

Oracle® Complex Event Processing
EPL Language Reference

11g Release 1 (11.1.1.4.0)

E14304-02

January 2011

Oracle Complex Event Processing EPL Language Reference, 11g Release 1 (11.1.1.4.0)

E14304-02

Copyright © 2007, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Peter Purich

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xi

Audience... xi
Documentation Accessibility ... xi
Related Documents .. xii
Conventions .. xii

1 Overview of the Event Processing Language (EPL)

1.1 Overview of the EPL Language .. 1-1
1.2 Event Representation.. 1-2
1.2.1 Event Objects .. 1-2
1.2.2 Plain Old Java Object Events.. 1-3
1.2.3 Map Events ... 1-3
1.2.4 Event Properties... 1-3
1.2.5 Dynamic Event Properties.. 1-4
1.2.6 Handling Other Event Properties Using a User-Defined Function.............................. 1-6
1.2.7 Event Sinks ... 1-7
1.3 Processing Model .. 1-8
1.3.1 Event Streams... 1-8
1.3.2 Sliding Windows.. 1-9
1.3.2.1 Row-Based Sliding Windows ... 1-9
1.3.2.2 Time-Based Sliding Windows ... 1-10
1.3.3 Batched Windows... 1-11
1.3.3.1 Time-Based Batched Windows.. 1-11
1.3.3.2 Row-Based Batched Windows... 1-12
1.3.4 Subqueries and WHERE Clauses ... 1-13
1.3.5 Aggregation ... 1-14
1.4 Use Cases... 1-15
1.4.1 Computing Rates per Feed.. 1-15
1.4.2 Computing Highest Priced Stocks ... 1-15
1.4.3 Segmenting Location Data .. 1-15
1.4.4 Detecting Rapid Fall-off... 1-16
1.4.5 Finding Network Anomalies .. 1-16
1.4.6 Detecting Absence of Event... 1-16
1.4.7 Summarizing Terminal Activity Data ... 1-17
1.4.8 Reading Sensor Data .. 1-17

iv

1.4.9 Combining Transaction Events... 1-17
1.4.10 Monitoring Real-time Performance ... 1-17
1.4.11 Finding Dropped Transaction Events.. 1-18

2 EPL Reference: Clauses

2.1 Overview of the Clauses You Can Use in an EPL Statement ... 2-1
2.2 SELECT... 2-1
2.2.1 Choosing Specific Event Properties .. 2-2
2.2.2 Using Expressions.. 2-2
2.2.3 Aliasing Event Properties ... 2-2
2.2.4 Choosing All Event Properties .. 2-2
2.2.5 Selecting New and Old Events With ISTREAM and RSTREAM Keywords 2-3
2.3 FROM.. 2-3
2.3.1 Inner Joins ... 2-5
2.3.2 Outer Joins .. 2-5
2.3.3 Subquery Expressions ... 2-6
2.3.4 Parameterized SQL Queries ... 2-6
2.4 RETAIN .. 2-8
2.4.1 Keeping All Events .. 2-8
2.4.2 Specifying Window Size ... 2-8
2.4.3 Specifying Batched Versus Sliding Windows ... 2-9
2.4.4 Specifying Time Interval... 2-9
2.4.4.1 BASED ON Clause .. 2-10
2.4.5 Specifying Property Name .. 2-10
2.4.6 Using PARTION BY Clause to Partition Window... 2-10
2.4.7 Using WITH Clause to Keep Largest/Smallest/Unique Values............................... 2-11
2.5 MATCHING ... 2-11
2.5.1 FOLLOWED BY Operator ... 2-12
2.5.2 AND Operator... 2-12
2.5.3 OR Operator .. 2-13
2.5.4 NOT Operator ... 2-13
2.5.5 EVERY Operator ... 2-13
2.5.6 WITHIN Operator .. 2-14
2.5.7 Event Structure for Matched Pattern ... 2-15
2.6 WHERE.. 2-15
2.7 GROUP BY.. 2-15
2.8 HAVING ... 2-17
2.8.1 Interaction With MATCHING, WHERE and GROUP BY Clauses 2-17
2.9 ORDER BY .. 2-18
2.10 OUTPUT.. 2-18
2.10.1 Interaction With GROUP BY and HAVING Clauses .. 2-19
2.11 INSERT INTO... 2-20
2.12 Simple and Correlated Subqueries.. 2-21
2.13 Parameterized Queries.. 2-22
2.13.1 General Usage ... 2-23
2.13.2 Using a Parameterized EPL Statement in the Processor Configuration File 2-23
2.13.3 Programmatically Using a Prepared EPL Statement... 2-24

v

3 EPL Reference: Operators

3.1 Overview of EPL Operators .. 3-1
3.2 Arithmetic Operators ... 3-1
3.3 Logical and Comparison Operators ... 3-1
3.4 Concatenation Operators ... 3-2
3.5 Binary Operators ... 3-2
3.6 Array Definition Operator... 3-2
3.7 List and Range Operators .. 3-3
3.7.1 IN Operator .. 3-3
3.7.2 BETWEEN Operator.. 3-3
3.8 String Operators .. 3-4
3.8.1 LIKE Operator .. 3-4
3.8.2 REGEXP Operator ... 3-5
3.9 Temporal Operators .. 3-5
3.9.1 FOLLOWED BY Operator .. 3-5
3.9.2 WITHIN Operator ... 3-5
3.9.3 EVERY Operator .. 3-6

4 EPL Reference: Functions

4.1 Single-row Functions.. 4-1
4.1.1 The MIN and MAX Functions ... 4-2
4.1.2 The COALESCE Function .. 4-3
4.1.3 The CASE Control Flow Function... 4-3
4.1.4 The PREV Function ... 4-3
4.1.4.1 Previous Event Per Group... 4-4
4.1.4.2 Restrictions .. 4-4
4.1.5 The PRIOR Function.. 4-4
4.1.5.1 Comparison to the PREV Function .. 4-5
4.1.6 The INSTANCEOF Function.. 4-5
4.1.7 The CAST Function ... 4-6
4.1.8 The EXISTS Function... 4-6
4.2 Aggregate functions ... 4-7
4.3 User-Defined functions .. 4-8

5 Programmatic Interface to EPL

5.1 Java Programming Interfaces .. 5-1

Index

vi

vii

List of Examples

1–1 Enum Datatype ProcessStatus .. 1-6
1–2 Event Using Enum Datatype ProcessStatus.. 1-6
1–3 User-Defined Function to Evaluate Enum Datatype ... 1-6
1–4 Registering the User-Defined Function in Application Assembly File............................... 1-7
1–5 Using the User-Defined Function to Evaluate Enum Datatype in an EPL Query 1-7

viii

List of Figures

1–1 Example Event Stream ... 1-9
1–2 Example Row-Based Sliding Window.. 1-10
1–3 Example Time-Based Sliding Window ... 1-11
1–4 Example Time-Based Batched Window ... 1-12
1–5 Example Subquery and WHERE Clause .. 1-13
1–6 Events Arriving in a Row-Based Sliding Window.. 1-14

ix

List of Tables

1–1 Event Representation... 1-2
1–2 Event Properties ... 1-3
1–3 Syntax of Dynamic Properties.. 1-5
2–1 Example EVERY Operators ... 2-13
3–1 Arithmetic Operators .. 3-1
3–2 Logical and Comparison Operators .. 3-2
3–3 Concatenation Operators .. 3-2
3–4 Binary Operators.. 3-2
4–1 Built-In Single-Row Functions ... 4-1
4–2 Aggregate Functions.. 4-7

x

xi

Preface

This reference contains a complete description of the Oracle Event Processing
Language (Oracle EPL), a query language based on SQL with added constructs that
support streaming data. Using Oracle EPL, you can express queries on data streams to
perform complex event processing (CEP) using Oracle CEP.

Oracle CEP (formally known as the WebLogic Event Server) is a Java server for the
development of high-performance event driven applications. It is a lightweight Java
application container based on Equinox OSGi, with shared services, including the
Oracle CEP Service Engine, which provides a rich, declarative environment based on
Oracle Continuous Query Language (Oracle CQL) - a query language based on SQL
with added constructs that support streaming data - to improve the efficiency and
effectiveness of managing business operations. Oracle CEP supports ultra-high
throughput and microsecond latency using JRockit Real Time and provides Oracle
CEP Visualizer and Oracle CEP IDE for Eclipse developer tooling for a complete real
time end-to-end Java Event-Driven Architecture (EDA) development platform.

Audience
This document is intended for all users of Oracle EPL.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an

Note: Oracle EPL is superseded by Oracle Continuous Query
Language (Oracle CQL). For more information, see theOracle Complex
Event Processing CQL Language Reference.

xii

otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents
For more information, see the following:

■ Oracle Complex Event Processing Getting Started

■ Oracle Complex Event Processing Administrator's Guide

■ Oracle Complex Event Processing Developer's Guide for Eclipse

■ Oracle Complex Event Processing Visualizer User's Guide

■ Oracle Fusion Middleware Java API Reference for Oracle Complex Event Processing

■ Oracle Complex Event Processing CQL Language Reference

■ Oracle Database SQL Language Reference at
http://download.oracle.com/docs/cd/B28359_
01/server.111/b28286/toc.htm

■ SQL99 Specifications (ISO/IEC 9075-1:1999, ISO/IEC 9075-2:1999, ISO/IEC
9075-3:1999, and ISO/IEC 9075-4:1999)

■ Oracle CEP Forum:
http://forums.oracle.com/forums/forum.jspa?forumID=820

■ Oracle CEP Samples:
http://www.oracle.com/technologies/soa/complex-event-processi
ng.html

■ Oracle Event Driven Architecture Suite sample code:
http://www.oracle.com/technology/sample_
code/products/event-driven-architecture

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

xiii

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

xiv

1

Overview of the Event Processing Language (EPL) 1-1

1Overview of the Event Processing Language
(EPL)

This section contains information on the following subjects:

■ Section 1.1, "Overview of the EPL Language"

■ Section 1.2, "Event Representation"

■ Section 1.3, "Processing Model"

■ Section 1.4, "Use Cases"

1.1 Overview of the EPL Language
The Complex Event Processor module can be broken down into the following
functional components: event representation, processing model, programmatic
interface, and language specification.

Events are represented as POJOs following the JavaBeans conventions. Event
properties are exposed through getter methods on the POJO. When possible, the
results from EPL statement execution are also returned as POJOs. However, there are
times when un-typed events are returned such as when event streams are joined. In
this case, an instance of the Map collection interface is returned. For more information,
see Section 1.2, "Event Representation".

The EPL processing model is continuous: results are output as soon as incoming
events are received that meet the constraints of the statement. Two types of events are
generated during output: insert events for new events entering the output window and
remove events for old events exiting the output window. Listeners may be attached and
notified when either or both type of events occur. For more information, see
Section 1.3, "Processing Model"

Incoming events may be processed through either sliding or batched windows. Sliding
windows process events by gradually moving the window over the data in single
increments, while batched windows process events by moving the window over data
in discrete chunks. The window size may be defined by the maximum number of
events contained or by the maximum amount of time to keep an event.

The EPL programmatic interfaces allow statements to be individually compiled or
loaded in bulk through a URL. Statements may be iterated over, retrieved, started and
stopped. Listeners may be attached to statements and notified when either insert
and/or remove events occur.

The Event Processor Language is a SQL-like language with SELECT, FROM, WHERE,
GROUP BY, HAVING and ORDER BY clauses. Streams replace tables as the source of
data with events replacing rows as the basic unit of data. Since events are composed of

Event Representation

1-2 Oracle Complex Event Processing EPL Language Reference

data, the SQL concepts of correlation through joins, filtering through sub-queries, and
aggregation through grouping may be effectively leveraged. The INSERT INTO
clause is recast as a means of forwarding events to other streams for further
downstream processing. External data accessible through JDBC may be queried and
joined with the stream data. Additional clauses such as the RETAIN, MATCHING, and
OUTPUT clauses are also available to provide the missing SQL language constructs
specific to event processing.

The RETAIN clause constraints the amount of data over which the query is run,
essentially defining a virtual window over the stream data. Unlike relational database
systems in which tables bound the extents of the data, event processing systems must
provide an alternative, more dynamic means of limiting the queried data.

The MATCHING clause detects sequences of events matching a specific pattern.
Temporal and logical operators such as AND, OR, and FOLLOWED BY enable both
occurrence of and absence of events to be detected through arbitrarily complex
expressions.

The OUTPUT clause throttles results of statement execution to prevent overloading
downstream processors. Either all or a subset of the first or last resulting events may
be passed on in either time or row-based batches.

A series of use cases is presented in the last section to illustrate the language features
under realistic scenarios

1.2 Event Representation
Using EPL, you represent an event as an event object. For more information, see:

■ Section 1.2.1, "Event Objects"

■ Section 1.2.2, "Plain Old Java Object Events"

■ Section 1.2.3, "Map Events"

All event objects include properties. For more information, see:

■ Section 1.2.4, "Event Properties"

■ Section 1.2.5, "Dynamic Event Properties"

■ Section 1.2.6, "Handling Other Event Properties Using a User-Defined Function"

Events are consumed by event sinks. For more information, see Section 1.2.7, "Event
Sinks."

1.2.1 Event Objects
An event is an immutable record of a past occurrence of an action or state change.
Event properties capture the state information for an event object. An event is
represented by either a POJO or a com.bea.wlevs.cep.event.MapEventObject
that extends the java.util.Map interface.

Table 1–1 Event Representation

Java Class Description

java.lang.Object Any Java POJO with getter methods
following JavaBeans conventions.

com.bea.wlevs.ede.api.MapEventObject Map events are key-values pairs

Event Representation

Overview of the Event Processing Language (EPL) 1-3

1.2.2 Plain Old Java Object Events
Plain old Java object (POJO) events are object instances that expose event properties
through JavaBeans-style getter methods. Events classes or interfaces do not have to be
fully compliant to the JavaBeans specification; however for the EPL engine to obtain
event properties, the required JavaBeans getter methods must be present.

EPL supports JavaBeans-style event classes that extend a super class or implement one
or more interfaces. Also, EPL statements can refer to Java interface classes and abstract
classes.

Classes that represent events should be made immutable. As events are recordings of a
state change or action that occurred in the past, the relevant event properties should
not be changeable. However this is not a hard requirement and the EPL engine accepts
events that are mutable as well.

1.2.3 Map Events
Events can also be represented by objects that implement the
com.bea.wlevs.ede.api.MapEventObject interface that extends the
java.util.Map interface. Event properties of Map events are the values of each entry
accessible through the get method exposed by the java.util.Map interface.

Entries in the Map represent event properties. Keys must be of type
java.util.String for the engine to be able to look up event property names
specified by EPL statements. Values can be of any type. POJOs may also appear as
values in a Map.

1.2.4 Event Properties
EPL expressions can include simple as well as indexed, mapped and nested event
properties. The table below outlines the different types of properties and their syntax
in an event expression. This syntax allows statements to query deep JavaBeans objects
graphs, XML structures and Map events.

Assume there is an EmployeeEvent event class as shown below. The mapped and
indexed properties in this example return Java objects but could also return Java

Table 1–2 Event Properties

Type Description Syntax Example

Simple A property that has a single value that may be
retrieved. The property type may be a primitive type
(such as int, or java.lang.String) or another
complex type.

name sensorId

Nested A nested property is a property that lives within
another property of an event. Events represented as
a Map may only nest other POJO events and not
other Map events.

name.nestedname sensor.value

Indexed An indexed property stores an ordered collection of
objects (all of the same type) that can be individually
accessed by an integer valued, non-negative index
(or subscript). Events represented as a Map do not
support Indexed properties.

name[index] sensor[0]

Mapped A mapped property stores a keyed collection of
objects (all of the same type). As an extension to
standard JavaBeans APIs, EPL considers any
property that accepts a String-valued key a mapped
property. Events represented as a Map do not
support Indexed properties.

name('key') sensor('light')

Event Representation

1-4 Oracle Complex Event Processing EPL Language Reference

language primitive types (such as int or String). The Address object and
Employee objects can themselves have properties that are nested within them, such as
a street-Name in the Address object or a name of the employee in the Employee
object.

 public class EmployeeEvent {
 public String getFirstName();
 public Address getAddress(String type);
 public Employee getSubordinate(int index);
 public Employee[] getAllSubordinates();
 }

Simple event properties require a getter-method that returns the property value. In the
preceding example, the getFirstName getter method returns the firstName event
property of type String.

Indexed event properties require either one of the following getter-methods:

■ A method that takes an integer type key value and returns the property value,
such as the getSubordinate method.

■ A method returns an array-type such as the getAllSubordinates getter
method, which returns an array of Employee.

In an EPL statement, indexed properties are accessed via the property[index]
syntax.

Mapped event properties require a getter-method that takes a String type key value
and returns a property value, such as the getAddress method. In an EPL or event
pattern statement, mapped properties are accessed via the property ('key')
syntax.

Nested event properties require a getter-method that returns the nesting object. The
getAddress and getSubordinate methods are mapped and indexed properties
that return a nesting object. In an EPL statement, nested properties are accessed via the
property.nestedProperty syntax.

All EPL statements allow the use of indexed, mapped and nested properties (or a
combination of these) at any place where one or more event property names are
expected. The example below shows different combinations of indexed, mapped and
nested properties.

 address('home').streetName
 subordinate[0].name='anotherName'
 allSubordinates[1].name
 subordinate[0].address('home').streetName

Similarly, the syntax can be used in EPL statements in all places where an event
property name is expected, such as in select lists, where clauses or join criteria.

 SELECT firstName, address('work'), subordinate[0].name, subordinate[1].name
 FROM EmployeeEvent RETAIN ALL
 WHERE address('work').streetName = 'Park Ave'

1.2.5 Dynamic Event Properties
Dynamic (or unchecked) properties are event properties that need not be known at
statement compilation time. Oracle CEP resolves these dynamic properties during
runtime.

The idea behind dynamic properties is that for a given underlying event
representation, the properties are not necessarily known in advance. An underlying

Event Representation

Overview of the Event Processing Language (EPL) 1-5

event may have additional properties that are not known at statement compilation
time, and these properties might need to be queried on using an EPL statement. The
concept is especially useful for events that represent rich, object-oriented domain
models.

The syntax of dynamic properties consists of the property name and a question mark.
Indexed, mapped and nested properties can also be dynamic properties. The following
table describes the types of dynamic event properties and the syntax used to identify
them.

Dynamic properties always return the java.lang.Object type. Dynamic properties
return a null value if the dynamic property does not exist on the events processed at
runtime.

For example, consider an OrderEvent event that provides an item property. The
item property is of type Object and holds a reference to an instance of either a
Service or Product; which one is known only at runtime. Further assume that both
the Service and Product classes provide a property named price. Using a
dynamic property, you can specify a query that obtains the price property from either
object (Service or Product), as shown in the following example:

 SELECT item.price?
 FROM OrderEvent RETAIN ALL EVENTS

As a second example, assume that the Service class contains a serviceName
property that the Product class does not contain. At runtime, the following query
returns the value of the serviceName property for Service objects; if, however, the
query is run against a Product object, the query returns a null value because
Products do not contain the serviceName property:

 SELECT item.serviceName?
 FROM OrderEvent RETAIN ALL EVENTS

Now consider the case where OrderEvent has multiple implementation classes, only
some of which have a timestamp property. The following query returns the
timestamp property of those implementations of the OrderEvent interface that
feature the property:

 SELECT timestamp?
 FROM OrderEvent RETAIN ALL EVENTS

The preceding query returns a single column named timestamp? of type
java.lang.Object.

When you nest dynamic properties, all properties under the dynamic property are also
considered dynamic properties. In the next example, the query asks for the
direction property of the object returned by the detail dynamic property:

 SELECT detail?.direction
 FROM OrderEvent RETAIN ALL EVENTS

Table 1–3 Syntax of Dynamic Properties

Event Property Type Syntax

Dynamic Simple name?

Dynamic Indexed name[index]?

Dynamic Mapped name('key')?

Dynamic Nested name?.nestedPropertyName

Event Representation

1-6 Oracle Complex Event Processing EPL Language Reference

The preceding query is equivalent to the following:

 SELECT detail?.direction?
 FROM OrderEvent RETAIN ALL EVENTS

The following functions are often useful in conjunction with dynamic properties:

■ The CAST function casts the value of a dynamic property (or the value of an
expression) to a given type. See Section 4.1.7, "The CAST Function."

■ The EXISTS function checks whether a dynamic property exists. It returns true if
the event has a property of that name, or false if the property does not exist on
that event. See Section 4.1.8, "The EXISTS Function."

■ The INSTANCEOF function checks whether the value of a dynamic property (or the
value of an expression) is of any of the given types. See Section 4.1.6, "The
INSTANCEOF Function."

1.2.6 Handling Other Event Properties Using a User-Defined Function
If your event uses a datatype that EPL does not support, you can create a user-defined
function to evaluate that datatype in an EPL query.

Consider the enum datatype that Example 1–1 shows. The event that Example 1–2
shows uses this enum datatype. EPL does not support enum datatypes.

Example 1–1 Enum Datatype ProcessStatus

package com.oracle.app;

public enum ProcessStatus {
OPEN(1),
CLOSED(0)}

}

Example 1–2 Event Using Enum Datatype ProcessStatus

package com.oracle.app;

import com.oracle.capp.ProcessStatus;

public class ServiceOrder {
private String serviceOrderId;
private String electronicSerialNumber;
private ProcessStatus status;

...
}

By creating the user-defined function that Example 1–3 shows and registering the
function in your application assembly file as Example 1–4 shows, you can evaluate this
enum datatype in an EPL query as Example 1–5 shows.

Example 1–3 User-Defined Function to Evaluate Enum Datatype

package com.oracle.app;

import com.oracle.capp.ProcessStatus;
public class CheckIfStatusClosed {

public boolean execute(Object[] args) {
ProcessStatus arg0 = (ProcessStatus)args[0];
if (arg0 == ProcessStatus.OPEN)

return Boolean.FALSE;

Event Representation

Overview of the Event Processing Language (EPL) 1-7

else
return Boolean.TRUE;

}
}

Example 1–4 Registering the User-Defined Function in Application Assembly File

<wlevs:processor id="testProcessor">
<wlevs:listener ref="providerCache"/>
<wlevs:listener ref="outputCache"/>
<wlevs:cache-source ref="testCache"/>
<wlevs:function function-name="statusClosed" exec-method=”execute” />

<bean class="com.oracle.app.CheckIfStatusClosed"/>
</wlevs:function>

</wlevs:processor>

Example 1–5 Using the User-Defined Function to Evaluate Enum Datatype in an EPL
Query

<query id="rule-04"><![CDATA[
SELECT

meter.electronicSerialNumber,
meter.exceptionKind

FROM
MeterLogEvent AS meter,
ServiceOrder AS svco

WHERE
meter.electronicSerialNumber = svco.electronicSerialNumber and
svco.serviceOrderId IS NULL OR statusClosed(svco.status)

]]></query>

For more information, see Chapter 4, "EPL Reference: Functions".

1.2.7 Event Sinks
Event sinks provide a means of receiving programmatic notifications when events
occur that meet the criteria specified in an EPL statement. Sinks may be notified when
either:

■ New events occur that meet the criteria specified in an EPL statement. These are
termed ISTREAM events.

■ Old events that previously met the criteria specified in an EPL statement are
pushed out of the output window due to their expiration or due to new incoming
events occurring that take their place. These are termed RSTREAM events.

Detailed examples illustrating when each of these notifications occur are provided in
Section 1.3, "Processing Model."

To receive ISTREAM events, use the com.bea.wlevs.ede.api.EventSink
interface. Your implementation must provide a single onEvent method that the
engine invokes when results become available. With this interface, only the new
events are sent to the listener.

public interface EventSink extends EventListener {
 void onEvent(List<Object> newEvents)
 throws RejectEventException;
}

The engine provides statement results to event sinks as a list of POJO or
MapEventObject instances. For wildcard selects, the result will match the original

Processing Model

1-8 Oracle Complex Event Processing EPL Language Reference

event object type that was sent into the engine. For joins and select clauses with
expressions, the resulting object will implement the
com.bea.wlevs.ede.api.MapEventObject interface

1.3 Processing Model
The EPL processing model is based on event streams as described in Section 1.3.1,
"Event Streams."

You express queries that operate on event streams as described in:

■ Section 1.3.2, "Sliding Windows"

■ Section 1.3.3, "Batched Windows"

■ Section 1.3.4, "Subqueries and WHERE Clauses"

■ Section 1.3.5, "Aggregation"

1.3.1 Event Streams
The EPL processing model is continuous: Listeners to statements receive updated data
as soon as the engine processes events for that statement, according to the statement's
choice of event streams, retain clause restrictions, filters and output rates.

In this section we look at the output of a very simple EPL statement. The statement
selects an event stream without using a data window and without applying any
filtering, as follows:

 SELECT * FROM Withdrawal RETAIN ALL

This statement selects all Withdrawal events. Every time the engine processes an
event of type Withdrawal or any sub-type of Withdrawal, it invokes all update
listeners, handing the new event to each of the statement's listeners.

The term insert stream denotes the new events arriving, and entering a data window
or aggregation. The insert stream in this example is the stream of arriving
Withdrawal events, and is posted to update listeners as new events.

The diagram below shows a series of Withdrawal events 1 to 6 arriving over time.
For this diagram as well as the others in this section, the number in parenthesis is the
value of the amount property in the Withdrawal event.

Processing Model

Overview of the Event Processing Language (EPL) 1-9

Figure 1–1 Example Event Stream

The example statement above results in only new events and no old events posted by
the engine to the statement's listeners because no RETAIN clause is specified.

1.3.2 Sliding Windows
There are two types of sliding windows: row-based and time-based. Each of these is
discussed in the following sections.

1.3.2.1 Row-Based Sliding Windows
A row-based sliding window instructs the engine to only keep the last N events for a
stream. The next statement applies a length window onto the Withdrawal event
stream. The statement serves to illustrate the concept of data window and events
entering and leaving a data window:

 SELECT * FROM Withdrawal RETAIN 5 EVENTS

The size of this statement's window is five events. The engine enters all arriving
Withdrawal events into the window. When the window is full, the oldest
Withdrawal event is pushed out the window. The engine indicates to update
listeners all events entering the window as new events, and all events leaving the
window as old events.

While the term insert stream denotes new events arriving, the term remove stream
denotes events leaving a data window, or changing aggregation values. In this
example, the remove stream is the stream of Withdrawal events that leave the length
window, and such events are posted to update listeners as old events.

The next diagram illustrates how the length window contents change as events arrive
and shows the events posted to an update listener.

Processing Model

1-10 Oracle Complex Event Processing EPL Language Reference

Figure 1–2 Example Row-Based Sliding Window

As before, all arriving events are posted as new events to update listeners. In addition,
when event W1 leaves the length window on arrival of event W6, it is posted as an old
event to update listeners.

Similar to a length window, a time window also keeps the most recent events up to a
given time period. A time window of 5 seconds, for example, keeps the last 5 seconds
of events. As seconds pass, the time window actively pushes the oldest events out of
the window resulting in one or more old events posted to update listeners.

EPL supports optional ISTREAM and RSTREAM keywords on SELECT clauses and on
INSERT INTO clauses. These instruct the engine to only forward events that enter or
leave data windows, or select only current or prior aggregation values, i.e. the insert
stream or the remove stream.

1.3.2.2 Time-Based Sliding Windows
A time-based sliding window is a moving window extending to the specified time
interval into the past based on the system time. Time-based sliding windows enable us
to limit the number of events considered by a query, as do row-based sliding
windows.

The next diagram serves to illustrate the functioning of a time window. For the
diagram, we assume a query that simply selects the event itself and does not group or
filter events.

 SELECT * FROM Withdrawal RETAIN 4 SECONDS

The diagram starts at a given time t and displays the contents of the time window at
t+4 and t+5 seconds and so on.

Processing Model

Overview of the Event Processing Language (EPL) 1-11

Figure 1–3 Example Time-Based Sliding Window

The activity as illustrated by the diagram:

1. At time t + 4 seconds an event W1 arrives and enters the time window. The
engine reports the new event to update listeners.

2. At time t + 5 seconds an event W2 arrives and enters the time window. The
engine reports the new event to update listeners.

3. At time t + 6.5 seconds an event W3 arrives and enters the time window. The
engine reports the new event to update listeners.

4. At time t + 8 seconds event W1 leaves the time window. The engine reports the
event as an old event to update listeners.

As a practical example, consider the need to determine all accounts where the average
withdrawal amount per account for the last 4 seconds of withdrawals is greater then
1000. The statement to solve this problem is shown below.

 SELECT account, AVG(amount)
 FROM Withdrawal RETAIN 4 SECONDS
 GROUP BY account
 HAVING amount > 1000

1.3.3 Batched Windows
Both row-based and time-based windows may be batched. The next sections explain
each of these concepts in turn.

1.3.3.1 Time-Based Batched Windows
The time-based batch window buffers events and releases them every specified time
interval in one update. Time-based batch windows control the evaluation of events, as
does the length batch window.

Processing Model

1-12 Oracle Complex Event Processing EPL Language Reference

The next diagram serves to illustrate the functioning of a time batch view. For the
diagram, we assume a simple query as below:

 SELECT * FROM Withdrawal RETAIN BATCH OF 4 SECONDS

The diagram starts at a given time t and displays the contents of the time window at t
+ 4 and t + 5 seconds and so on.

Figure 1–4 Example Time-Based Batched Window

The activity as illustrated by the diagram:

1. At time t + 1 seconds an event W1 arrives and enters the batch. No call to inform
update listeners occurs.

2. At time t + 3 seconds an event W2 arrives and enters the batch. No call to inform
update listeners occurs.

3. At time t + 4 seconds the engine processes the batched events and a starts a new
batch. The engine reports events W1 and W2 to update listeners.

4. At time t + 6.5 seconds an event W3 arrives and enters the batch. No call to
inform update listeners occurs.

5. At time t + 8 seconds the engine processes the batched events and a starts a
new batch. The engine reports the event W3 as new data to update listeners. The
engine reports the events W1 and W2 as old data (prior batch) to update listeners.

1.3.3.2 Row-Based Batched Windows
A row-based window may be batched as well. For example, the following query
would wait to receive five events prior to doing any processing:

 SELECT * FROM Withdrawal RETAIN BATCH OF 5 EVENTS

Processing Model

Overview of the Event Processing Language (EPL) 1-13

Once five events were received, the query would run and again wait for a new set of
five events prior to processing.

1.3.4 Subqueries and WHERE Clauses
Filters to event streams appear in a subquery expression and allow filtering events out
of a given stream before events enter a data window. This filtering occurs prior to the
WHERE clause executing. When possible, filtering should be done in a subquery as
opposed to the WHERE clause, since this will improve performance by reducing the
amount of data seen by the rest of the EPL statement.

The statement below shows a subquery that selects Withdrawal events with an
amount value of 200 or more.

 SELECT * FROM (SELECT * FROM Withdrawal WHERE amount >= 200) RETAIN 5 EVENTS

With the subquery, any Withdrawal events that have an amount of less then 200 do
not enter the window of the outer query and are therefore not passed to update
listeners.

Figure 1–5 Example Subquery and WHERE Clause

The WHERE clause and HAVING clause in statements eliminate potential result rows at
a later stage in processing, after events have been processed into a statement's data
window or other views.

The next statement applies a WHERE clause to Withdrawal events instead of a
subquery.

 SELECT * FROM Withdrawal RETAIN 5 EVENTS WHERE amount >= 200

The WHERE clause applies to both new events and old events. As the diagram below
shows, arriving events enter the window regardless of the value of the "amount"
property. However, only events that pass the WHERE clause are handed to update

Processing Model

1-14 Oracle Complex Event Processing EPL Language Reference

listeners. Also, as events leave the data window, only those events that pass the
conditions in the WHERE clause are posted to update listeners as old events.

Figure 1–6 Events Arriving in a Row-Based Sliding Window

The WHERE clause can contain complex conditions while event stream filters are more
restrictive in the type of filters that can be specified. The next statement's WHERE clause
applies the ceil function of the java.lang.Math Java library class in the where
clause. The INSERT INTO clause makes the results of the first statement available to
the second statement:

 INSERT INTO BigWithdrawal
 SELECT * FROM Withdrawal RETAIN ALL WHERE Math.ceil(amount) >= 200
 SELECT * FROM BigWithdrawal RETAIN ALL

1.3.5 Aggregation
Statements that aggregate events via aggregations functions also post remove stream
events as aggregated values change. Consider the following statement that alerts when
two Withdrawal events have been received:

 SELECT COUNT(*) AS mycount
 FROM Withdrawal RETAIN ALL
 HAVING COUNT(*) = 2

When the engine encounters the second withdrawal event, the engine posts a new
event to update listeners. The value of the mycount property on that new event is 2.
Additionally, when the engine encounters the third Withdrawal event, it posts an old
event to update listeners containing the prior value of the count. The value of the
mycount property on that old event is also 2.

The ISTREAM or RSTREAM keyword can be used to eliminate either new events or old
events posted to update listeners. The next statement uses the ISTREAM keyword

Use Cases

Overview of the Event Processing Language (EPL) 1-15

causing the engine to call the update listener only once when the second Withdrawal
event is received:

 SELECT ISTREAM COUNT(*) AS mycount
 FROM Withdrawal RETAIN ALL
 HAVING COUNT(*) = 2

1.4 Use Cases
The use cases below illustrate through examples usage of various language features.

1.4.1 Computing Rates per Feed
For the throughput statistics and to detect rapid fall-off we calculate a ticks per second
rate for each market data feed.

We can use an EPL statement that batches together 1 second of events from the market
data event stream source. We specify the feed and a count of events per feed as output
values. To make this data available for further processing, we insert output events into
the TicksPerSecond event stream:

 INSERT INTO TicksPerSecond
 SELECT feed, COUNT(*) AS cnt
 FROM MarketDataEvent
 RETAIN BATCH OF 1 SECOND
 GROUP BY feed

1.4.2 Computing Highest Priced Stocks
For computing the highest priced stocks, we define a sliding window that retains 100
events for each unique stock symbol where the block size of the trade is greater than
10. For example, if there are 5,000 stock symbols, then 5,000 x 100 or 5,000,000 events
would be kept. Only MarketTrade events with a block size of greater than 10 will
enter the window and only the 100 highest priced events will be retained.

The results will be grouped by stock symbol and ordered alphabetically with stock
symbols having an average price of less than 100 being filtered from the output.

 SELECT symbol, AVG(price)
 FROM (SELECT * FROM MarketTrade WHERE blockSize > 10)
 RETAIN 100 EVENTS WITH LARGEST price PARTITION BY symbol
 GROUP BY symbol
 HAVING AVG(price) >= 100
 ORDER BY symbol

1.4.3 Segmenting Location Data
We detect the route a car is taking based on the car location event data that contains
information about the location and direction of a car on a highway. We first segment
the data by carId to isolate information about a particular car and subsequently
segment by expressway, direction and segment to plot its direction. We are then able
to calculate the speed of the car based on this information.

The first PARTITION BY carId groups car location events by car while the following
PARTITION BY expressway PARTITION BY direction further segment the
data by more detailed location and direction property values. The number of events
retained, 4 in this query, applies to the maximum number kept for the last PARTITION
BY clause. Thus at most 4 events will be kept for each distinct segment property
value.

Use Cases

1-16 Oracle Complex Event Processing EPL Language Reference

 SELECT carId, expressway, direction,
 SUM(segment)/(MAX(timestamp)-MIN(timestamp)) AS speed
 FROM CarLocationEvent
 RETAIN 4 events
 PARTITION BY carId PARTITION BY expressway PARTITION BY direction

1.4.4 Detecting Rapid Fall-off
We define a rapid fall-off by alerting when the number of ticks per second for any
second falls below 75% of the average number of ticks per second over the last 10
seconds.

We can compute the average number of ticks per second over the last 10 seconds
simply by using the TicksPerSecond events computed by the prior statement and
averaging the last 10 seconds. Next, we compare the current rate with the moving
average and filter out any rates that fall below 75% of the average:

 SELECT feed, AVG(cnt) AS avgCnt, cnt AS feedCnt
 FROM TicksPerSecond
 RETAIN 10 seconds
 GROUP BY feed
 HAVING cnt < AVG(cnt) * 0.75

1.4.5 Finding Network Anomalies
A customer may be in the middle of a check-in when the terminal detects a hardware
problem or when the network goes down. In that situation we want to alert a team
member to help the customer. When the terminal detects a problem, it issues an
OutOfOrder event. A pattern can find situations where the terminal indicates
out-of-order and the customer is in the middle of the check-in process:

 SELECT ci.term
 MATCHING ci:=Checkin FOLLOWED BY
 (OutOfOrder (term.id=ci.term.id) AND NOT
 (Cancelled (term.id=ci.term.id) OR
 Completed (term.id=ci.term.id)) WITHIN 3 MINUTES)

Each self-service terminal can publish any of the four events below.

■ Checkin - Indicates a customer started a check-in dialogue.

■ Cancelled - Indicates a customer cancelled a check-in dialogue.

■ Completed - Indicates a customer completed a check-in dialogue.

■ OutOfOrder - Indicates the terminal detected a hardware problem

All events provide information about the terminal that published the event, and a
timestamp. The terminal information is held in a property named term and provides a
terminal id. Because all events carry similar information, we model each event as a
subtype to a base class TerminalEvent, which will provide the terminal information
that all events share. This enables us to treat all terminal events polymorphically,
which simplifies our queries by allowing us to treat derived event types just like their
parent event types.

1.4.6 Detecting Absence of Event
Because Status events arrive in regular intervals of 60 seconds, we can make use of
temporal pattern matching using the MATCHING clause to find events that did not
arrive in time. We can use the WITHIN operator to keep a 65 second window to

Use Cases

Overview of the Event Processing Language (EPL) 1-17

account for a possible delay in transmission or processing and the NOT operator to
detect the absence of a Status event with a term.id equal to T1:

 SELECT 'terminal 1 is offline'
 MATCHING NOT Status(term.id = 'T1') WITHIN 65 SECONDS
 OUTPUT FIRST EVERY 5 MINUTES

1.4.7 Summarizing Terminal Activity Data
By presenting statistical information about terminal activity to our staff in real-time we
enable them to monitor the system and spot problems. The next example query simply
gives us a count per event type every 1 minute. We could further use this data,
available through the CountPerType event stream, to join and compare against a
recorded usage pattern, or to just summarize activity in real-time.

 INSERT INTO CountPerType
 SELECT type, COUNT(*) AS countPerType
 FROM TerminalEvent
 RETAIN 10 MINUTES
 GROUP BY type
 OUTPUT ALL EVERY 1 MINUTE

1.4.8 Reading Sensor Data
In this example an array of RFID readers sense RFID tags as pallets are coming within
the range of one of the readers. A reader generates XML documents with observation
information such as reader sensor ID, observation time and tags observed. A statement
computes the total number of tags per reader sensor ID within the last 60 seconds.

 SELECT ID AS sensorId, SUM(countTags) AS numTagsPerSensor
 FROM AutoIdRFIDExample
 RETAIN 60 SECONDS
 WHERE Observation[0].Command = 'READ_PALLET_TAGS_ONLY'
 GROUP BY ID

1.4.9 Combining Transaction Events
In this example we compose an EPL statement to detect combined events in which
each component of the transaction is present. We restrict the event matching to the
events that arrived within the last 30 minutes. This statement uses the INSERT INTO
syntax to generate a CombinedEvent event stream.

 INSERT INTO CombinedEvent(transactionId, customerId, supplierId,
 latencyAC, latencyBC, latencyAB)
 SELECT C.transactionId, customerId, supplierId,
 C.timestamp - A.timestamp,
 C.timestamp - B.timestamp,
 B.timestamp - A.timestamp
 FROM TxnEventA A, TxnEventB B, TxnEventC C
 RETAIN 30 MINUTES
 WHERE A.transactionId = B.transactionId AND
 B.transactionId = C.transactionId

1.4.10 Monitoring Real-time Performance
To derive the minimum, maximum and average total latency from the events
(difference in time between A and C) over the past 30 minutes we can use the EPL
below. In addition, in order to monitor the event server, a dashboard UI will subscribe
to a subset of the events to measure system performance such as server and

Use Cases

1-18 Oracle Complex Event Processing EPL Language Reference

end-to-end latency. It is not feasible to expect a UI to monitor every event flowing
through the system, so there must be a way of rate limiting the output to a subset of
the events that can be handled by the monitoring application. Only the single last
event or all events can be output.

 SELECT MIN(latencyAC) as minLatencyAC,
 MAX(latencyAC) as maxLatencyAC,
 AVG(latencyAC) as avgLatencyAC
 FROM CombinedEvent
 RETAIN 30 MINUTES
 GROUP BY customerId
 OUTPUT LAST 50 EVERY 1 SECOND

1.4.11 Finding Dropped Transaction Events
An OUTER JOIN allows us to detect a transaction that did not make it through all
three events. When TxnEventA or TxnEventB events leave their respective time
windows consisting of the last 30 minutes of events, EPL filters out rows in which no
EventC row was found.

 SELECT *
 FROM TxnEventA A
 FULL OUTER JOIN TxnEventC C ON A.transactionId = C.transactionId
 FULL OUTER JOIN TxnEventB B ON B.transactionId = C.transactionId
 RETAIN 30 MINUTES
 WHERE C.transactionId is null

2

EPL Reference: Clauses 2-1

2EPL Reference: Clauses

This section provides information on the following topics:

■ Section 2.1, "Overview of the Clauses You Can Use in an EPL Statement"

■ Section 2.2, "SELECT"

■ Section 2.3, "FROM"

■ Section 2.4, "RETAIN"

■ Section 2.5, "MATCHING"

■ Section 2.6, "WHERE"

■ Section 2.7, "GROUP BY"

■ Section 2.8, "HAVING"

■ Section 2.9, "ORDER BY"

■ Section 2.10, "OUTPUT"

■ Section 2.11, "INSERT INTO"

■ Section 2.12, "Simple and Correlated Subqueries"

■ Section 2.13, "Parameterized Queries"

2.1 Overview of the Clauses You Can Use in an EPL Statement
The top-level BNF for the event processing language (EPL) is as follows:

 [INSERT INTO insert_into_def]
 SELECT select_list
 { FROM stream_source_list / MATCHING pattern_expression }
 [WHERE search_conditions]
 [GROUP BY grouping_expression_list]
 [HAVING grouping_search_conditions]
 [ORDER BY order_by_expression_list]
 [OUTPUT output_specification]

Literal keywords are not case sensitive. Each clause is detailed in the following
sections. For information on the built-in operators and functions, see Chapter 3, "EPL
Reference: Operators" and Chapter 4, "EPL Reference: Functions."

2.2 SELECT
The SELECT clause is required in all EPL statements. The SELECT clause can be used
to select all properties using the wildcard *, or to specify a list of event properties and

SELECT

2-2 Oracle Complex Event Processing EPL Language Reference

expressions. The SELECT clause defines the event type (event property names and
types) of the resulting events published by the statement, or pulled from the
statement.

The SELECT clause also offers optional ISTREAM and RSTREAM keywords to control
how events are posted to update listeners attached to the statement.

The syntax for the SELECT clause is summarized below.

 SELECT [RSTREAM | ISTREAM] (expression_list | *)

The following examples use the FROM clause which defines the sources of the event
data. The FROM clause is described in Section 2.3, "FROM."

2.2.1 Choosing Specific Event Properties
To choose the particular event properties to return:

 SELECT event_property [, event_property] [, ...]
 FROM stream_def

The following statement selects the count and standard deviation of the volume for the
last 100 stock tick events.

 SELECT COUNT, STDDEV(volume)
 FROM StockTick RETAIN 100 EVENTS

2.2.2 Using Expressions
The SELECT clause can contain one or more expressions.

 SELECT expression [, expression] [, ...]
 FROM stream_def

The following statement selects the volume multiplied by price for a time batch of the
last 30 seconds of stock tick events.

 SELECT volume * price
 FROM StockTick RETAIN BATCH OF 30 SECONDS

2.2.3 Aliasing Event Properties
Event properties and expressions can be aliased using below syntax.

 SELECT [event_property | expression] AS identifier [,…]

The following statement selects volume multiplied by price and specifies the name
volPrice for the event property.

 SELECT volume * price AS volPrice
 FROM StockTick RETAIN 100 EVENTS

2.2.4 Choosing All Event Properties
The syntax for selecting all event properties in a stream is:

 SELECT *
 FROM stream_def

The following statement selects all of the StockTick event properties for the last 30
seconds:

 SELECT *

FROM

EPL Reference: Clauses 2-3

 FROM StockTick RETAIN 30 SECONDS

In a join statement, using the SELECT * syntax selects event properties that contain
the events representing the joined streams themselves.

The * wildcard and expressions can also be combined in a SELECT clause. The
combination selects all event properties and in addition the computed values as
specified by any additional expressions that are part of the SELECT clause. Here is an
example that selects all properties of stock tick events plus a computed product of
price and volume that the statement names pricevolume:

 SELECT *, price * volume AS pricevolume
 FROM StockTick RETAIN ALL

2.2.5 Selecting New and Old Events With ISTREAM and RSTREAM Keywords
The optional ISTREAM and RSTREAM keywords in the SELECT clause define the event
stream posted to update listeners to the statement. If neither keyword is specified, the
engine posts both insert and remove stream events to statement listeners. The insert
stream consists of the events entering the respective window(s) or stream(s) or
aggregations, while the remove stream consists of the events leaving the respective
window(s) or the changed aggregation result. Insert and remove events are explained
in more detail in Section 1.2.7, "Event Sinks."

By specifying the ISTREAM keyword you can instruct the engine to only post insert
stream events to update listeners. The engine will then not post any remove stream
events. By specifying the RSTREAM keyword you can instruct the engine to only post
remove stream events to update listeners. The engine will then not post any insert
stream events.

The following statement selects only the events that are leaving the 30 second time
window.

 SELECT RSTREAM *
 FROM StockTick RETAIN 30 SECONDS

The ISTREAM and RSTREAM keywords in the SELECT clause are matched by
same-name keywords available in the INSERT INTO clause as explained in
Section 2.11, "INSERT INTO." While the keywords in the SELECT clause control the
event stream posted to update listeners to the statement, the same keywords in the
insert into clause specify the event stream that the engine makes available to other
statements.

2.3 FROM
Either the FROM or the MATCHING clause is required in all EPL statements. The FROM
clause specifies one or more event streams as the source of the event data. The
MATCHING clause is discussed in Section 2.5, "MATCHING."

 FROM stream_expression [inner_join | outer_join]

with inner_join specified as a comma separated list of stream expressions:

 (, stream_expression)*

and outer_join defined as:

((LEFT|RIGHT|FULL) OUTER JOIN stream_expression ON prop_name = prop_name)*

FROM

2-4 Oracle Complex Event Processing EPL Language Reference

Inner joins are discussed in detail in Section 2.3.1, "Inner Joins" while outer joins are
discussed in Section 2.3.2, "Outer Joins."

A stream_expression may simply define the name of the event type used as the source of
the stream data, or in more complex scenarios define either a subquery expression as a
nested EPL statement or a parameterized SQL query to access JDBC data. In all of
these cases, the stream_expression may optionally include an alias as an identifier to
qualify any ambiguous property name references in other expressions and a RETAIN
clause to define the window of stream data seen by the rest of the query:

 (stream_name | subquery_expr | param_sql_query) [[AS] alias]] [RETAIN retain_
expr]
 subquery_expr: (epl_statement)
 param_sql_query: database_name ('parameterized_sql_query')

The subquery_expr defines a subquery or nested EPL statement in parenthesis. A
subquery is used to pre-filter event stream data seen by the outer EPL statement. For
example, the following query would restrict the data seen by the outer EPL statement
to only StockTick events coming from a Reuters feed.

 SELECT stockSymbol, AVG(price)
 FROM (SELECT * FROM StockTick WHERE feedName = 'Reuters')
 RETAIN 1 MINUTE PARTITION BY stockSymbol
 GROUP BY stockSymbol

Subqueries may be arbitrarily nested, but may not contain an INSERT INTO or an
OUTPUT clause. Unlike with a top level EPL statement, a RETAIN clause is optional
within a subquery. Subquery expressions are discussed in more detail in Section 2.3.3,
"Subquery Expressions."

The param_sql_query specifies a parameterized SQL query in quotes surrounded by
parenthesis that enables reference and historical data accessible through JDBC to be
retrieved. The database_name identifies the name of the database over which the query
will be executed. Configuration information is associated with this database name to
establish a database connection, control connection creation and removal, and to setup
caching policies for query results. Parameterized SQL queries are discussed in more
detail in Section 2.3.4, "Parameterized SQL Queries."

The RETAIN clause defines the quantity of event data read from the streams listed in
the FROM clause prior to query processing. Each stream may have its own RETAIN
clause if each require different retain policies. Otherwise, the RETAIN clause may
appear at the end of the FROM clause for it to apply to all streams. Essentially the
RETAIN clause applies to all streams that appear before it in the FROM clause.

For example, in the following EPL statement, five StockTick events will be retained
while three News events will be retained:

 SELECT t.stockSymbol, t.price, n.summary
 FROM StockTick t RETAIN 5 EVENTS, News n RETAIN 3 EVENTS
 WHERE t.stockSymbol = n.stockSymbol

However, in the following statement, four StockTick and four News events will be
retained:

 SELECT t.stockSymbol, t.price, n.summary
 FROM StockTick t, News n RETAIN 4 EVENTS
 WHERE t.stockSymbol = n.stockSymbol

With the exception of subquery expressions, all stream sources must be constrained by
a RETAIN clause. Thus at a minimum the FROM clause must contain at least one
RETAIN clause at the end for top level EPL statements. The external data from

FROM

EPL Reference: Clauses 2-5

parameterized SQL queries is not affected by the RETAIN clause. The RETAIN clause is
discussed in more detail in Section 2.4, "RETAIN."

2.3.1 Inner Joins
Two or more event streams can be part of the FROM clause and thus both streams
determine the resulting events. The WHERE clause lists the join conditions that EPL
uses to relate events in two or more streams. If the condition is failed to be met, for
example if no event data occurs for either of the joined stream source, no output will
be produced.

Each point in time that an event arrives to one of the event streams, the two event
streams are joined and output events are produced according to the where-clause.

This example joins two event streams. The first event stream consists of fraud warning
events for which we keep the last 30 minutes. The second stream is withdrawal events
for which we consider the last 30 seconds. The streams are joined on account number.

 SELECT fraud.accountNumber AS accntNum,
 fraud.warning AS warn, withdraw.amount AS amount,
 MAX(fraud.timestamp, withdraw.timestamp) AS timestamp,
 'withdrawlFraud' AS desc
 FROM FraudWarningEvent AS fraud RETAIN 30 MIN,
 WithdrawalEvent AS withdraw RETAIN 30 SEC
 WHERE fraud.accountNumber = withdraw.accountNumber

2.3.2 Outer Joins
Left outer joins, right outer joins and full outer joins between an unlimited number of
event streams are supported by EPL. Depending on the LEFT, RIGHT, or FULL
qualifier, in the absence of event data from either stream source, output may still
occur.

If the outer join is a left outer join, there will be an output event for each event of the
stream on the left-hand side of the clause. For example, in the left outer join shown
below we will get output for each event in the stream RfidEvent, even if the event
does not match any event in the event stream OrderList.

 SELECT *
 FROM RfidEvent AS rfid
 LEFT OUTER JOIN
 OrderList AS orderlist
 ON rfid.itemId = orderList.itemId
 RETAIN 30 SECONDS

Similarly, if the join is a Right Outer Join, then there will be an output event for each
event of the stream on the right-hand side of the clause. For example, in the right outer
join shown below we will get output for each event in the stream OrderList, even if
the event does not match any event in the event stream RfidEvent.

 SELECT *
 FROM RfidEvent AS rfid
 RIGHT OUTER JOIN
 OrderList AS orderlist
 ON rfid.itemId = orderList.itemId
 RETAIN 30 SECONDS

For all types of outer joins, if the join condition is not met, the select list is computed
with the event properties of the arrived event while all other event properties are
considered to be null.

FROM

2-6 Oracle Complex Event Processing EPL Language Reference

 SELECT *
 FROM RfidEvent AS rfid
 FULL OUTER JOIN
 OrderList AS orderlist
 ON rfid.itemId = orderList.itemId
 RETAIN 30 SECONDS

The last type of outer join is a full outer join. In a full outer join, each point in time that
an event arrives to one of the event streams, one or more output events are produced.
In the example below, when either an RfidEvent or an OrderList event arrive, one
or more output event is produced.

2.3.3 Subquery Expressions
A subquery expression is a nested EPL statement that appears in parenthesis in the
FROM clause. A subquery may not contain an INSERT INTO clause or an OUTPUT
clause, and unlike top level EPL statements, a RETAIN clause is optional.

Subquery expressions execute prior to their containing EPL statement and thus are
useful to pre-filter event data seen by the outer statement. For example, the following
query would calculate the moving average of a particular stock over the last 100
StockTick events:

 SELECT AVG(price)
 FROM (SELECT * FROM StockTick WHERE stockSymbol = 'ACME')
 RETAIN 100 EVENTS

If the WHERE clause had been placed in the outer query, StockTick events for other
stock symbols would enter into the window, reducing the number of events used to
calculate the average price.

In addition, a subquery may be used to a) transform the structure of the inner event
source to the structure required by the outer EPL statement or b) merge multiple event
streams to form a single stream of events. This allows a single EPL statement to be
used instead of multiple EPL statements with an INSERT INTO clause connecting
them. For example, the following query merges transaction data from EventA and
EventB and then uses the combined data in the outer query:

 SELECT custId, SUM(latency)
 FROM (SELECT A.customerId AS custId, A.timestamp -B.timestamp AS latency
 FROM EventA A, EventB B
 WHERE A.txnId = B.txnId)
 RETAIN 30 MIN
 GROUP BY custId

A subquery itself may contain subqueries thus allowing arbitrary levels of nesting.

2.3.4 Parameterized SQL Queries
Parameterized SQL queries enable reference and historical data accessible through
JDBC to be queried via SQL within EPL statements. In order for such data sources to
become accessible to EPL, some configuration is required.

The following restrictions currently apply:

■ Only one event stream and one SQL query may be joined; Joins of two or more
event streams with an SQL query are not supported.

■ Constraints specified in the RETAIN clause are ignored for the stream for the SQL
query; that is, one cannot create a time-based or event-based window on an SQL

FROM

EPL Reference: Clauses 2-7

query. However one can use the INSERT INTO syntax to make join results
available to a further statement.

■ Your database software must support JDBC prepared statements that provide
statement metadata at compilation time. Most major databases provide this
function.

The query string is single or double quoted and surrounded by parentheses. The query
may contain one or more substitution parameters. The query string is passed to your
database software unchanged, allowing you to write any SQL query syntax that your
database understands, including stored procedure calls.

Substitution parameters in the SQL query string take the form ${event_property_
name}. The engine resolves event_property_name at statement execution time to
the actual event property value supplied by the events in the joined event stream.

The engine determines the type of the SQL query output columns by means of the
result set metadata that your database software returns for the statement. The actual
query results are obtained via the getObject on java.sql.ResultSet.

The sample EPL statement below joins an event stream consisting of
CustomerCallEvent events with the results of an SQL query against the database
named MyCustomerDB and table Customer:

 SELECT custId, cust_name
 FROM CustomerCallEvent,
 MyCustomerDB (' SELECT cust_name FROM Customer WHERE cust_id = ${custId} ')
 RETAIN 10 MINUTES

The example above assumes that CustomerCallEvent supplies an event property
named custId. The SQL query selects the customer name from the Customer table.
The WHERE clause in the SQL matches the Customer table column cust_id with the
value of custId in each CustomerCallEvent event. The engine executes the SQL
query for each new CustomerCallEvent encountered.

If the SQL query returns no rows for a given customer id, the engine generates no
output event. Else the engine generates one output event for each row returned by the
SQL query. An outer join as described in the next section can be used to control
whether the engine should generate output events even when the SQL query returns
no rows.

The next example adds a time window of 30 seconds to the event stream
CustomerCallEvent. It also renames the selected properties to customerName and
customerId to demonstrate how the naming of columns in an SQL query can be
used in the SELECT clause in the EQL query. The example uses explicit stream names
via the AS keyword.

 SELECT customerId, customerName
 FROM CustomerCallEvent AS cce RETAIN 30 SECONDS,
 MyCustomerDB
 ("SELECT cust_id AS customerId, cust_name AS customerName
 FROM Customer WHERE cust_id = ${cce.custId}") AS cq

Any window, such as the time window, generates insert events as events enter the
window, and remove events as events leave the window. The engine executes the
given SQL query for each CustomerCallEvent in both the insert stream and the
remove stream cases. As a performance optimization, the ISTREAM or RSTREAM
keywords in the SELECT clause can be used to instruct the engine to only join insert or
remove events, reducing the number of SQL query executions.

RETAIN

2-8 Oracle Complex Event Processing EPL Language Reference

Parameterized SQL queries may be used in outer joins as well. Use a left outer join,
such as in the next statement, if you need an output event for each event regardless of
whether or not the SQL query returns rows. If the SQL query returns no rows, the join
result populates null values into the selected properties.

 SELECT custId, custName
 FROM CustomerCallEvent AS cce
 LEFT OUTER JOIN
 MyCustomerDB
 ("SELECT cust_id, cust_name AS custName
 FROM Customer WHERE cust_id = ${cce.custId}") AS cq
 ON cce.custId = cq.cust_id
 RETAIN 10 MINUTES

The statement above always generates at least one output event for each
CustomerCallEvent, containing all columns selected by the SQL query, even if the
SQL query does not return any rows. Note the ON expression that is required for outer
joins. The ON acts as an additional filter to rows returned by the SQL query.

2.4 RETAIN
At least one RETAIN clause is a required in the FROM clause. The RETAIN clause
applies to all stream sources listed in the FROM clause that precedes it. Conceptually it
defines a window of event data for each stream source over which the query will be
executed. The RETAIN clause has the following syntax:

 RETAIN
 (ALL [EVENTS]) |
 ([BATCH OF]
 (integer (EVENT|EVENTS)) | (time_interval (BASED ON prop_name)*)
 (WITH [n] (LARGEST | SMALLEST | UNIQUE) prop_name)*
 (PARTITION BY prop_name)*)

Each aspect of the RETAIN clause is discussed in detail below.

2.4.1 Keeping All Events
To keep all events for a stream source, specify the ALL [EVENTS] in the RETAIN
clause.

 SELECT AVG(price)
 FROM StockTick RETAIN ALL EVENTS

In this case, the average price will be calculated based on all StockTick events that
occur. Care must be taken with this option, however, since memory may run out when
making calculations that require all or part of each event object to be retained under
high volume scenarios. One such example would be in calculating a weighted average.

2.4.2 Specifying Window Size
The amount of event data to keep when running the query may be determined in two
ways. The first option is to specify the maximum number of events kept. For example,
the query below would keep a maximum of 100 StockTick events on which the
average price would be computed:

 SELECT AVG(price)
 FROM StockTick RETAIN 100 EVENTS

RETAIN

EPL Reference: Clauses 2-9

As each new StockTick event comes in, the average price would be computed, with
a maximum of 100 events being used for the calculation.

The second option is to specify the time interval in which to collect event data. For
example, the query below would keep 1 minute's worth of StockTick events and
compute the average price for this data:

 SELECT AVG(price)
 FROM StockTick RETAIN 1 MINUTE

In this case, as each new StockTick event comes in, again the average price would be
computed. However, events that arrived more than one minute ago would be
removed from the window with the average price being recalculated based on the
remaining events in the window.

2.4.3 Specifying Batched Versus Sliding Windows
By default, the windows holding event data are sliding. With sliding windows, as a
new event enters the window, an old events fall off the end of the window once the
window is at capacity. Sliding windows cause the query to be re-executed as each new
event enters and/or old event leaves the window. An alternative is to specify that the
event data should be batched prior to query execution. Only when the window is full,
is the query is executed. After this, new event data will again be collected until the
window is once again full at which time the query will be re-executed.

For example, the query below would batch together 100 events prior to executing the
query to compute the average price:

 SELECT AVG(price)
 FROM StockTick RETAIN BATCH OF 100 EVENTS

Once executed, it would batch the next 100 events together prior to re-executing the
query.

For more detail on sliding versus batched windows, see Section 1.3, "Processing
Model."

2.4.4 Specifying Time Interval
The time interval for the RETAIN clause may be specified in days, hours, minutes,
seconds, and/or milliseconds:

 time_interval:
[day-part][hour-part][minute-part][seconds-part][milliseconds-part]
 day-part: number ("days" | "day")
 hour-part: number ("hours" | "hour" | "hr")
 minute-part: number ("minutes" | "minute" | "min")
 seconds-part: number ("seconds" | "second" | "sec")
 milliseconds-part: number ("milliseconds" | "millisecond" | "msec" | "ms")

Some examples of time intervals are:

 10 seconds
 10 minutes 30 seconds
 20 sec 100 msec
 0.5 minutes
 1 day 2 hours 20 minutes 15 seconds 110 milliseconds

RETAIN

2-10 Oracle Complex Event Processing EPL Language Reference

2.4.4.1 BASED ON Clause
By default, the elapse of a time interval is based on the internal system clock.
However, in some cases, the time needs to be based on a timestamp value appearing
as an event property. In this case, the BASED ON clause may be used to specify the
property name containing a long-typed timestamp value. In this example, the
StockTick events would be expected to have a timestamp property of type long
whose value would control inclusion into and removal from the window:

 SELECT AVG(price)
 FROM StockTick RETAIN 1 MINUTE BASED ON timestamp

When using the BASED ON clause, each stream source listed in the FROM clause must
have an associated timestamp property listed or Oracle CEP will throw an exception.

2.4.5 Specifying Property Name
A property may be referred to by simply using its property name within the RETAIN
clause. However, if ambiguities exist because the same property name exists in more
than one stream source in the FROM clause, it must be prefixed with its alias name
followed by a period (similar to the behavior of properties referenced in the SELECT
clause).

2.4.6 Using PARTION BY Clause to Partition Window
The PARTITION BY clause allows a window to be further subdivided into multiple
windows based on the unique values contained in the properties listed. For example,
the following query would keep 3 events for each unique stock symbol:

 SELECT stockSymbol, price
 FROM StockTick RETAIN 3 EVENTS PARTITION BY stockSymbol

Conceptually this is similar to the GROUP BY functionality in SQL or EPL. However,
the PARTITION BY clause only controls the size and subdivision of the window and
does not cause event data to be aggregated as with the GROUP BY clause. However, in
most cases, the PARTITION BY clause is used in conjunction with the GROUP BY
clause with same properties specified in both.

The following examples illustrate the interaction between PARTITION BY and GROUP
BY. In the first example, with the absence of the PARTITION BY clause, a total of 10
events will be kept across all stock symbols.

 SELECT stockSymbol, AVG(price)
 FROM StockTick RETAIN 10 EVENTS
 GROUP BY stockSymbol

The average price for each unique set of stock symbol will be computed based on these
10 events. If a stock symbol of AAA comes into the window, it may cause a different
stock symbol such as BBB to leave the window. This would cause the average price for
both the AAA group as well as the BBB group to change.

The second example includes the PARTITION BY clause and the GROUP BY clause.

 SELECT stockSymbol, AVG(price)
 FROM StockTick RETAIN 10 EVENTS PARTITION BY stockSymbol
 GROUP BY stockSymbol

In this case, 10 events will be kept for each unique stock symbol. If a stock symbol of
AAA comes into the window, it would only affect the sub-window associated with that

MATCHING

EPL Reference: Clauses 2-11

symbol and not other windows for different stock symbols. Thus, in this case, only the
average price of AAA would be affected.

2.4.7 Using WITH Clause to Keep Largest/Smallest/Unique Values
The WITH clause allows the largest, smallest, and unique property values to be kept in
the window. For example, to keep the two highest priced stocks, the following
statement would be used:

 SELECT stockSymbol, price
 FROM StockTick RETAIN ALL WITH 2 LARGEST price

In the case of time-based windows, the [n] qualifier before the LARGEST or SMALLEST
keyword determines how many values are kept. For example, the following statement
would keep the two smallest prices seen over one minute:

 SELECT stockSymbol, price
 FROM StockTick RETAIN 1 MINUTE WITH 2 SMALLEST price

In the absence of this qualifier, the single largest or smallest value is kept.

The UNIQUE qualifier causes the window to include only the most recent among
events having the same value for the specified property. For example, the following
query would keep only the last stock tick for each unique stock symbol:

 SELECT *
 FROM StockTick RETAIN 1 DAY WITH UNIQUE stockSymbol

Prior events of the same property value would be posted as old events by the engine.

2.5 MATCHING
Either a MATCHING or a FROM clause must appear in an EPL statement. The MATCHING
clause is an alternate mechanism for determining which events are used by the EPL
statement. It allows for the detection of a series of one or more events occurring that
satisfies a specified pattern. Pattern expressions consist of references to streams
separated by logical operators such as AND, OR, and FOLLOWED BY to define the
sequence of events that compose the pattern. You may include an optional RETAIN
clause, as specified in Section 2.4, "RETAIN," to define the characteristics of the
window containing the matched events. The MATCHING clause executes prior to the
WHERE or HAVING clauses.

The MATCHING clause syntax is as follows:

 MATCHING pattern_expression [RETAIN retain_clause]

with pattern_expression having the following syntax:

 [NOT|EVERY] stream_expression
 ((AND | OR | [NOT] FOLLOWED BY) stream_expression)*
 [WITHIN time_interval]

You can use the NOT operator to detect the absence of an event and the EVERY
operator to control how pattern matching continues after a match. The stream_
expression is a stream source name optionally bound to a variable and filtered by a
parenthesized expression:

 stream_expression: [var_name:=]stream_name [(filter_expression)]

MATCHING

2-12 Oracle Complex Event Processing EPL Language Reference

Alternatively, a stream_expression may itself be a pattern_expression
allowing for arbitrarily complex nesting of expressions:

The var_name is bound to the event object occurring that triggers the match. It may
be referenced as any other event property in filter expressions that follow as well as in
other clauses such as the SELECT and WHERE clauses. The stream_name may
optionally be followed by a parenthesized expression to filter the matching events of
that type. The expression act as a precondition for events to enter the corresponding
window and has the same syntax as a WHERE clause expression. Previously bound
variables may be used within the expression to correlate with already matched events.

The time_interval is a time interval as specified in Section 2.4.4, "Specifying Time
Interval" that follows the optional WITHIN keyword to determine how long to wait
before giving up on the preceding expression to be met.

In the example below we look for RFIDEvent event with a category of
"Perishable" followed by an RFIDError within 10 seconds whose id matches the
ID of the matched RFIDEvent object.

 SELECT *
 MATCHING a:=RFIDEvent(category="Perishable")
 FOLLOWED BY RFIDError(id=a.id) WITHIN 10 seconds
 RETAIN 1 MINUTE

The following sections discuss the syntax, semantics, and additional operators
available in the MATCHING clause to express temporal constraints for pattern
matching.

2.5.1 FOLLOWED BY Operator
The FOLLOWED BY temporal operator matches on the occurrence of several event
conditions in a particular order. It specifies that first the left hand expression must
turn true and only then will the right hand expression be evaluated for matching
events.

For example, the following pattern looks for event A and if encountered, looks for
event B:

 A FOLLOWED BY B

This does not mean that event A must immediately be followed by event B. Other
events may occur between the event A and the event B and this expression would still
evaluate to true. If this is not the desired behavior, used the NOT operator as
described in Section 2.5.4, "NOT Operator."

2.5.2 AND Operator
The AND logical operator requires both nested pattern expressions to turn true before
the whole expression returns true. In the context of the MATCHING clause, the operator
matches on the occurrence of several event conditions but not necessarily in a
particular order.

For example, the following pattern matches when both event A and event B are found:

 A AND B

The pattern matches on any sequence of A followed by B in either order. In addition, it
is not required that a B event immediately follow an A event - other events may appear
in between the occurrence of an A event and a B event for this expression to return
true.

MATCHING

EPL Reference: Clauses 2-13

2.5.3 OR Operator
The OR logical operator requires either one of the expressions to turn true before the
whole expression returns true. In the context of the MATCHING clause, the operator
matches on the occurrence of either of several event conditions but not necessarily in a
particular order.

For example, the following pattern matches for either event A or event B:

 A OR B

The following would detect all stock ticks that are either above a certain price or above
a certain volume.

 StockTick(price > 1.0) OR StockTick(volume > 1000)

2.5.4 NOT Operator
The NOT operator negates the truth value of an expression. In the context of the
MATCHING clause, the operator allows the absence of an event condition to be
detected.

The following pattern matches only when an event A is encountered followed by event
B but only if no event C was encountered before event B.

 (A FOLLOWED BY B) AND NOT C

2.5.5 EVERY Operator
The EVERY operator indicates that the pattern sub-expression should restart when the
sub-expression qualified by the EVERY keyword evaluates to true or false. In the
absence of the EVERY operator, an implicit EVERY operator is inserted as a qualifier to
the first event stream source found in the pattern not occurring within a NOT
expression.

The EVERY operator works like a factory for the pattern sub-expression contained
within. When the pattern sub-expression within it fires and thus quits checking for
events, the EVERY causes the start of a new pattern sub-expression listening for more
occurrences of the same event or set of events.

Every time a pattern sub-expression within an EVERY operator turns true the engine
starts a new active sub-expression looking for more event(s) or timing conditions that
match the pattern sub-expression.

Let's consider an example event sequence as follows:

A1 B1 C1 B2 A2 D1 A3 B3 E1 A4 F1 B4

Table 2–1 Example EVERY Operators

Example Description

EVERY (A FOLLOWED BY B) Detect event A followed by event B. At the time when B occurs the
pattern matches, then the pattern matcher restarts and looks for
event A again.

Matches on B1 for combination {A1, B1}.

Matches on B3 for combination {A2, B3}.

Matches on B4 for combination {A4, B4}

MATCHING

2-14 Oracle Complex Event Processing EPL Language Reference

The examples show that it is possible that a pattern fires for multiple combinations of
events that match a pattern expression.

Let's consider the EVERY operator in conjunction with a sub-expression that matches
three events that follow each other:

 EVERY (A FOLLOWED BY B FOLLOWED BY C)

The pattern first looks for event A. When event A arrives, it looks for event B. After
event B arrives, the pattern looks for event C. Finally, when event C arrives the pattern
matches. The engine then starts looking for event A again.

Assume that between event B and event C a second event A2 arrives. The pattern
would ignore the A2 entirely since it's then looking for event C. As observed in the
prior example, the EVERY operator restarts the sub-expression A FOLLOWED BY B
FOLLOWED BY C only when the sub-expression fires.

In the next statement the every operator applies only to the A event, not the whole
sub-expression:

 EVERY A FOLLOWED BY B FOLLOWED BY C

This pattern now matches for any event A that is followed by an event B and then
event C, regardless of when the event A arrives. This can often be impractical unless
used in combination with the AND NOT syntax or the RETAIN syntax to constrain how
long an event remains in the window.

2.5.6 WITHIN Operator
The WITHIN qualifier acts like a stopwatch. If the associated pattern expression does
not become true within the specified time period it is evaluated by the engine as false.
The WITHIN qualifier takes a time period as a parameter as specified in Section 2.4.4,
"Specifying Time Interval."

This pattern fires if an A event arrives within 5 seconds after statement creation.

 A WITHIN 5 SECONDS

This pattern fires for all A events that arrive within 5 second intervals.

This pattern matches for any one A or B event in the next 5 seconds.

 (A or B) WITHIN 5 SECONDS

EVERY A FOLLOWED BY B The pattern fires for every event A followed by an event B.

Matches on B1 for combination {A1, B1}

Matches on B3 for combination {A2, B3} and {A3, B3}.

Matches on B4 for combination {A4, B4}

EVERY A FOLLOWED BY EVERY B The pattern fires for every event A followed by every event B, in
other words, all combinations of A followed by B.

Matches on B1 for combination {A1, B1}.

Matches on B2 for combination {A1, B2}.

Matches on B3 for combination {A1, B3}, {A2, B3} and {A3, B3}.

Matches on B4 for combination {A1, B4}, {A2, B4}, {A3, B4}, and
{A4, B4}

Table 2–1 (Cont.) Example EVERY Operators

Example Description

GROUP BY

EPL Reference: Clauses 2-15

This pattern matches for any two errors that happen 10 seconds within each other.

 A(status='ERROR') FOLLOWED BY B(status='ERROR') WITHIN 10 SECONDS

This pattern matches when a Status event does not occur within 10 seconds:

 NOT Status WITHIN 10 SECONDS

2.5.7 Event Structure for Matched Pattern
The structure of the events produced when a pattern matches is determined by the
structure of the union of the variables bound within the MATCHING clause. Thus
variable bindings must be present in order to retrieve data from the matched events.

For example, given the following pattern:

 tick:=StockTick FOLLOWED BY news:=News(stockSymbol = tick.stockSymbol)

Events that match would have a composite event type with two properties: a tick
property with a type of StockTick and a news property with a type of News.

2.6 WHERE
The WHERE clause is an optional clause in EPL statements. Using the WHERE clause
event streams can be joined and events can be filtered. Aggregate functions may not
appear in a WHERE clause. To filter using aggregate functions, the HAVING clause
should be used.

 WHERE aggregate_free_expression

Comparison operators =, <, >, >=, <=, !=, <>, IS NULL, IS NOT NULL and logical
combinations using AND and OR are supported in the WHERE clause. Some examples
are listed below.

 ...WHERE fraud.severity = 5 AND amount > 500
 ... WHERE (orderItem.orderId IS NULL) OR (orderItem.class != 10)
 ... WHERE (orderItem.orderId = NULL) OR (orderItem.class <> 10)
 ... WHERE itemCount / packageCount > 10

2.7 GROUP BY
The GROUP BY clause is optional in EPL statements. The GROUP BY clause divides the
output of an EPL statement into groups. You can group by one or more event property
names, or by the result of computed expressions. When used with aggregate functions,
GROUP BY retrieves the calculations in each subgroup. You can use GROUP BY
without aggregate functions, but generally this can produce confusing results.

For example, the below statement returns the total price per symbol for all
StockTickEvents in the last 30 seconds:

 SELECT symbol, SUM(price)
 FROM StockTickEvent RETAIN 30 SEC
 GROUP BY symbol

The syntax of the GROUP BY clause is:

 GROUP BY arregate_free_expression [, arregate_free_expression] [, …]

EPL places the following restrictions on expressions in the GROUP BY clause:

■ Expressions in the GROUP BY clause cannot contain aggregate functions

GROUP BY

2-16 Oracle Complex Event Processing EPL Language Reference

■ Event properties that are used within aggregate functions in the SELECT clause
cannot also be used in a GROUP BY expression

You can list more then one expression in the GROUP BY clause to nest groups. Once
the sets are established with GROUP BY, the aggregation functions are applied. This
statement posts the median volume for all stock tick events in the last 30 seconds
grouped by symbol and tick data feed. EPL posts one event for each group to
statement update listeners:

 SELECT symbol, tickDataFeed, MEDIAN(volume)
 FROM StockTickEvent RETAIN 30 SECONDS
 GROUP BY symbol, tickDataFeed

In the statement above the event properties in the select list (symbol and
tickDataFeed) are also listed in the GROUP BY clause. The statement thus follows
the SQL standard which prescribes that non-aggregated event properties in the select
list must match the GROUP BY columns.

EPL also supports statements in which one or more event properties in the select list
are not listed in the GROUP BY clause. The statement below demonstrates this case. It
calculates the standard deviation for the last 30 seconds of stock ticks aggregating by
symbol and posting for each event the symbol, tickDataFeed and the standard
deviation on price.

 SELECT symbol, tickDataFeed, STDDEV(price)
 FROM StockTickEvent RETAIN 30 SECONDS
 GROUP BY symbol

The above example still aggregates the price event property based on the symbol, but
produces one event per incoming event, not one event per group.

Additionally, EPL supports statements in which one or more event properties in the
GROUP BY clause are not listed in the select list. This is an example that calculates the
mean deviation per symbol and tickDataFeed and posts one event per group with
symbol and mean deviation of price in the generated events. Since tickDataFeed
is not in the posted results, this can potentially be confusing.

 SELECT symbol, AVEDEV(price)
 FROM StockTickEvent RETAIN 30 SECONDS
 GROUP BY symbol, tickDataFeed

Expressions are also allowed in the GROUP BY list:

 SELECT symbol * price, count(*)
 FROM StockTickEvent RETAIN 30 SECONDS
 GROUP BY symbol * price

If the GROUP BY expression results in a null value, the null value becomes its own
group. All null values are aggregated into the same group. The COUNT(expression)
aggregate function does not count null values and the COUNT returns zero if only null
values are encountered.

You can use a WHERE clause in a statement with GROUP BY. Events that do not satisfy
the conditions in the WHERE clause are eliminated before any grouping is done. For
example, the statement below posts the number of stock ticks in the last 30 seconds
with a volume larger then 100, posting one event per group (symbol).

 SELECT symbol, count(*)
 FROM StockTickEvent RETAIN 30 SECONDS
 WHERE volume > 100
 GROUP BY symbol

HAVING

EPL Reference: Clauses 2-17

2.8 HAVING
The HAVING clause is optional in EPL statements. Use the HAVING clause to pass or
reject events defined by the GROUP BY clause. The HAVING clause sets conditions for
the GROUP BY clause in the same way WHERE sets conditions for the SELECT clause,
except the WHERE clause cannot include aggregate functions, while HAVING often does.

 HAVING expression

This statement is an example of a HAVING clause with an aggregate function. It posts
the total price per symbol for the last 30 seconds of stock tick events for only those
symbols in which the total price exceeds 1000. The HAVING clause eliminates all
symbols where the total price is equal or less then 1000.

 SELECT symbol, SUM(price)
 FROM StockTickEvent RETAIN 30 SEC
 GROUP BY symbol
 HAVING SUM(price) > 1000

To include more than one condition in the HAVING clause combine the conditions with
AND, OR or NOT. This is shown in the statement below which selects only groups with a
total price greater then 1000 and an average volume less then 500.

 SELECT symbol, SUM(price), AVG(volume)
 FROM StockTickEvent RETAIN 30 SEC
 GROUP BY symbol
 HAVING SUM(price) > 1000 AND AVG(volume) < 500

A statement with the HAVING clause should also have a GROUP BY clause. If you omit
GROUP BY, all the events not excluded by the WHERE clause return as a single group.
In that case HAVING acts like a WHERE except that HAVING can have aggregate
functions.

The HAVING clause can also be used without GROUP BY clause as the below example
shows. The example below posts events where the price is less then the current
running average price of all stock tick events in the last 30 seconds.

 SELECT symbol, price, AVG(price)
 FROM StockTickEvent RETAIN 30 SEC
 HAVING price < AVG(price)

2.8.1 Interaction With MATCHING, WHERE and GROUP BY Clauses
When an EPL statement includes subqueries, a MATCHING clause, WHERE conditions, a
GROUP BY clause, and HAVING conditions, the sequence in which each clause executes
determines the final result:

1. Any subqueries present in the statement run first. The subqueries act as a filter for
events to enter the window of the outer query

2. The event stream's filter conditions in the MATCHING clause, if present, dictates
which events enter a window. The filter discards any events not meeting filter
criteria.

3. The WHERE clause excludes events that do not meet its search condition.

4. Aggregate functions in the SELECT list calculate summary values for each group.

5. The HAVING clause excludes events from the final results that do not meet its
search condition.

ORDER BY

2-18 Oracle Complex Event Processing EPL Language Reference

The following query illustrates the use of filter, WHERE, GROUP BY and HAVING
clauses in one statement with a SELECT clause containing an aggregate function.

 SELECT tickDataFeed, STDDEV(price)
 FROM (SELECT * FROM StockTickEvent WHERE symbol='ACME')
 RETAIN 10 EVENTS
 WHERE volume > 1000
 GROUP BY tickDataFeed
 HAVING STDDEV(price) > 0.8

EPL filters events using the subquery for the event stream StockTickEvent. In the
example above, only events with symbol ACME enter the window over the last 10
events, all other events are simply discarded. The WHERE clause removes any events
posted into the window (events entering the window and event leaving the window)
that do not match the condition of volume greater then 1000. Remaining events are
applied to the STDDEV standard deviation aggregate function for each tick data feed as
specified in the GROUP BY clause. Each tickDataFeed value generates one event.
EPL applies the HAVING clause and only lets events pass for tickDataFeed groups
with a standard deviation of price greater then 0.8.

2.9 ORDER BY
The ORDER BY clause is optional in EPL. It is used for ordering output events by their
properties, or by expressions involving those properties. For example, the following
statement batches 1 minute of stock tick events sorting them first by price and then by
volume.

 SELECT symbol
 FROM StockTickEvent RETAIN BATCH OF 1 MINUTE
 ORDER BY price, volume

Here is the syntax for the ORDER BY clause:

 ORDER BY expression [ASC | DESC] [, expression [ASC | DESC] [,…]]

EPL places the following restrictions on the expressions in the ORDER BY clause:

■ All aggregate functions that appear in the ORDER BY clause must also appear in
the SELECT expression.

Otherwise, any kind of expression that can appear in the SELECT clause, as well as
any alias defined in the SELECT clause, is also valid in the ORDER BY clause.

2.10 OUTPUT
The OUTPUT clause is optional in EPL and is used to control or stabilize the rate at
which events are output. For example, the following statement batches old and new
events and outputs them at the end of every 90 second interval.

 SELECT *
 FROM StockTickEvent RETAIN 5 EVENTS
 OUTPUT EVERY 90 SECONDS

Here is the syntax for output rate limiting:

 OUTPUT [ALL | ((FIRST | LAST) [number]] EVERY number [EVENTS | time_unit]

where

 time_unit: MIN | MINUTE | MINUTES | SEC | SECOND | SECONDS | MILLISECONDS | MS

OUTPUT

EPL Reference: Clauses 2-19

The ALL keyword is the default and specifies that all events in a batch should be
output. The batch size can be specified in terms of time or number of events.

The FIRST keyword specifies that only the first event in an output batch is to be
output. The optional number qualifier allows more than one event to be output. The
FIRST keyword instructs the engine to output the first matching event(s) as soon as
they arrive, and then ignore matching events for the time interval or number of events
specified. After the time interval elapsed, or the number of matching events has been
reached, the same cycle starts again.

The LAST keyword specifies to only output the last event at the end of the given time
interval or after the given number of matching events have been accumulated. The
optional number qualifier allows more than one event to be output.

The time interval can also be specified in terms of minutes or milliseconds; the
following statement is identical to the first one.

 SELECT *
 FROM StockTickEvent RETAIN 5 EVENTS
 OUTPUT EVERY 1.5 MINUTES

A second way that output can be stabilized is by batching events until a certain
number of events have been collected. The next statement only outputs when either 5
(or more) new or 5 (or more) old events have been batched.

 SELECT *
 FROM StockTickEvent RETAIN 30 SECONDS
 OUTPUT EVERY 5 EVENTS

Additionally, event output can be further modified by the optional LAST keyword,
which causes output of only the last event(s) to arrive into an output batch. For the
example below, the last five events would be output every three minutes.

 SELECT *
 FROM StockTickEvent RETAIN 30 SECONDS
 OUTPUT LAST 5 EVERY 3 MINUTES

Using the FIRST keyword you can be notified at the start of the interval. This allows
one to be immediately notified each time a rate falls below a threshold.

 SELECT *
 FROM TickRate RETAIN 30 SECONDS
 WHERE rate < 100
 OUTPUT FIRST EVERY 60 SECONDS

2.10.1 Interaction With GROUP BY and HAVING Clauses
The OUTPUT clause interacts in two ways with the GROUP BY and HAVING clauses.
First, in the OUTPUT EVERY n EVENTS case, the number n refers to the number of
events arriving into the GROUP BY clause. That is, if the GROUP BY clause outputs
only 1 event per group, or if the arriving events do not satisfy the HAVING clause, then
the actual number of events output by the statement could be fewer than n.

Second, the LAST and ALL keywords have special meanings when used in a statement
with aggregate functions and the GROUP BY clause. The LAST keyword specifies that
only groups whose aggregate values have been updated with the most recent batch of
events should be output. The ALL keyword (the default) specifies that the most recent
data for all groups seen so far should be output, whether or not these groups'
aggregate values have just been updated.

INSERT INTO

2-20 Oracle Complex Event Processing EPL Language Reference

2.11 INSERT INTO
The INSERT INTO clause is optional in EPL. This clause can be specified to make the
results of a statement available as an event stream for use in further statements. The
clause can also be used to merge multiple event streams to form a single stream of
events.

 INSERT INTO CombinedEvent
 SELECT A.customerId AS custId, A.timestamp - B.timestamp AS latency
 FROM EventA A, EventB B RETAIN 30 MIN
 WHERE A.txnId = B.txnId

The INSERT INTO clause in the above statement generates events of type
CombinedEvent. Each generated CombinedEvent event has two event properties
named custId and latency. The events generated by the above statement can be
used in further statements. For example, the statement below uses the generated
events.

 SELECT custId, SUM(latency)
 FROM CombinedEvent RETAIN 30 MIN
 GROUP BY custId

The INSERT INTO clause can consist of just an event type alias, or of an event type
alias and one or more event property names. The syntax for the INSERT INTO clause
is as follows:

 INSERT [ISTREAM | RSTREAM] INTO event_type_alias [(prop_name [,prop_name, [,…]])]

The ISTREAM (default) and RSTREAM keywords are optional. If neither keyword is
specified, the engine supplies the insert stream events generated by the statement to
attached update listeners. The insert stream consists of the events entering the
respective window(s) or stream(s). If the RSTREAM keyword is specified, the engine
supplies the remove stream events generated by the statement. The remove stream
consists of the events leaving the respective window(s).

The event_type_alias is an identifier that names the events generated by the
engine. The identifier can be used in statements to filter and process events of the
given name.

The engine also allows update listeners to be attached to a statement that contain an
INSERT INTO clause.

To merge event streams, simply use the same event_type_alias identifier in any
EPL statements that you would like to be merged. Make sure to use the same number
and names of event properties and that event property types match up.

EPL places the following restrictions on the INSERT INTO clause:

■ The number of elements in the SELECT clause must match the number of elements
in the INSERT INTO clause if the clause specifies a list of event property names

■ If the event type alias has already been defined by a prior statement and the event
property names and types do not match, an exception is thrown at statement
creation time.

The example statement below shows the alternative form of the INSERT INTO clause
that explicitly defines the property names to use.

 INSERT INTO CombinedEvent (custId, latency)
 SELECT A.customerId, A.timestamp - B.timestamp
 FROM EventA A, EventB B RETAIN 30 MIN
 WHERE A.txnId = B.txnId

Simple and Correlated Subqueries

EPL Reference: Clauses 2-21

The RSTREAM keyword is used to indicate to the engine to generate only remove
stream events. This can be useful if we want to trigger actions when events leave a
window rather then when events enter a window. The statement below generates
CombinedEvent events when EventA and EventB leave the window after 30
minutes.

 INSERT RSTREAM INTO CombinedEvent
 SELECT A.customerId AS custId, A.timestamp - B.timestamp AS latency
 FROM EventA A, EventB B RETAIN 30 MIN
 WHERE A.txnId = B.txnId

2.12 Simple and Correlated Subqueries
A subquery is a SELECT within another statement. EPL supports subqueries in the
SELECT clause and in the WHERE clause of EPL statements. Subqueries provide an
alternative way to perform operations that would otherwise require complex joins.
Subqueries can also make statements more readable than complex joins.

EPL supports both simple subqueries as well as correlated subqueries. In a simple
subquery, the inner query does not reference any elements (rows) from the outer
query. The following example shows a simple subquery within a SELECT clause:

 SELECT assetId,
 (SELECT zone
 FROM ZoneClosed.std:lastevent) AS lastClosed
 FROM RFIDEvent
 SELECT assetId,
 (SELECT zone
 FROM ZoneClosed RETAIN ALL EVENTS) AS lastClosed
 FROM RFIDEvent

If the inner query is dependent on the outer query, it is referred to as a correlated
subquery, as shown in the following example. In the query, the WHERE clause in the
inner query involves a stream from the outer query:

 SELECT *
 FROM RfidEvent AS RFID
 WHERE 'Dock 1' =
 (SELECT name
 FROM Zones RETAIN ALL EVENTS WITH UNIQUE zoneId
 WHERE zoneId = RFID.zoneId)

The preceding example shows a subquery in the WHERE clause. The statement selects
RFID events in which the zone name matches a string constant based on zone ID. The
statement uses the WITH UNIQUE subclause in the RETAIN clause to guarantee that
only the last event per zone ID is held from processing by the subquery.

The following example is a correlated subquery within a SELECT clause. In this query,
the SELECT clause retrieves the zone name by means of a subquery against the Zones
set of events correlated by zone id:

 SELECT zoneId,
 (SELECT name
 FROM Zones RETAIN ALL EVENTS WITH UNIQUE zoneId
 WHERE zoneId = RFID.zoneId) AS name
 FROM RFIDEvent

Parameterized Queries

2-22 Oracle Complex Event Processing EPL Language Reference

When a simple or correlated subquery returns multiple rows, Oracle CEP returns a
null value as the subquery result. To limit the number of events returned by a
subquery, consider using WITH UNIQUE or PARTITION BY in the RETAIN clause.

The SELECT clause of a subquery also allows wildcard selects, which return as an
event property the underlying event object of the event type as defined in the FROM
clause. An example:

 SELECT
 (SELECT *
 FROM MarketData RETAIN 1 EVENT) AS md
 MATCHING WITHIN 10 SECONDS

The output events of the preceding statement contain the underlying MarketData
event in a property named md. The statement populates the last MarketData event
into a property named md every 10 seconds following the pattern definition, or
populates a null value if no MarketData event has been encountered so far.

The following restrictions apply to subqueries:

■ The subquery stream definition must define a data window or other view to limit
subquery results, reducing the number of events held for subquery execution.

■ You cannot use aggregation functions in subqueries. Instead, use the INSERT into
clause to provide aggregation results for use in subqueries

■ Subqueries can consist only of a SELECT clause, a FROM clause, and a WHERE
clause. The GROUP BY and HAVING clauses, as well as joins, outer-joins and
output rate limiting are not permitted within subqueries.

The performance of your statement that contains one or more subqueries principally
depends on two parameters. First, if your subquery correlates one or more columns in
the subquery stream with the enclosing statement's streams using equals (=), Oracle
CEP automatically builds the appropriate indexes for fast row retrieval based on the
key values correlated (joined). The second parameter is the number of rows found in
the subquery stream and the complexity of the filter criteria (WHERE clause), as each
row in the subquery stream must evaluate against the WHERE clause filter.

2.13 Parameterized Queries
Parameterized queries allow you to put placeholders inside of an EPL query in the
form of a question mark. At runtime you bind these placeholders with values and they
are then compiled into regular statements. The process is much like the
PreparedStatement in JDBC.

Use of parameterized queries prevents requiring separate rules to be written for each
possible parameter value. For example, the signal trading application has 300 rules
that only differ in the value that selects which stock symbol to be matched against. In a
real-world application, maintaining 300 separate rules would be a maintenance
nightmare, because a change in the rule logic would require an identical change in all
300 rules. Instead, the parameterized query approach allows a developer to put a
placeholder in the query which is later bound to a particular stock symbol value. Once
bound with values, parameterized queries compile down to regular queries, and so
the performance of the queries is not be adversely affected.

To change the parameters associated with a parameterized EPL query at runtime
without coding in Java, use the "wlevs.Admin Command-Line Reference" in the Oracle
Complex Event Processing Administrator's Guide.

Parameterized Queries

EPL Reference: Clauses 2-23

2.13.1 General Usage
You use question marks in a parameterized EPL query to indicate the location of a
place holder. You can use placeholders in any expression where a constant value is
currently allowed; you put the placeholder in the same location as the constant would
be. In practice this means that you can specify placeholders only in the SELECT and
WHERE clauses of a query. You cannot use placeholders in the RETAIN clause.

The following example shows a parameterized query:

 SELECT symbol, AVG(price) AS average, ? AS market
 FROM StockTick t RETAIN ALL EVENTS
 WHERE symbol = ?

The example shows how to specify a placeholder in both the SELECT and WHERE
clause. At runtime, the two placeholders are bound with values, such as NASDAQ and
ORCL so that the actual EPL statement that is executed looks like the following:

 SELECT symbol, AVG(price) AS average, NASDAQ AS market
 FROM StockTick t RETAIN ALL EVENTS
 WHERE symbol = ORCL

2.13.2 Using a Parameterized EPL Statement in the Processor Configuration File
If you have configured the EPL rules for a particular processor in its component
configuration file, you specify the EPL statement as usual using the <rule> element.
Specify the placeholders using question marks, as described in Section 2.13.1, "General
Usage."

Then use the <binding> element to specify one or more <params> elements that
correspond to the comma-separated list of values that you want to pass to the
parameterized EPL statement at runtime. Each <params> element effectively causes a
new EPL query to execute with the new parameters. Use the id attribute of
<binding> to reference the particular EPL rule to which the binding applies. Each
<params> element contains a single set of parameters; the order of the parameters
corresponds to the order in which the question marks appear in the parameterized
query.

Use the id attribute of <params> to uniquely identify each individual parameter set;
this is so later you can dynamically delete single parameter sets using JMX or
wlevs.Admin.

As with the EPL rules in the configuration file, group the <binding> elements
together using a parent <bindings> element.

The following example shows how to specify a parameterized query and its runtime
parameters for the query described in Section 2.13.1, "General Usage":

<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <processor>
 <name>myProcessor</name>
 <rules>
 <rule id="MarketRule"><![CDATA[
 SELECT symbol, AVG(price) AS average, ? AS market
 FROM StockTick t RETAIN ALL EVENTS
 WHERE symbol = ?
]]></rule>
 </rules>
 <bindings>
 <binding id="MarketRule">

Parameterized Queries

2-24 Oracle Complex Event Processing EPL Language Reference

 <params id="nasORCL">NASDAQ,ORCL</params>
 <params id="nyJPM">NYSE,JPM</params>
 <params id="nyWFC">NYSE,WFC</params>
 </binding>
 </bindings>
 </processor>
</n1:config>
In the preceding example, the MarketRule EPL query includes two placeholders: one
in the SELECT clause and another in the WHERE clause. The <binding
id="MarketRule"> element specifies the list of parameter sets that will be passed to
MarketRule at runtime. Each parameter set is specified with a single <params>
element. Because there are two placeholders in the parameterized query, each
<params> element specifies two values separated by a comma.

At runtime, the preceding parameterized query effectively breaks down into the
following three queries

 SELECT symbol, AVG(price) AS average, NASDAQ AS market
 FROM StockTick t RETAIN ALL EVENTS
 WHERE symbol = ORCL
 SELECT symbol, AVG(price) AS average, NYSE AS market
 FROM StockTick t RETAIN ALL EVENTS
 WHERE symbol = JPM
 SELECT symbol, AVG(price) AS average, NYSE AS market
 FROM StockTick t RETAIN ALL EVENTS
 WHERE symbol = WFC

2.13.3 Programmatically Using a Prepared EPL Statement
If you use the Oracle CEP APIs in your application to create and execute EPL rules,
and you want to use parameterized rules, use the
com.bea.wlevs.ede.api.PreparedStatement interface to create instances of
the com.bea.wlevs.ede.api.BoundStatement interfaced based on provided
parameter values.

Both PreparedStatement and BoundStatement extend Statement, which is the
basic object that represents a compiled EPL query. PreparedStatement has
additional methods to bind parameters to the placeholders in the query, return the
number of placeholders in the query, and return an instance of the BoundStatement
based on a binding id. BoundStatement has additional methods for getting the
parameter values used to bind the EPL query and getting the actual parameterized
query itself.

If you call the start() or stop() methods on a PreparedStatement, Oracle CEP
starts or stops all of the BoundStatements that have been created from the
PreparedStatement; this is because a parameterized query is not itself executable,
only the BoundStatements that have been created from it with specific parameter
values are actually executable.

See Oracle Fusion Middleware Java API Reference for Oracle Complex Event Processing for
the full reference documentation on these APIs.

The following sample Java snippet shows how to create a BoundStatement using the
query described in Section 2.13.1, "General Usage":

 String stmtString =
 "select symbol, avg(price) as average, ? as market " +
 "from StockTick t " +
 "retain all events " +
 "where symbol = ?"
 ;

Parameterized Queries

EPL Reference: Clauses 2-25

 processorImpl.createStatement(stmtString);
 PreparedStatement preparedStmt =
(PreparedStatement)processorImpl.createStatement(stmtString);
 BoundStatement orclBoundStmt = preparedStmt.bind(new String[]
{"NASDAQ","ORCL"});

Parameterized Queries

2-26 Oracle Complex Event Processing EPL Language Reference

3

EPL Reference: Operators 3-1

3EPL Reference: Operators

This section contains information on the following subjects:

■ Section 3.1, "Overview of EPL Operators"

■ Section 3.2, "Arithmetic Operators"

■ Section 3.3, "Logical and Comparison Operators"

■ Section 3.4, "Concatenation Operators"

■ Section 3.5, "Binary Operators"

■ Section 3.6, "Array Definition Operator"

■ Section 3.7, "List and Range Operators"

■ Section 3.8, "String Operators"

■ Section 3.9, "Temporal Operators"

3.1 Overview of EPL Operators
The precedence of arithmetic and logical operators in EPL follows Java standard
arithmetic and logical operator precedence.

3.2 Arithmetic Operators
The table below outlines the arithmetic operators available.

3.3 Logical and Comparison Operators
The table below outlines the logical and comparison operators available.

Table 3–1 Arithmetic Operators

Operator Description

+, - As unary operators they denote a positive or negative expression.
As binary operators they add or subtract.

*, / Multiplication and division are binary operators.

% Modulo binary operator.

Concatenation Operators

3-2 Oracle Complex Event Processing EPL Language Reference

3.4 Concatenation Operators
The table below outlines the concatenation operators available.

3.5 Binary Operators
The table below outlines the binary operators available.

3.6 Array Definition Operator
The { and } curly braces are array definition operators following the Java array
initialization syntax. Arrays can be useful to pass to user-defined functions or to select
array data in a SELECT clause.

Array definitions consist of zero or more expressions within curly braces. Any type of
expression is allowed within array definitions including constants, arithmetic
expressions or event properties. This is the syntax of an array definition:

 { [expression [,expression [,…]]] }

Consider the next statement that returns an event property named actions. The engine
populates the actions property as an array of java.lang.String values with a
length of 2 elements. The first element of the array contains the observation property
value and the second element the command property value of RFIDEvent events.

 SELECT {observation, command} AS actions
 FROM RFIDEvent RETAIN ALL

The engine determines the array type based on the types returned by the expressions
in the array definition. For example, if all expressions in the array definition return

Table 3–2 Logical and Comparison Operators

Operator Description

NOT Returns true if the following condition is false, returns false if it
is true.

OR Returns true if either component condition is true, returns false
if both are false

AND Returns true if both component conditions are true, returns false
if either is false

=, !=, <, >, <=, >=,<> Comparison operators

Table 3–3 Concatenation Operators

Operator Description

|| Concatenates character strings

Table 3–4 Binary Operators

Operator Description

& Bitwise AND if both operands are numbers; conditional AND if both
operands are Boolean.

| Bitwise OR if both operands are numbers; conditional OR if both
operands are Boolean.

^ Bitwise exclusive OR (XOR)

List and Range Operators

EPL Reference: Operators 3-3

integer values then the type of the array is java.lang.Integer[]. If the types
returned by all expressions are a compatible number types, such as integer and double
values, the engine coerces the array element values and returns a suitable type,
java.lang.Double[] in this example. The type of the array returned is Object[]
if the types of expressions cannot be coerced or return object values. Null values can
also be used in an array definition.

Arrays can come in handy for use as parameters to user-defined functions:

 SELECT *
 FROM RFIDEvent RETAIN ALL
 WHERE Filter.myFilter(zone, {1,2,3})

3.7 List and Range Operators
This section describes the following two operations:

■ Section 3.7.1, "IN Operator"

■ Section 3.7.2, "BETWEEN Operator"

3.7.1 IN Operator
The IN operator determines if a given value matches any value in a list. The syntax of
the operator is:

 test_expression [NOT] IN (expression [,expression [,…]])

The test_expression is any valid expression. The IN keyword is followed by a list
of expressions to test for a match. The optional NOT keyword specifies that the result of
the predicate be negated.

The result of an IN expression is of type Boolean. If the value of test_expression
is equal to any expression from the comma-separated list, the result value is true.
Otherwise, the result value is false. All expressions must be of the same type or a
type compatible with test_expression.

The next example shows how the IN keyword can be applied to select certain
command types of RFIDEvents:

 SELECT *
 FROM RFIDEvent RETAIN ALL
 WHERE command IN ('OBSERVATION', 'SIGNAL')

The statement is equivalent to:

 SELECT *
 FROM RFIDEvent RETAIN ALL
 WHERE command = 'OBSERVATION' OR symbol = 'SIGNAL'

3.7.2 BETWEEN Operator
The BETWEEN operator specifies a range to test. The syntax of the operator is:

 test_expression [NOT] BETWEEN begin_expression AND end_expression

The test_expression is any valid expression and is the expression to test for the
range being inclusively within the expressions defined by begin_expression and
end_expression. The NOT keyword specifies that the result of the predicate be
negated.

String Operators

3-4 Oracle Complex Event Processing EPL Language Reference

The result of a BETWEEN expression is of type Boolean. If the value of test_
expression is greater then or equal to the value of begin_expression and less
than or equal to the value of end_expression, the result is true.

The next example shows how the BETWEEN keyword can be used to select events with
a price between 55 and 60 (inclusive).

 SELECT *
 FROM StockTickEvent RETAIN ALL
 WHERE price BETWEEN 55 AND 60

The equivalent expression without using the BETWEEN keyword is:

 SELECT *
 FROM StockTickEvent RETAIN ALL
 WHERE price >= 55 AND price <= 60

The begin_expression and end_expression may occur in either order without
affecting the query. For example, the following is equivalent to the above example:

 SELECT *
 FROM StockTickEvent RETAIN ALL
 WHERE price BETWEEN 60 AND 55

3.8 String Operators
This section describes the following string operators:

■ Section 3.8.1, "LIKE Operator"

■ Section 3.8.2, "REGEXP Operator"

3.8.1 LIKE Operator
The LIKE operator provides standard SQL pattern matching. SQL pattern matching
allows you to use _ to match any single character and % to match an arbitrary number
of characters (including zero characters). In EPL, SQL patterns are case-sensitive by
default. The syntax of LIKE is:

 test_expression [NOT] LIKE pattern_expression [ESCAPE string_literal]

The test_expression is any valid expression yielding a String type or a numeric
result. The optional NOT keyword specifies that the result of the predicate be negated.
The LIKE keyword is followed by any valid standard SQL pattern_expression
yielding a String-typed result. The optional ESCAPE keyword signals the escape
character used to escape the _ and % values in the pattern.

The result of a LIKE expression is of type Boolean. If the value of test_
expression matches the pattern_expression, the result value is true.
Otherwise, the result value is false. An example for the LIKE keyword is shown
below.

 SELECT *
 FROM PersonLocationEvent RETAIN ALL
 WHERE name LIKE '%Jack%'

In this example the WHERE clause matches events where the suffix property is a
single _ character.

 SELECT *
 FROM PersonLocationEvent RETAIN ALL
 WHERE suffix LIKE '!_' ESCAPE '!'

Temporal Operators

EPL Reference: Operators 3-5

3.8.2 REGEXP Operator
The REGEXP operator is a form of pattern matching based on regular expressions
implemented through the Java java.util.regex package. The syntax of REGEXP is:

 test_expression [NOT] REGEXP pattern_expression

The test_expression is any valid expression yielding a String type or a numeric
result. The optional NOT keyword specifies that the result of the predicate be negated.
The REGEXP keyword is followed by any valid regular expression pattern_
expression yielding a String-typed result.

The result of a REGEXP expression is of type Boolean. If the value of test_
expression matches the regular expression pattern_expression, the result value
is true. Otherwise, the result value is false.

An example for the REGEXP operator is below.

 SELECT *
 FROM PersonLocationEvent RETAIN ALL
 WHERE name REGEXP '*Jack*'

3.9 Temporal Operators
This section describes the following temporal operations:

■ Section 3.9.1, "FOLLOWED BY Operator"

■ Section 3.9.2, "WITHIN Operator"

■ Section 3.9.3, "EVERY Operator"

3.9.1 FOLLOWED BY Operator
The FOLLOWED BY operator specifies that first the left hand expression must turn true
and only then is the right hand expression evaluated for matching events.

For example, the following pattern looks for event A and if encountered, looks for
event B:

 A FOLLOWED BY B

This does not mean that event A must immediately be followed by event B. Other events
may occur between the event A and the event B and this expression would still
evaluate to true. If this is not the desired behavior, the NOT operator can be used.

3.9.2 WITHIN Operator
The WITHIN qualifier acts like a stopwatch. If the associated pattern expression does
not become true within the specified time period it is evaluated by the engine as false.
The WITHIN qualifier takes a time period as a parameter as specified in Section 2.4.4,
"Specifying Time Interval."

This pattern fires if an A event arrives within 5 seconds after statement creation.

 A WITHIN 5 seconds

This pattern fires for all A events that arrive within 5 second intervals.

Temporal Operators

3-6 Oracle Complex Event Processing EPL Language Reference

3.9.3 EVERY Operator
The EVERY operator indicates that the pattern sub-expression should restart when the
sub-expression qualified by the EVERY keyword evaluates to true or false. In the
absence of the EVERY operator, an implicit EVERY operator is inserted as a qualifier to
the first event stream source found in the pattern not occurring within a NOT
expression.

The EVERY operator works like a factory for the pattern sub-expression contained
within. When the pattern sub-expression within it fires and thus quits checking for
events, the EVERY causes the start of a new pattern sub-expression listening for more
occurrences of the same event or set of events.

Every time a pattern sub-expression within an EVERY operator turns true the engine
starts a new active sub-expression looking for more event(s) or timing conditions that
match the pattern sub-expression.

This pattern fires when an A event is followed by a B event and continues attempting
to match again after the B event:

 EVERY (A FOLLOWED BY B)

This pattern also fires when an A event is followed by a B event, but continues
attempting to match again after the A event:

 EVERY A FOLLOWED BY B

The EVERY in this pattern is optional, since it would implicitly be placed here if it was
absent.

4

EPL Reference: Functions 4-1

4EPL Reference: Functions

This section contains information on the following subjects:

■ Section 4.1, "Single-row Functions"

■ Section 4.2, "Aggregate functions"

■ Section 4.3, "User-Defined functions"

4.1 Single-row Functions
Single-row functions return a single value for every single result row generated by
your statement. These functions can appear anywhere where expressions are allowed.

EPL allows static Java library methods as single-row functions, and also features
built-in single-row functions.

EPL auto-imports the following Java library packages:

■ java.lang.*

■ java.math.*

■ java.text.*

■ java.util.*

Thus Java static library methods can be used in all expressions as shown in below
example:

 SELECT symbol, Math.round(volume/1000)
 FROM StockTickEvent RETAIN 30 SECONDS

Other arbitrary Java classes may also be used, however their names must be fully
qualified or configured to be imported. For more information, see Section 4.3,
"User-Defined functions."

The table below outlines the built-in single-row functions available.

Table 4–1 Built-In Single-Row Functions

Single-row Function Result See

MAX(expression, expression
[, expression [,…])

Returns the highest numeric value
among the two or more
comma-separated expressions.

Section 4.1.1, "The MIN and
MAX Functions"

MIN(expression, expression
[, expression [,…])

Returns the lowest numeric value
among the two or more
comma-separated expressions.

Section 4.1.1, "The MIN and
MAX Functions"

Single-row Functions

4-2 Oracle Complex Event Processing EPL Language Reference

You may also create user-defined single-row functions. See Section 4.3, "User-Defined
functions".

4.1.1 The MIN and MAX Functions
The MIN and MAX functions take two or more expression parameters. The MIN function
returns the lowest numeric value among these comma-separated expressions, while
the MAX function returns the highest numeric value. The return type is the compatible
aggregated type of all return values.

The next example shows the MAX function that has a Double return type and returns
the value 1.1.

 SELECT MAX(1, 1.1, 2 * 0.5)
 FROM ...

COALESCE(expression,
expression [, expression
[,…])

Returns the first non-null value in the
list, or null if there are no non-null
values.

Section 4.1.2, "The COALESCE
Function"

CASE value
 WHEN compare_value THEN
result
 [WHEN compare_value THEN
result …]
 [ELSE result]
END

Returns result where the first value
equals compare_value.

Section 4.1.3, "The CASE
Control Flow Function"

CASE value
 WHEN condition THEN
result
 [WHEN condition THEN
result …]
 [ELSE result]
END

Returns the result for the first condition
that is true.

Section 4.1.3, "The CASE
Control Flow Function"

PREV(expression, event_
property)

Returns a property value of a previous
event, relative to the event order within
a data window.

Section 4.1.4, "The PREV
Function"

PRIOR(integer, event_
property)

Returns a property value of a prior
event, relative to the natural order of
arrival of events

Section 4.1.5, "The PRIOR
Function"

SELECT
 CASE
 WHEN INSTANCEOF(item,
com.mycompany.Service) THEN
serviceName?
 WHEN INSTANCEOF(item,
com.mycompany.Product) THEN
productName?
 END
 FROM OrderEvent

Returns a boolean value indicating
whether the type of value returned by
the expression is one of the given types

Section 4.1.6, "The
INSTANCEOF Function"

SELECT CAST(item.price?,
double) FROM OrderEvent

Casts the return type of an expression to
a designated type.

Section 4.1.7, "The CAST
Function"

SELECT
EXISTS(item.serviceName?)
FROM OrderEvent

Returns a boolean value indicating
whether the dynamic property,
provided as a parameter to the function,
exists on the event.

Section 4.1.8, "The EXISTS
Function"

Table 4–1 (Cont.) Built-In Single-Row Functions

Single-row Function Result See

Single-row Functions

EPL Reference: Functions 4-3

The MIN function returns the lowest value. The statement below uses the function to
determine the smaller of two timestamp values.

 SELECT symbol, MIN(ticks.timestamp, news.timestamp) AS minT
 FROM StockTickEvent AS ticks, NewsEvent AS news RETAIN 30 SECONDS
 WHERE ticks.symbol = news.symbol

The MIN and MAX functions are also available as aggregate functions. See Section 4.2,
"Aggregate functions" for a description of this usage.

4.1.2 The COALESCE Function
The result of the COALESCE function is the first expression in a list of expressions that
returns a non-null value. The return type is the compatible aggregated type of all
return values.

This example returns a String type result with a value of foo.

 SELECT COALESCE(NULL, 'foo')
 FROM …

4.1.3 The CASE Control Flow Function
The CASE control flow function has two versions. The first version takes a value and a
list of compare values to compare against, and returns the result where the first value
equals the compare value. The second version takes a list of conditions and returns the
result for the first condition that is true.

The return type of a CASE expression is the compatible aggregated type of all return
values.

The example below shows the first version of a CASE statement. It has a String
return type and returns the value one.

 SELECT CASE 1 WHEN 1 THEN 'one' WHEN 2 THEN 'two' ELSE 'more' END
 FROM …

The second version of the CASE function takes a list of conditions. The next example
has a Boolean return type and returns the Boolean value true.

 SELECT CASE WHEN 1>0 THEN true ELSE false END
 FROM …

4.1.4 The PREV Function
The PREV function returns the property value of a previous event. The first parameter
denotes the ith previous event in the order established by the data window. The second
parameter is a property name for which the function returns the value for the previous
event.

This example selects the value of the price property of the second previous event from
the current Trade event.

 SELECT PREV(2, price)
 FROM Trade RETAIN 10 EVENTS

Because the PREV function takes the order established by the data window into
account, the function works well with sorted windows. In the following example the
statement selects the symbol of the three Trade events that had the largest,
second-largest and third-largest volume.

 SELECT PREV(0, symbol), PREV(1, symbol), PREV(2, symbol)

Single-row Functions

4-4 Oracle Complex Event Processing EPL Language Reference

 FROM Trade RETAIN 10 EVENTS WITH LARGEST volume

The ith previous event parameter can also be an expression returning an Integer type
value. The next statement joins the Trade data window with a
RankSelectionEvent event that provides a rank property used to look up a certain
position in the sorted Trade data window:

 SELECT PREV(rank, symbol)
 FROM Trade, RankSelectionEvent RETAIN 10 EVENTS WITH LARGEST volume

The PREV function returns a NULL value if the data window does not currently hold
the ith previous event. The example below illustrates this using a time batch window.
Here the PREV function returns a null value for any events in which the previous
event is not in the same batch of events. The PRIOR function as discussed below can be
used if a null value is not the desired result.

 SELECT PREV(1, symbol)
 FROM Trade RETAIN BATCH OF 1 MINUTE

4.1.4.1 Previous Event Per Group
The combination of the PREV function and the PARTITION BY clause returns the
property value for a previous event in the given group.

For example, assume we want to obtain the price of the previous event of the same
symbol as the current event.

The statement that follows solves this problem. It partitions the window on the symbol
property over a time window of one minute. As a result, when the engine encounters a
new symbol value that it hasn't seen before, it creates a new window specifically to
hold events for that symbol. Consequently, the PREV function returns the previous
event within the respective time window for that event's symbol value.

 SELECT PREV(1, price) AS prevPrice
 FROM Trade RETAIN 1 MIN PARTITION BY symbol

4.1.4.2 Restrictions
The following restrictions apply to the PREV functions and its results:

■ The function always returns a null value for remove stream (old data) events.

■ The function may only be used on streams that are constrained by a RETAIN
clause.

4.1.5 The PRIOR Function
The PRIOR function returns the property value of a prior event. The first parameter is
an integer value that denotes the ith prior event in the natural order of arrival. The
second parameter is a property name for which the function returns the value for the
prior event.

This example selects the value of the price property of the second prior event to the
current Trade event.

 SELECT PRIOR(2, price)
 FROM Trade RETAIN ALL

The PRIOR function can be used on any event stream or view and does not require a
stream to be constrained by a RETAIN clause as with the PREV function. The function
operates based on the order of arrival of events in the event stream that provides the
events.

Single-row Functions

EPL Reference: Functions 4-5

The next statement uses a length batch window to compute an average volume for
every 3 Trade events, posting results every 3 events. The SELECT clause employs the
PRIOR function to select the current average and the average before the current
average:

 SELECT AVG(volume) AS avgVolume, AVG(PRIOR(3, volume))
 FROM Trade RETAIN BATCH OF 3 EVENTS

4.1.5.1 Comparison to the PREV Function
The PRIOR function is similar to the PREV function. The key differences between the
two functions are as follows:

■ The PREV function returns previous events in the order provided by the window,
while the PRIOR function returns prior events in the order of arrival in the stream.

■ The PREV function requires a RETAIN clause while the PRIOR function does not.

■ The PREV function returns the previous event taking into account any grouping.
The PRIOR function returns prior events regardless of any grouping.

■ The PREV function returns a null value for remove stream events, i.e. for events
leaving a data window. The PRIOR function does not have this restriction.

4.1.6 The INSTANCEOF Function
The INSTANCEOF function returns a boolean value indicating whether the type of
value returned by the expression is one of the given types. The first parameter to the
INSTANCEOF function is an expression to evaluate. The second and subsequent
parameters are Java type names.

The INSTANCEOF function determines the return type of the expression at runtime by
evaluating the expression, and compares the type of object returned by the expression
to the defined types. If the type of object returned by the expression matches any of the
given types, the function returns true. If the expression returned null or a type that
does not match any of the given types, the function returns false.

The INSTANCEOF function is often used in conjunction with dynamic (unchecked)
properties. Dynamic properties are properties whose type is not known at compile
type.

The following example uses the INSTANCEOF function to select different properties
based on the type:

 SELECT
 CASE
 WHEN INSTANCEOF(item, com.mycompany.Service) THEN serviceName?
 WHEN INSTANCEOF(item, com.mycompany.Product) THEN productName?
 END
 FROM OrderEvent

The INSTANCEOF function returns false if the expression tested by INSTANCEOF
returned null.

Valid parameters for the type parameter are:

■ Any of the Java built-in types: int, long, byte, short, char, double, float,
string, where string is a short notation for java.lang.String. The type
name is not case-sensitive. For example, the following function tests if the
dynamic price property is either of type float or type double:

 INSTANCEOF(price?, double, float)

Single-row Functions

4-6 Oracle Complex Event Processing EPL Language Reference

■ The fully-qualified class name of the class to test, for example:

 INSTANCEOF(product, org.myproducer.Product)

Valid parameters for the type parameter list are:

The INSTANCEOF function considers an event class's superclasses as well as all the
directly or indirectly-implemented interfaces by superclasses.

4.1.7 The CAST Function
The CAST function casts the return type of an expression to a designated type. The
function accepts two parameters: the first parameter is the property name or
expression that returns the value to be casted and the second parameter is the type to
cast to.

Valid parameters for the second (type) parameter are:

■ Any of the Java built-in types: int, long, byte, short, char, double, float,
string, where string is a short notation for java.lang.String. The type
name is not case-sensitive. For example:

 cast(price, double)

■ The fully-qualified class name of the class to cast to, for example:

 cast(product, org.myproducer.Product)

The CAST function is often used to provide a type for dynamic (unchecked) properties.
Dynamic properties are properties whose type is not known at compile type. These
properties are always of type java.lang.Object.

The following example shows how to use the CAST function to cast the price
dynamic property of an item in the OrderEvent to a double value.

 SELECT CAST(item.price?, double)
 FROM OrderEvent

The CAST function returns a null value if the expression result cannot be casted to the
desired type, or if the expression result itself is null.

The CAST function adheres to the following type conversion rules:

■ For all numeric types, the CAST function utilizes java.lang.Number to convert
numeric types, if required.

■ For casts to string or java.lang.String, the CAST function calls toString
on the expression result.

■ For casts to other objects, including application objects, the CAST function
considers a Java class's superclasses as well as all directly or
indirectly-implemented interfaces by superclasses .

4.1.8 The EXISTS Function
The EXISTS function returns a boolean value indicating whether the dynamic
property, provided as a parameter to the function, exists on the event. The EXISTS
function accepts a single dynamic property name as its only parameter.

Use the EXISTS function with dynamic (unchecked) properties. Dynamic properties
are properties whose type is not known at compile type. Dynamic properties return a
null value if the dynamic property does not exist on an event, or if the dynamic
property exists but the value of the dynamic property is null.

Aggregate functions

EPL Reference: Functions 4-7

The following example of using the EXISTS function returns true if the item property
contains an object that has a serviceName property. It returns false if the item
property is null, or if the item property does not contain an object that has a property
named serviceName:

 SELECT EXISTS(item.serviceName?)
 FROM OrderEvent

4.2 Aggregate functions
The aggregate functions are SUM, AVG, COUNT, MAX, MIN, MEDIAN, STDDEV, AVEDEV.
You can use aggregate functions to calculate and summarize data from event
properties. For example, to find out the total price for all stock tick events in the last 30
seconds:

 SELECT SUM(price)
 FROM StockTickEvent RETAIN 30 SECONDS

Here is the syntax for aggregate functions:

 aggregate_function([ALL | DISTINCT] expression)

You can apply aggregate functions to all events in an event stream window or other
view, or to one or more groups of events. From each set of events to which an
aggregate function is applied, EPL generates a single value.

The expression is usually an event property name. However it can also be a constant,
function, or any combination of event property names, constants, and functions
connected by arithmetic operators.

For example, to find out the average price for all stock tick events in the last 30 seconds
if the price was doubled:

 SELECT AVG(price * 2)
 FROM StockTickEvent RETAIN 30 SECONDS

You can use the optional keyword DISTINCT with all aggregate functions to eliminate
duplicate values before the aggregate function is applied. The optional keyword ALL
which performs the operation on all events is the default.

The MIN and MAX aggregate functions are also available as single row functions. See
Section 4.1.1, "The MIN and MAX Functions" for a description of this usage.

The syntax of the aggregation functions and the results they produce are shown in
table below.

Table 4–2 Aggregate Functions

Aggregate Function Result

SUM([ALL|DISTINCT] expression) Totals the (distinct) values in the expression, returning a value
of long, double, float or integer type depending on the
expression.

AVG([ALL|DISTINCT] expression) Average of the (distinct) values in the expression, returning a
value of double type.

COUNT([ALL|DISTINCT] expression) Number of the (distinct) non-null values in the expression,
returning a value of long type.

COUNT(*) Number of events, returning a value of long type.

MAX([ALL|DISTINCT] expression) Highest (distinct) value in the expression, returning a value of
the same type as the expression itself returns.

User-Defined functions

4-8 Oracle Complex Event Processing EPL Language Reference

You can use aggregation functions in a SELECT clause and in a HAVING clause. You
cannot use aggregate functions in a WHERE clause, but you can use the WHERE clause to
restrict the events to which the aggregate is applied. The next query computes the
average and sum of the price of stock tick events for the symbol ACME only, for the last
10 stock tick events regardless of their symbol.

 SELECT 'ACME stats' AS title, AVG(price) AS avgPrice, SUM(price) AS sumPrice
 FROM StockTickEvent RETAIN 10 EVENTS
 WHERE symbol='ACME'

In the preceding example the length window of 10 elements is not affected by the
WHERE clause, in other words, all events enter and leave the length window regardless
of their symbol. If we only care about the last 10 ACME events, we need to add a
MATCHING clause as shown below.

 SELECT 'ACME stats' AS title, AVG(price) AS avgPrice, SUM(price) AS sumPrice
 FROM (SELECT * FROM StockTickEvent WHERE symbol='ACME')
 RETAIN 10 EVENT

You can use aggregate functions with any type of event property or expression, with
the following restriction:

■ You can use SUM, AVG, MEDIAN, STDDEV, AVEDEV with numeric event properties
only

EPL ignores any null values returned by the event property or expression on which
the aggregate function is operating, except for the COUNT(*) function, which counts
null values as well. All aggregate functions return null if the data set contains no
events, or if all events in the data set contain only null values for the aggregated
expression.

You may also create an aggregate user-defined function. For more information, see
Section 4.3, "User-Defined functions".

4.3 User-Defined functions
A user-defined function can be invoked anywhere as an expression itself or within an
expression. The function must simply be a public static method that the class loader

MIN([ALL|DISTINCT] expression) Lowest (distinct) value in the expression, returning a value of
the same type as the expression itself returns.

MEDIAN([ALL|DISTINCT] expression) Median (distinct) value in the expression, returning a value of
double type.

STDDEV([ALL|DISTINCT] expression) Standard deviation of the (distinct) values in the expression,
returning a value of double type.

Oracle CEP uses a common measure called sample standard
deviation when internally implementing STDDEV, rather than the
precise mathematical definition. The definition used by Oracle
CEP for STDDEV is as follows:

stddev(x) = (1/(N-1) * SUM{i=1 ... n}(xi - xavg)) ^ (1/2)

AVEDEV([ALL|DISTINCT] expression) Mean deviation of the (distinct) values in the expression,
returning a value of double type.

Oracle CEP uses the following definition for AVEDEV:

avedev(x) = 1/n * SUM{i=1 . . . n} (x_i ? xavg)

TREND(expression) Number of consecutive up ticks (as positive number), down ticks
(as negative number), or no change (as zero) for expression.

Table 4–2 (Cont.) Aggregate Functions

Aggregate Function Result

User-Defined functions

EPL Reference: Functions 4-9

can resolve at statement creation time. The engine resolves the function reference at
statement creation time and verifies parameter types.

The example below assumes a class MyClass that exposes a public static method
myFunction accepting two parameters, and returning a numeric type such as
double.

 SELECT 3 * MyClass.myFunction(price, volume) as myValue
 FROM StockTick RETAIN 30 SECONDS

User-defined functions also take array parameters as this example shows. Section 3.6,
"Array Definition Operator" outlines in more detail the types of arrays produced.

 SELECT *
 FROM RFIDEvent RETAIN 10 MINUTES
 WHERE com.mycompany.rfid.MyChecker.isInZone(zone, {10, 20, 30})

Oracle CEP supports both single-row and aggregate user-defined functions.

For more information, see "wlevs:function" in the Oracle Complex Event Processing
Developer's Guide for Eclipse.

Caution: Only idempotent user-defined functions in EPL queries are
allowed. That is, multiple invocations of the user-defined function
does not change the result.

User-Defined functions

4-10 Oracle Complex Event Processing EPL Language Reference

5

Programmatic Interface to EPL 5-1

5Programmatic Interface to EPL

This section contains information on the following subjects:

■ Section 5.1, "Java Programming Interfaces"

5.1 Java Programming Interfaces
The Java programmatic interface for the EPL is rooted at the
com.bea.wlevs.ede.api.Processor interface. This interface provides methods
to load, compile, start, stop, and retrieve EPL statements.

EPL statements are loaded and compiled individually through the following method:

 Statement createStatement(String query) throws StatementException;

If the query fails to compile, a StatementException will be thrown. Alternatively,
multiple statements may be loaded from a URL using the following method:

 List<Statement> loadStatements (URL location) throws MultiStatementException;

If the queries fail to compile, a MultiStatementException will be thrown. The
structure of the rules file is explained in "Configuring EPL Processors" in the Oracle
Complex Event Processing Developer's Guide for Eclipse. Individual queries compiled
through the createStatement are not persisted and have no effect on the rule files
located at the URL location.

The com.bea.wlevs.ede.api.Statement interface allows event sinks to be
attached to an EPL statement using the following method:

 void addEventSink (EventSink listener);

The engine calls the following method on the
ccom.bea.wlevs.ede.api.EventSink interface when events are added to the
output window as a result of executing the statement:

 void onEvent (List newEvents);

For more information, see the complete Oracle Fusion Middleware Java API Reference for
Oracle Complex Event Processing.

Java Programming Interfaces

5-2 Oracle Complex Event Processing EPL Language Reference

Index-1

Index

A
about, 2-20
aggregate functions

about, 4-7
AVEDEV(ALL | DISTINCT), 4-8
AVG(ALL | DISTINCT), 4-7
COUNT(*), 4-7
COUNT(ALL | DISTINCT), 4-7
MAX(ALL | DISTINCT), 4-7
MEDIAN(ALL | DISTINCT), 4-8
MIN(ALL | DISTINCT), 4-8
STDDEV(ALL | DISTINCT), 4-8
SUM(ALL | DISTINCT), 4-7
TREND(expression), 4-8

aggregation, 1-14
AND operator

about, 2-12
API, 5-1
arithmetic operators, 3-1
array definition operators, 3-2
AVEDEV(ALL | DISTINCT) aggregate function

about, 4-8
AVG(ALL | DISTINCT) aggregate function

about, 4-7

B
BASED ON clause

about, 2-10
batched windows

about, 1-11
row-based, 1-12
time-based, 1-11

BETWEEN operator
about, 3-3

binary operators, 3-2

C
CASE single-row function

about, 4-3
CAST single-row function

about, 4-6
clauses

about, 2-1

BASED ON, 2-10
correlated subqueries, 2-21
FROM, 2-3
GROUP BY, 2-15
HAVING, 2-17
INSERT INTO, 1-2, 2-7, 2-20
MATCHING, 1-2, 2-11
ORDER BY, 2-18
OUTPUT, 1-2, 2-18
parameterized queries, 2-22, 2-23
PARTITION BY, 2-10
RETAIN, 2-8
RETAINING, 1-2
SELECT, 2-1
simple subqueries, 2-21
WHERE, 1-13, 2-15
WITH, 2-11

COALESCE single-row function
about, 4-3

comparison operators, 2-15, 3-1
comparison to SQL, 1-1
concatenation operators, 3-2
correlated subqueries, 2-21
COUNT(*) aggregate function

about, 4-7
COUNT(ALL | DISTINCT) aggregate function

about, 4-7

D
datatypes

enum, 1-6
evaluating with functions, 1-6
other, 1-6
unsupported, 1-6

dynamic indexed event properties, 1-5
dynamic mapped event properties, 1-5
dynamic nested event properties, 1-5
dynamic simple event properties, 1-5

E
enum datatypes, 1-6
EPL

API, 5-1
EPL statements

Index-2

prepared, 2-24
event objects, 1-2
Event Processing Language. See EPL
event properties

about, 1-3
aliases, 2-2
dynamic, 1-4
dynamic indexed, 1-5
dynamic mapped, 1-5
dynamic nested, 1-5
dynamic simple, 1-5
indexed, 1-3
mapped, 1-3
nested, 1-3
other, 1-6
SELECT clause, 2-2
simple, 1-3

event representation
about, 1-1, 1-2
event objects, 1-2
Map events, 1-3
POJO, 1-3
properties, 1-3, 1-4

event sinks
about, 1-7
ISTREAM events, 1-7
RSTREAM events, 1-7

event streams, 1-8
EVERY operator

about, 2-13, 3-6
EXISTS single-row function

about, 4-6

F
FOLLOWED BY operator

about, 2-12, 3-5
FROM clause

about, 2-3
joins

inner, 2-5
outer, 2-5

parameterized SQL queries, 2-6
subquery expressions, 2-6

functions
aggregate, 4-7
single-row, 4-1
user-defined, 4-8

G
GROUP BY clause

about, 2-15
HAVING clause, 2-17
OUTPUT clause, 2-19

H
HAVING clause

about, 2-17
GROUP BY clause, 2-17

MATCHING clause, 2-17
OUTPUT clause, 2-19
WHERE clause, 2-17

I
IN operator

about, 3-3
indexed event properties, 1-3
INSERT INTO clause, 2-20

about, 1-2
parameterized SQL queries, 2-7

INSTANCE OF single-row function
about, 4-5

IS NOT NULL operator, 2-15
IS NULL operator, 2-15
ISTREAM

SELECT clause, 2-3
ISTREAM events, 1-7

J
joins

inner, 2-5
outer, 2-5

L
LARGEST qualifier, 2-11
LIKE operator

about, 3-4
list operators, 3-3
logical operators, 3-1

M
Map events, 1-3
mapped event properties, 1-3
MATCHING clause

about, 1-2, 2-11
AND operator, 2-12
event structure for matched pattern, 2-15
EVERY operator, 2-13
FOLLOWED BY operator, 2-12
HAVING clause, 2-17
matched pattern, 2-15
NOT operator, 2-13
OR operator, 2-13
WITHIN operator, 2-14

MAX single-row function
about, 4-2

MAX(ALL | DISTINCT) aggregate function
about, 4-7

MEDIAN(ALL | DISTINCT) aggregate function
about, 4-8

MIN single-row function
about, 4-2

MIN(ALL | DISTINCT) aggregate function
about, 4-8

Index-3

N
nested event properties, 1-3
NOT operator

about, 2-13

O
operators

about, 3-1
AND, 2-12
arithmetic, 3-1
array definition, 3-2
BETWEEN, 3-3
binary, 3-2
comparison, 2-15, 3-1
concatenation, 3-2
EVERY, 2-13, 3-6
FOLLOWED BY, 2-12, 3-5
IN, 3-3
IS NOT NULL, 2-15
IS NULL, 2-15
LIKE, 3-4
list, 3-3
logical, 3-1
NOT, 2-13
OR, 2-13
range, 3-3
REGEXP, 3-5
string, 3-4
temporal, 3-5
WITHIN, 2-14, 3-5

OR operator
about, 2-13

ORDER BY clause
about, 2-18

OUTPUT clause
about, 1-2, 2-18
GROUP BY clause, 2-19
HAVING clause, 2-19

P
paramaterized SQL queries, 2-6
parameterized queries

about, 2-22, 2-23
prepared EPL statment, 2-24
processor component configuration file, 2-23

PARTITION BY clause
about, 2-10

Plain Old Java Object. See POJO
POJO

event representation, 1-3
PREV single-row function

about, 4-3
per group, 4-4
PRIOR single-row function, 4-5
restrictions, 4-4

PRIOR single-row function
about, 4-4
PREV single-row function, 4-5

processing model
about, 1-1, 1-8
aggregation, 1-14
batched windows

about, 1-11
row-based, 1-12
time-based, 1-11

event streams, 1-8
sliding windows

about, 1-9
row-based, 1-9
time-based, 1-10

subqueries, 1-13
use cases, 1-15

programmatic interface, 1-1

Q
qualifiers

LARGEST, 2-11
SMALLEST, 2-11
UNIQUE, 2-11

queries
parameterized, 2-22, 2-23

R
range operators, 3-3
REGEXP operator

about, 3-5
RETAIN clause

about, 2-8
BASED ON clause, 2-10
batched and sliding windows, 2-9
keeping all events, 2-8
PARTITION BY clause, 2-10
property name, 2-10
sliding window size, 2-8
time interval, 2-9
WITH clause, 2-11

RETAINING clause
about, 1-2

RSTREAM
SELECT clause, 2-3

RSTREAM events, 1-7

S
SELECT clause

about, 2-1
aliasing event properties, 2-2
choosing all event properties, 2-2
choosing event properties, 2-2
expressions, 2-2
ISTREAM, 2-3
RSTREAM, 2-3
selecting new events, 2-3
selecting old events, 2-3

simple event properties, 1-3
simple subqueries, 2-21
single-row functions

Index-4

about, 4-1
CASE, 4-3
CAST, 4-6
COALESCE, 4-3
EXISTS, 4-6
INSTANCE OF, 4-5
MAX, 4-2
MIN, 4-2
PREV, 4-3
PRIOR, 4-4, 4-5

sliding windows
about, 1-9
RETAIN clause, 2-8
row-based, 1-9
size, 2-8
time-based, 1-10

SMALLEST qualifier, 2-11
SQL comparison, 1-1
SQL queries, 2-6
STDDEV(ALL | DISTINCT) aggregate function

about, 4-8
streams, 1-8
string operators, 3-4
sub-queries, 1-13
subqueries

correlated, 2-21
FROM clause, 2-6
paramaterized SQL queries, 2-6
simple, 2-21

SUM(ALL | DISTINCT) aggregate function
about, 4-7

T
temporal operators, 3-5
TREND(expression) aggregate function

about, 4-8

U
UNIQUE qualifier, 2-11
use cases, 1-15
user-defined functions

about, 4-8

W
WHERE clause

about, 1-13, 2-15
comparison operators, 2-15
HAVING clause, 2-17

WITH clause
about, 2-11
LARGEST, 2-11
SMALLEST, 2-11
UNIQUE, 2-11

WITHIN operator
about, 2-14, 3-5

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Overview of the Event Processing Language (EPL)
	1.1 Overview of the EPL Language
	1.2 Event Representation
	1.2.1 Event Objects
	1.2.2 Plain Old Java Object Events
	1.2.3 Map Events
	1.2.4 Event Properties
	1.2.5 Dynamic Event Properties
	1.2.6 Handling Other Event Properties Using a User-Defined Function
	1.2.7 Event Sinks

	1.3 Processing Model
	1.3.1 Event Streams
	1.3.2 Sliding Windows
	1.3.2.1 Row-Based Sliding Windows
	1.3.2.2 Time-Based Sliding Windows

	1.3.3 Batched Windows
	1.3.3.1 Time-Based Batched Windows
	1.3.3.2 Row-Based Batched Windows

	1.3.4 Subqueries and WHERE Clauses
	1.3.5 Aggregation

	1.4 Use Cases
	1.4.1 Computing Rates per Feed
	1.4.2 Computing Highest Priced Stocks
	1.4.3 Segmenting Location Data
	1.4.4 Detecting Rapid Fall-off
	1.4.5 Finding Network Anomalies
	1.4.6 Detecting Absence of Event
	1.4.7 Summarizing Terminal Activity Data
	1.4.8 Reading Sensor Data
	1.4.9 Combining Transaction Events
	1.4.10 Monitoring Real-time Performance
	1.4.11 Finding Dropped Transaction Events

	2 EPL Reference: Clauses
	2.1 Overview of the Clauses You Can Use in an EPL Statement
	2.2 SELECT
	2.2.1 Choosing Specific Event Properties
	2.2.2 Using Expressions
	2.2.3 Aliasing Event Properties
	2.2.4 Choosing All Event Properties
	2.2.5 Selecting New and Old Events With ISTREAM and RSTREAM Keywords

	2.3 FROM
	2.3.1 Inner Joins
	2.3.2 Outer Joins
	2.3.3 Subquery Expressions
	2.3.4 Parameterized SQL Queries

	2.4 RETAIN
	2.4.1 Keeping All Events
	2.4.2 Specifying Window Size
	2.4.3 Specifying Batched Versus Sliding Windows
	2.4.4 Specifying Time Interval
	2.4.4.1 BASED ON Clause

	2.4.5 Specifying Property Name
	2.4.6 Using PARTION BY Clause to Partition Window
	2.4.7 Using WITH Clause to Keep Largest/Smallest/Unique Values

	2.5 MATCHING
	2.5.1 FOLLOWED BY Operator
	2.5.2 AND Operator
	2.5.3 OR Operator
	2.5.4 NOT Operator
	2.5.5 EVERY Operator
	2.5.6 WITHIN Operator
	2.5.7 Event Structure for Matched Pattern

	2.6 WHERE
	2.7 GROUP BY
	2.8 HAVING
	2.8.1 Interaction With MATCHING, WHERE and GROUP BY Clauses

	2.9 ORDER BY
	2.10 OUTPUT
	2.10.1 Interaction With GROUP BY and HAVING Clauses

	2.11 INSERT INTO
	2.12 Simple and Correlated Subqueries
	2.13 Parameterized Queries
	2.13.1 General Usage
	2.13.2 Using a Parameterized EPL Statement in the Processor Configuration File
	2.13.3 Programmatically Using a Prepared EPL Statement

	3 EPL Reference: Operators
	3.1 Overview of EPL Operators
	3.2 Arithmetic Operators
	3.3 Logical and Comparison Operators
	3.4 Concatenation Operators
	3.5 Binary Operators
	3.6 Array Definition Operator
	3.7 List and Range Operators
	3.7.1 IN Operator
	3.7.2 BETWEEN Operator

	3.8 String Operators
	3.8.1 LIKE Operator
	3.8.2 REGEXP Operator

	3.9 Temporal Operators
	3.9.1 FOLLOWED BY Operator
	3.9.2 WITHIN Operator
	3.9.3 EVERY Operator

	4 EPL Reference: Functions
	4.1 Single-row Functions
	4.1.1 The MIN and MAX Functions
	4.1.2 The COALESCE Function
	4.1.3 The CASE Control Flow Function
	4.1.4 The PREV Function
	4.1.4.1 Previous Event Per Group
	4.1.4.2 Restrictions

	4.1.5 The PRIOR Function
	4.1.5.1 Comparison to the PREV Function

	4.1.6 The INSTANCEOF Function
	4.1.7 The CAST Function
	4.1.8 The EXISTS Function

	4.2 Aggregate functions
	4.3 User-Defined functions

	5 Programmatic Interface to EPL
	5.1 Java Programming Interfaces

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

