
1

Oracle® Fusion Middleware
Content Management REST Service Developer’s Guide

11g Release 1 (11.1.1.4.0)

E15813-06

February 2011

1 Introduction
The OASIS CMIS (Content Management Interoperability Services) Technical
Committee works to standardize a web services interface specification that will enable
greater interoperability of Enterprise Content Management (ECM) systems. For more
information, see the Oasis CMIS site:
http://www.oasis-open.org/committees/cmis/

The Content Management REST Service provides a server that uses the CMIS RESTful
AtomPub server binding to provide access to Oracle Content Server repositories
configured in your application.

This guide is intended to be a supplement to the OASIS CMIS specification, and
provides details on the specific implementation of the Content Management REST
Service. Before continuing, all users should review the OASIS CMIS specification. This
guide references the Content Management Interoperability Services (CMIS) Version
1.0, which can be viewed at the following URL:
http://docs.oasis-open.org/cmis/CMIS/v1.0/cmis-spec-v1.0.html.

The specification includes the domain model and two server bindings. As mentioned
above, only the RESTful AtomPub binding is currently implemented by the Content
Management REST Service. Users should be familiar with Atom and AtomPub, as
these are the default formats for responses.

This guide includes the following sections:

■ Section 2, "CMIS Part I - Domain Model"

■ Section 3, "CMIS Part II: RESTful AtomPub Binding"

■ Section 4, "Content Management REST Service Best Practices and Examples"

Note: CMIS provides a lowest common denominator for a wide
range of different content systems; it is not aligned directly with the
Oracle Content Server functionality. Refer to the CMIS service
document to identify the available functionality.

2

2 CMIS Part I - Domain Model
The Domain Model part of the CMIS specification defines a domain model that can be
used by applications to work with one or more Content Management
repositories/systems.

This section is organized according to the sections in the CMIS Domain Model
documentation.

■ Section 2.1, "Data Model"

■ Section 2.2, "Services"

2.1 Data Model
The Content Management REST Service service document consists of AtomPub
workspaces. Each workspace maps to a content connection (only UCM repositories are
supported by the Content Management REST Service). For details on the service
document, see the next section, Section 3, "CMIS Part II: RESTful AtomPub Binding".

2.1.1 Repository
For this release, some of the optional capabilities listed in section 2.1.1 have not been
implemented. Versioning, ACL, Policies, Relationships, Change Log, Folder
Descendants/Tree, and Renditions will be considered for future releases.

Specifically, the Content Management REST Service implementation has the following
optional capabilities:

capabilityGetDescendants = true
capabilityGetFolderTree = false
capabilityContentStreamUpdatability = anytime
capabilityChanges = none
capabilityRenditions = none
capabilityMultifiling = false
capabilityUnfiling = false
capabilityVersionSpecificFiling = false
capabilityPWCUpdateable = false
capabilityPWCSearchable = false
capabilityAllVersionsSearchable = false
capabilityJoin = none
capabilityACL = none
capabilityQuery = none, metadataonly, or both combined

2.1.2 Object
Content Management REST Service supports document and folder objects. In CMIS
the cmis:baseTypeId for a Node will be cmis:folder or cmis:document. Also,
the cmis:baseId for a Type will be cmis:folder or cmis:document.

2.1.3 Object-Type
A CMIS Object-Type contains fields mapped from the UCM Content Server metadata
field definitions and UCM Content Server SiteStudio region definitions.

The mapping from UCM Content Server metadata fields to CMIS property definitions
is as follows:

■ TEXT metadata field with option list configured with select list validated and
YesNoView or TrueFalseView view: cmis:propertyBoolean

3

■ All other TEXT metadata fields: cmis:propertyString

■ LONG TEXT metadata field: cmis:propertyString

■ MEMO metadata field: cmis:propertyString

■ INTEGER metadata field: cmis:propertyInteger

■ DATE metadata field: cmis:propertyDateTime

■ DECIMAL metadata field: cmis:propertyDecimal

The mapping from UCM Content Server SiteStudio Region Definition fields to CMIS
property definitions is as follows:

■ Image Element Definition fields: cmis:propertyString

■ WYSIWYG Element Definition fields: cmis:propertyString

■ Plain Text Element Definition fields: cmis:propertyString

■ Static List Element Definition fields: cmis:propertyString

2.1.4 Document Object
Document Objects are the elementary information entities managed by the repository.
As defined by the CMIS specification, Document Objects may be version-able,
file-able, query-able, control-able and ACLControl-able. As stated earlier, the Content
Management REST Service does not support versioning, multi-filing, Policies or ACL
for this release.

If a Node is determined to be a Document (not a Folder) then any children it has will
not be exposed through CMIS. In CMIS, each Document Object is associated with a
single content stream, and for WebCenter CMIS REST, this stream is the Oracle
Content Server binary associated with the document.

2.1.5 Folder Object
The CMIS specification states that Folder Objects do not have a content-stream and are
not version-able. If a Node is determined to be a Folder, then the Content Management
REST Services exposes it in this manner. (In UCM, folders do not have a content
stream and are not versionable).

2.1.6 Relationship Object
The Relationship Object section does not apply, since the Content Management REST
Service does not support Relationships for this release.

2.1.7 Policy Object
The Policy Object section does not apply, since the Content Management REST Service
does not support Policies for this release.

2.1.8 Access Control
Most of the Access Control section does not apply, since the Content Management
REST Service does not support ACL for this release. See below for details on allowable
actions.

2.1.8.1 AllowableActions Mapping This section lists allowable actions that will be defined
for Objects. Because of how this release is implemented, some of these are hard-coded
for all objects. Other allowable actions will be set based on the repository
configuration.

4

■ canGetObjectRelationships = false

■ canCreateRelationship = false

■ canGetDescendants = false

■ canGetFolderTree = false

■ canCheckOut = false (versioning)

■ canCancelCheckOut = false (versioning)

■ canCheckIn = false (versioning)

■ canAddObjectToFolder = false (multi-filing)

■ canRemoveObjectFromFolder = false (unfiling/multi-filing)

■ canApplyPolicy = false

■ canGetAppliedPolicies = false

■ canRemovePolicy = false

■ canCreatePolicy = false

■ canApplyACL = false

■ canGetACL = false

■ canGetRenditions = false

■ canDeleteTree = true

■ canGetAllVersions = false (versioning)

2.1.9 Versioning
Section 2.10 does not apply, since the Content Management REST Service does not
support versioning for this release.

2.1.10 Query
CMIS queries return a Result Set where each Entry object will contain only the
properties that were specified in the query. As the Content Management REST Service
does not support JOINs in queries, each result entry will represent properties from a
single node. Common searches use a query like "SELECT * FROM …".

■ The FROM clause specifies a content-type to be searched.

- FROM cmis:document ==> any UCM document (for example,
IDC:GlobalProfile)

- FROM cmis:folder ==> any UCM folder (for example, IDC:Folder)

- FROM typeQueryName ==> type's cmis queryName, as long as the type is
queryable (for example, ora:t:IDC!;GlobalProfile)

■ The cmis:document and cmis:folder types are always queryable. Other types will
be queryable if they are searchable in the repository.

■ The IN_FOLDER predicate is implemented as the folder ID specified, being the
parent of the results.

■ The IN_TREE predicate is implemented as the folder ID specified, being a parent
in the folder structure of the results.

■ The CONTAINS() predicate is a full-text query expression operator.

5

■ Properties of cmis:document and cmis:folder will be queryable and orderable if
their corresponding UCM system property is searchable and sortable. The system
property mappings are:

- cmis:createdBy ==> dDocAuthor

- cmis:lastModifiedBy ==> dDocCreator

- cmis:creationDate ==> dCreateDate

- cmis:lastModificationDate ==> dLastModifiedDate (for 10g, folders map to
dLastModifiedDate and documents map to dCreateDate)

- cmis:name ==> dOriginalName (for a document) or dCollectionName (for a
folder)

- cmis:contentStreamFileName ==> dOriginalName

- cmis:contentStreamLength ==> VaultFileSize

- cmis:contentStreamMimeType ==> dFormat

- cmis:objectId ==> dDocName

- cmis:objectTypeId ==> UCM profile name or SiteStudio Region Definition
name

- cmis:path ==> use IN_FOLDER or IN_TREE predicate

■ Nested properties are not queryable or orderable.

■ The Content Management REST Service implementation reports as orderable any
properties which UCM specifies as sortable. This list can in some cases include
properties which UCM cannot actually sort on. If you wish to allow ordering on a
field for which UCM is reporting a sort error, follow the steps below to make the
specified UCM field sortable:

1. Go to Administration and open Admin Applets.

2. Open the Configuration Manager applet and click Advanced Search Design...

3. Edit the field you wish to make orderable and select 'Is sortable'.

4. Save your changes and exit Administration.

Note: cmis:objectTypeId is never orderable.

Note: Some repositories may have capabilities that are not
representable in a CMIS query, and some repositories may have
restrictions which will limit the CMIS-query predicates (or
combinations of predicates) that can be used in a query. The above
mappings should assist you in translating repository capabilities and
restrictions into corresponding considerations for CMIS queries.

6

Table 1 Search Considerations and Recommendations

Consideration Recommendation

UCM provides limited support for querying
on null or non-null values.

Be aware of the differences in search behavior
and do not write search expressions that depend
on unsupported criteria.

Recursive search for folders is not supported
by UCM, but is supported for documents if
configured on the UCM server as described to
the right.

Scope the search to only include documents (add
a select clause like "select * from
cmis:document").

Set the search path on the Search object (add a
where clause like "where IN_
TREE('/StellentRepository/IDC:Folder/2').

Configure the folders_g
CollectiveSearchRecursiveContent and related
settings like CollectionMaxBranch in the UCM
config.cfg file.

Multivalued property operators perform
substring matches. This is true for ANY
<multiValuedQueryName> IN (<literal>, ...)
or <literal> = ANY <
multiValuedQueryName>. In UCM, a field
with an option list stores values in a
comma-delimited manner. For example, if
you have values "A", "B", and "C", these will
be represented as "A, B, C". Using an ANY or
ANY IN search for 'A, B' will find this item.

Be aware of the differences in search behavior
and consider changing the UCM option list
delimiter character in the Configuration
Manager applet to reduce the potential for
finding extra matches.

When searching folders (FROM cmis:folder),
at most one value can be specified per criteria.
Each criteria is logically ANDed with the
others to make a more selective query. There
is no support for OR or NOT when searching
folders.

There is no support for OR and NOT in UCM
folder search.

Not all properties are searchable, and if the
search encounters a property that is not
searchable, it will return a ParseException
(400 error).

Understand which properties are searchable for
a given content type by examining the UCM
Configuration Manager information fields
section, or by reviewing the ContentType
definition.

Example URLS:

http://myContentServer/idc/idcplg?Id
cService=VCR_GET_CONTENT_
TYPE&vcrContentType=IDC:Folder&IsSoa
p=1

then look for the isSearchable field setting.
Or, examine the specific type through CMIS.

Not all ContentTypes are searchable. An
attempt to search for a non-searchable
ContentTypes will throw an exception. For
example, the IDC:FileReference ContentType
is not searchable.

Be aware that not all ContentTypes are
searchable.

Only String multi-valued properties can be
searched.

Do not specify search for multi-valued property
types other than String.

The not operator cannot be used for LONG
properties.

Try to restructure the query using supported
syntax.

7

Sorting on non-indexed fields results in an
exception.

Searching on a non-indexed field throws an
exception, with the embedded exception code
of, for example, "DRG-10837: section dStatus
does not exist".

Understand which fields have been indexed
before using them as sort criteria

Example: URL:
http://myContentServer/idc/idcplg?Id
cService=
GET_ADVANCED_SEARCH_
OPTIONS&IsSoap=1, then look for "IsSortable".
Or, examine the type through CMIS to see if the
property definition is queryable.

Empty values are not allowed in a search
query.

Do not use a criteria such as cmis:name !=
''..

Notequals operator is not supported for
non-String properties

Be aware of the differences in search behavior
and do not write search expressions that depend
on unsupported criteria.

Multiple search paths on the same UCM
repository are not supported.

Be aware of the differences in search behavior
and do not write search expressions that depend
on unsupported criteria.

When searching for documents, recursive
search (folder tree search) is supported if
UCM is configured properly.
If search path is not set, then all documents in
the repository will be searched (both filed and
unfiled).

Configure the content server folders_g
CollectionSearchRecursiveContent and related
settings like CollectionMaxBranch in the UCM
config.cfg file. These are described in UCM
documentation. To perform a document search
scoped to a folder tree, use the IN_TREE
predicate.

When searching for documents and using the
LIKE operator, wildcards (%) are only
supported in the last path element.

Be aware of the differences in search behavior
and do not write search expressions that depend
upon unsupported criteria.

When searching documents (select * from
cmis:document), it is not possible to limit the
search to more than just a single content type;
for example, this is not supported: "select *
from IDC:MyProfile, IDC:AnotherProfile"
because it has multiple explicit content types
and JOINS are not supported.

If you need to limit the search to more than just a
single content type, issue multiple queries to
achieve the same behavior. If you want to search
across all types, use cmis:document in the select
statement.

UCM search does not support OR when
cmis:objectTypeId is specified in a
query; other parameters can be ANDed with
this criteria, but OR is not supported.

For example, it is not supported to do this:
'cmis:objectTypeId =
'IDC:GlobalProfile' ||

myField='bar'

If this functionality is necessary, issue multiple
queries to achieve the same behavior.

cmis:objectTypeId criteria only supports
==, !=, and like. Use of != is restricted to
the case of excluding folders (which behaves
the same as adding select * from
cmis:document).

Be aware of the valid operators when using
cmis:objectTypeId criteria.

Queries may be case-sensitive depending on
the selected UCM search engine.

Be aware that the UCM search engine selection
can affect case-sensitivity. Metadata searches
using OracleTextSearch as the search engine are
generally case-insensitive. Metadata searches
using DATABASE.FULLTEXT as the search
engine are generally case-sensitive. The exact
behavior sometimes varies by metadata field.

Table 1 (Cont.) Search Considerations and Recommendations

Consideration Recommendation

8

For example queries, see Section 4, "Content Management REST Service Best Practices
and Examples".

2.2 Services
The methods described in the Services section are implemented by the Content
Management REST Service; specific implementation details are covered in the next
section, Section 3, "CMIS Part II: RESTful AtomPub Binding".

3 CMIS Part II: RESTful AtomPub Binding
The RESTful AtomPub Binding part of the CMIS specification defines a specification
based on AtomPub that can be used by applications to work with one or more Content
Management Repositories. REST services are available through a WebCenter Spaces
instance; for details, see the Oracle Fusion Middleware Developer's Guide for Oracle
WebCenter.

3.1 Service Document
All navigation of a repository begins with the AtomPub Service Document. From this
document, all accessible content in a repository can be discovered through the
collections, links, and templates.

The URI to the service document, relative to the CMIS web application's context-root,
is /rest/cmis/repository.

Therefore, if an application is deployed with a library-context-root-override as in the
example above, the service document would be accessed through the following URL:

 http://hostname:port/rest/cmis/repository

By default, this document will contain a workspace for each configured UCM
repository (only UCM repositories are supported by CMIS REST in Oracle
WebCenter). A service document for a single repository can be obtained by using the
repositoryId query parameter, as described in section 5 of the CMIS AtomPub binding
specification.

As noted in the previous section, the service document consists of AtomPub
workspaces. Each workspace maps to a WebCenter Oracle Content Server connection.

Specific URIs beyond the service document are not published; it is assumed that users
will start at the service document and navigate the collections and links down
expected paths. The relationships of the links and the titles and types of the collections
are all defined in the CMIS specification, and thus can be commonly navigated by a
client implementation. There are also templates defined for each repository, for easier
access of objects by path, object by ID, type by ID, and queries. The format of the

Note: The REST application is only available with the Spaces
application and not with any custom portal application development.
However, you can make HTTP requests from your WebCenter Portal
application to access the REST and CMIS resources that are available
in a Spaces application. You must make sure that the Spaces
application is configured with the relevant content connections that
you wish to access.

9

variables for the path and ID templates can be discovered by viewing the Entries of
Folders and Documents.

3.2 Response Formats
Section 2.2: Response Formats indicates that Atom/AtomPub style formats will be
returned by default unless overridden by a supported media type expressed in the
Accept header.

A generic AtomPub feed reader can walk through any of the feeds returned by the
CMIS REST server. It will not see all the CMIS specifics, but will be able to navigate
through links. In general, to set up a feed reader, you need to know the URI of a
particular feed, which can be discovered by navigating through the service document,
for example, the workspace link for "typesdescendants".

For details on query syntax, see the CMIS specification. For Content Management
REST Service best practices and examples, see the next section, Section 4, "Content
Management REST Service Best Practices and Examples".

3.3 Additional Functionality
The Content Management REST Service provides the following additional
functionality beyond the CMIS specification.

■ Section 3.3.1, "Folder Children Collection"

■ Section 3.3.2, "Document Entry"

■ Section 3.3.3, "Content Stream"

3.3.1 Folder Children Collection
The specification defines the following CMIS services:

■ GET: getChildren

■ POST: createDocument
or createFolder
or createPolicy
or moveObject
or addObjectToFolder

The Content Management REST Service also provides the following:

■ POST: create
This new service has five query parameters: uid, fileName, contentId, comments,
simpleResponse, and one header parameter: Slug. This new service is meant to be
used as a simple binary request upload. A new document is created with this
service. Slug and fileName (optional, though only one needs to be defined and
fileName is checked first) are used to name the binary that is attached to the
request. The comments parameter is optional and contentId is optional if UCM is
set up to auto-generate the dDocName.

■ POST: create Content-Type: multipart/form-data
This new service has a single query parameter: uid, which is the uid of the folder
in which the document is to be created. The boolean query parameter
simpleResponse will return a response of media type:
application/atom+xml;type=entry, if set to false. If set to true, a response of
media type: text/html will be returned with a URI pointing to the newly created
document. The comments and simpleResponse parameters are both optional,

10

contentId is optional if UCM is set up to auto-generate the dDocName, and the
name "fileUpload" is required.

<html>
<head>
 <title>simple post</title>
</head>
<body>
<form
action="http://<host>:<port>/rest/api/cmis/children/StellentRepository?uid=IDC:
Folder/2"
 method="POST"
 enctype="multipart/form-data">
 Select a document to upload: <input type="file" name="fileUpload"/>

 <input type="hidden" name="comments" value="this is just a comment"/>
 <input type="hidden" name="contentId" value="uniqueID1"/>
 <input type="hidden" name="simpleResponse" value="true"/>
 <input type="submit" value="Submit"/>
</form>
</body>
</html>

3.3.2 Document Entry
The specification defines the following CMIS services:

■ GET: getObject, getObjectOfLatestVersion (getObject)

■ PUT: updateProperties

■ DELETE: deleteObject

The Content Management REST Service also provides the following:

■ POST: postToDelete
This new service has two query parameters: uid and _method, and allows a
document to be deleted through POST.

http://<host>:<port>/rest/api/cmis/document/repoName?uid=ABC&_method="delete"

3.3.3 Content Stream
The specification defines the following CMIS services:

■ GET: getContentStream

■ PUT: setContentStream

■ DELETE: deleteContentStream

The Content Management REST Service also provides the following:

■ POST: postTunnelContentStream
This new service has five query parameters: uid, overwriteFlag, fileName,
comments, _method, and one header parameter: Slug. This new service is meant to
be used as a simple binary request upload or delete through POST. A document
must already exist for this service. Slug and fileName (optional, though only one
needs to be defined and fileName is checked first) are used to name the binary that
is attached to the request. The overwriteFlag parameter defaults to true, the
comments parameter is optional and _method can be "delete" or "put" (not case
sensitive).

http://<host>:<port>/rest/api/cmis/stream/repoName?uid=ABC&_method="delete"

11

■ POST: postTunnelContentStream
Content-Type: multipart/form-data
This new service has a single query parameter: uid and is meant to be used as a
simple html multipart/form-data upload or delete through POST. A document
must already exist for this service. The attribute name="fileUpload" is required,
"comments" is optional, and valid values for "_method" are "delete" or "put" (not
case sensitive).

<form
action="http://<host>:<port>/rest/api/cmis/stream/repoName?uid=WDOC019113"
 method="POST"
 enctype="multipart/form-data">
 Select a document to upload: <input type="file" name="fileUpload"/>

 <input type="hidden" name="comments" value="this is just a comment"/>
 <input type="hidden" name="_method" value="PUT"/>
 <input type="submit" value="Submit"/>
</form>

4 Content Management REST Service Best Practices and
Examples
This section provides best practices and examples using the Content Management
REST Service. For details on query syntax, see the CMIS specification.

4.1 Best Practices
The following list provides suggested best practices for repositories that will use the
Content Management REST Service.

■ To determine the types that can be used in the "FROM" portion of a query, see the
types collection from the AtomPub service document. The type must be queryable
and the query name of that type must be used.

For example, IDC:GlobalProfile might have type information similar to the
following:

<cmis:localName>IDC:GlobalProfile</cmis:localName>
<cmis:displayName>IDC:GlobalProfile</cmis:displayName>
<cmis:queryName>ora:t:IDC!;GlobalProfile</cmis:queryName>
<cmis:queryable>true</cmis:queryable>

An example query for the type information above could be: "SELECT * FROM
ora:t:IDC!;GlobalProfile".

■ To determine the properties that can be used in the "SELECT" and "WHERE"
portions of a query, see the entry for the associated type. Each property definition
of that type will be listed and will have a setting for queryable and orderable. The
cmis:queryname will be the value to be used in the query.

For example, IDC:GlobalProfile might have property definition information
similar to the following:

<cmis:propertyStringDefinition>

<cmis:id>/stanl18-ucm11g/IDC:GlobalProfile.ora:p:dDocName</cmis:id>
 <cmis:localName>dDocName</cmis:localName>
 <cmis:displayName>dDocName</cmis:displayName>
 <cmis:queryName>ora:p:dDocName</cmis:queryName>
 <cmis:description>Content ID</cmis:description>

12

 <cmis:propertyType>string</cmis:propertyType>
 <cmis:cardinality>single</cmis:cardinality>
 <cmis:updatability>readwrite</cmis:updatability>
 <cmis:inherited>false</cmis:inherited>
 <cmis:required>false</cmis:required>
 <cmis:queryable>true</cmis:queryable>
 <cmis:orderable>true</cmis:orderable>
 </cmis:propertyStringDefinition>

An example query for the property definition information above could be:
"SELECT ora:p:dDocName FROM ora:t:IDC!;GlobalProfile"

■ To keep queries more readable, avoid non-alphanumeric characters in
ContentType and PropertyDefinition names.

4.2 Content Management REST Service Examples
This section provides some example queries. For details on query syntax, see the CMIS
specification. (To get the full URI for a query, see the query URI template in the service
document.)

■ SELECT * from cmis:folder

■ SELECT cmis:name, cmis:contentStreamFileName, cmis:contentStreamMimeType,
cmis:contentStreamLength FROM cmis:document WHERE
cmis:contentStreamFileName = 'BinaryName' AND cmis:contentStreamMimeType
= 'text/html' AND cmis:contentStreamLength > 1

■ SELECT cmis:name, cmis:creationDate, cmis:lastModificationDate FROM
cmis:folder WHERE cmis:name = 'Trash' AND cmis:lastModificationDate >
TIMESTAMP '2008-05-18T10:32:44.703-06:00'

■ SELECT * FROM cmis:document WHERE cmis:name LIKE 'baker%'

■ SELECT * FROM cmis:document WHERE cmis:name NOT IN ('nodeBoolean',
'nodeLong')

■ SELECT cmis:name from cmis:document where IN_TREE('/StellentRepository')

■ SELECT * FROM ora:t:IDC:GlobalProfile WHERE ora:p:dRevClassID > 1 ORDER
BY ora:p:dDocTitle,ora:p:dInDate DESC

■ SELECT * FROM ora:t:IDC:GlobalProfile WHERE ora:p:xBooleanTestField =
FALSE ORDER BY ora:p:dDocTitle ASC

■ SELECT ora:p:xMultiValuedDelimiterTest FROM ora:t:IDC:GlobalProfile WHERE
ANY ora:p:xMultiValuedDelimiterTest NOT IN ('four')

■ SELECT cmis:name FROM ora:t:IDC:GlobalProfile WHERE CONTAINS('test')
ORDER BY ora:p:dInDate DESC

■ SELECT * FROM cmis:document where IN_
TREE('/StellentRepository/IDC:Folder/2')

5 Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to

13

facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Oracle Fusion Middleware Content Management REST Service Developer's Guide, 11g Release 1 (11.1.1.4.0)
E15813-06

Copyright © 2010, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them
to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions
and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any
inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications,
then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software.
Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation
and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services.
Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services.

14

	1 Introduction
	2 CMIS Part I - Domain Model
	2.1 Data Model
	2.1.1 Repository
	2.1.2 Object
	2.1.3 Object-Type
	2.1.4 Document Object
	2.1.5 Folder Object
	2.1.6 Relationship Object
	2.1.7 Policy Object
	2.1.8 Access Control
	2.1.8.1 AllowableActions Mapping

	2.1.9 Versioning
	2.1.10 Query

	2.2 Services

	3 CMIS Part II: RESTful AtomPub Binding
	3.1 Service Document
	3.2 Response Formats
	3.3 Additional Functionality
	3.3.1 Folder Children Collection
	3.3.2 Document Entry
	3.3.3 Content Stream

	4 Content Management REST Service Best Practices and Examples
	4.1 Best Practices
	4.2 Content Management REST Service Examples

	5 Documentation Accessibility

