
Oracle® Java CAPS POJO Service Engine
User's Guide

Part No: 821–2618
January 2011

Copyright © 2010, 2011, Oracle and/or its affiliates. All rights reserved.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group in the United States and other countries.

Third Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

120126@25097

Contents

Using the POJO Service Engine ... 5
POJO Service Engine Overview ..6
Providing and Consuming JBI Services ...6

Providing a JBI Service ...7
Consuming a JBI Service ..8
Consuming Services Asynchronously ... 10
Using Multiple Threads ... 10

Creating POJO Service Engine Projects .. 11
Creating a POJO Service Provider (Without Binding) .. 11
Creating a POJO Service Provider (With Binding) .. 15
Creating a POJO Service Provider in an Existing Java Application 21
Creating a POJO Service Consumer (Without Binding) .. 23
Creating a POJO Service Consumer (With Binding) .. 25
POJO Configuration Properties ... 27

Creating Composite Applications for POJO Service Engine Projects .. 30
Creating a Composite Application for a POJO Service Provider (Without Binding) 31
Creating a Composite Application for a POJO Service Provider (With Binding) 33
Creating a Composite Application for a POJO Service Consumer (Without Binding) 36
Creating a Composite Application for a POJO Service Consumer (With Binding) 39

Using POJO Services With BPEL .. 42
Invoking POJO Services from a Business Process .. 43
Calling a Business Process From a POJO Service ... 48

Configuring Runtime Properties for the POJO Service Engine ... 51
▼ To Configure POJO SE Runtime Properties ... 52

POJO Service Engine Runtime Property Descriptions ... 53
POJO Service Engine API Annotation and Classes ... 55

POJO Service Engine API Annotations .. 56
POJO Service Engine Non-Annotated Classes ... 57

3

JBI API Classes Relevant to the POJO Service Engine ... 57

Contents

Oracle Java CAPS POJO Service Engine User's Guide • January 20114

Using the POJO Service Engine

The POJO Service Engine provides simple and easy to use tools that allow you to incorporate
Plain Old Java Objects (POJO) into the JBI applications you create.

What You Need to Know

The following topics provide information to help you understand the POJO Service Engine:

■ “POJO Service Engine Overview” on page 6
■ “Providing and Consuming JBI Services” on page 6
■ “POJO Service Engine API Annotation and Classes” on page 55

What You Need to Do

The following topics provide instructions for creating service providers and consumers using
the POJO Service Engine:

■ “Creating a POJO Service Provider (Without Binding)” on page 11
■ “Creating a POJO Service Provider (With Binding)” on page 15
■ “Creating a POJO Service Provider in an Existing Java Application” on page 21
■ “Creating a POJO Service Consumer (Without Binding)” on page 23
■ “Creating a POJO Service Consumer (With Binding)” on page 25
■ “Creating a Composite Application for a POJO Service Provider (Without Binding)” on

page 31
■ “Creating a Composite Application for a POJO Service Provider (With Binding)” on page 33
■ “Creating a Composite Application for a POJO Service Consumer (Without Binding)” on

page 36
■ “Creating a Composite Application for a POJO Service Consumer (With Binding)” on

page 39
■ “Invoking POJO Services from a Business Process” on page 43
■ “Calling a Business Process From a POJO Service” on page 48

5

■ “Configuring Runtime Properties for the POJO Service Engine” on page 51

Reference Information

The following topics provide information about the POJO properties you need to configure:

■ “POJO Service Provider Properties” on page 27
■ “POJO Service Properties for Binding” on page 29
■ “POJO Service Consumer Properties” on page 29
■ “POJO Service Engine Runtime Property Descriptions” on page 53
■ POJO Service Engine Javadoc

POJO Service Engine Overview
The POJO Service Engine allows you to build business integration applications based on JBI
standards and using Plain Old Java Objects (POJO). The POJO Service Engine automates much
of the annotation and generates the code framework in which you can define your applications.
The service engine simplifies the process by defining very few annotation and API classes. It
provides flexibility by use of method signatures and by handling synchronous and
asynchronous messages in a message-oriented way.

The POJO Service Engine supports a message-oriented paradigm rather than service-oriented.
WSDL documents can be used but are not required. The service engine allows you to define
both service providers and consumers with or without bindings (WSDL documents). You can
also call the POJO providers you create from a BPEL process, and you can call a BPEL process
from a POJO service consumer.

Unlike the Java EE Service Engine, the POJO Service Engine does not require a web or EJB
container. The message data structure does not need to be exposed in a service description
language such as WSDL, although a WSDL document can be used if that is preferred. The POJO
Service Engine can access JBI normalized message objects and message exchange objects
directly, which supports RESTful services, provides options for streaming and handling
non-XML data, and avoids unnecessary unmarshaling of the incoming messages to Java
objects.

Providing and Consuming JBI Services
The following topics provide information to help you understand how services are provided
and consumed using the POJO Service Engine:

■ “Providing a JBI Service” on page 7
■ “Consuming a JBI Service” on page 8
■ “Consuming Services Asynchronously” on page 10
■ “Using Multiple Threads” on page 10

POJO Service Engine Overview

Oracle Java CAPS POJO Service Engine User's Guide • January 20116

https://open-esb.dev.java.net/nonav/pojose/javadoc/

Providing a JBI Service
With just two annotations, @Provider and @Operation, you can enable a Java class as JBI
service. Below is an example of a simple POJO service provider.

package org.glassfish.openesb.pojo.sample;

import org.glassfish.openesb.pojose.api.annotation.Operation;

import org.glassfish.openesb.pojose.api.annotation.Provider;

@Provider

public class Echo {

@Operation (outMessageType="EchoOperationResponse",
outMessageTypeNS="http://sample.pojo.openesb.glassfish.org/Echo/")

public String receive(String input) {

return input;

}

}

The properties for @Operation annotation are not mandatory, but may be needed if the JBI
component interacting with the POJO SE expects the JBI message type QName on the JBI
wrapper message element. Defaults are assumed for most of the information needed by JBI
runtime. Some of the defaults are endpoint names and interface and service QNames. If not
specified through @POJO annotation, the endpoint name defaults to the unqualified class
name. The service and interface QName namespaces default to the HTTP URI made up of the
package name in reverse with the endpoint name appended. For the above example, this would
be http://tst.pojo.glassfishesb.org/Echo/. The local service name defaults to the
endpoint name with “Service" appended. The local interface name defaults to the endpoint
name with "Interface" appended. For the above example it will be "EchoService" and
"EchoInterface" respectively.

Operation Parameter Types
The POJO SE supports the following input parameter types and return types for methods
annotated with @Operation:

■ java.lang.String
■ org.w3c.dom.Node
■ javax.xml.transform.Source
■ javax.jbi.messaging.NormalizedMessage
■ Document
■ javax.jbi.messaging.MessageExchange (input parameter only)
■ void (return type only)

When the return type is void, the JBI message exchange pattern is assumed to be InOnly. The
POJO SE supports InOnly and InOut JBI message exchange patterns. For parameter and return
types of String, Node, and Source, the POJO SE automates JBI WSDL 1.1 message unwrapping
and wrapping.

Providing and Consuming JBI Services

Using the POJO Service Engine 7

Context
The POJO SE injects an instance of the class
org.glassfish.openesb.pojose.api.res.Context when a field is annotated with @Resource
(org.glassfish.openesb.pojose.api.annotation.Resource). The Context class includes
the methods needed to retrieve an instance of the current MessageExchange object and a
method to create a new MessageExchange objects for invoking JBI services.

Consuming a JBI Service
Using the Consumer instance inserted by the service engine, you can declare a field of the
Consumer type (org.glassfish.openesb.pojose.api.Consumer) and annotate it with
ConsumerEndpoint
(org.glassfish.openesb.pojose.api.annotation.ConsumerEndpoint). The POJO SE uses
the endpoint name and service QName specified on the ConsumerEndpoint annotation to find
the ServiceEndpoint instance and insert it into the POJO instance before the operation method
is called. You can optionally specify inMessageTypeQN and operationQN if required by the
component being called.

EXAMPLE 1 POJO Service Consumer Example

First declare the Consumer field as shown below.

@ConsumerEndpoint(name="asiaBPELProcess",
serviceQN="AsiaSvc",
interfaceQN="{wwOrderProcessNS}wwOrderProcessPortType",
operationQN="{wwOrderProcessNS}wwOrderProcessOperation",
inMessageTypeQN="{wwOrderProcessNS}wwOrderProcessOperationRequest")

private Consumer asiaEp;

Use the Consumer instance inserted by the POJO SE, as shown below.

outputMsg = (Node) cons.sendSynchInOut(input, MessageObjectType.Node);

Below is a complete example.

package org.glassfish.openesb.pojo.cbr;

import org.glassfish.openesb.pojose.api.annotation.Provider;

import org.glassfish.openesb.pojose.api.annotation.Operation;

import org.glassfish.openesb.pojose.api.annotation.ConsumerEndpoint;

import org.glassfish.openesb.pojose.api.Consumer;

import org.glassfish.openesb.pojose.api.Consumer.MessageObjectType;

import org.w3c.dom.Node;

import java.util.logging.Level;

import java.util.logging.Logger;

@Provider

public class WWOrderRouter {

@ConsumerEndpoint(name="asiaBPELProcess",

Providing and Consuming JBI Services

Oracle Java CAPS POJO Service Engine User's Guide • January 20118

EXAMPLE 1 POJO Service Consumer Example (Continued)

serviceQN="AsiaSvc",
interfaceQN="{wwOrderProcessNS}wwOrderProcessPortType",
operationQN="{wwOrderProcessNS}wwOrderProcessOperation",
inMessageTypeQN="{wwOrderProcessNS}wwOrderProcessOperationRequest")

private Consumer asiaEp;

@ConsumerEndpoint(name="europeBPELProcess",
serviceQN="EuropeSvc",
interfaceQN="{wwOrderProcessNS}wwOrderProcessPortType"
operationQN="{wwOrderProcessNS}wwOrderProcessOperation",
inMessageTypeQN="{wwOrderProcessNS}wwOrderProcessOperationRequest")

@Resource

private Context ctx;

public WWOrderRouter() {

}

@Operation(outMessageTypeQN="{http://cbr.pojo.openesb.glassfish.org/WWOrderRouter/}
WWOrderRouterOperationResponse")

public Node receive(Node input) {

try {

Node outputMsg = input;

location = ...

Consumer cons = null;

if ("Asia".equals(location)) {

svc2use = this.asiaSvcName;

cons = asiaEp;

} else {

svc2use = this.europeSvcName;

cons = europeEp;

}

outputMsg = (Node) cons.sendSynchInOut(input, MessageObjectType.Node);

return outputMsg;

} catch (Exception ex) {

Logger.getLogger(WWOrderRouter.class.getName()).log(Level.SEVERE, null,

ex);

}

return input;

}

}

Getting the Consumer Instance Dynamically
Use a Context method to retrieve the instance of ServiceEndpoint, and use it again to retrieve
the instance of Consumer from the Context instance.

QName svc2use =;

String endpointName =;

ServiceEndpoint se = this.ctx.getEndpoint(svc2use, endpointName);

Providing and Consuming JBI Services

Using the POJO Service Engine 9

Consumer cons = this.ctx.getConsumer(se, this.consOpName, this.consInMsgType);

outputMsg = (Node) cons.sendSynchInOut(input, MessageObjectType.Node);

Consuming Services Asynchronously
Consuming services in asynchronous mode can make using resources such as threads more
efficient. Consuming services asynchronously in the POJO SE does not block the threads;
instead, the control returns to the POJO code. This allows the POJO SE to execute more POJO
services using fewer thread resources. Asynchronous service consumption is supported using
annotated callback methods. Each of the callback methods are annotated in POJO using one of
the following annotations: @OnReply, @OnError, @OnFault, or @OnDone.

The POJO SE calls the OnReply annotated method when the InOut message exchange pattern
service is consumed asynchronously. This method takes two parameters. The first is of the type
ServiceEndpoint and the second is one of the following types: String, Source, Node,
NormalizedMessage, or MessageExchange.

The POJO SE calls the OnFault annotated method when the InOut message exchange pattern
service is consumed asynchronously and the consumed service returns a fault message. This
method also takes two parameters. The first is of the type ServiceEndpoint and second is of the
type MessageExchange.

The POJO SE calls the OnError annotated method when the InOut message exchange pattern
service is consumed asynchronously and the consumed service returns an error status. This
method takes two parameters. The first one is of the type ServiceEndpoint and the second is of
the type MessageExchange.

The POJO SE executes the OnDone annotated method when all the responses from
asynchronously consumed services are received. Whenever POJO throws FaultMessage,
ErrorMessage, or Exception back to the POJO SE, the POJO SE returns the fault message or
error status back to the POJO service consumer. Further execution of callback and OnDone
methods are aborted and outstanding responses from asynchronously consumed services by
this POJO instance are ignored. Where possible, the error status is returned.

Using Multiple Threads
The annotations described above for asynchronous consumption are also used in the
multi-threaded execution model. In this model, the POJO SE executes the POJO instance
methods annotated with Operation, OnReply, OnFault, and OnError concurrently when the
response messages are received. Since many transaction managers only allow one thread to be
associated with a transaction, by default the transaction is not resumed while executing any of
the POJO instance methods such as those annotated with Operation, OnReply, OnFault,
OnError, and OnDone. Transaction objects are also not propagated to asynchronously
consumed services.

Providing and Consuming JBI Services

Oracle Java CAPS POJO Service Engine User's Guide • January 201110

Creating POJO Service Engine Projects
The POJO Service Engine offers a variety of methods to create service providers and consumers
using the NetBeans IDE. You can create providers and consumers with or without binding
definitions (WSDL documents), and you can create providers from a wizard or from the Java
Editor Palette. Consumers can also be created from the Palette.

Perform any of the following steps to create POJO service providers and consumers:

■ “Creating a POJO Service Provider (Without Binding)” on page 11
■ “Creating a POJO Service Provider (With Binding)” on page 15
■ “Creating a POJO Service Provider in an Existing Java Application” on page 21
■ “Creating a POJO Service Consumer (Without Binding)” on page 23
■ “Creating a POJO Service Consumer (With Binding)” on page 25

Creating a POJO Service Provider (Without Binding)
This procedure creates a framework in a Java file for a POJO service provider using a wizard that
guides you through the steps. The framework includes annotations and standard methods, and
you can customize this framework to define the logic of the service. There is no WSDL
document or binding involved in this procedure; a binding can be added when you create the
composite application.

Creating POJO Service Engine Projects

Using the POJO Service Engine 11

▼ To Create a POJO Service Provider (Without Binding)

Right-click in the NetBeans Projects window, and then select New Project.

The New Project Wizard appears.

Under Categories, select Java; under Projects, select Java Application.

Click Next.

The Name and Location window appears.

1

2

3

Creating POJO Service Engine Projects

Oracle Java CAPS POJO Service Engine User's Guide • January 201112

Enter a unique name for the project and a name for the main Java package and class.

Click Finish.

The project structure is generated and appears in the Projects window.

Right-click the project you just created, point to New, and then select Other.

The New File Wizard appears.

4

5

6

Creating POJO Service Engine Projects

Using the POJO Service Engine 13

Under Categories, select ESB; under Projects, select POJO Service.

Click Next.

The Name and Location window appears.

Fill in the Name and Location properties for the POJO service.

For more information, see Table 1.

To modify advanced properties for the POJO service, click Advanced.

The POJO Provider – Advanced properties editor appears.

Modify any of the properties described in Table 2, and then click OK.

7

8

9

10

11

Creating POJO Service Engine Projects

Oracle Java CAPS POJO Service Engine User's Guide • January 201114

On the New POJO Service Wizard, click Finish.

The new POJO class is generated in the project structure and any library JAR files needed to
compile the project are added to the Libraries node of the project. The POJO file includes the
@Provider, @Operation, and @Resource annotations.

For instructions on creating a composite application for this project, see “Creating a Composite
Application for a POJO Service Provider (Without Binding)” on page 31.

Creating a POJO Service Provider (With Binding)
This procedure creates a POJO service provider using a wizard to guide you through the steps.
This wizard includes the steps for configuring the binding component for the service provider
and automatically generates the WSDL file.

12

Next Steps

Creating POJO Service Engine Projects

Using the POJO Service Engine 15

▼ To Create a POJO Service Provider (With Binding)

Right-click in the NetBeans Projects window, and then select New Project.

The New Project Wizard appears.

Under Categories, select Java; under Projects, select Java Application.

Click Next.

The Name and Location window appears.

1

2

3

Creating POJO Service Engine Projects

Oracle Java CAPS POJO Service Engine User's Guide • January 201116

Enter a unique name for the project and a name for the main Java package and class.

Click Finish.

The project structure is generated and appears in the Projects window.

Right-click the project you just created, point to New, and then select Other.

The New File Wizard appears.

4

5

6

Creating POJO Service Engine Projects

Using the POJO Service Engine 17

Under Categories, select ESB; under Projects, select POJO Service for Binding.

Click Next.

The Name and Location window for the WSDL file appears.

7

8

Creating POJO Service Engine Projects

Oracle Java CAPS POJO Service Engine User's Guide • January 201118

Fill in the Name and Location properties for the POJO service.

For more information, see Table 3.

Note – The sequence of steps changes to reflect the binding component and type you choose.
The subsequent steps will vary depending on those two properties.

Click Next.

The binding configuration window appears.

Enter information about the binding component and type, and then click Next.

Note – This page varies by binding component and type. For more information about a specific
binding component, refer to the user's guide for that component or refer to the property
descriptions at the bottom of the window. An example for the File Binding Component is
shown below.

9

10

11

Creating POJO Service Engine Projects

Using the POJO Service Engine 19

If a second page of binding configuration appears, enter the required information and then click
Next.

On the Name and Location window for the POJO service, fill in the fields described in Table 1.

12

13

Creating POJO Service Engine Projects

Oracle Java CAPS POJO Service Engine User's Guide • January 201120

On the New POJO Service Wizard, click Finish.

The new POJO class and WSDL file are generated in the project structure and any library JAR
files needed to compile the project are added to the Libraries node of the project. The POJO file
includes the @Provider, @Operation, and @Resource annotations.

For instructions on creating a composite application for this project, see “Creating a Composite
Application for a POJO Service Provider (With Binding)” on page 33.

Creating a POJO Service Provider in an Existing Java
Application
This procedure creates a POJO service provider in an existing Java file using the Palette on the
NetBeans Java Editor. Dragging and dropping a provider into the Java code creates a framework
for the service provider, which you can then customize with the needed processing logic. There
is no WSDL document or binding involved in this procedure; a binding can be added when you
create the composite application.

▼ To Create a POJO Service Provider in a Java Application

Open the Java file to which you want to add the POJO service provider.

If the Palette is not visible, click Window in the NetBeans toolbar and then click Palette.

The Palette appears to the right of the Java Editor.

14

Next Steps

1

2

Creating POJO Service Engine Projects

Using the POJO Service Engine 21

Drag and drop a POJO Provider from the Palette to the location in the Java file where you want
to insert to POJO service provider.

The Name and Location Wizard appears.

Enter the method name, input type, and return type.

For more information about these fields, see Table 1.

To configure advanced properties, click Advanced.

The Advanced properties editor appears.

Modify any of the properties described in Table 2.

3

4

5

6

Creating POJO Service Engine Projects

Oracle Java CAPS POJO Service Engine User's Guide • January 201122

Click Finish.

Any library JAR files needed to compile the project are added to the Libraries node of the
project. The @Provider, @Operation, and @Resource annotations are added at the insertion
point.

For instructions on creating a composite application for this project, see “Creating a Composite
Application for a POJO Service Provider (Without Binding)” on page 31.

Creating a POJO Service Consumer (Without Binding)
This procedure creates a service consumer within an existing service provider definition.
Dragging and dropping a consumer into the Java code creates a framework for the service
consumer, which you can then customize with the needed processing logic. There is no WSDL
document or binding involved in this procedure; a binding can be added when you create the
composite application.

▼ To Create a POJO Service Consumer (Without Binding)
The POJO service consumer can only be added within an existing provider. Make sure you have
a provider defined in the Java class before beginning this procedure.

Open the Java file to which you want to add the POJO service consumer.

If the Palette is not visible, click Window in the NetBeans toolbar and then click Palette.

The Palette appears to the right of the Java Editor.

7

Next Steps

Before You Begin

1

2

Creating POJO Service Engine Projects

Using the POJO Service Engine 23

Drag and drop a POJO Consumer from the Palette to the location in the service provider in the
Java file where you want to insert to POJO service consumer.

The POJO SE Service Consumer Wizard appears.

Fill in the consumer properties, as described in “POJO Service Consumer Properties”on
page 29.

Click Finish.

The @ConsumerEndpoint annotation and related methods are added at the insertion point.

For instructions on creating a composite application for this project, see “Creating a Composite
Application for a POJO Service Consumer (Without Binding)” on page 36.

3

4

5

Next Steps

Creating POJO Service Engine Projects

Oracle Java CAPS POJO Service Engine User's Guide • January 201124

Creating a POJO Service Consumer (With Binding)
This procedure creates a POJO service consumer in an existing Java file using the Palette on the
NetBeans Java Editor. Dragging and dropping a consumer into the Java code creates a
framework for the service consumer, which you can then customize with the needed processing
logic. When you add the consumer, you also configure the binding component for the service
consumer and the WSDL file is automatically generated.

▼ To Create a POJO Service Consumer (With Binding)
The POJO service consumer can only be added within an existing provider. Make sure you have
a provider defined in the Java class before beginning this procedure.

Open the Java file to which you want to add the POJO service consumer.

If the Palette is not visible, click Window in the NetBeans toolbar and then click Palette.
The Palette appears to the right of the Java Editor.

Drag and drop a POJO Binding Consumer from the Palette to the location in the service provider
in the Java file where you want to insert to POJO service consumer.
The POJO SE Binding Service Consumer Wizard appears.

Fill in the name and location properties, as described in “POJO Service Properties for Binding”
on page 29.

Before You Begin

1

2

3

4

Creating POJO Service Engine Projects

Using the POJO Service Engine 25

Note – The sequence of steps changes to reflect the binding component and type you choose.
The subsequent steps will vary depending on those two properties.

Click Next.

The abstract binding configuration window appears.

Enter information about the binding component and type, and then click Next.

Note – This page varies by binding component and type. For more information about a specific
binding component, refer to the user's guide for that component or refer to the property
descriptions at the bottom of the window. An example for the HTTP Binding Component is
shown below.

If a second page of binding configuration appears, enter the required information and then click
Next.

5

6

7

Creating POJO Service Engine Projects

Oracle Java CAPS POJO Service Engine User's Guide • January 201126

On the Name and Location window for the POJO service, the interface and operation fields are
automatically populated. Fill in the fields described in Table 4 beginning with Invoke Pattern.

Click Finish.

The @ConsumerEndpoint annotation and related methods are added at the insertion point.

For instructions on creating a composite application for this project, see “Creating a Composite
Application for a POJO Service Consumer (With Binding)” on page 39.

POJO Configuration Properties
When you create a POJO service consumer or provider, with or without binding, you need to
configure certain properties so the POJO framework and optionally the WSDL documents can
be generated correctly. The following topics describe the properties you need to configure. Note
that these do not include specific binding component properties, which you need to configure if
you are using bindings. For more information about these properties, see the user's guide for the
specific binding component you are using.

■ “POJO Service Provider Properties” on page 27
■ “POJO Service Properties for Binding” on page 29
■ “POJO Service Consumer Properties” on page 29

POJO Service Provider Properties
The following tables list and describe the properties you can configure when creating a new
POJO service. These properties appear on the Name and Location page of the New POJO
Service Wizard and on the Advanced Properties Editor, which is accessed from the Name and
Location page.

TABLE 1 POJO Service Provider Name and Location Properties

Property Description

Class Name A unique name for the Java class to create for the POJO service.

Location The location in the project structure to create the Java class and package.

Package A unique Java package name for the class.

Method Name The name of the method that represents the operation. This will be automatically
generated in the Java class.

8

9

Next Steps

Creating POJO Service Engine Projects

Using the POJO Service Engine 27

TABLE 1 POJO Service Provider Name and Location Properties (Continued)
Property Description

Input Argument Type The input type for the operation. This represents the parameter type for the
operation method. Select one of the following values:
■ String (java.lang.string)
■ Source (javax.xml.transform.Source)
■ Normalized Message (javax.jbi.messaging.NormalizedMessage)
■ Node (org.w3c.dom.Node)
■ Document
■ Message Exchange (javax.jbi.messaging.MessageExchange)

Return Type The output type for the operation. This represents the return type for the
operation method. Select one of the following values:
■ String (java.lang.string)
■ Source (javax.xml.transform.Source)
■ Normalized Message (javax.jbi.messaging.NormalizedMessage)
■ Node (org.w3c.dom.Node)
■ Document
■ Void

TABLE 2 POJO Service Provider Advanced Properties

Property Description

Endpoint Name The name of the POJO provider's endpoint.

Interface Name The local interface name for the POJO provider. If this property is left blank, it
defaults to the class name with “Interface” appended. For example,
MyPojoInterface.

Interface Namespace Additional interface namespaces for the POJO provider.

Service Name The local service name for the POJO provider. If this property is left blank, it
defaults to the class name with “Service” appended. For example, MyPojoService.

Service Namespace The namespace of the JBI service. If this property is left blank, the default
namespace will be an HTTP URL with the package name of class reversed and the
endpoint name as the path. For example, if the package is
org.glassfish.openesb.pojo and the endpoint name is MyPojoProvider, the
URL will be http://pojo.openesb.glassfish.org/MyPojoProvider/.

Output Message Type
Name

The WSDL message type for output messages for a return type of String, Node, or
Source if the consuming JBI component expects the WSDL 1.1 wrapper message
to contain these attributes.

Output Message Type
Namespace

The namespace of the output message type specified above.

Creating POJO Service Engine Projects

Oracle Java CAPS POJO Service Engine User's Guide • January 201128

POJO Service Properties for Binding
The following table lists and describes the properties you can configure when creating a new
POJO service provider or consumer with a binding component. These properties appear on the
Name and Location page of the New POJO Service for Binding Wizard and the POJO SE
Binding Service Consumer Wizard.

TABLE 3 Name and Location Properties for Binding

Property Description

File Name A unique name for the binding WSDL document for the POJO service.

Location The name of the node in the project structure in which to create the WSDL
document.

Folder The name of the folder under the above node in which to create the WSDL
document.

Target Namespace The target namespace for the binding WSDL document.

Binding The type of binding component to use for the POJO service. This determines the
template for the WSDL document.

Type The type of binding. Note that for some binding components, only a subset of
their types is supported.

POJO Service Consumer Properties
The following table lists and describes the properties you can configure when creating a new
POJO service consumer. These properties appear on the POJO SE Service Consumer Wizard.

TABLE 4 POJO Consumer Wizard Properties

Property Description

Choose Consumer From
WSDL

An indicator of whether to create the consumer endpoint from an existing WSDL
document. You can specify a local path and filename or the URL for the WSDL
document.

Select From File The path and file name of the local WSDL document to use. Pressing the Tab key
after entering this value populates the interface and operation fields.

Select From URL The URL to the remote WSDL document to use. Pressing the Tab key after
entering a URL populates the interface and operation fields.

Interface Name The name of the consumer interface.

Interface Namespace The namespace for the consumer interface.

Operation The type of binding operation for the consumer.

Operation Namespace The namespace for the binding operation.

Creating POJO Service Engine Projects

Using the POJO Service Engine 29

TABLE 4 POJO Consumer Wizard Properties (Continued)
Property Description

Invoke Pattern An indicator of whether to invoke the consumer synchronously or
asynchronously. Select the appropriate checkbox. Both options may not be
available for some operations.

Invoke Input Type The input type for the operation. This represents the parameter type for the
operation method. Select one of the following values:
■ String (java.lang.string)
■ Source (javax.xml.transform.Source)
■ Normalized Message (javax.jbi.messaging.NormalizedMessage)
■ Node (org.w3c.dom.Node)
■ Document
■ Message Exchange (javax.jbi.messaging.MessageExchange)

Return Type The output type for the operation. This represents the return type for the
operation method. Select one of the following values:
■ String (java.lang.string)
■ Source (javax.xml.transform.Source)
■ Normalized Message (javax.jbi.messaging.NormalizedMessage)
■ Node (org.w3c.dom.Node)
■ Document
■ Void

Invoke From Method The method from which the consumer is invoked. When you drag and drop the
POJO Consumer from the Palette into a Java method, that method name is
automatically populated here.

Creating Composite Applications for POJO Service Engine
Projects

The way you create a Composite Application varies depending on whether you created a POJO
service provider or consumer, and whether you created it with or without binding. The
following topics describe the different methods.

■ “Creating a Composite Application for a POJO Service Provider (Without Binding)” on
page 31

■ “Creating a Composite Application for a POJO Service Provider (With Binding)” on page 33
■ “Creating a Composite Application for a POJO Service Consumer (Without Binding)” on

page 36
■ “Creating a Composite Application for a POJO Service Consumer (With Binding)” on

page 39

Creating Composite Applications for POJO Service Engine Projects

Oracle Java CAPS POJO Service Engine User's Guide • January 201130

Creating a Composite Application for a POJO Service
Provider (Without Binding)
When you create a POJO service provider without any binding, you can apply the binding to the
service assembly in the Composite Application.

▼ To Create a Composite Application for a POJO Service Provider
(Without Binding)

Right-click in the NetBeans Projects window, and then select New Project.

The New Project Wizard appears.

Under Categories, select SOA; under Projects, select Composite Application.

Click Next.

The Name and Location window appears.

1

2

3

Creating Composite Applications for POJO Service Engine Projects

Using the POJO Service Engine 31

Enter a unique name for the project. You can also modify the location of the project files.

Click Finish.

The new project appears in the projects list and the Composite Application appears in the
CASA Editor.

Drag the POJO Service Engine project to the JBI Module section of the CASA Editor.

Click Build.

From the CASA Editor Palette, drag the appropriate WSDL Binding to the WSDL Ports section of
the CASA Editor.

4

5

6

7

8

Creating Composite Applications for POJO Service Engine Projects

Oracle Java CAPS POJO Service Engine User's Guide • January 201132

Drag a connection from the WSDL port endpoint to the POJO service endpoint.

Save the changes to the Composite Application.

To deploy the application, do the following:

a. Make sure the GlassFish server is running.

b. In the Projects window, right-click the Composite Application project and then select
Deploy.

Note – If the POJO Service Engine is not started, deploying the Composite Application will
automatically start it for you.

Creating a Composite Application for a POJO Service
Provider (With Binding)
When you create a Composite Application for a POJO service provider with binding, the CASA
Editor automates most of the work for you.

9

10

11

Creating Composite Applications for POJO Service Engine Projects

Using the POJO Service Engine 33

▼ To Create a Composite Application for a POJO Service Provider (With
Binding)

Right-click in the NetBeans Projects window, and then select New Project.

The New Project Wizard appears.

Under Categories, select SOA; under Projects, select Composite Application.

Click Next.

The Name and Location window appears.

1

2

3

Creating Composite Applications for POJO Service Engine Projects

Oracle Java CAPS POJO Service Engine User's Guide • January 201134

Enter a unique name for the project. You can also modify the location of the project files.

Click Finish.

The new project appears in the projects list and the Composite Application appears in the
CASA Editor.

Drag the POJO Service Engine project to the JBI Module section of the CASA Editor.

Click Build.

The WSDL port and JBI Module both appear in the CASA Editor with the endpoints connected.

Save the changes to the Composite Application.

4

5

6

7

8

Creating Composite Applications for POJO Service Engine Projects

Using the POJO Service Engine 35

To deploy the application, do the following:

a. Make sure the GlassFish server is running.

b. In the Projects window, right-click the Composite Application project and then select
Deploy.

Note – If the POJO Service Engine is not started, deploying the Composite Application will
automatically start it for you.

Creating a Composite Application for a POJO Service
Consumer (Without Binding)
When you create a POJO service consumer without any binding, you can apply the binding to
the service assembly in the Composite Application.

9

Creating Composite Applications for POJO Service Engine Projects

Oracle Java CAPS POJO Service Engine User's Guide • January 201136

▼ To Create a Composite Application for a POJO Service Consumer
(Without Binding)

Right-click in the NetBeans Projects window, and then select New Project.

The New Project Wizard appears.

Under Categories, select SOA; under Projects, select Composite Application.

Click Next.

The Name and Location window appears.

1

2

3

Creating Composite Applications for POJO Service Engine Projects

Using the POJO Service Engine 37

Enter a unique name for the project. You can also modify the location of the project files.

Click Finish.

The new project appears in the projects list and the Composite Application appears in the
CASA Editor.

Drag the POJO Service Engine project to the JBI Module section of the CASA Editor.

Click Build.

If you configured the POJO consumer from an existing WSDL document, the WSDL port for
the consumer appears and is connected to the POJO application.

4

5

6

7

Creating Composite Applications for POJO Service Engine Projects

Oracle Java CAPS POJO Service Engine User's Guide • January 201138

If you added the consumer to a provider that was created with binding, the WSDL port for the
provider also appears and is connected to the POJO application.

If you did not configure the consumer from an existing WSDL document, drag the appropriate
WSDL binding from the Palette to the WSDL Ports section of the CASA Editor and connect it to
the consumer endpoint as shown above.

If the provider was not created with binding, drag the appropriate WSDL binding from the
Palette to the WSDL Ports section of the CASA Editor and connect it to the provider endpoint as
shown above.

Save the changes to the Composite Application.

To deploy the application, do the following:

a. Make sure the GlassFish server is running.

b. In the Projects window, right-click the Composite Application project and then select
Deploy.

Note – If the POJO Service Engine is not started, deploying the Composite Application will
automatically start it for you.

Creating a Composite Application for a POJO Service
Consumer (With Binding)
When you create a Composite Application for a POJO service consumer with binding, building
the Composite Application automates most of the work for you.

8

9

10

11

Creating Composite Applications for POJO Service Engine Projects

Using the POJO Service Engine 39

▼ To Create a Composite Application for a POJO Service Consumer (With
Binding)

Right-click in the NetBeans Projects window, and then select New Project.

The New Project Wizard appears.

Under Categories, select SOA; under Projects, select Composite Application.

Click Next.

The Name and Location window appears.

1

2

3

Creating Composite Applications for POJO Service Engine Projects

Oracle Java CAPS POJO Service Engine User's Guide • January 201140

Enter a unique name for the project. You can also modify the location of the project files.

Click Finish.

The new project appears in the projects list and the Composite Application appears in the
CASA Editor.

Drag the POJO Service Engine project to the JBI Module section of the CASA Editor.

Click Build.

The WSDL port for the consumer appears and is connected to the POJO application.

4

5

6

7

Creating Composite Applications for POJO Service Engine Projects

Using the POJO Service Engine 41

If you added the consumer to a provider that was created with binding, the WSDL port for the
provider also appears and is connected to the POJO application.

If the provider was not created with binding, drag the appropriate WSDL binding from the
Palette to the WSDL Ports section of the CASA Editor and connect it to the provider endpoint as
shown above.

Save the changes to the Composite Application.

To deploy the application, do the following:

a. Make sure the GlassFish server is running.

b. In the Projects window, right-click the Composite Application project and then select
Deploy.

Note – If the POJO Service Engine is not started, deploying the Composite Application will
automatically start it for you.

Using POJO Services With BPEL
You can call a POJO service from a BPEL business process and you can call a business process
from the POJO service. The following procedures explain how to create the BPEL Modules and
POJO projects, and then how to create the Composite Applications.

■ “Invoking POJO Services from a Business Process” on page 43
■ “Calling a Business Process From a POJO Service” on page 48

8

9

10

Using POJO Services With BPEL

Oracle Java CAPS POJO Service Engine User's Guide • January 201142

Invoking POJO Services from a Business Process
This procedure provides general instructions for calling a POJO service from a business
process. You can view a tutorial with more detailed information for completing this process at
http://wiki.open-esb.java.net/

Wiki.jsp?page=POJOTutorialEchoServiceInvokedByBPEL.

▼ To Invoke a POJO Service from a Business Process
This task requires that the POJO service being called is already created. For information on
creating a POJO service, see “Creating POJO Service Engine Projects” on page 11.

Create the business process with any necessary activities and WSDL documents.

For more information about creating business processes, see the Oracle Java CAPS BPEL
Designer and Service Engine User’s Guide.

Add an Invoke activity to the point in the business process where you want to invoke the POJO
service.

Drag the WSDL document from the POJO project in the Projects window to the right partner link
panel of the BPEL Editor.

The Create New Partner Link dialog box appears.

Before You Begin

1

2

3

Using POJO Services With BPEL

Using the POJO Service Engine 43

http://wiki.open-esb.java.net/Wiki.jsp?page=POJOTutorialEchoServiceInvokedByBPEL
http://wiki.open-esb.java.net/Wiki.jsp?page=POJOTutorialEchoServiceInvokedByBPEL
http://www.oracle.com/pls/topic/lookup?ctx=&id=CAPSBPELDESENG
http://www.oracle.com/pls/topic/lookup?ctx=&id=CAPSBPELDESENG

Modify the partner link information, or accept the default values.

Click OK.

In the business process, double-click the Invoke activity.

The activity Properties Editor appears.

Define the information for the partner link, as shown in the example below.

4

5

6

7

Using POJO Services With BPEL

Oracle Java CAPS POJO Service Engine User's Guide • January 201144

Click OK.

A connection appears between the Invoke activity and the partner link from the POJO project.
8

Using POJO Services With BPEL

Using the POJO Service Engine 45

▼ To Create the Composite Application

Right-click in the Projects window, and then select New Project.

The New Project Wizard appears.

Under Categories, select SOA; under Projects, select Composite Application.

Click Next.

The Name and Location window appears.

1

2

3

Using POJO Services With BPEL

Oracle Java CAPS POJO Service Engine User's Guide • January 201146

Enter a name for the Composite Application and modify the location of the project files if
necessary.

Click Finish.

The new Composite Application appears in the CASA Editor.

Drag the POJO Service Engine project from the Projects window to the JBI Modules section of
the CASA Editor.

In the CASA Editor toolbar, click Build Project.

The service, along with the endpoint, appears in the CASA Editor.

Drag the BPEL project from the Projects window to the JBI Modules section of the CASA Editor.

4

5

6

7

8

Using POJO Services With BPEL

Using the POJO Service Engine 47

In the CASA Editor toolbar, click Build Project.
The business process, endpoints, ports, and connections appear in the CASA Editor.

To deploy the application, do the following:

a. Make sure the GlassFish server is running.

b. In the Projects window, right-click the Composite Application project and then select
Deploy.

Note – If the POJO Service Engine is not started, deploying the Composite Application will
automatically start it for you.

Calling a Business Process From a POJO Service
This procedure provides general instructions for calling a business process from a POJO
service. You can view a tutorial with more detailed information for completing this process at
http://wiki.open-esb.java.net/Wiki.jsp?page=POJOJBISamplePOJO2BPEL.

▼ To Call a Business Process From a POJO Service
This task requires that the business process being called is already created. For information on
creating a business process, see BPEL Designer and Service Engine User’s Guide.

Create the business process with any necessary activities and WSDL documents.
For more information about creating business processes, see the Oracle Java CAPS BPEL
Designer and Service Engine User’s Guide.

9

10

Before You Begin

1

Using POJO Services With BPEL

Oracle Java CAPS POJO Service Engine User's Guide • January 201148

http://wiki.open-esb.java.net/Wiki.jsp?page=POJOJBISamplePOJO2BPEL
http://www.oracle.com/pls/topic/lookup?ctx=&id=CAPSBPELDESENG
http://www.oracle.com/pls/topic/lookup?ctx=&id=CAPSBPELDESENG

Create a new Java Application project for a POJO consumer, as described under “Creating a
POJO Service Consumer (Without Binding)”on page 23 or “Creating a POJO Service Consumer
(With Binding)”on page 25.

Standard code is automatically generated for the consumer.

Modify the code between the Consumer Invoke comments to handle the input from the
business process.

Below is a simple example of adding a response string to the message received from the business
process.
@Operation (outMessageTypeQN="{http://jseecho/Echo/}EchoOperationResponse")
public String receive(String input) {

/* Consumer Invoke - Begin */

{

String inputMessage = null;

try {

String outputMsg = (String) sepEchoInterfaceEchoOperation.

sendSynchInOut(inputMessage, org.glassfish.openesb.pojose.

api.Consumer.MessageObjectType.String);

return "Hello from POJO: " + outputMsg;

} catch (Exception ex) {

ex.printStackTrace();

}

} /* Consumer Invoke - End */

return "Hello from POJO: " + input;

}

// Logger

private static final Logger logger = Logger.getLogger(Echo.class.getName());

// POJO Context

@Resource

private Context jbiCtx;

@ConsumerEndpoint(serviceQN =

"{http://jseecho/Echo/}epEchoInterfaceEchoOperatioService",
interfaceQN = "{http://jseecho/Echo/}EchoInterface",
name = "epEchoInterfaceEchoOperatio",
operationQN = "{http://jseecho/Echo/}EchoOperation",
inMessageTypeQN = "{http://jseecho/Echo/}EchoOperationRequest")
private Consumer sepEchoInterfaceEchoOperation;

When you are done modifying the code, click Save on the NetBeans toolbar.

2

3

4

Using POJO Services With BPEL

Using the POJO Service Engine 49

▼ To Create the Composite Application

Right-click in the Projects window, and then select New Project.

The New Project Wizard appears.

Under Categories, select SOA; under Projects, select Composite Application.

Click Next.

The Name and Location window appears.

Enter a name for the Composite Application and modify the location of the project files if
necessary.

Click Finish.

The new Composite Application appears in the CASA Editor.

Drag the POJO Service Engine project from the Projects window to the JBI Modules section of
the CASA Editor.

Drag the BPEL project from the Projects window to the JBI Modules section of the CASA Editor.

1

2

3

4

5

6

7

Using POJO Services With BPEL

Oracle Java CAPS POJO Service Engine User's Guide • January 201150

In the CASA Editor toolbar, click Build Project.

The business process, POJO service, endpoints, ports, and connections appear in the CASA
Editor.

To deploy the application, do the following:

a. Make sure the GlassFish server is running.

b. In the Projects window, right-click the Composite Application project and then select
Deploy.

Note – If the POJO Service Engine is not started, deploying the Composite Application will
automatically start it for you.

Configuring Runtime Properties for the POJO Service Engine
The POJO SE Properties Editor allows you to view information about the service engine,
configure threading properties, view statistics on the runtime components, and set log levels for
various POJO SE components.

The following topics provide instructions for configuring the runtime properties and a
reference of the available properties:

■ “To Configure POJO SE Runtime Properties” on page 52
■ “POJO Service Engine Runtime Property Descriptions” on page 53

8

9

Configuring Runtime Properties for the POJO Service Engine

Using the POJO Service Engine 51

▼ To Configure POJO SE Runtime Properties
From the Services window of the NetBeans IDE, expand the Servers node.

If the application server is not already started, right-click the server and then select Start.

Under the application server, expand JBI and expand Service Engines.

If the POJO SE is not started, right-click sun–pojo–engine and then select Start.

Right-click sun–pojo–engine and then select Properties.

The Properties Editor appears.

Modify any of the properties listed in “POJO Service Engine Runtime Property Descriptions”on
page 53.

Note – Statistic properties are automatically updated by the POJO SE. You do not need to modify
these properties.

1

2

3

4

5

6

Configuring Runtime Properties for the POJO Service Engine

Oracle Java CAPS POJO Service Engine User's Guide • January 201152

To apply the changes, stop and restart the POJO SE.

POJO Service Engine Runtime Property Descriptions
The following table lists and describes each POJO Service Engine runtime property.

TABLE 5 POJO SE General Runtime Properties

Property Description

Description A general description of the JBI component.

Name A unique name for the POJO SE in the JBI environment. If you install more than
one POJO Service Engine in a JBI environment, make sure that each has a unique
name. When the service unit deploys the component, it is matched with the target
component name defined in its descriptor file, jbi.xml, which can be modified as
needed.

State The current state of the JBI component. This value can be either Started, Stopped,
or Shutdown.

Type The type of JBI component (service-engine or binding-component).

TABLE 6 POJO SE Identification Runtime Properties

Property Description

Version The version number of the installed service engine.

Build Number The build number of the installed service engine.

TABLE 7 POJO SE Configuration Runtime Properties

Property Description Default Value

Core Thread Pool Size The number of core threads in the thread pool
executor for processing inbound messages.

15

Max Thread Pool Size The maximum number of threads in the thread pool
executor for processing inbound messages.

50

Thread Pool Blocking
Queue Size

The number of thread for the blocking queue. 50

TABLE 8 POJO SE Runtime Statistics

Property Description

Activated Endpoints The number of activated endpoints.

7

Configuring Runtime Properties for the POJO Service Engine

Using the POJO Service Engine 53

TABLE 8 POJO SE Runtime Statistics (Continued)
Property Description

Active Exchanges The number of active exchanges.

Avg. Component Time The average message exchange component time in milliseconds.

Avg. D.C. Time The average message exchange delivery channel time in milliseconds.

Avg. Msg. Service Time The average message exchange message service time in milliseconds.

Avg. Response Time The average message exchange response time in milliseconds.

Completed Exchanges The total number of completed exchanges.

Error Exchanges The total number of error exchanges.

Received Dones The total number of received dones.

Received Errors The total number of received errors.

Received Faults The total number of received faults.

Received Replies The total number of received replies.

Received Requests The total number of received requests.

Sent Dones The total number of sent dones.

Sent Errors The total number of sent errors.

Sent Faults The total number of sent faults.

Sent Replies The total number of sent replies.

Sent Requests The total number of sent requests.

Up Time The up time of this component in milliseconds.

The Loggers properties specify the level of logging for each event. You can set the logging level
for each logger to any of the following levels:

■ FINEST: provides highly detailed tracing
■ FINER: provides more detailed tracing
■ FINE: provides basic tracing
■ CONFIG: provides static configuration messages
■ INFO: provides informative messages
■ WARNING: messages indicate a warning
■ SEVERE: messages indicate a severe failure
■ OFF: no logging messages

By default, these are all set to the INFO level.

Configuring Runtime Properties for the POJO Service Engine

Oracle Java CAPS POJO Service Engine User's Guide • January 201154

TABLE 9 POJO SE Logger Runtime Properties

Property POJO Component

sun-pojo-engine org.glassfish.openesb.pojose

DeploymentLookup org.glassfish.openesb.pojose.com.sun.jbi.common.qos.descriptor.
DeploymentLookup

MessagingChannel org.glassfish.openesb.pojose.com.sun.jbi.common.qos.messaging.
MessagingChannel

PojoSE Annotation Processor org.glassfish.openesb.pojose.core.anno.processor.
POJOAnnotationProcessor

PojoSE Util org.glassfish.openesb.pojose.core.util.Util

PojoSE Bootstrap org.glassfish.openesb.pojose.jbi.PojoSEBootstrap

PojoSE Component Manager org.glassfish.openesb.pojose.jbi.PojoSEComponentManager

PojoSEConfiguration org.glassfish.openesb.pojose.jbi.PojoSEConfiguration

PojoSE Life Cycle org.glassfish.openesb.pojose.jbi.PojoSELifeCycle

PojoSE Service Unit Manager org.glassfish.openesb.pojose.jbi.PojoSEServiceUnitManager

PojoSE Executor org.glassfish.openesb.pojose.jbi.nmr.BasePojoExecutor

PojoSE Service Unit org.glassfish.openesb.pojose.jbi.su.PojoSEServiceUnit

PojoSE Inbound Processor org.glassfish.openesb.pojose.jbi.thread.InboundProcessor

POJO Service Engine API Annotation and Classes
The POJO Service Engine provides a very simple API for defining consumers and providers
using POJO. Some of the objects are annotated for ease of use. The complete POJO Service
Engine API Javadoc is at /https://open-esb.dev.java.net/nonav/pojose/javadoc/.

The following sections list and describe the POJO annotations and classes, along with the
relevant JBI classes:

■ “POJO Service Engine API Annotations” on page 56
■ “POJO Service Engine Non-Annotated Classes” on page 57
■ “JBI API Classes Relevant to the POJO Service Engine” on page 57

POJO Service Engine API Annotation and Classes

Using the POJO Service Engine 55

https://open-esb.dev.java.net/nonav/pojose/javadoc/

POJO Service Engine API Annotations
The annotations listed and described below are provided in the POJO Service Engine API to
simplify the necessary coding.

■ Provider - org.glassfish.openesb.pojose.api.annotation.Provider

A class-level annotation that designates a Java class as a POJO service.
■ Operation - org.glassfish.openesb.pojose.api.annotation.Operation

A method-level annotation that designates an operation as a POJO service method.
■ ConsumerEndpoint -

org.glassfish.openesb.pojose.api.annotation.ConsumerEndpoint

A field-level annotation that designates fields of the type
org.glassfish.openesb.pojose.api.Consumer. The POJO SE injects this instance before
calling the POJO operation method.

■ Resource - org.glassfish.openesb.pojose.api.annotation.Resource

A field-level annotation that designates field of the type
org.glassfish.openesb.pojose.api.res.Context. The POJO SE injects the instance
before calling the POJO operation method.

■ OnReply - org.glassfish.openesb.pojose.api.annotation.OnReply

A method-level annotation that designates a method to be invoked when the reply message
from the asynchronously called JBI service is received.

Note – Fault and error messages are only handled by methods annotated with OnFault and
OnError and will not get routed to methods annotated with OnReply. If you do not have
OnFault or OnError annotated methods, faults or error messages are ignored after they are
logged at the Severe level.

■ OnDone - org.glassfish.openesb.pojose.api.annotation.OnDone

A method-level annotation that designates a method to be invoked when all the outstanding
reply messages from asynchronously called JBI services are received.

■ OnError - org.glassfish.openesb.pojose.api.annotation.OnError

A method-level annotation that designates a method to be invoked when an asynchronous
JBI services call results in a JBI error status. See the note above for information about using
OnReply, OnError, and OnFault.

■ OnFault - org.glassfish.openesb.pojose.api.annotation.OnFault

A method-level annotation that designates a method to be invoked when an asynchronous
JBI services call results in a JBI fault status.

POJO Service Engine API Annotation and Classes

Oracle Java CAPS POJO Service Engine User's Guide • January 201156

POJO Service Engine Non-Annotated Classes
The classes listed and described below define the non-annotated objects of the POJO Service
engine API.
■ Context - org.glassfish.openesb.pojose.api.res.Context

When a field is annotated with @Resource
(org.glassfish.openesb.pojose.api.annotation.Resource), the POJO SE inserts an
instance of Context before invoking the POJO instance method. A Context instance can be
used to look up JNDI resources, look up service endpoints, retrieve an instance of
Consumer, access a MessageExchange object, and create a new MessageExchange object.

■ Consumer - org.glassfish.openesb.pojose.api.Consumer
When a field is annotated with @ConsumerEndpoint
(org.glassfish.openesb.pojose.api.annotation.ConsumerEndpoint), the POJO SE
inserts an instance of Consumer before invoking the POJO instance method. A Consumer
instance can be used to consume JBI services both synchronously and asynchronously.
Consumer.sendSynchInOnly() and sendSynchInOut methods are used to send messages in
synchronous mode, and sendInOnly() and sendInOut are used to send and receive
messages asynchronously. A Consumer instance can also be used to create a
MessageExchanges object specific to the ServiceEndpoint that annotates the field.

■ ErrorMessage - org.glassfish.openesb.pojose.api.ErrorMessage
A POJO class can throw an ErrorMessage object from its @Opeation method to send the JBI
error status to the caller of the service.

Note – You need to specifically throw a FaultMessage exception to return a fault message;
otherwise, throw an ErrorMessage exception to return the MessageExchange with the error
status and exception. If there is a runtime exception, the MessageExchange is returned with
a status of "error" and an exception.

■ FaultMessage - org.glassfish.openesb.pojose.api.FaultMessage
A POJO class can throw a FaultMessage object from its @Operation method to send the JBI
fault status to the caller of the service. See the above note for information about when to use
ErrorMessage and when to use FaultMessage.

JBI API Classes Relevant to the POJO Service Engine
The following classes from the JBI API are used with the POJO Service Engine:
■ NormalizedMessage (javax.jbi.messaging.NormalizedMessage)
■ MessageExchange (javax.jbi.messaging.MessageExchange)
■ ServiceEndpoint (javax.jbi.servicedesc.ServiceEndpoint)

POJO Service Engine API Annotation and Classes

Using the POJO Service Engine 57

58

	Oracle® Java CAPS POJO Service Engine User's Guide
	Using the POJO Service Engine
	POJO Service Engine Overview
	Providing and Consuming JBI Services
	Providing a JBI Service
	Operation Parameter Types
	Context

	Consuming a JBI Service
	Getting the Consumer Instance Dynamically

	Consuming Services Asynchronously
	Using Multiple Threads

	Creating POJO Service Engine Projects
	Creating a POJO Service Provider (Without Binding)
	To Create a POJO Service Provider (Without Binding)

	Creating a POJO Service Provider (With Binding)
	To Create a POJO Service Provider (With Binding)

	Creating a POJO Service Provider in an Existing Java Application
	To Create a POJO Service Provider in a Java Application

	Creating a POJO Service Consumer (Without Binding)
	To Create a POJO Service Consumer (Without Binding)

	Creating a POJO Service Consumer (With Binding)
	To Create a POJO Service Consumer (With Binding)

	POJO Configuration Properties
	POJO Service Provider Properties
	POJO Service Properties for Binding
	POJO Service Consumer Properties

	Creating Composite Applications for POJO Service Engine Projects
	Creating a Composite Application for a POJO Service Provider (Without Binding)
	To Create a Composite Application for a POJO Service Provider (Without Binding)

	Creating a Composite Application for a POJO Service Provider (With Binding)
	To Create a Composite Application for a POJO Service Provider (With Binding)

	Creating a Composite Application for a POJO Service Consumer (Without Binding)
	To Create a Composite Application for a POJO Service Consumer (Without Binding)

	Creating a Composite Application for a POJO Service Consumer (With Binding)
	To Create a Composite Application for a POJO Service Consumer (With Binding)

	Using POJO Services With BPEL
	Invoking POJO Services from a Business Process
	To Invoke a POJO Service from a Business Process
	To Create the Composite Application

	Calling a Business Process From a POJO Service
	To Call a Business Process From a POJO Service
	To Create the Composite Application

	Configuring Runtime Properties for the POJO Service Engine
	To Configure POJO SE Runtime Properties
	POJO Service Engine Runtime Property Descriptions

	POJO Service Engine API Annotation and Classes
	POJO Service Engine API Annotations
	POJO Service Engine Non-Annotated Classes
	JBI API Classes Relevant to the POJO Service Engine

