
Oracle® Java CAPS Custom Encoders User's
Guide

Part No: 821–2632
January 2011



Copyright © 2009, 2011, Oracle and/or its affiliates. All rights reserved.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group in the United States and other countries.

Third Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

120126@25097



Contents

Designing Custom Encoders ................................................................................................................5
Understanding the Encoder Framework .............................................................................................5

Abstract Message Structure ...........................................................................................................7
Creating the Abstract Message Definition ...................................................................................8

Applying Custom Encoding to an XSD ...............................................................................................9
▼ To Apply the Custom Encoder to an XSD ....................................................................................9

Editing Encoding Properties .............................................................................................................. 10
Encoding Properties .................................................................................................................... 11
Data Encoding .............................................................................................................................. 17

Matching Data Patterns ...................................................................................................................... 18
Defining Byte Patterns ................................................................................................................. 18
Specifying Pattern Alignment .................................................................................................... 19

Specifying Delimiters .......................................................................................................................... 21
Delimiter List ................................................................................................................................ 22
Delimiter Properties .................................................................................................................... 23
Delimiter Levels ........................................................................................................................... 24
Delimiter Type ............................................................................................................................. 26
Precedence .................................................................................................................................... 28
Optional ........................................................................................................................................ 29
Terminator .................................................................................................................................... 31
Delimiter Characters (Bytes) ...................................................................................................... 32
Multiple Delimiters ...................................................................................................................... 32
Anchored and Detached Delimiters .......................................................................................... 33
Begin and End Delimiters ........................................................................................................... 33
Constant and Embedded Delimiters ......................................................................................... 34

Defining a Delimiter List .................................................................................................................... 34
▼ To create a delimiter list .............................................................................................................. 34

Validating and Testing the Custom Message Definition ................................................................ 39

3



Validating the Custom Message Definition .............................................................................. 39
Testing the Encoder Runtime Behavior .................................................................................... 40

Using Custom Encoders in JBI Projects ........................................................................................... 42
▼ To Use a Custom Encoder in a JBI Project ................................................................................ 42

About Data Parsing and Serialization ............................................................................................... 43
Encoding Process ......................................................................................................................... 43
encodeToString() Method .......................................................................................................... 44
encodeToBytes() Method ........................................................................................................... 44
encodeToStream() Method ........................................................................................................ 45
encodeToWriter() Method ......................................................................................................... 45
Decoding Process ......................................................................................................................... 45
decodeFromString() Method ..................................................................................................... 45
decodeFromBytes() Method ....................................................................................................... 46
decodeFromStream() Method .................................................................................................... 46
decodeFromReader() Method .................................................................................................... 46
Setting Delimiters ........................................................................................................................ 46

Contents

Oracle Java CAPS Custom Encoders User's Guide • January 20114



Designing Custom Encoders

This document covers the following topics:

■ “Applying Custom Encoding to an XSD” on page 9
■ “Editing Encoding Properties” on page 10
■ “Matching Data Patterns” on page 18
■ “Specifying Delimiters” on page 21
■ “Defining a Delimiter List” on page 34
■ “Validating and Testing the Custom Message Definition” on page 39
■ “Using Custom Encoders in JBI Projects” on page 42

Additional information is provided in the following sections:

■ “Understanding the Encoder Framework” on page 5
■ “About Data Parsing and Serialization” on page 43

Understanding the Encoder Framework
An Encoder is a bidirectional software component that transforms an XML message into a
non-XML message, and vice versa. The term encoding has a very specific meaning within this
context, representing act of transforming an XML message into a non-XML message. The act of
transforming a non-XML message into an XML message is termed decoding. Despite its name,
the Encoder performs both functions.

XML is used as a common data format for processing within Java CAPS. In general, most data
used in external applications is in some non-XML, serialized format; hence, the need for an
Encoder.

A very highly simplified illustration of the data flow to and from Java CAPS is shown in the
following diagram. The area to the right of the JBI boundary represents Java CAPS, while the
area to the left of the boundary represents whatever external applications are communicating
with Java CAPS.

5



Three sets of information define the runtime behavior of an Encoder:

■ Encoder Type, also known as encoding style, defines the high-level encoding rules for a
specific type of encoding and applies globally to all encoders of that type. The specific type of
encoding relates to the data format used by the external application or communications
protocol that is sending data to, or receiving data from, Java CAPS. Examples include SAP,
Oracle DBMS, HL7, SWIFT, and X12. Encoding rules include:
■ A grammar to scan an input message in its external representation, and rules on

mapping the result to the internal representation (an operation known as decoding or
parsing).

■ Rules on generating the external representation of an output message from the internal
representation (an operation called encoding or serialization).

■ Detailed Encoding Rules are specific to a single instance of an Encoder Type. These rules
include:
■ Delimiters
■ Field Lengths
■ Data offsets

■ The Abstract Message Structure specifies the logical structure of the messages being
processed. This metadata is represented as XML schema (XSD), and may be viewed and
edited by an XSD viewer/editor.

Understanding the Encoder Framework

Oracle Java CAPS Custom Encoders User's Guide • January 20116



Abstract Message Structure
The runtime message structure is composed of a hierarchical system of nodes. These nodes are
characterized by terms indicating their relationships with each other:

Parent, Child, and Sibling Nodes
Any subnode of a given node is called a child node, and the given node, in turn, is the child’s
parent. Sibling nodes are nodes on the same hierarchical level under the same parent node.
Nodes higher than a given node in the same lineage are ancestors and those below it are
descendants.

Root Nodes
The root node is the highest node in the tree structure, and has no parent. This node is a global
element and represents the entire message. It may have one or more child nodes, but can never
have sibling nodes or be repeating. The name of the root node can be edited.

Non-leaf Nodes
Non-leaf nodes, which can have children, provide the framework through which this data is
accessed and organized. They are of complex types.

There are two major types of non-leaf nodes (aside from a root node, which is a special case):

FIGURE 1 Encoder Node Relationships

Understanding the Encoder Framework

Designing Custom Encoders 7



■ Sequence group nodes, which provide organizational grouping for purposes such as
repetition. In XSD, they are of complexType of a sequence of elements.

■ Choice group nodes, which represent sets of alternatives— only one of which is valid at any
given time for an instance of that node. For example, a choice node named order might
have two children, respectively named domestic and overseas. For each order instance,
only one of these children will be present. In XSD, they are of complexType of a choice
group of elements.

Leaf Nodes
Leaf nodes have no children, and normally carry the actual data from the message. They are of
simple types such as string.

The basic node types are fixedLength and delimited. See “Encoding Properties” on page 11 for
information about other node types.

■ With fixedLength data, the length of the unit of data is always the same. The position of the
data within the message string is described by byte offset and length.

■ With delimited data, the length of the unit of data is variable. Information is separated by a
pre-determined system of delimiters defined within the properties of the Encoder (see
“Specifying Delimiters” on page 21).

Creating the Abstract Message Definition
This document assumes that you are working with an existing XML Schema Definition (XSD)
or that you are creating an XSD. There are a number of tools available that help you create an
XML schema, including NetBeans. Once you create an XSD you can apply the Custom Encoder
as described in this document.

Recursive Structure
A recursive structure is allowed in an XML schema document used to define a custom structure.
The recursive elements can be introduced inside a local XML schema definition by import
statements, or by include statements, in the XSD.

The Custom Encoder supports both linear recursion and mutual recursion by import
statements. It also supports mutual recursion from include statements.

Binary Data Types
The Custom Encoder supports elements of binary data type, as well as String data type. Far an
element field of binary data type, the data type of “hexBinary” or “base64Binary” can be
specified in the XML schema using the XSD editor.

Understanding the Encoder Framework

Oracle Java CAPS Custom Encoders User's Guide • January 20118



Note that, base64 encoded data expands by a factor of 1.33 times the original size, and
hexadecimal encoded data expands by a factor of 2 times original size, assuming an underlying
UTF-8 text encoding in both cases. If the underlying text encoding is UTF-16, then these
numbers double.

Applying Custom Encoding to an XSD
In the absence of a predefined representation of the metadata describing the data format, you
must manually create the Abstract Message Definition and apply the Custom Encoder. To begin
this process, you must create an XSD and apply the Custom Encoder, as follows:

▼ To Apply the Custom Encoder to an XSD
In your project, right—click to access the project context menu and add a new XML Schema.

You will need to develop the XSD node structure to match the parsing of the serialized message
stream being processed. This process is described in the topics following this one.

In the resulting XSD, right—click to access its context menu and select Encoder > Apply Custom
Encoder.

1

2

Applying Custom Encoding to an XSD

Designing Custom Encoders 9



Once you apply the Encoder, a special encoding node is automatically added as a child node of
an annotation node.

To edit the encoding rules for the individual elements, right-click the encoding node and select
Properties.

After applying the Encoder, the context menu changes as shown in the following illustration. To
reset the parameters for all nodes to their default values, reapplying the Encoder. The node
structure you have created will be preserved.

Editing Encoding Properties
Once the encoding style is applied, you can edit detailed encoding rules at the node level using
the special encoding node under the element's annotation node.

The following figure shows the majority of encoding properties associated with various nodes.

3

4

Editing Encoding Properties

Oracle Java CAPS Custom Encoders User's Guide • January 201110



Encoding Properties

TABLE 1 General Properties

Name Description

Encoding Style Specifies the encoding style, for example: customencoder-[version].

FIGURE 2 Encoding Properties Dialog

Editing Encoding Properties

Designing Custom Encoders 11



TABLE 1 General Properties (Continued)
Name Description

Node Type Specifies the format for parsing and serialization.
The options are:
■ group, which provides organizational grouping for purposes such

as repetition. Does not apply to Choice Element nodes.

■ array, which is a delimited structure. If repeated, occurrences are
separated by the repeat delimiter. The last occurrence may be
terminated by a normal delimiter. Does not apply to Choice
Element nodes.

■ delimited, which is a delimited structure. If repeated,
occurrences are separated by a normal delimiter. Does not apply
to Choice Element nodes. See “Specifying Delimiters” on page 21
for additional information.

■ fixedLength, which indicates a fixed length and is specified by
non-negative integer (or zero to indicate end of parent node data).
Does not apply to Choice Element nodes.

■ transient, which appears only in an internal tree as a scratchpad
field. It does not appear in external data representation, and can
only have transient node types as children.

The default value is delimited.

See also “Node Type Default Values” on page 16 (following this table)
for more information.

Delimiter List Opens the Delimiter List Editor. See “Specifying Delimiters” on
page 21 for information.

Order Specifies the ordering of the selected group node or complex type
element node’s children during the parsing process.
■ sequence specifies that the child nodes must appear in the

sequence given in the metadata.

■ any specifies that the child nodes must remain grouped, but the
groups can appear in any order.

■ mixed specifies that the child nodes can appear in any order.

Does not apply to choice element nodes. See “Order Property” on
page 17 for additional information.

Editing Encoding Properties

Oracle Java CAPS Custom Encoders User's Guide • January 201112



TABLE 2 Root Node Properties

Name Description

Top Specifies whether or not parsing/serializing encoding is supported for
descendant nodes. The default value is true (checked box).

Input Charset Specifies the character set of the input data. This is only needed if the
parsing is done upon byte array data and the character set that the byte
array data is encoded against is not safe for delimiter scanning. If this
property is not specified, the value specified for the Parsing Charset
property will be used. This property is displayed only when the Top
property is set to true (checked box). Applies to root node only. See
“Data Encoding” on page 17 for additional information.

Output Charset Specifies the character set of the output data if it needs to be different
from the serializing character set. If this property is not specified, the
value specified for the Serializing Charset property will be used.
This property is displayed only when the Top property is set to true

(checked box). See“Data Encoding” on page 17 for additional
information.

Note – This character set may be unsafe for delimiter scanning.

Parsing Charset Specifies the character set used to decode byte array data into string
during parsing. It is recommended to use UTF-8 for DBCS data, since
the hex value of some ASCII delimiter may coincide with a hex value
contained within a double-byte character. This property is displayed
only when the Top property is set to true (checked box). See“Data
Encoding” on page 17 for additional information.

Serializing Charset Specifies the character set used to encode string data into byte array
data during serialization of the data. This property is displayed only
when the Top property is set to true (checked box). See“Data
Encoding” on page 17 for additional information.

Escape Sequence Global-level escape sequence, which should be set only at the root level.
This property is displayed only when the top property is set to true

(checked box)..

Fine Inherit When set to true (checked box), enables the following delimiters to be
inherited individually from the parent nodes:
■ begin
■ end
■ repeating

Otherwise, once a delimiter level is specified for a child node, it
overrides the relevant delimiter level as a whole on parent nodes.

This setting is global, so the flag only needs to be set on a root element.
The default value is false (unchecked box).

Displayed only when the top property is set to true (checked box).

Editing Encoding Properties

Designing Custom Encoders 13



TABLE 2 Root Node Properties (Continued)
Name Description

Undefined Data Policy Specifies whether or not undefined (trailing) data is allowed and/or will
be mapped. This property is displayed only when the top property is set
to true (checked box).
The options are as follows:
■ map specifies that undefined (trailing) data is allowed and will be

mapped to field named undefined with the predefined namespace
urn:com.sun:encoder:instance.

■ skip specifies that undefined (trailing) data is skipped silently.

■ prohibit specifies that undefined (trailing) data is not allowed, and
if present an exception will be thrown.

This setting is global, so the flag only needs to be set on a root element.

TABLE 3 Leaf Node Properties

Name Description

Match Defines match pattern. If alignment is regex, then this field holds the
regex match pattern. See “Matching Data Patterns” on page 18 for more
information.

No Match Flag indicating if the match condition should be reverted. The flag acts
as a logical NOT against the match condition. See “Matching Data
Patterns” on page 18 for more information.

Alignment Defines the alignment mode for a match pattern. See “Matching Data
Patterns” on page 18 for more information.

NofN minN Specifies the minimum number of child nodes that must contain data.
If absent, then so such constraint exists.

NofN maxN Specifies the maximum number of child nodes that must contain data.
If absent, then so such constraint exists.

MinOcc Specifies the minimum number of occurrences of a repeating node. The
value specified here overrides the minOccurs value in XSD's element
declaration.

This property is needed only when the order is mixed; so in the XSD,
repeating choice group must be used, and the minOccurs specified in the
XSD does not actually represent the minimum occurrence.

Editing Encoding Properties

Oracle Java CAPS Custom Encoders User's Guide • January 201114



TABLE 3 Leaf Node Properties (Continued)
Name Description

MaxOcc Specifies the maximum number of occurrences of a repeating node.
The value specified here overrides the maxOccurs value in XSD's
element declaration.

This property is needed only when the order is mixed; so in the XSD,
repeating choice group must be used, and the maxOccurs specified in the
XSD does not actually represent the maximum occurrence.

Scavenger Chars Specifies the characters to be stripped out when parsing the data, if they
appear at the start of the byte stream for this element.

Output Scavenger 1st Char Specifies the character to be stripped out when serializing the data, if it
appears as the first character of the output byte stream from this
element (even occurring before the begin delimiter, if any).

Delimiter Displayed for delim Node Type only.

Once delimiters are specified, the value field displays the delimiter
characters (read only).

Begin Delimiter Once begin delimiters are specified, the value field displays the
delimiter characters (read only).

Begin Delimiter Detached Specifies whether the begin delimiter is anchored or detached. The
default value is false (unchecked box), indicating an anchored
delimiter.

Array Delimiter Displayed for array Node Type only. Once delimiters are specified, the
value field displays the delimiter characters (read only).

Fixed Length Displayed for fixedLength Node Type only.
The options are:
■ regular specifies a fixed-length field whose length is measured

from the beginning of the message.

■ encoded specifies a fixed-length field whose length is the sum of the
encoded field length and an offset, measured from either the zero
position or the current parsing position.

■ determined by regex match specifies a fixed-length field whose
length is determined by a regular expression at runtime.

■ deducted from end specifies a fixed-length field whose length is
measured from the end of the message.

Length Displayed only for fixedLength Node Type with the regular option.
Specifies the length of the field in terms of bytes (as a positive integer).
The default value is 0.

Editing Encoding Properties

Designing Custom Encoders 15



TABLE 3 Leaf Node Properties (Continued)
Name Description

Offset Displayed only for fixedLength Node Type with the regular option.
Specifies the offset of the field in terms of bytes (as a positive long
integer) from the zero position where the first sibling starts. The default
value is 0.

Encoded Field Length Displayed only for fixedLength Node Type with the encoded option,
and specification is required. Specifies the length of the encoded field in
terms of bytes (as a positive integer). The default value is 0.

Encoded Field Offset Displayed only for fixedLength Node Type with the encoded option,
and specification is optional. Specifies the offset in terms of bytes (as a
positive long integer) from the position where the first sibling starts.

Encoded Field Position Displayed only for fixedLength Node Type with the encoded option,
and specification is required. Specifies the offset in terms of bytes (as a
positive long integer) between the current parsing position and the
position from which the Encoded Field Length is defined.

Length From End Displayed only for fixedLength Node Type with the deducted from
end option.

Node Type Default Values
The basic default value for the nodeType property is delimited. If, however, the node is the
child of a parent node whose Node Type is fixedLength or transient, then the child takes on
the same Node Type as the parent. See the following table for additional information.

Note – This rule does not apply to Choice Element nodes.

TABLE 4 Node Type Default Values

Parent Child

array delimited

delimited delimited

fixed fixed

group delimited

transient transient

Editing Encoding Properties

Oracle Java CAPS Custom Encoders User's Guide • January 201116



Order Property
To illustrate how the order property works, consider the simple tree structure shown in the
following diagram, where a is an element node, b is a non-repeating field node, and c is a
repeating field node. The value set for the order property allows the field nodes to appear as
shown in following table.

TABLE 5 Order Property Example

Value Allowed Node Order

sequence b, c1, c2

any b, c1, c2, or c1, c2, b

mixed b, c1, c2, or c1, c2, b, or c1, b, c2

Data Encoding
For Java CAPS to correctly handle data in byte-oriented protocol, the encoding method for
inbound and outbound Encoders and the native code used for parsing must be specified in the
Encoding properties. If you do not specify otherwise, UTF-8 is assumed to be the encoding
method in each case.

Supporting UTF-8 by default allows the use of the Unicode character set in both ASCII and
non-ASCII based environments without further specification. Java CAPS also supports ASCII
for English, Japanese, and Korean locales, and the localized country-specific encoding methods
shown in the following table.

The data encoding you specify when configuring the Encoding properties modifies the Java
methods used for encoding and decoding. The encoding and decoding processes differ from
one another depending upon which Java method you use, and whether you are encoding to or
decoding from bytes or strings. The diagrams shown in “About Data Parsing and Serialization”
on page 43 illustrate these differences.

FIGURE 3 Order Property Example

Editing Encoding Properties

Designing Custom Encoders 17



The encoding options available to you depend on the locale specified by your version of Java
CAPS. UTF-8 is the default in all locales.

TABLE 6 Partial Listing of Supported Encoding Options According to Locale

English Japanese Korean Simplified Chinese Traditional Chinese

UTF-8 UTF-8 UTF-8 UTF-8 UTF-8

ASCII ASCII ASCII GB2312 Big5

EBCDIC EUC-JP EUC-KR

UTF-16 SJIS MS949

MS932

Matching Data Patterns
One of the parsing techniques that can be applied to the decoding of an input data stream is that
of matching a specific byte pattern within a data sequence. You can accomplish this in a Custom
Encoder by using the Match and Align field-node properties, when the Node Type is either
delimited or fixedLength. During the decode operation, a field is successfully matched if it
complies with the value of the Match property, interpreted according to the value of the Align
property, as set for that field.

Defining Byte Patterns
The value you enter for the Match property defines the byte pattern for the data you want to
match. As an example, a value of abc has been entered into the value field shown in the
following figure. This provides a reference for the Alignment property, as shown in the next
section.

If the Node Type property is set to fixedLength, and the Fixed Length Type property is
specified as determined by regex match, the Alignment property is automatically set to regex

and the regular expression (regex) must be entered into the Match value field.

Selecting the No Match check box reverses the situation, resulting in a match if the field contents
(data) are not equal to the byte pattern entered in the Match field.

Matching Data Patterns

Oracle Java CAPS Custom Encoders User's Guide • January 201118



Specifying Pattern Alignment
The align property supplements the match property, specifying criteria on which to base the
match. The default value is blind; if this is specified, the match property has no meaning.

FIGURE 4 Match Property

Matching Data Patterns

Designing Custom Encoders 19



TABLE 7 Align Parameter Options

Option Description

blind Always performs a match (pass-through). Any value set for the Match
property is ignored. This is the default value.

exact When an input byte sequence exactly matches the specified byte pattern (for
example, [abc]), the decode method matches the field to the input byte
sequence.

begin When the leading bytes of an input byte sequence match the value set for the
Match property (for example, [abc......]), the decode method matches the
field to the input byte sequence.

final When the trailing bytes of an input byte sequence match the value set for the
Match property (for example, [......abc]), the decode method matches the
field to the input byte sequence.

FIGURE 5 Align Property Menu

Matching Data Patterns

Oracle Java CAPS Custom Encoders User's Guide • January 201120



TABLE 7 Align Parameter Options (Continued)
Option Description

inter When the input byte sequence contains a byte pattern that includes the value
set for the Match property, (for example, [...abc...]), the decode method
matches the field to the input byte sequence.

super When an input byte sequence is a subsequence of the value set for the Match
property (for example, [bc]), the decode method matches the field to the
input byte sequence.

oneof If the value set for the Match property is a repeating pattern of the form
<separator><value>... (for example, [\mon\wed\fri]), and the input byte
sequence contains a byte pattern that matches one of the <value> entries (for
example, [wed]), the decode method matches the field to the input byte
sequence.

regex When an input byte sequence exactly matches the regular expression
specified in the Match property, the decode method matches the field to the
input byte sequence. The Alignment property is automatically set to regex

when the Fixed Length Type property is specified as determined by regex

match.

Note – The value entered for the match property is interpreted as a Latin1 string, rather than
following the specified encoding.

Specifying Delimiters
The following topics provide information about delimiters:

■ “Delimiter List” on page 22
■ “Delimiter Properties” on page 23
■ “Delimiter Levels” on page 24
■ “Delimiter Type” on page 26
■ “Precedence” on page 28
■ “Optional” on page 29
■ “Terminator” on page 31
■ “Delimiter Characters (Bytes)” on page 32
■ “Multiple Delimiters” on page 32
■ “Anchored and Detached Delimiters” on page 33
■ “Begin and End Delimiters” on page 33
■ “Constant and Embedded Delimiters” on page 34

Specifying Delimiters

Designing Custom Encoders 21



Delimiter List
You can define a set of delimiters — a delimiter list — for any node in the hierarchical data
structure. This delimiter list is used in the external data representation for that node and its
descendents. A delimiter list defined for any non-root node overrides the effect of any ancestor
node’s delimiter list on both the node itself and its descendents.

Delimiters are defined using the Delimiter List Editor, as illustrated in the following figure. The
editor is invoked by clicking the delim property value field in the node's property dialog box
and clicking the ellipsis (…) button, or by double-clicking the field. See “Defining a Delimiter
List” on page 34 for additional information.

Clicking within a field in the Delimiter List Editor enables the field for editing. After typing a
value into a field, you must press Enter to set the value. Clicking the drop-down menu button in
one of the following three fields displays its menu, as illustrated in the following figure.

■ Type
■ Optional
■ Terminator

FIGURE 6 Delimiter List Editor: Left Side

Specifying Delimiters

Oracle Java CAPS Custom Encoders User's Guide • January 201122



TABLE 8 Delimiter List Editor Command Buttons

Command Action

Add Level Adds a new level after the selected level.

Add Delimiter Adds a new delimiter after the selected delimiter, or to the bottom of list under the
selected level.

Remove Deletes the selected line item (level or delimiter) from the list.

Remove All Deletes all items (levels and delimiters) from the list.

OK Saves your entries and closes the editor.

Cancel Discards your entries and closes the editor.

Delimiter Properties

TABLE 9 Delimiter Properties

Property Description

Level Assigns consecutive sets of delimiter parameters to delimited nodes in the Encoder
node hierarchy. See “Delimiter Levels” on page 24 for additional information.

Type Specifies how the delimiter is used. See “Delimiter Type” on page 26 for additional
information.

Precedence Indicates the priority of a certain delimiter, relative to other delimiters. See
“Precedence” on page 28 for additional information.

FIGURE 7 Delimiter List Editor: Right Side

Specifying Delimiters

Designing Custom Encoders 23



TABLE 9 Delimiter Properties (Continued)
Property Description

Optional Specifies how delimiters for optional nodes are to be handled when the nodes are
absent from the input instance or when their fields are empty. See “Optional” on
page 29 for additional information.

Note – Does not apply to children of choice element nodes.

Terminator Specifies how delimiters are to be handled for a specific terminator node in the
Encoder tree. See “Terminator” on page 31 for additional information.

Bytes Specifies the characters (bytes) to use to end the delimited data for the specified
level. Delimiters can have begin bytes, end bytes, or both. The term “bytes” (by
itself) always indicates end bytes. See “Delimiter Characters (Bytes)” on page 32
for additional information.

Offset Offset of the delimited data field in bytes from the beginning of the data stream
(byte 0). Value must be a non-negative integer; the default is 0.

Length Length of the data field in bytes, if it is of fixed length. Value must be positive
integer. Entering a value clears the Bytes field

Detached When checked, indicates that the specified delimiter is a detached, or
non-anchored, delimiter, and does not have to appear at a fixed position.

BegBytes Specifies the characters (bytes) to use to begin the delimited data for the specified
level. Delimiters can have begin bytes, end bytes, or both. See “Delimiter
Characters (Bytes)” on page 32 for additional information.

BegOffset Offset of the fixed-length data field in bytes from the beginning of the data stream
(byte 0). Value must be a non-negative integer; the default is 0.

BegLength Length of the data field in bytes, if it is of fixed length and has a beginning
delimiter. Value must be positive integer. Entering a value clears the Bytes field

BegDetached When checked, indicates that the specified delimiter is a detached (non-anchored)
beginning delimiter, and does not have to appear at a fixed position.

Skip When checked, skips identical leading delimiters. The delimiters may be defined
either as begin bytes or end bytes. The purpose of this flag is to facilitate parsing
tabular data.

Collapse When checked, collapses identical, consecutive end delimiters into a single
delimiter. As with the Skip flag, the purpose of this flag is to facilitate parsing
tabular data.

Delimiter Levels
Delimiter levels are assigned in order to those hierarchical levels of an Encoder that contain at
least one node that is specified as being delimited. If none of the nodes at a particular
hierarchical level is delimited, that hierarchical level is skipped in assigning delimiter levels.

Specifying Delimiters

Oracle Java CAPS Custom Encoders User's Guide • January 201124



Delimiter lists are typically specified on the root node, so that the list applies to the entire
Encoder. The root node itself is typically not delimited, so that Level 1 would apply to those
nodes that are children of the root node. See the following figure and example.

For example, if you want to parse the following data:

FIGURE 8 Encoder Hierarchical and Delimiter Levels

Specifying Delimiters

Designing Custom Encoders 25



a^b|c^d|e

you might create a Custom Encoder as follows:

■ root
■ element_1

■ field_1
■ field_2

■ element_2
■ field_3
■ field_4

■ field_5

In this example, the delimiter list is specified on the root node, which is not delimited; therefore,
the list has two levels:

■ Level 1
■ Delimiter |

■ Level 2
■ Delimiter ^

The Level 1 delimiter (|) applies to element_1, element_2, and field_5. The Level 2 delimiter (^)
applies to field_1 - field_4.

If the root node is set to be delimited, the Level 1 delimiters will then apply to it. Using the above
example, the Level 2 delimiter (^) would then apply to element_1, element_2, and field_5, and a
new Level 3 delimiter would apply to field_1 - field_4.

Delimiter lists can be much more complex than this very simple example. For instance, you can
create multiple delimiters of different types at any given level, and you can specify a delimiter
list on any node within the Encoder— not only the root node as shown in the example. See
“Defining a Delimiter List” on page 34 for a step-by-step description of the procedure for
creating a Delimiter List.

Delimiter Type
The Delimiter Type property specifies whether the delimiter is a terminator at the end of the
byte sequence (normal), a separator between byte sequences in an array (repeat) or an escape
sequence.

Specifying Delimiters

Oracle Java CAPS Custom Encoders User's Guide • January 201126



TABLE 10 Delimiter Type Options

Option Description

normal Indicates the delimiter is a normal delimiter.

repeat Indicates the delimiter is a delimiter that delimits repetitive fields (nodes). If a
node is defined to be repetitive, then a repeat delimiter can be used to delimit the
repetitive occurrences, while a normal delimiter terminates the repitition. For
example, a^b^c1~c2~c3~c4~c5^ where '~' is a delimiter that delimits repetitive
nodes and '^' is a normal delimiter that terminates repetitive nodes.

escape Indicates the delimiter is an escape delimiter. The purpose of escape delimiter is
to escape special bytes , such as delimiters, using predefined escape sequences.
Once the bytes of the escape delimiter are matched, no action is taken except
that the search is continued at the position immediately following the delimiter
bytes.

quot-esc The quot-esc delimiter is used to escape special bytes using quotation style
escaping, that is, whatever appears within the (double) quotes is escaped. For
example, assume that ',' (comma) is a normal delimiter. To escape ',' in the data,
either we can use an escape sequence such as <data>\,<data> or we can use
quotation marks such as "<data>,<data>". The bytes defined in the quot-escape
delimiter represent the quotation marks.

Escape Option
An escape delimiter is simply a sequence that is recognized and ignored during parsing. Its
purpose is to allow the use of escape sequences to embed byte sequences in data that would
otherwise be seen as delimiter occurrences.

For example, if there is a normal delimiter “+” at a given level, and we define an escape delimiter
“\+” as shown in the following figure, then aaa+b\+c+ddd will parse as three fields: aaa, b\+c,
and ddd. If the escape delimiter were not defined, the sequence would then parse as four fields:
aaa, b\, c, and ddd.

Specifying Delimiters

Designing Custom Encoders 27



If there is only an escape delimiter on a given level, however, it presents a no delimiter defined
situation for delim and array nodes.

Precedence
Precedence indicates the priority of a certain delimiter, relative to the other delimiters.
Precedence is used to resolve delimiter conflicts when one delimiter is a copy or prefix of
another. In case of equal precedence, the innermost prevails.

By default, all delimiters are at precedence 10, which means they are all considered the same;
fixed fields are hard-coded at precedence 10. Delimiters on parent nodes are not considered
when parsing the child fields; only the child’s delimiter (or if it is a fixed field, its length). The
range of valid precedence values is from 1 to 100, inclusive. The higher the value, the higher the
precedence. Delimiters with higher precedence have a greater chance to be matched.

Changing the precedence of a delimiter will cause it to be applied to the input data-stream in
different ways. For example:

■ root
■ element (type delim, delimiter = “^”, repeat)
■ field_1 (type fixed, length = 5)
■ field_2 (type fixed, length = 8, optional)

FIGURE 9 Delimiter Type - Escape

Specifying Delimiters

Oracle Java CAPS Custom Encoders User's Guide • January 201128



Although this will parse ”abcde12345678^zyxvuABCDEFGH’, it will not parse the text
”abcde^zyxvuABCDEFGH’ even though the second fixed field is optional. The reason is
that the element’s delimiter is ignored within the fixed field because they have the same
precedence. If you want the element’s delimiter to be examined within the fixed field
data, you must change its precedence, for example:

root
■ element (type delim, delimiter = “^”, repeat, precedence = 11)
■ field_1 (type fixed, length = 5)
■ field_2 (type fixed, length = 8, optional)

This will successfully parse the text ”abcde^zyxvuABCDEFGH’.

A similar argument can be applied to delimited child nodes. The parser normally
attempts to match the child delimiter— setting the precedence to 11 forces the parser to
match the parent delimiter first.

Optional
The Optional property specifies how delimiters for optional nodes are to be handled when the
nodes are absent from the input instance or when their fields are empty.

TABLE 11 Optional Mode Options

Option Rule

never If the node is absent, the delimiter is not allowed in either input or output.

allow If the node is absent, the delimiter is allowed in input but will not be emitted in output.

cheer If the node is absent, the delimiter is allowed in input and will also be emitted in output.

force If the node is absent, the delimiter must appear in input and will be emitted in output.

Note – Only this option allows trailing delimiters for a sequence of absent optional nodes.

As illustrative examples, consider the tree structures shown in the following figure and table,
where the node a has a caret (^) as its delimiter, and the child nodes b, c, and d all have asterisks
(*) as their delimiters.

■ Example 1: Child node c is optional. (Child nodes c and d must have different values for the
match parameter.)

Specifying Delimiters

Designing Custom Encoders 29



Option Input Output

never b*d^ b*d^

allow b**d^ b*d^

cheer b**d^ b**d^

force b**d^ b**d^

■ Example 2: Child nodes c and d are both optional.

Option Input Output

never b^ b^

allow b^, b*^, or b**^ b^

cheer b^, b*^, or b**^ b**^

force b**^ b**^

FIGURE 10 Optional Mode Property (Example 1)

FIGURE 11 Optional Mode Property (Example 2)

Specifying Delimiters

Oracle Java CAPS Custom Encoders User's Guide • January 201130



Terminator
The Terminator property specifies whether or not the delimiter should appear for the last node
of current level. For example, it determines whether data should look like "a,b,|" or "a,b|"
assuming "," (comma) is the current level delimiter and "|" (pipe) is the parent level delimiter.

The delimiter that terminates the last child of the level in question is referred to as the
terminator.

TABLE 12 Terminator Mode Options

Option Rule

never Specifies that the delimiter is not allowed to be a terminator in input and will not
be emitted as terminator in output.

allow Specifies that the delimiter is allowed to be a terminator in input but will not be
emitted as terminator in output.

cheer Specifies that the delimiter is allowed to be a terminator in input and will be
emitted as terminator in output.

force Specifies that the delimiter must appear as a terminator in input and will also be
emitted as terminator in output.

Consider the tree structure shown in the following figure, where the node a has a caret (^) as its
delimiter, and its child nodes b and c have asterisks (*) as their delimiters.

Option Input Output

never c^ c^

allow c^ or c*^ c^

cheer c^ or c*^ c*^

force c*^ c*^

FIGURE 12 Terminator Mode Property Example

Specifying Delimiters

Designing Custom Encoders 31



Delimiter Characters (Bytes)

Note – There is essentially no limitation on what characters you can use as delimiters; however,
you obviously want to avoid characters that can be confused with data or interfere with escape
sequences, as described in “Escape Option” on page 27. The backslash (\) is normally used as an
escape character; for example, the HL7 protocol uses a double backslash as part of an escape
sequence that provides special text formatting instructions. Additionally, a colon ( :) is used as
a literal in system-generated time strings. This can interfere with recovery procedures, for
example following a Domain shutdown.

Escape Sequences
Use a backslash (\) to escape special characters. The following table lists the currently
supported escape sequences.

TABLE 13 Escape Sequences

Sequence Description

\ \ Backslash

\ b Backspace

\ f Linefeed

\ n Newline

\ r Carriage return

\ t Tab

\ ddd Octal number*

\ xdd Hexadecimal number**

*For octal values, the leading variable d can only be 0 - 3 (inclusive), while the other two can be 0
- 7 (inclusive). The maximum value is \377.

**For hexadecimal values, the variable d can be 0 - 9 (inclusive) and A - F (inclusive, either upper
or lower case). The maximum value is \xFF.

Multiple Delimiters
You can specify multiple delimiters at a given level; for example, if you specify |, ~, and ^ as
delimiters for a specific level, the parser will accept any of these delimiters:

■ root

Specifying Delimiters

Oracle Java CAPS Custom Encoders User's Guide • January 201132



■ element (delimiters = “|”, “~”, “^”)
■ field_1 (delimiter = “#”)
■ field_2 (delimiters = “|”, “~”, “^”)

This will successfully parse the data abc|def, abc~def, and abc^def.

Anchored and Detached Delimiters
Anchored delimiters must be the starting and ending characters of the specified element.

Begin and End Delimiters
Begin delimiters mark the beginning of a fixed-length field, whereas end delimiters mark the
end of a field. Usually, the term “delimiter” by itself refers to an end delimiter. We use the term
“end delimiters” for clarification when begin delimiters are also present.

Begin delimiters are used to signify the beginning of a fixed-length data field. Since the data field
is of fixed length, no delimiter is required to mark the end of the field. Use the Begin Delimiter
or Begin Delimiter Detached property to specify it.

FIGURE 13 Multiple Delimiter Example

Specifying Delimiters

Designing Custom Encoders 33



Constant and Embedded Delimiters
Constant delimiters remain unchanged at runtime. Embedded delimiters are embedded in the
data, and thus are determined dynamically at runtime. Standard embedded delimiters are
specified by the Offset and Length delimiter properties, while embedded begin delimiters are
specified by the BegOffset and BegLength delimiter properties.

Defining a Delimiter List
As an example, we shall create a delimiter list for the simple Encoder structure shown in the
following figure.

▼ To create a delimiter list
In the XSD Editor, select the node for which you want to define a set of delimiters (this example
uses the root node, which is designated Element_1).

By default, the value for the Node Type property is set to delimited and the value for the
Delimiter List property appears as not specified.

FIGURE 14 Sample Encoder Tree

1

Defining a Delimiter List

Oracle Java CAPS Custom Encoders User's Guide • January 201134



Note – The Node Type values for elements and fields also are delimited by default, so they
automatically pick up the delimiters specified for their ancestors unless you define new
delimiter lists for them.

Click the ellipsis button in the Delimiter List value field to display the Delimiter List Editor, which
is initially blank.

Click Add Level to add a level to the delimiter list, then click Add Delimiter to add a delimiter to
the selected level. Click in the Bytes field to activate it for editing and type in the delimiter
characters.

Press Enter to set the delimiter value. The list should appear as shown in the following figure.

Continue adding levels and delimiters as required, as shown in the following figure.

FIGURE 15 Delimiter List Editor - Add Delimiter

2

3

4

5

Defining a Delimiter List

Designing Custom Encoders 35



Click OK to close the editor and save your work.

The value for the Delimiter List property will now indicate the number of delimiter levels that
are specified, as shown in the following figure.

FIGURE 16 Delimiter List Editor - Add Levels and Delimiters

6

7

Defining a Delimiter List

Oracle Java CAPS Custom Encoders User's Guide • January 201136



The properties for Element_2 are displayed in the following figure. It automatically picks up the
delimiters for Level 2, since the existing delimiter list is defined for Element_1. Defining another
delimiter list here would override the existing list.

FIGURE 17 Element_1 - Delimiters Specified

8

Defining a Delimiter List

Designing Custom Encoders 37



Leave the Node Type property for Field_1 set to delimited; it automatically picks up the
delimiters for Level 3 from the list defined for Element_1, as displayed in the following figure.
Again, the Delimiter List property remains not specified.

FIGURE 18 Element_2 Properties

9

Defining a Delimiter List

Oracle Java CAPS Custom Encoders User's Guide • January 201138



Once you have defined your delimiter list, you should test the Encoder to verify that it parses
correctly.

Validating and Testing the Custom Message Definition
The following topics provide instructions for validating and testing the custom message
definitions:

■ “Validating the Custom Message Definition” on page 39
■ “Testing the Encoder Runtime Behavior” on page 40

Validating the Custom Message Definition
You can validate the encoding rules, along with the message definition in XML format, by
clicking the validation button in the XSD Editor. If encoding rules are present, they are

FIGURE 19 Field_1 Properties

10

Validating and Testing the Custom Message Definition

Designing Custom Encoders 39



validated following validation of the XML grammar and semantics. An example output
showing multiple errors is shown in the following figure.

Testing the Encoder Runtime Behavior
The Encoder Tester allows you to test the Encoder's runtime behavior at design time. To display
the tester dialog, right-click the XSD file to display its context menu and select Encoder > Test,
as shown in the following figure.

The Test Encoding dialog is shown in the following figure. The various fields are described
briefly in the table following the figure. After the Decode test is complete, the result is placed in
an XML file inside the current project. This file can then be validated as described in the
preceding section. There is no automatic method for validating the Encode result, however.

FIGURE 20 Example Validation Result

FIGURE 21 Starting the Encoder Tester

Validating and Testing the Custom Message Definition

Oracle Java CAPS Custom Encoders User's Guide • January 201140



TABLE 14 Test Encoding Dialog Fields

Section Field Caption Description

Meta Select an Element Specifies the top-level element whose structure you want
to test.

XSD File Identifies the XSD file you have selected for testing.

FIGURE 22 Test Encoding Dialog

Validating and Testing the Custom Message Definition

Designing Custom Encoders 41



TABLE 14 Test Encoding Dialog Fields (Continued)
Section Field Caption Description

Input Decode/Encode Option buttons to select the direction of data flow for the
test. Specifies whether encoding or decoding behavior is
being tested.

From/To String Specifies that the input or output data is in string format.
If not checked, byte format is assumed.

Data File Specifies the data file to use in the Decode test.

XML Source File Specifies the source file to use in the Encode test.

Source/Result Coding Specifies the encoding of the serialized data. See “Data
Encoding” on page 17

Output File Name Specifies the file name to use for the test result.

Folder Specifies the folder in which you want the output file to be
placed.

Overwrite Output Specifies whether or not you want to overwrite any
existing output file having the same name.

Created File Confirms that the output file has been created, along with
the location.

Debug Verbose Level Specifies the level of detail contained in the log file. The
options are:
■ None

■ Info

■ Fine

■ Finer

■ Finest

Using Custom Encoders in JBI Projects
Using a Custom Encoder in a JBI Project is described in the following procedure.

▼ To Use a Custom Encoder in a JBI Project
Import the XSD into a WSDL using the WSDL context menu.

Configure the individual binding component's inbound or outbound message type as encoded
and set the encoding style to customencoder-1.0. See the following figure as an example.

1

2

Using Custom Encoders in JBI Projects

Oracle Java CAPS Custom Encoders User's Guide • January 201142



About Data Parsing and Serialization
The parsing and serializing operations require data to be in byte-array form, so different
methods for encoding and decoding data must be used to accommodate different input and
output data formats. These different methods incorporate various stages of character
conversion using specific character sets.

Encoding Process
Internally, the encoder requires the data input and output to be in bytes. The encoding process
uses the serializing charset, as illustrated in the following figure.

FIGURE 23 File Message Property Configuration

About Data Parsing and Serialization

Designing Custom Encoders 43



encodeToString() Method
The encodeToString() method requires conversion to produce an output string after encoding
from a byte[] field. This method also requires conversion when encoding from a string field,
since the parser requires the data in bytes, and conversion again to produce an output string.
The encodeToString() process uses the serializing charset, as illustrated in the following
figure.

encodeToBytes() Method
The encodeToBytes() method requires conversion to produce bytes after encoding from a
string field. Following serialization, this method also requires conversion to produce an output
(in bytes) having a different format from that used by the parser. If the same format is desired,
then the output charset is left undefined, the serializing charset property is substituted by
default, and the double conversion is bypassed. The encodeToBytes() process uses both the
serializing charset and the output charset, as illustrated in the following figure.

FIGURE 24 Encoding Process

FIGURE 25 encodeToString()

FIGURE 26 encodeToBytes()

About Data Parsing and Serialization

Oracle Java CAPS Custom Encoders User's Guide • January 201144



encodeToStream() Method
Encodes an XML representation of a message into an OutputStream object, encoded in custom
format.

encodeToWriter() Method
Encodes an XML representation of a message into a Writer object, encoded in custom format.

Decoding Process
Internally, the decoding process requires conversion when decoding to a string field, since the
input is in bytes as required by the parser. The decoding process uses the parsing charset, as
illustrated in the following figure.

decodeFromString() Method
The decodeFromString() method requires conversion of the input string, since the parser
requires the data in bytes. This method requires a second conversion when decoding to a string
field. The decodeFromString() process uses the parsing charset, as illustrated in the
following figure.

FIGURE 27 Decoding Process

FIGURE 28 decodeFromString()

About Data Parsing and Serialization

Designing Custom Encoders 45



decodeFromBytes() Method
The decodeFromBytes() method requires conversion if the input data has a different byte
format from that used by the parser. If the same format is desired, then the input charset is left
undefined, the parsing charset is substituted by default, and the double conversion is
bypassed. After parsing, this method requires further conversion if decoding to a string field.
The decodeFromBytes() process uses both the input charset and the parsing charset, as
illustrated in the following figure.

decodeFromStream() Method
Decodes an InputStream object encoded in custom format into an XML-encoded message.

decodeFromReader() Method
Decodes a Reader object encoded in custom format into an XML-encoded message.

Setting Delimiters
The following figure illustrates how the delimiter gets set and passed into the parser.

FIGURE 29 decodeFromBytes()

About Data Parsing and Serialization

Oracle Java CAPS Custom Encoders User's Guide • January 201146



As an example, if you select a delimiter in the XSD Editor by hex code (such as \x7C), it is
passed directly into the parser. If you type the delimiter in as a pipe (|), however, then the pipe
character is first converted to hex code, using the GUI’s encoding, and then sent to the parser.

FIGURE 30 Setting Delimiters

About Data Parsing and Serialization

Designing Custom Encoders 47



48


	Oracle® Java CAPS Custom Encoders User's Guide
	Designing Custom Encoders
	Understanding the Encoder Framework
	Abstract Message Structure
	Parent, Child, and Sibling Nodes
	Root Nodes
	Non-leaf Nodes
	Leaf Nodes

	Creating the Abstract Message Definition
	Recursive Structure
	Binary Data Types


	Applying Custom Encoding to an XSD
	To Apply the Custom Encoder to an XSD

	Editing Encoding Properties
	Encoding Properties
	Node Type Default Values
	Order Property

	Data Encoding

	Matching Data Patterns
	Defining Byte Patterns
	Specifying Pattern Alignment

	Specifying Delimiters
	Delimiter List
	Delimiter Properties
	Delimiter Levels
	Delimiter Type
	Escape Option

	Precedence
	Optional
	Terminator
	Delimiter Characters (Bytes)
	Escape Sequences

	Multiple Delimiters
	Anchored and Detached Delimiters
	Begin and End Delimiters
	Constant and Embedded Delimiters

	Defining a Delimiter List
	To create a delimiter list

	Validating and Testing the Custom Message Definition
	Validating the Custom Message Definition
	Testing the Encoder Runtime Behavior

	Using Custom Encoders in JBI Projects
	To Use a Custom Encoder in a JBI Project

	About Data Parsing and Serialization
	Encoding Process
	encodeToString() Method
	encodeToBytes() Method
	encodeToStream() Method
	encodeToWriter() Method
	Decoding Process
	decodeFromString() Method
	decodeFromBytes() Method
	decodeFromStream() Method
	decodeFromReader() Method
	Setting Delimiters



