ORACLE

Oracle® Fusion Middleware
User's Guide for Oracle Business Rules

11gRelease 1 (11.1.1.5.0)
E10228-06

April 2011

Oracle Fusion Middleware User's Guide for Oracle Business Rules 11g Release 1 (11.1.1.5.0)
E10228-06

Copyright © 2005, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: ~ Anirban Ghosh

Contributing Authors: Steven Leslie, Peter Purich, Thomas Van Raalte, Richard Smith

Contributors: ~ Sreejith Achazhiyathkalathil, Kirit Adatiya, Chris Cowell-Shah, Ching Luan Chung,
Kathryn Gruenefeldt, Gary Hallmark, Ralf Mueller, Joe Rosinski, Abhimanyu Prabhavalkar, Anitha Suraj,
Phil Varner, Lakshmi Venkatakrishnan, Neal Wyse

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PUOIACE ... et s et s e e xiii
AN S Lo = VLT RSOPRRRRRRR Xiii
Documentation AcCesSIDIlityccociiiiiiiiiiiiiiiiii e xiii
Related DOCUIMENTATIONc.veiievieeeieceieeeeeetee ettt ettt eeaeeeaaeeaeeeaeesateeesseenseessseesasesseensesenseeseeans Xiv
CONMVEIIEIONS ..ooiittieiieeieeitie ettt e e ettt e e e e et ae e e e e eaaaeeeseesaaaseseesasaaaeeeeseaasseeseessasesessesnsssaeseessssssseessnssaeesessns Xiv

1 Overview of Oracle Business Rules

1.1 What are Business RULES?c.ooouiiiiiiiiiiceeeeeeee ettt e st be e ens 1-1
1.11 What Are Rule CONAItIONS?covcvieiiieiiiierieieeieete ettt vesre v ere v eae e ereenaeeaae 1-3
1.1.2 What Are RUIE ACHONS?......ccveeieiieeieiieiieieeee ettt ettt e tsseesesressassessessessessessessesseseasens 1-3
1.1.3 What Are DeciSion TabLes?cccieviiiieiiiieeiieceeieeeetee ettt sae e sae s ae s s e ssesraesnens 1-4
1.14 What Are Facts and BucketSets?.........ocveviieeiiieiieiiiceeeeceeie ettt 1-4
115 WHhat ATE RUIESEES?oviviieieeieeieieiietettettee ettt ettt eetesbesresbe b e saessessesseseesansessensens 1-4
1.1.6 What Are Decision FUNCHONS?.........cccoouiiiiieiieiieieteeeee ettt be e ean e v ennas 1-4
1.1.7 What Are Decision POINES?cciiuieiiiiieiiereeiieteeie ettt sttt ve v e e neereennas 1-5
1.1.8 What Are DiCHONATIES?eeviriieieeiieieeteie et eteetete st eteseessesseesesseesessaessesseessesssensesseenses 1-5
1.2 Oracle Business Rules Runtime and Design Time Elements.............cccccccovvinnninnninnn. 1-5
1.21 Decision Component (Business Rules) in an SOA Composite Application................ 1-5
1.2.2 Using Rules Engine with Oracle Business Rules in a Java EE Application................. 1-6
1.2.3 Oracle Business Rules RL Language..........ccccccovuviviviiiniininniinieecns 1-6
1.24 Oracle Business RuUles SDKccooiiiiiiiiiiiiiciicieeeee ettt eeeeve e sveevaeneas 1-6
1.2.5 Rules DeSIGNETouciiiiiciiecc 1-7
1.2.6 Oracle SOA Composer Applicationooccueiiiiiieiiiiiicc 1-7
1.3 Oracle Business Rules Engine Architecturecccociiiiiiiiiiiiiiiicicccccenceenas 1-8
1.3.1 Declarative RULEScc.eciiiieieieeeee ettt et e e b ssesseesaessaenees 1-8
1.3.2 The RETE AIZOTithmc.cccoiiiiiiiiiiiiiiiiiiicas 1-9
1.3.3 What Is Working Memory? ... 1-10
1.3.4 Rule Firing and Rule SeSSIiONS...........ccccvviviiiiiiiiiiiiiiiiicccs 1-10

2 Working with Data Model Elements

2.1 Introduction to Working with Data Model Elements.............ccoooeviiiiiiiiiiiniie 2-1
2.2 Working with a Dictionary and Dictionary Links ..o 2-1
2.2.1 Introduction to Dictionaries and Dictionary Links..........cccccoevviinnninnnnnnnn. 2-2
2.2.2 How to Create a Dictionary in the SOA Tier Using Rules Designer................c.......... 2-2
2.2.3 How to Create a Dictionary in the Business Tier Using Rules Designer..................... 2-5

224
2.2.5
2.2.6
227
2.2.8
2.2.9
2.2.10
2.3
2.3.1
2.3.2
2.3.3
2.4
2.5
2.5.1
252

How to View and Edit Dictionary Settings.........ccccceevoimeieiiiiieiiicccece, 2-5

How to Link t0 @ DIiCtONATIYcooveiiiieieieiicieece e 2-6
How to Update a Linked Dictionarycccccccceueieiieiiicinieceereeeccieeeeeeeeeeeeeeens 2-8
What You Need to Know About Dictionary Linking.........cccccoeeeiiiiiiiiiiccins 2-8
What You Need to Know About Dictionary Linking and Dictionary Copies............ 2-9
What You Need to Know About Dictionary Linking to a Deployed Dictionary....... 2-9
What You Need to Know About Business Rules Inputs and Outputs with BPEL.... 2-9
Working with Oracle Business Rules Globalscooooiiii 2-9
How to Add Oracle Business Rules Globals..........c.c.cccooviiiniiniiniiiiiiicnen 2-10
How to Edit Oracle Business Rules Globalscccccoeiiiiiiniiiinii, 2-11
What You Need to Know About the Final and Constant Options............ccccoucuueee. 2-11
Working with Decision FUNCHONSc.cvviviiiiiiri e 2-12
Working with Oracle Business Rules FUNctionscooooiiiii 2-12
Introduction to Oracle Business Rules Functions ..o 2-12
How to Add an Oracle Business Rules Functioncccccevvnininnnincnnnen, 2-12

3 Working with Facts and Bucketsets

3.1

3.2

3.2.1
3.2.2
3.2.3
3.24
3.3

3.3.1
3.3.2
3.3.3
3.4

3.4.1
3.4.2
3.4.3
3.5

3.5.1
3.5.2
3.5.3
3.5.4
3.6

3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6
3.6.7
3.6.8
3.7

3.7.1

Introduction to Working with Facts and Bucketsetscccccoecceeiiiiiiiccniiiicene 3-1
Working with XML Facts........ccoiiiioiiii e 3-2
How to Import XML Schema and Add XML Factsccccooirieiiiiiieiiiicccc 3-3
How to Display and Edit XML FacCtscccccoiiiiiiiiiiciccececeeceeieieeeneeennes 3-5
How to Reload XML Facts with Updated Schemac.ccccocovuiiiiiiiiiiiiiiiiiiiinnn, 3-6
What You Need to Know About XML Facts ..o 3-7
Working with Java Facts ..o 3-8
How to Import Java Classes and Define Java Facts.........cccoccccovviiiininiiiiniiins 3-8
How to Display and Edit Java Factscccooeeiiiiiiiicc e 3-10
What You Need to Know About Java FactS.......ccccevevieieiecincieieiieseseeieieeeeeeeenens 3-11
Working with RL Facts........ccoiiiiii s 3-12
How to Define RL FaCESccciuiuiiiiiiiiiiiiiicicic s 3-12
How to Display and Edit RL Facts and Add RL Fact Properties............cccccccuvuunnnee. 3-13
What You Need to Know About RL Facts ..o 3-14
Working with ADF Business Components Facts............ccccooioiiiiiiiiiiiiiiiine, 3-15
How to Import and Define ADF Business Components Facts...........cccccoeeurrenccncnee 3-15
What You Need to Know About ADF Business Components Fact Classpaths 3-17
What You Need to Know About ADF Business Components Circular References 3-17
What You Need to Know About ADF Business Components Facts......................... 3-17
Working with Bucketsets............cooiuiiiiiiic 3-18
How to Define a List of Values Global Bucketsetcccccoevivrvinninnininnnn 3-19
How to Define a List of Ranges Global Bucketsetcccccoeviiivvniinncniinne 3-21
How to Define an Enumerated Type (Enum) Bucketset from XML Types 3-23
How to Define an Enumerated Type (Enum) Bucketset from Java Types............... 3-25
What You Need to Know About List of Values Bucketsetscccoceevviirriinnnnen. 3-26
What You Need to Know About Range Bucketsets ... 3-27
What You Need to Know About Bucketset Allowed in Actions Option 3-28
What You Need to Know About Bucket Values ..o, 3-29
Associating a Bucketset with Business Terms...........ccccocovviiiniiiiiiiiic, 3-29
How to Associate a Bucketset with a Fact Propertyccccoovoeeiinniicnne, 3-30

3.7.2
3.7.3

How to Associate a Bucketset with Functions or Function Arguments................... 3-30
How to Associate a Bucketset with a Global Value.........c.cccoooooiiii 3-31

4 Working with Rulesets and Rules

41

4.2

4.2.1
422
423
4.3

4.3.1
43.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.4

4.4.1
442
443
444
4.5

4.5.1
4.5.2
4.5.3
454
4.5.5
4.5.6
4.6

4.6.1
4.7

4.7.1
4.7.2
4.7.3
4.7.4
4.7.5
4.8

4.8.1
4.8.2
4.8.3
48.4
4.9

4.9.1
49.2
4.9.3
494

Introduction to Working with Rulesets and Rulescccoooiiiiiiic 4-1
Working With RUIESEESccoiiiiiiii e 4-2
How to Create a RUlesetccoiiiiiiiiiiiiiiic s 4-2
How to Set the Effective Date for a Ruleset ... 4-2
How to Use a Filter to Display Matching Rules in a Rulesetccccccoeveeiiiicnne. 4-3
Working with RULeS........c.coiiiiii e 4-6
How t0 Add RULEScoviiiiiiiiiiiii s 4-7
How to Define a Test in @ RULecccviviiiiiiiiiiiic e 4-7
How to Define Range Tests in Rules...........cccooooiiiiiiiiiiie 4-11
How to Define Set Tests in Rulescccccoeiiiiiiiiiiiiic 4-14
How to Define Actions in RUles ..o, 4-16
What You Need to Know About Rule Actions...........cccceieeieiiinniniiniiinicee, 4-19
What You Need to Know About Oracle Business Rules Performance Tuning........ 4-19
Validating DICtONATIESc.ccocuiuiuiiiiiiiiiiiieicicicicceicecre e eeeees 4-19
Understanding Data Model Validation ..o 4-20
Understanding Rule Validation...........cccooiiie 4-21
Understanding Decision Table Validation...........cccccccceceiiiiiiininiirccccene 4-21
How to Validate a Dictionaryooooeueiiiiiieiiiiciccc e 4-23
Using Advanced Settings with Rules and Decision Tables.............ccccccceviiiiiiininnnnne. 4-23
How to Show and Hide Advanced Settings in a Rule or Decision Table................. 4-24
How to Select the Advanced Mode Option..........ccceevevvieiieiciiiniiiniiicc 4-25
How to Select the Active OPtion ... 4-26
How to Select the Logical Option........c.cccccccuiieiiiciiiiiiiccececcceeeeeeeeeeeeeeeees 4-26
How to Set a Priority for @ RUle.........ccooviiiiiiiiiiiiiic e, 4-27
How to Specify Effective Dates...........coooeuiiiiiiiiiiic e 4-28
Working with Nested TeStS ... 4-28
How to Use Nested Tests.........ccciiiiiiiiiiiiiiiiiiiciccee s 4-28
Working with Advanced Mode Rules ... 4-29
How to Use Advanced Mode Pattern Matching Options........c.cccccccceccicicinicicncnnne. 4-30
How to Use Advanced Mode Matched Fact Namingcccccoceviiiieiiiiiiciiinnnen 4-32
How to Use Advanced Mode Action FOrms...........ccccccceciiiiiininiiiiiiniiicccicee, 4-35
How to Use Advanced Mode Aggregate Conditionsc.ccceeuvevuveveverrerrenerercnenenes 4-36
What You Need to Know About Advanced Mode Rules...........cccccceeniiniiiniinnnnnnn. 4-40
Working with Tree Mode Rules............ccccoooiiiiiiiiiiiiiccccees 4-41
Introduction to Tree Mode Rules ..o 4-41
How to Create Simple Tree Mode Rules ... 4-46
How to Create Advanced Tree Mode Rules............cccccoeeiiiiiiiiiiiiiiccee, 4-52
What You Need to Know About Tree Mode Rules ..o, 4-53
Using Date Facts, Date Functions, and Specifying Effective Dates..........cccccccoovreinnne. 4-54
How to Use the Current Date Fact ..o, 4-54
How to Set the Effective Date for a Rule...........cccoooviiiiiinnie 4-55
What You Need to Know About Effective Dates.........cccoovreiiiiiiiniiiinn 4-56
How to Use Duration, JavaDate, OracleDate, and XMLDate Methods.................... 4-57

4.10

4.10.1
4.10.2
4.10.3
411

4.11.1
411.2
4.11.3

Working with Expression Builder ... 4-58

Introduction to the Expression Builder ... 4-58
How to Use the Expression Builder ... 4-59
What You Need to Know About Working with Expressionsccccceeiinieiennne. 4-59
Using Bucketsets as Constraints for Options Values in Rulesccccccooiiii 4-60
How to Use a List of Ranges Bucketset as a Constraint for a Business Term.......... 4-60
How to Use a List of Values Bucketset as a Constraint for a Fact Property............. 4-62
How to Use Bucketsets to Provide Options for Test Expressions............cccccceueeuee. 4-62

5 Working with Decision Tables

5.1
5.1.1
5.1.2
5.1.3
5.2
5.2.1
5.2.2
5.2.3
5.24
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7
5.4.8
5.4.9
5.4.10

Introduction to Working with Decision Tables............cccoooiiiiiiiiiiiie 5-1
What is a Decision Table? ... 5-2
Understanding Decision Table Valuesc.ccoooeiieiiiiiiiiiiciec 5-7
What You Need to Know About Decision Table LOOPSccccoeueieiiiriiiiiiiiiie, 5-8

Creating Decision Tablescccccociiiiinieerrr e 5-8
How to Create a Decision Tableccccoiiiiiiiiiiiiiis 5-8
How to Add Condition Rows to a Decision Table...........cccccooeuriiiiiiiiniiiiiinns 5-9
How to Add Actions to a Decision Table...........ccccccooviiiiniiiicccnes 5-10
How to Add a Rule to a Decision Table............ccooviiiiiiiiieiiiccc 5-12

Performing Operations on Decision Tablesccccoiiiiiiiiiiiiiniicc 5-13
Introduction to Decision Table Operations............c.ccccceeeeuceeuiceeieeeeeeeeeeenennns 5-13
How to Compact or Split a Decision Table...........c.ccccceviiiinininiiiic, 5-22
How to Merge or Split Conditions in a Decision Tablecccccccccevvinninnnnnnn 5-22
How to Merge, Split, and Specify Do Not Care for Condition Cells 5-22
How to Perform Decision Table Gap ANalysiscccccoeovrunirinireinieciceces 5-23
How to Perform Decision Table Manual Conflict Resolution...........ccccoooreieinnne. 5-23
How to Set the Decision Table Auto Override Conflict Resolution Policy 5-24
How to Set the Decision Table Ignore Conflicts POlicy..........cccocoveveiiiiiniiiciiicinen, 5-24

Creating and Running an Oracle Business Rules Decision Table Application............... 5-24
How to Obtain the Source Files for the Order Approval Application..................... 5-25
How to Create an Application for Order Approvalccccoivviivvniiiienn 5-26
How to Create a Business Rule Service Component for Order Approval................ 5-27
How to View Data Model Elements for Order Approval..........ccccccececccicccenenne. 5-31
How to Add Bucketsets to the Data Model for Order Approvalcccccevvviriinnn 5-32
How to Associate Bucketsets with Order and CreditScore Properties..................... 5-34
How to Add a Decision Table for Order Approval.........ccccocoeuieececcccecccnenennns 5-36
How to Check the Business Rule Validation Log for Order Approval 5-46
How to Deploy the Order Approval Application..........ccccoceveieiceieinicciniiceeiee 5-46
How to Test the Order Approval Applicationcccccocccueceiiiceieececccceeeeeenes 5-46

6 Working with Decision Functions

vi

6.1
6.2
6.2.1
6.3
6.3.1

Introduction to Decision FUNCHONSccecveieieieieieiececeesiei ettt e e s sre s essesaeneas 6-1
Working with Decision FUNCHONSc.coiiiiieiiici 6-1

How to Add or Edit a Decision FUNCHON.........coccuevieiiiiiciceeeeeeeeeeeee e 6-1
What You Need to Know About Decision FUNCHONS........c..cccceevivienienienieicieieese e 6-5

What You May Need to Know About Rule Firing Limit Option for Debugging Rules....
6-5

6.3.2
6.3.3

What You May Need to Know to About Decision Function Arguments.................... 6-5
What You May Need to Know About the Decision Function Stateless Option......... 6-6

7 Working with Rules SDK Decision Point API

71
711
71.2
7.1.3
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.4
7.5
7.6

Introduction to Rules SDK and the Car Rental Sample Applicationccccccoeerieirinnnen. 7-1
Introduction to Decision Point API.........c.cccccoiviiiiiiiiiicecceeeeeeeeeenees 7-1
How to Obtain the Car Rental Sample Applicationcccoovvivvnininnininnnnniine, 7-2
How to Open the Car Rental Sample Application and Project........ccccccoeeriiininninnn. 7-2

Creating a Dictionary for Use with a Decision Point.........cccccccceuvuevvninnnnninnncrnene. 7-3
How to Create Data Model Elements for Use with a Decision Point............c.ccccce....... 7-3
How to View a Decision Function to Call from the Decision Point...........ccccccceeunuee 7-4
How to Create Rules or Decision Tables for the Decision Functionccccccccceueeee. 7-6
What You Need to Know About Using Car Rental Sample with a Decision Table... 7-8

Creating a Java Application Using Rules SDK Decision Pointcccccevvinnnnnninnen. 7-9
How to Add a Decision Point Using Decision Point Builder............ccccccccccceeennne 7-10
How to Use a Decision Point with a Pre-loaded Dictionarycccceveerieriiinnnne 7-11
How to Use Executor Service to Run Threads with Decision Point............cccccc.c...... 7-12
How to Create and Use Decision Point Instances...........ccccceeuevrvvvnnnncnnncnccnes 7-13

Running the Car Rental Sample..........c.cocooiiiiiiiiii 7-14

What You Need to Know About Using Decision Point in a Production Environment. 7-15
What You Need to Know About Decision Point and Decision Tracing.........c.ccccccuee.... 7-16

8 Testing Business Rules

8.1
8.1.1
8.1.2
8.1.3
8.1.4
8.2

Testing Oracle Business Rules at Design Time.........cccccccciiiiiiiiiiicccccccececeenenas 8-1
How to Test Rules Using a Test Function in Rules Designer...........ccccccoovriiiiiinnnnen. 8-1
What You Need to Know About Testing Using an Oracle Business Rules Function 8-3
How to Test a Decision Function Using an Oracle Business Rules Function.............. 8-3
What You Need to Know About Testing Decision Functionsccccoovviiiinnnnnes 8-5

Testing Oracle Business Rules at Runtime.............ccccccoooiiiiniiiiiniiiis 8-6

9 Creating a Rule-enabled Non-SOA Java EE Application

9.1
9.2
9.2.1
9.2.2
9.2.3
9.24
9.3
9.3.1
9.3.2
9.3.3
9.34
9.4
9.4.1
9.5
9.5.1

Introduction to the Grades Sample Applicationccccoeeviiieieiiiinic e 9-1
Creating an Application and a Project for Grades Sample Application.........c.cccccccucueunnnne 9-2
How to Create a Fusion Web Application for the Grades Sample Application......... 9-2
How to Create the Grades Projectc.ooeeeiniiiiiniiiiicccecc 9-3
How to Add the XML Schema and Generate JAXB Classes in the Grades Project.... 9-4
How to Create an Oracle Business Rules Dictionary in the Grades Project................ 9-6
Creating Data Model Elements and Rules for the Grades Sample Application................ 9-9
How to Create Bucketsets for Grades Sample Application...........cccccoeccuiccccccennns 9-9
How to Add a Decision Table for Grades Sample Application...........cccceeuvvririinne 9-11
How to Add Actions in the Decision Table for Grades Sample Application 9-12
How to Rename the Decision Function for Grades Sample Application................. 9-13
Adding a Servlet with Rules SDK Calls for Grades Sample Application........................ 9-14
How to Add a Servlet to the Grades Project..........cccooeveiiininiceiincccee 9-14
Adding an HTML Test Page for Grades Sample Application..........cccccceeueueuecriinuennnnne. 9-21
How to Add an HTML Test Page to the Grades Project........cccccoovireiiiiiciiinnn 9-21

vii

10

11

12

viii

9.6 Preparing the Grades Sample Application for Deploymentccoooviiiiiiiiiinnnen. 9-22

9.6.1 How to Create the WAR File for the Grades Sample Application............cccceoeucc. 9-22
9.6.2 How to Add the Rules Library to the Grades Sample Applicationc.ccccccceuuneee. 9-25
9.6.3 How to Add the MDS Deployment File to the Grades Sample Application........... 9-26
9.6.4 How to Add the EAR File to the Grades Sample Application...........ccccoeeveireiennne. 9-30
9.7 Deploying and Running the Grades Sample Applicationccccccceeuveeiicvvvnecnenenes 9-32
9.7.1 How to Deploy to Grades Sample Application..........cccccevvviviiiinniinnnnninn 9-32
9.7.2 How to Run the Grades Sample Applicationccccoevirieiiiiiiiiieiiic 9-33

Working with Oracle Business Rules and ADF Business Components

10.1 Introduction to Using Business Rules with ADF Business Components........................ 10-1
10.1.1 Understanding Oracle Business Rules ADF Business Components Fact Types-..... 10-1
10.1.2 Understanding Oracle Business Rules Decision Point Action Type.........c.............. 10-3
10.2 Using Decision Points with ADF Business Components Facts..........cccccoocorieiiiiirieinnnc. 10-4
10.2.1 How to Call a Decision Point with ADF Business Components Facts 10-4
10.2.2 How to Call a Decision Function with Java Decision Point Interface...........c......... 10-7

10.2.3 What You Need to Know About Decision Function Configuration with ADF Business
Components 10-8

10.3 Creating a Business Rules Application with ADF Business Components Facts............ 10-9
10.3.1 How to Create an Application That Uses ADF Business Components Facts........... 10-9
10.3.2 How to Add the Chapter10 Generic Projectocooeeuoiirieieiiiccieiicceccc 10-10
10.3.3 How to Create ADF Business Components Application for Business Rules......... 10-10
10.3.4 How to Update View Object Tuning for Business Rules Sample Application...... 10-12
10.3.5 How to Create a Dictionary for Oracle Business Rules..........c.cccocooooiiiiiiiniene. 10-12
10.3.6 How to Add Decision Point Dictionary Links..........ccooiiiiiiiiiiiiciiiccenes 10-13
10.3.7 How to Import the ADF Business Components Facts...........cccccecovviniiinnnnnn 10-14
10.3.8 How to Add and Run the Outside Manager Rulesetccoooi 10-15
10.3.9 How to Add and Run the Department Manager Ruleset...........ccccoovennnnncnne. 10-25
10.3.10 How to Add and Run the Raises and Retract Employees Rulesets 10-31

Working with Decision Components in SOA Applications

11,1 Introduction to Decision COMPONENtS..........ccccouviiiiiiiiiiiiiicee s 11-1
11.2 Working with a Decision COmMPONENt ..o 11-2
11.2.1 Working with Decision Component Metadata ... 11-2
11.2.2 Working with Decision Components that Expose a Decision Function................... 11-4
11.2.3 Using Stateful Interactions with a Decision Component.............ccccccccciiiiiccnnnee. 11-5
11.2.4 What You Need to Know About Stateful Interactions with Decision Components 11-5
11.3 Decision Service Architectureccccoeviviiiiiiiiiiiiiii e 11-5

Using Oracle SOA Composer with Oracle Business Rules

12.1 Introduction to Oracle SOA COMPOSETccooviiirimiiiiiiiiiiie s 12-1
12.2 Using Oracle SOA Composer User Authentication.........c.c.cooeoeueieviieiniiciniccne 12-2

12.2.1 What You Need to Know About SOA Composer Access Control and User
Authentication 12-3

12.3 Opening and Viewing an Oracle Business Rules Dictionary at Run Time 12-3
12.3.1 Opening an Oracle Business Rules Dictionary at Run Time..........cccccccccevvninnnnn 12-4

12.3.2 What Happens When You Open an Oracle Business Rules Dictionary 12-8
12.3.3 What You Need to Know to Obtain the Dictionary Path from the Open Dialog.... 12-8

12.3.4 How to View Globals in an Oracle Business Rules Dictionary at Run Time........... 12-8

12.3.5 How to View Bucketsets in an Oracle Business Rules Dictionary at Run Time...... 12-9

12.3.6 How to View Linked Dictionary Names at Run Time.........cccoooooioiriiiiiiciciiiene 12-10

12.3.7 How to View Decision Functions in Oracle Business Rules Dictionary at Run Time.......
12-11

12.3.8 How to View Rulesets in an Oracle Business Rules Dictionary at Run Time........ 12-11

12.4 Getting Started with Editing and Saving a Dictionary at Run Time..........c.c.cccocoevee. 12-13

12.4.1 What You May Need to Know About Localized Number Formatting Support in Oracle
SOA Composer 12-13

12.4.2 How to Edit Bucketsets in an Oracle Business Rules Dictionary at Run Time...... 12-14

12.4.3 What You Need to Know About Editing Bucketsets.............coooeeiniiiiiiinn. 12-15

12.4.4 How to Work With Dictionary Links in an Oracle Business Rules Dictionary at Run
Time 12-16

12.4.5 How to Edit Decision Functions in an Oracle Business Rules Dictionary at Run Time....
12-17

12.4.6 What You May Need to Know About Oracle Business Rules Dictionary Editor
Declarative Component 12-19

12.4.7 What You May Need to Know About Oracle Business Rules Dictionary Editor Task

Flow 12-19
12,5 Editing Rules in an Oracle Business Rules Dictionary at Run Timec.cccccoceueee. 12-19
12.5.1 How to Edit Rules in an Oracle Business Rules Dictionary at Run Time 12-19
12.5.2 How to Add a Rule at RUN TimMeccccerierieieieieieieeee ettt 12-20
12.5.3 How to Delete a Rule at RUN TIME......c.ccoieieiiiieieeieeieeteieeeete et 12-21
12.5.4 How to Show and Edit Advanced Settings for Rules at Run Time......................... 12-22
12.5.5 How to Add Rule Conditions at RUN Timecccccevireirininenierieieieeeeeese e 12-23
12.5.6 How to Delete Rule Conditions at RUN Time........ccecveeieriinieniinieeeeeieseeeeeeiens 12-24
12.5.7 How to Modify Rule Conditions at Run Timeccccooioiiiiiiiiiieiicc 12-25
12.5.8 How to Add Rule Actions at RUN Timecccocveviririienenieieeeeeceeee e 12-25
12.5.9 How to Delete Rule Actions at RUn Timecccceeieiieieriieieiiceee s 12-26
12.5.10 How to Modify Rule Actions at Run Timeccccccoevnviiinnnnninicnn 12-27
12.5.11 How to Work with Advanced Mode Rules at Run Time..........cccccecveevnvnineniereennne. 12-28
12.5.12 How to Work with Tree Mode Rules at Run Time........cccccoeveeiiviecieneeiiniecieseenene 12-32

12.5.13 What You May Need to Know About Rules Paging in Oracle SOA Composer... 12-33

12.5.14 What You May Need to Know About Oracle Business Rules Editor Declarative
Component 12-33

12.6 Using the Oracle SOA Composer Browser WINdOWscccccevuriiieieiiciicieienennne 12-33
12.6.1 Expression BUilder ... 12-34
12.6.2 CONAIION BIOWSETcuiiiieiieiietiiiiiteeteetet ettt e e ste e st e ss b e s essesaessesseseeseesensenns 12-34
12.6.3 DAte BrOWSET ...ooiiieiieeieetece ettt sttt e ettt e s b e e be e s be e aae st e e saesaneens 12-35
12.6.4 Right Operand BrowsSercccccccvviiiiiiininiiiiiiiiiiicicnccisins s 12-35
12.7 Editing Decision Tables in an Oracle Business Rules Dictionary at Run Time............. 12-36
12.7.1 Adding a Decision Table at Run Time...........cccocooviviiininiicccccnes 12-36
12.7.2 Adding Condition Rows to a Decision Tablec.cccccovvnniniininininiiiiiiciies 12-37
12.7.3 Adding Actions to a Decision Table ..o 12-41
12.7.4 Adding Rules to a Decision Table..........c.cccccoeiiiiiiiiiiiiiiii 12-43
12.7.5 Splitting and Compacting a Decision Table............cccoiiiiiiiiiiiiiiciicenne, 12-47

12.7.6 Performing Gap Analysis in a Decision Table..........c.cccccoceviiiiiiinniiin 12-48

12.7.7 Performing Conflict Resolution in Decision Tables...........ccccccovviiinninnnnninnnn 12-49
12.7.8 Switching From Rows t0 COIUMINSccccceuiiiiiiiiiininiiicicccrereeeeeceeeeeaes 12-51
12.7.9 Deleting a Decision Table at Run Timec.cccccoceviiiiiiiiiiiii 12-53
12.8 Committing Changes for an Oracle Business Rules Dictionary at Run Time............... 12-54
12.8.1 What You Need to Know About Editing With Multiple Users at Run Time......... 12-54
12.9 Synchronizing Rules Dictionary in Oracle JDeveloper With Run Time Dictionary Updates
12-55

12.10 Validating an Oracle Business Rules Dictionary at Run Timeccccooooviiiiiininnnnn. 12-56
12.10.1 Understanding the Validation Panelccooooiiiiccccccee, 12-57
12.10.2 Updating the Validation Panel ... 12-61
12.11 Obtaining Composite and Dictionary Information at Run Time.........c.cccccoevviiinnnnne. 12-62
12.12 Working with Tasks at RUn Time.......c.cccooviiiiiiccccccccccceeee 12-63
12.12.1 How to View Task Metadata at Run Time..........ccccooiviiiiiinnin 12-63
12.12.2 How to Configure a Task or an AMX Rule Metadata at Run Time.............ccc.c..... 12-66

Oracle Business Rules Files and Limitations

AA Rules Designer Naming COonventions..........c.cooieieiiicieieiicciee e A-1
A1 Ruleset INAMUINEG........ccciiviiiiiiiiiii s A-1
A1.2 Dictionary Namingcccceeeeiiieiiiiiiiiiiii s A-1
A13 ALias NAINING.cviieieiice s A-1
Al14 XML Schema Target Package Namingcccccccceeueeureeiiicnninicrceeeeeeeeeeeeeeenes A-1

B Oracle Business Rules Built-in Classes and Functions

B.1 SEHANG CLASSES ...ttt B-1
B.2 LISt ClASSES ...eevieeieiieiesieeieie ettt et s e et este et e ste st e st e et teste e st esseessesseeseesseesaesseassessesssassanssesenssensanes B-4
B.3 INUINETIC CLASSES .. .uiveiiitietieteeteeeeste et ste et e ste et e te et eteeseesbeesseseessesseessesseessesseessassaessesseessensenns B-7
B.4 Time and DUration ClasSeS.........c.ecveveieieieiiinrirtesieieieteteseee e eessesse e ssessessessessessesessessens B-13
B.5 MiSCEIIANEOUS CLASSES ..e.vvenvieeieerieieiieiecieetestt ettt et ettt e st eseeseesaesseessesssessesssessaessensesssensennes B-30
B.6 FUNCHIONS .ttt ettt et et e et e e et e et e e baessbeesseessbasssaanssesnsaenseesnses B-30

Oracle Business Rules Frequently Asked Questions

C.1 Why Do Rules Not Fire When A Java Object is Asserted as a Fact and Then Changed
Without Using the Modify Action? C-1

c.2 What are the Differences Between Oracle Business Rules RL Language and Java?........ C-2
C.3 How Does a RuleSession Handle Concurrency and Synchronization?.............ccccceoeeee. C-2
C4 How Do I Correctly Express a Self-JoIn?.........ccccocoviviviiiniininiiniiiininnncccsccceaes C-3
C.5 How Do I Use a Property Change Listener in Oracle Business Rules?............ccccccceceuce. C-5
C.6 What Are the Limitations on a Decision Service with Oracle Business Rules? C-6
C.7 How Do I Put Java Code in a RULE?c.cceoieieieieieeeeteete et C-7
C.8 Can I Use Java Based Facts in a Decision Service with BPEL?........cccccoeeveieieiecineieeenn, C-7
C.9 How Do I Enable Debugging in a BPEL Decision Service?cooceviirieininciniensinnnaen, C-7
C.10 How Do I Support Versioning with Oracle Business Rules?cccccccoeiiiiiiiiinnnns C-7
C.11 What is the Priority Order Using Priorities with Rules and Decision Tables? C-8

C.12 Why do XML Schema with xsd:string Typed Elements Import as Type JAXBElement? C-8
C.13 Why Are Changes to My Java Classes Not Reflected in the Data Model?........................ C-9

C.14 How Do I Use Rules SDK to Include a null in an EXpression?ccccoviiivinininiiininns C-9
C.15 Is WebDAV Supported as a Repository to Store a Dictionary?cc.cccovuecrvicniicniicnnnnes C-9
C.16 Using a Source Code Control System with Rules Designercccccocoevceiccccccnnns C-10

D Oracle Business Rules Troubleshooting

D.1 Getter and Setter Methods are not Visible ..o, D-1
D.2 Java Class with Only a Property Setter ..ot D-1
D.3 Runtime NoClassDefFound EI1or ... D-2
D.4 RL Specific Keyword Naming Conflict EXTorscccocovvvviinnnnnirccccrrcneeceecenes D-2
D.5 java.lang.lllegal AccessError from Business Rules Service Runtimec.cccooooeveiinnnnen. D-2
D.6 JAXB 1.0 Dictionaries and RL MultipleInheritanceException..........cccccoooireiiiiriininnn. D-4
D.7 Why Does XML Schema with Underscores Fail JAXB Compilation?.........c.ccccccevvvvuvunnncne. D-4
D.8 How Are Decision Service Input Output Element Types Restricted?ccccevvvvvnnnnnn D-4
D.9 How Are Decision Service Input Output Schema Restricted?.............ccooeeiniiinnnan. D-4
D.10 How Do I Handle Java Reserved Names in an Imported Fact Type?........cccccovvvvunenence. D-5

E Working with Oracle Business Rules and JSR-94 Execution Sets

E.1 Introduction to Oracle Business Rules and JSR-94 Execution Sets.........cccocveevevevecennnnnnnen E-1
E.2 Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets..................... E-1
E.2.1 Creating Rule Execution Set with Oracle Business Rules RL Language Text............ E-2
E.2.2 Creating a Rule Execution Set from Oracle RL Text Specified ina URL.................... E-3
E.2.3 Creating Rule Execution Sets with Rulesets from Multiple Sources.................c......... E-4
E.3 Using the JSR-94 Interface with Oracle Business Rules..............cccoooiiiiiiii, E-4
E.3.1 Creating a Rule Execution Set with createRuleExecutionSetcccccccccevuiirinnnne. E-5
E.3.2 Creating a Rule Session with createRuleSession.............cooceueviieieiiiiciciniicicee E-5
E.3.3 Working with JSR-94 Metadatacoooouiiiiiiiii e E-5
E.3.4 Using Oracle Business Rules JSR-94 EXtENSIONSccceiicucuiuciiccceicccericieeereenes E-6

F Working with Rule Reporter

F.1 Introduction to Working with Rule Reporter ... F-1
F.1.1 What You Need to Know About Rule Reporter HTML Style Sheets.......................... F-1
F.1.2 What You Need to Know About RuleReporter API..........ccccoovviiiiiininiicene F-1
F.1.3 What You Need to Know About Rule Reporter Dependent Jar Files......................... F-2
F.2 Using Rule Reporter Command Line Interface..........cooooouoiiiiiiiii, F-2
F.2.1 How to List the Contents of a Dictionary with Rule Reporter Command Line........ F-2
F.3 Using Rule Reporter With Java ... F-3
F.3.1 How to List the Contents of a Dictionary Using Rule Reporter with Java................. F-3
Index

xi

Xii

Audience

Preface

This Preface contains these topics:
= Audience

= Documentation Accessibility
= Related Documentation

s Conventions

Oracle Fusion Middleware User's Guide for Oracle Business Rules is intended for
application programmers, system administrators, and other users who perform the
following tasks:

» Create Oracle Business Rules programs

= Modify or customize existing Oracle Business Rules programs
» Create Java applications using rules programs

= Add rules programs to existing Java applications

To use this document, you need a working knowledge of Java programming language
fundamentals.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

xiii

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documentation
Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN).

http://www.oracle.com/technology/documentation/index.html

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Xiv

1

Overview of Oracle Business Rules

Oracle Business Rules enable dynamic decisions at runtime allowing you to automate
policies, computations, and reasoning while separating rule logic from underlying
application code. This allows more agile rule maintenance and empowers business
analysts with the ability to modify rule logic without programmer assistance and
without interrupting business processes.

This guide describes how to:

= Work with the Oracle Business Rules Designer (Rules Designer) extension to
Oracle JDeveloper to create Oracle Business Rules artifacts

= Work with the Oracle SOA Composer application to view and update a deployed
dictionary that is part of an SOA composite application

= Use Oracle Business Rules as part of an Oracle SOA Suite composite application as
a Decision component

= Use Oracle Business Rules as part of Java EE application with the Oracle Business
Rules SDK

» Use the Oracle Business Rules SDK (Rules SDK)

= Access the Oracle Business Rules Rules Engine using the JSR-94 Java Rule Engine
API

This chapter includes the following sections:

s Section 1.1, "What are Business Rules?"

» Section 1.2, "Oracle Business Rules Runtime and Design Time Elements"
» Section 1.3, "Oracle Business Rules Engine Architecture”

For more information, see:

» Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules
» Oracle Fusion Middleware Java API Reference for Oracle Business Rules

» Oracle Fusion Middleware Developer’s Guide for Oracle SOA Suite

1.1 What are Business Rules?

Business rules are statements that describe business policies or describe key business
decisions. For example, business rules include:

= Business policies such as spending policies and approval matrices.

s Constraints such as valid configurations or regulatory requirements.

Overview of Oracle Business Rules 1-1

What are Business Rules?

s Computations such as discounts or premiums.
= Reasoning capabilities such as offers based on customer value.

For example, a car rental company might use the following business rule:

=/ ¥ Driver Age Rule
Determine if driver is old enough ko rent.

IF
Rental_application.driver age < 21
THEN

modify Rental_application { status : "DECLINED")

An airline might use a business rule such as the following:

=l ¥ Frequent Flyer Rule
Calculate miles status

IF
Frequent_Flyer total_miles > 100000
THEN

modify Frequent_Flyer { status @ "GOLD")

A financial institution could use a business rule such as:

=l ¥ Loan Income Rule
Laan minimurn incomme

IF
Application_loan income < 10000
THEN

modify Application_loan { deny @ true)

These examples represent individual business rules. In practice, you can use Oracle
Business Rules to combine many business rules or to use more complex tests.

For the car rental example, you can name the rule the Driver Age Rule. Traditionally,
business rules such as the Driver Age Rule are buried in application code and might
appear in a Java application as follows:

public boolean checkDriverAgeRule (Driver driver) {
boolean declineRent = false;
int age = driver.getAge();
if(age < 21) {
declineRent = true;
}

return declineRent;

This code is not easy for nontechnical users to read and can be difficult to understand
and modify. For example, suppose that the rental company changes its policy so that
all drivers under 18 are declined using the Driver Age Rule. In many production
environments the developer must modify the application, recompile, and then
redeploy the application. Using Oracle Business Rules, this process can be simplified
because a business rules application is built to support easily changing business rules.

Oracle Business Rules allows a business analyst to change policies that are expressed
as business rules, with little or no assistance from a programmer. Applications using
Oracle Business Rules support continuous change that allows the applications to adapt
to new government regulations, improvements in internal company processes, or
changes in relationships between customers and suppliers.

1-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

What are Business Rules?

A rule follows an if-then structure and consists of the following parts:

s IF part: a condition or pattern match (see Section 1.1.1, "What Are Rule
Conditions?").

s THEN part: a list of actions (see Section 1.1.2, "What Are Rule Actions?").

Alternatively, you can express rules in a spreadsheet-like format called a Decision
Table (see Section 1.1.3, "What Are Decision Tables?").

You write rules and Decision Tables in terms of fact types and properties. Fact types
are often imported from the Java classes, XML schema, Oracle ADF Business
Components view objects, or may be created in Rules Designer. Fact properties have a
name, value, data type, and an optional bucketset. A bucketset splits the value space of
the data type into buckets that can be used in Decision Tables, choice lists, and for
design time validation (see Section 1.1.4, "What Are Facts and Bucketsets?").

You group rules and Decision Tables in an Oracle Business Rules object called a
ruleset (see Section 1.1.5, "What Are Rulesets?").

You group one or more rulesets and their facts and bucketsets in an Oracle Business
Rules object called a dictionary (see Section 1.1.8, "What Are Dictionaries?").

For more information, see Section 1.2, "Oracle Business Rules Runtime and Design
Time Elements".

1.1.1 What Are Rule Conditions?

The rule IF part is composed of conditional expressions, rule conditions, that refer to
facts. For example:

IF Rental_application.driver age < 21

The conditional expression compares a business term (Rental_application.driver age)
to the number 21 using a less than comparison.

The rule condition activates the rule whenever a combination of facts makes the
conditional expression true. In some respects, the rule condition is like a query over
the available facts in the Rules Engine, and for every row returned from the query the
rule is activated.

For more information, see:
s Chapter 4, "Working with Rulesets and Rules"

= "Rule Conditions" in the Oracle Fusion Middleware Language Reference Guide for
Oracle Business Rules

1.1.2 What Are Rule Actions?

The rule THEN part contains the actions that are executed when the rule is fired. A
rule is fired after it is activated and selected among the other rule activations using
conflict resolution mechanisms such as priority. A rule might perform several kinds of
actions. An action can add facts, modify facts, or remove facts. An action can execute a
Java method or perform a function which may modify the status of facts or create
facts.

Rules fire sequentially, not in parallel. Note that rule actions often change the set of
rule activations and thus change the next rule to fire.

For more information, see:

= Section 1.3.4, "Rule Firing and Rule Sessions"

Overview of Oracle Business Rules 1-3

What are Business Rules?

s Chapter 4, "Working with Rulesets and Rules"

s "Ordering Rule Firing" in the Oracle Fusion Middleware Language Reference Guide for
Oracle Business Rules

1.1.3 What Are Decision Tables?

A Decision Table is an alternative business rule format that is more compact and
intuitive when many rules are needed to analyze many combinations of property
values. You can use a Decision Table to create a set of rules that covers all
combinations or where no two combinations conflict.

For more information, see Chapter 5, "Working with Decision Tables".

1.1.4 What Are Facts and Bucketsets?

In Oracle Business Rules, facts are the objects that rules reason on. Each fact is an
instance of a fact type. You must import or create one or more fact types before you
can create rules.

In Oracle Business Rules a fact is an asserted instance of a class. The Oracle Business
Rules runtime or a developer writing in the RL Language uses the RL Language
assert function to add an instance of a fact to the Oracle Business Rules Engine.

In Rules Designer you can define a variety of fact types based on, XML Schema, Java
classes, Oracle RL definitions, and ADF Business Components view objects. In the
Oracle Business Rules runtime such fact type instances are called facts.

You can create bucketsets to define a list of values or a range of values of a specified
type. After you create a bucketset you can associate the bucketset with a fact property
of matching type. Oracle Business Rules uses the bucketsets that you define to specify
constraints on the values associated with fact properties in rules or in Decision Tables.
You can also use bucketsets to specify constraints for variable initial values and
function return values or function argument values.

For more information, see:
= Section 1.3, "Oracle Business Rules Engine Architecture”

s Chapter 3, "Working with Facts and Bucketsets"

1.1.5 What Are Rulesets?

A ruleset is an Oracle Business Rules container for rules and Decision Tables. A ruleset
provides a namespace, similar to a Java package, for rules and Decision Tables. In
addition you can use rulesets to partially order rule firing.

For more information, see:
» Chapter 4, "Working with Rulesets and Rules"

s "Ordering Rule Firing" in the Oracle Fusion Middleware Language Reference Guide for
Oracle Business Rules

1.1.6 What Are Decision Functions?

A decision function provides a contract for invoking rules from Java or SOA (from an
SOA composite application or from a BPEL process). The contract includes input fact
types, rulesets to run, and output fact types. For more information, see Chapter 6,
"Working with Decision Functions".

1-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Oracle Business Rules Runtime and Design Time Elements

1.1.7 What Are Decision Points?

Oracle Business Rules SDK (Rules SDK) provides APIs that let you write applications
that access, create, modify, and execute rules in Oracle Business Rules dictionaries
(and all the contents of a dictionary). The Rules SDK provides the Decision Point API
to access and run rules or Decision Tables from a Java application. For more
information, see Chapter 7, "Working with Rules SDK Decision Point API".

1.1.8 What Are Dictionaries?

A dictionary is an Oracle Business Rules container for facts, functions, globals,
bucketsets, links, decision functions, and rulesets. A dictionary is an XML file that
stores the application's rulesets and the data model. Dictionaries can link to other
dictionaries. Oracle JDeveloper creates an Oracle Business Rules dictionary in a
.rules file. You can create as many dictionaries as you need. A dictionary may
contain any number of rulesets. For more information, see Section 2.2, "Working with a
Dictionary and Dictionary Links".

1.2 Oracle Business Rules Runtime and Design Time Elements

Oracle Business Rules provides support for using business rules as a Decision
component or as a library in a Java application. A Decision component is a mechanism
for publishing rules and rulesets as a reusable service that can be invoked from
multiple business processes. To create and use rules in the Oracle SOA Suite, or to
create rules and integrate these rules into your applications, Oracle Business Rules
provides the following runtime and design time elements:

= Decision Component (Business Rules) in an SOA Composite Application
= Using Rules Engine with Oracle Business Rules in a Java EE Application
s Oracle Business Rules RL Language

= Oracle Business Rules SDK

= Rules Designer

s Oracle SOA Composer Application

1.2.1 Decision Component (Business Rules) in an SOA Composite Application

Oracle SOA Suite provides support for Decision components that support Oracle
Business Rules. A Decision component is a mechanism for publishing rules and
rulesets as a reusable service that can be invoked from multiple business processes.

A Decision Component is a SCA component that can be used within a composite and
wired to a BPEL component. Apart from that, Decision components are used for
dynamic routing capability of Mediator and Advanced Routing Rules in Human
Workflow.

Oracle Business Rules Rules Engine (Rules Engine) is available in an SOA composite
application using the SOA Business Rule service engine that efficiently applies rules to
facts and defines and processes rules.

Rules Engine has the following features:

= High performance: Rules Engine implements specialized matching algorithms for
facts that are defined in the system.

» Thread-safe execution suitable for a parallel processing architecture: Rules Engine
provides one thread that can assert facts while another is evaluating the network.

Overview of Oracle Business Rules 1-5

Oracle Business Rules Runtime and Design Time Elements

For more information, see Section 1.3, "Oracle Business Rules Engine Architecture".

1.2.2 Using Rules Engine with Oracle Business Rules in a Java EE Application

Oracle Business Rules Rules Engine (Rules Engine) is available as a library for use in a
Java EE application (non-SOA). Rules Engine efficiently applies rules to facts and
defines and processes rules. Rules Engine defines a Java-like production rule language
called Oracle Business Rules RL Language (RL Language), provides a language
processing engine (inference engine), and provides tools to support debugging.

Oracle JDeveloper Rules Designer allows business rules to be specified separately
from application code. Separating the business rules from application code allows
business analysts to change business policies quickly with graphical tools. The Rules
Engine evaluates the business rules and returns decisions or facts that are then used in
the business process.

Rules Engine has the following features:

= High performance: Rules Engine implements specialized matching algorithms for
facts that are defined in the system.

s Thread-safe execution suitable for a parallel processing architecture: Rules Engine
provides one thread that can assert facts while another is evaluating the network.

A rule-enabled Java application can load and run rules programs. The rule-enabled
application passes facts and rules to the Rules Engine (facts are asserted in the form of
Java objects or XML documents). The Rules Engine runs in the rule-enabled Java
application and uses the Rete algorithm to efficiently fire rules that match the facts.

For more information, see Section 1.3, "Oracle Business Rules Engine Architecture" and
Section 1.2.4, "Oracle Business Rules SDK".

1.2.3 Oracle Business Rules RL Language

Oracle Business Rules supports a high-level Java-like language called Oracle Business
Rules RL Language (RL Language). RL Language defines the valid syntax for Oracle
Business Rules programs. RL Language includes an intuitive Java-like syntax for
defining rules that supports the power of Java semantics, providing an easy-to-use
syntax for application developers. RL Language consists of a collection of text
statements that can be generated dynamically or stored in a file.

Using RL Language application programs can assert Java objects as facts, and rules can
reference object properties and invoke methods. Likewise, application programs can
use XML documents or portions of XML documents as facts.

Programmers can use RL Language as a full-featured rules programming language
both directly and as part of the Oracle Business Rules SDK (Rules SDK).

Business analysts can use Rules Designer to work with rules. In this case, the business
analyst does not need to directly view or write RL Language programs. For more
information, see Section 1.2.5, "Rules Designer".

For detailed information about RL Language, see Oracle Fusion Middleware Language
Reference Guide for Oracle Business Rules.

1.2.4 Oracle Business Rules SDK

Oracle Business Rules SDK (Rules SDK) is a Java library that provides business rule
management features that a developer can use to write a rule-enabled program that
accesses a dictionary, or to write customized rules programs that add rules or modify

1-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Oracle Business Rules Runtime and Design Time Elements

existing rules. Rules Designer uses Rules SDK to create, modify, and access rules and
the data model using well-defined interfaces. Customer applications can use Rules
SDK to access, display, create, and modify collections of rules and the data model.

You can use the Rules SDK APIs in a rule-enabled application to access rules or to
create and modify rules. The rules and the associated data model could be initially
created in a custom application or using Rules Designer.

This guide describes the Oracle Business Rules SDK Decision Point API. Using a
Decision Point you can access a dictionary and run the rules in the dictionary. For
complete Oracle Business Rules SDK API information, see Oracle Fusion Middleware
Java API Reference for Oracle Business Rules.

For more information, see Chapter 7, "Working with Rules SDK Decision Point API".

1.2.5 Rules Designer

The Oracle Business Rules Designer (Rules Designer) extension to Oracle JDeveloper is
an editor that enables you to create and edit rules as Figure 1-1 shows.

Figure 1-1 Oracle JDeveloper with Rules Designer

Apphcatlon Mavigator
Applicationd

Projects
#-{] Project
Projectz
E| Project3

-7 504 Content
[dlasses
) testsuites
=-C7 xed
=23 el
=[] Business Rules
Elm projects

ol composite., xml
-[¢2] OracleRulest.decs

Application Resources
Data Controls
Recently Opened Files

Bl V- E-

O OracleRules].rules
-{é‘n BPELPracess1.componentType

-4k OracleRules1.companent Type

]
&

?)start Page | _#CracleRules] rules ‘ CracleRulesl rules | JCracleRulesl.rules

B 90 [0 %
& Facts
Fe Functions
(x) clobals
7 Bucketsets
<D Links
ﬂ Decision Functions

+ X

ODracIeRulesl.rules oS composite, xml W=
@

kR BHDOAw

© Ruleset 1 ¥ []Flteron Yiew: | IF[THEN Rules

® ¥ Driver Age Rule

Determine if driver is old enough ko rent

«

Frequent Flyer Rule
<enter description =

Loan Income Rule
Rulesets <enter description >
@} Ruleset_1

&b Ruleset_2

@ Fuleset_3

[

Diesign

Rules Designer provides a point-and-click interface for creating rules and editing
existing rules. Using Rules Designer you can work directly with business rules and a
data model. You do not need to understand the RL Language to work with Rules
Designer. Rules Designer provides an easy way for you to create, view, and modify
business rules.

Rules Designer supports several types of users, including the application developer
and the business analyst. The application developer uses Rules Designer to define a
data model and an initial set of rules. The business analyst uses Rules Designer either
to work with the initial set of rules or to modify and customize the initial set of rules
according to business needs. Using Rules Designer a business analyst can create and
customize rules with little or no assistance from a programmer.

1.2.6 Oracle SOA Composer Application

When a dictionary is deployed in an SOA composite application, Oracle Business
Rules lets you view the dictionary or edit and save changes to the dictionary. You can
use the SOA Composer application (SOA Composer) to work with a deployed
dictionary that is part of an SOA composite application, as Figure 1-2 shows.

Overview of Oracle Business Rules 1-7

Oracle Business Rules Engine Architecture

Figure 1-2 Using Oracle SOA Composer to View or Edit a Dictionary at Runtime

Select a dictionary to open B
Shaw | Al % | Search composite ... j &

Cornposite |Partiti0n |Dicti0nary |C0ntents |Rules File
BusinessRulesTest_rev1.0 default LoanadvisorRules Show &l .. Ruleset_Z Ruleset_3 Ruleset 4 RuloanadvisorRule
BusinessRulesTest_rev1.0 default Lest Show &l .. Ruleset_1 Ruleset_2 Ruleset_3 RuOrderBooking.ru
BusinessRulesTest_rev1.0 default OracleRules1 Ruleset_1 RulesFromken.r
BusinessRulesTest_rev1.0 default Lesk Ruleset_1 Teskactions.rule
BusinessRulesTest_rev1.0 default Lest Ruleset_1 Ruleset_4 TestConnective.,
BusinessRulesTest_rev1.0 default tesk TestFunctions.r.
BusinessRulesTest_rev1.0 default Teskhumeric Rulesetl TeskMumeric. rule
BusinessRulesTest_rev1.0 default TrainingRules TrainingRulesat TrainingRules.ru
BusinessRulesTest_rev1.0 default tesk Ruleset_1 TreeMode, rules
AutoAppProj_revd.4 default CreditRatingRules Ruleset_1 CreditR.atingRule
AutodppProj_revd. 4 default LoanAdvisorRules Ruleset_2 LoanddvisorRule
Mia Mia CrynarnicRouking CrynamicRoukingCreatar CrynarnicRouking
< 4

Cpen Cancel

For more information, see Chapter 12, "Using Oracle SOA Composer with Oracle
Business Rules".

1.3 Oracle Business Rules Engine Architecture

A rule-based system using the Rete algorithm is the foundation of Oracle Business
Rules. A rule-based system consists of the following:

» The rule-base: Contains the appropriate business policies or other knowledge
encoded into IF/THEN rules and Decision Tables.

» Working memory: Contains the information that has been added to the system.
With Oracle Business Rules you add a set of facts to the system using assert calls.

= Inference Engine: The Rules Engine, which processes the rules, performs
pattern-matching to determine which rules match the facts, for a given run
through the set of facts.

In Oracle Business Rules the rule-based system is a data-driven forward chaining
system. The facts determine which rules can fire. When a rule fires that matches a set
of facts, the rule may add facts. These facts are again run against the rules. This process
repeats until a conclusion is reached or the cycle is stopped or reset. Thus, in a
forward-chaining rule-based system, facts cause rules to fire and firing rules can create
more facts, which in turn can fire more rules. This process is called an inference cycle.

1.3.1 Declarative Rules

With Oracle Business Rules you can use declarative rules, where you create rules that
make declarations based on facts rather than coding. For an example of declarative
rules,

1-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Oracle Business Rules Engine Architecture

IF a Customer is a Premium customer, offer them 10% discount
IF a Customer is a Gold customer, offer them 5% discount

In declarative rules:

= Statements are declared without any control flow
= Control flow is determined by the Rules Engine

= Rules are easier to maintain than procedural code
= Rules relate well to business user work methods

When a rule adds facts and these facts run against the rules, this process is called an
inference cycle. An inference cycle uses the initial facts to cause rules to fire and firing
rules can create more facts, which in turn can fire more rules. For example, using the
initial facts, Rules Engine runs and adds an additional fact, and an additional rule tests
for conditions on this fact creating an inference cycle:

IF a Customer is a Premium customer, offer them 10% discount
IF a Customer is a Gold customer, offer them 5% discount
IF a Customer spends > 1000, make them Premium customer

The inference cycle that Oracle Business Rules provides enables powerful and
modular declarative assertions.

1.3.2 The RETE Algorithm

The Rete algorithm was first developed by artificial intelligence researchers in the late
1970s and is at the core of Rules Engines from several vendors. Oracle Business Rules
uses the Rete algorithm to optimize the pattern matching process for rules and facts.
The Rete algorithm stores partially matched results in a single network of nodes in
working memory.

By using the Rete algorithm, the Rules Engine avoids unnecessary rechecking when
facts are deleted, added, or modified. To process facts and rules, the Rete algorithm

creates and uses an input node for each fact definition and an output node for each

rule.

Fact references flow from input to output nodes. In between input and output nodes
are test nodes and join nodes. A test occurs when a rule condition has a Boolean
expression. A join occurs when a rule condition ANDs two facts. A rule is activated
when its output node contains fact references. Fact references are cached throughout
the network to speed up recomputing activated rules. When a fact is added, removed,
or changed, the Rete network updates the caches and the rule activations; this requires
only an incremental amount of work.

The Rete algorithm provides the following benefits:

» Independence from rule order: Rules can be added and removed without affecting
other rules.

= Optimization across multiple rules: Rules with common conditions share nodes in
the Rete network.

» High performance inference cycles: Each rule firing typically changes just a few
facts and the cost of updating the Rete network is proportional to the number of
changed facts, not to the total number of facts or rules.

Overview of Oracle Business Rules 1-9

Oracle Business Rules Engine Architecture

1.3.3 What Is Working Memory?

Oracle Business Rules uses working memory to contain facts (facts do not exist outside
of working memory). A RuleSession contains the Oracle Business Rules working

memory.

1.3.4 Rule Firing and Rule Sessions

A Rule Session consists of rules, facts and an agenda. An assert or retract adds or

removes fact instances from working memory.

When facts in working memory are changed:

s Conditions for rules are evaluated

= Matching rules are added to the agenda (Activated)

= Rules which no longer match are removed from agenda

= Rules Engine runs and executes actions (fires), for activated rules

Figure 1-3 shows these parts of Oracle Business Rules runtime.

Figure 1-3 Rules in Rule Session with Working Memory and Facts

Cli

Java
Objects

ent

Rule Session

‘Rule:iring‘ }—b[Action }

Rulesets -
Matching
Fy
‘ Agenda
Fact Activation
— » Fact Activation
Activation
Fact
Activation

7

Working Memoﬁy

A rule action may assert, modify, or retract facts and cause activations to be added or
removed from the agenda. There is a possible loop if a rule's action causes it to fire
again. Rules are fired sequentially, but in no pre-defined order. The rule session
includes a ruleset stack. Activated rules are fired as follows:

= Rules within top-of-the-stack ruleset are fired

= Within a ruleset, firing is ordered by user-defined priority

= Within the same priority, the most recently activated rule is fired first

1-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Oracle Business Rules Engine Architecture

Only rules within rulesets on the stack are fired, but all rules in a rule session are
matched and, if matched, activated.

Overview of Oracle Business Rules 1-11

Oracle Business Rules Engine Architecture

1-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

2

Working with Data Model Elements

In Oracle Business Rules the data model consists of fact types, functions, globals,
bucketsets, decision functions, and dictionary links.

This chapter includes the following sections:

= Section 2.1, "Introduction to Working with Data Model Elements"
= Section 2.2, "Working with a Dictionary and Dictionary Links"

» Section 2.3, "Working with Oracle Business Rules Globals"

= Section 2.4, "Working with Decision Functions"

= Section 2.5, "Working with Oracle Business Rules Functions"

For more information, see Section 1.1.8, "What Are Dictionaries?".

2.1 Introduction to Working with Data Model Elements

To implement the data model portion of an Oracle Business Rules application you
create a dictionary and add data model elements. To complete the dictionary, you
create one or more rulesets containing rules that use or depend upon these data model
elements.

For more information, see:

s Chapter 3, "Working with Facts and Bucketsets"
= Chapter 4, "Working with Rulesets and Rules"

s Chapter 5, "Working with Decision Tables"

2.2 Working with a Dictionary and Dictionary Links

A dictionary is an Oracle Business Rules container for facts, functions, globals,
bucketsets, links, decision functions, and rulesets. A dictionary is an XML file that
stores the rulesets and the data model for an application. Dictionaries can link to other
dictionaries. You can create as many dictionaries as you need. A dictionary may
contain any number of rulesets. Using Oracle Business Rules, a data model is
contained in one or more dictionaries. All the data model elements referenced by the
rulesets must be available in the dictionary.

A dictionary is stored in a * . rules file.

Working with Data Model Elements 2-1

Working with a Dictionary and Dictionary Links

2.2.1 Introduction to Dictionaries and Dictionary Links

Each Oracle Business Rules dictionary lets you include links to other dictionaries. Each
dictionary that you create also includes the built-in dictionary; this dictionary
includes standard functions and types that all Oracle Business Rules applications
need. In addition to the main dictionary, you create one or more application-specific
dictionaries, such as PurchaseItems.rules. You can read and write the properties
of these dictionaries.

The complete data model defined by a dictionary and its linked dictionaries is called a
combined dictionary. You can create multiple links to the same dictionary; in this case,
all but the first link is ignored.

For more information, see Section 2.2.7, "What You Need to Know About Dictionary
Linking".

2.2.2 How to Create a Dictionary in the SOA Tier Using Rules Designer

Oracle JDeveloper provides many ways to create a dictionary for Oracle Business
Rules. This shows one way you can create a dictionary in an SOA project. You can
create a dictionary for use in an SOA application.

A typical SOA composite design pattern is to provide each application with its own
dictionary. When different applications need access to the same parts of a common
data model, you can use dictionary links to include a target application's dictionary in
the dictionary of a source application. Doing so copies the target application's
dictionary into the source application. Therefore, when you work with a dictionary
that contains links the linked contents are referred to as local contents.

You may also create a dictionary in the business tier, for use outside of an SOA
application. For more information, see Section 9.2.4, "How to Create an Oracle
Business Rules Dictionary in the Grades Project".

To create a dictionary in the SOA Tier using Rules Designer:

1. In the Application Navigator, select an SOA application and select or create an
SOA project.

2. Right-click, and from the list select New....

3. In the New Gallery select the Current Project Technologies tab and, in the
Categories area, expand SOA Tier as shown in Figure 2-1.

2-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with a Dictionary and Dictionary Links

Figure 2-1 Creating a Business Rules Dictionary for an SOA Project

& New Galle Iy,

(nll Technologies rCurrent Project Technologies |

This list is filtered according to the current project's selected technologies.

-

X

Categaries:
[=H-@eneral
pplications
onnections

Items:

&% BPEL Process

{22 Business Rules

[] Show All Descriptions

Opens the Create Business Rules dialog, which allows wou ko define a dictionary

eployment Descriptors " i -
of business rules based on the Cracle business rules engine.

eployment Profiles
""" Projscts T enable this option, you mu%select a project or a file within a project in the

[=}-S08 Tier Application Mavigator,

L Transforatmns L(_'O Business Rules Data Conkrol

""" Al Ttems & Event Definition
&5 Human Task
<& Mediator
| Help | | [o]4 J | Cancel

4. In the New Gallery window, in the Items area, select Business Rules.
5. Click OK. This displays the Create Business Rules dialog.
6. In the Create Business Rules dialog, enter fields as shown in Figure 2-2:

= In the Name field, enter the name of your dictionary. For example, enter
PurchaseItems.

= In the Package field, enter the Java package to which your dictionary belongs.
For example, com. example.

Working with Data Model Elements 2-3

Working with a Dictionary and Dictionary Links

Figure 2-2 Create Business Rules Dialog

& Create Business Rules

Business Rule
A business rule defines or constrains one aspect of your business that is intended ko assert business
structure or influence the behavior of your business,

General | Adwanced

(®) Create Dictionary () Import Dictionary

Specify the name and package For the dictionary that will be created.

Marme: | Purchaseltems |

Package: | com.exarnple |

Project: | C:\IDeveloperimyworklApplication26)Project 1\ Project 1. jpr |

3+ X Aw

InputsfOutputs:
Direction Marmne Tvpe

| Help | | [o]4 “ Cancel

7. To specify the inputs and outputs:

a. Click the Add icon and select Input to create an input or Output, to create an
output.

b. In the Type Chooser dialog, expand the appropriate XSD and select the
appropriate type.
c. Click OK to close the Type Chooser dialog.

You can later add inputs or outputs, or remove the inputs or outputs. For more
information, see Chapter 6, "Working with Decision Functions".

8. In the Create Business Rules dialog, click OK to create the Decision component
and the Oracle Business Rules dictionary.

Oracle JDeveloper creates the dictionary in a file with a .rules extension, and
starts Rules Designer as shown in Figure 2-3.

2-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with a Dictionary and Dictionary Links

Figure 2-3 Creating a New Oracle Business Rules Dictionary Purchaseltems

Application Navig... [:] | Application2d, jws Mtjcomposite.xml OPurchaseItems.rules E]
. Applicationzg b -] LE:EJ L 4 r—"i‘] tt] Fﬂ 0 ng @
< Proj.. @18 7~ B e =
=3 Project1 # Ruleset_1 ¥ [|Fiteron View: [P IFTHENRukes =| o - 38 T2 B 0H &0 & w
-7 506 Conkent F« Functions
=3 classe.s (%) Globals
[-{] testsuites > To create a Rule or Decision Table, please click the plus sign above.
-5 xed {7 Bucketsets
B3 xsl <D Links
=7 Business Rules - o i
Em cam @ Decision Functions
E-{T) example Rulesets + ¥
@ P Ruleset_1
----- #[§ composite.xml
.4B% Purchaseltems.comp
= Purchaseltems, decs
I+ Application Resources
|+ Data Controls
|» Recently Opened Files =
Design

9. Oracle JDeveloper also creates a Decision component in composite.xml. To view
this component double-click the composite.xml file, as Figure 2—4 shows.

Figure 2—4 Decision Component Shown in Composite Editor

Application Mavigatar E] ! '_?,'Start Page

| &l s0n3. jws H[composite.xml < pPurchaseltems. rules =
(Bl 5043 "EHY e FVEBEBEXD BHEFDO Camposite: SOACOMmposited |
Projects Bl & FrE-
=5 Prajectt Exposed Services Components External References
=177 506 Cankent
-] classes
r_—l testsuites
D sl
{2 Business Rules
. BT projectt
[0 Purchaseltems. rules Purchaseltems

I3 composite. xml
-;é‘ﬁ Purchaseltemns .componentType
[¢2] Purchaseltems.decs

Application Resources
Data Controls
Recently Opened Files

Design | Source | Hiskary

2.2.3 How to Create a Dictionary in the Business Tier Using Rules Designer

The simplest way to create a rules dictionary is using Rules Designer. You can create a
dictionary for use in the business tier, outside of an SOA application. For information

on using Oracle Business Rules without SOA, see Chapter 9, "Creating a Rule-enabled
Non-SOA Java EE Application".

2.2.4 How to View and Edit Dictionary Settings

You can view and edit dictionary settings using the Dictionary Settings icon.

Working with Data Model Elements 2-5

Working with a Dictionary and Dictionary Links

To change the dictionary alias:
1. In Oracle JDeveloper, select an Oracle Business Rules dictionary.

2. In Rules Designer, click the Dictionary Settings icon.

3. In the Dictionary Settings dialog, in the Alias field, change the alias to the name
you want to use. This field is shown in Figure 2-5.

Figure 2-5 Dictionary Settings Dialog to Change Dictionary Alias or Description

& Dictionary Settings

General | Service

Plame: [Purchasettems |
alias: [Purchasettems |
Package: [project1 |
Wersion; [111.00.0 |
Description: | |

|

Schema Path Root: |FiIe:,l'C:,l’JDeveIoper,l’myworkl'SOAS,l’Projectl,fxsd,l’

| Help | (o4 || Cancel

4. Click OK.

2.2.5 How to Link to a Dictionary

You can link to a dictionary in the same application or in another application using the
Links navigation tab in Rules Designer. To link to another dictionary you need at least
one other dictionary available.

To link to a dictionary using resource picker:
1. In Rules Designer, click the Links navigation tab as shown in Figure 2-6.

2-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with a Dictionary and Dictionary Links

Figure 2-6 Rules Designer Links Tab

'_'DStart Page QﬂracleRulesl.rules wcomposite.xml |~\>OracIeRuIesl.ruIes |¢."_'E.Drdera.xsd |_ﬁ|npplicati0n18.j G]E]E]

BY 9®5 1O & @

_ﬁc Functions

3 Fact
D Facts ~JLinks

(%) Globals

7 Bucketsets

D Links

Drecision Funckions
Rulesets 4= %

P Rulesst_1

P Rulesst_2

P Rulesst_3

=

L @+ /xa
Alias Mame Package Mame
IZ:ZII'-E1|:|EF!_IJ|E=51 CracleRules1 projectz

Design

2. Inthe Links area, click the Create icon and from the list select Resource Picker.
This displays the SOA Resource Browser dialog.

3. In the SOA Resource Browser dialog navigate to select the dictionary you want to
link to as shown in Figure 2-7.

Figure 2-7 Resource Picker

& SOA Resource Browser

application

B--- Projectl.jpr

------ Q Purchaselkems.rules

Cancel |

4. Click OK.

When you work with ADF Business Components Facts you should create a link to the
Decision Point Dictionary. For more information, see Chapter 10, "Working with
Oracle Business Rules and ADF Business Components".

To link to the decision point dictionary:
1. In Rules Designer, click the Links navigation tab.

Working with Data Model Elements 2-7

Working with a Dictionary and Dictionary Links

2, Inthe Links area, click Create and from the list select Decision Point Dictionary.
This operation takes awhile. You need to wait for the Decision Point Dictionary to
load.

2.2.6 How to Update a Linked Dictionary

When you have a dictionary, for example a dictionary named Project_rulesl that links
to another dictionary, for example, a dictionary named Shared_rules you need to see
any changes made to either dictionary in both dictionaries. Using Rules Designer you
can modify the Shared_rules dictionary and see those modifications in Project]_rules1
by updating the Project_rulesl dictionary, or you can close and then reopen Rules
Designer.

To update a linked dictionary:

1. Using these sample dictionary names click the Save icon to save the Shared_rules
dictionary.

Select the Project_rulesl dictionary.

Select the Links navigation tab.

Click the Dictionary Cache... icon.

In the Dictionary Finder Cache dialog, select the appropriate linked dictionary.
Click the Clear icon.

In the Dictionary Finder Cache dialog, click Close.

Click the Validate icon.

©® N o g » @ Db

2.2.7 What You Need to Know About Dictionary Linking

Using a dictionary with links to another dictionary is useful in the following cases:

= Data Model Sharing, to share portions of a data model within a project. When you
link to a dictionary in another project it is copied to the local project.

For example, consider a project where you would like to share some Oracle
Business Rules Functions. You can create a dictionary that contains the functions,
and name it DictCommon. Then, you can create two dictionaries, DictAppl and
DictApp?2 that both link to DictCommon, and both can use the same Oracle
Business Rules functions. When you want to change one of the functions, you only
change the version in DictCommon. Then, both dictionaries use the updated
function the next time RL Language is generated from either DictAppl or
DictApp?2.

In Oracle Business Rules a fully qualified dictionary name is called a DictionaryFQN
and this consists of two components:

= Dictionary Package: The package name
s Dictionary Name: The dictionary name

A dictionary refers to a linked dictionary using its DictionaryFQN and an alias. Oracle
Business Rules uses the DictionaryFQN to find a linked dictionary.

Note the following naming constraints for combined dictionaries:

= Within a combined dictionary the full names of the dictionaries, including the
package and name, must be distinct. In addition, the dictionary aliases must be
distinct.

2-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Oracle Business Rules Globals

» Oracle Business Rules requires that the aliases of data model definitions of a
particular kind, for example, function, Oracle RL class, or bucketset, must be
unique within a dictionary.

= Within a combined dictionary, a definition may be qualified by the alias of its
immediately containing dictionary. Definitions in the top and main dictionaries do
not have to be qualified. Definitions in other dictionaries must be qualified.

= Ruleset names must be unique within a dictionary. When RL Language for a
ruleset is generated, the dictionary alias is not part of any generated name. For
example, if the dictionary named dict1 links to dict2 to create a combined
dictionary, and dictl contains ruleset_1 with rule_1 and dict2 also contains
ruleset_1 with rule_2, then in the combined dictionary both of these rules, rule_1
and rule_2 are in the same ruleset (ruleset_1).

s Allrules and Decision Tables must have unique names within a ruleset.

For example, within a combined dictionary that includes dictionary d1 and
dictionary d2, dictionary d1 may have a ruleset named Ruleset_1 with a rule
rule_1. If dictionary d2 also has a ruleset named Ruleset_1 with a rule_2, then
when Oracle Business Rules generates RL Language from the combined, linked
dictionaries, both rules rule_1 and rule_2 are in the single ruleset named
Ruleset_1.If you violate this naming convention and do not use distinct names
for the rules within a ruleset in a combined dictionary, Rules Designer reports a
validation warning similar to the following:

RUL-05920: Rule Set Ruleset_l has two Rules with name rule_1

For more information, see Appendix A, "Oracle Business Rules Files and Limitations".

2.2.8 What You Need to Know About Dictionary Linking and Dictionary Copies

When you create a dictionary link using the resource picker, the dictionary is copied to
the source project (the project where the dictionary that you are linking from resides).
Thus, this type of linking creates a local copy of the dictionary in the project. This is
not a link to the original target, no matter where the target dictionary is. Thus, Rules
Designer uses a copy operation for the link if you create a link with the resource
picker.

2.2.9 What You Need to Know About Dictionary Linking to a Deployed Dictionary

When you are using Rules Designer you can browse a deployed composite application
and any associated Oracle Business Rules dictionaries in the MDS connection.
However, you cannot create a dictionary link to a dictionary deployed to MDS.

2.2.10 What You Need to Know About Business Rules Inputs and Outputs with BPEL

Oracle Business Rules accesses input and output variables by type only, and not by
name. Thus, if you have two inputs of the same type, inputl and input2, the rules are
not able to distinguish which is input1 and which is input2. The variable names are
only useful in the BPEL process definition. The mapping for the Oracle Business Rules
business terms default to fact type.property, and there may be no relationship to the
BPEL variable name.

2.3 Working with Oracle Business Rules Globals

You can use Rules Designer to add Oracle Business Rules globals.

Working with Data Model Elements 2-9

Working with Oracle Business Rules Globals

In Oracle Business Rules a global is similar to a public static variable in Java. You can
specify that a global is a constant or is modifiable.

You can use global definitions to share information among several rules and functions.
For example, if a 10% discount is used in several rules you can create and use a global
Gold Discount, so that the appropriate discount is applied to all the rules using the
global.

Using global definitions can make programs modular and easier to maintain.

2.3.1 How to Add Oracle Business Rules Globals

You can use Rules Designer to add globals.

To add a global:
1. In Rules Designer, select the Globals navigation tab.

2. In the globals table, click the Create icon. This adds a global and displays the Edit
Global dialog, as shown in Figure 2-8.

Figure 2-8 Adding a Global in Rules Designer

'_'_})Start Page |j50.°.3.jw5 Mtﬂcomposite.xml OPL.\mhaseItﬁ??s.ruJes E]
B 9 @5 [@
& Farts (x) Globals
e T
25 Bucketocts e Type Yalue Bucketset Description Final
(0 EE I I I N
D Links
[l Decision FunctidE T
Rulesets 4’
@ Ruleset_1 Marme: |
Description: | |
Type: | b |
Bucketset: | '|
walue: [=
[] Constant
[¥] Einal
(o] o [] ||
5
Dresign

In the Name field, enter a name or accept the default value.
In the Type field, select the type from the list.
Optionally, in the Bucketset field, select a value from the list.

o o & W

In the Value field, enter a value, select a value from the list, or click the Expression
Builder icon to enter an expression. For more information, see Section 4.10,
"Working with Expression Builder".

7. If the global is a constant, then select the Constant checkbox. When selected, this
option specifies that the global is a constant value. For more information, see
Section 2.3.3, "What You Need to Know About the Final and Constant Options".

2-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Oracle Business Rules Globals

8. If the global is a nonfinal, then deselect the Final checkbox. When unselected, this
option specifies that the global is modifiable, for instance, in an assign action.

2.3.2 How to Edit Oracle Business Rules Globals

You can use Rules Designer to edit globals.

To edit a Global:
1. In Rules Designer, select the Globals navigation tab.

2. Double-click the globals icon in a row in the Globals table. When you double-click
the globals icon in a row this displays the Edit Global - Global Name window as
shown in Figure 2-9. In this window you can edit a global and change field values,
including the Final field and the Constant field (the Constant field is only shown
when you double-click a global to display the Edit Global dialog.

Figure 2-9 Edit Global Window

& Edit Global - Global_1 X
Marme: |
Description: |t |
Type: [int V|
Bucketset: | 'l
Walue: | 'l Ef"!

[#] Zanstank
[¥] Einal
| Help | [o]4 || Cancel

2.3.3 What You Need to Know About the Final and Constant Options

The Edit Global dialog shows the Constant and Final checkboxes that you can select
for a global.

Note the following when you use globals:

= When you deselect Final, this specifies that the global is modifiable, for instance,
in an assign action.

s When you select Final, this specifies that you can use the globals in a test in a rule
(nonfinal globals cannot be used in a test in a rule).

= When you select Final, this specifies that the global is initialized one time at
runtime and cannot be changed.

When you select the Constant option in the Edit Global dialog, this specifies the global
is a constant. In Oracle Business Rules a constant is a string or numeric literal, a final
global whose value is a constant, or a simple expression involving constants and +, -,
* and /.

Selecting the Constant option for a global has three effects:
= You do not have to surround string literals with double quotes.
= Only constants appear in the expression value choice list.

= The expression value must be a constant to be valid.

Working with Data Model Elements 2-11

Working with Decision Functions

Selecting the Constant option is optional. Note that bucket values, bucket range
endpoints, and ruleset filter values are always constant.

2.4 Working with Decision Functions

The data model includes decision functions. For information on working with decision
functions, see Section 6.1, "Introduction to Decision Functions".

2.5 Working with Oracle Business Rules Functions

Oracle Business Rules provides functions to hide complexity when you create rules.
Oracle Business Rules lets you use built-in or user-defined functions in rule and
Decision Table conditions and actions.

2.5.1 Introduction to Oracle Business Rules Functions

In Oracle Business Rules you define a function in a manner similar to a Java method,
but an Oracle Business Rules function does not belong to a class. You can use Oracle
Business Rules functions to extend a Java application object model so that users can
perform operations in rules without modifying the original Java application code.

You can use an Oracle Business Rules function in a condition or in an action associated
with a rule or a Decision Table.

You can also use an Oracle Business Rules function definition to share the same or a
similar expression among several rules, and to return results to the application.

An Oracle Business Rules function includes the following:
s Name: The Oracle Business Rules function name.

= Return Type: A return type for the Oracle Business Rules function, or void if there
is no return value.

s Bucketset: The bucketset to associate with the Oracle Business Rules function.

= Arguments: The function arguments. Each function argument includes a name
and a type.

= Function Body: The function body includes predefined actions. Using predefined
actions Rules Designer assures that an Oracle Business Rules function is well
formed and can be validated.

You can also use functions to test rules from within Rules Designer. For more
information, see Section 8.1.1, "How to Test Rules Using a Test Function in Rules
Designer".

2.5.2 How to Add an Oracle Business Rules Function

You use Rules Designer to add an Oracle Business Rules function.

To add an Oracle Business Rules Function:
1. In Rules Designer, select the Functions navigation tab.

2. Select the Create... icon.
3. Enter the function name in the Name field, or use the default name.

4. Select the return type from the Return Type list. For example, select void.

2-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Oracle Business Rules Functions

5. Optionally, select a bucketset to associate with the function return type from the
list in the Bucketset field.

Optionally, in the Description field enter a description.
In the Arguments table, click Add to add one or more arguments for the function.

For each argument in the Type field, select the type from the list.

© ® N o

For each argument in the Bucketset field, to limit the argument values as specified
by a bucketset constraint, select a bucketset from the list.

10. In the Body area, enter actions and arguments for the function body. For example,
see Figure 2-10.

Figure 2-10 Adding an Oracle Business Rules Function

'_'T’)Start Page |;§|SOA3.ij Mtﬂcomposite.xml IQPurchaseItems.rules l E]
B D M O & @
& Facts f: Functions
f« Functions
(%) Globals Functions: & X
{7 Bucketsets Name Return Type Bucketset Description
& s %

e Decision Functions

Rulesets 4' ® Lats

: + R av
% Ruleset_1 Argurnents:
MName Type Bucketset

arg_L String
g2 fwig | |
arg 3 String .
-
Body:

call prink{ message @ arg_1)]

<insert ackion:=

=

Design

Working with Data Model Elements 2-13

Working with Oracle Business Rules Functions

2-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

3

Working with Facts and Bucketsets

Facts are the objects that rules reason on and bucketsets define groupings of fact
property values.

This chapter includes the following sections:

Section 3.1, "Introduction to Working with Facts and Bucketsets"
Section 3.2, "Working with XML Facts"

Section 3.3, "Working with Java Facts"

Section 3.4, "Working with RL Facts"

Section 3.5, "Working with ADF Business Components Facts"
Section 3.6, "Working with Bucketsets"

Section 3.7, "Associating a Bucketset with Business Terms"

3.1 Introduction to Working with Facts and Bucketsets

In Rules Designer, you make business objects and their methods known to Oracle
Business Rules using fact types that are part of a data model.

You can create fact types and bucketsets before you create rules.

In Rules Designer you can work with the following kinds of facts:

XML Facts: XML Facts are imported from existing sources by specifying XML
Schema. You can add aliases to imported XML Facts or use XML Facts with RL
Facts to change the data model according to your business needs.

For more information, see Section 3.2, "Working with XML Facts".

Java Facts: Java Facts are imported from existing sources. You can add aliases to
Java Facts or use them with RL Facts to target the data model to business needs.
Java Facts are also used to import supporting Java classes for use with the rules or
Decision Tables that you create.

For more information, see Section 3.3, "Working with Java Facts".

RL Facts: RL Facts are the only kind of facts that you can create directly and do not
have an external source. All other types of Oracle Business Rules facts are
imported. An RL Fact is similar to a relational database row or a JavaBean without
methods. An RL Fact contains a list of properties of types available in the data
model, either RL Facts, Java Facts, or primitive types. You can use RL Facts to
extend a Java application object model by providing virtual dynamic types.

For more information, see Section 3.4, "Working with RL Facts".

Working with Facts and Bucketsets 3-1

Working with XML Facts

s ADF Business Components Facts: ADF Business Components Facts allow you to
use ADF Business Components as Facts in rules and in Decision Tables. By using
ADF Business Components Facts you can assert view object graphs representing
the business objects upon which rules should be based, and let Oracle Business
Rules deal with the complexities of managing the relationships between the
various related view objects in the view object graph.

For more information, see Section 3.5, "Working with ADF Business Components
Facts".

You typically use Java fact types and XML fact types to create rules that examine the
business objects in a rule-enabled application, or to return results to the application.
You use RL Language fact type definitions to create intermediate facts that can trigger
other rules in the Rules Engine. ADF Business Components fact types enables you to
use ADF Business Components as Facts in rules and in Decision Tables.

In Oracle Business Rules, facts that you can run against the rules are data objects that
have been asserted. Each object instance corresponds to a single fact. If an object is
re-asserted (whether it has been changed or not), the Rules Engine is updated to reflect
the new state of the object. Re-asserting the object does not create a fact. To have
multiple facts of a particular fact type, separate object instances must be asserted.

You can create bucketsets to define a list of values or a range of values of a specified
type. After you create a bucketset, you can associate the bucketset with a business term
of matching type. When a bucketset is associated with a business term, Oracle
Business Rules uses the buckets that you define as constraints for the values for the
business terms in rules or in Decision Tables.

For more information, see:
= Section 3.6, "Working with Bucketsets"

= Section 3.7, "Associating a Bucketset with Business Terms"

3.2 Working with XML Facts

The XML fact type allows XML Schema types, elements, and attributes to be used
when writing rules. Elements and types defined in XML Schema can be imported into
the data model and can then be used to create rules and Decision Tables, just as with
Java fact types and RL Fact types. The mapping between the XML Schema definition
and the XML Fact types uses the Java Architecture for XML Binding (JAXB). By
default, Oracle Business Rules uses the JAXB 2.0 shipped with the Oracle Application
Server. JAXB as defined in JSR-222 provides a mapping between the types, names, and
conventions in an XML Schema definition and the available types, allowed names and
conventions in Java. For example, an element named order-id and of type
xsd:integer is mapped to a Java Bean property named orderID of type
BigInteger (and xsd:int type maps to Java int).

Thus, with Oracle Business Rules if you have an XML document that contains data
associated with your application and you have the schema associated with the XML
document then you can use Rules Designer to define rules based on elements that you
specify from the XML Schema.

To create XML fact types, perform the following steps:
1. Define or obtain an XML Schema.

2. Use Rules Designer to import the XML Schema into a dictionary. This step uses
the JAXB compiler to generate Java classes from the XML Schema. After you
compile the XML Schema, you select the desired elements from the schema to add

3-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with XML Facts

XML Facts in the data model and import the generated JAXB classes into the data
model. For more information on these steps, see Section 3.2.1, "How to Import
XML Schema and Add XML Facts".

3. Write rules or create Decision Tables based on these XML Facts that you added to
the data model. For more information, see Section 4.3, "Working with Rules" and
Section 5.2, "Creating Decision Tables".

Elements and types defined in XML Schema can be imported into the data model so
that instances of types can be created, asserted, modified, and retracted by rules. Most
XML documents describe hierarchical information, where each element contains
subelements. It is common for users to want to write individual rules based on
multiple elements in this hierarchy, and the hierarchical relationship among the
elements. In Oracle Business Rules the default behavior when you assert a fact is to
only assert the single fact instance, and none of the child objects it may reference in the
hierarchy of subelements. When you create rules or a Decision Table it is often
desirable to assert an entire hierarchy of elements based on a reference to a root
element. Oracle Business Rules provides the assertTree action type that allows for a
recursive assert for a hierarchy. For more information, see Section 4.8, "Working with
Tree Mode Rules".

3.2.1 How to Import XML Schema and Add XML Facts

Before you can use XML Schema definitions in a data model you must import XML
schema. This step generates the JAXB classes and makes the generated classes and
packages associated with the XML schema visible in Rules Designer.

To import XML schema and add XML facts:
1. In Rules Designer, select the Facts navigation tab.

2. Select the XML Facts tab on the Facts navigation tab, as shown in Figure 3-1.

Figure 3—1 The XML Facts Tab in Rules Designer

-'_?)Start Fage | | SOA3 s [QDracleRulesl.rules |D-||:gcomposite.xml |\>chhaselram.n.des E]
Bv 9@y DO & @
&3 Facts
£ Functions EML Facts: @+ XS
(x) Globals Alias Mame Dest #ML Mame Generated From
22 pucka CustomerOrder com, customer, ns.customerorder , CuskomerOrder Hxsielement[@name="customerCOrder’] CustomerCrder,xsd
o RS OrderApproval com.customer, ns . customerorder, OrderApproval Jxselement[@name="orderapproval’] CustomerOrder.xsd
D Links ObjectFactory2 com,customer.ns.customerorder, ObjectFactory CustomerCrder,xsd
g Decision Functions Order$lineltem org.example, Orderdlingltem s element[@name="LineItem'] ordera,xsd
i + % Order org.example, Order Hxsielement[@name="0rder'] ordera.xsd
(s ObjectFactory org.example. ObjectFactory ordera,xsd
@Ruleset_l
@Rulesetj
ML Facts [JavaFacts | RLFacts || ADF-BC Facts
[
Design

3. In the XML Facts tab, click Create.... This displays the Create XML Fact dialog.
4, In the Create XML Fact dialog, in the Source Schemas area, click Add Source

Schema.... This displays the Add Source Schema dialog, as shown in Figure 3-2.

Working with Facts and Bucketsets 3-3

Working with XML Facts

Figure 3-2 XML Fact: Add Source Schema Dialog

& Add Source Schema E|

schema Location: [| &
JAE Classes Directory: ||'C:,l'JDeveIoper,l'mvworKfP.ppIicationZS,l’Project1,l'.ruIesdesigner,l'jaxb_classes,l’| Q@

Target Package: | |

| Help | | [a]'8 || Cancel |

Preserve Directory Structure For Imported Schemas

In the Add Source Schema dialog, in the Schema Location field, enter the location
of the XML Schema you want to import, or click Browse to locate the XML
schema. During the import the file is copied into the project.

Note: Typically, the XML schema (xsd) file is located inside the xsd
folder because any XML schema that is created needs to be stored
inside the xsd folder under SOAContent.

In the Add Source Schema dialog, in the JAXB Classes Directory field, accept the
default or enter the directory where you want Rules Designer to store the
JAXB-generated Java source and class files.

In the Add Source Schema dialog, in the Target Package field, enter a target
package name or leave this field empty. If you leave this field empty the JAXB
classes package name is generated from the XML target namespace of the XML
schema using the default JAXB XML-to-Java mapping rule or explicitly defined
package name using annotations, or "generated" if no namespace or annotation
is defined. Using the schema namespace is preferred.

For example, the namespace http: //www.oracle.com/asll/rules/demo is
mapped to com.oracle.asll.rules.demo.

Click OK. Rules Designer processes the schema and compiles the JAXB, so
depending on the size of the schema this step may take some time to complete.
When this step completes Rules Designer displays the Create XML Fact dialog
with the Target Classes area updated to include the JAXB classes, as shown in
Figure 3-3.

3-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with XML Facts

Figure 3-3 XML Fact: Create XML Fact Dialog

ij;__(jreate XML Fact

Select Source Schemas
Select the schemas you would like to use as %ML Facts. The schemas will be converted to JAXE classes éﬁ

which wou can create XML Facts From,

Source Schemas: # X Target Classes: Eﬁ
EE. file:JC:} IDevelopermywork) Application1afS0ACd Ijj xmifacts1
-1 [E] MyFact

~[]] objectFackory

<[J >

9. In the Create XML Fact dialog, in the Target Classes area, select the classes you
want to import as XML fact types.

10. Click OK.

3.2.2 How to Display and Edit XML Facts
To work with an XML Fact, in Rules Designer open the Edit XML Fact dialog.

To display and edit XML facts:
1. In Rules Designer, select the Facts navigation tab.

2. Select the XML Facts tab on the Facts navigation tab.

3. In the XML Facts table, double-click the icon for the XML Fact you want to edit.
This displays the Edit XML Fact dialog, as shown in Figure 3—4.

Working with Facts and Bucketsets 3-5

Working with XML Facts

Figure 3—4 Edit XML Fact Dialog

& Edit XMLFact - com.customer. ns.customerorder.CustomerOrder,

Alias: CustomerQrder
Super Class: |Object
Description:

<ML Mame:

| x5 element[@narne="customerOrder'] |

Generated From: |Customer0rder.xsd

Wisible

[] Support ®Path Assertion

Attributes

|Pr0perties -
Alias Visible Marne Type Bucketset List Content Type

'J annualspending annualSpending double

) creditscore creditsoore int

Q) name name String

) order order double

QD walue value String

Fit Columns Ta Width

| Help | | OF || Cancel |

The Edit XML Fact dialog includes the fields shown in Table 3-1.

Table 3-1 XML Fact: Edit XML Fact Dialog Fields

Field Description

Name Displays the XML Fact name. You cannot change the name of
JAXB generated class.

Alias Enter the XML Fact alias. You can change this value. This
defaults to the unqualified name of the class.

Super Class Displays Java super class associated with this fact.

Description Enter the XML Fact description.

XML Name Displays the XML name associated with the XML Fact.

Generated From

Visible

Support XPath Assertion

Attributes area

Displays the XML schema file that was the source for the XML
Fact when it was copied into the business rules data model.

Select to show the XML Fact in lists in Rules Designer. XML
Facts often reference other XML Facts, forming a tree. You
should make all the XML fact types visible that contain
properties that you reference in rules.

Select to enable XPath assertion for the fact. This feature is
provided for backward compatibility only. Typically, this option
is not used.

Select the available constructors, properties, methods, or fields
associated with the JAXB class for the XML Fact to display or
edit.

3.2.3 How to Reload XML Facts with Updated Schema

If an XML schema changes in a project, the schema must be reimported into the Oracle
Business Rules dictionary. When you reimport the schema, Oracle Business Rules uses
JAXB to recompile all source schemas for every XML fact type and updates the XML

3-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with XML Facts

fact type definitions with the updated XML schema definitions. You should reimport
facts if you changed the schema or classes and you want to use the changed schema or
classes at runtime.

Note: When the XML schema on which an XML fact is based
changes, on reimporting the schema, the facts are updated and
imported into the base dictionary. When working with facts in a
linked dictionary, you need to reload the XML facts for the changed
schema from the base dictionary instead of the linked dictionary.

To reimport XML facts:
1. In Rules Designer, select the Facts navigation tab.

2. Select the XML Facts tab on the Facts navigation tab.
3. On the XML Facts page, click the Reload XML Facts from Updated Schemas icon.

After the reimport operation you need to correct any validation warnings that may be
caused by incompatible changes (for example, the updated schema may include a
change that removed a property that is referenced by a rule).

3.2.4 What You Need to Know About XML Facts

Keep the following points in mind when you work with XML Facts:

= When writing rules, the assertTree action type is available only in advanced
mode. For more information on creating rules using assertTree, see Section 4.8,
"Working with Tree Mode Rules".

= When creating a decision function, the tree option for the input types defines
whether assert or assertTree is used to put the input facts in working
memory. For more information on assertTree, see Section 4.8, "Working with
Tree Mode Rules".

= When XML Schema contain a restriction definition, this allows a user to
restrict the types that are valid for use in an element. A common use of restriction
is to define an enumeration of strings which can be used for an element, as shown
in Example 3-1.

Example 3—1 XML Schema Restriction Example
<xs:simpleType name="status-type">
<xs:restriction base="xs:string">
<xs:enumeration value="manual"/>
<xs:enumeration value="approved"/>
<xs:enumeration value="rejected"/>
</xs:restriction>
</xs:simpleType>

Oracle JAXB 2.0 maps a restriction to a Java enum type. When you use Rules
Designer to import either a Java enum type or an element with an XML restriction,
the static final fields representing the enums are available for use in expressions.
Additionally, Oracle Business Rules creates a bucketset for each enum containing
all of the enum values and null. For more information on bucketsets, see

Section 3.6, "Working with Bucketsets".

» There is a default version of the JAXB binding compiler supplied with Oracle
Application Server. You can use a different JAXB binding compiler. However, to

Working with Facts and Bucketsets 3-7

Working with Java Facts

use a different JAXB binding compiler you must manually perform the XML
schema processing and then import the generated Java packages and classes into
the data model as Java Facts.

For more information about JAXB, see
http://java.sun.com/webservices/jaxb/

= You should reimport facts if you changed the schema or classes and you want to
use the changed schema or classes at runtime. You should correct any validation
warnings that may be caused by incompatible changes (for example, removing a
property that is referenced by a rule). For more information, see Section 3.2.3,
"How to Reload XML Facts with Updated Schema".

= Most users should not need to use the ObjectFactory or import it. If you do need to
import and use the ObjectFactory, then use a different package name for every
XML Schema that you import; otherwise the different ObjectFactory classes
conflict.

s The use of XML schema with elements that have minOccurs="0" and
nillable="true" has special handling in JAXB. For more information, see
Section C.12, "Why do XML Schema with xsd:string Typed Elements Import as
Type JAXBElement?".

s The default element naming conventions for JAXB can cause XML schema
containing the underscore character in XML-schema element names to fail to
compile. For more information, see Section D.7, "Why Does XML Schema with
Underscores Fail JAXB Compilation?".

s There are certain restrictions on the types and names of inputs for the Decision
Service. For more information, see Section D.8, "How Are Decision Service Input
Output Element Types Restricted?".

s The built-in dictionary includes support for the Java wrappers Integer, Long,
Short, Float, Double, BigDecimal, and BigInteger. These types can appear
in XML Fact Types.

3.3 Working with Java Facts

In Rules Designer, importing a Java Fact makes the Java classes and their methods
become visible to Rules Designer. Rules Designer does not copy the Java code or
bytecode into the data model or into the dictionary.

A Java fact type allows selected properties and methods of a Java class to be imported
to the Rules Engine so that rules can access, create, modify, and delete instances of the
Java class.

Importing a Java fact type allows the Rules Engine to access and use public attributes,
public methods, and bean properties defined in a Java class (bean properties are
preferable because they can be modified using the modify action).

3.3.1 How to Import Java Classes and Define Java Facts

Before you can use Java Facts in rules and in Decision Tables, you must make the
classes and packages that contain the Java Facts available to Rules Designer. To do this
you use Rules Designer to specify the classpath that contains the Java classes, and then
you import the Java Facts.

To import and define Java Facts:
1. In Rules Designer, select the Facts navigation tab.

3-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Java Facts

2. Select the Java Facts tab on the Facts navigation tab as shown in Figure 3-5.

Figure 3-5 The Java Facts Table in the Facts Navigation Tab

] '\@StartPage |__|:|]SOA3.jws [QDracleRulesl.rules Ia%ordertest.xsd Mtgtomposite.xml |\>Purchaseltems.rules E]
BRI R S| 9 & @
& Facts
f‘: Functions Java Facts: Glﬂ “i‘ / X &
(%) Globals Alias Class Description
- i=» DriverlicenseType carrental DriverglicenseType
{7 Bucketsets .)) B
= DrivergvehicleType carrental DrivergvehicleTvpe
<2 Links = TestMain carrental TeskMain
el Decision Functions @y Object java.lang. Ohject
&y String java.lang.String
Rulesets + x Ey Biglnteger java.math.Biglnteger
@Ruleset_l 2y BigDecimal jawa.math, BigDecimal
@Ruleset > &y Calendar java.util. Calendar
- & “MLGregorianCalendar javan.xml datatype, KMLGregorianCalendar
&y JavaDate oracle rules.tl extensions, JavaDate
&y “MLDate oracle rules.rl extensions, $MLDate
@y OracleDate oracle rules.sdkZ extensions, OracleDate
#MLFacts | JavaFacts || RLFacts || ADF-BC Facts
&
Design

3. In the Java Facts tab, click Create.... This displays the Create Java Fact dialog, as
shown in Figure 3-6.

Figure 3-6 Adding a Java Fact

© Create Java Fact k [z|

Select Java Fact Classes

Select the Java classes you would like to be used as Java Facts in the rules engine. ‘-”f' ?_).
‘fou can add a JAR file or directory to the classpath and then check the class files and/or packages wou want
ta create Facts fram.

Classpath: + b 4 D Classes: E&

'-L:] file:JCt/ IDeveloper myworkOr derApproval AppfOrder Q Classes

[] Add Project Library to Classpath

| Help | | (o] 4 || Cancel |

4. In the Create Java Fact dialog;, if the classpath that contains the classes you want to

import is not shown in the Classpath area, then click Add to Classpath. This
displays the Choose Directory/Jar dialog.

The default Rules Designer classpath includes three packages, java, javax, and
org. These packages contain classes that Rules Designer lets you import from the
Java runtime library (rt;jar). Rules Designer does not let you remove these classes
from the Classes area (and the associated classpaths are not shown in the
Classpaths area).

In the Choose Directory/]Jar dialog, browse to select the classpath or jar file to add.
By default, the output directory for the project is on the import classpath and any

Working with Facts and Bucketsets 3-9

Working with Java Facts

Java classes in the project should appear in the Classes importer. If they do not
appear, execute the Build action for the project.

Click Open. This adds the classpath or jar file and updates the Classes area.

In the Create Java Fact dialog, in the Classes area select the packages and classes
to import as shown in Figure 3-7.

Figure 3-7 Selecting Java Classes for Java Facts

® Create Java Fact

Select Java Fact Classes ¢
Select the Java classes vou would like ko be used as Java Facts in the rules engine. ‘-'F ? _);.
“ou can add a JAR file or directory ko the classpath and then check the class files and/or packages you wank to create Facts Fram.

Classpath: + xR D Classes: @a

:L:] file: /C:} IDeveloper fmywork)Order ApprovalappiOrder Appravall rulesdesigner/jaxb_classes) Ck Classes

1) File: fC: fvorky 11 Grulesfhow-ta-rules-java-factslibjcar-objs. jar D ﬂj com

[=SEaln B carrental
D = Driver

~[] & DriverfLicenseType
~[1 & DrivergvehicleType
~[]] TestMain

[] Add Project Library to Classpath

e |

8. Click OK. This updates the Java Facts table in the Java Facts tab.

3.3.2 How to Display and Edit Java Facts

To display or edit Java Facts after you import the Java Facts, use the Edit Java Fact
dialog.

To display and edit Java facts:
1. In Rules Designer, click the Facts navigation tab.

2. Select the Java Facts tab in the Facts navigation tab.

3. In the Java Facts table, double-click the Java Fact you want to edit. This displays

the Edit Java Fact dialog as shown in Figure 3-8.

3-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Java Facts

Figure 3-8 Edit Java Fact Dialog

& Edit Java Fact - carrental.Driver

Class: |
Alias: Driver
Super Class: |Object |
Description:
[¥] visible:
Attributes
|Pr0perties -
Alias Visible Mame Tvpe Bucketset List Content Tvpe
) ableToDrive ableToDrive boalean boolean
) age age int
D licensahumber licens=humber String
'J licenseType licenseType Driver$licenseType Driver$licenseType
) name narne String
'J previousaccidents previousAccidents int
'J vehiclaType wehiclaType DrivertvehicleType Driver$yehicleTyvpe
Fit Columns To Width
| Help | | (84 || Cancel

The Edit Java Fact dialog includes the fields shown in Table 3-2.

Table 3-2 Edit Java Fact Dialog Fields

Field Description

Class Displays the Java Fact class for the source associated with the
Java Fact.

Alias Enter the Java Fact alias.

Super Class Displays Java super class associated with this fact.

Description Enter the Java Fact description.

Visible Select to show the Java Fact in lists in Rules Designer.

Attributes area Select the available class properties, constructors, methods, or
fields associated with the Java class for the Java Fact act to
display or edit.

3.3.3 What You Need to Know About Java Facts

When you define Java Facts you need to know the following:

= On Windows systems, you can use a backslash (\) or a slash (/) to specify the
classpath in the Classpath area. Rules Designer accepts either path separator.

» Classes and interfaces that you use in Rules Designer must adhere to the following
rules: If you are using a class or interface, only its superclass or one of its
implemented interfaces may be made visible.

= When you specify the classpath you can specify a JAR file, a ZIP file, or a full path
for a directory.

= When you specify a directory name for the classpath, the directory specifies the
classpath that ends with the directory that contains the "root" package (the first
package in the full package name). Thus, if the classpath specifies a directory,

Working with Facts and Bucketsets 3-11

Working with RL Facts

Rules Designer looks in that tree for directory names matching the package name
structure.

For example, to import a class cool . example.Testl located in
c:\myprj\cool\example\Testl.class, specify the classpath value,
c:\myprj.

= You should reimport facts if you change the classes. After the reimport operation
you may see validation warnings due to class changes. You should correct any
validation warnings that may be caused by incompatible changes (for example,
removing a property that is referenced by a rule).

3.4 Working with RL Facts

RL Facts are the only kind of facts that you can create directly and do not have an
external source. All other types of Oracle Business Rules facts are imported. An RL
Fact is similar to a relational database row or a JavaBean without methods. An RL Fact
contains a list of properties of types available in the data model, either RL Fact, Java
Fact, or primitive types. You can use an RL Fact to extend a Java application object
model by providing virtual dynamic types.

For example:
IF customer spent $500 within past 3 months
THEN customer is a Gold Customer

This rule might use a Java Fact to specify the customer data and also use an action that
creates an RL Fact, Gold Customer. A rule might be defined to use a Gold Customer
fact, as follows:

IF customer is a Gold customer
THEN offer 10% discount

This rule uses the RL Fact named Gold Customer. This rule then infers, using the Gold
Customer fact, that if a customer spent $500 within the past 3 months, then the
customer is eligible for a 10% discount. In addition rules could specify other ways that
a customer becomes a Gold Customer.

For testing and prototyping with Rules Designer you can create RL Facts and use the
RL Facts to write and test rules before you import a schema and switch to XML Facts
(you might need to wait for an approved XML schema to be created or to be made
available). Switching from RL Facts to corresponding XML Facts involves the
following steps:

1. Delete the RL Facts (this action shows validation warnings in the rules or Decision
Tables you created that use these RL Facts).

2. Import the XML Facts and give the facts and their properties aliases that match the
names of the RL Facts and properties you deleted in step 1.

3. This process should remove the validation warnings if the XML Fact and property
aliases and types match those of the RL Facts that you remove.

3.4.1 How to Define RL Facts
You add RL Facts from the Facts navigation tab.

To define RL facts:
1. In Rules Designer, select the Facts navigation tab.

3-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with RL Facts

2. Select the RL Facts tab in the Facts navigation tab as shown in Figure 3-9.

Figure 3-9 RL Facts Tab in Rules Designer

'_’) Stark Page |£]SOA3.jws [QDracleRulesl.rules | a‘-1a,0rdertest.><sd MECOI'nposite.xml |\\>Purchase1tems.rules E]
EE [S S| 9 & @
‘J Facts
i Functions RL Facts: @é} =+ / x
(K) Globals : Mame Description Super Class
. &8 Driver Cbject
7 Bucketsets LB Driver? Ohiject
2D Lirks & Item Object
g Decision Functions “‘3 Shipment Obiject
L8 Order Cbject
Rulesets + b 4
&P Ruleset_1
& Ruleset_2
(%ML Facts | JavaFacts | riFacts [ADFBC Facts
[
Design

3. In the RL Facts tab, click Create.

4. Inthe RL Facts table, in the Name field, enter the name for the RL Fact or accept
the default name.

5. In the RL Facts table, in the Description field, enter a description or accept the
default, no description.

3.4.2 How to Display and Edit RL Facts and Add RL Fact Properties
You add properties to RL Facts using the Edit RL Facts dialog.

To display and edit RL facts and add RL fact properties:
1. In Rules Designer, select the Facts navigation tab.

2. In the RL Facts tab, double-click the icon for the RL Fact to display or edit the fact.
This displays the Edit RL Fact dialog, as shown in Figure 3-10.

Figure 3—10 Edit RL Fact Dialog

& Edit RL Fact - Driven . X

Mame:

Description:

Super Class: |Object V|

Properties: + x
Marne Type Bucketset Initial Walue List Content Type

'J age ink driver_ages

'J has_training boolean boolean

'J eye_test String

D eligible bioolean bioolean

'J LicenseType String

Fit Columns Ta Width

| Help | OF || Cancel

Working with Facts and Bucketsets 3-13

Working with RL Facts

3. Toadd RL Fact properties, on the Edit RL Fact dialog in the Properties area, click
Create.

a.

b.

In the Name field, enter the property name.
In the Type field, select a type from the list or enter a property type.

To associate a bucketset with the property, from the list in the Bucketset field,
select a bucketset.

To associate an initial value with the property enter a value in the Initial Value
field.

4. Add additional properties by repeating these steps, as required.
5. Click OK.

3.4.3 What You Need to Know About RL Facts

When you add properties to RL Facts using the Edit RL Facts dialog, in the Properties
area the Initial Value field provides a list of possible values as shown in Figure 3-11.

Figure 3—11 Setting RL Fact Property Initial Value

& Edit BL Fact - Driver

Marne: Diriwet
Descripkion:
Super Class: | Object v|
Properties: '+ x
Mame Tvpe Bucketset Initial Value Lisk Content Type
'J age ink driver_ages
'J has_training boolean boolean
'J eye_test String
'J eligible boolean boolean
Lin:en-.:eT':.-'pe icenseType
LicenseTypel , truck.
LicenseTypel truckls
Eit Calumns Ta Width LicenseTypel mokorcyde
LicenseTypel, bicvcle
FL.get strategy() P
| Help | RL.get strategy().bolowerCase() ancel |

When you are working with some fields in Rules Designer, the initial values list or
other lists may be empty as shown in Figure 3-12. In this case the list is an empty box.
Thus, when Rules Designer does not find options to assist you in entering values, you
must supply a value directly in the text entry area or click the Expression Builder icon
to display the expression builder dialog.

3-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with ADF Business Components Facts

Figure 3-12 RL Fact Empty List Options for Initial Value Field

® Edit RL Fact - Driver

Marme: |Driver |
Description: | |
Super Class: |Object v|
Properties: EF x
Mame Type Bucketset Initial Walue List Content Type

'J has_training boolean boalean

& Jotvercoss —hr T B
'J age ink driver_ages

Fit Columns Ta Width

| Help | s/ || Cancel

3.5 Working with ADF Business Components Facts

ADF Business Components Facts allow you to use ADF Business Components as Facts
in rules and in Decision Tables. By using ADF Business Components Facts you can
assert view object graphs representing the business objects upon which rules should
be based, and let Oracle Business Rules deal with the complexities of managing the
relationships between the various related view objects in the view object graph.

For more information, see Chapter 10, "Working with Oracle Business Rules and ADF
Business Components".

3.5.1 How to Import and Define ADF Business Components Facts

When an ADF Business Components view object is imported, an ADF Business
Components fact type is created which has a property corresponding to each attribute
of the view object.

To add ADF Business Components facts:

1. Click the Facts navigation tab and select the ADF-BC Facts tab. This displays the
ADF-BC Facts table, as shown in Figure 3-13.

Working with Facts and Bucketsets 3-15

Working with ADF Business Components Facts

Figure 3-13 ADF Business Components Facts Tab

Approvaldpp. jws |Dﬂgcomposite.xml IQDradeRulesl.ruJes | offfj composite i |D{tﬂcomposite.xml |uﬂg 00

B 50 DO 4 ®
&3 Facts
F Functions ADF-BC Facts: IR Ve

(%) Globals Alias Wigw Definition Top Level

7 Bucketsets

D Lirks

ﬂ Decision Functions
Rulesets g X

& Ruleset_t

("ML Facts | JavaFacts | RLFacts | ADF-BCFacts

=

Design

2. Click Create.... This displays the ADF Business Components Fact dialog, as shown
in Figure 3-14.

Figure 3-14 Create ADF-BC Fact Dialog
& Create ADF-BC Fact

ADF-BC Fact &
Select the database conmection and specify the view definition in which ko base the Fact type on,

Connection: |Eﬂ - |
Wiew Definition: |orderapproval.Employees\u‘iew - |
Search Classpath: + b 4 D

() {C: jOracle/Middlewarea/ideveloper/ideviextensions/oracle.sca. modeler jar

() fCijOracle/Middlewarea/ideveloper/soa/modules/oracle soa.Fabric_11, 1,1/ abric-runtime. jar

() /C:jOracle/Middlewarea/ideveloper/modules/oracle. Fabriccommon_11.1.1 Fabric-common. jar

() ICioracle/Middlewarea/ideveloper/soa/madules/oracle,soa, bpel_11.1.1 orabpel jar

() IC: jOracle/Middlewarea/ideveloper/snajmodules/oracle .soa.mediator_11.1.1{mediator_client.jar
() JCiOracle/Middlewarea/ideveloper/maodules/oracle.mds_11,1,1/mdsrt. jar

() JC:jOracle/Middlewarea/ideveloper/modules/oracle.idm_11.1.1 /identitystore. jar

() fCjoracle/Middlewarea/ideveloper/modules/oracle, adf . model_11.1, 1fadfm.jar

() JC:jOracle/Middlewarea/ideveloper/modules/oracle. adf . madel_11.1.1/groovy-all-1.5.4.jar

() I fOracle/Middlewarea/ideveloper/ adfdt libf adf-dt-at-rt, jar

| Help | | (0] 4 || Cancel |

3. In the Connection field, from the list, select the connection which your ADF
Business Components objects use. The Search Classpath area shows a list of
classpaths. For more information, see Section 3.5.2, "What You Need to Know
About ADF Business Components Fact Classpaths".

4. In the View Definition field, select the name of the view object to import.

5. Click OK. This displays the Facts navigation tab, as shown in Figure 3-15. Note
that the imported fact includes a validation warning. For information on how to
remove this validation warning, see Section 3.5.3, "What You Need to Know About
ADF Business Components Circular References".

3-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with ADF Business Components Facts

Figure 3-15 ADF Business Components Facts in Rules Designer

Approvaldpp,jws |-"|tjc0mposite.xml [QDradeRuJesl.ruJes |.-||:jcomposite.xml |-"|tjtomposite.xml |-"|tjCDm|JDsite.me @E]E]

Qv 908 1O &8 @
4&f Facts
L Gt ADF-BC Farts: @R
(%) Globals Alias ‘igww Definition Top Level
& DepartrmentsWiew orderapproval, DepartmentsYisw
7 Bucketssts ~ e oo S B
Y S E rnployeesyiew orderapproval Employeesyisw -:-
D Links
Ij'] Decision Funckions
Rulesets * ®
@Ruleset_l

[Zm Facts || Java Facts [RLFacts | ADF-BCFacts

=

Design

3.5.2 What You Need to Know About ADF Business Components Fact Classpaths

In the classpath list shown in the Search Classpath area in the Create ADF Business
Components Fact dialog one of the listed classpaths allows you to see the view object
definitions available in your project. In this dialog you only need to click Add to
Classpath when you need to use a classpath that is not available to your project (this
case should be very rare).

3.5.3 What You Need to Know About ADF Business Components Circular References

ADF Business Components Facts can include a circular reference, as shown in

Figure 3-15. When this warning is shown in the Business Rule validation log you need
to manually resolve the circular reference. To do this you must deselect the Visible
checkbox for one of the properties that is involved in the circular reference.

3.5.4 What You Need to Know About ADF Business Components Facts

Each ADF Business Components fact type contains a property named ViewRowImpl
that references the oracle. jbo.Row instance that the fact instance represents and a
property named key_values which points to an
oracle.rules.sdk2.decisionpoint.KeyChain object that may be used to
retrieve the set of key-values for this row and its parent rows.

When working with ADF Business Components Facts you should know the following:

= Relationships between view object definitions are determined by introspection of
attributes on the View Definition, specifically, those attributes which are View Link
Accessors.

The ADF Business Components fact type importer correctly determines which
relationships are 1-to-1 and which are 1-to-many, and generates definitions in the
dictionary accordingly. For 1-to-many relationships the type of the property
generated is a List, which contains facts of the indicated type at runtime.

= Itis not possible to use ADF Business Components fact types which have cyclic
type dependencies. These cycles must be broken by the deselecting the Visible
checkbox for at least one property involved in the cycle.

= ADF Business Components fact types are not Java fact types and do not allow
invoking methods on any explicitly created implementation classes for the view
object.

Working with Facts and Bucketsets 3-17

Working with Bucketsets

If you need to call such methods then add the view object implementation to the
dictionary as a Java fact type instead of as an ADF Business Components fact type.
In this case, all getters and setters and other methods become available but the
trade-off is that related view objects become inaccessible and, should related view
object access be required, these relationships must be explicitly managed.

Internally, ADF Business Components fact types are instances of RL fact types.

Thus, you cannot assert ADF Business Components view object instances directly
to a Rule Session, but must instead use the helper methods provided in the
MetadataHelper and ADFBCFactTypeHelper classes. For more information,
see Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

3.6 Working with Bucketsets

You can create a bucketset to define a list of values or a list of value ranges to limit the
acceptable set of values for a fact or a property of a fact in Oracle Business Rules. You
can define a bucketset as a Global Bucketset that allows reuse, where a bucketset is
named and stored in the data model, or as a Local Bucketset that is specified when
you define a Decision Table and only applies to one condition expression. For more
information on using a local bucketset, see Section 5.2.2, "How to Add Condition Rows
to a Decision Table".

You can use Bucketsets for the following:

You can associate fact type properties with bucketsets. This allows you to limit the
acceptable set of values for a property of a fact. For more information, see
Section 3.7.1, "How to Associate a Bucketset with a Fact Property".

In a Decision Table a bucketset defines a list of values or value ranges in the
condition expressions that are part of the Decision Table. The bucketset values or
ranges determine, for each condition expression in a Decision Table, that it has
two or more possibilities. Using a bucketset each possibility in a condition
expression is divided into groups or ranges where a cell specifies one Bucket of
values from the bucketset (or possibly multiple buckets of values per cell). For
example, if a bucketset is defined for colors, then the buckets could include a list of
strings: "blue", "red", and "orange". A bucketset that includes integers could have
three buckets, less than 1, 1 to 10, and greater than 10. For more information, see
Section 5.2.2, "How to Add Condition Rows to a Decision Table".

You can associate globals, functions, and function arguments with bucketsets.
Associating a bucketset with a global allows for design-time validation that an
assigned value is limited to the values specified in the bucketset. Associating a
bucketset with a function argument validates that the function is only called with
values in the bucketset. Using bucketsets in this manner allows Rules Designer to
report validation warnings for global values and function arguments that are
assigned or passed a constant argument value that is not allowed. This type of
bucketset validation is "weak" in the sense that only design-time constant values
are validated. No runtime checks are applied based on the globals or function
arguments associated with bucketsets. Associating a bucketset with a function
automatically sets a Decision Table condition row to use that bucketset when the
function is used as the expression for that condition row. For more information,
see Section 3.7.2, "How to Associate a Bucketset with Functions or Function
Arguments".

In addition to design-time validation you can use an LOV bucketset to provide
options that are displayed in lists when entering expressions in IF/THEN rule

3-18 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Bucketsets

tests and actions. For more information, see Section 4.11.3, "How to Use Bucketsets
to Provide Options for Test Expressions".

There are three forms for bucketsets:

s LOV: Defined by a list of values (see Section 3.6.1, "How to Define a List of Values
Global Bucketset").

= Range: Defined by a list of value ranges, defined by the range endpoints (see
Section 3.6.2, "How to Define a List of Ranges Global Bucketset").

s Enum: Defined by a list of enumerated types that is imported from either of:

= XML types (see Section 3.6.3, "How to Define an Enumerated Type (Enum)
Bucketset from XML Types").

= Java facts (see Section 3.6.4, "How to Define an Enumerated Type (Enum)
Bucketset from Java Types").

3.6.1 How to Define a List of Values Global Bucketset

A list of values bucketset lets you specify the type and the list of buckets for the
bucketset.

For more information, see Section 3.6.5, "What You Need to Know About List of Values
Bucketsets".

To define a list of values (LOV) global bucketset:
1. From Rules Designer select the Bucketsets navigation tab.

2. From the list next to the Create BucketSet... icon, select List of Values, as shown
in Figure 3-16.

Figure 3—-16 Adding a List of Values Bucketset

3) Start Page | ~\>OracIeRuIesl.ruIes [QPurchaseItems.rules | E] [g_}}Re
By HEz) PO & @ | &
L4 Facts > bl
”‘2 Bucketsets ¥ Iot

= Functions Lt

(x) Globals

Bucketsets: @E’} 4’ / b
z .
i Bucketsets Marne Datatype Fatrn B List of values
D Links &% Orderfmount int Range & List of Ranges
#7 i i
7 Credits L R.
E Decision Functions :‘;r re o I : nge
Rulesets + b 4
&P Ruleset_1
c
Design

3. Double-click the bucket icon for the bucket. This displays the Edit Bucketset
dialog.

4. In the Edit Bucketset dialog, enter the bucketset name in the Name column.

Working with Facts and Bucketsets 3-19

Working with Bucketsets

Ensure that the bucketset name is not the same as the as a fact alias, because this
would result in a validation errors as the following;:

RUL-05006: The fact type "Rating" has the same alias as an unrelated bucketset.

5. In the Data Type column select a data type from list.
For example, select String from the list.

6. Click the Create icon to add a value.

7. For each bucket that you add, do the following:

s In the Value field, enter a value. Note that for String type values in an LOV
bucket, you can select the entire string with three clicks. This allows you to
enter the string and Rules Designer adds the same alias without quotation
marks, as shown in Figure 3-17.

s In the Alias field, enter an alias.

For more information on specifying aliases, see Section 3.6.2, "How to Define a
List of Ranges Global Bucketset."

s In the Allowed in Actions field, select this if the value is an allowable value.

For more information on the Allowed in Actions field and the Include
Disallowed Buckets in Tests field, see Section 3.6.7, "What You Need to Know
About Bucketset Allowed in Actions Option".

= In the Description field, enter a description.

8. Add additional values by clicking the Create icon as needed for the bucketset, as
shown in Figure 3-17.

Figure 3—17 Create List of Values Bucketset

& Edit Bucketset - LicenseType

Mame: | LicenseType |

Form: ||-C'\‘I |

Data Type: |String '|
[] Include Disallowed Buckets in Tests

Bucket Yalues: G ¥ a v

Walue Alias Allowed in Actions Description
B otherwise otherwise
| Car” Car
= "Truck” Truck

- "string 3"

| Help | (o4 || Cancel

9. On the Edit Bucketset window, click OK.

You can control rule ordering in a Decision Table by changing the relative position of
the buckets in an LOV bucketset associated with a condition expression in a Decision
Table.

3-20 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Bucketsets

To change the order of buckets in a list of values bucketset:

1. In the Edit Bucketset dialog for the bucketset, select the bucket you want to
reorder.

2. Click the Move Down icon to reorder the bucket down.
3. Click the Move Up icon to reorder the bucket up.
4. Click OK.

3.6.2 How to Define a List of Ranges Global Bucketset

A list of ranges bucketset lets you specify the type and the endpoints for buckets in the
bucketset.

For more information, see Section 3.6.6, "What You Need to Know About Range
Bucketsets".

To define a list of ranges (range) global bucketset:
1. From Rules Designer select the Bucketsets navigation tab.

2. From the list next to the Create BucketSet... icon, select List of Ranges.

3. Double-click in the Data Type field. This displays the Edit Bucketset dialog, as
shown in Figure 3-18.

Figure 3—18 Edit Bucketset: List of Ranges

é- Edit Bucketset - bucketset_1 E|

[arne:

Data Type: |i”t v|
[] Include Disallowed Buckets in Tests

Range Bucket Yalues: @ &
Endpoint Included Endpoin’ Allowed in Action: Range Alias Description
= -Infinity otherwise otherwise
| Help | | (a4 || Cancel |

4, In the Edit Bucketset dialog, enter the bucketset name in the Name field.

5. In the Edit Bucketset dialog, in the Data Type field, from the list, select the
appropriate data type for the bucketset.

In this example, select int.

6. Click the Add Bucket icon repeatedly to add the number of buckets you need in
the bucketset as shown in Figure 3-19.

Working with Facts and Bucketsets 3-21

Working with Bucketsets

Figure 3—19 Edit Bucketset: Adding Required Buckets

& Edit Bucketset - bucketset_1 E|
Mame: bucketset_1
Data Type: |i“t '|
[] Include Disallowed Buckets in Tests
Range Bucket Yalues: Q xR
Endpoint Inchuded Endpoint Allowed in Actions' Range Alias Description
= 0 [0..50) [0..50)
@ -Infinity =0 <0
| Help | | [s]4 | | Cancel |

10.

In these steps you add three buckets. You start with the default values, as shown
in Figure 3-19. After changing the default buckets, the buckets have the following
values:

= greater than 1000
s between 500 and 1000, inclusive
s less than 500

Rules Designer added the buckets with the default values of 50 and 0 and a
negative Infinity (-Infinity) bucket.

Starting at the first or top bucket, in the Endpoint field, double-click the default
value and enter the top value bucket endpoint, and press Enter.

In this example, enter 1000 for the first bucket.

In the Included Endpoint field, select the checkbox as appropriate to include or
exclude the bucket endpoint.

In this example, you can leave this checkbox checked to include the bucket
endpoint.

In the Allowed in Actions field select the checkbox as appropriate to include the
bucket in the bucketset allowable values.

For more information on the Allowed in Actions field and the Include
Disallowed Buckets in Tests field, see Section 3.6.7, "What You Need to Know
About Bucketset Allowed in Actions Option".

Optionally, in the Alias field double-click the default value and enter the desired
bucket alias, and press Enter.

The alias appears in Decision Tables that use this bucketset. Use an alias to give a
more meaningful name to the bucket than the default value (the range-based
Range value).

Please note that most names and aliases in Oracle Business Rules allow only
letters, numbers, embedded single spaces, and the characters $, _, ', ., -, /, and :.
However, bucket aliases allow additional characters, such as [0..1]. If a bucket alias
contains such additional characters, then you cannot refer to the bucket by the
alias in the action cells in a Decision Table. In these cases, you can use the bucket
name, which is also known as the bucket value.

3-22 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Bucketsets

The Range field is read-only: it clearly identifies the actual range associated with
the bucket regardless of the Alias value. For more information, see Section 3.6.6,
"What You Need to Know About Range Bucketsets").

11. Moving down the list of buckets, for each subsequent bucket, repeat from Step 7.
For the second bucket, enter the endpoint value 500.

Figure 3-20 shows the completed bucketset.

Figure 3-20 Edit Bucketset: Completed Range Buckets

é'- Edit Bucketset - bucketset_1 [g|

Hame: bucketset_1

Data Type: | int b’ |

[] tneclude Disallowed Buckets in Tests

Range Bucket Yalues: @ b4
Endpoint Included Endpoint. Allowed in Actions Range Alias Description
= 1000 »=1000 »=1000
- _ [S00., 1000) [=00. . 1000) _
@ -Infinity <500 <500

| Help | oK || Cancel

12. In the Edit Bucketset dialog, click OK.

3.6.3 How to Define an Enumerated Type (Enum) Bucketset from XML Types

When you import an XML schema, if the XSD contains enumeration values Rules
Designer automatically creates an enumerated type bucketset for each enumeration.
Although enumerated type bucketsets are read-only, you can change the order of
buckets.

For more information, see Section 3.2.4, "What You Need to Know About XML Facts".

To define an enumerated type (enum) bucketset from XML types:
1. Obtain an XSD with the desired enumerations.

Example 3-2 shows the order . xsd schema file which contains the enumeration
Status.

Example 3-2 Order.xsd Schema

<?xml version="1.0" ?>
<schema attributeFormDefault="qualified" elementFormDefault="qualified"
targetNamespace="http://example.com/ns/customerorder"
xmlns:tns="http://example.com/ns/customerorder"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<element name="CustomerOrder">
<complexType>
<sequence>
<element name="name" type="string" />
<element name="creditScore" type="int" />
<element name="annualSpending" type="double" />
<element name="value" type="string" />
<element name="order" type="double" />
</sequence>
</complexType>
</element>

Working with Facts and Bucketsets 3-23

Working with Bucketsets

<element name="OrderApproval">
<complexType>
<sequence>
<element name="status" type="tns:Status"/>
</sequence>
</complexType>
</element>
<simpleType name="Status">
<restriction base="string">
<enumeration value="manual"/>
<enumeration value="approved"/>
<enumeration value="rejected"/>
</restriction>
</simpleType>

</schema>

2.

Open a dictionary in Rules Designer and create XML facts using the specified
schema that contains the enumeration. For more information, see Section 3.2,
"Working with XML Facts".

Click the Bucketsets navigation tab and select the Enum bucketset to see the
bucketset, as shown in Figure 3-21. In Figure 3-21, notice that the imported
Status enumeration values shown in Example 3-2 are imported as buckets with
the XSD-specified values.

Figure 3-21 Bucketset Showing the Form Enum with Imported Values

& Edit Bucketset - Status ['5_(|
Marne: |Status |
Form: |Enum |

[] Include Disallowed Buckets in Tests
Bucket Yalues: 4 ®aw
Walue Alias Allawed in Actions Description
B Skabus MANUAL MaMLUAL
B Skatus REJECTED REJECTED
=l null [¥]
| Help | | (a4 | | Cancel |

You can control rule ordering in a Decision Table by changing the relative position of

the buckets in an enum bucketset associated with a condition expression in a Decision
Table.

To change the order of buckets in an enum bucketset:

1.

In the Edit Bucketset dialog for the bucketset, select the bucket you want to
reorder.

Click the Move Down icon to reorder the bucket down.
Click the Move Up icon to reorder the bucket up.
Click OK.

3-24 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Bucketsets

3.6.4 How to Define an Enumerated Type (Enum) Bucketset from Java Types

When you import a Java enum, Rules Designer automatically creates an enumerated
type bucketset for each Java enum. Although enumerated type bucketsets are

read-only, you can change the order of buckets.

To define an enumerated type (enum) bucketset from Java facts:

1. Create or obtain the Java class with the desired enumerations.

Example 3-3 shows the RejectPurchaseItem. java class which contains

enumeration OrderSize.

Example 3-3 Java Fact with enum OrderSize

package com.example;

public class Classl
{
public enum OrderSize { SMALL, MEDIUM, LARGE };
public Classl()
{
}

more information, see Section 3.3, "Working with Java Facts".

In Rules Designer open a dictionary and create a Java Fact using the Java class. For

Figure 3-22 shows a how to create a Java fact for the Java enumeration

Classl$OrderSize.

Figure 3-22 Creating a Java Fact

& Create Java Fact g|

Select Java Fact Classes :
Select the Java classes you would like to be used as Java Facts in the rules engine., Aj—‘l‘
‘fou can add a JAR file or directory to the classpath and then check the class files and/or packages wou
want to create Facks from,

Classpath: Eﬂ' b 4 D Classes: @ﬂ

.LJ File:JC: j IDeveloper fmywork) SOA/Project 1], rulesdesig % Classes

U File: fi: f Temp/project. jar - m project1

<[] 2] Classt
[2 dass1gordersize

[] Add Project Library to Classpath

| Help | | (0] 4 || Cancel |

3.

In Rules Designer click the Bucketsets navigation tab and select the Enum

bucketset, as shown in Figure 3-23. Note that the Class1$OrderSize
enumeration from the enumeration in Example 3-3 is now a bucketset with the

Java enum-specified values.

Working with Facts and Bucketsets 3-25

Working with Bucketsets

Figure 3-23 Edit Bucketset Dialog for Java Enum

& Edit Bucketset - Class1$0rderSize

Marme: | Class1$0rderSize |

Farm: | Enum |

[] Include Disallowed Buckets in Tests

Bucket Yalues: 4 X aw
Walue Alias Allowed in Actions | Description
B Classi$OrderSize, SMALL SMALL
B ClassifOrderSize LARGE LARGE
2l rull
| Help | | (o] 4 || Cancel |

You can control rule ordering in a Decision Table by changing the relative position of
the buckets in an enum bucketset associated with a condition expression in a Decision
Table.

To change the order of buckets in an enumerated type (enum) bucketset:

1. In the Edit Bucketset dialog for the bucketset, select the bucket you want to
reorder.

2. Click the Move Down icon to reorder the bucket down.
3. Click the Move Up icon to reorder the bucket up.
4. C(Click OK.

3.6.5 What You Need to Know About List of Values Bucketsets

In a Decision Table the order of the buckets in a bucketset associated with a condition
expression determines the order of the condition cells, and thus the order of the rules.
You can control rule ordering in a Decision Table by changing the relative position of
the buckets in a list of values bucketset associated with a condition expression;
however, you cannot reorder range buckets.

Figure 3-24 shows a bucketset definition in Rules Designer for a bucketset named
colors using a list of values.

3-26 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Bucketsets

Figure 3-24 Bucketset Definition Using List of Values

& Edit Bucketset - colors E|
Mame: |c0|0rs |
Farm: |L0\" |
Data Type: |Stf'ing '|

[] Include Disallowed Buckets in Tests
Bucket Yalues: * Roawvw
Value Alias Allowed in Actions Description
B otherwise atherwise
= “blue" blue
I S N N R
® ‘“grange” orange
| Help | | QK | | Cancel |

As shown in Figure 3-24, by default with a List of Values bucketset there is a value
otherwise included with the list of values (LOV). This value, otherwise, is distinct
from all other values and matches all values of the type that have no other bucket.
Thus, with otherwise in the list of values a condition expression that uses the
bucketset can handle every value and provides a match for every value of the specified
type, where a match is either a defined value or the otherwise bucket. The
otherwise value cannot be removed from an LOV bucketset but it can be excluded
by clearing the Allowed in Actions checkbox (when otherwise is excluded an
attempt to assign any value that is not in the list of buckets in the bucketset causes a
validation warning).

Table 3-3 shows the bucketset values that Rules Designer supports for LOV
bucketsets.

Table 3-3 Supported Types for LOV Bucketsets

Type Description

Java primitive types This includes int, double, boolean, char, byte, short,
long, and float

String Contains String types

Calendar Contains Calendar types in the current locale

Note: You are not required to specify an LOV bucketset when you
use a boolean type in a Decision Table. For boolean types, Oracle
Business Rules provides built-in buckets for the possible values (true
and false).

3.6.6 What You Need to Know About Range Bucketsets

When you add a bucket to a List of Ranges bucketset, the value is calculated based on
the currently selected bucket value and the next highest bucket value. When you
change the endpoint value the value is automatically sorted in the bucketset; thus, it
does not matter where a bucket is added. However, it is possible for Rules Designer to
not have spaces between the current bucketset endpoint value and the endpoint value.
In this case, Rules Designer shows a validation warning of the following form:

RUL-05849: Bucketset has duplicate bucket value "4999"

Working with Facts and Bucketsets 3-27

Working with Bucketsets

To correct this problem you must modify bucket endpoints to remove the duplicate
bucket.

Figure 3-25 shows the Edit Bucketset window for a bucketset with an integer, int,
range.

Figure 3-25 Bucketset Definition Using List of Ranges and Three Endpoints

& Edit Bucketset E|

Mame: driver_range

Data Type: |i”t v|
[Include all Buckets in Decision Tables

@ R
Endpaint Included Endpaint Allovable Yalue Range Alias Description
© =
I E— - N N
7 -Infirity
| Help | [}\ | (a4 || Cancel

Table 3-4 shows the types Rules Designer supports for Range buckets.

Table 3-4 Supported Types for Range Buckets

Type Description
Selected primitive types This includes: int, double, short, long, and float
Calendar Contains Calendar types in the current locale

Note the following conventions for the Range field:

= Logical operator: specifies a range with respect to positive or negative infinity. For
example, ">=25" means "from 25 to positive infinity" and "<18" means from
negative infinity up to but not including 18.

» Square bracket "[": specifies a range that includes this end point value. For
example, " [18..25) " means "from 18 up to but not including 25".

= Round bracket ")": specifies a range that excludes this end point value. For
example, " (18..25] " means "over 18, not including 18, up to and including 25".

3.6.7 What You Need to Know About Bucketset Allowed in Actions Option

When you define buckets in a bucketset you might define some buckets corresponding
to non-permissible values. For example, in a bucketset for driver ages you would
typically not allow a bucket that contains values less than 0. Thus, when a fact with
driver data includes an age property associated with a driver ages bucketset, then you
should not be able to create or modify a fact that has the age property set to a value
such as -1. In a bucketset you select Allowed in Actions for valid buckets and deselect
this option for invalid buckets.

The bucketset option Include Disallowed Buckets in Tests allows you to include all
the buckets, whether Allowed in Actions is selected or not, in Decision Table

3-28 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Associating a Bucketset with Business Terms

conditions and in rule tests. By including all buckets you can explicitly test for illegal
values. Using the option Include Disallowed Buckets in Tests you can handle two
possible cases:

1. The input data for the Oracle Business Rules Engine is clean and does not contain
invalid data (such as a negative age). In this case, you should deselect the Include
Disallowed Buckets in Tests. Note: the reason you do not want to make age < 0
an Allowed in Actions is this provides design time validation warnings if you try
to create an action that uses an invalid value, such as the following:
modify (driver, age: -1)).For more information, see Section 4.11, "Using
Bucketsets as Constraints for Options Values in Rules".

2. You want to consider excluded buckets in rule tests and in Decision Tables. In this
case, you should select Include Disallowed Buckets in Tests. This is useful when
the input data for the Oracle Business Rules Engine may not be clean and may
contain invalid data (for example an invalid negative age). A Decision Table that
provides actions for all bucketsets could include cases for excluded buckets and
provide an appropriate action, such as asserting an error fact. To handle this you
could either select the Allowed in Actions field for every bucket in the bucketset,
or, leave the Allowed in Actions field configured as is and select the Include
Disallowed Buckets in Tests field. Using the Include Disallowed Buckets in
Tests field is not only convenient, you do not need to reconfigure every bucket, it
also preserves the configuration of Allowed in Actions so that you can easily
reuse this bucketset to handle the first case (when you deselect Include
Disallowed Buckets in Tests).

3.6.8 What You Need to Know About Bucket Values

When you enter a bucket value in a bucketset, the value you supply must be valid for
the type specified for the bucketset. If the value you enter is not valid for the bucketset
type, Rules Designer makes the value you supply a string by adding quotation marks.
Adding quotation marks is the only way to make a legal literal when the user
provided data is not appropriate for the specified type. For example, if you add an int
type LOV bucketset, and then supply a value 2.2 to a bucket, Rules Designer shows a
warning such as the following:

RUL-05833: Invalid characters "2.2" in bucket value

To fix this problem either enter a valid value for the bucket value, for example in this
case the value 2, or change the type of the bucketset.

For an additional example, when you enter a value for a bucket, for example if you
enter a bucket value with bucketset with data type short and add a bucket with the
value 999999, Rules Designer assigns this the value "999999". The maximum value for
a short is 32767. In this case you see a warning related to the bucket value, similar to
the previous example, because a String is not a valid bucket value for a bucketset with
data type short. The solution to this is to enter appropriate values for all buckets (in
this example, enter a value less than or equal to 32767).

3.7 Associating a Bucketset with Business Terms

After you define a global bucketset you can associate parts of the data model with the
global bucketset (if their types are compatible). In this way, condition cells in the
Conditions area can automatically be assigned a bucketset when you define a
Decision Table. Also, when a bucketset is associated with a business term, Oracle
Business Rules uses the buckets that you define as constraints for the values for
expressions for the business terms in rules.

Working with Facts and Bucketsets 3-29

Associating a Bucketset with Business Terms

You can associate the following four kinds of business term with a bucketset:
» Fact Property

= Function Result

= Function Argument

s Global Value

3.7.1 How to Associate a Bucketset with a Fact Property

To prepare for creating Decision Tables, you can associate a global bucketset with fact
properties in the data model.

To associate a bucketset with a fact property:
1. From Rules Designer, select the Facts navigation tab.

2. Select the fact type to edit and click the Edit icon. This displays the appropriate
Edit Fact dialog for the fact type you select.

3. In the Properties table, under Bucketset, select the cell for the appropriate fact
property and from the list select the bucketset you want to associate with the
property. For example, see Figure 3-26.

Figure 3-26 Defining a Bucketset for a Property

& Edit AL Fact - Driven X
Mame: Drriver
Description:
Super Class: |Object V|
Properties: + “
Marne Type Bucketset Initial Yalua List Content Type

e —"
) has_training boalean -
D eve_test Skring (Crderfimount
D eligible hoolean driver_ages

Eit Columns To Width

| Help | oK || Caricel

4. On the Edit Fact page, click OK.

3.7.2 How to Associate a Bucketset with Functions or Function Arguments

To prepare for creating Decision Tables you can associate a global bucketset with
functions in the data model.

To associate a bucketset with a function return value:
1. From Rules Designer, select the Functions tab.

2. Select the function to edit. This shows the function arguments and the function
body for the specified function.

3-30 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Associating a Bucketset with Business Terms

3. In the Functions table, under Bucketset, select the cell and from the list select the
bucketset you want to use. For example, see Figure 3-27.

Figure 3-27 Defining a Bucketset for a Function Return Value

:Page |\>OradeRuJesl.ruJes IQDradeRulesl.ruJes I \>OracleRuIesl.ruIes |\>OracleRuIesl.rules | Ié](:lassl.ja\"a @@E]

LY PO PO % @
& Facts .'Fx Functions
f« Functions
(x) Globals Functions: ") Gﬂ + ¥
u‘f‘ﬁ Bucketsets Marne Return Type Bucketset Description

») F Function_test2 flaat
B Decision Funckions

Rulesets 3+ X ==

I XA
&P Ruleset_1 Arguments:
Mamne Type Bucketset
arg int
e
Body:

call print{ message : "test")
return arg_1

<insert action:=

=

[resign

To associate a bucketset with a function argument:
1. From Rules Designer, select the Functions navigation tab.

2. Select the function to edit. This shows the function arguments and the function
body for the specified function.

3. In the Functions table, in the Arguments area select the appropriate argument.

4. For the specified argument, under Bucketset, select the cell and from the list select
the bucketset you want to use.

3.7.3 How to Associate a Bucketset with a Global Value

To prepare for creating Decision Tables, you can associate a global bucketset with
global values in the data model.

To associate a bucketset with a global value:
1. From Rules Designer, select the Globals navigation tab.

2. Select the global value to edit.

3. In the Globals table, under Bucketset, select the cell for the appropriate global
value, and from the list, select the bucketset that you want to associate with the
global value. For example, see Figure 3-28.

Working with Facts and Bucketsets 3-31

Associating a Bucketset with Business Terms

Figure 3-28 Defining a Bucketset for a Global Value

_ﬁ]npplicationl Overyiew ME composite. xml IQDradeRulesl.ruJes I

- B SR R RO R 6]

& Facts (!} Globals

F Functions
Globals: G@ “ﬂ' / ®

(x) Globals

Marne Tvpe Yalue Bucketset Final Description

7 Bucketsets

<D Links

Q_}; Decision Functions
Rulesets = X

P Rulesetl

3-32 Oracle Fusion Middleware User's Guide for Oracle Business Rules

4

Working with Rulesets and Rules

A ruleset is an Oracle Business Rules object that you use to group one or more rules
and Decision Tables.

This chapter includes the following sections:

= Section 4.1, "Introduction to Working with Rulesets and Rules"

» Section 4.2, "Working with Rulesets"

= Section 4.3, "Working with Rules"

= Section 4.4, "Validating Dictionaries"

= Section 4.5, "Using Advanced Settings with Rules and Decision Tables"

= Section 4.6, "Working with Nested Tests"

= Section 4.7, "Working with Advanced Mode Rules"

= Section 4.8, "Working with Tree Mode Rules"

= Section 4.9, "Using Date Facts, Date Functions, and Specifying Effective Dates"
= Section 4.10, "Working with Expression Builder"

= Section 4.11, "Using Bucketsets as Constraints for Options Values in Rules"

For more information, see Section 1.1.5, "What Are Rulesets?".

4.1 Introduction to Working with Rulesets and Rules

You can use business rules to define key decisions and policies for a business,
including:

= Business Policies: for example spending policies and approval matrices

s Constraints: for example valid configurations or regulatory requirements
= Computations: for example discounts, premiums, or scores

= Reasoning Capabilities: for example offers based on customer value
Oracle Business Rules provides two ways to work with rules:

s Using IF/THEN rules

s Using rules in a Decision Table

This chapter describes working with IF/THEN rules. For information on Decision
Tables, see Chapter 5, "Working with Decision Tables".

Working with Rulesets and Rules 4-1

Working with Rulesets

4.2 Working with Rulesets

A ruleset provides a unit of execution for rules and for Decision Tables. In addition,
rulesets provide a unit of sharing for rules; rules belong to a ruleset. Multiple rulesets
can be executed in order. This is called rule flow. The ruleset stack determines the
order. The order can be manipulated by rule actions that push and pop rulesets on the
stack. In rulesets, the priority of rules applies to specify the order of firing of the rules
in the ruleset. Rulesets also provide an effective date specification that identifies that
the ruleset is always active, or that the ruleset is restricted based on a time and date
range, or a starting or ending time and date.

4.2.1 How to Create a Ruleset

All rules and Decision Tables are created in a ruleset. A ruleset organizes rules and
Decision Tables into a unit of execution.

To create a ruleset:
1. In Rules Designer, go to the Rulesets navigation tab.

2. (Click the Create Ruleset... icon. This displays the Create Ruleset dialog.
3. Enter a name in the Name field.

4. Enter a description in the Description field, as shown in Figure 4-1.

Figure 4-1 Adding a Ruleset

Marne:

Description: | 4 set of rules b execute

| Help | (o4 || Cancel

5. Click OK.

4.2.2 How to Set the Effective Date for a Ruleset

Effective date support provides the ability to specify a start date and an end date for a
ruleset, a rule or a Decision Table. For a ruleset the effective date defines the date
range in which the rules and Decision Tables within the ruleset are effective. For more
information on effective dates, see Section 4.9, "Using Date Facts, Date Functions, and
Specifying Effective Dates".

To set the effective date for a ruleset:
1. Select the ruleset name from the Rulesets navigation tab.

2. Click the navigation icon next to the ruleset name to expand the ruleset
information to show the ruleset Name, Description, and Effective Date fields, as
shown in Figure 4-2.

4-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Rulesets

Figure 4-2 Ruleset Showing Effective Date Field

= Ruleset_1 ¥ [JFierOn Wiew: | IF/THEN Rules - R BB aA v‘
Mame: | Ruleset_1 |
Descripkion: | |

Effective Dake: | Always Valid
Active

¥ Rule_1
<enter description =

¥ Rule_2
<enter description =

3. Select the Effective Date entry. This displays the Set Effective Date dialog, as
shown in Figure 4-3.

Figure 4-3 Using the Set Effective Date Dialog

[¥] Erom: [2009-0z-16 | B [13:42:00 [F] [(aMT-08:00) Paciic Standard Time ~|

@t [zo0v-ce-23 | B [13:42:00 (2] [(GMT-08:00) Pacfic Standard Time -

(0 Date () Time (3) Eoth

| Help | | [o]4 || Cancel |

4. Use the Set Effective Date dialog to specify the effective dates for the ruleset.
Clicking the Set Date icon displays a calendar to assist you in entering the From
and To field data.

4.2.3 How to Use a Filter to Display Matching Rules in a Ruleset

As the number of rules in a ruleset increases, it can be difficult to navigate the list of
rules. You can instruct Rules Designer to filter the list of rules, to display only rules of
interest. For example, you can display only active rules or only rules that have
validation warnings.

For more information on creating rules, see Section 4.3, "Working with Rules".

To use a filter to display matching rules in a ruleset:
1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. To show the rule filter settings, next to the ruleset name, click Show Filter Query
as Figure 4—4 shows.

Working with Rulesets and Rules 4-3

Working with Rulesets

Figure 4-4 Showing a Filter Query in a Ruleset

QDracleRulesl.rules I =
B @ @ o @
S Ruleset_1 | ¥ [|EiterOn Yiew: | IF/THEN Rules - R BERHERAw

%

¥ EustomerDJ Shof Filter Query i

=enter description:=

o

CustomerOrder_Rule2
=enter description >

LineItem_Rulel
=enter description=

¢EHLT
(3]
L

¥ LineltemRule2
=enter description:=

¥ Rule_5
=enter description >

3. In the Filter Query field, click <insert test> to insert a default test as Figure 4-5
shows.

Figure 4-5 Inserting a Default Filter Query Test

(P DracleRulest.rules | =
B B & ¢ @
& : -
Ruleset 1 # [|Fiteron iew: |3 IF[THEN Rules k- R B OAw
%
() | | Fiter Query: é
& Jsoperand> == zoperand: | <insert test:
ey
@ ¥ CustomerOrder_Rulel
<enter description =
¥ CustomerOrder_Rule2
<enter description =
¥ Lineltem_Rulel

<enter description =

¥ LineltemRule2
<enter description =

¥ Rule_5
<enter description =
=

Design

4. Configure the default test.

In this case, as shown in Figure 4-6, when you click an <operand> you can choose
from the rule-specific options shown in Table 4-1.

Table 4-1 Rule Filter Query Operands

Operand Description

name Matches against the rule name.

description Matches against the rule description.

priority Matches against the rule priority. For more information, see

Section 4.5.5, "How to Set a Priority for a Rule".

start date Matches against the rule start date. For more information, see
Section 4.9.2, "How to Set the Effective Date for a Rule".

4-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Rulesets

Table 4-1 (Cont.) Rule Filter Query Operands

Operand

Description

end date

Matches against the rule end date. For more information, see
Section 4.9.2, "How to Set the Effective Date for a Rule".

minutes until start date

Matches against a specified number of minutes until the rule start date.
For more information, see Section 4.9.2, "How to Set the Effective Date
for a Rule".

minutes until end date

Matches against a specified number of minutes until the rule end date.
For more information, see Section 4.9.2, "How to Set the Effective Date
for a Rule".

days until start date

Matches against a specified number of days until the rule start date.
For more information, see Section 4.9.2, "How to Set the Effective Date
for a Rule"

days until end date

Matches against a specified number of days until the rule end date. For
more information, see Section 4.9.2, "How to Set the Effective Date for a
Rule"

years until start date

Matches against a specified number of years until the rule start date.
For more information, see Section 4.9.2, "How to Set the Effective Date
for a Rule"

yvears until end date

Matches against a specified number of years until the rule end date.
For more information, see Section 4.9.2, "How to Set the Effective Date
for a Rule"

is active

Matches against whether the rule is active. For more information, see
Section 4.5.3, "How to Select the Active Option".

is wvalid

Matches against whether the rule has validation warnings. For more
information, see Section 4.4.2, "Understanding Rule Validation".

referenced fact types

Matches against one or more fact types.

Figure 4-6 Filter Query Operands

----- @ minutes until start date
----- a minutes until end date
----- @ days until start date

----- @ days until end date

----- @ years until skart date
----- @ years until end date

----- @ s ackive

----- a s valid

----- @ referenced fact bypes

() Lisk Wiew (3) Tree View

P DracleRulesl.rules =
EE R o ®
L Ruleset 1 2 [JFiteron Wiew: | IFTHEN Rules k- X BEREHRAw

e
(X} | Filter Query: ¢
& [[£operand=] == <operands | <insert tests
Q Q Yalue Options

----- a name
@ ----- @ description

----- @ prioriky

----- o skart date
----- a end date

[] Customizable

c

Design

For more information, see Section 4.3.2, "How to Define a Test in a Rule".

Working with Rulesets and Rules 4-5

Working with Rules

5. Select the operator to choose an operator for the comparison. For example, for the
name you can select startsWith from the operand list.

6. Enter a comparison operand for the right-hand-side of the filter test. For example,
enter the string Customer.

7. When the filter query is complete you can apply the filter to the rules in the
ruleset:

a. To apply the filter, select the Filter On checkbox.
Rules Designer displays only the rules that match the filter query as Figure 4-7

shows.

Figure 4-7 Enable Filter Query in a Ruleset with Filter On Option

P DracleRulest.rules | =
B 5 @) (!} ©)
Q P —
* Ruleset_1 # [¥]Fiker On Wiew: [IF/THEN Rules - R RRRAw
e
) | Fiter Query: &
& name startsWith "Customer” <inserk bests
=
P (& ¥ CustomerOrder_Rulel
<enter description =
+ ¥ CustomerOrder_Rule2
<enter description =

c

Design

b. To disable the filter query, deselect the Filter On checkbox.
Rules Designer displays all the rules in the ruleset.

c. To delete the filter query, select it and press Delete or click the Clear Filter
icon.

4.3 Working with Rules

You create business rules to process facts and to obtain intermediate conclusions that
Oracle Business Rules can process. You create rules in a ruleset, so before working
with rules you need to create a ruleset (or use the default ruleset). For more
information on creating a ruleset, see Section 4.2, "Working with Rulesets".

You can easily test your rules as you are designing them without having to deploy
your application. For more information, see Section 8.1.1, "How to Test Rules Using a
Test Function in Rules Designer".

Rules Designer rule validation can assist you when you work with rules. To show the
validation log window, click the Validate icon or select View>Log and select the
Business Rule Validation tab. This displays warnings for incorrect or incomplete
rules. Note that you must correct all warnings before you can test or deploy rules. For

4-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Rules

more information on rule validation, see Section 4.4.2, "Understanding Rule
Validation".

As the number of rules in a ruleset increases, you can configure Rules Designer to filter
the list of rules to show only rules of interest. For more information, see Section 4.2.3,
"How to Use a Filter to Display Matching Rules in a Ruleset".

4.3.1 How to Add Rules

To create a rule you first add the rule to a ruleset, and then you insert tests and actions.
The actions are associated with pattern matches. At runtime when a test in the IF area

of a rule matches, the Rules Engine activates the THEN action and prepares to run the
actions associated with the rule.

Rules Designer lets you create a rule where by default the rule fires for each matching
fact. To enable other options, where the same fact type matches more than once, or
never, you select Advanced Mode. For more information on advanced mode and
showing advanced settings, see Section 4.5, "Using Advanced Settings with Rules and
Decision Tables".

To add rules in a ruleset:
1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. In the View field, select IF/THEN Rules.
3. Click Add to add a rule. For example, click Add to add a rule named Rule_1, as

shown in Figure 4-8.

Figure 4-8 Adding a Rule in a Ruleset

(2)start Page QDracleRulesl.rules |]
Bl 5 (e (! @
& Facts ? . |

Ruleset_1 ¥ [|Fiteron Yew: [P IFTHENRUes ~| 9P - & THHA v
Fe Functions

= ¥
(x) Globals ¥ Gz {

<enter description =

=
Bucketsets
b F

< Links <insert test =
@ Drecision Funckions THEN

Rulesets + R <insert action=
&P Ruleset_1
S
Design
[ElBusiness Rule Yalidation - Log E]l
[22] Dickionary - OracleRules1.rules Display Mew Warnings First
| Message Dictionary Object Property

.\ RUL-05704: The pattern must have a fact type. Enter a valid fact type. OracleRules1 /Ruleset_1/Rule_1/Patt... FactType

SDE Warnings: 1 Last Yalidation Time: 12:56:21 PMPDT
Messages EFEL EBusiness Rule Yalidation Extensions Feedback | 508 @@E]

4.3.2 How to Define a Test in a Rule

To create a test in a rule you add conditions for facts. For example, with a sample
CustomerOrder fact with an annual spending property, you can add a test to

Working with Rulesets and Rules 4-7

Working with Rules

determine if a customer order is associated with a high value of spending, based on
the annual spending for the customer. Note that you can use bucketsets to limit the
values for tests and actions in rules. For more information, see Section 4.11, "Using
Bucketsets as Constraints for Options Values in Rules".

Figure 4-9 shows this sample rule.

Figure 4-9 Adding a Test to a Rule

Ruleset_1 ¥ [|Elteron Yiew: |QIFTHENR.. v | g0 - 38 T2 0 [&8 &
= ¥ Rule_1
=enter description =
IF
CustomerCrder.annualSpending = 2000
THEN

modify CuskomerOrder { value ; "High")

At runtime, when this rule is processed the Rules Engine checks the facts against rule
pattern tests that you define to find matching facts. For this sample rule, Rule_1,
when a fact matches the Rules Engine modifies the fact and then modifies the value
property to "High".

To define tests in rules:
1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. Inthe View field, select IF/THEN Rules (this is the Rules Designer default).
3. Add or select the rule you want to use, for example, select Rule_1.

4. In Rule_1, in the IF area, select <insert test>.
5

For a test, the IF area of a rule includes a left-hand-side <operand> and a
right-hand-side <operand>, as shown in Figure 4-10.

Figure 4-10 Rule Test with Left-hand-side operand and Right-hand-side operand

Ruleset 1 ¥ [|Fiteron iiew: | < TFITHEN Rules - TEHBOAw

=l ¥ Rule_1
<enker description =

IF

JSoperandz, == soperandz,
<insert testx

THEN

<insert ackionz

6. In a test, you replace the left-hand-side operand with a value.

To do this, select the left-hand-side <operand>. This displays a text entry area and
a list, as shown in Figure 4-11:

4-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Rules

Figure 4-11 Configuring the Left-hand-side Operand of a Test in a Rule

Ruleset 1

¥ [|Filker On Miew: |@| “ﬂ"' 3 ?ﬁ%%ﬁd LTl 4

= ¥ Rule 1

IF

<gnter description=

lCustomerOrder.annuEEpending == <operand:

TH

CuskomerQrder, annualspending

@, value Options
Eh-@ CustamerCrder

e annualspending

creditSoore

name
; order

L #ea value
Orderapproval
[-@ CurrentDate

() List Wiews (3) Tree View

(9

[] Customizable

7.

a. To enter a value use the list to select an item from the value options.

You can view the options using a single list, by selecting List View, or using a

navigator by selecting Tree View.

b. To enter a literal value, type the value into the text entry area and press Enter.

The value you enter must agree with the type of the corresponding operand.
For example, in the test IF CustomerOrder . annualSpending >
<operand>, valid values for <operand> must agree with the type of

CustomerOrder field annualSpending.

In a test, you replace the operator with the desired logical operator or accept the
default (==). To do this, select the default == operator. This displays a field and a
list. The list may contain additional operators, depending on the datatype of the
left operand. For example, to test strings, if you select a String operand on the left

hand side, then additional String operators, such as startsWith and
equalsIgnoreCase are available as shown in Figure 4-12.

Working with Rulesets and Rules 4-9

Working with Rules

Figure 4-12 Configuring String Operators in a Rule

Ruleset 1 ¥ [JEkeron vew [Q..v| dp- 8 TEHEH A v

= ¥ Rule 1
<enter descripkion =
IF
|LoanOFFer.pr0viderN«ﬂe == operand: |

<insert best:=

THEN

<insert ackion

EARRTERT

o=
bietween

in

contains
endsiith
equalslgnoreCase
matches
startsWith

starksiwith

Similarly, to test a logical condition between the left-hand and right-hand
operands, select one of the logical operators as shown in Figure 4-13: ==
(equality), ! = (not equal), > (greater than), >= (greater than or equal to), < (less
than), <= (less than or equal to). For more information on the operators, see
Appendix B, "Oracle Business Rules Built-in Classes and Functions.".

Figure 4-13 Configuring the Operator of a Test in a Rule

Ruleset 1 ¥ [fiteron Yew |QIFMH. v| G- 8 TeEHEQ A v

5 ¥ Rule 1
<gnter description =
IF
|CustomerOrder.annuaEpending == Soperand |

<insert tesk=

THEN

<insert action

AW

L=
between
in

8. Ina test, you replace the right-hand-side operand with a value.
Configure the <operand> placeholder as you would for any operand.

For example, enter 2000 into the text entry area and press Enter or Return, as
shown in Figure 4-14.

4-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Rules

Figure 4-14 Configuring the Right-hand-side Operand of a Test in a Rule

Ruleset 1 ¥ [|Fiteron Wew: [QIFmH. ~| dp~ 8 T & A

= ¥ Rule_1
<enter description:=

IF

CustormerOrder . annualSpending == EO0
<insert test> 2000

THEN Q, value Options
=insert ackion: E}---n. CustomerQrder

eem annualspending
a crediScore

@ name.lengthl)
@ arder

tem walue.length()
----- @ CurrentDate,date, timeInMillis
[#-a RL
[#-@ Bighecimal
@ Calendar

() List Wiew (3) Tree View

[]Constant [Customizable

4.3.3 How to Define Range Tests in Rules

To create a range test in a rule, you add conditions for facts. For example, with a
sample CustomerOrder fact with an annual spending property, you can add a test to
determine if the value of a customer order falls between an upper and lower range.

The following summarizes this sample rule:

IF

CustomerOrder.annualSpending between 100 and 2000
THEN

Modify CustomerOrder.value = "Normal"

At runtime, when this rule is processed the Rules Engine checks the facts against rule
pattern tests that you define to find matching facts.

To define range tests in rules:
1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. In the View field, select IF/THEN Rules (this is the Rules Designer default).
3. Add or select the rule you want to use, for example, select Rule_1.

4. In Rule_1, in the IF area, select <insert test>.
5

The test in the IF area of a rule includes a left-hand side <operand> and a
right-hand-side <operand>, as shown in Figure 4-15.

Working with Rulesets and Rules 4-11

Working with Rules

Figure 4-15 Rule Test with Left-hand-side operand and Right-hand-side operand

Ruleset 1 ¥ []Fiter on Yiew: | IF/THEN Rules k- DO Aw

= ¥ Rule 1
<enter description=
IF
<operand: == <operand:

=insert test=

THEMN

=insert action

6. Inarange test, you replace the left-hand-side operand with a value.

To do this, select the left-hand-side <operand>. This displays a text entry area and
a list, as shown in Figure 4-16:

Figure 4-16 Adding a Test Left-hand-side Operand to a Rule

Ruleset 1 ¥ [|Elteron Yewi [(QIFTH. v qp~ 38 T & a v

= ¥ Rpule 1
<enter description:=

IF

LCustomerOrder.annuiﬁpending == <0p.e_r.a.nd>]
CuskomerOrder, annualspending -f;_r

T Q Yalue Options
@ CustomerOrder

----- a |annualSpending

creditSoore

i ea value

(@ Orderdpprowal

[-@ CurrentDate

() List Wiews (3) Tree Yiew

[] Customizable

a. To enter a value, use the list to select an item from the value options.

You can view the options using a single list, by selecting List View, or using a
navigator by selecting Tree View.

b. To enter a literal value, type the value into the text entry area and press Enter.
The value you enter must agree with the type of the corresponding operand.

For example, in the test IF CustomerOrder . annualSpending >
<operand>, valid values for <operand> must agree with the type of
CustomerOrder field annualSpending.

7. Inarange test, you choose the between operator. To do this, select the default ==
operator. This displays a text entry area and a list. Select between as shown in
Figure 4-17.

4-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Rules

Figure 4-17 Configuring the Operator of a Range Test in a Rule

Ruleset 1 ¥ [|Eikeron Yiew: | IF/THEN Rules - BEEHRAw

= ¥ Rule 1
=enter description:=

IF

| CustomerOrder, annualSpending == <operand = |

<inserk besk:

THEN ==
1=
<inserk ackion =
==
<
=

between
in

This adds two more <operand> placeholders as shown in Figure 4-18.

Figure 4-18 Between Operator in a Range Test

IF
CustomerOrder. annualSpending between <operand= and <operand:

<insert tests
THEN

<insert ackion >

8. Configure the <operand> placeholders as you would for any operand as shown in
Figure 4-19.

Figure 4-19 Configuring the Operand of a Range Test in a Rule

Ruleset 1 ¥ [|FiterOn Yiews: [QIF;THEN Rules v] *T-® EHEHRA v

= ¥ Rule_1
=enter description >

IF
CustomerOrder. annualspending between 100 and [Zoperand o)
<inserk test = 2DDD|

LHEN Q, Value Options
<insert action= E}---ﬂ_ CustomerOrder

annualspending
creditScore

name. lengthi)

order

@ walue length()

----- a CurrentDate.date.imeInMillis
[#-a RL

[#-@ BigDhecimal

[#-a Calendar

() Lisk Wiew (3) Tree Yiew

[]Constant [Customizable

Working with Rulesets and Rules 4-13

Working with Rules

The test is true when the left-most operand
(CustomerOrder.annualSpending) is between the values 100 and 2000.

4.3.4 How to Define Set Tests in Rules

To create a set test in a rule, you add conditions for facts. For example, with a sample
CustomerOrder fact with a line item property you can add a test to determine if the
line item belongs to an arbitrary set of products.

The following summarizes this sample rule:

IF

CustomerOrder.lineltem.sku in 12345, 43255, 76348
THEN

Modify CustomerOrder.value = "High"

At runtime, when this rule is processed the Rules Engine checks the facts against rule
pattern tests that you define to find matching facts.

To define set tests in rules:
1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. In the View field, select IF/THEN Rules (this is the Rules Designer default).
3. Add or select the rule you want to use, for example select Rule_1.

4. In Rule_], in the IF area select <insert test>.
5

The test in the IF area of a rule includes a left-hand side <operand> and a
right-hand-side <operand>, as shown in Figure 4-10.

Figure 4-20 Rule Test with Left-hand-side operand and Right-hand-side operand

Ruleset 1 ¥ [|Fiteron iiew: < TFITHEN Rules - EHBOAw

=l ¥ Rule 1
<enter description:=

IF

SaRsandz, == oRstandz,
<insert test>

THEN

=insert ackionz

6. In a set test, you replace the left-hand-side operand with a value.

To do this, select the left-hand-side <operand>. This displays a text entry area and
a list as shown in Figure 4-21:

4-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Rules

Figure 4-21 Adding a Test Left-hand-side Operand to a Rule

Ruleset 1 ¥ []EikerOn Yiews: [IF(THEN Rules k- RO Aw

5 ¥ Rule 1
<gnter description =

IF
| CustamerOrder . lingitem sk == <operand=

CustormerOrder lineitem, sku

T Q, value Options
El-a CustomerOrder
i Ea lineitem

Lineltem
[B-@ CurrentDate

() Lisk Wiew (2) Tree Yiew

[] Customizable

a. To enter a value use the list to select an item from the value options.

You can view the options using a single list, by selecting List View, or using a
navigator by selecting Tree View.

b. To enter a literal value, type the value into the text entry area and press Enter.

7. Ina set test, you use the in operator. To do this, select the default == operator.
This displays a text entry area and a list. Select in as shown in Figure 4-22.

Figure 4-22 Configuring the Operator of a Set Test in a Rule

Ruleset 1 ¥ [|Fiteron Yiew: [IF/THEN Rules v k- BHDZRAw

5 ¥ Rule 1
<enter description =

IF
| CustomerOrder.lineitem. sku == <operand>

<insert besk:=
THEN ==
1=
<insert ackion =

=

<

o=
between
in

This adds two more <operand> placeholders in a comma separated list and an
<insert> placeholder as shown in Figure 4-23.

Working with Rulesets and Rules 4-15

Working with Rules

Figure 4-23 In Operator in a Set Test

IF
CustomerOrderlineltem.sku in =operand> , <operand= <inserts

<insert test=
THEN
<insert ackion >

To add another operand to the list, click <insert>.

To delete an operand from the list, right-click the operand and select Delete Test
Expression.

8. Configure the <operand> placeholders as you would for any operand as shown
in Figure 4-24.

Figure 4-24 Configuring the Operands of a Set Test in a Rule

7 Ruleset 1 ¥ [|FiterOn View: | IF/THEN Rules v - R T2 B 0y 60 A w

= ¥ Rule 1
<enter description:=
IF
CustomerCrder.lineiter.sky in 12345 , 43255, ' <insert >

<insert tesk = ?6348| ,.}!
LA »& Value Optians
<insert actionz @ CustomerOrder

. Ela lineitem

(e annualSpending

“m LineTter. sku

@ CurrentDate.date. timeIntillis
E-a RL

[#--@ Bighecimal

[-a Calendar

() List Wiew (3) Tree View

[]Constant [Customizable

The test is true when the value of the left-most operand
(CustomerOrder.lineItem.sku)is any of 12345, 43255, or 76348.

4.3.5 How to Define Actions in Rules

To create a rule you insert tests and you insert actions. The actions are associated with
pattern matches. When a test in the IF area of a rule matches, the Rules Engine
activates the THEN action and prepares to run the actions associated with the rule.

When you add an action, you use one of the forms of actions shown in Table 4-2. For
each form shown in Table 4-2 the options that Rules Designer presents are context
sensitive, so the lists and the number of items you work with may be different,
depending on which action you add and the choices you make while you enter the
action. Table 4-2 shows the basic actions; additional actions are available with
Advanced Mode. For more information on advanced mode see Section 4.5, "Using
Advanced Settings with Rules and Decision Tables".

4-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Rules

Table 4-2 Rule Action Choices

Action Form Description

Assert New Assert a new fact

Modify Modify a data value associated with a matched fact
Retract Retract a fact

Ccall Call a function

To define actions in rules:
1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. Inarule, in the THEN area, select <insert action>. This displays the add action list
as shown in Figure 4-25.

Figure 4-25 Adding a Modify Action to a Rule

Ruleset_1 ¥ [|Filker on Miew: |<}IF,|’THEN Rules v| 3 - ¥ A v

= ¥ Rule_1
<enter description=

IF
CustomerOrder . annualspending > 2000
<insert tesk>

THEN

<insert action= I

asseth new
rmodify
retract

call

3. Inthe add action list, select the type of action you want to add. For example, select
modify.

4. In the THEN area, select <target> to display the option list. For example, select
customerOrder as shown in Figure 4-26.

Figure 4-26 Adding Modify Action to a Rule and Selecting the Target

Ruleset 1 ¥ [|Flkeron Yew [P IFTHENRes ~| dp - 3¢ T B 60 & w

= ¥ Rule 1
<enter description =
IF
CustomerCrder.annualspending > 2000

=insert test=

THEN

aniF <tar§eta

<insert |
CuskomerOrder

5. Select <add property>. This displays the Properties dialog.

Working with Rulesets and Rules 4-17

Working with Rules

6. In the Properties dialog, in the Value column, enter "High" (include the double
quotation marks) and press Enter or Return as shown in Figure 4-27.

Figure 4-27 Adding Modify Action Property and Value to a Rule

] (Z)start Page QavadeRu'esl.mdes =

Av D DO L
s ey v Ctwon ton Qrironis <4 X BB A

F Functions

= ¥ Rule 1

(X) Globais <enter descripkion =

7 Bucketsets

IF
< Links CustormerOrder, annualspending > 2000
Decision Functions <insert test>
Rulesets T 8 THEN
&P Ruleset_1 modify CustomerCrder ([Sadd property = |)
<insert actionz
& Properties k [‘5_(|
Mame Tvpe ‘alue Conskant
annualSpending double |:|
creditScore int B
Eu String O
order double B
ae e~ - -
c Fit Columns To Width
Des3
] =
o
S ——————————— e -
Message Dictionary Object Froperty
.L\, RUL-05810: The action "modify" requires at least one property be... OracleRulesl1 /Ruleset_1/Rule_1/Action[1]
SDK Warnings: 1 Last Yalidation Time: 1:38:05 PM POT
Messages | BPEL | Business Rule Validation Extensions | Feedback. E%SOA E]E]E]

7. In the Properties dialog, click Close. This displays the rule as shown in
Figure 4-28.

Figure 4-28 Rule with Test and Action Added

Ruleset_1 ¥ []Fiteron Yiews | IF{THEN Rules - R B aAw

= ¥ Rule_1
<enter description =

IF
CustomerCrder, annualSpending > 2000
<insert test=

THEN
modify CustomerOrder € <add property = walue @ "High")

<insert ackion

4-18 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Validating Dictionaries

4.3.6 What You Need to Know About Rule Actions

A rule loop occurs when the value for a condition is changed by an action. Loops can
occur across rules in a single rule, spread over several Decision Tables, or spread over
rules and Decision Tables in the same ruleset. You need to avoid creating rule actions
that modify fact properties that are used in rule conditions. At runtime, such rules
could cause an infinite loop.

4.3.7 What You Need to Know About Oracle Business Rules Performance Tuning

In most cases, writing of rules should not require a focus on performance. However,
there are tips that can that help you to enhance and maximize rule performance.

For more information on Oracle Business Rules performance tuning, see "Oracle
Business Rules Performance Tuning" in Oracle Fusion Middleware Performance and
Tuning Guide.

4.4 Validating Dictionaries

Rules Designer performs dictionary validation when you make any change to the
dictionary. Rules Designer validation can assist you when you work with rules or
Decision Tables. To show the validation log window;, click the Validate icon or select
View>Log and select the Business Rule Validation tab. This displays warnings for
incorrect or incomplete rules. Note that you must correct all warnings before you can
test or deploy rules.

When a dictionary is invalid, Rules Designer produces a list of warning messages and
lists the associated dictionary objects. You can use the validation message information
to locate the dictionary object and to correct problems. In addition, Rules Designer
flags objects with validation warnings with a validation indicator (a red, wavy
underline), as shown in Figure 4-29.

Working with Rulesets and Rules 4-19

Validating Dictionaries

Figure 4-29 Validation Warnings Shown in Log and On Screen with Wavy Underline

OOrada‘?uJesl.ruJes =
B 5 M 2] @
& : s
Ruleset 1 ¥ []EikerOn Wiew: | IF/THEN Rules - BEHRHRaAw
g
® = ¥ Rule 1
<enter description =
'
IF
< CustomerCrder.annualSpending > 9004
g <inserk best:
£ THEN
modify CustomerOrder { <add property = walue @ "High")
<insert action
[=
Design
[£]Business Rule Yalidation - Log =
[Z3] Dictionary - Oraclefules1.rules Display Mew i#farnings First

Message Dictionary Object Propetky
OracleRulesljRuleset_1{Rule_1fCustomerOrder(Test[1]){Expression[2] [vValue

[This is & new exception since the last update! |

SDE Warnings: 1 Last Yalidation Time: 7:58:28 AM PDT

Messages Business Rule validation | Feedback | [AD]=)
|

If a dictionary is invalid, you can save the dictionary. However, you can only generate
RL Language for a dictionary that is valid and does not display warnings in the Rules
Designer validation log.

In the validation log, each validation message includes the following;:

= Message: The message provides details on the Oracle Business Rules exception
that describes the problem.

= Dictionary Object: This field displays a path that indicates details that should
allow you to identify a component in the dictionary.

» Property: provides information on a property of the object associated with the
warning message.

When you are viewing the validation log, if you select an item and then right-click and
select from the list Select and Highlight Object in Editor, Rules Designer moves the
cursor to select the dictionary object. Note that for some validation warnings this
functionality is not possible.

4.4.1 Understanding Data Model Validation

Rules Designer performs dictionary validation when you make any change to the
dictionary. When Rules Designer displays a warning message, the validation log
includes a message that should assist you in locating the dictionary object that caused
the validation warning. For example, the following string indicates that the warning
originates from the data model object named RLFact_1. In addition, the problem is in
the property named test_int:

CarRental/Data Model/RLFact_l/test_int/Expression

4-20 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Validating Dictionaries

Table 4-3 specifies the parts of the dictionary object name specified in a validation
message.

Table 4-3 Data Model Dictionary Property in Validation Log

Name Description

CarRental Dictionary Name

Data Model Data Model component in dictionary.
RLFact_1 Element name in data model
test_int Property name in the specified element.
Expression Expression part of property.

For more information, see:

= Section 4.4.2, "Understanding Rule Validation"

= Section 4.4.3, "Understanding Decision Table Validation"
= Section 4.4.4, "How to Validate a Dictionary"

4.4.2 Understanding Rule Validation

When you click the Validate icon Rules Designer displays the validation log. When
you first add a rule you see validation warnings similar to those shown in Figure 4-30.

Figure 4-30 Rules Validation Messages

[ElBusiness Rule Yalidation - Log =
[23] Dictionary - OracleRules1 . rules [i7] Display Mews Warnings First
Message Dictionary Object Property

'y RUL-05704: The pattern must have a fact type. Enter a valid fact type. OracleRules1/Ruleset_2/Rule_1/Pattern[1] FactType

SDK Warnings: 1
Messages Business Rule Validation Extensions Feedback. 0D

Last Walidation Time: 1:17:09 PM PST

The dictionary object name part of a validation message for a rule includes details that
help you to identify the ruleset, the rule, and an area in the rule that is associated with
the validation warning. For example, the following dictionary object specification
indicates a problem:

OracleRulesl/Ruleset_2/Rules_1/Pattern[1]
In validation messages, the dictionary object name for a rule uses indexes that start at

1. Thus, the first pattern is Pattern[1].

In addition to validating rules, you can also test them in Rules Designer as you are
designing them. For more information, see Section 8.1.1, "How to Test Rules Using a
Test Function in Rules Designer".

4.4.3 Understanding Decision Table Validation

When you click the Validate icon Rules Designer displays the validation log. When
you first add a Decision Table you see validation warnings similar to those shown in
Figure 4-31.

Working with Rulesets and Rules 4-21

Validating Dictionaries

Figure 4-31 Decision Table Validation Messages

[E]Business Rule validation - Log E]
[E2] Dictionary - OracleRules1.rules [#] Display Mews Warnings First
Message Dickionary Object Property
1 RILL-05837; The decision table has no conditions or rules, OracleRules1jRuleset_2/Decision Table(DecisionTable_1)
1 RILIL-05838: The decision kable has no ackions, OracleRules1/Ruleset_2/Decision Table(DecisionTable_1)
Y RUL-05703: The rule or decision table must have at least one pattern ar test, ... OracleRulesijRulesst_2 {Decision Table(DecisionTable_1)

SOk \Warnings: 3
Business Rule Yalidation Extensions Feedback =)

Messages

Last Walidation Time: 1:32:46 PMPST

The dictionary object name part of a validation message for a Decision Table includes
details that help you to identify the area of the Decision Table that is associated with
the validation warning. For example, the following dictionary object specification
indicates a problem in the first action row, and the first action cell of the Decision
Table:

OR1/Ruleset_l1/DecisionTable_1/Action[1]/Action Cell[1]
In validation messages the dictionary object name for a Decision Table object uses

indexes that start at 1. For example, to indicate the first condition cell in the first row in
the Conditions area, the message is as follows:

OracleRulesl/Ruleset_1/DecisionTable_2/Condition[1]/Condition Cell[1]

This specification indicates the condition cell for the rule with the label R1 in the first
row of the Conditions area in a Decision Table as shown in Figure 4-32.

4-22 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using Advanced Settings with Rules and Decision Tables

Figure 4-32 Decision Table with Warning on a Condition Cell

| racleRulesi.rules |\>Purchaseltems.rules [QDradeRuJesl.ruJes |\>OracIeRuIesl.ruIes |x\>0racIeRuIesl.ruIes |\>OracleRuIesl.ruIe: 00

B s o & @
Facts : e
9 Ruleset 1 View: | DecisionTable_1 v| 3 - R |
_f.: Functions -
¥ W, DecisionTable 1 <enter description>
t‘) lobals P P T,
- == i o
{7 Bucketsets c1Rzi| () [ariver_ages2 3/ TR Aav BRI DER
D Links c Conditions RI
E Decision Functions
Rulesets + b4
&P Ruleset_1
&P Ruleset_2
Q - Actions
A1 modify Driver2(
eligible:)] true true
[
Design
' [E]Business Rule validation - Log E]|
[E2) Dictionary - CracleRulesl.rules Display Mew ‘Warnings First
Message Dictionary Object Property,
A% RUL-05831: The decision table bucket reference cannot be Found, OracleRules1jRuleset_1/DecisionTable_1/Condition[1] Condition Cell[1]
SDE Warnings: 1 Last Yalidation Time: 2:08:32 PMPDT
Messages BFEL Business Rule Yalidation Extensions Feedback. i_%SOA @fs5earching for Driver2 E]E]E]

eirulesiprojectliCracleRules1. rules Editing i Heap

4.4.4 How to Validate a Dictionary

Rules Designer performs dictionary validation when you make any change to the
dictionary.

To validate a dictionary:
1. In Rules Designer, click the Validate icon (a checkmark).

2. Select the Business Rule Validation log from the messages area.

3. When you are viewing the validation log, if you select an item and then right-click
and select from the list Select and Highlight Object in Editor, Rules Designer
moves the cursor to select the dictionary object. Note that for some validation
warnings this functionality is not possible.

4.5 Using Advanced Settings with Rules and Decision Tables

Advanced settings for rules and Decision Tables let you work with features that
provide advanced options that not all Oracle Business Rules users need. These features
include:

= Advanced Mode: allows additional pattern matching options and nested tests in
rules.

For more information, see:

Working with Rulesets and Rules 4-23

Using Advanced Settings with Rules and Decision Tables

- Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or Decision
Table"

— Section 4.5.2, "How to Select the Advanced Mode Option"
— Section 4.7.5, "What You Need to Know About Advanced Mode Rules"

s Tree Mode: makes it easier to work with master detail hierarchy, nested elements
that map to a parent child relationship. These parent child relationships among
facts are common with XML and ADF Business Components fact types. You can
use this option with the Advanced Mode option.

For more information, see Section 4.8.2, "How to Create Simple Tree Mode Rules".

= Rule Active: specifies that a rule or Decision Table is active or inactive. When
Rule Active is unselected, Rules Designer does not validate the specified rule or
Decision Table.

For more information, see Section 4.5.3, "How to Select the Active Option".

= Logical: allows you to enable or disable logical dependence between the facts that
trigger a rule and the facts asserted by a rule.

For more information, see Section 4.5.4, "How to Select the Logical Option".

= Allow Gaps (available only with Decision Table advanced settings). This checkbox
determines if validation messages are reported when gaps are detected in a
Decision Table. The specific validation message is:

RUL-05852: Decision Table has gaps
For more information, see Section 5.3.1.3, "Understanding Decision Table Gap
Analysis" and Section 5.3.5, "How to Perform Decision Table Gap Analysis".

» Priority: specifies the priority for a rule or a Decision Table. Higher priority rules
run before lower priority rules, within a ruleset.

For more information, see Section 4.5.5, "How to Set a Priority for a Rule".

= Conflict Policy: (available only with Decision Table advanced settings). Specifies
the Decision Table conflict policy, one of the following;:

- manual: Conflicts are resolved by manually specifying a contflict resolution for
each conflicting rule.

- auto override: Conflicts are resolved automatically using an override conflict
resolution when this is possible, using the automatic conflict resolution
policies.

- ignore: Conlflicts are ignored.

For more information, see Section 5.3.1.4, "Understanding Decision Table Conflict
Analysis".

» Effective Date: specifies effective dates for a rule or a Decision Table.

For more information, see, Section 4.5.6, "How to Specify Effective Dates".

4.5.1 How to Show and Hide Advanced Settings in a Rule or Decision Table

In Rules Designer, next to each rule name and Decision Table name, the show or hide
advanced settings icon lets you show and hide advanced settings.

To show and hide advanced settings in a rule or decision table:
1. Select the ruleset where you want to show advanced settings.

4-24 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using Advanced Settings with Rules and Decision Tables

2. In the View field, from the list, select either IF/THEN Rules or select a Decision
Table.

a. To show the advanced settings, next to the rule name click Show Advanced
Settings, as shown in Figure 4-33 (there is a highlighted icon shown next to
the rule name, Rule_1).

Figure 4-33 Showing Rules Advanced Settings

7 Ruleset 1 ¥ [|Fiteron Yiew: | IF/THEM Rules R EHERAw

= ¥ Rule_1
=enter description:=

IF
CustomerOrder, annualSpending = 2000
<insert test =

THEN
rodify CustonerOrder (<add property = value @ "High")

<insert action

b. To hide the advanced settings, next to the rule name click Hide Advanced
Settings, as shown in Figure 4-34 (there is a highlighted icon shown next to
the rule name, Rule_1).

Figure 4-34 Hiding Advanced Settings in a Rule

Ruleset_1 ¥ [|Eiteron iew: | IF/THEN Rules - R ERERAw

=% Rule_1
<enker description=

[Advanced Made [Tree Made Rule Active [| Logical Priority: |medium v|
Effective Date: | Always Valid
IF

CustomerCrder.annualspending > 2000
<insert kst

THEN

modify CustomerOrder { <add property = value @ "High")

<insert ackionz

4.5.2 How to Select the Advanced Mode Option

Select Advanced Mode to use Rule or Decision Table features that provide additional
pattern matching options and additional actions. For more information, see
Section 4.7, "Working with Advanced Mode Rules".

To select the advanced mode option:
1. Select the rule or Decision Table where you want to set Advanced Mode.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

3. Select Advanced Mode, as shown in Figure 4-35.

Working with Rulesets and Rules 4-25

Using Advanced Settings with Rules and Decision Tables

Figure 4-35 Setting Advanced Mode Option

Ruleset 1 ¥ [|Fiteron Yiew: | IF/THEM Rules | 4R T B 0 60 A w

7 % Rule 1
=entar description =

Advanced Mode [] Tree Mode Rule Active [| Logical Priority: | mediom :|
Effective Date: Always Walid

IF

<variable = is & <fack bype >
<inserk test =
<inserk patkern:=
THEN

<inserk action

4.5.3 How to Select the Active Option

Oracle Business Rules includes the ability to specify that a rule or a Decision Table is
active or inactive. The active option is set independent of the effective dates and may
be set without changing or removing previously specified effective dates. When Rule
Active is unselected, Rules Designer does not validate the rule.

To select the active option:
1. Select the rule or Decision Table where you want to set the Rule Active option.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

3. Select Rule Active.

4.5.4 How to Select the Logical Option

A ruleset or Decision Table with the Logical option selected specifies that rules in the
generated RL Language use the logical property. The logical property allows you to
enable or disable logical dependence between the facts that trigger a rule and the facts
asserted by a rule.

A rule with the logical property enabled makes all facts that are asserted by an action
block in the rule dependent on facts matched in the rule condition. Anytime a fact
referenced in the rule condition changes, such that the rule's conditions no longer
apply, the facts asserted by the rule condition are automatically retracted. For more
information on the logical property, see Oracle Fusion Middleware Language Reference
Guide for Oracle Business Rules.

Using the ruleset and Decision Table Logical option you can enable or disable the
logical property for the generated RL Language associated with the rules in the ruleset
or the Decision Table. By default, the Logical option is not selected.

To select the logical option:
1. Select the rule or Decision Table where you want to set the Logical option.

2. C(Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

3. Select Logical.

4-26 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using Advanced Settings with Rules and Decision Tables

4.5.5 How to Set a Priority for a Rule

You can set the priority for a rule or a Decision Table. You can select from a predefined
named priority list as shown in Table 44, or enter a positive or negative integer to
specify your own priority level. Higher priority rules run before lower priority rules,
within a ruleset. The default priority is medium (with the integer value 0).

Table 4-4 Priority String Value Mapping

Named Priority Integer Value
highest 3000

higher 2000

high 1000

medium (Default Priority) 0

low -1000

lower -2000

lowest -3000

To set a priority for a rule:
1. Select the rule or Decision Table where you want to set the priority.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

3. In the Priority field, specify the priority value:
a. To specify a named priority, select a named priority from the Priority list as

Figure 4-36 shows.

Figure 4-36 Choosing a Predefined Named Priority

* Ruleset_1 ¥ [|FiterOn View: | IFTHEN Rules - ®R BEHDRAw

= % Rule_1

<enter description =
[] Advanced Mode [] Tree Made Rule Active [| Logical Priority: |V|
highest
higher
high

Effective Date: Always Valid

IF
CuskomerCrder. annualspending = 2000

o
ey
lowesk

<insert test=

THEN

<insert action >

b. To specify an integer priority, click in the Priority field and enter a positive or
negative integer value and press Enter, as Figure 4-37 shows.

Working with Rulesets and Rules 4-27

Working with Nested Tests

Figure 4-37 Choosing a User Defined Numeric Priority

Ruleset_1 ¥ [|FiterOn View: | IF/THEN Rules k- BEHRRAw

= % Rule_1
<enter descripkion =

[]Advanced Mode [] Tree Mode Rule Active [|Logical Priority: |10 :|
Effective Dake: Ahways valid

IF
CustormerOrder, annualspending > 2000
<insert test>

THEN

<insert ackionz

4.5.6 How to Specify Effective Dates

You can specify effective dates for a ruleset, a rule, or a Decision Table.

To specify effective dates:
1. Select the rule or Decision Table where you want to set the effective date.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

3. Select the Effective Date field. This displays the Set Effective Date dialog.
4. Use the Set Effective Date dialog to set the effective date.

For more information on using effective dates, see Section 4.9, "Using Date Facts, Date
Functions, and Specifying Effective Dates" and Section 4.2.2, "How to Set the Effective
Date for a Ruleset".

4.6 Working with Nested Tests

In a rule or a Decision Table you can create more complicated tests using the nested
tests feature.

4.6.1 How to Use Nested Tests

To use nested tests:
1. Select the rule where you want to use a nested test.

2. Inthe IF area, select a test. This surrounds the test with a highlighted box.
3. With a test selected right-click to display the list, as shown in Figure 4-38.

4-28 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Advanced Mode Rules

Figure 4-38 Adding a Nested Test to a Rule

|\>OracleRulesl rules QDradeRulesl.rules I o CreditRatingTypes.xsd |ﬂﬂaOracleRules1_DecisionService_DecisionFunct 00

EE L N S| Q @
e : -
Ruleset_1 ¥ [|Fiter On Wiew: [{Jp IF{THE Pules k- R BB Aw
£
) = ¥ Rule_1
<enter description =
&
IF
B [Customerorder. annualspending = 2000 |¢ =
Walidate Test
<insert test> e
£p THEN
Insert After [B Mested Test
@) modify CustomerOrder € <add property = walue @ "High")
foed Surround with. .,
<insert action
W ocut
Copy
3¢ Delete Test
[=
Design

4. To add the nested test, from the list select either Insert Before or Insert After and
then select Nested Test. A nested test is shown in Figure 4-39.

Figure 4-39 A Nested Test Added to a Rule

|\>OracIeRuIesl rules QﬂrackRuJesl.ruJes I-:-E:"-‘- CreditRatingTypes, xsd |E%OracleRulesl_DecisionService_DecisionFunct @E]E]

B § ®s) 0 & @
‘;_3 Ruleset_1 ¥ [|Fiteron wiew: | b IF/THEN Rules X HPRAw
3
= ¥ Rule_1
) <enter description =
©
IF
< { <inserttest=) and
CustomerCrder.annualSpending = 2000
@ <inserk test =
@ THEN

modify CustomerOrder (<add property = walue @ "High" 3

<insert ackion

(=

Design

4.7 Working with Advanced Mode Rules

Oracle Business Rules provides features that allow you to create advanced rules that
add support for the following Oracle Business Rules features:

= Additional Pattern Match options (see Section 4.7.1, "How to Use Advanced Mode
Pattern Matching Options")

» Additional Matched Fact Naming options (see Section 4.7.2, "How to Use
Advanced Mode Matched Fact Naming")

= Additional Supported Action forms (see Section 4.7.3, "How to Use Advanced
Mode Action Forms")

Working with Rulesets and Rules 4-29

Working with Advanced Mode Rules

= Pattern Match Aggregate Function options (see Section 4.7.4, "How to Use
Advanced Mode Aggregate Conditions")

For more information, see Section 4.7.5, "What You Need to Know About Advanced
Mode Rules".

4.7.1 How to Use Advanced Mode Pattern Matching Options

The advanced mode pattern matching options specify when a rule should fire.
Table 4-5 shows the available options.

Table 4-5 Advanced Mode Pattern Matching Options

Option Description

for each case where Thisis the default pattern matching option. A rule should fire
each time there is a match (for all matching cases).

there is a case where This option selects one firing of the rule if there is at least one

match.
there is no case The value specifies that the rule fires once if there are no such
where matches.
aggregate This specifies an aggregate function is applied to all matches.

For more information, see Section 4.7.4, "How to Use Advanced
Mode Aggregate Conditions".

To use advanced mode pattern matching options:
1. Select the rule or Decision Table where you want to use pattern matching options.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

3. Select Advanced Mode.
4. Right-click a test pattern and select Surround With... as shown in Figure 4-40.

Figure 4-40 Surrounding With Option

Ruleset 1 ¥ [|Fiteron Yiew: | () IFITHEN Rules - R TRBHOAw

= 2 Rule 1
<enter description =

Advanced Mode [] Tree Mode Rule Active [| Logical Priority: | medium V|

Effective Date: Always Valid

IF

=variable> is a <fact bype:

<inserk test= W walidate Pattern

Advanced Pattern Test Mode
<insert patkern:

THEN Inserk Before »
Inserk After »

<insert action >

Surround With, ..

3 ocu
Copy

3¢ Delete Pattern

The Surround With dialog appears as shown in Figure 4-41.

4-30 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Advanced Mode Rules

Figure 4-41 Surround With Dialog

& Surround With D_<|

attern Block

| oK || Caneel |

L

5. Choose the Pattern Block option from the Surround With dialog and click OK.

The pattern is surrounded by a nested pattern with the default (for each case
where) as shown in Figure 4-42.

Figure 4-42 Default Pattern Matching Option: for each case where

Ruleset 1 ¥ [|Eiker On Wiews: | IF{THEN Rules k- R BEHHRAv

= % Rule 1
<gnter descripkion =

[]TreeMode [v]Rule Active [| Logical Priority: | medium :|

Effective Dake: | Ahways valid

IF
for each case wherel| {
<variable> is a <fack bvpe:
<insert besk:
<insetk patkerns
b <insert best>
<inserk patkern:
THEN

<insert actionz

6. Select the default (for each case where) option and select the desired pattern
matching option from the list as shown in Figure 4-43.

Working with Rulesets and Rules 4-31

Working with Advanced Mode Rules

Figure 4-43 Adding an Advanced Pattern Match Option

Ruleset 1 ¥ [|Eiker On Wiews: | IF{THEN Rules | - R & A v

= % Rule 1
<gnter description=

[]TreeMode [v]Rule Active [| Logical Priority: |medium :|

Effective Date: Ahways valid

IF

l'-For each case where]| {

(For each case where)

(for each case where)
there is a case where
there is no case where
aggregate

<inserk patkern=
THEN

<insert actionz

4.7.2 How to Use Advanced Mode Matched Fact Naming

The matched fact name field, pattern binding variable, in a rule or a Decision Table lets
you test multiple instances of the same type in a single rule. The matched fact name
lets you enter a temporary name for the matched fact to use in a test. For example, the
rules shown in Figure 4-44 show the use of pattern binding variables in a rule that
applies a discount on a shoe item when an order includes at least one "matching" hat
item.

Figure 4-44 Rule Using a Pattern Binding Variable

Ruleset 1 ¥ [|Fiteron dew: [P IFTHENRues v| G - 8 T2 B EH 60 &

= ¥ Rule_1
<enter description=

IF

Crder is a Crder
and

there is a case where {

Orderglineltem] is a Order$lineltern and

Crderflinelteml.sky == "HAT123"

}.

and

there is a case where {
Order$lineltem? is a Order$lineltemn and

Orderglineltemn? sk == "SHOE456"
'

THEN

modify Order { discount @ 0,05)

For example, you can create the rule, as shown in Figure 4-45 to find duplicate items
in a customer order. This example shows the use of matched in a rule.

4-32 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Advanced Mode Rules

Figure 4-45 Rule to Find Duplicate Items in an Order

7 Ruleset 2 ¥ [|Eiteron Yiew: [(DIFTHENRues v | dp - 38 T2 §h [& & w

e

= % Rule_1
=enter description =

[]IreeMode [¥]Rule Active [|Logical Priority: |medium |:|
Effective Date: Always valid
IF
Orderlinelter] is a Order$lineltem

<insert test>
and

Orderflineltern? is a Orderflineltem and

Orderlineltemnl.sku == Orderflineltemz.sku and
Orderflineltemnl.color == Order$lineltemz. color and
RL.get Fact ID{Crder$linelteri) = RL.get Fact ID{Orderflineltemz)

<insert bests

<insert pattern =
THEN

call print{ message : "Duplicate Item: Do you want to order two of the same item?")

<insert action

To use advanced mode matched fact naming:
1. Select the rule or Decision Table where you want to add a matched fact name.

2. Click the Show Advanced Settings icon next to the rule name (see Section 4.5.1,
"How to Show and Hide Advanced Settings in a Rule or Decision Table").

3. Select Advanced Mode.
4. Select the <fact type> and enter a fact type from the list.

5. Select the supplied matched fact name and modify it as needed, as shown in
Figure 4-46. For example, enter the matched fact name Order$LineIteml and
then press Enter.

Working with Rulesets and Rules 4-33

Working with Advanced Mode Rules

Figure 4-46 Adding a Matched Fact Variable Name
+# Ruleset 2 ¥ [|Flteron Yew: [P IFTHENRdes ~| o~ 8 T EHFH O A @

=l % Rule_1
<enker description =

[1IreeMade [#|Rule Active [| Logical Pricrity: |medium |:|

Effective Date: | Ahways valid

IF

COrderflineltem] is a Orderflineltem

Matched Fact Mame {Hit Enter Key Ta Save)

Order$linelteml

COrderflineltem? is a Orderflineltem and

Order$linelteml.sky == Order$lineltemz.sku and
COrderflinelteml.color == Orderflineltem?Z. color and

RL.get Fact ID{Crder$lineltem1) = RL.get Fact ID{Orderglineltemz)

<insert test

<insert patkern:=
THEN

call prink{ message : "Duplicate Ikem: Do vou want to order two of the same item?")

<insert ackion>

6. Create the rule as Figure 4-47 shows. Note that you can choose a matched fact
name as an operand. Choose the Lineltem1 and Lineltem2 operands as needed to

create the rule.

Figure 4-47 Choosing a Matched Fact Variable Name as an Operand

¥ [JEkeron Yiew [IFTHENRues | dR - 8 T3 Bh Y 63 A w

+ Ruleset_2

= % Rule_1
=enter description >

[]TreeMode [¥]Rule Active [|Logical Priority: |medium |:

Effective Date: Always valid

IF

Orderglinelteml is a Order$lineltem

<insert bests
and

Orderlineltem? is a Order$linelter and

Orderlineltenl.skuy == Crder$lineltemz.sku and
Orderlinelterl.color == OrderflineltemZ. color and

RL.get Fact ID{Order$linelteml) = RL.get Fact ID{OrderfLineltemz)

<insert test =

<insert patkern =
THEN

call prink(message : "Duplicate Item: Do yvou want to order bwo of the same iker?")

<insert action

Note in Figure 4-47 that the test checking;:
RL.get fact ID(Order$SLinelIteml) >RL.get fact ID(OrderS$SLineltem2)

Prevents a single instance of an Order$LineItem from matching both patterns that
match the Order$LineItem fact type. The ">" is required so that the rule does not

4-34 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Advanced Mode Rules

fire for different permutations of different instances. For more information, see
Appendix C.4, "How Do I Correctly Express a Self-Join?".

4.7.3 How to Use Advanced Mode Action Forms

When you create a rule with Advanced Mode, Rules Designer presents a list with the
available actions shown in Table 4-6. For each form shown in Table 4-6, the options
that Rules Designer presents are context sensitive. Thus, the lists and the number of
items you see when you work with the action types are context sensitive, depending
on which action you add and the choices you make while you enter the action.

Table 4-6 Advanced Mode Action Options

Action Form Description

Assert Assert a fact

Assert Tree Asserts a tree of facts given the root.
Assert New Assert a new fact.

Assign Assign a value to a variable.

Assign New
Expression
Call

For

If

Modify
Retract

Return

rl

synchronized

throw

try

while

Assign a value to a new variable.
Perform expression.
Call a function.

Oracle RL, like Java, has a for loop. A for loop includes a type with a
variable and a collection. The type and variable defines the loop variable
that holds the collection value used within the loop. Collection is an
expression that evaluates to a collection of the correct type for the loop
variable. You can use a for loop to iterate through any collection.

A return, throw, or halt may exit the action block.

Using the if else action, if the test is true, execute the first action block, and
if the test is false, execute the optional else part, which may be another if
action or an action block. Oracle RL, unlike Java, requires action blocks and
does not allow a single semicolon terminated action.

Modify a data value associated with a matched fact.
Retract a fact.

The return action returns from the action block of a function or a rule. A
return action in a rule pops the ruleset stack, so that execution continues
with the activations on the agenda that are from the ruleset that is currently
at the top of the ruleset stack.

Use an Oracle RL expression that you supply.

As in Java, the synchronized action is useful for synchronizing the actions
of multiple threads. The synchronized action block lets you acquire the
specified object's lock, then execute the action-block, then release the lock.

Throw an exception, which must be a Java object that implements
java.lang. Throwable. A thrown exception may be caught by a catch in a try
action block.

The try, catch, and finally in Oracle RL is like Java both in syntax and in
semantics. There must be at least one catch or finally clause.

While the test is true, execute the action block. A return, throw, or halt may
exit the action block.

Working with Rulesets and Rules 4-35

Working with Advanced Mode Rules

To use advanced mode action forms:

1.
2.
3.

In Rules Designer, select a ruleset from the Rulesets navigation tab.
Select or add a rule or a Decision Table.

In the rule or Decision Table click the Show Advanced Settings icon next to the
rule or Decision Table name (see Section 4.5.1, "How to Show and Hide Advanced
Settings in a Rule or Decision Table").

Select Advanced Mode.

With the insertion areas showing, in a rule in the THEN area select <insert
action>. This displays the action list, as shown in Figure 4—48.

Figure 4-48 Adding an Action to a Rule in Advanced Mode

Ruleset_1 ¥ [|Flkeron Wiew: | IF/THEN Rules k- THTOA
=l & Rule_1

<enter description =
[V] Advanced Mode [| Tree Mode W] Rule Active [| Logical Priovity: |medium |v|

Effective Date: | Always Valid

IF

CustomerOrder is a CustomerCrder

<insert test=

<inserk patkern:=
THEN

<insert ackion I

assert
assert tree
assert new
assign
assign new
EXpression
call

for

it

modify
retract
return

tl
synchronized
throw

Ery

while:

In the list select the action you want to add.
For example, select assign new.

In the THEN area, select the context sensitive parameters for the action and enter
appropriate values.

4.7.4 How to Use Advanced Mode Aggregate Conditions

When you create a rule with Advanced Mode, Rules Designer supports the pattern
matching aggregate option. When you write rule conditions that are based not only on
one fact, but on many facts, you can use an aggregate. You use aggregate functions
when the conditions have a view spanning multiple facts.

Table 4-7 shows the available aggregate functions.

4-36 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Advanced Mode Rules

Table 4-7 Aggregate Functions for Advanced Mode Rules

Function Description

count Count of matching facts.

average Average of matching facts.
maximum Maximum value of matching facts.
minimum Minimum value of matching facts.
sum Sum of matching facts.
collection Builds a list of matching facts.

For example, to write a rule that specifies a special order as follows:

IF

an order has more than 5 line items whose price is above a certain value
THEN

the order requires manual approval

The five line items may span multiple facts. Thus, you can use the count aggregate
function to write this sample special order rule.
When you use an aggregate function, do the following:
= Select aggregate for the pattern.
= Enter a function from the list shown in Table 4-7
= Enter or select values from the context sensitive menus:
- <variable> A name for the aggregate value.

- <expression> The value to aggregate, for example driver.age. When the
aggregate function you select is the count function the <expression> is not
used.

For example, you can compute the sum of the cost all the line items with color "red", as
shown in Figure 4-49.

Working with Rulesets and Rules 4-37

Working with Advanced Mode Rules

Figure 4-49 Using Aggregate Functions with Rules Red Color Total Cost Rule

Ruleset 1 ¥ [|Flteron Yiew: | IF/THEN Rules - R TR Eeea v

=l & Rule 1
<enter description:=

[|TreeMade [#]Rule Active [| Logical Priority: |medium |:|

Effective Date: Always Valid

IF

o_order is a Order
and
total_cast is the sum of item_x.price where {
item_x is a Orderflineltem
and

ol is a Order$lineltemn and

ol.color == “red"

tand total_cost !'= o_order.tokal

THEN

modify o_order { total : botal_cost)

To use advanced mode aggregates:

1. Select or create the rule or Decision Table where you want to use an aggregate
function.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

Select Advanced Mode.
Enter the fact type you want to work with.
Select <insert pattern> to add a pattern.

Select the new pattern.

N o g e

Right-click the pattern and select Surround With.... This displays the Surround
With dialog.

8. In the Surround With dialog select Pattern Block. For more information, see
Section 4.7.1, "How to Use Advanced Mode Pattern Matching Options".

9. Click OK.

10. In the pattern select the first field. By default this field contains (for each case
where), as shown in Figure 4-50.

4-38 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Advanced Mode Rules

Figure 4-50 Adding an Advanced Pattern Match Option

Ruleset 1 ¥ [|FiterOn Yiew: |) IF/THEN Rules - BEREHOAw

= % Rule_1
=enter description =

[] Tree Made Rule Active [| Logical Priority: |mediom |V|
Effective Date: Always Walid
IF
Order is a Order

<insert best=
and

rFor each case where) {

(For each .]
(for each case where)
there is a case where
there is no case where
aggregate

<insert pattern
THEN

<insert ackion>

11. Select the aggregate option. This adds the context sensitive fields for an aggregate,
as shown in Figure 4-51.

Figure 4-51 Using Aggregate Functions in a Rule

Ruleset 1 ¥ [|Eiker On Yiew: | IF/THEN Rules - EHBHRAw

S % Rule 1
<enter description =

[Tree Made Rule Active [| Logical Priority: @E'
Effective Date: Alwaws valid
IF

<variable> is the UF Sexpression: where {

<variable = is & <fack bype >

<inserk test =

<insert patkern:

b Zinsert tesk:

<insert pathern:>
THEN

<insert action

12. Click <function> and select a function from the list.
13. In the condition, click <fact type> and select a fact type from the list.
14. Click <expression> and select an expression from the list.

15. Rules Designer by default constructs variable names as you create the aggregate
pattern. If needed for the rule you are constructing enter variable names to replace
the default variable names. Figure 4-52 shows a completed rule using aggregate.
In this example, for clarity the rule shows the variable names total_cost and
item x.

Working with Rulesets and Rules 4-39

Working with Advanced Mode Rules

Figure 4-52 Completed Aggregate Function in a Rule

Ruleset_1 ¥ [|Flkeron Wiew: | IF/THEN Rules k- R BT Aw

=l % Rule_1
<enter description =

[Tree Made Rule Active [| Logical Priority: | medium E|
Effective Date: Always valid
IF
Order is a Order
<insert test=
and
total_cost is the sum of item_x.price where {
item_x is a Orderflineltem
<insert test=
<insert patkern:=
t <insert kest=

<inserk patkern:=
THEN

<insert ackionz

16. Enter additional tests as required. For this example you enter the test for items
with color "red", as Figure 4-53 shows.

Figure 4-53 Using Aggregate Functions with Rules Red Color Total Cost Rule

+# Ruleset 1 ¥ [|Flkeron Wiew: | IF/THEN Rules - R TR Eeea v

=l & Rule 1
<enter description:=

[|TreeMade [#]Rule Active [| Logical Priority: |medium |:|

Effective Date: Always Valid

IF

o_order is a Order
and
total_cast is the sum of item_x.price where {
item_x is a Orderflineltem
and

ol is a Order$lineltemn and

ol.color == “red"

tand total_cost !'= o_order.tokal

THEN

modify o_order { total : botal_cost)

4.7.5 What You Need to Know About Advanced Mode Rules

There are some special cases to keep in mind when you work with Advanced Mode
rules, including the following:

= When you work with aggregates, in actions, you do not see pattern variables. The
pattern variables are only shown for action lists when you use (foreach...) patterns.

Thus, you cannot see pattern variables in aggregate, "there is a case", or "there is
no case patterns".

4-40 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tree Mode Rules

= After you select Advanced Mode the Advanced Mode stays selected and inactive
(gray), as long as your rule uses advanced options such as advanced pattern
matching. To deselect Advanced Mode you must remove or undo the advanced
mode features (sometimes it is easier to start over by creating a non-advanced
mode rule and then delete the advanced mode rule).

To deselect the advanced mode option:
1. Select the rule or Decision Table where you want to deselect Advanced Mode.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

3. Consider the state of the rule:

s If you can simplify the rule to enable the Advanced Mode option (such that
the Advanced Mode icon changes from gray to enabled). Then simplify the
rule and when Advanced Mode is enabled, deselect Advanced Mode.

s If you can use Undo to undo the steps you used to create the Advanced Mode
rule, to get to a state where the rule is no longer in Advanced Mode, then use
this technique to simplify the rule.

s If you cannot simplify the rule, then delete the rule and re-create it.

4.8 Working with Tree Mode Rules

Tree Mode rules make it easier to work with a master detail hierarchy, where there are
nested elements that map to a parent child relationship.

4.8.1 Introduction to Tree Mode Rules

To introduce tree mode rules, it is instructive to work with an example. Consider the
lifecycle of an application fragment that uses business processes and rules to process a
retail purchase order (PO). The purchase order has a header with business terms that
apply to the entire PO. The PO also contains a list of shipping destinations. Each
destination has an address, a list of items to be shipped to the destination's address,
and a list of shipments.

Consider the business rule: the status of a PO is "fully shipped" if the status of every
item is either "shipped" or "canceled".

Figure 4-54 shows a sample XML schema representation for the PO example. The
XML documents for the PO are tree structured. This allows a natural representation for
the PO. For example, the PO itself is the top level document element and destinations
are nested elements that contain item elements and shipment elements. Shipment
elements also contain item elements that reference the ordered items. Status has a list
of valid values.

Working with Rulesets and Rules 4-41

Working with Tree Mode Rules

Figure 4-54 PO Schema for Tree Mode Rules Sample

53
<schema=

targethamespace | hitpifwnew example.org

header

status
type Status

order-date
type ¥sd.date

customer-value

address

hilling
payment

PO =

item

@ guantity
type xsdint

destination

status =
type xsd:string

“— enurneration| open
enumeration | parially shipped
enurmeration | fully shipped

Example 4-1 shows the sample purchase order XML schema as represented in
Figure 4-54.

Example 4-1 Sample Purchase Order (PO) Schema

<?xml version= 'l.0' encoding= 'UTF-8' ?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns="http://www.example.org"
targetNamespace="http://www.example.org"
elementFormDefault="qualified">
<xsd:element name="PO">
<xsd:annotation>
<xsd:documentation>A sample element</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="header">
<xsd:complexType>
<xsd:attribute name="status" type="Status"/>
<xsd:attribute name="order-date" type="xsd:date"/>
<xsd:attribute name="customer-value"/>
</xsd:complexType>

4-42 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tree Mode Rules

</xsd:element>
<xsd:element name="billing">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="address"/>
<xsd:element name="payment"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="destination" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="address"/>
<xsd:element name="item" maxOccurs="unbounded">
<xsd:complexType>
<xsd:attribute name="ID"/>
<xsd:attribute name="status"/>
<xsd:attribute name="quantity" type="xsd:int"/>
<xsd:attribute name="availability-date" type="xsd:date"/>
<xsd:attribute name="goh" type="xsd:int"/>
<xsd:attribute name="price"
type="xsd:decimal" />
</xsd:complexType>
</xsd:element>
<xsd:element name="shipment" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="item" maxOccurs="unbounded">
<xsd:complexType>
<xsd:attribute name="ID"/>
<xsd:attribute name="quantity"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="ship-date"/>
<xsd:attribute name="method"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="status" type="xsd:string"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:simpleType name="Status">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="open"/>
<xsd:enumeration value="partially shipped"/>
<xsd:enumeration value="fully shipped"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

Example 4-2 shows part of the XML for an instance of the PO schema. To use tree
mode rules you can create a rule that tests one or more business terms and if the tests
pass, one or more business terms are added or changed. Oracle Business Rules has
special support to enable error-free authoring of rules on fact trees like the sample PO
instance.

Working with Rulesets and Rules 4-43

Working with Tree Mode Rules

For example, consider creating a rule for an instance of the PO schema that states:

IF the time between the order date and the date for availability of an item is
more than 30 days
THEN cancel the item

Example 4-2 Sample Abbreviated PO XML Instance

<PO xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.example.org ../../../../Temp/PO.xsd"
xmlns="http://www.example.org">
<header/>
<billing>
<address/>
<payment/>
</billing>
<destination>
<address/>
<item ID="alOl"/>
<item ID="a02"/>
<item ID="a03"/>
<shipment>
<item ID="alOl"/>
<item ID="a02"/>
</shipment>
</destination>
</PO>

4.8.1.1 Understanding Tree Mode Rules (Non-Advanced Mode)

You use non-advanced tree mode, or simple tree mode, when the Advanced Mode
option is not selected and Tree Mode is selected. With this mode Rules Designer
shows ROOT: <fact type> where you enter the root fact type, as shown in Figure 4-55.

Figure 4-55 Simple Tree Mode Rule with Tree Mode Selected

Ruleset_1 ¥ [|FiterOn View: [IF/THEN Rules k- R BHPRAw

=l % Rule_2
<enter description:=

[] Advanced Mode Tree Mode Rule Active [| Logical Priority: | medium |:|
Effective Date: | Always valid

ROOT: PO
IF

Duration.days between{PO.header . orderDate, POfdestination/itemn, availabilityDate) = 30
<insert best

THEMN
modify PO/destinationfitem { <add property= status : "canceled")

=insert action

When you create rules with Tree Mode selected and Advanced Mode unselected you
can reference properties in the tree using qualified names, for example:

m PO/destination/item.quantity thatissimilar to item.quantity but only
items that are a destination of PO are matched.

m POSDestination$item.quantity that refers to a List<item>. This reference
is unchanged from non-tree mode.

4-44 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tree Mode Rules

With Simple Tree Mode you can only choose terms that do not require many-to-many
joins or aggregation.

For more information, see Section 4.8.2, "How to Create Simple Tree Mode Rules".

4.8.1.2 Understanding Advanced Tree Mode Rules

You use advanced tree mode when the Advanced Mode option is selected and the
Tree Mode option is selected. With this mode Rules Designer shows ROOT: <fact
type> where you enter the root fact type, as shown in Figure 4-56. Rules Designer

shows patterns for the tree structured facts but the simple tests that join the parent and
child facts are hidden.

Figure 4-56 Advanced Tree Mode

+ Ruleset 1 ¥ []Flteron Yiew: | Qb IF/THEN Rules - R DA w

=l % Rule_2
<enter description=

Advanced Mode Tree Mode Rule Active [| Logical Priority: | medium |:|
Effective Date: Ahways Yalid

ROOT: PO
IF

POisaPO

=insert test=
and

POJdestination is a POfdestination and

=insert test=
and

POjdestinationfitem is a PO/destination/itern and
Duration.days between{PO.header, orderDate, PO/ destination/itern, availabilityDate) > 30

<insert test>

<insert pattern:=
THEN

modify PO/destinationfitem { <add property = status : "canceled”)

<insert ackion

In advanced tree mode the tree mode patterns, except for the root, display as:
<operator> <variable> is a <fact path>

Where the <fact path> is an XPath-like path through the 1-to-1 and 1-to-many
relationships starting at the root. For example, each fact path has a name like
PO/destination, where PO is the root fact type and the destination is a property of
type List. A 1-to-many relationship in a fact path is indicated witha "/", as in
PO/destination.

A 1-to-1 relationship in a fact path is indicated with "." This unchanged from non-tree
mode. For example, item.availabilityDate.

Advanced mode exposes the concept of a pattern, the simplest of which is is a. For
example, p is a PO causes p to match, iterate over, all the PO facts,and d is a
p/destination causes d to match all the destinations of p. The left side of is ais a
variable, and the right side is a fact type or a fact path. By default, Oracle Business
Rules sets the variable name equal to the fact type or path. For example, PO is a PO. A

Working with Rulesets and Rules 4-45

Working with Tree Mode Rules

pattern can also be a pattern block. A pattern block has a logical quantifier, negation,
or aggregation that applies to the patterns and tests nested inside the block.

For more information, see Section 4.8.3, "How to Create Advanced Tree Mode Rules".

When you work with advanced tree mode rules, Rules Designer expects you to use an
aggregation pattern, including exists and not exists to combine terms from different
child forests into the same rule while avoiding a Cartesian product.

4.8.2 How to Create Simple Tree Mode Rules

Given the XML schema shown in Example 4-1 and the schema instance shown in
Example 4-2, the following procedure creates the PO rule to cancel non 30-day
availability items.

IF the time between the order date and the date for availability of an item is
more than 30 days
THEN cancel the item

To create simple tree mode rules:
1. Create an IF/THEN rule in your ruleset.

For more information, see Section 4.3.1, "How to Add Rules".
2. View advanced settings.

For more information, see Section 4.5.1, "How to Show and Hide Advanced
Settings in a Rule or Decision Table".

3. Select Tree Mode as Figure 4-57 shows.

Figure 4-57 Simple Tree Mode Advanced Settings

] istomerorder . xsd |ﬂ”:|schemal.xsd IQDradeRulesl.ruJes | S5 PO, xsd | < untitled 1 xml | | unititled2 ol |.-|tjcompn W=
B 9PEe) DO W @
) Facts

Ruleset 1 ¥ [|FiterOn Yiew: | IF/THEN Rules v - oA v
_f,: Funckions
= % Rule 2

X) Global

(x) Globals <enter description =

2 £
{7 Bucketsets [] Advanced Mode Tree Mode Rule Active [| Logical Priority: | medium |V|
<D Links -

Effective Date: | Always valid
Q Decision Funckions

nﬂ- ® ::DDT: <fact bype=

&b Ruleset_1 <insert test>

Rulesets

THEN

=insert action

c

Design

4. Next to ROOT;, click the <fact type> place holder and select PO from the list as
Figure 4-58 shows.

4-46 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tree Mode Rules

Figure 4-58 Simple Tree Mode: Configuring the Root

IstomerOrder, xsd

=2 schemal.xsd

By 90 1O «

QOradeRuJesl s

| D-IH composit G]E]E]
@

S5 POLxsd | e+ untitled1 | [e] unititledz. xml

{8 Facts

Fe Functions

Ruleset_1 ¥ [|Filkeron Yiew: + - R TEHEH A v

= & Rule_2
(x) Globals =enter description:=
=
i Buckstsets [] Advanced Made Tree Mode Rule Active [| Logical Priority:
& Links Effective Date: Always Walid
ﬂ Decision Functions
Rulesets a9 XK G
IF E
@ Ruleset_1 <inse POSHeader
THEN PO$D_e_stination$5hipment$1tem
PO3Eilling
<inse| PO$DestinationgShipment
PO
PO$DestinationdItem
POfDestination
CurrentDate
[
Design
5. Select <insert test>.
The IF statement now reads IF <operand> == <operand>.

6. Select the left-hand <operand>.

7. Inthelist, select PO/destination/item.availabilityDate.

8. Select Expression Builder icon, as shown in Figure 4-59.

Working with Rulesets and Rules 4-47

Working with Tree Mode Rules

Figure 4-59 Adding Simple Tree Mode Expression

iskomerOrder. xsd = schemal csd QOradeRuJesl ules 2possd |[e]untitledt sl | [untitledz xml | of3composit M=

Bv H@ O & @

&) Facts 4
9 Ruleset 1 ¥ [|fkeron Yiew: |{PIFTHENRdes ~ dp~ 38 T @EHed & v
F Functions
= 2 Rpule 2
(x) Globals <enter description =
=
{7 Buckstsets [] Advanced Mode Tree Mode Rule Active [| Logical Priority:
& Links Effective Date: Always valid
ﬂ Decision Funckions
Rulesets + X ';?DT: i
@Ruleset_l LJOIdestinationIitem.availabilit [iate == <0pﬂand> |
01 /destination/item. availabilitvDate
T Q Yalue Options : i
B8 PO/destinationfitem E@
@ ID
s
..... a goh
----- @ guantity
| S (@ status
| Design =@ Pifdestination
[Elpusiness Rule Validation - Log | | © L EREES |
e [#-@ item |
- 3] Dictioniary - CracleRules1, rul ®-a shipment Display Mew \Watnings First
Message [=-a PO Property
.3 RUL-05711: The expre et_1/Rule_2,/P0/destination/item/Test[1]/Exp...
a destinakion
@ header
@ POfHeader
[#-a PO$Destinationdshipment$ltem
[#-a PO4Eiling
[#-a PO$Destinationgshipment
[#-a PO$DestinationgItem
[#-a PO$Destination
[#-a CurrentDate
() List Wiew () Tree Yiew
SDE Warnings: 1 Last Yalidation Time: §:25:12 PM PST
Messages | BPEL Exken: D Custorizable m 13 [ﬂ

9. In the Expression Builder dialog, copy and delete the item shown in the
Expression area.

10. In the Expression Builder, select the Functions tab.
11. In the navigator, expand Duration and double-click the daysbetween function.

12. Remove the daysbetween argument templates, as shown in Figure 4-60.

4-48 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tree Mode Rules

Figure 4-60 Using Expression Builder to Add a Simple Tree Mode Rule

3 Expression Builder g|
Q

Expression: '@ A

Duration. days between(b

M Insert Into Expression

[Variables l Functions LOperators LConstants |

E| [Duration

[— compare{Calendar | %MLGregorianCalendar |oracle. jbo . domain, Timest amp, Calendar | XMLGregorianC alendar |oracle. jbo.
@ |days between{Calendar | ¥MLGregorianCalendar | or acle. jbo.domain. Timestarnp, Calendar | sMLGregorianCalendar |orach
-@ minutes between(Calendar|¥MLGregorianC alendar |oracle, jbo.domain, Timestamp, Calendar | XMLGregorianCalendar |or
@ years between{Calendar | ¥MLGregarianCalendar|oracle. jbo. dormain. Timestamp, Calendar | MLGregarianCalendar |orac
-@ hours between(Calendar | XMLGregorianCalendar |oracle. jbo, domain, Timestamp, Calendar | MLGregorianCalendar |orac
-@ milliseconds betweeniCalendar | <MLGregorianCalendar |oracle. jbo.domain. Timestamp, Calendar | MLGregorianCalenda
i@ manths between(Calendar|XMLGregarianCalendar |or acle. jbo.domain. Timeskamp, Calendar | XMLGregorianCalendar | or:

Conkent Preview: Description:

Duration. days between{Calendar | XMLGregorianCalendar |oracle

Help | | (a4 || Cancel |

13.

14.
15.

16.
17.
18.
19.

In the daysbetween function, paste the value you previously cut as the second
argument.

In the Expression Builder dialog, select the Variables tab.

For the daysbetween function first argument, use the navigator to expand PO and
expand header, and double-click orderDate.

In the Expression Builder dialog, click OK.
In the list, in the expression area and press Enter.
Select the operator and enter >.

Select the right-hand <operand> and enter the value 30 and press Enter, as shown
in Figure 4-61.

Working with Rulesets and Rules 4-49

Working with Tree Mode Rules

Figure 4-61 Simple Tree Mode: Right-Hand Operand with Value 30

'__T’)Start Page |\>OracIeRuIesl.ruIes [QDradeRuJesl.ruJes %composite.xml |ﬂJa,PO.><sd E]
Bv 9@ D0 # @
&) Facts L 7 e
Ruleset_1 ¥ [|Filkeron Wiew: |QIF.I’THEN Rules v| 4 - R P 6 A w
_f,: Functions S —
= ¥ Rule_2
e <enter description =
7 Bucketsets
ROOT: PO
< Lirks IF
[E Decision Functions Duration.days between{PO.header, orderDate, POJdestinationfitem. availabilityDate) > 30
Rulesets * x <insert test>
b Ruleset_1 THEN
<insert action
=
» Desinn |
20. Click <insert action> and from the list select modify.

21.

22,
23.

The THEN statement now reads: THEN modify <targets>.

Click <target> and from the list select PO/destination/item. The THEN statement
now reads:

THEN modify PO/destination/item (<add property>)

Click <add property>. This displays the properties dialog.

In the properties dialog for the status name, enter the value "canceled", as
Figure 4-62 shows.

4-50 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tree Mode Rules

Figure 4-62 Simple Tree Mode: Action

(2)5tart Page |®OracleRuIesl.ruIes QOrada‘?uJesl.ruJes Shorderxsd | offfcompositeaml | SAPO.xsd & (3
Bv 9 ® DO & @ &
;—j‘ Facts ¢ Bl
Ruleset_1 ¥ [|FilterOn Wiew: | Jp IFITHEN Rules v| =~ % R R a v - -
_f: Functions
= ¥ Rule_2
X) Global T
(x) Globals <enter description =
7 Bucketsets
ROOT: PO
<2 Links IF
Diecision Funckions Duration.days between(PO . header . orderDate, PO/destinationyitem. availabilityDate) = 30
Rulesets 4 x <insert test>
THEN
@ Ruleset_1
modify POfdestinationitem (status :"canceled”)
<insert action:z
= Properties k [z|
Mame Tvpe alue Canskant
10 String]
Design qoh java.lang.Integer]
quankity java.lang. Integer |:|
| [Elpusiness ry stakus String "canceled" (|
[2] Dictionar
Mess 3
Fit Columns Ta Width
SDE Warnings: 0 Last Yalidation Time: 9:04:54 PM PST
Messaaes BFEL |Extensions | Feedback | Business Rule Validation | sl

24. In the Properties dialog, click Close.
25. This displays the finished rule, as shown in Figure 4-63.

Working with Rulesets and Rules 4-51

Working with Tree Mode Rules

Figure 4-63 Simple Tree Mode Rule Final Rule

(2)5tart Page |\>OracleRulesl.rules [QDracleRulesl.ruJes |ﬂJa,0rder.xsd | o2 campasite cml | S Po.xsd]
Ay 9 e PO * ®
Facts T T T
<@ ® Ruleset 1 ¥ []Flteron Miew: [IF/THEN Rules ~ - R THHOA v
Fe Functions T
= ¥ Rule_2
el <enter description =
7 Bucketsets
ROOT: PO
D Lirks IF
E Decision Functions Duration.days between{PO.header .orderDate, POJdestination/itern, avalabilityDate) = 30
Rulesets + % <insert test:=
THEN
&P Ruleset_1
modify POJdestinationfitem { <add property = status @ "canceled")
<insert action=
[
Design

Note that in the modi fy statement, PO/destination/item refers to the particular
item instance member.

4.8.3 How to Create Advanced Tree Mode Rules

Given the XML schema shown in Example 4-1 and the instance of these facts shown in
Example 4-2, the following procedure creates a free shipping rule that can be
summarized as:

IF the total cost of "free shipping eligible" items to a given destination is
greater than $40
THEN shipping of those items is free

To create advanced tree mode rules:
1. Create an IF/THEN rule in your ruleset.

For more information, see Section 4.3.1, "How to Add Rules".
2. View advanced settings.

For more information, see Section 4.5.1, "How to Show and Hide Advanced
Settings in a Rule or Decision Table".

3. Select Advanced Mode and select Tree Mode as Figure 4-64 shows.

4-52 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tree Mode Rules

Figure 4-64 Advanced Tree Mode Rule for Free Shipping

| (2)start Page |\>OracIeRuIesl.ruIes [ODradeRuJesl.ruJes |a‘-'a,0rder.xsd | oS composite el | 2 PO xsd =
== N S 0 & @
. # Ruleset 1 ¥ [v|Filter On View: IFJTHEM Rules - Eil - & A w
Py b, Sul ik bR
_f.: Functions
= & free shippin
%) Global ree shipping
(x) Globals <enter description:=
= —
7 Bucketsets Advanced Mode Tree Mode Rule Active [| Logical Priority: | mediom |'|
Links
< Lin Effective Date: Always valid
ﬂ Decision Functions
et 4_ ® IIIFIJIJT: =fack bype >
@ Rulesets] <variable> is a <fact pathz
<inserk best =
<insert patkern:=
THEN
<insert ackion
| =
Design

4. Select the <fact type> place holder and from the list, select PO.
5. Complete the free shipping rule, as shown in Figure 4-65.

Figure 4-65 Advanced Tree Mode Free Shipping Rule

(2)5tart Page |\>OracIeRuIesl.ruIes [QDracleRulesl.rules | Shorderxsd |offScomposite. sl | S POLxsd =]
EE I S S 9 & @
&3 Facts ? ; G
Ruleset_1 ¥ [/]Fiteron Wiew: | IF/THEMRues ~| o - 3¢ LA v
JE: Functions
i e
(x) Globals i ree Shlppll'.lg.
=entar description >
7 Bucketsets
ROOT: PO
<& Links IF
ﬂ Decision Functions POis a PO
Rulesets + b4 and
@ Ruleset_1
POfdestination is a POfdestination and
and
free_ship_total is the sum of PO destinationfitem.price.longvaluel) where {
POfdestinationfitem is a PO/destinationfitem and
POfdestinationfiter.status == "free-shipping-eligible"
+and free_ship_total == 40
THEN
modify POJdestination { status : "free shipping")
e
Design

4.8.4 What You Need to Know About Tree Mode Rules

When you select Tree Mode and select a root fact type, the options lists show all
available fact types (not just the children of the root fact type). This allows you to view
all available fact types as well as the children of the root fact type. There is no option to
limit the option list to only show the children of the selected root fact type.

Working with Rulesets and Rules 4-53

Using Date Facts, Date Functions, and Specifying Effective Dates

4.9 Using Date Facts, Date Functions, and Specifying Effective Dates

Oracle Business Rules provides functions that make it easier for you to work with
times and dates, and provides effective date features to let you determine when rules
are effective, based on times and dates:

= The CurrentDate fact allows you to reason on a fact representing the current date.

» The Effective Date value lets you specify a start date and end date that defines a
date or date and time range when all the rules and Decision Tables in a ruleset, an
individual rule, or an individual Decision Table are effective.

Table 4-8 describes the available Effective Date options.

Table 4-8 Effective Date Possible Values

Effective Date Description

Always Valid Specifies to set neither "From" nor "To" dates.
From (without To date set) ~ Valid from a certain date indefinitely into the future.
To (without a From date set) Valid from now until a certain date.

From Set and To set Valid only between two dates.

An effective date specification other than Always can be one of the following:

= Date only, with no time specification: In this case, an effective date assumes a time
of midnight of that date in each time zone.

= Date, time zone, with no time specification: In this case, an effective date assumes
a time of midnight as of the specified date in the specified time zone.

= Date, time zone, time specification: In this case, the date and time is fully specified.

= Time specification only, with no date and no time zone: applies for all days at the
specified time.

= Time and time zone specified, with no date: applies for all days at the specified
time.

4.9.1 How to Use the Current Date Fact

You can use the current date fact in a rule or a Decision Table.

To use the CurrentDate fact:
1. Select a ruleset from the Rulesets navigation tab.

2. Select a rule within the ruleset.

3. IntheIF area, add a condition that uses the CurrentDate fact and the date method
of Calendar type, as shown in Figure 4-66.

4-54 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using Date Facts, Date Functions, and Specifying Effective Dates

Figure 4-66 Rule with Condition Using CurrentDate Fact

Ruleset_1 ¥ [|Fiker On ‘Wisw: | IF/THEN Rules - R EHERAv

= ¥ Rule_1
<gnter description =

IF

| CurrentDate, date = License.expires_date |
= LR
CurrentDate.date i,
T Q, value Cptions
E}-a License

F-a expires_date
=@ CurrentDate
e

poed Lime

Lm tmelnMilis

() List Wiews (3) Tree View

[] Customizable

4.9.2 How to Set the Effective Date for a Rule

You can specify an effective start date and or an effective end date for a ruleset, a rule,
or a Decision Table. For information on specifying the effective date for a ruleset, see
Section 4.2.2, "How to Set the Effective Date for a Ruleset".

To set the effective date for a rule:
1. Select the ruleset name from the Rulesets navigation tab.

2. Select a rule within the ruleset.

3. Next to the rule name click Show Advanced Settings, as shown highlighted in
Figure 4-67.

Figure 4-67 Showing Advanced Settings in a Rule

Ruleset_1 ¥ [|Eikeron Yiew: | IF/THEN Rules R BEHEHRAw

= ¥ Rule_1
=enter description:=

IF
CustomerQrder,annualspending = 2000
<inserk kest =

THEN
modify CustomerOrder { <add property = value @ "High"

<insert action

4. Select the Effective Date field. This displays the Set Effective Date dialog, as
shown in Figure 4-68.

Working with Rulesets and Rules 4-55

Using Date Facts, Date Functions, and Specifying Effective Dates

Figure 4-68 Setting the Effective Date for a Rule

| '?.'Start Page |\>Purchaseltems.rules QOradeRdesl.rdes E]
B DE0 PO W ®
&) Facts z T s
Ruleset_1 ¥ [|Fkeron Yiew: [(QIFTHENRUes | dp - 3 T B 60 A w
Fe Functions
= 2 Rule_1
(x) Globals <enter description =
= —
7 Bucketsets []advancedMode [| TreeMade [v] Rule Active [| Logical Priority: | mediom |V|

& Links Effective Date: |Always Valid

E] Decision Functions

IF
Rulesets 3 X

P Ruleset_1 Set Effective Date k [g|
Ruleset_2
.] Erom: | | B [15:42:09][Z] [(GMT-08:00) Pacific Standard Time |
@lTe | | B [15:42:10[Z] [(GMT-08:00) Pacific Standard Time |

(") Dake () Time (3) Both

| Help | (04 || Cancel

LY

Design

5. Use the Set Effective Date dialog to specify the effective dates for the rule. Clicking
the Set Date icon displays a calendar to assist you in entering the From and To
field data.

6. In the Set Effective Date dialog, click OK.

4.9.3 What You Need to Know About Effective Dates

By default, the Oracle Business Rules Engine implicitly manages the clock associated
with the CurrentDate fact and the effective date, setting each to the value of the system
date. Using the RL Language functions setCurrentDate () and
setEffectiveDate () you can explicitly set the current date and the effective date.
For more information, see Oracle Fusion Middleware Language Reference Guide for Oracle
Business Rules.

An effective start date is defined as the first point in time at which a rule, Decision
Table, or ruleset may actively participate in rule evaluations and fire. Thus, if a rule is
effective it may fire if its condition is satisfied and if the rule is not effective, it does not
fire whether the condition is satisfied or not.

An effective end date is the first moment in time at which the rule, Decision Table, or
ruleset no longer actively participates in rule evaluations (not effective means the rule
does not fire).

The effective start and end date can be set on a Decision Table, but these dates cannot
be set individually for the rules within a Decision Table.

Rules and Decision Tables also include the Rule Active option. This option is set
independent of the effective dates and makes dates effective without changing or
removing the specified effective date. For more information on using the Rule Active
option, see Section 4.5.3, "How to Select the Active Option".

The precedence of the effective date, when it is defined for both a ruleset and for the
rules or Decision Tables within a ruleset, is as follows (with the top precedence being
1):

4-56 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using Date Facts, Date Functions, and Specifying Effective Dates

If the ruleset Rule Active option is unselected, then RL Language is not generated
for that entity.

If one or both of the effective date properties are selected for a ruleset, then those
effective start dates and effective end dates define the range of effective dates
allowable for rules or Decision Tables that are defined within the ruleset (that is, if
in the ruleset the From checkbox, the To checkbox, or both checkboxes are selected
in the Set Effective Date dialog).

Thus, the effective dates specified for rules or Decision Tables within a ruleset
must not violate the boundaries established by the ruleset that contains the rules
or Decision Tables. For example, a rule may not have an effective end date that is
later than the effective end date specified for a ruleset.

If any individual rule or Decision Table has Rule Active unselected, then RL
Language is not generated for that rule or Decision Table.

If the Set Effective Date dialog for a ruleset includes Time selected or this option is
selected on a rule or a Decision Table in the ruleset, then all instances of rules or
Decision Tables in the ruleset must have Time selected when effective dates are
specified. In this case, if Both or Date is selected then Rules Designer shows a
validation warning:

RUL-05742: Calendar form incompatibility detected with forms Time and DateTime.
If the calendar form is set to Time on a rule set or any of the rules or
decision tables within that ruleset then the calendar form for that entire
rule set is restricted to Time.

4.9.4 How to Use Duration, JavaDate, OracleDate, and XMLDate Methods

You can use the Duration, JavaDate, and XMLDate, OracleDate, and OracleDuration
extension methods in a rule or a Decision Table. For more information, see
Appendix B, "Oracle Business Rules Built-in Classes and Functions".

To use a Duration method:

1.
2.

9.

Select ruleset from the Rulesets navigation tab.

Select a rule within the ruleset (you can also use Duration methods in a Decision
Table).

In the IF area, add a condition.
Select an operand in the rule condition.

From the list, select Expression Builder.... For more information, see Section 4.10,
"Working with Expression Builder".

In the Expression Builder, select the Functions tab.
In the Expression Builder, in the Navigator, expand the Duration folder.

Double-click to select and insert the appropriate method as needed for your
duration test.

Provide the appropriate arguments for the method. For example, see Figure 4-69.

10. This allows you to create a rule such as that shown in Figure 4-70.

Working with Rulesets and Rules 4-57

Working with Expression Builder

Figure 4-69 Using Duration Methods in a Rule

-3 Expression Builder

Expression: L

2

CE)

¥

Duration.days between({CurrentDate . date, Driver LicenseExpires)

| @ Insert Inko Expression

E| [Duration

= compare(CaIendarIXMLGregorlanCaIendarIoracle jbo.domain, Tlmestamp, Calendar | xMLGregorianCalendar |oracle. jbo. domain, Timestar
@ Calendar |ora

-@ minutes between(Calendar| XMLGregorianCalendar |oracle, jbo.domain, Tlmestamp,Calendar|XMLGregorlanCaIendarIoracle]bo domaln
o vyears bebween(Calendar | ¥MLGregorianCalendar|aracle . jbo. domain. Timestamp, Calendar | ¥MLGregarianCalendar | oracle. jba . domain, Ti
@ hours between({Calendar | $MLGregorianCalendar |oracle . jbo, domain, Timestamp, Calendar | XMLGregorianCalendar | oracle, jbo, domain, Ti
-@ milliseconds betweeniCalendar | xMLGregorianCalendar |oracle. jbo . domain, Timestamp, Calendar | <MLGregorianC alendar |oracle. jbo. domr
i@ months between(Calendar | XMLGregarianCalendar |oracle. jbo.domain. Timestamp, Calendar [#MLGregorianCalendar|aracle. jbo. domain.

[Variables l Functions LOperators LConstants |

Conkent Preview: Description:

Duration, days between({Calendar| XMLGregorianCalendar |oracle. jbo. dom

| Help | (o] 4 || Cancel
Figure 4-70 Adding a Rule Using Duration Function
Ruleset 2 ¥ [|Fiker On view: | <J IF/THEN Rules |- EHBRAw

= % Rule_1
<enter dascription =

[] Advanced Mode [] Tree Mode Rule Active [| Logical Priority: | medium |:|
Effective Date: Ahways valid

IF

Duration.days between{CurrentDate. date, Driver LicenseExpires) <= 30
<insert tests

THEN
call prink{ message : "Motice: License expires within 30 days.")

<insett ackion

4.10 Working with Expression Builder

Use the expression builder to create and edit expressions for Oracle Business Rules.

4.10.1 Introduction to the Expression Builder

You can access the expression builder from different parts of Rules Designer,

including in the Edit Globals dialog, and in the conditions area when you work with

conditions in Decision Tables, and when you enter rules and Decision Tables in
advanced mode with free form expressions selected.

4-58 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Expression Builder

Figure 4-71 shows the Rules Designer expression builder.

Figure 4-71 Rules Designer Expression Builder

® Expression Builder @
Expression: (e T

Driver.age|

| @ Insert Inko Expression

C% Options
ED Drriver

- [ooe]
-Elg: has_training
E'gi eye_kesk
-Elgi eligible

-L Wariables L Functions L Operators |\ Constants

Conkent Preview: Drescripkion:
Driver. age SDK Yariable COption
| Help | [0]:4 | | Cancel

4.10.2 How to Use the Expression Builder

In the expression builder when you double-click items in the Variables or Functions
navigation trees, or in the Operators tab, or in the Constants tab, this inserts the item
into the expression in the Expression area. You can also create or edit expressions
directly by entering text in the Expression area.

When you enter an expression, note that Variables are valid assignment targets and
Constants are not valid assignment targets. Thus, you should use both tabs if you are
unsure what type of item you want to add to the expression you are building.

Specify an argument for a selected function by placing the cursor inside the function in
the Expression field and double-clicking the expression or function to insert. For
example, place the cursor inside the parentheses of a function and select a variable.
This inserts the variable in the expression at the cursor position.

4.10.3 What You Need to Know About Working with Expressions

XML fact types allow XML Schema types, elements, and attributes to be used when
writing rules. Elements and types defined in XML Schema can be imported into the
data model and can then be used to create rules and Decision Tables, just as with Java
fact types and RL Fact types. The mapping between the XML Schema definition and
the XML Fact types uses the Java Architecture for XML Binding (JAXB). By default,
Oracle Business Rules uses the JAXB 2.0 shipped with the Oracle Application Server.
JAXB as defined in JSR-222 provides a mapping between the types, names, and
conventions in an XML Schema definition and the available types, allowed names and

Working with Rulesets and Rules 4-59

Using Bucketsets as Constraints for Options Values in Rules

conventions in Java. For example, an element named order-id and of type
xsd:integer is mapped to a Java Bean property named orderID of type
BigInteger (and xsd:int type maps to Java int).

You can use expressions in Oracle Business Rules. Expressions allow arithmetic using
the operators *, +, /, %, and other supported operators on primitive numerics, for
example double, int, and the numeric types Integer, Long, Short, Float,
Double BigDecimal, and BigInteger that are available in the built-in dictionary.
For more information on supported primitive numerics, see Oracle Fusion Middleware
Language Reference Guide for Oracle Business Rules.

Expressions allow casting between any two numeric types, for example,
(short) ((BigInteger)l + (Long)2).Example 4-3 shows a few additional
sample expressions.

The expression processor uses the XPath/Xquery rules for type promotion (XML Path
Language (XPath) 2.0). For example, BigDecimal is promoted to £1loat/double;
type promotion going the other direction requires a cast, except for literals such as 3.3.

Example 4-3 Sample Expressions in Actions with Types and Casting

assign new double db = 3.3

assign new BigDecimal bd = 3.3 // no cast required
assign db = bd // no cast required

assign bd = (BigDecimal)db // cast is required

4.11 Using Bucketsets as Constraints for Options Values in Rules

You can use List of Values Bucketsets and List of Ranges Bucketsets to specify
constraints for business terms in rules. This allows you to use Rules Designer to
produce validation warnings for possible errors where a value supplied is out of
range, or not within a set of possible values as specified in a bucketset. Oracle Business
Rules also lets you use bucketsets to specify constraints for global initial values,
function return values, or function argument values. For more information, see
Section 2.3, "Working with Oracle Business Rules Globals" and Section 3.7,
"Associating a Bucketset with Business Terms".

4.11.1 How to Use a List of Ranges Bucketset as a Constraint for a Business Term

You can use a list of ranges bucketset as a constraint for any business term other than a
function result.

For more information on using a list of values bucket set as a constraint, see
Section 4.11.2, "How to Use a List of Values Bucketset as a Constraint for a Fact
Property".

To use a List of Ranges bucketset as a constraint for a fact property:

1. Specify a bucketset that includes the ranges you want to include and select
Allowed in Actions for all valid ranges. To include a range, deselect Allowed in
Actions for the top and bottom endpoints.

2. Select Included Endpoint as needed for the application.

3. Deselect Include Disallowed Buckets in Tests. For example, for a bucketset that
defines valid grades and that does not allow values greater than 100, or less than 0,
define the bucketset endpoints as shown in Figure 4-72.

4-60 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using Bucketsets as Constraints for Options Values in Rules

Figure 4-72 Valid Grades Bucketset for Fact Property

& Edit Bucketset - valid |_grades fXI

Marne: | valid_grades |

Data Type: [i”t ']
[] Include Disallowed Buckets in Tests

Range Bucket Yalues: G ®
Endpoint Included Endpoint Allowed in Actions Range Alias Description
100 =100 =100 Mok Yalid
an [0..100] a
30 [50.,.,90)
70 [70..80)
60 [60..70)
[0, .60

[]
=
[]
=
[]
m 0

EEEEEO
EEEEEO

B
C
o]
E

<]

4. Associate this bucketset with a business term. For example, associate the bucketset
with test_math1 as shown in Figure 4-73.

Figure 4-73 Associating a Bucketset with a Fact Property

& Edit BL Fact - Grades X
Mame: |Grades |
Descripkion: | |
Super Class: [Object v]
Properties: “F R

Type Bucketset Initial value List Conkent Type
irik

valid_grades

Fit Columns To Width

Now, if you define a rule with a test that uses the fact property you receive a
validation warning when a value is out of range. For example if you define a rule with
an expression with the value -10, Rules Designer shows a validation warning as shown
in Figure 4-74.

Working with Rulesets and Rules 4-61

Using Bucketsets as Constraints for Options Values in Rules

Figure 4-74 Using a Fact Property Value that is not in the Allowed in Actions for Associated Bucketset

| < poracleRulest.rules < pDracleRulesl.rules | =
BV @@ 9 N @
&8 Facts : -
[Ruleset 1 ¥ [|Elteron Yiew: (b IF/THEN Rules - BEHEDRaAw
_ﬁ: Functions
= ¥ Rule 1
(x) Globals <enter description:=
7 Bucketsets
IF
< Links Grades.test_mathl == -10
@ Decision Functions <insert best
Rulesets ok 3 THEN
&b Ruleset_1 <insart action >
&P Ruleset_2
[
Design
[ElBusiness Rule Yalidation - Log E]I
[2] Dictionary - GracleRfules1 rules Display New Warnings First
Message Dictionary Object Property
MY RUL-DS715: The value "-10" is excluded by bucket set "valid_grades". OracleRulesi Ruleset_1/Rule_1/Grades) Test[1]/Expression[2]
SDE Warnings: 1 Last Yalidation Time: 4:12:51 PM POT
Messages BFEL Business Rule validation Extensions Feedback E 3=tel) @8 5earching for valid_grades G]E]E]

4.11.2 How to Use a List of Values Bucketset as a Constraint for a Fact Property

You can use a list of values bucketset as a constraint for a fact property.

For more information on using a list of ranges bucket set as a constraint, see
Section 4.11.1, "How to Use a List of Ranges Bucketset as a Constraint for a Business
Term".

To use a List of Values bucketset as a constraint for a fact property:

1. Specify an LOV bucketset that includes the values you want to include, and select
Allowed in Actions for all valid values. For more information, see Section 3.6.1,
"How to Define a List of Values Global Bucketset".

2. Deselect Allowed in Actions for the otherwise bucket.
3. Deselect Include Disallowed Buckets in Tests.

4. Associate this bucketset with a fact property.

4.11.3 How to Use Bucketsets to Provide Options for Test Expressions

You can use LOV bucketsets to provide options for expressions and actions.

4-62 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using Bucketsets as Constraints for Options Values in Rules

How to use bucketsets to provide options for rule expressions and actions:

1. In Rules Designer, define an LOV bucketset of a type corresponding to a fact
property. For more information, see Section 3.6.1, "How to Define a List of Values

Global Bucketset".

Associate the bucketset with a fact property. For more information, see

Section 3.7.1, "How to Associate a Bucketset with a Fact Property".

When you enter expressions, Rules Designer shows the bucket values in the values

options. For example, when you associate a fact property Driver.eye_test
with an LOV bucketset named eyes, with values: pass, fail, and
glasses_required, and then you use Driver.eye_test in a test expression,
the bucket values are limited as shown in Figure 4-75.

Figure 4-75 Using a Bucketset to Provide Options for a Rule Test Expression

Ruleset 2 ¥
A R

[]Eilter On Yiew: [IF/THEN Rules

IR BEEoAv

= ¥ Rule 1

<gnter description =

IF
Driver.eye_test == |

<0Derana;|

<insert best
THEN

<insert ackionz

Q, value Options
Eh-a eyes
. lem pass
@ Fail

@ glasses_required
[#-@ Driver

[h-a RL

() List Wiews (3) Tree View

[]Constant [Customizable

Working with Rulesets and Rules 4-63

Using Bucketsets as Constraints for Options Values in Rules

4-64 Oracle Fusion Middleware User's Guide for Oracle Business Rules

O

Working with Decision Tables

Using a Decision Table you can create and use business rules in an easy to understand
format that provides an alternative to the IF/THEN rule format. The Decision Table
format is intuitive for business analysts who are familiar with spreadsheets. The
formal structure that a Decision Table provides makes it easier to author, understand,
and change multiple similar rules and lets software check for rule completeness and
consistency.

This chapter includes the following sections:

= Section 5.1, "Introduction to Working with Decision Tables"
m Section 5.2, "Creating Decision Tables"

= Section 5.3, "Performing Operations on Decision Tables"

» Section 5.4, "Creating and Running an Oracle Business Rules Decision Table
Application”

5.1 Introduction to Working with Decision Tables

Businesses invest in software to automate their business processes. Historically, this
automation focused on the collection, presentation, and manipulation of data to
facilitate human decision-making about that data. Increasingly, however, software
designers and developers are called upon to automate the decision making process by
putting detailed rules about business processes into software architectures. In
addition, many enterprises are experiencing increasing pressure to make software
systems more responsive to business changes. In some cases, the role of writing and
testing business rules is no longer assigned to software engineers, but is passed to
trained business users. Alternatively, some organizations attempt to separate changes
in the business behavior of software from the traditional software development cycles,
and tie changes to business driven imperatives like product or sales cycles.

A Decision Table provides a mechanism for describing data processing tasks,
especially when that description is done by business analysts rather than computer
programmers.

Oracle Business Rules Decision Tables provide the following features:

s Powerful Visualization: Compact and structured presentation. This visualization
matches the way real world business policies are expressed: with many tables,
declarative, and organized into simple steps.

s Error Prevention: Avoids incompleteness and inconsistency. Because a Decision
Table is well structured, automated tools can check for conflicts, redundancy, and
incompleteness to speed development of valid, consistent business rules.

Working with Decision Tables 5-1

Introduction to Working with Decision Tables

= Modular Knowledge Organization: Group rules into a single table. A spreadsheet
metaphor puts groups of rules that work together onto a single viewable pane. For
example, if there are six rules that check an applicant's eligibility, it is more
convenient to see all the rules than to view the rules as individual but related
rules.

s Optimization of Rules and Performance Benefits: Oracle Business Rules Decision
Tables provide automated features that can reduce the number of required rules,
as compared to the IF/THEN rules (this is called rule coalescing).

= Rule Validation and Verification: Provides capabilities for ensuring the logical
consistency of rules before deployment. Automated tools for checking conflicts,
incompleteness, or gaps, help speed development of valid, consistent business
rules.

Ease of verification and visualization are the major reasons for using Decision Tables.

For information, see Chapter 4, "Working with Rulesets and Rules".

5.1.1 What is a Decision Table?

A Decision Table displays multiple related rules in a single spreadsheet-style view. In
Rules Designer a Decision Table presents a collection of related business rules with
condition rows, rules, and actions presented in a tabular form that is easy to
understand. Business users can compare cells and their values at a glance and can use
Decision Table rule analysis features by clicking icons and selecting values in Rules
Designer to help identify and correct conflicting or missing cases.

To help understand Decision Table concepts, consider a set of IF/THEN rules that
determine if a driver is eligible for a license, and an equivalent Decision Table. Note if
a driver has taken a driver training class then the driver has training certification.

The IF/THEN rules follow:

if driver.age < 20 and driver.has training then driver.eligible = true
if driver.age < 20 and driver.has training = false then driver.eligible = false
if driver.age >= 20 then driver.eligible = true (do not care about training for this case)

Figure 5-1 shows a Decision Table representation of these rules that includes areas for
Decision Table Conditions and Actions.

5-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Introduction to Working with Decision Tables

Figure 5-1 Sample Decision Table with Conditions and Actions

QDriver.ruIes =
B 5@z o ©)
& Facts i ; p—
¥ Ruleset_1 Yiew: [DecisionTable_t - - K
_ﬁc Functions
¥ = DecisionTable_1 =enter description =
(%) Globals
£ Bucketssts i | (5] dver _ages N/ R d-i-RIBEEE @
D Links - Conditions R1 RZ R3
_ C1 Driver.sge =« | -2 |
Q (Dt FUREETS CZ Driver.has_training true false -
Rulesets * ®
@} Ruleset_1
b4 Conflict Resolution
i Actions
L1 modify Driver(
eligible:)} true false true
e Eit Columns To \Width
Design

5.1.1.1 What You Need to Know About Decision Table Conditions

The Conditions area in a Decision Table includes one or more condition rows. Each
condition row has a condition expression and, for each rule, a condition cell. A
condition expression is an expression that you build in Rules Designer. The condition
expression is often a fact property or a function result, but it can be any expression that
has a type that can be associated with a bucketset. Test expressions are often used,
such as Driver.age<16. These expressions are associated with the built-in boolean
bucketset, with values true and false. The value or the range for a given condition
cell takes its value or its range from one or more buckets in the associated LOV or
Ranges bucketset. For more information on bucketsets, see Section 3.6, "Working with
Bucketsets".

For example, Figure 5-1 shows the condition expression for a Driver fact with the
Driver .age property. The corresponding row in the Decision Table shows condition
cells including buckets for the ranges <20, and >=20. The values in the cells come
from the global bucketset named driver_ages.

Figure 5-1 also shows a condition row for the Driver fact with the
Driver.has_training property. This condition row shows condition cells with the
values, true, false, and -. The hyphen (-) means "do not care” (that is
Driver.has_training could be true or false in this case). The values for these
condition cells come from the default bucketset associated with boolean types (this
consists of default buckets for the values true and false).

Decision Tables show rules in bucket order, and to change the order of rules you need
to change the order of buckets in the bucketsets. Thus, the order of the buckets in the
bucketset associated with a condition row determines the order of the condition cells,
and thus the order of the rules. You can control rule ordering in a Decision Table by
changing the relative position of the buckets in an LOV bucketset associated with a
condition row; however, you cannot reorder range buckets. For information on

Working with Decision Tables 5-3

Introduction to Working with Decision Tables

ordering buckets in a bucketset, see Section 3.6.1, "How to Define a List of Values
Global Bucketset".

5.1.1.2 What You Need to Know About Decision Table Actions

Actions are associated with rules in a Decision Table. At runtime, when facts match for
condition cells, the Rules Engine prepares to run the actions associated with the rule.

Table 5-1 shows the types of actions you can choose in the Actions area. Thus, in an
action you can call a function, assert a new fact, retract a fact, or modify a fact. In the
Actions area the cells corresponding to an individual action for a rule are called action
cells. Note, in advanced mode there are additional options for actions. For more
information on advanced mode, see Section 4.5.2, "How to Select the Advanced Mode
Option".

Table 5-1 Decision Table Actions for Action Cells

Action Description

assert new Assert a new fact

call Call a function

retract Retract a fact

modify Modify a data value associated with a matched fact

When you add multiple actions the actions that you add in the Actions area are
ordered; actions appearing in the higher rows run before actions in the following rows.

The Decision Table actions such as modi fy can refer to facts matched in the condition
cells. For example, given a Decision Table with condition rows on the Driver fact that
includes condition rows for Driver.age and Driver.has_training, actions can
modify the property Driver.eligible and you can specify a value for
Driver.eligible for each action cell.

Certain types of actions in the Actions area include a Parameterized checkbox. This
checkbox specifies that a property from the action can have its value set in the action
cell associated with a rule in the Decision Table. When the parameterized checkbox is
selected the value you supply for the expression value in the action, in the Actions
area, becomes the default value for the property if a value is not supplied in the action
cell. For example, see Figure 5-2 where the value false is assigned as the default
value for the action property eligible.

5-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Introduction to Working with Decision Tables

Figure 5-2 Action Editor Showing Parameterized Action with Default Value

& Action Editor rZ|

Form: |M0dify v|

Walue: | Modify Driver (eligible: 7 |

Target:

Arguments;
Properky Tvpe Yalue Parameterized Conskant
age int L] [}
has_training boalean L]]
eligible boalean true]
[] Always Selected
| Help | [0]4 | | Cancel

5.1.1.3 What You Need to Know About Decision Table Rules

A ruleset contains a Decision Table; this provides a way to group the Decision Table
along with IF/THEN rules. When rules and Decision Tables are grouped in a ruleset,
the IF/THEN rules and the Decision Table rules all execute as a set of interrelated
rules.

A rule in a Decision Table is not named. Although Rules Designer shows rules in a
Decision Table with labels, for example, R1, R2, and R3, these rule labels are not names
for individual rules but are labels derived from the current ordering of the rules in the
Decision Table. Thus, a rule with the label R1 could be moved to position 3 and then
Rules Designer relabels this rule R3.

Rules in a Decision Table are organized as a table that contains a tree of condition cells.
The condition cells in the first row span the cells of later condition rows. A parent cell
in row 7 spans its children in row i+1.

Figure 5-3 shows rules in a Decision Table where each rule consists of one cell from
each row in the Conditions area, and an associated action cell in the same column in
the Actions area. Figure 5-3 shows the rule with the label R3 defined by the first cell
from condition 1 (the Driver.age < 20 bucket), the second cell from condition 2 (the
Driver.eye_test equals fail bucket), and the third cell from condition 3 (the
Driver.has_training equals true bucket). Likewise for each of the other rules, R1
to R12, there is a unique path through the Decision Table.

Working with Decision Tables 5-5

Introduction to Working with Decision Tables

Figure 5-3 Rules in a Decision Table

- @

*

Cl
ca
C3

4l

Ruleset_1 View: | DecisionTable_1

4%

DecisionTable_1 <enter description =

Conditions
Criver.age

R1 RZ

Driver.eve_tesk pass

Driver.has_training true false

Actions
modify Driverd

eligible:)] true false

[¥] Eit Columns To Width

- ¥

R4 R5 RE R7
glasses_required

false true false true

alse false true false true

h W

pass

R

false

true

BB es B W

R9 R1i0 R11 R1Z
=20
Fail glasses_required
true false true false
false false true false

As shown in Figure 5-3, it is significant for a cell to be a parent of another cell and a
parent cell spans lower cells. In the Conditions area, when condition cells have the
same parent condition cell the cells are called siblings. Certain operations only apply
for condition cells that are siblings. For example, Figure 5-4 shows two sibling cells
that are selected; with these cells selected the Merge Selected Cells operation is valid.
For these cells, the corresponding bucket with the value fail for Driver.eye_test
is also a sibling (as shown in the R3 and R4 columns in Figure 5-4). For more
information, see Section 5.3.3, "How to Merge or Split Conditions in a Decision Table".

Figure 5-4 Sibling Condition Cells in a Decision Table

Ruleset_1

¥

Cl
cz
C3

41

Wigw: | DecisionTable_1

DecisionTable_1 <enter description=

Conditions R1 RZ
Driver.age
Driver. eye_test
Driver.has_training true false
Actions
modify Drivert
eligible:] true false

[W] Eit Columns Ta Width

TR Aav B oG-R 0 EW

R7

R

RE

R3 R4 R5 R&
<z0
Fail
true false true
false false true false

true

trug

RS9 R10 R11 R12
=20
Fail glasses_required
false true false
false false true false

5-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Introduction to Working with Decision Tables

Rules Designer lets you easily reorder rows by selecting the row and clicking a Move
icon. By reordering rows in the Conditions area you can perform operations on
condition cells at the desired granularity. Thus, the move operations can assist you
when you want to split, merge, or assign certain values that might only be appropriate
at a particular level in the tree, depending on the location of a condition cell or
depending on the location of the parent, children, or siblings of a condition cell.

5.1.2 Understanding Decision Table Values

By default, when you create a condition row, Rules Designer creates a single condition
cell and assigns the "?" value to the cell. A condition cell with the value "?" indicates
that the value of the cell is undefined in the bucketset. For example, Figure 5-5 shows
a "?" value for Driver.age.

Figure 5-5 Sample Decision Table Showing Undefined in Condition Cell

QOradaRuJesl.ruJes =
vE 9 DO % @

& Fact

;f e # Ruleset 1 Yiew: [DecisionTablel - 4 - R ‘

5z Functions

¥ = DecisionTable1
() Globals A
&7 Bucketsets C1:|:__i] driver_ages d PR avw BH-ii-B 6D EE- @
. - Conditions R1 RZ
<D Links

& Decision Functions

Cz Driver.has_training true false
Rulesets EH' b4
@ Ruleset_1 - Actions
41 modify Driver{
eligible: i} true false
i
[Z2) Dictionary - CracleRulest .rules Display Mew Warnings First
& Message Dictionary Object Property
% Y RUL-05831: Select one or more walues For .., OracleRules]fRuleset_1 (DecisionTable 1/Condition[1]{ Condi...
o
=3
=
b
=
§ SDK Warnings: 1 Last Yalidation Time: 11:44:47 AM IST
Messages Extensions Business Rule Yalidation [=)

In the Decision Table Actions area you can specify that an action cell "do nothing". In
this case, deselect the action cell. When the action cell checkbox is unselected this
means do not perform this action when the pattern matches for the specified condition
values in the Decision Table. Thus, for each action cell you can specify whether the
rule associated with the action cell should activate the action, or does not perform the
action.

In a Decision Table, when a condition cell represents a bucket that has been removed

from the bucketset, Rules Designer provides a validation warning such as the
following:

RUL-05831: Decision table bucket reference not found

To fix this type of validation warning you can do one of the following:

s Define a value by double-clicking the condition cell and selecting one or more
buckets from the list.

Working with Decision Tables 5-7

Creating Decision Tables

= Add the missing bucket to the bucketset or associate the condition with another
bucketset that contains the missing bucket.

5.1.3 What You Need to Know About Decision Table Loops

A Decision Table loop occurs when the value for a condition row is changed by an
action. Loops can occur across the rules in a single Decision Table or spread over
several Decision Tables, or spread over rules and Decision Tables in the same ruleset.
Try not to create Decision Table actions that modify fact properties that are used in
Decision Table conditions. This could cause an infinite loop.

Note: You can prevent infinite loops by using the rule firing limit on
the containing decision function.

5.2 Creating Decision Tables
You add a Decision Table by performing several steps. These steps include:
s Create a Decision Table
= Add conditions to the Decision Table
» Add actions to the Decision Table

» Use Decision Table operations to validate, correct, and modify the Decision Table

5.2.1 How to Create a Decision Table

To work with a Decision Table you start by creating a Decision Table in a ruleset.

To create a decision table:

1. From Rules Designer select an existing ruleset from the rulesets tab or create a
ruleset by clicking Create Ruleset....

2. Click the Add icon and from the list select Create Decision Table, as shown in
Figure 5-6. This creates a Decision Table.

Figure 5-6 Adding a Decision Table

+ Ruleset_1 Wiew: |@ DecisianTable_3 vl - R

G Create Rule
it Create Decision Table

i T

¥ = DecisionTable 3 <cnter description s

<insert condition =

<insert ackion >

5-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating Decision Tables

Note: When you add a Decision Table the rules validation log
displays validation warnings. The Decision Table is not complete and
does not validate without warnings until you add conditions and
actions to the Decision Table.

5.2.2 How to Add Condition Rows to a Decision Table

A Decision Table includes a Conditions area where you specify Decision Table
condition rows. The condition rows determine the facts that the Oracle Rules Engine
matches at runtime. To create a Decision Table you need to add one or more condition
rows to the Decision Table.

To add condition rows to a decision table:

1.

From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to add conditions.

In the Decision Table area, from the list next to the Add icon select Condition.

In the Conditions area, double-click <edit-condition> to display the navigator to
select or enter an expression as shown in Figure 5-7.

Figure 5-7 Adding a Condition to a Decision Table

Ruleset 1
e

C1RL|

%%

Wigw! | DecisionTable_2

DecisionTable 2 <enter descriptions=

> 'I4

R av iR REEA

[~ =) Lacal List of values

Conditions

Q, value Cptions

=@ Driver

---n CurrentDate

----- @ eye_test

[¥] Fit: Columns Ta Width

Actions

<insert ackion:

Enter an expression by clicking in the navigator to select a variable or click the
Expression Builder icon to display the Expression Builder window. The
Expression Builder lets you build expressions.

Each condition row requires a bucketset from which to draw the values for each
cell. When the value you select has an associated global bucketset, then by default
the bucketset is associated with the condition row.

Repeat Step 2 through Step 5, as required to add additional condition rows in the
Decision Table.

Working with Decision Tables 5-9

Creating Decision Tables

To use a local bucketset or specify the bucketset for a decision table condition:

1. Each condition row requires a bucketset from which to draw the values for each
cell. When the value you select has an associated global bucketset, then by default
the bucketset is associated with the condition row.

2. If there is no global bucketset associated with the value, then after you add a
condition row to a Decision Table you need to specify either a Local List of Values
or a Local List of Ranges bucketset to associate with the condition row, or specify
an existing global bucketset. To add a bucketset for the condition, in the
Conditions area select the condition and then select from the Bucketset list to
associate a bucketset, as shown in Figure 5-8. The bucketset list includes available
global bucketsets of the appropriate type.

Figure 5-8 Specifying a Bucketset For a Condition Row in a Decision Table

Ruleset_1 Wigw: |@ DecisionTable_2 v| - B
y - DecisionTable 2 <enter description
C1 R1:|- |V||='_|LocaIList0F\-'aIues v| Vs apr 3% v v | B i R e @

'_| Local List of Yalues
=2) Lacal List of Ranges

A Condil

Cl Driver.age

X conflict pUZ driver_sges

5 Actions

=insert ackionz

Fit Columns To Width

3. If you do not specify a global bucketset, then you can create and use a local
bucketset by selecting either Local List of Values or Local List of Ranges to create
and use the specified type of bucketset.

4. Repeat Step 2 through Step 3, as required to define additional condition rows in
the Decision Table.

For more information on creating bucketsets, see Section 3.6, "Working with
Bucketsets".

5.2.3 How to Add Actions to a Decision Table

A Decision Table includes an Actions area where you specify Decision Table actions.
The actions determine actions for rules in a Decision Table.

To create a valid Decision Table you need to do the following:
1. Add actions to a Decision Table.

2. For each action cell, where specific values apply, set the values for the action cells.

5-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating Decision Tables

3. For each action cell, when the action does not apply to the rule, deselect the action
cell. By default when you add an action to a Decision Table, actions for all the
rules are unselected.

To add actions to a decision table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to add actions.

2. From the list next to the Add icon select Action and select an available action from
the list. Table 5-1 lists the available actions. For example, select Modify. Rules
Designer displays the Action Editor dialog as shown in Figure 5-9.

Figure 5-9 Adding an Action to a Decision Table

& Action Editor g|

Form: |Modify V|

Walue: | Modify Driver (eligible:?) |

Target:

Arguments:
Properky Type Walue Parameterized Zonskant
age int [Ld] L]
has_training boalean 4]]
eligible boalean true]
[] Always Selected
| Help | | (a4 || Cancel |

3. In the Action Editor dialog select the action target in the Target area. This specifies
the data model object the action applies to.

4. For the specified target, as needed to make the action do what is required, modify
the fields in the Arguments table. In the Action Editor dialog the Arguments table
includes the fields shown in Table 5-2.

Table 5-2 Action Editor Dialog Arguments Fields

Field Description

Property Displays the property names for the specified target.

Type Displays the type for the property.

Value Select the default value for the action from the list of available

actions. The specified value applies to either the entire action, as
the default value, or when a particular action cell is selected, the
value specified applies for that particular action cell.

Parameterized This specifies a parameterized value. A parameterized value
displays in a Decision Table action cell. When you select
parameterized value for a property, this generally means that
each rule supplies a different parameter value.

Working with Decision Tables 5-11

Creating Decision Tables

Table 5-2 (Cont.) Action Editor Dialog Arguments Fields

Field Description

Constant Select to specify a constant value.

5. In the Action Editor dialog, to select action cells for all the rules, select the Always
Selected checkbox.

6. Repeat Step 2 through Step 5, as required to define additional actions for the
Decision Table.

To set values for action cells in a decision table:

1. From Rules Designer, select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to specify action cell values.

2. Inthe Actions area, check that the appropriate action cells are selected. If the
Always Selected checkbox is specified in the Action Editor dialog, then all action
cells should be selected. If Always Selected is not selected, then select the
appropriate action cells using the action cell checkbox.

3. Inthe Actions area, enter the appropriate value for parameterized properties for
each selected action cell. To do this select the action cell property cell, and either
enter a value, select a value from the list, or click the Expression Builder icon to
use the Expression Builder dialog.

For more information on referring to a bucketset from a Decision Table, see
Section 3.6.2, "How to Define a List of Ranges Global Bucketset."

To deselect an action cell in a decision table:
1. PFrom Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want deselect an action cell.

2. In the Actions area, select the action cell and deselect the checkbox in the action
cell. You are not allowed to deselect action cell values when Always Selected is
selected for the action.

When you add actions, you may need to change the order of the actions. In Rules
Designer you can use the Move Down icon or Move Up icon to change the order of
actions.

5.2.4 How to Add a Rule to a Decision Table

You can add a rule to a Decision Table. Rules Designer adds a column for the rule to
the left of the existing rules and each condition cell is initialized to "?", which actually
means a validation error prompting you to populate the cell with relevant values.

To add a rule to a decision table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to add the rule.

2. From the list next to the Add icon, select Rule.

3. Enter values for the condition cells. Notice that the new rule is added as the first
rule of the Decision Table on the left and the other rules have moved as required to
keep the bucket values in their defined order.

4. Enter values for the action cells.

5-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Performing Operations on Decision Tables

5.3 Performing Operations on Decision Tables

After you create a Decision Table there are operations that you may want to perform
on the Decision Table, including the following:

= Compact or split cells in a Decision Table
= Merge a condition or split a condition in a Decision Table
» Finding and resolving conflicts between rules in a Decision Table

= Find and fix gaps in a Decision Table

5.3.1 Introduction to Decision Table Operations

After you create a Decision Table you may want to modify the contents of the Decision
Table to produce a Decision Table that includes a complete set of rules for all cases, or
to produce a Decision Table that provides the least number of rules for the cases.

5.3.1.1 Understanding Decision Table Split and Compact Operations

The split and compact operations allow you to manipulate the contents of the
condition cells in a Decision Table.

The split table operation creates a rule for every combination of buckets across the
conditions. For example, in a Decision Table with 3 boolean conditions, 2x2 x 2 =8
rules are created. In a Decision Table with 32 boolean conditions, 2**32 ~ 2 billion rules
are created. Thus, you only use split table when the number of rules created is small
enough that filling in the action cells is feasible.

When you want to apply match conditions for the "do not care" values in a Decision
Table and create a match case for each cell, you use the split table operation.

Split can be applied to an entire Decision Table or to a single condition row.
Additionally, split may be performed on an individual condition cell.

Depending on what is selected in the Decision Table, the split operation can create
condition cells. Thus, using the split operation you can create rules in a Decision Table.
Table 5-3 summarizes the split operation for a selected condition cell, condition row, or
for a complete Decision Table.

Table 5-3 Summary of Split Operation

Operator

Description

Condition Cell

Condition Row

Decision Table

Creates one sibling condition cell for each bucket value represented by the cell.

If the condition cell value is "do not care”, then the cell is split into one sibling cell for each
bucket in the bucketset that is not represented by a sibling condition cell, and "do not care" is
no longer represented.

For each condition cell in the proceeding condition expression, create a sibling group which
contains a cell for each value in the bucketset. The effect of this operation is the same as
adding a "do not care" to each sibling group and calling split on each condition cell in each
sibling group.

Same as calling split on each condition row in the Decision Table.

Depending on what is selected in the Decision Table, the compact table or merge cells
operations remove condition cells. The compact table operation can be applied to an
entire Decision Table. Additionally, the merge operation may be performed on sibling
cells or on an entire condition row. Thus, using compact table or merge you can

Working with Decision Tables 5-13

Performing Operations on Decision Tables

remove rules from a Decision Table. Table 5-4 summarizes the compact table and
merge operations.

Table 5-4 Summary of Merge Operation

Operator

Description

Condition Cell

Condition Row

Decision Table

Merging two or more condition cells adds all buckets in the cells to a single cell, and
removes all but one of the cells. If one of the cells represents "do not care", then the merged
cell represents "do not care".

This operation may merge action cells and this can create warnings for duplicate action
cells, such as, RUL-05847: Duplicate decision table action parameter.

Combine all values in each sibling group into a single "do not care" cell for each condition
cell in the proceeding condition expression. The effect of this is the same as calling merge on
all cells in each sibling group.

This operation may merge action cells and this can create warnings for duplicate action
cells, such as, RUL-05847: Duplicate decision table action parameter.

Compacts the Decision Table by merging conditions of rules with identical actions.

Split and merge are inverse operations when conflicting action cells are not associated
with the operation. In this case, without conflicting action cells, a merge operation
combines all the values from the siblings into one sibling, and discards the other
sibling condition cells, and as a result of merging the condition cells, when a Decision
Table contains action cells, the action cells are also merged. Thus, the merge operation
combines multiple condition cells into a single condition cell and adds all buckets to
the single cell.

When there are conflicting values for the action cells, a merge operation merges the
action cells in a form that requires additional manual steps. Thus, if two action cells
have conflicting parameters, after the merge the action cell contains multiple
conflicting parameter values. These conflicting values are appended to the action cell
and must be manually resolved by selecting and deleting the unwanted duplicate
parameters. For example, see Figure 5-10 that shows conflicting values in an action
cell.

An action cell that contains multiple values for a property is invalid. When you select
the action cell Rules Designer shows a popup window with checkboxes to allow you
to select a single value for the action cell. As shown in the validation log in

Figure 5-10, Rules Designer shows a validation warning until you select a single value.

5-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Performing Operations on Decision Tables

Figure 5-10 Conflicting Properties to be Resolved for a Merged Action Cell

&;{ Euplichssis A1 R brue,False

QDrivar.rules | -
v @ @) (1] 5
?Fads # Ruleset 1 g | DecisionTable_1 v| + - R
i Functions :
(x) Glabal ¥ . DecdsionTable 1 <enter descriptions
obals

+ R av B 50 BREEA

D Links - Conditions R1 Rz R3
C1 Driver.age =z0 »>=20
B pedision Functians CZ Driver.has_training true False
Rulesets T %
&P Ruleset_1
X Conflict Resolution
= Actions
Al mediy Briverl ¥ L4 L3
eligible:)] true true
Select the values vou want ko keep:
Yalue %
true
false
e Fit Columns To Width
Design

| [ElBusiness Rule Yalidation - Log

E:EJ Dictionary - Driver. rules

=)

Display Mew Warnings First

Message
M\ RUL-05847: The decision table action parameter "eligible” is a duplicate,

Dictionary Object
DrriverjRuleset_1/DecisionTable_1 /Action[1]/Action Cel[1]

Property

SOK Warnings: 1

Messages Feedback Business Rule Yalidation

Last Walidation Time: 5:27:45 &AM PDT

W=

5.3.1.2 Understanding Decision Table Move Operations

You can move the conditions or actions in a Decision Table. The Move icons let you
reorder condition rows in the Conditions area and actions in the Actions area. Moving
conditions up or down may reorder visual display of the rules, but these operations
does not change the logic in any way. For example, if (x.a == 1l andx.b == 1)is

logically the same as if (x. b

landx.a ==

When you work with Decision Tables some operations only apply for condition cells
that are siblings. Using the Move icon you can reorder rows so that Decision Table
operations apply to the tree at the desired granularity. For example, when you want to
change the action of a condition cell for a single rule, then you need to move that
condition cell to the last row in the Decision Table Conditions area. For example,

consider the Decision Table shown in Figure 5-11.

Working with Decision Tables 5-15

Performing Operations on Decision Tables

Figure 5-11 Rules in a Decision Table

Ruleset_1 Wiew: | DecisionTable_1 v| g - R |
¥ = DecisionTable_1 =enter description
i - |Edriver_ages v| Va - R A2 B R & il T
% Conditions R1 RZ2 R3 R4 RS RB R7 RE R9 R10 R11 R12
pass Fail glasses_required pass Fail glasses_required
C3 Driver.has_training true false true false true false true false true false true false
x Conflict Resolution
i Actions
A1 modify Driver(
eligible: 9] true false False fFalse true false true true false false true fFalse

Fit Colurmns To Width

To view this table with granularity for the Driver.age, move the Driver.age
condition from the first row to the third row, as shown in Figure 5-12.

Figure 5-12 Decision Table After Move Down with Age Condition Last

Ruleset_1 Wig |@DecisionTable_1 v| - R

¥ = DecisionTable_1 <enter descriphion=

3 - | |5 driver_ages v| / 3 B A v -ﬁ—v ‘Ea’v B & FS‘E’ ﬂ Elﬂ
X Conditions R1 R2 R3 R4 R5 RE6 R7 RB R9 R10 R11 R12
Cl Driver.eve_test pass fail glasses_required

C2 Driver.has_training true false true False true false

X Conflict Resolution
- Actions
A1 modify Driver(
eligible:] true true false true false false False False true true false false

Fit Columns Ta Width

Now to make the Driver.age conditions "do not care" for the first two rules, where
the driver passes the eyesight test and has had driver training is true, you can easily
apply changes to these particular conditions when the Driver. age condition is in the
last row. Thus, in this table, it is easier to view and modify age related rules when
Driver.age is in the last row, with the finest granularity.

5-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Performing Operations on Decision Tables

In general, the move operations can assist you when you want to split, merge, or
assign certain values that might only be appropriate at a particular level in the tree,
depending on the location of a condition cell, or depending on the location of the
parent, children, or siblings of a condition cell.

For actions in the Actions area, clicking Move Up or Move Down lets you reorder the
actions. Actions are ordered so that when multiple actions apply, the first action runs
before subsequent actions. Thus, using the Move Up or Move Down operation on an
action may be appropriate, depending on your application.

5.3.1.3 Understanding Decision Table Gap Analysis

A gap is a "missing" rule in a Decision Table. A Decision Table has a gap if there is a
combination of buckets, one from each condition, that is not covered by an existing
rule. Rules Designer provides Gap Analysis to check for gaps. When you click the
Gap Analysis icon Rules Designer finds gaps and presents a dialog to fix any gaps
that are found.

You can choose to make existence of gaps a validation warning. When you deselect
Allow Gaps in the Advanced Settings area, the Decision Table reports a validation
warning when a gap is found. For more information, see Section 4.5, "Using Advanced
Settings with Rules and Decision Tables".

For example, using the Driver example if you create a gap by deleting the rule that
covers the case for Driver.age <20 and Driver.has_training false, and then
you click Gap Analysis, Rules Designer shows the Gap Analysis dialog as shown in
Figure 5-13. Clicking OK with the checkboxes selected adds either all rules or the
selected rules to the Decision Table (this example only shows a single rule to add).

Figure 5-13 Using Gap Analysis

Ruleset 1 Yiew: |@ DecisionTable_2 v| de - 3
¥ = DecisionTable_2 =enter description =
A1 R3: - Riav B f{-BIREE®
= Conditions R1 Rz R3
C1l Driver.age <z0 »=20
CZ2 Driver.has_training true true false
3 Gap Analysis E|
x Conflict Resolution o There is 1 missing rule in the decision table,
‘fou can add the missing rule to the decision table by selecting the checkbox in
the table header column,
Conditions [l
2 Actions Driver.age <20
41 modify Driver(Driver.has_training false
eligible: il I
[¥] Eit Columns To Width
| Help | | [s]4 | | Cancel

Gap analysis generates different new rules for the following cases:

= Sibling rules: multiple missing sibling rules are added as a single new rule. For
example, consider a rule with two conditions, Driver.age and Driver.hair.
When there are two missing rules for different hair colors and the rules are
siblings, that is, they have a common parent, then gap analysis shows a single rule
as shown in Figure 5-14.

Working with Decision Tables 5-17

Performing Operations on Decision Tables

= Non-sibling rules: multiple missing non-sibling rules are added as individual new
rules. For example, when there are two different rules missing that do not have the
same parent, then gap analysis provides two rules, as shown in Figure 5-15.

Figure 5-14 Gap Analysis with Missing Sibling Rules

& Gap Analysis

There is 1 missing rule in the decision table,
et
‘ou can add the missing rule to the decision table by selecting the checkbaox in
the kable header columnn.
Conditions (|
Driver. age »=20
Driver, hair black, brown
[¥] Eit Columns Ta Width
| Help | [0]:4 | | Cancel

Figure 5-15 Gap Analysis with Missing Non-Sibling Rules

e Gap Analysis E|
There are 2 missing rules in the decision table,
b
Flease select the rules vou want to add by selecting the checkboxes in the table
header columns.
Conditions O O
Driver, age <20 =20
Driver, hair brown black
[¥] Eit: Columns Ta Width
| Help | | [0]4 | | Cancel |

In both of these cases shown in Figure 5-14 and Figure 5-15 there are two missing
buckets, but for sibling rules the multiple buckets are combined in a single new rule.
Thus, in general gap analysis suggests fewer more general rules in preference to many
more specific rules.

For sibling rules you can add multiple rules then edit each cell to pick the buckets you
want. Alternatively, you can use Find Gaps to add a rule and then split the cell with
multiple values, and delete the rules you do not want to keep.

5.3.1.4 Understanding Decision Table Conflict Analysis

The rules in a Decision Table can conflict. Two rules conflict when they overlap and
they have different actions. Two rules overlap when at least one of their condition cells
has a bucket in common. Overlap is common when a Decision Table contains "do not
care" condition cells. Overlap without conflict is common and harmless.

Rules Designer finds conflicts and you can see the conflicts in the Conflict Resolution
row in the Decision Table when you click Show Conflicts. How you handle and
resolve conflicts depends on the specified conflict policy. You can choose a conflict
policy or use the default manual conflict policy. When you set a conflict policy using
the Conflict Policy option in the Advanced Settings area, Rules Designer sets the

5-18 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Performing Operations on Decision Tables

conflict policy for the Decision Table. The Conflict Policy specifies the Decision Table
conflict policy and is one of the following;:

= manual: Conflicts are resolved by manually specifying a conflict resolution for
each conflicting rule.

= auto override: Conflicts are resolved automatically using an override conflict
resolution when this is possible, using the Oracle Business Rules automatic
conflict resolution policies.

= ignore: Conflicts are ignored.

For more information, see Section 4.5, "Using Advanced Settings with Rules and
Decision Tables". For example, Figure 5-16 shows a Decision Table with conflicting
rules that you resolve with the default manual conflict policy.

Figure 5-16 Decision Table Showing Conflicting Rules in the Conflicts Area

QDrivar.ruJes]
Bl 8§ el o @
& : =
_-f [PRuleset 1 Mg DecisionTable_1 '| “ﬂ' -
£
) ¥ = DecisionTable 1 <enter description
27 [ceral: || [1=) driver_ages -/ -8 av B-iE-RIEEHE-®
D - Conditions Rl Rz R3 R4
_ Cl Driver.has_training true false
B c2 oiver.ace <20 >=20 <20 -]
x Conflict Resolution
(4} Conflict Rt R3
< Actions
A1 modify Driver]
eligible: i} true true False true
c Fit Colurns To YWidth
Dresign
' [E]Business Rule validation - Log E]l
(2] Dickionary - Driver rules Display New Warnings First
Message Dictionary Object Property
1 RUL-05851: The decision table has unresalved conflicks, DriverfRuleset_1{Decision Table{DecisionTable_1)
SDK Warnings: 1 Last Yalidakion Time: 11:26:17 AM PDT
Messages Business Rule Yalidation Extensions Feedback A=)

By clicking on the cells in the Decision Table Conflict Resolution area Rules Designer
lets you resolve conflicts between rules as follows:

= Opverride (Override and OverriddenBy): You override one rule with the other.
Override specifies that one rule fires. Override is a combination of prioritization
and mutual exclusion. Prioritization is transitive and not symmetric. Mutual

Working with Decision Tables 5-19

Performing Operations on Decision Tables

exclusion is both transitive and symmetric. If A overrides C and B overrides C,
then A or B runs before C but only one of A, B, or C runs.

s Run Before (RunBefore and RunAfter): You prioritize the rules. Run before lets
the two rules fire in a prescribed order. Prioritization is transitive but not
symmetric. That is, if A runs before B runs before C, then A runs before C but B
does not run before A. This uses a Decision Table runBefore list specifying that the
rule that runs before has a higher priority than rules in the list.

= Ignore (NoConflict): You OK the conflict. Ignore lets the two rules fire in arbitrary
order. For example, consider the following conflicting rules in a decision table:

rulel: everybody gets a 10% raise (as specified with a do not care value in a
decision table condition cell)
rule2: employee with Top Performer set to true gets a 5% raise

In these rules, if rule2 overrides rulel, then a top performer gets a 5% raise, and
everyone else gets a 10% raise. However, in this case, you would like to have both
rules fire. Because it does not matter which rule fires first, and there is no conflict,
then a top performer gets a 15.5% raise either way. In this case, use the NoConflict
list to remove the conflict. Note that no conflict is what you get with IF/THEN
rules with equal priorities, only you are not warned of a conflict and you have to
think carefully if you want one rule to override the other.

Figure 5-17 shows the Rules Designer Conflict Resolution dialog shown when you
select a conflicting rule in the Conflict Resolution area. This dialog lets you resolve
conflicts between rules by selecting overrides, prioritization with RunBefore or
RunAfter options, and a NoConflict option.

5-20 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Performing Operations on Decision Tables

Figure 5-17 Using the Decision Table Conflict Resolution Dialog

QDr.iver.ruJes E]
B H Pl o @
Ruleset 1 Wisw: [DecisionTable_t M
Ed
) ¥ = DecisionTable 1 =enter description =
& +-Rav B H-BREIRE @
D - Conditions R1 RZ R3 R4
Cl Driver.has_training true False
E CZ Driver.age <z0 =20 <20
& Conflict Resolution
X Cor] Below are the rules that conflict with rule R3 and the conflict resolution
1) Conflict methods ko resolve possible conflict occurrances. Ta change the resolution R3
i, method, please click the Resalution calumn and select the method vou would
like: ko use ko resolve the conflick,
Rule: R3 |
Conflicting Rule Resolution
= | Canflict =]
Al modif
eligil uoConfiict False true
Cverride
OverriddenBy
FunEefore
Fundfter
Help (0] 4 | | Cancel
c Fit Colurns To Width
Design
. [Eleusiness Rule Yalidation - Log E]]
[E3] Dictionary - Dtiver ules Display New Warrings First
Message Dictionary CObject Property
/M RUL-05851: The decision table has unresolved conflicts, Driver/Ruleset_1{Decision Table{DecisionTable_1)
SDK Warnings: 1 Lask Yalidation Time: 11:26:17 AMPDT
Messages Business Rule Yalidation Extensions Feedback =

You can use the Decision Table Advanced Settings Conflict Policy auto override
option to specify that, where possible, conflicts are automatically resolved. The
automatic override conflict resolution policy specifies that a special case overrides a
more general case. For more information, see Section 4.5, "Using Advanced Settings
with Rules and Decision Tables".

Thus, when there are conflicts in a Decision Table, you can do one or more of the
following to resolve the conflicts:

s Use auto override conflict resolution by selecting the Conflict Policy and then
auto override option in the Decision Table.

= Ignore conflicts by selecting the Conflict Policy and then ignore option in the
Decision Table.

s Use manual conflict resolution by selecting the Conflict Policy and then manual
option in the Decision Table and set Conflict Resolution for each conflicting rule in
the dialog by selecting cells in the Conflict Resolution area with the Show
Conflicts checkbox selected.

= Change the Decision Table to remove an overlap.

s Combine actions to remove conflicts.

Working with Decision Tables 5-21

Performing Operations on Decision Tables

5.3.2 How to Compact or Split a Decision Table

Use the Compact Table and Split Table icons to compact or split cells in a Decision
Table. For more information, see Section 5.3.1.1, "Understanding Decision Table Split
and Compact Operations."

To compact a decision table:

1. In Rules Designer select a ruleset from the Rulesets navigation tab and select the
Decision Table to compact.

2. Click the Compact Table icon.

To split cells in a decision table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table to split.

2. Click the Split Table icon.

5.3.3 How to Merge or Split Conditions in a Decision Table

Use the merge condition and split condition operations to merge or split a condition in
a Decision Table. For more information, see Section 5.3.1.1, "Understanding Decision
Table Split and Compact Operations."

To merge a condition in a decision table:

1. PFrom Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to merge a condition.

2, In the Conditions area, select the condition you want to merge.

3. Right-click, and from the list select Merge Condition.

To split a condition in a decision table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to split a condition.

2. In the Conditions area, select the condition you want to split.

3. Right-click and from the list select Split Condition.

5.3.4 How to Merge, Split, and Specify Do Not Care for Condition Cells

Use the condition cell operations to split a condition cell, to merge sibling condition
cells, or to specify a "do not care” value for a condition cell in a Decision Table. For
more information, see Section 5.3.1.1, "Understanding Decision Table Split and
Compact Operations."

To merge sibling cells in a condition in a decision table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to merge condition cells.

2. Select the sibling condition cells to merge.

3. Right-click, and from the list select Merge selected cells.
To split a cell in a condition in a decision table:

1. PFrom Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to split a condition cell.

5-22 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Performing Operations on Decision Tables

2. Select the cell to split.
3. Right-click, and from the list select Split selected cell.

To specify a "Do Not Care" value for a cell in a condition in a decision table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to set the "do not care" value.

2. Select the appropriate condition cell.

3. Right-click, and from the list select Do Not Care.

To select all buckets to specify a "Do Not Care" value for a cell in a condition:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to set the "do not care" value.

2. Select the appropriate condition cell.

3. Double-click, and from the list select all the available checkboxes for all possible
values.

5.3.5 How to Perform Decision Table Gap Analysis

A gap is a "missing" rule in a Decision Table. A Decision Table has a gap if there is a
combination of buckets, one from each condition, that is not covered by an existing
rule. Rules Designer provides Gap Analysis to check for gaps. When you use this
operation Rules Designer presents a window to fix gaps. For more information, see
Section 5.3.1.3, "Understanding Decision Table Gap Analysis".

You can choose to make existence of gaps a validation warning. When you deselect
Allow Gaps in the Advanced Settings area, the Decision Table reports a validation

warning when a gap is found. For more information, see Section 4.5, "Using Advanced

Settings with Rules and Decision Tables".

To perform decision table gap analysis:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to perform.

2, Click the Gap Analysis icon.

5.3.6 How to Perform Decision Table Manual Conflict Resolution

The rules in a Decision Table can conflict. Two rules conflict when they overlap and

they have different actions. Two rules overlap when at least one of their condition cells

has a bucket in common. For more information, see Section 5.3.1.4, "Understanding
Decision Table Conflict Analysis".

To perform manual decision table conflict resolution:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to check conflicts.

2. Set the conflict policy to manual (this is the default conflict policy). For more

information, see Section 5.3.1.4, "Understanding Decision Table Conflict Analysis".

3. In the Conditions area, in the conflicts area, when conflicts exist for each rule with

a conflict double-click the appropriate condition cell to display the Conflict
Resolution dialog.

Working with Decision Tables 5-23

Creating and Running an Oracle Business Rules Decision Table Application

4. In the Conflict Resolution dialog, for each conflicting rule, in the Resolution field
select a resolution from the list.

5.3.7 How to Set the Decision Table Auto Override Conflict Resolution Policy

When you select the Advanced Settings option in a Decision Table, you can select that
Decision Table conflicts are automatically resolved using the auto override conflict
policy (this applies only when it is possible to resolve the conflict using the Oracle
Business Rules automatic conflict resolution policies). The automatic override conflict
resolution uses a policy where when there is a rule conflict a special case overrides a
more general case. For more information, see Section 5.3.1.4, "Understanding Decision
Table Conflict Analysis".

To select the auto override policy:
1. Select the rule or Decision Table where you want to use ignore conflict policy.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name.

3. From the Conflict Policy option select auto override.

5.3.8 How to Set the Decision Table Ignore Conflicts Policy

When you select the Advanced Settings option in a Decision Table, you can select that
the Decision Table conflicts are ignored using the ignore conflict policy. The ignore
policy tells Oracle Business Rules to ignore conflicts in the Decision Table. For more
information, see Section 5.3.1.4, "Understanding Decision Table Conflict Analysis".

To select the ignore conflict policy:
1. Select the rule or Decision Table where you want to use the ignore conflicts policy.

2. C(Click the Show Advanced Settings icon next to the rule or Decision Table name.

3. From the Conflict Policy option select ignore.

5.4 Creating and Running an Oracle Business Rules Decision Table

Application

The Order Approval application demonstrates the integration of an SOA composite
application with Oracle Business Rules and the use of a Decision Table.

In this application a process is modeled that uses the decision component to:

» Process rules from XML inputs including: a credit score and the annual spending
of a customer, and the total cost of the incoming order.

= Provide output that determines if an order is approved, rejected, or requires
manual processing.

To complete this procedure, you need to:

= Obtain the Source Files for the Order Approval Application

» Create an Application for Order Approval

» Create a Business Rule Service Component for Order Approval
= View Data Model Elements for Order Approval

= Add Bucketsets to the Data Model for Order Approval

= Associate Bucketsets with Order and CreditScore Properties

5-24 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

= Add a Decision Table for Order Approval
- Split the Cells in the Decision Table and Add Actions
— Compact the Decision Table
- Replace Several Specific Rules with One General Rule
- Add a General Rule
s Check Dictionary Business Rule Validation Log for Order Approval
= Deploy the Order Approval Application
s Test the Order Approval Application

5.4.1 How to Obtain the Source Files for the Order Approval Application

The source code for Oracle Business Rules-specific samples is available online at
https://www.samplecode.oracle.com/sf/go/pageld9’

For SOA samples online visit
https://www.samplecode.oracle.com/sf/projects/soasamples/

To work with the Order Approval application, you first need to obtain the order.xsd
schema file either from the sample project that you obtain online or you can create the
schema file and create all the application, project, and other files in Oracle JDeveloper.
You can save the schema file provided in Example 5-1 locally to make it available to
Oracle JDeveloper.

Example 5-1 shows the order . xsd schema file.

Example 5-1 Order.xsd Schema

<?xml version="1.0" 2>
<schema attributeFormDefault="qualified" elementFormDefault="qualified"
targetNamespace="http://example.com/ns/customerorder"
xmlns:tns="http://example.com/ns/customerorder"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<element name="CustomerOrder">
<complexType>
<sequence>
<element name="name" type="string" />
<element name="creditScore" type="int" />
<element name="annualSpending" type="double" />
<element name="value" type="string" />
<element name="order" type="double" />
</sequence>
</complexType>
</element>
<element name="OrderApproval">
<complexType>
<sequence>
<element name="status" type="tns:Status"/>
</sequence>
</complexType>
</element>
<simpleType name="Status">
<restriction base="string">
<enumeration value="manual"/>
<enumeration value="approved"/>
<enumeration value="rejected"/>
</restriction>
</simpleType>
</schema>

Working with Decision Tables 5-25

Creating and Running an Oracle Business Rules Decision Table Application

5.4.2 How to Create an Application for Order Approval

To work with Oracle Business Rules, you first create an application in Oracle
JDeveloper.

To create an application for order approval:
1. In the Application Navigator, click New Application.

2. In the Name your application dialog, enter the name and location for the new
application.

a.

In the Application Name field, enter an application name. For example, enter
OrderApprovalApp.

In the Directory field, specify a directory name or accept the default.

In the Application Package Prefix field, enter an application package prefix,
for example com. example.order.

The prefix, followed by a period, applies to objects created in the initial project
of an application.

For an SOA composite with Oracle Business Rules, in the Application
Template area select SOA Application for the application template. For
example, see Figure 5-18.

Click Next.

Figure 5-18 Adding the Order Approval Application

& Create SOA Application - Step 1 of 3

Name your application

),\ Application Name

’]‘ Project Marme

Application Marne:

| CrderApprovaldpp |

Directary:

|C:'I,JDeveI0per'l,mywork'l,OrderP.pprovalP.pp || Browse, ., |

Application Package Prefix:

|c0m.example.order |

Application Template:

Java Deskbop Application (ADF)
Creates a databound rich client application. The application consists of one project
fFor the client {ADF Swing), and another praject far the ADF Model {ADF Business
Components).

Java EE Web application
Creates a databound web application, The application consists of one project for the
wigw and controller components (J5F), and another project for the data model (EJB
session beans and JPA entitizs),

504 Application
Creates a SOA (service-oriented architecture) application. The application consists of
one SO& project for the S04 composite, components, and adapters,

| Help | | Next = J| Finish || Cancel |

3. In the Name your project page enter the name and location for the project.

a.

b.

In the Project Name field, enter a name. For example, enter OrderApproval.
Enter or browse for a directory name, or accept the default.

For an Oracle Business Rules project, in the Project Technologies area ensure
that SOA, ADF Business Components, Java, and XML are in the Selected area
on the Project Technologies tab, as shown in Figure 5-19. If an item is missing,

5-26 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

select it in the Available pane and add it to the Selected pane using the Add
button.

Figure 5-19 Adding a Project to an Application

& Create SOA Application - Step 2 of 4

Name your project

e Project Name

|
!

Project Mame: | Orderapproval |

Application Mame

Directory: |C:'l,JDeveloper'l,mywork‘l,OrderF\pprovalApp'l,OrderApproval || Browse. .. |

Project Java Settings r Project Technologies |/ Generated Components |/ Associated Libraties |

Available: Selected:
Javabeans

J5F ADF Business Components
J5P and Servlets 1ava

J5P fFor Business Components L
Mobile BN
Skruts p | 2 |
Swing AT <
TopLink.

LML

Web Services

X501 Documents

Technology Descripkion:

#30L documents combine XML (Extensible Markup Language) and S0L (Structured
Query Languane) ko provide a language- and database-independent means for

Help < Back Mext = Finish Cancel
) | | | ||)

4,

Click Finish.

5.4.3 How to Create a Business Rule Service Component for Order Approval

After creating a project in Oracle JDeveloper you need to create a Business Rule
Service component within the project. When you add a business rule you can create
input and output variables to provide input to the service component and to obtain
results from the service component.

To use business rules with Oracle JDeveloper, you do the following:

Add a business rules service component
Create input and output variables for the service component

Create an Oracle Business Rules dictionary in the project

To create a business rule service component:

1.

In the Application Navigator, in the OrderApproval project expand SOA Content
and double-click composite.xml to launch the SOA composite editor (this may
already be open after you create the project).

From the Component Palette, drag-and-drop a Business Rule from the Service
Components area of the SOA menu to the Components lane of the
composite.xml editor.

Oracle JDeveloper displays a Create Business Rules page, as shown in Figure 5-20.

Working with Decision Tables 5-27

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-20 Adding a Business Rule Dictionary with the Create Business Rules Dialog

® Create Business Rules @

Business Rule
A business rule defines or constrains one aspect of your business that is intended ko assert business
structure or influence the behavior of your business,

General | Advanced |
(#) Create Dictionary () Impart Dictionary

Specify the name and package For the dictionary that will be created.

Mame: | OracleRules1| |

Package: | orderapproval |

Project: |C:'l,JDeveIoper'l,mywork'l,OrderApprovaIApp'l,OrderApproval'l,OrderApproval.jpr |

InputsfOukputs: +' X+ s

Direction Marne Type

3. Toadd an input, from the list next to the Add icon select Input to enter input for
the business rule.

4. In the Type Chooser dialog, click the Import Schema File... icon. This displays the
Import Schema File dialog, as shown in Figure 5-21.

Figure 5-21 Import Schema File with Type Chooser

C& Type Explorer

- [Froject Schema Files

& Import Schema File

LRL: I | &

Copy ta Project

Type: | |

[] Show Detailed Node Infarmation

5. Inthe Import Schema dialog click Browse Resources to choose the XML schema
elements for the input variable of the process. This displays the SOA Resource
Lookup dialog.

5-28 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

6. In the SOA Resource Lookup dialog, navigate to find the order . xsd schema file

and click OK.

7. In the Import Schema File dialog, make sure Copy to Project is selected, as shown

in Figure 5-22.

Figure 5-22 Importing the Order.xsd Schema File

Q Type Explorer

U_J Project Schema Files

& Import Schema File

LRL: |yworkjOrdernpproval.ﬂpp,l’OrdernpprovaI,l'xsd,l’Order.xsd |

Copy to Project

Type: |

[Show Detailed Node Information

Caneel

8. In the Import Schema File dialog, click OK.

9. If the Localize Files dialog displays, click OK to copy the schema to the composite

process directory.

10. In the Type Chooser, navigate to the Project Schemas Files folder to select the input

variable.

For this example, select CustomerOrder as the input variable.

11. On the Type Chooser window, click OK. This displays the Create Business Rules

dialog, as shown in Figure 5-23.

Working with Decision Tables 5-29

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-23 Create Business Rules Dialog with CustomerOrder Input

® Create Business Rules @

Business Rule
A business rule defines or constrains one aspect of your business that is intended ko assert business
structure or influence kthe behavior of your business,

General || Advanced |
(#) Create Dictionary () Import Dictionary

Specify the name and package For the dictionary that will be created.

Marme: | OracleRules1 |

Package: | orderapproval |

Project: |C:'l,JDeveIoper'l,mywork'l,OrderApprovaIApp'l,OrderApproval'l,OrderApproval.jpr |

InputsfOutputs: +' Xetd
Direction Mame Type
Input CustomerCrder {http:) hanner, customer . comynsfcu. .

|:| Expose as Composite Service

| Help | | [o]4 “ Cancel |

12. In a similar manner, add the output fact type OrderApproval from the imported
order.xsd.

13. In the Create Business Rules dialog, select Expose as Composite Service, as shown
in Figure 5-24.

Figure 5-24 Create Business Rules Dialog with Input and OrderApproval Output

& Create Business Rules [5_<|

Business Rule
A business rule defines or constrains one aspect of wour business that is intended ko assert business
structure of influence the behavior of your business,

General [Advanced

(3) Create Dictionary () Import Dickionary

Specify the name and package for the dictionary that will be created,

Marme: | OracleRules1 |

Package: | orderapproval |

Project: |C:'l,JDeveloper'l,mywork'l,OrderP.pprovaIP.pp'l,OrderP.pproval'l,OrderApprovaI.jpr |

Inputsfoukputs: - X &+ 3
Direction Mame Type

Input CustomerCrder {http: e, customer, comynsfcustomerorder o ustomerOrder

Cutput Orderdpproval Jhttp: e, customer, comjnsjcustomerorder horderApproval

Expose as Composite Service

Help | (0] 4 i Cancel |

14. Click OK. This creates the Business Rule component and Oracle JDeveloper shows
the Business Rule in the canvas workspace, as shown in Figure 5-25.

5-30 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-25 Business Rules Component in OrderApproval Composite

= AutoloanProcess . bpel | \Orderfpprovaldpp. jws D{Ecomposite.uml E]
FLWEEXD GGHBFD Composite! SOAComposite
Exposed Services Components External References
: = ® ® OracleRules1
OracleRules1_...
Operations:

callFunctionStat...
callFunctionStat...

Design | Source | Hiskary

The business rule service component enables you to integrate your SOA composite
application with a business rule. This creates a business rule dictionary and enables
you to execute business rules and make business decisions based on the rules.

5.4.4 How to View Data Model Elements for Order Approval

Before adding rules you need to create the Oracle Business Rules data model. The data
model contains the business data definitions (types) and definitions for facts that you
use to create rules. For example, for this sample the data model includes the XML
schema elements from order . xsd that you specify when you define inputs and
outputs for the business rule activity.

At times when you work with Rules Designer to create a rule or a Decision Table, you
may need to create or modify elements in the data model.

To view data model elements for Oracle business rules:

1. Select the composite tab with the value composite.xml, and in the Components
lane select the business rule (this surrounds the component, OracleRules1 with a
dashed selection box).

2. Double-click the selection box to launch Rules Designer.
3. In Rules Designer select the Facts navigation tab.

4. Select XML Facts tab in the Facts navigation tab as shown in Figure 5-26.

Working with Decision Tables 5-31

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-26 Opening a Business Rules Dictionary with Rules Designer

AukoLoanProcess, bpel | | OrderApprovalApp. jws Mt'acomposite.xml IODracleRulesl.rules | E]
B) @y o @
£ Facts
; B
Fe Functions EML Facks: B +EIRS
(X:l Globals Alias Marne De 2ML Mame (GEnet:
CustomerOrder com.customer, ns, cuskomerar . Hlxsielement[@name='"C... orde...
7 Bucketsets
e corm_cuskamer _ns_custameror... com,customer,ns,customerar, ., orde...
< Links Orderpproval com,customer, ns, cuskomerar ., Mlesielement[@name="... orde...
ﬂ Bretem FrEETs Status com, customer, ns, cuskomerar JfxsisimpleType[@name, .. orde...
Rulesets 3 X
P Ruleset_1
ML Facts || JavaFacts | RLFacts || ADF-BC Facts
[
Design

5.4.5 How to Add Bucketsets to the Data Model for Order Approval

To use a Decision Table you need to define bucketsets that specify how to draw values
for each cell for the conditions that constitute the Decision Table. For this example the
bucketsets are defined with a list of ranges that you define in Rules Designer.

To add OrderAmount bucketset to the data model:
1.

2.
3.

In Rules Designer, select the Bucketsets navigation tab.
From the dropdown next to the Create BucketSet... icon, select List of Ranges.

In the Name field, enter OrderAmount (In Rules Designer be sure to press Enter
to accept the name).

Double-click the OrderAmount bucketset icon to display the Edit Bucketset
dialog.

Click Add Bucket to add a bucket.
Click Add Bucket again to add another bucket.

In the Range Bucket Values area, in the top Endpoint field enter 1000 for the
endpoint value.

In the Range Bucket Values area, for the middle bucket in the Endpoint field enter
500 for the endpoint value.

In the Included Endpoint field for each bucket ensure the checkbox is selected, as
shown in Figure 5-27.

5-32 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-27 Adding the OrderAmount Bucketset

& Edit Bucketset - Ordersmount @
Marme: Orderfmount
Data Type: [i”t ']
[] Include Disallowed Buckets in Tests
Range Bucket Yalues: Q G ®
Endpoint Included Endpoint Allowed in Actions' R.ange Alias Description
= 1000 ==1000 »=1000

B Irfinity <500 <500

| Help | (04 | Cancel

10. Modify the Alias field for each value to High, Medium, and Low, as shown in
Figure 5-28.

Figure 5-28 Adding the OrderAmount Bucketset with Low Medium and High Aliases

& Edit Bucketset - Ordersmount rg|
Mame: Orderfmount
Data Type: [i”t 'l
[] Include Disallowed Buckets in Tests
Range Bucket Yalues: % G ®
Endpoint Included Endpoint Allowed in Actions' R.ange Alias Description

= 1000 ==1000 High

= 500 [500,, 10003 Medium
N T N N - N = R T A

| Help | (04 | Cancel

11. Click OK.

To add CreditScore bucketset to data model:
1. In Rules Designer select the Bucketsets navigation tab.

From the dropdown next to the Create BucketSet... icon, select List of Ranges.
In the Name field, enter CreditScore.

Double-click the CreditScore bucketset icon to display the Edit Bucketset dialog.
Click Add Bucket to add a bucket.

Click Add Bucket again to add another bucket.

In the top bucket, in the Endpoint field enter 750.

For the middle bucket, in the Endpoint field enter 400.

© ® N o a » 0 DN

In the Included Endpoint field for each bucket, ensure the checkbox is selected as
shown in Figure 5-29.

Working with Decision Tables 5-33

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-29 Adding the CreditScore Bucketset

& Edit Bucketset - CreditScore fz|
Marme: CreditScore
Data Type: |i“t '|
[] Include Disallowed Buckets in Tests
Range Bucket Yalues: % G ®
Endpoint Included Endpoint Allowed in Actions' R.ange Alias Description
= 750 =750 »=750
R N O - N N
B -Infinity =400 <400
| Help | | [s]4 | | Cancel |

10. Modify the Alias field for each endpoint value to solid for 750, avg for 400, and
risky for -Infinity as shown in Figure 5-30.

11. Click OK.

Figure 5-30 Adding the CreditScore Bucketset with Risky Avg and Solid Aliases

& Edit Buckeiset - CreditScore fz|
[Marme:
Data Type: |i”t v|
[] Include Disallowed Buckets in Tests
Range Bucket Yalues: G‘ &
Endpaint Included Endpaint Allowed in Actions Range Alias Description
= 750 »=750 salid
= 4 [400..750) avg
= -Infinity <400 risky
| Help | (a4 | | Cancel

5.4.6 How to Associate Bucketsets with Order and CreditScore Properties

To prepare for creating Decision Tables you can associate a bucketset with fact
properties in the data model. In this way condition cells in a Decision Table
Conditions area can use the bucketset when you create a Decision Table.

Note that the OrderApproval. status property is associated with the Status
bucketset when the OrderApproval fact type is imported from the XML schema. In
the schema, Status is a restricted String type and is therefore represented as an
enum bucketset. Rules Designer creates the status bucketset. For more information, see
Section 3.2.4, "What You Need to Know About XML Facts".

To associate bucketsets with Order and CreditScore properties:
1. In Rules Designer select the Facts navigation tab.

5-34 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

2.

Select the XML Facts tab in the Facts navigation tab as shown in Figure 5-31.

Figure 5-31 Opening a Business Rules Dictionary with Rules Designer

&' AukoLoanProcess, bpel |__:|-|Ordernpprovalnpp.jws Mtﬂcomposite.xml [OﬂracleRulesl.rules | E]
B 5 @ 0 & @
43 Facts
£ Functions ML Facts: CORIC g
(X} Globals Alias Marne D¢ ¥ML Marme GEners
CustomerOrder com, customer, ns, cuskomerar Jlxsielement[@name="C... orde...
{7 Bucketsets
e corm_cuskomer_ns_customerar ... com.customer.ns.customerar. .. orde...
< Links Orderapproval com, customer, ns, cuskomerar Jlxsielement[@name="... orde...
ﬂ Decision Functions Status com.customer, ns, cuskomerar . MlxsisimpleType[@name. .. orde...
Rulesets + ®
@ Ruleset_1

&
L

3.

WML Facts | JavaFacts | RLFacts | ADF-BC Facts

esign

Select the type you want to modify. For example in the XML Facts table
double-click the icon next to the CustomerOrder entry. This displays the Edit XML
Fact dialog.

In the Edit XML Fact dialog, in the Properties table in the Bucketset column select
the cell for the appropriate property and from the list select the bucketset you
want to use. For example, for the property order select the OrderAmount
bucketset, as shown in Figure 5-32.

Working with Decision Tables 5-35

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-32 Associating the OrderAmount Bucketset with CustomerOrder.order

& Edit XMLFact - com.customer. ns.customerorder. CustomerOrder,

Marme: | com.customer s, cuskomerorder, CustomerOrder |
Alias: CustomerQrder

Super Class: |Object |
Description:

¥ML Mame: |,l’,l'xs:eIement[@name:'CustomerOrder'] |

Generated From: |0rder.xsd |
Wisible
[] Support ¥Path Assertion

Attributes

|Pr0perties -
Alias Visible Mame Type Bucketset List Content Twpe

'J annualspending annualspending double

) creditscore creditsoore int

Q) name name String

(€ bt @ b fobe CrTTORS

QD walue wvalue String

Orderdmount

CreditScore

Fit Columns To Width

| Help | | Ok || Cancel |

5. In asimilar manner, for the property creditScore select the CreditScore bucketset.

6. Click OK.

5.4.7 How to Add a Decision Table for Order Approval

You create a Decision Table to process input facts and to produce output facts, or to
produce intermediate conclusions that Oracle Business Rules can further process using
additional rules or in another Decision Table.

While you work with rules you can use the rule validation features in Rules Designer
to assist you. Rules Designer performs dictionary validation when you make any
change to the dictionary. To show the validation log window, click the Validate icon
or select View>Log and select the Business Rule Validation tab. If you view the rules
validation log you should see warning messages. You remove these warning messages
as you create the Decision Table. For more information on rule validation see

Section 4.4.2, "Understanding Rule Validation".

To use a Decision Table for rules in this sample application you work with facts
representing a customer spending level and a customer credit risk for a particular
customer and a particular order. Then, you use a Decision Table to create rules based
on customer spending, the order amount, and the credit risk of the customer.

To add a decision table for order approval:
1. In Rules Designer, select Ruleset_1 under the Rulesets navigation tab.

2. C(Click the Add icon and from the list and select Create Decision Table.

5-36 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

3. In the Decision Table, click the Add icon and from the list select Condition.

4. In the Decision Table, double-click <edit condition>. Then, in the navigator
expand CustomerOrder and select creditScore. This enters the expression
CustomerOrder.creditScore in the Conditions column.

5. Again, in the Decision Table, click the Add icon and from the list select Condition.

6. In the Decision Table, in the Conditions area double-click the <edit condition>.
Then, in the navigator expand CustomerOrder and select order. This enters the
expression CustomerOrder .order.

7. Again, in the Decision Table, click the Add icon and from the list select Condition.
8. In the Decision Table, double-click <edit condition>.

9. In the navigator expand CustomerOrder and select annualSpending. In the text
entry area, add >2000 as shown in Figure 5-33.

Figure 5-33 Adding the Annual Spending Entry to a Decision Table

& AutoloanProcess. bpel | | OrderApprovalfpp. jws Mtgcon’lposite.xml OO(ade.‘?desl.rdes E]
Av DE5 U0 W% @

- s Ruleset_1 Wigw: | DecisionTable_1 v| 4' - 8

Fe Functions

v = DecisionTable 1 <enter description =

(x) Globals s

#7 Bucketsets 3 R1:|:|1||.='_|Local Lisk of Yalues v| 7 - R av B iR &FTE0

D Links = Conditions R1

Cl CustomerOrder.creditScore,
E Decision Functions

Rulesets C % Sl c: Customerorder,annualSpending >2000 _

&P Ruleset_1

C2 CustomerOrder, arder,

CustomerCrder. annualSpending =2000 Ef"!

Q, value Options

[H-a CustomerQrder
a Orderdpproval
a CurrentDate

@ RL

@ BigInteger

---n BigDecimal

[-a Calendar

F-a Status

G

Design

10. Type Enter to accept the value, as shown in Figure 5-34. If you view the rules
validation log you should see the warning messages as shown in Figure 5-34. You
remove these warning messages as you modify the Decision Table in later steps.

Working with Decision Tables 5-37

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-34 Adding Conditions to the CustomerOrder Decision Table

‘5 BuboLoanProcess,bpel | | OrderApprovaldpp. jws | ”ﬂg composite,xml IQDracleRules Lrules E]

e R 0 4 @
Q@ ———
m Wigw: | DecisionTable_1 V| Eil - %
£
t:j ¥ = DecisionTable 1 <enter description=
& C3R1:|- |V||ilLocaI List of Values v| Vi - 8 e v | B oG R e E®
D = Conditions R1
Cl CustomerOrder creditaoore, -
a . ystomerQrder.order, -
E“ 3 03 CustomerOrder, annualSpending =2000

- Actions

<insert ackionz

C
Dresign
[E]Business Rule Yalidation - Log E]
[2) Dictionary - CracleRules!.rules [#] Display Mews Warnings First
Message Dickionary Object Pr!
Y RUL-05164: The Fact type "Orderfppraval” is referenced, but is not asserted nor input. OracleRules1Data Model{Decision ...
Y RUL-05835: All rules have "do nok care” sek For condition "CustomerOrder, creditScore”, .. OracleRules1/Ruleset 1 /DecisionT...
A RUL-05835: All rules have "do not care” set For condition "CustomerOrder . order”. Select... OracleRules1/Ruleset 1 /DecisionT...
Y RUL-05835: All rules have "do nat care” set: For condition "CustomerOrder, annualSpendi, .. OracleRules1/Ruleset_1 /DecisionT...
A RUL-05838: The decision kable has no ackions. OracleRules1fRuleset_1/Decision T...
Y RUL-D5164: The Fact type "Orderfppraval” is referenced, but is not asserted nor input. OracleRules1Data Model{Decision ...
SDE Warnings: 6 Last Yalidation Time: 3:19:17 PM PDT
Messages BPEL Feedback Business Rule Walidation W=

To create an action in a decision table:

1. In the Decision Table click the Add icon and from the list select Action > Assert
New.

2. Inthe Actions area, double-click assert new(. This displays the Action Editor
dialog.

3. In the Action Editor dialog, in the Facts area select OrderApproval.

4. In the Action Editor dialog, in the Properties table for the property status select
the Parameterized checkbox and the Constant checkbox. This specifies that each
rule independently sets the status.

5. In the Action Editor dialog, select the Always Selected checkbox as shown in
Figure 5-35.

5-38 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-35 Adding an Action to a Decision Table with the Action Editor Dialog

& Action Editor ['5_(|

Form: | Assert Mew - |

Walue: | Assert Mew OrderApproval (stabus:?) |

Facts:

i CustomerOrder

Properties:
Properky Tvpe Yalue Parameterized Conskant
status Status

Always Selected

| Help | oK || Cancel

6. In the Action Editor dialog, click OK.

Next you need to add rules to the Decision Table and specify an action for each rule.

5.4.7.1 Split the Cells in the Decision Table and Add Actions

You can use the Decision Table split operation to create rules for the bucketsets
associated with the condition rows in the Decision Table. This creates one rule for
every combination of condition buckets. There are three order amount buckets, three
credit score buckets, and two boolean buckets for the annual spending amount for a
total of eighteen rules (3 x 3 x 2 = 18).

To split cells in a decision table:
1. Select the Decision Table.

2. In the Decision Table, click the Split Table icon and from the list select Split
Table. The split table operation eliminates the "do not care" cells from the table.
The table now shows eighteen rules that cover all ranges as shown in Figure 5-36.

These steps produce validation warnings for action cells with missing expressions. You
fix these in later steps.

Working with Decision Tables 5-39

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-36 Splitting a Decision Table Using Split Table Operation

+# Ruleset 1 Wiew: | DecisionTable_1 v - R

v - DecisionTable 1 <enter description =

Al R1: B K e v | BN B e T

= Conditions Rl RZ R3 R4 RS R&6 R7 RS RS RIO RI1 Rl1Z RIS RI4 RIS R16 | R17 RIS

Cl CustomerOrder.creditScore tisky avg salid

CZ CustomerOrder,order Low Mediumn High Lo Medium High Low Medium High

C3 CustomerOrder.annualSpending =2000 true | false | true false | true false true false true False | true False true false | true false | true False

< Actions

AL pssert e QrderAoRrova). COEOCrararirarimriraririririricracraraTn
e el e | e S S S I IS I e [P I |

To add actions for each rule in the decision table:

In the Decision Table you specify a value for the status property associated with
OrderApproval for each action cell in the Actions area. The possible choices are:
Status.MANUAL, Status.REJECTED, or Status.ACCEPTED. In this step you fill in
a value for status for each of the 18 rules. The values you enter correspond to the
conditions that form each rule in the Decision Table.

1. Inthe Actions area, double-click the action cell for the rule you want to work with,
as shown in Figure 5-37.

Figure 5-37 Adding Action Cell Values to a Decision Table

Ruleset 1 View: |@ DecisionTable_1 v| & - R

¥ %, DecisionTable 1 <enter description =

LRI PR Av B oH-R 0D EHA
= Conditions R1 RZ R3 R4 RS R& R7 R R9 Ri0 | R11 | R1Z R13 RI14 RIS RI16 | RI7 RIS
Cl CustomerOrder creditScore tisky! avg solid

C2 CustamerOrder,order Low Medium High Low Medium High Low Medium High

C3 CustomerOrder.annualSpending >2000 | true | False | true | false | true | false | true | false | true | false | true | false | true | false | true | false | true | false

= Actions
AL gssertnem Orderdpproyall
status: ot s | omon | oo | oo | e | e | e | s | e | | | | | e | e [

null

CrderApproval. status
Skatus, MANUAL
Skatus, APPROVED
Status REJECTED

[#] Eit Columns Ta Width

2. In thelist, select and enter a value for the action cell. For example, enter
Status.MANUAL.

5-40 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

3. For each action cell, enter the appropriate value as determined by the logic of your
application. For this sample application use the values for the Decision Table
actions as shown in Table 5-5.

4. Select Save All from the File main menu to save your work.

Table 5-5 Values for Decision Table Actions

Rule | C1 creditScore | C2 order | C3 annualSpending > 2000 | A1 OrderApproval status
R1 risky Low true Status.MANUAL
R2 risky Low false Status.MANUAL
R3 risky Medium | true Status.MANUAL
R4 risky Medium | false Status.REJECTED
R5 risky High true Status.MANUAL
R6 risky High false Status.REJECTED
R7 avg Low true Status.APPROVED
R8 avg Low false Status.MANUAL
R9 avg Medium | true Status .APPROVED
R10 | avg Medium | false Status.MANUAL
R11 | avg High true Status.MANUAL
R12 | avg High false Status.MANUAL
R13 | solid Low true Status .APPROVED
R14 | solid Low false Status.APPROVED
R15 | solid Medium | true Status .APPROVED
R16 | solid Medium | false Status.APPROVED
R17 | solid High true Status .APPROVED
R18 | solid High false Status.MANUAL

5.4.7.2 Compact the Decision Table

In this step you compact the rules to merge from eighteen rules to nine rules. This
automatically eliminates the rules that are not needed and preserves the no gap, no
conflict properties for the Decision Table.

To compact the decision table:
1. Select the Decision Table.

2. C(lick the Resize All Columns to Same Width icon.

3. Click the Compact Table icon and from the list select Compact Table. The compact
table operation eliminates rules from the Decision Table. The Decision Table now
shows nine rules, as shown in Figure 5-38.

Working with Decision Tables 5-41

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-38 Compacting a Decision Table Using Compact Table

Ruleset_1 Yiew: | DecisionTable_1 v| & - %
¥ “. DecisionTable_1 <enter description =

TR Aav R STHD

v Conditions R1 Rz R3 R4 RS R& R7 RE RS
Cl CustomerOrder.creditScore risky avg solid

C2 CustomerOrder.arder Lo Mediurm,High Low , Medium High Lo, Mediurm High

C3 CustomerCrder.annualSpending =2000 - true False true False - - true false

W Actions
Approval

| [#] it Columnns Ta Width]

5.4.7.3 Replace Several Specific Rules with One General Rule

Notice that five of the nine remaining rules result in a manual order approval status.
You can reduce the number of rules by deleting these five rules. Note it is often best
practice to not do this (that is not replace several specific rules with one general rule).
You need to compare the benefits of having fewer rules with the added complexity of
managing the conflicts introduced when you reduce the number of rules.

To replace several specific rules with one general rule:
1. Select the Decision Table.
2. In the Decision Table, select a rule with OrderApproval status action set to

Status.MANUAL. To select a rule, click the column heading. For example, click
rule R2 as shown in Figure 5-39.

3. Click Delete to remove a rule in the Decision Table. Be careful to click the delete
icon in the Decision Table area to delete a rule in the decision table (there is also a
delete icon shown in the Ruleset area that deletes the complete Decision Table).

5-42 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-39 Deleting Rules from a Decision Table

Ruleset 1 iew: [DecisionTable_1 v - %
¥ “. DecsionTable_1 <enter description=

T RAvIHHR SIER

1 Conditions R4 RS R7 RE R3
Cl CustomerOrder.creditScare av solid

C2 CustomerCrder.ordsr Low, Medium High Lo, Medium High

C3 CustomerOrder,annualspending =2000 true false S S trug False

i Actions
A1 assert new Orderdpprovall
status:) Status, Ma...

W Status.RED... Status.AP... Status.MA... Status.MA... Status.AP... Status APP... Status MA...

|[#] Eit Columins To Width

4. Repeat these steps to delete all the rules with action set to Status .MANUAL. This
should leave the Decision Table with four rules as shown in Figure 5-40.

Figure 5-40 Decision Table After Manual Actions Removed

Ruleset_1 Wiew: |DecwsinnTabIe_1 v| 9 v B
¥ % DecisionTable_1 <enfer description =
o =
X av (R eTEHA
- Conditions R1 Rz R3 R4
C2 CustomerOrder.order Medium,High Low, Medium Lo, Medium
C3 CustomerQrder.annualSpending 2000 false true - true
2 Actions
41 assert new Orderdpproval
status:) Status,REJECTED Status, APPROVED Status, APPROVED Status. APPROVED
|[¥] Eit Colurins To Width]

5.4.7.4 Add a General Rule

Now you can add a single rule to handle the manual case. After adding this rule you
set the conflict policy with the option Conflict Policy auto override for conflict
resolution.

To add a general rule:
1. In the Decision Table, click the Add icon and from the list select Rule.

Working with Decision Tables 5-43

Creating and Running an Oracle Business Rules Decision Table Application

2. Inthe Conditions area, for the three conditions leave the "-" do not care value for
each cell in the rule.

3. Inthe Actions area, enter Status.MANUAL, as shown in Figure 5-41. Notice that
the Business Rule Validation log includes the warning RUL-05851 for
unresolved conflicts.

Figure 5-41 Decision Table with Conflicting Rules

& dutoLoanProcess.bpel |j0rdernpprovalnpp.jws Mtgcomposite.xml [QDradeRuJesl.rules E]
B @& @ o @
Ruleset 1 Yiew! | DecisionTable_1 v| 3= -
¥ ., DecisionTable 1 <enter description=
ALRS: X av B iR 0FEHA
7 Conditions R1 R2 R3 R4 RS
C1 CustomerOrder,creditScore risky avg solid
CZ CustomerOrder, order Mediunn,High Law, Medium Lo, Mediurm High
C3 CustomerOrder. annualSpending =2000 false true - true
&7 Actions
A1 assert new Orderdpproval(
status:] Status REJECTED Status, APPROYED Status, APPROYED Status, APPROYED Stakus, MARLAL
|

Dresign
[E]Business Rule Yalidation - Log =0
[E5] Dickionary - OracleRules1.rules Display Mew Warnings First
Message Dictionary Object Property
A RUL-05851: The decision kable has unresalved conflicts, OracleRules1jRuleset_1fDecision Table{DecisionTable_1)
SDK Warnings: 1 Last Yalidation Time: 4:03:23 PM POT
Messages |BPEL | Feedback | Business Rule validation ODE]

4. Show the conflicting rules by clicking the Toggle Display of Conflict Resolution
icon, as shown in Figure 5-42.

5-44 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-42 Adding a Rule to Handle Status Manual

+ Ruleset 1 Wi ‘DecwsiUnTable_l v| - R

¥y = DecisionTable 1 =enter description =

ALRS: 4 X e | H-G-R IR E®

o Conditions R1 R2 R3 R4 RS

£l CustomerCrder.creditScore risky avg solid

C2 Customerdrder.order Medium,High L, Medium Low, Medium High

C3 CustomerOrdet.annualSpending >2000 false true - true

X Conflict Resolution

) Conflict RS RS RS RS R1, RZ, B3, R4

it Actions

4l assert new OrderfApproval{

status: i Status.REJECTED Skakus. APPROYED Skakus. APPROVED Stakus. APPROVED

L[] Eit Columns To ‘Width]

To enable the auto override conflict resolution policy:
1. In the Decision Table click Show Advanced Settings (the icon next to the Decision
Table name).

2. In the Conflict Policy list, select auto override. After adding the manual case rule
and selecting auto override, notice that the conflicts are resolved and special cases
override the general case, as shown in Figure 5-43.

Figure 5-43 Adding a Rule to Handle Status Manual with Auto Override Conflict Policy

+ Ruleset_1 View: | DecisionTable_1 '| T+ - %
L DecisionTable_1 <enter description =

[]Advanced Mode [] Tree Made Rule Active [Logical Allow Gaps
Priority; [medium |:| Conflict Palicy: |auto override '| Effective Dake: | Always Yalid

- % s H-fi-RAIREEHE-@

8 Conditions R1 Rz R3 R4 RS
Cl CustomerOrder,creditScore risky avg solid
C2 CustomerOrder.order Tediur, High Lo, Mediurn Lo, Medium High
C3 CustomerOrder.annualspending >2000 false true - true
X Conflict Resolution
9 Override RS RS RS RS
iz Actions
41 assert new Orderdpprovall

status: i} Staktus REJECTED Skatus, APPR.OVED Status. APPROVED Skatus. APPROVED Skatus MANUAL

| [w] it Columins To Width

Working with Decision Tables 5-45

Creating and Running an Oracle Business Rules Decision Table Application

5.4.8 How to Check the Business Rule Validation Log for Order Approval

Before you can deploy the application you need to make sure the dictionary validates
without warnings. If there are any validation warnings you need fix any associated
problems.

To validate the dictionary:
1. In the Business Rule Validation Log, check for validation warnings.

2. If there are validation warnings, perform appropriate actions to correct the
problems.

5.4.9 How to Deploy the Order Approval Application

Business rules created in an SOA application are deployed as part of the SOA
composite when you create a deployment profile in Oracle JDeveloper. You deploy an
SOA composite application to Oracle WebLogic Server.

To deploy and run the order approval application:

1. If you have not started your application server instance, then start the Oracle
WebLogic Server.

2. Inthe Application Navigator, right-click the OrderApproval project and select
Deploy > OrderApproval > to > WLS Server Name.

Then the SOA Deployment Configuration dialog displays.
3. Click OK.
4. In the Authorization Request dialog, enter your authorization.

5. Click OK.

5.4.10 How to Test the Order Approval Application

After deploying the application you can test the Decision Table in the SOA composite
application with the Oracle Enterprise Manager Fusion Middleware Control Console.

To test the application:

1. Open the composite application in Oracle Enterprise Manager Fusion Middleware
Control Console, as shown in Figure 5-44.

5-46 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-44 Testing the Order Approval Application

=l 5 Farm_base_domain ol 504 Composite v Page Refreshed Mar 25, 2009 5:11:51 PM POT 0
3 application Deployments
B £ 504 Running Instances 0 | Tokal 3 | Active | Retire ... Shut Dowin. .. Test Settings... v | @ [2]
e 5% soarinfra (AdminServer) Dashboard | Instances = Faults and Rejected Messages — Unit Tests | Policies
off AutoloanComposite [2.0 |
offf soaCompositel [1.0] @ e’
o2 SDACompositel [4.0 ElRecent Instances
))
& (3 weblogic Comain Shows Only Running Instances [] Running 0 Total 3
[Metadata Repositories . .
[User Messaging Service Instance ID MName Conversation ID §tate Skart: Time
20003 1238025540540 E - Mar 25, 2009 5:04:24 PM
20007 1238025277455 7 - Mar 25, 2009 4:55:00 PM
20008 1238024335533 7 - Mar 25, 2009 4:535:06 PM
9| & Show al
ERecent Faults and Rejected Messages
Shiow only syskem Faults
Etror Message Recovery Fault Time Fault Location Ic[?mpwte WEEES Logs
Mo Faulks found
& Show all
EComponent Metrics 2
< >

2. Click Test.

3. In the Input Arguments area, select XML View. Replace the XML with the
contents of example Example 5-2.

Example 5-2 Sample Input for Testing Order Approval Application

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body xmlns:nsl="http://xmlns.oracle.com/OracleRulesl/OracleRulesl_DecisionService_1">
<nsl:callFunctionStateless name="OracleRulesl_DecisionService_1">
<nsl:parameterList xmlns:ns3="http://example.com/ns/customerorder">
<ns3:CustomerOrder>
<ns3:name>Gary</ns3 :name>
<ns3:creditScore>600</ns3:creditScore>
<ns3:annualSpending>2001.0</ns3:annualSpending>
<ns3:value>High</ns3:value>
<ns3:order>100.0</ns3:order>
</ns3:CustomerOrder>
</nsl:parameterList>
</nsl:callFunctionStateless>
</soap:Body>
</soap:Envelope>

4. Replace the values in the input shown in Example 5-2 as desired for your test.
5. Click Test Web Service.

6. In the Response tab, view the results. For example, for this input:

/OracleRulesl_DecisionService_1" xmlns:ns2="http://xmlns.oracle.com/bpel">
<resultList>

<OrderApproval : OrderApproval
xmlns:OrderApproval="http://example.com/ns/customerorder"
xmlns="http://example.com/ns/customerorder">

Working with Decision Tables 5-47

Creating and Running an Oracle Business Rules Decision Table Application

<status>approved</status>
</0OrderApproval : OrderApproval>
</resultList>
</callFunctionStatefulDecision>

5-48 Oracle Fusion Middleware User's Guide for Oracle Business Rules

6

Working with Decision Functions

Use a decision function to call rules from a Java application, from a composite, or from
a BPEL process.

This chapter includes the following sections:
s Section 6.1, "Introduction to Decision Functions"
= Section 6.2, "Working with Decision Functions"

s Section 6.3, "What You Need to Know About Decision Functions"

6.1 Introduction to Decision Functions
A decision function is a function that is configured declaratively.
A decision function contains the following declarations:
= input facts
= rulesets and nested decision functions
= output facts
A decision function performs the following operations:

= Asserts inputs as rule facts into the Oracle Business Rules Engine working
memory

= Runs rulesets configured in the current decision function and in nested decision
functions in order

= Returns output facts from the Oracle Business Rules Engine working memory

You can create a decision function to simplify the use of Oracle Business Rules from a
Java application or from a BPEL process. In a decision function the rules you want to
use can be organized into several rulesets, and those rulesets can be executed in a
prescribed order. Facts may flow to the first ruleset, and this ruleset may assert
additional facts that flow to the second and subsequent rulesets until finally facts flow
back to the decision function as decision function output.

6.2 Working with Decision Functions

A decision function is a function that is configured declaratively.

6.2.1 How to Add or Edit a Decision Function

You use Rules Designer to add a decision function.

Working with Decision Functions 6-1

Working with Decision Functions

To add a decision function:
1. In Rules Designer, select the Decision Functions navigation tab.

2. In the Decision Functions area, click Create....

3. Enter the decision function name in the Name field, or use the default name as
Figure 6-1 shows.

Figure 6—1 The Decision Functions Area in Rules Designer

'\':’)Start Page |g|TESTSOAI.jws Mtﬁcomposita.xml [QDracleRulesl.rules I E]

B B @ 0 & @
& Facts Decision Functions
_f,: Functions
(x) Globals Decision Functions: EE} S / ®
\f\':'j Bucketsets Marme Description Web Service
<D Links CrecisionFunction_1
a Decision Functions

Rulesets + 4

@ Ruleset_1

4. In the decision functions table, double-click the decision function icon. For
example, double-click the decision function icon for DecisionFunction_1. This
displays the Edit Decision Function dialog, as shown in Figure 6-2.

6-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Decision Functions

Figure 6—2 Edit Decision Function Dialog

& Edit Decision Function

Marme: | DecisionFunction_1 |
Description: | |
Rule Firing Lirnit: |unlimited |v|

[will Be Invoked As & Webservice
Check Rule Flow

[¥] gtateless
= Inputs Eﬂ' X Aaw
Mame Fack Type Tree List
= Dutputs XA
Mame Fack Type Tree Lisk

= Rulesets & Decision Functions

Available: Selected: LB

P Ruleset _

| Help | | a4 || Cancel

5. In the Name field, enter a name or accept the default value.
6. In the Description field, optionally enter a description.

7. In the Rule Firing Limit field, select unlimited. In some cases when you are
debugging a decision function, you may want to enter a value other than
unlimited for the rule firing limit. For more information, see Section 6.3.1, "What
You May Need to Know About Rule Firing Limit Option for Debugging Rules".

8. Select the appropriate decision function options:

= Will be invoked as a Web Service: select whether the decision function will be
invoked as a Web Service.

s Check Rule Flow: when selected, this option specifies that the rule flow is
checked to ensure that facts of the appropriate type are either explicit inputs to
the decision function or are asserted by rules in the rule flow. However, when
this is selected this does not always produce useful information; there are
cases where facts can be asserted in Java code that uses the decision function,
but this code might not be available at design time. In this case, validation
warnings may produced with Check Rule Flow selected may not be useful.

Working with Decision Functions 6-3

Working with Decision Functions

Stateless: when selected specifies the decision function is stateless. For more
information, see Section 6.3.3, "What You May Need to Know About the
Decision Function Stateless Option".

9. In the Inputs Table, click Add to add inputs. For each input in the Inputs Table,
select the appropriate options:

Name - enter an input name and press Enter or accept the default name.
Fact Type - select the appropriate fact type from the list.

Tree - When unselected, the input is asserted using the assert function.
When selected, the input is asserted using the assertTree function. When
selected it is expected that the input object or objects are the root of an object
tree that is connected in one-to-many relationships with other objects using
List properties. For more information, see Section 4.8, "Working with Tree
Mode Rules".

List - When unselected, the input must be a single object and the assertion
applies only to that single input object. When selected, the input must be a
List of objects and the assertion applies to each object in the input List
(java.util.List).

10. In the Outputs Table, click Add to add outputs. For each output in the Outputs
Table, select the appropriate options:

Name - enter an output name and press Enter or accept the default name.
Fact Type - select the appropriate fact type from the list.

Tree - When selected, this option sets a flag that enables certain design-time
decision function argument checking. For an output argument, this option has
no effect on runtime behavior. However, at design time in the case where
several decision functions are called in a sequence, it is useful to notate
explicitly that the output of one decision function is a tree. This implies that
the input of another decision function in the sequence is expecting a tree as an
input. For more information, see Section 4.8, "Working with Tree Mode Rules".

List - When unselected the output is a single object. When selected the output
is a group of objects. For more information on the behavior of the List option
on an output argument, see Section 6.3.2, "What You May Need to Know to
About Decision Function Arguments".

11. In the Rulesets and Decision Functions area, use the shuttle to move items from
the Available box to the Selected box.

12. Select an item in the Selected box, and click Move Up or Move Down as
appropriate to order the rulesets and the decision functions.

To edit an existing decision function:
1. In Rules Designer, select the Decision Functions navigation tab.

2. Select the decision function to edit and click the Edit icon or double-click the
decision function icon.

3. Edit the appropriate decision function fields in the same manner as you would
when you add a decision function.

To change the order of inputs:
1. In Rules Designer, select the Decision Functions navigation tab.

6-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

What You Need to Know About Decision Functions

2. Select the decision function to edit and click the Edit icon or double-click the
decision function icon.

3. Select the input argument you want to move. Click either Move Up or Move
Down to reorder the input argument.

To change the order of outputs:
1. In Rules Designer, select the Decision Functions navigation tab.

2. Select the decision function to edit and click the Edit icon or double-click the
decision function icon.

3. Select the output argument you want to move. Click either Move Up or Move
Down to reorder the output argument.

6.3 What You Need to Know About Decision Functions

A decision function is a function that is configured declaratively.

6.3.1 What You May Need to Know About Rule Firing Limit Option for Debugging Rules

The Rule Firing Limit allows you to set the maximum number of steps (rule firings)
that are allowed at runtime. Using this option and specifying a value other than
unlimited can help you debug certain rule design problems and in some cases might
help prevent java.lang.OutOfMemoryError errors at runtime. This is can be
useful when debugging infinitely recursive rule firings.

6.3.2 What You May Need to Know to About Decision Function Arguments

Oracle Business Rules generates a corresponding RL Language function for each
decision function.

The signature of a generated decision function is similar to:

function <name> (InputFactTypel inputl, ... InputFactTypeN inputlN) returns List

In a decision function, each parameter is generated depending on the List option, with
the decision function input, as follows:

= Input argument, List option unselected: for FactTypei the input must be a single
object and the assertion applies only to that single input object.

= Input List option selected: List<FactTypei> the input must be a List of objects
and the assertion applies to each object in the input List (java.util.List).

The generated RL Language function includes calls either to assert or assertTree
for each argument, depending on the decision function Input option, Tree. When Tree
is unselected the input is asserted using the assert function. When Tree is selected,
the input is asserted using the assertTree function. When Tree is selected it is
expected that the input object or objects are the root of an object tree that is connected
in one-to-many relationships with other objects using List or array type properties.

For the decision function selected rulesets, as specified in the Rulesets and Decision
Functions area Selected box, the generated RL Language function includes a call to
run () with the selected rulesets in the selected ruleset stack order.

The generated RL Language function returns a list. The list has an element for each
decision function output in order. If the output is declared to be a list, then the
corresponding element is a list. However, if the output is not declared to be a list, then
the corresponding element is the output fact or null (if there is no output fact of the

Working with Decision Functions 6-5

What You Need to Know About Decision Functions

declared type). If an output is not declared to be a list, and more than one output fact
of the specified type is found in the working memory of Oracle Business Rules Engine,
then an exception is thrown.

After you edit a decision function, for example, to change or add inputs and outputs,
the changes are visible in BPEL for new Business Rule activities. However, the changes
are not visible to existing Business Rule activities. For more information, see "Getting
Started with Oracle Business Rules" in the Oracle Fusion Middleware Developer’s Guide
for Oracle SOA Suite.

6.3.3 What You May Need to Know About the Decision Function Stateless Option

A decision function supports either stateful or stateless operation. The Stateless
checkbox in the Edit Decision Function dialog provides support for these two modes
of operation.

By default the Stateless checkbox is selected which indicates stateless operation. With
stateless operation, at runtime, the rule session is released after each invocation of the
decision function.

When Stateless is deselected the underlying Oracle Business Rules object is kept in the
memory of the Business Rules service engine, so that it is not given back to the Rule
Session Pool when the operation is finished. A subsequent use of the decision function
re-uses the cached RuleSession object, with all its state information from the previous
invocation. Thus, when Stateless is deselected the rule session is saved for a
subsequent request and a sequence of decision function invocations from the same
process should always end with a stateless invocation.

6-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

7

Working with Rules SDK Decision Point API

Oracle Business Rules SDK (Rules SDK) lets you write applications that access, create,
modify, and execute rules in Oracle Business Rules dictionaries (and work with the
contents of a dictionary). This chapter provides a brief description of Rules SDK and
shows how to work with the Rules SDK Decision Point API.

This chapter includes the following sections:

» Section 7.1, "Introduction to Rules SDK and the Car Rental Sample Application"
m Section 7.2, "Creating a Dictionary for Use with a Decision Point"

» Section 7.3, "Creating a Java Application Using Rules SDK Decision Point"

= Section 7.4, "Running the Car Rental Sample"

= Section 7.5, "What You Need to Know About Using Decision Point in a Production
Environment"

= Section 7.6, "What You Need to Know About Decision Point and Decision Tracing"

For more information, see Oracle Fusion Middleware Java API Reference for Oracle
Business Rules.

7.1 Introduction to Rules SDK and the Car Rental Sample Application
The Rules SDK consists of four areas:
= Engine: provides for rules execution
= Storage: provides access to rule dictionaries and repositories
= Editing: provides a programatic way to create and modify dictionary components

= Decision Point: provides an interface to access a dictionary and execute a decision
function

Other than for explanation purposes, there is not an explicit distinction between these
areas in Rules SDK. For example, to edit rules you also need to use the storage area of
Rules SDK to access a dictionary. These parts of the Rules SDK are divided to help

describe the different modes of usage, rather than to describe distinct Rules SDK APIs.

7.1.1 Introduction to Decision Point API

The Decision Point API provides a concise way to execute rules. Most users create
Oracle Business Rules artifacts, including data model elements, rules, Decision Tables,
and rulesets using the Rules Designer extension to Oracle JDeveloper. Thus, most
users do not need to work directly with the engine, storage, or editing parts of Rules
SDK.

Working with Rules SDK Decision Point APl 7-1

Introduction to Rules SDK and the Car Rental Sample Application

To work with the Rules SDK Decision Point package you need to understand three
important classes:

s DecisionPoint:is ahelper class that follows the factory design pattern to create
instances of DecisionPointInstance. In most applications there should be one
DecisionPoint object that is shared by all application threads. A caller uses the
getInstance () method of DecisionPoint to get an instance of
DecisionPointInstance which can be used to call the defined Decision Point.

s DecisionPointBuilder: follows the Builder design pattern to construct a
Decision Point.

m DecisionPointInstance: users call invoke () in this class to assert facts and
execute a decision function.

The DecisionPoint classes support a fluent interface model so that methods can be
chained together. For more information, see

http://www.martinfowler.com/bliki/FluentInterface.html
A Decision Point manages several aspects of rule execution, including:

s Useoforacle.rules.rl.RuleSession objects

= Reloading of a dictionary when the dictionary is updated

To create a Decision Point in a Java application you need the following:

= Either the name of a dictionary to be loaded from an MDS repository or a
pre-loaded oracle.rules.sdk2.dictionary.RuleDictionary instance.

s The name of a decision function stored in the specified dictionary.

7.1.2 How to Obtain the Car Rental Sample Application

This chapter shows a car rental application that demonstrates the use of Rules SDK
and the Decision Point API. You can obtain the sample application in a ZIP file,
CarRentalApplication.zip. This ZIP contains a complete JDeveloper application
and project.

The source code for Oracle Business Rules-specific samples is available online at
https://www.samplecode.oracle.com/sf/go/pageld9’

For SOA samples online visit
https://www.samplecode.oracle.com/sf/projects/soasamples/

To work with the sample unzip CarRentalApplication.zip into an appropriate
directory. The car rental application project contains a rules dictionary and several Java
examples using Rules SDK.

7.1.3 How to Open the Car Rental Sample Application and Project

The Car Rental sample application shows you how to work with the Rules SDK
Decision Point APIL

To open the car rental sample application:
1. Start Oracle JDeveloper.

2. Open the car rental application in the directory where you unzipped the sample.
For example, from the File menu select Open... and in the Open dialog navigate to
the CarRental Application folder.

7-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Dictionary for Use with a Decision Point

3. In the Open dialog select CarRentalApplication.jws and click Open.

4. In the Application Navigator, expand the CarRentalApplication, expand
Application Sources and Resources. This displays the Oracle Business Rules
dictionary named CarRental . rules and several Java source files.

7.2 Creating a Dictionary for Use with a Decision Point

The car rental sample uses the Rules SDK Decision Point API with either a pre-loaded
Oracle Business Rules dictionary or a repository stored in MDS. When you are
working in a development environment you can use the Decision Point API with the
pre-loaded dictionary signature. In a production environment you would typically use
a Decision Point with the MDS repository signature.

The CarRental dictionary is pre-defined and is available in the car rental sample
application.

To work with the Decision Point API you need to create a dictionary that contains a
decision function (the car rental sample application comes with a predefined
dictionary and decision function).

You perform the following steps to create a dictionary and a decision function:
s Section 7.2.1, "How to Create Data Model Elements for Use with a Decision Point"
s Section 7.2.2, "How to View a Decision Function to Call from the Decision Point"

s Section 7.2.3, "How to Create Rules or Decision Tables for the Decision Function"

7.2.1 How to Create Data Model Elements for Use with a Decision Point

You need the following to add to a decision function when you create an application
with a Decision Point.

= A dictionary containing data model elements that you use to create rules or
Decision Tables and when working with ADF Business Components fact types,
you need to add links for the Decision Point support dictionary. For more
information, see Chapter 2, "Working with Data Model Elements". For more
information, see Chapter 10, "Working with Oracle Business Rules and ADF
Business Components".

= A dictionary containing fact definitions. For more information, see Chapter 3,
"Working with Facts and Bucketsets".

To view the data model in the supplied car rental sample application:
1. In Rules Designer, click the Facts navigation tab.

2. Select the Java Facts tab, as shown in Figure 7-1.

The Java Facts tab shows four fact types imported, in addition to the fact types
provided as built-in to the dictionary.

The Driver Java Fact is imported from the Driver Java class in the project.
The Denial Java Fact is imported from Denial Java class in the project.

The LicenseType and VehicleType facts are imported from the nested enum
classes defined in the Driver class.

Working with Rules SDK Decision Point APl 7-3

Creating a Dictionary for Use with a Decision Point

Figure 7-1 Defined Java Facts for the Car Rental Sample Application

QEarRentaJ.ruJes =
EE I S S| ! @
‘¥ Facts
JE: Functions Jawa Facts: @ﬂ “i' / X %
(x) Globals Alias Class Description
. i=» Denial oracle.middleware. rules. demo. carrental, Denial
bty = Driver oracle middleware, rules, demao. carrental Driver
D Links i» LicenseType oracle,middleware, rules. demo, carrental Driver$license. .,
ﬂ Decision Functions = WehiceType oracle. middleware. rules, demo. carrental Drivergiehicle. .
4 @y ActionType oracle rules, sdkZ decisionpoint, ActionType
{ Rulesets + ® &y KeyChain oracle.rules, sdkZ, decisionpoint. KewChain
@Denial Rules: if-... gy KeyedhctionType oracle rules, sdkZ decisionpoint. KeyedactionType
@Denial Rules: dec... @y DecisionPoint oracle.rules, sdkZ, decisionpoint, DecisionPoink
i@y DecisionPointBuilder oracle rules, sdkz decisionpoint, DecisionPoint Builder
@y DecisionPointInstance oracle.rules, sdkZ, decisionpoint, DecisionPoint Instance
&y Obiect jawa.lang. Object
&y String java.lang. string
@ Biglnteger jawa.math.Biglnteger
@y BigDecimal java.math.BigDecimal
gy Calendar jawa.util. Calendar
&y “MliaregorianCalendar javas, xml datatype sMLGregorianCalendar
HML Facts | JavaFacts | RLFacts || ADF-BC Facts
[
Design

When you use a Decision Point with Rules SDK, you call a decision function in a
specified dictionary. The decision function that you call can contain one or more
rulesets that are executed as part of the Decision Point.

To view the ruleset in the supplied car rental sample application:
1. In Rules Designer, expand the CarRental Application.

2. In the CarRentalApplication, expand Resources.

3. Double-click the CarRental.rules.

7.2.2 How to View a Decision Function to Call from the Decision Point

When you work with the Decision Point API you use decision functions to expose an
Oracle Business Rules dictionary. For more information on decision functions, see
Chapter 6, "Working with Decision Functions".

To view the decision function in the car rental sample application:

1. In Rules Designer, click the Decision Functions navigation tab. This displays the
available decision functions in the CarRental dictionary, as shown in Figure 7-2.

7-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Dictionary for Use with a Decision Point

Figure 7-2 Car Rental Sample Decision Function

Rulesets

=

a Decision Functions

+ X

P Denial Rules: if-...
P Denial Rules: dec...

QEarRental.rules E]
Qv D& D0 ®
Facts .

9 Decision Functions

Fe Functions

(x) Globals Diecision Functions: T A 4

\.f'ﬁ Bucketsets MName Description ieb Service

<D Links CarRentalDecisionFunction O

Design

Select the row with CarRentalDecisionFunction and double-click the decision

function icon. This opens the Edit Decision Function dialog as shown in
Figure 7-3.

The decision function Inputs table includes a single argument for a Driver fact

type.

The decision function Outputs table includes a single argument for a Denial fact

type.

The decision function Rulesets and Decision Functions area shows Denial
Rules:if-then in the Selected box.

Working with Rules SDK Decision Point API

7-5

Creating a Dictionary for Use with a Decision Point

Figure 7-3 Car Rental Decision Function for the Car Rental Sample Application

& Edit Decision Function

Marme: _arR entalDecisionFunction |
Description: | |
Rule Firing Limnit: |unlimited |V|
[] will Be Invoked As A Webservice
Check Rule Flow
Stateless
= Inputs Eﬂ' X Aaw
Mame Fack Type Tree List
&1 driverinput Driver E El
= Dutputs XA
Mame Fack Type Tree Lisk
[denials Deniial EH

= Rulesets & Decision Functions

Available: Selected: A v
& Denial Rules: decision table 5P Denial Rules: if-then
2
L® |
<
K3
| Help | [o4 || Cancel

7.2.3 How to Create Rules or Decision Tables for the Decision Function

The car rental sample includes two rulesets, one with IF/THEN rules and another
containing a Decision Table. You can use either IF/THEN rules or Decision Tables or
both in your application if you are using a Decision Point.

To view the rules in the car rental sample application:
1. In Rules Designer click the Denial Rules:if-then ruleset, as shown in Figure 7—4.

7-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Dictionary for Use with a Decision Point

Figure 7-4 Ruleset with IF/THEN Rules for the Car Rental Sample Application

_ﬁ; Functions
(%) Globals

7 Bucketsets

<D Links
@ Decision Functions
Rulesets + ®

@} Denial Rules: if-...
@} Denial Rules: dec...

=

Qfarkmtal.rules &3]
Qv 9 @0 @
y + Denial Rules:if-then ¥ [|Filter On View: |<>IF,|’THEN Rules '| &+ - % A v

= ¥ under age
Rentals should not be made ta drivers under 21 per Renting Guidelines section 34.6

IF
Driver.age < Minimum driver age
<insert tesk>

THEN
assert new Denial { <add property = driver : Driver , reason : "under age, age was " + Driver.age + ", minimum age is " + Minimum driver age
call auditf rule : "under age", info ; "driver age less than minimum threshold For license number * + Driver JicenseMumber)
<insert action:=

= ¥ too many accidents
<enter description =

IF
Driver.previoushccidents = 5

<insert test =
THEN
assert new Denial { <add property = driver @ Driver , reason ; "too many accidents”)

<insert ackion:=

Design

The Denial Rules:if-then ruleset includes two rules:

= under age: this rule defines the minimum age of the driver. The rule compares the
Driver instance age property to the global Minimum driver age.If the driver
is under this age, then a new Denial fact is asserted. A call to the decision
function collects this Denial fact, as defined in its output. The rule also calls a
user-defined function, audit, to provide some auditing output about why the
Denial is created.

= too many accidents: this rule defines an upper threshold for the number of
accidents a driver can have before a rental for the driver is denied. The rule also
calls a user-defined function, audit, to provide some auditing output about why
the Denial is created.

To view the Decision Table in the car rental application:

1. In Rules Designer, click the Denial Rules:decision table ruleset, as shown in
Figure 7-5.

Working with Rules SDK Decision Point APl 7-7

Creating a Dictionary for Use with a Decision Point

Figure 7-5 Ruleset with Decision Table for the Car Rental Sample Application

(}EarRental.rules =
EE e S (!) @
&4 Facts z —
+ Denial Rules: decision table Wi | Denial DT vl % -
_ﬁc Functions
*x W Denial DT <enter description =
(x) Globals
, [] Advanced Mode [|TreeMode [] Auto Conflict Resclution Rule Active [| Logical allow Gaps
7 Bucketsets —
Priarity: | medium |V| Effective Date: Alwaws Walid
D Links —
1 o = ol
[E pecision Functions TR av HH-RGEER
= Conditions R1 RZ R3 R4 RS R& R7 RS [2%:]
Rulesets =
4. ® Cl Driver.age <18 [18..40) ==d40
& Denial Rules: if-then C2Z Driver.previousaccidents = <1 [1..5) #=5 <1 1.5 »=5
@)Denial Rules: decision table | C3 Driver.vehicleType - - TRUCK,... MOTOR... - = TRUCK,SPORTS, SEDAN
X Conflict Resolution
= Actions
Al assert new Denial(O =]] O
driver:
reason: il "under a... "higher ri... "too ma... "higher ri... "tooma...
e Fit Colurns To Width
Design

7.2.4 What You Need to Know About Using Car Rental Sample with a Decision Table

The car rental sample application includes the Denial Rules: decision table ruleset. To
switch to use a Decision Table in the supplied decision function sample, move the
Denial Rules:if-then from the Selected area in the decision function and add the
Denial Rules: decision table ruleset, which uses a Decision Table to define similar
rules, as shown in Figure 7-6.

7-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Java Application Using Rules SDK Decision Point

Figure 7-6 Decision Function for Car Rental Sample with Decision Table Ruleset

& Edit Decision Function

Marme: | CarRentalDecisionFunction |
Description: | |
Rule Firing Lirnit: |unlimited |v|

[] will Be Invoked As A Webservice
Check Rule Flow

[¥] gtateless
= Inputs Eﬂ' X Aaw
Mame Fack Type Tree List
&1 driverinput Driver E El
= Dutputs XA
Mame Fack Type Tree Lisk
[denials Deniial EH

= Rulesets & Decision Functions

Available: Selected: A v
& Denial Rules: if-then &P Denial Rules: decision kable
2
L®]
<
L)
| Help | [o4 || Cancel

7.3 Creating a Java Application Using Rules SDK Decision Point

When use Rules SDK in a development environment you of the option of using
Decision Point API with a pre-loaded dictionary. In a production environment you
typically use the Decision Point API with the MDS repository signature and the
dictionary is stored in MDS. For more information on using a Decision Point with, see
Section 7.5, "What You Need to Know About Using Decision Point in a Production
Environment".

The source code for Oracle Business Rules-specific samples is available online at
https://www.samplecode.oracle.com/sf/go/pageld9’

For SOA samples online visit
https://www.samplecode.oracle.com/sf/projects/soasamples/

The CarRentalProject project includes the com. example.rules.demo package that
includes the car rental sample file,
CarRentalWithDecisionPointUsingPreloadedDictionary.java. The
project also includes several . java source files that support different variations for

Working with Rules SDK Decision Point APl 7-9

Creating a Java Application Using Rules SDK Decision Point

using Decision Point. Table 7-1 provides a summary of the different versions of the car

rental sample.

For more information on working with the Rules SDK Decision Point AP]I, see Oracle
Fusion Middleware Java API Reference for Oracle Business Rules.

Table 7-1

Java Files in the Decision Point Sample CarRentalProject

Base Java Filename

Description

CarRental

CarRentalWithDecisionPoint

CarRentalWithDecisionPointUsi
ngMdsRepository

CarRentalWithDecisionPointUsi
ngPreloadedDictionary

CarRentalWithRuleSession

CarRentalWithRuleSessionPool

Denial

Driver

DriverCheckerRunnable

This is the base class for all of the examples. It contains constant values
for using the CarRental dictionary and a method createDrivers
which creates instances of the Driver class.

Contains a static attribute of type DecisionPoint and a method
checkDriver () thatinvokes a Decision Point with a specified instance
of the Driver class. This class includes these methods for the sample
application so that both the MDS repository and pre-loaded dictionary
examples can share the same checkDriver () implementation.

Contains an example of creating a Decision Point that uses MDS to
access and load the rule dictionary. In a production environment, most
applications use the Decision Point API with MDS.

Contains an example of creating a Decision Point from an instance of the
RuleDictionary class. This example also contains code for manually
loading the dictionary to create a RuleDictionary instance.

Contains an advanced usage of the Engine API that is documented
further in the comments.

Contains an advanced usage of the Engine API that is documented
further in the comments.

Contains the class that defines the Denial fact type used to create the
rules and Decision Table.

Contains the class that defines the Driver fact type used to create the
rules and Decision Table.

Contains the class which can be used as a thread for simulating
concurrent users invoking the Decision Point.

7.3.1 How to Add a Decision Point Using Decision Point Builder

To use a Decision Point you create a DecisionPoint instance using
DecisionPointBuilder, as shown in Example 7-1.

Example 7-1 Using the Decision Point Builder

static {
try {

// specifying the Decision Function and a pre-loaded
// RuleDictionary instance

m_decisionPoint =

new DecisionPointBuilder ()
.with (DF_NAME)
.with(loadRuleDictionary())
.build();

} catch (SDKException e) {
System.err.println("Failed to build Decision Point: " +

e.getMessage());

e.printStackTrace() ;

Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Java Application Using Rules SDK Decision Point

Example 7-1 shows the DecisionPointBuilder supports a fluent interface pattern,
so all methods can easily be chained together when you create a Decision Point. The
three most common methods for configuring the Decision Point with
DecisionPointBuilder are overloaded to have the name with (). Eachwith ()
method takes a single argument of type RuleDictionary, DictionaryFQN, or
String. The DecisionPointBuilder also supports similar set and get methods:
getDecisionFunction (), setDecisionFunction (), getDictionary (),
setDictionary (), getDictionaryFQN (), setDictionaryFQON().

This chain shown in Example 7-1 includes the following steps:

1. The first step is to create a DecisionPointBuilder instance with code such as
the following:

new DecisionPointBuilder ()

2. Thewith() method using a String argument defines the name of the decision
function that the Decision Point executes. Calling this method is mandatory.

.with (DF_NAME)

The DF_NAME specifies the name of the decision function you define for your
application. For example for the sample car rental application DF_NAME is defined
in CarRental.java as CarRentalDecisionFunction.

3. Call only one of the other two with () methods. In this case the sample code uses
a pre-loaded Rule Dictionary instance, containing the specified decision function.
The 1loadDictionary () method loads an instance of RuleDictionary from a
file. Example 7-2 shows the loadDictionary () method. For more information,
see Section 7.3.2, "How to Use a Decision Point with a Pre-loaded Dictionary".

.with(loadRuleDictionary())

4. Call the build () method to construct and return a DecisionPoint instance.

The DecisionPoint instance is shared among all instances of the application, which
is why it is a static attribute and created in a static block. Another way of initializing
the DecisionPoint would be to initialize the m_decisionPoint attribute with a
static method that created and returned a DecisionPoint instance.

7.3.2 How to Use a Decision Point with a Pre-loaded Dictionary

Example 7-2 shows the loadRuleDictionary () method that loads an instance of
RuleDictionary from a file.

When reading or writing a dictionary directly from a file as shown in Example 7-2,
ensure to set the encoding to UTF-8. If this is not done, Unicode characters used in the
dictionary are corrupted. The UTF-8 option must be set explicitly in the
FileInputStream or OutputStreamWriter constructor. Do not use Java classes
such as FileReader and FileWriter, as these classes always use the platform
default encoding which is usually an ASCII variant rather than a Unicode variant.

Example 7-2 Load Rule Dictionary Method

private static RuleDictionary loadRuleDictionary () {
RuleDictionary dict = null;
BufferedReader reader = null;
try {
reader = new BufferedReader (
new InputStreamReader (
new FileInputStream |

Working with Rules SDK Decision Point APl 7-11

Creating a Java Application Using Rules SDK Decision Point

new File(DICT_LOCATION)), "UTF-8"));
dict = RuleDictionary.readDictionary (reader,
new
DecisionPointDictionaryFinder (null));

List<SDKWarning> warnings = new ArrayList<SDKWarning> () ;

dict.update (warnings) ;
if (warnings.size() > 0) {
System.err.println("Validation warnings: " + warnings);
}
} catch (SDKException e) {
System.err.println(e);
} catch (FileNotFoundException e){
System.err.println(e);
} catch (IOException e){
System.err.println(e);
} finally {
if (reader != null) { try { reader.close(); } catch (IOException
ioe) {ioe.printStackTrace();}}

}

return dict;

7.3.3 How to Use Executor Service to Run Threads with Decision Point

The car rental sample allows you to use Oracle Business Rules and simulate multiple
concurrent users. Example 7-3 shows use of the Java ExecutorService interface to
execute multiple threads that invoke the Decision Point. The ExecutorService is
not part of the Rules SDK Decision Point APIL.

Example 7-3 Checking Drivers with Threads that Invoke Decision Point

ExecutorService exec = Executors.newCachedThreadPool () ;
List<Driver> drivers = createDrivers();

for (int i = 0; i1 < NUM_CONCURRENT; i++) {
Driver driver = drivers.get(i % drivers.size());
exec.execute (new DriverCheckerRunnable (driver)) ;

}

Example 7-3 includes the following code for the sample application:
» Create the Executor Service:

ExecutorService exec = Executors.newCachedThreadPool () ;

s Call method createDrivers (), defined in CarRental . java, to create a list of
Driver instances.

List<Driver> drivers = createDrivers();

= Aloop through a list of Driver instances to fill the driver list with drivers.

= Aloop to start multiple threads from DriverCheckerRunnable instances. These
instances open a Decision Point and run the rules on each driver. For information
on this code, see Section 7.3.4, "How to Create and Use Decision Point Instances".

Example 7-4 shows the code that waits for the threads to complete.

7-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Java Application Using Rules SDK Decision Point

Example 7-4 Code to Await Thread Termination

try {
exec.awaitTermination(5, TimeUnit.SECONDS) ;
} catch (InterruptedException e) {
e.printStackTrace() ;
}

exec.shutdown () ;

7.3.4 How to Create and Use Decision Point Instances

The DriverCheckerRunnable instances call the checkDriver () method.
Example 7-5 shows the checkDriver () method that is defined in
CarRentalWithDecisionPoint. The checkDriver () method handles invoking
Decision Point with a Driver instance.

Example 7-5 Code to Create a Decision Point Instance with getinstance()

public class CarRentalWithDecisionPoint extends CarRental ({
protected static DecisionPoint m_decisionPoint;

public static void checkDriver (final Driver driver) {
try {
DecisionPointInstance instance = m_decisionPoint.getInstance();
instance.setInputs (new ArrayList<Object>() {
{

add (driver) ;

I

List<Object> outputs = instance.invoke();

if (outputs.isEmpty())
System.err.println("Oops, no results");

java.util.List<Denial> denials =
(java.util.List<Denial>)outputs.get(0);
if (denials.isEmpty()) {
System.out.println("Rental is allowed for " +
driver.getName()) ;
} else {
for (Denial denial : denials) {
System.out.println("Rental is denied for " +
denial.getDriver () .getName() +
" because " + denial.getReason());

}

} catch (RLException e)
e.printStackTrace() ;

} catch (SDKException e) {
e.printStackTrace ()

{

i

Example 7-5 shows the following:

Working with Rules SDK Decision Point APl 7-13

Running the Car Rental Sample

s Getting a DecisionPointInstance from the static DecisionPoint defined
with the DecisionPointBuilder, with the following code.

DecisionPointInstance instance = m_decisionPoint.getInstance();

= Add inputs according to the signature of the decision function associated with the
Decision Point. This defines one argument of type List as the input. This List
contains the Driver instances:

instance.setInputs (new ArrayList<Object>() {

{

add (driver) ;
}
)i

= Invoke the Decision Point and store the return value. The return type follows the
same pattern as the decision function which is being called in the Decision Point.

List<Object> outputs = instance.invoke();

In this case the invoke () returns a List of length one, containing a List of
Denial instances.

= If thereturn is a List of any other size than one, then this is an error:

if (outputs.isEmpty())
System.err.println("Oops, no results");

» The first entry that is returned from the Decision Point is caste it to a List of type
List<Denial>:

java.util.List<Denial> denials =
(java.util.List<Denial>)outputs.get(0);

= If the denials list is empty, then no Denial instances were asserted by the rules.
This indicates that it is OK to rent a car to the driver. Otherwise, print the reasons
why the driver rental was rejected:

if (denials.isEmpty()) {
System.out.println("Rental is allowed for " +
driver.getName()) ;
} else {
for (Denial denial : denials) {
System.out.println("Rental is denied for " +
denial.getDriver () .getName() +
" because " + denial.getReason());

7.4 Running the Car Rental Sample

In the car rental sample installed on your system, for the code shown in Example 7-2,
modify the value of DICT_LOCATION to match the location of the dictionary on your
system.

To run the car rental sample on your system:

1. In the Application Navigator, select the dictionary and from the Edit menu select
Copy Path.

7-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

What You Need to Know About Using Decision Point in a Production Environment

2. Inthe CarRental.java file, paste the path value into the DICT_LOCATION

value.

3. In the CarRentalProject select the
CarRentalWithDecisionPointUsingPreloadedDictionary.java file.

4. Right-click and in the list select Run.

Example 7-6 shows sample output.

Example 7-6 Output from Car Rental Sample

Rental
Rental
Rental
Rental
Rental

is
is
is
is
is

allowed for Carol
allowed for Alice
allowed for Alice
allowed for Carol

denied for Bob because under age, age was 15, minimum age is 21

Mar 13, 2009 11:18:00 AM oracle.rules.rl.exceptions.LogWriter flush

INFO: Fired: under age because driver age less than minimum threshold for license
number d222
Mar 13, 2009 11:18:00 AM oracle.rules.rl.exceptions.LogWriter flush

INFO: Fired: under age because driver age less than minimum threshold for license
number d222
Rental is denied for Bob because under age, age was 15, minimum age is 21
Rental is allowed for Alice
Rental is allowed for Eve

7.5 What You Need to Know About Using Decision Point in a Production

Environment

In a production environment you can use an MDS repository to store Oracle Business
Rules dictionaries. When you use an MDS repository to store the dictionary, the steps
shown in Section 7.3.1, "How to Add a Decision Point Using Decision Point Builder"

and Section 7.3.2, "How to Use a Decision Point with a Pre-loaded Dictionary" change
to access the dictionary. The
CarRentalWithDecisionPointUsingMdsRepository shows sample code for

using Decision Point with MDS.

To see a complete example with deployment steps showing the use of a Decision Point
to access a dictionary in MDS, see Section 9.4, "Adding a Servlet with Rules SDK Calls

for Grades Sample Application".

Example 7-7 shows the use of DictionaryFQN with DecisionPointBuilder to
access a dictionary in an MDS repository. The complete example is shown in the
sample code in CarRentalWithDecisionPointUsingMdsRepository.

Example 7-7 Using Decision Point Builder with MDS Repository

static {
try {
// specifying the Decision Function and Dictionary FQN
// loads the rules from the MDS repository.
m_decisionPoint = new DecisionPointBuilder ()

.with (DF_NAME)
.with (DICT_FQN)
.build();

} catch (SDKException e) {
System.err.println("Failed to build Decision Point: " +

e.getMessage()) ;

Working with Rules SDK Decision Point APl 7-15

What You Need to Know About Decision Point and Decision Tracing

Similar to the steps in Example 7-1, Example 7-7 shows the following:
1. The first step is to create a DecisionPointBuilder instance with.

new DecisionPointBuilder ()

2. Thewith() method using a String argument defines the name of the decision
function that the Decision Point executes. Calling this method is mandatory.

.with (DF_NAME)

The DF_NAME specifies the name of the decision function you define for your
application. For example for the car rental application this is defined in
CarRental.java a CarRentalDecisionFunction.

3. Call only one of the other two with () methods. In this case the sample code calls
a DictionaryFQN to access an MDS repository. Example 7-8 shows the routing
that uses the dictionary package and the dictionary name to create the
DictionaryFQN.

.with (DICT_FQN)

4. Call the build () method to construct and return a DecisionPoint instance.

Example 7-8 Using the DictionaryFQN Method with MDS Repository

protected static final String DICT_PKG = "com.example.rules.demo";
protected static final String DICT _NAME = "CarRental";

protected static final DictionaryFQN DICT_FQN =
new DictionaryFQN(DICT_PKG, DICT_NAME) ;
protected static final String DF_NAME = "CarRentalDecisionFunction";

7.6 What You Need to Know About Decision Point and Decision Tracing

The Rules SDK API contains methods to assist with processing a decision trace. These
methods process a decision trace to replace the RL names used in the trace with the
aliases used in the associated dictionary. This makes the decision trace naming
consistent with the naming used in the Oracle Business Rules dictionary.

The basic API for processing a decision trace requires a RuleDictionary object and
a DecisionTrace object:

RuleDictionary dict = ...;
DecisionTrace trace = ...;
dict.processDecisionTrace (trace);

This code shows the processing call that converts the naming in the decision trace to
use the same names, with aliases, as in the dictionary.

The Rules SDK Decision Point API contains methods that allow you configure decision
tracing and retrieve the resulting trace when you invoke a decision point. The trace
you retrieve from the Decision Point is internally processed using the
processDecisionTrace () method, thus you do not need to call this method to
process the decision trace when you are working with a decision trace from a Decision
Point.

7-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

What You Need to Know About Decision Point and Decision Tracing

Table 7-2 shows the Decision Point API methods for setting decision trace options. For
more information on these methods, see Oracle Fusion Middleware Language Reference
Guide for Oracle Business Rules.

Table 7-2 Decision Point Decision Tracing Methods

Method Description

decisionTrace Get the decision trace produced from the call to invoke.

Returns DecisionTrace

getDecisionTraceLevel Get the decision trace level to be used by the RuleSession.
This value defaults to DECISION_TRACE_OFF, which
means no trace information is gathered. Possible values are:
DECISION_TRACE_OFF

DECISION_TRACE_DEVELOPMENT
DECISION_TRACE_PRODUCTION
Return Type: String

getDecisionTraceLimit Get the decision trace limit, or maximum number of trace
elements which are retrieved for the trace.

Return Type: int

setDecisionTraceLevel Set the decision trace level to be used by the RuleSession.
This parameter value is a String. Possible values are:
DECISION TRACE_OFF

DECISION_TRACE_DEVELOPMENT
DECISION_TRACE_PRODUCTION

setDecisionTraceLimit Set the decision trace limit, or maximum number of trace
elements which are retrieved for the trace.

Example 7-9 shows a sample usage of decision tracing with DecisionPoint API.

Example 7-9 Using Decision Trace from Decision Point API

DecisionPoint dp = new DecisionPointBuilder()
.with(new DictionaryFQN("com.foo", "Bar"))
.with("MyDecisionFunction")
.setDecisionTraceLevel (DecisionPointBuilder.DECISION_TRACE_DEVELOPMENT)
.setDecisionTraceLimit (24000)
.build();

DecisionPointInstance dpi = dp.getInstance();
dpi.invoke();
DecisionTrace trace = dpi.decisionTrace(); // with aliases replaced

For more information on decision tracing, see "Tracing Rule Execution in Fusion
Middleware Control Console" in Oracle Fusion Middleware Administrator’s Guide for
Oracle SOA Suite and Oracle Business Process Management Suite.

Working with Rules SDK Decision Point APl 7-17

What You Need to Know About Decision Point and Decision Tracing

7-18 Oracle Fusion Middleware User's Guide for Oracle Business Rules

8

Testing Business Rules

You can test your rules and Decision Tables from Rules Designer by creating an Oracle
Business Rules Function. In an SOA application or in an application that accesses
Oracle Business Rules with a decision function with a web service, you can test the
rules at runtime with Oracle Enterprise Manager Fusion Middleware Control Console
using the Test function.

This chapter includes the following sections:
» Section 8.1, "Testing Oracle Business Rules at Design Time"

» Section 8.2, "Testing Oracle Business Rules at Runtime"

8.1 Testing Oracle Business Rules at Design Time

You can define a test function to run without deploying an application. This allows
you to call a decision function at runtime and to test data model elements and rulesets.

8.1.1 How to Test Rules Using a Test Function in Rules Designer

You can use Oracle Business Rules Functions to test rules from within Rules Designer.
The Test Function icon is active only for functions that take no parameters and return
boolean. In the body of the function you create input facts, call a decision function,
and check the output to validate the facts the decision function returns are as expected.

To enable logging you call RL.watch.all (). To run the function you click the Test
Function icon in the Functions table.

For more information about functions, see Section 2.5, "Working with Oracle Business
Rules Functions".

To test rules using a test function:
1. Confirm that your dictionary is valid.

For more information on dictionary validation, see Section 4.4.4, "How to Validate
a Dictionary".

In Rules Designer, select the Functions navigation tab.
In the Functions area click Create....

Enter the function name in the Name field, or use the default name.

a0 DN

Select the return type from the Return Type list.

For a test function, select boolean.

Testing Business Rules 8-1

Testing Oracle Business Rules at Design Time

6. In the Arguments table, confirm that there are no arguments. For a test function,

you cannot specify any arguments.

7. In the Body area, enter the test function body.

In the body of the function you can call a decision function using assign new to

call and get the return value of the decision function. Thus, to test a decision
function you create the input data and call the decision function.

Example 8-1 shows a simple test function that calls print. Figure 8-1 shows the

test function definition. For information on adding a test function that calls a

decision function, see Section 8.1.3, "How to Test a Decision Function Using an

Oracle Business Rules Function".

Example 8—1 Test Function Body

call print("Hello World")
return true

Figure 8—-1 Adding a Test Function

OGradingRules.rules I offf composite. sl =
B 9 E D0 @
& Facts .'Fx Functions
f- Functions
(x) Globals Functions: Qotest 1 6 I X
7 Buckstssts Marne Return Type Bucketset Description
Dnis %
ﬂ Decision Functions
Rulesets 3 X L +
, Xaw
@ Ruleset_t Argurnents:
Mame Twpe Bucketset
&P Ruleset_2

aw

Q Body:

call print{ message : "Hello Warld")
return brue

<insert action:

=

Design

8. In the Functions table select the function and click the Test Function icon.

The output is displayed in a Function Test Result dialog, as Figure 8-2 shows.

8-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Testing Oracle Business Rules at Design Time

Figure 8-2 Test Function Results Dialog

X

& Function Test Result

@ Test Passed!

Cukput:

Hello world

| Hep | [ok |

9. Click OK to dismiss the Function Test Result dialog.

8.1.2 What You Need to Know About Testing Using an Oracle Business Rules Function

The Test Function icon is only active when the dictionary is valid (the Business Rule
validation log is empty). The Test Function icon is gray if the dictionary associated
with the function contains any validation warnings.

8.1.3 How to Test a Decision Function Using an Oracle Business Rules Function

You can test rulesets by creating a decision function and calling the decision function
from Rules Designer with an Oracle Business Rules function. In the body of the Oracle
Business Rules function you create input facts, call a decision function, and validate
the facts output from the decision function. For more information, see Section 6.1,
"Introduction to Decision Functions" and Section 2.5, "Working with Oracle Business
Rules Functions".

To test a decision function using an Oracle Business Rules function:
1. Confirm that your dictionary is valid.

For more information on dictionary validation, see Section 4.4.4, "How to Validate
a Dictionary"

In Rules Designer, select the Functions navigation tab.
In the Functions area click the Create... icon.

Enter the function name in the Name field, or use the default name.

a0 Dbn

Select the return type from the Return Type list.
For a test function, select boolean.

6. In the Arguments table, confirm that there are no arguments. For a test function,
you cannot specify any arguments.

7. In the Body area, enter the test function body.

In the body of the test function you can call a decision function using assign
new to call and get the return value of the decision function (in the body of the test

Testing Business Rules 8-3

Testing Oracle Business Rules at Design Time

function you create input facts, call a decision function, and validate the facts
output from the decision function).

A decision function call returns a List. Thus, to test a decision function in a test
function you do the following:

= You create the input data as required for the decision function input
arguments.

= You call the decision function with the arguments you create in the test
function.

= You place results in a List, for example, in the following:

assign new List resultsList = DecisionFunction_1 (testScore)

Figure 8-3 shows a test function that calls a decision function.

Figure 8-3 Test Function to Call a Decision Function that Returns a List

] QﬁradingRules.rules %composite.xml E]
|av e Ee @
- e _ﬁc Functions
f.: Functions
(x) lobals Functions: test |6+ R
{7 Bucketsets Mame Return Type Bucketset Description
Diris P rcicn | hedean —bodkean ||
B P Fo PrintTestGrade woid
Rulesets EH' ® v
@ Ruleset_1 Arguments: + x n v
Mame Type Bucketset
aw
Body:
I assign new TestScore testScore = new TestScore()
assign kestScare.name = "Bill Reynolds"
% assign kestScore, testMame = "Math1"
assign kestScore.testScore =51
assign new TestGrade testGrade = new Testarade()
]l assign new List resultLisk = GradeTestFunc(testSoore)
assign testGrade = (TestGrade)resultlist. get(0)
call PrintTestGraded score © testScore , grade : testGrade)
return true
<insert action
e
Design

8. Select the function and click the Test Function icon.

The function is executed. The output is shown in a Function Test Result dialog, as
Figure 8-4 shows.

8-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Testing Oracle Business Rules at Design Time

Figure 8—-4 Test Function Results for Grade Test

X

& Function Test Result

@ Test Passed!

Cukput:

Bill Reynolds scored 81.0 on test Math Test and received a grade of B

| Hep | [ok |

9. Click OK to dismiss the Function Test Result dialog.

8.1.4 What You Need to Know About Testing Decision Functions

You can use Oracle Business Rules Functions to test decision functions from within
Rules Designer. Keep the following points in mind when using a test function:

s The Test Function icon is gray if the dictionary associated with the test Oracle
Business Rules Function contains any validation warnings. The Test Function icon
is only shown when the dictionary validates without warnings.

= To enable logging you can call RL.watch.all (). For more information on RL
Language functions, see Oracle Fusion Middleware Language Reference Guide for
Oracle Business Rules. In this guide, RL..watch.all () is an alias for the RL
Language function watchAll ().

= As an alternative to the example shown in Figure 8-3, you can enter the function
body that is shown in Example 8-2. This function runs and shows the
RL.watch.all () output. The dialog shows "Test Passed" when the grade is in
the B range as shown in Figure 8-5. The dialog shows "Test Failed" when the grade
asserted is not in the B range, as shown in Figure 8-6.

Example 8-2 Function Body with True or False Return Value

call RL.watch.all()

assign new TestScore testScore = new TestScore()

modify (testScore, name: "Bill Reynolds", testName: "Math Test", testScore: 81)
assign new TestGrade testGrade = (TestGrade)DecisionFunction_1 (testScore).get(0)
return testGrade.grade == Grade.B

For the testScore value 81, this function returns "Test Passed" as shown in

Figure 8-5. For the testScore value 91, this returns "Test Failed", as shown in
Figure 8-6.

Testing Business Rules 8-5

Testing Oracle Business Rules at Runtime

Figure 8-5 Test Passed Test Function Output

& Function Test Result

@ Test Passed!

Cukput:

X

testScore @ 89.0)

==> Activation: Ruleset_1 .DecisionTable_2Rules @ f-1
==> Focus Rulesek_1, Ruleset stack: {"Ruleset_1"}
Fire 1 Ruleset_1,DecisionTable_2Rule3 F-1

== f-2 com.grade.ns.testscore, TestGrade(grade : B)
== Focus Ruleset_1, Ruleset stack: {"main"}

<== Focus main, Ruleset stack: {}

==> f-1 com.grade.ns.testscore, TestScore{name ¢ "Bill Reynolds”, testCurve @ 0.0, testhlame @ "Math Test",

| ek |

Figure 8-6 Test Failed Test Function Output

& Function Test Result

Test Failzd!

Cukput:

X

==>= f-1 com.grade.ns.testscore, TestScore(namme ¢ "Bill Reynalds”, testCurve @ 0.0, testhlame @ "Math Test",
testScore @ 91.0)

==2 Activation: Ruleset_1 .DecisionTable_2Ruled : F-1
==> Focus Rulesek_1, Ruleset stack: {"Ruleset_1"}
Fire 1 Ruleset_1,DecisionTable_2Rule4 F-1

==> f-Z com.grade.ns.testscore, TestGrade(grade @ A)
<== Focus Ruleset_1, Ruleset stack: {"main":

<== Focus main, Ruleset stack: {}

| e |

8.2 Testing Oracle Business Rules at Runtime

In an SOA application that uses Oracle Business Rules with a Decision Service you can

test rules at runtime with Oracle Enterprise Manager Fusion Middleware Control
Console Test function.

For more information on using the Test function, see Oracle Fusion Middleware
Administrator’s Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

8-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

9

Creating a Rule-enabled Non-SOA Java EE
Application

You can use Oracle JDeveloper to create a rule-enabled non-SOA Java EE application
with Oracle Business Rules. This chapter shows a sample application, a Java Servlet,
that runs as a Java EE application using Oracle Business Rules (this describes using of
Oracle Business Rules without an SOA composite).

This chapter includes the following sections:
= Section 9.1, "Introduction to the Grades Sample Application"
= Section 9.2, "Creating an Application and a Project for Grades Sample Application"

= Section 9.3, "Creating Data Model Elements and Rules for the Grades Sample
Application”

= Section 9.4, "Adding a Servlet with Rules SDK Calls for Grades Sample
Application”

= Section 9.5, "Adding an HTML Test Page for Grades Sample Application"

= Section 9.6, "Preparing the Grades Sample Application for Deployment"

= Section 9.7, "Deploying and Running the Grades Sample Application"

The source code for Oracle Business Rules-specific samples is available online at
https://www.samplecode.oracle.com/sf/go/pageld9’

For SOA samples online visit

https://www.samplecode.oracle.com/sf/projects/soasamples/

9.1 Introduction to the Grades Sample Application

The Grades application provides a sample use of Oracle Business Rules in a Java
Servlet. The servlet uses Rules SDK Decision Point API. This sample demonstrates the
following:

» Creating rules in an Oracle Business Rules dictionary using an XSD schema that
defines the input and the output data, and the facts for the data model. In this case
you provide the XSD schema in the file grades . xsd.

s Creating a servlet that uses Oracle Business Rules to determine a grade for each
test score that is input.

» Creating a test page to supply input test scores and to submit the data to the
grades servlet.

Creating a Rule-enabled Non-SOA Java EE Application 9-1

Creating an Application and a Project for Grades Sample Application

= Deploying the application, running it, submitting test values, and seeing the
output.

9.2 Creating an Application and a Project for Grades Sample Application

To create the application and the project for the grades sample application, you do the
following:

» Create a Fusion Web Application (ADF)
» Create a project in the application
= Add the schema to define the inputs, outputs, and the objects for the data model

» Create an Oracle Business Rules dictionary in the project

9.2.1 How to Create a Fusion Web Application for the Grades Sample Application

To work with Oracle Business Rules and create a Java EE application, you first need to
create the application in Oracle JDeveloper.

To create a fusion web application (ADF) for grades:

1. Create an application. You can do this in the Application Navigator by selecting
New Application..., or from the Application menu dropdown by selecting New
Application....

2. In the Name your application dialog enter the application options, as shown in
Figure 9-1:

a. Inthe Application Template area, select Fusion Web Application.

b. Inthe Application Name field, enter an application name. For example, enter
GradeApp.

c. In the Directory field, specify a directory name or accept the default.

d. Inthe Application Package Prefix field, enter an application package prefix.
For example, com.example.grades.

The prefix, followed by a period applies to objects created in the initial project
of an application.

9-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating an Application and a Project for Grades Sample Application

Figure 9-1 Adding GradeApp Application

& Create Fusion Web Application (ADF) - Step 1 of 5

Name your application

. i Application Mame:
(et Application M.
/Tk pplication Name |GradeApp |

)Tk Project 1 Mame

Direckory:

] | i\ IDeveloperirmyworklGradespp

|| Browse... |
/l\

Application Package Prefix:

| com.example .grades| |

Application Template:

Generic Application
Creates an application which includes a single project. The project is nok

preconfigured with JDeveloper technologies, but can be customized to include any
technologies.

Fusion Web Application (ADF)
Creates a databound ADF web application. The application consists of one project

for the view and controller components (ADF Faces and ADF Task Flows), and
another project for the data model { ADF Business Components),

Java Deskbop Application
Creates an application configured for building & generic Java application. The new
application will include a project that is preconfigured to use Java, Swing, and
P

EI- L

| tep |

| Next>_” Finish || Cancel |

Click Finish. After creating the application Oracle JDeveloper displays the file
summary, as shown in Figure 9-2.

Figure 9-2 New Grades Application Named GradeApp

Application Mawvigator E] GradeApp. jws E]

. Gradefpp - <l | show: al Projects = oo)

iuRpiects EVRE IR File Summary: Total: 4 () H i) Poks T

H- Model

=l-13] ViewController Java Files Getting Started v Mew~ - [| | MLFiles Getting S
B[] Wieh Content

B3 WEB-INF Overview The Java Files category contains java classes and interfaces

Overview The 1ML Files category contains xml File
Java Class

#ML File

= 2 |
{E faces-config.xm Jawva Interface
trinidad-config. xml

{7 Page Flows

Cue Cards | Tutorials | Detailed Help v CueCards | Tutorials | Detailed Help

Page Flows Getting Started ~ Mew +

] Web Pages Getting St
|+ Application Resources - -
b Data Controls Overview Page Flows define an application's web pages Overview The Wweb Pages category con
I Recently Opened Files Enterprise JavaBeans 3.0 SOA Components | ADF Binding Files | Web Services | Offline Databases
Orerview

9.2.2 How to Create the Grades Project

In the Grades sample application you do not use the Model or ViewController
projects. You create a project in the application for the grades sample project.

To create a grades project:
1. In the GradeApp application, in the Application Navigator, from the Application
Menu select New Project....

Creating a Rule-enabled Non-SOA Java EE Application 9-3

Creating an Application and a Project for Grades Sample Application

2. Inthe New Gallery, in the Items area select Generic Project.

3. Click OK.

4. In the Name your project page enter the values as shown in Figure 9-3:
In the Project Name field, enter a name. For example, enter Grades.

a
b. Enter or browse for a directory name, or accept the default.

o

Select the Project Technologies tab.

e

In the Available area double-click ADF Business Components to move this
item to the Selected area. This also adds Java to the Selected area as shown in
Figure 9-3.

Figure 9-3 Adding Generic Project to the Grades Application

& Create Generic Project - Step 1 of 2

Name your project

- . Project Mame: |Grades |
] Project Name

e G Directory: |C:'l,JDeveloper'l,mywork‘l,GradeP.pp'l,Grades || Browse. .. |

r Project Technologies r Generated Components r Associated Libraries |

Available: Selected:
ADF

ADF Faces
ADF Library Web Application Suppork

ADF Page Flow e
ADF Swing |g|
Ant (€]

Database (OFFline)
EJB

HTML

JavaBean:

Technology Description:

ADF Deskbop Integration with Microsoft Office.

| Help | | uext>_” Finish || Cancel

5. Click Finish. This adds the Grades project.

9.2.3 How to Add the XML Schema and Generate JAXB Classes in the Grades Project

To create the Grades sample application you need to use the grades . xsd file, shown
in Example 9-1. You can create and store the schema file locally and then use Oracle
JDeveloper to copy the file to your project.

Example 9-1 grades.xsd Schema

<?xml version= '1.0' encoding= 'UTF-8' ?>

<xs:schema targetNamespace="http://example.com/grades"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://example.com/grades"
attributeFormDefault="qualified" elementFormDefault="qualified"
xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:extensionBindingPrefixes="xjc"
jaxb:version="2.0">

<xs:element name="TestScore">

9-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating an Application and a Project for Grades Sample Application

<xs:complexType>
<xS:sequence>

<XS
<XS
<Xs
<XS

:element name="name" type="xs:string"/>

:element name="testName" type="xs:string"/>
:element name="testScore" type="xs:double"/>
:element name="testCurve" type="xs:double"/>

</Xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="TestGrade">
<xXs:complexType>
<Xs:sequence>

<XS

:element name="grade" type="tns:Grade"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:simpleType name="Grade">
<xs:restriction base="xs:string">
<xs:enumeration value="A"/>
<xs:enumeration value="B"/>
<xs:enumeration value="C"/>
<xs:enumeration value="D"/>
<xs:enumeration value="F"/>
</xs:restriction>
</xs:simpleType>
</xs:schema>

To add the XML schema to the grades project:

1.

© ® N o o a2 w0 N

Save the schema file shown in Example 9-1 to a local file named grades.xsd.

In the Application Navigator select the Grades project.

Right-click and in the context menu select New....

In the New Gallery select the All Technologies tab.

In the Categories area, expand General and select XML.

In the Items area, select XML Schema.

Click OK.

In the Create XML Schema dialog, in the File Name field enter grades . xsd.

In the Create XML Schema dialog, in the Directory field add the xsd directory to
the Grades project path name, as shown in Figure 9-4.

Figure 9-4 Adding Schema to Grades Project in xsd Directory

Create XML Schema

Enter the details of wour new File.

File: Mame:

3

| grades.xsd

Direckory:

|gJDeveIoper'l,mywork'l,Gradenpp'l,Grades'l,xsd|| Browse. .. |

L teb | |

oK J | Cancel |

10. Click OK.

Creating a Rule-enabled Non-SOA Java EE Application 9-5

Creating an Application and a Project for Grades Sample Application

11. In the grades.xsd file, select the Source tab.

12. Copy the schema shown in Example 9-1 to the grades . xsd in the Grades project,
as shown in Figure 9-5.

Figure 9-5 Shows the Grades.xsd Schema File in the Grades Project

A.pplication Navigator E] —|Gradedpp.jus ﬁ%grades.xsd E]
— — s \ =,
Gradespp ~|[= || (8- ¢t =
rojecks =T <z version= . encoding= S i
Project: o Hml i ‘1.0 di 'UTF-3!

=t m [l <x=:=schema targetNamespace="http://exanple.con/grades™

. B[Resources xmlns:xs="http: /. wi. org /2001 AMLEchena™

L e.ga. grades. xsd xulns: the="http: //exanple.con/grades"

Model attributeFormnbefanlt="qualified” elementFormbefault="gqualified”

viewController xmlns:xjc="http://Java.sun. con/xnl /ms/Jaxb xic™

xmlnag: jaxb="http: //Java. sun. con/xnl /ma/jaxh™
jaxb:extensionBindingPrefixes="xjc"
Jjaxb:iwersion="2.0">

<x5:element name="Tezticore s
<x= :complexType-
XS SEUENCE:>

<xz:element nawe="name”™ type="ws:string” /=
<xs:element name="testName"” type="xs:string”/>
<xs:element name="testIcore” type="xs:double”/ =
<xz:element nane="testCurve” type="wxsz:double™/>

Application Resources < /HS : Sequence’

Data Controls </%5: complexType-

Recently Opened Files < /xs:element’:

Design | Source | Hiskory [l

Oomm

To generate JAXB 2.0 content model from grades schema:

1. Inthe Application Navigator, in the Grades project expand Resources and select
grades.xsd.

2. Right-click and in the context menu select Generate JAXB 2.0 Content Model.
3. In the JAXB 2.0 Content Model from XML Schema dialog, click OK.

9.2.4 How to Create an Oracle Business Rules Dictionary in the Grades Project

After creating a project in Oracle JDeveloper create business rules within the Grades
project.

To use business rules with Oracle JDeveloper, you do the following:
= Add a business rule to the project and import grades . xsd schema
s Create input and output variables

» Create an Oracle Business Rules dictionary in the project

To create a business rules dictionary in the business tier:
1. In the Application Navigator, select the Grades project.

2. Right-click and in the context menu select New....
3. Select the All Technologies tab.

4. Inthe New Gallery, in the Categories area, expand Business Tier and select
Business Rules.

5. In the New Gallery, in the Items area, select Business Rules.

6. Click OK. Oracle JDeveloper displays the Create Business Rules dialog, as shown
in Figure 9-6.

9-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating an Application and a Project for Grades Sample Application

Figure 9-6 Adding a Business Rule to Grades with the Create Business Rules Dialog

& Create Business Rules D—<|

Business Rule
A business rule defines or constrains one aspect of your business that is intended ko assert business
structure or influence the behavior of your business,

General | Advanced

(®) Create Dictionary () Import Dictionary

Specify the name and package For the dictionary that will be created.

Marme: | OracleRules1 |

Package: | com.example.grades |

Project: |C:'l,JDeveIoper'l,mywork'l,GradeApp'l,Grades'l,Grades.jpr |

Inputsfoutputs: G- M A v

Direction Marme Tvpe

| Help | | [o]4 “ Cancel |

7. In the Name field, enter a name to name the dictionary. For example, enter
GradingRules.

8. Toadd an input, from the list next to the Add icon select Input....

9. In the Type Chooser, expand the Project Schemas Files folder and expand
grades.xsd.

10. Select the input TestScore, as shown in Figure 9-7.

Figure 9—7 Shows the Type Chooser Dialog with TestScore Element

e Type Chooser, [’5_<|

=

Q Type Explorer

B3 Project Schema Files
E}ﬂ, grades. xsd

-4y TestGrade

e ceiscore]

Type: |-{http:,l’,l’example.com,l’grades}TestScore |

[] Show Detailed Node Infarmation

| Help [0]4 || Cancel

Creating a Rule-enabled Non-SOA Java EE Application 9-7

Creating an Application and a Project for Grades Sample Application

11. On the Type Chooser window, click OK. This displays the Create Business Rules
dialog.

12. In the Create Business Rules dialog, in a similar manner to the input add the
output by selecting Output... to add the output element TestGrade from the
grades .xsd schema.

The resulting Create Business Rules dialog is shown in Figure 9-8.

Figure 9-8 Create Business Rules Dialog with Grades Input and Output

® Create Business Rules b_<|

Business Rule
A business rule defines of constrains one aspect of vour business that is inkended to assert business struckure or
influence the behavior of yvour business,

General | Advanced

(3) Create Dictionary () Import Dictionary

Specify the name and package For the dictionary that will be created.

Name: | GradingRules |

Package: | com.example.grades |

Project: |C:'l,JDeveIoper'(mywork'l,Gradenpp'LGrades'l,Grades.jpr |

InpuksfOukputs: +RAw
Direction Mame Tvpe

rpit [TestScore {httn: fexample. comfg e

Outpuk TestGrade {http: fjexample,com/grades} TestGrade

| Help | | [4]4 “ Cancel |

13. Click OK. Oracle JDeveloper creates the GradingRules dictionary as shown in
Figure 9-9.

14. In the File menu, select Save All to save your work.

9-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating Data Model Elements and Rules for the Grades Sample Application

Figure 9-9 Shows the New Grading Rules Dictionary

Application Mavigatar E] | Gradespp. jws |ﬂ4ﬁgrades.xsd IQGradingRules.rules | E]
Gradedpp - Ml R A ‘Pj 0 ®
= Projects &) @ VW~ 3= - & Fact
= o} Facks 7 ————————
-5l Grades E Ruleset_1 ¥ [JAkeron Yew [@IRT. v| k- 8 TBEHEHOA w
¢ B[Resources Fe Functions
: & qrades.xsd () Glabals
. To create a Rule or Decision Table, please click the plus sign above.
.7 Bucketsets
Maodel
-3 YiewCantroller D Links
@ Drecision Funckions
Rulesets P %
G Ruleset_1
|+ Application Resources
|+ Data Controls
[» Recently Opened Files &
Design
= GradingRules.rules -, E]i [ElBusiness Rule v alidation - Log 5]
= - ;])
a [52] Dictionary - GradingRules.rules Display Mews Warnings First
@@ cSa / *® Message Dickionary Object Pr
2] Dictionary - GradingRules.riles L\, RUL-05163: The Fact type :TestScore':li.s niok used in anw r.uleset called bry... Grad?ngRuIes,l’Data Model,l’Dec?s?on Funct?on(Dec?...
B3 Facts Y RUL-05164: The Fack bype "TestGrade" is referenced, but is not asserted ... GradingRules/Data Model/Decision FunctionDeci, ..
D Functions
[Globals
[Bucketsets
3 Lirks
D Decision Functions
B[Rulesets SOK Warnings: 2 Last Yalidation Time: 10:15:47 AM PDT
Messages Feedback | Business Rule validation [ODE]

Note that the business rule validation log area for the new dictionary shows several
validation warnings. You remove these validation warning messages as you modify
the dictionary in later steps.

9.3 Creating Data Model Elements and Rules for the Grades Sample
Application

To create the data model and the business rules for the Grades sample application, you
do the following;:

» Create Bucketsets for grades
» Create rules by adding a Decision Table for grades
= Split the Decision Table and add actions for rules

s Rename the default decision function

9.3.1 How to Create Bucketsets for Grades Sample Application

In this example you associate a bucketset with a fact type. This supports using a
Decision Table where you need bucketsets that specify how to draw values for each
cell in the Decision Table (for the conditions in the Decision Table).

To create the bucketset for the grades sample application:
1. In Rules Designer, select the Bucketsets navigation tab.

Creating a Rule-enabled Non-SOA Java EE Application 9-9

Creating Data Model Elements and Rules for the Grades Sample Application

o ©Dbd

From the list next to the Create BucketSet... icon, select List of Ranges.
For the bucketset, double-click in the Name field to select the default name.
Enter Grade Scale, and press Enter to accept the bucketset name.

In the Bucketsets table, double-click the bucket icon for the Grade Scale bucketset
to display the Edit Bucketset dialog as shown in Figure 9-10.

Figure 9-10 Grade Scale Bucketset

® Edit Bucketset - Grade Scale

Range Bucket Yalues: Q b4
Endpaint Included Endpoin’ Allowed in Action: Range Alias Description
= -Infinity otherwise otherwise
Help | | [s]4 | | Cancel

X

Marne: Grade Scale

Data Type: |i“t '|
[] tneclude Disallowed Buckets in Tests

10.

11.
12,

In the Edit Bucketset dialog, click Add Bucket to add a bucket.
Click Add Bucket three times to add three more buckets.

In the Endpoint field, enter 90 for the top endpoint and press Enter to accept the
new value.

For the next bucket, in the Endpoint field enter 80 and press Enter to accept the
new value.

Similarly, for the next two buckets enter values in the Endpoint field, values 70
and 60.

In the Included Endpoint field for each bucket select each checkbox.

Modify the Alias field for each value to enter the values A, B, C, D, and F, for each
corresponding range, as shown in Figure 9-11 (press Enter after you add each
alias).

Figure 9-11 Grade Scale Bucketset with Grade Values Added

® Edit Bucketset - Grade Scale

Help | | oK || Cancel |

X

Mame: | Grade Scale |

Data Type: |i“t '|
[] tneclude Disallowed Buckets in Tests

Range Bucket Yalues: G- ®
Endpoint Included Endpoint Allowed in Actions Range Alias Description

a0 =50
a0 [50..50
70 [70..80)
&0 [60.. 70

EEEE
KEEE

<]
a

9-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating Data Model Elements and Rules for the Grades Sample Application

To associate a bucketset with a fact property:

To prepare for creating Decision Tables you can associate a global bucketset with fact
properties in the data model. In this way condition cells in a Decision Table
Conditions area can use the bucketset when you create a Decision Table.

1. In Rules Designer, select the Facts navigation tab.
2. In the Facts navigation tab select the XML Facts tab.

3. Double-click the XML fact icon for the TestScore fact. This displays the Edit XML
Fact dialog.

4. In the Edit XML Fact dialog select the testScore property.
5. In the Bucketset field, from the list select Grade Scale.
6. Click OK.

9.3.2 How to Add a Decision Table for Grades Sample Application

You create rules in a Decision Table to process input facts and to produce output facts,
or to produce intermediate conclusions that Oracle Business Rules can further process
using additional rules or in another Decision Table.

To use a Decision Table for rules in this application you work with facts representing a
test score. Then, you use a Decision Table to create rules based on the test score to
produce a grade.

To add a decision table for Grades application:
1. In Rules Designer, select Ruleset_1 under the Rulesets navigation tab.

2. In Ruleset_1, click the Add icon and from the list select Create Decision Table.
This creates DecisionTable_1. You can ignore the warning messages shown in the
Business Rule Validation log area. You remove these warning messages in later
steps.

3. In the Decision Table, DecisionTable_1, click the Add icon and from the list select
Condition.

4. In the Decision Table, double-click <edit condition>. Then, in the variables
navigator expand TestScore and select testScore. This enters the expression
TestScore. testScore for condition C1.

If you view the rules validation log, you should see warning messages. You remove

these warning messages as you modify the Decision Table in later steps.

To add an action to a decision table:
You add an action to the Decision Table to assert a new Grade fact.

1. In the Decision Table, click the Add icon and from the list select Action and select
Assert New.

2. In the Actions area, double-click assert new (.
This displays the Action Editor dialog.
3. In the Action Editor dialog, in the Facts area select TestGrade.

4. In the Action Editor dialog, in the Properties table for the property grade, select
the Parameterized checkbox and the Constant checkbox.

This specifies that each rule independently sets the grade.

Creating a Rule-enabled Non-SOA Java EE Application 9-11

Creating Data Model Elements and Rules for the Grades Sample Application

5. Inthe Action Editor dialog select the Always Selected checkbox.
6. In the Action Editor dialog click OK.
7. Select Save All from the File main menu to save your work.

Next you add rules to the Decision Table and specify an action for each rule.

9.3.3 How to Add Actions in the Decision Table for Grades Sample Application

You can use the Decision Table split operation to create rules for the bucketset
associated with the conditions row in the Decision Table. This creates one rule for
every bucket.

To split the decision table:
1. Select the Decision Table.

2. Click the Split Table icon and from the list select Split Table.

The split operation eliminates the "do not care" cells from the table. The table now
shows five rules that cover all ranges, as shown in Figure 9-12.

These steps produce validation warnings for action cells with missing expressions.
You fix these problems in later steps when you define actions for each rule.

Figure 9—12 Splitting a Decision Table Using Split Table Operation for Grades

QGradingRules.rules | E]
DY 9 B0 @
-4 Fact: < s
&J Facts # Ruleset 1 liew: |DecisionTabIe_1 '| + - R
fx Functions
¥ @ DecisionTable 1 <enter description =
{x:l Globals R T
7 Bucketsets T+ K |- e | B- B B e i B @
»:9 Links < Conditions R1 RZ R3 R4 RS
i C1l TestScore beskScore F] C B n
E‘] Diecision Functions
Rulesets + b4
&b Ruleset_1
hd Actions
A1 assert new TestGrade,
grade:]
s [#] Bit Columns To Width
Design

To add actions for each rule in the decision table:

In the Decision Table you specify a value for the result, a grade property, associated
with TestGrade for each action cell in the Actions area. The possible choices for each
grade property are the valid grades. In this step you fill in a value for each of the rules.
The values you enter correspond to the conditions that form each rule in the Decision
Table.

9-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating Data Model Elements and Rules for the Grades Sample Application

1. In the Actions area, double-click the action cell for rule R1 as shown in
Figure 9-13.

Figure 9-13 Adding Action Cell Values to Grades Decision Table

QGradingRules.rules E]
EE R S o @
& Facts i —
Ruleset 1 Wiew: | DecisionTable_1 v| a4k - 8
Fe Functions
¥ © DecisionTable 1 <enter descripbion=
(x) Globals
" mr =
£ budkotsats ALRL: G XA v B h-R e W
D Links - Conditions R1 Rz R3 R4 RS
) Cl TestScoretestScore F =] C B A
Q Decision Functions
Rulesets a4 ¥
&P Ruleset_1
hd Actions
Al assert new TestGradel,
grade: il
| B
nll
TestGrade.grade
Grade.&
Grade.B
Grade.C
Grade.D
Grade.F
e Fit Columns To Width
Design

2. In the list select the corresponding value for the action cell. For example, select
Grade.F.

3. For each of the remaining action cells select the appropriate value for the buckets
for TestScore: D, C, B, and A.

9.3.4 How to Rename the Decision Function for Grades Sample Application

The name you specify when you use a decision function with a Rules SDK Decision
Point must match the name of a decision function in the dictionary. To make the name
match, you can rename the decision function to any name you like. Thus, for this
example you rename the default decision function to use the name
GradesDecisionFunction.

To rename the decision function:

1. In the Application Navigator, in the Grades project, expand the Resources folder
and double-click the dictionary GradingRules.rules.

2. Select the Decision Functions navigation tab.

3. In the Name field in the Decision Functions table edit the decision function name
to enter the value GradesDecisionFunction, and then press Enter, as shown in
Figure 9-14.

Creating a Rule-enabled Non-SOA Java EE Application 9-13

Adding a Servlet with Rules SDK Calls for Grades Sample Application

Figure 9-14 Renaming Decision Function in Rules Designer

i&] GradesServlet. java QﬁradingRules.rules | E]
v Dea U0 @

= Facks
9 Decision Functions

F Functions
(x) Globals Diecision Functions: @ﬂ S / ®

gf-f.‘ Bucketsets Marne Description Web Service

D Links 2 WaradesDecisionFunction I m]

@ Decision Functions
Rulesets + b 4

& Rulesat_1

=

Design

9.4 Adding a Servlet with Rules SDK Calls for Grades Sample Application
The Grades sample application includes a servlet that uses the Rules Engine.

To add this servlet with Oracle Business Rules you need to understand the important
Rules SDK methods. Thus, to use the Oracle Business Rules dictionary you created
with Rules Designer, you do the following:

» Create initialization steps that you perform one time in the servlet init routine.
» Create a servlet service routine using the Rules SDK Decision Point API.
» Perform steps to add the servlet code in the project.

For more information on Rules SDK Decision Point API, see Chapter 7, "Working with
Rules SDK Decision Point API".

9.4.1 How to Add a Servlet to the Grades Project
You add a servlet to the grades project using the Create HTTP Servlet wizard.

To add a servlet to the Grades project with Oracle JDeveloper:
1. Inthe Application Navigator, select the Grades project.

Right-click the Grades project and in the context menu select New....

In the New Gallery, select the All Technologies tab.

2
3
4. Inthe New Gallery, in the Categories area expand Web Tier and select Servlets.
5. In the New Gallery, in the Items area select HTTP Servlet.

6

Click OK.

Oracle JDeveloper displays the Create HTTP Servlet Welcome page, as shown in
Figure 9-15.

9-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Adding a Servlet with Rules SDK Calls for Grades Sample Application

Figure 9-15 Create HTTP Serviet Wizard - Welcome

& Create HTTP Servlet - Welcome

X

Welcome

Welcome to the Create HTTP Servlet Wizard

This wizard will help you to create a new HTTP Servlet,

[] Skip this Page Mext Time

| Help | Mext = Cancel

7. Click Next.

This displays the Web Application page, as shown in Figure 9-16.

Figure 9-16 Create HTTP Servlet Wizard - Web Application

& Web Application

(X

wWeb Application

A web application does not yet exist in khis project, Select the version to create,
web Application Yersion:

() Serylet 2.315P 1.2 (J2EE 1.3)

-Z::Z- Serwlet 2.41J5P 2.0 (JZEE 1.4)

(%) Servlet 2,51J5P 2.1 {Java EE 1.5)

| Help | | < Back " Next = | Cancel

8. Select Servlet 2.5\JSP 2.1 (Java EE 1.5) and click Next.
This displays the Create HTTP Servlet - Step 1 of 3: Servlet Information page.

9. Enter values in Create HTTP Servlet - Step 1 of 3: Servlet Information page, as
follows, and as shown in Figure 9-17.

Creating a Rule-enabled Non-SOA Java EE Application 9-15

Adding a Servlet with Rules SDK Calls for Grades Sample Application

s Class: GradesServlet

n Package: com.example.grades

= Generate Content Type: HTML

s Generate Header Comments: unchecked

= Implement Methods: service() checked and all other checkboxes unchecked

Figure 9-17 Create HTTP Serviet Wizard - Step 1 of 3: Servlet Information

& Create HTTP Serviet - Step 1 of 3: Servlet Information

Create HTTP Servlet - Step 1 of 3: Servlet Information

Enter serviet details

Class: |GradesServIet |
Package: |c0m.example.grades |v| | Erawse. ..
Generate Conkent Type: |HTML - |

[] Generate Header Comments
Implement Methods

servicel)

| Help | < Back " Mext = J Cancel

10. Click Next.

This displays the Create HTTP Servlet: Step 2 of 3: Mapping Information dialog as
shown in Figure 9-18.

9-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Adding a Servlet with Rules SDK Calls for Grades Sample Application

Figure 9-18 Create HTTP Servlet Wizard - Step 2 of 3: Mapping Information

& Create HTTP Servlet - Step 2 of 3: Mapping Information

Create HTTP Servlet - Step 2 of 3: Mapping Information

Enter servlet mapping.
‘While this is not required to create a servlet, it is required o run a serviet.

Specify a name and mapping for the serviet,

Mapping Details

Mame: | GradesServlet |

URL Pattern: | loradesserviet |

| Help | < Back " Mext = || Finishi || Cancel

11. Configure this dialog as follows:

s Name: GradesServlet

s URL Pattern: /gradesservlet
12. Click Finish.

JDeveloper adds a Web Content folder to the project and creates a
GradesServlet.java file and opens the file in the editor as shown in
Figure 9-19.

Creating a Rule-enabled Non-SOA Java EE Application 9-17

Adding a Servlet with Rules SDK Calls for Grades Sample Application

Figure 9-19 Generated GradesServlet.java

\>GradingRuIes.ruIes | \\>OracIeRuIesl rules | Q] Grade.java [@ Gradesservlet.java | E]
N F - = ==
(@- DS54 BLUASE A MRKE "

package com.example.grades; [Shew Selected Element Only |

import ...z

Elpublic class GradesServliet extends Http3ervlet |
private static final String CONTENT TYPE = "text/html; charset=windows-1252";

= public void init(SerwletConfig config) throws ServletException |
super. init{config) ;

}

public void service (Http3ervletRequest request,
HttpfiervletResponse response) throws ServletException,
= IDException {
response. setContentType (CONTENT TYPE) ;
PrintWriter out = response.getliriter();
out.println("<html=");
out,println("<head=<titlex>Gradesdervlet</titles< head=");
out.println("<body>");
out.println("<p>The servlet has receiwed a PO3T or GET. This is the reply.</p>"
out.println ("< hodye< himl=")
out.close();

Source | Design | History

13. Replace the generated servlet with the source shown in Example 9-2.

Example 9-2 Business Rules Using Serviet for Grades Application

package com.example.grades;

import java.io.IOException;
import java.io.PrintWriter;

import java.util.ArrayList;
import java.util.List;

import javax.servlet.ServletConfig;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import oracle.rules.rl.exceptions.RLException;

import oracle.rules.sdk2.decisionpoint.DecisionPoint;

import oracle.rules.sdk2.decisionpoint.DecisionPointBuilder;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;
import oracle.rules.sdk2.exception.SDKException;

import oracle.rules.sdk2.repository.DictionaryFQN;

public class GradesServlet extends HttpServlet {

private static final String CONTENT TYPE = "text/html";
private static final String DICT_PKG = "com.example.grades";
private static final String DICT_NAME = "GradingRules";
private static final DictionaryFQN DICT_FQN =
new DictionaryFQN(DICT_PKG, DICT_NAME);
private static final String DF_NAME = "GradesDecisionFunction";

9-18 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Adding a Servlet with Rules SDK Calls for Grades Sample Application

private DecisionPoint m_decisionPoint = null; // init in init()

public void init(ServletConfig config) throws ServletException {
super.init (config);

try {

// specifying the Decision Function and Dictionary FQN
// load the rules from the MDS repository.
m_decisionPoint = new DecisionPointBuilder ()

.with (DF_NAME)

.with (DICT_FQN)

.build();
} catch (SDKException e) {
System.err.println("Failed to build Decision Point: " +

e.getMessage()) ;
throw new ServletException(e);

public void service (HttpServletRequest request,
HttpServletResponse response) throws ServletException,
IOException {
// retrieve parameters
String name = request.getParameter ("name");
String strScore = request.getParameter ("testScore");

// open output document
StringBuilder doc = new StringBuilder();
addHeader (doc) ;

// create TestScore object to assert
final TestScore testScore = new TestScore();
testScore.setName (name) ;

try {
testScore.setTestScore (Integer.parselnt (strScore)) ;
} catch (NumberFormatException e){ /* use default val */ }

// get DecisionPointInstance for invocation
DecisionPointInstance point = m_decisionPoint.getInstance();

// set input parameters
point.setInputs(new ArrayList() {{ add(testScore); }});

// invoke decision point and get result value
TestGrade testGrade = null;
try {

// invoke the decision point with our inputs
List<Object> result = point.invoke();
if (result.size() != 1){
error (doc, testScore.getName(), "bad result", null);

}
// decision function returns a single TestGrade object
testGrade = (TestGrade)result.get(0);

} catch (RLException e) {

error (doc, testScore.getName(), "RLException occurred: ", e);
} catch (SDKException e) {
error (doc, testScore.getName(), "SDKException occurred", e);

if (testGrade != null){
// create output table in document
openTable (doc) ;
addRow (doc, testScore.getName(), strScore, testGrade.getGrade());

Creating a Rule-enabled Non-SOA Java EE Application 9-19

Adding a Servlet with Rules SDK Calls for Grades Sample Application

closeTable (doc) ;

addFooter (doc) ;

// write document
response.setContentType (CONTENT_TYPE) ;
PrintWriter out = response.getWriter();
out.println(doc);

out.close();

public static void addHeader (StringBuilder doc) {
doc.append ("<html>") ;
doc.append ("<head><title>GradesServlet</title></head>");
doc.append ("<body>") ;
doc.append ("<hl>Test Results</hl>");

public static void addFooter (StringBuilder doc) {
doc.append ("</body></html>") ;

public static void openTable(StringBuilder doc) {
doc.append ("<table border=\"1\"");
doc.append ("<tr>");
doc.append ("<th>Name</th>") ;
doc.append ("<th>Score</th>") ;
()
(

i

doc.append ("<th>Grade</th>"
doc.append ("</tr>");

public static void closeTable(StringBuilder doc) {
doc.append ("</table>") ;

public static void addRow(StringBuilder doc, String name, String score, Grade grade){
doc.append ("<tr>");
doc.append ("<td>"+ name +"</td>");
doc.append("<td>"+ score +"</td>");
doc.append ("<td>"+ grade.value() +"</td>");
doc.append ("</tr>");

public static void error(StringBuilder doc, String name, String msg, Throwable t){
doc.append ("<tr>") ;
doc.append ("<td>"+ name +"</td>");
doc.append ("<td colspan=2>"+ msg + " " + t +"</td>");
doc.append("</tr>");

Example 9-2 includes a Oracle Business Rules Decision Point, that uses an MDS
repository to access the dictionary. For more information, see Section 7.5, "What You
Need to Know About Using Decision Point in a Production Environment".

When you add the Servlet shown in Example 9-2, note the following:

In the init () method the servlet uses the Rules SDK Decision Point API for
Oracle Business Rules. For more information on using the Decision Point API, see
Chapter 7, "Working with Rules SDK Decision Point API".

The DecisionPointBuilder () requires arguments including a decision
function name and, in a production environment a dictionary FQN to access a
dictionary in an MDS repository, as shown:

9-20 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Adding an HTML Test Page for Grades Sample Application

m_decisionPoint = new DecisionPointBuilder ()
.with (DF_NAME)
.with(DICT_FQN)

For more information on using the Decision Point AP, see Chapter 7, "Working
with Rules SDK Decision Point API".

9.5 Adding an HTML Test Page for Grades Sample Application

The Grades sample application includes an HTML test page that you use to invoke the
servlet you created in Section 9.4, "Adding a Servlet with Rules SDK Calls for Grades
Sample Application".

9.5.1 How to Add an HTML Test Page to the Grades Project
To add an HTML page to the servlet you use the Create HTML File wizard.

To add an HTML test page:

1.

2
3
4.
5
6

In the Application Navigator, in the Grades project select the Web Content folder.
Right-click the Web Content folder project and in the context menu select New....
In the New Gallery, select the All Technologies tab.

In the New Gallery, in the Categories area expand Web Tier and select HTML.

In the New Gallery, in the Items area select HTML Page.

In the New Gallery click OK.

Oracle JDeveloper displays the Create HTML File dialog.

Configure this dialog as follows and as shown in Figure 9-20:

» File Name: index.html

s Directory: C: \JDeveloper\mywork\GradeApp\Grades\public_html

Figure 9-20 Create HTML File Dialog

Create HTML File

Enter the name, and directory For the HTML File,

Fil= Mame:

| index. hikml |

Directory:

|C:'l,JDeveIoper'l,mywork'l,GradeApp'l,Grades'l,public_html || Browse. .. |

[] Create as ®ML file {*.xhtml)

Help [o]4 Cancel
| | | |

10.

Click OK.
JDeveloper adds index.html to the Web Content folder and opens the editor.
In the editor for index.html, select the Source tab.

Copy and paste the HTML code from Example 9-3 to replace the contents of the
index.html file.

Creating a Rule-enabled Non-SOA Java EE Application 9-21

Preparing the Grades Sample Application for Deployment

Note that in the form element action attribute uses the URL Pattern you
specified in Figure 9-18.

Example 9-3 HTML Test Page

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252"></meta>
<title>Test Grade Example Servlet</title>
</head>
<body>
<form name="names_and_scores"
method="post"
action="/grades/gradesservlet" >
<p>Name: <input type="text" name="name" /></p>
<p>Test Score: <input type="text" name="testScore"/></p>
<input type="submit" value="Submit">
</form>
</body>
</html>

11. Select Save All from the File main menu to save your work.

9.6 Preparing the Grades Sample Application for Deployment

Business rules are deployed as part of the application for which you create a
deployment profile in Oracle JDeveloper. You deploy the application to Oracle
WebLogic Server.

9.6.1 How to Create the WAR File for the Grades Sample Application

You deploy the GradeApp sample application using JDeveloper with Oracle
WebLogic Server.

To create the WAR file for the grades sample application:
1. In the Application Navigator, select the Grades project.

2. Right-click the Grades project and in the context menu select Project Properties....
This displays the Project Properties dialog for the project.

3. In the Project Properties navigator, select the Deployment item as shown in
Figure 9-21.

9-22 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Preparing the Grades Sample Application for Deployment

Figure 9-21 Project Properties - Deployment

& Project Properties - C:\Developerimywork\GradeApp\Grades\Grades. jpr

(d@ | | Deployment

[Project Source Paths () Use Custom Settings

- ADF Madel (#) Use Project Settings
----- ADF Yiew

[Ank Deployrnent Profiles:

[+ Business Components
[Compiler
----- Dependencies

----- EJE Madule

----- Extension

[+ Javadoc

----- Jawva EE Application

----- J5P Taqg Libraries

----- ISP Visual Editor

----- Libraries and Classpath
----- Resource Bundle

----- Run/DebugfProfile

----- Technology Scope

Help | (o] 4 | | Cancel

4. In the Project Properties dialog, click New....
This displays the Create Deployment Profile dialog.

5. In the Create Deployment Profile dialog, in the Archive Type list, select WAR
File.

6. In the Create Deployment Profile dialog, in the Name field enter grades, as
shown in Figure 9-22. Note the Name value uses the package value that you
specified in the form element action attribute in Example 9-3.

Figure 9-22 Create Deployment Profile Dialog for WAR File

& Create Deployment Profile D_<|

Click, OK to create your new deployment profile and immediately open it ko see its configuration,

archive Type:
[waR File |

Mame:

| grades |

Description:

Creates a profile for deploying the Java EE web module (WAR) to an application server. The WaR
consists of the web compaonents (JSPs and serviets) and the corresponding deployment descriptors.

Help [0]4 j | Cancel

7. Click OK.
This displays the Edit WAR Deployment Profile Properties dialog.

8. In the Edit War Deployment Profile Properties dialog, select General and
configure the General page as follows, as shown in Figure 9-23:

Creating a Rule-enabled Non-SOA Java EE Application 9-23

Preparing the Grades Sample Application for Deployment

a. Setthe WAR File:
C:\JDeveloper\mywork\GradeApp\Grades\deploy\grades.war

b. Inthe Web Application Context Root area, select Specify Java EE Web
Context Root:

c. In the Specify Java EE Web Context Root: text entry area, enter grades.

d. Inthe Deployment Client Maximum Heap Size (in Megabytes): list select
Auto

Figure 9-23 Edit WAR Deployment Properties - General

& Edit WAR Deployment Profile Properties

_\:' General
WAR File:
H |C:'l,JDeveIoper'l,mywork'l,Gradenpp'l,Grades'l,deploy'l,grades.war | | Browse. .. |
[} File Groups
[Web Files ‘Web Application's Conkext Root:
- Contributars () Use Project's Java EE Web Context Root
| Gradefpp-Grades-context-root |
(%) Specify Java EE Web Context Root:
|grades| |
E} WEB-INF/lib A Deployment Client Maximumn Heap Size (in Megabytes):| Auto - |
----- Contributors
Lo Filbers v
----- Profile Dependencies
[=}- Flatfiorm
Lo WWehSphere 6.
| Help | | (0] 4 _j | Cancel

9. In the Edit WAR Deployment Profile Properties dialog, click OK.

JDeveloper creates a deployment profile named grades (WAR File) as shown
in Figure 9-24.

9-24 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Preparing the Grades Sample Application for Deployment

Figure 9-24 Project Properties - Deployment Profile Created

3 Project Properties - C:\Developerimywork\GradeApp\Grades\Grades. jpr

(d@ | | Deployment

[Project Source Paths () Use Custom Settings

B ADF Model () Use Project Settings
----- ADF Yiew

[Ank Deployrnent Profiles:

[+ Business Components

[Compiler
----- Dependencies |M
et | Delete |
----- EJE Madule
----- Extension
[Javadoc
----- Java EE Application
----- J5P Taqg Libraries
----- J5P Wisual Editor
----- Libraries and Classpath
----- Resource Bundle
----- Run/DebugfPrafile

----- Technology Scope

| Help | Ok | | Cancel

10. In the Project Properties dialog, click OK.

9.6.2 How to Add the Rules Library to the Grades Sample Application

To add the rules library to the weblogic-application file:
1. In the GradeApp application, in the Application Navigator expand Application
Resources.

2. Expand Descriptors and expand META-INF and double-click to open
weblogic-application.xml.

3. Add the oracle.rules library reference to the weblogic-application.xml
file. Add the following lines, as shown in Figure 9-25.

<library-ref>
<library-name>oracle.rules</library-name>
</library-ref>

Creating a Rule-enabled Non-SOA Java EE Application 9-25

Preparing the Grades Sample Application for Deployment

Figure 9-25 Adding Oracle Rules Library Reference to WebLogic Descriptor

P.pplication Mavigator
. GradeApp

EI"- Grades
EID Application Sources
-1 com.example.grades
[B] arade java
@ GradesServlet.java
jaxb.properties
@ CObjectFactary. java
@ package-info. java
[B)] TestGrade.java
@ TestScore.java
27 Resources
& grades.xsd
O GradingRules. rules
=[] Wwebh Content

[~ WEB-INF
~ Application Resources
= D Connections
E1-27) Descriptors

=1 META-INF

l% weblogic-application. xml
-7 ADF META-TNF

Lofeal adf-ronfin el
|+ Data Controls

I Recently Opened Files

)
-&E -

= Projects &l W=

as | ,g indez, html | Q{ Gradesservlet java | 2] Gradesservlet.java [%webIogic—application.Hml @@E]
(68- +e) -
<zxml wersion = 'l1.0' encoding = 'windows-1252°' 7

Bl <seblogic-application xulns:xsi="http: /v w3.org/2001/0Echena-instance”™ ®xs51
E «<listener:

<listener-class>oracle.mds. lcn. weblogic.WLLifecyclelistener< /listener-class
</listener>
E «<listener:
<listener-class>oracle,adf.share.weblogic.listeners. ADFipplicationLifecycle
</listener>
E <library-ref:

<library-name-adf.oracle. donain< /Aibrary-name:

<implementation-version-11.1.1.1.0</implementation-version-
</library-ref>

library-name:>

</weblogic-application>-

Source | History |

4. Save the weblogic-application.xml file.

9.6.3 How to Add the MDS Deployment File to the Grades Sample Application

To add the MDS deployment file:
1. Inthe Application Navigator, select the GradeApp application.

2. Right-click the GradeApp application and in the context menu select Application
Properties....

This displays the Application Properties dialog.

3. In the Application Properties navigator select the Deployment item, as shown in
Figure 9-26.

9-26 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Preparing the Grades Sample Application for Deployment

Figure 9-26 Application Properties - Deployment

3 Application Properties - C:iDeveloperwmyworkiGradeAppiGradedpp. jws
|_J\.]

Deployment

L

Application Content -_’::- Use Custom Sekkings
ent
Resource Bundles

() Use Application Settings

Deployment Profiles:

Run
LW Palicy Store Gradedpp_applicationi (EAR File) (Defaulk) | Edit...

| Mew. ..
| Delete

Auta Generate and Synchronize weblagic-jdbe. xml Descriptors During Deployrent

Security Deployment Gptions
Decide whether ko overwrite the Following security objects if they were previously
deploved.
Application Policies
Credentials
Decide whether ko migrate the Following security objects,
Users and Groups

| Help [o] 4 J | Cancel

4. In the Application Properties dialog, click New....
This displays the Create Deployment Profile dialog.

5. Configure this dialog as follows, as shown in Figure 9-27:
= Archive Type: MAR File

» Name: metadatal

Figure 9-27 Create Deployment Profile Dialog for MAR File

 Create Deployment Profile D_<|

Click, OK to create your new deployment profile and immediately open it ko see its configuration.

archive Type:
[maR File |

Mame:
| metadatal] |

Description:

Creates a profile for deploving a metadata MAR file,

| Help (04 a | Cancel

6. Click OK.

This displays the Edit MAR Deployment Properties dialog as shown in
Figure 9-28.

Creating a Rule-enabled Non-SOA Java EE Application 9-27

Preparing the Grades Sample Application for Deployment

Figure 9-28 Edit MAR Deployment Profile Properties - MAR Options

& Edit MAR Deployment Profile Properties rg|
(60)| ™AR options
o MAR: File
[z} Metadata File Groups
(]~ User Metadata |C:'l,JDeveloper'l,mywork'l,Gradeﬁ\pp'l,deploy'l,metadata1 .mar | | Browse...
L. Directories ;
[}~ HTML Roat Dir for Grades o G il
- Directoties [Enable custamizations For ADF metadata
N
¥
| Help | | (o] 4 _J | Cancel |

7. Expand the Metadata File Groups item and select the User Metadata item.
8. Click Add....
This displays the Add Contributor dialog.

9. In the Add Contributor dialog, click the Browse button and navigate to the
directory for the project that contains the GradingRules. rules dictionary file.

In this example, navigate to C: \JDeveloper\mywork\GradeApp\Grades and
click Select.

10. In the Add Contributor dialog, click OK to close the dialog. This displays the Edit
MAR Deployment Properties dialog as shown in Figure 9-29

9-28 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Preparing the Grades Sample Application for Deployment

Figure 9-29 Edit MAR Deployment Profile Properties - User Metadata

& Edit MAR Deployment Profile Properties

(@)
; MAR. Options
[} Metadata File Groups

=8 LIser Metadata

o Direckories
-HTML Roct Dir for Grades
Directories

E| HTML Rook Dir for YiewCon
Lo Directories

X

User Metadata

File Group Mame: |User Metadata |

Order of Contributors:

C:yIDeveloper\nywork Gradedpp’ Grades

AN

[+

[l

[o]4

]|

Cancel |

11. In the Edit MAR Deployment Profile Properties dialog, expand the Metadata File
Groups and expand the User Metadata item and select Directories.

This displays the Directories page as shown in Figure 9-30.
Figure 9-30 Edit MAR Deployment Profile Properties - Directories
& Edit MAR Deployment Profile Properties

.
(&

[MAR. Options

X

Directories

[Metadata File Groups
[} User Metadata

Directories

- HTML Rook Dir For Grades
Directories
[HTML Root Dir For ViewCor
Lo Directories

Help |

| Deselect All Customizations |

E}D 8] Merged Contents of This File Group's Contributars

B[] £3 .designer

: @ GradingRules_graphics, xml
B[] (3 dasses

: DD .data

; -3 cam
B[] £3 orade
-] 3 rules
=[] £3 public_html

- @[] 3 wEB-INF
B[] 63 sre

L B[] com
ED 3 =sd

: [E] arades.xsd

Expand All Nodes |

Collapse All Modes |

[Ok Cancel

]|

12. Select the oracle directory checkbox. This selects the GradingRules.rules
dictionary to be included in the MAR.

13. Click OK.

Creating a Rule-enabled Non-SOA Java EE Application 9-29

Preparing the Grades Sample Application for Deployment

JDeveloper creates an application deployment profile named metadatal (MAR
File) asshown in Figure 9-31.

Figure 9-31 Application Properties - Deployment - MAR

3 Application Properties - C:iDeveloperimyworkiGradeAppiGradeApp. jws

Deployment

Application Content () Use Custom Settings

() Use Application Settings

Deploynnent Profiles:
e I=| Gradeapp_application1 (EAR. File) (Default) | Edit... |
[metadatal (MAR File) —

Auto Generate and Synchronize weblogic-jdbe. xml Descriptors During Deployment

Security Deployment Cptions
Decide whether to overwrite the Following security objects if they were previoushy
deployed,
Application Policies
Credentials
Decide whether ko migrate the Following security objects,
Users and Groups

| Help | (o] 4 | | Cancel

14. In the Application Properties dialog, click OK.

9.6.4 How to Add the EAR File to the Grades Sample Application
Add an EAR file to the Grades sample application.

To add the ear file to the grades sample application:
1. Inthe Application Navigator, select the GradeApp application.

2. Right-click and in the context menu select Application Properties....

3. In the Application Properties dialog, select Deployment and click New.... This
displays the Create Deployment Profile dialog.

4. Configure this dialog as follows, as shown in Figure 9-32.
ms Archive Type: EAR

» Name: grades

9-30 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Preparing the Grades Sample Application for Deployment

Figure 9-32 Create Deployment Profile Dialog for EAR File

& Create Deployment Profile

Archive Type:

Click. OK to create your new deployment profile and immediately open it ko see its configuration.

X

EAR File

Mame:

Description:

Creates a profile for deploying the Java EE enterprise archive (EAR) file to an application server.
The EAR. file consists of the application's assembled WwaR, EJB JAR, and client JAR Files,

Help |

[8]:4

11

Cancel |

5. Click OK. This displays the Edit EAR Deployment Profile Properties dialog.

6. In the Edit Ear Deployment Profile Properties dialog, in the navigator select
Application Assembly as shown in Figure 9-33.

Figure 9-33 Edit EAR Deployment Profile Properties - Application Assembly

& Edit EAR Deployment Profile Properties

>,

General

Application Assembly
EAR. Opkions

[+ File Groups

E Application Descriptars

Java EE Modules:

B Grades.jpr

w Contribubors
“ Filkers

Application Assembly

Select the Java EE modules that you would like to assemble inko vour Java EE application,

metadatal

= Platform [] [El cradespp_Model_adfibGradeapp1
L. WehSphere 6.x B WigwController, jpr
s s Gradedpp_YiewController _webappl
W

[T

oK

Jl

Cancel

7. Configure this dialog as follows:

s Select the metadatal checkbox.

= Expand the Grades.jpr item and select the grades checkbox.

In the Edit EAR Deployment Profile Properties dialog, click OK.

JDeveloper creates an application deployment profile named grades (EAR

File) asshown in Figure 9-34.

Creating a Rule-enabled Non-SOA Java EE Application 9-31

Deploying and Running the Grades Sample Application

Figure 9-34 Application Properties - Deployment - EAR

& Application Properties - C:3JDevelopersmywork\GradeAppyGradespp. jws

Application Content
ent

esource Bundles

Run

WS Policy Store

Help |

Deployment

() Use Custom Settings

() Use Application Settings

Deployment Profiles:

e I=| Gradeapp_applicationl (EAR File) (Default) |
e metadatal (MAR Fils)
PE grades (EAR Fil) |

Auta Generate and Synchronize weblagic-jdbe. xml Descriptors During Deployrent

Security Deployment Gptions
Decide whether ko overwrite the Following security objects if they were previously
deploved.
Application Policies
Credentials
Decide whether ko migrate the Following security objects,
Users and Groups

Edit...
Mew. .. |

Delete |

el |

Cancel

9. Click OK to close the Application Properties dialog.

10. Select Save All from the File main menu to save your work.

9.7 Deploying and Running the Grades Sample Application

You can now deploy and run the grades sample application on Oracle WebLogic
Server.

9.7.1 How to Deploy to Grades Sample Application

To deploy the grades sample application:
In the Application Navigator, select the GradeApp application.

1.
2.

Right-click the GradeApp application and in the context menu select Deploy >

grades > to > and select either an existing connection or New Connection... to

create a connection for the deployment. This starts the deployment to the specified

Oracle WebLogic Server.

As the deployment proceeds, Oracle JDeveloper shows the Deployment
Configuration dialog.

In the Deployment Configuration dialog enter the following values, as shown in
Figure 9-32:

In the Repository Name field, from the list, select: mds-soa

In the Partition Name field, enter grades

9-32 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Deploying and Running the Grades Sample Application

Figure 9-35 Deployment Configuration Dialog for MDS with Repository and Partition

3 Deployment Configuration

Configure and customize settings for this deployment o
MD3
- Metadata Repository
Repositary Mame: |mds-soa - |

Repositary Type: DB

Partition Marie: | Jrades

Path/IMDI Info: jdbcfmds/MDS_LocalTxDataSource

- Shared Metadata Repositories

Mamespace Repository Type Partition PathfIMDI Info

| Help | | Deploy | | Cancel

5. In the Deployment Configuration dialog, click Deploy.

9.7.2 How to Run the Grades Sample Application

After you deploy the grades sample application, you can run the application.

To run the grades sample application:
1. Point a web browser at,

http:/ /yourServerName:port / grades/
This displays the test servlet as shown in Figure 9-36.

Creating a Rule-enabled Non-SOA Java EE Application 9-33

Deploying and Running the Grades Sample Application

Figure 9-36 Grades Sample Application Serviet

) Test Grade Example Servlet - Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help
@ - c {at I |j http:f{myserver example.com: 7001 | Jradesfindesc.html .7~ ' ,

Mast Yisited |j Aria C‘ Overview (Oracle Ent... |j Account Request |j CRM Tickets E My Oracle |j Metwork Request >

ORACLE ~ | v|5§ €} search + & Ariasearch - & Bugld - %

I ﬁ Test Grade Example Servlet & §

Name: | |

Test Score: | |

Crone

2. Enter a name and test score and click Submit. This returns results as shown in
Figure 9-37.

The first time you run the servlet there may be a delay before any results are returned.
The first time the servlet is invoked, during servlet initialization the runtime loads the
dictionary and creates a rule session pool. Subsequent invocations do not perform
these steps and should run much faster.

Figure 9-37 Grades Sample Application Serviet with Results

) GradesServlet - Mozilla Firefox

File Edit Yiew History Bookmarks Tools Help

@ - c ot | CI htkp:fmyserver, example.com: 7001 | rades/gradesserviet 7T ' ,
Most Yisited |j Aria |j Overview (Oracle Ent... |j Account Request |j CRM Tickets E] My Oracle |j Metwork Request »

OoRACLE - | v i € Search - § AriaSearch - & Bugld - % Prob

I ﬁ GradesServlet

Test Results

Name |Score |Grade
Phil (84 B

Done

9-34 Oracle Fusion Middleware User's Guide for Oracle Business Rules

10

Working with Oracle Business Rules and

ADF Business Components

Oracle Business Rules allows you to use Oracle ADF Business Components view
objects as facts. By using ADF Business Components facts you can assert trees of view
object graphs representing the business objects upon which rules should be based, and
let Oracle Business Rules handle the complexities of managing the relationships
between the various related view objects in the main view object's tree.

This chapter includes the following sections:

Section 10.1, "Introduction to Using Business Rules with ADF Business
Components"

Section 10.2, "Using Decision Points with ADF Business Components Facts"

Section 10.3, "Creating a Business Rules Application with ADF Business
Components Facts"

10.1 Introduction to Using Business Rules with ADF Business

Components

The ADF Business Components rule development process can be summarized as
follows:

1.

o o &~ w N

Create view object definitions.
Create action types.

Create rule dictionary.

Register view object fact types.
Register Java fact types for actions.
If you are invoking from Java:

» If the view object is already instantiated at the Decision Point, code the
Decision Point invocation passing the view object instance.

» If the view object is not instantiated at the Decision Point, code the Decision
Point invocation passing the view object key values.

10.1.1 Understanding Oracle Business Rules ADF Business Components Fact Types

When an ADF Business Components view object is imported into an Oracle Business
Rules data model, an ADF Business Components fact type is created which has a
property corresponding to each attribute of the view object, as shown in Figure 10-1.

Working with Oracle Business Rules and ADF Business Components 10-1

Introduction to Using Business Rules with ADF Business Components

Additionally, the ADF Business Components fact type contains the following:

A property named ViewRowImpl which points directly to the oracle. jbo.Row
instance that each fact instance represents.

A property named key_values which points to an
oracle.rules.sdk2.decisionpoint.KeyChain object. You can use this
property to retrieve the set of key-values for this row and its parent rows.

Figure 10-1 ADF Business Components Sample Fact Type

ADF-BC Facts: E{ﬁ + / x
‘Wiew Definition Top Level
le.managerfinder. model.Em -:-
com.example.managerfinder. model DepartmentsWiew
Wiew Definition: |
Alias: |Employee |
Visible
Properties:
Alias Mame ‘isible Primary Key Bucketset Type List Content Typ
'J WigwR.owImpl wigwR owImpl O oracle.jba.ser...
.‘ key_values key_values O oracle.rules.sd...
'J Ernplovesld emploveeld java.math.Big...
.‘ Firsthame firstharme jawa.lang.string
[I 'J LastMame lastMame java.lang.String
.‘ Email email jawa.lang.string
'J PhoneMumber phonetunber java.lang.String
) HireDate hireDate java.util.Caler...
D lohid jobId java.lang.String
s .‘ Salary salary jawa.math.Big...
= 'J CommissionPck commissionPck java.math.Big. ..
B .‘ ManagerId managerId jawa.math.Big...
It 'J Departmentld departmentld java.math.Big...
ml .‘ Departmentsii... departmenksiiew jana.ukil Lisk Department
:n 'J Ermploveesiiew emploveesyiew O java.ukil.List Ermployves
P
: it Calurins To Width
st -
st | Help | oK | | Cancel
o I e
Note the following:
= Relationships between view object definitions are determined by introspection of
attributes on the View Definition, specifically, those attributes which are View Link
Accessors.
The ADF Business Components fact type importer correctly determines which
relationships are 1-to-1 and which are 1-to-many and generates definitions in the
dictionary accordingly. For 1-to-many relationships the type of the property
generated is a List which contains facts of the indicated type at runtime.
= ADF Business Components fact types are not Java fact types and do not allow

invoking methods on any explicitly created implementation classes for the view
object.

If you need to call such methods then add the view object implementation to the
dictionary as a Java fact type instead of as an ADF Business Components fact type.
In this case, all getters and setters and other methods become available but the

10-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Introduction to Using Business Rules with ADF Business Components

trade-off is that related view objects become inaccessible and, should related view
object access be required, these relationships must be explicitly managed.

Internally in Oracle Business Rules, when you use ADF Business Components fact
types these fact types are created as instances of RL fact types. Thus, you cannot
assert ADF Business Components view object instances directly to a Rule Session,
but must instead use the helper methods provided in the MetadataHelper and
ADFBCFactTypeHelper classes. For more information, see Oracle Fusion
Middleware Java API Reference for Oracle Business Rules.

10.1.2 Understanding Oracle Business Rules Decision Point Action Type

With Rules SDK, the primary way to update a view object within a Decision Point is
with an action type. An action type is a Java class that you import into the rule
dictionary data model in the same way you import a rule pattern fact type Java class.
A new instance of this action type is then asserted in the action of a rule and then
processed by the Postprocessing Ruleset in the DecisionPointDictionary.

A Java class to be used as an action type must conform to the following requirements:

The Java fact type class must subclass
oracle.rules.sdk2.decisionpoint.ActionType or
oracle.rules.sdk2.decisionpoint.KeyedActionType.

By subclassing KeyedActionType the Java class inherits a standard
oracle.rules.sdk2.decisionpoint.KeyChain attribute, which may be
used to communicate the rule fact's primary keys and parent-keys to the
ActionType instance.

The class has a default constructor.

The class implements abstract exec method for the ActionType. The exec
method should contain the main action which you want to perform.

The Java class must have properties which conform to the JavaBean interface
(that is, each property must have a getter and setter method).

Example 10-1 shows a sample ActionType implementation.

Example 10-1 Implementing an ActionType

package com.example;

import oracle.jbo.domain.Number;

import oracle.rules.sdk2.decisionpoint.ActionType;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;

public class RaiseAction extends ActionType {

private double raisePercent;

public void exec(DecisionPointInstance dpi) {
Number salary = (Number)getViewRowImpl ().getAttribute("Salary");
salary = (Number)salary.multiply(1l.0d + getRaisePercent()).scale(100,2, new

boolean[] {false});

dpi.addResult ("raise for " + this.getViewRowImpl ().getAttribute("EmployeeId"),
getRaisePercent () + "=>" + salary);
getViewRowImpl () .setAttribute("Salary", salary);
}

public void setRaisePercent (double raisePercent) {

this.raisePercent = raisePercent;

}

Working with Oracle Business Rules and ADF Business Components 10-3

Using Decision Points with ADF Business Components Facts

public double getRaisePercent () {
return raisePercent;
}
}

In Example 10-1, there is an
oracle.rules.sdk2.decisionpoint.DecisionPointInstance asa
parameter to the exec method. Table 10-1 shows the methods in
DecisionPointInstance that an application developer might need when
implementing the ActionType exec.

Table 10-1 DecisionPointinstance Methods

Method Description

getProperties Supplies a HashMap<String, Object> object containing any runtime-specified
parameters that the action types may need.

If you intend to use the decision function from a Decision service, use only String
values.

getRuleSession Gives access to the Oracle Business Rules RuleSession object from which static
configuration variables in the Rule Dictionary may be accessed.

getActivationID If populated by the caller, supplies a String value to be used for Set Control
indirection.

getTransaction Provides a transaction object so that action types may make persistent changes in the
back end.

addResult Adds a named result to the list of output values in the form of a String key and
Object value.

Output is assembled as a List of
oracle.rules.sdk2.decisionpoint.DecisionPointInstance.NamedVal
ue objects as would be the case in a pure map implementation. The Namedvalue
objects are simple data-bearing classes with a getter each for the name and value.
Output values from one action types instance are never allowed to overwrite each
other, and in this regard, the action type implementations should be considered
completely independent of each other.

Using Rules Designer you can select parameters appropriate for the ActionType you
are configuring.

10.2 Using Decision Points with ADF Business Components Facts

You can use a Decision Point to execute a decision function. There are certain Decision
Point methods that only apply when working with ADF Business Components Fact
types. For more information on decision functions, see Chapter 6, "Working with
Decision Functions".

10.2.1 How to Call a Decision Point with ADF Business Components Facts

When you use ADF Business Components fact types you invoke a decision function
using the Rules SDK Decision Point interface.

To call a decision function using the Rules SDK Decision Point interface:

1. Construct and configure the template DecisionPoint instance using the
DecisionPointBuilder.

For more information, see Section 7.3.1, "How to Add a Decision Point Using
Decision Point Builder".

2. Create a DecisionPointInstance using the DecisionPoint method
getInstance.

10-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using Decision Points with ADF Business Components Facts

3. Add the fact objects you want to use to the DecisionPointInstance using
DecisionPointInstance method addInput, setInputs, or
setViewObject. These are either ViewObject or ViewObjectReference
instances. These must be added in the same order as they are declared in the
decision function input. For more information, see Section 10.2.1.3, "Calling the
Invoke Method for an ADF Business Components Rule"

4. Set the transaction to be used by the DecisionPointInstance.

For more information, see Section 10.2.1.1, "Setting the Decision Point
Transaction".

5. Set any runtime properties the consequent application actions may expect.
For more information, see Section 10.2.1.2, "Setting Runtime Properties".
6. Call the DecisionPointInstance method invoke.
For more information, see:

= Section 10.2.1.3, "Calling the Invoke Method for an ADF Business Components
Rule"

s Section 10.2.1.4, "What You Need to Know About Decision Point Invocation"

10.2.1.1 Setting the Decision Point Transaction

The Oracle Business Rules SDK framework requires an
oracle.jbo.server.DBTransactionImpl2 instance to load a ViewObject and
to provide ActionType instances within a transactional context. The class
oracle.jbo.server.DBTransactionImpl2 is the default JBO transaction object
returned by calling the ApplicationModule method getTransaction. Setting the
transaction requires calling the DecisionPointInstance method
setTransaction with the Transaction object as a parameter.

Should a DBTransaction instance not be available for some reason, the Oracle
Business Rules SDK framework can bootstrap one using any of the three provided
overrides of the setTransaction method.

These require one of:
= A JDBC URL, user name, and password.
= A]JDBC connection object.

» A javax.sqgl.DataSource object and a flag to specify whether the
DataSource represents a JTA transaction or a local transaction.

10.2.1.2 Setting Runtime Properties

Runtime properties may be provided with the set Property method. These can then
be retrieved by ActionType instances during their execution. If no runtime
properties are needed, you may safely omit these calls.

10.2.1.3 Calling the Invoke Method for an ADF Business Components Rule

The ViewObject to be used in a Decision Point invocation can be specified in one of
two ways, as shown in Table 10-2.

Working with Oracle Business Rules and ADF Business Components 10-5

Using Decision Points with ADF Business Components Facts

Table 10-2

Setting the View Object for a Decision Point Invocation

ViewObject Set

Method

Description

setViewObject The decision function is invoked once for each ViewObject row. This

addInput

setInputs

the preferred way to use view objects. Between each invocation of the
decision function, the rule session is not reset so any asserted facts from
previous invocations of the decision function are still in working
memory. In most cases, users should write rules that retract the
asserted facts before the decision function call completes. For example,
you can have a cleanup ruleset that retracts the ViewObject row that
runs before the Postprocessing decision function is called.

Section 10.3.9.3, "How to Add Retract Employees Ruleset" shows this
usage. To use setViewObject, the ViewObject must be the first
entry in the decision function InputTable.

The decision function is invoked once with all of the ViewObject
rows loaded at the same time. This is generally not a scalable operation,
since hundreds of thousands of rows can be loaded at the same time.
There are some cases where there are a known small number of rows in
a ViewObject that this method of calling the ViewObject can be
useful.

Example 10-2 shows how to invoke a Decision Point with a ViewObject instance
using the setInputs method. For the complete example, see Example 10-5.

Example 10-2 Invoking a Decision Point Using setinputs Method

public class OutsideManagerFinder {

private
private
private

private

private

private

static final String AM_DEF = "com.example.AppModule";
static final String CONFIG = "AppModuleLocal";
static final String VO_NAME = "EmployeesViewl";

static final DictionaryFQN DICT FQN =
new DictionaryFQN("com.example", "ChapterlORules");

static final String DF_NAME = "FindOutsideManagers";

DecisionPoint dp = null;

public OutsideManagerFinder() {

try

{

dp = new DecisionPointBuilder ()
.with (DICT_FQN)
.with (DF_NAME)
Lbuild();

} catch (SDKException e) {

System.err.println(e);

public void run() {
final ApplicationModule am =

Configuration.createRootApplicationModule (AM_DEF, CONFIG);

final ViewObject vo = am.findViewObject (VO_NAME) ;

final DecisionPointInstance point = dp.getInstance();
point.setTransaction((DBTransactionImpl2)am.getTransaction());
point.setAutoCommit (true);

point.setInputs(new ArrayList<Object>(){{ add(vo); }});

try

{

10-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using Decision Points with ADF Business Components Facts

List<Object> invokeList = point.invoke();

List<DecisionPoint.NamedValue> results = point.getResults();
} catch (RLException e) {
System.err.println(e);
} catch (SDKException e) {
System.err.println(e);
}
}

Example 10-3 shows how to invoke a DecisionPoint using the setViewObject
method to set the ViewObject.

Example 10-3 Invoking a Decision Point Using setViewObject Method

public void run() {
final ApplicationModule am =
Configuration.createRootApplicationModule (AM_DEF, CONFIG);
final ViewObject vo = am.findViewObject (VO_NAME) ;
final DecisionPointInstance point = dp.getInstance();

point.setTransaction((DBTransactionImpl2)am.getTransaction());
point.setAutoCommit (true) ;
point.setViewObject (vo);
try {
List<Object> invokeList = point.invoke();
List<DecisionPoint.NamedValue> results = point.getResults();
} catch (RLException e) {
System.err.println(e);
} catch (SDKException e) {
System.err.println(e);

}

10.2.1.4 What You Need to Know About Decision Point Invocation

Care must be taken when invoking Decision Points using a view object that loads large
amounts of data, since the default behavior of the JBO classes is to load all data
eagerly. If a view object with many rows and potentially very many child rows is
loaded into memory, not only is there risk of memory-exhaustion, but DML actions
taken based on such large data risk using all rollback segments.

10.2.2 How to Call a Decision Function with Java Decision Point Interface

To call a decision function with a ruleset using ADF Business Components fact types
with the Oracle Business Rules SDK Decision Point interface you must configure the
decision function with certain options. For more information on using decision
functions, see Chapter 6, "Working with Decision Functions".

To define a decision function using the Java Decision Point interface:

1. Double-click the decision function icon to the left of the decision function item or
select this item and click the Edit icon. The Edit Decision Function dialog appears.

2. In the Edit Decision Function dialog, configure the decision function:

= Input Fact Types: names the fact types to use in the configured business rules.

Working with Oracle Business Rules and ADF Business Components 10-7

Using Decision Points with ADF Business Components Facts

The inputs, when working with an application using ADF Business
Components fact types, are the ADF Business Components view objects used
in your rules.

When you use the setViewObject method with a Decision Point, the List
attribute should be unselected. Each Input fact type should have the List
attribute selected when you are using addInput or set Inputs methods
with the Decision Point. Optionally, depending on the usage of the view
objects, select the Tree attribute:

— List: defines that a list of ADF Business Components fact types are passed
to the decision function.

— Tree: defines that all objects in the master-detail hierarchy should be
asserted, instead of only the top-level object.

For more information, see Section 10.2.1, "How to Call a Decision Point with
ADF Business Components Facts".

s Output Fact Types: defines the fact types that the caller returns.

When calling a decision function using the Java Decision Point interface for a
decision function that uses ADF Business Components fact types, Output Fact
Types should be left empty. The view object is updated using an
ActionType. For more information, see Section 10.1.2, "Understanding
Oracle Business Rules Decision Point Action Type".

s RuleSets and Decision Functions: an ordered list of the rulesets and other
decision functions that this decision function executes. The rulesets
DecisionPointDictionary.Preprocessing and
DecisionPointDictionary.Postprocessing from the DecisionPoint dictionary
must be added so that they run before and after, respectively, the
application-specific rulesets and decision functions.

10.2.3 What You Need to Know About Decision Function Configuration with ADF
Business Components

Both rulesets and decision functions may be included in the definition of a decision
function. It is common for an application to require some rules or decision functions
which act as "plumbing code". Such applications include components that perform
transformations on the input data, assert auxiliary facts, or process output facts. The
plumbing code may need to run before or after the rules that contain the core business
rules of the application. You can separate these application concerns and their
associated rules from the application functional concerns using nested decision
functions. Using nested decision functions, the inner decision function does not contain
the administrative, plumbing-oriented concerns, and thus only presents those rules
which define the core logic of the application. This design eliminates the need for the
user to understand the administrative rules and prevents a user from inappropriately
modifying these rules (and possibly rendering the system inoperable due to these
changes).

To create a configuration using multiple rulesets and nested decision functions, create
two decision functions and add one to the other. A good naming scheme is to suffix
the nested inner decision function with the name Core. The user specified rulesets can
be added to the inner Core decision function. For example, DecisionFunction_1 can
be defined to run the DecisionPointDictionary.Preprocessing decision function, the
DecisionFunction_1Core decision function, and the
DecisionPointDictionary.Postprocessing decision function. For this example,
DecisionFunction_1Core contains the core business logic rulesets.

10-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

It is also common for the input of a Decision Point to be an ADF Business Components
fact type that is the root of a tree of ADF Business Components objects. However, the
user might only write business rules that match on a subset of the types found in the
tree. In this case, it is a good practice to define the inputs of the nested decision
functions to be only the types which are actually matched in the contained rulesets.
For example, consider a Decision Point calling a decision function whose input is an
Employee fact type with the Tree option selected; if this decision function includes a
nested decision function with rulesets that only matched on the Department fact
type. In this case, the nested decision function could either have as its input specified
as an Employee fact type with the Tree option selected, or a Department fact type
with the List option selected. For this example, the Tree option causes the children of
the Employee instances, including the Department instances to be asserted (due to
the one-to-many relationship between these types). If Employee is an input to the
outer decision function and the Tree option is selected, the then Department fact type
instances are asserted, and you can identify the signature on the inner decision
function as a list of Department instances (these are the exact types which are being
matched on for this decision function).

10.3 Creating a Business Rules Application with ADF Business
Components Facts

The ADF Business Components sample application shows the use of ADF Business
Component fact types.

The source code for Oracle Business Rules-specific samples is available online at
https://www.samplecode.oracle.com/sf/go/pageld9’
For SOA samples online visit

https://www.samplecode.oracle.com/sf/projects/soasamples/

10.3.1 How to Create an Application That Uses ADF Business Components Facts

To work with Oracle Business Rules with ADF Business Components facts, you first
need to create an application and a project in Oracle JDeveloper.

To create an application that uses ADF Business Components facts:
1. Start Oracle JDeveloper. This displays the Oracle JDeveloper start page.

2. Inthe Application Navigator, in the application menu click New Application....

3. In the Name your application page enter the name and location for the new
application:

a. In the Application Name field, enter an application name. For example, enter
ChapterlO.

b. In the Directory field, enter or browse for a directory name or accept the
default.

c. Inthe Application Package Prefix field, enter an application package prefix.
For example, enter com. example.

This should be a globally unique prefix and is commonly a domain name
owned by your company. The prefix, followed by a period, applies to objects
created in the initial project of an application.

In this sample, use the prefix com.example.

Working with Oracle Business Rules and ADF Business Components 10-9

Creating a Business Rules Application with ADF Business Components Facts

d. Inthe Application Template field, select Fusion Web Application (ADF).
4. Click Finish.

10.3.2 How to Add the Chapter10 Generic Project

You need to add a new project named Chapter10.

Add a new project:
1. In the Chapter10 application, select the Application Menu.

2. In the Application Menu list, select New Project....

3. Inthe New Gallery, in the Items area select Generic Project.

4. Click OK.

5. On the Name your project page, in the Project Name field enter Chapter10.
6. Click Finish.

10.3.3 How to Create ADF Business Components Application for Business Rules

You need to add ADF Business Components from a database table. For this example
we use the standard HR database tables.

To add ADF Business Components:
1. In the Application Navigator, select the Chapter10 project.

2. Right-click and from the menu select New....

3. In the New Gallery, in the Categories area expand Business Tier and select ADF
Business Components.

4. In the Items area select Business Components from Tables.
5. Click OK.

6. In the Initialize Business Components Project dialog, enter the required connection
information to add a connection.

7. Click OK. This displays the Create Business Components from Tables wizard.

8. In the Entity Objects page, select the desired objects by moving objects from the
Available box to the Selected box. You may need to click Query to see the
complete list. For example, select DEPARTMENTS and EMPLOYEES, as shown
in Figure 10-2.

10-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

Figure 10-2 Selecting Entity Objects for Sample Application

Entity Objects

& Create Business Components from Tables - Step 1 of &

Entity Objects

)
+ Updatable Yiew Objects
!
!
J

Specify the package to contain vour new entity objects and associations,
Package: |c0m.example | ’Broﬂse. K]

Filter the bypes of schema objects to display as available, then select the schema object{s) and click "=' to create entity objects,

Schema: [HR V] Type Filker: OFF | Filker Twpes

Mamne Filkers |2 | [] Aute-cuery
i 8 Selected:
IES [DEPARTMENTS
EMP_DETAILS_YIE'W

JCES
JOE_HISTORY
LOCATIONS

| REGIOMS

Blel®ly

Entity Mame:! |Emplovess |

I Mexk = i’ Finish]’ Cancel]

9. Click Next. This displays the Updatable View Objects page.

10. In the Updatable View Objects page select Departments and Employees, as shown

in Figure 10-3.

Figure 10-3 Adding Updatable View Objects for Sample Application

& Create Business Components from Tables - Step 2 of &

Updatable View Obijects

Entity Objects
e Updatable ¥iew Obje

+ Read-Only Yiew Objects
I
I

Specify the package to contain vour new view objects and view links.,

Package: |com.example | ’Broﬂse. y]

To create an updatable view object, select an object from the list of available entity objects and click =", IF there is an
association between selected entity objects, a view link will automatically be created,

Available: Selected:

>
»

Object Name:| Employeesiiew

’ < Back. " Mext = i’ Finish]’ Cancel]

11. Click Next. This displays the Read-Only View Objects page.
12. Click Next. This displays the Application Module page.

Working with Oracle Business Rules and ADF Business Components 10-11

Creating a Business Rules Application with ADF Business Components Facts

13. Click Finish.

10.3.4 How to Update View Object Tuning for Business Rules Sample Application

You should tune the ViewObject to meet the performance requirements of your
application.

To set tuning options for EmployeesView:
1. In the Application Navigator, double-click EmployeesView.

2. In the General navigation tab, expand Tuning.

3. In the Tuning area, select All Rows.

4. In the Tuning area, in the Batches of: field, enter 128.
5

In the Tuning area, select All at Once.

To set tuning options for DepartmentsView:
1. In the Application Navigator, double-click DepartmentsView.

2. Inthe General navigation tab, expand Tuning.

3. In the Tuning area, select All Rows.

4. In the Tuning area, in the Batches of: field, enter 128.
5

In the Tuning area, select All at Once.

10.3.5 How to Create a Dictionary for Oracle Business Rules

You use Oracle JDeveloper to create an Oracle Business Rules dictionary.

To create a dictionary:
1. In the Application Navigator, select the Chapter10 project.

2. Right-click, and from the list select New....

3. In the New Gallery, select the All Technologies tab and in the Categories area
expand Business Tier and select Business Rules.

4. Inthe New Gallery, in the Items area select Business Rules.

5. Click OK.

6. In the Create Business Rules dialog enter the dictionary name and package, as
shown in Figure 10-4:

s For example, in the Name field enter Chapter10Rules.

= For example, in the Package field enter com. example.

10-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

Figure 10-4 Create Business Rules for Chapter10Rules Dictionary
& Create Business Rules

Business Rule
A business rule defines or constrains one aspect of your business that is intended ko assert business
structure or influence the behavior of your business,

General | Adwanced

(®) Create Dictionary () Import Dictionary

Specify the name and package For the dictionary that will be created.
Mame: |ChapterIDRuIes| |

Package: | com.exarnple |

Project: |C:'l,JDeveloper'l,mywork'l,chapterID'l,ChapterlD'l,ChapterlD.jpr |

Inputsfoutputs: G- M A v

Direction Marmne Tvpe

| Help | | [o]4 “ Cancel

7. Click OK.

JDeveloper creates the dictionary and opens the Chapterl0Rules.rules file in
Rules Designer, as shown in Figure 10-5.

Figure 10-5 Adding the Rules Dictionary

Application Mavigator E] glchapterlﬂ.jws OChapterlDRules.rules

. Chapterl '. I A S o I
¥ Projects @] @ W & & ract
acks PR
ERE |chapterio Ruleset 1 ¥ [|Eiteron ¥ew: [P IFTHENRules ~| 9 - 38 T2 §h 0 60 & o
D Application Sources _ft Functions B
: [0l com.example (%) Glabals
EID Resources o To create a Rule or Decision Table, please click the plus sign above.
-4 ChapterlORUles ulss 17 Bucketsets
Model =D Links

WigwController o i
E Decision Functions

Rulesets @ 2
&b Ruleset_1
|+ Application Resources
|+ Data Controls
I» Recently Openad Files)
Diesinn

10.3.6 How to Add Decision Point Dictionary Links

You need to add a dictionary links to the Oracle Business Rules supplied Decision
Point Dictionary. This dictionary supports features for working with the Decision
Point interface with ADF Business Components objects.

Add decision point dictionary links:
1. In the Rules Designer, click the Links navigation tab.

Working with Oracle Business Rules and ADF Business Components 10-13

Creating a Business Rules Application with ADF Business Components Facts

2. From the menu next to the Create icon, select Decision Point Dictionary. This
operation can take awhile to complete. After waiting, Rules Designer adds a link
to the Decision Point Dictionary as shown in Figure 10-6.

Figure 10-6 Adding a Dictionary Link to Decision Point Dictionary

Sl Chapter10.jws Othapterll]Rules.rules | E]
BY De @O ©)

9 Fack
& Facts 40 Links

F Functions

(x) Globals Links: W2 G

7 Bucketsets #lias Hame Package Name

D Link &l DecisionPointDictionary DecisionPointDictionary oracle.rules, sdkZ, decisionpoint. impl
inks

ﬂ Drecision Funckions
Rulesets 3 X
&P Rulesat_1

=

Design

10.3.7 How to Import the ADF Business Components Facts

You import ADF Business Components facts with Rules Designer to make these
objects available when you create rules.

Import the ADF Business Components facts:
1. In Rules Designer, select the Facts navigation tab.

2. Select the ADF-BC Facts tab.
3. Click the Create... icon. This displays the ADF Business Components Fact page.

4. In the Connection field, from the list select the connection which your ADF
Business Components objects use. The Search Classpath area shows a list of
classpaths.

5. In the View Definition field, select the name of the view object to import. For
example, select com.example.EmployeesView.

6. Click OK. This displays the Facts navigation tab, as shown in Figure 10-7.

10-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

Figure 10-7 ADF Business Components Facts in Rules Designer

{’ﬂDepartmentsView.xml |{?_&|Employees\"iew.xml [QManagerRules.ruJes | E]

Bv B) o @
3 Facts
72, el ADF-BC Farts: @ s X
(x) Globals & Alias Wiew Definition Top Level

@ EmployessView com, example.managerfinder EmploveesView
7 Bucketsets ~
W @ DepartmentsView com, example,managerfinder DepartmentsYiew
D Links
E‘] Decision Funckions
Rulesets g %
8} Ruleset_1
[T8MCFacts | JavaFacts | RLFacts | ADF-BC Facts
=
Design

ADF Business Components Facts can include a circular reference, as indicated with the
validation warning:

RUL-05037: A circular definition exists in the data model

When this warning is shown in the Business Rule validation log, you need to manually
resolve the circular reference. To do this you deselect the Visible checkbox for one of
the properties that is involved in the circular reference.

To mark a property as non-visible:
1. Select the Facts navigation tab and select the ADF Business Components Facts tab.

2. Double-click the icon in the DepartmentsView row.
3. In the Properties table, in the EmployeesView row deselect the Visible checkbox.
4. Click OK.

To set alias for DepartmentsView and EmployeesView:
1. Select the Facts navigation tab and select the ADF Business Components Facts tab.

2, In the Alias column, replace EmployeesView with Employee.

3. In the Alias column, replace DepartmentsView with Department.

10.3.8 How to Add and Run the Outside Manager Ruleset

The sample code that runs the outside manager ruleset invokes the Decision Point
with the view object set using the set Inputs method. This invokes the decision
function once, with all of the view object rows loaded in a List. Note that invoking
the Decision Point this way is not scalable, because all of the view object rows must be
loaded into memory at the same time, which can lead to OutOfMemory exceptions.
Only use this invocation style when there are a small and known number of view
object rows. You can also use a Decision Point with setViewObject. For more
information, see Section 10.2.1, "How to Call a Decision Point with ADF Business
Components Facts".

Working with Oracle Business Rules and ADF Business Components 10-15

Creating a Business Rules Application with ADF Business Components Facts

10.3.8.1 How to Add the Outside Manager Ruleset and Add a Decision Function

After the view objects are imported as facts, you can rename the ruleset and create the
decision function for the application.

To rename the ruleset:
1. In Rules Designer, select the Ruleset_1 navigation tab.

2. Select the ruleset name and enter Outside Manager Ruleset to rename the
ruleset.

To add a decision function:
1. Click the Decision Functions navigation tab.

2. In the Decision Functions area, click Create.... This displays the Edit Decision
Function dialog.

3. Edit the decision function fields as follows, as shown in Figure 10-8.
s Enter Name value FindOutsideManagers.

s In the Inputs area, click the Add Input icon and edit the input information as
follows:

— Click the Fact Type field and select Employee from the list.
- Select the List checkbox.

In this decision function you do not define any outputs because you use the
ActionType API for taking action rather than producing output. For more
information, see Section 10.1.2, "Understanding Oracle Business Rules
Decision Point Action Type".

s Inthe Rulesets & Decision Functions area move the following items from the
Available area to the Selected area, in the specified order:

— DecisionPointDictionary.Preprocessing
— Outside Manager Ruleset

— DecisionPointDictionary.Postprocessing

10-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

Figure 10-8 Adding the Find Outside Managers Decision Function

& Edit Decision Function

Mame: | FindOutsideManagers |
Description: | |
Rule Firing Lirnit: |unlimited |v|

[will Be Invoked As & Webservice
Check Rule Flow

[¥] gtateless
= Inputs Eﬂ' X aAaw
Mame Fack Type Tree Liskt
&] Input_t Employes il
= Dutputs XA v
Mame Fack Type Tree Lisk

= Rulesets & Decision Functions

Available:

Selected: A
Q DecisionPaointDictionary . Preprocessing

b) @ Outside Manager Ruleset

Q DecisionPaointDictionary . Poskpracessing

@ DecisionPoint_Poskprocessing

@ DecisionPoint_Postprocessing_webservice
@ DecisionPoint_Preprocessing_Webservice
E DecisionPointDictionary . Postprocessing_webservice | }})

<
LK

| Help | | (a4 || Cancel

4. Ensure that the items in the Selected area are in the order shown in Figure 10-8.

If they are not, select an item and use the Move Up and Move Down buttons to
correct the order.

5. Click OK.

Several warnings appear. These warnings are removed in later steps when you add
rules to the ruleset.

10.3.8.2 How to Create the ActionType Java Implementation Class

To create the sample application and to modify the view object in a rule, you need to
create a Java implementation class for abstract class
oracle.rules.sdk2.decisionpoint.ActionType. All subclasses of
ActionType must implement the abstract exec method.

To create the ActionType Java implementation class:
1. In Oracle JDeveloper, select the project named Chapter10.

2. In the Application Navigator, select the Application Sources folder.
3. Right-click and from the list select New....

Working with Oracle Business Rules and ADF Business Components 10-17

Creating a Business Rules Application with ADF Business Components Facts

In the New Gallery, in the Categories area select General.
In the New Gallery, in the Items area select Java Class.

Click OK.

N o a &

In the Create Java Class dialog, configure the following properties as shown in
Figure 10-9:

s Enter the Name value MessageAction.
= Enter the Package value com. example.

s Enter the Extends value
oracle.rules.sdk2.decisionpoint.ActionType.

Figure 10-9 Creating the Message Action Type Java Class

Create Java Class §|
Enter the details of wour new class, I:’
[arne: | Messagedction |
Package: |c0m.example | Ck
Extends: : point. AckionType

Optional Atkributes

Implements: 3 X

Access Modifiers Other Modifiers
(%) public
(_) package protected

Constructors From Superclass
Implement Abstract Methods
[] Main Method

| Help | Ok J | Cancel

8. Click OK.
Oracle JDeveloper displays the Java Class.
9. Replace this code with the code shown in Example 10—4.

Example 10-4 ActionType Java Implementation

package com.example;

import oracle.rules.sdk2.decisionpoint.ActionType;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;

public class MessageAction extends ActionType {

public MessageAction() {
super () ;

public void exec (DecisionPointInstance decisionPointInstance) {
System.out.println(message) ;

10-18 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

10.

private String message = null;

public void setMessage (String message) {
this.message = message;

}

public String getMessage() {
return message;

}

In the Application Navigator, right click the MessageAction. java and from the
list select Make.

10.3.8.3 How to Import the Message Action Java Fact

You just created a new Java class and you need to add this class as a Java fact type in
Rules Designer to use later when you create rules.

To create the Java fact type:

1.
2
3.

In Rules Designer, click the Facts navigation tab.
Select the Java Facts tab.
Click Create....

In the Create Java Fact dialog, in the Classes area navigate in the tree and expand
com and example to display the MessageAction checkbox.

Select the MessageAction checkbox, as shown in Figure 10-10.

Figure 10-10 Create Java Fact with Message Action Type

& Create Java Fact g|
Select Java Fact Classes ‘
Select the Java classes you would like to be used as Java Facts in the rules engine. ‘-"' ?—l‘
‘fou can add a JAR file or directory to the classpath and then check the class files and/or packages wou
want to create Facts from,
Classpath: + b 4 D Classes: Gél
'.L:] File:JC:{ IDeveloperfrmywork) Chapter 10/Chapter 10)cla Q Classes
&[] [com
=0 [T example
- =]
D m java
B @ javax
=-0] @ org
[] Add Project Library to Classpath
| Help | [a]4 | | Cancel

6.

Click OK.
This adds the fact to the table, as shown in Figure 10-11.

Working with Oracle Business Rules and ADF Business Components 10-19

Creating a Business Rules Application with ADF Business Components Facts

Figure 10-11 Adding the Message Action Type Java Fact

| Chapterl . jus apterl0Rules.rules
[Elchapterin Chapter10Rules.rul =
B @ o @
L3 Facts
_f: Functions Java Facts: E’E} “ﬂ' / b 4 &
(%) Globals Alias Class Descriptio
» Messagefction com.example. Messagedction
7 Bucketsets) - .)
&y ActionType oracle.rules.sdkz . decisionpoint . ActionType
D Links @y KeyChain aracle.rules.sdkZ . decisionpoint . KeyChain
g Decision Functions &y KeyedActionTvpe oracle.rules.sdk2 . decisionpoint KeyedactionTvpe
@y DecisionPoint aracle.rules.sdkz . decisionpaint . DecisionPaint
Rulesets EH' ® - . - . - .
@y DecisionPointInstance oracle.rules.sdkz . decisionpoint . DecisionPointInstance
@Outside Manager F... @y DecisionPointBuildsr aracle.rules.sdkz . decisionpaint . DecisionPaintBuilder
& Object java.lang. Object
@y String java.lang.String
@y Biglnteger jawa.math. BigInteger
@&y BigDecimal java.math. Bighecimal
&y Calendar java.util. Calendar
¥MLFacts | JavaFacts [RLFacts | ADFEC Facts
c

Design

10.3.8.4 How to Add the Find Managers Rule

You add the rule to find the managers that are in a different departments than their

employees.

To add the find managers in different departments rule:
1. In Rules Designer, select the Outside Manager Ruleset tab.

2. C(Click Add and from the list select Create Rule.

3. Rename the rule by selecting the default rule name Rule_1. This displays a text
entry area. You enter a name. For example, enter Find managers in different
department. Press Enter to apply the name.

4. Click Show Advanced Settings. For more information, see Section 4.5.1, "How to
Show and Hide Advanced Settings in a Rule or Decision Table".

5. In the rule select Advanced Mode, as shown in Figure 10-12.

10-20 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

Figure 10-12 Adding the Find Managers in Different Departments Rule

| Chapter10.jis thapterl DRules.rules |\>ChapterIDRuIes.ruIes E]
EE R Rl ! @

Q _ — e

Outside Manager Ruleset ¥ [Eilter On Wiew: Q IFJTHEM Rules 'l * - R Tﬂ % % & A v
e
® = % Find managers in different department
<enter descripkion =

o=

L Advanced Mode [] Tree Mode Rule Active [| Logical Priority:

&2 Effective Dake: | Ahways valid

@ IF

<variable is a <fack bvpes

<insert test=

<inserk patkern:=
THEN

<insert action

C

Design

6. Enter the rule as shown in Figure 10-13. The action for the rule shown in the
THEN area is too long to show in the figure. The complete action that you build
includes the following items:

"Employee " + Employee.FirstName + " " + Employee.LastName + " (" +
Employee.EmployeeId + ")"+ " in dept " + Employee.DepartmentId + " has
manager outside of department, " + Manager.FirstName + " " + Manager.LastName

+ "(" + Manager.EmployeeId + ")" + " in dept " + Manager.DepartmentId

Figure 10-13 Find Managers in Different Departments Rule

QEhapterll]Rules.rules | ﬁn]OutsideManagerFinder.java E]
B 8 @ o @
<Q Dutside Manager Ruleset % [| Filter On Yiew: QIF."THEN Rues «| 90 - 3§ 123 % % & A w0

%
® = #® Find managers in different department
<enter description =
et
e [] Tree Mode Rule Active [| Logical Priority: |
<9 Effective Date: Always valid
@ IF

Emplovee is a Emploves
<insert test=

and

Manager is a Employee and

Manager . Emploveeld == Employee.Managerld and
Manager.Departmentld |= Employee.DepartmentId

<insert test=

<insert pattern:>
THEN

assert new Messagedction | <add property = message : "Employes " + Employee.FirstMame + " " + Employes LastMame + (" + Er

<insert action:=

Working with Oracle Business Rules and ADF Business Components 10-21

Creating a Business Rules Application with ADF Business Components Facts

10.3.8.5 How to Add the Outside Manager Finder Class

Add the outside manager finder class. This uses the Decision Point to execute a
decision function.

To add the Outside Manager Finder Class:
1. Select the Chapter10 project.

Right-click and select New....

In the New Gallery, in the Categories area select General.
In the New Gallery, in the Items area select Java Class.
Click OK.

In the Name field, enter OutsideManagerFinder.

Click OK.

©® N o a » 0 b

Replace the contents of this class with the code shown in Example 10-5.

Example 10-5 Outside Manager Finder Java Class with Decision Point

package com.example;
import java.util.ArrayList;

import oracle.jbo.ApplicationModule;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;

import oracle.rules.rl.exceptions.RLException;

import oracle.rules.sdk2.decisionpoint.DecisionPoint;

import oracle.rules.sdk2.decisionpoint.DecisionPointBuilder;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;
import oracle.rules.sdk2.exception.SDKException;

import oracle.rules.sdk2.repository.DictionaryFQN;

public class OutsideManagerFinder {
private static final String AM _DEF = "com.example.AppModule";
private static final String CONFIG = "AppModuleLocal";
private static final String VO_NAME = "EmployeesViewl";

private static final DictionaryFQN DICT_FQN =
new DictionaryFQN("com.example", "ChapterlORules");

private static final String DF_NAME = "FindOutsideManagers";
private DecisionPoint dp = null;

public OutsideManagerFinder() {
try {
dp = new DecisionPointBuilder ()
.with (DICT_FQN)
.with (DF_NAME)
Lbuild();
} catch (SDKException e) {
System.err.println(e);

public void run() {

10-22 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

final ApplicationModule am =
Configuration.createRootApplicationModule (AM_DEF, CONFIG);
final ViewObject vo = am.findViewObject (VO_NAME) ;
final DecisionPointInstance point = dp.getInstance();
point.setInputs (new ArrayList<Object>(){{ add(vo); 1}});
try {
point.invoke() ;
} catch (RLException e) ({
System.err.println(e);
} catch (SDKException e) {
System.err.println(e);

public static void main(String[] args) {
OutsideManagerFinder omf = new OutsideManagerFinder();
omf.run();

10.3.8.6 How to Update ADF META INF for Local Dictionary Access

You need to update the ADF-META-INF file with MDS information for accessing the
dictionary. You can use a local file with MDS to access the Oracle Business Rules
dictionary. However, this procedure is not the usual dictionary access method with
Oracle Business Rules in a production environment. For information on using a
Decision Point to access a dictionary with MDS in a production environment, see
Section 7.5, "What You Need to Know About Using Decision Point in a Production
Environment".

Update ADF-META-INF:
1. In the Application Navigator, expand Application Resources.

2. Expand Descriptors and ADF META-INF folders.

3. Double-click adf-config.xml to open this file.

4. Click the Source tab to view the adf-config.xml source.
5

Add the MDS information to adf-config.xml, before the closing
</adf-config> tag, as shown in Example 10-6.

Example 10-6 Adding MDS Elements to adf-config.xml for Local Dictionary Access

<adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
<mds-config version="11.1.1.000" xmlns="http://xmlns.oracle.com/mds/config">
<persistence-config>
<metadata-namespaces>
<namespace metadata-store-usage="mstore-usage_1" path="/"/>
</metadata-namespaces>
<metadata-store-usages>
<metadata-store-usage id="mstore-usage_1">
<metadata-store
class-name="oracle.mds.persistence.stores.file.FileMetadataStore">
<property name="metadata-path"
value="C:\jdevinstance\mywork\Chapterl0\.adf\"/>
</metadata-store>
</metadata-store-usage>
</metadata-store-usages>

Working with Oracle Business Rules and ADF Business Components 10-23

Creating a Business Rules Application with ADF Business Components Facts

</persistence-config>
</mds-config>
</adf-mds-config>

6. In the <property> element with the attribute metadata-path, change the path
to match . adf directory in the application on your system.

Copy definitions to MDS accessible location:

1. Ina file system navigator, outside of Oracle JDeveloper navigate to the Chapter10
application, and in the Chapter10 project, in the src folder select and copy the com
folder.

2. In the application directory for Chapter10, above the Chapterl0 project, navigate
to the .adf directory.

3. Copy the com folder to this directory.

Copy dictionary to MDS accessible location:

1. In a file system navigator, outside of Oracle JDeveloper navigate to the Chapter10
application and in the Chapter10 project, copy the oracle directory that contains
the Oracle Business Rules dictionary.

2. In the application directory for Chapter10, above the Chapter10 project, navigate
to the .adf directory.

3. Copy the oracle folder to this directory.

10.3.8.7 How to Build and Run the Project to Check the Outside Manager Finder

You can build and test the project by running the find managers with employees in
different departments rule.

Build the OutsideManagerFinder configuration:
1. From the dropdown menu next to Run icon, select Manage Run Configurations....

2. In the Project Properties dialog, click New....

3. In the Create Run Configuration dialog, enter a name. For example, enter
OutsideManagerFinder.

Click OK.
With OutsideManagerFinder selected, click Edit....
In the Default Run Target field, click Browse....

4
5
6
7. Select OutsideManagerFinder.java from the src\com\example folder.
8. Click Open.

9. In the Edit Run Configuration dialog, click OK.

10. In the Project Properties dialog, click OK.

Run the project:

1. In the dropdown menu next to the Run project icon, select
OutsideManagerFinder.

2. Running this configuration generates output, as shown in Example 10-7.

10-24 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

Example 10-7 Running the OutsideManagerFinder Ruleset

Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp

Shelley Higgins(205) in dept 110 manager outside of department, Neena Kochhar (101) in dept 90
Hermann Baer (204) in dept 70 manager outside of department, Neena Kochhar(101) in dept 90
Susan Mavris(203) in dept 40 manager outside of department, Neena Kochhar(101) in dept 90
Michael Hartstein(201) in dept 20 manager outside of department, Steven King(100) in dept 90
Jennifer Whalen(200) in dept 10 manager outside of department, Neena Kochhar(101) in dept 90
Kimberely Grant(178) in dept null manager outside of department, Eleni Zlotkey(149) in dept 80
Eleni Zlotkey(149) in dept 80 manager outside of department, Steven King(100) in dept 90
Gerald Cambrault (148) in dept 80 manager outside of department, Steven King(100) in dept 90
Alberto Errazuriz(147) in dept 80 manager outside of department, Steven King(100) in dept 90
Karen Partners(146) in dept 80 manager outside of department, Steven King(100) in dept 90

John Russell (145) in dept 80 manager outside of department, Steven King(100) in dept 90

Kevin Mourgos(124) in dept 50 manager outside of department, Steven King(100) in dept 90
Shanta Vollman(123) in dept 50 manager outside of department, Steven King(100) in dept 90
Payam Kaufling(122) in dept 50 manager outside of department, Steven King(100) in dept 90
Adam Fripp(121) in dept 50 manager outside of department, Steven King(100) in dept 90

Matthew Weiss(120) in dept 50 manager outside of department, Steven King(100) in dept 90

Den Raphaely(114) in dept 30 manager outside of department, Steven King(100) in dept 90

Nancy Greenberg(108) in dept 100 manager outside of department, Neena Kochhar(101) in dept 90
Alexander Hunold(103) in dept 60 manager outside of department, Lex De Haan(102) in dept 90

10.3.9 How to Add and Run the Department Manager Ruleset

The sample code that runs the department manager ruleset invokes the Decision Point
with the view object set using the setViewObject method. This invokes the decision
function once for each row in the view object. All decision function calls occur in the
same RuleSession. Between decision function calls, the RuleSession preserves all state
from the previous decision function call. Thus, any objects asserted during the
previous call remain in working memory for the next call unless they are explicitly
retracted by rulesets that you supply. When the state is maintained, you can retract all
facts or selectively retract facts between calls by running a ruleset with rules that use
the retract action. This ruleset is run as part of the same decision function that you use
with the Decision Point. The retract all employees ruleset demonstrates retracting
these facts, as shown in Figure 10-15. For more information, see Section 10.2.1, "How
to Call a Decision Point with ADF Business Components Facts".

10.3.9.1 How to Add the Department Manager Finder Ruleset

You now add the department manager finder ruleset.

To add the department manager finder ruleset:
1. In Rules Designer, click Create Ruleset....

2. In the Create Ruleset dialog, in the Name field enter Department Manager
Finder Ruleset.

3. Click OK.

10.3.9.2 How to Add the Find Rule in the Department Manager Finder Ruleset

Next you add the Find rule to find department managers. This rule demonstrates the
use of Tree Mode rules with Oracle ADF Business Components fact types.

Add department manager finder rule:
1. In Rules Designer select the Department Manager Finder Ruleset.

2. In the dropdown menu next to the Add icon, click Create Rule.

3. Change the rule name by selecting the name Rule_1, and entering Find.

Working with Oracle Business Rules and ADF Business Components 10-25

Creating a Business Rules Application with ADF Business Components Facts

4. Click Show Advanced Settings. For more information, see Section 4.5.1, "How to
Show and Hide Advanced Settings in a Rule or Decision Table".

5. In the rule, select Tree Mode.

6. Enter the Find rule tests and actions, as shown in Figure 10-14. The THEN area
includes the assert that is too wide for the figure. The following shows the
complete text of this rule, which is missing in Figure 10-14:

Employee.FirstName + " " + Employee.LastName + " is the manager of dept " +
Employee/DepartmentsView.DepartmentName

Figure 10-14 Adding the Find Rule to the Department Manager Finder Ruleset

QEhapterlDRuJes.rules | _»Chapter 10Rules.rules E]
B o @Ee) 0O @
&) Facts Editor Properties,.. g ok " i i

Department Manager Finder Ruleset % [|Filker On Yiew: |G'| 3 - % CEE % % & M @
_ﬁ; Functions
= & Find
(x) Globals <enter description=
FY —
i Buckstsets []Advanced Mode [w] Tree Mode [w]Rule Active [| Logical Priority: [medium |V|
D Links

i Effective Date: | Ahways Valid
g Decision Functions

+ ® ;IFEIEIT: Employee

&P Outside Manager Ruleset Employes/Departmentsyiew Managerld == Employee, Employeeld

Rulesets

@} Department Manager Finder Ruleset <insert kest:
THEMN

retract Employes
assert new Messageaction | =<add property= message : Emploves, FirskName + " " + Employes LastMame + " is the manager

=insert actionz

=

Dresign

10.3.9.3 How to Add Retract Employees Ruleset

You add a ruleset to retract the employee fact type instances. This ensures that the
Employee fact type is removed between invocations of the decision function.

To add the retract employee ruleset:
1. Add the Retract Employees Ruleset.

2, Inthe Retract Employees Ruleset, add a rule and name it Retract all employees, as
shown in Figure 10-15.

10-26 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

Figure 10-15 Adding the Retract All Employees Rule

thaptarl DRules.rules | 3| DeptManagerFinder . java E]

QY 9ER B0
&) Facts
F Functions
(x) Globals

7 Bucketsets

D Links
ﬁ] Decision Functions
Rulesets @ ¥

&P Outside Manager R...
P Department Manage. ..
&P Raises Ruleset

&P Retract Employees...

[}

[# Retract Employees Ruleset % [| Filter On View: |GIF,|’THEN V| Eﬂ' - X ‘Eg % % & A W

= % Retract all employees
<enter description =

Advanced Mode [] Iree Mode Rule Active [| Logical Priority: | medium |:|
Effective Date: | Always valid
IF
Employvee is a Employee

<insert test=

<inserk patkern:=
THEN

retract Emploves

<insert ackionz

Design

10.3.9.4 How to Add the Find Department Managers Decision Function

Now you create the decision function for the department manager finder ruleset. You
use this decision function to execute the ruleset from a Decision Point.

To
1.

2.

add a decision function for department manager finder ruleset:
Click the Decision Functions navigation tab.

In the Decision Functions area, click Create.... This displays the Edit Decision
Function dialog.

Update the decision function fields as follows, as shown in Figure 10-16.
s Enter Name value FindDepartmentManagers.

s In the Inputs area, click the Add Input and edit the input information as
follows:

- Click the Fact Type field and select Employee from the list.
- Select the Tree checkbox.

In this decision function you do not define any outputs, because you use the
ActionType API for taking action rather than producing output.

s Inthe Rulesets & Decision Functions area, move the following items from the
Available area to the Selected area, in the specified order:

— DecisionPointDictionary.Preprocessing
— Department Manager Finder Ruleset
— Retract Employees

— DecisionPointDictionary.Postprocessing

Working with Oracle Business Rules and ADF Business Components 10-27

Creating a Business Rules Application with ADF Business Components Facts

Figure 10-16 Adding the Find Department Managers Decision Function

& Edit Decision Function

Marme: indDepartmentManagers |
Description: | |
Rule Firing Limnit: |unlimited |V|
[will Be Invoked As & Webservice
Check Rule Flow
Stateless
= Inputs Eﬂ' X aAaw
Marme Fact Tvpe Tree List
&] Input_t Employes E
= Dutputs XA v
Mame Fack Type Tree Lisk

= Rulesets & Decision Functions

Available:

Selected: L
E DecisionPaoinkDictionary . Preprocessing

> @ Departrnent Manager Finder Ruleset

@ Retract Employvess

@ DecisionPoint_Poskprocessing
@ DecisionPoint_Postprocessing_webservice
@ DecisionPoint_Preprocessing_Webservice

Outside M Ruleset

@ u. e | é» | g DecisionPointDictionary . Fostprocessing
P Raises Ruleset

(B FindoutsideManagers <

E EmploveeR.aises | (« |

E DecisionPointDictionary . Postprocessing_webserwvice

| Help | | (a4 || Cancel

4. Ensure that the items in the Selected area are in the order shown in Figure 10-16.

If they are not, select an item and use the Move Up and Move Down buttons to
correct the order.

5. Click OK.

10.3.9.5 How to Add the Department Manager Finder Java Class

Add the department manager finder class. This class include the code with the
Decision Point that executes the decision function.

Add the department manager finder class:
1. In the Application Navigator, select the Chapter10 project.

Right-click and select New....

In the New Gallery, in the Categories area select General.

2
3
4. In the New Gallery, in the Items area, select Java Class.
5. Click OK.

6

In the Name field, enter DeptManagerFinder.

10-28 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

7. Click OK.

8. Replace the contents of this class with the code shown in Example 10-8.

Example 10-8 Department Manager Finder Class

package com.example;

import
import
import
import

import
import
import
import
import
import

public

private
private
private

private

private

oracle.
oracle.

oracle

oracle.

oracle

jbo.ApplicationModule;
jbo.ViewObject;

.jbo.client.Configuration;
oracle.

jbo.server.DBTransactionImpl?2;

rules.rl.exceptions.RLException;

.rules.sdk2.decisionpoint.DecisionPoint;
oracle.
oracle.
oracle.
oracle.

rules.sdk2.decisionpoint.DecisionPointBuilder;
rules.sdk2.decisionpoint.DecisionPointInstance;
rules.sdk2.exception.SDKException;
rules.sdk2.repository.DictionaryFQN;

class DeptManagerFinder {

static final String AM_DEF = "com.example.AppModule";
static final String CONFIG = "AppModuleLocal";

static final String VO_NAME = "EmployeesViewl";

static final String DF_NAME = "FindDepartmentManagers";

static final DictionaryFQN DICT FQN =

new DictionaryFQN("com.example", "ChapterlORules");

private DecisionPoint dp = null;

public DeptManagerFinder () {

try {

dp = new DecisionPointBuilder ()

.with (DICT_FQN)
.with (DF_NAME)
Jbuild();

} catch (SDKException e) {
System.err.println(e);

public void run() {

final

final
final

point.
point.
point.

try {

ApplicationModule am =
Configuration.createRootApplicationModule (AM_DEF, CONFIG);

ViewObject vo = am.findViewObject (VO_NAME) ;

DecisionPointInstance point = dp.getInstance();

setTransaction ((DBTransactionImpl2)am.getTransaction()) ;
setAutoCommit (true) ;
setViewObject (vo) ;

point.invoke() ;

} catch (RLException e) {

System.err.println(e)
} catch (SDKException e)
e

{

System.err.println(e);

Working with Oracle Business Rules and ADF Business Components 10-29

Creating a Business Rules Application with ADF Business Components Facts

public static void main(String[] args) {
new DeptManagerFinder().run();

}

10.3.9.6 How to Copy the Dictionary to an MDS Accessible Location
Copy the updated dictionary to an MDS accessible location.

Copy dictionary to MDS accessible location:

1. In a file system navigator, outside of Oracle JDeveloper, navigate to the Chapter10
application, and project and copy the oracle directory that contains the dictionary.

2. In the application directory for Chapter10, above the Chapterl10 project, navigate
to the . adf directory.

3. Copy the oracle folder to this directory.

10.3.9.7 How to Build and Run the Project to Check the Find Managers Rule

You can build and test the project to execute the department manager finder ruleset.

Build the project:
1. From the dropdown menu next to Run icon, select Manage Run Configurations....

2. In the Project Properties dialog, click New....

3. In the Create Run Configuration dialog, enter the name. For example, enter
DeptManagerFinder.

In the Copy Settings From field, enter Default.

Click OK.

With DeptManagerFinder selected, click Edit....

In the Default Run Target field, click Browse....

Select DeptManagerFinder.java from the src\com\example directory.
Click Open.

10. In the Edit Run Configuration dialog, click OK.

© ® N o o &

11. In the Project Properties dialog, click OK.

Run the project:
1. In the menu, next to the Run project icon, select DeptManager Finder.

2. Running the decision point generates output, as shown in Example 10-9.

Example 10-9 Output from Department Manager Finder Ruleset

Michael Hartstein is the manager of dept Marketing
John Russell is the manager of dept Sales

Adam Fripp is the manager of dept Shipping

Den Raphaely is the manager of dept Purchasing
Alexander Hunold is the manager of dept IT

Shelley Higgins is the manager of dept Accounting
Hermann Baer is the manager of dept Public Relations
Susan Mavris is the manager of dept Human Resources

10-30 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

Jennifer Whalen is the manager of dept Administration
Nancy Greenberg is the manager of dept Finance

Steven King is the manager of dept Executive

Shelley Higgins is the manager of dept Accounting
Hermann Baer is the manager of dept Public Relations
Susan Mavris is the manager of dept Human Resources
Jennifer Whalen is the manager of dept Administration
Nancy Greenberg is the manager of dept Finance
Alexander Hunold is the manager of dept IT

Alexander Hunold is the manager of dept IT

Nancy Greenberg is the manager of dept Finance

Den Raphaely is the manager of dept Purchasing

Adam Fripp is the manager of dept Shipping

John Russell is the manager of dept Sales

Jennifer Whalen is the manager of dept Administration
Michael Hartstein is the manager of dept Marketing
Susan Mavris is the manager of dept Human Resources
Hermann Baer is the manager of dept Public Relations
Shelley Higgins is the manager of dept Accounting

When you see duplicate entries in the output, when working with tree mode rules in
this example, the duplicate entries are due to multiple rule firings on the same data in
a different part of the view object graph.

10.3.10 How to Add and Run the Raises and Retract Employees Rulesets

The sample code that runs the raises ruleset invokes the Decision Point by specifying
the view object using the setViewObject method. This invokes the decision function
once for each row in the view object. The retract employees ruleset retracts all
instances of Employee asserted for each call, so that they do not remain in working
memory between calls to the decision function. The action type shown in

Example 10-10 shows how to change the ViewRowImpl attribute values with a
ActionType. For more information, see Section 10.2.1, "How to Call a Decision Point
with ADF Business Components Facts".

10.3.10.1 How to Add the Raises Ruleset

You now add the raises ruleset.

To add the raises ruleset:
1. In Rules Designer, click Create Ruleset....

2. In the Create Ruleset dialog, in the Name field enter Raises Ruleset.

3. C(lick OK.

10.3.10.2 How to Create the Raise ActionType Java Implementation Class

To create this part of the sample application and to modify the view object in the raises
rule, you need to create a Java implementation class for the abstract class
oracle.rules.sdk2.decisionpoint.ActionType. All subclasses of
ActionType must implement the abstract exec method.

To create the raise ActionType Java implementation class:
1. In Oracle JDeveloper, select the project named Chapter10.

2. Inthe Application Navigator, select the Application Sources folder.
3. Right-click and from the list select New....

Working with Oracle Business Rules and ADF Business Components 10-31

Creating a Business Rules Application with ADF Business Components Facts

In the New Gallery, in the Categories area select General.
In the New Gallery, in the Items area select Java Class.
Click OK.

N o a &

In the Create Java Class dialog, configure the following properties as shown in
Figure 10-17:

= Enter the Name value RaiseAction.
= Enter the Package value com. example.

s Enter the Extends value
oracle.rules.sdk2.decisionpoint.ActionType.

Figure 10-17 Creating the Raise ActionType Java Class

Create Java Class §|
Enter the details of wour new class, I:’
[arne: | Raisefction |
Package: |c0m.example | Ck
Extends: |oracle.rules.sdk2.decisionpoint.ActionType | Q§

Optional Atkributes

Implements: 3 ¥

Access Modifiers Other Modifiers
(%) public
(_) package protected

Constructors From Superclass
Implement Abstract Methods
[] Main Method

| Help | Ok | | Cancel

8. Click OK.
Oracle JDeveloper displays the Java Class.
9. Replace this code with the code shown in Example 10-10.

Example 10-10 ActionType Java Implementation
package com.example;
import oracle.jbo.domain.Number;

import oracle.rules.sdk2.decisionpoint.ActionType;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;

public class RaiseAction extends ActionType {
private double raisePercent;

public void exec(DecisionPointInstance dpi) {

Number salary = (Number)getViewRowImpl ().getAttribute("Salary");
salary = (Number)salary.multiply(1.0d + getRaisePercent()).scale(100,2, new

10-32 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

boolean[]{false});
dpi.addResult ("raise for " + this.getViewRowImpl ().getAttribute("EmployeeId"),
getRaisePercent () + "=>" + salary);
getViewRowImpl () .setAttribute("Salary", salary);
}

public void setRaisePercent (double raisePercent) {
this.raisePercent = raisePercent;

}

public double getRaisePercent () {
return raisePercent;
}
}

10. In the Application Navigator, right click the RaiseAction. java and from the
list select Make.

10.3.10.3 How to Import the Raise Action Java Fact

You just created a new Java class. You import this class as a Java fact type in Rules
Designer to use later when you create rules.

To create the Java fact type:
1. In Rules Designer, select the ManagerRules.rules dictionary.

2. Click the Facts navigation tab and select the Java Facts tab.
3. Click Create....

4. In the Create Java Fact dialog, in the Classes area navigate in the tree and expand
com and example to display the RaiseAction checkbox.

5. Select the RaiseAction checkbox as shown in Figure 10-18.

Figure 10-18 Create Java Fact from Raise Action Class

& Create Java Fact g|

Select Java Fact Classes

Select the Java classes you would like to be used as Java Facts in the rules engine. ‘-'! ?—l‘
‘fou can add a JAR file or directory to the classpath and then check the class files and/or packages wou
want to create Facts from,

Classpath: + b 4 D Classes: Gﬂ

'.L:] File:}1#C: fIDeveloper rivwark/Chapter 10/ Chapter10/5 Q Classes

'.LJ File: {{#iC: {IDeveloper fmywork/Chapter 10/Chapter10/g &[] m com

ED m example

L[] peptManagerFinder

D Messageackion - Fact Created

~[1E] outsidemanagerFinder
.08 o

uksideManagerFinderd 1
tion

[] Add Project Library to Classpath

| Help | (o] 4 || Cancel

6. Click OK.
This adds the Raise Action fact type to the Java Facts table.

Working with Oracle Business Rules and ADF Business Components 10-33

Creating a Business Rules Application with ADF Business Components Facts

10.3.10.4 How to Add the 12 Year Raise Rule

This rule shows how to use action types to update database entries.

To add 12 year raise rule:

1. In Rules Designer in the Raises Ruleset, click Create Rule.

2. Change the rule name by selecting Rule_1 and entering the value: Longer than
12 years.

3. Click Show Advanced Settings. For more information, see Section 4.5.1, "How to
Show and Hide Advanced Settings in a Rule or Decision Table".

4. Select Advanced Mode.

5. Enter the 12 year raise rules, as shown in Figure 10-19.

Figure 10-19 Adding the Longer Than 12 Years Rule to the Raises Ruleset

QEhapterlDRules.rules

&) Facts

F Functions

(x) Globals

7 Bucketsets

=D Lirks

H‘-] Decision Functions
Rulesets

&P Outside Manager R...

@) Department Manage...

&P Raises Ruleset

=

By e @O

+ R

| :"i DeptManagerFinder . java

=

¥ []Ekeron View: |(QPIFTHENRUEs ~| dp - 3 T2 B G5 60 & w»

[* Raises Ruleset

= ¥ Longer than 12 years
<enter description=

IF
Employee is a Employee

<insert test>
and

CurrentDate is a CurrentDate and
Duration. years between{Employee HireDate, CurrentDate.date) »= 12

<insert test=

<inserk patternz
THEN

assert new Raisedction { <add property = raisePercent @ .03, viewRowImpl @ Employvee. viewRowImpl)

<insert ackion:

@

Design

10.3.10.5 How to Add the Employee Raises Decision Function

Now create the decision function for the employee raises and the retr
rulesets.

To add a decision function:

1. Click the Decision Functions navigation tab.

2, In the Decision Functions area, click Create.... This displays the E
Function dialog.

3. Update the decision function fields as shown in Figure 10-20.

s Enter Name value EmployeeRaises.

| |
follows:

10-34 Oracle Fusion Middleware User's Guide for Oracle Business Rules

act all employees

dit Decision

In the Inputs area, click the Add Input and edit the input information as

Creating a Business Rules Application with ADF Business Components Facts

— Click the Fact Type field and select Employee from the list.

In this decision function you do not define any outputs, because you use the
ActionType API for taking action rather than producing output.

s Inthe Rulesets & Decision Functions area, move the following items from the
Available area to the Selected area, in the specified order.

— DecisionPointDictionary.Preprocessing
- Raises Ruleset
— Retract Employees Ruleset

- DecisionPointDictionary.Postprocessing

Figure 10-20 Adding the Employee Raises Decision Function

& Edit Decision Function

[Marme:

|
Description: | |
|

Rule Firing Limit: |unlimited

[] will Be Invoked As A Webservice

Check Rule Elow

[¥] Stateless
= Inputs XA
Marne Fact Type Tree Lisk
&] Input_t Employes O E
= Outputs X aAaw
Marne Fact Type Tree Lisk

= Rulesets & Decision Functions

Available:

Selected: A v

E] DecisionPointDictionary . Preprocessing
% | | raises Ruleset

P Retract Employees

@ DecisionPoint_Postprocessing

@ DecisionPoint_Postprocessing_Webservice
@ DecisionPoint_Preprocessing_Webservice
@ Department Manager Finder Ruleset

. | é» | E] DecisionPointDictionary . Postprocessing
@ Qutside Manager Rulaset
g FindCutsideManagers <
E FindDepattrentManagers | (« |

g DecisionPointDictionary . Postprocessing_Webservice

| Help | | (04 || Cancel

4. Ensure that the items in the Selected area are in the order shown in Figure 10-20.

If they are not, select an item and use the Move Up and Move Down buttons to
correct the order.

Click OK.

Working with Oracle Business Rules and ADF Business Components 10-35

Creating a Business Rules Application with ADF Business Components Facts

10.3.10.6 How to Add the Employee Raises Java Class

Add the employee raises class. This executes the decision function.

To add the employee raises class:
1. Select the Chapter10 project.

Right-click and select New....

In the New Gallery, in the Categories area select General.
In the New Gallery, in the Items area, select Java Class.
Click OK.

In the Name field, enter EmployeeRaises.

Click OK.

©® N o a » 0 b

Replace the contents of this class with the code shown in Example 10-11.

Example 10-11 DeptManagerFinder Class

package com.example;

import oracle.jbo.ApplicationModule;

import oracle.jbo.ViewObject;

import oracle.jbo.client.Configuration;
import oracle.jbo.server.DBTransactionImpl?2;

import oracle.rules.rl.exceptions.RLException;

import oracle.rules.sdk2.decisionpoint.DecisionPoint;

import oracle.rules.sdk2.decisionpoint.DecisionPointBuilder;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;
import oracle.rules.sdk2.exception.SDKException;

import oracle.rules.sdk2.repository.DictionaryFQN;

public class EmployeeRaises {
private static final String AM _DEF = "com.example.AppModule";
private static final String CONFIG = "AppModuleLocal";
private static final String VO_NAME = "EmployeesViewl";
private static final String DF_NAME = "EmployeeRaises";

private static final DictionaryFQN DICT_FQN =
new DictionaryFQN("com.example", "ChapterlORules");

private DecisionPoint dp = null;
public EmployeeRaises() {

try {
dp = new DecisionPointBuilder ()
.with (DICT_FQN)
.with (DF_NAME)
Lbuild();
} catch (SDKException e) {
System.err.println(e);

public void run() {
final ApplicationModule am =

10-36 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

Configuration.createRootApplicationModule (AM_DEF, CONFIG);
final ViewObject vo = am.findViewObject (VO_NAME) ;
final DecisionPointInstance point = dp.getInstance();

point.setTransaction((DBTransactionImpl2)am.getTransaction());
point.setAutoCommit (true) ;
point.setViewObject (vo);
try {
point.invoke() ;
} catch (RLException e) {
System.err.println(e);
} catch (SDKException e) {
System.err.println(e);

}

for (DecisionPoint.NamedValue result : point.getResults()){
System.out.println(result.getName() + " " + result.getValue());

}
}

public static void main(String[] args) {
new EmployeeRaises().run();

}

10.3.10.7 How to Copy Dictionary
Copy the updated dictionary to the MDS accessible location.

Copy dictionary to MDS accessible location:

1. Ina file system navigator, outside of Oracle JDeveloper, navigate to the Chapter10
folder and the Chapter10 project and copy the oracle directory that contains the
dictionary.

2. In the application directory for Chapter10, above the Chapter10 project, navigate
to the . adf directory.

3. Copy the oracle folder to this directory.

10.3.10.8 How to Build and Run the Project to Check the Raises Rule

You can build and test the project by running employee raises ruleset.

Build the project:
1. From the dropdown menu next to Run icon, select Manage Run Configurations....

2. In the Project Properties dialog, click New....

3. In the Create Run Configuration dialog, enter the name. For example, enter
EmployeeRaises.

In the Copy Settings From field, enter Default.
Click OK.

With EmployeeRaises selected, click Edit....

In the Default Run Target field, click Browse....

©® N o a &

Select EmployeeRaises.java from the src\com\example folder.

Working with Oracle Business Rules and ADF Business Components 10-37

Creating a Business Rules Application with ADF Business Components Facts

9. Click Open.
10. In the Edit Run Configuration dialog, click OK.
11. In the Project Properties dialog, click OK.

Run the project:
1. In the menu, next to the Run project icon, select EmployeeRaises.

2. Oracle JDeveloper displays the output as shown in Example 10-12.

Example 10-12 Output from Raises Ruleset

.03=>81.7
.03=>1872.46
.03=>60596.78
.03=>31146.26
.03=>20159.43
.03=>35822.68

raise for 100
raise for 101
raise for 102
raise for 103
raise for 104
raise for 108

raise for 109 0.03=>26084.5
raise for 114 0.03=>27500.92
raise for 115 0.03=>7524.5

.03=>16262.34
.03=>16183.41
.03=>15591.35

raise for 120
raise for 121
raise for 122

raise for 131 0.03=>3671.33
raise for 133 0.03=>4567.98
raise for 137 0.03=>4838.1
raise for 141 0.03=>4703.71
raise for 142 0.03=>4044.79

.03=>17734.79
.03=>17101.39
.03=>15201.23
.03=>12667.7

.03=>12034.32
.03=>13047.73
.03=>12395.35
.03=>11400.93
.03=>10134.16
.03=>14567.86
.03=>13934.48
.03=>11147.58

raise for 145
raise for 146
raise for 147
raise for 150
raise for 151
raise for 156
raise for 157
raise for 158
raise for 159
raise for 168
raise for 174
raise for 175

raise for 184 0.03=>5480.03
raise for 185 0.03=>5193.76
raise for 192 0.03=>5219.1
raise for 193 0.03=>4940.41
raise for 200 0.03=>5740.99
raise for 201 0.03=>16962.05
raise for 203 0.03=>8481.03

.03=>13047.73
.03=>15657.27
.03=>10829.62

raise for 204
raise for 205
raise for 206

O OO oo oo oOo o o o o o o o

10-38 Oracle Fusion Middleware User's Guide for Oracle Business Rules

11

Working with Decision Components in SOA
Applications

Oracle SOA Suite provides support for Decision components that support Oracle
Business Rules. A Decision component is a mechanism for publishing rules and
rulesets as a reusable service that can be invoked from multiple business processes.

A Decision Component is a SCA component that can be used within a composite and
wired to a BPEL component. Apart from that, Decision Components are used for
dynamic routing capability of Mediator and Advanced Routing Rules in Human
Workflow.

This chapter includes the following sections:
= Section 11.1, "Introduction to Decision Components"
= Section 11.2, "Working with a Decision Component"

s Section 11.3, "Decision Service Architecture"

11.1 Introduction to Decision Components

A Decision component is a Web service that wraps a rule session to the underlying
decision function.

A Decision component consists of the following:

= Rules or Decision Tables that are evaluated using the Rules Engine. These are
defined using Rules Designer and stored in a business rules dictionary.

= Metadata that describes facts required for specific rules to be evaluated. Each
ruleset that contains rules or Decision Tables is exposed as a service with facts that
are input and output. These facts must be exposed through XSD definitions.

For example, a credit rating ruleset may expect a customer ID and previous loan
history as facts, but a pension payment ruleset may expect a value with the years
of employee service, salary, and age as facts.

For more information, see Section 11.2.1, "Working with Decision Component
Metadata".

= A Web service wraps the input, output, and the call to the underlying rule engine.

This service lets business processes assert and retract facts as part of the process. In
some cases, all facts can be asserted from the business process as one unit. In other
cases, the business process can incrementally assert facts and eventually consult
the rule engine for inferences. Therefore, the service has to support both stateless
and stateful interactions.

Working with Decision Components in SOA Applications 11-1

Working with a Decision Component

You can create a variety of such business rules service components.

For more information, see Oracle Fusion Middleware Developer’s Guide for Oracle
SOA Suite.

11.2 Working with a Decision Component

Using Oracle JDeveloper with Rules Designer these tools automatically generate all
required metadata and WSDL operations. The Decision component can be integrated
into an SOA composite application in the following ways:

» Create a Decision component as a standalone component in the SOA Composite
Editor. In this scenario, the Decision Service is exposed on the composite level and
thus can be invoked from any Web service client.

For more information, see "Getting Started with Oracle Business Rules" in the
Oracle Fusion Middleware Developer’s Guide for Oracle SOA Suite.

» Create a Decision component in the SOA Composite Editor that you later associate
with a BPEL process. In this scenario the Decision Service is not exposed on the
composite level. However it can be wired to any other component within the
composite, such as BPEL, Oracle Mediator, and Oracle Human Workflow.

For more information, see "Getting Started with Oracle Business Rules" in the
Oracle Fusion Middleware Developer’s Guide for Oracle SOA Suite.

» Create a Decision component within the Human Task editor of a human task
component.

This integration provides the following benefits:

= Dynamic processing: provides for intelligent routing, validation of policies within
a process, and constraint checks.

» Integration with ad hoc human tasks: provides policy-based task assignment,
various escalation policies, and load balancing of tasks.

11.2.1 Working with Decision Component Metadata

A Decision component is defined by the following files:
»s Decision Service Metadata (.decs) File

s SCA Component Type (.componentType) File

s Decision Component Entry in composite.xml

Typically, Oracle JDeveloper generates and maintains these files.

11.2.1.1 Decision Service Metadata (.decs) File

Every Decision component within a composite comprises one business rule metadata
file. The business rule metadata file provides information about the location of the
component business rule dictionary and the Decision Services exposed by the Decision
component.

One Decision component might expose one or more Decision Services. For example a
CreditRating Decision component might expose two services, CheckEligibility and
CalculateCreditRating.

In Oracle Fusion Middleware 11¢ Release 1 (11.1.1), the Decision Service metadata
comprises the decision function name that is being exposed as a Web service. For
projects that are migrated from older releases of Oracle SOA Suite, the Decision

11-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with a Decision Component

Service metadata typically has more information depending on the interaction pattern
used in 10.1.3.x.

The business rule metadata file (business_rule_name.decs) defines the contract
between the components involved in the interaction of the business rule with the
design time and back-end Oracle Rules Engine.

This file is in the SOA Content area of the Application Navigator in Oracle JDeveloper
for your SOA composite application. Table 11-1 describes the top-level elements in the
Decision service . decs file.

Table 11-1 Decision Metadata File (.decs) Top-level Elements

Element Description

ruleEngineProvider Thebusiness_rule_name.decs file ruleEngineProvider element includes
details about the rule dictionary to use:

<ruleEngineProvider name="OracleRulesSDK" provider="Oracle_11.0.0.0.0">
<repository type="SCA-Archive">
<path>AutoLoanComposite/oracle/rules/AutoLoanRules.rules</path>
</repository>
</ruleEngineProvider>

The repository type is set to SCA-Archive for Decision components. This indicates
that the rule dictionary is located in the service component architecture archive. The
path is relative and interpreted differently by the following:

ms Design time — The path is prefixed with Oramds: /. Metadata service (MDS)
APIs open the rule dictionary. Therefore, the full path to the dictionary is as
follows:

Oramds: /AutoLoanComposite/oracle/rules/AutoLoanRules.rules

= Runtime (business rule service engine) — The business rule service engine uses
the Oracle Business Rules SDK RuleRepository API to open the rule
dictionary located in MDS. The composite name prefix, for example
(AutoLoanComposite) is removed from the path and the metadata manager
assumes the existence of oracle/rules/AutoLoanRules.rules relative to
the composite home directory.

decisionService A Decision service is a Web service (or SOA) enabler of business rules. It is a service
in the sense of a Web service, thus opening the world of business rules to
service-oriented architectures (SOA). In 11¢ Release 1 (11.1.1.5.0), a Decision service
consists of metadata and a WSDL contract for the service.

The business_rule name.decs file decisionService element defines the
metadata that describes business rules exposed as a Web service.

In general, a Decision service includes the following elements:
= Target namespace

= Reference to the back-end Oracle Rules Engine (this is the link to the rule
dictionary). Note that OracleRulesSDK is the reference name that matches the
name of the Oracle Rules Engine provider in ruleEngineProvider element.

= Name (CreditRatingService in the following example)
= Additional information about the dictionary name and ruleset to use
= List of supported operations (patterns)

Apart from the operations (patterns), the parameter types (or fact types) of operations
are specified (and validated later at runtime). Therefore, every Decision service
exposes a strongly-typed contract.

Working with Decision Components in SOA Applications 11-3

Working with a Decision Component

11.2.1.2 SCA Component Type (.componentType) File

An SCA business_rule_name.componentType file is included with each
Decision component. This file lists the services exposed by the business rules service
component. In the following sample, two services are exposed:
CreditRatingService and LoanAdvisorService.

<?xml version="1.0" encoding="UTF-8" 2>
<!-- Generated by Oracle SOA Modeler version 1.0 at [5/24/07 9:27 AM]. -->
<componentType xmlns="http://xmlns.oracle.com/sca/l.0">
<service name="CreditRatingService">
<interface.wsdl
interface="http://xmlns.oracle.com/creditrating/Rating#wsdl.interface (IDecisionSer
vice)"/>
</service>
<service name="LoanAdvisorService">
<interface.wsdl
interface="http://xmlns.oracle.com/loanoffer/Advisor#wsdl.interface(IDecisionServi
ce)"/>
</service>
</componentType>

11.2.1.3 Decision Component Entry in composite.xml
An entry in composite.xml is created for a decision component. For example,

<component name="OracleRulesl">
<implementation.decision src="OracleRulesl.decs"/>
</component>

The business rules service engine uses the information from this implementation type
to process requests for the Service Engine. From an SCA perspective, a Decision
Component is a new "implementation type".

11.2.2 Working with Decision Components that Expose a Decision Function

You can use a Decision service to expose an Oracle Business Rules Decision Function
as a service. A decision function is a function that is configured declaratively, without
using RL Language programming that you use to call rules from a Java EE application
or from a BPEL process.

Example 11-1 shows a business_rule_name.decs file decisionServices
element that defines the metadata for an Oracle Business Rules Decision Function
exposed as a service.

Example 11-1 decisionService for Decision Function Execution

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<decisionServices xmlns="http://xmlns.oracle.com/bpel/rules" name="Purchaseltems">
<ruleEngineProvider name="OracleRulesSDK" provider="Oracle_11.0.0.0.0">
<repository type="SCA-Archive">
<path>PurchasingSampleProject/oracle/rules/com/example/Purchaseltems.rules</path>
</repository>
</ruleEngineProvider>
<decisionService
targetNamespace="http://xmlns.oracle.com/Purchaseltems/Purchaseltems_DecisionService_Validate
PurchasesDF"
ruleEngineProviderReference="0OracleRulesSDK"
name="PurchaseItems_DecisionService_ValidatePurchasesDF">
<catalog>PurchaseItems</catalog>
<pattern name="CallFunctionStateless">
<arguments>
<call>com.example.Purchaseltems.ValidatePurchasesDF</call>
</arguments>

11-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Decision Service Architecture

</pattern>
<pattern name="CallFunctionStateful">
<arguments>
<call>com.example.Purchaseltems.ValidatePurchasesDF</call>
</arguments>
</pattern>
</decisionService>
</decisionServices>

In this case, the decision function ValidatePurchasesDF itself is specified entirely
in the PurchaseItems.rules file.

For more information, see, Chapter 6, "Working with Decision Functions".

11.2.3 Using Stateful Interactions with a Decision Component

To provide a stateful Decision service you create a decision function and specify that
the decision function is not stateless. To do so you deselect the Stateless checkbox in a
decision function.

Note the following details about stateful interactions with a decision component (also
see Figure 11-2):

= Rule sessions from the cache and those from the pool are mutually exclusive:
— The rule session pool is for simple, stateless interactions only

— The rule session cache keeps the state of a rule session across Decision service
requests

11.2.4 What You Need to Know About Stateful Interactions with Decision Components

A Decision Component running in a Business Rules service engine supports either
stateful or stateless operation. The Reset Session (stateless) checkbox in the Create
Business Rules dialog provides support for these two modes of operation.

When the Reset Session (stateless) checkbox selected, this indicates stateless
operation.

When Reset Session (stateless) checkbox is unselected, the underlying Oracle Business
Rules object is kept in memory of the Business Rules service engine at a separate
location (so that it is not given back to the Rule Session Pool when the operation is
finished). Only use stateful operation if you know you need this option (some errors
can occur at runtime when using stateful operation and these errors could use a
significant amount of service engine memory).

When Reset Session (stateless) checkbox is unselected, a subsequent use of the
Decision component reuses the cached RuleSession object, with all its state
information from the callFunctionStateful invocation, and then releases it back
to the Rule Session pool after the callFunctionStateless operation is finished.

11.3 Decision Service Architecture

A Decision service consists only of the service description. All other artifacts are
shared within a decision component as shown in Figure 11-1.

Working with Decision Components in SOA Applications 11-5

Decision Service Architecture

Figure 11-1 Decision Service Architecture

Decision Service 1 |-— Regquest—e| Decigion Componert

Metadsta

Decizion Service 2 |-— Request—s

Fules Stateless Rule Session

Decizion Service 3 |-— Reouest—e

Engine L Fool o

I

Deployment Artifacts
[Genersted
JAKB Clazzes)

Decizion Service M | — Reguest—w- o Cache

Stateful Rule Session

|

The heart of runtime is the Decision service cache, which is organized in a tree
structure. Every decision component owns a subtree of that cache (depending on the
composite distinguished name (DN), component, and service name). In this regard,
Decision services of a decision component share the following data:

Metadata of the decision component

- Fact type metadata

- Function metadata

- Ruleset metadata

Rule session pool

— One rule session pool is created per decision component

— The rule sessions in the pool are pre-initialized with the data model Oracle RL
and the ruleset Oracle RL already executed

— New rule sessions are created on demand

- Rule sessions can be reused for a configurable number of times
— The initial size of the rule session pool is configurable

Stateful rule session cache

— A special cache is maintained for stateful rule sessions.

For more information, see Section 11.2.3, "Using Stateful Interactions with a
Decision Component".

Deployment artifacts

- Decision component deployment can end up in class generation for JAXB fact
types. The classes can be shared across the composite.

Figure 11-2 shows how both stateless and stateful rule sessions interact with the rule
session pool and how stateful rule sessions interact with the stateful rule session cache
during a Decision service request.

11-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Decision Service Architecture

Figure 11-2 Stateless and Stateful Rule Session Usage for a Decision Service Request

Start

Computa
Aulesession

&

on in
cacha 7 e

Gat Rulesassion
—— MO from cache:

Gat Aulgsession
firom poal

Exacute request |

Retum ruse
S088i0n 1o pool

Rarmove rulé
session from
cacha

Return Aesponse

Working with Decision Components in SOA Applications 11-7

Decision Service Architecture

11-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

12

Using Oracle SOA Composer with Oracle
Business Rules

Oracle Business Rules lets you create rules at design-time with the Oracle Business
Rules Designer (Rules Designer) extension to Oracle JDeveloper. Rules Designer is an
editor that enables you to create and edit rules with Oracle JDeveloper, and store the
rules in a rules dictionary. When a dictionary is deployed in an SOA composite
application, Oracle Business Rules lets you use Oracle SOA Composer to view, edit,
and commit changes to a dictionary. In addition, Oracle SOA Composer enables you
to work with other metadata types such as tasks. This chapter shows you how to use
the Oracle SOA Composer application (Oracle SOA Composer) to work with a
deployed dictionary and tasks that are part of an SOA composite application.

This chapter includes the following sections:
= Section 12.1, "Introduction to Oracle SOA Composer"
» Section 12.2, "Using Oracle SOA Composer User Authentication”

= Section 12.3, "Opening and Viewing an Oracle Business Rules Dictionary at Run
Time"

» Section 12.4, "Getting Started with Editing and Saving a Dictionary at Run Time"
= Section 12.5, "Editing Rules in an Oracle Business Rules Dictionary at Run Time"
= Section 12.6, "Using the Oracle SOA Composer Browser Windows"

= Section 12.7, "Editing Decision Tables in an Oracle Business Rules Dictionary at
Run Time"

= Section 12.8, "Committing Changes for an Oracle Business Rules Dictionary at Run
Time"

» Section 12.9, "Synchronizing Rules Dictionary in Oracle JDeveloper With Run Time
Dictionary Updates"

= Section 12.10, "Validating an Oracle Business Rules Dictionary at Run Time"
= Section 12.11, "Obtaining Composite and Dictionary Information at Run Time"

s Section 12.12, "Working with Tasks at Run Time"

12.1 Introduction to Oracle SOA Composer

Oracle SOA Composer is a Web-based application that allows you to work with Oracle
Business Rules dictionaries and tasks for deployed applications. Figure 12-1 shows
how Oracle SOA Composer accesses a dictionary or a task in an MDS repository.

Using Oracle SOA Composer with Oracle Business Rules 12-1

Using Oracle SOA Composer User Authentication

Figure 12-1 Oracle SOA Composer Architecture

WLS Container MDS Repository
S0A Composer

- > SOAnfra
Composite Arlifacts

DVM = DVM taskflow + DVM SDK.
Rules = Rules taskfiow + Rules SDK.

12.2 Using Oracle SOA Composer User Authentication

Figure 12-2 shows the Oracle SOA Composer login page. This page allows Oracle
SOA Composer to authenticate the specified user.

Figure 12-2 Oracle Oracle SOA Composer Login Page

ORACLE Composer

e e

S

* Lsername

* Password

Login

Copyright 2004, 2009, Cracle andfor its affiliates. All rights res

To login to Oracle SOA Composer:

1. Access Oracle SOA Composer using the following URL in your browser address
bar:

http://SERVER_NAME_OR_IP_ADDRESS/soa/composer
2. In the Oracle SOA Composer login page, in the Username field, enter a user name.
3. In the Password field, enter a password.
4. Click Login.

For information on creating and managing users and groups, see Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Online Help.

12-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Opening and Viewing an Oracle Business Rules Dictionary at Run Time

12.2.1 What You Need to Know About SOA Composer Access Control and User

Authentication

Oracle SOA Composer supports user and password access control and only
authenticated users can use Oracle SOA Composer. However, Oracle SOA Composer
does not provide finer grained access control. For example, Oracle SOA Composer
does not support access control for individual rulesets or rules within a dictionary.

Oracle SOA Composer does support access control to metadata. Using Oracle SOA
Composer, only users with the SOADesigner application role can access the metadata
from Oracle SOA Composer. By default all the users with the WLS Administrator
privileges have this role.

If a user without the SOADesigner role logs into Oracle SOA Composer, a message is
shown indicating the user is not authorized to modify the SOA metadata, as shown in
Figure 12-3.

Figure 12-3 SOA Composer Unauthorized Metadata Access Message

Currently logged in user is not authorized to modify SOA metadata.

ORACLE SOA Composer & Bockmarkable Link Logout

Logged in a5 userl

For more information on assigning the SOADesigner role to a nonadmin user who
requires access to Oracle SOA Composer, see "Managing Application Roles in Oracle
Enterprise Manager Fusion Middleware Control Console" in Oracle Fusion Middleware
Administrator’s Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

12.3 Opening and Viewing an Oracle Business Rules Dictionary at Run

Time

After you login to Oracle SOA Composer you can select a document to open. Oracle
SOA Composer supports viewing and editing different types of metadata, including a
DVM document or an Oracle Business Rules dictionary. In Oracle SOA Composer, you
can open either an Oracle Business Rules dictionary or a DVM file with the Open
menu as shown in Figure 12—4.

Using Oracle SOA Composer with Oracle Business Rules 12-3

Opening and Viewing an Oracle Business Rules Dictionary at Run Time

Figure 12-4 Oracle Oracle SOA Composer Open Menu Options

ORACLE SOA Composer (ﬁ Bookmarkable Link Logout €

Logged in as weblogic

E-E.] Cpen Rules
@ Open DVM

& My Edits

12.3.1 Opening an Oracle Business Rules Dictionary at Run Time

To open an Oracle Business Rules dictionary using the Open menu:
1. In Oracle SOA Composer, from the Open menu, select Open Rules.

2. When you select Open Rules, Oracle SOA Composer connects to MDS and
displays the Select a dictionary to open dialog box. This dialog box presents the
available composite applications that contain dictionaries, as shown in
Figure 12-5. In addition, it lists the shared dictionaries, and these shared
dictionaries can also be viewed and edited.

Figure 12-5 Oracle SOA Composer with Oracle Business Rules Dictionaries

-

select a dictionary to open]
Showe | Al * | Search composite ... ﬂ &

Composite |Partition | Dictionary |onkerts |Rules File
BusinessRulesTest_revl.0 default LoanddvisorRules Show All .. Ruleset_2 Ruleset_3 Ruleset_4 RuloanddvisorRule
BusinessRulesTest_revl.0 default test Show All .. Ruleset_1 Rulesst_Z Ruleset_3 RuOrderBooking.rg
BusinessRulesTest_revl.0 default CracleRulest Ruleset_1 RulesFromken.
BusinessRulesTest_revl.0 default test Ruleset_1 TestActions. rule
BusinessRulesTest_revl.0 default test Ruleset_1 Ruleset_4 TestConnective,
BusinessRulesTest_revl.0 default test TestFunckions.r.
BusinessRulesTest_revl.0 default Teskhumetic Rulesetl Testhumeric. rule
BusinessRulesTest_revl.0 default TrainingRules TrainingRulesst TrainingRules.ru
BusinessRulesTest_revl.0 default test Ruleset_1 TreeMode, rules
AutodppPraj_revd. 4 default CreditR.atingRules Ruleset_1 CreditRatingRuls
AutoAppProj_revd .4 default LoanAdvisorRules Rulesset_2 LoanAdvisorRule
1S ja [rynamicRouting [rynamicRoutingCreatar CrynamicRouting
hS b4

Cpen Cancel

3. Toopen a dictionary select an entry in the table and click Open or double-click an
item. This opens the dictionary in view mode, as shown in Figure 12-6.

12-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Opening and Viewing an Oracle Business Rules Dictionary at Run Time

Figure 12-6 Oracle Business Rules Dictionary Open in Oracle SOA Composer View Mode

ORACLE" 50A Composer @ Bockmarkable Link Logout ©

Logged in as weblogic

B Open = | 7 Edit B

2 ApprovalRules.rules

(x) Globals (X) Globals
7 Bucketsets
@@ Lirks |Mamme | Deseription |value |Bucketset|Tepe | Final |Constant
Q Decision Funckions (x) ApprovalThreshold Threshold above which approval needed 1000 double
Rulesets
&P SetupRules

&P ApprovalMatrixRules
&P OverrideRules

As shown in Figure 12-6, Oracle SOA Composer shows a dictionary that displays a
left-side panel with a list of tabs and links. Dictionary details for the selected item are
shown on the right-hand side. Oracle SOA Composer includes the following tabs:

= Globals

= Bucketsets

» Links

s Decision Functions

s Rulesets

Note: Functions are not supported in Oracle SOA Composer.

By default, a dictionary is opened in the view mode. If a dictionary is previously
opened in the edit mode and the changes made, if any, are not reverted, the next time
when you open it, Oracle SOA Composer opens the dictionary in the edit mode. For
more information on Edit mode, see Section 12.4, "Getting Started with Editing and
Saving a Dictionary at Run Time".

To open an Oracle Business Rules dictionary directly using a known URL.:

1. Obtain the URL for a document that stores an Oracle Business Rules dictionary by
using Bookmarkable Link in Oracle SOA Composer:

a. Inan open dictionary, click Bookmarkable Link to obtain the URL
information for the dictionary, as shown in Figure 12-7.

Using Oracle SOA Composer with Oracle Business Rules 12-5

Opening and Viewing an Oracle Business Rules Dictionary at Run Time

Figure 12-7 Using Link Dialog to Obtain the URL for an Open Dictionary

ORACLE SOA Composer @ Bookmarkable Link Logout O

d in as= weblogic

Paste this link into email or chat.
Cr paste into address bar in your browser and bookmark it.

http:f{adc2100523.us.oracle.com: 700 1/s0a /composer ?docPath =/deployed-composites /default/ApprovalRuleDema_rev1.0/orade/rules ford

L&l APProvalkuies. rues

Aliniss (x) Globals

"ff‘ Bucketsets

& Links
|r-lame Description |'-a'alue |Bucketset |T‘r'pe | Final |Constant
Q Becztn Bmckions (x} ApprovalThreshold Threshold above which approval needed 1000 double
Rulesets

&P SetupRules
8} ApprovalMatrixRules
&P OverrideRules

b. Copy the URL information and save it for future use.

2. Inabrowser, use the saved URL to directly access the dictionary.
For example,
http://SERVER_NAME_OR_IP_ADDRESS/soa/composer?docPath=/deployed-composites/defa

ult/BusinessRulesTest_revl.0/oracle/rules/businessrulestest/OrderBooking.rules

According to the preceding example, composites are stored as per the following
structure: deployed-composites/composite name_revcomposite
revision/oracle/rules/dictionary package path/dictionary
name.rules

To open and edit a recently edited dictionary using the My Edits option:

If you recently edited a dictionary, then you can use the Open menu My Edits option
to open and edit a dictionary.

1. In Oracle SOA Composer, from the Open menu select My Edits and select a
dictionary from the list, as shown in Figure 12-8.

12-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Opening and Viewing an Oracle Business Rules Dictionary at Run Time

Figure 12-8 Using Open My Edits Option to Open a Dictionary

ORACLE SOA Composer @ Bookmarkable Link Logout O

Logged in as weblogic

[E5] Open Rules
FH openovm es.rules
&Open‘rask k = S— I — — R ——

& wy Edits 4 CreditRatingRules.rules |
Yo7 BUCKETSETS ———————

& Links

|Name Description |1.-'alue |Bucketset |T\,'|:e | Final |Constant
Q Hiscsankiichions (x) ApprovalThreshold Threshold above which approval needed 1000 double
Rulesets
&P SetupRules

&P ApprovalMatrivRules
&P OverrideRules

2. Oracle SOA Composer opens the specified dictionary in edit mode.

To open a ruleset in an Oracle Business Rules dictionary:
1. In Oracle SOA Composer, from the Open menu select Open Rules.
2. When you select Open Rules, Oracle SOA Composer connects to MDS and

presents the available composite applications that contain dictionaries in a dialog
box called Select a dictionary to open.

3. To open a ruleset, if the ruleset you want to open is shown in the Contents field,
then select the ruleset. If the ruleset is not shown, then click Show All as shown in
Figure 12-9.

Figure 12-9 Opening a Ruleset from the Contents Field in Oracle SOA Composer

Select a dictionary to open m
Shaw | &l | Search composite ... j é

Compiosite |Partition |ictionary |Contents |Reules File
BusinessRulesTest_rev1.0 default LoanAdvisorRules Showe All .. Ruleset_Z Ruleset_3 Ruleset_4 RuloanddvisorRules rules
BusinessRulesTest_rev1.0 default test Show all .. Ruleset_1 Ruleset_2 Ruleset_3 RuOrderBooking rules
BusinessRulesTest_rev1.0 default Rules1 Type |Name | |
BusinessRulesTest_rev1.0 default COracleRules1 Ruleset Ruleset 1 les
BusinessRulesTest_rev1.0 default test Ruleset Ruleset_Z i
BusinessRulesTest_rev1.0 default test Ruleset Ruleset_S tules
BusinessRulesTest_rev1.0 default test Ruleset Ruleset_4 les
BusinessRulesTest_rev1.0 default TestMumeric Ruleset Ruleset_S H
BusinessRulesTest_rev1.0 default TrainingRules - 23
BusinessRulesTest_rev1.0 default test |
AutoAppProj_revd. 4 default CreditRatingRules 5.rules
AutodppProj_revd.4 default LoanadvisorRules s.rules
M/a {1 [ynamicFouting rules

Open Cancel

4. Select a ruleset from the Name field in the list. This opens the rules editor with the
specified ruleset selected.

Using Oracle SOA Composer with Oracle Business Rules 12-7

Opening and Viewing an Oracle Business Rules Dictionary at Run Time

Note: You can also open a ruleset by first selecting a row in the
Select a dictionary to open dialog box and you then clicking the
Open button. This opens the first ruleset of the selected rules
dictionary as the default tab.

12.3.2 What Happens When You Open an Oracle Business Rules Dictionary

When you use the Open menu and select Open Rules to open a dictionary, Oracle
SOA Composer shows you all the metadata artifacts associated with the soa-infra that
is co-located with the running Oracle SOA Composer application. From the supplied
list, as shown in Figure 12-9, you select the composite, dictionary, and ruleset to open.

12.3.3 What You Need to Know to Obtain the Dictionary Path from the Open Dialog

The Open Dialog includes a Rules File field. When you hold the mouse over the
values in the Rules File field, Oracle SOA Composer shows a "Complete Path" popup
that includes the dictionary path, as shown in Figure 12-10.

Figure 12-10 Showing the Dictionary Rules File Complete Path from the Open Dialog

Select a dictionary to open]
Show | Al * | Search composite ... j é

[T [[P [P Rules File

g Complete Path fdeployed-composites|defaulkBusinessRulesTest_revl.0foracle/rules{businessrulestest {OrderBooking.rules . | qanadvisorRules.rules
BusinessRulesTest_revwl.0 default test Show all .. Ruleset_1 Ruleset_2 Ruleset_3 Ruleset, OrderBooking, rules
BusinessRulesTest_revl.0 defaul CracleRules1 Ruleset_1 RulesFrormken. rules
BusinessRulesTest_revwl. 0 default test Ruleset_1 Testactions . rules
BusinessRulesTest_revl.0 default test Ruleset_1 Rulesst_4 TestConnective.rules
BusinessRulesTest_revl.0 defaul test TestFunckions.rules
BusinessRulesTest_revwl. 0 default TestMumetic Ruleset1 TestMumetic.rules
BusinessRulesTest_revl.0 default TrainingRules TrainingRuleset TrainingRules. rules
BusinessRulesTest_revl.0 defaul test Ruleset_1 TreeMode. rules
AutoAppProj_revd. 4 default CreditRatingRules Ruleset_1 CreditRatingRules.rules
AutoAppProj_revd. 4 defaul: LoanAdvisorRules Ruleset_z LoanadvisorRules. rules
[A1ES [{TE) DynamicRouting DynamicRoukingCreataor DynamicRouting. rules

Cpen Cancel

12.3.4 How to View Globals in an Oracle Business Rules Dictionary at Run Time

When you open a dictionary Oracle SOA Composer displays the Globals tab. The
Globals tab only shows final global variables (global variables with Final option
selected). Final global variables from linked dictionaries are also displayed in the
Globals tab. However, these linked global variables are not editable even in the edit
mode.

You cannot create or delete global variables. From the Globals tab, in edit mode, you
can edit the Name, Description, and Value fields. For the Value field, you can use the
expression builder to set the value. To check for validity, you can click Validate button
on the Oracle SOA Composer menu bar. In view mode, the edit operations are not
available. For information on using the Oracle SOA Composer edit mode, see

Section 12.4, "Getting Started with Editing and Saving a Dictionary at Run Time".

To view globals in Oracle SOA Composer:
1. In Oracle SOA Composer, from the Open menu, select Open Rules.

12-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Opening and Viewing an Oracle Business Rules Dictionary at Run Time

2. After you open a dictionary, select the Globals tab from the left-side pane. This
displays the Globals table, as shown in Figure 12-11.

Figure 12-11 Using the Oracle SOA Composer Rules Dictionary Globals Tab

ORACLE SOA Composer @ Bookmarkable Link Logout o

Logged in as weblogic

2 approvalRules.rules

(x) Globals (%) Globals
7 Bucketsets
@@ Links |Name |Descripti0n |Value |Bucketset|Type | Final |C0nstant
Q Decision Funckions (x) AppravalThreshold — Threshald above which approval needed 1000 dauble
Rulesets
@ SetupRules

@ ApprovalMatrixRules
&p OverrideRules

12.3.5 How to View Bucketsets in an Oracle Business Rules Dictionary at Run Time

When you open a dictionary and select the Bucketsets tab, if the dictionary contains
bucketsets, the table shows all the bucketsets. Bucketsets from linked dictionaries are
also displayed in the Bucketsets table. You can select a linked bucketset and click the
Edit button to view the buckets. However, a linked bucketset is not editable even in
the edit mode.

For information on the Oracle SOA Composer edit mode, see Section 12.4, "Getting
Started with Editing and Saving a Dictionary at Run Time".

To view bucketsets in Oracle SOA Composer:
1. In Oracle SOA Composer, from the Open menu select Open Rules.

2. After you open a dictionary, select the Bucketsets tab from the left-side pane. This
displays the Bucketsets table, as shown in Figure 12-12.

Using Oracle SOA Composer with Oracle Business Rules 12-9

Opening and Viewing an Oracle Business Rules Dictionary at Run Time

Figure 12-12 Using the Oracle SOA Composer Rules Dictionary Bucketsets Tab

ORACLE SOA Composer & Bockmarkable Link Logout O

Logged in as weblogic

Bs Open - | Eit | B =} v | ¥ 0 Info

E ApprovalRules.rules

(x) Globals P
v (f *) Bucketsets
i Bucketsets s

& Links

P s X
Q} Decision Functions —
|Name Datatype Form Description
Rulesets \f‘,?r VipStatusType VipStatusType Enum
&P SetupRules &5 StatusType StatusType Enum
= : . n
, - o CreditScores int Range
&P ApprovalMatrivRules et :
7 PromotionDates Date Range

&P OverrideRules

12.3.6 How to View Linked Dictionary Names at Run Time

In Oracle SOA Composer,you can view the names of the dictionaries to which the
current dictionary is linked by using the Links tab on the left-side panel as shown in
Figure 12-13. Currently, even in the edit mode, you can only view the linked
dictionary names, but you cannot link to a dictionary or delete an existing link to any
dictionary.

To view linked dictionary names in Oracle SOA Composer:
1. In Oracle SOA Composer, from the Open menu, select Open Rules.

2. After you open a dictionary, select the Links tab from the left-side pane. This
displays the Links table, as shown in Figure 12-13.

Figure 12-13 Viewing the Linked Dictionary Name

ORACLE SOA Composer @ Bookmarkable Link Logout O

Logged in a5 weblogic

Bs Open - | / Edit

2 LoanAdvisorRules.rules

(x) Globals
— f Links
4 Bucketsets
& Links
|Alias Mame Package Name | Prefix Linked Names |
Q Diecision Functions <§ CreditRatingRules CreditRatingRules credit
Rulesets

&P Ruleset_22

The Links table displays the name of the linked dictionaries, which in this case is
CreditRatingRules.

12-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Opening and Viewing an Oracle Business Rules Dictionary at Run Time

12.3.7 How to View Decision Functions in Oracle Business Rules Dictionary at Run

Time

In Oracle SOA Composer, you can view the decision functions that are available to the
current dictionary by using the Decision Functions tab on the left-side panel as shown
in Figure 12-14. Currently, even in the edit mode, you can only modify the following
fields and options:

»s Description

= Rule Firing Limit

n Check rule flow

= Make stateless

= Available Rulesets to fire

You cannot create any decision function, rename an existing decision function, or add
or delete any input or output.

To view decision function names in Oracle SOA Composer:
1. In Oracle SOA Composer, from the Open menu, select Open Rules.

2. After you open a dictionary, select the Decision Functions tab from the left-side
pane. This displays the Decision Functions table, as shown in Figure 12-14.

Figure 12-14 Viewing Decision Function Names

ORACLE SOA Composer @ Bookmarkable Link Logout ©

Logged in as weblogic

B Open - | Edit | B

2 LoanAdvisorRules.rules

(x) Globals
@ Decision Functions

"ff.;-t Bucketsets

& Links

<f\ Decision Functions
= |I‘-Jame Description | Web Service |
Rulesets Q DecdisionFunction_0
&P Ruleset_22 s CreditRatingRules.DedisionFunction_0

The Decision Functions table displays the names of all the available decision functions,
both parent and linked, which in this case are DecisionFunction_0, and
CreditRatingRules.DecisionFunction_0.

12.3.8 How to View Rulesets in an Oracle Business Rules Dictionary at Run Time

Oracle SOA Composer displays the rulesets in the dictionary on the left-side panel, as
shown in Figure 12-15. You can select a ruleset to display a detailed view of the
ruleset. In view mode, all the rules in the ruleset are displayed but they are not
editable. For information on the Oracle SOA Composer Edit mode, see Section 12.4,
"Getting Started with Editing and Saving a Dictionary at Run Time".

Using Oracle SOA Composer with Oracle Business Rules 12-11

Opening and Viewing an Oracle Business Rules Dictionary at Run Time

Note: Using Oracle SOA Composer in edit mode, you cannot create
or delete rulesets. You can view and modify rulesets.

Figure 12-15 Using the Oracle SOA Composer Rules Dictionary Rulesets Tab to View Rules

ORACLE SOA Composer @ Bookmarkable Link Logout ©

Logged in as weblogic
BS Open < | / Edit B =) v | ¥ @ nfo

& ApprovalRules.rules

(x) Globals

7 Bucketsets 3
¥ SetupRules View |IF/THEM Rules | A |1-20f2 ¥ =

& links

Q Decision Functions

Rulesets W ¥ TreatAsPlatinum

&P SetupRules

&P ApprovalMatriRules

&P OverrideRules

CustomerQOrder. vipStatus is VipStatusType.GOLD or
CustomerOrder. vipStatus is VipStatusType.SILVER) and
CustomerOrder.creditScore same or more than 750 and
CustomerQrder.annualSpending same or more than 10000 and
CustomerOrder, totalAmount is 4000

THEN

Modify CustomerOrder (vipStatus:VipStatusType PLATINUM)

£

To select the next ruleset or previous ruleset:
1. In Oracle SOA Composer, open a dictionary and select a ruleset.

2. When you are viewing a ruleset, you can click Select Next Ruleset or Select
Previous Ruleset to view the next or the previous ruleset, as shown in
Figure 12-16.

12-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Getting Started with Editing and Saving a Dictionary at Run Time

Figure 12-16 Using the Oracle SOA Composer Rules Dictionary Rulesets Tab to Select Next Ruleset

ORACLE SOA Composer @ Bookmarkable Link Logout O

Logged in as weblogic

B Open - | Eit | B] v | v @ nfo

E ApprovalRules.rules

(x) Globals

-'.u'f.? Bucketsets

& Links

Q Decision Functions

¥ SetupRules View |

Rulesets T ¥ TreatAsPlatinum
&p setupRules
&P ApprovalMatriRules
&P OverrideRules
CustomerQrder. vipStatus is VipStatusType.GOLD
CustomerOrder. vipStatus is VipStatusType.SILVER) and
CustomerOrder.creditScore same or more than 750

CustomerQrder.annualSpending same or more than 10000
CustomerCrder. total Amount is 4000

THEN

Modify CustomerCrder (vipStatus:VipStatusType. PLATINUM)

4 £ |
B § -
Seleck Mext RuleSet

12.4 Getting Started with Editing and Saving a Dictionary at Run Time

When you select and open a dictionary Oracle SOA Composer shows the dictionary in
read only mode. From each tab in view mode, you enter edit mode for the dictionary
item by selecting the Edit menu. In edit mode, after you make changes, click Save to
save your changes. Saving changes saves the dictionary to a work area. To apply the
changes to the run time version of the dictionary, click Commit.

If you decide you do not want to apply the changes, you can revert the changes by
selecting either of the following:

» Click Revert on the Oracle SOA Composer menu and then select Clear all
unsaved changes.

This clears only the unsaved changes.

» Click Revert on the SOA Composer menu and then select Clear all session edits
and saved changes.

This aborts all the changes done as part of the existing edit session.

12.4.1 What You May Need to Know About Localized Number Formatting Support in
Oracle SOA Composer

In Oracle SOA Composer, number formatting changes based on the browser locale.
For example, you are using Oracle SOA Composer with U.S. English as the browser
language. You enter a floating-point data, such as 34533223.2345, as a value. If you
wish to view the data in any other language, such as French, you need to:

Using Oracle SOA Composer with Oracle Business Rules 12-13

Getting Started with Editing and Saving a Dictionary at Run Time

1. Modify the browser locale for the instance to French.
2. Click the Refresh button of the browser to view the number formatting changes

In French, the value should display as 34533223,2345.

Note: The grouping and decimal separators specified in Oracle SOA
Composer overrides the locale-specific ones.

12.4.2 How to Edit Bucketsets in an Oracle Business Rules Dictionary at Run Time

In Oracle SOA Composer, selecting the Bucketsets tab shows you a table listing the
bucketsets in the dictionary. To edit a bucketset, select the appropriate row, and click
the Edit Bucketset icon to display the Bucketset Editor. Depending on the type of the
bucketset, Range, Enum, or LOV, this displays a corresponding Edit bucketset page.
You can create a Range Bucketset by clicking Add Bucketset icon and selecting a type.
This adds a new row in the Bucketsets table. For example, for Date types, such as Date,
DateTime, or Time, a calendar is displayed for selecting the date, time, and timezone.
Adding a bucket automatically adds an end point for a range bucket and a value for
an LOV bucket based on the datatype. You can modify the newly added bucket end
point or value. Note that the alias is modified when an end point or value is changed.

To delete a bucketset, select a row and click Delete.

To edit a Range Bucketset:
1. To edit a Range bucketset, in Oracle SOA Composer select the Bucketsets tab. This
displays a table listing the bucketsets in the dictionary.

2. To edit a Range bucketset, select the appropriate Range bucketset row and click
the Edit Bucketset icon. This displays the Bucketset Editor page, as shown in
Figure 12-17.

Figure 12-17 Using Bucketset Editor to Edit a Range Bucketset

Bucketset Editor L]

Mame | PromotionDates

Description

Data Type | Date w
[Include Disallowed Buckets in Tests

Range Bucket Values o 3¢

End Point | Induded Endpoint | Allowed in Actions |Range Alizs Description

Sep 11, 2009 E"(}) »="2009-09-11-0... |After Promao

Mar 13, 2009 E"(}) ["2009-03-13-07:0... | Promo Period
<"2009-03-13-07:... |Before Promo

OK | Cancel

12-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Getting Started with Editing and Saving a Dictionary at Run Time

3. Use the Bucketset Editor to edit the appropriate fields in the bucketset. You can
click Add Bucket to add a bucket, and also select a row and click Delete Bucket to
delete a bucket.

4. Click OK to confirm the changes.

To edit an LOV Bucketset:
1. To edit an LOV bucketset, in Oracle SOA Composer select the Bucketsets tab. This
displays a table listing the bucketsets in the dictionary.

2. To edit an LOV bucketset, select the appropriate LOV bucketset row and click the
Edit Bucketset icon. This displays the Bucketset Editor page, as shown in
Figure 12-18.

Figure 12-18 Bucketset Editor Dialog to Edit an LOV Bucketset

Bucketset Editor B

Mamme: | Product Mames

Descripkion:

Form: LOY
Data Type: | String ;I

Include Disallowed Buckets in Tests [~

Bucket Walues: e X
Yalue | Alias | Alloweed in Actions |Description |
atherwise —
"Lapkop” Laptop I~
"Dieskbop” Diesktop I*2
"Handled" Handled ™2
"Hard Drive" Hard Drive I~
"Mernary” Mernary I*2
"CD ROM” COROM =2

M Caniel

3. Use the Bucketset Editor to edit the appropriate fields in the bucketset. You can
click Add Bucket to add a bucket, and also select a row and click Delete Bucket to
delete a bucket.

4. Click OK to confirm the changes.

12.4.3 What You Need to Know About Editing Bucketsets

Only when a bucket has the Allowed in Actions field selected does the bucketset
display in the condition cell drop-down in a Decision Table.

Click Validate in the menu bar to validate the dictionary while making changes to a
bucketset.

Using Oracle SOA Composer with Oracle Business Rules 12-15

Getting Started with Editing and Saving a Dictionary at Run Time

12.4.4 How to Work With Dictionary Links in an Oracle Business Rules Dictionary at

Run Time

An Oracle Business Rules dictionary can be linked to other dictionaries. The complete
data model defined by a dictionary and its linked dictionaries is called a combined
dictionary. You can create multiple links to the same dictionary. However, in this case,
all but the first link is ignored.

You cannot use Oracle SOA Composer to link dictionaries. However, if a deployed
composite already has linked dictionaries, using Oracle SOA Composer, you can view
the linked dictionary names and make use of the Globals, Bucketsets, and Rulesets of
the linked dictionaries across applications. For example you have an application called
Appl that contains a dictionary called Dictl. Dictl is linked to another dictionary
called Dict2. Because Dict1 is linked to Dict2, the objects of Dict2 will be
available for use in App1.

For more information on viewing linked dictionary names, see Section 12.3.6, "How to
View Linked Dictionary Names at Run Time."

In Oracle SOA Composer, in the edit mode, you can use the Prefix Linked Names
check box in the Links table to either display or hide the linked dictionary name that is
prefixed to the all the items in the dictionary such as Globals, Bucketsets, and Rulesets.
Selecting the check box prefixes facts from the linked dictionary with its dictionary
name, and deselecting hides the linked dictionary facts prefix. By default, the Prefix
Linked Names check box is in selected state as shown in Figure 12-19.

Figure 12-19 The Links Tab

ORACLE SOA Composer & Bookmarkable Link Logout O

Logged in as weblogic

B& Open — | [E Save #s Commit.. g5 Revert.. — | « Validate @ Info

2 LoanAdvisorRules.rules

(x) Glabals
. f Links
&7 Bucketsets

& Links
|Alias |I“-lame |Package Name | Prefix Linked Names |
#2 Decision Functions @ CreditRatingRules CreditRatingRules credit
Rulesets

@ Rulesst_22

Figure 12-20 displays three bucketsets: Rating from the current dictionary and
Bucketset_1 and Bucketset_2 from the base dictionary CreditRatingRules, which is
prefixed to both Bucketset_1 and Bucketset_2.

12-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Getting Started with Editing and Saving a Dictionary at Run Time

Figure 12-20 Prefixed Linked Dictionary Name Displayed

ORACLE SOA Composer @ Bookmarkable Link Logout ©

Logged in as weblogic

E5 Revert.. o | + Vaidate @ Info

3 LoanAdvisorRules.rules

(x) Globals

s s Bucketset:
J ucketsets
.7 Bucketsets s

& Links

+|~ /K
<f\". Decision Functions e
|I‘-lame Datatype Form Description
Rulesets \f‘,?r Rating int Range
@ Ruleset_23 & CreditRatingRules Bucketset_1 int LoV
g CreditRatingRules.Bucketset_2 int Range

Figure 12-21 displays the Rating bucketset name after you have deselected the Prefix
Linked Names check box in the Links tab. In this case, the linked dictionary name is
not prefixed to the bucketset name.

Figure 12-21 Prefixed Linked Dictionary Name Hidden

ORACLE SOA Composer @ Bookmarkable Link Logout O

Logged in as weblogic

g5 Revert.. — | «/ Vaidate @ Info

3 LoanAdvisorRules.rules

(x) Globals

r";’
| Bucketset
7 Bucketsets W

& Links

_ . #|- /K
Q Decision Functions =
|I‘-Jame Datatype Form Description
Rulesets u‘f‘,?r Rating int Range
@} Ruleset_22 "é; Bucketset_1 int LoV
"éf; Bucketset_2 int Range

For more information about linked dictionaries, see Section 2.2.7, "What You Need to
Know About Dictionary Linking."

12.4.5 How to Edit Decision Functions in an Oracle Business Rules Dictionary at Run

Time

In Oracle SOA Composer, in the edit mode, selecting the Decision Functions tab
shows you a table listing the decision functions that are available to the dictionary,
both parent and linked.

Currently, even in the edit mode, you can only modify the following fields and
options:

s Description

Using Oracle SOA Composer with Oracle Business Rules 12-17

Getting Started with Editing and Saving a Dictionary at Run Time

Rule Firing Limit
Check rule flow
Make stateless

Available Rulesets to fire

To edit a decision function:

1.

To edit a decision function, in Oracle SOA Composer, select the Decision
Functions tab. This displays a table listing the decision functions in the dictionary.

Select the appropriate decision function row and click the Edit Decision Function
icon above the table. This displays the Decision Function Editor dialog box as
shown in Figure 12-22.

Figure 12-22 Decision Function Editor

Decision Function Editor B

Mame DecisionFunction_0

Description |

Rule Firing Limit | unlimited =l
Check rule flow Make stateless
W Inputs
Ir—lame Fact Type Tree I List Description
:B CustomerOrder CustomerOrder
%W Outputs
|r—lame Fact Type I Tree I List Description
|3 Order Approval Crderapproval

% Rulesets & Decision Functions

Available Selected

SetupRules
ApprovalMatrixRules
OverrideRules

&
&

| B i |

& &

ﬂ Cancel

You cannot edit the following;:

= Name field

= Inputs table

= Outputs table

In the Description field, optionally enter a description.

Enter the required number value from the Rule Firing Limit list. By default, the
selected value is unlimited. However, you can enter an integer value for the rule
firing limit and press the Tab key. The newly specified value gets added to the
Rule Firing Limit list.

Select the appropriate decision function options:

12-18 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Rules in an Oracle Business Rules Dictionary at Run Time

s Check rule flow: When selected, this option specifies that the rule flow is
checked

= Make stateless: When selected specifies the decision function is stateless.

6. Inthe Rulesets & Decision Functions area, use the left and right arrow buttons to
move items from the Available box to the Selected box.

7. Select an item in the Selected box, and click up or down arrow buttons as
appropriate to order the rulesets and the decision functions.

For more information on decision functions, see Chapter 6, "Working with Decision
Functions."

12.4.6 What You May Need to Know About Oracle Business Rules Dictionary Editor
Declarative Component

You can use the Oracle Business Rules Dictionary Editor composite declarative
component to leverage the functionality of editing Rules Dictionaries in any
ADF-based Web application. It enables you to edit business rules metadata artifacts,
such as Globals, Bucketsets, and Rulesets, by using the Rules SDK2 API.

For more information on Oracle Business Rules Dictionary Editor, see "Using the
Oracle Business Rules Dictionary Editor Declarative Component" in Oracle Fusion
Middleware Developer’s Guide for Oracle SOA Suite.

12.4.7 What You May Need to Know About Oracle Business Rules Dictionary Editor

Task Flow

Rules Dictionary Editor Task Flow, which is a wrapper around the Rules Dictionary
Editor declarative component is used in ADF-based Web applications that require a
task flow instead of a declarative component.

For more information on Oracle Business Rules Dictionary Editor, see "Using the
Oracle Business Rules Dictionary Task Flow" in Oracle Fusion Middleware Developer’s
Guide for Oracle SOA Suite.

12.5 Editing Rules in an Oracle Business Rules Dictionary at Run Time

In Oracle SOA Composer with edit mode you can edit, add, and delete rules in a
ruleset. For more information on how to use edit mode, see Section 12.4, "Getting
Started with Editing and Saving a Dictionary at Run Time".

12.5.1 How to Edit Rules in an Oracle Business Rules Dictionary at Run Time

Oracle SOA Composer allows you to edit the rules in a dictionary.

To edit a rule with Oracle SOA Composer:

1. In Oracle SOA Composer, with an Oracle Business Rules dictionary open, select a
ruleset.

2. C(lick the Edit menu item.

3. Oracle SOA Composer shows a confirm dialog if another user is currently editing
the same dictionary. In the confirm dialog, click No or Yes, depending on whether
you want to edit the document (if you click Yes, your changes could conflict with
another user's changes). For more information, see Section 12.8.1, "What You Need
to Know About Editing With Multiple Users at Run Time".

Using Oracle SOA Composer with Oracle Business Rules 12-19

Editing Rules in an Oracle Business Rules Dictionary at Run Time

4. Oracle SOA Composer creates an area to save any modifications you make to the
dictionary, and the Edit menu changes to a Save menu.

Note: The Edit view provides an interface to the dictionary that
allows you to edit most dictionary components (you can only create
and edit some dictionary components at design-time using the Rules
Designer extension to Oracle JDeveloper).

5. To edit an item in the dictionary, in the navigation tab, select the item of interest.
For example, see Figure 12-23 with the ruleset SetupRules selected.

Figure 12-23 Using Oracle SOA Composer to Edit a Ruleset in a Dictionary

ORACLE SOA Composer @ EBodkmarkable Lk Logout
Logged in as weblogic

ES Revert.. < | + Validate) Info
2 ApprovalRules.rules
(x) Globals
7 Buckstsets iy I 1
e R ¥ setupRules view |IF/THENRues | [F]~ R 3 (1202 | B
,f Links
4p Dedsion Functions
Rulesets e o
7 ¥ | TreatAsPlatinum R 0

&) SetupRules
@ ApprovalMatrixRules
&b OverrideRules ¥ (5 (&

1« der,vipS is ™ |VipStatusType.GOLD &, or ;ljj

M CustomerOrder, vipStatu Q [is v/ VipStatusType, SILVER Q) and 4 | - j

ﬂ CustomerOrder.creditSc q .sanﬂe or more than v 750 q and + |~ j

[0 (CustomerOrder.annuals; @ | same or more than (W | 10000 Q, and _‘_“_L'_Jj

O CustomerOrder. totaldme & |is ~i | 4000 Q) 8 B j

THEH
0 [Modify 3 [customerOrder v | (vipStatus:VipStatusType PLATINUM) @3 |4 /1
; v
< >
- 1
]

6. Click the Save menu item to save your changes in the work area.

12.5.2 How to Add a Rule at Run Time

In Oracle SOA Composer you can add rules to a ruleset.

To add a rule in a ruleset:
1. In edit mode, select a ruleset of interest.

2. In the rule area, click New Rule as shown in Figure 12-24. The rule is added
immediately after the current one unlike Rules Designer, where a new rule is
added at the end.

12-20 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Rules in an Oracle Business Rules Dictionary at Run Time

Figure 12-24 Adding a Rule in a Ruleset

ORACLE SOA Composer & Bookmarkable Link Logout ©O

Logged in as weblogic

Commit.. g§Revert.. — | < Vaidate) Info

& ApprovalRules.rules
{x) Globals
= 1
o’ Bucketsets I >
; | ¥ SetupRules view [FFmanrues w [F]+ % [1-20f2 1w o
Links
& Decision Functions
Rulesats & o
¥ ¥ |TreatAsPlatinum i ShE")

&P SetupRules {m
&P ApprovalMatrivRules
&P OverideRules Ir O (g o

[([CustomerOrder.vipStatu @ [is v [vipstahsType.GOD @ o 4 |+ j

0 ™| [vipstatusType SILVER. @) and % | > j

[J |CustomerOrder.creditSe Q _sama or more than Q and + | w j

[0 (|CustomerOrder.annuals; @ i‘sa’ne.or'ﬁo;'.é.{"a.l.ﬂuv- 10000 Q ad +__L'J_'J

| CustomerOrder, totalAme q |5- | 4000 Q) + |- j

THEN
0] [Modfy ¥ | | CustomerOrder | (vipStatus:vipStatusType. PLATINUM) B3 | /[
< T IS
g h
-

12.5.3 How to Delete a Rule at Run Time

In Oracle SOA Composer you can delete rules in a ruleset.

To delete a rule in a ruleset:
1. In edit mode, select a ruleset of interest.

2. In the rule area locate the rule you want to delete and click Delete Rule, as shown
in Figure 12-25.

Using Oracle SOA Composer with Oracle Business Rules 12-21

Editing Rules in an Oracle Business Rules Dictionary at Run Time

Figure 12-25 Deleting a Rule in a Ruleset

ORACLE SOA Composer & Bockmarkable Link Logout O

Logged in as weblogic

ES Revert.. < | +/ Validate) Info

56 ApprovalRules.rules
(x) Globas
s
= Bucketsets I 1
i ¥ SetupRules view |IFTHEN Rules | [§|~> ¥ 5 [120f2 M| &
& Links
& Decision Functions
linessty 7 ¥ TreatAsPlatinum E P G
&P SetupRules h
i Delete Rule
9 ApprovalMatrixRules
&P OverrideRules ¥ & (e 1 ’
[0 ¢ [CustomerOrder.vipStaty € |is | #| [VipStahusType.GOLD @, or |+ j
0 CustomerCOrder. vipStaty © v » |vipStatusType SILVER €) and + |~ j
[0 [customerOrder.ceditsa @ same or more than V: 750 Q, and % |~v j
[J (CustomerGrder.annualS ";k éss“e or more than (W | 10000 \l and | -J
O CustomerOrder. totalame & |is | | 4000 Q) + | j
THEN
7 [Modfy B [customarOnder v | (vipStatus:VipStatusType PLATINUM) @9 |4 /(
o
£ >
s \
-

12.5.4 How to Show and Edit Advanced Settings for Rules at Run Time

In Oracle SOA Composer you can edit advanced settings for rules in a ruleset. For
more information on advanced settings, see Section 4.5, "Using Advanced Settings
with Rules and Decision Tables".

To show and edit advanced settings in a rule:
1. In edit mode, select a ruleset of interest.

2. In the rule area locate the rule you want to show or change advanced settings.

3. Click the Show Advanced Settings icon next to the rule name. This displays the
advanced settings, as shown in Figure 12-26.

12-22 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Rules in an Oracle Business Rules Dictionary at Run Time

Figure 12-26 Showing and Editing Rule Advanced Settings

ORACLE SOA Composer &P Boskmarkable Lnk Logout O
Logged in 2= weblogic

g5 Revert.. - | - Validate @ Info

56 ApprovalRules.rules

(%) Globals

-','_" Bucketsets

¥ OverrideRules View | IF/THEN Rules (¥ 3| - X 1-20f2 % Lt
‘f Links
{2 Decision Functions
Rulesets T = E
v MultiplePriceyltems X G
4P SetupRules @

3 Description |1f an Order has 5 or mare line items priced more than approvalThreshold, reguire Manual approva
& ApprovalMatrixRules

0 OverrideRules

Effective Date | Always &

Pricrity | medium Rule Active [¥] AdvancedMode [] Tree Mode

IF
numPricey isthexl [count W where e e [%
QOrderltemType saéc-'ﬂerItE"T‘a’De V| and {b (ks |3 »\
O [orderltemType.price @ | more than * | | ApprovalThreshold Q + |"| |
}oand (h (kg
O [numericey @ |ssme ormore than | [5 Q .t v| 2
M
{ < >
a v -
-

12.5.5 How to Add Rule Conditions at Run Time

In Oracle SOA Composer you can add conditions to a rule in a ruleset. For more
information on working with rule conditions, see Section 4.3, "Working with Rules".

To add rule conditions:
1. In edit mode, select a ruleset of interest.

2. In the rule area locate the rule where you want to add a condition.

3. Next to the rule condition, click Insert Test as shown in Figure 12-27. This adds a
condition immediately after the current one.

Using Oracle SOA Composer with Oracle Business Rules 12-23

Editing Rules in an Oracle Business Rules Dictionary at Run Time

Figure 12-27 Adding a New Rule Condition in a Ruleset

ORACLE SOA Composer @ Bookmarkable Link Logout

Logged in as webl

« Validate @ Info

(5] ApprovalRules.rules
(x) Globals
7 Bucketsets -
¥ SetupRules View | > X ~ . —
& links
@ Decision Functions
Rilesers W ¥ |TreatAsPlatinum R g
&P SetupRules
&P ApprovalMatrixules
&P OverrideRules ¥ e s 7
[0 ¢ [customerorder. vipstatu @ VipStatusType, GOLD Q o + | v j
] CustomerQrder,vipStatu G VipStatusType SILVER. @) and + |» j
[] |customerorder.creditse G 750 Q, and + [~ j
[0 (|customerorder.annuals; G 10000 Q and + |+ j
|l CustomerOrder.totalame © |is ~ | 4000 Q) M -|

12.5.6 How to Delete Rule Conditions at Run Time

In Oracle SOA Composer you can delete conditions for a rule in a ruleset. For more

information on working with rule conditions, see Section 4.3, "Working with Rules".

To delete rule conditions:
1. In edit mode, select a ruleset of interest.

2. In the rule area, locate the rule where you want to delete a condition.

3. (Click Delete Test next to the rule condition, as shown in Figure 12-28.

12-24 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Rules in an Oracle Business Rules Dictionary at Run Time

Figure 12-28 Deleting a Rule Condition in a Ruleset

ORACLE SOA Composer @ Bookmarkable Link Logout

Logged in as webl

=~ | « Validate @ Info

E ApprovalRules.rules

{(x) Globals
&7
Bucketsets et ; i A R :
bl ¥ SetupRules view [IFfTHENRues v] |~ ¢ S [120f2 v| 25
&P Lirks
@ Decision Functions
Rulesets i " . £,
W ¥ |TreatAsPlatinum R 4}

&P SetupRules
&P ApprovalMatriRules

&P CverrideRules IF e s ¢ &
|:| { |CustomerQOrder.vipStatu Ck I|s VipStatusType.GOLD Ck or + |~ j
|| CustomerQOrder. vipStatu Ck VipStatusType. SILVER Ck RS B O j
[] |customerOrder.creditsce G -sameolmoleiﬁanvi 750 Q, and + |- j
[0 (|customerOrder.annuals; Ck :s 10000 Ck and + |- j
Ll CustomerOrder. totalame @ |is vi 4000 Q) + |v | _nJ

12.5.7 How to Modify Rule Conditions at Run Time

Using Oracle SOA Composer, you can edit conditions in a rule. You can select a rule
condition for nesting or modify expression values within the condition. For more
information on working with rule conditions, see Section 4.3, "Working with Rules".

To modify a condition in a rule:
1. In edit mode, select a ruleset of interest.

2. In the rule area locate the rule where you want to modify conditions.

3. Inthe IF area, use the controls, icons, and selection boxes, including the Left Value
expression icon, list for an operator, and Right Value expression icon to modify
the condition.

You can use the Expression Builder, Condition Browser, Date Browser, and Right
Operand Browser to edit the left and right-side expressions.

12.5.8 How to Add Rule Actions at Run Time

In Oracle SOA Composer you can add actions to a rule. For more information on
working with rule actions, see Section 4.3, "Working with Rules".

To add rule actions:
1. In edit mode, select a ruleset of interest.

2. In the rule area locate the rule where you want to add an action.

3. Inthe THEN area for the rule, next to the rule action click Insert Action, as shown
in Figure 12-29.

Using Oracle SOA Composer with Oracle Business Rules 12-25

Editing Rules in an Oracle Business Rules Dictionary at Run Time

Figure 12-29 Adding a Rule Action in a Ruleset

ORACLE SOA Composer & Bookmarkable Link Logout

Logged in as web

£S5 Revert.. = | - Validate @ Info
(x) Globals
#z
7 Bucketsets =

= W ¥ |TreatAsPlatinum x G A

& Links

@ Decision Functions

Rulesets IF (o (e ¢ &

&P SetupRules

&P ApprovalMatrixiules

@ OverrieRules [0 ¢ |customerorder.vipstatu @ VipStatusType.GOLD @ or Lmj
il CustomerOrder.vipStatu G VipStatusType SILVER. @) and + |+ j
[|customerorder.creditsee @ 750 Q and + |- j
[0 ¢ |customerOrder.annuals; @ 10000 Q and + |~ j
.l CustomerOrder, totalame G 4000 Q) P Pt j

Trm

12.5.9 How to Delete Rule Actions at Run Time

In Oracle SOA Composer you can delete actions in a rule. For more information on
working with rule actions, see Section 4.3, "Working with Rules".

To delete rule actions:
1. In edit mode, select a ruleset of interest.

2. In the rule area, locate the rule where you want to delete an action.

3. In the THEN area for the rule, next to the rule action, click Delete Action, as
shown in Figure 12-30.

12-26 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Rules in an Oracle Business Rules Dictionary at Run Time

Figure 12-30 Deleting a Rule Action in a Ruleset

ORACLE SOA Composer @ Bookmarkable Link Logout

Logged in a= webl

g5 Revert.. = | - Validate @ Info
2 ApprovalRules.rules
{x) Globals
=
Bucketsets .
b W ¥ |TreatAsPlatinum x T g o
& Links
Q; Decision Functions
Rulesets IF (e ¢ &
&P SetupRules
@ ApprovalMatrixRules
(| [VipStatusType.GOLD + -
&P OverrideRules O ¢ i HRSTEREYPE % = —MJ
Fl | [VipStatusType.SILVER. @,) and + |~ j
5 Qo ksl
Fl 10000 Q and t [+ j
| | [a0m0 Q) + |- j
TUEN S

12.5.10 How to Modify Rule Actions at Run Time
In Oracle SOA Composer you can modify actions in a rule. For more information on

working with rule actions, see Section 4.3, "Working with Rules".

To modify rule actions:
1. In edit mode, select a ruleset of interest.

2. In the rule area, locate the rule where you want to modify an action.

3. Inthe THEN area for the rule, next to the rule action, click a list for the action type,
or click Edit Properties as shown in Figure 12-31.

Figure 12-31 The Edit Properties Icon

THEN &

[[Medify »| [customerorder w| {vipStatus:VipStatusType. PLATINUM) S

Edit properti

The Properties dialog box is displayed where you can modify the property details
as shown in Figure 12-32.

Figure 12-32 The Properties Dialog Box

Properties o]
MName Type Value | Constant |
annualSpending int Q O
creditScore int Q O
name String Q, O
totalAmount double Q, il
vipStatus VipStatusType VipStatusType, PLATINUM Ck

Using Oracle SOA Composer with Oracle Business Rules 12-27

Editing Rules in an Oracle Business Rules Dictionary at Run Time

For more information on number formatting in rules, see Section 12.4.1, "What You
May Need to Know About Localized Number Formatting Support in Oracle SOA
Composer."

12.5.11 How to Work with Advanced Mode Rules at Run Time

In Oracle SOA Composer, you can work with advanced mode rules in a ruleset. For
more information on working with advanced mode rules, see Section 4.7, "Working
with Advanced Mode Rules".

To show and modify advanced mode rules:
1. In edit mode, select a ruleset of interest.

2. Inthe rule area, locate the rule where you want to show or modify advanced mode
rules.

3. Click Show Advanced Settings icon to show advanced settings. For more
information on showing advanced settings, see Section 12.5.4, "How to Show and
Edit Advanced Settings for Rules at Run Time".

4. If the Advanced Mode icon is not selected, then select the Advanced Mode icon.
This shows the advanced mode rule options, as shown in Figure 12-33.
Figure 12-33 Showing Advanced Mode Rule Options

ORACLE SOA Composer @ Bookmarkable Link Logout

Logged in as weblc

ES Revert.. = | + Validate @ Info

& ApprovalRules.rules

(x) Glabals

7 Bucketsets

& Links

Q Decision Functions

¥ OverrideRules View |IF,

Riesels W & |MultiplePriceyTtems x é}
&P SetupRules

. Description | 1f an Order has 5 or more line items priced more than approvalThreshold, require Manual approval
@ ApprovalMatrixRules

&p overrideRules : ;
Effective Date |

Priority ._
Ir
numPricey is theﬂcount V| where { '[h- '[h & P
OrderTtemType isa |0 and ':h- {kg % I
[|OrderltemType.price Ck !r_mﬂa than w | | ApprovalThreshold Ck + |- j
a.d]
§ >
o v

12.5.11.1 Working with Advanced Mode Options

The Advanced Mode rules options enables you to create, modify, and delete patterns,
as well as add, modify, and delete conditions and actions within a pattern.

12-28 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Rules in an Oracle Business Rules Dictionary at Run Time

Using the Advanced Mode rule options, you can:

= Specify a pattern variable and select a fact type for the variable: You can directly
enter the name of the pattern variable in the variable field. You can specify the fact
type for the variable by using the fact type list as shown in Figure 12-34.

Figure 12-34 Specifying Pattern Variable and Fact Type

Effective Date
Priority Rule Active Advanced Mode [Tree Mode

CustomerOrder |%

and (% (ks X 4 e

[0 (|CustomerOrder. Jol ooty VipStatusType.GOLD Ck or + |- j
OrderltemType

F CustomerQrder.y OrderApproval | |VipStatusType . SILVER Ck) and + |+ j
CurrentDate

0 Qv e
[0 ([Customerorder.annuals; @ 10000 and + |- j
O
O

CustomerQOrder isa

CustomerOrder.creditSce & [same or more than |

Q,
CustomerOrder. totalame G 4000 Q) and + |~ j
Q Q +|x]]

In the graphic example, CustomerOrder is a pattern variable of
CustomerOrder fact type.

= Add a pattern: Click the Add Pattern icon to create a pattern to the existing rule.
Figure 12-35 displays an added pattern. The newly created pattern is blank.

Figure 12-35 Adding a Pattern

IF

CustomerOrder isa |Customerorder vl and ((e [8 O B

[0 (|customerorder.vipstatu @ VinTsd Pattarn P-C Q o + |- j

[l CustomerOrder. vipStatu Q ||s——V| VipStatusType. SILVER Ck) and i j

[|customerOrder creditse G 750 Q, and *+ [~ j

[0 (|customerorder.annualsy G 10000 Q ad + |- j

Fl CustomerOrder, totalame G |:] 4000 Q) and + |+ j

P [cmne a a gl
and

o W GLRXRS

Insert Test

= Delete a pattern: Click the Delete Pattern icon to delete a pattern from a rule.
Figure 12-36 displays how to delete a pattern.

Using Oracle SOA Composer with Oracle Business Rules 12-29

Editing Rules in an Oracle Business Rules Dictionary at Run Time

Figure 12-36 Deleting a Pattern

IF

N L R

|:| { |CustomerOrder.vipStatu Ck VipStatusType.GOLD Ck or + |- j
O CustomerOrder. vipStatu Ck VipStatusType . SILVER Ck) and *+ [= j
[|customerCrder.creditse: G 750 Q, and + |= j
O (|customerOrder.annuals; Ck 10000 Ck and + |- j
F CustomerOrder. totalame ©} 4000 Q) and + |~ j
] Geiome N\ P— Q + 1]
and
MY LY
Insert Test

» Specify connectives: Two or more patterns are joined by a connective, and or or.
You can use the connective link to toggle between the connectives.

= Work with nested patterns: A nested pattern has patterns inside it. These are
enclosed within curly braces ({}). The pattern operator list is followed by the open
curly brace. You can create a nested pattern by clicking Surround pattern with
parentheses icon and you can remove the pattern nesting by clicking the Remove
pattern nesting icon as shown in Figure 12-37.

Figure 12-37 Adding and Removing Pattern Nesting

IF

(for each case where) |w| { Eh- ':hl bt

Inside the open curly brace, you can specify a pattern and then click the Insert
Test link to add conditions to the nested pattern as shown in Figure 12-38, as well
as add another pattern to the same pattern block.

Figure 12-38 Inserting Pattern Conditions

IF

C e e @ %
CustomerOrder isa and (g (ks ® 4k

|:| { |CustomerOrder, vipStatu Ck VipStatusType. GOLD Q or + |- j

O CustomerQrder, vipStatu Ck VipStatusType. SILVER Ck) and + [+ j

[|customerorder,creditsee @ 750 Q, and + |» j

[0 ([customerorder.annuals; @ 10000 Q ad + |- j

F CustomerOrder, totaldme G 4000 Q) ad + |~ j

O |Customer Q, Q + |- j
and

OrderApprove isa | OrderApproval |w '[H- {}3 ® ﬁ}
Insert Teah_‘.r

A nested pattern block ends with a closing curly brace. You can have multiple
levels of nested patterns, which means that inside a nested pattern, you can have

12-30 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Rules in an Oracle Business Rules Dictionary at Run Time

another nested pattern. You can click the Delete Nested Pattern Block icon to
remove the entire nested pattern block as shown in Figure 12-39.

Figure 12-39 Deleting a Nested Pattern Block

IF

{for each case where) v 1 (M (ke 03

(for each case where) |w| { ‘:h- '[h G

CustomerQOrder isa | CustomerOrder |
|:| { |CustomerQrder. vipStatu Q is ¥ | VipStatusType.GOLD Ck or + |- j
[l CustomerQrder. vipStatu Q is | |VipStatusType.SILVER Ck) and gadalee j
[|customercrder.creditsce € | same or more than | [750 Q and + |- j
[1 (|CustomerCrder.annualSy Ck same or more than || | 10000 Ck and + |- j
Il CustomerOrder, totalame ‘S, |is w | | 4000 Q) and + |~ j
[| Customer Q, |is v Q, b o j

s (s

When you nest a pattern, an operator list is displayed with (for each case where)
selected as the default operator in the operator list. The other items are there is a
case where, there is no case where, and aggregate as shown in Figure 12—40.

Figure 12-40 Selecting the Pattern Operator

IF

(for each case where) w| I (b (ke 523

.

there is a case where Isa | OrderApproval | Op (s b4
there is no case where

aggregate

The user interface remains the same as (for each case where) when you select
there is a case where or there is no case where as the operator. However, when
you select aggregate, the user interface changes. For an aggregate operator, you
must enter a variable in the available field and select a function from the function
list. The function list displays the following:

n count

m average

s maximum

s minimum

= sum

m collection

Except for the count function, all the other functions require an expression. You
can specify an expression in the available field or launch the Condition Browser
window.

Figure 1241 displays a nested pattern, where numPricey is the variable name
and count is function name.

Using Oracle SOA Composer with Oracle Business Rules 12-31

Editing Rules in an Oracle Business Rules Dictionary at Run Time

Figure 12-41 The Count Aggregate Operator

IF

numPricey is the ¥/ where { (& (g e O
OrderltemType isa and (g (ks % T oAk

[|orderltemType.price Q ApprovalThreshold Ck + [j
Yoand (@ (ke

Y — ; Q L2l=/]

12.5.12 How to Work with Tree Mode Rules at Run Time

In Oracle SOA Composer you can work with tree mode rules in a ruleset. For more
information on working with tree mode rules, see Section 4.8, "Working with Tree
Mode Rules".

To show and modify tree mode rules:
1. In edit mode, select a ruleset of interest.

2. In the rule area locate the rule where you want to show or modify tree mode rules.

3. Select Advanced Settings icon to show advanced settings. For more information
on showing advanced settings, see Section 12.5.4, "How to Show and Edit
Advanced Settings for Rules at Run Time".

4. If the Tree Mode icon is not selected, then select the Tree Mode icon. This shows
the tree mode rule options, as shown in Figure 12-42.

Figure 12-42 Showing the Tree Mode Rule Area in a Rule

ORACLE SOA Composer @ Bookmarkable Link L

Logged in &

 Validate @ Info

@ ApprovalRules.rules

(x) Globals

hf'} Bucketsets

& Links

it Decision Functions

¥ OverrideRules

Rulesets

Q} SetupRules
Q} ApprovalMatrixRules

W & | MultiplePriceyItems N LI g

Description | 1f an Qrder has 5 or more line items priced more than approvalThreshold, require Manual approval

@ OverrideRules
Effective Date

Rule Active Advanced Mode Tree Mode

Priority .r

¥ | CustomerQrder
|CrderltemType
{OrderApproval
|CurrentDate |

numPricey is the =l P

OrderltemType P

M [nrderttemTune nrice QL | mare than w | [annrnvaThrashald @ el B

12-32 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using the Oracle SOA Composer Browser Windows

12.5.13 What You May Need to Know About Rules Paging in Oracle SOA Composer

In a ruleset with many rules, for the ease of navigation, the Oracle SOA Composer Ul
displays the rules in multiple pages, with each page containing a set of six rules. This
paging capability ensures better performance when a ruleset with a large number of
rules are loaded.

Oracle SOA Composer provides a list from where you can directly access the page
where the rule of your choice exists. Alternatively, you can click the Previous and
Next buttons on the either side of the list to move to the preceding or the following set
of rules.

Figure 1243 displays the rules paging capability of Oracle SOA Composer.

Figure 12-43 Rules Paging

ORACLE" S0A Composer @@ Bookmarkable Link Logout O

Logged in as weblogic

Commit.. g5 Revert. = | + Valdate @ Info
[Z2 orderBooking.rules
(x) Glabals
7 Bucketsets ¥ Rulesst_1 Yiew | IF/THEM Rules v | - &G [712of 14 v D
& Links 1-6of 14
<7 Decision Functions L ¥ |Rule_7 Re D 13-14 of 14
Rulesets
I ¥ |Rule_g RaeD
@} Ruleset_1
@ Rulesst_2 B ¥ [Rule_s RED
@} Ruleset_3
£ Ruleset_4 = ¥ | Rule_10 RED
Ruleset_5 2
§ Rulesst. = ¥ |Rule_11 Ep 1"
I ¥ |Rule_12 RaeD
4
SN
£

12.5.14 What You May Need to Know About Oracle Business Rules Editor Declarative
Component

You can use the Oracle Business Rules Editor composite declarative component to
leverage the functionality of editing business rules in any ADF-based Web application.
It enables you to edit business rules available in rulesets by using the Rules SDK2 APL

For more information on Oracle Business Rules Dictionary Editor, see "Using the
Oracle Business Rules Editor Declarative Component" in Oracle Fusion Middleware
Developer’s Guide for Oracle SOA Suite.

12.6 Using the Oracle SOA Composer Browser Windows

Oracle SOA Composer provides browser windows that helps you to work with
different types of expressions such as rule expressions, XPATH expressions, date
expressions, and so on.

The different types of browsers provided by Oracle SOA Composer are:

= Expression Builder

Using Oracle SOA Composer with Oracle Business Rules 12-33

Using the Oracle SOA Composer Browser Windows

s Condition Browser
s Date Browser

= Right Operand Browser

12.6.1 Expression Builder

Expression Builder is used to build different types of expressions such as XPATH
expressions, rule expressions, and so on.

Expression Builder has a field where you can enter the expression directly. It has four
tabs: Variables, Functions, Operators, and Constants. Each of these tabs display data in
a tree structure. The Variables tab displays all the variables in the rules meta-data. The
Functions tab displays all the functions in the rules meta-data. The Operators tab
displays operators such as +, -, *, and so on. The Constants tab displays all the
constants that exist in the rules meta-data.

You can switch between the tabs, select an item in the tree, and click the Insert Into
Expression button to insert the selected item at the cursor position in the expression
field. When an item is selected in the tree, the Content Preview and the Description
areas display more information about the selected item. Once you create the
expression and click OK, the newly created expression appears in the field that is
available to the left of the expression builder icon.

Figure 12—44 displays the Expression Builder browser.

Figure 12-44 The Expression Builder Browser

Expression Builder B

Expression:

Cuskorner, Manne

4 Insert Into Expression

L [Mame ~

-3 OrderInfoType

=3 ContactType

-3 OrderTtemsType

E | ItemType

L= [Address

E | SupplierInfoType

=3 PurchaseCrderType

B> [Usaddress

- [order

v«

[5E]

L [address
| Reqistered Date

L= [CurrentDate b
¥Yariables Functions Dperators Constants

(Content Preview: Drescription:
Customer, Mame SOk Wariable Option

M Cancel

12.6.2 Condition Browser

The Condition Browser has a field, a hierarchical tree, and an Expression Builder
embedded inside it. You can enter the expression directly in the field, or select an item
from the tree. When an item is selected in the tree, the new selection appears in the

12-34 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using the Oracle SOA Composer Browser Windows

field immediately. You can also use the embedded Expression Builder to create an
expression.

Once the Expression Builder is launched and an expression is created, the new
expression appears in the Condition Browser field. Once you create an expression and
click the OK button in the Condition Browser, the newly created expression appears in
the field that is to the left of the Condition Browser icon.

Figure 1245 displays the Condition Browser.

Figure 12-45 The Condition Browser

Condition Browser B
Cuskorner. Marne Ef"!
R'f") ItemType 7

B3 SupplierInfoType
=3 PurchaseOrderType
L= [Usaddress
- [Order
¥ [Customer
[5E]
=03
=3 Registered Date
- [CurrentDate
=@ Temperature
=3 csco
=3 Global_3
=3 R
=3 BigDecimal
-3 BigInteger
= [Double v

Conskank |:|

M Cancel

12.6.3 Date Browser

The Date Browser is used to select a Literal Date or a Date Expression. The Date
Browser has two options to switch between a Literal Date and a Date Expression.
When one option is selected, the other one is disabled.

Select:
= Literal Date option to enter a date using a Calendar pop-up

= Date Expression option to enter the expression directly in the Date Expression
field or to launch the Condition Browser to select a date expression.

Figure 1246 displays the Date Browser.

Figure 12-46 The Date Browser

Set Date and Time B

{8} Literal Date [y (UTC-08:00) US Pacific Time

") Date Expression
OK | Cancel

12.6.4 Right Operand Browser

The Right Operand browser is used to select multiple right expressions. The browser
displays operands in each row. You can enter an expression directly in the operand
field or launch the Condition Browser to select an expression. The + icon adds a row

Using Oracle SOA Composer with Oracle Business Rules 12-35

Editing Decision Tables in an Oracle Business Rules Dictionary at Run Time

after the current one. The - icon deletes the current row. These icons are enabled and
disabled based on the selected operator. For instance the in operator allows multiple
right expressions. So in this case, the icons are enabled.

Figure 1247 displays a Right Operand browser.

Figure 12-47 The Right Operand Browser

Right Operand "

“Customer .Registered Date between”

Operand2 Sep 30, 2009 2:19:44 AM CDT \-k +[—

Validate | oK Cancel |

Note: Using Right Operand browsers, you can enter multiple values
for the right-side expression. However, you can place a Date browser
outside a Right Operand browser, and in which case, only one
expression can be entered. For both these browsers, you cannot enter
values directly in the right-side expression field. Once you have
entered values using the browser and clicked OK, the values get
added as comma-separated values on the Rules UL

12.7 Editing Decision Tables in an Oracle Business Rules Dictionary at
Run Time

In Oracle SOA Composer, in edit mode, you can edit, add, and delete a Decision Table
in a ruleset. For more information on how to use edit mode, see Section 12.4, "Getting
Started with Editing and Saving a Dictionary at Run Time".

12.7.1 Adding a Decision Table at Run Time

In Oracle SOA Composer, you can add a Decision Table to a ruleset. For more
information on working with Decision Tables, see Section 5.1, "Introduction to
Working with Decision Tables".

To add a Decision Table in a ruleset:
1. In edit mode, select a ruleset of interest.

2. In the ruleset area, click New and then New Decision Table, as shown in
Figure 12-48.

12-36 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Decision Tables in an Oracle Business Rules Dictionary at Run Time

Figure 12-48 Adding a Decision Table in a Ruleset

¥ ApprovalMatrixRules

View | ApprovalMatrix (v |v b4

Mew Rule

¥

Mew Decision Table |
¥ |ApprovalMatrix

‘* | e X -ﬁ- EH E. Show Conflicts Switch Rows to Columns
P Rules
onditions
R1 X | R2 X | R3 X
CustomerQrder, vipStatus PLATIMUM GOLD, SILVER
CustomerOrder. creditScore Low, Medium, High Low Medium
CurrentDate. date Before Promo, Eromo Period, After Before Promo, Eromo Period, After Before Promo, After Promo
Promo Promo
Conflict Resolution
0‘3 Cverride
Actions
Modify Result
discount:double 10

0
StatusType, MAMUAL

5
status:StatusType

StatusType. MANUAL

StatusType. APPROVED

A blank Decision Table is displayed as shown in Figure 12—49.

Figure 12-49 A Blank Decision Table

ORACLE SOA Composer @ Bookmarkable Link Logout

Logged in as weblc
7 |~ Validate

@ Info

(55 ApprovalRules.rules

{x) Globals

U“ﬁ Bucketsets
& Links

Decision Functions

¥ ApprovalMatrixRules View [DecsionTable 1 % [F]~ R

Rulesets
¥ |Dedsion Table 1
@ SetupRules
ApprovalMatrixRules
@ 4| - % H EE & Show Conflicts Switch Rows to Columns
@ OverrideRules |
Add a rule, a condition or an action
|
a v J

= |

12.7.2 Adding Condition Rows to a Decision Table

Using Oracle SOA Composer, you can add condition rows to a Decision Table.

To add condition rows to a Decision Table:
1.

From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and

select the Decision Table where you want to add conditions from the View box,

for example Decision Table 1.

Using Oracle SOA Composer with Oracle Business Rules 12-37

Editing Decision Tables in an Oracle Business Rules Dictionary at Run Time

2. In the Decision Table area, from the list next to the Add icon, select Add
Condition.

3. In the Conditions area, click the condition row, and then click the Edit Condition
icon on the toolbar as shown in Figure 12-50. This displays the Condition Browser.

Figure 12-50 Editing a Condition to a Decision Table

ORACLE SOA Composer @ Bodl

g5 Revert.. = | - Validate @ Info

E ApprovalRules.rules

(x) Globals
=
Bucketsets -,
~ ¥ ApprovalMatrixRules View |Decision Table 1 | | - %
@ Links T

& Decision Functions

Rulesets
¥ |Dedision Table 1

@SetupRules

ApprovalMatrixRules
" or =T P s et e
@ OverrideRules ‘h

Edit Condition

Conditions

A o

Conflict Resolution

Actions

4. Enter an expression by clicking in the Conditions Browser to select a variable, or
click the Expression Builder icon to display the Expression Builder.

Expression Builder lets you build expressions.

5. Each condition row requires a bucketset from which to draw the values for each
cell. When the value you select has an associated global bucketset, then by default
the bucketset is associated with the condition row.

If there is no global bucketset associated with the value, then after you add a
condition row to a Decision Table, you need to either specify an existing global
bucketset or create a Local List of Values or a Local List of Ranges bucketset.

To associate a bucketset for the condition, perform either of the following:

= In the Conditions area, select the condition, and select an existing bucketset
from the Select Bucketset list as shown in Figure 12-51.

12-38 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Decision Tables in an Oracle Business Rules Dictionary at Run Time

Figure 12-51 Associating an Existing Bucketset With a Condition Row

ORACLE SOA Composer

ﬁ Bookmarkable Link Log

Logged in as v

g5 Revert.. =z | + Validate @@ Info

(56 ApprovalRules.rules

(x) Globals
7
Bucketsets -
r'(/ ¥ approvalMatrixRules View | ApprovalMatrix | | - X
& links
Q; Decision Functions
Rulesets ¥ | ApprovalMatrix
&P SetupRules \
@ ! g Select Bucketset
ApprovalMatrixRules 1
@ VipStatusType | k Vi 4| - R R B Show Conflicts #
OverrideRules e
R Rules
iLocal List of values
Local List of Ranges Ri X | R2 X | R3 X R4 X
CustomerOrder,vipStatus | PLATINUM =l |cowp;siLver R
CustomerQrder. creditScore Low, Medium, High Lowe Medium Medium, High
Before Proma, Promo Before Promo, Promo Before Promo, After)
- Period, After Promo Period, After Promo Promo Honobstod
Conflict Resolution
9% Override RS
Actions
M D ae il [l [l [l Al
4 L
o F i

» In the Conditions area, select the condition, and select either Local List of

Values or Local List of Ranges (as relevant) from the Select Bucketset list as
shown in Figure 12-52.

Using Oracle SOA Composer with Oracle Business Rules 12-39

Editing Decision Tables in an Oracle Business Rules Dictionary at Run Time

Figure 12-52 Associating a Local List of Values or Local List of Ranges With a Condition Row

ORACLE SOA Composer & Bookmarkable Link Log

Logged in as 1

« Validate @ Info

& ApprovalRules.rules
(x) Globals
7
Bucketsets -
u'\,r ¥ ApprovalMatrixRules View | ApprovalMatrix W | - X
& Links
@ Decision Functions
Rulesets ¥ | ApprovalMatrix
&P SetupRules
@ ! § Select Bucketset |
ApprovalMatrixRules 1 I
VipStatusType v # l+| >y R R B Show Conflicts »
& OverrideRules VipStatusType T
‘e Local List of Values k
Local List of Ranges ™4 R1 X | R2 X | R3 X R4 X
CustomerQrder. vipStatus PLATIMUM x| GOLD;SILVER R
CustomerOrder. creditScore Low, Medium, High Low Medium Medium, High
Before Promo, Promo Before Promao, Promo Before Promo, After .
O Period, After Promo Period, After Promo Promo RO
Conflict Resolution
9% Override RS
Actions
Merdifu D el [l [l [l Tl
q = |5
o 7 R T

You can edit the bucketset for the selected condition by clicking the Edit Bucketset
icon as shown in Figure 12-53.

Figure 12-53 Editing a Local List Bucketset

¥ ApprovalMatrixRules Wiew | ApprovalMatrin W |v ®

¥

¥ |ApprovalMatrix

-2k EHR] Do

Rules
Conditions Edit Bucketset
| R2 X | R3 X R4 X
= =
CustomerOrder. creditScore Low, Medium, High Low Medium Medium, Hig
Before Promo, Promao Before Promo, Promo Before Promo, After)

Ruicniiatcadiie Period, After Promo Period, After Promo Fromo A
Conflict Resolution

03 Qverride RS
Actions

M Aifs O m ol (] sl (] (]

This displays the Bucketset Editor where you can add, edit or delete buckets.

For more information on number formatting in bucketsets, see Section 12.4.1,
"What You May Need to Know About Localized Number Formatting Support in
Oracle SOA Composer."

Repeat Step 2 through Step 5, as required to add additional condition rows in the
Decision Table.

12-40 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Decision Tables in an Oracle Business Rules Dictionary at Run Time

For more information on adding condition rows, see Section 5.2.2, "How to Add
Condition Rows to a Decision Table".

12.7.3 Adding Actions to a Decision Table

In Oracle SOA Composer, you can add actions to a Decision Table.

To add actions to Decision Table:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and
select the Decision Table where you want to add actions.

2. From the list next to the Add icon, select Add Action and select an available action

from the list. For example, click Modify as shown in Figure 12-54.

Figure 12-54 Adding an Action to a Decision Table

ORACLE SOA Composer @ Bockmarkable Link Log

Logged in as v

B Revert.. = | - Validate @ Info

@ ApprovalRules.rules

(x) Globals

&7 Bucketsets

& Links

Q; Decision Functions

¥ ApprovalMatrixRules

Rilesets ¥ | ApprovalMatrix
&P SetupRules
&P ApprovalMatrixRules
| Local List of Ranges | w| & 4| - AR W iR Show Conflicts »
&P CverrideRules [
i | AddRule | Rules
Conditions | x x »
! Add Condition _ i | = iz
Add Action G Assert New .d
CustomerQrder. creditScore Low, Mediam, High Madify | Medium Medium, High
Before Promo, Promo Be Before Promo, After . i
- DR Period, After Promo Pe Retfract | Promo Biseobsgcd
Call
Conflict Resolution
03 Qverride RS
Actions
M ifs Pmr e (] (w1 =1 s
q{ = |5
a v e]

A new row with for the Modify action gets added to the Decision Table as shown
in Figure 12-55.

Using Oracle SOA Composer with Oracle Business Rules 12-41

Editing Decision Tables in an Oracle Business Rules Dictionary at Run Time

Figure 12-55 Action Row Added to the Decision Table

ORACLE" SOA Composer

& ApprovalRules.rules

(x) Globals
u‘f‘f Bucketsets
(ﬁ Links
Decision Functions
Rulesets
@ SetupRules
@ ApprovalMatrixRules

&P OverrideRules

3.

@ Bookmarkable Link

Loggedinas v

Log

-+ Validate

@ Info

g5 Revert.. o

“F| r 7R H 0B Show Conflicts Switch Rows to Columns
i Rules
o R1 X | R2 X | RZ X | R4 X
CustomerQOrder, vipStatus PLATINUM GOLD, SILVER
CustomerOrder. creditScore Low, Medium, High Low Medium Medium, High
Before Promo, Promo Before Promo, Promo Before Promo, After)
Ricaioai=tdale Period, After Promo Period, After Promo Promo F R
Conflict Resolution
QCDnﬂict R2,R3, R4, R5,R& R1,R6 R1,R& R1,R6
V% Override RS
Actions
Modify Result
discount: double 10 0 5 9
status:StatusType StatusType. APPROVED StatusType. MANUAL StatusType . MAMUAL StatusType.APPROVE
1] L] E E
2| Es
< | &

Table 5-1 in Chapter 5, "Working with Decision Tables," lists the available actions.

Select the new action row and then click the Edit Action icon on the toolbar to
display the Action Editor window as shown in Figure 12-56.

Figure 12-56 The Action Editor Window

Action Editor

Form: | Modify v

Value: Modify CustomerOrder

Target:
CurrentDate
Result
Name Type |'-s'a|ue Parameterized | Constant
annualSpending int Q, |} |4}
creditScore int Ck O O
Arguments: — String Q D D
totalAmount double Q F F
vipStatus VipStatusType Q, O O
Always Selected: []
ok | car

In the Action Editor window;, select the action target and then specify values for an
action cell.

For more information on number formatting in bucketsets, see Section 12.4.1,
"What You May Need to Know About Localized Number Formatting Support in
Oracle SOA Composer."

12-42 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Decision Tables in an Oracle Business Rules Dictionary at Run Time

For more information on adding actions to Decision Tables, see Section 5.2.3, "How to
Add Actions to a Decision Table."

12.7.4 Adding Rules to a Decision Table

Using Oracle SOA Composer, you can add a rule to a Decision Table.

To add a rule to a Decision Table:
1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and

select the Decision Table where you want to add the rule.

2. From the list next to the Add icon, select Add Rule as shown in Figure 12-57.

Figure 12-57 Adding a Rule to a Decision Table

& Bookmarkahle Link Lo

ORACLE SOA Composer
Logged in &s 1

ES Revert.. = | + Validate @ Info

(56 ApprovalRules.rules

(x) Glabals

uf? Bucketsets % | ADProvaiMamix

& Links
<R Dedision Functions s | - X R B Show Conflicts Switch Rows to Columns

Rulesets Add Rule | Rules
1 |
&P SetupRules . Add Condition | R1 X | R2 X | R3 X | RRE
7 Add Action) 5 PLATINUM GOLD, SILVER
@ ApprovalMatrixRules S . Low, Medium, High Low Medium Medium, High
@ CwverrideRules EurreniDate date Before Promo, Promo Before Promo, Promo Before Proma, After Promo Period
: Period, After Promo Period, After Promo Promo
Conflict Resolution
(4) Conflict R2,R3, R4, R5, Rb R1,RE R1,R& R1,R6
03 Override RS
Actions
Modify Result
discount:double 10 0 5 9
status:StatusType StatusType.APPROVED StatusType MAMUAL StatusType. MAMUAL StatusType. APPROVE

I

A new column for the added rule is displayed as shown in Figure 12-58.

Using Oracle SOA Composer with Oracle Business Rules 12-43

Editing Decision Tables in an Oracle Business Rules Dictionary at Run Time

Figure 12-58 Added Rule in the Decision Table

ORACLE' SOA CDT’I"IPOSEF &P Bookmarkable Link L
Logged in as

B8 Open — IR Sawe # Commit.. g5 Revert.. = | +/ Validate

E.J ApprovalRules.rules

(%) Glabals
i Budketsets
& Links

§#2 Decision Functions

¥ ApprovalMatri®ules View | A

F®~ %

Rulesets
&P SetpRules

@ ApprovalMatrixRules

¥ | ApprovalMatrix

$| - X H 7] oY [¥] Show Confiicts Switch Rows ta Columns |

@ OverrideRules

Conditio Todes
anditions
R R2 X R3 X
CustomerOrder.vipStatus PLATIMUM GOLD, SILVER
CustomerOrder.creditScore Low, Medum, High Low
CurreniDate. date Before Promo, Promo Period, After Before Promo, Promo Period, After
Date. dat Bromo Promo
Conflict Resolution
¥3 Override
Actions
Modify Result H [v] [v]
discount:double 10 o
status:StatusType StatusType. APPROVED StatusType. MAMUAL

3. Enter values for the condition cells. Notice that the new rule is added as the first
rule of the Decision Table and the other rules have moved as required to keep the

bucket values in their defined order.

Note: You can enter values for the condition cells (or any other cells)
only when the row containing the cell is selected. Only when a row is
selected, the condition cell lists are displayed. This is called the Click
to Edit feature.

4. Click an Action row to enter values for the action cells.

12.7.4.1 Editing Decision Table Cells

Each rule in a Decision Table contains cells pertaining to three sections: Conditions,
Conflicts, and Actions.

Working with Condition Cells

Condition cells in the editable mode (when the row having conditions cells is selected)
display the condition values in multichoice lists. When you add a new rule or when a

condition value is unspecified, the condition cell is displayed as blank as shown in
Figure 12-59.

12-44 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Decision Tables in an Oracle Business Rules Dictionary at Run Time

Figure 12-59 Unspecified Condition Value

¥

¥ | ApprovalMatrix

CreditScor “ Show Switch Rows to Columns
/ #-o% Etiml Ho
Rules
; R1 X | R2 X | R3 X |
CustomerOrder. vipStatus PLATIMUM GOLD, SILVER
Low =i
B o Before Proma, El'omo Period, After Before Proma, El'omo Period, After
Promao Promao
Conflict Resolution
¥% Override
Actions
Madify Result]
discount:double 10 0
status:StatusType StatusType APPROVED StatusType MANUAL

If you select All:

= When the particular condition row is selected, the cell displays "All"

= When the particular condition row is not selected or any other condition row is
selected, the cell displays all the comma-separated values

Figure 12-60 displays a Decision Table with two condition cells displaying the value
"All" as well as all the comma-separated values.

Figure 12-60 Displaying All Values for a Condition

¥ | ApprovalMatrix

VipStatusType v # P | vy R IR Y 2 Switch Rows to Calumns

Conflicts
_ Rules
R4S | RE X R7 X
Al =
CustomerOrder. creditScore High Low, Mediuﬂ. High
CurrentDate, date Before Proma, El'omo Period, After Before Proma, El'omo Period, After
Promo Promo

Conflict Resolution

éj Conflict R7 R2, R3, R4, R5 RE
¥% Override
Actions
Modify Result
discount:double 8 i}
status:StatusType StatusType APPROVED StatusType REJECTED

You can select any value that is available in the condition value list.

Note: When you edit the condition cells, the Decision Table is
refreshed and the edited rule column may shift to the left or right
depending on the selected condition cell value.

Working with Action Cells

When you add an action, an action row is created with the specified action type. There
are two types of action cells:

Using Oracle SOA Composer with Oracle Business Rules 12-45

Editing Decision Tables in an Oracle Business Rules Dictionary at Run Time

Figure 12-62 The Action Editor Window

Action Editor

Form: | Modify w

Value: Modify Result

Target! | customerOrder

CurrentDate

s The Action form cells contain check boxes. You can disable the "firing" of a rule by
deselecting an action form check box. In Figure 12-61, R1 and R3 action check
boxes are selected whereas the R2 action check box is deselected. In this case, at
the time of execution, only R1 and R3 will "fire".

Note:

The Edit Action icon is enabled only if the action form cell row

is selected. The Edit Action icon invokes the Action Editor window.

= The Action parameter cells contain the parameters of the action form. You can
directly enter the action parameter values in the respective field or you can invoke
the Condition Browser window to select a value.

Figure 12-61 displays both types of action cells. You can see that the action parameter
cells have edit fields with the Condition Browser icons next to them.

Figure 12-61 The Action Cells in a Decision Table

¥ | ApprovalMatrix

o | * X R B Show Conflicts w

5 Rules
Conditions T 22 X | R
CustomerQrder, vipStatus PLATINUM GOLD, SILVER
CustomerCOrder. creditScore Low, Medium, High Low Medium

CurrentDate.date

Conflict Resolution

03 Override

Actions

Modify Result
discount:double
status:StatusType

10

Before Promo, Promo Period, After

Promo

Q

StatusType. APPROVED

Before Promo, Promo Period, After
Promo

0 Q,

StatusType. MANLIAL

Before Proma, After Promo

: Q

StatusType. MANLIAL

Figure 12-62 displays the Action Editor window where you can select the values for
an action parameter cell. If you select the Always Selected check box, all the check
boxes for the particular action form get selected. All the check boxes pertaining to the
action form are also disabled, because the specified action "is always selected".

MName Type |'-a'alue Parameterized | Constant |

discount double Ck (]
Arguments: |status StatusType Ck D

surcharge double '- O

Always Selected: []

12-46 Oracle Fusion Middleware User's Guide for Oracle Business Rules

ﬂ Cancel

Editing Decision Tables in an Oracle Business Rules Dictionary at Run Time

12.7.5 Splitting and Compacting a Decision Table

You can modify the contents of a Decision Table to create a table that includes a
complete set of rules for all cases, or a table that provides the least number of rules for

the cases. The split and compact operations enables you to manipulate the contents in
a Decision Table.

The split table operation creates a rule for every combination of buckets across the
conditions. For example, in a Decision Table with 2 boolean conditions, 2 x 2 =4 rules
are created. In a Decision Table with 20 boolean conditions, 2**20 ~ 1 million rules are
created. So, you only use split table when the number of rules created is small enough
that filling in the action cells is feasible.

Using Oracle SOA Composer, split can be applied to an entire Decision Table.

However, you cannot perform split operation on an individual condition row or cell.

To split a Decision Table:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and
select the Decision Table that you want to split.

2. Click the Split Table icon as shown in Figure 12-63.

Figure 12-63 Splitting a Decision Table

ORACLE SOA Composer & Bookmarkable Link Logout O

Logged in as weblogic

g5 Revert.. — | + Validate @ Info

2 ApprovalRules.rules

(%) Globals

u‘f‘ﬁ Bucketsets

& Links

Q Decision Functions

¥ ApprovalMatrixRules

Rul t:
ulesets ¥ | ApprovalMatrix

P SetupRules

@ ApprovalMatrixRules :
EF | b % -ﬁ— ﬁ & Show Conflicts Switch Rows to Columns

&b OverrideRules

i : Rul
Conditions Split Table i X | no X | nT X |
CustomerQrder. vipStatus PLATIMUM GOLD, SILVER
CustomerCrder. creditScore Low, Medium, High Low Medium
. Before Promo, Promo Before Promo, Promo Before Proma, After

CurrentDate. date Period, After Promo Period, After Promo Promo
Conflict Resolution
9% Override
Actions
Modify Result v

Using Oracle SOA Composer, you can compact a Decision Table by merging
conditions of rules with identical actions. So, compacting a table enables you to
remove conditions from a Decision Table. However, using Oracle SOA Composer, you
cannot merge two or more condition cells.

To compact a Decision Table:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and
select the Decision Table that you want to compact.

2. Select the Compact Table icon as shown in Figure 12—-64.

Using Oracle SOA Composer with Oracle Business Rules 12-47

Editing Decision Tables in an Oracle Business Rules Dictionary at Run Time

Figure 12-64 Compacting a Decision Table

ORACLE SOA Composer & Bookmarkable Link Logout

Logged in as weblogic

|+ validate @ Info

G2 ApprovalRules.rules

(%) Glabals

&7 Bucketsets

& Links

<}; Decision Functions

¥ ApprovalMatrixRules

Rulesets
¥ | ApprovalMatrix

&P SetupRules

&P ApprovalMatrixRules

EF | by X Show Conflicts Switch Rows to Columns
&P CverrideRules
i Rul

Conditions Compack Table 1 X | o X | n3 X |
CustomerQrder. vipStatus PLATIMUM GOLD, SILVER

CustomerQrder. creditScore Low, Medium, High Low Medium

Before Promo, Promo Before Promo, Promo Before Promo, After

Rizenitatetdate Period, After Promo Period, After Promo Promo
Conflict Resolution

0‘5 Cverride
Actions

Mnrdifu Result [wl [wl [wl

For more information on splitting and compacting Decision Tables, see Section 5.3,
"Performing Operations on Decision Tables."

12.7.6 Performing Gap Analysis in a Decision Table

In a Decision Table, a "missing" rule is termed as a "gap." A gap in a Decision Table

occurs when a rule does not to cover some combinations of buckets, one from each
condition.

Using Oracle SOA Composer, you can perform Gap Analysis on Decision Tables.

To perform Gap Analysis:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and

select the Decision Table on which you want to perform the Gap Analysis.

2. Click the Gap Analysis icon on the Decision Table menu as shown in Figure 12-65.

12-48 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Decision Tables in an Oracle Business Rules Dictionary at Run Time

Figure 12-65 Performing Gap Analysis on a Decision Table

ORACLE SOA Composer @ Bookmarkable Link Logout O

Logged in a5 weblogic

- |« validate @) Info

2 ApprovalRules.rules
(x) Globals
=
7 Bucketsets -
L ¥ ApprovalMatrixRules | - R)
& Links
Q; Decision Functions
Rulesets ¥ | ApprovalMatrix
P SetupRules
&P ApprovalMatrixRules
Ei' | h % ﬁ— EE Show Conflicts Switch Rows to Columns
&P CverrideRules
i Rul
Conditions Gap Analysis | R2 X | R3 X |
CustomerQOrder, vipStatus PLATIMUM GOLD, SILVER
CustomerQOrder. creditScore Laowe, Medium, High Low Medium
Before Promo, Promo Before Promo, Promo Before Promo, After
Quienitai=ctale Period, After Promo Period, After Promo Fromo
Conflict Resolution
03 Override
Actions
Modify Result ~

The Gap Analysis window is displayed as shown in Figure 12-66. You can select
the rules that need to be added to the Decision Table.

Figure 12-66 The Gap Analysis Window

Gap Analysis

There are 2 missing rule(s) in the dedision table. Please select the rules to add by dicking the checkboxes in the table header
columns.

Conditions | i | "] |

CustomerCrder. vipStatus
CustomerQOrder, creditScore Low, Medium, High
CurrentDate.date - Before Promo, Pro...

ﬂ Cancel

For more information about Gap Analysis, see Section 5.3.5, "How to Perform Decision
Table Gap Analysis."

12.7.7 Performing Conflict Resolution in Decision Tables

Rules in a Decision Table can conflict when they overlap or have different actions.
Two rules overlap when at least one of their condition cells has a bucket in common.

Using Oracle SOA Composer with Oracle Business Rules 12-49

Editing Decision Tables in an Oracle Business Rules Dictionary at Run Time

However, overlap without conflict is common and harmless. For more information
about conflicts in Decision Tables, see Section 5.3.1.4, "Understanding Decision Table
Contflict Analysis."

Using Oracle SOA Composer, you can find and resolve conflicts in a Decision Table.

To perform conflict resolution in a Decision Table:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and
select the Decision Table on which you want to perform the Conflict Resolution.

2. Ensure that the Show Conflicts is selected on the Decision Table menu.
3. Ensure that the conflict policy is set to manual in Advanced Settings as shown in

Figure 12-67. This is the default conflict policy.

Figure 12-67 Setting the Conflict Policy

ORACLE SOA Composer @ Bookmarkable Link Logout O

Logged in as weblogic

ES Revert.. = | + Validate @ Info

LE:EJ ApprovalRules.rules

(%) Globals

&7 Bucketsets

& Links

Q Decision Functions

* ApprovalMatrixRules View

&~ % &

Rulesets i

| ApprovalMatrix
&P SetupRules

7 Description | petermine approvals and discounts using decision table rules
P ApprovalMatrixRules

@ CwerrideRules Effective [

Bt

Priarity medium | Rule [advanced tree Allow gol'_7ﬂid

Active Mode Mode Gaps olicy
|ignore B
4 | i X H EE & Show Conflicts Switch Rows to Columns
. Rules
Conditions
i R1 X | R2 X | R3 X |
CustomerCrder. vipStatus PLATIMUM GOLD, SILVER
CustomerQrder. creditScore Laow, Medium, High Low

Before Promo, Promo Before Promo, Promo

Rspoasiars Period, After Promo Period, After Pramo

Before Pri

Note: For more information on conflict policies, see Section 5.3.1.4,
"Understanding Decision Table Conflict Analysis."

4. Select the Conflict row under Conflict Resolution and then click the rule that has
a conflict to display the Conflict Resolution window as shown in Figure 12-68.

12-50 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Decision Tables in an Oracle Business Rules Dictionary at Run Time

Figure 12-68 The Conflict Resolution Window

Conflict Resolution <]

Below are the rules that conflick with rule R1 and the conflict resolution methods
to resolve possible conflict occurrances, To change the resolution method, please
click the Resalution calumn and select the method vou wauld like to use ko resalve

the conflict.,

Rule: R1

Conflicting Rule |Resoluti0n

RS Conflict v

M Caniel

5. In the Conflict Resolution window, for each conflicting rule, in the Resolution
field select a resolution from the list and click OK as shown in Figure 12-69.

Figure 12-69 Options for Conflict Resolution

Conflict Resolution <]

Below are the rules that conflick with rule R1 and the conflict resolution methods
to resolve possible conflict occurrances, To change the resolution method, please
click the Resalution calumn and select the method vou wauld like to use ko resalve

the conflict.,

Rule: R1

Conflicting Rule |Resoluti0n

RS Conflict v

MoConflick
Override
OrverriddenBy
RunBefore
Runafter

M Caniel

For more information about the conflict resolution options in Decision Tables, see
Section 5.3.1.4, "Understanding Decision Table Conflict Analysis."

12.7.8 Switching From Rows to Columns

In Oracle SOA Composer, you can turn the rows in a Decision Table to columns by
clicking the Switch Rows to Columns button on the Decision Table toolbar. This

Using Oracle SOA Composer with Oracle Business Rules 12-51

Editing Decision Tables in an Oracle Business Rules Dictionary at Run Time

enables the rules to be displayed as rows, and conditions, actions, and conflicts to be
displayed as the columns.

Switching rows to columns provides ease of navigation when a Decision Table has
many rules because you can see all the rules together and you do not need to "page the
columns" for viewing the rules.

Figure 12-70 displays a Decision Table before the switch operation.
Figure 12-70 A Sample Decision Table

¥ ApprovalMatrixRules View | ApprovalMatrix |w | - X

¥

¥ | ApprovalMatrix

‘* | v % ﬁ E'g' & Show Conflicts M
Rules

Conditions
R1 X | R2 X | R3 X R4 X
CustomerOrder. vipStatus PLATIMUM GOLD, SILVER
CustomerOrder. creditScore Low, Medium, High Low Medium Medium, High
B rrentDate date Before Proma, El'omo Period, After Before Proma, El'omo Period, After Before Proma, After Promo Promo Period
Froma Fromo
Conflict Resolution
¥% Override RS
Actions
Modify Result
discount:double 10 Q, 0 Q, 5 Q, 3 Q,
status:StatusType StatusType. APPROVED StatusType. MAMNUAL StatusType.MANUAL StatusType.APPROVED

Figure 12-71 displays the sample Decision Table after switching the rows to columns.

Figure 12-71 Switching Rows to Columns

¥ ApprovalMatrixRules View | ApprovalMatrix |w | - x

¥ | ApprovalMatrix

'+ | i X ‘?; 'E'g' E. Show Conflicts Switch Rows to Columns

Conditions Conflk:t Actions
Rules Resolution
CustomerQrder. vipStatus Q / x |CustomerOrder.creditScore Q / X| CurrentDate.date Q / x OZO\;erride Modify Result @ x |discount:d0uble
n W Med 5 Before Proma, Promo Period,
R1 PLATINUM Low, Medium, High e 10
i Before Promo, Promo Period,
R2 GOLD, SILVER Law i pree 0
R3 Medium Before Proma, After Promo
R4 Medium, High Promo Period RS L
) Before Proma, Promo Period
: : v
E igh After Promo 2
.) Before Promo, Promo Period
ILIM W, M ' A y ! v
RE PLUTOMNIUM, null Law, Medium, High After Proma 1]

When the rows and columns are switched, the edit, delete, and other icons appear in
the column headers and not in the Decision Table toolbar.

Column Paging

In a Decision Table with many rules, for the ease of navigation, the Oracle SOA
Composer Ul displays the rules in multiple sets, with each set containing multiple

12-52 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Decision Tables in an Oracle Business Rules Dictionary at Run Time

rules. This is done to ensure that you do not need to scroll a lot for viewing all the
rules.

Oracle SOA Composer provides a pair of >> and << buttons on the rules column
header immediately following the last rule column heading of a particular set and
immediately preceding the first rule of a particular set respectively.

You need to click the >> or the << button to move to the following or preceding set of
rules respectively. This feature is called column paging.

Figure 12-72 displays the column paging buttons in a Decision Table in a Oracle SOA
Composer UL

Figure 12-72 Column Paging in a Decision Table

ORACLE SOA Composer

& Save

B Open =

&P Backmarkable Link Logout

Logged in as weblc

® Commit.. g5 Revert..

|« validate @ Info

{x) Globals

{7 Bucketsets

\f Linscs

4}; Dedision Functions
Rulesets

&P SetupRules

&P OverrideRules

B3 ApprovalRules.rules

@ ApprovalMatrixRules

¥ ApprovalMatrixRules View [Auﬁl'o'-.'a-'-'alrl;{ v: i - x L
¥ | ApprovalMatrix

o 3% =BT Show Conflicts Switch Rows to Columns |

Rules

Giamebe b LR RE X R7 X RO R1D X s

: R SILVER, P
CustomerOrder. vipStatus PLUTONILM PLUTONIUM, null
CustomerOrder . creditScore Medum Medium, High High 'G""'i_l;i]:ﬁi:‘m" Low, Medium, High
Before Promo, ;
Before Promo, L o Before Promo, Promo
CurrentDate.date After Promo Promo Period Promo Period, Period. & Fer Proio
After Promo

Conflict Resolution

Y Conflict R4

Y2 Override RE o

{ & : >

12.7.9 Deleting a Decision Table at Run Time

In Oracle SOA Composer, you can delete Decision Tables in a ruleset. For more
information on working with Decision Tables, see Section 5.1, "Introduction to
Working with Decision Tables."

To delete a decision table in a ruleset:
1. In edit mode, select a ruleset of interest.

2. In the ruleset area, in the View field from the list, select the Decision Table you
want to delete.
3. Click Delete Decision Table, as shown in Figure 12-73.

Using Oracle SOA Composer with Oracle Business Rules 12-53

Committing Changes for an Oracle Business Rules Dictionary at Run Time

Figure 12-73 Select the Delete Decision Table Icon

ORACLE" SOA Composer & Bookmarkable Link

Logout

Logged in as weblc

B8 Open < | I§ Save # Commit.. gFRevert.. < | / Validste @ Info
5] ApprovalRules.rules
(%) Globals
F2 B s,
¥ Budketset 1 g
o i ¥ ApprovalMstrinRiles View |Approvaidatrix vl (B~ 3¢ -
&P s T
& o Delete Decision Table
«f} Dedsion Functions
Rulesets - -
¥ | ApprovalMatrix
ég} SetupRules
» ApprovalMatrixRules
@ 4 * X -5 EE & Show Conflicts Switch Rows to Columns
&P OverrideRules
Rules
A1 X R2 X R3 X R4 X RS X »
CustomerOrder . vipStatus PLATINUM GOLD GOLD, SILVER
CustomerOrder creditScare Low, Medium Medium Lov
High
Before Promo %
Before Proma, Promo
CurrentDate. date Proma Period, Before Promo) !;:1 ;“_: ;.I,':I:‘,_
After Promo SR s i
Conflict Resolution
3) Confiict R&
3 Override 3
i 5
a - 2

12.8 Committing Changes for an Oracle Business Rules Dictionary at
Run Time

After you verify dictionary modifications, you can commit those changes to the MDS
repository.

To commit changes to an Oracle Business Rules dictionary:
1. Click the Commit menu item.

2. In the Confirm dialog, click No if you do not want to make the changes in the
MDS repository.

3. In the Confirm dialog, click Yes if you do want to make the changes in the MDS
repository.

Note: A dictionary with validation errors can be saved, but it can be
committed only after correcting the validation issues.

12.8.1 What You Need to Know About Editing With Multiple Users at Run Time

When multiple users are editing the same dictionary, Oracle SOA Composer shows a
message that the dictionary is being edited by another user and asks for a

confirmation. When multiple users work on a single dictionary, only the last commit is
persisted.

12-54 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Synchronizing Rules Dictionary in Oracle JDeveloper With Run Time Dictionary Updates

12.9 Synchronizing Rules Dictionary in Oracle JDeveloper With Run Time
Dictionary Updates

Oracle SOA Composer enables you to update rules dictionaries at run time. However,
the modifications made to the dictionaries through Oracle SOA Composer are not
automatically reflected in Oracle JDeveloper. To synchronize the dictionary updates
made in Oracle SOA Composer with the dictionaries available in Oracle JDeveloper,
you must select the Export option in Oracle Enterprise Manager Fusion Middleware

Control Console. This utility allows you to export the SOA composite application
along with the dictionary.

To select the Export option in Fusion Middleware Control Console:

1. In Fusion Middleware Control Console, select the composite that contains the

dictionary to be exported. Figure 12-74 displays the selected composite in Fusion
Middleware Control Console.

Figure 12-74 Opening the SOA Composite

1 FODOrderProcessingComposite [11.0]1& Loggeciin a5 weblogic

ol 50a Composite - Page Refreshed Jan 17, 2010 1216447 & pot 1)
Runming Instances O | Total 7. | Actve | Retire ... Shut Dowr... Test » Settings... ¥ % @ » !
Dashboard | Instances | Faults and Rejected Messages | UnitTests | Polces

@ a]
ElRecent Instances

Total
ite [11.0] Stert Tme

Jan 27, 2010 10407 AM
Jan 27, 2010 1:03:35 AM
Jan 27, 2010 1:03 i

etz epositaries
User Messaging Service

#Recent Faults and Rejected Messages

ElComponent Metrics

- e Fauited Inst;
Hame Component Type Total Instances Running Instances a b
seovershle

[o o A

10 0 o i

0 1 2 —F

| »
ElServices and References B

4 i

2. Click SOA Composite drop-down list on the right panel and select Export as
shown in Figure 12-75.

Using Oracle SOA Composer with Oracle Business Rules 12-55

Validating an Oracle Business Rules Dictionary at Run Time

Figure 12-75 Selecting the Export Utility

(58 ¢ FODOrderProcessingComposite [11.0] @ Logged in 35 weblogic
= 4 sthcy14_base_somain off 504 Composite « Page Refrashad Jan 27, 2010 1:16:47 M p5T L)
= {3 Apolcation Deployments Harme] "
= E3 soa | . Shut Down,., | | Test = settings,.. + | @ [| »|
= 8 soanfia (soa smrverl) | Maritaring 3 Messages | UnitTasts | Polisies
& (@] cefaut |
= (] restachish |
ol Aprasect1 [1.0] [S04 Derleyment ’
offd aPrajects [2.0] | Bt -
ofd File_MEDCompasite [2.0] i R]i];“'“; :ta ot 7 e
| Tast Sar n e
ﬁ mm l :{::;I:E ' ich0a3242f... € Fauted _:a' 27, 2010 1:04:07 AM
. | |Lic: 280311F... & Comoleted 3an 27, 2010 1:03:35 AM
off§ wransiation [1.0] | Polices i 7a7a1.., € Faured Jan 27, 2010 1:03:04 AM
& 3] umeshtest | hicthz3fan 1., € Fauted Jan 27, 2010 1:02:20 AM
E (3 weblLogic Domain " uid:923260... @ Completed Jan 27, 2010 12:55:33 AM

S04 Imfrastructure

= Metadata Repositories

& [User Messaging Service
504 Infrastructure Common Propertiss Is

Service Aeference Propertiss »
Gereral Infarmaton Totsl Ingtances Rurning [nstances foliz o)
Recoverable
<ForderFulfilment Mediator B a 0 -
{HiDscouniDictionar Decisian Servics 10 1} o oo
4 FODOrderProces: BPEL 0 1 [
4 | b
Elservices and References |
-

Ll 3]

3. Select Option 1: Export with all post-deploy changes from the Export Composite
page and click Export as shown in Figure 12-76.

Figure 12-76 Exporting All Postdeployment Changes

8- § FODOrderProcessingComposite [11.0]@ Loggedin 25 weblogic
El {f sthcy14_base_domain ff§ S04 Composite « Page Refreshed Jan 27, 2010 1:58:55 AM psT 0}
£3 Applcation Deplaymants
=13 soa tport Composite @ Expeort Cancel | =]
= $B saanfra (soa_server])
@ [F] defautt _
_ s page provides different options for exporting a snapshot of a running composite, This is usaful, for example, when you
= @ testashish st o replicate the same deplayment on a different deployment target, This operation wil have na effect an your currently
off aeroject1[1.0] rning composte,

Dlg AProject1 [2.0]

offd Fie_MEDComposite [2.0] You have chosen to export the following composite revision.

offj FoDOrderProcessingComposite [11.0] Compasite Name FODOrderProcessngCanmposite

ol sDOMassignPayioadPrej [2.0] Composite Revison 11.0

af transistion [1.0] Current Deployment Target fsthcy14_base_domain/base_domain/sos_serverl

B @ umeshtest
Ea wi i D "

?‘ :l v"""‘“ k< Damain I # option 1: Export with all post-deploy changes
&1 [Metadata Repositories This option wil generate a composite archive file containing the oniginal, desipn-tme definitions of the composite; as wel as
H 3 User Messaging Service all post-deployment information ksted in Option 2 and 3.

" Option 2: Export with runtime/metadata changes only
The compasite archive file will nduge the original compasite plus such post-deployment changes as task definitions, rule P
changes, etc..

" Option 3: Export with property changes only
The composite archive fie will ndude the onginal compasite plus any post-deployment property changes, such as binding
properties or policy settings.

" Option 4: Bxport with no post-deploy changes
This option wil generate & composite archive file containing only the pre-deployment, design-tme definitions of the
| | J _I::n:csne. Any propesty setiings you may have made on a running composite, or any runtme metadata, wil be ignored in |:|
4 L4 A *

12.10 Validating an Oracle Business Rules Dictionary at Run Time

In Oracle SOA Composer, in the Edit mode, you can validate a dictionary for errors.
The dictionary level validation errors are displayed in a Validation Panel in the bottom
of Oracle SOA Composer window as shown in Figure 12-77.

12-56 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Validating an Oracle Business Rules Dictionary at Run Time

Figure 12-77 The Validation Panel

ORACLE SOA Composer & Bookmarkable Link Logout O

Logged in as weblogic

|« validate) Info

(55 ApprovalRules.rules

i s (x) Globals

&7 Bucketsets
& Links

|I‘-Jame Description |'-e'alue |Bucketset Type
Q Decision Functions (x)

ApprovalThreshold | Threshold above which ¢ | 1000

...................................... ¥ | double

Rulesets
&P SetupRules
@ ApprovalMatrixRules
&P OverrideRules

\
S

Business Rule Validation - Log

|Message Dictionary Object Prog

_!\, RUL-05831: Select one or more values for this condition. ApprovalRules/approvalMatrixRules fApprovalMat. ..

A\ RUL-05831: Select one or more values for this condition. ApprovalRules/ApprovalMatrixRules /ApprovalMat. ..

M\ RUL-05831: Select one or more values for this condition. ApprovalRules/ApprovalMatrixRules fApprovalMat. ..

12.10.1 Understanding the Validation Panel

The Validation Panel lists all the dictionary-level validation errors. When you
double-click a row in the Validation Panel, Oracle SOA Composer leads you to the
erroneous component. For example, if a Bucket or a Bucketset error is double-clicked
in the Validation Panel, Oracle SOA Composer switches to the Bucketsets tab and
displays the invalid icon next to the Bucketset name. You can move the mouse cursor

over the invalid icon to see the list of error messages for that Bucketset as shown in
Figure 12-78.

Using Oracle SOA Composer with Oracle Business Rules 12-57

Validating an Oracle Business Rules Dictionary at Run Time

Figure 12-78 Bucketset Validation Error Messages

ORACLE SOA Composer

@ Backmarkable Link Logout O
Logged in as weblogic

BS Open - | I@ Save # Commit.. g5 Revert.. = | - Vaidate @@ Info
G2 ApprovalRules.rules
(x) Globals b
7 Bucketsets C‘ff/:j BUCKEFSEEs
& Llinks
Q; Decision Functions # | i / x R
|Name |Datat'ype Form Description
Rulesets {7 vipStatusType VipStatusType Enum
@} SetupRules u‘f‘ﬁ StatusType StatusType Enum
@ ApprovalMatrixRules \EJE Cl'edits.cores int Range
Y%or PromotionDates Date Range
&P OverrideRules & BucketSat 1 Vint Lov-
o j -05833: The bucket value contains invalid characters “Bucket 17, |
RUL-05833: The bucket value contains invalid characters “Bucket 27, | ——
Business Rule Validation - Log RHL-05720: data type mismatch for test "==" int == String
RUL-05720: data type mismatch for test "==" int == String L
|Message . B ¢ Prog
.L RUL-05833: The bucket value contains invalid characters “Bucket 1™, ApprovalRules/Data Model Bucket Set 1/Bucket("... Lt
i\ RIUL-05833: The bucket value contains invalid characters "Bucket 27 ApprovalRules/Data Model Bucket Set 1/Bucket("...
.ﬁ RUL-05720: data type mismatch for test "=="1 int == String ApprovalRules/Data Model Bucket Set 1/ Bucket 1... Valu =
.ﬁ RUL-05720: data type mismatch for test "==": int == String ApprovalRules/Data Model Bucket Set 1/Bucket 2... Valu
.ﬁ RUL-05831: Select one or more values for this condition. ApprovalRules/ApprovalMatrixRules /ApprovalMat. .. a2
.1\, RIUL-05831: Select one or more values for this condition. ApprovalRules/ApprovalMatrixRules/ApprovalMat. ..

When the Bucketset Editor window is displayed, the invalid fields are highlighted in

the editor, and a pop-up containing the error messages are displayed, as shown in
Figure 12-79.

12-58 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Validating an Oracle Business Rules Dictionary at Run Time

Figure 12-79 Highlighted Error Entries in Bucketset Editor

& Warning <]

Messages for this page are listed below.
Value & RUL-05833: The bucket value contains invalid characters "Bucket 1™,
& RUL-05720: data type mismatch for test "==": int == String

Value & RUL-05833: The bucket value contains invalid characters "Bucket 2™,

@ RUL-05720: data type mismatch for test "==": int == String

When you double-click an error pertaining to a Decision Table, the UI switches to the
Decision Table Ul and displays the error messages when you move the mouse cursor
on the invalid icon as shown in Figure 12-80.

Using Oracle SOA Composer with Oracle Business Rules 12-59

Validating an Oracle Business Rules Dictionary at Run Time

Figure 12-80 Accessing the Erroneous Component

ORACLE SOA Composer @ Bookmarkable Link Logout

Logged in a5 weblogic

|« validate) Info
B ApprovalRules.rules
(x) Globals
2
7 Bucketsets ¥ | ApprovalMatrix)
& Links
Cﬁ Decision Functions :
‘* | il X -ﬁ— EH a Show Conflicts @ Switch Rows to Columns
Rulesets
& setupRules Conditions 71X | R X |
@ ApprovalMatrixRules CustomerOrder, vipStatus G PLATIMNUM B
) CustomerCrder. creditScore % Low, Medium, High
@ OverrideRules CurrentDate.date @ L-05831: Select one or more values for this condition. fromo Period, After
RUL-05831: Select one or more values for this condition, 2™
RUL-05831: Select one or more values for this condition. &
q = &l
a7 T 3
e
Business Rule Validation - Log
oo did LYPeE st ior st == L L == ouny APPTUVAIRUIES L dLG IMIULEDULKREL SEL 1 DULKEL L. ¥diug ~
MY ata type mismatch for test "=="! int == String ApprovalRules/Data Model Bucket Set 1/ Bucket 2... Value T
.B elect one or more values for this condition. ApprovalRules/approvalMatrixRules/ApprovalMat. ..
.3 elect one or more values for this condition. ApprovalRules/ApprovalMatrixRules/ApprovalMat. ..
Y elect one or more values for this condition, ApprovalRules/ApprovalMatrixRules fApprovalMat. ..
L e e B e i it e e e e N

Similarly, in the Validation Panel, if you double-click an error pertaining to a rule in a
ruleset, the Ul switches to the ruleset to which the rule belongs and highlights the
erring fields of the rule. In addition, all the errors pertaining to the rule are displayed
in a pop-up as shown in Figure 12-81.

12-60 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Validating an Oracle Business Rules Dictionary at Run Time

Figure 12-81 Rules Validation

ORACLE" 50A Composer

@Bookmarkahle Link ~ Logout o

Logged in as weblogic

B Open - | @ Save ® Commit.. g5 Revert.. = | « Valdate @@ Info
[Z2) orderBooking.rules -
[\ warning B r

(x) slobals Messages for this page are listed below.

7 Bucketsets ¥ Ruleset_1 £\ RUL-05711: The expression cannot be blank, '| - % 1-Gaf 6 v o

& Links yalue &\ RUL-OS711: The expression cannot be blank, |

7 Decision Functions B ¥ |Rule 1 yalue &\ RUL-05711: The expression cannot be blank.
Rulesets
[= ¥ Rulez oK |

&P Ruleset_1 i

&P Ruleset_2 B ¥ [Rue s REe$

& Ruleset_3

)
& Ruleset_4 B ¥ |Rule_t REeE
Ruleset_5 .
@ = > ¥ |Rule_S b N
7 ¥ |Rule_6 ® e
IF (o (ke
[|usaddress Q, [is v Q, and + | j
j O Q, [is v Q, and + |v | —| v
S
.|
Business Rule ¥Yalidation - Log
|Message |Dicti0nary Ohject
% RUL-05711: The expression cannot be blank, CrderBooking/Ruleset_1/Rule_Sfvarfexpression[1] -~
Y RUL-05711: The expression cannat be blank, OrderBooking/Ruleset_1/Rule_gfUSAddress|Tesk[1]/exprassion[2]
My RUL-05711: The expression cannat be blank, OrderBooking/Ruleset_1/Rule_g/115Address Test[2]/expression[1]
My RUL-05711: The expression cannat be blank, OrderBooking/Ruleset_1/Rule_gfUSAddress| Test[2]/exprassion[2] w
< ¥

12.10.2 Updating the Validation Panel

The Validation Panel does not get updated automatically to display any new
validation errors that may be generated due to any modification to the dictionary

components.

For example, when a new rule is added with some errors, the Validation Panel is not
updated automatically. You need to click the Validate button on the Oracle SOA
Composer menu to update the Validation Panel with the new error entry, as shown in

Figure 12-82.

Using Oracle SOA Composer with Oracle Business Rules 12-61

Obtaining Composite and Dictionary Information at Run Time

Figure 12-82 The Validate Button

ORACLE SOA Composer @ Bookmarkable Link L

Logged in as

Check For any validation errars in the currently opened

E ApprovalRules.rules daocument.
(x) Globals
&7 Bucketsets ..
¥ SetupRules Wiew |IFfTHEM Rules | | - % || 12 of 2w =
& links

Q Decision Functions

R W ¥ |TreatAsPlatinum R G
&P SetupRules

&P ApprovalMatrixRules
&P OverrideRules Ir (b (ks 10 45

|:| { | CustomerQrder.vipStatu Q is ¥ | |VipStatusType.GOLD Ck or

oo j<

Business Rule Validation - Log

Message Dictionary Object |P
A RUL-05720: data type mismatch for test "==": int == String ApprovalRules/Data Model Bucket Set 1/ Bucket 2... W
ﬂ RUL-05711: The expression cannot be blank. ApprovalRules/SetupRules TreatAsPlatinum Cust. ..
.L\, RUL-05711: The expression cannot be blank. ApprovalRules/SetupRules TreatAsPlatinum,/Cust. ..
= eon oo o . 53 0 3 o =1 ma =1 > axmm o=

12.11 Obtaining Composite and Dictionary Information at Run Time

When a dictionary is open, you can obtain dictionary and composite details from the
Info dialog.

To obtain dictionary information:

1. With an open document, you can obtain the document type, composite details,
and document path by clicking Info. This displays the Oracle SOA Composer
open file information, as shown in Figure 12-83.

12-62 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tasks at Run Time

Figure 12-83 Using Info Dialog to Obtain the Document Path for an Open Dictionary

ORACLE" S0A Composer @ Bookmarkable Link Lo

Logged in as

Commit ., E’a Revert .. == " Malidate W

Type Composite R
Inf tion For th Ll d d k.
Composite ApprovalRuleDemo_rev1.0 D Al A] =T e

[E2) approvalRu

Dt ails
(x) Glabals Document (dEploved-omposites/def aulk
lapprovalRulebemo_reyl.0foracle/rules)orderapproval .
7 Bucketsets Fetly Japprovalfules. rules | v A 1-zafz &
@ Links
<3 Decision Functions [= ¥ | TeatAsPlatinum RGP
Rulesets
B ¥ | Initialize e

&p SetupRules
&p ApprovalMatrixRules
&p OverideRules

12.12 Working with Tasks at Run Time

Using Oracle SOA Composer, you can view and edit tasks that may be or may not be
associated to Approval Management Extensions (AMX) rules. AMX enables you to
define complex task routing slips for human workflow by taking into account business
documents and associated rules to determine the approval hierarchy for a work item.
Additionally, AMX lets you define multi-stage approvals with associated list builders
based on supervisor or position hierarchies. At design time, you can define the
approval task in the Human Task Editor of Oracle JDeveloper, and associate the task
with a BPEL process. For more information about approval management and tasks, see
"Using Approval Management" in Oracle Fusion Middleware Modeling and
Implementation Guide for Oracle Business Process Management.

In Oracle SOA Composer, the Task Editor is embedded as a task flow so that you can
view and perform all the task metadata lifecycle operations.

12.12.1 How to View Task Metadata at Run Time

In Oracle SOA Composer, you can open a task or an AMX rules metadata with the
Open menu.

To open a task or an AMX rule using the Open menu:

1. In Oracle SOA Composer, from the Open menu, select Open Task as shown in
Figure 12-84. Oracle SOA Composer connects to the MDS and displays the Select
a Task to open dialog box. This dialog box lists the available composite
applications that contain tasks and AMX rules.

Using Oracle SOA Composer with Oracle Business Rules 12-63

Working with Tasks at Run Time

Figure 12-84 Opening a Task

ORACLE' SOA composer (ﬁ Bookmarkable Link Logout o

Logged in as weblogic

[EZl open Rules
[open ovm
53 Open Task

7

i,

Note: You can differentiate between traditional rules and AMX rules
depends on the naming convention.

For example, if a composite has the following artifacts:
» <AMX task name>.tsk

. <AMX rule name>Rules.rules

In this case, the Rules.rules file is an AMX rules file associated with an
AMX task, and so, is displayed as a part of an AMX task in the list of

Select a Task to open, and not as a part of an ordinary Oracle
Business Rules listing.

2. Inthe Select a Task to open dialog box, to open a task or AMX rule, select an entry

in the table and click Open, or double-click an item as shown in Figure 12-85.

Figure 12-85 Selecting a Task to Open

select a Task to open

B
Composite ﬂ &
Composite |Partition | Task: File
simplelinkedrulestask_rewl. 1 default SimpleLinkedrulesTask, kask
SimpleApproval _revl.0 default SimpleApprovalTask, task
simplelinkedrulestask_rev1.0 default SimpleLinkedRulesTask, task
Qpen Cancel

12-64 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tasks at Run Time

If the composite that you have selected only has a task and no associated AMX
rule or ruleset, then the task window is displayed as shown in Figure 12-86.

Figure 12-86 Oracle SOA Composer with Only Task Displayed

ORACLE" 50A Composer &P Bookmarkable Link L
Logged in a:
BECren - | SEdt | B Info

c% simpleApprovalTask.task

[simpleApprovalTask : Event Driven Configuration

Task Aggregation Mone
Cn Errar Motify

Allows all participants to invite other participants
Allows participants ba edit future participants
Allowy initiator ko add participants
Assignment and Routing Policy [[] Enable auta claim
O Complete task when participant chooses
[Enable eatly completion of parallel subtasks
O Complete parent tasks of early completing subtasks

~|Extpiration and Escalation Policy

Mewver Expire

~|Notification Settings

®
Task Status Recipient | Matification Header |
Assign Assignees
Complzte Initiatar /
Errar wner /

[Make notifications secure {exclude details)
Make notification actionable
[send task attachments with email natifications

If the composite contains a task and an associated AMX rule or ruleset, then
Oracle SOA Composer displays both the task and the rule or ruleset in a tabbed
window as shown in Figure 12-87.

Using Oracle SOA Composer with Oracle Business Rules 12-65

Working with Tasks at Run Time

Figure 12-87 Oracle SOA Composer with Both Task and AMX Rule

ORACLE S0OA Composer & Bookmarkable Link — Logout o

Logged in as weblogic

B open / Edit 'v -] v 0 Info

a% SimpleLinkedRulesTask.task [E3) simpleLinkedRulesTaskRules.rules

[Data driven configuration Add variable

Configure list builder propetties via task data-driven rules

Seleck Ruleset | Stagel : ParticipantRules

ParticipantRules [1gnare this participant

View | IFJTHEM Rules » 1-1af 1w

W ¥ Rule_1

List Builder Supervisory
Response Type Required

Mumnber of levels 3

Skarting Participant HierarchyBuilder, getPrincipali™weblogic”, -1, ™,

Top Participant HierarchyBuilder, getPrincipal{"weblogic", -1, ™,

Auto Action Enabled False

Auko Action null

12.12.2 How to Configure a Task or an AMX Rule Metadata at Run Time

Task Configuration enables business users and administrators to review the rules that
were configured automatically by the workflow designer. These predefined rules can
be changed for a specific customer based on the customer's applicable corporate
policies.

In Oracle SOA Composer, Task Configuration enables you to edit the event-driven
(only tasks) and data-driven rules (tasks with an associated AMX rules) associated
with an approval flow at run time.

12.12.2.1 Configuring Event-Driven Settings

To configure event-driven settings:
1. Log on to Oracle SOA Composer and open the required task.

2. Click Edit on the Oracle SOA Composer menu bar to open the selected task for
editing as shown in Figure 12-88.

12-66 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tasks at Run Time

Figure 12-88 Opening a Task for Editing

ORACLE SOA Composer & Bockmarkable Link Logout O

Logged in as weblogic

BS Cpen = /" Edit F\',
cﬁ simpleApprovalTask.task
[E] simpleapprovalTask : Event Driven Configuration A
Task Aggregation Mane
On Error Motify
Allows all participants to invite ather participants
Allowy participants ko edit Fukture participants

Allow initiator to add participants
Assignment and Routing Policy [Enable auta claim

O Complete kask when participant chooses

[Enable early completion of parallel subtasks
O Complete parent tasks of early completing subtasks
~|Expiration and Escalation Policy
Mever Expire
~|Notification Settings
®
Task Status Fecipient | Matification Header |
Assign Assignees 7 N
Complete Inikiator /
Errar Cianer
/ [make notifications secure (exclude details)
[Make natification actionable
[Send task attachments with email natifications
v

3. Make the relevant edits and click Save as shown in Figure 12-89.

Using Oracle SOA Composer with Oracle Business Rules 12-67

Working with Tasks at Run Time

Figure 12-89 Saving Task Configuration

ORACLE" SOA Composer & Bockmarkable Link Logout O

Logged in as weblogic

Bs Open = FEM # Commit.. g5 Revert.. = | O Info

ch simpleApprovalTask.task

SimpleapprovalTask : Event Driven Configuration

Task. Aggregation | Mone e

On Error Matify Ck

Allaw all participants ko invite other participants
Allow participants ko edit fukture participants
Allow initiator to add participants
Assignment and Fouting Palicy [[JEnable auta claim
[] Complete task when participant chooses b

Enable early completion of parallel subtasks

Complete parent tasks of early complating subtasks

~ |Expiration and Escalation Policy

Mewer Expire %

~ |Motification Settings

®

Task Status Recipient | Matification Header |
Assign b Assignesas A

Complete v Initiator v 7

Error b Chaner - /

[IMake natifications secure (excude details)
Make notification actionable
[5end task attachments with email naotifications

Mo reminders % Daw a §| Hour 1] §| Mirtes 1] §| Befare Expiration

*|Task Access

You can configure the following options and settings:
s Task aggregation

= Error notification

= Assignment and routing policy

» Expiration and escalation policy

= Notification settings

» Task access settings

Setting Approval Aggregation Requirements
Task aggregation requirements can be any of the following:

= None <Prabu: Please provide a one-liner for this option>
= Once per task <Prabu: Please provide a one-liner for this option>

= Once per stage <Prabu: Please provide a one-liner for this option>

12-68 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tasks at Run Time

Notifying Errors

You can specify the user and group names that need to be notified in case of an error in
the task. You need to click the On Error Notify search icon to display the Configure
Error Assignees dialog box where you can specify the user or group names as shown
in Figure 12-90.

Figure 12-90 Specifying Error Assignees

ORACLE S0A Composer y Eookmarkable Link Logout

Logged in as web

B Cpen

ﬁh simpleApprovalTask.task

SimpleApprovalTask : Event Driven Configuration

Task Aggregation Mone Configure Error Assignees @

On Error Motify Q Users

|
all
Al Groups
all
Assignment and Routing Policy [Cen i
o -

oK | Cancel | |

Complete parent tasks of early completing subtasks

~|Expiration and Escalation Policy

Mever Expire v

e ————————————

Setting Assignment and Routing Policy

You can set the assignment and routing policy by using the options available in Oracle
SOA Composer. Figure 12-94 shows the available options for setting assignment and
routing policy.

Figure 12-91 Setting Assignment and Routing Policy

ORACLE S0A COmposer ﬁ Bockrnarkable Link Logout o
Logged in as weblogic
Bs Open
&2 simpleApprovalTask.task
SifnpleApprouaITask i Event Driven Configuration . fad
Task Aggregation | Mone w

on Errar Matify G

Allow all participants to invite okher participants
Allow participants to edit Future participants
Allow initiator to add participanks
Assignment and Routing Policy [[JEnable auta claim
Complete task when participant chooses x|

[JEnable early completion of parallel subteéD APFROVE
[JREECT

Complete parent tasks of early comple

~|Expiration and Escalation Policy

Using Oracle SOA Composer with Oracle Business Rules 12-69

Working with Tasks at Run Time

For more information about the assignment and routing options available in
event-driven configuration, see "Routing Policy Method" in Oracle Fusion Middleware
Developer’s Guide for Oracle SOA Suite.

Setting Expiration and Escalation Policy

You can set the expiration and escalation policy for the task by using the available
items in the Expiration and Escalation Policy list. The available list items are:

s Never Expire
= Expire After
» Escalate After
= Renew After

Figure 12-92 displays the list of options for setting the expiration and escalation policy.

Figure 12-92 Setting Expiration and Escalation Policy

ORACLE 50A Composer & Bookmarkable Link Logout '€

Logged in as weblogic

B& Open = | IR Save & Commit.. g§Revert. o |« O Info
& SimpleApprovalTask.task
A~
Allowy all participants to invite okher participants
Allow participants ko edit Fubure participants
Allowy initiatar to add participants
P P
Assignment and Routing Palicy [CJEnable auto claim
Complete kask when participant chooses |
[JEnable early completion of parallel subkasks
Complete parent tasks of early completing subtasks
~ |Extpiration and Escalation Policy
Mewver Expire |
Expire After
Escalate After =
Renew After Y
®
Task Stakus |Recipient | Matification Header | v

For more information about expiration and escalation policy, see "How to Escalate,
Renew, or End the Task" in Oracle Fusion Middleware Developer’s Guide for Oracle SOA
Suite.

Configuring Notification Settings

You can configure notification settings for a task by using the options available in the
Notification Settings section of Oracle SOA Composer.

Figure 12-93 displays the different options available to configure notification settings
for a task.

12-70 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tasks at Run Time

Figure 12-93 Specifying Notification Settings

ORACLE" SOA Composer @ Bookmarkable Link Logout

Logged in as web

& simpleApprovalTask.task

~|Motification Settings

®
Task Status Recipient | Matification Header |

Assign W Assignees e /

Complete % Inikiakor v 7

Efiron X AR s / [IMake notifications secure (excude details)

Make notification actionable
[5end task attachments with email notifications

Mo reminders % Day a §| Hour a §| Minutes a §| Before Expiration w

For more information about specifying notification settings for a task, see "How to
Specify Participant Notification Preferences" in Oracle Fusion Middleware Developer's
Guide for Oracle SOA Suite.

Configuring Task Access Settings

You can set access-rule settings to control the actions a user can perform. You can also
specify content and action permissions based on the logical role of a user, such as
creator (initiator), owner, assignee, and reviewers.

In Oracle SOA Composer, you can set access settings by using the options available
under Task Access as shown in Figure 12-94.

Using Oracle SOA Composer with Oracle Business Rules 12-71

Working with Tasks at Run Time

Figure 12-94 Specifying Task Access Settings

ORACLE SOA Composer @ Bockmarkable Link Logout o

Logged in as weblogic

O Info
&2 simpleApprovalTask.task
A
v|Task Access
Task content (EETERT N,
i G Individuals with

Task Content Individuals with read access T

Payload Admin; Approvers;Reviewers x| All

ATTACHMENTS Admin; Approvers x| All

Assignees All x| all

Comments Admin; Approvers x| All

Dates all x| all

Flexfields Admin; Approvers;Reviewers x| All

Histary all x| all

Reviewers all | all

< ¥

For more information on configuring task access, see "How to Define Security Access
Rules" in Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business
Process Management.

12.12.2.2 Configuring Data-Driven Settings (Rule or Condition)

To configure data-driven settings:

1. Log on to Oracle SOA Composer and open the required task.

2. Click Edit on the Oracle SOA Composer menu bar to open the selected AMX

rule-associated task for editing as shown in Figure 12-95.

Figure 12-95 Opening an AMX Rule for Editing

ORACLE S0A Composer &P Bockmarkable Link Logout O

Logged in as weblogic
Bs Open = Vm B

dr; SimpleLinkedRulesTask.task

[l simpleLinkedRulesTaskRules.rules

[Data driven configuration Add variable

Configure list builder properties via task data-driven rules

Select Ruleset | Stagel : ParticipantRules

ParticipantRules [1griare this participant

Wigw | IFJTHEM Rules % 1-1af 1w

12-72 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tasks at Run Time

3.

Make the relevant edits and click Save as shown in Figure 12-96.

Figure 12-96 Saving AMX Rule Configuration

ORACLE" S50A Composer & Bookmarkable Link Logout O

Logged in as weblogic

B Cpen = FEM ® Commit.. g5 Revert.. < | & O Info

g, SimpleLinkedRulesTask.task [EZ) simpleLinkedRulesTaskRules.rules

[Drata driven configuration Add variable

Configure list builder properties via task data-driven rules

Select Ruleset | Stagel : ParticipantRules

ParticipantRules [J1gnore this participant
view |IF/THENRules &[]+ 3€ 11ef1 % O ~
7 ¥ | Rule_t ER
IF (o (ke
[| Task.creator Q [isnt v [l Q + |- j
THEN

List Builder Superwvisory
Response Type () Required O FYI

Mumber of levels | 3

|

You can perform the following actions:

Adding, updating, and deleting a rule

Changing rule assertions (which depend on the type of list builder for which the
rule has been configured)

Adding a variable

For more information about editing data-driven settings, see "How to Edit
Data-Driven Settings" in Oracle Fusion Middleware User’s Guide for Oracle Business
Process Management.

Using Oracle SOA Composer with Oracle Business Rules 12-73

Working with Tasks at Run Time

12-74 Oracle Fusion Middleware User's Guide for Oracle Business Rules

A

Oracle Business Rules Files and Limitations

This appendix lists known naming constraints for Rules Designer files and names, and
certain Rules SDK limitations.

This appendix includes the following sections:

= Section A.1, "Rules Designer Naming Conventions"

A.1 Rules Designer Naming Conventions

This section covers Rules Designer naming conventions.

A.1.1 Ruleset Naming

Rules Designer enforces a limitation for ruleset names; a ruleset name must start with
a letter and contain only letters, numbers, or the following characters: ".", "-","_","",
":","/", and single spaces. Letters include the characters (a to z and A to z) and

numbers (0 to 9).

A.1.2 Dictionary Naming

Rules Designer dictionary names can contain only the following characters, upper and
lowercase letters (a to z and A to z), numbers (0 to 9), and the underscore (_). Special
characters are not valid in a dictionary name.

Rules Designer dictionary names are case preserving but case-insensitive. For
example, the dictionary names Dictionary and DICT are both valid. If you create a
dictionary named Test, then you can create another dictionary named TEST only if
you first delete the dictionary named Test.

A.1.3 Alias Naming

Rules Designer alias names must begin with a letter and contain only letters, numbers,

LI LI L LA L L I LA I}

o=, e /", and single spaces.

A.1.4 XML Schema Target Package Naming

The Target Package Name that you specify for an XMLFact on the XML Schema
Selector page is limited to ASCII characters, digits, and the underscore character.

Oracle Business Rules Files and Limitations A-1

Rules Designer Naming Conventions

A-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

B

Oracle Business Rules Built-in Classes and

Functions

This appendix discusses the extensive library of Oracle Business Rules (OBR) built-in
classes, methods, and functions that help reasoning about data containing text strings,
lists, numbers, dates, times, and so on.

In the following sections, there are multiple tables whose each row has a Kind column
that is either Cl, Co, M, sM, P, or sP (Class, Constructor, Method, static Method,
Property, or static Property (Java static final field) respectively). The first row in each
table specifies the class. When the Java Name is the same as the OBR Name (the rule
SDK terms it the Alias), a '-' is displayed. The Signature column provides type
information for methods, functions, and properties. The signature of a property is
actually the type, for example BigDecimal. The signature of a method or function is
of the form return (argl, arg2, . ..), where return is the return type and
argl,arg2, ... are the argument types.

This appendix covers the following sections:
m Section B.1, "String Classes"

s Section B.2, "List Classes"

s Section B.3, "Numeric Classes"

s Section B.4, "Time and Duration Classes"
s Section B.5, "Miscellaneous Classes"

s Section B.6, "Functions"

B.1 String Classes

This section covers the String-related classes provided by Oracle Business Rules.

Table B-1 lists the String class.

Table B-1 The String Class

OBR Name Kind Signature Java Name Description Reference

String Cl

- javalang.Stri Java immutable character strings. http://java.sun.com/
ng Beware, Java uses 0-based indexing javase/6/docs/api/ja
for characters in strings, and XML va/lang/String.html
uses 1-based indexing

charAt S

char(int) - Returns the char value at 0-based http://java.sun.com/
index argl. "Oracle".charAt(2)=="a'. javase/6/docs/api/ja
va/lang/String.html#

charAt%28int%29

Oracle Business Rules Built-in Classes and Functions B-1

String Classes

Table B-1 (Cont.) The String Class

OBR Name Kind Signature Java Name Description Reference
compareTo M int(String) - Returns the value 0 if the argument http://java.sun.com/
string is equal to this string; a value javase/6/docs/api/ja
less than 0 if this string is va/lang/String.html#
lexicographically less than the string compareTo%28java.lan
argument; and a value greater than g.String%29
0 if this string is lexicographically
greater than the string argument.
"a".compareTo("b")<0.
contains M boolean(String) - Tests whether this string contains http://java.sun.com/
argl. "Oracle".contains("rac")==true. javase/6/docs/api/ja
va/lang/String.html#
contains%28java.lang
.CharSequence%29
endsWith M boolean(String) - Tests whether this string ends with http://java.sun.com/
argl. "Oracle".endsWith("le")==true. javase/6/docs/api/ja
va/lang/String.html#
endsWith%28java.lang
.String%29
equalsignoreCase M boolean(String) - Tests whether this string equals http://java.sun.com/
argl, ignoring case consideration. javase/6/docs/api/ja
"Oracle".equalslgnoreCase("oRaCIE" va/lang/String.html#
==true. equalsIgnoreCase%28j
ava.lang.String%29
indexOf M int(String,int) - Returns the 0-based index of the http://java.sun.com/
start of argl within this String, but javase/6/docs/api/ja
not before the 0-based index arg2. va/lang/String.html#
"banana".indexOf("an",2)==3. index0f%28java.lang.
String, %$20int%29
lastIndexOf M int(String,int) - Returns the 0-based index within http://java.sun.com/
this string of the last occurrence of ~ javase/6/docs/api/Jja
argl, searching backward starting at va/lang/String.html#
the index arg?2. lastIndexOf%28java.l
"banana".lastindexOf("an","banana". ang.String, $20int%29
length())==3.
length M int - Returns the length of this string. http://java.sun.com/
"Oracle".length()==6. javase/6/docs/api/ja
va/lang/String.html#
length%28%29
matches M boolean(String) - Tests if this string matches the given http://java.sun.com/
regular expression. javase/6/docs/api/ja
"banana".matches("/b.*a$")==true. = va/lang/String.html#
matches%28java.lang.
String%29
replaceAll M String(String, St - Replaces each substring of this http://java.sun.com/
ring) string that matches argl (aregular ~ javase/6/docs/api/ja
expression) with arg2. va/lang/String.html#
"banana".replaceAll(".a","x0")=="xox replaceAll%28java.la
oxo0". ng.String, %$20java.la
ng.String%29
replaceFirst M String(String, St - Replaces first substring of this string http://java.sun.com/
ring) that matches argl (a regular javase/6/docs/api/ja
expression) with arg?2. va/lang/String.html#
"banana".replaceFirst(".a","x0")=="x replaceFirst%28java.
onana". lang.String, $20java.
lang.String%29
startsWith M boolean(String) - Tests whether this string starts with http://java.sun.com/

argl.
"Oracle".startsWith("Or")==true.

javase/6/docs/api/ja
va/lang/String.html#
startsWith%28java.la
ng.String%29

B-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

String Classes

Table B-1 (Cont.) The String Class

OBR Name Kind Signature Java Name Description Reference

substring M String(int,int) - Returns the substring of this string, http://java.sun.com/
starting with the O0-based index argl, javase/6/docs/api/ja
and ending before the 0-based index va/lang/String.html#
arg2. "Oracle".substring(1,4)=="rac". substring%28int, %201

nt%29
toLowerCase M String() - Converts this string to lower case. http://java.sun.com/
"Oracle".toLowerCase()=="oracle". javase/6/docs/api/ja

va/lang/String.html#
toLowerCase%28%29

toUpperCase M String() - Converts this string to upper case. ~ http://java.sun.com/
"Oracle".toUpperCase()=="ORACLE javase/6/docs/api/ja
", va/lang/String.html#

toUpperCase%28%29

trim M String() - Removes leading and trailing http://java.sun.com/
whitespace. " Oracle javase/6/docs/api/ja
".trim()=="Oracle". va/lang/String.html#

trim%28%29

Table B-2 lists the RL class strings methods.

Table B-2 The RL Class String Methods

OBR Name Kind Signature Java Name Description Reference
RL Cl - oracle.rules.r Supplement standard Java classes http://www.w3.org/TR/
Lextensions. with W3C RIF functionality. rif-dtb/
RL
string.join sM String(String...) stringJoin Concatenates first n-1 args using the http://www.w3.org/TR/
last arg as a separator. rif-dtb/#func:string-

RL.string.join("a","b","c","#")=="a#b# join
c".

string.substring sM String(String,in substring Returns the substring of argl, http://www.w3.0rg/TR/
t,int) beginning at the 1-based index arg2, rif-dtb/#func:substri
and continuing for arg3 characters. ng
RL.string.substring("Oracle”,2,3)=="

"

rac".
string.suffix sM String(String,in substring Returns the suffix of argl, http://www.w3.org/TR/
t) beginning at the 1-based index arg2. rif-dtb/#func:substri
RL.string.suffix("Oracle",5)=="le". ng
string.substring sM String(String,St - substringBefo Returns the substring of argl that http://www.w3.org/TR/
before ring) re occurs before arg2. rif-dtb/#func:substri
RL.string.substring ng-before
before("Oracle","ac")=="0r".
string.substring sM String(String,St - substringAfte Returns the substring of argl that http://www.w3.org/TR/
after ring) r occurs after arg?2. rif-dtb/#func:substri
RL.string.substring ng-after
after("Oracle","ac")=="1e".
string.iri.encode sM String(String) encodeForUR Encodes characters not permitted in http://www.w3.org/TR/
path I an URI path. RL.string.iri encode rif-dtb/#func:encode-
path("Oracle Business for-uri
Rules")=="0Oracle%20Business%20R
ules".
string.iri.touri sM String(String) iriToUri Encodes some characters not http://www.w3.org/TR/

permitted in a URL RL.string.irito rif-dtb/#func:iri-to-
uri("http://www.example.com/~bé uri

bé")=="http:/ /www.example.com/

~b%C3%A9b%C3%A9"

Oracle Business Rules Built-in Classes and Functions B-3

List Classes

Table B-2 (Cont.) The RL Class String Methods

OBR Name Kind Signature Java Name Description Reference
string.iri.to ascii sM String(String) escapeHtmlU Encodes non-ascii characters. http://www.w3.org/TR/
ri RL.string.iri to ascii("javascript:if rif-dtb/#func:escape-
(navigator.browserLanguage == 'fr') html-uri
window.open(‘http:/ /www.exampl
e.com/~bébé');")=="javascript:if
(navigator.browserLanguage == 'fr')
window.open(‘http://www.exampl
e.com/~b%C3%A9b%C3%A9");"
string.is sM boolean(String) isNormalized A normalized string does not http://www.w3.org/TR/
normalized String contain the carriage return (#xD), rif-dtb/#Guard_Predic
line feed (#xA) nor tab (#x9) ates_for_Datatypes
characters. RL.string.is normalized("
Business Rules ")==true.
string.is token ~ sM boolean(String) isToken A token is a normalized string with http://www.w3.org/TR/
no leading or trailing spaces,and no rif-dtb/#Guard_Predic
double spaces. RL.string.is ates_for_Datatypes
token("Business Rules")==true.
string.is sM boolean(String) isLanguage A language identifier. RL.string.is http://www.w3.org/TR/
language language("en")==true. rif-dtb/#Guard_Predic
ates_for_Datatypes
string.is Name sM boolean(String) isName A name is a token with no spaces http://www.w3.org/TR/
(and some other constraints on its rif-dtb/#Guard_Predic
characters). RL.string.is ates_for_Datatypes
Name("xs:Name")==true.
string.is sM boolean(String) isNCName A non-colonized name. RL.string.is http://www.w3.org/TR/
NCName NCName("xs:NCName")==false. rif-dtb/#Guard_Predic
ates_for_Datatypes
string.is sM boolean(String) isSNMTOKEN An NMTOKEN is a Name withno http://www.w3.org/TR/
NMTOKEN restriction on the initial character. rif-dtb/#Guard_Predic
RL.string.is ates_for_Datatypes
NMTOKEN("-Oracle")==true.
string.compare sM int(String,Strin compare Returns -1, 0, or 1 if argl<arg?2, http://www.w3.org/TR/
g) argl==arg2, or argl>arg2, rif-dtb/#func:compare

respectively.
RL.string.compare("foo","bar")==1.

_.28adapted_from_fn:c
ompare.29

B.2 List Classes

This section covers the List classes provided by Oracle Business Rules.

Table B-3 lists the List class.

Table B-3 The List Class

OBR Name Kind Signature Java Name Description Reference

List Cl java.util.List Represents mutable and immutable http://java.sun.com/jav
lists. Lists use 0-based indexes. ase/6/docs/api/java/uti
Attempts to modify an immutable 1/List.html
list may result in
UnsupportedOperationExceptions.

append M void(Object) add Appends argl to this list. Modifies ~ http://java.sun.com/jav
this list. ase/6/docs/api/java/uti

1/List.html#add(E)
add M void(int,Objec - Inserts arg? into this list at position =~ http://java.sun.com/jav
t) argl. Modifies this list. ase/6/docs/api/java/uti

1/List.html#add(int, %20
E)

B-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

List Classes

Table B-3 (Cont.) The List Class
OBR Name Kind Signature Java Name Description Reference
appendAll M void(java.util. addAll Appends the contents of argl to this http://java.sun.com/jav
Collection) list. Modifies this list. ase/6/docs/api/java/uti
1/List.html#addall (java
.util.Collection)
addAll M void(intjava. - Inserts the contents of arg? into this http://java.sun.com/jav
util.Collection list at position argl. Modifies this ase/6/docs/api/java/uti
) list. 1/List.html#addall (int,
%20java.util.Collection
)
clear M void() - Removes the contents of this list. http://java.sun.com/jav
Modifies this list. ase/6/docs/api/java/uti
1/List.html#clear ()
contains M boolean(Objec - Tests whether this list contains argl. http://java.sun.com/jav
t) RL.list.create(1,2,3).contains(2)==tru ase/6/docs/api/java/uti
e. 1/List.html#contains(ja
va.lang.Object)
containsAll M boolean(java. - Tests whether this list contains every http://java.sun.com/jav
util.Collection element in argl. ase/6/docs/api/java/uti
) RL.list.create(1,2,3).containsAll(RL.li 1/List.html#containsAll
st.create(3,2,1))==true. (java.util.Collection)
get M Object(int) - Get the element at position argl. http://java.sun.com/jav
RL list.create(1,2,3).get(1)==2. ase/6/docs/api/java/uti
1/List.html#get (int)
indexOf M int(Object) - Returns first index of argl in this list. http://java.sun.com/jav
RL.list.create(1,2,3).indexOf(2)==1. ase/6/docs/api/java/uti
1/List.html#indexOf (jav
a.lang.Object)
remove M boolean(Objec - Removes first occurrence of argl http://java.sun.com/jav
t) from this list. Returns whether this ase/6/docs/api/java/uti
list was modified. 1/List.html#remove (java
.lang.Object)
remove by M Object(int) remove Removes and return the elementat http://java.sun.com/jav
index position argl. Modifies this list. ase/6/docs/api/java/uti
1/List.html#remove (int)
removeAll M boolean(java. - Removes all elements from this list http://java.sun.com/jav
util.Collection that are contained in argl. Returns ase/6/docs/api/java/uti
) whether this list was modified. 1/List.html#removeAll (j
ava.util.Collection)
retainAll M boolean(java. - Removes all elements from this list http://java.sun.com/jav
util.Collection that are *not* contained in argl. ase/6/docs/api/java/uti
) Returns whether this list was 1/List.html#retainAll (j
modified. ava.util.Collection)
set M Object(int,Obj - Replaces the item in this list at http://java.sun.com/jav
ect) position argl with arg2. Returns the ase/6/docs/api/java/uti
replaced item. Modifies this list. 1/List.html#set (int, %20
E)
size M int() - Returns the size of this list. http://java.sun.com/jav
RL.list.create(1,2,3).size()==3. ase/6/docs/api/java/uti
1/List.html#size()
subList M List(int,int) - Returns a view of the portion of this http://java.sun.com/jav

list between argl, inclusive, and
arg?, exclusive.
RL.list.create(1,2,3,4).subList(1,3)==R
L.list.create(2,3).

ase/6/docs/api/java/uti
1/List.html#subList (int
,%201int)

Table B—4 lists the RL class list methods.

Oracle Business Rules Built-in Classes and Functions B-5

List Classes

Table B-4 The RL Class List Methods

OBR Name Kind Signature Java Name Description Reference
RL Cl - oracle.rules. - -
rl.extension
s.RL
list.append sM List(List,Objec append Returns a new immutable list http://www.w3.org/TR/r
t...) containing the contents of argl, if-dtb/#func:append
followed by arg2, arg3, ...
RL list.append(RL.list.create(1),2,3)=
=RL.list.create(1,2,3).
list.concatenate sM List(List...) concatenate Returns a new immutable list http://www.w3.0org/TR/T
containing the concatenation of argl, if-dtb/#func:concatena
arg2, ... te
RL.list.concatenate(RL.list.create(1),R
L.list.create(2))==RL.list.create(1,2).
list.distinct sM List(List) distinctValu Returns a new immutable list like http://www.w3.org/TR/x
values es argl but with duplicates removed. if-dtb/#func:distinct-
RL.list.distinct values
values(RL.list.create(2,2))==RL.list.cr
eate(2).
list.except sM List(List,List) except Returns a new immutable list http://www.w3.0org/TR/r
containing elements from argl that ~ if-dtb/#func:except
are not in arg?2.
RL.list.except(RL.list.create(1,2,3,4),R
L.list.create(1,3))==RL.list.create(2,4).
list.get sM Object(List,int get Returns the element at position arg2 http://www.w3.org/TR/r
) in argl. If arg2<0, return the element if-dtb/#func:get
at argl.size()+arg2.
RL list.get(RL.list.create(1,2,3),-1)==3
list.index of sM List<Integer>(indexOf Returns a list of indexes where the http://www.w3.org/TR/r
List,Object) arg?2 occurs in argl. RL.list.index if-dtb/#func:index-of
of(RL.list.create(1,2,3,2),2)==RL.list.c
reate(1,3).
list.insert sM List(List,int,0 insertBefore Returns a new immutable list http://www.w3.org/TR/r
before bject) containing argl with arg3 inserted if-dtb/#func:insert-be
before the item at position arg2. If fore
arg2<0, arg3 is inserted before the
element at argl.size()+arg2.
RL.list.insert
before(RL.list.create(1,2,3),-1,99)==R
L.list.create(1,2,99,3).
list.intersect sM List(List,List) intersect Returns a new immutable list http://www.w3.org/TR/r
containing the intersection of argl if-dtb/#func:intersect
and arg2.
RL.list.intersect(RL.list.create(1,2,3),
RL.list.create(3,1))==RL.list.create(1,3
).
list.create sM List(Object...) list Returns a new immutable list http://www.w3.org/TR/T
containing the arguments. if-dtb/#func:make-list
list.remove sM List(List,int) remove Returns a new immutable list http://www.w3.0org/TR/r
containing the elements of argl, with if-dtb/#func:remove
the element at position arg2
removed. If arg2<0, the element at
argl.size()+arg2 is removed.
RL.list.remove(RL.list.create(1,2,3),0)
==RL.list.create(2,3).
list.reverse sM List(List) reverse Returns a new immutable list http://www.w3.org/TR/x

containing the elements of argl in
reverse order.
RL.list.reverse(RL.list.create(1,2,3))=
=RL.list.create(3,2,1).

if-dtb/#func:reverse

B-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Numeric Classes

Table B-4 (Cont.) The RL Class List Methods

OBR Name Kind Reference

sM

Signature Java Name

List(List..)

Description

Returns a new immutable list
containing the concatenation of the
arguments with duplicates removed.
RL.list.union(RL.list.create(1,2),RL.lis
t.create(2,3))==RL.list.create(1,2,3).

http://www.w3.0rg/TR/r
if-dtb/#func:union

list.union union

B.3 Numeric Classes

Oracle Business Rules support the primitive Java numeric types byte, short, int,
long, float, and double. OBR also supports the "boxed" versions: Short, Int,
Long, Float, and Double. Unlimited precision integers and decimals are supported,
using the Java classes BigInteger and BigDecimal. OBR supports arithmetic
expressions (+, -, *, /, **) on all numeric types. For example, if *bd is BigDecimal,
then you can add one to it by simply writing bd + 1. You do not have to write
bd.add (Bighecimal .ONE).

Table B-5 lists the Integer class.

Table B-5 The Integer Class

OBR
Name Kind Signature Java Name Description Reference
Integer Cl - java.lang.Integer An integer object. Unlike the http://java.sun.com/javase
primitive "int", an Integer can /6/docs/api/java/lang/Inte
be null and can be in Lists. ger.html
Integer Co Integer(int | Stri - Creates an Integer from anint http://java.sun.com/javase
ng) or from its lexical /6/docs/api/java/lang/Inte
representation as a String. new ger.html#Integer (int)
Integer(1)==new Integer("1").
MIN_VA sP int - Smallest primitive int value. http://java.sun.com/javase
LUE Integer. MIN_VALUE<0. /6/docs/api/java/lang/Inte
ger.html#MIN_VALUE
MAX_VA sP int - Largest primitive int value. http://java.sun.com/javase
LUE Integer MAX_VALUE>O0. /6/docs/api/java/lang/Inte
ger . .html#MAX_VALUE
intValue M int() - Converts this Integer to anint. http://java.sun.com/javase
new Integer(1).intValue()==1. /6/docs/api/java/lang/Inte
ger.html#intValue ()
toString M String() - Converts this Integer to its http://java.sun.com/javase

lexical representation. new
Integer(1).toString()=="1".

/6/docs/api/java/lang/Inte
ger.html#toString /()

Table B-6 lists the Long class.

Table B-6 The Long Class

OBR Name Kind Signature

Java Name

Description

Reference

Long Cl - java.lang.Long A long integer object. Unlike http://java.sun.com/java
the primitive "long", a Long se/6/docs/api/java/lang/
can be null and can be in Long.html
Lists.

Long Co Long(long |Stri - Creates a Long from alongor http://java.sun.com/java

ng)

from its lexical representation

as a String. new Long(1)==new

Long("1").

se/6/docs/api/java/lang/
Long.html#Long (long)

Oracle Business Rules Built-in Classes and Functions B-7

Numeric Classes

Table B-6 (Cont.) The Long Class

Java Name

Description

Reference

Smallest primitive long value.
Long MIN_VALUE<0.

http://java.sun.com/java
se/6/docs/api/java/lang/
Long.html#MIN_VALUE

Largest primitive long value.
Long MAX_VALUE>O0.

http://java.sun.com/java
se/6/docs/api/java/lang/
Long.html#MAX_ VALUE

Converts this Long to a long.
new Long(1).longValue()==1.

http://java.sun.com/java
se/6/docs/api/java/lang/
Long.html#longValue ()

OBR Name Kind Signature
MIN_VALU sP long

E

MAX_VAL sP long

UE

longValue M long()
toString M String()

Converts this Long to its lexical
representation. new
Long(1).toString()=="1".

http://java.sun.com/java
se/6/docs/api/java/lang/
Long.html#toString()

Table B-7 lists the Short class.

Table B-7 The Short Class

Java Name

Description

Reference

OBR Name Kind Signature

Short Cl -

Short Co Short(short | Stri
ng)

MIN_VALU sP short

E

MAX_VAL sP short

UE

shortValue M short()

toString M String()

java.lang.Short

A short integer object. Unlike
the primitive "short", a Short
can be null and can be in Lists.

Creates a Short from a short or
from its lexical representation
as a String. new Short(1)==new
Short("1").

Smallest primitive short value.
Short. MIN_VALUE<O0.

Largest primitive short value.
Short. MAX_VALUE>O0.

Converts this Short to a short.
new Short(-1).shortValue()==-1.

Converts this Short to its lexical
representation. new
Short(-1).toString()=="-1".

http://java.sun.com/java
se/6/docs/api/java/lang/
Short.html

http://java.sun.com/java
se/6/docs/api/java/lang/
Short.html#Short (short)

http://java.sun.com/java
se/6/docs/api/java/lang/
Short.html#MIN_VALUE

http://java.sun.com/java
se/6/docs/api/java/lang/
Short.html#MAX_VALUE

http://java.sun.com/java
se/6/docs/api/java/lang/
Short.html#shortvValue ()

http://java.sun.com/java
se/6/docs/api/java/lang/
Short.html#toString ()

Table B-8 lists the Float class.

Table B-8 The Float Class

Java Name

Description

Reference

OBR Name Kind Signature

Float Cl -

Float Co Float(float | dou
ble | String)

infinite P boolean

java.lang.Float

A Float object. Unlike the
primitive "float", a Float can
be null and can be in Lists.

Creates a Float from a float, a
double, or from its lexical
representation as a String. new
Float(1.1)==new Float("1.1").

The value of this Float is
infinity. new

Float(Float. NEGATIVE_INFIN
ITY).infinite==true.

B-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

http://java.sun.com/javas
e/6/docs/api/java/lang/F1l
oat.html

http://java.sun.com/Jjavas
e/6/docs/api/java/lang/F1l
oat.html#Float (float)

http://java.sun.com/Jjavas
e/6/docs/api/java/lang/F1l
oat.html#isInfinite()

Numeric Classes

Table B-8 (Cont.) The Float Class

OBR Name Kind Signature Java Name Description Reference
naN P boolean - The value of this Floatisnota http://java.sun.com/javas
number. new e/6/docs/api/java/lang/Fl
Float(Float.NaN).naN==true. oat.html#isNaN () ()
NaN sP float - Value representing "not a http://java.sun.com/javas
number". e/6/docs/api/java/lang/F1l
oat.html#NaN
NEGATIVE sP float - Value representing negative http://java.sun.com/javas
_INFINITY infinity. e/6/docs/api/java/lang/F1l
oat.html#NEGATIVE_INFINIT
Y
POSITIVE_ sP float - Value representing positive http://java.sun.com/javas
INFINITY infinity. e/6/docs/api/java/lang/F1l
oat.html#POSITIVE_INFINIT
Y
floatValue M float() - Converts this Float to a float. http://java.sun.com/javas
new e/6/docs/api/java/lang/F1l
Float(1.1f).floatValue()==1.1f. oat.html#floatValue ()
toString M String() - Converts this Float to its lexical http://java.sun.com/javas
representation. new e/6/docs/api/java/lang/F1l
Float(1.1f).toString ()=="1.1". oat.html#toString()
Table B-9 lists the Double class.
Table B-9 The Double Class
OBR Name Kind Signature Java Name Description Reference
Double Cl1 - javalang.Doubl A Double object. Unlike the http://java.sun.com/jav
e primitive "double", a Double ase/6/docs/api/java/lan
can be null and can be in Lists. g/Double.html
Double Co Double(double - Creates a Double from a http://java.sun.com/jav
| String) double or from its lexical ase/6/docs/api/java/lan
representation as a String. new g/Double.html#Double (do
Double(1.1)==new uble)
Double("1.1").
infinite P boolean - The value of this Double is http://java.sun.com/jav
infinity. new ase/6/docs/api/java/lan
Float(Float. POSITIVE_INFINIT g/Double.html#isInfinit
Y).infinite==true. e()
naN P boolean - The value of this Double isnot http://java.sun.com/jav
a number. new ase/6/docs/api/java/lan
Double(double.NaN).naN==tr g/Double.html#isNaN ()
ue.
NaN sP double - Value representing "not a http://java.sun.com/jav
number". ase/6/docs/api/java/lan
g/Double.html#NaN
NEGATIVE_ sP double - Value representing negative http://java.sun.com/jav
INFINITY inﬁnity. ase/6/docs/api/java/lan
g/Double.html#NEGATIVE_
INFINITY
POSITIVE_LI sP double - Value representing positive http://java.sun.com/jav
NFINITY infinity. ase/6/docs/api/java/lan
g/Double.html#POSITIVE_
INFINITY
doubleValue M double() - Converts this Double to a http://java.sun.com/jav

double. new
Double(1.1).doubleValue()==1.
1.

Oracle Business Rules Buil

ase/6/docs/api/java/lan
g/Double.html#doubleval
ue ()

t-in Classes and Functions B-9

Numeric Classes

Table B-9 (Cont.) The Double Class

OBR Name Kind Signature Java Name Description Reference
toString M String() - Converts this Double to its http://java.sun.com/jav
lexical representation. new ase/6/docs/api/java/lan
Double(1.1).toString()=="1.1". g/Double.html#toString(
)
Table B-10 lists the BigInteger class.
Table B-10 The Biginteger Class
OBR Name Kind Signature Java Name Description Reference
BigInteger Cl - java.math.BigInt Immutable arbitrary-precision http://java.sun.com/jav
eger integers. ase/6/docs/api/java/mat
h/BigInteger.html
BigInteger Co BigInteger(Strin - Creates a BigInteger from its http://java.sun.com/jav
g) lexical representation as a ase/6/docs/api/java/mat
String. new Biglnteger("1")==1. h/BigInteger.html#BigIn
teger (java.lang.String)
doubleValue M double() - Converts this BigInteger to a http://java.sun.com/jav
double. May lose precision. ase/6/docs/api/java/mat
new h/BigInteger.html#doubl
BigInteger("1").doubleValue()= evalue()
=1.0.
longValue M long() - Converts this BigInteger to a http://java.sun.com/jav
long. May lose precision. new ase/6/docs/api/java/mat
BigInteger("1").longValue()==1 h/BigInteger.html#longV
L. alue ()
max M Biginteger(Bigl - Returns the greater of this or http://java.sun.com/jav
nteger) argl. new ase/6/docs/api/java/mat
BigInteger("1").max(2)==2. h/BigInteger.html#max (Jj
ava.math.BigInteger)
min M BigInteger(Bigl - Returns the lesser of this or http://java.sun.com/jav
nteger) argl. new ase/6/docs/api/java/mat
BigInteger("1").min(2)==1. h/BigInteger.html#min (j
ava.math.BigInteger)
toString M String() - Returns the lexical http://java.sun.com/jav
representation of this ase/6/docs/api/java/mat
Bignteger. new h/BigInteger.html#toStr
BigInteger("123").toString()=="ing ()
123",
valueOf sM Biginteger(long - Converts argl (along) to a http://java.sun.com/jav
) BigInteger. ase/6/docs/api/java/mat
BigInteger.valueOf(123).toStrin h/BigInteger.html#value
g()=="123". of (long)
Table B-11 lists the BigDecimal class.
Table B-11 The BigDecimal Class
OBR Name Kind Signature Java Name Description Reference
BigDecimal Cl - java.math.BigDe Immutable, http://java.sun.com/java

cimal arbitrary-precision signed

decimal numbers.

B-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

se/6/docs/api/java/math/
BigDecimal.html

Numeric Classes

Table B-11 (Cont.) The BigDecimal Class

OBR Name Kind Signature Java Name Description Reference
BigDecimal Co BigDecimal(lon - Creates a BigDecimal from a http://java.sun.com/java
g | double | Strin long, a double, or from its se/6/docs/api/java/math/
g) lexical representation as a BigDecimal.html#BigDecim
String. new al (java.lang.String)
BigDecimal(1.1)==new
BigDecimal("1.1").
BigDecimal Co BigDecimal(Big - Creates a BigDecimal from http://java.sun.com/java
Integer,int) BigInteger argl and scale arg2. se/6/docs/api/java/math/
new BigDecimal(new BigDecimal.html#BigDecim
Biglnteger("123"),2)==1.23. al (java.math.BigInteger,
%201int)

doubleValue M double() - Converts this BigDecimaltoa http://java.sun.com/java
double. May lose precision. se/6/docs/api/java/math/
new BigDecimal.html#doubleVa
BigDecimal("0.1").doubleValue 1lue ()

()==0.1.

longValue M long() - Converts this BigDecimaltoa http://java.sun.com/java
long. May lose precision. new se/6/docs/api/java/math/
BigDecimal("0.1").longValue()= BigDecimal.html#longValu
=0L. e()

max M BigDecimal(Big - Returns the greater of this http://java.sun.com/java

Decimal) BigDecimal or argl. new se/6/docs/api/java/math/
BigDecimal("0.1").max(0.2)==0. BigDecimal.html#max (java

2. .math.BigDecimal)
min M BigDecimal(Big - Returns the lesser of this http://java.sun.com/java
Decimal) BigDecimal or argl. new se/6/docs/api/java/math/
BigDecimal("0.1").min(0.2)==0. BigDecimal.html#min (java

1. .math.BigDecimal)

scale M int() - Returns the scale--the number http://java.sun.com/java
of digits to the right of the se/6/docs/api/java/math/
decimal point. new BigDecimal.html#scale()
BigDecimal("1.00").scale()==2.

setScale M BigDecimal(int) - Sets the scale, but don't change http://java.sun.com/java
the value. new se/6/docs/api/java/math/
BigDecimal("1").setScale(2).toSt BigDecimal.html#setScale
ring()=="1.00". (int)

toEngineerin M String() - Returns the literal http://java.sun.com/java

gString representation of this se/6/docs/api/java/math/
BigDecimal using engineering BigDecimal.html#toEngine
notation if an exponent is eringString ()
needed. new
BigDecimal("123E2").toEnginee
ringString()=="12.3E+3".

toPlainStrin M String - Returns the literal http://java.sun.com/java

g representation of this se/6/docs/api/java/math/
BigDecimal withoutexponents. BigDecimal.html#toPlains
new tring()
BigDecimal("123E2").toPlainStr
ing()=="12300".

valueOf sM BigDecimal(lon - Converts argl (a long or http://java.sun.com/java

g | double) double) to a BigDecimal. new se/6/docs/api/java/math/
BigDecimal(1.3)==BigDecimal. BigDecimal.html#valueOf (
valueOf(1.3). double)

ROUND_UP sP int - Used with divide. new http://java.sun.com/java
BigDecimal("11").divide(2,BigD se/6/docs/api/java/math/
ecimal. ROUND_UP)==6. BigDecimal.html#ROUND_UP

ROUND_D sP int - Used with divide. new http://java.sun.com/java

OWN BigDecimal("11").divide(2,BigD se/6/docs/api/java/math/

ecimal. ROUND_DOWN)==5.

Oracle Business Rules Built-in Classes and Functions B-11

BigDecimal .html#ROUND_DO
WN

Numeric Classes

Table B-11 (Cont.) The BigDecimal Class

OBR Name Kind Signature Java Name

Description

Reference

divide M BigDecimal(Big -

Decimal,int)

Returns this/argl with scale
the same as this BigDecimal. If
rounding must be performed
to stay within the result scale,
use the rounding mode given
by arg2 (ROUND_UP or
ROUND_DOWN). new

BigDecimal("11").divide(2,BigD

ecimal. ROUND_UP)==6.

http://java.sun.com/java
se/6/docs/api/java/math/
BigDecimal.html#divide (j
ava.math.BigDecimal, $201i
nt)

Table B-12 lists the Number clas

Table B-12 The Number Class

S.

OBR Name Kind Signature Java Name Description Reference
Number Cl - - Base class of all numerics http://java.sun.com/jav
(except primitives). ase/6/docs/api/java/lan
g/Number.html
doubleValue M double() - Converts this number to a http://java.sun.com/jav
double. ase/6/docs/api/java/lan
g/Float.html#doublevalu
e()
floatValue M float() - Converts this number to a http://java.sun.com/jav
float. ase/6/docs/api/java/lan
g/Float.html#floatValue
()
intValue M int() - Converts this number toaint. http://java.sun.com/jav
ase/6/docs/api/java/lan
g/Float.html#intValue ()
longValue M long() - Converts this number to a http://java.sun.com/jav
long. ase/6/docs/api/java/lan
g/Float.html#longValue (
)
shortValue M short() - Converts this number to a http://java.sun.com/jav
short. ase/6/docs/api/java/lan
g/Float.html#shortValue
()
Table B-13 lists the RL class number methods.
Table B-13 The RL Class Number Methods
OBR Name Kind Signature Java Name Description Reference
RL Cl - oracle.rules.rl.ex - -
tensions.RL
number.is byte sM boolean(Numb isByte argl is integral and http://www.w3.org/TR/ri
er) -128<=argl<=127. f-dtb/#Guard_Predicates
RL.numeric.is _for_Datatypes
byte(200)==false.
number.is sM boolean(Numb isShort argl is integral and http://www.w3.org/TR/ri
short er) -32768<=argl<=32767. f-dtb/#Guard_Predicates
RL.numeric.is _for_Datatypes
short(0.1)==false.
number.isint sM boolean(Numb isInt argl is integral and http://www.w3.org/TR/ri
er) -2147483648<=arg1<=21474836 f-dtb/#Guard_Predicates

47. RL.numeric.is
int(-1000)==true.

B-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

_for_Datatypes

Time and Duration Classes

Table B-13 (Cont.) The RL Class Number Methods

OBR Name Kind Signature Java Name Description Reference

number.is sM boolean(Numb isLong argl is integral and http://www.w3.org/TR/ri

long er) -9223372036854775808<=argl< f-dtb/#Guard_Predicates
=9223372036854775807. _for_Datatypes
RL.numeric.is integer(new
BigInteger("100")**100)==false.

number.is sM boolean(Numb isInteger argl is integral. RL.numeric.is http://www.w3.org/TR/ri

integer er) integer(new f-dtb/#Guard_Predicates
BigInteger("100")**100)==true. ~_for_Datatypes

number.is sM boolean(Numb isDecimal argl is neither Double nor http://www.w3.org/TR/ri

decimal er) Float. RL.numeric.is f-dtb/#Guard_Predicates
decimal(1.1)==false. _for_Datatypes

number.is sM boolean(Numb isNonNegativeln argl is integral and arg1>=0. http://www.w3.org/TR/ri

non-negative er) teger RL.numeric.is non-negative f-dtb/#Guard_Predicates

integer integer(-1)==false. _for_Datatypes

number.is sM boolean(Numb isNegativelntege argl is integral and arg1<0. http://www.w3.org/TR/ri

negative er) r RL.numeric.is negative f-dtb/#Guard_Predicates

integer integer(-1)==true. _for_Datatypes

number.is sM boolean(Numb isNonPositiveInt argl is integral and argl<=0. http://www.w3.org/TR/ri

non-positive er) eger RL.numeric.is non-positive f-dtb/#Guard_Predicates

integer integer(-1)==true. _for_Datatypes

number.is sM boolean(Numb isPositivelnteger argl is integral and arg1>0. http://www.w3.o0rg/TR/ri

positive er) RL.numeric.is positive f-dtb/#Guard_Predicates

integer integer(-1)==false. _for_Datatypes

number.is sM boolean(Numb isUnsignedByte argl is integral and http://www.w3.org/TR/ri

unsigned byte er) O<=argl<=255. RL.numeric.is f-dtb/#Guard_Predicates
unsigned byte(200)==true. _for_Datatypes

number.is sM boolean(Numb isUnsignedShort argl is integral and http://www.w3.org/TR/ri

unsigned er) O<=argl<=65535. f-dtb/#Guard_Predicates

short RL.numeric.is unsigned _for_Datatypes
short(0.1)==false.

number.is sM boolean(Numb isUnsignedInt argl is integral and http://www.w3.org/TR/ri

unsigned int er) 0<=argl1<=4294967295. f-dtb/#Guard_Predicates
RL.numeric.is unsigned _for_Datatypes
int(-1000)==false.

number.is sM boolean(Numb isUnsignedLong argl is integral and http://www.w3.org/TR/ri

unsigned long er) O<=argl<=184467440737095516 f-dtb/#Guard_Predicates

15.

_for_Datatypes

B.4 Time and Duration Classes

This section lists the time and duration classes provided by Oracle Business Rules.

Table B-14 lists the Calendar class.

Table B-14 The Calendar Class

OBR Name Kind Signature Java Name

Description

Reference

Calendar Ccl - java.util.Calendar

A Calendar represents a
datetime and timezone. A
calendar instance has a number
of mutable int fields. The first

argument to add, get, isSet, roll,

and set is a field number. This
class provides a number of
static properties that should be
used for the field numbers.

Oracle Business Rules Built-in Classes and Functions B-13

http://java.sun.com/jav
ase/6/docs/api/java/uti
1l/Calendar.html

Time and Duration Classes

Table B-14 (Cont.) The Calendar Class

OBR Name Kind Signature Java Name Description Reference

ERA sP int - Field number for the Calendar http://java.sun.com/jav
era. lis for A.D.and Ois for B.C. ase/6/docs/api/java/uti
((Calendar)"2010-02-01").get(Cale 1/Calendar.html#ERA
ndar.ERA)==1.

YEAR sP int - Field number for the Calendar http://java.sun.com/jav
year. ase/6/docs/api/java/uti
((Calendar)"2010-02-01").get(Cale 1/Calendar.html#YEAR
ndar.YEAR)==2010.

MONTH sP int - Field number for the Calendar http://java.sun.com/jav
month. Months are 0-based. ase/6/docs/api/java/uti
((Calendar)"2010-02-01").get(Cale 1/Calendar.html#MONTH
ndar MONTH)==1.

WEEK_OF_ sP int - Field number for the Calendar http://java.sun.com/jav

YEAR week. ase/6/docs/api/java/uti
((Calendar)"2010-02-01").get(Cale 1/Calendar.html#WEEK_OF
ndar WEEK_OF_YEAR)==6. _YEAR

DAY _OF.Y sP int - Field number for the Calendar http://java.sun.com/jav

EAR day of year. ase/6/docs/api/java/uti
((Calendar)"2010-02-01").get(Cale 1/Calendar.html#DAY_OF_
ndar.DAY_OF_YEAR)==32. YEAR

DAY_OF_M sP int - Field number for the Calendar http://java.sun.com/jav

ONTH day of month. ase/6/docs/api/java/uti
((Calendar)"2010-02-01").get(Cale 1/Calendar.html#DAY_OF_
ndar.DAY_OF_MONTH)==1. MONTH

DAY _OF_ W sP int - Field number for the Calendar http://java.sun.com/jav

EEK day of the week. ase/6/docs/api/java/uti
((Calendar)"2010-02-01").get(Cale 1/Calendar.html#DAY_ OF_
ndar.DAY_OF_WEEK)==2. WEEK

HOUR sP int - Field number for the Calendar http://java.sun.com/jav
hour, 12 hour format. ase/6/docs/api/java/uti
((Calendar)"2010-02-01T20:15:10") 1/Calendar.html#HOUR
.get(Calendar HOUR)==8.

AM_PM sP int - Field number for the Calendar http://java.sun.com/jav
AM_PM flag. 0is for AMand 1is ase/6/docs/api/java/uti
for PM. 1/Calendar.html#AM_PM
((Calendar)"2010-02-01T20:15:10")

.get(Calendar. AM_PM)==1.

HOUR_OF_ sP int - Field number for the Calendar http://java.sun.com/jav

DAY hour, 24 hour format. ase/6/docs/api/java/uti
((Calendar)"20:15:10").get(Calend 1/Calendar.html#HOUR_OF
ar.HOUR)==20. _DAY

MINUTE sP int - Field number for the Calendar http://java.sun.com/jav
minutes. JavaDate.from time ase/6/docs/api/java/uti
string("20:15:10").get(CalendarM 1/Calendar.html#MINUTE
INUTE)==15.

SECOND sP int - Field number for Calendar http://java.sun.com/jav
seconds. ase/6/docs/api/java/uti
((Calendar)"20:15:10").get(Calend 1/Calendar.html#SECOND
ar.SECOND)==10.

ZONE_OFF sP int - Field number for timezone. Value http://java.sun.com/jav

SET is millsecond offset from GMT. ase/6/docs/api/java/uti
((Calendar)"20:15:10-05:30").get(1/Calendar.html#ZONE_OF
Calendar.ZONE_OFFSET)==-(5* FSET
3600+30%60)*1000.

add M void(int,int) add Adds the amount of time http://java.sun.com/jav

specified by arg2 to the calendar
field specified by argl. Modifies
this Calendar.

B-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

ase/6/docs/api/java/uti
1/Calendar.html#add (int
,%201int)

Time and Duration Classes

Table B-14 (Cont.) The Calendar Class

OBR Name Kind Signature Java Name Description Reference
clear M void() clear Clears (unset all fields in) this http://java.sun.com/jav
Calendar. Modifies this Calendar. ase/6/docs/api/java/uti
1/Calendar.html#clear ()
get M int(int) get Gets the value of the field http://java.sun.com/jav
specified by field number argl. ase/6/docs/api/java/uti
((Calendar)"20:15:10").get(Calend 1/Calendar.html#get (int
ar.SECOND)==10.)
getInstance sM Calendar() getInstance Gets a calendar initialized to the http://java.sun.com/jav
current time in the default time ase/6/docs/api/java/uti
zone and locale. 1/Calendar.html#getInst
ance ()
roll M void(int,int) roll Adds the amount of time http://java.sun.com/jav
specified by arg?2 to the calendar ase/6/docs/api/java/uti
field specified by argl. Doesnot 1/Calendar.html#roll (in
affect any other calendar field. t,%20int)
Modifies this Calendar.
set M void(int,int) set Sets the calendar field specified http://java.sun.com/jav
by argl to the value specified by ase/6/docs/api/java/uti
arg2. Modifies this Calendar. 1/Calendar.html#set (int
,%201int)
time P java.util.Dat time Returns a Date object http://java.sun.com/jav
e representing this Calendar's time ase/6/docs/api/java/uti
value. 1/Calendar.html#getTime
((Calendar)"2010-02-01").time<((()
Calendar)"2010-02-02").time.
timeInMillis P long timeIlnMillis Returns this Calendar's time http://java.sun.com/jav

value in milliseconds.
((Calendar)"2010-02-01").timeln
Millis<((Calendar)"2010-02-02").ti
melnMillis.

ase/6/docs/api/java/uti
1/Calendar.html#getTime
InMillis ()

Table B-15 The JavaDate Class

Table B-15 lists the JavaDate class.

OBR Name Kind Signature Java Name Description Reference

JavaDate Cl - oracle.rules. rl. Helper class for working with http://download.or
extensions.JavaDate Calendars as immutable objects. acle.com/docs/cd/E
Treating Calendars as 12839_01/apirefs.1
immutable objects can help 111/e10663/oracle/
prevent errors. rules/rl/extension

s/JavaDate.html
add years to sM Calendar(Calendar addYearsTo Returns a new Calendar that is http://download.or
, int) arg? years later than argl. acle.com/docs/cd/E
JavaDate.add years 12839_01/apirefs.1
to("'2009-01-01",1)=="2010-01-01". 111/el10663/oracle/
rules/rl/extension
s/JavaDate.html#ad
dYearsTo_java_util

_Calendar__int_
add months sM Calendar(Calendar addMonthsTo Returns a new Calendar that is http://download.or
to , int) arg2 months later than argl. acle.com/docs/cd/E

JavaDate.add months

t0("2009-01-01",1)=="2009-02-01".

Oracle Business Rules Built-in Classes and Functions B-15

12839_01/apirefs.1
111/el10663/oracle/
rules/rl/extension
s/JavaDate.html#ad
dMonthsTo_java_uti
1_Calendar__int_

Time and Duration Classes

Table B-15 (Cont.) The JavaDate Class

OBR Name Kind Signature Java Name Description Reference
add weeks sM Calendar(Calendar addWeeksTo Returns a new Calendar that is http://download.or
to ,nt) 7*arg2 days later than argl. acle.com/docs/cd/E
JavaDate.add weeks 12839_01/apirefs.1
to("2009-01-01",1)=="2009-01-08". 111/e10663/oracle/
rules/rl/extension
s/JavaDate.html#ad
dWeeksTo_java_util
_Calendar__int_
add daysto sM Calendar(Calendar addDaysTo Returns a new Calendar that is http://download.or
,nt) arg?2 days later than argl. acle.com/docs/cd/E
JavaDate.add days 12839_01/apirefs.1
to("2009-01-01",1)=="2009-01-02". 111/e10663/oracle/
rules/rl/extension
s/JavaDate.html#ad
dDaysTo_java_util_
Calendar__int_
add hoursto sM Calendar(Calendar addHoursTo Returns a new Calendar that is http://download.or
,Ant) arg?2 hours later than argl. acle.com/docs/cd/E
JavaDate.add hours 12839_01/apirefs.1
to("01:01:01",1)=="02:01:01". 111/e10663/oracle/
rules/rl/extension
s/JavaDate.html#ad
dHoursTo_java_util
_Calendar__int_
add minutes sM Calendar(Calendar addMinutesTo Returns a new Calendar that is http://download.or
to ,Aint) arg2 minutes later than argl. acle.com/docs/cd/E
JavaDate.add minutes 12839_01/apirefs.1
to("01:01:01",1)=="01:02:01". 111/e10663/oracle/
rules/rl/extension
s/JavaDate.html#ad
dMinutesTo_java_ut
il_Calendar__int_
add seconds sM Calendar(Calendar addSecondsTo Returns a new Calendar that is http://download.or
to ,Aint) arg? seconds later than argl. acle.com/docs/cd/E
JavaDate.add seconds 12839_01/apirefs.1
to("01:01:01",61)=="01:02:02". 111/el10663/oracle/
rules/rl/extension
s/JavaDate.html#ad
dSecondsTo_java_ut
il_Calendar__int_
add sM Calendar(Calendar addMillisecondsTo Returns a new Calendar that is http://download.or
milliseconds ,Ant) arg2 milliseconds later than argl. acle.com/docs/cd/E
to JavaDate.add milliseconds 12839_01/apirefs.1
to("01:01:01",61)=="01:01:01.061". 111/e10663/oracle/
rules/rl/extension
s/JavaDate.html#ad
dMillsecondsTo_jav
a_util_Calendar__i
nt_
add sM Calendar(Calendar addDurationTo Returns a new Calendar that is http://www.w3.org/
duration to ,XMLDuration) later than argl by the duration TR/rif-dtb/#func:a

arg?2. JavaDate.add duration
to("2009-12-30T23:59:00",Duratio
n.from
string("P1DTIM"))=="2010-01-01

B-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

dd-dayTimeDuration
-to-dateTime_.28ad
apted_from_op:add-
dayTimeDuration-to
-dateTime.29

http://www.w3.org/
TR/rif-dtb/#func:a
dd-yearMonthDurati
on-to-dateTime_.28
adapted_from_op:ad
d-yearMonthDuratio
n-to-dateTime.29

Time and Duration Classes

Table B-15 (Cont.) The JavaDate Class

OBR Name Kind Signature Java Name Description Reference
from date sM Calendar(String) fromDateString Creates a Calendar for the http://download.or
string extended ISO 8601 date literal acle.com/docs/cd/E
argl. Extended to allow 12839_01/apirefs.1
YYYY-MM-DD@TimeZoneld. 111/e10663/oracle/
JavaDate.from date rules/rl/extension
string("2010-02-06@PST")=="2010 s/JavaDate.html#fr
-02-06-08:00". omDateString_ java_
lang_String_
from sM Calendar(String) fromDateTimeString Creates a Calendar for the http://download.or
datetime extended ISO 8601 datetime acle.com/docs/cd/E
string literal argl. Extended to allow 12839_01/apirefs.1
YYYY-MM-DDTHH:MM:SS@Ti 111/e10663/oracle/
meZoneld. JavaDate.from rules/rl/extension
datetime s/JavaDate.html#fr
string("2010-02-06T14:15:00@PST omDateTimeString_j
")=="2010-02-06T14:15:00-08:00". ava_lang_String_
from time sM Calendar(String) ~ fromTimeString Creates a Calendar for the http://download.or
string extended ISO 8601 time literal acle.com/docs/cd/E
argl. Extended to allow 12839_01/apirefs.1
HH:MM:SS@TimeZoneld. 111/e10663/oracle/
Warning: the date portion of the rules/rl/extension
Calendar will be initialized to the s/JavaDate.html#fr
current date. JavaDate.from time omTimeString_java_
string("14:15:00@PST")=="14:15:0 lang_String_
0-08:00".
subtract sM Calendar(Calendar subtractYearsFrom Returns a new Calendar that is http://download.or
years from ,nt) arg? years earlier than argl. acle.com/docs/cd/E
JavaDate.subtract years 12839_01/apirefs.1
from("2009-01-01",1)=="2008-01-0 111/e10663/oracle/
1" rules/rl/extension
s/JavaDate.html#su
btractYearsFrom_ja
va_util_Calendar_
int_
subtract sM Calendar(Calendar subtractMonthsFrom Returns a new Calendar that is http://download.or

months from

subtract sM
weeks from

subtract sM
days from

,int)

Calendar(Calendar subtractWeeksFrom
Jint)

Calendar(Calendar subtractDaysFrom
,nt)

Oracle Business Rules Built-in Classes and Functions B-17

arg2 months earlier than arg].
JavaDate.subtract months
from("2009-01-01",1)=="2008-12-0
1"

Returns a new Calendar that is
7*arg?2 days earlier than argl.
JavaDate.subtract weeks
from('"2009-01-01",1)=="2008-12-2
5"

Returns a new Calendar that is
arg?2 days earlier than argl.
JavaDate.subtract days
from("2009-01-01",1)=="2008-12-3
1"

acle.com/docs/cd/E
12839_01/apirefs.1
111/el10663/oracle/
rules/rl/extension
s/JavaDate.html#su
btractMonthsFrom_j
ava_util_Calendar_
int
http://download.or
acle.com/docs/cd/E
12839_01/apirefs.1
111/el10663/oracle/
rules/rl/extension
s/JavaDate.html#su
btractWeeksFrom_ja
va_util_Calendar_
int_

http://download.or
acle.com/docs/cd/E
12839_01/apirefs.1
111/el0663/oracle/
rules/rl/extension
s/JavaDate.html#su
btractDaysFrom_jav
a_util_Calendar__ i
nt_

Time and Duration Classes

Table B-15 (Cont.) The JavaDate Class

OBR Name Kind Signature Java Name Description Reference
subtract sM Calendar(Calendar subtractHoursFrom Returns a new Calendar that is http://download.or
hours from ,nt) arg?2 hours earlier than argl. acle.com/docs/cd/E
JavaDate.subtract hours 12839_01/apirefs.1
from("01:01:01",1)=="00:01:01". 111/e10663/oracle/
rules/rl/extension
s/JavaDate.html#su
btractHoursFrom_ja
va_util_Calendar_
int_
subtract sM Calendar(Calendar subtractMinutesFro Returns a new Calendar that is http://download.or
minutes ,nt) m arg2 minutes earlier than argl. acle.com/docs/cd/E
from JavaDate.subtract minutes 12839_01/apirefs.1
from("01:01:01",1)=="01:00:01". 111/el10663/oracle/
rules/rl/extension
s/JavaDate.html#su
btractMinutesFrom_
java_util_Calendar
_ int_
subtract sM Calendar(Calendar subtractSecondsFrom Returns a new Calendar that is http://download.or
seconds ,Ant) arg2 seconds earlier than argl. acle.com/docs/cd/E
from JavaDate.subtract seconds 12839_01/apirefs.1
from("01:01:01",61)=="01:00:00". 111/el10663/oracle/
rules/rl/extension
s/JavaDate.html#su
btractSecondsFrom_
java_util_Calendar
__int_
subtract sM Calendar(Calendar subtractMilliseconds Returns a new Calendar that is http://download.or
milliseconds ,nt) From arg?2 milliseconds earlier than acle.com/docs/cd/E
from argl. JavaDate.subtract 12839_01/apirefs.1
milliseconds 111/el10663/oracle/
from("01:01:01",61)=="01:01:00.93 rules/rl/extension
9". s/JavaDate.html#su
btractMilliseconds
From_java_util_Cal
endar__int_
subtract sM Calendar(Calendar subtractDurationFro Returns a new Calendar that is http://www.w3.org/
duration ,XMLDuration) m earlier than argl by the duration TR/rif-dtb/#func:a
from arg2. JavaDate.subtract duration ~dd-dayTimeDuration
from('"2009-12-30T23:59:00",Dura -to-dateTime_.28ad
tion.from apted_from_op:subt
string("P1DT1M"))=="20009-12-2 ract-dayTimeDurati
9T23:58:00". on-from-dateTime.2
9
http://www.w3.org/
TR/rif-dtb/#func:s
ubtract-yearMonthD
uration-from-dateT
ime_.28adapted_fro
m_op:add-yearMonth
Duration-to-dateTi
me.29
to date sM String(Calendar) toDateString Returns the ISO 8601 lexical http://download.or
string representation of argl, ignoring acle.com/docs/cd/E

time components. JavaDate.to
date
string("2010-07-04T12:30:00Z2")==
"2010-07-04Z"

B-18 Oracle Fusion Middleware User's Guide for Oracle Business Rules

12839_01/apirefs.1
111/el10663/oracle/
rules/rl/extension
s/JavaDate.html#to
DateString_java_ut
il_Calendar_

Time and Duration Classes

Table B-15 (Cont.) The JavaDate Class

OBR Name Kind Signature Java Name Description Reference

to datetime sM String(Calendar) toDateTimeString Returns the ISO 8601 lexical http://download.or

string representation of argl. acle.com/docs/cd/E
JavaDate.to datetime 12839_01/apirefs.1
string("2010-07-04T12:30:00Z")== 111/e10663/oracle/
"2010-07-04T12:30:00.000Z" rules/rl/extension

s/JavaDate.html#to
DateTimeString_jav
a_util_Calendar_

to time sM String(Calendar) toTimeString Returns the ISO 8601 lexical http://download.or
string representation of argl, ignoring acle.com/docs/cd/E
date components. JavaDate.to 12839_01/apirefs.1
time 111/e10663/oracle/
string("2010-07-04T12:30:00Z")== rules/rl/extension
"12:30:00.000Z" s/JavaDate.html#to

TimeString_ java_ut
il_Calendar_

Table B-16 lists the XMLGregorianCalendar class.

Table B-16 The XMLGregorianCalendar Class

OBR Name Kind Signature Java Name Description Reference
XMLGregorian Cl - javax.xml.datatyp Representation for W3C http://java.sun.com/
Calendar e XMLGregorian XML Schema 1.0 javase/6/docs/api/ja
Calendar date/time datatypes. vax/xml/datatype/XML
GregorianCalendar.ht

ml

normalize M XMLGregorianCalen - Normalizes this instance http://java.sun.com/
dar() to UTC. XMLDate.from javase/6/docs/api/Jja

string("2000-03-04T23:00: vax/xml/datatype/XML
00+03:00").normalize()== GregorianCalendar.ht

XMLDate.from ml#normalize()
string("2000-03-04T20:00:
00Z")
toGregorianCale M java.util. GregorianC - Converts this http://java.sun.com/
ndar alendar() XMLGregorianCalendar javase/6/docs/api/ja
to a (superclass of) vax/xml/datatype/XML

Calendar. XMLDate.from GregorianCalendar.ht
string("2010-02-03").toGr ml#toGregorianCalend
egorianCalendar()==(Cal ar ()

endar)"2010-02-03".

year P int - The year of this calendar, http://java.sun.com/
or Integer MIN_VALUE javase/6/docs/api/ja
if undefined. vax/xml/datatype/XML
XMLDate.from GregorianCalendar.ht
string("2011-12-31").year ml#getYear ()
==2011.

month P int - The month of this http://java.sun.com/
calendar, or javase/6/docs/api/ja

Integer MIN_VALUE if vax/xml/datatype/XML
undefined. Months are GregorianCalendar.ht
1-based, e.g. Janis month ml#getMonth ()

1. XMLDate.from

string("2011-12-31").mont

h==12.

day P int - The day of this calendar, http://java.sun.com/
or Integer MIN_VALUE javase/6/docs/api/ja
if undefined. vax/xml/datatype/XML
XMLDate.from GregorianCalendar.ht
string("2011-12-31").day= ml#getDay ()
=31.

Oracle Business Rules Built-in Classes and Functions B-19

Time and Duration Classes

Table B-16 (Cont.) The XMLGregorianCalendar Class

OBR Name Kind Signature Java Name Description Reference

hour P int - The hour of this http://java.sun.com/
calendar, or javase/6/docs/api/ja
Integer MIN_VALUE if vax/xml/datatype/XML
undefined. GregorianCalendar.ht
XMLDate.from ml#getHour ()
string("2011-12-31").hour
==Integer. MIN_VALUE.

minute P int - The minute of this http://java.sun.com/
calendar, or javase/6/docs/api/ja
Integer MIN_VALUE if vax/xml/datatype/XML
undefined. GregorianCalendar.ht
XMLDate.from ml#getMinute ()
string("2011-12-31T09:30:
00").minute==30.

second P int - The second of this http://java.sun.com/
calendar, or javase/6/docs/api/ja
Integer MIN_VALUE if vax/xml/datatype/XML
undefined. GregorianCalendar.ht
XMLDate.from ml#getSecond()
string("09:30:05Z").secon
d==5.

timezone P int - The timezone offset in http://java.sun.com/

minutes of this calendar,

javase/6/docs/api/ja

or Integer MIN_VALUE vax/xml/datatype/XML
if undefined. GregorianCalendar.ht
XMLDate.from ml#getTimezone ()
string("09:30:00-09:00").ti
mezone==-540.
Table B-17 lists the XMLDate class.
Table B-17 The XMLDate Class
OBR Name Kind Signature Java Name Description Reference
XMLDate Cl - oracle.rules.rl.ext Helper class for http://download.orac
ensions.XMLDate working with le.com/docs/cd/E1283
XMLGregorianCalendar 9_01/apirefs.1111/el
s as immutable objects. 0663 /oracle/rules/rl
Treating calendars as /extensions/XMLDate.
immutable objects can html
help prevent errors.
add years to sM XMLGregorianCalen addYearsTo Returns a new http://download.orac
dar(XMLGregorianC XMLGregorianCalendar le.com/docs/cd/E1283
alendar,int) that is arg? years later 9_0l/apirefs.1111/el
than argl. XMLDate.add 0663/oracle/rules/rl
years /extensions/XMLDate.
t0("2009-01-01",1)=="201 html#addYearsTo_java
0-01-01". x_xml_datatype_XMLGr
egorianCalendar__int
add months to ~ sM XMLGregorianCalen addMonthsTo Returns a new http://download.orac
dar(XMLGregorianC XMLGregorianCalendar le.com/docs/cd/E1283
alendar,int) that is arg2 months later 9_01/apirefs.1111/el

than argl. XMLDate.add
months
to("2009-01-01",1)=="200
9-02-01".

B-20 Oracle Fusion Middleware User's Guide for Oracle Business Rules

0663 /oracle/rules/rl
/extensions/XMLDate.
html#addMonthsTo_jav
ax_xml_datatype_XMLG
regorianCalendar__in
t

Time and Duration Classes

Table B-17 (Cont.) The XMLDate Class
OBR Name Kind Signature Java Name Description Reference
add weeks to sM XMLGregorianCalen addWeeksTo Returns a new http://download.orac
dar(XMLGregorianC XMLGregorianCalendar le.com/docs/cd/E1283
alendar,int) that is 7*arg2 days later =~ 9_01/apirefs.1111l/el
than argl. XMLDate.add 0663/oracle/rules/rl
weeks /extensions/XMLDate.
to("2009-01-01",1)=="200 html#addWeeksTo_java
9-01-08". x_xml_datatype_XMLGr
egorianCalendar__int
add days to sM XMLGregorianCalen addDaysTo Returns a new http://download.orac
dar(XMLGregorianC XMLGregorianCalendar le.com/docs/cd/E1283
alendar,int) that is arg?2 days later 9_0l/apirefs.1111/el
than argl. XMLDate.add 0663/oracle/rules/rl
days /extensions/XMLDate.
to("2009-01-01",1)=="200 html#addDaysTo_javax
9-01-02". _xml_datatype_XMLGre
gorianCalendar__int_
add hours to sM XMLGregorianCalen addHoursTo Returns a new http://download.orac
dar(XMLGregorianC XMLGregorianCalendar le.com/docs/cd/E1283
alendar,int) that is arg?2 hours later 9_01/apirefs.1111/el
than argl. XMLDate.add 0663/oracle/rules/rl
hours /extensions/XMLDate.
t0("01:01:01",1)=="02:01:0 html#addHoursTo_java
1" x_xml_datatype_XMLGr
egorianCalendar__int
add minutes to sM XMLGregorianCalen addMinutesTo Returns a new http://download.orac
dar(XMLGregorianC XMLGregorianCalendar le.com/docs/cd/E1283
alendar,int) that is arg2 minutes later 9_01/apirefs.1111/el
than argl. XMLDate.add 0663/oracle/rules/rl
minutes /extensions/XMLDate.
to("01:01:01",1)=="01:02:0 html#addMinutesTo_ja
1" vax_xml_datatype_XML
GregorianCalendar__ i
nt_
add secondsto sM XMLGregorianCalen addSecondsTo Returns a new http://download.orac
dar(XMLGregorianC XMLGregorianCalendar le.com/docs/cd/E1283
alendar,int) that is arg2 seconds later 9_01/apirefs.1111/el
than argl. XMLDate.add 0663/oracle/rules/rl
seconds /extensions/XMLDate.
to("01:01:01",61)=="01:02: html#addSecondsTo_ja
02". vax_xml_datatype_XML
GregorianCalendar__ i
nt_
add sM XMLGregorianCalen addMillisecondsT Returns a new http://download.orac

milliseconds to

dar(XMLGregorianC
alendar,int)

o

Oracle Business Rules Built-in Classes and Functions B-21

XMLGregorianCalendar
that is arg2 milliseconds
later than arg].
XMLDate.add
milliseconds
t0("01:01:01",61)=="01:01:
01.061".

le.com/docs/cd/E1283
9_01/apirefs.1111l/el
0663 /oracle/rules/rl
/extensions/XMLDate.
html#addMilliseconds
To_javax_xml_datatyp
e_XMLGregorianCalend
ar__int_

Time and Duration Classes

Table B-17 (Cont.) The XMLDate Class

OBR Name Kind

Signature

Java Name

Description

Reference

add durationto sM

from string sM
subtract years sM
from

subtract months sM
from

subtract weeks sM
from

subtract days sM
from

XMLGregorianCalen addDurationTo

dar(XMLGregorianC
alendar,XMLDuratio
n)

XMLGregorianCalen fromString

dar(String)

XMLGregorianCalen subtractYearsFro

dar(XMLGregorianC m
alendar,int)

XMLGregorianCalen subtractMonthsFr

dar(XMLGregorianC om
alendar,int)

XMLGregorianCalen subtractWeeksFro

dar(XMLGregorianC m
alendar,int)

XMLGregorianCalen subtractDaysFrom

dar(XMLGregorianC
alendar,int)

Returns a new
XMLGregorianCalendar
that is later than argl by
the duration arg2.
XMLDate.add duration
to("'2009-12-30T23:59:00",
Duration.from
string("P1DTIM"))=="20
10-01-01".

Creates an
XMLGregorianCalendar
for the ISO 8601 date
literal argl.
XMLDate.from
string("2010-02-06-08:00")
=="2010-02-06-08:00".

Returns a new
XMLGregorianCalendar
that is arg2 years earlier
than argl.
XMLDate.subtract years
from("2009-01-01",1)=="2
008-01-01".

Returns a new
XMLGregorianCalendar
that is arg2 months
earlier than arg].
XMLDate.subtract
months
from("2009-01-01",1)=="2
008-12-01".

Returns a new
XMLGregorianCalendar
that is 7*arg2 days earlier
than argl.
XMLDate.subtract weeks
from("2009-01-01",1)=="2
008-12-25".

Returns a new
XMLGregorianCalendar
that is arg2 days earlier
than argl.
XMLDate.subtract days
from("2009-01-01",1)=="2
008-12-31".

B-22 Oracle Fusion Middleware User's Guide for Oracle Business Rules

http://www.w3.org/TR
/rif-dtb/#func:add-y
earMonthDuration-to-
dateTime_.28adapted_
from_op:add-yearMont
hDuration-to-dateTim
e.29

http://www.w3.org/TR
/rif-dtb/#func:add-d
ayTimeDuration-to-da
teTime_.28adapted_fr
om_op:add-dayTimeDur
ation-to-dateTime.29

http://download.orac
le.com/docs/cd/E1283
9_01/apirefs.1111l/el
0663 /oracle/rules/rl
/extensions/XMLDate.
html#fromString_java
_lang_String

http://download.orac
le.com/docs/cd/E1283
9_01/apirefs.1111/el
0663 /oracle/rules/rl
/extensions/XMLDate.
html#subtractYearsFr
om_javax_xml_datatyp
e_XMLGregorianCalend
ar__int_

http://download.orac
le.com/docs/cd/E1283
9_01/apirefs.111l/el
0663 /oracle/rules/rl
/extensions/XMLDate.
html#subtractMonthsF
rom_javax_xml_dataty
pe_XMLGregorianCalen
dar__int_

http://download.orac
le.com/docs/cd/E1283
9_01/apirefs.1111/el
0663 /oracle/rules/rl
/extensions/XMLDate.
html#subtractWeeksFr
om_javax_xml_datatyp
e_XMLGregorianCalend
ar__int

http://download.orac
le.com/docs/cd/E1283
9_01/apirefs.111l/el
0663 /oracle/rules/rl
/extensions/XMLDate.
html#subtractDaysFro
m_javax_xml_datatype
_XMLGregorianCalenda
r__int

Time and Duration Classes

Table B-17 (Cont.) The XMLDate Class

OBR Name Kind Signature Java Name Description Reference
subtract hours sM XMLGregorianCalen subtractHoursFro Returns a new http://download.orac
from dar(XMLGregorianC m XMLGregorianCalendar le.com/docs/cd/E1283
alendar,int) that is arg2 hours earlier 9_01/apirefs.1111/el
than argl. 0663/oracle/rules/rl
XMLDate.subtract hours /extensions/XMLDate.
from("01:01:01",1)=="00:0 html#subtractHoursFr
1:01". om_javax_xml_datatyp
e_XMLGregorianCalend
ar__int_
subtract minutes sM XMLGregorianCalen subtractMinutesFr Returns a new http://download.orac
from dar(XMLGregorianC om XMLGregorianCalendar le.com/docs/cd/E1283
alendar,int) that is arg2 minutes 9_01/apirefs.1111/el
earlier than arg]. 0663 /oracle/rules/rl
XMLDate.subtract /extensions/XMLDate.
minutes html#subtractMinutes
from("01:01:01",1)=="01:0 From_javax_xml_datat
0:01". ype_XMLGregorianCale
ndar__int_
subtract seconds sM XMLGregorianCalen subtractSecondsFr Returns a new http://download.orac
from dar(XMLGregorianC om XMLGregorianCalendar le.com/docs/cd/E1283
alendar,int) that is arg2 seconds 9_01/apirefs.1111/el
earlier than arg]. 0663/oracle/rules/rl
XMLDate.subtract /extensions/XMLDate.
seconds html#subtractSeconds
from("01:01:01",61)=="01: From_javax_xml_datat
00:00". ype_XMLGregorianCale
ndar__int_
subtract sM XMLGregorianCalen subtractMillisecon Returns a new http://download.orac
milliseconds dar(XMLGregorianC dsFrom XMLGregorianCalendar le.com/docs/cd/E1283
from alendar,int) that is arg2 milliseconds 9_01/apirefs.1111l/el
earlier than argl. 0663/oracle/rules/rl
XMLDate.subtract /extensions/XMLDate.
milliseconds html#subtractMillise
from("01:01:01",61)=="01: condsFrom_javax_xml_
01:00.939". datatype_XMLGregoria
nCalendar__int_
subtract sM XMLGregorianCalen subtractDurationF Returns a new http://www.w3.org/TR
duration from dar(XMLGregorianC rom XMLGregorianCalendar /rif-dtb/#func:subtr
alendar,XMLDuratio that is earlier than argl act-yearMonthDuratio
n) by the duration arg2. n-from-dateTime_.28a
XMLDate.subtract dapted_from_op:subtr
duration act-yearMonthDuratio
from("2009-12-30T23:59:0 n-from-dateTime.29
0",Duration.from .
s PIDTIN <20 7558 e 7)o
009-12-29T23:58:00". . .
act-dayTimeDuration-
from-dateTime_.28ada
pted_from_op:subtrac
t-dayTimeDuration-fr
om-dateTime.29
to string sM String(XMLGregoria toString Returns the ISO 8601 http://download.orac
nCalendar) lexical representation of le.com/docs/cd/E1283
argl. XMLDate.to 9_01/apirefs.1111/el
string("2010-04-15T11:00: 0663 /oracle/rules/rl
00-09:00")=="2010-04-15T /extensions/XMLDate.
11:00:00-09:00". html#toString javax_
xml_datatype_XMLGreg
orianCalendar_
is datetime sM boolean(XMLGregor isDateTime Checks if this calendar http://www.w3.org/TR
ianCalendar) have both date and time /rif-dtb/#Guard_Pred

Oracle Business Rules Built-in Classes and Functions B-23

fields. XMLDate.is
datetime("2009-12-30T23:
59:00")==true.

icates_for_Datatypes

Time and Duration Classes

Table B-17 (Cont.) The XMLDate Class

OBR Name Kind Signature Java Name Description Reference
is datetime sM boolean(XMLGregor isDateTimeStamp Checks if this calendar http://www.w3.org/TR
stamp ianCalendar) have date, time, and /rif-dtb/#Guard_Pred
timezone fields. icates_for_Datatypes
XMLDate.is datetime
stamp("2009-12-30T23:59:
00")==false.
is date sM boolean(XMLGregor isDate Checks if this calendar http://www.w3.org/TR
ianCalendar) have date fields and no /rif-dtb/#Guard_Pred
time fields. XMLDate.is icates_for_Datatypes
date("2009-12-30")==true
is time sM boolean(XMLGregor isTime Checks if this calendar http://www.w3.org/TR
ianCalendar) have time fields and no /rif-dtb/#Guard_Pred
date fields. XMLDate.is icates_for_Datatypes
time("2009-12-30T23:59:0
0")==false.
get timezone sM XMLDuration(XML getTimezone Gets the timezone from http://www.w3.org/TR
GregorianCalendar) the calendar as a /rif-dtb/#func:timez
duration. XMLDate.get one-from-dateTime_.2
timezone("11:00:00+05:30 8adapted_from_fn:tim
")==Duration.from ezone-from-dateTime.
string("PT5H30M"). 29
get seconds sM BigDecimal(XMLGre getSeconds Gets the seconds, http://www.w3.org/TR
gorianCalendar) including fractional part, /rif-dtb/#func:secon

from the calendar as a

ds-from-dateTime_.28

BigDecimal. adapted_from_fn:seco
XMLDate.get nds-from-dateTime.29
seconds("00:00:12.345")=
=12.345.
Table B-18 lists the OracleDate class.
Table B-18 The OracleDate Class
OBR Name Kind Signature Java Name Description
OracleDate Cl - oracle.rules.sdk2.extensi Helper class for working with
ons.OracleDate oracle.jbo.domain.Timestamp. For
examples of method use, see like-named
XMLDate methods.
add years to sM oraclejbo.domain.Timest addYearsTo Returns a new
amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) years later than argl.
add monthsto sM oracle.jbo.domain.Timest addMonthsTo Returns a new
amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) months later than argl.
add weeks to sM oracle.jpo.domain.Timest addWeeksTo Returns a new
amp(oracle.jpo.domain.Ti oracle.jbo.domain.Timestamp that is
mestamp,int) 7*arg?2 days later than argl.
add days to sM oraclejbo.domain.Timest addDaysTo Returns a new
amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) days later than argl.
add hours to sM oracle.jbo.domain.Timest addHoursTo Returns a new
amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) hours later than argl.
add minutesto sM oracle.jbo.domain.Timest addMinutesTo Returns a new

amp(oracle.jpo.domain.Ti
mestamp,int)

B-24 Oracle Fusion Middleware User's Guide for Oracle Business Rules

oracle.jbo.domain.Timestamp that is arg2
minutes later than argl.

Time and Duration Classes

Table B-18 (Cont.) The OracleDate Class

OBR Name Kind Signature Java Name Description

add secondsto sM oracle.jpo.domain.Timest addSecondsTo Returns a new
amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) seconds later than argl.

add sM oraclejbo.domain.Timest addMillisecondsTo Returns a new

milliseconds to amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) milliseconds later than argl.

add durationto sM oracle.jbo.domain.Timest addDurationTo Returns a new
amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is later
mestamp,XMLDuration) than argl by the duration arg?2.

from string sM oracle jpo.domain.Timest fromString Creates an oracle jbo.domain.Timestamp
amp(String) for the ISO 8601 date literal argl.

subtract years ~ sM oracle.jbo.domain.Timest subtractYearsFrom Returns a new

from amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) years earlier than arg].

subtract months sM oracle jbo.domain.Timest subtractMonthsFrom Returns a new

from amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) months earlier than argl.

subtract weeks sM oraclejbo.domain.Timest subtractWeeksFrom Returns a new

from amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is
mestamp,int) 7*arg?2 days earlier than argl.

subtract days sM oracle jbo.domain.Timest subtractDaysFrom Returns a new

from amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) days earlier than argl.

subtract hours ~ sM oracle.jbo.domain.Timest subtractHoursFrom Returns a new

from amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) hours earlier than argl.

subtract sM oraclejbo.domain.Timest subtractMinutesFrom Returns a new

minutes from amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) minutes earlier than argl.

subtractseconds sM oracle. jbo.domain.Timest subtractSecondsFrom Returns a new

from amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) seconds earlier than argl.

subtract sM oracle jbo.domain.Timest subtractMillisecondsFro Returns a new

milliseconds amp(oracle.jbo.domain.Ti m oracle.jbo.domain.Timestamp that is arg2

from mestamp,int) milliseconds earlier than argl.

subtract sM oraclejbo.domain.Timest subtractDurationFrom Returns a new

duration from amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is
mestamp,XMLDuration) earlier than argl by the duration arg?2.

to string sM String(oracle.jpo.domain. toString Returns the ISO 8601 lexical

Timestamp)

representation of argl.

Table B-19 lists the Duration class.

Oracle Business Rules Built-in Classes and Functions B-25

Time and Duration Classes

Table B-19 The Duration Class

OBR Name Kind Signature Java Name Description Reference
Duration Cl - oracle.rules.sdk2.ext Helper class for comparing -
ensions.OracleDurat and subtracting dates. Can
ion convert the difference of 2
dates into an
XMLDuration. Can also
create an XMLDuration
from its literal (String)
representation. Only day
time and year month
XMLDurations are
supported.
compare sM int(Calendar I XM - Returns -1, 0, or 1 according http://www.w3.org
LGregorianCalend to whether argl<arg?, /TR/rif-dtb/#pred
ar | oracle.jbo.dom argl==arg?, or argl>arg2, :dateTime-less-th
ain.Timestamp, respectively. an_.28adapted_fro
Calendar | XMLGr Duration.compare("2010-01- m_op:dateTime-les
egorianCalendar | 01","2010-02-02")==-1 s-than.29
oracle jbo.domain.
Timestamp)
years between sM int(Calendar | XM yearsBetween Subtracts argl from arg2, -
LGregorianCalend where the args are some
ar | oracle.jpo.dom kind of date/time.
ain.Timestamp, Duration.years
Calendar | XMLGr between("2008-01-01",
egorianCalendar | "2009-02-02")==1.
oracle.jbo.domain.
Timestamp)
months sM int(Calendar I XM monthsBetween Subtracts argl from arg2, -
between LGregorianCalend where the args are some
ar | oracle.jpo.dom kind of date/time.
ain.Timestamp, Duration.months
Calendar | XMLGr between("2009-01-01","2008-
egorianCalendar | 02-02")==-10.
oracle.jbo.domain.
Timestamp)
weeks sM int(Calendar | XM weeksBetween Subtracts argl from arg2, -
between LGregorianCalend where the args are some
ar | oracle.jpo.dom kind of date/time.
ain.Timestamp, Duration.weeks
Calendar | XMLGr between("2000-01-01","2000-
egorianCalendar | 02-04")==4.
oracle.jbo.domain.
Timestamp)
days between sM int(Calendar IXM daysBetween Subtracts argl from arg?2, -
LGregorianCalend where the args are some
ar | oracle jbo.dom kind of date/time.
ain.Timestamp, Duration.days
Calendar | XMLGr between("2000-01-01","2000-
egorianCalendar | 02-04")==34.
oracle jbo.domain.
Timestamp)
hours sM int(Calendar | XM hoursBetween Subtracts argl from arg?2, -

between

LGregorianCalend
ar | oracle.jbo.dom
ain.Timestamp,
Calendar | XMLGr
egorianCalendar |
oracle jbo.domain.
Timestamp)

where the args are some
kind of date/time.
Duration.hours
between("2000-01-04T03:30:0
0","2000-01-01T00:00:00")==-
75

B-26 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Time and Duration Classes

Table B-19 (Cont.) The Duration Class
OBR Name Kind Signature Java Name Description Reference
minutes sM int(Calendar |IXM minutesBetween Subtracts argl from arg?2, -
between LGregorianCalend where the args are some
ar | oracle jbo.dom kind of date/time.
ain.Timestamp, Duration.minutes
Calendar | XMLGr between("03:30:00","04:45:00
egorianCalendar | ")==75.
oracle jbo.domain.
Timestamp)
seconds sM int(Calendar | XM secondsBetween Subtracts argl from arg?2, -
between LGregorianCalend where the args are some
ar | oracle jbo.dom kind of date/time.
ain.Timestamp, Duration.seconds
Calendar | XMLGr between("03:30:00","03:31:15
egorianCalendar | ")==75.
oracle jbo.domain.
Timestamp)
milliseconds sM int(Calendar | XM millisecondsBetween Subtracts argl from arg?2,
between LGregorianCalend where the args are some
ar | oracle.jbo.dom kind of date/time.
ain.Timestamp, Duration.milliseconds
Calendar | XMLGr between("03:30:00","03:31:15
egorianCalendar | ")==75000.
oracle jbo.domain.
Timestamp)
between sM XMLDuration(Cal between Subtracts argl from arg?2, http://www.w3.org
endar | XMLGrego where the args are some /TR/rif-dtb/#func
rianCalendar | ora kind of date/time. Returns :subtract-dateTim
clejbo.domain.Ti day-time Duration. es_.28adapted_fro
mestamp, Duration.between("2009-01- m_op:subtract-dat
Calendar | XMLGr 01T01:15:00","2009-02-02T11: eTimes.29
egorianCalendar | 30:00")==Duration.from
oracle jbo.domain. string("P32DT10H15M").
Timestamp)
from string sM XMLDuration(Stri fromString Parses a duration from an http://www.w3.org
ng) ISO 8601 duration literal. /TR/xpath-functio
"P1DT2H3M" is the duration ns/#duration-subt
of 1 day, 2 hours, and 3 ypes
minutes.
compare sM int(XMLDuration, compareDurations Compares two durations. http://www.w3.org
durations XMLDuration) Both must be either /TR/rif-dtb/#pred
day-time or year-month :dayTimeDuration-
durations. Returns-1,0,0or 1 less-than_.28adap
according to whether ted_from_op:dayTi
argl<arg?2, argl==arg?2, or meDuration-less-t
argl>arg?, respectively. han.29
]f:r)grrr?tlon.compare(Duratlon. http://www. w3 .org
string("P1Y"),Duration.from {TR/ rbldf _iig/ #piéd
string("P13M"))==-1. :yearMonthDuratio
n-less-than_.28ad
apted_from_op:yea
rMonthDuration-le
ss-than.29
is day-time sM boolean(XMLDur isDayTimeDuration = Checks if argl a day-time http://www.w3.org
duration ation) duration. Only day-timeand /TR/rif-dtb/#Guar

year-month durations are
supported. Duration.is
day-time
duration(Duration.from
string("P2DT1S"))==true.

d_Predicates_for_
Datatypes

Oracle Business Rules Built-in Classes and Functions B-27

Time and Duration Classes

Table B-19 (Cont.) The Duration Class

Signature

Java Name

Description

Reference

OBR Name Kind
is year-month sM
duration

get seconds sM
divide sM
ratio sM

boolean(XMLDur isYearMonthDuration

ation)

BigDecimal(XML getSeconds

Duration)

XMLDuration(XM -
LDuration,int | do
uble)

BigDecimal(XML -
Duration, XMLDur
ation)

Checks if argl a year-month http://www.w3.org
duration. Only day-timeand /TR/rif-dtb/#Guar

year-month durations are
supported. Duration.is
year-month
duration(Duration.from
string("P13M"))==true.

d_Predicates_for_
Datatypes

Gets the seconds field from http://www.w3.org

the duration as a
BigDecimal, including
fractional seconds.
Duration.get
seconds(Duraton.from

/TR/rif-dtb/#func
:seconds-from-dur
ation_.28adapted_
from_fn:seconds-£f
rom-duration.29

string("PT12.3455"))==12.345

Divides a duration by an

integral or double divisor.

http://www.w3.org
/TR/rif-dtb/#func

Duration.divide(Duration.fr :divide-dayTimeDu

om

ration_.28adapted

string("P1Y"),4)==Duration.f _from_op:divide-d

rom string("P3M").

Computes the ratio of 2

durations as a BigDecimal.

ayTimeDuration.29

http://www.w3.org
/TR/rif-dtb/#func
:divide-yearMonth
Duration_.28adapt
ed_from_op:divide
-yearMonthDuratio
n.29

http://www.w3.org
/TR/rif-dtb/#func

Duration.ratio(Duration.fro :divide-dayTimeDu

m

ration-by-dayTime

string("P1Y"),Duration.from Duration_.28adapt

string("P3M"))==4

ed_from_op:divide
-dayTimeDuration-
by-dayTimeDuratio
n.29

http://www.w3.org
/TR/rif-dtb/#func
:divide-yearMonth
Duration-by-yearM
onthDuration_.28a
dapted_from_op:di
vide-yearMonthDur
ation-by-yearMont
hDuration.29

Table B-20 lists the XMLDuration class.

Table B-20 The XMLDuration Class

OBR Name Kind

Signature

Java Name

Description

Reference

XMLDuration Cl -

javax.xml.datatype.
Duration

Immutable representation
of a time span as defined in
the W3C XML Schema 1.0
specification. Only
day-time and year-month
XMLDurations are
supported.

B-28 Oracle Fusion Middleware User's Guide for Oracle Business Rules

http://java.sun.com/
javase/6/docs/api/ja
vax/xml/datatype/Dur
ation.html

http://www.w3.org/TR
/xpath-functions/#du
ration-subtypes

Time and Duration Classes

Table B-20 (Cont.) The XMLDuration Class

OBR Name Kind Signature Java Name Description Reference
years P int - Years field of the duration. http://www.w3.org/TR
Duration.from /rif-dtb/#func:years
string("P2Y3M").years==2. -from-duration_.28ad
apted_from_fn:years-
from-duration.29
months P int - Months field of the http://www.w3.org/TR
duration. Duration.from /rif-dtb/#func:month
string("P2Y3M").months==2. s-from-duration_.28a
dapted_from_fn:month
s-from-duration.29
days P int - Days field of the duration. http://www.w3.org/TR
Duration.from /rif-dtb/#func:days-
string("P1DT2H3M4S").days from-duration_.28ada
==]. pted_from_fn:days-fr
om-duration.29
hours P int - Hours field of the duration. http://www.w3.org/TR
Duration.from /rif-dtb/#func:hours
string("P1DT2H3M4S").hour -from-duration_.28ad
s==2. apted_from_fn:hours-
from-duration.29
minutes P int - Minutes field of the http://www.w3.org/TR
duration. Duration.from /rif-dtb/#func:minut
string("P1DT2H3M4S").min es-from-duration_.28
utes==3. adapted_from_fn:minu
tes-from-duration.29
seconds P int - Seconds field of the http://www.w3.org/TR
duration. Duration.from /rif-dtb/#func:secon
string("P1DT2H3M4S").seco ds-from-duration_.28
nds==4. adapted_from_fn:seco
nds-from-duration.29
sign P int - Returns the sign of this -
duration in -1,0, or 1.
Duration.from
string("-P1Y").sign==-1.
add M XMLDuration(XM - Adds two durations. http://java.sun.com/
LDuration) Duration.from javase/6/docs/api/ja
string("P6M").add(Duration. vax/xml/datatype/Dur
from ation.html#add(javax
string("P6M"))==Duration.fr .xml.datatype.Durati
om string("P1Y"). on)
subtract M XMLDuration(XM - Subtracts two durations. http://java.sun.com/
LDuration) Duration.from javase/6/docs/api/ja
string("P6M").subtract(Dura vax/xml/datatype/Dur
tion.from ation.html#subtract (
string("P6M"))==Duration.fr javax.xml.datatype.D
om string("P0Y"). uration)
multiply M XMLDuration(Big - Multiplies argl durationby http://java.sun.com/
Decimal | int) arg? factor. Duration.from javase/6/docs/api/ja
string("P6M").multiply(2)== vax/xml/datatype/Dur
Duration.from string("P1Y"). ation.html#multiply (
java.math.BigDecimal
)
negate M XMLDuration() - Durations can be negative, http://java.sun.com/

e.g. if you reverse the
arguments to
Duration.between(argl,arg2
). Duration.from
string("P6M").negate()==Du
ration.from string("-P6M").

javase/6/docs/api/ja
vax/xml/datatype/Dur
ation.html#negate()

Oracle Business Rules Built-in Classes and Functions B-29

Miscellaneous Classes

Table B-20 (Cont.) The XMLDuration Class

OBR Name Kind Signature Java Name Description Reference

to string M String() toString Gets the ISO8601 literal http://www.w3.org/TR
representation for this /xpath-functions/#du
duration. Duration.from ration-subtypes
string("P6M").to
string()=="P6M".

Table B-21 lists the CurrentDate class.

Table B-21 The CurrentDate Class

OBR Name Kind Signature Java Name Description

CurrentDate Cl - oracle.rules.rl.extensio Fact type of a holder for the current

ns.CurrentDate date. Can be used in rule patterns.
date P Calendar - Returns the current date.

B.5 Miscellaneous Classes

This section covers the miscellaneous classes provided by Oracle Business Rules.

Table B-22 lists the JAXBElement class.

Table B-22 The JAXBElement Class
OBR Name Kind Signature Java Name Description Reference
JAXBElement Cl - javax.xml.bind.JAXB Represents XML element http://java.sun.com/ja
Element information in XML Fact vase/6/docs/api/javax/
Types. xml/bind/JAXBElement.h
tml
nil P boolean - A nil element is not the same http://java.sun.com/ja
thing (in XML) as an absent vase/6/docs/api/javax/
element. xml /bind/JAXBElement.h
tml#isNil ()
value P Object - This is a reference to an XML http://java.sun.com/ja
Fact Type vase/6/docs/api/javax/
xml/bind/JAXBElement.h
tml#getValue ()
Table B-23 lists the Object class.
Table B-23 The Object Class
OBR Name Kind Signature Java Name Description Reference
Object Cl - java.lang.Object Base class of all Java objects. http://java.sun.com/jav

ase/6/docs/api/java/lan
g/Object.html

B.6 Functions
Table B-24 lists the different functions provided by Oracle Business Rules..

B-30 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Functions

Table B-24 The Oracle Business Rules Functions

OBR Name Signature RL Name Description Reference
print void(Object) println Prints the string value of argl. Oracle Fusion
Middleware Language
Reference Guide for
Oracle Business Rules
RL.assert a tree of Object(Object) assertTree Asserts (insert into working ~ Oracle Fusion
facts memory) the tree of visible Middleware Language
fact types with argl as the Reference Guide for
root. Returns argl. Oracle Business Rules
RL.assert Object(Object) assert Asserts argl (insert argl into ~ Oracle Fusion
working memory). Returns Middleware Language
argl. Reference Guide for
Oracle Business Rules
RL.retract void(Object) retract Removes the fact associated Oracle Fusion
with the object argl from Middleware Language
working memory. Reference Guide for
Oracle Business Rules
RL.get fact ID int(Object) id Returns the fact id associated ~ Oracle Fusion
with the object argl. If argl is Middleware Language
not associated with a fact, Reference Guide for
return -1. Oracle Business Rules
RL.get factby ID Object(int) object Returns the object associated ~ Oracle Fusion
with the given fact id. If there Middleware Language
is no such fact id, returns null. Reference Guide for
Oracle Business Rules
RL.contains boolean(List,Object) contains The contains() function is Oracle Fusion
similar to the contains() Middleware Language
method on Java Collection but Reference Guide for
includes the ability to handle ~ Oracle Business Rules
the presence of JAXBElement
in the collection.
RL.ruleset void(String) pushRuleset Pushes argl, the name of a Oracle Fusion
stack.push ruleset, onto the ruleset stack. Middleware Language
Reference Guide for
Oracle Business Rules
RL.ruleset String() popRuleset Pops and returns the top of Oracle Fusion
stack.pop the ruleset stack, the name of ~Middleware Language
a ruleset. Reference Guide for
Oracle Business Rules
RL.ruleset String[]() getRulesetStack Returns the ruleset stack asa Oracle Fusion
stack.get String array. Middleware Language
Reference Guide for
Oracle Business Rules
RL.ruleset void(String[]) setRulesetStack Sets the ruleset stack to argl,a Oracle Fusion
stack.set String array. Middleware Language
Reference Guide for
Oracle Business Rules
RL.ruleset void() clearRulesetStack Pops all ruleset names off the ~ Oracle Fusion
stack.clear ruleset stack. Middleware Language
Reference Guide for
Oracle Business Rules
RL.date.get Calendar() getCurrentDate Returns the date associated Oracle Fusion
current with the CurrentDate fact. Middleware Language
Reference Guide for
Oracle Business Rules
RL.date.set void(Calendar) setCurrentDate Sets the date for reasoning on Oracle Fusion
current an engine managed fact Middleware Language

representing the "current"
date (with the CurrentDate
fact).

Reference Guide for
Oracle Business Rules

Oracle Business Rules Built-in Classes and Functions B-31

Functions

Table B-24 (Cont.) The Oracle Business Rules Functions

OBR Name Signature RL Name Description Reference
RL.date.get Calendar() getEffectiveDate Returns the current value of Oracle Fusion
effective the effective date. Middleware Language
Reference Guide for
Oracle Business Rules
RL.date.set void(Calendar) setEffectiveDate Updates the effective datein ~ Oracle Fusion
effective the rules engine. Middleware Language
Reference Guide for
Oracle Business Rules
RL.watch.rules void() watchRules Prints information about rule Oracle Fusion
firings (execution of Middleware Language
activations). Reference Guide for
Oracle Business Rules
RL.watch.activatio void() watchActivations Prints information about Oracle Fusion
ns addition or removal of Middleware Language
activations from the agenda. =~ Reference Guide for
Oracle Business Rules
RL.watch.facts void() watchFacts Prints information about Oracle Fusion
assertion, retraction, or Middleware Language
modification of facts in Reference Guide for
working memory. Oracle Business Rules
RL.watch.focus void() watchFocus Prints information about Oracle Fusion
pushing and popping of the ~ Middleware Language
ruleset stack. Reference Guide for
Oracle Business Rules
RL.watch.compila void() watchCompilations Prints information about how Oracle Fusion
tions the condition parts of a rule Middleware Language
are shared with existing rules. Reference Guide for
Oracle Business Rules
RL.watch.all void() watchAll Prints information about Oracle Fusion
rules, facts, activations, focus, Middleware Language
and compilations. Reference Guide for
Oracle Business Rules
RL.stop void() clearWatchRules Stops printing information Oracle Fusion
watching.rules about rule firings. Middleware Language
Reference Guide for
Oracle Business Rules
RL.stop void() clearWatchActivations Stops printing information Oracle Fusion
watching.activatio about addition or removal of = Middleware Language
ns activations from the agenda. ~ Reference Guide for
Oracle Business Rules
RL.stop void() clearWatchFacts Stops printing information Oracle Fusion
watching.facts about assertion, retraction, or Middleware Language
modification of facts in Reference Guide for
working memory. Oracle Business Rules
RL.stop void() clearWatchFocus Stops printing information Oracle Fusion
watching.focus about pushing and popping Middleware Language
of the ruleset stack. Reference Guide for
Oracle Business Rules
RL.stop void() clearWatchCompilations = Stops printing information Oracle Fusion
watching.compilat about how the condition parts Middleware Language
ions of a rule are shared with Reference Guide for
existing rules. Oracle Business Rules
RL.stop void() clearWatchAll Stops printing information Oracle Fusion

watching.all

about rules, facts, activations,
focus, and compilations.

B-32 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Middleware Language
Reference Guide for
Oracle Business Rules

Functions

Table B-24 (Cont.) The Oracle Business Rules Functions

OBR Name Signature RL Name Description Reference
RL.show.facts void() showFacts Prints all facts in working Oracle Fusion
memory. Middleware Language

Reference Guide for
Oracle Business Rules

RL.show.activatio void() showActivations Prints all activations on the Oracle Fusion

ns agenda. Middleware Language
Reference Guide for
Oracle Business Rules

Oracle Business Rules Built-in Classes and Functions B-33

Functions

B-34 Oracle Fusion Middleware User's Guide for Oracle Business Rules

C

Oracle Business Rules Frequently Asked

Questions

This appendix contains frequently asked questions about Oracle Business Rules.

Section C.1, "Why Do Rules Not Fire When A Java Object is Asserted as a Fact and
Then Changed Without Using the Modify Action?"

Section C.2, "What are the Differences Between Oracle Business Rules RL
Language and Java?"

Section C.3, "How Does a RuleSession Handle Concurrency and Synchronization?"
Section C.4, "How Do I Correctly Express a Self-Join?"
Section C.5, "How Do I Use a Property Change Listener in Oracle Business Rules?"

Section C.6, "What Are the Limitations on a Decision Service with Oracle Business
Rules?"

Section C.7, "How Do I Put Java Code in a Rule?"

Section C.8, "Can I Use Java Based Facts in a Decision Service with BPEL?"
Section C.9, "How Do I Enable Debugging in a BPEL Decision Service?"
Section C.10, "How Do I Support Versioning with Oracle Business Rules?"

Section C.11, "What is the Priority Order Using Priorities with Rules and Decision
Tables?"

Section C.12, "Why do XML Schema with xsd:string Typed Elements Import as
Type JAXBElement?"

Section C.13, "Why Are Changes to My Java Classes Not Reflected in the Data
Model?"

Section C.14, "How Do I Use Rules SDK to Include a null in an Expression?"
Section C.15, "Is WebDAV Supported as a Repository to Store a Dictionary?"
Section C.16, "Using a Source Code Control System with Rules Designer"

C.1 Why Do Rules Not Fire When A Java Object is Asserted as a Fact and
Then Changed Without Using the Modify Action?

When a Java object has been asserted and then the object is changed without using the
modify action, the object must be re-asserted in the Rules Engine. Therefore, if a rule
associated with the changed Java object does not fire, this means that the Rules Engine

Oracle Business Rules Frequently Asked Questions C-1

What are the Differences Between Oracle Business Rules RL Language and Java?

did not reevaluate any rule conditions and did not activate any rules. Thus, when a
Java object changes without using the modify action, the object must be re-asserted in
the Rules Engine.

C.2 What are the Differences Between Oracle Business Rules RL
Language and Java?

For more information on the differences between Oracle Business Rules RL Language
and Java, see Appendix A in Oracle Fusion Middleware Language Reference Guide for
Oracle Business Rules.

C.3 How Does a RuleSession Handle Concurrency and Synchronization?

Method calls on an Oracle Business Rules RuleSession object are thread-safe such that
calls by multiple threads do not cause exceptions at the RuleSession level. However,
there are no exclusivity or transactional guarantees on the execution of methods. The
lowest-level run method in the Rules Engine is synchronized, so two threads with a
shared RuleSession cannot both simultaneously execute run. One call to run must
wait for the other to finish.

Oracle Business Rules functions are not synchronized by default. Like Java methods,
Oracle Business Rules functions can execute concurrently and it is the programmer's
responsibility to use synchronized blocks to protect access to shared data (for instance,
a HashMap containing results data).

Any set of actions that a user wants to be executed as in a transaction-like form must
synchronize around the shared object. Users should not synchronize around a
RuleSession object because exceptions thrown when calling RuleSession
methods may require the RuleSession object to be discarded.

For most uses of a RuleSession object in Oracle Business Rules, each thread or
servlet instance should create and use a local RuleSession object. This usage pattern
is roughly analogous to using a JDBC connection in this manner.

The following examples demonstrate how to use a shared RuleSession object.
For the case where Thread-1 includes the following:

ruleSession.callFunctionWithArgument ("assert", singleFactl);
ruleSession.callFunctionWithArgument ("assert", singleFact2);

and Thread-2 includes the following:

ruleSession.callFunction("run");
ruleSession.callFunction("clear");

In this case, the execution of the two threads might proceed as shown in Example C-1.

Example C-1 Using a Shared RuleSession Object in Oracle Business Rules

Thread-1: ruleSession.callFunctionWithArgument ("assert", singleFactl);
Thread-2: ruleSession.callFunction("run");

Thread-2: ruleSession.callFunction("clear");

Thread-1: ruleSession.callFunctionWithArgument ("assert", singleFact2);

In Example C-1, the two facts Thread-1 asserted are never both in the RuleSession
during a call to run. Notice also that only one thread calls the run method. If you use
a design where multiple threads can call run on a shared RuleSession, this can
create extremely hard to find bugs and there is usually no gain in performance.

C-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

How Do I Correctly Express a Self-Join?

All accesses to a shared RuleSession object must be synchronized to ensure the
intended behavior. However, a RuleSession instance may throw an exception and
not be recoverable, so do not use this object as the synchronization object. Instead, use
another shared object as the synchronization point.

One can envision a shared server process producer-consumer model for
RuleSession use. In this model, multiple threads assert facts to a shared
RuleSession and one thread periodically calls run, reads any results, and outputs
them. This ensures that thread conflicts cannot occur, because the two code segments
must be executed serially and cannot be intermingled. For example, the code with
shared objects, producer code, and consumer code in Example C-2, Example C-3, and
Example C—4.

Example C-2 RuleSession Shared Objects

RuleSession ruleSession;
Object ruleSessionLock = new Object();

Example C-3 RuleSession Producer Code

public String addFacts(FactTypeA fa, FactTypeB fb, FactTypeC fc) {
String status = "";
synchronized (ruleSessionLock) {
try {
ruleSession.callFunctionWithArgument ("assert", fa);
ruleSession.callFunctionWithArgument ("assert", fb);
status = "success";
} catch (Exception e) {
// a method that creates a new RuleSession loads it with rules
initializeRuleSession();
status = "failure";
}

return status;

Example C-4 RuleSession Consumer Code

public List exec()({
synchronized(ruleSessionLock) {

try {
ruleSession.callFunction("run");
List results = (List)ruleSession.callFunction("getResults");

ruleSession.callFunction("clearResults");
return results;
} catch (Exception e) ({
// a method that creates a new RuleSession loads it with rules
initializeRuleSession();
return null;

Note: When multiple threads are sharing a RuleSession object, if
more than one of the threads calls the run method, this can create
extremely hard to find bugs and there is usually no gain in
performance.

C.4 How Do I Correctly Express a Self-Join?

When working with facts, there are cases where the runtime behavior of Oracle RL
may produce surprising results.

Oracle Business Rules Frequently Asked Questions C-3

How Do | Correctly Express a Self-Join?

Consider the Oracle RL code in Example C-5.

Example C-5 Self-Join Using Fact F

class F {int 1i; };

rule rl {
if (fact F fl1 && fact F £2) {
println("Results: " + f1.i + ", " + £2.1);

}
}
assert (new F(i:1));
assert (new F(i:2));
run();

How many lines print in the Example C-5 output? The answer is 4 lines because the
same fact instance can match for both £1 and £2.

Thus, Example C-5 gives the following output:

Results: 2, 2
Results: 2, 1
Results: 1, 2
Results: 1, 1

Using the same example with a third F, for example (assert (new F(i:3)) ;) then
nine lines are printed and if, at the same time, a third term && fact F F3isadded
then 27 lines are printed.

If you are attempting to find all combinations and orders of distinct facts, you need an
additional term to in the test, as shown in Example C-6.

Example C-6 Find All Combinations of Fact F

rule rl {
if (fact F F1 && fact F F2 && F1 != F2) {
println("Results: " + F1.i + ", " + F2.1);

}
}

The code in Example C-6 gives the following output:

Results: 2, 1
Results: 1, 2

The simplest, although not the fastest way to find all combinations of facts, regardless
of their order, is to use the code shown in Example C-7.

Example C-7 Finding Combinations of Fact F

rule rl {
if (fact F Fl && fact F F2 && 1d(F1l) < id(F2)) {
println("Results: " + F1.i + ", " + F2.1);

}
}

Because the function 1d () shown in Example C-7 takes longer to execute in a test
pattern than a direct comparison, the fastest method is to test on a unique value in
each object. For example, you could add an integer value property "oid" to your class
that is assigned a unique value for each instance of the class.

Example C-8 shows the same rule using the oid value.

Example C-8 Fast Complete Comparison

rule rl {

C-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

How Do | Use a Property Change Listener in Oracle Business Rules?

if (fact F F1 && fact F F2 && Fl.oid < F2.o0id) {
println("Results: " + F1.1 + ", " + F2.1);
}
}

This problem may also arise if you attempt to remove all duplicate facts from the
Oracle Rules Engine, using a function as shown Example C-9.

Example C-9 Retracting Duplicate Facts Incorrect Sample

rule rRemoveDups {
if (fact F F1 && fact F F2 && F1.i == F2.i) {
retract (F2);
}
}

However, this rule removes all facts of type F, not just the duplicates because F1 and
F2 may be the same fact instance. Example C-10 shows the correct version of this rule.

Example C-10 Retracting Duplicate Facts Corrected Sample

rule rRemoveDups {
if (fact F F1 && fact F F2 && F1 != F2 && Fl.1i == F2.1) {
retract (F2) ;
}
}

C.5 How Do | Use a Property Change Listener in Oracle Business Rules?

The Oracle Rules Engine supports the Java PropertyChangeListener design
pattern. This allows an instance of a Java fact that uses the
PropertyChangeSupport class to automatically notify the Oracle Rules Engine
when property values have changed. Java facts are not required to implement this
pattern to be used by Oracle Rules Engine.

Typically, changes made to values of a property of a Java object that has previously
been asserted to the Oracle Rules Engine requires that the object be re-asserted in
order for rules to be reevaluated with the new property value. For properties that fire
PropertyChangeEvent, changing the value of those properties both changes the
value and re-asserts the fact to the Oracle Rules Engine.

To implement the PropertyChangeListener design pattern in a class, do the
following:

1. Import this package in the class:

import java.beans.PropertyChangeSupport;

2. Add a private member variable to the class:

private PropertyChangeSupport m_pcs = null;

3. In the constructor, create a new PropertyChangeSupport object:

m_pcs = new PropertyChangeSupport (this);

4. Then for each setter, add the call to firePropertyChange:

public void setName(String name) {
String oldval = m_name;
m_name = name;
m_pcs.firePropertyChange("name", oldval, m_name);

Oracle Business Rules Frequently Asked Questions C-5

What Are the Limitations on a Decision Service with Oracle Business Rules?

}

5. Implement addPropertyChangeListener method (delegate to m_pcs):

public void addPropertyChangeListener (PropertyChangeListener pcl) {
m_pcs.addPropertyChangeListener (pcl);
}

6. Implement removePropertyChangeListener method (delegate to m_pcs):

public removePropertyChangeListener (PropertyChangeListener pcl) {
m_pcs.removePropertyChangelListener(pcl);

}

When deciding whether to design your application to always explicitly re-assert
modified objects or implement the PropertyChangeListener design pattern,
consider the following;:

= Explicitly re-asserting modified objects allows a user to group several property
changes and making them visible to the rules all at once. This is most useful when
a concurrent thread is executing rules, and the rules should see only a complete
group of property changes.

= Explicit assert reduces the computational cost of rule re-evaluation when multiple
properties are changed. If multiple properties are changed at the same time, this
results in multiple re-evaluations of rule conditions that reference the fact type.
This occurs because each property change event results in a re-assertion of the
object. Using an explicit assert instead of the PropertyChangeListener pattern
eliminates this extra computational cost.

= Explicit assert is required when a rule modifies a fact that is also tested in its
condition, but the automatic reassert triggered by the
PropertyChangeListener before a guard condition property is set would
cause the rule to refire itself endlessly.

= Explicit assert must be used when modifying Oracle RL facts and XML facts,
because these cannot be defined to support the PropertyChangeListener
design pattern.

s PropertyChangeListener-enabled facts allow a Java application to
communicate property changes to the rule engine without having to change the
application to perform explicit asserts. This also means that code that modifies a
property of an object does not need to have a reference to the RuleSession object
in scope.

s PropertyChangeListener support prevents the common error of neglecting to
re-assert a fact after changing its properties.

C.6 What Are the Limitations on a Decision Service with Oracle Business

Rules?

There are some limitations for using Business Rules with a BPEL process, including the
following:

= Only visible XML fact types may be specified as the input for a decision service.
= Only visible XML fact types may be specified as the output of a decision service.

For an additional restriction, see Appendix D.8, "How Are Decision Service Input
Output Element Types Restricted?".

C-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

How Do | Support Versioning with Oracle Business Rules?

For information on setting XML fact type visible option, see Section 3.2, "Working with
XML Facts".

C.7 How Do | Put Java Code in a Rule?

You do not actually put Java code in a rule. However, you can invoke a Java method
from a rule condition or action.

C.8 Can | Use Java Based Facts in a Decision Service with BPEL?

Oracle BPEL PM can invoke only decision functions exposed as a decision service, and
this means that the decision function inputs and outputs must be XML fact types.

You can use an existing ruleset or decision function that uses Java fact types if you
convert the input XML facts to Java facts. For example, you could create some rules in
a ruleset, named convertFromXML, and put this ruleset before the Java ruleset in the
decision function ruleflow. Similarly, you could create a ruleset to convert from Java
facts to output XML facts and put this ruleset after the Java ruleset in the decision
function ruleflow.

Alternatively, if your rules use only properties, and no methods or fields, from the Java
fact types you can replace the Java fact types with XML fact types as follows:

1. Delete the Java fact types (first making careful note of the aliases of the fact types
and properties).

2. Import similar XML fact types and edit the aliases of the fact types and properties
to be the same as the deleted Java fact types and properties.

C.9 How Do | Enable Debugging in a BPEL Decision Service?

To enable debugging output during ruleset execution for a BPEL Decision Service, you
enable the SOA rules logger. When the SOA rules logger is set to TRACE level then the
output of watchAll is logged to the SOA diagnostic log. When you change the
logging level using Fusion Middleware Control Console, you do not need to redeploy
the application to use the specified level.

For information on using the SOA oracle.soa.service.rules and
oracle.soa.services.rules.obrtrace loggers, see Oracle Fusion Middleware Administrator’s
Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

C.10 How Do I Support Versioning with Oracle Business Rules?
Versioning is supported in Oracle Business Rules in two ways:

= Atdesign time, the dictionary is stored as an XML file in a JDeveloper project. The
dictionary can be versioned in a source control system in the same way as any
other source file.

= Atruntime, the dictionary is stored in MDS. If MDS is database backed then
versioning is supported using MDS.

Note: It is possible for a server application to respond to dictionary changes as they are
made visible to the application in MDS. The rule service engine (decision service) does
this automatically. For non-SCA application, this can be done using the
RuleRepository interface. At this time, they way to support an "in-draft" version is by
using the sandbox feature of MDS. The Oracle Business Rules RuleRepository interface
supports this.

Oracle Business Rules Frequently Asked Questions C-7

What is the Priority Order Using Priorities with Rules and Decision Tables?

C.11 What is the Priority Order Using Priorities with Rules and Decision

Tables?

The priority for rules and decision tables is highest to lowest, with the higher priority
rule or Decision Table executing first. For example, if you create rules with priorities
1-4, they would be executed in the execution priority order 4,3,2,1. Using Rules
Designer you can select a priority from a predefined named priority list or enter a
positive or negative integer to specify your own priority level. The default priority is
medium (with the integer value 0). For more information, see Section 4.5.5, "How to Set
a Priority for a Rule".

Note, however, you should try to avoid priorities as much as possible since they break
the purely declarative model of rules. If you find yourself using a lot of priorities, then
generally it is best to try to restructure your rule patterns and tests to avoid conflicts,
or divide the rules into multiple rulesets using ruleflow if they are intended to be run
in a certain order. A conflict is a case when more than one rule in a ruleset is able to
fire. For example, if a "gold customer" rule says to make a customer that spends over
$1000 a gold customer, and a "silver customer" rule says to make a customer that
spends over $500 a silver customer, then when a customer spends $1100 there is a
conflict. Rather than prioritize the rules, it is more declarative to change the "silver
customer" rule to test for customers that spend between $500 and $1000. This conflict
analysis and conflict avoidance is particularly easy if you use Decision Tables. For
more information on Decision Tables, see Chapter 5, "Working with Decision Tables".

You use ruleflow, that is the ruleset stack, to order rulesets. For information on
working with the ruleset stack, see Oracle Fusion Middleware Language Reference Guide
for Oracle Business Rules.

C.12 Why do XML Schema with xsd:string Typed Elements Import as
Type JAXBElement?

According to the JAXB 2.0 spec, the default type mapping for elements that have
minOccurs="0" and nillable="true" is JAXBElement<T>, where T is the
default mapping of the type defined for the element. For example, xsd: string maps
to JAXBElement<String>, xsd:int maps to JAXBElement<Integer>, and
xsd:integer maps to JAXBElement<BigInteger>. This is because
nillable="true" means the user has defined a semantic difference between a
element not being defined in a document, with minOccurs=0, it does not have to be
defined, and an element being defined but having the attribute nil="true". Thisis a
subtle difference and is often used to define the difference between an unknown value
and a value known to be "no value".

To use the JAXBElement-typed property in a rule, the property must be first checked
for non-null, and then the "value" property or getvValue () method can be used
retrieve a value of the underlying type:

fact FactTypel &&
FactTypel.propl != null &&
FactTypel.propl.value == "abc"

Alternatively, you may want to define a customized JAXB binding so nillable elements
are mapped to type T rather than JAXBElement<T>. However, this is a lossy
conversion, as you no longer are able to determine the difference between a
non-existent element and a nil one. This does make the nillable attribute less useful,
but it does allow you to explicitly define an element as nil in your document, similarly
to how in Java an Object-typed field is initialized to null by default or you can
explicitly initialize it to null.

C-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Is WebDAV Supported as a Repository to Store a Dictionary?

There are several ways to do this. In both cases, add these attributes to the top-level
xsd: schema element start tag:

xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0"

1. To specify ALL properties to use the binding, add this immediately inside the
xsd:schema opening tag:

<xsd:annotation>
<xsd:appinfo>
<jaxb:globalBindings generateElementProperty="false"/>
</xsd:appinfo>
</xsd:annotation>

2. To specify only specific properties use the binding, add an annotation like this to
each desired element:

<xsd:element name="stringElement2" type="xsd:string" minOccurs="0"
nillable="true">
<xsd:annotation>
<xsd:appinfo>
<jaxb:property generateElementProperty="false" />
</xsd:appinfo>
</xsd:annotation>
</xsd:element>

3. Add the definitions to an external customizations file and pass it as an argument
when adding the schema to the datamodel. This can only be done when
programmatically calling the SchemaBrowser class and is not exposed in Rule
Designer.

C.13 Why Are Changes to My Java Classes Not Reflected in the Data
Model?

Do not import classes that have been compiled into the "SCA-INF/classes" directory.
Classes in this directory cannot be reloaded into the datamodel when they change.

C.14 How Do I Use Rules SDK to Include a null in an Expression?
You can use the following Rules SDK code to include a null value:

SimpleTest test = pattern.getSimpleTestTable().add();
test.getLeft () .setValue(attr);

test.setOperator (Util.TESTOP_NE) ;
test.getRight () .setValue("null");

C.15 Is WebDAV Supported as a Repository to Store a Dictionary?

The Web Distributed Authoring and Versioning (WebDAV) repository is not supported
to store a dictionary in Oracle Fusion Middleware 11g Release 1 (11.1.1) Oracle
Business Rules. Oracle Business Rules supports using an MDS (file backed or Database
backed) repository for storing dictionaries.

Oracle Business Rules Frequently Asked Questions C-9

Using a Source Code Control System with Rules Designer

C.16 Using a Source Code Control System with Rules Designer

There are special considerations when you use Rules Designer and a source control
system, such as CVS or Subversion. When you use a source code control system with
Rules Designer you need to specify that rule dictionary files in your project are
recognized as "binary" files instead of "text" files. The rule dictionary files are XML
documents and by default the source code control system treats these files as text files.
However, rule dictionary files cannot be merged because the files contain semantic
structure. If a rule dictionary file is treated as a text file and then changed, the source
control system attempts to merge the file with a "trivial" merge. Using a trivial merge
creates a semantically invalid dictionary file which cannot be unmarshalled into a
RuleDictionary object.

Thus, when you use a source code control system with rule dictionary files, .rules files,
you need to make sure the source code control system treats the files as binary files.
There are configuration options you need to set to specify that the system treats
dictionary files as binary files. For example, in the Subversion source code control
system you can set the MIME type with the svn :mime-type file property. For more
information, see

http://svnbook.red-bean.com/nightly/en/svn.advanced.props.file-p
ortability.html#svn.advanced.props.special .mime-type

When you set the source code control system options to specify the binary file type,
this allows the source code control system, for example tortoiseSVN, to treat the rules
dictionary files correctly, as binary files.

C-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

D

Oracle Business Rules Troubleshooting

This appendix contains workarounds and solutions for issues you may encounter
when using Oracle Business Rules. The following topics are covered:

m Section D.1, "Getter and Setter Methods are not Visible"

= Section D.2, "Java Class with Only a Property Setter"

s Section D.3, "Runtime NoClassDefFound Error"

= Section D.4, "RL Specific Keyword Naming Conflict Errors"

= Section D.5, "java.lang.Illegal AccessError from Business Rules Service Runtime"
= Section D.6, "JAXB 1.0 Dictionaries and RL MultipleInheritanceException”

s Section D.7, "Why Does XML Schema with Underscores Fail JAXB Compilation?"
= Section D.8, "How Are Decision Service Input Output Element Types Restricted?"
= Section D.9, "How Are Decision Service Input Output Schema Restricted?"

= Section D.10, "How Do I Handle Java Reserved Names in an Imported Fact Type?"

D.1 Getter and Setter Methods are not Visible

Rules Designer does not list the methods supporting a Java bean property in choice
lists; only the bean properties are visible. For example, a Java bean with a property
named Y must have at least a getter method getY () and may also have a setter
method setY (y-type-param). All of properties and methods (including getter and
setter that compose the properties) are displayed when viewing the Java FactType.
Only the properties of Java Classes (not the getter and setter methods) are displayed in
choice lists. When attempting to control the visibility of the property it is best to use
the properties visibility flag. Marking a getter or a setter method as not visible may not
remove the properties from choice lists.

D.2 Java Class with Only a Property Setter

In Java the Java Bean introspector includes write-only properties. Oracle RL does not
include such properties as Beans, because they cannot be reasoned on in a rule. Thus,
in order for Java fact type bean properties to be properly accessed in Oracle RL they
must have both a getter and setter. Properties which have a setter but not a getter, that
is write-only properties, are not allowed in the Oracle RL "new" syntax.

For example, if a bean Foo only has the method setPropl (int 1), then you cannot
use the following in Oracle RL:

Foo f = new Foo(propl: 0)

Oracle Business Rules Troubleshooting D-1

Runtime NoClassDefFound Error

D.3 Runtime NoClassDefFound Error
Sometimes when working with XML facts, you might receive an error of the form:
Exception in thread "main" java.lang.NoClassDefFoundError:
The java.lang.NoClassDefFoundError is very likely due to required classes not
in classpath. Try checking the following:
s Add xml.jar to your classpath when executing.

= Add the directory where the generated and compiled JAXB classes are placed to
the classpath.

D.4 RL Specific Keyword Naming Conflict Errors

Oracle Business Rules escapes RL specific keywords when generating RL from Rules
Designer. In most cases, RL specific keywords can be used without causing errors. One
exception is using a keyword as the name of a class. This is unlikely for Java classes
because by convention they start with an upper case letter and RL specific keywords
are all lowercase. For more information, see Oracle Fusion Middleware Language
Reference Guide for Oracle Business Rules.

D.5 java.lang.lllegalAccessError from Business Rules Service Runtime
Problem: I receive an error such as the following:

java.lang.IllegalAccessError: tried to access class
com.sun.xml.bind.v2.runtime.reflect.opt.Const from class:...

Reason: This can be due to JAXB 2.1.6 issue 490, caused when unmarshalling incorrect,
for example letter characters when float is expected, data as described at the following
site,

http://java.net/jira/browse/JAXB-490

Workaround: the workaround for this problem is to assign a value to the appropriate
element, as shown in Figure D-1 and Figure D-2 where approvalRequired is
assigned a default value false ().

D-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

java.lang.lllegalAccessError from Business Rules Service Runtime

Figure D-1 Adding an Expression to Initialize a Value for a Business Rules Service Input

"_T’,'Start Page | Sd0radefules1, rules [;,BPELProcessl.hpel Ij'a,OrderBooldngRules.xsd | =40radefules] rules |ﬁ<—nBPELProcessl.bpel MM]

o -] S o .f_gg- _}e.aBPELv® |'
B v]
7| assign . %

| General r Copy Operation r SEensars r Annotations |
LA AR 35 R .
Fram T
(x) ¥ariable (x) ¥ariable
inputyariable/pavload/client:proce... com_example_globalcompany_ns_o i
@ E/] Expression (x) variable |
Falsel) com_example_globalcompany_ns_o |
|
|
|
§
| Help | Apply | | (04 | | Cancel |
BPEL_Header - /process/sequence/scope/sequenceassign[3] Zoam: E v @‘.;
Desinn | Snnree | Hisknes
Figure D-2 Expression Assigned to Input Variable for Business Rules Service
& Edit Copy Operation Pz|
From To
Twpe: |Expressi0n V| Type: |'v'ariable V|
Expression: E/i r——l L
E}ﬁga Process
false() I B[] vaiables
EQQQ! Scope - BusinessRule_1

=[] Yariables
E}---(_x) com_example_globalcompany_ns_or
| [E-4e» nsl:approve

£=p nslprice

<> e approvaReaiiad]

t) com_example_globalcompany_ns_or

%) dsIn

- (%) dsOut

[Show Detailed Mode Information

#Path: |,-"nsl: approve/nsl:approvalRequired |

| Help | | (a4 | Cancel

Oracle Business Rules Troubleshooting D-3

JAXB 1.0 Dictionaries and RL MultipleInheritanceException

D.6 JAXB 1.0 Dictionaries and RL MultiplelnheritanceException

Dictionaries which have been migrated from 10.1.3 use JAXB 1.0 instead of JAXB 2.0,
which is the default for Oracle Fusion Middleware 11¢ Release 1 (11.1.1) dictionaries.
Because of this use of JAXB 1.0, the migrated dictionaries may contain Element types.
If your dictionary has Element types marked as visible, generated RL may throw
MultipleInheritanceException.

The solution to this issue is to mark the Element fact types non-visible or remove them
from the datamodel. Only the Type classes generated by JAXB should be used to write
rules, so there is no functionality loss from deleting the Element types.

D.7 Why Does XML Schema with Underscores Fail JAXB Compilation?

The defined behavior of JAXB is to fail when a name of the form '_' + number is
found. In this case JAXB cannot generate an "obvious" Java class name from this string.
The default behavior of JAXB for ' _' + char is to treat it as a word boundary
(underscoreBinding="asWordSeparator"), which means the underscore is
stripped and the char is UpperCamelCased. For example, _fooBar is mapped to

FooBar.

To fix this problem, you need to provide a schema customization to direct JAXB to
generate the names differently. The default value for underscoreBinding is
specified as "asWordSeparator", which does not allow an underscore to be used at
the beginning of a name.

The global annotation underscoreBinding="asCharInWord" causes the '_' tobe
preserved in the classname and UpperCamelCase after the number:

<xsd:annotation><xsd:appinfo>
<jaxb:globalBindings underscoreBinding="asCharInWord" />
</xsd:appinfo></xsd:annotation>

With this global annotation, the mapping for _1foo_bar_bazis _1Foo_Bar_Baz.

D.8 How Are Decision Service Input Output Element Types Restricted?

Using the Decision Service to run business rules with XML schema defining the input,
for any given complexType "tFoo" in an XML-Schema file Foo . xsd there can only be
one XML-Schema element "foo" of type "tFoo". The Decision Service does not allow
you to use two elements "foo" and "bar" of the same type "tFoo.

D.9 How Are Decision Service Input Output Schema Restricted?

When you use the Decision Service a schema must define a complexType or import
another schema which defines a complexType. You cannot use schemas which do not
define complexType, such as the following:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.example.org"
targetNamespace="http://www.example.org"
elementFormDefault="qualified">
<xsd:element name="count" type="xsd:int"/>
</xsd:schema>

Oracle Fusion Middleware User's Guide for Oracle Business Rules

How Do | Handle Java Reserved Names in an Imported Fact Type?

D.10 How Do | Handle Java Reserved Names in an Imported Fact Type?

In Oracle Business Rules, when you import fact type properties which would have the
same name as a Java language reserved word are excluded. For a complete list of Java
reserved words, see

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywo
rds.html

A workaround is to rename the getter and setter method pair that produce the
excluded property. If these methods names cannot be changed, the methods should be
used in rules instead of the properties.

For example, if a property named continue is excluded, you can create rules that use
getContinue () and setContinue () methods instead of using the property.

You can do this by rewriting a pattern. For example, replace:
fact IncrCount ic && ic.continue == "foo"

with:

fact IncrCount ic && ic.getContinue() == "foo"

For another example, in an action, replace:

[assert new] IncrCount (continue:"bar")

with:

[assign new] IncrCount ic = new IncrCount()

[call] ic.setContinue("bar")
[assert] ic

Oracle Business Rules Troubleshooting D-5

How Do | Handle Java Reserved Names in an Imported Fact Type?

D-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

E

Working with Oracle Business Rules and
JSR-94 Execution Sets

The specification for the Java Rule Engine API (JSR-94) defines a standard Java
runtime API to access a rule engine from a Java SE or Java EE client. You can access
Oracle Business Rules using JSR-94.

This chapter includes the following sections:
m Section E.1, "Introduction to Oracle Business Rules and JSR-94 Execution Sets"

= Section E.2, "Creating JSR-94 Rule Execution Sets from Oracle Business Rules
Rulesets"

= Section E.3, "Using the JSR-94 Interface with Oracle Business Rules"
For more information, see:
m http://jcp.org/en/jsr/detail?id=94

m http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.h
tml

E.1 Introduction to Oracle Business Rules and JSR-94 Execution Sets

Oracle Business Rules provides JSR-94 support. This allows you to create more
portable rule-enabled applications.

You can create JSR-94 execution sets from Oracle Business Rules rulesets and you can
create JSR-94 rule sessions from these execution sets. For more information, see
Section E.2, "Creating JSR-94 Rule Execution Sets from Oracle Business Rules
Rulesets".

You can access Oracle Business Rules rulesets and execute them against the Oracle
Business Rules Engine using the JSR-94 API. For more information, see Section E.3,
"Using the JSR-94 Interface with Oracle Business Rules".

Oracle Business Rules also provides extensions to the JSR-94 API that you may find
useful. For more information, see Section E.3.4, "Using Oracle Business Rules JSR-94
Extensions".

E.2 Creating JSR-94 Rule Execution Sets from Oracle Business Rules
Rulesets

To use JSR-94 with rules in RL Language text, you must map the rules to a JSR-94 rule
execution set.

Working with Oracle Business Rules and JSR-94 Execution Sets E-1

Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets

A JSR-94 rule execution set (rule execution set) is a collection of rules that are intended
to be executed together. You also must register a rule execution set before running it.
A registration associates a rule execution set with a URL; using the URI, you can create
a JSR-94 rule session.

Note: In Oracle Business Rules, a JSR-94 rule execution set
registration is not persistent. Thus, you must register a rule execution
set programmatically using a JSR-94 RuleExecutionSetProvider
interface.

For more information, see Section E.3.1, "Creating a Rule Execution Set with
createRuleExecutionSet".

E.2.1 Creating Rule Execution Set with Oracle Business Rules RL Language Text

You can use JSR-94 with RL Language rulesets saved as text, where the Oracle RL text
is directly included in the rule execution set. For more information, see "Using the
Extended createRuleExecutionSet to Create a Rule Execution Set" on page E-6 for
information about JSR-94 extensions that assist you in including RL Language text.

To create a rule execution set from Oracle Business Rules Oracle RL language

text:

1. Specify the RL Language mapping information in an XML document. Table E-1
shows the mapping elements required to construct a rule execution set.
Example E-1 shows a sample XML document for mapping RL Language text to a
JSR-94 rule execution set.

2. You then use the XML document with the JSR-94 administration APIs to create a
rule execution set. The resulting rule execution set is registered with a JSR-94
runtime (using a RuleAdministration instance).

Table E-1 Oracle Business Rules Oracle RL Language Text XML Mapping Elements for

JSR-94

Element Description

<rule-source> Includes an <r1-text> tag containing explicit RL Language
text containing an Oracle Business Rules ruleset. Multiple
<rule-source> tags can be used to specify multiple rulesets
(specified in the order in which they are interpreted).

<ruleset-stack> Specifies a list of rulesets that form the initial ruleset stack. The

order of the rulesets in the list is from the top of the stack to the
bottom of the stack.

Note: Inthe <rl-text> element the contents must escape XML
predefined entities. This includes the characters '&’, >, '<’, ", and '\".

Example E-1 XML Mapping File for Rulesets Defined in an Oracle RL Program

<rule-execution-set xmlns="http://xmlns.oracle.com/rules/jsr94/configuration"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" version="1.0">
<name>CarRentalDemo</name>
<description>The Car Rental Demo</description>
<rule-source>
<rl-text>
ruleset DM {

E-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets

fact class carrental.Driver {
hide property ableToDrive, driverLicNum, licIssueDate, licenceType,
1licIssueDate, numPreAccidents, numPreConvictions,
numYearsSinceLicIssued, vehicleType;

final String DeclineMessage = "Rental declined ";

public class Decision supports xpath {
public String driverName;
public String type;
public String message;

function assertXPath(String package,
java.lang.Object element, String xpath) {
//RL literal statement
main.assertXPath(package, element, xpath);

function println(String message) {
//RL literal statement
main.println(message) ;

function showDecision(DM.Decision decision) {
//RL literal statement
DM.println("Rental decision is " + decision.type +
" for driver " + decision.driverName +
" for reason " + decision.message);

}
</rl-text>
</rule-source>
<rule-source>
<rl-text>
ruleset vehicleRent {
rule UnderAge {
priority = 0;
if ((fact carrental.Driver v0_Driver &&
(v0_Driver.age < 19))) {
DM.println("Rental declined: " + v0_Driver.name +
" Under age, age is: " + v0_Driver.age);
retract (v0_Driver) ;

}
</rl-text>
</rule-source>
<ruleset-stack>
<ruleset-name>vehicleRent</ruleset-name>
</ruleset-stack>
</rule-execution-set>

E.2.2 Creating a Rule Execution Set from Oracle RL Text Specified in a URL

You can use JSR-94 with Oracle RL rulesets specified using a URL. For more
information, see "Using the Extended createRuleExecutionSet to Create a Rule
Execution Set" on page E-6 for information about JSR-94 extensions that assist you in
specifying a URL.

Working with Oracle Business Rules and JSR-94 Execution Sets E-3

Using the JSR-94 Interface with Oracle Business Rules

To create a rule execution set from Oracle RL text specified in a URL:

1. Specify the Oracle RL mapping information in an XML document. Table E-2
shows the mapping elements required to construct a rule execution set.
Example E-2 shows a sample XML document for mapping Oracle RL text to a
JSR-94 rule execution set.

2. You then use the XML document with the JSR-94 administration APIs to create a
rule execution set. The resulting rule execution set is registered with a JSR-94
runtime (using a RuleAdministration instance).

Table E-2 Oracle Business Rules Oracle RL URL XML Mapping Elements for JSR-94

Element Description

<rule-source> Includes an <rl-url> tag containing a URL that specifies the
location of RL Language text. Multiple <rule-source> tags
can be used to specify multiple rulesets (in the order in which
they are interpreted).

<ruleset-stack> Specifies a list of rulesets that form the initial ruleset stack. The
order of the rulesets in the list is from the top of the stack to the
bottom of the stack.

Example E-2 XMP Mapping File for Rulesets Defined in a URL

<?xml version="1.0" encoding="UTF-8"?>
<rule-execution-set xmlns="http://xmlns.oracle.com/rules/jsr94/configuration"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" version="1.0">
<name>CarRentalDemo</name>
<description>The Car Rental Demo</description>
<rule-source>
<rl-url>
file:rl/DM.rl
</rl-url>
</rule-source>
<rule-source>
<rl-url>
file:rl/vVehicleRent.rl
</rl-url>
</rule-source>
<ruleset-stack>
<ruleset-name>vehicleRent</ruleset-name>
</ruleset-stack>
</rule-execution-set>

E.2.3 Creating Rule Execution Sets with Rulesets from Multiple Sources

A rule execution set may contain rules that are derived from multiple sources and the
sources may be a mix of Rules Designer defined rulesets and RL Language rulesets. In
this case, the XML element <rule-execution-set> set contains multiple
<rule-source> elements, one for each source of rules. You must list each
<rule-source> in the order in which they are to be interpreted in Rules Engine.

Note: For this Oracle Business Rules release, a JSR-94 rule execution
set can only reference one Rules Designer dictionary.

E.3 Using the JSR-94 Interface with Oracle Business Rules

This section describes some Oracle Business Rules specific details for JSR-94 interfaces.

E-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using the JSR-94 Interface with Oracle Business Rules

E.3.1 Creating a Rule Execution Set with createRuleExecutionSet

The RuleExecutionSetProvider and LocalRuleExecutionSetProvider
interfaces in javax.rules.admin include the createRuleExecutionSet to
create a RuleExecutionSet object.

For the remaining createRuleExecutionSet methods, the first argument is
interpreted as shown in Table E-3.

Table E-3 First Argument Types for createRuleExecutionSet Method

Argument Description

org.w3c.dom.Element Specifies an instance of the <rule-execution-set> element
from the configuration schema.

java.lang.String Specifies a URL that specifies the location of an XML document
that is an instance of the <rule-execution-set> element from
the configuration schema.

java.io.InputStream Specifies an input stream that is used to read an XML document
that is an instance of the <rule-execution-set> element from
the configuration schema.

java.io.Reader Specifies a character reader that is used to read an XML document
that is an instance of the <rule-execution-set> element from
the configuration schema.

Note: JSR-94 also includes createRuleExecutionSet methods
that take a java.lang.Object argument, which is intended to be an
abstract syntax tree for the rule execution set. In Oracle Business Rules
for Oracle Fusion Middleware 11g Release 1 (11.1.1), using these
methods with this argument is not supported. Invoking these
methods with a java.lang.Object argument gives a
RuleExecutionSetCreateException exception.

The second argument to the createRuleExecutionSet methodsis a
java.util.Map of vendor-specific properties.

E.3.2 Creating a Rule Session with createRuleSession

Clients create a JSR-94 rule session using the createRuleSession method in the
RuleRuntime class. This method takes a java.util.Map argument of
vendor-specific properties. This argument can be used to pass in any of the properties
defined for the Oracle Business Rules oracle.rules.rl.RuleSession. If a rule
execution set contains URL or repository rule sources, the rules from those sources are
fetched on the creation of each new RuleSession.

E.3.3 Working with JSR-94 Metadata

JSR-94 allows for metadata for rule execution sets and rules within a rule execution set.
The Oracle Business Rules implementation does not add any additional metadata
beyond what is in the JSR-94 specification. The rule execution set description is an
optional item and thus may not be present. If it is not present, the empty string is
returned. For rules, only the rule name is available and the description is initialized
with an empty string.

Working with Oracle Business Rules and JSR-94 Execution Sets E-5

Using the JSR-94 Interface with Oracle Business Rules

E.3.4 Using Oracle Business Rules JSR-94 Extensions

This section covers the following extensions provided in the JSR-94 implementation
classes.

s Using the Extended createRuleExecutionSet to Create a Rule Execution Set

= Invoking an RL Language Function in JSR-94

E.3.4.1 Using the Extended createRuleExecutionSet to Create a Rule Execution Set

Oracle Business Rules provides a helper function to facilitate creating the XML control
file required as input to create a RuleExecutionsSet.

The helper method createRuleExecutionSet is available in the
RLLocalRuleExecutionSetProvider class. The createRuleExecutionSet
method has the following signature:

RuleExecutionSet createRuleExecutionSet (String name,
String description,
RuleSource[] sources,
String[] rulesetStack,
Map properties)

Table E—4 describes the createRuleExecutionSet arguments.

Table E-4 createRuleExecutionSet Arguments

Argument Description

name Specifies the name of the rule execution set.

description Specifies the description of the rule execution set.

sources Specifies an array of specifications for the sources of rules. The

RuleSource is an interface that the following classes implement:
s RLTextSource: RL Language text for RL Language text.
= RLUrlSource: RL Language URL for a URL to RL Language text.

For more information, see the oracle.rules.jsr94.admin package in
Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

rulesetstack Specifies the initial contents of the RL Language ruleset stack to be set
before each time the rules are executed. The contents of the array should
be ordered from the top of stack (Oth element) to the bottom of stack (last
element).

properties Oracle specific properties.

E.3.4.2 Invoking an RL Language Function in JSR-94

In a stateful interaction with a JSR-94 rule session, a user may want the ability to
invoke an arbitrary RL Language function. The class that implements the JSR-94
StatefulRuleSession interface provides access to the callFunction methods in
the oracle.rules.rl.RuleSession class.

Example E-3 shows how you can to invoke an RL Language function with no
arguments in a JSR-94 StatefulRuleSession.

Example E-3 Using CallFunction with a StatefulRuleSession
import javax.rules.*;

StatefulRuleSession session;

((oracle.rules.jsr94.RLStatefulRuleSession) session).callFunction("myFunction");

E-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

F

Working with Rule Reporter

This appendix includes the following sections:
» Section F.1, "Introduction to Working with Rule Reporter"
= Section F.2, "Using Rule Reporter Command Line Interface"

= Section E.3, "Using Rule Reporter with Java"

F.1 Introduction to Working with Rule Reporter

As the size and complexity of an Oracle Business Rules dictionary grows,
documenting the dictionary and communicating with others about the contents of the
rules dictionary can be important. Using the RuleReporter class you can create lists
or reports of the contents of a rules dictionary. You can use these reports to document
your design and to communicate about the dictionary contents.

There are two ways to use Rule Reporter:
s Execute RuleReporter on the command line
» Create custom reports using the RuleReporter APl in a Java program

Rule Reporter is written in the Groovy programming language using the
MarkupBuilder class, making it easy to create custom reporters whether you simply
want to have differently formatted HTML or use an entirely different markup
language. Groovy is a Java-like dynamic language which runs on the JVM and
interacts seamlessly with Java objects.

F.1.1 What You Need to Know About Rule Reporter HTML Style Sheets

The
JDEV_INSTALL/jdeveloper/soa/modules/oracle.rules_11.1.1/reporter
. Jar file contains style sheet oracle/rules/tools/reporter/style.css.
When you place this file in the same directory as the HTML output file that Rule
Reporter generates, this provides definitions to render the page. You can modify the
style sheet to change the HTML layout.

F.1.2 What You Need to Know About RuleReporter API

For complete details on the RuleReporter API, see the Oracle Fusion Middleware Java
API Reference for Oracle Business Rules.

Working with Rule Reporter F-1

Using Rule Reporter Command Line Interface

F.1.3 What You Need to Know About Rule Reporter Dependent Jar Files

The command-line or Java API use of Rule Reporter needs to have the classpath
include all required JAR files.

F.2 Using Rule Reporter Command Line Interface

You can execute a command line script to use Rule Report to list the contents of a
dictionary.

F.2.1 How to List the Contents of a Dictionary with Rule Reporter Command Line

You can execute a command line script to use Rule Report to list the contents of a
dictionary.

To list the contents of a dictionary with Rule Reporter using the command line:
1. Open a terminal shell window on your system.

2. Update your classpath to include RuleReporter dependencies as Example F-1
shows.

For more information, see Section F.1.3, "What You Need to Know About Rule
Reporter Dependent Jar Files".

3. Run RuleReporter with the following command line as Example F-1 shows:

java oracle.rules.tools.reporter.RuleReporter DICT-NAME
DEST-FILE LINK-PATHS

Where:

» DICT-NAME: the name of the rules dictionary you want to generate a report
on.

For example:
C:\JDeveloper\mywork\GradeApp\Grades\oracle\rules\grades\O
racleRulesl.rules.

» DEST-FILE: the name of the destination file for the generated Rule Reporter
output, usually suffixed with . html.

For example: C: \Temp\report.html.

s LINK-PATHS: a list of the locations on the file system which may contain
dictionaries that DTCT-NAME links to.

For example: C: \Temp.

If DICT-NAME does not link to any dictionaries, you must still specify at least
one path.

Example F-1 shows how to generate a report for a dictionary.

Example F-1 Executing RuleReporter on the Command Line

C:\> set CLASSPATH=%CLASSPATH$%;C:\Oracle\Middleware\jdeveloper\modules\oracle.adf.model_
11.1.1\adfm.jar;C:\Oracle\Middleware\jdeveloper\modules\oracle.adf .model_
11.1.1\groovy-all-1.5.4.jar;C:\Oracle\Middleware\wlserver_
10.3\server\lib\ojdbc6.jar;C:\Oracle\Middleware\jdeveloper\soa\modules\oracle.rules_
11.1.1\rules.jar;C:\Oracle\Middleware\jdeveloper\modules\oracle.xdk_11.1.1\xmlparserv2.jar

C:\> java oracle.rules.tools.reporter.RuleReporter

C:\JDeveloper\mywork\GradeApp\Grades\oracle\rules\grades\OracleRulesl.rules
C:\Temp\report.html C:\Temp

F-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using Rule Reporter with Java

4. Optionally, copy the
JDEV_INSTALL/jdeveloper/soa/modules/oracle.rules_11.1.1\repor
ter.jar file oracle/rules/tools/reporter/style.css

to the same directory as the HTML output file. In this example, copy the
style.css file to C: /Temp.

This causes a web browser to use the definitions to render the page. You can
modify the style sheet to change the visual layout of the HTML as shown in
Figure F-1.

Figure F-1 RuleReporter report.html with style.css

3 Report - Mozilla Firefox |Z“E|g|
File Edit Wiew History Bookmarks Tools Help

> s Q“I {l\f L File:,I',I',I'C:,I'Temp,l’report.h.t.n.ﬂl. . - | '[}- v : . 1%
uReport .. Q .

grades.OracleRules1 (OracleRules1)

DataModel

Variables

Alias Description BucketSet Type Visible Final

Functions

Fact Types

TestScore
TestScore extends Object
Imported from class com.grade.ns testscore, TestScore
from location file: /4T f[Developer frmywork /GradeApp/Grades/classes/
isabstract? [isenum?[) isfinal? g is interface? O
Generated from XML Scherma
file: /C: ADeveloper /mywiork /GradeApp/Grades xsd/grades xsd
into default target package
Using JAXE 2.0
in namespace http: /fwww .grade .com/hs/testscore T

F.3 Using Rule Reporter with Java

You can quickly and easily create a basic report of the contents of a dictionary using a
Java application with the oracle.rules. tools.reporter.RuleReporter class.

F.3.1 How to List the Contents of a Dictionary Using Rule Reporter with Java

You can use the RuleReporter class to list the contents of a dictionary. This class,
oracle.rules.tools.reporter.RuleReporter takes several arguments, as
shown:

RuleReporter ruleReporter = new RuleReporter (
DICT-NAME,

DEST-FILE,

LINK-PATHS

):

Working with Rule Reporter F-3

Using Rule Reporter with Java

Where:

DICT-NAME: the name of the rules dictionary you want to generate a report on.

For example:
C:\\JDeveloper\\mywork\\GradelApp\\Grades\\oracle\\rules\\grad
es\\OracleRulesl.rules.

DEST-FILE: the name of the destination file for the generated Rule Reporter
output, usually suffixed with .html.

For example: C: \\Temp\\report.html.

LINK-PATHS: a list of the locations on the file system which may contain
dictionaries that DTCT-NAME links to.

For example: new ArrayList<String> (Arrays.asList("C:\\Temp")).

If DICT-NAME does not link to any dictionaries, you must still specify at least one
path.

When you supply these arguments and call the RuleReporter.report () method,
this produces a dictionary report for the specified dictionary.

To list the contents of a dictionary using rule reporter with Java:

1.
2.

Start Oracle JDeveloper, this displays the Oracle JDeveloper start page.

In the Application Navigator, click New Application if no applications have been
created, or if applications have been created, click Applications and from the list
choose New Application.

In the Create Application wizard, enter the name and location for the application:

a. Inthe Application Name field, enter an application name. For example, enter
ReportApplication.

b. Enter or browse for a directory name, or accept the default.
c. Enter an application package prefix or accept the default, no prefix.

This should be a globally unique prefix and commonly uses a domain name
owned by your company. The prefix, followed by a period, applies to objects
created in the initial project of an application.

In this sample, you use the prefix com. example.

d. For this Oracle Business Rules project, select Generic Application for the
application template, as shown in Figure F-2.

F-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using Rule Reporter with Java

Figure F-2 Adding the Report Application

Create Generic Application - Step 1 of 2

Name your application

Application Narme:

() Application N
el Application Name |Repgrmpplicati0n |

s, Project Mame
Direckary:

|C:'l,JDeveIoper'l,mywork'l,ReportP.pplication |[Browse, ., |

Application Package Prefix:

| com, example |

Application Template:

Generic Application
Creates an application which includes a single project. The project is not
preconfigured with JDeveloper technalogies, but can be customized to include ary
technologies,

Fusion Web aApplication (ADF)
Creates a data-bound ADF web application. The application consists of one project
For the wiew and controller components (ADF Faces and ADF Page Flow), and
anather project For the data maodel (ADF Business Components),

Java Deskkop Application
reates an application configured For building a generic Java application. The new

Help | l Mext = H Finish || Cancel]

4. Click Next.

5. In the Create Generic Application wizard - Name your Generic project page, enter
the name and location for the project as shown in Figure F-3:

s In the Project Name field, enter an application name. For example, enter
ReportProject.

= Enter or browse for a directory name, or accept the default.

= On the Project Technologies tab, in the Available list, select Java and click Add
to add it to the Selected area.

Working with Rule Reporter F-5

Using Rule Reporter with Java

Figure F-3 Specifying Technologies in a Project

& Create Generic Application - Step 2 of 2

Name your Generic project

Praoject M LR tProject
A Broject: Mame: | eportProjec |

e Project Name Dirgckary: |C:'l,JDeveloper'l,mywork‘l,ReportApplication'l,ReportProject H Browse, .. |

|/ Project Technologies r Generated Components |/ Associated Libraries |

Available: Selected:
ADF Business Components

ADF Deskbop Integration

ADF Faces

ADF Library Web Application Support

ADF Page Flow
ADF Swing @
Ant

EI ADF Components
Database (Offline)

Technology Description:

ADF Business Components is the business services API provided by the Oracle
Application Development Framework (Oracle ADF), ADF Business Components
nrverns inferactinn hehween bhe resk nf the annlicatinn and the data skored in Fhe

| Help < Back Cancel

Click Finish.

In Oracle JDeveloper, select the project named ReportProject.
Right-click and from the list select Project Properties.
Select the Libraries and Classpath item.

10. Add the libraries Adfm Designtime API, JAXB, ADF Model Runtime, Oracle
XML Parser v2, Oracle JDBC, and Oracle Rules.

11. Click OK.

12. In Oracle JDeveloper, select the project named ReportProject.
13. Right-click and from the list select New.

14. In the New Gallery, in the Categories area, select General.

15. In the New Gallery, in the Items area, select Java Class.

16. Click OK.

17. In the Create Java Class window, configure the following properties as shown in
Figure F—4:

s Enter the Name value Report.

» Check the following check boxes:
— Public
— Main Method

F-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using Rule Reporter with Java

Figure F-4 Creating the Report.java Class
3
Enter the details of vour new class, |:|
|

Create Java Class

Mame: |Rep0rt
Package: |c0m.example | Q
Extends: |java.lang.0bject | Ck

Optional Atkributes

Implements: '+ b4

Access Modifiers Other Modifiers

() package protected

Constructors From Superclass
Implement Abstract Methods
Main Method

| Help | QK | | Cancel

18. Click OK.

Oracle JDeveloper displays the Java Class, as shown in Example F-2.

Example F-2 Code Created for New Report.java Class

package com.example;

public class Report {
public static void main(String[] args) {
Report report = new Report();

19. Use the RuleReporter class as shown in Example F-3. Replace the first
argument to the RuleReporter constructor with the location of your dictionary.

Example F-3 Report.java Completed

package com.example;

import java.util.List;
import java.util.Arrays;
import java.util.ArrayList;

import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.tools.reporter.RuleReporter;

public class Report {
public Report() throws SDKException {
try {

RuleReporter ruleReporter = new RuleReporter (
"C:\\JDeveloper\\mywork\\GradeApp\\Grades\\oracle\\rules\\grades\\OracleRulesl.rules",
"C:\\Temp\\report.html",

Arrays.asList ("C:\\Temp")

Working with Rule Reporter F-7

Using Rule Reporter with Java

)i
ruleReporter.report () ;

} catch (Exception e) {
System.out.println(e);
}
}

public static void main(String[] args) throws SDKException {

}

Report report = new Report();

}

20. In the Application Navigator, right-click ReportProject and select Make.

21.

In the Application Navigator, right-click Report . java and select Run.

In this example, the Report . java class generates the report in
C:\Temp\report.html

22, Optionally, copy the

JDEV_INSTALL/jdeveloper/soa/modules/oracle.rules_11.1.1\repor
ter.jar file oracle/rules/tools/reporter/style.css style sheet to the
same directory as the HTML output file. In this example, copy the style.css file
to C: /Temp.

This causes a web browser to use the definitions to render the page. You can
modify the style sheet to change the visual layout of the HTML as shown in
Figure F-5.

Figure F-5 RuleReporter report.html with style.css

3 Report - Mozilla Firefox IZIIEI@

File Edit Wiew History Bookmarks Tools Help
- - {" /l\ L File: 10 fTempjrepart. bl v P ' L,

grades.OracleRules1 (OracleRules1)

DataModel

Variables

Alias Description BucketSet Type Visible Final

Functions

Fact Types

TestScore
TestScore extends Object
Imported from class com.grade.ns testscore, TestScore
from location file: /4T f[Developer frmywork /GradeApp/Grades/classes/
isabstract? [isenum?[) isfinal? g is interface? O
Generated from XML Scherma
file: /C: ADeveloper /mywiork /GradeApp/Grades xsd/grades xsd
into default target package
Using JAXE 2.0
in namespace http: /fwww .grade .com/hs/testscore T

F-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

A

actions
advanced, 4-35
area, 5-4
cell, 5-4
decision table, 5-4
definition, 4-16
do nothing value, 5-7
fact type, 10-3
active option, 4-26
ADF Business Components Fact
action fact type, 10-3
creating, 10-9
definition, 10-1
importing, 3-15
key_values, 3-17,10-2
types, 3-15
ADF Business Components Fact ViewRowImpl,
advanced actions, 4-35
advanced mode, 4-25
advanced settings, 4-23
aggregates
average, 4-36
collection, 4-36
count, 4-36
maximum, 4-36
minimum, 4-36
sum, 4-36
aliases, A-1
allow gaps option, 5-17, 5-23
application-specific dictionary, 2-2
auto override conflict resolution
setting option, 5-24
average aggregate, 4-36

3-15

batch invocation, 10-7

BigDecimal type, 3-8

BigInteger type, 3-8

BPEL
decision functions, 6-6
Human Tasks, 11-2
java.lang.IllegalAccessError, D-2
service component, 11-2

Index

bucketsets
adding Enum type, 3-23
adding list of ranges (Range), 3-21
adding list of values (LOV), 3-19
allowed in actions field, 3-28
associating with facts, 3-29
creating, 3-18
definition, 1-4, 3-2
duplicate bucket value, 3-27
global, 3-18
Include Disallowed Buckets in Tests field, 3-28
list of values (LOV) adding, 3-19
local, 3-18

built-in dictionary, 2-2
Java wrappers, 3-8

business rules
activity, 6-6
decision function, 6-6
definition, 1-1
deployment and runtime, 9-22
dictionary, 1-5
in a Java EE application, 9-1
RL Language, 1-6

Cc

calendar type

with CurrentDate fact, 4-54
check rule flow option, 6-3
classpath

Java facts, 3-8

Rule Reporter, F-2
collection aggregate, 4-36
column paging, 12-52
combined dictionary, 2-2,12-16
com.sun.xml.bind.v2.runtime.reflect.opt.

Const errors, D-2

Condition Browser, 12-34, 12-38
condition expressions

cell, 5-3

definition, 5-3
conflict analysis, 5-18, 12-49

decision table, 5-23
conflict policy option, 5-18, 12-49
conflict resolution, 5-18, 12-49
constant option for globals, 2-11

Index-1

count aggregate, 4-36
CurrentDate fact, 4-54

D

data model
definition, 2-1
sharing, 2-8
data types
bucketset, 1-3
fact properties, 1-3
Date Browser, 12-35
dates
reasoning with CurrentDate fact, 4-54
decision functions, 6-1, 6-5
adding, 6-1
adding to a dictionary, 6-1
as decision service, 11-4
BPEL, 6-6
Business Rule activity, 6-6
calling with Java decision point interface,
check rule flow option, 6-3
definition, 1-4
rule firing limit option, 6-5
stateless option, 6-4
understanding, 6-1
Web service, 6-1,6-3
decision point API
batch invocation, 10-7
definition, 1-5
production dictionary, 7-15
rules SDK, 7-1
runtime properties, 10-5
transaction, 10-5
with MDS repository, 7-15
decision service
decision function, 11-4
decision table
action cell, 5-4
do nothing value, 5-7
actions, advanced, 4-35
active option, 4-26
adding a rule, 5-12
adding actions, 5-10
adding condition expressions, 5-9
advanced mode, 4-25
advanced settings, 4-23
aggregates, 4-36
allow gaps option, 5-17, 5-23
auto override conflict resolution, 5-24
cell values, 5-7
condition expression, 5-3
condition expression cell, 5-3
conflict analysis, 5-18, 5-23, 12-49
conflict policy option, 5-18, 12-49
conflict resolution, 5-18, 12-49
creating, 5-8
decision tree, 5-5
definition, 1-4
do not care values, 5-7

Index-2

10-7

effective dates, 4-28
expression builder, 4-58
find gaps, 5-17,5-23
gap analysis, 5-17,5-23
logical option, 4-26
move operation, 5-15
priority, 4-27
rules, 5-5
show conflicts, 5-18,12-49
sibling cell, 5-13
understanding, 5-1
validation, 4-21
decision tree, 5-5
DecisionPoint class, 7-2
DecisionPointBuilder class, 7-2
DecisionPointInstance class, 7-2
.decs file, 11-3
deployment
EAR file, 9-30
MAR file, 9-27
dictionary
application-specific, 2-2
built-in, 2-2
combined, 2-2,12-16
data model sharing, 2-8
decision function, 6-1, 6-5
definition, 1-5,2-1
globals, 2-9
link, 2-2,12-16
main, 2-2
naming conventions, 2-8, A-1
package, 2-8
reading
UTEF-8 character encoding, 7-11
runtime editing, 12-1
validation, 4-19, 4-20, 4-23
viewing and editing settings, 2-5
dictionary links
updating, 2-8
do nothing value, 5-7
Double type, 3-8
duplicate bucket values, 3-27

E

EAR file, 9-30
effective dates, 4-2,4-28
expression
constant, 2-11
Expression Builder, 12-34, 12-38

expression builder
about, 4-58

F

fact type

ADF Business Components, 3-15
Java, 3-8

RL, 3-12

XML, 3-3

facts
and working memory, 1-10
associating with bucketsets, 3-29
definition, 1-4, 3-2
FileInputStream
UTF-8, 7-11
filtering rules, 4-3
final option for globals, 2-11
Float type, 3-8
forward-chaining system, 1-8
frequently asked questions, C-1
functions
decision, 6-5
oracle business rules, 2-12
testing, 8-1

G

gap analysis, 5-17,5-23
global bucketset, 3-18
globals

constant option, 2-11

defined, 2-9

final option, 2-11

H

Human Tasks, 11-2

importing XML schema, 3-6

Include Disallowed Buckets in Tests option, 3-28
inference cycle, 1-8

Integer type, 3-8

J

Java EE application

with business rules, 9-1
Java Fact

adding, 3-8

getter method visibility, D-1

setter method visibility, D-1

types, 3-8

using a Property Change Listener with, C-5
java.lang.IllegalAccessError, D-2
java.lang.NoClassDefFoundError, D-2
JAXB

generated classes, 3-3

issue 490 troubleshooting, D-2

limitations with XML facts, 3-7

with XML facts, 3-2
JSR-94

definition, E-1

extensions, E-6

rule execution set, E-1

with RL Language text, E-2

with URL, E-3

K
key_values, 3-17,10-2

L

links
dictionary, 2-2,12-16
to a dictionary in the same application, 2-6
list tests, 4-41
local bucketset, 3-18
logical option, 4-26
Long type, 3-8

main dictionary, 2-2
MAR file, 9-27
matched fact naming, 4-32
maximum aggregate, 4-36
metadata

.decs file, 11-3

EAR file, 9-30

MAR file, 9-27

service component, 11-1,11-3
minimum aggregate, 4-36
move operation, 5-15

N

named priority, 4-27
naming conventions
alias, A-1
dictionary, 2-8, A-1
matched fact, 4-32
RL Language keywords, D-2
Rule Designer, A-1
rulesets, A-1
XML schema target package name, A-1
nested tests, 4-28
numeric priority, 4-27

(o)

Oracle Business Rules Function, 2-12

testing, 8-1
Oracle Business Rules function

creating, 2-12
Oracle Business Rules RL Language. See RL Language
Oracle Business Rules Rules Engine. See Rules Engine
Oracle Business Rules SDK2. See SDK
Oracle Business Rules service component. See service

component

P

pattern binding variable, 4-32
pattern matching, 4-30
priority

default, 4-27

definition, 4-27

Index-3

high, 4-27
higher, 4-27
highest, 4-27
integer value, 4-27
low, 4-27
lower, 4-27
lowest, 4-27
medium, 4-27
named, 4-27
numeric, 4-27
order, C-8
Property Change Listener, C-5
prototyping
rules, 3-12

R

range tests, 4-11
reload XML facts from updated schemas,
Rete algorithm, 1-9
Right Operand Browser, 12-35
RL Fact
adding, 3-12
types, 3-12
RL Language
definition, 1-6
selfjoin, C-3
rule language. See RL Language
Rule Reporter
classpath, command line, F-2
command line, F-2
RuleDictionary
UTEF-8 character encoding, 7-11
rules
actions, 1-3,4-16
active option, 4-26
adding actions, 4-16
advanced mode, 4-25
actions, 4-35
aggregates, 4-36
matched fact naming, 4-32
pattern matching, 4-30
setting, 4-40
simple tree mode, 4-44
tree mode, 4-41
advanced settings, 4-23
aggregate, 4-30
conflicts, C-8
creating, 4-7
data driven, 1-8
definition, 1-1, 4-1
effective dates, 4-28
engine, 1-5,1-6
expression builder, 4-58
filtering, 4-3
firing, 1-8
for each case where, 4-30
forward-chaining, 1-8
generating reports with SDK, F-1
list tests, 4-41

Index-4

3-6

logical option, 4-26
nested tests, 4-28
pattern binding variable, 4-32
pattern block, 4-31
priority, 4-27,C-8
prototyping, 3-12
range tests, 4-11
reporter, F-1
rule actions, 1-3
rule conditions, 1-3
SDK, 1-6
service component, 11-1
set tests, 4-14
testing, 8-1
tests, 4-7
there is a case where, 4-30
there is no case where, 4-30
tree mode, 4-41
validation, 4-21

Rules Designer
introduction, 1-7
rule actions, 1-3
rule conditions, 1-3
rules, 1-3
service component metadata, 11-2
WSDL, 11-2

Rules Engine
architecture, 1-8
definition, 1-5,1-6

rules paging, 12-33

rules SDK
decision point API, 7-1
definition, 1-6

rulesets
creating, 4-2
definition, 1-4,4-1
effective dates, 4-2
filtering, 4-3
naming, A-1

S

SDK
definition, 1-6
generating reports, F-1
rule reporter, F-1
self5join in Oracle RL, C-3
service component
BPEL, 11-2
definition, 1-5,11-1
Human Tasks, 11-2
metadata, 11-1,11-3
rules, 11-1
SOA composite application integration,
standalone component, 11-2
Web service, 11-1
set tests, 4-14
Short type, 3-8
simple tree mode, 4-44
SOA Composer

adding rule actions, 12-25
adding rule conditions, 12-23
adding rules, 12-20
application, 12-1
Bookmarkable Link, 12-5
Browser windows
Condition Browser, 12-34, 12-38
Date Browser, 12-35
Expression Builder, 12-34, 12-38
Right Operand browser, 12-35
browser windows, 12-33
commit menu, 12-54
conflict resolution, 12-49
decision tables, 12-36
adding actions, 12-41
adding condition rows, 12-37
adding decision tables, 12-36
adding rules, 12-43
column paging, 12-52
compacting table, 12-47
deleting decision tables, 12-53
gap analysis, 12-48
splitting and compacting, 12-47
splitting table, 12-47
switching rows to columns, 12-51
deleting rule actions, 12-26
deleting rule conditions, 12-24
deleting rules, 12-21
dictionary path, 12-8
edit menu, 12-13
editing bucketsets, 12-14
editing a range bucketset, 12-14
editing an LOV bucketset, 12-15
editing decision functions, 12-17
editing rules, 12-19
linked dictionaries, 12-16
modifying rule actions, 12-27
modifying rule conditions, 12-25
My Edits option, 12-6
obtaining composite and dictionary
information, 12-62
open menu, 12-3
opening a ruleset, 12-7
rules advanced settings, 12-22
rules paging, 12-33
synchronizing rules dictionary, 12-55
tree mode rules, 12-32
updating the validation panel, 12-61
validating rules dictionary, 12-56
validation panel, 12-57
validation panel, 12-57
updating the validation panel, 12-61
viewing bucketsets, 12-9
viewing globals, 12-8
viewing rulesets, 12-11
SOADesigner role
SOA Composer
authentication and SOADesigner role,
stateless option
decision functions, 6-4

12-3

sum aggregate, 4-36

T

testing
rules, 8-1
with a test function, 8-1
tests
inrules, 4-7
list, 4-41
range, 4-11
set, 4-14
transactions, 10-5
tree mode
creating tree mode rules, 4-46
simple, 4-44
with decision tables, 4-41
with rules, 4-41
troubleshooting, D-1
getter method visibility, D-1
java.lang.IllegalAccessError, D-2
java.lang.NoClassDefFoundError, D-2
setter method visibility, D-1

U

Unicode characters, 7-11
updated XML schema with XML facts, 3-6
UTF-8 characters, 7-11

\'

validation
data model, 4-20
decision table, 4-21
dictionaries, 4-19, 4-20, 4-23
rules, 4-21

variable, 4-32

visibility
getter methods, D-1
setter methods, D-1

w

Web service
decision function, and, 6-1, 6-3
service component, 11-1
WSDL, 11-1,11-2
WebDAV repository support, C-9
working memory, 1-10
WSDL
Rules Designer, 11-2
service component metadata, 11-1

X

XML Fact
adding, 3-3
java.lang.NoClassDefFoundError, D-2
JAXB-generated classes, 3-3
reload XML facts from updated schemas, 3-6

Index-5

support XPath assertion, 3-6
XPath, 3-6

XPath, 4-45
RL program, E-3
support assertion, 3-6
XML Fact, 3-6

Index-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	1 Overview of Oracle Business Rules
	1.1 What are Business Rules?
	1.1.1 What Are Rule Conditions?
	1.1.2 What Are Rule Actions?
	1.1.3 What Are Decision Tables?
	1.1.4 What Are Facts and Bucketsets?
	1.1.5 What Are Rulesets?
	1.1.6 What Are Decision Functions?
	1.1.7 What Are Decision Points?
	1.1.8 What Are Dictionaries?

	1.2 Oracle Business Rules Runtime and Design Time Elements
	1.2.1 Decision Component (Business Rules) in an SOA Composite Application
	1.2.2 Using Rules Engine with Oracle Business Rules in a Java EE Application
	1.2.3 Oracle Business Rules RL Language
	1.2.4 Oracle Business Rules SDK
	1.2.5 Rules Designer
	1.2.6 Oracle SOA Composer Application

	1.3 Oracle Business Rules Engine Architecture
	1.3.1 Declarative Rules
	1.3.2 The RETE Algorithm
	1.3.3 What Is Working Memory?
	1.3.4 Rule Firing and Rule Sessions

	2 Working with Data Model Elements
	2.1 Introduction to Working with Data Model Elements
	2.2 Working with a Dictionary and Dictionary Links
	2.2.1 Introduction to Dictionaries and Dictionary Links
	2.2.2 How to Create a Dictionary in the SOA Tier Using Rules Designer
	2.2.3 How to Create a Dictionary in the Business Tier Using Rules Designer
	2.2.4 How to View and Edit Dictionary Settings
	2.2.5 How to Link to a Dictionary
	2.2.6 How to Update a Linked Dictionary
	2.2.7 What You Need to Know About Dictionary Linking
	2.2.8 What You Need to Know About Dictionary Linking and Dictionary Copies
	2.2.9 What You Need to Know About Dictionary Linking to a Deployed Dictionary
	2.2.10 What You Need to Know About Business Rules Inputs and Outputs with BPEL

	2.3 Working with Oracle Business Rules Globals
	2.3.1 How to Add Oracle Business Rules Globals
	2.3.2 How to Edit Oracle Business Rules Globals
	2.3.3 What You Need to Know About the Final and Constant Options

	2.4 Working with Decision Functions
	2.5 Working with Oracle Business Rules Functions
	2.5.1 Introduction to Oracle Business Rules Functions
	2.5.2 How to Add an Oracle Business Rules Function

	3 Working with Facts and Bucketsets
	3.1 Introduction to Working with Facts and Bucketsets
	3.2 Working with XML Facts
	3.2.1 How to Import XML Schema and Add XML Facts
	3.2.2 How to Display and Edit XML Facts
	3.2.3 How to Reload XML Facts with Updated Schema
	3.2.4 What You Need to Know About XML Facts

	3.3 Working with Java Facts
	3.3.1 How to Import Java Classes and Define Java Facts
	3.3.2 How to Display and Edit Java Facts
	3.3.3 What You Need to Know About Java Facts

	3.4 Working with RL Facts
	3.4.1 How to Define RL Facts
	3.4.2 How to Display and Edit RL Facts and Add RL Fact Properties
	3.4.3 What You Need to Know About RL Facts

	3.5 Working with ADF Business Components Facts
	3.5.1 How to Import and Define ADF Business Components Facts
	3.5.2 What You Need to Know About ADF Business Components Fact Classpaths
	3.5.3 What You Need to Know About ADF Business Components Circular References
	3.5.4 What You Need to Know About ADF Business Components Facts

	3.6 Working with Bucketsets
	3.6.1 How to Define a List of Values Global Bucketset
	3.6.2 How to Define a List of Ranges Global Bucketset
	3.6.3 How to Define an Enumerated Type (Enum) Bucketset from XML Types
	3.6.4 How to Define an Enumerated Type (Enum) Bucketset from Java Types
	3.6.5 What You Need to Know About List of Values Bucketsets
	3.6.6 What You Need to Know About Range Bucketsets
	3.6.7 What You Need to Know About Bucketset Allowed in Actions Option
	3.6.8 What You Need to Know About Bucket Values

	3.7 Associating a Bucketset with Business Terms
	3.7.1 How to Associate a Bucketset with a Fact Property
	3.7.2 How to Associate a Bucketset with Functions or Function Arguments
	3.7.3 How to Associate a Bucketset with a Global Value

	4 Working with Rulesets and Rules
	4.1 Introduction to Working with Rulesets and Rules
	4.2 Working with Rulesets
	4.2.1 How to Create a Ruleset
	4.2.2 How to Set the Effective Date for a Ruleset
	4.2.3 How to Use a Filter to Display Matching Rules in a Ruleset

	4.3 Working with Rules
	4.3.1 How to Add Rules
	4.3.2 How to Define a Test in a Rule
	4.3.3 How to Define Range Tests in Rules
	4.3.4 How to Define Set Tests in Rules
	4.3.5 How to Define Actions in Rules
	4.3.6 What You Need to Know About Rule Actions
	4.3.7 What You Need to Know About Oracle Business Rules Performance Tuning

	4.4 Validating Dictionaries
	4.4.1 Understanding Data Model Validation
	4.4.2 Understanding Rule Validation
	4.4.3 Understanding Decision Table Validation
	4.4.4 How to Validate a Dictionary

	4.5 Using Advanced Settings with Rules and Decision Tables
	4.5.1 How to Show and Hide Advanced Settings in a Rule or Decision Table
	4.5.2 How to Select the Advanced Mode Option
	4.5.3 How to Select the Active Option
	4.5.4 How to Select the Logical Option
	4.5.5 How to Set a Priority for a Rule
	4.5.6 How to Specify Effective Dates

	4.6 Working with Nested Tests
	4.6.1 How to Use Nested Tests

	4.7 Working with Advanced Mode Rules
	4.7.1 How to Use Advanced Mode Pattern Matching Options
	4.7.2 How to Use Advanced Mode Matched Fact Naming
	4.7.3 How to Use Advanced Mode Action Forms
	4.7.4 How to Use Advanced Mode Aggregate Conditions
	4.7.5 What You Need to Know About Advanced Mode Rules

	4.8 Working with Tree Mode Rules
	4.8.1 Introduction to Tree Mode Rules
	4.8.2 How to Create Simple Tree Mode Rules
	4.8.3 How to Create Advanced Tree Mode Rules
	4.8.4 What You Need to Know About Tree Mode Rules

	4.9 Using Date Facts, Date Functions, and Specifying Effective Dates
	4.9.1 How to Use the Current Date Fact
	4.9.2 How to Set the Effective Date for a Rule
	4.9.3 What You Need to Know About Effective Dates
	4.9.4 How to Use Duration, JavaDate, OracleDate, and XMLDate Methods

	4.10 Working with Expression Builder
	4.10.1 Introduction to the Expression Builder
	4.10.2 How to Use the Expression Builder
	4.10.3 What You Need to Know About Working with Expressions

	4.11 Using Bucketsets as Constraints for Options Values in Rules
	4.11.1 How to Use a List of Ranges Bucketset as a Constraint for a Business Term
	4.11.2 How to Use a List of Values Bucketset as a Constraint for a Fact Property
	4.11.3 How to Use Bucketsets to Provide Options for Test Expressions

	5 Working with Decision Tables
	5.1 Introduction to Working with Decision Tables
	5.1.1 What is a Decision Table?
	5.1.2 Understanding Decision Table Values
	5.1.3 What You Need to Know About Decision Table Loops

	5.2 Creating Decision Tables
	5.2.1 How to Create a Decision Table
	5.2.2 How to Add Condition Rows to a Decision Table
	5.2.3 How to Add Actions to a Decision Table
	5.2.4 How to Add a Rule to a Decision Table

	5.3 Performing Operations on Decision Tables
	5.3.1 Introduction to Decision Table Operations
	5.3.2 How to Compact or Split a Decision Table
	5.3.3 How to Merge or Split Conditions in a Decision Table
	5.3.4 How to Merge, Split, and Specify Do Not Care for Condition Cells
	5.3.5 How to Perform Decision Table Gap Analysis
	5.3.6 How to Perform Decision Table Manual Conflict Resolution
	5.3.7 How to Set the Decision Table Auto Override Conflict Resolution Policy
	5.3.8 How to Set the Decision Table Ignore Conflicts Policy

	5.4 Creating and Running an Oracle Business Rules Decision Table Application
	5.4.1 How to Obtain the Source Files for the Order Approval Application
	5.4.2 How to Create an Application for Order Approval
	5.4.3 How to Create a Business Rule Service Component for Order Approval
	5.4.4 How to View Data Model Elements for Order Approval
	5.4.5 How to Add Bucketsets to the Data Model for Order Approval
	5.4.6 How to Associate Bucketsets with Order and CreditScore Properties
	5.4.7 How to Add a Decision Table for Order Approval
	5.4.8 How to Check the Business Rule Validation Log for Order Approval
	5.4.9 How to Deploy the Order Approval Application
	5.4.10 How to Test the Order Approval Application

	6 Working with Decision Functions
	6.1 Introduction to Decision Functions
	6.2 Working with Decision Functions
	6.2.1 How to Add or Edit a Decision Function

	6.3 What You Need to Know About Decision Functions
	6.3.1 What You May Need to Know About Rule Firing Limit Option for Debugging Rules
	6.3.2 What You May Need to Know to About Decision Function Arguments
	6.3.3 What You May Need to Know About the Decision Function Stateless Option

	7 Working with Rules SDK Decision Point API
	7.1 Introduction to Rules SDK and the Car Rental Sample Application
	7.1.1 Introduction to Decision Point API
	7.1.2 How to Obtain the Car Rental Sample Application
	7.1.3 How to Open the Car Rental Sample Application and Project

	7.2 Creating a Dictionary for Use with a Decision Point
	7.2.1 How to Create Data Model Elements for Use with a Decision Point
	7.2.2 How to View a Decision Function to Call from the Decision Point
	7.2.3 How to Create Rules or Decision Tables for the Decision Function
	7.2.4 What You Need to Know About Using Car Rental Sample with a Decision Table

	7.3 Creating a Java Application Using Rules SDK Decision Point
	7.3.1 How to Add a Decision Point Using Decision Point Builder
	7.3.2 How to Use a Decision Point with a Pre-loaded Dictionary
	7.3.3 How to Use Executor Service to Run Threads with Decision Point
	7.3.4 How to Create and Use Decision Point Instances

	7.4 Running the Car Rental Sample
	7.5 What You Need to Know About Using Decision Point in a Production Environment
	7.6 What You Need to Know About Decision Point and Decision Tracing

	8 Testing Business Rules
	8.1 Testing Oracle Business Rules at Design Time
	8.1.1 How to Test Rules Using a Test Function in Rules Designer
	8.1.2 What You Need to Know About Testing Using an Oracle Business Rules Function
	8.1.3 How to Test a Decision Function Using an Oracle Business Rules Function
	8.1.4 What You Need to Know About Testing Decision Functions

	8.2 Testing Oracle Business Rules at Runtime

	9 Creating a Rule-enabled Non-SOA Java EE Application
	9.1 Introduction to the Grades Sample Application
	9.2 Creating an Application and a Project for Grades Sample Application
	9.2.1 How to Create a Fusion Web Application for the Grades Sample Application
	9.2.2 How to Create the Grades Project
	9.2.3 How to Add the XML Schema and Generate JAXB Classes in the Grades Project
	9.2.4 How to Create an Oracle Business Rules Dictionary in the Grades Project

	9.3 Creating Data Model Elements and Rules for the Grades Sample Application
	9.3.1 How to Create Bucketsets for Grades Sample Application
	9.3.2 How to Add a Decision Table for Grades Sample Application
	9.3.3 How to Add Actions in the Decision Table for Grades Sample Application
	9.3.4 How to Rename the Decision Function for Grades Sample Application

	9.4 Adding a Servlet with Rules SDK Calls for Grades Sample Application
	9.4.1 How to Add a Servlet to the Grades Project

	9.5 Adding an HTML Test Page for Grades Sample Application
	9.5.1 How to Add an HTML Test Page to the Grades Project

	9.6 Preparing the Grades Sample Application for Deployment
	9.6.1 How to Create the WAR File for the Grades Sample Application
	9.6.2 How to Add the Rules Library to the Grades Sample Application
	9.6.3 How to Add the MDS Deployment File to the Grades Sample Application
	9.6.4 How to Add the EAR File to the Grades Sample Application

	9.7 Deploying and Running the Grades Sample Application
	9.7.1 How to Deploy to Grades Sample Application
	9.7.2 How to Run the Grades Sample Application

	10 Working with Oracle Business Rules and ADF Business Components
	10.1 Introduction to Using Business Rules with ADF Business Components
	10.1.1 Understanding Oracle Business Rules ADF Business Components Fact Types
	10.1.2 Understanding Oracle Business Rules Decision Point Action Type

	10.2 Using Decision Points with ADF Business Components Facts
	10.2.1 How to Call a Decision Point with ADF Business Components Facts
	10.2.2 How to Call a Decision Function with Java Decision Point Interface
	10.2.3 What You Need to Know About Decision Function Configuration with ADF Business Components

	10.3 Creating a Business Rules Application with ADF Business Components Facts
	10.3.1 How to Create an Application That Uses ADF Business Components Facts
	10.3.2 How to Add the Chapter10 Generic Project
	10.3.3 How to Create ADF Business Components Application for Business Rules
	10.3.4 How to Update View Object Tuning for Business Rules Sample Application
	10.3.5 How to Create a Dictionary for Oracle Business Rules
	10.3.6 How to Add Decision Point Dictionary Links
	10.3.7 How to Import the ADF Business Components Facts
	10.3.8 How to Add and Run the Outside Manager Ruleset
	10.3.9 How to Add and Run the Department Manager Ruleset
	10.3.10 How to Add and Run the Raises and Retract Employees Rulesets

	11 Working with Decision Components in SOA Applications
	11.1 Introduction to Decision Components
	11.2 Working with a Decision Component
	11.2.1 Working with Decision Component Metadata
	11.2.2 Working with Decision Components that Expose a Decision Function
	11.2.3 Using Stateful Interactions with a Decision Component
	11.2.4 What You Need to Know About Stateful Interactions with Decision Components

	11.3 Decision Service Architecture

	12 Using Oracle SOA Composer with Oracle Business Rules
	12.1 Introduction to Oracle SOA Composer
	12.2 Using Oracle SOA Composer User Authentication
	12.2.1 What You Need to Know About SOA Composer Access Control and User Authentication

	12.3 Opening and Viewing an Oracle Business Rules Dictionary at Run Time
	12.3.1 Opening an Oracle Business Rules Dictionary at Run Time
	12.3.2 What Happens When You Open an Oracle Business Rules Dictionary
	12.3.3 What You Need to Know to Obtain the Dictionary Path from the Open Dialog
	12.3.4 How to View Globals in an Oracle Business Rules Dictionary at Run Time
	12.3.5 How to View Bucketsets in an Oracle Business Rules Dictionary at Run Time
	12.3.6 How to View Linked Dictionary Names at Run Time
	12.3.7 How to View Decision Functions in Oracle Business Rules Dictionary at Run Time
	12.3.8 How to View Rulesets in an Oracle Business Rules Dictionary at Run Time

	12.4 Getting Started with Editing and Saving a Dictionary at Run Time
	12.4.1 What You May Need to Know About Localized Number Formatting Support in Oracle SOA Composer
	12.4.2 How to Edit Bucketsets in an Oracle Business Rules Dictionary at Run Time
	12.4.3 What You Need to Know About Editing Bucketsets
	12.4.4 How to Work With Dictionary Links in an Oracle Business Rules Dictionary at Run Time
	12.4.5 How to Edit Decision Functions in an Oracle Business Rules Dictionary at Run Time
	12.4.6 What You May Need to Know About Oracle Business Rules Dictionary Editor Declarative Component
	12.4.7 What You May Need to Know About Oracle Business Rules Dictionary Editor Task Flow

	12.5 Editing Rules in an Oracle Business Rules Dictionary at Run Time
	12.5.1 How to Edit Rules in an Oracle Business Rules Dictionary at Run Time
	12.5.2 How to Add a Rule at Run Time
	12.5.3 How to Delete a Rule at Run Time
	12.5.4 How to Show and Edit Advanced Settings for Rules at Run Time
	12.5.5 How to Add Rule Conditions at Run Time
	12.5.6 How to Delete Rule Conditions at Run Time
	12.5.7 How to Modify Rule Conditions at Run Time
	12.5.8 How to Add Rule Actions at Run Time
	12.5.9 How to Delete Rule Actions at Run Time
	12.5.10 How to Modify Rule Actions at Run Time
	12.5.11 How to Work with Advanced Mode Rules at Run Time
	12.5.12 How to Work with Tree Mode Rules at Run Time
	12.5.13 What You May Need to Know About Rules Paging in Oracle SOA Composer
	12.5.14 What You May Need to Know About Oracle Business Rules Editor Declarative Component

	12.6 Using the Oracle SOA Composer Browser Windows
	12.6.1 Expression Builder
	12.6.2 Condition Browser
	12.6.3 Date Browser
	12.6.4 Right Operand Browser

	12.7 Editing Decision Tables in an Oracle Business Rules Dictionary at Run Time
	12.7.1 Adding a Decision Table at Run Time
	12.7.2 Adding Condition Rows to a Decision Table
	12.7.3 Adding Actions to a Decision Table
	12.7.4 Adding Rules to a Decision Table
	12.7.5 Splitting and Compacting a Decision Table
	12.7.6 Performing Gap Analysis in a Decision Table
	12.7.7 Performing Conflict Resolution in Decision Tables
	12.7.8 Switching From Rows to Columns
	12.7.9 Deleting a Decision Table at Run Time

	12.8 Committing Changes for an Oracle Business Rules Dictionary at Run Time
	12.8.1 What You Need to Know About Editing With Multiple Users at Run Time

	12.9 Synchronizing Rules Dictionary in Oracle JDeveloper With Run Time Dictionary Updates
	12.10 Validating an Oracle Business Rules Dictionary at Run Time
	12.10.1 Understanding the Validation Panel
	12.10.2 Updating the Validation Panel

	12.11 Obtaining Composite and Dictionary Information at Run Time
	12.12 Working with Tasks at Run Time
	12.12.1 How to View Task Metadata at Run Time
	12.12.2 How to Configure a Task or an AMX Rule Metadata at Run Time

	A Oracle Business Rules Files and Limitations
	A.1 Rules Designer Naming Conventions
	A.1.1 Ruleset Naming
	A.1.2 Dictionary Naming
	A.1.3 Alias Naming
	A.1.4 XML Schema Target Package Naming

	B Oracle Business Rules Built-in Classes and Functions
	B.1 String Classes
	B.2 List Classes
	B.3 Numeric Classes
	B.4 Time and Duration Classes
	B.5 Miscellaneous Classes
	B.6 Functions

	C Oracle Business Rules Frequently Asked Questions
	C.1 Why Do Rules Not Fire When A Java Object is Asserted as a Fact and Then Changed Without Using the Modify Action?
	C.2 What are the Differences Between Oracle Business Rules RL Language and Java?
	C.3 How Does a RuleSession Handle Concurrency and Synchronization?
	C.4 How Do I Correctly Express a Self-Join?
	C.5 How Do I Use a Property Change Listener in Oracle Business Rules?
	C.6 What Are the Limitations on a Decision Service with Oracle Business Rules?
	C.7 How Do I Put Java Code in a Rule?
	C.8 Can I Use Java Based Facts in a Decision Service with BPEL?
	C.9 How Do I Enable Debugging in a BPEL Decision Service?
	C.10 How Do I Support Versioning with Oracle Business Rules?
	C.11 What is the Priority Order Using Priorities with Rules and Decision Tables?
	C.12 Why do XML Schema with xsd:string Typed Elements Import as Type JAXBElement?
	C.13 Why Are Changes to My Java Classes Not Reflected in the Data Model?
	C.14 How Do I Use Rules SDK to Include a null in an Expression?
	C.15 Is WebDAV Supported as a Repository to Store a Dictionary?
	C.16 Using a Source Code Control System with Rules Designer

	D Oracle Business Rules Troubleshooting
	D.1 Getter and Setter Methods are not Visible
	D.2 Java Class with Only a Property Setter
	D.3 Runtime NoClassDefFound Error
	D.4 RL Specific Keyword Naming Conflict Errors
	D.5 java.lang.IllegalAccessError from Business Rules Service Runtime
	D.6 JAXB 1.0 Dictionaries and RL MultipleInheritanceException
	D.7 Why Does XML Schema with Underscores Fail JAXB Compilation?
	D.8 How Are Decision Service Input Output Element Types Restricted?
	D.9 How Are Decision Service Input Output Schema Restricted?
	D.10 How Do I Handle Java Reserved Names in an Imported Fact Type?

	E Working with Oracle Business Rules and JSR-94 Execution Sets
	E.1 Introduction to Oracle Business Rules and JSR-94 Execution Sets
	E.2 Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets
	E.2.1 Creating Rule Execution Set with Oracle Business Rules RL Language Text
	E.2.2 Creating a Rule Execution Set from Oracle RL Text Specified in a URL
	E.2.3 Creating Rule Execution Sets with Rulesets from Multiple Sources

	E.3 Using the JSR-94 Interface with Oracle Business Rules
	E.3.1 Creating a Rule Execution Set with createRuleExecutionSet
	E.3.2 Creating a Rule Session with createRuleSession
	E.3.3 Working with JSR-94 Metadata
	E.3.4 Using Oracle Business Rules JSR-94 Extensions

	F Working with Rule Reporter
	F.1 Introduction to Working with Rule Reporter
	F.1.1 What You Need to Know About Rule Reporter HTML Style Sheets
	F.1.2 What You Need to Know About RuleReporter API
	F.1.3 What You Need to Know About Rule Reporter Dependent Jar Files

	F.2 Using Rule Reporter Command Line Interface
	F.2.1 How to List the Contents of a Dictionary with Rule Reporter Command Line

	F.3 Using Rule Reporter with Java
	F.3.1 How to List the Contents of a Dictionary Using Rule Reporter with Java

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

