
Importing an SNA Custom Handshake Class

Part No: 821–2599
March 2011

Copyright © 2008, 2011, Oracle and/or its affiliates. All rights reserved.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group in the United States and other countries.

Third Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

120126@25097

Contents

Importing an SNA Custom Handshake Class .. 5
Adding a Custom Handshake Class to a Project ...5

Configuring the Adapter for a Custom Handshake Class ..5
Importing a Custom Handshake Class into a Project ...9

Implementing an SNA Custom Handshake Class ... 12
Sample Code for Inbound Mode .. 12
Sample Code for Outbound Mode ... 13

3

4

Importing an SNA Custom Handshake Class

This document provides links to conceptual information on how to import an SNA Custom
Handshake Class. It includes the following steps:

■ “Adding a Custom Handshake Class to a Project” on page 5
■ “Implementing an SNA Custom Handshake Class” on page 12

Adding a Custom Handshake Class to a Project
To use a custom handshake class with the SNA Adapter, you need to configure the Adapter by
specifying the class name. You also need to import the file into the SNA Project, and if you are
using it in a Java Collaboration Definition, you need to import it into the Collaboration as well.

Perform the following steps to use a custom handshake class:

■ “Configuring the Adapter for a Custom Handshake Class” on page 5
■ “Importing a Custom Handshake Class into a Project” on page 9

Before you perform these steps, create the custom class and make it available to the NetBeans
IDE.

Configuring the Adapter for a Custom Handshake
Class
In order for the SNA Adapter to know which custom handshake class to use, you need to specify
the class name in the Adapter properties of the Connectivity map.

5

▼ To Configure the Adapter

In the NetBeans IDE, expand the Project containing the SNA Adapter until the Connectivity Map
is visible.

Open the Connectivity Map in the Connectivity Map Editor.

To import the custom handshake class for the inbound Adapter, double-click the inbound SNA
Adapter icon.

1

2

3

Adding a Custom Handshake Class to a Project

Importing an SNA Custom Handshake Class • March 20116

The SNA Adapter Properties Editor appears, displaying the default properties for the inbound
Adapter.

Edit the Custom Handshake Class Name property in the Properties Editor and click OK.

For the sample code provided with the Adapter, enter
com.stc.connector.snalu62.api.SNACustomerHandshakeImplSampleAccept.

4

Adding a Custom Handshake Class to a Project

Importing an SNA Custom Handshake Class 7

To import the custom handshake class for the outbound Adapter, double-click the outbound
SNA Adapter icon.

The SNA Adapter Properties Editor appears, displaying the default properties for the outbound
Adapter.

Edit the Custom Handshake Class Name property in the Properties Editor and click OK.

For the sample code provided with the Adapter, enter
com.stc.connector.snalu62.api.SNACustomerHandshakeImplSampleInitialize.

5

6

Adding a Custom Handshake Class to a Project

Importing an SNA Custom Handshake Class • March 20118

Redeploy your project.

Importing a Custom Handshake Class into a Project
In order to use a custom class in a Project and a Java Collaboration Definition (JCD), you need
to package the class into a JAR file and then import the file into both the Project and the JCD.

▼ To Import a Custom Handshake Class

Prepare a JAR file that includes your built class.

From the NetBeans Projects window, right-click the sample Project and select Import > File.
The Import Files window appears.

Navigate to the JAR file and click Select.
The selected JAR file appears in the Selected Import Files pane at the bottom of the Import Files
window.

Click Import.
The selected JAR file appears in the Project tree under the project you selected.

7

1

2

3

4

Adding a Custom Handshake Class to a Project

Importing an SNA Custom Handshake Class 9

Do the following to import the file into a JCD:

a. Open the JCD in the Collaboration Editor.

b. In the Collaboration Editor toolbar, click the Import JAR file icon.

The Add/Remove JAR Files window appears.

c. Click Add, navigate to and select the JAR file, and then click Import.

The selected JAR file appears in the Imported JAR Files pane.

5

Adding a Custom Handshake Class to a Project

Importing an SNA Custom Handshake Class • March 201110

d. Click Close on the Add/Remove JAR Files window.
The selected JAR file appears under the JCD in the Projects window.

Note – If you make any changes to the class, repeat the previous steps.

Sample Handshake Class
The Java Collaboration can handle the SNA connection completely using the default class that
is provided with the Adapter,
com.stc.connector.snalu62.api.SNACustomerHandshakeImplSampleDummy. This class has
been implemented in the SNA Adapter. The sample code for this custom class is shown below:

package com.stc.connector.snalu62.api;

import com.stc.connector.logging.LogFactory;

import com.stc.connector.logging.Logger;

import com.stc.connector.snalu62.exception.SNAApplicationException;

/**

* This is a sample class to implement the interface SNACustomerHandshake.

* It implements a dummy handshake. That is, the method startConversation()

does not perform a function.

* No SNA conversation is established inside this implementation class.

You should establish the SNA conversation manually

(e.g. in the java Collaboration).

*/

public class SNACustomerHandshakeImplSampleDummy implements SNACustomerHandshake {

public static final String version = "cvs $Revision: 1.1.2.2 $

$Date: 2005/11/10 21:40:15 $";
private Logger logger = LogFactory.getLogger

("STC.eWay.SNALU62." + getClass().getName());

/**

* Constructor

*

*/

public SNACustomerHandshakeImplSampleDummy() {

super();

}

/**

* @see com.stc.connector.snalu62.api.SNACustomerHandshake#startConversation

(com.stc.connector.snalu62.api.SNACPICCalls)

*/

public void startConversation(SNACPICCalls cpic) throws SNAApplicationException {

logger.info("SNACustomerHandshakeImplSampleDummy.startConversation():
Done nothing here.");

}

}

Adding a Custom Handshake Class to a Project

Importing an SNA Custom Handshake Class 11

Implementing an SNA Custom Handshake Class
To further utilize the capabilities of the SNA Adapter, you can implement a custom handshake
class in a deployed Project. After the default Collaboration is generated, you can then modify
the Collaboration to suit your application’s needs. While you need to write your own code for
both Inbound and Outbound SNA modes, the following code is also provided as the source for
the class that is implemented in the SNA adapter.

Sample Code for Inbound Mode
package com.stc.connector.snalu62.api;

import com.stc.connector.logging.LogFactory;

import com.stc.connector.logging.Logger;

import com.stc.connector.snalu62.exception.SNAApplicationException;

/*

* This is a sample class to implement the interface SNACustomerHandshake.

* It implements a simple Accept_Conversation scenario for windows platform.

*/

public class SNACustomerHandshakeImplSampleAccept implements SNACustomerHandshake {

public static final String version = "cvs $Revision: 1.1.2.1.2.2 $

$Date: 2005/11/10 21:40:15 $";
private Logger logger = LogFactory.getLogger("STC.eWay.SNALU62.

" + getClass().getName());

private String logMsg;

/**

* Constructor

*

*/

public SNACustomerHandshakeImplSampleAccept() {

super();

}

/**

* @see com.stc.connector.snalu62.api.SNACustomerHandshake#startConversation

(com.stc.connector.snalu62.api.SNACPICCalls)

*/

public void startConversation(SNACPICCalls cpic) throws SNAApplicationException {

try {

//do whatever checking logics before/after the following CPIC call

on your desires

cpic.cmsltp();

//do whatever checking logics before/after the following CPIC call

on your desires

cpic.cmaccp();

if (!cpic.getConversationAttributes().returnCodeIs(0) && // 0: CM_OK

!cpic.getConversationAttributes().returnCodeIs(35))

{ //35: CM_OPERATION_INCOMPLETE

logMsg = "SNACustomerHandshakeImplSampleAccept.startConversation():
The return code is <"
+ cpic.getConversationAttributes().getReturnCode()

Implementing an SNA Custom Handshake Class

Importing an SNA Custom Handshake Class • March 201112

+ ">.";
logger.error(logMsg);

throw new SNAApplicationException(logMsg);

}

if (cpic.getConversationAttributes().returnCodeIs(35))

{ //35: CM_OPERATION_INCOMPLETE

logger.info("SNACustomerHandshakeImplSampleAccept.startConversation():
About to call cmwait ...");

//do whatever checking logics before/after the following CPIC call

on your desires

cpic.cmwait();

}

if (!cpic.getConversationAttributes().returnCodeIs(0) ||

!cpic.getConversationAttributes().convReturnCodeIs(0)) { // 0: CM_OK

logMsg = "SNACustomerHandshakeImplSampleAccept.startConversation():
The return_Code is <"
+ cpic.getConversationAttributes().getReturnCode()

+ "> and the conversation_Return_Code is <"
+ cpic.getConversationAttributes().getConvReturnCode()

+ ">. SNA conversation is not established.";
logger.error(logMsg);

throw new SNAApplicationException(logMsg);

}

//do whatever other logics on your desires here

//...

} catch (Exception e) {

logMsg = "SNACustomerHandshakeImplSampleAccept.startConversation():
Failed. Got exception ["

+ e.toString()

+ "].";
logger.error(logMsg, e);

throw new SNAApplicationException(logMsg, e);

}

}

}

Note – The above code has been wrapped for display purposes.

Sample Code for Outbound Mode
package com.stc.connector.snalu62.api;

import com.stc.connector.logging.LogFactory;

import com.stc.connector.logging.Logger;

import com.stc.connector.snalu62.exception.SNAApplicationException;

/**

* This is a sample class to implement the interface SNACustomerHandshake.

* It implements a simple Initialize_Conversation scenario for windows platform.

Implementing an SNA Custom Handshake Class

Importing an SNA Custom Handshake Class 13

*/

public class SNACustomerHandshakeImplSampleInitialize implements SNACustomerHandshake {

public static final String version = "cvs $Revision:

1.1.2.1.2.2 $ $Date: 2005/11/10 21:40:15 $";
private Logger logger = LogFactory.getLogger("STC.eWay.SNALU62." + getClass().

getName());

private String logMsg;

/**

* Constructor

*

*/

public SNACustomerHandshakeImplSampleInitialize() {

super();

}

/**

* @see com.stc.connector.snalu62.api.SNACustomerHandshake#startConversation

(com.stc.connector.snalu62.api.SNACPICCalls)

*/

public void startConversation(SNACPICCalls cpic) throws SNAApplicationException {

try {

//do whatever checking logics before/after the following CPIC call on your

desires

cpic.cminit();

//do whatever checking logics before/after the following CPIC call

on your desires

cpic.cmssl();

//do whatever checking logics before/after the following CPIC call on your

desires

cpic.cmallc();

if (!cpic.getConversationAttributes().returnCodeIs(0)) { // 0: CM_OK

logMsg = "SNACustomerHandshakeImplSampleInitialize.
startConversation(): The return_Code is <"

+ cpic.getConversationAttributes().getReturnCode()

+ ">. SNA conversation is not established.";
logger.error(logMsg);

throw new SNAApplicationException(logMsg);

}

//do whatever other logics on your desires here

//...

} catch (Exception e) {

logMsg = "SNACustomerHandshakeImplSampleInitialize.startConversation():
Failed. Got exception ["
+ e.toString()

+ "].";
logger.error(logMsg, e);

throw new SNAApplicationException(logMsg, e);

}

}

}

Implementing an SNA Custom Handshake Class

Importing an SNA Custom Handshake Class • March 201114

Note – The above code has been wrapped for display purposes.

Implementing an SNA Custom Handshake Class

Importing an SNA Custom Handshake Class 15

16

	Importing an SNA Custom Handshake Class
	Importing an SNA Custom Handshake Class
	Adding a Custom Handshake Class to a Project
	Configuring the Adapter for a Custom Handshake Class
	To Configure the Adapter

	Importing a Custom Handshake Class into a Project
	To Import a Custom Handshake Class
	Sample Handshake Class

	Implementing an SNA Custom Handshake Class
	Sample Code for Inbound Mode
	Sample Code for Outbound Mode

