
Oracle® Java CAPS FTP Binding Component
User's Guide

Part No: 821–2624
January 2011

Copyright © 2009, 2011, Oracle and/or its affiliates. All rights reserved.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group in the United States and other countries.

Third Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

120126@25097

Contents

Using the FTP Binding Component .. 5
FTP Binding Component — Overview ...6
Supporting Features in the FTP Binding Component ...7

Systemic Qualities Implemented in the FTP Binding Component ..9
Invoking Messages in FTP Binding and Synchronous Request-Response Service 11

Correlating a Request-Response .. 13
Message Transportation Through FTP Binding Component ... 13

3

4

Using the FTP Binding Component

The topics in this document provides information about using the FTP Binding Component in
a Project.

What You Need to Know

These topics provide information about the functional behavior of the FTP Binding
Component.

■ “FTP Binding Component — Overview” on page 6.
■ “Supporting Features in the FTP Binding Component” on page 7.
■ “Invoking Messages in FTP Binding and Synchronous Request-Response Service” on

page 11.
■ “Message Transportation Through FTP Binding Component” on page 13.

Configuring the FTP Binding Component for Clustering

For information on configuring clustering for the FTP Binding Component see the following.

■ Configuring the FTP Binding Component for Clustering
■ How To Create a Cluster-Ready Composite Application with FTP BC

(http://wiki.open-esb.java.net/Wiki.jsp?page=FTPBCClusteringHowTo)

More Information

Much more information about the FTP Binding Component can be found in the tutorial,
Working with the FTP Binding Component. Please refer to this document for further
information about the FTP Binding Component.

5

http://wiki.open-esb.java.net/Wiki.jsp?page=Jbi_clusterFtp_p
http://wiki.open-esb.java.net/Wiki.jsp?page=WorkingWithFTPBindingComponent

FTP Binding Component — Overview
The File Transfer Protocol (FTP) Binding Component (BC) (referred as FTP BC) is a binding
component implementation that complies with JBI Specification 1.0.

The FTP Binding Component is a JSR-208 compliant JBI runtime component that provides
inbound and outbound JBI messaging using the FTP protocol as specified in RFC 959.

The Binding Components are used to send and receive messages using specific protocols and
transports. The components provide normalization and de-normalization to isolate the JBI
environment from the particular protocol-specific formats. These allow the JBI environment to
deal only with normalized messages.

Note – Protocol-specific metadata can be attached to a normalized message, or the message
exchange, in their metadata, allowing protocol-specific information to be conveyed to a Service
Engine (SE) or Binding Component (BC) in a manner that is opaque to other JBI environment
components.

The Binding Components provide a message transportation using the FTP protocol and also
helps to define services (which comprise operations) using WSDL. Later the components bind
them to FTP as the underlying message transportation protocol. These also assists binding
other components in a JBI environment (for example, an SE can orchestrate the services
consumption and provision).

The FTP Binding Component implements all required Binding Component interfaces using
JBI specification to facilitate deployment and execution in any JBI compliant target
environment.

The implementation has a design-time component to facilitate the process of service definition
and binding.

A NetBeans module also makes WSDL authoring and FTP binding a convenient process in the
NetBeans IDE.

FTP Binding Component — Overview

Oracle Java CAPS FTP Binding Component User's Guide • January 20116

Supporting Features in the FTP Binding Component
This following are the supported features implemented in the FTP Binding Component.

1. FTP Binding Component Extensibility Elements
■ ftp:transfer- Specify message transportation involving a sending party and a receiving

party through FTP
■ ftp:message - Specify message transportation between a service consumer and a service

provider through FTP

Service
Engine

Normalized Message Router

Binding
Component

FTP Binding
Component

JBI Runtime Environment

Service
Engine

Normalized Message Router

Binding
Component

FTP Binding
Component

Poll
Request

Put
Request

Poll
Response

Put
Response

FTP Binding Component
JBI Consumer/Provider

(FTP Client)

FTP Binding Component
JBI Consumer/Provider

(FTP Client)

FTP Server

Message Area

Base Directory

Inbox

Instage

Outbox

Outstage

JBI Runtime Environment

Supporting Features in the FTP Binding Component

Using the FTP Binding Component 7

■ ftp:address - Specify an endpoint for message transport using FTP
■ ftp:binding - Specify a FTP binding indication
■ ftp:operation - Specify a FTP operation indication

2. External Protocols
■ FTP (RFC 959)
■ FTP/TLS (RFC 2228 + RFC 4217) - Explicit SSL
■ FTP/TLS - Implicit SSL

3. Directory Listing Styles
A built-in parsing logic has been introduced to parse the directory listing for the following
directory listing style. This must address diversification on FTP servers running on different
Operating Systems.
■ UNIX
■ AS400
■ AS400-UNIX
■ HCLFTPD 6.0.1.3
■ HCLFTPD 5.1
■ HP NonStop/Tandem
■ MPE
■ MSFTPD 2.0
■ MSP PDS (Fujitsu)
■ MSP PS (Fujitsu)
■ MVS GDG
■ MVS PDS
■ MVS Sequential
■ Netware 4.11
■ NT 3.5
■ NT 4.0
■ UNIX (EUC-JP)
■ UNIX (SJIS)
■ VM/ESA
■ VMS
■ VOS3 PDS (Hitachi)
■ VOS3 PS (Hitachi)
■ VOSK (Hitachi)

A configuration file containing directory listing parsing information is provided to handle
user-defined FTP directory list parsing. Users can specify the parsing rules (heuristics) for
directory listing.

4. Proxy Protocols
■ SOCKS4
■ SOCKS5

Supporting Features in the FTP Binding Component

Oracle Java CAPS FTP Binding Component User's Guide • January 20118

Note – The proxy configuration is not a per-service information, but is part of the FTP
Binding Component deployed on a host. Its configuration is a FTP Binding Component
Runtime configuration parameter.

5. Environment Variables
Name:value pairs can be defined as environment variables. The environment variables can
be used to specify environment specifications in the WSDL configuration. These can be path
names and host names. Environment variables are defined using a binding component
runtime parameter.
Using environment variables provides greater flexibility in modifying configurations for the
FTP Binding Component.

6. Pre-Transfer and Post-Transfer Operations
Some pre and/or post operations are performed after a FTP PUT or GET. For example,
archiving a file that is downloaded so it does not download again, or moving file away that is
in the way of a PUT so that it does not get overwritten, and so forth. The following pre/post
transfer operations are supported:
■ COPY - For post GET operation

Create a duplicate of the target file at a location using the pre-operation parameters
before file transfer.

■ RENAME - For pre GET, post GET, and post PUT operation
■ Use the pre-operation parameters to move the target file to a location before file

transfer.
■ Use the post-operation parameters to move the target file to a location after file

transfer.
■ DELETE - For post GET operation

Delete the target file after the transfer.
7. Connection Pooling

Pool connections to the FTP Server.

Systemic Qualities Implemented in the FTP Binding
Component
These are the systemic qualities implemented in FTP Binding Components.
■ Transport Security

■ Explicit SSL - FTP/TLS (RFC 2228 + RFC 4217)
■ Implicit SSL - FTP on SSLSocket

Supporting Features in the FTP Binding Component

Using the FTP Binding Component 9

■ Connection Pooling
■ Numerous QoS

■ Password Handling
Security often interacts with various external systems, protocols, and implementations.
Security can be authorization, authentication, or encryption. This initiative provides a
common mechanism for components that handle authorization and authentication
using user names and passwords.

■ Usability Enhancement of WSDL Extensibility Element Editor
■ Component Logging Systemic Quality
■ Application Variable and Application Configuration
■ Runtime Monitoring (MBean)

Users can monitor the component and the application during runtime. After deploying
and starting the server, it provides datapoints like endpoint statistics, component
statistics and also measures performance.

■ Re-Delivery
■ Throttling

Throttling settings can be used to limit the number of concurrent messages sent over the
NMR.

■ Normalized Message Properties
Normalized Message properties (or NM properties) are commonly used to specify
metadata associated with the message content. Some standard NM properties defined in
JBI specifications are: javax.jbi.security.subject and
javax.jbi.messaging.protocol.type.
■ Getting/Setting transport context properties (for example, http headers in the

coming HTTP request, file names read by the File Binding Component)
■ Getting/Setting protocol specific headers or context properties (SOAP headers)
■ Getting/Setting additional message metadata (for example, unique message

identifier, endpoint name associated with a message)
■ Dynamic configurations (for example, dynamically overwrite the statically

configured file name to write to at runtime)
■ FTP Binding Component Defined Normalized Message Properties

FTP Binding Component supports the unique message ID, that is,
org.glassfish.openesb.messaging.messageid.
Unique Message ID can be used, for example, to correlate messages while responding to
a request.
FTP Binding Component provides out-of-box request or response correlating using a
UUID for every message.

Supporting Features in the FTP Binding Component

Oracle Java CAPS FTP Binding Component User's Guide • January 201110

■ Dynamic Addressing based on FTP Binding Component Normalized Message
Properties

FTP Binding Component can derive binding information from Normalized Message
properties from a message. It applies this information to the static binding obtained
from WSDL. It derives the endpoint while the message is processed or routed. This is
called Dynamic Addressing.
■ For Inbound: Normalized Message properties will be populated and attached to the

message if and only if AllowDynamicEndpoint == true.
■ For Outbound: Normalized Message properties will be used to overwrite static

binding if and only if: AllowDynamicEndpoint == true and
org.glassfish.openesb.ftp.use.dynamic.endpoint == true

Dynamic Addressing can be of as a per message (outbound) endpoint binding (for
example, to an external system).

Note – This is a different mechanism from the JBI Dynamic Endpoint Reference (EPR).

Invoking Messages in FTP Binding and Synchronous
Request-Response Service

The FTP protocol is used for transporting messages between service consumer and service
provider.

Service Engines can exchange messages through WSDL services that have FTP Binding
Component extensibility elements. The extensibility elements of the FTP Binding Components
can be defined based on nature of operation or binding mechanism.

Invoking Messages in FTP Binding and Synchronous Request-Response Service

Using the FTP Binding Component 11

The figure illustrates a full message path including request (IN-ROUTE) and response
(OUT-ROUTE). As illustrated, FTP Binding Component uses directories on FTP server as
message persistence where service consumers and service providers exchange messages. During
the implementation the following assumptions are made to facilitate message transportation in
a FTP context.

When the FTP Binding Component acts as a JBI consumer, it puts a request (for certain service)
and polls a response using the FTP protocol.

When the FTP Binding Component acts as a JBI provider, it uses the FTP protocol to route JBI
normalized messages to a specified destination.

FTP Binding Component provides the following mode of operation. Each mode has two
“flavors” corresponding to the Binding Schemes used. They are,

1. ftp:message

For Binding Schema “Message”
a. Inbound One Way — Poll Message
b. Inbound Request Response Messaging — Poll Request Message and Put Response Back

(can be correlated and non-correlated)
Depends on the extensibility elements' attribute “messageCorrelate”

c. Outbound One Way — Put Message
d. Outbound Request Response Messaging — Put Request Message and Poll Response

Back (can be correlated and non-correlated)
Depends on the extensibility elements' attribute “messageCorrelate”

WS consumer
(FTP client)

FTP
Server

Put request

Poll response

Poll request

Put response

MSG
exchange

area
(directories)

WS provider
(FTP client)

Invoking Messages in FTP Binding and Synchronous Request-Response Service

Oracle Java CAPS FTP Binding Component User's Guide • January 201112

e. On Demand Get Message — Get Message
2. ftp:transfer

For Binding Schema “Transfer”
a. Inbound One Way — Receive Request
b. Inbound Request Response Transferring — Receive Request and Send Response Back

(can be correlated and non-correlated)
Depends on the extensibility elements' attribute “messageCorrelate”

c. Outbound One Way — Send Request
d. Outbound Request Response Transferring — Send Request and Receive Response Back

(can be correlated and non-correlated)
Depends on the extensibility elements' attribute “messageCorrelate”

e. On Demand Receive Transferring — Receive Transfer

Note – The service consumption can be synchronous, where the web services consumer posts
the message to a location agreed between consumer and provider. It polls the response mutually
from a location agreed between the consumer and the provider. The service consumption can
be asynchronous where the web services consumer posts the message to a location agreed
between the consumer and the provider. Later, it leaves a separate response to facilitate the
poller to poll from a mutually agreed location.

Correlating a Request-Response
There are two methods used to correlate a request with a corresponding response message.

1. Using the BPEL correlate set method.
2. Synchronized Request/Response Processing: This is enabled using ftp:message —>

messageCorrelate (if you are using the “Message” FTP BC binding scheme). If you are using
the “Transfer” FTP BC binding scheme, ftp:transfer —> messageCorrelate.

Message Transportation Through FTP Binding Component
As illustrated in Figure, the FTP Binding Component uses directories on the FTP server as
message persistence where service consumers and service providers exchange messages. In the
current implementation, some assumptions are made so that there is a controlled transport of
messages in the FTP context. This is true when multiple components access a directory.

The following are assumptions made under the current implementation.

Message Transportation Through FTP Binding Component

Using the FTP Binding Component 13

1. Each service operation with FTP binding has an endpoint information like host name, port,
account login, password and so forth. This information specifies a message exchange area
on the remote FTP server where both the consumer and provider communicate.
For example, in the case of a request/response type operation, the following is performed in
the message area during message transport from the consumer to the provider (request -
IN-Route) and from the provider to the consumer (response - OUT-Route):
a. Consumer: Staging (Put) request
b. Consumer: Expose (Rename to target location) request to provider when staging

completes
c. Provider: Poll (Get periodically) request
d. Provider: Archive/Remove request after received
e. Provider: Staging (Put) response
f. Provider: Expose (Rename to target location) response to consumer when staging

completes
g. Consumer: Poll (Get periodically) response
h. Consumer: Archive/Remove response received

Figure: Message Transportation

The message exchange area is a dedicated directory on the remote FTP server. The FTP
Binding Component or the Administrator can create subdirectories (which serve as
archiving area, staging area, exchange area, and so on) during runtime. This is similar to the
queues and topics in the JMS paradigm.

MSG
exchange

area
(directories)

Put request Poll request

Put responsePoll response
WS consumer
(FTP Client)

FTP server
WS provider
(FTP client)

Message Transportation Through FTP Binding Component

Oracle Java CAPS FTP Binding Component User's Guide • January 201114

2. The service consumer and the service provider either login using the same FTP account
(they share the same FTP context - For example, login home where all relative paths are
referred), or use different accounts for a given service. If different accounts are used, an
administrative configuration is needed to ensure that the login home is mapped to the same
location on FTP server. Appropriate access rights have to be granted according to the
chosen scenario.

3. Different service operations use dedicated message exchange areas on the remote FTP
server. There is no overlapping between the base directories.

4. FTP file names are leveraged so that the consumers and providers can push and poll
messages between them. For example, consumers post request messages into the FTP file
with names that match the .msg pattern. The corresponding providers use the same pattern
to retrieve these request messages from the agreed location. A similar process occurs for the
response routing from providers to consumers. Numerous patterns are available for
configuration of a particular message transfer (implemented as FTP Binding Component
extensibility elements: ftp:message, ftp:messageActivePassive (deprecated), ftp:transfer).
These ensure that the messages posted get polled according to their name pattern.

Note – Request-response messages cannot be correlated across FTP.

5. The FTP files serve as intermediary message persistence on FTP server. The names of the
FTP files are leveraged to support Request-response correlation. The scenario works as
follows:

On the Consumer Side:

The message routing starts with the consumer who invokes a service (INVOKE in BPEL script).
On the other side of the NMR, FTP Binding Component OutboundProcessor accepts the
request message, de-normalizes the message and labels the message body (which is the payload
to a FTP file) with name as req (Refer to Figure: Message Transportation).

The consumer thread (FTP Binding Component OutboundProcessor) spawns off a
ResponsePoller thread which starts polling a response with name resp.

Note – The same UUID is used for request and response.

The request is fetched when resp becomes available at the location agreed between the
consumer and provider. This completes the request-response correlation sequence. The fetched
message is wrapped up as a normalized message and sent into NMR using the same Message
Exchange ID. This ensures that the response is available as the OUT variable of the INVOKE
activity in the BPEL script.

Figure: UUID Tagged Response Message

Message Transportation Through FTP Binding Component

Using the FTP Binding Component 15

On the Provider Side:

The provider polls (RECEIVE activity in BPEL) the message receiving area (agreed between the
consumer and provider) for a request. The provider polls for a request with the FTP file name
pattern req.%u, where %u denotes any string that matches the pattern of a typical UUID in the
string form (refer to JDK java.util.UUID - since 1.5) (refer to Figure 1: Message
Transportation).

The UUID tag is extracted from the file name upon receipt of the request message (polled from
remote FTP directory). The tag is attached as metadata for the message exchange. The payload
is wrapped in a normalized message and sent into the NMR. The request message participates
in any business logic in the service unit. A response is sent to the NMR with the same message
exchange (ME - attached with meta information including the UUID tagged with the request).
The OutboundProcessor fulfills the contract by associating the message to a FTP file named as
resp. See Figure 3: UUID Tagged Response Message for examples of UUID tagged response
messages. This completes the request-response correlation.

Note – The message correlation scheme can be applied to multi-hop service invoking. For
example, during the processing of the first service invoking, invoke service1.operation1, the
provider can also invoke other services, such as service2.operation2.

Service 1 provider
consumer of
 services 2,3

Service 2 provider

Consumer of
service1

Service 3 provider

req.uuid1

req.uuid2

resp.uuid1
resp.uuid3

resp.uuid2

req.uuid3

Message Transportation Through FTP Binding Component

Oracle Java CAPS FTP Binding Component User's Guide • January 201116

Note – UUID tagging is not the only means to achieve message correlation though the sample
FTP Binding Component implementation seems to indicate. The service unit that transports
the message can also use the information embedded inside the message payload to correlate at
application level.

Message Transportation Through FTP Binding Component

Using the FTP Binding Component 17

18

	Oracle® Java CAPS FTP Binding Component User's Guide
	Using the FTP Binding Component
	FTP Binding Component — Overview
	Supporting Features in the FTP Binding Component
	Systemic Qualities Implemented in the FTP Binding Component

	Invoking Messages in FTP Binding and Synchronous Request-Response Service
	Correlating a Request-Response

	Message Transportation Through FTP Binding Component

