PeopleSoft Adapter provides the sendMessage()
method. For Business Process Manager Business Processes, the sendMessage and ProcessRequest
operations are available. This section describes the method and operations. The PeopleSoft
Adapter provides the following methods:

sendMessage() method

Syntax
sendMessage()

Description

Used in outbound Collaborations to send a message to the PeopleSoft client using HTTP.

Generating DTDs from PeopleTools 8.13

Developing OTDs for Oracle Java CAPS Application Adapters • December 201186

Parameters

None.

Return Value

None.

Throws

PSoftHttpApplicationException

sendMessage Operation

Description

Used in outbound Business Processes to send a message to the PeopleSoft client using HTTP.

Input and Output

BPM Operation Input Output

sendMessage webRequest webResult

processRequest Operation

Description

Used in inbound Business Processes to process a message received from the PeopleSoft server
using HTTP.

Input and Output

BPM Operation Input Output

processRequest n/a webRequest

Generating DTDs from PeopleTools 8.13

Developing OTDs for Application Adapters 87

88

	Developing OTDs for Oracle® Java CAPS Application Adapters
	Developing OTDs for Application Adapters
	Creating SAP BAPI OTDs
	SAP BAPI Encoding
	Date and Time Stamp Requirements
	Installing SAP JCo for SAP BAPI
	To Install SAP JCo on Windows 32
	To Install SAP JCo on UNIX
	Important Notes:

	Creating BAPI and RFC OTDs
	To Create BAPI OTDs

	Relaunching BAPI and RFC OTDs

	Creating a SAP ALE OTD
	SAP JCo and SAP IDoc Class Library Installation
	The SAP Java Connector
	To Install the SAP Java Connector on Windows 32
	To Install the SAP Java Connector on UNIX

	SAP Java IDoc Class Library
	To Download the SAP Java IDoc Class Library
	Important Notes:

	Creating IDoc OTDs
	To Create IDoc OTDs Directly From SAP
	To Create IDOC OTDs From a Description File

	Exporting the IDOC File from SAP
	To Download the IDoc Description File From SAP

	Saving the IDoc Description File (After 4.6)
	To Save the IDoc Description File From SAP

	Creating Siebel EAI OTDs
	Configuring Your System Before Creating the OTD
	Configuring NetBeans to Work with Siebel
	To Run NetBeans with Siebel 7.5.x
	To Run the NetBeans IDE with Siebel 7.7 or 7.8.x

	Installing seebeyond.sif for Siebel 7.5.x
	To Install the seebeyond.sif File

	Installing SiebelMessage XSD Generation Process.xml for Siebel 7.7 and 7.8.x
	To Install the SiebelMessage XSD Generation Process.xml File

	Creating the OTD
	To Create the OTD
	To Relaunch the OTD

	Creating COBOL Copybook OTDs
	To Create COBOL Copybook OTDs
	Parsing Copybook Entries

	Relaunching OTDs
	To Relaunch an Existing OTD

	COBOL Copybook OTD Methods
	OTD Method Guidelines
	Encoding Behavior for Redefinitions
	DBCS Items

	Root-level Methods
	enableUnmarshalValidation(boolean enable) Method
	marshal() Method
	marshal(String charset) Method
	marshal(OtdOutputStream out) Method
	marshal(OtdOutputStream out, String charset) Method
	marshalToString() Method
	reset() Method
	resetHigh() Method
	resetLow() Method
	retrieveEncoding() Method
	unmarshal(byte[] in) Method
	unmarshal(OtdInputStream in) Method
	unmarshal(OtdInputStream in, String charset) Method
	unmarshal(byte[] in, String charset) Method
	unmarshalFromString(String in) Method
	useEncoding(String enc) Method

	Non-Root Methods
	BPEL Operations

	Creating an Oracle Applications OTD
	To Create an Oracle Applications OTD

	Exposed Oracle Applications OTD Nodes
	Staging Table Node
	COUNT
	Description
	Parameters
	Requirements

	DELETE
	Description
	Parameters
	Requirements

	INITIALIZE
	Description
	Parameters
	Requirements

	MOVE
	Description
	Parameters
	Requirements

	REQUEST
	Description
	Parameters
	Requirements

	REQUEST_STATUS
	Description
	Parameters
	Requirements

	VALIDATE
	Description
	Parameters
	Requirements

	SWIFT Alliance Gateway Adapter OTD Features
	Configuration Node
	Constants Node
	Primitives Node
	Remote APIs Node
	Service Node

	Generating DTDs from PeopleTools 8.13
	Generating and Publishing an XML Test Message
	To generate a PeopleSoft XML message

	Extracting and Viewing the XML Test Message
	To view the XML message

	Generating a DTD for the XML File
	OTD Methods and Business Process Operations
	sendMessage() method
	Syntax
	Description
	Parameters
	Return Value
	Throws

	sendMessage Operation
	Description
	Input and Output

	processRequest Operation
	Description
	Input and Output

